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Abstract There is a increasing interest in analysis of large
scale multi-way data. The concept of multi-way data refers
to arrays of data with more than two dimensions, i.e., tak-
ing the form of tensors. To analyze such data, decompo-
sition techniques are widely used. The two most common
decompositions for tensors are the Tucker model and the
more restricted PARAFAC model. Both models can be
viewed as generalizations of the regular factor analysis
to data of more than two modalities. Non-negative ma-
trix factorization (NMF) in conjunction with sparse cod-
ing has lately been given much attention due to its part
based and easy interpretable representation. While NMF
has been extended to the PARAFAC model no such at-
tempt has been done to extend NMF to the Tucker model.
However, if the tensor data analyzed is non-negative it
may well be relevant to consider purely additive (i.e.,
non-negative Tucker decompositions). To reduce ambi-
guities of this type of decomposition we develop updates
that can impose sparseness in any combination of modal-
ities, hence, proposed algorithms for sparse non-negative
Tucker decompositions (SN-TUCKER). We demonstrate
how the proposed algorithms are superior to existing al-
gorithms for Tucker decompositions when indeed the data
and interactions can be considered non-negative. We fur-
ther illustrate how sparse coding can help identify what
model (PARAFAC or Tucker) is the most appropriate for
the data as well as to select the number of components
by turning off excess components. The algorithms for SN-



TUCKER can be downloaded from [Mgrup, 2007].

1 Introduction

Tensor decompositions are in frequent use today in a variety of
fields including psychometric, chemometrics, image analysis, graph
analysis and signal processing [Murakami and Kroonenberg, 2003;
Vasilescu and Terzopoulos, 2002; Wang and Ahuja, 2003; Jia and
Gong, 2005; Sun et al., 2005; Gurden et al., 2001; Ngrgaard and
Ridder, 1994; Smilde et al., 1999, 2004; Andersson and Bro, 1998].
Tensors, i.e., X € RI*12XXIN als0 called multi-way arrays or mul-
tidimensional matrices are generalizations of vectors (first order ten-
sors) and matrices (second order tensors). The two most commonly
used decompositions of tensors are the Tucker model [Tucker, 1966]
and the more restricted PARAFAC/CANDECOMP model [Harsh-
man, 1970; Carroll and Chang, 1970|.
The Tucker model reads
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where G € R */2xIn and A € RIJn To indicate how many
vectors pertain to each modality it is customary also to denote the

model a Tucker J; — Jo —--- — Jy. Using the n-mode tensor product
X, [Lathauwer et al., 2000] given by
(Q X0 Piyigoosjniin = Z Qirsinsooviimiing P (2)

the model is stated as
XreR=0Gx1 AW x5 A® x5 xy AW, (3)

The Tucker model represents the data spanning the n'* modality by
the vectors (loadings) given by the .J,, columns of A™ such that the
vectors of each modality interact with the vectors of all remaining
modalities with strengths given by a so-called core tensor G. As a
result, the Tucker model encompass all possible linear interactions
between vectors pertaining to the various modalities of the data.
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The PARAFAC model is a special case of the Tucker model where
the size of each modality of the core array G is the same, i.e., J; =
Jo = --- = Jy while interaction is only between columns of same
indices such that the only non-zero elements are found along the
diagonal of the core, ie., G; j, v # 0iff j1 = jo = ... = Jn.
Notice, in the Tucker model a rotation of a given loading matrix A (™
can be compensated by a counter rotation of the core G, i.e., G X,
A = (Gx,P71)x,(A™P). While the factors of the unconstrained
Tucker model are orthogonal, this is not the case for the factors of the
PARAFAC model. Furthermore, as the PARAFAC model requires
the core to be diagonal this restricts P in general to be a simple scale
and permutation matrix. Thus, contrary to the PARAFAC model
|Kruskal, 1977; Sidiropoulos and Bro, 2000] the Tucker model is not
unique in general.
Non-negative matrix factorization (NMF) is given by the decom-
position
V ~R=WH, (4)

where V. € RYM W € RY*P and H € RY*M | ie., such that the
variables V, W and H are non-negative. The decomposition is use-
ful as it results in easy interpretable part based representations [Lee
and Seung, 1999]. Non-negative decomposition is also named positive
matrix factorization [Paatero and Tapper, 1994| but was popularized
by Lee and Seung [1999, 2000| due to a simple and efficient algorith-
mic procedure based on multiplicative updates. The decomposition
has proven useful for a wide range of data where non-negativity is
a natural constraint. These encompass data for text-mining based
on word frequencies, image data, biomedical data and spectral data.
The algorithm can even be useful when the data inherently is in-
definite, but after transformation becomes non-negative, say audio,
where NMF has been successfully used for analysis of the amplitude
of a spectral representation [Smaragdis and Brown, 2003].
Unfortunately, the decomposition is not in general unique [Donoho
and Stodden, 2003|. However, sparseness has been imposed such that
ambiguities are reduced by finding the solution being the most sparse
(by some measure of sparseness). This is often also the most simple,
i.e., parsimonious solution to the data [Olshausen and Field, 2004;
Eggert and Korner, 2004; Hoyer, 2004]. Non-negative matrix factor-



ization has recently been extended to the PARAFAC model [Welling
and Weber, 2001; FitzGerald et al., 2005; Parry and Essa, 2006; Ci-
chocki et al., 2007]. However, despite the attractive properties of
non-negative decompositions and sparse coding neither approaches
have so far been extended to the Tucker model.

