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Abstract

A caustic is a lighting effect that occurs in nature and due to the beauty of the
effect, the computer graphics field is interested in simulating it. The effect has
successfully been simulated in off-line rendering and attempts have been made
to adapt an algorithm for the effect in realtime rendering. However none of the
fast algorithms has established itself as the standard method in the computer
graphics industries. This thesis attempts to sum up what algorithms has been
attempted to simulate caustics in real-time and suggest an improved algorithm.

Resumé

In this report the problem of rendering fast caustics that are coherent in close
ups is the topic. A full method for generating fast caustics using a ray tracer
is presented. Photons will be rendered to a texture and filtered using shaders,
rather than a classic cpu approach. The use of the ray tracer will enable us to
handle arbitrary surfaces, but speed is a concern. In this thesis a simple ray
tracer will be implemented and this ray tracer is too slow for real-time usage.
Instead the results an existing ray tracer combined with measurements in this
thesis will be used to estimate running times. Three methods are explored to
deal with coherency issues of the screen filtering approach. The problem is not
completely solved, but the steps towards a solutions are taken. A fast solution
using the auto mip-map generation capabilities of modern computers produces
fast, but flawed caustics. A pre-filtering method using ray differentials is also
explored and can produce nice looking results. This method is however costly.
Different filtering methods for the radiance estimate are examined and a speed
optimization is changed to support caustic filtering at in closeups.

Preface

This was produced at the Institute for Image Analysis and Computer Graphics
at Danish Technical University, Kgs. Lyngby, Denmark.

Reading the report requires a basic understanding of Computer Graphics.

The report is structured so an overview of some of the algorithms already avail-
able is given first followed by the general background theory that will form the
basis of the work.

In chapter 4 the details of the total algorithm is given, this will include some
specific problems and strengths of the different parts of the algorithm. In chapter
5 the implementation itself will be discussed, including UML diagrams of the
classes and details on the environment used. In chapter 6 the testing method
and results will be given followed by a discussion of those results. Finally some
ideas that was not explored or implemented will be given in chapter 8 and a
conclusion of project. In chapter 3 an analysis of the problem and the thoughts
behind choices made are given.
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Chapter 1

Introduction

Here the topic of caustics will be introduced followed by a survey of some al-
gorithms that already exist for the real-time (or near real-time) simulation of
caustics. As will become clear, there are many different approaches, but none
have reached mainstream usage as of yet. The algorithms are suitable different
applications, but there is still room for improvement. However it seems likely
that one might be able to combine or improve an existing algorithm to create a
more generally applicable algorithm, that is able to generate real-time caustics.

1.1 Caustics

Caustics is a captivating lighting effect, that will captivate most people at the
age of children. I think most people remember marvelling at the light phenom-
ena caused by the sunlight hitting a magnifying glass, creating a bright spot on
the targeted surface. The bright spot is a caustic and it is this lighting effect
that would be fascinating to be able to incorporate into graphics applications.

Another common and beautiful caustic is that caused by light hitting water
and being refracted onto a surface.

To create a caustic light needs to be focused by a reflective surface (such as
a brass ring) or a refractive surface (such as water, a glass lens or a transparent
ball) onto a diffuse surface. On figure 1.1 a caustic from a cognac glass is shown.

1.2 Related work

The area of caustics is well researched and many different algorithms have been
suggested, all of which have there pros and cons. So far an algorithm for general
usage has not emerged. Here we shall take a look at some of the work that has
been done up until now, in this field of research.

The first algorithm was suggested by Arvo [9]. Arvo uses a two step algo-
rithm. The first step rays of light are traced from the light source into the scene
using a standard Monte Carlo ray tracer1. When the rays intersect a diffuse sur-

1The act of tracing a ray from the light source into the scene is also called forward ray
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Figure 1.1: A caustic from a cognac glass.

face, they are stored in an illumination map, which is a texture for each surface
containing illumination. The second step is rendering, where the map is used
to look up the information needed to calculate global illumination including
caustics. The greatest weakness of this method is the memory consumption of
the storage method. Arvo’s algorithm was also designed mainly for offline usage.

Henrik Wann Jensen expanded Arvo’s algorithm in [5]. It would now be
able to handle more complex lighting phenomena such as participating media.
The biggest change was the addition of a new method for storage and rendering
of caustics (and general global illumination). The photons are traced in the
same manner as with Arvo, but instead they are stored in single data struc-
ture, namely a Kd-tree. During rendering the volume that a chosen amount
of photons take is found and this information is used for solving the rendering
equation. This method is more memory efficient, but is still intended for real-
time usage.

The two discussed algorithms have influenced much of the work done in the
field of real-time caustics. We will move on to discuss some of the fast algo-
rithms that have been suggested for generating caustics.

The perhaps most direct descendant of Jensens classic photon-map was pre-
sented by Timothy J. Purcell et al. in [23]. It is an adaptation of the classic
algorithm for calculation on the gpu and can handle full global illumination.
Instead of a Kd-tree, which cannot immediately be implemented for use with
shaders, a grid structure is used that is easily compatible with textures. Two
methods of storage and search are suggest. One method is through by using a
Bitonic Merge Sort, which requires many rendering passes. The other method

tracing or path tracing
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uses the stencil buffer, which can be accomplished by limiting the number of
photons per grid cell. With the second method a photon can be stored correctly
in a single pass. This method delivers full global illumination, but has a ren-
dering time of 10 secs.

Another algorithm was suggest by Wand et al. in [6]. Their algorithm di-
vides a specular surface (ie. the surface of a possible caustics generator) into
patches. It then renders the light sources into an environment map for each
specular object. A set of sample point are now chosen on the object, which are
used as pinhole cameras. The diffuse receivers are then rendered and the direc-
tion from the current raster position to a sample point on the specular surface
is then reflected (using the specular surface normal). The reflected direction is
used as a lookup in the environment map. The sample points are distributed
uniformly over the surface. The caustics produced by this algorithm suffer
from aliasing artifacts, visibility is not calculated fully and distributing sample
points increases the cost hurts scalability. This algorithm also only supports
single reflective bounce caustics, with the possibility of expanding to include
single refractive bounce caustics.

