
A Satellite Mission Control System

Brian Schmidt Hermansen

Kongens Lyngby 2006

IMM-THESIS-2006-53

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

Summary

The Mission Control is an extension of the Ground station. The Mission Control
handles the actual communication with the satellite and the Ground Station is
the tracking and maintaining of the communication. This means the Ground
Station controls the radio which different Mission Controls can gain access to
and then use to communication with a given satellite. This means that one can
service more than one satellite operator at the time if need be, but that only
one can communicate at a time.

The general purpose is that operators will use the Mission Control without
any prior knowledge to the Ground Station, they do however need to know a
few things about the satellite which they want to use. Mainly they need to
know about the commands that the satellite can comprehend, so they do not
accidentally start flooding the satellite with garbage commands which might
take transmission time away from the real commands. It is expected that the
commands will be verified by either people or some programming qualified to
do this. The operator might see it fit to make some last minute changes, these
should be made before the session is passed to the Ground Station or the changes
wont be able to be made as a lock will occur.

Another aspect to be considered is the storage of the data received, not as much
as the medium as that has already been selected, but more which structure the
database should have. The structure might change as the data becomes more
complex or more fast information is needed before actually fetching the entire
set of data. Furthermore then one could expect that it might variate depending
on the need of the single user requesting the data later, but in this aspect one
would expect changes in the software fetching the data rather than an actual

ii

change in the database, leaving this problem to a later time in the DTUSAT2
progress.

Looking at a future aspect of the software development within the Mission
Control, it means that a Mission Control can hook up to different Ground
Stations running the Ground Station software to gain better coverage of the
satellite. It should be mentioned that this is not necessary at this point as there
is only a single Ground Station running with the software.

Resumé

Mission control er en udvidelse til ground station. Mission control h̊andterer
kommunikationen med satelliten og ground station styrer tracking samt vedlige-
holdelse af kommunikationen. Dette betyder at ground station kontrollerer ra-
dioen og forskellige mission control programmer kan f̊a adgang til den og dermed
kommunikere med en satellit. Dette betyder at man kan servicere mere end en
satellit operatør af gangen hvis det bliver nødvendigt, dog kan kun en enkelt af
dem kommunikere af gangen.

Den generelle ide er at en operatør vil bruge mission control uden kendskab
til ground station, de bliver dog nød til at kende noget til den satellit de vil
bruge. Hovedsagligt skal de kende noget til de kommandoer satelliten bruger,
s̊a de ikke begynder at oversvømme satelliten med ubrugelige kommandoer, som
bruger vigtig tid som andre kommandoer kunne have brugt. Det er forventet
at kommandoerne vil blive verificeret af enter folk eller et program som kan
gøre dette. Operatøren har måske lyst til at lave nogle små ændringer før
transmissionen starter, men dette skal gøres inden en session er sendt til ground
station, eller kan ændringerne ikke lade sig gøre p̊a grund af systemmet vil l̊ase
kommandoerne.

Et andet aspekt der skal overvejes er lageringen af teledata, ikke s̊a meget p̊a
hvordan da dette allerede er blevet valgt, men mere om hvilken struktur det
skal have. Strukturen kan ændre sig efterh̊anden som dataerne ændre sig. Ud
over dette kan man forestille sig at det kan variere sig alt efter hvordan den
enkelte bruger har brug for teledataerne, men dette er dog nærmere en del af
det program som henter dataerne senere. S̊a det er et problem vi overlader til
et senere stadie i DTUSAT2s forløb.

iv

Ser man p̊a fremtidige ideer med hensyn p̊a udvikling af mission control, s̊a ser
man gerne at den kan følge en satellit ved at skifte fra jordstation til jordstation.
Dette skulle gøre at man opn̊ar en bedre dækning. Det skal dog lige siges at
dette ikke er en del af projektet, da der kun er en enkelt jordstation der bruger
ground station softwaren.

Preface

This master thesis has been accomplished at Informatics Mathematical Mod-
elling, the Technical University of Denmark, from November 1 2005 to April 29
2006.The project constitutes the final work of the requirement for obtaining a
Master degree in Engineering at DTU. The project was supervised by Associate
Professor Hans Henrik Løvengreen of the Informatics Mathematical Modelling
department of DTU.

I would like to thank my advisor, Hans Henrik Løvengreen for his constant
vigilance, giving me inspiration and courage during my work on this project.

Finally I would like to thank my parents and my family for keeping me in the
fire during the hard days of my study. My grandfather will always stand as
a shining example to me for to aspire to be one day, for his dedication to his
dream and work, the first engineer of my family.

Lyngby, April 2006

Brian Schmidt Hermansen
s948259

vi

Contents

Summary i

Resumé iii

Preface v

1 Introduction 1

1.1 Introduction to the Subject . 1

1.2 General Introduction to Ground Segments 2

1.3 Scope of Project . 2

1.3.1 Technical Constrains . 3

1.3.2 Overview of Thesis . 4

2 Requirements 5

2.1 Introduction . 5

2.2 General Issues . 5

viii CONTENTS

2.2.1 Mission Awareness . 5

2.2.2 Robustness . 6

2.2.3 Security . 6

2.2.4 Distribution . 6

2.2.5 Ground Station . 7

2.3 Basic Notion . 7

2.3.1 Definition of a Command 7

2.3.2 Definition of a Pass . 7

2.3.3 Definition of an Assignment 8

2.4 Pre Passage Functionality . 8

2.5 Passage Functionality . 9

2.6 Post Passage Functionality . 10

2.7 Operator interface . 10

2.8 Use Cases of Mission Control . 10

2.9 Chapter 2 summarized . 12

3 Designing the System 13

3.1 Life cycle of a Command . 13

3.1.1 Basic Command Notion 14

3.1.2 Rules . 16

3.1.3 Command List . 17

3.1.4 Entering Command or Copy a Command 17

3.1.5 Verification of Command 18

CONTENTS ix

3.1.6 Scheduling of Command 18

3.1.7 Uplink Command . 18

3.1.8 Command Completion . 18

3.2 Architectural Design . 19

3.2.1 Operator Interface . 20

3.2.2 Command Entering . 20

3.2.3 Command List Component 20

3.2.4 Pass Control . 21

3.3 Command List Component . 21

3.4 Command Insert Component . 21

3.5 Operators Interface Component 21

3.5.1 Pass Schedule description 22

3.5.2 Command Editing Tools description 22

3.5.3 Telemetry Data description 22

3.6 Pass Control Component . 22

3.6.1 Manager . 23

3.6.2 Protocol and Transmission 24

3.6.3 Session Activation . 24

3.6.4 Telemetry Data . 24

4 Implementation 27

4.1 Cleanup in Ground Station . 27

4.2 Interfaces . 28

x CONTENTS

4.2.1 Command List . 28

4.2.2 Database Interfaces . 30

4.3 Implementation of Mission Control Manager 31

4.4 Implementation of Command List 31

4.5 Implementation of Ground Station Communication 32

4.6 Implementation of Protocol . 33

4.7 Implementation of Database . 33

4.8 Implementation of Operator Interfaces (GUI) 34

5 Testing 37

5.1 Unit Testing . 37

5.1.1 Command List . 38

5.1.2 Data-storage . 41

5.1.3 Connecting with Ground Station and Protocol 41

5.2 Integrated Testing . 42

5.2.1 Testing against the Ground Station 42

6 Conclusion 45

6.1 Evaluation of the System . 45

6.2 Ideas for further development . 46

A Source Code 49

A.1 Common Files . 49

A.1.1 Tokens . 49

CONTENTS xi

A.1.2 EchoDProtocol.java . 51

A.1.3 NoTrackingSession.java 53

A.2 Command List . 55

A.2.1 ICommandList.java . 55

A.2.2 CommandList.java . 55

A.2.3 CommandObject.java . 60

A.2.4 Pass.java . 62

A.2.5 Priority.java . 63

A.2.6 Status.java . 63

A.3 Operator . 64

A.3.1 MainGUI.java . 64

A.3.2 InsertGUI.java . 64

A.4 Storage . 65

A.4.1 ICommonDataBase.java 65

A.4.2 IStorageData.java . 65

A.4.3 ICommandBase.java . 65

A.4.4 StorageData.java . 66

A.4.5 CommandBase.java . 68

A.4.6 StorageAccess.java . 71

A.4.7 CommandAccess.java . 72

A.4.8 DataObject.java . 74

A.5 Pass Control . 76

xii CONTENTS

A.5.1 MCManager.java . 76

A.5.2 PassScheduleHandler.java 76

A.5.3 PassSchedule.java . 79

A.5.4 PassScheduleException.java 80

A.5.5 ChainedException.java . 81

A.5.6 Protocol.java . 82

A.6 Test tools . 85

A.6.1 DummyTest.java . 85

A.6.2 Test.java . 88

B Testing 93

B.1 Test Cases of Unit Testing . 93

B.1.1 Command List . 93

List of Figures

1.1 Ground Segment Architecture . 3

3.1 Tracking a Command . 15

3.2 Command List Concept . 17

3.3 Design overview of components 19

3.4 Improved Design . 19

3.5 Pass Control . 23

4.1 Interface overview . 29

4.2 Database Access . 35

5.1 Overlapping Passages . 39

xiv LIST OF FIGURES

Chapter 1

Introduction

1.1 Introduction to the Subject

This project is a part of the larger project called DTUSAT2, which is based on
the idea of sending a student made satellite into space. This satellite is then
meant to track small bird migrations from Northern Europe (namely Denmark)
down to north Africa. For more information visit www.dtusat.dtu.dk.

This part of the DTUSAT2 project involves analyzing and making the Mission
Control part of a Ground Segment. The Ground Segment consist of the Ground
Station and the Mission Control. The Ground Station handles the traffic from
and to the satellite as well as the tracking of the satellite through a radio module.

The Mission Control is meant as an automatic interface to the Ground Station,
which allows the operators to schedule the satellite pass ahead of time. This
means that the Ground Station doesn’t need to be observed by an operator at
each pass, but that the system can maintain operation even without observation.
Since the Mission Control is a separate part of the whole system, it could be
used from any given computer with access to the network which the Ground
Station operates on.

2 Introduction

1.2 General Introduction to Ground Segments

With the increased usage of satellites in the world today, it has become increas-
ingly important to have highly stable Ground Segments to maintain communi-
cation with the satellite or satellites that you have orbiting earth. Therefore
more and more money are put into developing these systems, so they become
more dependable and easier to maintain once commissioned. This is mainly due
to the lower cost of having a Low Earth Orbiting satellite and the fact that you
can gain a wider area coverage through having these, which is highly beneficial
for research or spy satellites. The reason behind this solution being good for
those purposes is that the satellite have a circle passage around the planet. This
means it covers a lot of ground but also that communication with the satellite
will be restricted to only when it is in radio window of the ground segment.

This project is the second part in developing a generic ground segment for a
student satellite, the first part was the ground station which was made in 2005
by Yu Du as a master thesis [2]. This project will be a master thesis about a
generic mission control which utilizes the ground station.

The architecture given for the ground station and the ground station can be
seen in 1.1. It can be seen that a mission control can either be served by one
ground station or by more, in the case of it being served by more it will switch
between the ground stations to track the satellites movement. In this project a
mission control will only handle all the commanding of a certain satellite, such
that the satellite it commands is decided on what plugins are used.

The ground station operates with a term called session. Making a session basi-
cally means that the ground station reserves a time period at a certain time, such
that the mission control can make communications with the satellite through
the ground station in this period.

1.3 Scope of Project

There are three phases in every Low Earth Orbit satellite communication.

1. Pre-passage: This covers command preparation

2. Passage: Is the communication with the satellite

3. Post-passage: Telemetry data processing and dissemination

1.3 Scope of Project 3

Figure 1.1: Ground Segment Architecture

The mission control will:

• Cover some of the Pre-passage, as it will use the commands but will not
know what they are about

• Cover all the passage

• Cover only the storage of data in the Post-passage

In this master thesis a generic mission control is to be developed. The system
should allow access to the ground station to commit a session and for ongoing
communication with the satellite during its passage window. Furthermore it
should have some schedule for the commands, which can be communicated to the
satellite. It should also have some way to store data, such as commands and data
received from the satellite. Finally it should have some automatic functionality,
so it can communicate with the satellite without an operator nearby.

1.3.1 Technical Constrains

The system will be able to be deployed anywhere as long it can gain access to the
ground station which is located in building 348 at DTU. The implementation
of the system will be done in Java [1] due to its cross-platform stability.

4 Introduction

1.3.2 Overview of Thesis

There are six chapters which describe the mission control system in this thesis.

• Chapter one introduces the basic knowledge of the Mission Control and
outlines the scope of the project

• Chapter two looks at the requirements of a Mission Control System, looks
at use cases for an operator and an automatic run. Finally it sums the
decisions up at the end of the chapter.

• Chapter three contains the thoughts about the design and which practical
approach should be taken.

• Chapter four is where we take the step from design to implementation and
point out where things are done different than we initially wanted.

• Chapter five describes the tests done to the system and to which extend
the system lives up to the requirements in these tests.

• Chapter six sums the project up with the conclusion of the thesis.

Chapter 2

Requirements

2.1 Introduction

Now that the system has been confined with the limitations in mind from the
previous chapter, it is time to analyze the system requirements and how we
want want to deal with the different issues that might occur.

2.2 General Issues

2.2.1 Mission Awareness

By mission awareness we understand the extend to which the system knows
about the basic structures of commands, but not the mission specifications of
the commands. This means that the basic idea behind mission awareness is that
the program does not have to know about the nature of the commands and only
a little about their structures. One thing there is important however is that it
can keep track of the history of the commands that it as been given, so it knows
where they might be at any given time in the progress of being processed.

6 Requirements

Requirements:

• System should keep track of command history

• Mission specific handling of commanding must be done by plug-ins.

2.2.2 Robustness

As one of the basic system requirement we have that it needs to be stable and
therefore not crash from time to time. But as there are other reasons for a
system crash such as power failure or crash of the platform which the system
runs on, we have to have a backup plan. This comes in the form of a storage
system which will be discussed later in this chapter.

Once recovering from a system crash the vital data will be recovered from the
storage system and everything should be more or less back till the instance
before it went down.

2.2.3 Security

With every system there is the possibility of malicious persons wanting access
to the resources controlled by it, so the way security issues is handled in this
thesis is more stating which measures is already in place.

Security in this case will be limited access to the place where the system is run
and of course limited access to the software developed. The software will be
restricted till use only by new developers to begin with and later open for those
there seeks to make use of it.

Last we want to point out that security issues are not part of this master thesis,
but might be included at a later point by people working on such a project.

2.2.4 Distribution

Since this is a generalized platform we have distribution of it in mind for future
development, namely letting other universities or similar institutions use and
modify it as they see it fit under the normal software development rights.

2.3 Basic Notion 7

Furthermore then the software will be under version control, so the earlier ver-
sions will still be available in the future.

2.2.5 Ground Station

The Ground Station has already been made, so communication with this to and
from the Mission Control is already defined and will only be adjusted if the need
arises due to shortcomings of the present code.

2.3 Basic Notion

In this section we will define a few terms which will be used in the rest of the
report.

2.3.1 Definition of a Command

Since the command is expected to be transmitted to a satellite, the guide made
for this on ESA satellites [3] was consulted to gain information and inspiration.

A command is a term for an action you want to get performed on a satellite,
there are many types of commands and most of them are requests for information
about the general health of the satellite. Furthermore then there is also different
types of answers from the satellite depending on each of the commands there
can be given, most of these are informative in the regard of where in the system
a command are now and others return the answer to the request made by the
command. This means that either all commands have to be unique or they
should be identified in some other way. The most common way is to give them
an unique identification code, either at the commands birth or at the time when
they are transferred to the satellite.

2.3.2 Definition of a Pass

Pass is short for: passage of satellite. This means that it involves a time win-
dow for when satellite communication is possible. Furthermore then a pass
contains the information about which commanding should be uploaded in this
time period.

8 Requirements

2.3.3 Definition of an Assignment

A command can be assigned to a pass, such an assignment is necessary as the
pass stores the information about the events there takes place while the mission
control communicates with the satellite through the ground station.

2.4 Pre Passage Functionality

Since we only need to know a limited amount about the command structure, we
have a few choices to consider, such as if the commands are entered manually
into the program and it then remembers them till they are needed or if we should
have them pre-made by some external place, such that they can be received at
any time. Since there might be loss of data in one way or another then the
better option is to have the commands stored in some way, so they might be
retrieved after a power loss or another fault which might cause the program to be
temporary down. Furthermore then this will allow the program to be updated
from another location, so the physical access to the computer can become more
limited if desired.

Now that we know that it should be a stored medium then we have to consider
the way the commands is stored. There are two obvious ways there stands out
right away:

1. One or more files

2. A database

The most simple way would be to use a primitive filesystem, where the program
locates new files and adds them one by one to an internal list of commands.
Although this would be a simple thing to make then there is the question of
stability with the files and how they should be locked by the user and most
importantly how they should end up in the pre-defined folder containing them.

With a database you have the problem of accessing it easily, which might cause
some problems, but otherwise it is simple to access the database from a given
program from anywhere with access to the network which it is located at. The
access can easily be overcome with a little program meant to store and retrieve
data and once that is in place we have a simple and efficient way to store the
commands and retrieve them from the program. Another bonus of doing this is
that we can track a command in the system and therefore always know how far

2.5 Passage Functionality 9

it is into the progress of being executed or just simply verified by some source
so it can be considered as ready for a satellite pass.

Another thing there should be considered is the way that commands are sched-
uled before access to the satellite in the next pass is requested from the ground
station. This is important as once we have requested the access everything will
have to be in order for the pass, so they are ready to be transmitted in the
correct order. Of course there is then the question of whether minor changes
should be allowed in the duration before pass phase is started or if it is locked
for changes in this period. We chose to only let an operator be able to change
the schedule at this point and therefore lock the commands in the database from
outside changes.

We also need to transmit to the ground station about our desire to schedule a
pass ahead of time.