Traditionally, the Tucker model has been estimated using vari-
ous alternating least squares algorithms where the columns of A
for the unconstrained Tucker are orthogonal [Andersson and Bro,
1998|. Recently, an algorithm for higher order singular value decom-
position (HOSVD) based on solving N eigenvalue problems to esti-
mate the Tucker model was given [Lathauwer et al., 2000]. However,
just as NMF does not have orthogonal factors neither will factors
in the constrained Tucker model be forced orthogonal. Although
algorithms for non-negative Tucker decompositions exist [Bro and
Andersson, 2000] the decompositions do not allow for the core to
be constrained non-negative. Furthermore, the decompositions are
in general ambiguous. Consequently, the lack of uniqueness hampers
interpretability of these decompositions. For this reason the exist-
ing non-negative Tucker decompositions have not been widely used.
Presently, we will develop multiplicative algorithms for fully non-
negative Tucker decompositions, i.e., forming a non-negative Tucker
decomposition where both data, core and loadings are non-negative.
Ambiguities of the decompositions are reduced imposing sparseness
such that the solution being the sparsest according to some measure
of sparsity is attained.

In the following &;" will denote a tensor of the modalities a con-
taining data of type b. Recently, the Tucker model has among others
been applied to:

1. Spectroscopy data ([Smilde et al., 2004; Andersson and Bro, 1998|

. Batch number xTimex Spectra .
for instance Xg, .0 |Gurden et al., 2001; Ngr-

gaard and Ridder, 1994; Smilde et al., 1999])
2. Web mining (X5 ¢ xQueriesxWep pages |qun ot al., 2005])

Click counts

. PeoplexViewsx Illuminations X Expressions X Pixels .
3. Image analysis (X7,,00 intensity [Vasilescu

and Terzopoulos, 2002; Wang and Ahuja, 2003; Jia and Gong,

2005
4. Semantic differential data (A" dges > Music piecesxSeales|\[yrakami and



Kroonenberg, 2003|)

All the above data sets are non-negative and the basis vectors/projections
A ™ and interactions G can be assumed additive, viz., non-negative.

For the spectroscopy data non-negativity would yield batch groups
containing, time and spectra profiles additively combined by the non-
negative core, for the web mining data giving groups of users, queries
and web pages interrelated with a strength given by the non-negative
core etc. However, none of the Tucker analysis above have consid-
ered such purely non-negative decompositions where the “whole” is
modeled as the sum of its “parts” resulting in easy interpretable part
based representation.

The paper is structured as follows: First, two algorithms for sparse
non-negative Tucker (SN-TUCKER) decomposition based on a gaus-
sian noise model (i.e., least squares (LS) minimization) and Poisson
noise (i.e., Kulback-Leibler (KL) divergence minimization) are de-
rived. The derivation easily generalizes to other types of objective
functions such as Bregman, Ciszar, a and [ divergences [Dhillon
and Sra, 2005; Cichocki et al., 2006, 2007], however, the focus is
here on LS and KL, since they are the two most widely used objec-
tive functions for NMF. Next, the algorithms ability to identify the
components of synthetically generated data is demonstrated. Finally,
the algorithms are tested on two real data sets, one of wavelet trans-
formed EEG previously explored by the PARAFAC model [Mgrup
et al., 2006] the other a data set obtained from a flow injection
analysis (FTA) |Ngrgaard and Ridder, 1994; Smilde et al., 1999|.
The applications demonstrate different aspects of the SN-TUCKER
model.

2 Methods

In the following Ae B and % will denote element-wise multiplication
and division, respectively, while (M)* denotes elements-wise raising
the elements of M to the o'* power. £, E and 1 will, respectively,
denote a tensor, a matrix, and a vector of ones in all entries. Finally,
e supersedes - where - denotes the regular matrix multiplication.
The sparse non-negative Tucker (SN-TUCKER) algorithms pro-
posed here is based on the multiplicative updates introduced in |Lee



and Seung, 1999, 2000; Lee et al., 2002] for non-negative matrix fac-
torization (NMF'). Although, other types of updates exists for non-
negativity constraint optimization such as projected gradient |Lin,
2007] and active sets [Bro and Jong, 1997|, multiplicative updates are
simple to implement and extend well to sparse coding [Eggert and
Korner, 2004]. Consider the cost function C(#) of the non-negative

variables . Let further 890) and 2% 09_) be the positive and nega-
tive part of the derivative with respect to #;. Then the multiplicative

update has the following form:

acO)~ \ @
00,
0; — 0; (ac(e)+ > ' (5)

00;

A small constant € = 107 can be added to the denominator to avoid
potential division by zero. By also adding the constant to the nu-
merator the corresponding gradient is unaltered. When the gradient

is zero %@(ﬁ)* = % such that 6 is left unchanged. If the gradi-
acO)r  9Cc(O)~

ent is positive 56, > o6 hence 0; will decrease and vice versa
if the gradient is negative. Thus, there is a one-to-one relation be-
tween fixed points of the multiplicative update rule and stationary
points under gradient descend. One attractive property of multiplica-
tive updates is that, since 6; a%e and = 80 all are non-negative,
non-negativity is naturally enforced as each update remains in the
positive orthant. « is a step size parameter that potentially can be
tuned to assist convergence. When a — 0 only very small steps in
the negative gradient direction are taken.

Using multiplicative updates Lee and Seung [2000] devised two
algorithms for NMF. One based on least squares minimization (LS)
corresponding to the approximation error being homoscedatic gaus-
sian noise the other based on Kullback-Leibler divergence (KL) cor-
responding to Poisson noise. They further proved that these updates
given at the top of Table 1 monotonically decrease the cost function
C for a=1.

Although the estimation of W or H for fixed H or W, respec-
tively, is a convex problem, the combined estimation alternatingly
solving for W and H is not guaranteed to find the global minima.
Furthermore, a NMF decomposition is in general not unique [Donoho
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and Stodden, 2003]: If the data does not adequately span the positive
orthant a rotation of the solution is possible violating uniqueness.
Consequently, constraints in the form of sparseness has proven use-
ful such that the ambiguity is resolved taking the solution being the
sparsest by some measure of sparseness [Hoyer, 2002, 2004; Eggert
and Korner, 2004]. Eggert and Korner [2004] derived an efficient algo-
rithm for Sparse NMF based on multiplicative updates by penalizing
values in H by a function Cyperse(H) while keeping W normalized
such that the sparsity is not achieved simply by letting H go to zero
while W goes to infinity. Making the gga/constru%tvion invariv%nt to this
i,d i,d

normalization, i.e. = WH where W, ; = = the
e, R id = Zowe — Wl they

found multiplicative updates for the LS-algorithm which can be ex-
tended to the KL-algorithm, see Table 1. In the following analysis we
will use Ciparse(H) = [[HJ|1, i.e., an Li-norm penalty. One attractive
property of the Li-norm is that it can function as a proxy for the Lg
norm, i.e., can minimize the number of non-zero elements while is
does not change the convexity of the cost-function when estimating
H for fixed W [Donoho, 2006|. Notice, %H(H) =1.