Musawir Shah et al. presents an algorithm in [1] which uses a technique
similar to shadow maps. The algorithm uses 3 steps. The first step is rendering
the receiver surfaces (diffuse surfaces) from the lights point of view and storing
the world space positions in a texture. For the second step, the specular sur-
faces are rendered. A vertex shader is used to estimate the point resulting from
the reflection or refraction at the vertex. Several passes may be used to get a
better estimation. The points are splatted onto the receiver geometry and used
to estimate the caustic. The caustic is estimated using the ratio between the
triangles that surround the specular vertex and the receiving triangles. This
method handles dynamic scenes naturally. It supports single surface and dou-
ble surface refractions and reflections, which may be sufficient. It however has
issues with the precision of its reflection. The detail of the caustic is also very
dependant on the tessellation of the geometry. The biggest issue is that if the
caustic is formed outside the light source view frustum it will not be generated,
which can be an issue with point or complex light sources.

The last algorithm we will discuss was presented by Bent Dalgaard Larsen
in [3]. It uses a fast Monte Carlo ray tracer to distribute photons. The pho-
tons are stored in a simple structure and rendered to a texture. The texture
is filtered and blended with a rendering of the scene. By using the ray tracer
this method is able to handle arbitrary scenes, possibly with any type geome-
try and advanced lighting situations. This methods ability to handle dynamic
scenes depends on the ray tracer. The filtering method is fast and produces nice
looking caustics, but does not handle close ups well. It is this method we will
expand upon.

In this thesis the interest is an algorithm that handles arbitrary scenes,
without the use of cluster computing. However it’s worth mentioning that other
algorithms have been suggested using CPU clusters. Also single bounce refrac-
tion caustics that occur due to the presence of water have been given special
attention.
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Chapter 2

Background theory

In this part of the thesis a summary of the theory, which is the foundation of
the resulting algorithm is explained. First a brief introduction to the physical
description of light is given. This is followed by various other theories that have
affected the algorithm.

2.1 Solid Angle

Solid angle is a value often used in radiometry. It exist in both 3d and 2d. In
3d the solid angle represents the area of the ray on the unit sphere and in 2d
the solid angle is the interval on the unit circle. The solid angle has the unit
steradian (where the angle for the entire unit sphere area is 4π steradians). An
illustration is shown in Figure 2.1. The differental solid angle can be described

dω

ω' ω

n

bx

by

��
Figure 2.1: Illustration of solid angle. Total area of sphere is 4π steradian.
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12 CHAPTER 2. BACKGROUND THEORY

by spherical coordinates :
d~ω = sinθdθdφ (2.1)

where θ is the angle between the light direction and the surface normal n. θ is
the angle between the light direction projected onto the surface plane and ~bx

(where ~bx and ~by are two vectors orthogonal to n in the surface tangent plane).
The direction of the solid angle is given by :

~ω = sinθcosφ~bx + sinθsinφ~by + cosθ~n (2.2)

2.2 Radiometry
Radiometry is the description of light. It is the basis used in all equations that
follows in this thesis. The most notable being radiant flux, irradiance and even
more so radiance. The basic unit in lighting is the photon. A photon is a part
of an electromagnetic wave, in this context light. A photon could be perceived
as a wave with a wavelength, λ, which energy is given by :

eλ =
hc

λ
(2.3)

where h ≈ 6.63 · 10−34J · s (Planck’s constant) and c = c0 = 299, 792, 458m/s
is the speed of light in vacuum. In some respects a photon acts as a particle
and this is the way a photon is often consider in computer graphics. Light can
be considered as a large amount of photons. The spectral radiant energy for a
collection of nλ photons with the same wavelength λ is given by :

Qλ = nλeλ = nλ
hc

λ
(2.4)

For nλ photons with varying λ the radiant energy Q is the integral over all
possible wavelengths :

Q =
∫ ∞

0

Qλdλ (2.5)

The radiant flux Φ is the flow of radiant energy over time through a point space.
This is also called radiant power since it is the power of the light travelling
through that point.

Φ =
dQ

dt
(2.6)

The radiant flux area density is defined by :

dΦ
dA

(2.7)

which is often divided into two parts. The flux leaving the surface, radiant
exitance M and the flux leaving the surface called irradiance, E :

E(x) =
dΦ
dA

(2.8)

The radiant intensity I gives the power of a light beam per solid angle unit.

I(~ω) =
dΦ
d~ω

(2.9)
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The Radiance gives the amount of light that passes through or is emitted from
a surface. I considers light of a single wavelength, from all angles (incoming or
outgoing) over the area considered. The radiance L is the radiant flux per solid
angle unit :

L(x, ~ω) =
d2Φ

cosθdAd~ω
=

∫ ∞

0

d4nλ

cosθd~ωdAdtdλ

hc

λ
dλ (2.10)

2.3 Light-surface interaction
When light hits a surface it is either absorbed or scattered. How this happens
determines the visual appearance of the viewed surface and is therefore central
to computer graphics.

2.3.1 BRDF
One of the central topics of computer graphics is the interaction between light
and a surface. When a beam of light hits an object in nature it penetrates the
surface and may scatter inside that object before leaving through a possibly
different point. This interaction is described by an BSSRDF [15] (Bidirectional
Scattering Surface Reflectance Distribution Function). If one makes the assump-
tion that a light beam will be reflected at the intersection point, rather than
enter the object, one can describe the light/surface interaction by the simpler
BRDF [15] (Bidirectional Reflectance Distribution Function).
The BRDF, fr, describes the relation between reflected radiance dLr(x, ~ω) and
irradiance dEi(x, ~ω′), given by :

fr(x, ~ω′, ~ω) =
dLr(x, ~ω)
dEi(x, ~ω′)

(2.11)

for a given point x, incoming direction ~ω′ and outgoing direction ~ω.
If one knows the BRDF and incoming radiance for a surface one can find the
reflected radiance for that surface by integrating over the hemisphere of incoming
directions Ω:

Lr(x, ~ω) =
∫

Ω

fr(x, ~ω′, ~ω)dE(x, ~ω′) =
∫

Ω

fr(x, ~ω′, ~ω)Li(x, ~ω′)(~ω′ · ~n)d~ω′ (2.12)

where n is the surface normal at x with ~ω′ · ~n = cosθ′.