2.5 Passage Functionality

First we need to establish contact with the ground station ahead of time so we
are ready for transmitting the data to the satellite and more so receiving data.

We should also consider whether we should allow the operator to access the
schedule while the transmitting is in progress and how that should be handled.
The schedule will be locked, so if the operator decides to change the mission
parameters then he will have to first abort the schedule and then process the
remaining time manually, perhaps with access to certain standard commands
which he can quickly chose from a list. This brings us to the question of a safe-
mode if the schedule fails to receive certain expected data or another reason.
The safe-mode should just run through a given schedule, to see if the satellite
is still healthy and to locate an error which might have occurred somewhere in
the satellite system if possible. A safe-mode should of course be designed by
one with knowledge of the satellite at a later point.

While the data is received it has to be stored, although this is normally part of
the post phase then it makes more sense to do it while the transmission is going
on, as then data wont be lost in the same degree if the system should fail. This
will guarantee that at least some data will be stored for later retrieval. There
should also be a link between the data received and the commands given for
getting those data, but we will leave details of this to the design phase chapter.

10 Requirements

2.6 Post Passage Functionality

Once the pass phase is over there is little left to do for the mission control, as
more or less all of this phase is excluded from this project. The thing we do have
to consider is the mission awareness from the program’s view, this means that
we have to create a thin red line through the program which will allow us to
keep track of each of the commands current status and once we finally get here
to make sure that the current command is shown as completed or failed. This
could perhaps involve some information about where it failed and if possible a
reason behind the failure. Furthermore one could expect a brief status report
given to an operator on the data received, although no translation but only raw
information, such as size.

2.7 Operator interface

Having an interface is an issue due to the fact that the mission control should if
possible be up and running at all times for a stable system, so it is expected that
an operator can be present before, during, after or through them all. There are
a number of ways to do this, mainly that the console or GUI is always present
and that the person just needs to access the computer to do whatever needs
to be done. The other way is that the mission control runs as a host serving
clients which operators can open whenever they need to, although this grants the
system great flexibility it also causes the problem of too many people operating
at the same time, which is quite undesired currently. The option is therefore to
take the more simple way and create a more stable system which might include
the other option in the future.

There is of course the question of unauthorized access to the system, but that
would be present in both cases and in the way we have chosen it is limited to
either having the program or getting access to the operators room/facility. We
could implement some cryptation into the access, but that would currently be
overkill for the project as we are working with a student satellite with limited
functions and not a billion dollar satellite running crucial operations.

2.8 Use Cases of Mission Control

To give some idea of what we are trying to accomplish two use cases has been
made.

2.8 Use Cases of Mission Control 11

Use case of the Mission Control Operators view

1. Starts the client

2. GUI for operator pops up

3. Operator inspects commands in the Database not yet executed

4. Operator checks the list of future passages

5. Operator chooses to assign some commands to future passages of the satel-
lite and others to be assigned by program

6. Schedules some commands

7. Commits the changes

8. Closes client

Use case of the Mission Control behind the scene

1. Starting up

2. Checks Database schedule

3. Checks for next passage of satellite

4. Compares next passage in schedule against time

5. Establishes connection (RMI) with Ground Station and passes a session

6. Close connection (RMI) with Ground Station

7. Locks the passage in the schedule from changes

8. Establishes connection (TCP/IP) for data transfer to/from satellite

9. Transfers commands to the satellite

10. Stores data in Database as it is received

11. Closing connection (TCP/IP)

12. Cleanup

12 Requirements

2.9 Chapter 2 summarized

In this chapter we discussed the requirements of the system, such as General
Issues, Pre Passage, Passage, Post Passage and Operators Interface.

General issues was about which things the program might encounter in the
future, from currently minor concerns such as security till more important con-
cerns like robustness.

The passage sections dealt with the three different phases that the system un-
dergoes, namely pre-pass-post passage and defines which domain we are working
with in this system.

Finally there is the operators interface and what should be expected from it and
this was supplicated with a few brief use cases to point out how things might
be.

Chapter 3

Designing the System

In the previous chapter we discussed the requirements of the system and which
options there was available to fulfill the the needs of these requirements. In this
chapter we will then discuss the design which will lead to an implementation in
the next chapter.

It should be noted once more that although the system works with commands,
then it is the user/users that is responsible for their makeup and later verifi-
cation as the system is meant to be modified to more than one satellite and
therefore cannot be hard coded to every single satellite communication system
there exists.

The chapter is divided up in sections which describe key concepts of the design.
The first two will be about general terms and a brief introductions to the differ-
ent components, the sections following this will be a more in depth discussion
of the individual components and their subcomponents.

3.1 Life cycle of a Command

The basic idea is that a person can at any given time see how far a command is
processed in the system. This should enable a person to track down a command

14 Designing the System

later and thereby find out where it got stuck in the system if that was the case.

3.1.1 Basic Command Notion

There needs to be a clear structure of how the commands are represented in the
system and the following information should be known for each command:

• Unique Identification

• Execution Time

• Command Body

• Priority (urgent/immidiate)

• Status

The unique identification is therefore backtracking a command later, such that
the data can easily be paired off with a command, it also makes sure that
command will not be repeated by mistake, as comparing identifications is far
easier than comparing command bodies, due to the fact that the command
details are not know by the system.

Execution time is set, so it roughly coincides with a future pass. The time can
be altered by the system if the command did not make it the first time around.

With the command body little should be known as it mainly will just be trans-
mitted and then the satellite will know what to do with it once it arrives.

The priority will ensure that commands deemed critical by users will be trans-
mitted at an earlier position than those just handed in normally. This way
maintenance commands or critical commands can be given at a later point and
still be performed first, such as an error was just found in the last pass and now
some routine is quickly put into the system for the next pass.

By having a status field we can track the command around in the system at any
given time. The idea are that since the commands is crucial to the whole idea of
having a Mission Control, it is necessary to come up with some way to identify
each commands location in the system. So that only verified commands is
actually used in transmissions to the satellite and repeats does not occur unless
the command has been a new unique identification once more. This leaves us
with a rough idea of which steps should be available for the commands, namely:

3.1 Life cycle of a Command 15

• Entering a command into the system

• Copy a command, verification is done

• Verifying a command

• Deleting a command

• Scheduling a command

• Canceling a command

• Transmitting a command

– Various steps on satellite recorded

• Marking a command as completed

Now that the general idea of a command Life Cycle is in place it is possible to
start designing what should be done to reach each state and what happens to
the command in each state.

Figure 3.1: Tracking a Command

As the figure 3.1 shows then all steps are included, where the sixth step are
more or less included in the first and second step put together. The sixth step

16 Designing the System

could be considered a shortcut to making a verified command without need of
the verification step, as it has already been verified once. By allowing the sixth
step the program becomes more adaptable as people can sort through previous
completed or verified commands to add, although this would of course need
knowledge of commands from the users’ part which is already required to begin
with.

Each step will be shortly described after the rules and command list sections to
ensure that there is no misunderstanding involved later.

3.1.2 Rules

The Mission Control need rules to handle the commands, so consistency is
present and the system therefore become more reliable for the operator.

First thing to consider is the way that commands are treated once they have
been entered, as they are entered in an unverified state. This brings us to the
consideration of verification rules. A command cannot be transmitted to the
satellite without having been verified and every command behind it should also
be considered unverified. This means that should one enter a new command
before a verified command, then the commands after the command should be
set to an unverified state once more. By doing this we have to ensure that the
operator knows that the first command that he has to verify is the first unverified
command in a given list and that everything in front of the command is ready to
be transmitted and therefore pose no trouble. The main reason behind having
this rule is that putting a new command into the schedule disturbs the execution
time or conditions of those following it and therefore it needs to be verified once
more.

There is of course an overrule to this, as emergency commands could be given
and these should not upset the verifications of the ones coming after. The reason
behind this is that there would not be any time to verify the commands once
more after an emergency command is put in and the previous work would be
lost and pushed into the future instead. This overrule allows flexibility while
the transmission is active, without the possibility of too much loss to the time
window that a satellite pass got. There is of course the possibility that some
commands will have to be rescheduled to a future pass, as they was last in the
line in the pass.

The alternative to the overrule is that the operator just cancels the schedule
and manually completes the rest of the pass. This will of course cause loss of
time in the matter of not having the commands ready, but will be necessary in

3.1 Life cycle of a Command 17

the case of some malfunction in the dataflow or similar events which raises an
alarm to the operator.

3.1.3 Command List

A command list can be considered as a long line stretching forward in time.
At the same time we have a pass schedule which contains pass objects which a
command can be entered into, these pass objects is sectioned up into set number
of slices which are normally time based or number based. This is because a time
window to the satellite is limited and there are only room to a certain number
of commands to be uploaded in this time. This can be seen in figure 3.2.

Figure 3.2: Command List Concept

The command list should be dynamic so if a command is missed then it can be
pushed ahead of the present time, such that no command will ever be completely
forgotten but only postponed till a later time. The actual placement of the
command might not be the same order which it is transmitted if an operator
chooses to change it during a transmission with the satellite, of course the actions
behind this will be strictly on the operators account.

3.1.4 Entering Command or Copy a Command

As this is a bit ambiguous then it is quite important to make clear that we
are talking about two separate ways to create a new command in the database.
First one can enter a new command from scratch, which will in then be marked
unverified or one can use the other way of making a command by simply choosing

18 Designing the System

one from the list of already entered ones. Both will then be placed in the
filesystem for later use.

3.1.5 Verification of Command

Here the user will get a list of currently unverified commands which need to be
verified. The person doing the verification can do editing of the commands if
they are faulty or discard them if they are beyond recognition.

3.1.6 Scheduling of Command

This is where a command is prepared for transmission to the satellite, namely
as it is assigned a slot in a pass which is connection to a future session.

3.1.7 Uplink Command

Transmitting a command involves getting data back on its current status on the
satellite. This is how a satellite might respond to getting a command:

• Command Received

• Command Started

• Command Processed

There is of course different ways and this is just to outline how the response
from the satellite might be.

For interpreting these responses there is a need for a plug-in for each satellite,
as there are different protocols. So some kind of open plug-in system has to be
implemented so that the user knows what is currently happening.

3.1.8 Command Completion

All that is needed in this step is to mark the command as done, so that it is not
accidentally done twice without the users awareness.

3.2 Architectural Design 19

3.2 Architectural Design

The section will look at the components design of the system. The obvious
modules are an Operator Interface, a Command Entering and Pass Control.

Figure 3.3: Design overview of components

On the figure 3.3 we see that the commands go into the database where they
then can be obtained from the Mission Control or verified by a user. It is an easy
system to set up, but there is a complex interaction between the components
and the database. This complexity is due to the way that the database has no
way to of informing the programs that a change to its contents has been made.
Since the most obvious way to fix this problem is to lock the access from other
modules to the database while one module accesses it, then this is an undesirable
solution.

Figure 3.4: Improved Design

20 Designing the System

Changing the design slightly to accommodate for this by adding one more mod-
ule, as shown in figure 3.4, we are past the problems of accessing the database
as all traffic will be controlled by this module.

3.2.1 Operator Interface

This component consists of the graphical user interface which an operator can
use to control the Mission Control and gain information with. It mainly works
as a place where you can verify commands and schedule them, but status in-
formation about the commands will also be available here and progress of a
passage. It is also here the possibility of making a termination of an ongoing
passage schedule is possible, so that the operator can manually start executing
his own commands. Should a user choose to terminate a schedule already in
progress then there will be a list of pre-made commands at hand which can be
used as manually creating new ones would spend precious time from the window
of opportunity, the option to make new ones will be available still.

3.2.2 Command Entering

To enter a new command or replicating a command already on the stack this
module will be used. It will be launched at the same time as the Operator
Interface, such that one can switch easily between the two open windows. There
is not much to be said about this one other than it will be possible to make new
commands and submit them to the Mission Control System or to bring forth
a list of already verified command and submit one of those onto the Mission
Control once more.

3.2.3 Command List Component

As shown in figure 3.4 then there is a need to communicate between the dif-
ferent modules to and from the database. This component makes sure that no
overlapping communication with the database exist, so the data can only exist
in a single form no matter when it is somewhere in the system.

Another important thing is that it will be responsible for storing and retrieving
the actual data at startup and shutdown events, so that the data entered is not
lost due to a shutdown.

3.3 Command List Component 21

3.2.4 Pass Control

This component ensures that a session is created on the Ground Station. It
also needs to establish a communication link through the Ground Station once
the satellite window is available, so commands can be sent to the satellite for
execution and the results can be returned to the Mission Control. Furthermore it
handles the schedule so it is already available once contact has been established
or if changes need to be made.

3.3 Command List Component

As mentioned earlier then this component is mainly there so no overlapping
exists in the uniquely identified commands, meaning that a command can only
exist in a single form at any given time. Another important thing is that this
component should be as simple as possible as the higher functionalities should
mainly exist in the other components, such that this one does not get unneces-
sary complicated and therefore needs great adaptation from other components
there needs to use it.

It should however contain the information about the command list and a given
number of future satellite passes. The passes will then be linked to different
commands from the list as the operator assigns them to different slots.

3.4 Command Insert Component

This will be a little rough graphical user interface, where new commands can
be set into the Command List Component or old ones can be reused once more
with new unique identification numbers. This will be running at the same time
as the Operators Interface.

3.5 Operators Interface Component

Within this component we have the command manipulation and the pass schedul-
ing for upcoming satellite passes. The operator will of course have a graphical
interface which will show a list of commands in the left side of the window and

22 Designing the System

the right side will adapt to the task that the operator is currently working on.
The right side should show:

• Pass Schedules

• Command Editing Tools

• Telemetry Data

3.5.1 Pass Schedule description

Here we will have a list over the future passes, as one is selected the commands
assigned to that pass will highlight over in the left side of the screen. Down
under the list will be some tools for adding or removing commands from a
selected pass.

3.5.2 Command Editing Tools description

Once the tools has been selected they will not be activated till a command is
chosen, the information of the command will then appear at the top in editable
text fields. In these text fields the commands can then be edited till they get
the desired form which is required for a verification of them. There is of course
the possibility to discard the changes and start over if need be.

3.5.3 Telemetry Data description

While the Ground Station and the satellite is communicating the data will be
shown here if the option is chosen, this way the operator can get a rough idea
about what is going on if the protocol is known by the person.

3.6 Pass Control Component

This component consist of subcomponents for handling different tasks, as it is
the central component in making the Mission Control Center work.

3.6 Pass Control Component 23

Figure 3.5: Pass Control

3.6.1 Manager

With multiple subcomponents we have a need to arrange the different infor-
mation into a structure where we ensure that the different subcomponents are
activated once they are required. For this we have decided that a manager which
takes care of all is necessary.

A given scenario might be something like this:

• Session Scheduled

• Session Executing

1. Wait for Pass

2. Wait for Connection and prepare

3. Lock Commands used

• When connected start transfer

• . . . and so forth

24 Designing the System

3.6.2 Protocol and Transmission

There are two parts to this, the protocol and the transmission. The reason
behind this is the numerous different protocols there exists and our need to
adapt to them all, so a generic protocol will be made which can be exchanged
with a given protocol.

A protocol is a way to define how communication should be done between two
parts, so that the two parts will have a given set of tools to work with. This
ensures that the communication between them is well defined and cannot be miss
interpreted by any of them. Another facet is that it also works as a limitation
for others to break into the communication unless they know the given protocol
which is used.

The transmission part will mainly just pass the data between the protocol in
the Mission Control and to the Ground Station where a similar build can be
found.

The component will have full access to the telemetry data component, so that the
data will be stored and also passed along to the operator interface. Further more
then it will have access to the pass schedule in the command list component,
such that transmission can be started once the connection with the Ground
Station has been established.

3.6.3 Session Activation

The session activation sends the data necessary to create a session on the Ground
Station, after this is done it will notify the transmission component about it so
it can start listening after a connection from the Ground Station which will
indicate that a satellite pass has started.

All this component will be doing is creating the data for it once it gets the data
associated with a pass from the Manager.

3.6.4 Telemetry Data

Data storage is the keyword here, it will store the data as it is received from the
satellite without any form of translation done on it. It will however also be sent
to the operators interface, which can then be shown when the operator makes

3.6 Pass Control Component 25

that section active.

26 Designing the System

Chapter 4

Implementation

Now that the design has been thought through it is time to consider how things
should be implemented. This chapter will therefore look at the design in a more
practical way and seek out the most practical solutions to the designs.

The core of the project is still that we have some commands there should be
uploaded to a satellite and then we may receive some answers, this still goes
through the ground station and this means that certain parts of the system,
which is implemented can only be made in a predefined way so they can interact
with the ground station.

4.1 Cleanup in Ground Station

The first step of creation a working version of the Mission Control Center was
to clean up in the Ground Station. This was necessary due to the fact that we
do not want to include the entire Ground Station into the Mission Control, but
we do need some essential parts from it to have everything work. This meant
that we had to create a library which contains the overlapping components used
by both systems. A rough cleanup was initially made in the beginning of the
project and it was modified as was needed during the project, as the Ground

28 Implementation

Station is under continuous development. This of course means that a final
version of the changes will not be available till both projects had accomplished
a satisfied state, if ever.

Everything was collected into the ”common” directory, which now serves as a
cross-development ground for both projects.

4.2 Interfaces

In general interfaces provide a service which allows a class to inherit more than
one interface, as a class are normally only be allowed to inherit a single super
class. Another use interfaces have is that they provide a guideline for future
programmers whom might find themselves working on the project and it is this
feature in the interfaces which we seek.

So we have decided to use interfaces for the exchangeable parts in the system,
such that it is easier for a new programmer to replace or alter current sections
of the code without having to second guess the purpose of those parts or their
interaction with the rest of the program.

We will now briefly discuss the interfaces which have been used in figure 4.1.

4.2.1 Command List

The command list is, as also mentioned before, a core element in this program,
so the interface here is more important than in other places as it will give a
better idea of what to expect from the actual code. The interface will also be
quite extensive due to the massive number of operations made in the command
list as every other component in the system will be heavily reliant on it.