Consider the non-negative Tucker model, i.e X, G and A™ are
all non-negative. By 'matrizicing’ X1t *2%XIN into a matrix, i.e.,

InxIy oDy Insr. I : :
X trofn=tind N the Tucker model can be expressed in matrix no-

tation as [Lathauwer et al., 2000]

X~ Ry =AMG (AN @ .. A e A Ve g AW) = AMZ,,

where Z,) = G (AM @ .. @ AT @ A D g . @ AW)T As a
result, the updates of each of the factors A™ follow straightforward
from the regular NMF updates by exchanging W with A and H
with Z,) in the W update.

By lexicographical indexing of the elements in X and G, i.e.,
vec(X') and wvec(G) the problem of finding the core G can be for-
mulated in the framework of conventional factor analysis |Kolda,
2006]:

vec(X) = vec(R) = Avec(G),

where A = AW © A® @ ... ® AN, Consequently, the update of G
follows by the regular NMF updates exchanging W with A and H
with vec(G) in the H update. Finally, this update can be expressed



Crs(V,R)=35>,,(Vi; — Ry

@

VHT\"
W We : HHHo(

Ckr(V, R) = Zij Vi,jlogvl:‘j - V+R;;

@ Rij
%HT ' wTX @
W — We , H—He 2
EHT WTE
CSparseLS - CLS(Vy R) + ﬁcspa'rse(H)
—~ ~ T —~ NeY
VH' + Wdiag(1-RH e W))

)2
wTv
)

W We (
RH' + Wdiag(1-VH' ¢ W)
HeHe wTv

WTRAS acspg;is‘e (H)

CSpnxrseKL = CKL (V, ﬁ) + ﬂcsparse(H)

WHW.(

<H" + Wdiag(1-EH” e W)) “

EHT + Wdiag(1 - %HT «W)

H—He | — acR =
WTEp 2 sparse )

Tablel. The NMF updates (top) and Sparse NMF updates (bottom)
for both LS and KL minimization. Cyperse(H) is the function used
to penalize the elements in H. While the updates for regular NMF
as well as updates where sparseness is given by Csperse(H) = ||H||
have been proven to converge for & = 1 the normalization invariant
W update has not been proved convergent, however, in practise they

are, and thus the update has been conjectured convergent for a = 1
Eggert and Korner [2004].

in terms of n-mode multiplication since
ATvec(X) = vec(X x1 AV x5 AD" sy xy AN,

The algorithms for SN-TUCKER are summarized in Table 2. Here
diag(v) is a matrix having the vector v along the diagonal while 1
and £ is a matrix and a tensor having ones in all indices. In the
Sparse SN-TUCKER some modalities can be kept sparse while the
rest are normalized. Consequently, each or some of the A™ or G,



Algorithm outline for SN-TUCKER based on LS and KL minimization
1. Initialize all A™ and the core array G for instance by random.
2. For all n do

LS-minimaization:

R = A™Z,

T NeY
A A0 o [ ZE
R(n)Z’(Tn)

KL-minimization:

Ry = AMZ,
(X(n>>ZT e
Rin) ) (W

AP A o
E(n)Z{,)

3. R=Gx1 AW x5 A® x5 xy AN
LS-minimization:
B=Xx1 AW 5, A®" »y  xy AT
C=R X1 A<1)T X9 A(Q)T X3 ... XN A(N)T
g - g . <§)o¢
KL—minimizatiqgn: . .
D= % x1 AMT %o A®T xo xy AW

F=E&x A(l)aT %o A@T %y xn AT
Fonity

4. Repeat from step 2 until some convergence criterion has been satisfied

Table2. Algorithms for SN-TUCKER based on LS and KL mini-
mization. In step 1, we initialized the components by random but
such that the amplitude of the randomly generated data covered all
potential solutions by the initialization. In step 4, the convergence
was defined as a relative change in cost function being less than 106
or when the algorithm had run for 2500 iterations

can be constrained to be sparse while re-normalizing the modalities
that are not constrained. In conclusion, sparseness can be imposed
in any combination of modalities including the core, while normal-
izing the remaining modalities. In Table 2 the updates are given
when sparsifying or normalizing a given modality. Here ||G|r =

\/Zjljg_ij G? .. iy thatis ||-[|p is the regular Frobenious norm for

matrices and tensors, respectively, as defined in [Kolda, 2006| while

1GIli =225/, ix Girgorin- When normalizing, each of the updated
A Aind
Adllr

A™’s should be normalized after the update, i.e., A a=



while the core is normalized by G = IIGQHF‘ Notice,
Normalized Sparse
~ X (2T +AM diag(1- R, ZT, «AD)\ X Zh, -
Lsl A o ~<)(T) — () 2 A(n>.( <>T<>)
R(n)Z(n)+A("')dzag(1~X(n)ZTOA(”)) R(n)Z{,+8
x n ey .
(%) z{,)+A diag(1-EZ(,,)eA™) <¥>Z<T> i
KL ;&(n) ° (n) A(n) ° (1)
o ) X\ o« EZ[ 45
Ez<“)+A<anmg(1» m z(n).AW)
~ = e
~ [ B+GlCel 5\
G (=)
C+GlIBeG |1 c+h
~ ~ ye?
= D+Gl|£eG 1 D ¢
KL Go | m———— Ge (—)
(7:+9||D09H1) F+B

Table3. Updates when normalizing or imposing sparseness on the
various modalities. Top row updates of A, bottom row updates of
the core G

CLS(X(l)aR(l)) = ... = CLS(X(N),R(N)> = CLs(UGC(X),AUGC(g))
OKL<X(1),R(1)) = ... = CKL(X(N);R(N)) = C’KL(vec(X),Avec(g)).