2.3.2 Reflectance
When light hits a surface some will be absorbed or transmitted and some will be
reflected. The amount of light that the surface reflects is given by the reflectance
ρ of the surface :

ρ(x) =
dΦr(x)
dΦi(x)

(2.13)

where dΦr(x) outgoing flux and dΦi(x) is the incoming flux.

2.3.3 Reflection
Reflection can be handled by different BRDF’s here we will describe two special
cases of reflection namely perfectly diffuse and perfectly specular.



14 CHAPTER 2. BACKGROUND THEORY

nn n

(a) (b) (c)

Figure 2.2: Illustration of three types of light scattering. (a) shows diffuse
scattering, (b) shows glossy specular reflection and (c) shows perfect specular
reflection. Glossy reflection occurs at surfaces that are both diffuse and specular.

Diffuse reflection

Diffuse reflection can occur when light hits a surface and is scattered in different
directions. This happens with rough surfaces. Perfectly diffuse reflection (or
Lambertian reflection) is when light is scattered in perfectly random distribution
of all directions (see Figure 2.3). This gives the visual appearance of equal
lighting from every angle. This results in the BRDF fr,d being constant over
the hemisphere :

Lr(x, ~ω) = fr,d(x)
∫

Ω

dEi(x, ~ω′) = fr,d(x)Ei(x) (2.14)

where BRDF itself is fr,d = kd, with kdε[0; 1] being a diffuse constant. The
reflectance ρd for a Lambertian surface is :

ρd(x) = πfr,d(x) (2.15)

and the outgoing direction of the reflection is chosen at random (due to the
random nature of the diffuse scattering) by two variables ξ1ε[0, 1] and ξ2ε[0, 1]
using :

~ωd = (θ, φ) = (cos−1(
√

ξ1), 2πξ2) (2.16)

where, in spherical coordinates, θ is the angle with the angle with the surface
normal and phi is the rotation.

Specular reflection

Specular reflection is the light reflection off a smooth surface (metal, water etc.),
which leads to the visible appearance of highlights. Unlike diffuse reflection there
is only a degree of scattering of the light ray, which is caused by the roughness
(glossiness) of the surface. A glossy BRDF describes a non-perfect specular
reflection, but the most simple and common BRDF is that of the perfect specular
reflection. For a perfectly specular surface the light is reflected completely in
the mirror direction as shown on Figure 2.3. The reflected radiance, Lr, is
determined by :

Lr(x, ~ωs) = ρs(x)Li(x, ~ω′) (2.17)

where ρs will be determined by the Fresnel equations. For perfect reflection the
mirror direction is given by.

~ωs = 2(~ω′ · ~n)~n− ~ω′ (2.18)
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n

θ θ

ω' ωs

Figure 2.3: Illustration of specular reflection with angles and vectors.

Fresnel

As a light hit a surface some of the light might be reflected and some refracted.
The amounts are given by the Fresnel reflection coefficient, Fr

n

θ1

ω' ωs

θ1

θ2

ωr

η2

η1

Figure 2.4: Illustration of reflection and refraction with angles and vectors.

Fr(Θ) =
1
2
(ρ2
‖ + ρ2

⊥) =
dΦr

dΦi
(2.19)

the values ρ2
‖ and ρ2

⊥ are given by the Fresnel equations.

ρ‖ =
η2cosΘ1 − η1cosΘ2

n2cosΘ1 + n1cosΘ2
=

(
cosΘ1 − cosΘ2

cosΘ1 + cosΘ2

)2

(2.20)

ρ⊥ =
η1cosΘ1 − η2cosΘ2

n2cosΘ1 + n1cosΘ2
=

(
tanΘ1 − tanΘ2

tanΘ1 + tanΘ2

)2

(2.21)

some common approximate values for η are

η ≈
air 1.0
water 1.33
glass 1.5− 1.7
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Christophe Schlick [22] approximated the Fresnel coefficient by the simpler :

Fr(Θ) ≈ a + (1− a)(1− cosΘ)c (2.22)

where the values can be selected, suggest values are a = F0 (where F0 is the
Fresnel reflection coefficient at normal incidence) and c = 5 is a constant that
can be chosen, the value 1 is suggested by Schlick. F0 is the value of the normal
Fresnel coefficient at the incident. Fr gives the amount of reflected light and
1−Fr gives the amount of refracted light. An even faster, but cruder empirical
approximation to Schlick’s model is given in [24] as

max(0,min(1, Fr(Θ) ≈ a + b(1 + ~ω ·N)c)) (2.23)

this is based on the appearance of light rather than the physics of light.

2.3.4 Refraction
Refraction for a smooth surface is shown in Figure 2.4. The angles Θ1 and Θ2,
and refractive indices η1 and η2 are related by Snell’s law

η1

η2
=

sinΘ2

sinΘ1
(2.24)

The outgoing direction from a refraction, ~ωr, is given by

~ωr = −η1

η2
(~ω − (~ω · ~n)~n)−




√
1−

(
η1

η2

)2

(1− (~ω · ~n)2)


~n (2.25)

In the case of negative value in the square root all the light is reflected, giving
a mirror effect. This can happen when light travels from a medium with low η1

to a media with high η2 at the critical angle Θc.