Command list interface

• getnextPass()

• insertPass()

• removePass()

• listPass()

4.2 Interfaces 29

Figure 4.1: Interface overview

• getCommandObject()

• insertCommand()

• modifyCommand()

• duplicateCommand()

• checkPass()

• insertCommandInPass()

• removeCommandFromPass()

• autoInsertInPass()

With insertCommand() we have two different methods and there are three with
the modifyCommand(), this is due to the fact that there is different ways to
create a command in or to later modify it. Inserting a command can either be
done with or without a preferred time for the command to be sent in. Modi-
fications of the commands are based on its unique identification and the field
which should be altered, this is mainly due to the fact that it is not ordinary to
replace the entire command but only a section of it.

30 Implementation

The more important structure of the rest of the commands will be discussed in
the chapter Implementing the Floating Command List.

4.2.2 Database Interfaces

There are three interfaces for the database, one for the common uses of a
database, one for storing the responses from the satellite and one for storing
the command list. The idea between splitting them is that there are three dif-
ferent aspects of storing data, one will mainly just require storing (used in the
protocol) and the other one will need to store, update and retrieve data (used
in the command list), the third one will be used for the common methods both
use.

The three interfaces are constructed as shown in the following tables.

Common database interface

• startConnection()

• closeConnection()

• destroyTable()

• list()

Command list database interface

• existsCommandTable()

• existsPassTable()

• insertCommand()

• updateCommand()

• insertPass()

• updatePass()

Storage database interface

• existsTable()

4.3 Implementation of Mission Control Manager 31

• insertData()

• retrieveData()

The reason that there is not a common existsTable(), is that the existsTable()
needs to create the different tables for the commands, passages and telemetry if
they do not exist. The same is true for the update and insert methods, although
here it is due to the fields there needs to be retrieved.

4.3 Implementation of Mission Control Manager

This is meant to be the core which connects the different parts of the program
together. Currently it just starts up the different instances of the system.

The mission control manager takes care of the command list creation and
database access needed for this.

4.4 Implementation of Command List

The idea with the command list is that we have a separate place for the different
modules of the program to interact through, such that the different modules can
be separated from the main program and operate without the other modules.
This means that the command list has to be created in a robust way and with
as little actual knowledge to the surrounding modules as possible, while still
dealing with these modules as the need arises.

There are two main parts to the command list:

• Commands

• Passages

Commands contains the data which we want to transmit to the satellite and
some other vital information, such as time which we want the command to be
transmitted and a link to a passage if it is scheduled to one. A passage or pass
has to keep order over the different commands which should be sent in the next
passage of the satellite, such that it is just to pull forth a pass and we got the
data required to deal with a passage.

32 Implementation

A little feature was necessary in order not to skip a future pass, in the case a
new pass should be scheduled earlier than the current one that we have at hand
and is checked whenever a new pass is scheduled. This made the system more
flexible as one only needs to create the pass that one wants to operate on and
not pre-generate all passages up to that point.

The data structures used for this are based on vectors, such as LinkedList and
the normal Vector. The reason behind this is to save time on the creation of
the structures, by using already existing structures.

4.5 Implementation of Ground Station Commu-
nication

A core part of the project is enabling the two programs, the mission control and
ground station, to communicate with each others, such that data can be trans-
ferred between the mission control and the satellite going through the ground
station.

There is two parts of communication between the mission control and the ground
station:

• Requesting future sessions

• Communication during a session

To request a session to the ground station we need to use the Remote Method
Invocation (RMI) which was made available to us from the ground station.
There are only two methods which can be used over the RMI, namely:

• addSession()

• removeSession()

For further information about this look at [2].

The communication during a session is covered by the protocol, which will follow
in the next section.

4.6 Implementation of Protocol 33

4.6 Implementation of Protocol

It was part of the project to use a set of protocols to verify that communication
between the ground station and the mission control is possible. Since the AX-25
protocol has not yet been developed by the ground station people a test protocol
was made. Since the protocol did not actually have a satellite to talk with yet
and the AX-25 protocol will eventually be developed, then the protocol was
made as simple as possible. For this purpose a library of objects called tokens
was made, these can then be passed back and forth depending on which response
should be made. These tokens, depending on the type, contain the information
that is needed for the current communication.

The protocol use TPC/IP [5] for the connection and data transfer between each
of them, as this is an easy predefined way to communicate over an internet or
intranet connection.

The ground station side of the protocol needs to have a fixed structure, such
that it can be used by session which was passed over earlier. This means that it
should extend the abstract protocol class which was made for that purpose and
thereby follow the rules set in that. Which means it should have a connect(),
start(), stop(), abort(), getStatus() and getProtocolType().

Although it was decided in the design that the ground station should be the
client and the mission control the server, we reversed that in the implementation
due to avoiding future problems with firewalls, should they arise. Although this
is a minor detail, then it is important in the way that protocols are formed as
now there is a need for a timeout in the protocol on the ground stations side.
The timeout is needed to ensure that the session does not wait on a connection,
there might not appear, up till the moment the session is killed, but allows the
session to shut down in the proper way.

The protocol is a more advanced form of echo protocol [7], meaning that re-
sponses are based on the communication it just received. The difference is that
in some cases no or a random answer is given.

4.7 Implementation of Database

Having no prior experience in MySQL [4] which was used for this project, it
was decided early that spending a period time on getting acquainted with its
workings was necessary. This means that a prototype for the database was made

34 Implementation

in the early stages of the project, which included a Graphical User Interface
(GUI). The implementation of the actual database which is used currently was
created with this prototype in mind, thereby saving the time spent earlier on in
the project at a time where fast progress was needed.

It was mentioned earlier that the interfaces consist of three parts, a common
interface and then one for each of the two key parts in the database workings.
The reason it is split up into two parts is due to the reason that there might be
two databases in the future, one for the command list and one for the telemetry
data received from the satellite. This should allow greater flexibility for the
mission control system and the future program there will fetch the telemetry
data, as the later program will not be as dependent on the mission control
systems database being online.

During the early stages of the prototype it was found out that the direct use of
the connection to the database was somewhat messy, as the use of parameter
was extensive. To deal with this problem a second layer was added on top of
the database connection layer, a go-between which would process the commands
from the mission control system and fetch the data necessary from the database
to comply with the orders. This is shown in figure 4.2.

The restoring of the command list from the database caused some troubles
initially when objects was retrieved from the database. They have the old
values, but are created with a different value in the command list. This means
that a command no longer points at the correct pass but at where the pass used
to be. This problem was solved by running through the pass list, thereby every
pass can re-associate the pass field in the commands.

4.8 Implementation of Operator Interfaces (GUI)

Currently this part is omitted due to lack of time at the end of the project.
There needs to be designed some interfaces which can be used to establish
communication between the GUIs and those parts they operate with.

4.8 Implementation of Operator Interfaces (GUI) 35

Figure 4.2: Database Access

36 Implementation

Chapter 5

Testing

Today most software is complex, which makes functional testing of the entire
system more demanding than ever before. As system development still depends
on test of the final product, an alternative way to test the system was taken
into use. The way that is done is to test the individual modules separately, to
find out if they perform as expected and live up to the specifications set in the
requirements [6].

It should be kept in mind that most of the methods we test here only have one
outcome once the graphical user interface (GUI) is connected. This is is because
at that point only existing commands can be chosen as that is all there is shown
on the GUI which will be made available for the operators. A second GUI will
be available for entering new commands into the command list.

5.1 Unit Testing

Unit testing validates that a particular module of the system conforms to its
specifications and correctly performs all its required functions. It produces tests
for the behavior of components of the system, to ensure their correct behavior
prior to the system integration.

38 Testing

This section will therefor contain the individual tests of each of the modules in
the system and the approach to each of the different test strategies used for the
modules. The design behind the test cases can be found in the Appendix B.

5.1.1 Command List

The testing of the command list can be quite extensive unless focus is placed
upon the methods which can create problems. Furthermore it will have to be
split up into three parts

1. Commands

2. Passages

3. Crossover

5.1.1.1 Commands

The testing of commands is pretty simple compared to the two later parts. The
testing of these would be trivial and their functionality will be tested in the
Crossover section, to create work material and verify the final results.

5.1.1.2 Passages

Testing passages consists of three parts, insertPass(Pass), removePass(Pass)
and finally getNextPass().

insertPass(Pass)

• There are two reasons why a pass can not be successfully inserted into the
pass schedule. The first reason is that the start time of the pass lies before
the current time. The second reason is that it conflicts with an already
existing pass on the schedule.

The first reason is easily tested, as it is as simple as to place the start time
a little earlier than the current time. The test failed as expected so a pass
with an impossible start time wont be added.

5.1 Unit Testing 39

The overlapping problem are only slightly more difficult, but that is only
in the way that more tests are needed to prove it. Figure 5.1 shows the
four different test cases there is needed to prove the different types of
overlapping problems there might arise. All four test cases fails to insert
the new pass into the pass schedule.

Figure 5.1: Overlapping Passages

removePass(Pass)

• There are two possibilities for a removePass(Pass), either the pass exist
or it does not. So the outcome is either a success or a failure in the form
of an exception. It should however be noted that under normal operations
of the system the removePass(Pass) can not be called with a non existing
pass, due to the fact that the pass it selected from the pass schedule. The
result of the tests are as expected once more.

getNextPass()

• We have two test scenarios there deals with getNextPass(Pass), first we
place a new pass after the first pass on the schedule and then check or we
place a new pass before the first pass on the schedule and check. With
should get the first pass back in the first case and the new pass in the
second case. The result are as we believed they would be.

40 Testing

5.1.1.3 Crossover

The crossover means that we work with both commands and passages mixed
together, to create a complete passage with commands. There is three methods
with stands out and need to be tested, namely insertCommandInPass(Pass,
CommandObject), removeCommandFromPass(Pass, CommandObject) and au-
toInsertInPass(Pass).

insertCommandInPass(Pass, CommandObject)

• There is three variations of this, given that the pass already exists.

– That there is room for the command in the pass

– That the command has already been assigned to a pass

– The pass is full and can not contain more commands

The first test is just a standard test to see if the command is actually
inserted in the pass and that the commands field containing a pass is
updated. The second test is the denial of inserting a command there is
already assigned to a pass and therefor should not be associated with one
more pass. The final test is to see that it rejects the insertion of a new
command when the pass is full. All test acted according to the expectation.

removeCommandFromPass(Pass, CommandObject)

• Testing the removal of a command from a pass is basically just to test
if the cleanup is done correctly, which means that the command should
not be associated with the pass anymore, nor should the pass contain the
command. Once more remember that only commands already existing on
the passage can be removed due to the structure of the system. The test
did as expected and succeeded.

autoInsertInPass(Pass)

• This is a little more tricky to test, as there is almost an unlimited com-
bination of tests there can be used to create a complete test of it. So it
was decided that a few selective tests should be able to establish a clear
picture of wether it works or not.

First we complete a nearly full pass, for this purpose we have restricted
the pass to maximum contain five commands. This is done by filling in

5.1 Unit Testing 41

four commands where three of them are of low priority and one of normal.
Now we place pairs of commands that are not associated with any pass in
the command list. Then we run the autoInsertInPass() command and see
what happens.

For this purpose it was decided that three test cases should show enough
to be certain of the functionality.

– Two urgent priority commands waiting to be assigned

– A normal priority and then an urgent priority command

– Two low priority commands

The results of the test was that in the first case both urgent commands
were moved in and a low priority was taken out, in the second a low priority
was taken out and both commands was put in and finally in the last one
just one low was inserted as the other one did not rank high enough to
replace an already scheduled command. This means that the test ran as
expected.

5.1.2 Data-storage

Since the two parts of the database storage is built as nearly exact copies, it is
only necessary to test the more complex one of them to see if the functionality
is as expected, this means testing the command storing and retrieval. Both of
these are tested at the same time, namely as the command list is stored and
the program is shut down, then we fetch the entire data again to recreate the
old command list. There is one more test to be preformed and that is to alter
the command list and see if the changes have been made once the database is
accessed the next time. Both test ran as expected.

5.1.3 Connecting with Ground Station and Protocol

The connection with the ground station was done at the same time as the
protocol in a little test program made for that purpose. The test program
starts by sending over a session, such that it has been scheduled, then it waits
for the session to start and once it starts it tries to connect with the protocol
and communicate. The test program can be found in Appendix A.6.1.

The session was passed to the ground station and at the time given in the session
the protocol connected and established communication. The communication ran
as expected so the testing of the protocol and RMI was successful.

42 Testing

5.2 Integrated Testing

With an integrated test we combine the individual modules into the final system
and start testing it as an entire program to verify that the functionalities of the
system is as expected. Aside from this we also test the reliability to see if a
result can be reproduced each time it is run and that the performance is stable.

5.2.1 Testing against the Ground Station

This part of the testing was done up against the actual ground station running
in building 348, with the protocol EchoD implemented on it, such that we could
simulate a satellite passage.

To do the integrated testing everything has been coupled together in the MC-
Manager.java, such that running this will use each module as it is needed. The
tests have been collected in a test batch called Test.java in Appendix A.6.2, the
test needed to be run is then fetched in the MCManager.java.

The two main tests are done in createCMDL4() and createCMDL5(), the cre-
ateCMDL6() is used to clean up the tables in between tests.

createCMDL4()

• createCMDL4() creates a series of ten commands and two passages and
stores them in the database. It also assigns some of the commands to
passages, leaving the two urgent commands floating on the list. It later
then auto assigns these two urgent commands to the first passage. After
this is done the first of the two passages is prepared for the ground station.
Meaning that a session is created and sent to the ground station and then
it awaits the start of the session. Once the session is started the protocol
is activated and communication is started. While this is progressing the
telemetry data is stored in the database whenever an answer to a command
comes back. Once the transmission is done the connection is closed and
the next pass is moved up and made ready.

The test ran flawless and the results were as expected.

createCMDL5()

• createCMDL5() recreates the command list from the database based on

5.2 Integrated Testing 43

the construction made in createCMDL4(). It then follows the same pattern
as before.

The recreation was sound and the test was a duplication from create-
CMDL4() except from the incorporated randomness involved in the pro-
tocol.

44 Testing

Chapter 6

Conclusion

This chapter concludes the thesis work related to the project of Satellite Mission
Control System. We will first take a look at wether the things we planned for the
system to do in the previous sections was actually accomplished and to which
extent it lives up to the specifications.

Finally we will look at some further development there might be of interest to
the system, as they got discussed during the project but not implemented.

6.1 Evaluation of the System

Through the unit testing, integration testing and finally testing up against the
ground station in Chapter 5, all the functionalities of the mission control system
have been thoroughly tested. The command list does what it is supposed to do,
the automation works as expected and finally the interaction with the ground
station has been achieved.

A command list has been created to keep track of commands and passages,
such that the commands can be used in future passages and retrieved once
needed by the protocol. Furthermore a database access has been created to

46 Conclusion

store and retrieve data from the command list, such that it can be recreated
after a shutdown.

The automated pass dealing has been accomplished, such that the system can
create a session on the ground station and later connect to it through the pro-
tocol without having a user nearby. The data is then stored in a database for
later retrieval.

A test protocol for both the ground station and the mission control was made
to test the communication to the extend possible, the radio was still not imple-
mented on the ground station so no actual communication with a satellite was
possible, nor listening in on a satellite. Instead a semi random response was
incorporated into the test protocol.

The user interfaces was not accomplished within the time limit of the project
and they have to be completed before the program can be considered easy to
use for people without too much prior knowledge of the rest of this system.

6.2 Ideas for further development

Protocol

Although this as been mentioned a few time through this paper then we look
forward to the completion of the AX-25 protocol. And it is also worth mention-
ing that more protocol options should be made available as the ground station
get further developed and a better way of implementing them should also be
considered.

Data Security

It was mentioned in Chapter 1 that data security might become an issue in the
future if a certain computer was made available for the continuous running of
the mission control system. Such that a login system was made available for
it if used on an easy accessible computer. Another thing worth considering is
encrypted communication between the ground station and the mission control,
although the data might not be vital then one could think of a situation where
a third party might try to take control over the ground station to use it for their
own mischievous purposes and this could end up in a loss of the privilege to
transmit in the future.

Java Script

6.2 Ideas for further development 47

Perhaps a java script version of the program should be made such that people
with access to a certain web-page could access the ground station through the
mission control without having to actually be in possession of the source code,
this should also allow more flexibility for those dealing with the commanding of
the satellite from any given internet connection they might find themselves at.
It should also be kept in mind that the data-security is made at this point then.

A Pass Generation

A pass generation for a given satellite, such that the user only needs to know
the name of the satellite and it will generate a pass near a given time unless a
pass is already made for that window of opportunity.