Each of the updates above minimize the same cost function. As a
result, the convergence of the algorithms for SN-TUCKER, with-
out sparseness for « = 1 follow straightforward from the conver-
gence of the regular NMF updates given in |Lee and Seung, 2000| as
the estimation takes the form of a sequence of regular factor anal-
ysis problems minimizing the same cost function. However, no such
proof exists for updates for normalized variables [Eggert and Korner,
2004]. Although extensively tested we never experienced any lack of
convergence of the updates above for the normalized variables for
«a = 1. Had the updates diverged a could have been tuned to ensure
convergence.

The proposed algorithms for SN-TUCKER are based on multi-
plicative updates and in summary have the following benefits

— The developed algorithms can reduce ambiguities of the non-
negative decompositions by imposing sparseness in any combi-
nation of modalities.
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— The non-negativity ensures that no cancellation is allowed and
that the representations becomes part based |[Lee and Seung,
1999]. This also often leads to clustering of the data [Ding et al.,
2005].

— Overcomplete representations can be handled, for instance the
core tensor can for some modalities be much larger than the orig-
inal data tensor, while sparsity can help to avoid an overfit of the
data.

— The updates can easily be adapted to consider only the non-
zero elements in X’ reducing computational complexity for highly
sparse data.

— The updates can enforce specific prior structure in the core or the
loadings. For instance the core or some of the core elements can
be fixed to implement known interactions in the model simply by
omitting the updates for these specific elements.

— Missing data is often a problem, however missing values can be
handled by introducing an indicator tensor Q of same size as V
having ones where data is present and zeros where missing as
demonstrated for regular NMF in [Zhang et al., 2006]. Replacing
X by Qe X(,,), R with Qe R and & with Q in the updates above
the influence of missing values are completely removed in the
model estimation.

— Each iteration of the SN-TUCKER is O(1115-...- InJ1J2-...- IN),
i.e., grows linearly with the product of the size of X and G mak-
ing the cost per iteration relatively limited compared to existing
algorithms for non-negative TUCKER decomposition. Alterna-
tive algorithms, e.g., require an iterative check of the violation of
non-negativity [Bro and Andersson, 2000; Bro and Jong, 1997].

A drawback compared to the algorithm for non-negative constrained
optimization such as [Bro and Jong, 1997] is that convergence can
be slow, especially for small values of the regularization parameters
(. Although the estimation of each variable in turn is a convex op-
timization problem, alternatingly solving for the components of the
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various modalities is a non-convex problem. Thus, just as for regu-
lar NMF the SN-TUCKER is prone to local minima. To speed up
the convergence, we have used overrelaxed bound optimization as
proposed for regular NMF in Salakhutdinov et al. [2003].

Finally, we note that if we force the core to be the identity tensor
the algorithm reduces to the algorithm for non-negative PARAFAC
also named Positive Tensor Factorization (PTF) proposed in [Welling
and Weber, 2001].

3 Results and Discussion

In the following Standard Tucker will denote the algorithm for Tucker
estimation provided by the N-way toolbox Bro and Andersson [2000]
while HOSVD corresponds to the Tucker algorithm described in
Lathauwer et al. [2000]. Furthermore, convergence will be defined
here as a relative change in cost function being less than 1075 or
when the algorithm has run for 2500 iterations.

The algorithms were first tested on a synthetic data set consist-
ing of 5 images of logical operators mixed through two modalities.
The data was generated such that a perfect non-negative decompo-
sition was ambiguously defined. The result of the decomposition of
the synthetic data can be seen in Figure 1. While the SN-TUCKER
KL and LS algorithm near perfectly identifies all components the
corresponding non-negative PARAFAC decomposition, with its di-
agonal restriction on the core, fails in identifying the components. For
the PARAFAC model the true interactions between the components
of the various modalities can not be accounted for. The Standard
Tucker algorithm provided by the N-way toolbox also failed in esti-
mating the correct components as non-negativity of the core in the
current implementation of the toolbox was not implemented. Thus, if
the core is not constrained although the interactions (core-elements)
are non-negative the decomposition results in an erroneous decom-
position of the data. Namely, a pattern results with significant can-
cellation effects in the core that account for the data in a random
way. Thus, even though the correct model has both non-negative
loadings and interactions an unconstrained core will resort to can-
cellation effect in order to account for the data which hampers the
interpretability of the model.
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True Components SN-TUCKER KL SN-TUCKER LS

Modality 1 and 2 loadings Modality 1 and 2 loadings Modality 1 and 2 loadings

Modallty 3 loadings Modallty 3 loadlngs Modallty 3 loadmgs
(> WC D BHe-w (> MC |
Core Core Core

HEAERY EEHEED BMBES

PARAFAC KL PARAFACLS Standard TUCKER

Modality 1 and 2 loadings Modality 1 and 2 loadings Modality 1 and 2 loadings

= =

L | | 1]
Modality 3 loadings Modality 3 loadings Modality 3 loadings
-EEEEE B EEEE HEEEE
Core Core Core

Figurel. Examples of results obtained when analyzing a synthetic
data set generated from a Tucker 5-5-5 model. Top left panel: The
true components generating the synthetic data. Top middle panel:
Components obtained by the SN-TUCKER algorithm based on KL.
Top right panel: Components obtained by the SN-TUCKER al-
gorithm based on LS. Bottom left panel: Components obtained
by the corresponding non-negative PARAFAC model based on KIL.
Bottom middle panel: Components obtained by the correspond-
ing non-negative PARAFAC model based on LS. Bottom right
panel: Components obtained by the Standard Tucker algorithm pro-
vided by the N-way toolbox (which is based on least squares mini-
mization) allowing for the loadings to be constrained non-negative
but keeping the core unconstrained. All decompositions except the
PARAFAC decomposition accounts for more than 99.99% of the vari-
ance.