2.4 Rendering equation
The render equation was first introduced by Kajiya [16] and is at the heart of
the different illumination methods. It gives the outgoing radiance Lo(x, ~ω) at
any point in a model. Here the equation is presented in a slightly different form
than that of Kajiya’s original definition :

Lo(x, ~ω) = Le(x, ~ω) + Lr(x, ~ω) (2.26)

where Le is the emitted light and Lr is the reflected light at position x with
outgoing direction ~ω. How to determine Lr is not straightforward and will be
described in section 2.3.1. This can be expressed using BRDF’s, which using
Equation (2.12) gives :

Lo(x, ~ω) = Le(x, ~ω) +
∫

Ω

fr(x, ~ω′, ~ω)Li(x, ~ω′)(~ω′ · ~n)d~ω′ (2.27)

The render equation is dependant on the BRDF and the choice of BRDF sig-
nificantly effects the visual appearance of an object.
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2.5 Ray tracing

Ray tracing is a point sampling technique for calculating global illumination.
The basic rendering technique was introduced in 1980 by [2]. Ray tracing cal-
culates the path of a light ray trough a scene and samples the intersection
points along that path. In nature light rays travel from the light source to the
viewer. Simulating this approach has been researched, it however requires a
large amount of rays to be traced and even with many rays traced will likely
still produce a noisy image. The popular ray tracing technique however traces
rays from the viewer out into the scene, thus reducing the number of rays re-
quired to equal the resolution of the resulting image and eliminating a need for
multiple samples per pixel.
The start of a trace path is defined by the view position and direction including

Light source

Image plane

Refractive and Reflective object

Figure 2.5: Illustration of tracing a ray from a pixel in the view plane into the
scene. Maximum recursion depth is 3.

naturally a scene with light sources. The nearest intersection between ray and
object is found.
At an intersection point the local lighting is calculated for each light source and
global lighting is added. Reflected and refracted rays are also emitted if the
surface is specular and/or transparent.
The algorithm is recursive and uses two functions. Where trace find the near-
est (shortest distance, d) intersection and shade calculates the lighting at the
intersection. The ray tracing algorithm uses shadow ray to test whether the
intersected point is in shadow. It does so by tracing a ray from the point to the
light source in question. For this reason hard shadows are easily added to the
ray tracer. The basic ray tracer itself cannot produce full global illumination.
But other than easy hard shadows the advantages are :

• Natural hidden surface removal

• Natural reflections and refractions on entire scene.
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for each pixel
color = trace{ray}

trace(ray)
find nearest intersection with object
find point and normal of intersected surface
color = shade(point,normal)
return color

shade(point,normal)
color = 0
for each light source

emit shadow ray
if shadow ray does not intersect

color = local color
if(surface is specular)

color = color + trace(reflected ray) + trace(refracted ray)
return color

• Support for any geometry

• Support for advanced lighting models (BRDF’s etc.)

• Blackbox nature of scene and objects allow for optimization of individual
sections of the algorithm. (Which will be discussed later).

Some of the global illumination further elements that have been implemented
for the ray tracer are :

• Number of calculations

• Memory consumption for extremely large scenes

More advanced features of global illumination can be added to the ray tracer.
Some of these are :

• Depth of field

• Motion blur

• Caustics, which is the topics of this thesis

• Indirect illumination

2.6 Photon-map
Photon-mapping was introduced by Henrik Wann Jensen in [5] as a means of
handling global illumination effects (caustics, color bleeding and such). The
method uses two passes:

1. Photon emission

2. Rendering

Photon emission is normally handled by a ray tracer, which means how complex
a scene, objects, BRDF’s etc. are handled is limited purely by the ray tracer.
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Emission
As mentioned emission is usually accomplished by tracing photons path through
a scene. Photons are emitted from light sources and carry their energy (power)
through the scene until stored. The power can be determined as a fraction of the
light source energy. The light source energy is equally divided amongst photons
emitted from the light. Photons are traced through a scene in the same way as
a ray, but at the intersection points the two are handled differently. The cause
of this is the fact that a ray gathers radiance, where a photon delivers flux. A
photon does not scatter and this means that, at an intersection, it must either
be reflected, refracted or absorbed. A probabilistic technique called Russian
roulette is used to decide what action to take. If reflection is chosen for a non-
diffuse surface the reflection is handled with the BRDF. If reflection is chosen
for a diffuse surface a random direction is chosen. For caustics it is usual to
eliminate photons that do not hit a specular surface as the first interaction. The
photons that hit a specular surface are the ones that are likely to contribute to
a caustic. See Figure 2.6 for an illustration of photon emission.

L

CG

Diffuse surface

Figure 2.6: Illustration of photon paths, from a light source L, into a scene with
a caustic generating sphere, CG, that is both refractive and slightly reflective.

Storage
Photons are stored in a single data structure. The important aspects of the
structure is that finding points in a radius around another point is fast and that
storing many photons is as cheap as possible. The number of photons needed
depends on the scene, for caustics the number is usually not as great as for full
global illumination. A photon is classically represented by

struct photon {
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float x,y,z; // Position of the photon
float[4] power; // Power of the photon
char phi,theta; // Incident direction
short flag; // Used for kd-tree

}

The data structure chosen by Wann Jensen is a Balanced Kd-tree. The Kd-tree
uses axis aligned planes to divide the scene into voxels, which makes it possible
to search for photons around a point efficiently.

Radiance estimate

We are interested in evaluating the outgoing radiance for a surface, which is
given by :

Lr(x, ~ω) =
∫

ω

fr(x, ~ω′, ~ω)
d2Θi(x, ~ω′)

dAi
≈

n∑
p=1

fr(x, ~ω′, ~ω)
Θp(x, ~ωp)

∆A
(2.28)

where Θi is the incoming flux, estimated from n photons in a radius from the
point x. Each photon p has power Θp(x, ~ωp). Density estimation of the photons
stored is used to evaluate the equation. Density estimation is done by finding
the N-photons that are nearest to the point in space at which one wants to
evaluate the equation. An area is give, usually by a sphere containing the N
nearest photons. The energy of the photons is summed and divided by the area
of the sphere.

r

Figure 2.7: Illustration of a sphere volume with radius, r, used for density
estimation. The volume has been expanded so it contains a desired number of
photons.

Optimizing photon-mapping has been the topic of some research and in the
appendices will be a short overview of some the methods can be found.