48 Conclusion

Appendix A

Source Code

A.1 Common Files

A.1.1 Tokens

Listing A.1: Basic Token

package common. p ro toco l . echo . tokens ;

import java . i o . S e r i a l i z a b l e ;
import java . u t i l . Date ;

/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public abstract class BasicToken implements S e r i a l i z a b l e {

public Date timeStamp ;
public St r i ng s a t e l l i t e ;

}

Listing A.2: Command Token

package common. p ro toco l . echo . tokens ;

/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public class CommandToken extends BasicToken {

50 Appendix A

private static f ina l long se r ia lVers ionUID = −5895290162697056299L ;
public St r i ng command ;
public int UID ;

}

Listing A.3: End Token

package common. p ro toco l . echo . tokens ;

/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public class EndToken extends BasicToken {

private static f ina l long se r ia lVers ionUID = −9177285262989235157L ;

}

Listing A.4: Received Token

package common. p ro toco l . echo . tokens ;

/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public class ReceivedToken extends BasicToken {

private static f ina l long se r ia lVers ionUID = 7850540244513677384L ;
public St r i ng command ;
public int UID ;

}

Listing A.5: Request Token

package common. p ro toco l . echo . tokens ;

/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public class RequestToken extends BasicToken {

private static f ina l long se r ia lVers ionUID = 7434425652671832198L ;
}

Listing A.6: Satellite Token

package common. p ro toco l . echo . tokens ;

/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public class Sat e l l i t eToken extends BasicToken {

private static f ina l long se r ia lVers ionUID = 8078924761412160371L ;
public int UID ;

}

A.1 Common Files 51

Listing A.7: Teledata Token

package common. p ro toco l . echo . tokens ;

/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public class TeledataToken extends BasicToken {

private static f ina l long se r ia lVers ionUID = 8923986302142992427 L ;
public St r i ng answer ;
public int UID ;

}

A.1.2 EchoDProtocol.java

Listing A.8: EchoD Protocol

package common. p ro toco l . echo ;

import java . i o . ObjectInputStream ;
import java . i o . ObjectOutputStream ;
import java . net . Se rve rSocket ;
import java . net . Socket ;
import java . net . SocketAddress ;
import java . u t i l . ArrayLi st ;
import java . u t i l . l o gg ing . Level ;

import common. l og . ILog ;
import common. p ro toco l . Protoco l ;
import common. p ro toco l . Protoco lExcept ion ;
import common. p ro toco l . echo . tokens . EndToken ;
import common. p ro toco l . echo . tokens . ReceivedToken ;
import common. p ro toco l . echo . tokens . RequestToken ;

/∗∗
∗ @author Brian Schmidt Hermansen (modif icat ion)
∗/

public class EchoDProtocol extends Protoco l {

protected ServerSocket se rv ;
protected Socket con ;
protected ObjectInputStream in ;
protected ObjectOutputStream out ;
protected EchoDThread thread ;

public EchoDProtocol(ILog l ogge r){
super (l ogge r) ;

}

public synchronized void connect (SocketAddress sa)
throws Protoco lExcept ion {

try {
con = new Socket () ;
con . connect (sa) ;
in = new ObjectInputStream (con . getInputStream ()) ;
out = new ObjectOutputStream (con . getOutputStream ()) ;

} catch (Exception e){
throw new Protoco lExcept ion (”Connection f a i l e d ” , e) ;

}

52 Appendix A

}

public void connect (int port) throws Protoco lExcept ion {
try {

i f (se rv==null) se rv = new ServerSocket (port) ;
se rv . setSoTimeout (60∗1000) ;
try {

Socket con = serv . accept () ;
in = new ObjectInputStream (con . getInputStream ()) ;
out = new ObjectOutputStream (con . getOutputStream ()) ;

} f ina l ly {
se rv . c l o s e () ;

}
} catch (Exception e) {

throw new Protoco lExcept ion (”Connection f a i l e d ” , e) ;
}

}

protected void c loseConnect ion () {
try {

in . c l o s e () ;
out . c l o s e () ;
con . c l o s e () ;

} catch (Exception e) {
l o gge r . logMessage (mod, Level .SEVERE,

”Exception when c l o s i n g ” + e) ;
}

}

class EchoDThread extends Thread {

private boolean go = true ;

public void c anc e l () {
go = fa l se ;
this . i n t e r r u p t () ;

}

public void run () {
try {

out . wr i teObjec t (new RequestToken ()) ;
out . f l u s h () ;
while (go) {

Object o = in . readObject () ;
i f (o==null) throw new

Exception (”Connection c l o s ed ”) ;
out . wr i teObjec t (new ReceivedToken ()) ;
out . f l u s h () ;

}
out . wr i teObjec t (new EndToken ()) ;
out . f l u s h () ;

} catch (Exception e) {
l o gge r . logMessage (mod, Level . INFO, ”Exception ”

+ e . getMessage ()) ;
}
c loseConnect ion () ;

}
}

public synchronized void s t a r t () throws Protoco lExcept ion {
i f (thread !=null) throw new

Protoco lExcept ion (”Already s ta r t ed ”) ;
i f (con!=null) throw new

Protoco lExcept ion (”No connect ion e s t ab l i s h e d ”) ;

A.1 Common Files 53

thread = new EchoDThread () ;
thread . s t a r t () ;

}

public void stop () {
i f (thread !=null) thread . c anc e l () ;
c loseConnect ion () ;

}

public void abort () {
stop () ;

}

public ArrayLi st ge tStatus () {
return new ArrayLi st () ;

}

public St r i ng getProtocolType () {
return ”Echo” ;

}
}

A.1.3 NoTrackingSession.java

Note that this one is from the ground station and is only included to show its
functionality.

Listing A.9: No Tracking Session

package common. s e s s i o n ;

import java . u t i l . Calendar ;
import java . u t i l . l o gg ing . Level ;

import common. s a t e l l i t e . S a t e l l i t e ;
import common. p ro toco l . Protoco l ;
import common. p ro toco l . Protoco lExcept ion ;

/∗∗
∗ @author hh l
∗/

public class NoTrackingSession extends AutomatedSession {

private static f ina l long se r ia lVers ionUID = −5923765917048141261L ;
protected int pro toco lPort ;
protected int i n i t i a l D e l a y = 10 ;
protected int s l a ck = 10 ;
protected Calendar stoptime ;
protected Thread myThread ;

public NoTrackingSession (S t r i ng name , Calendar s t a r t , Calendar end ,
Class <? extends Protocol> pro toco lC l a s s , int port)
throws Inva l i dSe s s i onExc ep t i on {

super (name , s t a r t , end , p ro toc o lC l a s s ,
new S a t e l l i t e (”CUTE−1”) // Just a dummy

) ;
p ro toc o lPort = port ;

}

54 Appendix A

public void s e t I n i t i a l D e l a y (int d) {
i f (d >= 0) i n i t i a lD e l a y = d ;

}

public void s e tS l a ck (int d) {
i f (d >= 0) s l a ck = d ;

}

@Override
public synchronized void abort () {

super . abort () ;
i f (myThread!=null)

myThread . i n t e r r u p t () ;
}

@Override
public void run () {

try {
myThread = Thread . currentThread () ;
l ogge r . logMessage (mod, Level . INFO,

”Connecting p ro toco l . . . ”) ;
try {

pro toco l . connect (p ro toc o lPor t) ;
l ogge r . logMessage (mod, Level . INFO, ”Connected ! ”) ;

} catch (Protoco lExcept ion pe) {
l o gge r . logMessage (mod, Level .SEVERE,

” Se s s i on ’ ”+getSessionName ()+
” ’ ” + ” could not e s t a b l i s h connect ion at ” +
pro toco lPor t + ” : ” +
pe . getMessage ()) ;

return ;
}
Thread . s l e e p (i n i t i a l D e l a y ∗1000) ;
l ogge r . logMessage (mod, Level . INFO,

” S ta r t i ng p ro toco l . . . ”) ;
try {

pro toco l . s t a r t () ;
} catch (Protoco lExcept ion pe) {

l o gge r . logMessage (mod, Level .SEVERE,
” Se s s i on ’ ”+getSessionName ()+” ’ ”

+ ” could not s t a r t p ro toc o l : ”
+ pe . getMessage ()) ;

return ;
}
stoptime = (Calendar) endTime . c lone () ;
stoptime . add (Calendar .SECOND,− s l a ck) ;
long wait ingt ime = stoptime . ge tTimeInMi l l i s () ;
wa i t ingt ime −= System . cu r r en tT imeMi l l i s () ;
i f (wai t ingt ime > 0) Thread . s l e e p (wai t ingt ime) ;
l ogge r . logMessage (mod, Level . INFO, ”Stopping p ro toco l . . . ”) ;
p ro toc o l . stop () ;

} catch (Inte r ruptedExcept ion e) {
l o gge r . logMessage (mod, Level .WARNING,

” Se s s i on in t e r rup t ed . ”) ;
}

}
}

A.2 Command List 55

A.2 Command List

A.2.1 ICommandList.java

Listing A.10: Command List Interface

package commandList ;

import java . u t i l . Calendar ;
import java . u t i l . L inkedLi st ;
import java . u t i l . Vector ;

/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public interface ICommandList {

public Pass getNextPass () ;
public boolean i n s e r tPas s (Pass pass) ;
public boolean removePass (Pass pass) ;
public LinkedList<Pass> l i s t P a s s () ;

public CommandObject getCommandObject (int i d e n t i f i c a t i o n) ;
public boolean insertCommand (Pr i o r i t y p r i o r i t y , S t r i ng command) ;
public boolean insertCommand (Pr i o r i t y p r i o r i t y , S t r i ng command ,

Calendar time) ;
public boolean modifyCommand(CommandObject co , Status s t a tu s) ;
public boolean modifyCommand(CommandObject co , Calendar time) ;
public boolean modifyCommand(CommandObject co , Pass pass) ;
public int duplicateCommand (CommandObject co) ;

public Vector<Boolean> checkPass (Pass pass) ;
public boolean insertCommandInPass (Pass pass , CommandObject co) ;
public boolean removeCommandFromPass (Pass pass , CommandObject co) ;
public boolean au to In se r t InPas s (Pass pass) ;

}

A.2.2 CommandList.java

Listing A.11: Command List

package commandList ;

import java . u t i l . Calendar ;
import java . u t i l . L inkedLi st ;
import java . u t i l . Vector ;

/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public class CommandList implements ICommandList {

56 Appendix A

private LinkedList<Pass> passSchedu le = null ;
private LinkedList<CommandObject> commandList = null ;
public boolean passScheduleChanged = fa l se ;

public CommandList () {
passSchedu le = new LinkedList<Pass >() ;
commandList = new LinkedList<CommandObject>() ;

}

public Pass getNextPass () {
int s i z e = passSchedu le . s i z e () ;
i f (s i z e >= 0) {

Pass nextPass = passSchedu le . g e tF i r s t () ;
passScheduleChanged = fa l se ;
return nextPass ;

}
return null ;

}

public boolean i n s e r tPas s (Pass pass) {
for (int i = 0 ; i < passSchedu le . s i z e () ; i++) {

Pass tmpPass = passSchedu le . ge t (i) ;
i f (tmpPass . getTime () . f i r s tE l emen t () . ge tTimeInMi l l i s () >

pass . getTime () . f i r s tE l emen t () . ge tTimeInMi l l i s ()) {
i f (tmpPass . getTime () . f i r s tE l emen t () . ge tTimeInMi l l i s () >

pass . getTime () . l astE lement () . ge tTimeInMi l l i s ()) {
passSchedu le . add (i , pass) ;
i f (i == 0) passScheduleChanged = true ;
return true ;

} else i f (tmpPass . getTime () . l astE lement () .
ge tTimeInMi l l i s () <

pass . getTime () . f i r s tE l emen t () .
ge tTimeInMi l l i s ()) {

return fa l se ;
}
return fa l se ;

}
}
passSchedu le . add (pass) ;
return true ;

}

public boolean i n s e r tPas s (int i , Pass pass) {
passSchedu le . add (i , pass) ;
i f (i == 0) passScheduleChanged = true ;
return true ;

}

public boolean removePass (Pass pass) {
Pass tmpPass ;
int s i z e = passSchedu le . s i z e () ;
int i ;
for (i = 0 ; i < s i z e ; i++) {

tmpPass = passSchedu le . ge t (i) ;
i f (tmpPass . equa l s (pass)) {

int tmp = pass . numberOfCommands () ;
for (int j = 0 ; j < tmp ; j++) {

int UID = pass . getID (0) ;
CommandObject co = getCommandObject (UID) ;
removeCommandFromPass(pass , co) ;

}
passSchedu le . remove (i) ;
i f (i == 0)

passScheduleChanged = true ;

A.2 Command List 57

return true ;
}

}
return fa l se ;

}

public LinkedList<Pass> l i s t P a s s () {
return passSchedu le ;

}

public CommandObject getCommandObject (int i d e n t i f i c a t i o n) {
boolean notFound = true ;
int index = 0 ;
CommandObject co = null ;

while (notFound) {
co = commandList . ge t (index) ;
++index ;
i f (i d e n t i f i c a t i o n == co . g e t I d e n t i f i c a t i o n ()) {

notFound = fa l se ;
}

}
return co ;

}

public boolean insertCommand (Pr i o r i t y p r i o r i t y , S t r i ng command) {
int nextUIN ;
nextUIN = commandList . s i z e () ;
CommandObject newCommand = new CommandObject(nextUIN , p r i o r i t y ,

command, Status .NEW) ;
commandList . add (newCommand) ;
return true ;

}

public boolean insertCommand (CommandObject co) {
int nextUIN ;
nextUIN = commandList . s i z e () ;
CommandObject newCommand = new CommandObject(nextUIN ,

co . g e tP r i o r i t y () ,
co . getCommand () , Status .NEW) ;

commandList . add (newCommand) ;
return true ;

}

public boolean insertCommand (Pr i o r i t y p r i o r i t y , S t r i ng command ,
Calendar time) {
int nextUIN ;
nextUIN = commandList . s i z e () ;
CommandObject newCommand = new CommandObject(nextUIN , p r i o r i t y ,

command, Status .NEW) ;
newCommand. setTime (time) ;
commandList . add (newCommand) ;
return true ;

}

public boolean modifyCommand(CommandObject co , Status s t a tu s) {
int index = commandList . indexOf (co) ;
co . s e tS ta tu s (s t a tu s) ;
commandList . s e t (index , co) ;
return true ;

}

public boolean modifyCommand(CommandObject co , Calendar time) {
int index = commandList . indexOf (co) ;
co . setTime (time) ;
commandList . s e t (index , co) ;

58 Appendix A

return true ;
}

public boolean modifyCommand(CommandObject co , Pass pass) {
int index = commandList . indexOf (co) ;
co . se tPass (pass) ;
commandList . s e t (index , co) ;
return true ;

}

public int duplicateCommand (CommandObject co) {
CommandObject tempCommand = commandList . ge tLast () ;
int lastUIN = tempCommand. g e t I d e n t i f i c a t i o n () ;
int nextUIN = 1 + lastUIN ;
CommandObject newCommand = new CommandObject(nextUIN ,

co . g e tP r i o r i t y () , co . getCommand () , co . ge tStatus ()) ;
commandList . add (newCommand) ;
return nextUIN ;

}

public Vector<Boolean> checkPass (Pass pass) {
Vector<Boolean> vt = new Vector<Boolean >() ;
int c on s t r a i n = pass . c on s t r a i n ;
int s i z e = pass . numberOfCommands () ;
i f (s i z e == cons t r a i n) {

vt . add (true) ;
vt . add (fa l se) ;

}
i f (s i z e < c on s t r a i n) {

vt . add (fa l se) ;
vt . add (fa l se) ;

}
i f (s i z e == 0) {

vt . add (fa l se) ;
vt . add (true) ;

}
return vt ;

}

public boolean insertCommandInPass (Pass pass , CommandObject co) {
int indexS = passSchedu le . indexOf (pass) ;
int indexC = commandList . indexOf (co) ;

i f ((co . getExecutedTime () == null) && (co . getPass () == null) &&
co . ge tStatus () == Status .NEW) {

int i d e n t i f i c a t i o n = co . g e t I d e n t i f i c a t i o n () ;
boolean c on s t r a i n S a t i s f i e d =

pass . queueCommand(i d e n t i f i c a t i o n) ;
i f (c on s t r a i n S a t i s f i e d) {

passSchedu le . s e t (indexS , pass) ;
co . se tPass (pass) ;
co . s e tS ta tu s (Status .PASS) ;
commandList . s e t (indexC , co) ;
return true ;

} else {
Boolean i n s e r t e d = reSchedu lePass (pass , co) ;
i f (i n s e r t ed)

return true ;
return fa l se ;

}
}
return fa l se ;

}

public boolean removeCommandFromPass (Pass pass , CommandObject co) {

A.2 Command List 59

int indexS = passSchedu le . indexOf (pass) ;
int indexC = commandList . indexOf (co) ;

int i d e n t i f i c a t i o n = co . g e t I d e n t i f i c a t i o n () ;
pass . dequeueCommand(i d e n t i f i c a t i o n) ;
passSchedu le . s e t (indexS , pass) ;
co . se tPass (null) ;
i f (co . ge tStatus () != Status .DONE)

co . s e tS ta tu s (Status .NEW) ;
commandList . s e t (indexC , co) ;
return true ;

}

public boolean au to In se r t InPas s (Pass pass) {
int indexS = passSchedu le . indexOf (pass) ;
int sizeCL = commandList . s i z e () ;
Boolean s ta tu s = true ;
for (int i = 0 ; i < sizeCL ; i++) {

System . out . p r i n t l n (i) ;
CommandObject co = commandList . ge t (i) ;
i f (co . getPass () == null && co . ge tStatus () != Status .DONE

&& (co . getTime () == null

| | co . getTime () . ge tTimeInMi l l i s ()
< pass . getTime () . l astE lement () . ge tTimeInMi l l i s ())) {

Boolean notFu l l = checkPass (pass) . f i r s tE l emen t () ;
System . out . p r i n t l n (”Not f u l l ? : ” + notFu l l) ;
i f (! notFu l l) {

insertCommandInPass (pass , co) ;
} else i f (co . g e tP r i o r i t y () == Pr i o r i t y .URGENT) {

Boolean change = reSchedu lePass (pass , co) ;
i f (change)

s t a tu s = fa l se ;
}

}
}
passSchedu le . s e t (indexS , pass) ;
return s t a tu s ;

}

public int f indPassLocat ion (Pass pass) {
int i = 0 ;
int s i z e = passSchedu le . s i z e () ;
for (i = 0 ; i <= s i z e ; i++) {

i f (passSchedu le . ge t (i) . equa l s (pass))
return i +1;

}
return −1;

}

public void updateCommandsFromPass() {
int s i z e = passSchedu le . s i z e () ;
for (int i = 0 ; i <= s i z e ; i++) {

Pass tmp = passSchedu le . ge t (i) ;
for (int j = 0 ; j <= tmp . numberOfCommands () ; j++) {

CommandObject co = getCommandObject (tmp . getID (j)) ;
modifyCommand(co , tmp) ;

}
}

}

private boolean reSchedu lePass (Pass pass , CommandObject co) {
int i ;
int p r i o r i t y = pr i o r i t yToIn t (co . g e tP r i o r i t y ()) ;
CommandObject tmpC = null ;
i f (p r i o r i t y > 0) {