13



The algorithms were next tested on a data set containing the
inter trial phase coherence (ITPC) obtained from wavelet trans-
formed electroencephalographic (EEG) data. This data set has pre-
viously been analyzed using non-negative PARAFAC and a detailed
description of the data set can be found in [Megrup et al., 2006].
Briefly stated it consist of 14 subject recorded during a propri-
oceptive stimuli consisting of a weight change of left hand dur-
ing odd trials and right hand during even trials giving a total of
14 - 2 = 28 trials. Consequently, the data has the following form
X hamnelxTimeErequencyxTrials “he results of a Tucker 3-3-3 model
can be seen in Figure 2 while an evaluation of the uniqueness of the
decompositions is given in Table 4. Clearly, the SN-TUCKER model
approaches the non-negative PARAFAC model as sparseness is im-
posed on the Core, see Figure 2. While the SN-TUCKER accounts
for 49.3 % of the variance, the sparse SN-TUCKER accounts for
49.11 % of the variance whereas the non-negative PARAFAC model
accounts for 48.9 % of the variance. Finally, the HOSVD accounts for
58.9 % of the variance while the two Standard Tucker decompositions
both accounts for around 60 % of the variance. The decompositions
constrained to be fully non-negative are easier to interpret compared
to the HOSVD and decompositions based on Standard Tucker. The
sparse SN-TUCKER, and the PARAFAC decompositions are very
similar both indicating a right sided and left sided activity in the
first two components primarily during odd and even trials, respec-
tively, corresponding to an activity contralateral to the stimulus side.
The left and right sided activity represents information processing in
the somatosensory and motor cortex situated in the parietal region
of the brain contralateral to the stimulus side such that left hand
is represented in the right hemisphere and vice versa for the right
hand, see also [Mgrup et al., 2006] for additional interpretation.

Since sparseness imposed on the core resulted in a decomposition
resembling the corresponding PARAFAC decomposition we conclude
that the PARAFAC rather than the full Tucker model can be con-
sidered a reasonable model to the data. Consequently, the Tucker
model with sparsity imposed on the core can help to decide whether
a PARAFAC or a Tucker model is the most appropriate model for
a data set. Although, the decompositions obtained by the HOSVD
and the standard Tucker procedure in the N-way toolbox accounts
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for more variance since cancellation of factors are allowed, the de-
compositions are again harder to interpret. While the last factor in
the trial modality clearly differentiates between left and right side
stimulation and the second and third scalp components differentiates
between frontal parietal and left right activity the interpretation of
the interactions between these components are difficult to resolve
from the complex pattern of interaction given by the cores. Conse-
quently, although the SN-TUCKER model accounts for slightly less
of the variance it is from an interpretation point of view more at-
tractive. The SN-TUCKER is given for the LS minimization since
this is the cost function the HOSVD and the Standard Tucker are
based on.
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F1:0.965740.0222
(0.3465+0.1702)
F2:0.958540.1485
(0.485240.0674)
F3:0.9664+0.1161
(0.462040.0674)

Core :
0.9139+0.0383
(0.279340.1244)

Explained variance :

0.4909+£0.0017

Channel :
F1:1.00040.000
(0.381340.1400)
F2:1.00040.000
(0.363640.1631)
F3:1.00040.000
(0.341740.1072)

Time — Frequency :

F1:1.00040.000
(0.2812+£0.0380)

F2:1.00040.000
(0.325940.0661)

F3:1.00040.000
(0.33294:0.0555)

Trials :
F1:1.0004+0.000
(0.426840.1402)
F2:1.0004+0.000
(0.389740.1815)
F3:1.0004+0.000
(0.394740.1375)

Core :
0.6963+0.3535
(0.347340.1470)

Explained variance :

0.369540.0000

Channel :
F1:1.00040.000
(0.342840.1195)
F2:1.00043.4700.000
(0.365740.1406)
F3:1.00043.3870.000
(0.391440.1305)

Time — Frequency :
F1:1.000£0.000
(0.33274+0.0398)
F2:1.00040.000
(0.3288+0.0417)
F3:1.000+0.000
(0.293540.0210)

Trials :
F1:1.000+0.000
(0.368140.0972)
F2:1.000£0.000
(0.4116£0.1434)
F3:1.0004+0.000
(0.450740.1347)

Core :
0.356140.1493
(0.309440.1141)

Explained variance :
—0.260040.0000

Table4. Mean correlation between the factors of 10 runs (stopped af-
ter 250 iterations) with sparseness imposed on the core array ranging
from 0 to 100 here given for LS (range of data |0; 0.4]). In parenthesis
are the correlations obtained by random (estimated by permutating
the indices of the factors and calculating their correlation). Clearly
imposing sparseness improves uniqueness (correlation between each
decomposition) however if the sparseness imposed on the core is too
strong all factors becomes identical only capturing the mean activ-
ity while the core is arbitrary due to the identical factors). The KL
algorithm gave similar results.
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From Table 4 we learn that each unconstrained SN-TUCKER de-
composition is only inter-run correlated by about 70-90%. However,
when imposing sparseness on the core a more unique decomposition
was indeed achieved hence a correlation well above 90% between
the components of the factors and core of the 10 decompositions
while only slightly affecting the explained variance. However, by fur-
ther increasing sparseness on the Core a new biased type of solution
emerged in which a mean activity is represented in all the compo-
nents. Consequently, the factors were all perfectly correlated to each
other while the core could be arbitrarily chosen as long as the sum of
the core elements remained the same leading to a high variant core
and a useless decomposition.