2.7 Halton sequences

A sequence random numbers in does not necessarily distribute evenly in the
interval they are chosen from. This is not always desirable and other number
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sequences could be considered and one that is often used is a from Halton
Sequence. A Halton sequence is a quasi-Monte Carlo sequence, which means
that it is not truly random. A Halton sequence in one dimension consist of
numbers generated by dividing an interval uniformly. A Halton sequence is a
also called a reversed radix-based sequence. This is because it uses a radical
inverse function to pick a value in the interval [0; 1[ from an integer. A sequence
value is found by evaluating

Φb(i) =
∞∑

j=0

aj(i)b−j−1 ⇔ i =
∞∑

j=0

aj(i)bj (2.29)

for value i and base b, where aj is the sequential digits of the value i. In plain
language what happens can be explained as :

1. Expressing the value i in base b.

2. Taking the value found in step 1 and reversing the order of the digits.

3. And finally adding a floating point in front of the value.

An example would be the radical inverse of i = 1234 in base b = 10 would give
the value 0.4321.

The bases, b, that the Halton sequence is built from is a chosen from the
prime numbers. This means that if one uses several bases there is no or little
correlation between the sequences.

2.8 Mip-maps

Textures are rarely displayed in their natural size and the pre-calculation method,
Mip-mapping, was introduced by Williams in [19] to improve sampling. Mip-
mapping generates a series of textures from an original texture. The resolution
is halved at each level, so a 128x128 texture will have a pyramid (with level 0
being the highest resolution) of texture with resolutions 64x64, 32x32, 16x16
and so forth. The mip-map levels are created using a square averaging filter

Figure 2.8: The mip-map levels of an image. Level 0 to 5, left to right.
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with height and width, 2k, where k is the level in the pyramid.
There are different methods for doing texture lookups. Trilinear is the most
common and it utilizes bilinear filtering. A value is determined bilinear filtering

vr

ur

Val00 Val10

Val01 Val11Valtop

Valbottom

Valbilinear

Figure 2.9: Illustration of bilinear sampling between four values.

on 4 pixel values as follows :

valuebottom = val00 + ur(val10 − val00) (2.30)
valuetop = val01 + ur(val11 − val01) (2.31)

valuebilinear = valuebottom + vr(valuetop − valuebottom) (2.32)

where ur and vr are u, v coordinates relative to the target u, v. To smooth
the transition between different levels of detail trilinear interpolation is used.
The value is determined from the chosen level and the two surrounding levels, of
coarser and finer detail. First bilinear interpolation is used on the levels followed
by linear interpolation between the values.
Determining the level of detail is difficult and different application use different
methods (for more information see [18] for a description of some possibilities).

2.9 Perspective transformation
The perspective transformation is a part of the rendering pipeline and in prac-
tice the details of the implementation may differ from the basic theory presented
here. To take a point from object space (x, y, z) to screen (xs, ys, zs) space, the
coordinates are first transformed into view space (or eye space, xe, ye, ze) and
then screen space. It is the last part of this transformation that’s named the
perspective transformation.
A perspective transformation can be defined in several ways, here we will ex-
amine a definition using the parameters :

Field of view, θ, which is the angle giving the height of the view plane.

Ratio, r, which is the ratio between height and width of the view plane.

Near, N , which is the distance in view space to the near plane (or view plane).

Far, F , which is the distance in view space to the far plane.
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The screen space is perceived to be a projection of everything contained within
a view frustum. Only objects contained within this frustum are rendered (this
occlusion takes place in the rendering pipeline, sometimes after the perspective
transform). We are looking to project the eye coordinates into screen coordi-

ze=N

ze=F
ze

xe

ye

Figure 2.10: Illustration of a view frustum with Near plane (N) and far plane
(F).

nates given in the intervals :

xε[−1, 1] yε[−1, 1] zε[0, 1] (2.33)

The screen coordinates xs and ys are determined in a straightforward manor by
:

xs =
1
r
N

xe

wze
(2.34)

ys = N
hye

hze
(2.35)

where the height h = Ntan(θ/2) and view ratio, r of the image plane, are used
to scale the coordinates into the desired intervals.
The z-transformation was proven by [20] to take on the form :

zs = A +
B

ze
(2.36)

Looking at a view frustum with F = 1 one can use the two equations

0 = A +
B

zmin
(2.37)

1 = A + B. (2.38)

To determine complete transformation

zs = F
1− N

ze

F −N
(2.39)

This transformation however is non-linear and cannot be performed using ma-
trices. In the rendering pipeline the transformation is separated into two steps
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by introducing homogenous coordinates. Homogenous coordinates (x, y, z, w)
containing an additional fourth coordinate w :

x = xe (2.40)
y = ye (2.41)

z =
hFze

N(F −N)
− hF

F −N
(2.42)

w =
hze

N
(2.43)

These transformations are linear and can be performed as such :

[x y z w] = [xe ye ze 1]P (2.44)

using the projection matrix, P :

P =




r 0 0 0
0 1 0 0
0 0 hF

N(F−N)
h
N

0 0 − hF
F−N 0


 (2.45)

The screen coordinates are the determined from homogenous coordinates by the
non-linear perspective divide

xs =
x

w
(2.46)

ys =
y

w
(2.47)

zs =
z

w
(2.48)

2.10 Ray differentials

A common issue in imaging is aliasing and several methods have been developed
for anti-aliasing ray traced images. In [21] Homan Igehy presents a fast and ro-
bust method for estimating a rays footprint. A rays footprint is an estimate of
the size of the ray. Here only the general theory will be presented and we refer
the reader to Igehy’s article for the anti-aliasing example.

Ray differentials are an estimation of the deviation in ray direction caused
by different phenomenon (such as reflection and refraction). Ray differentials
are cheap because tracing extra rays is not necessary, instead some variables
need to be calculated at each intersection. The ray position and one or more
offset ray are used to calculate a rays footprint.

The foundation of the method is that phenomenon can be presented as differ-
entiable functions and the traversal of a ray through a scene can be represented
as a series of these functions.

v = fn(fn−1(. . . (f2(f1(x, y)))) (2.49)
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Equally is the differentiability of these functions, that using the chain-rule gives
:

∂v

∂x
=

∂fn

∂fn−1
. . .