60 Appendix A

for (i = 0 ; i < pass . c on s t r a i n ; i++) {
int UID = pass . getID (i) ;
CommandObject tmpCo = commandList . ge t (UID) ;
// Taking the l a s t instance of the lowest p r i o r i t y
i f (p r i o r i t yToIn t (tmpCo . g e tP r i o r i t y ()) <= pr i o r i t y) {

p r i o r i t y = pr i o r i t yToIn t (tmpCo . g e tP r i o r i t y ()) ;
tmpC = tmpCo ;

}
}

}
i f (tmpC != null) {

pass . dequeueCommand(tmpC. g e t I d e n t i f i c a t i o n ()) ;
reScheduleCommand(tmpC) ;
pass . queueCommand(co . g e t I d e n t i f i c a t i o n ()) ;
return true ;

}
return fa l se ;

}

private In t e ge r p r i o r i t yToIn t (P r i o r i t y p r i o r i t y) {
i f (p r i o r i t y == Pr i o r i t y .LOW)

return 0 ;
i f (p r i o r i t y == Pr i o r i t y .NORMAL)

return 1 ;
i f (p r i o r i t y == Pr i o r i t y .HIGH)

return 2 ;
i f (p r i o r i t y == Pr i o r i t y .URGENT)

return 3 ;
return −1;

}

private void reScheduleCommand(CommandObject co) {
co . setTime (null) ;
i f (co . g e tP r i o r i t y () == Pr i o r i t y .LOW)

co . s e tP r i o r i t y (P r i o r i t y .NORMAL) ;
i f (co . g e tP r i o r i t y () == Pr i o r i t y .NORMAL)

co . s e tP r i o r i t y (P r i o r i t y .HIGH) ;
}

}

A.2.3 CommandObject.java

Listing A.12: Command Object

package commandList ;

import java . u t i l . Calendar ;

/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public class CommandObject {

private int i d e n t i f i c a t i o n = 0 ;
private Pr i o r i t y p r i o r i t y ;
private St r i ng command;
private Status s t a tu s ;
private Calendar time ;
private Calendar executedTime ;
private Pass pass ;

A.2 Command List 61

public CommandObject(int i d e n t i f i c a t i o n , P r i o r i t y p r i o r i t y ,
S t r i ng command, Status s t a tu s) {
this . i d e n t i f i c a t i o n = i d e n t i f i c a t i o n ;
this . p r i o r i t y = p r i o r i t y ;
this . command = command;
this . s t a tu s = sta tu s ;

}

public St r i ng toS t r i ng () {
i f (time != null) {

i f (pass != null) {
return i d e n t i f i c a t i o n + ” ” + p r i o r i t y + ” ” + command
+ ” ” + sta tu s + ” ” + time . t oS t r i ng () + ” queued” ;

}
return i d e n t i f i c a t i o n + ” ” + p r i o r i t y + ” ” + command + ” ”
+ sta tu s + ” ” + time . t oS t r i ng () + ” not queued” ;

}
return i d e n t i f i c a t i o n + ” ” + p r i o r i t y + ” ” + command + ” ”
+ sta tu s ;

}

public int g e t I d e n t i f i c a t i o n () {
return i d e n t i f i c a t i o n ;

}

public Pr i o r i t y g e tP r i o r i t y () {
return p r i o r i t y ;

}

public St r i ng getCommand () {
return command;

}

public Status ge tStatus () {
return s t a tu s ;

}

public Calendar getTime () {
return time ;

}

public Calendar getExecutedTime() {
return executedTime ;

}

public Pass getPass () {
return pass ;

}

public boolean s e tS ta tu s (Status newStatus) {
s t a tu s = newStatus ;
return true ;

}

public boolean setTime (Calendar time) {
this . time = time ;
return true ;

}

public boolean setExecutedTime (Calendar executedTime) {
this . executedTime = executedTime ;
pass = null ;
return true ;

}

62 Appendix A

public boolean se tPass (Pass se tPass) {
pass = setPass ;
return true ;

}

public boolean s e tP r i o r i t y (P r i o r i t y p) {
p r i o r i t y = p ;
return true ;

}
}

A.2.4 Pass.java

Listing A.13: Pass Object

package commandList ;

import java . u t i l . Vector ;
import java . u t i l . Calendar ;

/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public class Pass {

public f ina l int c on s t r a i n = 5 ;
private Vector<Intege r> passVector = new Vector<Intege r >() ;
private Calendar pas sS ta r t = null ;
private Calendar passStop = null ;

public Pass (Calendar startTime , Calendar endTime) {
pas sS ta r t = startTime ;
passStop = endTime ;

}

public boolean queueCommand(int i d e n t i f i c a t i o n) {
i f (checkConstrain ()) {

passVector . add (i d e n t i f i c a t i o n) ;
return true ;

}
return fa l se ;

}

public void dequeueCommand(int i d e n t i f i c a t i o n) {
int index = passVector . indexOf (i d e n t i f i c a t i o n) ;
passVector . remove (index) ;

}

public Vector<Calendar> getTime () {
Vector<Calendar> vt = new Vector<Calendar >() ;
vt . add (pas sS ta r t) ;
vt . add (passStop) ;
return vt ;

}

public int numberOfCommands () {
return passVector . s i z e () ;

}

A.2 Command List 63

public int getID (int i) {
return passVector . ge t (i) ;

}

private boolean checkConstrain () {
i f (passVector . s i z e () >= cons t ra i n) {

return fa l se ;
}
return true ;

}
}

A.2.5 Priority.java

Listing A.14: Priority Enumeration

package commandList ;

/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public enum Pr i o r i t y {
LOW,
NORMAL,
HIGH,
URGENT;

}

A.2.6 Status.java

Listing A.15: Status Enumeration

package commandList ;

/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public enum Status {
NEW,
PASS,
VERIFIED,
GROUNDSTATION,
SATELLITE ,
DONE;

}

64 Appendix A

A.3 Operator

A.3.1 MainGUI.java

Listing A.16: Main GUI

package operator ;

import commandList . CommandList ;
/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public class MainGUI {

private CommandList cmdl ;

public MainGUI(CommandList cmdl) {
this . cmdl = cmdl ;

}
}

A.3.2 InsertGUI.java

Listing A.17: Insert GUI

package operator ;

import commandList . CommandList ; /∗∗
∗ @author Brian Schmidt Hermansen
∗/

public class InsertGUI {

private CommandList cmdl ;

public InsertGUI (CommandList cmdl) {
this . cmdl = cmdl ;

}
}

A.4 Storage 65

A.4 Storage

A.4.1 ICommonDataBase.java

Listing A.18: Common Database Interface

package s t o rage . i n t e r f a c e s ;

import java . s q l . Connection ;
import java . s q l . Resu l tSe t ;

/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public interface ICommonDataBase {

public Connection startConnect ion () ;
public Connection c loseConnect ion (Connection conn) ;
public void destroyTab le (Connection conn , S t r i ng tableName) ;
public Resu l tSe t l i s t (Connection conn , S t r i ng tableName) ;

}

A.4.2 IStorageData.java

Listing A.19: Telemetry Database Interface

package s t o rage . i n t e r f a c e s ;

import java . s q l . Connection ;
import s t o rage . DataObject ;

/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public interface IStorageData {

public void ex i s t sTab l e (Connection conn , S t r i ng tableName) ;
public void in se r tData (Connection conn , S t r i ng tableName ,

DataObject daob) ;
public DataObject r e t r i v eData (Connection conn , S t r i ng tableName ,

int UID) ;
}

A.4.3 ICommandBase.java

66 Appendix A

Listing A.20: Command List Database Interface

package s t o rage . i n t e r f a c e s ;

import java . s q l . Connection ;

import commandList . CommandObject ;
import commandList . Pass ;

/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public interface ICommandBase {

public void existsTableCommand(Connection conn , S t r i ng tableName) ;
public void ex i s t sTab l ePas s (Connection conn , S t r i ng tableName) ;
public void insertCommand (Connection conn , S t r i ng tableName ,

CommandObject co) ;
public void updateCommand(Connection conn , S t r i ng tableName ,

CommandObject co) ;
public void i n s e r tPas s (Connection conn , S t r i ng tableName ,

Pass pass) ;
public void updatePass (Connection conn , S t r i ng tableName ,

Pass pass , int passLocat ion) ;
}

A.4.4 StorageData.java

Listing A.21: Telemetry Data Storage

package s t o rage . implementation ;

import java . s q l . Connection ;
import java . s q l . DriverManager ;
import java . s q l . Resu l tSe t ;
import java . s q l . SQLException ;
import java . s q l . Statement ;

import s t o rage . DataObject ;
import s t o rage . i n t e r f a c e s . ICommonDataBase ;
import s t o rage . i n t e r f a c e s . IStorageData ;

/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public class StorageData implements IStorageData , ICommonDataBase {

private Connection conn = null ;
private Statement stmt = null ;
private Resu l tSe t r s = null ;
private St r i ng d r i v e r = ”com . mysql . jdbc . Dr ive r” ;
private St r i ng host = ” jdbc : mysql : // l o c a l ho s t / t e s t ” ;
private St r i ng l o g in = ” e c l i p s e ” ;
private St r i ng pswd = ” br ian ” ;

public Connection startConnect ion () {
try {

Class . forName (d r i v e r) ;
} catch (ClassNotFoundException e) {

System . out . p r i n t l n (”Unable to load Dr ive r Class ”) ;
return null ;

A.4 Storage 67

}
try {

conn = DriverManager . getConnection (host , l og in , pswd) ;
return conn ;

} catch (SQLException se) {
System . out . p r i n t l n (”SQL Exception : ” + se . getMessage ()) ;
se . pr intStackTrace (System . out) ;
return null ;

}
}

public Connection c loseConnect ion (Connection conn) {
i f (conn != null) {

try {
conn . c l o s e () ;

} catch (SQLException se) {
}

}
this . conn = conn ;
return null ;

}

public void ex i s t sTab l e (Connection conn , S t r i ng tableName) {
try {

this . conn = conn ;
stmt = conn . c reateStatement (java . s q l . Resu l tSe t .

TYPE FORWARDONLY,
java . s q l . Resu l tSe t .CONCUR UPDATABLE) ;

stmt . executeUpdate (”CREATE TABLE IF NOT EXISTS ”
+ tableName + ” (”
+ ”priKey INT NOT NULL AUTO INCREMENT PRIMARY KEY, ”
+ ”data OBJECT) ”) ;

} catch (SQLException se) {
}

}

public void destroyTab le (Connection conn , S t r i ng tableName) {
try {

this . conn = conn ;
stmt = conn . c reateStatement () ;
stmt . executeUpdate (”DROP TABLE IF EXISTS ” + tableName) ;

} catch (SQLException se) {
}

}

public void in se r tData (Connection conn , S t r i ng tableName ,
DataObject daob) {

i f (conn == null) {
conn = startConnect ion () ;

}
try {

stmt = conn . c reateStatement (java . s q l . Resu l tSe t .
TYPE FORWARDONLY,
java . s q l . Resu l tSe t .CONCUR UPDATABLE) ;

r s = stmt . executeQuery (”SELECT priKey , data ”
+ ”FROM ” + tableName) ;

r s . moveToInsertRow () ;
r s . updateObject(”data” , daob) ;
r s . insertRow () ;
r s . l a s t () ;

} catch (SQLException se) {
}
this . conn = conn ;

}

68 Appendix A

public Resu l tSe t l i s t (Connection conn , S t r i ng tableName) {
i f (conn == null) {

conn = startConnect ion () ;
}
try {

stmt = conn . c reateStatement () ;
r s = stmt . executeQuery (”SELECT ∗ FROM ” + tableName) ;

} catch (SQLException se) {
}
this . conn = conn ;
return r s ;

}

public DataObject r e t r i v eData (Connection conn , S t r i ng tableName ,
int UID) {
r s = l i s t (conn , tableName) ;
DataObject daob = null ;
try {

i f (r s != null) {
while (r s . next ()) {

// <type> in fo = rs . get<type >(<column name>) ;
daob = (DataObject) r s . ge tObjec t (”data”) ;
i f (daob . g e t I d e n t i f i c a t i o n () == UID)

return daob ;
}

}
} catch (SQLException se) {
}
return null ;

}
}

A.4.5 CommandBase.java

Listing A.22: Command List Data Storage

package s t o rage . implementation ;

import java . s q l . Connection ;
import java . s q l . DriverManager ;
import java . s q l . Resu l tSe t ;
import java . s q l . SQLException ;
import java . s q l . Statement ;

import s t o rage . i n t e r f a c e s . ICommandBase ;
import s t o rage . i n t e r f a c e s . ICommonDataBase ;

import commandList . CommandObject ;
import commandList . Pass ;

/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public class CommandBase implements ICommandBase , ICommonDataBase {

private Connection conn = null ;
private Statement stmt = null ;
private Resu l tSe t r s = null ;
private St r i ng sq l op = ”” ;
private St r i ng d r i v e r = ”com . mysql . jdbc . Dr ive r” ;

A.4 Storage 69

private St r i ng host = ” jdbc : mysql : // l o c a l h o s t / t e s t ” ;
private St r i ng l o g in = ” e c l i p s e ” ;
private St r i ng pswd = ”br ian ” ;

public Connection startConnect ion () {
try {

Class . forName (d r i v e r) ;
} catch (ClassNotFoundException e) {

System . out . p r i n t l n (”Unable to load Dr ive r Class ”) ;
return null ;

}
try {

conn = DriverManager . getConnection (host , l og in , pswd) ;
return conn ;

} catch (SQLException se) {
System . out . p r i n t l n (”SQL Exception : ” + se . getMessage ()) ;
se . pr intStackTrace (System . out) ;
return null ;

}
}

public Connection c loseConnect ion (Connection conn) {
i f (conn != null) {

try {
conn . c l o s e () ;

} catch (SQLException se) {
}

}
this . conn = conn ;
return null ;

}

public void existsTableCommand(Connection conn , S t r i ng tableName) {
try {

this . conn = conn ;
stmt = conn . c reateStatement (java . s q l . Resu l tSe t .

TYPE FORWARDONLY,
java . s q l . Resu l tSe t .CONCUR UPDATABLE) ;

stmt . executeUpdate (”CREATE TABLE IF NOT EXISTS ”
+ tableName + ” (”
+ ”priKey INT NOT NULL AUTO INCREMENT PRIMARY KEY, ”
+ ”command OBJECT”) ;

} catch (SQLException se) {
}

}

public void ex i s t sTab l ePas s (Connection conn , S t r i ng tableName) {
try {

this . conn = conn ;
stmt = conn . c reateStatement (java . s q l . Resu l tSe t .

TYPE FORWARDONLY,
java . s q l . Resu l tSe t .CONCUR UPDATABLE) ;

stmt . executeUpdate (”CREATE TABLE IF NOT EXISTS ”
+ tableName + ” (”
+ ”priKey INT NOT NULL AUTO INCREMENT PRIMARY KEY, ”
+ ”pass OBJECT”) ;

} catch (SQLException se) {
}

}

public void destroyTab le (Connection conn , S t r i ng tableName) {
try {

this . conn = conn ;
stmt = conn . c reateStatement () ;
stmt . executeUpdate (”DROP TABLE IF EXISTS ” + tableName) ;

70 Appendix A

} catch (SQLException se) {
// Ignore

}
}

public void insertCommand (Connection conn , S t r i ng tableName ,
CommandObject co) {

i f (conn == null) {
conn = startConnect ion () ;

}
try {

stmt = conn . c reateStatement(java . s q l . Resu l tSe t .
TYPE FORWARDONLY,
java . s q l . Resu l tSe t .CONCUR UPDATABLE) ;

r s = stmt . executeQuery (”SELECT priKey , command ”
+ ”FROM ” + tableName) ;

r s . moveToInsertRow () ;

r s . updateObject (”command” , co) ;
r s . insertRow () ;
r s . l a s t () ;

} catch (SQLException se) {
}
this . conn = conn ;

}

public void updateCommand(Connection conn , S t r i ng tableName ,
CommandObject co) {

i f (conn == null) {
conn = startConnect ion () ;

}
try {

stmt = conn . c reateStatement () ;
sq l op = ”UPDATE ” + tableName + ” SET command = ’ ” +
co + ” ’ ” +
” WHERE priKey = ’ ” + co . g e t I d e n t i f i c a t i o n () + ” ’ ” ;
stmt . executeUpdate (sq l op) ;

} catch (SQLException se) {
}
this . conn = conn ;

}

public Resu l tSe t l i s t (Connection conn , S t r i ng tableName) {
i f (conn == null) {

conn = startConnect ion () ;
}
try {

stmt = conn . c reateStatement () ;
r s = stmt . executeQuery (”SELECT ∗ FROM ” + tableName) ;

} catch (SQLException se) {
}
this . conn = conn ;
return r s ;

}

public void i n s e r tPas s (Connection conn , S t r i ng tableName ,
Pass pass) {

i f (conn == null) {
conn = startConnect ion () ;

}
try {

stmt = conn . c reateStatement(java . s q l . Resu l tSe t .
TYPE FORWARDONLY,
java . s q l . Resu l tSe t .CONCUR UPDATABLE) ;

r s = stmt . executeQuery (”SELECT priKey , pass ”

A.4 Storage 71

+ ”FROM ” + tableName) ;
r s . moveToInsertRow () ;
r s . updateObject(”pass ” , pass) ;
r s . insertRow () ;
r s . l a s t () ;

} catch (SQLException se) {
}
this . conn = conn ;

}

public void updatePass (Connection conn , S t r i ng tableName ,
Pass pass , int passLocat ion) {

i f (conn == null) {
conn = startConnect ion () ;

}
try {

stmt = conn . c reateStatement () ;
sq l op = ”UPDATE ” + tableName + ” SET pass = ’ ” +
pass + ” ’ ” +
” WHERE priKey = ’ ” + passLocat ion + ” ’ ” ;
stmt . executeUpdate (sq l op) ;

} catch (SQLException se) {
}
this . conn = conn ;