Finally, the algorithms were tested on a data set of X, ;’;ijgf Timex Batch
obtained from a flow injection analysis (FIA) system, see [Ngrgaard
and Ridder, 1994; Smilde et al., 1999|. The data set has been an-
alyzed through various supervised models using among other the
prior knowledge of the concentration in each batch |[Ngrgaard and
Ridder, 1994; Smilde et al., 1999]. However, here we employ a sparse
SN-TUCKER  to see if this algorithm can capture the underlying
structure in the data unsupervised. Sparseness was imposed on both
the core and batch modality (5 = 0.5, range of data [0;0.637]). The
results of the sparse Tucker 6-6-6 decomposition are given in Figure
3

From the analysis of the FIA data a highly consistent decom-
position resulted when imposing sparseness on the core and batch
modality, see Table 5. Here, the model captured the known true con-
centrations in the batch quite well while forming a sparse core also
improved the interpretability of the components since less interac-
tions were included, see Figure 3. Consequently, imposing sparseness
can turn off excess factors, hence, assist model selection also cap-
turing the true loadings as presently demonstrated by the decom-
positions ability to well estimate the known mixing profiles of the
batches. Neither the decompositions without sparsity nor the Tucker
procedure given in N-way toolbox allowing for negative core ele-
ments were as consistent nor were they able to capture well the true
mixing. Furthermore, the corresponding 6 component non-negative
PARAFAC decomposition was not able to identify the correct mix-
ing as the model was inadequate for the data. Instead it seems that
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SN-TUCKER (8 = 0)[SN-TUCKER (3 = 0.5)[Standard TUCKER PARAFAC
0.8986 £ 0.0722 0.9847 + 0.0396 0.9111 &+ 0.0409 0.9882 + 0.0336
(0.3672 + 0.1617) (0.4008 + 0.1736) (0.3735 + 0.1520) (0.4087 + 0.1672)
0.7588 £ 0.1460 0.9550 &+ 0.0648 0.5478 £ 0.0870 0.9391 £ 0.1032
(0.2984 + 0.1979) (0.3258 + 0.1863) (0.2387 £+ 0.1963) (0.2648 + 0.1814)
0.9995 £ 1e—° 0.9972 + 0.0007 0.9997 & 2¢— 7 0.9989 + 4e— 7

Table5. Mean correlation of 10 decompositions of the FIA dataset
for SN-TUCKER with and without sparseness as well as the Stan-
dard Tucker method and non-negative PARAFAC decomposition.
In parenthesis are the correlations obtained by random (estimated
by permutating the indices of the factors and calculating their cor-
relation). Clearly, imposing sparseness improves component identi-
fication and reduce decomposition ambiguity while not hampering
the models ability to account for the data. Correlation between esti-
mated and true mixing is taken as the mean of the maximum corre-
lation between each estimated component and the true components.

component 1 of the mixing matrix of the SN-TUCKER somewhat
has been split into component 2 and 4, component 2 into 5 and 6 and
component 3 into component 1 and 3 of the PARAFAC decomposi-
tion. Thus, the PARAFAC model is due to the restricted core forced
to split the components of one mode that are shared by several com-
ponents in another mode into duplicates of the same components.
That the mixing components are duplicated in the PARAFAC de-
composition can also be seen from the relative high correlation of the
PARAFAC model to the true mixing as given in table 5. Thus, the
SN-TUCKER model yield a more compact representation than the
corresponding PARAFAC decomposition while imposing sparseness
enables to capture the true structure in the data in a completely un-
supervised manner, rather than resorting to supervised approaches
as previously done [Ngrgaard and Ridder, 1994; Smilde et al., 1999|.

By forcing the structure of the core to be the identity tensor, the
SN-TUCKER algorithm becomes an algorithm for the estimation
of the PARAFAC model. Although, the PARAFAC model in gen-
eral is unique under mild conditions [Kruskal, 1977|, the PARAFAC
model constrained to non-negativity is not in general unique [Lim
and Golub, 2006]. Thus, imposing sparseness as presently proposed
can also be used to alleviate the non-uniqueness of non-negative
PARAFAC decompositions. The proposed SN-TUCKER has two
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drawbacks. Estimating a good value of (3 is not obvious. Presently,
we examined a few different values of 3. Future work should inves-
tigate methods that more systematically estimate the J parameters
such as approaches based on the L-curve [Hansen, 1992; Lawson and
Hanson, 1974|, generalized cross-validation [Golub et al., 1979] or
Bayesian learning [Hansen et al., 2006]. Other approaches of tun-
ing 3 have been to constrain the decompositions to give specific
degree of sparseness [Hoyer, 2004; Heiler and Schnérr, 2006]. How-
ever, it is still not clear what degree of sparseness is desirable and
as such the problem of choosing the regularization parameter 3 be-
comes the restated problem of choosing the correct sparsity degree.
That is, there is a correspondence between sparsity degree as mea-

sured by ﬁ(v[nbfn - %) and the value of 5. Furthermore,
while NMF and non-negative PARAFAC normally needs in the or-
der of 100 iterations to get good solutions, to our experience the
SN-TUCKER needs in the order of 1000 iterations, i.e., considerably
more. The SN-TUCKER method was in general much slower than
the HOSVD which has a closed form solution solving N eigenvalue
problems. The decomposition was also considerably slower than the
Standard Tucker method provided by the N-way toolbox and the
non-negative PARAFAC proposed in [Welling and Weber, 2001].
However, for both the HOSVD as well as Standard Tucker the core
can be directly calculated from pseudo-inverses of the loading ma-
trices, i.e., as

g =X X1 JA(I)Jr X9 ‘A@)T X3 ... XN A(N)T. (6)

While for the non-negative PARAFAC no core is estimated. Thus,
we also compared the present SN-TUCKER algorithm to an itera-
tive procedure for fully non-negative Tucker (including non-negative
core), extending the Standard Tucker algorithm provided by the N-
way toolbox to include non-negative core updates based on the ac-
tive set algorithm given in [Bro and Jong, 1997]. This significantly
slowed down the algorithm making it comparable in time-usage to
the SN-TUCKER algorithms we have proposed here. As a result, the
SN-TUCKER model is considerably slower than Standard Tucker
and non-negative PARAFAC due to the core update. Thus, future
work should investigate how the convergence rate can be improved
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when a closed form solution for the core no longer exists due to the
non-negativity constraints.