∂f2

∂f1

∂f1

∂x
(2.50)

In the following a ray, ~R will be presented by a point, P and direction, D on
the form :

~R = 〈P D〉 (2.51)

The function is recursive so for different usages one can parameterize ones initial
functions by different values. For ray tracing the x, y-coordinates in the view
plane are used. The initial direction is given by the function :

d(x, y) = V iew + xRight + yUp (2.52)

where V iew is the view plane position, Right is the right vector contained by
the plane and Up is the up vector of the view plane. The initial values for ray
tracing are thus given by the ray origin, P and normalized ray direction D.

P (x, y) = Eye (2.53)

D(x, y) =
d√
d · d (2.54)

One or several ray differentials, that are offsets of R, can be tracked. The ray
differentials are given by two different partial derivatives, one in each offset
direction :

∂ ~R

∂x
=

〈
∂P

∂x

∂D

∂x

〉
(2.55)

∂ ~R

∂y
=

〈
∂P

∂y

∂D

∂y

〉
(2.56)

Each offset rays that one needs to estimate are represented by these two differ-
entials. From here on we will focus on the x-offset ray differential, the y-offset
ray differential is treated equally. At the core of ray differentials lies the decision
to use a first order Taylor approximation to estimate the offset ray.

[
~R(x +4x, y)− ~R(x, y)

]
≈ 4x

∂ ~R(x, y)
∂x

(2.57)

[
~R(x, y +4y)− ~R(x, y)

]
≈ 4x

∂ ~R(x, y)
∂y

(2.58)

A higher order Taylor approximation is possible, but Igehy states that generally
a first order approximation is sufficient. The initial ray differential values for
ray tracing are given by

∂P

∂x
= 0 (2.59)

∂D

∂x
=

(d · d)Right− (d ·Right)d
(d · d)3/2

(2.60)
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Eye

R(x)
R(x+dx)

dx

P(x)

P(x+dx)

dP(x)

D(x)
dD(x)

D(x+dx)

Figure 2.11: Illustration of a ray path and its ray differential, offset in screen
space, x. The letter d in the image is equal to ∂.

Propagation
The phenomenons most commonly used in ray tracing are the simple reflections
and refractions described in section 2.3.3 and 2.3.4. At intersections the direc-
tion of the ray change, but the position changes during transfer as will become
clear. Reflections and refractions occur after a transfer.

Transfer

Transfer is the act of a ray travelling unhindered through a medium. The
position is given by the function of a straight line.

P ′ = P + tD (2.61)
D′ = D (2.62)

Simple differentiation gives the values needed to describe the ray differentials.

∂P ′

∂x
=

(
∂P

∂x
+ t

∂D

∂x

)
+

∂t

∂x
D (2.63)

∂D′

∂x
=

∂D

∂x
(2.64)

where the distance t is given as follows. For a planar surface containing P’,
where P ′ ·N = 0, the distance t is given by:

t = −P ·N
D ·N (2.65)

Both the point P and direction D are both projected onto the same vector N
meaning that any arbitrary N will give the same ratio. Therefore instead of
P ′ ·N = 0 one can decide to use the surface normal. The differential of t is:

∂t

∂x
= − (∂P

∂x + t∂D
∂x ) ·N

D ·N (2.66)



2.10. RAY DIFFERENTIALS 27

Reflection

Reflection is given by the simple reflection equation (2.18).

P ′ = P (2.67)
D′ = D − 2(D ·N)N (2.68)

The ray differential is given by :

∂P ′

∂x
=

∂P

∂x
(2.69)

∂D′

∂x
=

∂D

∂x
− 2

[
(D ·N)

∂N

∂x
+

∂(D ·N)
∂x

N

]
(2.70)

where :
∂(D ·N)

∂x
=

∂D

∂x
·N + D · ∂N

∂x
(2.71)

The derived normal, ∂N
∂x , will be described later in this section.

Refraction

Refraction is given by the simple refraction equation (2.25).

P ′ = P (2.72)
D′ = ηD − µN (2.73)

where η in this notation is the ratio between the refraction indices of the two
media. The ray differential is given by :

µ = [η(D ·N)− (D′ ·N)] (2.74)

D′ ·N = −
√

1− η2[1− (D ·N)2] (2.75)

where :

∂P ′

∂d
=

∂P

∂x
(2.76)

∂D′

∂x
= η

∂D

∂x
−

(
µ

∂N

∂x
+

∂µ

∂x
N

)
(2.77)

∂µ

∂x
=

[
η − η2(D ·N)

D′ ·N
]

∂(D ·N)
∂x

(2.78)

The derived normal is described below and

∂(D ·N)
∂x

=
∂D

∂x
·N + D · ∂N

∂x
(2.79)

Differential normal of triangles
The surface normal is determined in different way for different surface repre-
sentations, however a mesh surface using triangles is the most common type.
A triangle consists of 3 points, (Pα, Pβ , Pγ) and 3 normals, (Nα, Nβ , Nγ). If
one looks at a point P contained within the triangle (on the triangle plane), as
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Pα Pγ

Pβ

Lα
Nα

Nβ

Nγ

P

Lα

Figure 2.12: Illustration of a triangle and the values need in the following.

shown on Figure 2.12. The point can be determined by linear interpolation of
the three points in the triangle.

P = αPα + βPβ + γPγ (2.80)

The barycentric weights, α, β, γ, complies to

α + β + γ = 1 (2.81)

assuming that P lies within the triangle. If P is already known the barycentric
weights can be determined by using the planes Lα, Lβ and Lγ . The planes are
determined in the same way, for Lα the plane is any plane containing Pβ and
Pγ , while also being perpendicular to the triangle. Lα is normalized in a way
so Lalpha · Palpha = 1. The barycentric weights are then determined by:

α(P ) = Lα · P (2.82)
β(P ) = Lβ · P (2.83)
γ(P ) = Lγ · P (2.84)

The normal, N is then also determined by linear interpolation:

n = (Lα · P )Nα + (Lβ · P )Nβ + (Lγ · P )Nγ (2.85)

N =
n√
n · n (2.86)

The differentials are:

∂n

∂x
=

(
Lα · ∂P

∂x

)
Nα +

(
Lβ · ∂P

∂x

)
Nβ +

(
Lγ · ∂P

∂x

)
Nγ (2.87)

∂N

∂x
=

(n · n)∂n
∂x −

(
n · ∂n

∂x

)
n

(n · n)3/2
(2.88)
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Problem Analysis

The problem is creating a fast and robust method for simulating caustics.