}

public Resu l tSe t retriveCommand(Connection conn , S t r i ng tableName) {
i f (conn == null) {

conn = startConnect ion () ;
}
try {

stmt = conn . c reateStatement () ;

r s = stmt . executeQuery (”SELECT ∗ FROM ” + tableName) ;
} catch (SQLException se) {
}
this . conn = conn ;
return r s ;

}
}

A.4.6 StorageAccess.java

Listing A.23: Telemetry Data Access

package s t o rage . a c c e s s ;

import java . s q l . Connection ;
import java . s q l . Resu l tSe t ;
import java . s q l . SQLException ;
import java . u t i l . Vector ;

import s t o rage . DataObject ;
import s t o rage . implementation . StorageData ;

/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public class StorageAccess {

72 Appendix A

private Connection conn = null ;
private StorageData db = null ;
private St r i ng tableName = ”” ;
private Resu l tSe t r s = null ;
public Vector<DataObject> v l = new Vector<DataObject >() ;
public Vector<Str ing> v t l = new Vector<Str ing >() ;

public StorageAccess (Connection conn , S t r i ng tableName) {
db = new StorageData () ;
i f (conn == null) {

conn = db . startConnect ion () ;
}
db . ex i s t sTab l e (conn , tableName) ;
this . conn = conn ;
this . tableName = tableName ;

}

public void c l o s e () {
conn = db . c loseConnect ion (conn) ;

}

public void c r e a t eL i s t s () {
r s = db . l i s t (conn , tableName) ;
convertRsToVector (r s) ;

}

public Connection getConnection () {
return conn ;

}

public void in se r tData (DataObject daob) {
db . inse r tData (conn , tableName , daob) ;

}

private void convertRsToVector (Resu l tSe t r s) {
DataObject daob = null ;
try {

i f (r s != null) {
while (r s . next ()) {

// <type> in fo = rs . get<type >(<column name>) ;
daob = (DataObject) r s . ge tObjec t (”data”) ;
v l . addElement(daob) ;
v t l . addElement(daob . t oS t r i ng ()) ;

}
}

} catch (SQLException se) {
}

}
}

A.4.7 CommandAccess.java

Listing A.24: Command List Data Access

package s t o rage . a c c e s s ;

import java . s q l . Connection ;
import java . s q l . Resu l tSe t ;
import java . s q l . SQLException ;
import java . u t i l . Vector ;

A.4 Storage 73

import s t o rage . implementation . CommandBase ;

import commandList . CommandObject ;
import commandList . Pass ;

/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public class CommandAccess {

private Connection conn = null ;
private CommandBase db = null ;
private St r i ng commandTable = ”” ;
private St r i ng passTable = ”” ;
private Resu l tSe t r s = null ;
private Resu l tSe t r s2 = null ;
public Vector<CommandObject> c l = new Vector<CommandObject>() ;
public Vector<Str ing> v t l = new Vector<Str ing >() ;
public Vector<Pass> p l = new Vector<Pass >() ;

public CommandAccess (S t r i ng commandTable , S t r i ng passTable) {
db = new CommandBase () ;
i f (conn == null) {

conn = db . startConnect ion () ;
}
db . existsTableCommand(conn , commandTable) ;
db . e x i s t sTab l ePas s (conn , passTable) ;
this . commandTable = commandTable;
this . passTable = passTable ;

}

public void destroyTab le s () {
db . dest royTab le (conn , commandTable) ;
db . dest royTab le (conn , passTable) ;

}

public void c l o s e () {
conn = db . c loseConnect ion (conn) ;

}

public void c r e a t eL i s t s () {
r s = db . l i s t (conn , commandTable) ;
r s2 = db . l i s t (conn , passTable) ;
convertRsToVector (r s) ;
convertRsToPassVector (r s2) ;

}

public Connection getConnection () {
return conn ;

}

public void insertCommand (CommandObject co) {
db . insertCommand (conn , commandTable , co) ;

}

public void i n s e r tPas s (Pass pass) {
db . i n s e r tPas s (conn , commandTable , pass) ;

}

public void updateCommand(CommandObject co) {
db . updateCommand(conn , commandTable , co) ;

}

public void updatePass (Pass pass , int passLocat ion) {

74 Appendix A

db . updatePass (conn , commandTable , pass , passLocat ion) ;
}

private void convertRsToVector (Resu l tSe t r s) {
CommandObject co = null ;
try {

i f (r s != null) {
while (r s . next ()) {

co = (CommandObject) r s . ge tObjec t (”command”) ;
c l . addElement(co) ;
v t l . addElement(co . t oS t r i ng ()) ;

}
}

} catch (SQLException se) {
}

}

private void convertRsToPassVector (Resu l tSe t r s2) {
Pass pass = null ;
try {

i f (r s2 != null) {
while (r s2 . next ()) {

pass = (Pass) r s2 . ge tObjec t (” pass ”) ;
p l . addElement(pass) ;

}
}

} catch (SQLException se) {
}

}
}

A.4.8 DataObject.java

Listing A.25: Object for storing Telemetry

package s t o rage ;

import java . u t i l . Calendar ;

/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public class DataObject {

private int i d e n t i f i c a t i o n = 0 ;
private St r i ng data ;
private Calendar date ;

public DataObject(int i d e n t i f i c a t i o n , S t r i ng data) {
this . i d e n t i f i c a t i o n = i d e n t i f i c a t i o n ;
this . data = data ;
date = Calendar . g e t In s tanc e () ;

}

public DataObject(int i d e n t i f i c a t i o n , S t r i ng data , Calendar date) {
this . i d e n t i f i c a t i o n = i d e n t i f i c a t i o n ;
this . data = data ;
this . date = date ;

}

A.4 Storage 75

public St r i ng toS t r i ng () {
return i d e n t i f i c a t i o n + ” ” + data + ” ” + date . t oS t r i ng () ;

}

public int g e t I d e n t i f i c a t i o n () {
return i d e n t i f i c a t i o n ;

}

public St r i ng getData () {
return data ;

}

public Calendar getDate () {
return date ;

}
}

76 Appendix A

A.5 Pass Control

A.5.1 MCManager.java

Listing A.26: Mission Control Manager

package passContro l . mcManager ;

import passContro l . passSchedu le . PassScheduleHandler ;

import commandList . CommandList ;

/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public class MCManager {

private static PassScheduleHandler hand le r ;
public static CommandList cmdl ;

public MCManager() throws Exception {
cmdl = new CommandList () ;
cmdl = Test . createCMDL3 () ;
hand le r = new PassScheduleHandler (this) ;
hand le r . s t a r t () ;

}

public static void main (S t r i ng [] args) {
try {

System . out . p r i n t l n (”MCManager i s operat ing ! ”) ;
MCManager MCMgr = new MCManager () ;
// InsertGui iGUI = new InsertGUI (cmdl) ;
//MainGUI mGUI = new MainGUI(cmdl) ;

} catch (Exception e) {
e . pr intStackTrace () ;
System . ex i t (1) ;

}
}

}

A.5.2 PassScheduleHandler.java

Listing A.27: Pass Schedule Handler

package passContro l . passSchedu le ;

import java . rmi . NotBoundException ;
import java . rmi . RMISecurityManager ;
import java . rmi . RemoteException ;
import java . rmi . r e g i s t r y . LocateReg i st ry ;
import java . rmi . r e g i s t r y . Reg i st ry ;

A.5 Pass Control 77

import java . u t i l . Calendar ;

import passContro l . mcManager .MCManager ;
import passContro l . p ro toc o l . Protoco l ;

import commandList . Pass ;
import common. p ro toco l . echo . EchoDProtocol ;
import common. s e s s i o n . Inva l i dSe s s i onExc ep t i on ;
import common. s e s s i o n . NoTrackingSession ;
import common. se ss ionEnv . IMcc ;

/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public class PassScheduleHandler extends Thread {

public MCManager mcManager ;
private f ina l static In t e ge r second = 1000 ;
private NoTrackingSession s e s s i o n ;
private PassSchedule passSchedu le ;
private boolean pas s edSe s s i on = fa l se ;
private boolean c r e a t edSe s s i on = fa l se ;
S t r i ng se rve rAddress = ” 130 . 225 . 79 . 188 ” ;
int RMIServerPort = 4545 ;
int gsProtoco lPort = 5656 ;

public PassScheduleHandler (MCManager mcManager) {
passSchedu le = new PassSchedule (mcManager . cmdl) ;
this . mcManager = mcManager ;

}

public synchronized void run () {
try {

while (true) {
wait (10 ∗ second) ;
System . out

. p r i n t l n (”Checking pass Queue −”
+ ” Done every 10 seconds ”) ;

i f (mcManager . cmdl . passScheduleChanged)
passSchedu le . nextPass = mcManager . cmdl . getNextPass () ;

System . out . p r i n t l n (”Next pass found”) ;
i f (passSchedu le . nextPass != null) {

i f (passSchedu le . nextPass . getTime ()
. f i r s tE l emen t () . ge tTimeInMi l l i s ()
< System . cu r r en tT imeMi l l i s ()+(60∗ second)) {

i f (! mcManager . cmdl . checkPass (passSchedu le .
nextPass) . l astE lement ()) {

i f (! pa s s edSe s s i on) {
i f (! c r e a t edSe s s i on) {

Se s s i onCrea t e r () ;
System . out . p r i n t l n

(” Se s s i on Created ”) ;
}
System . out . p r i n t l n (”Trying to ”
+”pass S e s s i on ”) ;
PassSess ion () ;

}
i f (pa s s edSe s s i on) {

System . out
. p r i n t l n (”Transmission ”
+ ” ge t t i ng ready ”) ;

while (true) {
Pass tempPass =

passSchedu le . nextPass ;

78 Appendix A

Protoco l sp = new Protoco l (
tempPass , mcManager . cmdl) ;

Calendar s t a r t = tempPass . getTime ()
. f i r s tE l emen t () ;

wait (s t a r t . ge tTimeInMi l l i s ()
− System . cu r r en tT imeMi l l i s ()) ;

wait (5 ∗ second) ;
System . out . p r i n t l n (”Transmitt ing ”
+ ” data . . . ”) ;
sp . run () ;
System . out . p r i n t l n (”Done”
+ ” t ran sm i t t i ng”) ;
pa s s edSe s s i on = fa l se ;
break ;

}
passSchedu le . donePass = true ;
passSchedu le . updatePassSchedule () ;
System . out . p r i n t l n

(”Transmission terminated ”) ;
}

} else {
System . out . p r i n t l n (”Next pass i s empty , ” +

” t ry ing to a s s i gn commands”) ;
mcManager . cmdl . au to In se r t InPas s (

passSchedu le . nextPass) ;
i f (mcManager . cmdl . checkPass (passSchedu le .

nextPass) . l astE lement ()) {
System . out . p r i n t l n (” S t i l l empty”) ;

}
}

} else {
System . out . p r i n t l n (”Delay , send ing ”
+ ” s e s s i o n 60 seconds be f o r e s t a r t ”) ;

}
} else {

System . out . p r i n t l n (”No pass schedu led”) ;
}

}
} catch (Exception e) {
}

}

private void Se s s i onCrea t e r () {
Calendar st ime = passSchedu le . nextPass . getTime () . ge t (0) ;
Calendar et ime = passSchedu le . nextPass . getTime () . ge t (1) ;
try {

s e s s i o n = new NoTrackingSession (CreateSessionName (stime ,
et ime) , stime , etime , EchoDProtocol . class ,
g sProtoco lPort) ;

} catch (Inva l i dSe s s i onExc ep t i on e) {
e . pr intStackTrace () ;

}
c r e a t edSe s s i on = true ;

}

private St r i ng CreateSessionName (Calendar startTime ,
Calendar endTime) {

return ” s e s s i o n : ” + startTime . ge t (Calendar .MINUTE) + ” : ”
+ endTime . ge t (Calendar .MINUTE) ;

}

private void PassSess ion () {
IMcc GSmgr ;
Reg i st ry r e g i s t r y ;
try {

A.5 Pass Control 79

i f (System . getSecurityManager () == null) {
System . se tSecur i tyManager(new RMISecurityManager ()) ;

}
r e g i s t r y = LocateReg i st ry . g e tReg i s t ry (se rve rAddress ,

RMIServerPort) ;
System . out . p r i n t l n (”Sending s e s s i o n to ” + serverAddress

+ ” : ” + In t e ge r . t oS t r i ng (RMIServerPort)) ;
GSmgr = (IMcc) (r e g i s t r y . lookup (”GSManager”)) ;
GSmgr . addSess ion (s e s s i o n) ;

} catch (RemoteException e) {
e . pr intStackTrace () ;

} catch (NotBoundException e) {
e . pr intStackTrace () ;

} catch (Exception e) {
System . out . p r i n t l n (”Error : ” + e . t oS t r i ng ()) ;

}
pas s edSe s s i on = true ;

}
}

A.5.3 PassSchedule.java

Listing A.28: Pass Schedule

package passContro l . passSchedu le ;

import java . u t i l . Calendar ;
import java . u t i l . GregorianCalendar ;
import java . u t i l . TimeZone ;

import commandList . CommandList ;
import commandList . Pass ;

/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public class PassSchedule {

public Pass nextPass ;
public boolean donePass = fa l se ;
private CommandList cmdl ;

public PassSchedule (CommandList cmdl) {
this . cmdl = cmdl ;
nextPass = cmdl . getNextPass () ;

}

public boolean i n s e r tPas s (Pass pass) throws PassScheduleException {
int i ;
Calendar startTime ;
Calendar endTime ;
Calendar tmpST;
Calendar tmpET;
Calendar currDate ;
Pass tmpPass ;
int count ;
S t r i ng message = ”” ;
int i n t e r v a l ;
try {

message = ”” ;

80 Appendix A

startTime = pass . getTime () . ge t (0) ;
endTime = pass . getTime () . ge t (1) ;
i n t e r v a l = 5 ; // the minutes
i f (startTime . a f t e r (endTime)){

message = ”The s e s s i o n s t a r t time i s a f t e r end time” ;
throw new PassScheduleException (message) ;

}
count = cmdl . l i s tP a s s () . s i z e () ;
currDate = new GregorianCalendar (TimeZone . g e tDe f au l t ()) ;
currDate . s e t (Calendar .MONTH, (currDate . ge t (Calendar .MONTH)

+ 1)) ;
currDate . s e t (Calendar .MINUTE,

(currDate . ge t (Calendar .MINUTE) + i n t e r v a l)) ;
i f (currDate . a f t e r (startTime)) {

message = ”The s t a r t time o f new pass i s outdated” ;
throw new PassScheduleException (message) ;

}
synchronized (cmdl . l i s t P a s s ()) {

for (i = 0 ; i < count ; i++) {
tmpPass = cmdl . l i s tP a s s () . ge t (i) ;
tmpST = tmpPass . getTime () . ge t (0) ;
tmpET = tmpPass . getTime () . ge t (1) ;
i f ((tmpET. a f t e r (startTime))) {

i f (tmpST. be f o r e (startTime)) {
message = ”The new pass i s ”
+ ” ove r l ap ing with an e x i s t i n g pass ” ;
throw new PassScheduleException (message) ;

} else {
i f (tmpST. be f o r e (endTime)) {

message = ”The new pass i s ”
+ ” ove r l ap ing with an e x i s t i n g pass ” ;
throw new PassScheduleException (message) ;

} else {
cmdl . i n s e r tPas s (i , pass) ;
return true ;

}
}

}
}
cmdl . i n s e r tPas s (i , pass) ;
return true ;

}
} catch (Exception e) {

throw new PassScheduleException (” I n s e r t new pass f a i l e d : ”
+ message , e) ;

}
}

public void updatePassSchedule () {
i f (donePass) {

cmdl . removePass (nextPass) ;
nextPass = cmdl . getNextPass () ;
donePass = fa l se ;

}
}

}

A.5.4 PassScheduleException.java

A.5 Pass Control 81

Listing A.29: Pass Schedule Exception

package passContro l . passSchedu le ;

/∗∗
∗ @author Yu Du, Brian Schmidt Hermansen
∗/

public class PassScheduleException extends ChainedException {

private static f ina l long se r ia lVers ionUID = −7328064973302193220L ;

public PassScheduleException (S t r i ng message){
super (message) ;

}

public PassScheduleException (S t r i ng message , Throwable cause){
super (message , cause) ;

}
}

A.5.5 ChainedException.java

Listing A.30: Chained Exception

package passContro l . passSchedu le ;

/∗∗
∗ @author Yu Do, Brian Schmidt Hermansen
∗/

public class ChainedException extends Exception{

static f ina l long se r ia lVers ionUID = 1435892340570L ;
private Throwable cause = null ;

public ChainedException () {
super () ;

}

public ChainedException (S t r i ng message){
super (message) ;

}

public ChainedException (S t r i ng message , Throwable cause){
super (message) ;
this . cause = cause ;

}

public void pr intStackTrace (){
super . p r intStackTrace () ;
i f (cause != null){

System . out . p r i n t l n (”Caused by : ”) ;
cause . pr intStackTrace () ;

}
}

public void pr intStackTrace (java . i o . PrintStream ps){
super . p r intStackTrace (ps) ;
i f (cause != null){

ps . p r i n t l n (”Caused by : ”) ;
cause . pr intStackTrace (ps) ;

}

82 Appendix A

}

public void pr intStackTrace (java . i o . Pr intWri te r pw) {
super . p r intStackTrace (pw) ;
i f (cause != null){

pw . p r i n t l n (”Caused by : ”) ;
cause . pr intStackTrace (pw) ;