4 Conclusion

We proposed two new sparse non-negative Tucker (SN-TUCKER) al-
gorithms. Evidence was presented that SN-TUCKER yields a parts
based representation as have been seen in NMF for 2-way data.
Hence, a ‘simpler’, more interpretable decomposition than the de-
compositions obtained by current Tucker algorithms such as the
HOSVD and the Standard Tucker algorithm provided by the N-way
toolbox. Furthermore, imposing constraints of sparseness helped re-
duce ambiguities in the decomposition and turned off excess compo-
nents, hence helped model selection and component identification.
The analysis of the wavelet transformed EEG-data demonstrated
how sparseness reduced ambiguities and can further be used to iden-
tify the adequacy of the PARAFAC model over the Tucker model.
Whereas, the SN-TUCKER analysis of the FIA data demonstrated
how sparseness not only improve uniqueness of the decompositions
but is also able to turn of excess components such that the true load-
ings could be identified unsupervised and a more compact represen-
tation given than the representation obtained from the correspond-
ing PARAFAC model. The algorithms presented can be downloaded
from |[Mgrup, 2007].

References

Andersson, C. A. and Bro, R. (1998). Improving the speed of multi-
way algorithms: Part i. tucker3. Chemometrics and Intelligent
Laboratory Systems, 42:93—-103.

Bro, R. and Andersson, C. A. (2000). The n-way toolbox for matlab.
Chemometrics and Intelligent Laboratory Systems, 52:1-4.

Bro, R. B. and Jong, S. D. (1997). A fast non-negativity-constrained
least squares algorithm. Journal of Chemometrics, 11(5):393-401.

Carroll, J. D. and Chang, J. J. (1970). Analysis of individual differ-
ences in multidimensional scaling via an N-way generalization of
"Eckart-Young" decomposition. Psychometrika, 35:283-319.

19



Cichocki, A., Zdunek, R., and Amari, S. (2006). Csiszar’s divergences
for non-negative matrix factorization: Family of new algorithms.
6th International Conference on Independent Component Analysis
and Blind Signal Separation, pages 32—-39.

Cichocki, A., Zdunek, R., Choi, S., Plemmons, R., and Amari, S.-
i. (2007). Nonnegative tensor factorization using alpha and beta
divergencies. ICASSP.

Dhillon, I. S. and Sra, S. (2005). Generalized nonnegative matrix
approximations with bregman divergences. NIPS, pages 283-290.

Ding, C., He, X., and Simon, H. D. (2005). On the equivalence of
nonnegative matrix factorization and spectral clustering. Proc.
SIAM Int’l Conf. Data Mining (SDM’05), pages 606-610.

Donoho, D. (2006). For most large underdetermined systems of
linear equations the minimal /'-norm solution is also the spars-
est solution. Communications on Pure and Applied Mathematics,
59(6):797-829.

Donoho, D. and Stodden, V. (2003). When does non-negative matrix
factorization give a correct decomposition into parts? NIPS.

Eggert, J. and Korner, E. (2004). Sparse coding and nmf. In Neural
Networks, volume 4, pages 2529-2533.

FitzGerald, D., Cranitch, M., and Coyle, E. (2005). Non-negative
tensor factorisation for sound source separation. In proceedings of
Irish Signals and Systems Conference, pages 8-12.

Golub, G., Heath, M., and Wahba, G. (1979). Generalized cross-
validation as a method for choosing a good ridge parameter. Tech-
nometrics, 21(2):215-223.

Gurden, S. P., Westerhuis, J. A., Bijlsma, S., and Smilde, A. K.
(2001). Modelling of spectroscopic batch process data using grey
models to incorporate external information. Journal of Chemo-
metrics, 15:101-121.

Hansen, L. K., Madsen, K. H., and Lehn-Schigler, T. (2006). Adap-
tive regularization of noisy linear inverse problems. In Proceedings
of Eusipco 2006.

Hansen, P. C. (1992). Analysis of discrete ill-posed problems by
means of the l-curve. SIAM Review, 34(4):561-580.

Harshman, R. A. (1970). Foundations of the PARAFAC procedure:
Models and conditions for an "explanatory" multi-modal factor
analysis. UCLA Working Papers in Phonetics, 16:1-84.

20



Heiler M. and Schnéorr, C. (2006). Controlling Sparseness in Non-
Negative Tensor Factorization. Lecture Notes in Computer Sci-
ence, 3951:56-67.

Hoyer, P. (2002). Non-negative sparse coding. Neural Networks
for Signal Processing, 2002. Proceedings of the 2002 12th IEEE
Workshop on, pages 557-565.

Hoyer, P. (2004). Non-negative matrix factorization with sparseness
constraints. Journal of Machine Learning Research 5:1457-1469 .

Jia, K. and Gong, S. (2005). Multi-modal tensor face for simulta-
neous super-resolution and recognition. In ICCV ’05: Proceedings
of the Tenth IEEE International Conference on Computer Vision,
pages 1683-1690.

Kolda, T. G. (2006). Multilinear operators for higher-order decom-
positions. Technical Report SAND2006-2081, tr:sandreport.

Kruskal, J. (1977). Three-way arrays: rank and uniqueness of trilin-
ear decompositions, with application to arithmetic complexity and
statistics. Linear Algebra Appl., 18:95-138.

Lathauwer, L. D., Moor, B. D.; and Vandewalle, J. (2000). Multi-
linear singular value decomposition. SIAM J. MATRIX ANAL.
APPL., 21(4):125301278.

Lawson, C. and Hanson, R. (1974). Solving Least Squares Problems.
Prentice-Hall.

Lee, D. and Seung, H. (1999). Learning the parts of objects by
non-negative matrix factorization. Nature, 401(6755):788-91.

Lee, D., Seung, H., and Saul, L. (2002). Multiplicative updates for
unsupervised and contrastive learning in vision. Knowledge-Based
Intelligent Information Engineering Systems and Allied Technolo-
gies. KES 2002, 1:387-91.