Some brute force methods could be considered. Increasing the number of
CPU’s would be possible, and the photon emission part of the algorithm it lends
itself naturally to parallelization. However the building of the photon-map can-
not be parallelized and thus after emission all information about photons would
have to be distributed to all CPU’s placing a large bandwidth. The method has
been applied for caustics in [8]. This implementation test on 9 AthlonMP 1800+
CPU’s, does not produce what would be considered real-time frame rates. Fur-
thermore we are targeting a single CPU implementation.

Another brute force method, was attempted in [23], by implementing the
photon-mapping technique entirely on the GPU. This method is however too
slow for real-time usage. It does however include all global illumination effects.

In this thesis we will implement and expand upon the algorithm presented
by Bent D. Larsen in [3]. This method uses a fast ray tracer to emit photons and
a pixel shader1 is used to filter a screen-sized texture containing the rendered
photons.

Some advantages of this method of emission are that the ray tracer handle
advanced BRDF’s. The ray tracer can also be implemented to handle any ge-
ometry including meshes or parametric surfaces. Building a fast ray tracer is
challenging and good implementations already exist. In this thesis the focus
will not be on the ray tracer, and building a ray tracer, with all the existing
optimizations is considered beyond the scope of this work. However a section
in the appendices gives a summary of the optimizations for photon tracing that
was considered for the thesis. What is needed for photon distribution is a ray
tracer that can handle any meshes to test different scenes, but it is not required
that the ray tracer is fast.

Focus will be on filtering. Bent D. Larsen has worked on some of the prob-
lems with screen space filtering and provide improvements for the basic filter.

1In the shading language HLSL each pixel is processed by a pixel shader. In another
common shading language, Cg, this shader is called a fragment shader.

29
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The basic filter, which will be described in more depth in Section 4.4, is a filter
kernel that weighs the photon count of a pixel by the distance from the center
of the kernel. This does not solve the density estimation from classic photon
mapping and is not physically accurate. We will present a new filtering equation
that better approximates the, classic radiance estimate.
Each pixel contains the number of photons that was projected into the pixel.
The number of pixels in a screen at given resolution is naturally constant, thus
when the eye point moves closer to the caustic the greater the number of pixels
covering the caustic will be. Therefore fewer photons will be filtered per pixel
and the intensity of the image will decrease. The solution suggested by Bent
is to used the area of the projected into the pixel, we will implement this and
describe this improvement.
The caustic is created from randomly distributed photons and redistributing
each frame or often means that photon positions will change. This change leads
to flickering in the caustic and Bent suggests using Halton sequences instead of
random numbers to improve on the stability of the appearance of the caustic.
This will be implemented.
The filtering algorithm used is rather expensive and Bent suggest an optimiza-
tion that efficiently can decide what pixels contain the caustic and should be
filtered. This method is however not built to handle close-ups and a new version
will be presented.

The greatest remaining unsolved issues of this method is regarding the co-
herency of the caustic. When zooming in on the caustic, the distribution of
photons disperse and with a filter radius of around 4 (giving a filter kernel of
9x9) the caustic quickly looses the appearance of a coherent lighting phenom-
ena.
The first thought is to simply increase the filter kernel radius. This would
achieve results similar to the classic density estimate (which increases the filter
radius until a number of photons are found). However this expensive since the
number of samples (or area of the kernel) is given by

karea = (1 + 2r)2 (3.1)

with kernel radius r. This means the radius for the first radius sizes gives

r samples(karea)
1 9
2 25
3 49
4 81
5 121

When the camera is close to the caustic, data needs to be provided to compen-
sate for the decreasing amount of filtering data, that in the areas of interest will
be due to the inaccuracy of emitting a limited number of photons. Compensa-
tion should still be as physically accurate as possibly and ideally the following
goals should be achieved.

• The coherency solution should preserve the amount of energy in stored
photons, ie. the total amount of energy in the caustic should remain the
same for each zoom level.
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• The shape of the caustic should also be preserved.

• The cost of achieving the optimization should not prevent real-time ap-
plication.

Three methods are considered candidates, two uses mip-maps and one uses ray
footprints.

Mipmaps

Instead of using a larger filter, using pre-filtered data might be an option. The
pre-filtered data needs to be generated effectively, so using manual filtering is out
of question (and would probably be slower than simply filtering on the GPU). A
feature in modern graphics hardware is automatic generation of mipmap levels.
This is a very efficient mipmap filtering that takes place during rendering. Using
mipmap levels from a texture containing the photons would provide a pixel with
a color value that had been filtered with a larger kernel. However this kernel is
different from the basic caustic filtering kernel we use, since mipmap generation
uses a uniform averaging filter. This means that the method differs from the
caustic filtering in that it does not weigh the photons with regards to radius
(this leads to a perfectly square filter). The energy contained at the different
levels of the photons is close to equal, but due to the values being stored in
an 8-bit structure values will be rounded (if the uniform average filter produces
floating point values, such as 0.5f) causing some imprecision. Also one should be
careful using the highest levels of the mip-map. Figure 3.1 illustrates what can
go wrong. The conclusion must be that one should be careful what maximum
level one uses.
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Figure 3.1: This is a histogram showing the sum of 700x700 at different levels of
an image. The image used was a photon texture containing a caustic generated
with a refractive sphere. The sum is, as expected, unchanged for the mip-levels
until one reaches the last levels with resolution 2x2 and 1x1. It is seen that
at the photon count fluctuates wildly for those two levels. The cause of this is
that level 8 has the color value (0,0,0) in its four pixels and level 9 has the color
value 1 in its pixel. This is possible because all the images are generated from
the original image.
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The shape of the caustic should roughly be maintained, but will naturally
become more blocky due the filter shape. However since we are basically filter-
ing the same photon texture the receiver surface can still support any arbitrary
receiver surface shape. The blocky appearance of the outer shape of the caustic
could be rounded using ray differentials, which could be used as an estimate
radius at the storage position. The ray differentials should be a cheap addition
to the ray tracing cost (no extra intersection tests are needed) and if rendering
the resulting discs can be cheaply achieved, the addition to the filter itself will
be one additional texture lookup.