}
}

}

A.5.6 Protocol.java

Listing A.31: Protocol on Mission Control side

package passContro l . p ro toc o l ;

import java . i o . IOException ;
import java . i o . ObjectInputStream ;
import java . i o . ObjectOutputStream ;
import java . net . Socket ;
import java . u t i l . Date ;

import s t o rage . DataObject ;
import s t o rage . a c c e s s . StorageAccess ;

import commandList . CommandList ;
import commandList . CommandObject ;
import commandList . Pass ;
import commandList . Status ;
import common. p ro toco l . echo . tokens . BasicToken ;
import common. p ro toco l . echo . tokens .CommandToken ;
import common. p ro toco l . echo . tokens . EndToken ;
import common. p ro toco l . echo . tokens . ReceivedToken ;
import common. p ro toco l . echo . tokens . RequestToken ;
import common. p ro toco l . echo . tokens . Sa t e l l i t eToken ;
import common. p ro toco l . echo . tokens . TeledataToken ;

/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public class Protoco l extends Thread {

private Pass pass ;
private CommandList cmdl ;
private DataObject daob ;
private St r i ng tableName = ”data” ;
private StorageAccess SA = new StorageAccess (null , tableName) ;
S t r i ng gsAddress = ”dtusat2 . o e r s t ed . dtu . dk” ;
In t e ge r gsProtoco lPort = 5656 ;

public Protoco l (Pass pass , CommandList cmdl) {
this . pass = pass ;
this . cmdl = cmdl ;
// t h i s . s a t e l l i t e = s a t e l l i t e ;

}

private CommandToken generateCommand(int i) {
CommandObject co = cmdl . getCommandObject (pass . getID (i)) ;
CommandToken ct = new CommandToken () ;

A.5 Pass Control 83

St r i ng command;
command = co . getCommand () ;
c t . command = command ;
c t .UID = co . g e t I d e n t i f i c a t i o n () ;
c t . timeStamp = new Date () ;
return c t ;

}

public synchronized void run () {
Object o ;
boolean handshake = fa l se ;
try {

Socket socket = new Socket (gsAddress , gsProtoco lPort) ;
System . out . p r i n t l n (”Connected ! ”) ;
f ina l ObjectOutputStream oos = new ObjectOutputStream (socket

. getOutputStream ()) ;
oos . f l u s h () ;
f ina l ObjectInputStream o i s = new ObjectInputStream (socket

. getInputStream ()) ;

try {
System . out . p r i n t l n (”Waiting on data”) ;
o = (BasicToken) o i s . readObject () ;
i f (o instanceof RequestToken)

handshake = true ;
while (handshake) {

int j = 0 ; //At command number j
CommandToken ct = new CommandToken () ;
boolean moreCommands = true ;
c t = generateCommand(j) ;
j++;
oos . wr i teObjec t (c t) ;
oos . f l u s h () ;
System . out . p r i n t l n (”Sending the f i r s t Command”) ;
while (moreCommands) {

o = (BasicToken) o i s . readObject () ;
i f (o instanceof ReceivedToken) {

ReceivedToken r t = (ReceivedToken) o ;
System . out . p r i n t l n (”GS re c e i v ed command ” +

” token : ” + r t .UID) ;
} else i f (o instanceof RequestToken) {

System . out . p r i n t l n
(”Sending the next Command”) ;

i f (j < pass . numberOfCommands ()) {
c t = generateCommand(j) ;
++j ;
oos . wr i teObjec t (c t) ;
oos . f l u s h () ;
System . out . p r i n t l n (”Next Command sent ”) ;

} else {
moreCommands = fa l se ;
oos . wr i teObjec t (new EndToken ()) ;
System . out . p r i n t l n (”Sending EndToken”) ;
oos . f l u s h () ;

}
} else {

System . out . p r i n t l n
(” C r i t i c a l l o c a t i o n . . . ”
+ ” bas i c token but not expected token ”) ;

}
}
while (! moreCommands) {

o = o i s . readObject () ;
i f (o instanceof Sat e l l i t eToken) {

Sat e l l i t eToken s t = (Sat e l l i t eToken) o ;

84 Appendix A

System . out . p r i n t l n (s t .UID + ” At s a t e l l i t e ”) ;
} else i f (o instanceof TeledataToken) {

TeledataToken t t = (TeledataToken) o ;
cmdl . modifyCommand(cmdl . getCommandObject

(t t .UID) , Status .DONE) ;
System . out . p r i n t l n (”Rece iv ing t e l eda ta : ”

+ t t . answer) ;
daob = new DataObject(t t .UID , t t . answer) ;
SA. inse r tData (daob) ;

} else i f (o instanceof EndToken) {
System . out . p r i n t l n (” Al l data ”
+ ”accounted f o r ”) ;
break ;

} else {
System . out . p r i n t l n (”Wrong type o f ”

+ ” token Rece ived”) ;
}

}
handshake = fa l se ;

}
o i s . c l o s e () ;
oos . c l o s e () ;
socket . c l o s e () ;
System . out . p r i n t l n (”System disconnected ”) ;

} catch (ClassNotFoundException e) {
System . out . p r i n t l n (e) ;

}
} catch (IOException e) {

System . out . p r i n t l n (e) ;
}

}
}

A.6 Test tools 85

A.6 Test tools

A.6.1 DummyTest.java

Listing A.32: Protocol Testing

package mccClient ;

import java . i o . IOException ;
import java . i o . ObjectInputStream ;
import java . i o . ObjectOutputStream ;
import java . net . Socket ;
import java . rmi . NotBoundException ;
import java . rmi . RMISecurityManager ;
import java . rmi . RemoteException ;
import java . rmi . r e g i s t r y . LocateReg i st ry ;
import java . rmi . r e g i s t r y . Reg i st ry ;
import java . u t i l . Calendar ;

import common. p ro toco l . echo . EchoDProtocol ;
import common. p ro toco l . echo . tokens .CommandToken ;
import common. p ro toco l . echo . tokens . EndToken ;
import common. p ro toco l . echo . tokens . ReceivedToken ;
import common. p ro toco l . echo . tokens . RequestToken ;
import common. p ro toco l . echo . tokens . Sa t e l l i t eToken ;
import common. p ro toco l . echo . tokens . TeledataToken ;
import common. s e s s i o n . AutomatedSession ;
import common. s e s s i o n . NoTrackingSession ;
import common. se ss ionEnv . IMcc ;

/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public class DummyTest {

private static int count = 1 ;

public static void main (S t r i ng [] args) {
IMcc GSmgr ;
Reg i st ry r e g i s t r y ;
AutomatedSession s e s s i o n ;
Calendar s t a r t ;
Calendar end ;
int de lay = 30 ;
int durat ion = 90 ;

for (int i = 0 ; i < args . l ength ; i++) {
i f (i == 0)

de lay = In t e ge r . pa r s e In t (args [0]) ;
i f (i == 1)

durat ion = In t e ge r . pa r s e In t (args [1]) ;
}

St r i ng gsAddress = ”dtusat2 . o e r s t ed . dtu . dk” ;
In t e ge r gsRMIPort = 4545 ;
i f (gsRMIPort == null)

86 Appendix A

gsRMIPort = 1099 ;
In t e ge r gsProtoco lPort = 5656 ;

try {

//System . setSecurityManager(nu l l) ;

i f (System . getSecurityManager () == null) {
System . se tSecur i tyManager (new RMISecurityManager ()) ;

}

System . out . p r i n t l n (”Looking up r e g i s t r y at ” + gsAddress
+ ” : ” + In t e ge r . t oS t r i ng (gsRMIPort)) ;

r e g i s t r y = LocateReg i st ry . g e tReg i s t ry (gsAddress , gsRMIPort) ;
System . out . p r i n t l n (”Looking up ” + gsAddress + ” : ”

+ In t e ge r . t oS t r i ng (gsRMIPort)) ;
GSmgr = (IMcc) (r e g i s t r y . lookup (”GSManager”)) ;

s t a r t = Calendar . g e t In s tanc e () ;
s t a r t . add (Calendar .SECOND, de lay) ;
end = (Calendar) s t a r t . c lone () ;
end . add (Calendar .SECOND, durat ion) ;

s e s s i o n = new NoTrackingSession (
”DummyTest” ,
s t a r t , end ,
EchoDProtocol . class ,
g sProtoco lPort) ;

System . out . p r i n t l n (”Adding s e s s i o n . . . ”) ;
GSmgr . addSess ion (s e s s i o n) ;
System . out . p r i n t l n (”Waiting f o r s t a r t o f s e s s i o n . . . ”) ;
Thread . s l e e p (s t a r t . ge tTimeInMi l l i s ()

− System . cu r r en tT imeMi l l i s ()) ;
System . out . p r i n t l n (” Se s s i on s ta r t i ng , t ry i ng to connect . . . ”) ;
Thread . s l e e p (5000) ; // Allow server to be ready

try {
Socket socket = new Socket (gsAddress , gsProtoco lPort) ;
boolean done = fa l se ;
boolean moreCommands = true ;

System . out . p r i n t l n (”Connected ! ”) ;

f ina l ObjectOutputStream oos =
new ObjectOutputStream (socket . getOutputStream ()) ;

oos . f l u s h () ;
f ina l ObjectInputStream o i s =

new ObjectInputStream (socket
. getInputStream ()) ;

Object o = o i s . readObject () ;
System . out . p r i n t l n (o) ;
i f (! (o instanceof RequestToken)) {

System . out . p r i n t l n (”Unexpected f i r s t ob j e c t : ” + o) ;
return ;

}
oos . wr i teObjec t (generateCommand()) ;
oos . f l u s h () ;
while (! done) {

while (moreCommands) {
System . out . p r i n t l n (”Reading next token from GS”) ;
o = o i s . readObject () ;
i f (o instanceof ReceivedToken) {

ReceivedToken r t = (ReceivedToken) o ;

A.6 Test tools 87

Thread . s l e e p (1000) ;
System . out . p r i n t l n (”GS re c e i v ed command ” +

” token : ” + r t .UID) ;
} else i f (o instanceof RequestToken) {

System . out . p r i n t l n (”GS reque s t i ng next ” +
”command. ”) ;

i f (count <= 5) {
System . out . p r i n t l n (”Count i s : ” + count) ;
oos . wr i teObjec t (generateCommand ()) ;
oos . f l u s h () ;
System . out . p r i n t l n (”Next Command sent ”) ;

} else {
System . out . p r i n t l n (”Sending EndToken”) ;
oos . wr i teObjec t (new EndToken ()) ;
oos . f l u s h () ;
System . out . p r i n t l n (”EndToken sent ”) ;
moreCommands = fa l se ;

}
} else {

System . out . p r i n t l n (”Unknown or f a l s e ” +
”Tokentype r e c e i v ed : ” + o) ;

}
}
while (! moreCommands) {

o = o i s . readObject () ;
i f (o instanceof Sat e l l i t eToken) {

Sat e l l i t eToken s t = (Sat e l l i t eToken) o ;
// responce to use rd i sp l ay
System . out . p r i n t l n (”Command ” + st .UID

+” at s a t e l l i t e ”) ;
} else i f (o instanceof TeledataToken) {

TeledataToken t t = (TeledataToken) o ;
// responce to use rd i sp l ay
System . out . p r i n t l n (”Rece ived t e l eda ta : ”

+ t t . answer) ;
// storedata

} else i f (o instanceof EndToken) {
// c lo se down connection
System . out . p r i n t l n (” Al l data accounted f o r ”) ;
break ;

} else {
// no such token
System . out . p r i n t l n (”What happened?”) ;

}
}
done = true ;

}
try {

socket . c l o s e () ;
System . out . p r i n t l n (”Connection c l o s ed by c l i e n t ”) ;

} catch (IOException e) {
System . out . p r i n t l n (e . t oS t r i ng ()) ;

}
} catch (IOException e) {

System . out . p r i n t l n (e . t oS t r i ng ()) ;
}

} catch (RemoteException e) {
e . pr intStackTrace () ;

} catch (NotBoundException e) {
e . pr intStackTrace () ;

} catch (Exception e) {
System . out . p r i n t l n (”Exception : ” + e) ;

}
}

88 Appendix A

private static CommandToken generateCommand() {
CommandToken ct = new CommandToken () ;
c t .UID = count ;
c t . command = ”Task : ” + count ;
++count ;
return c t ;

}
}

A.6.2 Test.java

Listing A.33: Tests

package passContro l . mcManager ;

import java . u t i l . Calendar ;
import java . u t i l . Vector ;

import s t o rage . a c c e s s . CommandAccess ;

import commandList . CommandList ;
import commandList . CommandObject ;
import commandList . Pass ;
import commandList . P r i o r i t y ;

/∗∗
∗ @author Brian Schmidt Hermansen
∗/

public class Test {

public static CommandList cmdl ;

public static CommandList createCMDL () {
int de lay = 40 ;
int durat ion = 90 ;
int passDelay = 90 ;
int commandDelay = 5 ;
Calendar s t a r t = Calendar . g e t In s tanc e () ;
Calendar stop ;
Calendar s t a r t 2 ;
Calendar stop2 ;
Calendar tmp ;
Calendar tmp2 ;
s t a r t . add (Calendar .SECOND, de lay) ;
stop = (Calendar) s t a r t . c lone () ;
stop . add (Calendar .SECOND, durat ion) ;
Pass pass = new Pass (s t a r t , stop) ;
cmdl . i n s e r tPas s (pass) ;
tmp =(Calendar) s t a r t . c lone () ;
tmp . add (Calendar .SECOND, commandDelay) ;
cmdl . insertCommand (Pr i o r i t y .LOW, ”Simple Command: 1 : p1” , tmp) ;
cmdl . insertCommand (Pr i o r i t y .LOW, ”Simple Command: 2 : p1” , tmp) ;
cmdl . insertCommand (Pr i o r i t y .LOW, ”Simple Command: 3 : p1” , tmp) ;
cmdl . insertCommand (Pr i o r i t y .NORMAL, ”Simple Command: 4 : p1” , tmp) ;
cmdl . insertCommandInPass (pass , cmdl . getCommandObject (0)) ;
cmdl . insertCommandInPass (pass , cmdl . getCommandObject (1)) ;
cmdl . insertCommandInPass (pass , cmdl . getCommandObject (2)) ;
cmdl . insertCommandInPass (pass , cmdl . getCommandObject (3)) ;
//cmdl . insertCommandInPass(pass , cmdl . getCommandObject (4)) ;
s t a r t 2 = (Calendar) stop . c lone () ;

A.6 Test tools 89

s t a r t 2 . add (Calendar .SECOND, passDelay) ;
stop2 = (Calendar) s t a r t 2 . c lone () ;
stop2 . add (Calendar .SECOND, durat ion) ;
Pass pass2 = new Pass (start2 , stop2) ;
cmdl . i n s e r tPas s (pass2) ;
tmp2 = (Calendar) s t a r t 2 . c lone () ;
tmp2 . add (Calendar .SECOND, commandDelay) ;
cmdl . insertCommand (P r i o r i t y .LOW, ”Simple Command: 1 : p2” , tmp2) ;
cmdl . insertCommand (P r i o r i t y .LOW, ”Simple Command: 2 : p2” , tmp2) ;
cmdl . insertCommand (P r i o r i t y .LOW, ”Simple Command: 3 : p2” , tmp2) ;
cmdl . insertCommand (P r i o r i t y .LOW, ”Simple Command: 4 : p2” , tmp2) ;
cmdl . insertCommand (P r i o r i t y .URGENT, ”Urgent Command:1 ”) ;
cmdl . insertCommand (P r i o r i t y .URGENT, ”Urgent Command:2 ”) ;
cmdl . insertCommandInPass (pass2 , cmdl . getCommandObject (5)) ;
cmdl . insertCommandInPass (pass2 , cmdl . getCommandObject (6)) ;
cmdl . insertCommandInPass (pass2 , cmdl . getCommandObject (7)) ;
cmdl . insertCommandInPass (pass2 , cmdl . getCommandObject (8)) ;
return cmdl ;

}

public static CommandList createCMDL2() {
int de lay = 40 ;
int durat ion = 90 ;
Calendar s t a r t = Calendar . g e t In s tanc e () ;
s t a r t . add (Calendar .SECOND, de lay) ;
Calendar stop = (Calendar) s t a r t . c lone () ;
stop . add (Calendar .SECOND, durat ion) ;
Pass pass = new Pass (s t a r t , stop) ;
cmdl . i n s e r tPas s (pass) ;
cmdl . insertCommand (P r i o r i t y .LOW, ”Simple Command: 1 : p1”) ;
cmdl . insertCommand (P r i o r i t y .LOW, ”Simple Command: 2 : p1”) ;
cmdl . insertCommand (P r i o r i t y .LOW, ”Simple Command: 3 : p1”) ;
cmdl . insertCommand (P r i o r i t y .NORMAL, ”Simple Command: 4 : p1”) ;
cmdl . insertCommand (P r i o r i t y .NORMAL, ”Simple Command: 5 : p1”) ;
cmdl . insertCommandInPass (pass , cmdl . getCommandObject (0)) ;
cmdl . insertCommandInPass (pass , cmdl . getCommandObject (1)) ;
cmdl . insertCommandInPass (pass , cmdl . getCommandObject (2)) ;
cmdl . insertCommandInPass (pass , cmdl . getCommandObject (3)) ;
cmdl . insertCommandInPass (pass , cmdl . getCommandObject (4)) ;

Calendar s t a r t 2 = Calendar . g e t In s tanc e () ;
s t a r t 2 . add (Calendar .SECOND, durat ion+durat ion) ;
Calendar stop2 = (Calendar) s t a r t 2 . c lone () ;
stop2 . add (Calendar .SECOND, durat ion) ;
Pass pass2 = new Pass (start2 , stop2) ;
cmdl . i n s e r tPas s (pass2) ;
cmdl . insertCommand (P r i o r i t y .LOW, ”Simple Command: 1 : p1”) ;
cmdl . insertCommand (P r i o r i t y .LOW, ”Simple Command: 2 : p1”) ;
cmdl . insertCommand (P r i o r i t y .LOW, ”Simple Command: 3 : p1”) ;
cmdl . insertCommand (P r i o r i t y .NORMAL, ”Simple Command: 4 : p1”) ;
cmdl . insertCommand (P r i o r i t y .NORMAL, ”Simple Command: 5 : p1”) ;
cmdl . insertCommandInPass (pass2 , cmdl . getCommandObject (5)) ;
cmdl . insertCommandInPass (pass2 , cmdl . getCommandObject (6)) ;
cmdl . insertCommandInPass (pass2 , cmdl . getCommandObject (7)) ;
cmdl . insertCommandInPass (pass2 , cmdl . getCommandObject (8)) ;
cmdl . insertCommandInPass (pass2 , cmdl . getCommandObject (9)) ;

return cmdl ;
}

public static CommandList createCMDL3() {
int de lay = 40 ;
int durat ion = 90 ;
Calendar s t a r t = Calendar . g e t In s tanc e () ;
s t a r t . add (Calendar .SECOND, de lay) ;