Lee, D. D. and Seung, H. S. (2000). Algorithms for non-negative
matrix factorization. In NIPS, pages 556-562.

Lim, L.-H. and Golub, G. (2006). Nonnegative decomposition and
approximation of nonnegative matrices and tensors. SCCM Tech-
nical Report, 06-01, forthcoming, 2006.

Lin, C.-J. (2007). Projected gradient methods for non-negative ma-
trix factorization. To appear in Neural Computation.

Mgrup, M.  (2007). Algorithms  for SN-TUCKER.
www2.imm. dtu. dk/pubdb /views /edoc_ download.php /4718 /zip /imm]T18.zip.

21



Mgrup, M., Hansen, L. K., Parnas, J., and Arnfred, S. M. (2006).
Decomposing the time-frequency representation of EEG using non-
negative matrix and multi-way factorization. Technical report.

Murakami, T. and Kroonenberg, P. M. (2003). Three-mode models
and individual differences in semantic differential data. Multivari-
ate Behavioral Research, 38(2):247-283.

Ngrgaard, L. and Ridder, C. (1994). Rank annihilation factor analy-
sis applied to flow injection analysis with photodiode-array detec-
tion. Chemometrics and Intelligent Laboratory Systems, 23(1):107—
114.

Olshausen, B. A. and Field, D. J. (2004). Sparse coding of sensorty
inputs. Current Opinion in Neurobiology, 14:481-487.

Paatero, P. and Tapper, U. (1994). Positive matrix factorization: A
non-negative factor model with optimal utilization of error esti-
mates of data values. Environmetrics, 5(2):111-126.

Parry, Mitchell, R. and Essa, I. (2006). Estimating the spatial po-
sition of spectral components in audio. In proceedings 1CA2006,
pages 666— 673.

Salakhutdinov, R., Roweis, S., and Ghahramani, Z. (2003). On the
convergence of bound optimization algorithms. In Proceedings of
the 19th Annual Conference on Uncertainty in Artificial Intelli-
gence (UAI-03), pages 509-516.

Sidiropoulos, N. D. and Bro, R. (2000). On the uniqueness of mul-
tilinear decomposition of n-way arrays. Journal of Chemometrics,
14:229-239.

Smaragdis, P. and Brown, J. C. (2003). Non-negative matrix fac-
torization for polyphonic music transcription. IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics (WAS-
PAA), pages 177-180.

Smilde, A., Bro, R., and Geladi, P. (2004). Multi-way Analysis:
Applications in the Chemical Sciences. Wiley.

Smilde, A. K. S., Tauller, R., Saurina, J., and Bro, R. (1999). Cali-
bration methods for complex second-order data. Analytica Chimica
Acta, 398:237-251.

Sun, J.-T., Zeng, H.-J., Liu, H., Lu, Y., and Chen, Z. (2005).
Cubesvd: a novel approach to personalized web search. In WWW
"05: Proceedings of the 14th international conference on World
Wide Web, pages 382-390.

22



Tucker, L. R. (1966). Some mathematical notes on three-mode factor
analysis. Psychometrika, 31:279-311.

Vasilescu, M. A. O. and Terzopoulos, D. (2002). Multilinear analysis
of image ensembles: Tensorfaces. In ECCV '02: Proceedings of the
7th European Conference on Computer Vision-Part I, pages 447—
460.

Wang, H. and Ahuja, N. (2003). Facial expression decomposition.
In ICCV ’03: Proceedings of the Ninth IEEE International Con-
ference on Computer Vision, 2:958-965.

Welling, M. and Weber, M. (2001). Positive tensor factorization.
Pattern Recogn. Lett., 22(12):1255-1261.

Zhang, S., Wang, W., Ford, J., and Makedon, F. (2006). Learning
from incomplete ratings using non-negative matrix factorization.
6th STAM Conference on Data Mining (SDM), pages 548-552.

This article was processed using the ITEX macro package with LLNCS style

23



SN-TUCKER SN-TUCKER Sparse Core (b=1) PARAFAC

Factors

”(l Q’ m
i '

ore
u [ ak L u--m o

¢ ¢ € - ™ ™ & & &

& - & & & & & & &

v v v < < e 1l 9 < e

HOSVD Standard TUCKER unconstrained Standard TUCKER using positive loadings

Factors Factors

| et @ - 5@@ ol - M
el

E
» :
» v e @ bl
\ | Bl «
1 300 510152025 Cor
C Core -
AT SRR oW =TT TN T m-Fl-l LT .
[ . -~ 4 m A v am v .
] ¢ %= % om . ° e @ = g -l
N dE d ¢ ¢ I ¢ B ]

Figure2. Analysis of the ITPC data of EEG consisting of 14 sub-
jects undergoing weight change of left hand during odd trials and
right hand during even trials. Top left panel: Example of result
obtained when analyzing the data using SN-TUCKER. Top mid-
dle panel: Result when imposing sparseness on the core ( = 1,
range of data [0;0.4]). Top right panel: The results obtained from
the PARAFAC model corresponding to a fixed Core having ones
along the diagonal. Bottom left panel: The results obtained us-
ing HOSVD. Bottom middle panel: Results obtained using the
Standard Tucker procedure provided by the N-way toolbox without
constraints. Bottom right panel: Results obtained using Standard
Tucker imposing non-negativity on all the loadings.
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SN-TUCKER sparse Core and loading
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Figure3. The result obtained analyzing the FIA data by a Tucker
6-6-6 model. Top panel: SN-TUCKER based on LS with spar-
sity on the Core and mixing modality, (6 = 0.5 range of data |0;
0.637]). Upper middle panel: Example of result obtained by a
SN-TUCKER with no sparsity imposed. Lower middle panel: Fx-
ample of decomposition obtained using the Standard Tucker proce-
dure provided by the N-way toolggx imposing non-negativity on the
loadings. The SN-TUCKER, presently used LS minimization since
this is the cost function the Standard Tucker also minimizes. Bot-
tom panel: Result obtained from the corresponding 6 component
non-negative PARAFAC decomposition.