90 Appendix A

Calendar stop = (Calendar) s t a r t . c lone () ;
stop . add (Calendar .SECOND, durat ion) ;
Pass pass = new Pass (s t a r t , stop) ;
cmdl . i n s e r tPas s (pass) ;
cmdl . insertCommand (Pr i o r i t y .LOW, ”Simple Command: 1 : p1” , s t a r t) ;
cmdl . insertCommand (Pr i o r i t y .LOW, ”Simple Command: 2 : p1”) ;
cmdl . insertCommand (Pr i o r i t y .LOW, ”Simple Command: 3 : p1”) ;
cmdl . insertCommand (Pr i o r i t y .NORMAL, ”Simple Command: 4 : p1”) ;
cmdl . insertCommandInPass (pass , cmdl . getCommandObject (0)) ;
cmdl . insertCommandInPass (pass , cmdl . getCommandObject (1)) ;
cmdl . insertCommandInPass (pass , cmdl . getCommandObject (2)) ;
cmdl . insertCommandInPass (pass , cmdl . getCommandObject (3)) ;

Calendar s t a r t 2 = Calendar . g e t In s tanc e () ;
s t a r t 2 . add (Calendar .SECOND, durat ion+durat ion) ;
Calendar stop2 = (Calendar) s t a r t 2 . c lone () ;
stop2 . add (Calendar .SECOND, durat ion) ;
Pass pass2 = new Pass (start2 , stop2) ;
cmdl . i n s e r tPas s (pass2) ;
cmdl . insertCommand (Pr i o r i t y .LOW, ”Simple Command: 1 : p1”) ;
cmdl . insertCommand (Pr i o r i t y .LOW, ”Simple Command: 2 : p1”) ;
cmdl . insertCommand (Pr i o r i t y .LOW, ”Simple Command: 3 : p1”) ;
cmdl . insertCommandInPass (pass2 , cmdl . getCommandObject (4)) ;
cmdl . insertCommandInPass (pass2 , cmdl . getCommandObject (5)) ;
cmdl . insertCommandInPass (pass2 , cmdl . getCommandObject (6)) ;

// Creating two f l o a t i n g urgent commands
cmdl . insertCommand (Pr i o r i t y .URGENT, ”Urgent 1”) ;
cmdl . insertCommand (Pr i o r i t y .URGENT, ”Urgent 2”) ;

Boolean tmp = cmdl . au to In se r t InPas s (pass) ;
System . out . p r i n t l n (tmp) ;
return cmdl ;

}

public static CommandList createCMDL4() {
int de lay = 40 ;
int durat ion = 90 ;
Calendar s t a r t = Calendar . g e t In s tanc e () ;
s t a r t . add (Calendar .SECOND, de lay) ;
Calendar stop = (Calendar) s t a r t . c lone () ;
stop . add (Calendar .SECOND, durat ion) ;
CommandAccess CA = new CommandAccess (”commandList” , ” pa s sL i s t ”) ;

Pass pass = new Pass (s t a r t , stop) ;
cmdl . i n s e r tPas s (pass) ;
CA. i n se r tPas s (pass) ;
cmdl . insertCommand (Pr i o r i t y .LOW, ”Simple Command: 1 : p1” , s t a r t) ;
CA. insertCommand (cmdl . getCommandObject (0)) ;
cmdl . insertCommand (Pr i o r i t y .LOW, ”Simple Command: 2 : p1”) ;
CA. insertCommand (cmdl . getCommandObject (1)) ;
cmdl . insertCommand (Pr i o r i t y .LOW, ”Simple Command: 3 : p1”) ;
CA. insertCommand (cmdl . getCommandObject (2)) ;
cmdl . insertCommand (Pr i o r i t y .NORMAL, ”Simple Command: 4 : p1”) ;
CA. insertCommand (cmdl . getCommandObject (3)) ;
cmdl . insertCommandInPass (pass , cmdl . getCommandObject (0)) ;
cmdl . insertCommandInPass (pass , cmdl . getCommandObject (1)) ;
cmdl . insertCommandInPass (pass , cmdl . getCommandObject (2)) ;
cmdl . insertCommandInPass (pass , cmdl . getCommandObject (3)) ;
CA. updatePass (pass , cmdl . f indPassLocat ion (pass)) ;

Calendar s t a r t 2 = Calendar . g e t In s tanc e () ;
s t a r t 2 . add (Calendar .SECOND, durat ion+durat ion) ;
Calendar stop2 = (Calendar) s t a r t 2 . c lone () ;
stop2 . add (Calendar .SECOND, durat ion) ;

A.6 Test tools 91

Pass pass2 = new Pass (start2 , stop2) ;
cmdl . i n s e r tPas s (pass2) ;
CA. i n se r tPas s (pass2) ;
cmdl . insertCommand (P r i o r i t y .LOW, ”Simple Command: 1 : p1”) ;
CA. insertCommand (cmdl . getCommandObject (4)) ;
cmdl . insertCommand (P r i o r i t y .LOW, ”Simple Command: 2 : p1”) ;
CA. insertCommand (cmdl . getCommandObject (5)) ;
cmdl . insertCommand (P r i o r i t y .LOW, ”Simple Command: 3 : p1”) ;
CA. insertCommand (cmdl . getCommandObject (6)) ;
cmdl . insertCommandInPass (pass2 , cmdl . getCommandObject (4)) ;
cmdl . insertCommandInPass (pass2 , cmdl . getCommandObject (5)) ;
cmdl . insertCommandInPass (pass2 , cmdl . getCommandObject (6)) ;
CA. updatePass (pass2 , cmdl . f indPassLocat ion (pass2)) ;

cmdl . insertCommand (P r i o r i t y .URGENT, ”Urgent 1”) ;
CA. insertCommand (cmdl . getCommandObject (7)) ;
cmdl . insertCommand (P r i o r i t y .URGENT, ”Urgent 2”) ;
CA. insertCommand (cmdl . getCommandObject (8)) ;

Boolean tmp = cmdl . au to In se r t InPas s (pass) ;
CA. updatePass (pass , cmdl . f indPassLocat ion (pass)) ;
System . out . p r i n t l n (tmp) ;
return cmdl ;

}

public static CommandList createCMDL5() {
CommandAccess CA = new CommandAccess (”commandList” , ” pa s sL i s t ”) ;

CA. c r e a t eL i s t s () ;
Vector<Pass> p l = CA. p l ;
Vector<CommandObject> c l = CA. c l ;
for (int i = 0 ; i <= pl . s i z e () ; i++)

cmdl . i n s e r tPas s (p l . ge t (i)) ;
for (int i = 0 ; i <= c l . s i z e () ; i++)

cmdl . insertCommand (c l . ge t (i)) ;

cmdl . updateCommandsFromPass () ;
return cmdl ;

}

public static void createCMDL6() {
CommandAccess CA = new CommandAccess (”commandList” , ” pa s sL i s t ”) ;

CA. dest royTab le s () ;
}

}

92 Appendix A

Appendix B

Testing

B.1 Test Cases of Unit Testing

B.1.1 Command List

B.1.1.1 Pass Schedule

Insert Pass

Module
Overview

Input Expected Out-
put

Real Output Result

Pass Sched-
ule

pass start time earlier
than current time.

The pass in-
sert operation
should fail.

Add new pass
failed: The start
time of the new
pass is outdated

The
insert
failed.

Table B.1: Test 0 for inserting a Pass

94 Appendix B

Module
Overview

Input Expected Out-
put

Real Output Result

Pass Sched-
ule

pass start time earlier
than the current pass
and end time is in-
side.

The pass in-
sert operation
should fail.

Add new pass
failed: The new
pass is overlapping
with an existing
pass

The
insert
failed.

Table B.2: Test 1 for inserting a Pass

Module
Overview

Input Expected Out-
put

Real Output Result

Pass Sched-
ule

pass start time is in-
side the current pass
and the end time is
after.

The pass in-
sert operation
should fail.

Add new pass
failed: The new
pass is overlapping
with an existing
pass

The
insert
failed.

Table B.3: Test 2 for inserting a Pass

Module
Overview

Input Expected Out-
put

Real Output Result

Pass Sched-
ule

both the pass times
are inside the current
pass.

The pass in-
sert operation
should fail.

Add new pass
failed: The new
pass is overlapping
with an existing
pass

The
insert
failed.

Table B.4: Test 3 for inserting a Pass

Module
Overview

Input Expected Out-
put

Real Output Result

Pass Sched-
ule

pass start time earlier
than the current pass
and the end time is
after.

The pass in-
sert operation
should fail.

Add new pass
failed: The new
pass is overlapping
with an existing
pass

The
insert
failed.

Table B.5: Test 4 for inserting a Pass

B.1 Test Cases of Unit Testing 95

Module
Overview

Input Expected Out-
put

Real Output Result

Pass Sched-
ule

inserting a pass on an
empty pass queue.

The pass in-
sert operation
should succeed.

Add new pass suc-
ceeded

The
insert
suc-
ceeded.

Table B.6: Test 5 for inserting a Pass

Remove Pass

Module
Overview

Input Expected Out-
put

Real Output Result

Pass Sched-
ule

removing a pass on
the queue with the
pass present.

The pass re-
move operation
should succeed.

Remove pass: true The
remove
suc-
ceeded.

Table B.7: Test 0 for removing a Pass

Module
Overview

Input Expected Out-
put

Real Output Result

Pass Sched-
ule

removing a pass on
the empty queue.

The pass re-
move operation
should fail.

Remove pass: false The
remove
failed.

Table B.8: Test 1 for removing a Pass

96 Appendix B

Get Next Pass

Module
Overview

Input Expected Out-
put

Real Output Result

Pass Sched-
ule

inserting a new pass
behind the current
first pass.

The get new
pass should re-
turn the cur-
rent pass.

Get new pass: false It failed
to find a
new pass
ahead
of the
current
pass.

Table B.9: Test 0 for getting the first Pass on queue

Module
Overview

Input Expected Out-
put

Real Output Result

Pass Sched-
ule

inserting a new pass
infront the current
first pass.

The get new
pass should re-
turn the newly
inserted pass.

Get new pass: true It found
a new
pass
ahead
of the
current
pass.

Table B.10: Test 1 for getting the first Pass on queue

B.1 Test Cases of Unit Testing 97

B.1.1.2 Crossover

Insert Command in Pass

Module
Overview

Input Expected Out-
put

Real Output Result

Pass Sched-
ule

inserting a new com-
mand in an empty
pass.

That the
command is
inserted

Insert Command:
true

The
com-
mand
was
inserted.

Table B.11: Test 0 for inserting a command in a Pass

Module
Overview

Input Expected Out-
put

Real Output Result

Pass Sched-
ule

inserting a command
in a pass where it has
already been queued
on another pass.

The command
will not be in-
serted in the
pass

Insert Command:
false

The
com-
mand
was not
inserted.

Table B.12: Test 1 for inserting a command in a Pass

Module
Overview

Input Expected Out-
put

Real Output Result

Pass Sched-
ule

trying to insert a new
command in a full
pass.

That it fails
since there is
not any space
left

Insert Command:
false

The
com-
mand
was not
inserted.

Table B.13: Test 2 for inserting a command in a Pass

98 Appendix B

Remove Command from Pass

Module
Overview

Input Expected Out-
put

Real Output Result

Pass Sched-
ule

trying to remove an
existing command
from a pass.

Should just re-
move the com-
mand

Remove Com-
mand: true

The
com-
mand
was
removed.

Table B.14: Test 0 for removing a command from a Pass

Module
Overview

Input Expected Out-
put

Real Output Result

Pass Sched-
ule

trying to remove a
command from a pass
where it does not ex-
ist.

That it fails
since it is not
present in the
pass

Remove Com-
mand: false

The
com-
mand
was not
removed.

Table B.15: Test 1 for removing a command from a Pass

B.1 Test Cases of Unit Testing 99

Auto Insert in Pass

There is space for five commands in a pass and there is three low and one normal.

Module
Overview

Input Expected Out-
put

Real Output Result

Pass Sched-
ule

trying to auto-insert
two new commands
(both urgent priority)
in a full pass.

That it re-
moves the last
low command
and inserts
both urgent

Auto-insert Com-
mand: true (means
that there was one
or more commands
dequeued to make
space)

The
com-
mands
was in-
serted
and one
of the
prior low
priority
com-
mands
was de-
queued.

Table B.16: Test 0 for auto inserting commands in a Pass

Module
Overview

Input Expected Out-
put

Real Output Result

Pass Sched-
ule

trying to auto-insert
two new commands
(first one urgent pri-
ority and the second
one normal priority)
in a full pass.

That it re-
moves the last
low command
and inserts
both new
commands

Auto-insert Com-
mand: true (means
that there was one
or more commands
dequeued to make
space)

The
com-
mands
was in-
serted
and one
of the
prior low
priority
com-
mands
was de-
queued.

Table B.17: Test 1 for auto inserting commands in a Pass

100 Appendix B

Module
Overview

Input Expected Out-
put

Real Output Result

Pass Sched-
ule

trying to auto-insert
two new commands
(both low priority) in
a full pass.

That it fails
since there is
not any space
left

Insert Com-
mand: false (as
no command was
dequeued to make
space)

The the
first low
priority
com-
mand
was in-
serted
and the
last one
was not.

Table B.18: Test 2 for auto inserting commands in a Pass

Bibliography

[1] Java Technology
http://java.sun.com/

[2] Yu Du: A satellite ground station control system
IMM-THESIS, 86, 2005

[3] European Space Agency: Packet utilisation standard
ESA PSS07101 Issue 1, May 1994

[4] MySQL Homepage
http://www.mysql.com/

[5] The TCP/IP Guide
http://www.tcpipguide.com/

[6] Software Testing
http://en.wikipedia.org/wiki/Software testing

[7] Echo Protocol
http://en.wikipedia.org/wiki/ECHO protocol

	Summary
	Resumé
	Preface
	1 Introduction
	1.1 Introduction to the Subject
	1.2 General Introduction to Ground Segments
	1.3 Scope of Project
	1.3.1 Technical Constrains
	1.3.2 Overview of Thesis

	2 Requirements
	2.1 Introduction
	2.2 General Issues
	2.2.1 Mission Awareness
	2.2.2 Robustness
	2.2.3 Security
	2.2.4 Distribution
	2.2.5 Ground Station

	2.3 Basic Notion
	2.3.1 Definition of a Command
	2.3.2 Definition of a Pass
	2.3.3 Definition of an Assignment

	2.4 Pre Passage Functionality
	2.5 Passage Functionality
	2.6 Post Passage Functionality
	2.7 Operator interface
	2.8 Use Cases of Mission Control
	2.9 Chapter 2 summarized

	3 Designing the System
	3.1 Life cycle of a Command
	3.1.1 Basic Command Notion
	3.1.2 Rules
	3.1.3 Command List
	3.1.4 Entering Command or Copy a Command
	3.1.5 Verification of Command
	3.1.6 Scheduling of Command
	3.1.7 Uplink Command
	3.1.8 Command Completion

	3.2 Architectural Design
	3.2.1 Operator Interface
	3.2.2 Command Entering
	3.2.3 Command List Component
	3.2.4 Pass Control

	3.3 Command List Component
	3.4 Command Insert Component
	3.5 Operators Interface Component
	3.5.1 Pass Schedule description
	3.5.2 Command Editing Tools description
	3.5.3 Telemetry Data description

	3.6 Pass Control Component
	3.6.1 Manager
	3.6.2 Protocol and Transmission
	3.6.3 Session Activation
	3.6.4 Telemetry Data

	4 Implementation
	4.1 Cleanup in Ground Station
	4.2 Interfaces
	4.2.1 Command List
	4.2.2 Database Interfaces

	4.3 Implementation of Mission Control Manager
	4.4 Implementation of Command List
	4.5 Implementation of Ground Station Communication
	4.6 Implementation of Protocol
	4.7 Implementation of Database
	4.8 Implementation of Operator Interfaces (GUI)

	5 Testing
	5.1 Unit Testing
	5.1.1 Command List
	5.1.2 Data-storage
	5.1.3 Connecting with Ground Station and Protocol

	5.2 Integrated Testing
	5.2.1 Testing against the Ground Station

	6 Conclusion
	6.1 Evaluation of the System
	6.2 Ideas for further development

	A Source Code
	A.1 Common Files
	A.1.1 Tokens
	A.1.2 EchoDProtocol.java
	A.1.3 NoTrackingSession.java

	A.2 Command List
	A.2.1 ICommandList.java
	A.2.2 CommandList.java
	A.2.3 CommandObject.java
	A.2.4 Pass.java
	A.2.5 Priority.java
	A.2.6 Status.java

	A.3 Operator
	A.3.1 MainGUI.java
	A.3.2 InsertGUI.java

	A.4 Storage
	A.4.1 ICommonDataBase.java
	A.4.2 IStorageData.java
	A.4.3 ICommandBase.java
	A.4.4 StorageData.java
	A.4.5 CommandBase.java
	A.4.6 StorageAccess.java
	A.4.7 CommandAccess.java
	A.4.8 DataObject.java

	A.5 Pass Control
	A.5.1 MCManager.java
	A.5.2 PassScheduleHandler.java
	A.5.3 PassSchedule.java
	A.5.4 PassScheduleException.java
	A.5.5 ChainedException.java
	A.5.6 Protocol.java

	A.6 Test tools
	A.6.1 DummyTest.java
	A.6.2 Test.java

	B Testing
	B.1 Test Cases of Unit Testing
	B.1.1 Command List