Much like with mip-maps used for anti-aliasing it is tricky to decide how to
blend the mip levels and in this case also the normal filtering. This decision
should be based on the density of the photon distribution. The density however
depends on many factors such as the number of photons, the screen resolution,
the geometry of the scene (both caustic generators and receiver surfaces) and
the camera position. We present two methods.

The first method we use is a purely empirical method of blending that sim-
ply uses a set of functions to blend in the different levels. The functions are
approximations of the perspective transformation of the x and y values, thus
the blending of levels occur in a pace according to the change in the density of
the distribution.

The second method we test is more closely related to the way the classic
photon-map method works. In this method the sub sampling filter of the mip-
maps is considered to be the approximately the same as the caustic filter. (this
is not true, since mip-mapping uses uniform average sub-sampling and caustic
filtering uses convolution with a rounded filter) This means that using a differ-
ent level of the filter is the same as expanding the search radius, and sampling
the level gives the average value. Choosing levels is accomplished using one or
more samples and looking at the values.

Other methods where considered as well. Another empirical method would
be to use the u,v-area contained by the pixel, which has already been calcu-
lated, to decide the zoom level. This would require a scale factor but, would
naturally take into account the perspective transformation. This is a method
that is sometimes applied when using mip-maps for anti-aliasing. This is very
closely related to the pixel area method, which is already included.

The ray footprint achieved by ray differentials could also be applied to this
problem. The ray footprint estimates how far from a photon, a slightly offset
photon, would be at the point of storage. This method is not completely based
on the geometry of the scene because the initial offset direction of a ray differ-
ential is chosen arbitrarily. To support more than one caustic in a scene it is
necessary to have a value per pixel. An attempted method that was dropped
was to splat a value onto a texture and passing that texture to the shader. The
value was the radius of the ray differential projected into screen space and the
splattering pattern was discs with the radius of the ray differential. This would
mean that the projected radius was available at the points where it was esti-
mated that photons would be. However concentrated photons with small radii
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and widely spread photons will have large radii. These will likely overlap and in
the areas, not covered by the concentrated photons will have large radii. This
leads to sharp differences in the power of the caustic.

An issue with using ray differentials are critical angles. Marking the ray
differentials that exceed a critical angle along a differential rays path would
render these rays useless with regards to making decisions. The physically
correct thing to do, would be to reflect a ray differential that exceeds the critical
angle, however this would not be useful since the reflected ray would not add to
the refracted caustic (which is what the original photon is a part of since critical
angles only occur during refraction). Three options considered was:

1. One could draw the photon discs with a fixed size, which could be the
mean size or perhaps an arbitrarily chosen size. The problem with the
mean size is that more than one caustic may be in the image. These
caustics may have very different mean sizes and thus the flagged photons
would not fit into either caustic. The arbitrarily chosen size is even less
general.

2. One could draw the photons using the radius of another foot print in the
distribution. With this method one runs the method of picking photons,
which radius differ greatly from the drawn photon discs.

3. The safe method, which we will choose, is to simply ignore photons that
have been flagged. The drawback to this method is that photons are lost,
and thus depending on usage could never produce a perfect approximation.

The pixel area optimization that is applied to normal filtering, as mentioned
earlier, is also applied to the mip-map image, thus adjusting energy with regards
to the orientation of the receiving geometry, without change the energy in normal
or mip-map filtering. The part of the pixel area optimization that takes the
distance from the surface into consideration is kept due to the fact that the
amount of energy for the normal level of the photon texture and the mip levels
are assumed to be relatively close.

Pre-filtered footprints
In the classic algorithm the radiance estimate includes, the expanding of a vol-
ume until it contains a satisfying number of photons. This could be done in
screen space if the number of texture lookups was not a concern, but as stated
previously this is the case. A fundamental restriction to this algorithm is that it
must perform the density using a fixed volume (or in our case area, since screen
space is 2 dimensional). This means that the number of photons used in the
estimate can change resulting in the possibility of empty areas.

The third proposed method uses ray footprints estimated with ray differ-
entials to calculate a pre-filtered density estimate. The idea is that using ray
differentials we essentially have an circular area which can be used to divide
the power of the photon. The reason why this might be a possible method is
that the area varies according to the density of the caustic at the position of
the photon, ie. the smaller the area, the more focused the part of the caustic is.
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Circular discs will be drawn to a texture. The power of the disc will be the
power of a photon divided by the area of the disc. Overlapping disc will be
added together. This method would preserve the total amount of energy in the
caustic, where it not for photons lost to critical angles.

The advantage this method should have over the other is avoidance of the
blocky appearance of the mip-map. The shape would naturally be rounded and
several levels could be generated by using more ray differentials. This method
however could possibly be too expensive for real-time, because we are drawing
discs instead of points. A cheap method of drawing a disc might be to draw a
square using 4 indexed vertices and alpha blending with a texture containing
the circle. This however is expensive compared to a single point that requires
no shading, and if many photons are used in a scene the workload could be too
great for real-time applications. It should be noted that in the Section 2.10 the
ray differentials are parameterized by x,y in the image plane, instead we use
Θ, φ offsets from the light direction.

To summarize we will attempt implementing of 3 methods, two empirical
and one that attempts an approximation of the classic photon-map method.
These will be described in Section 4.4.5 We will also improve upon the parts
of the original algorithm proposed by Bent D. Larsen. A change will be made
to the filtering part described in Section 4.4.1 and to the quad optimization in
Section 4.4.3.

Finally a short discussion on what graphics system to use for implementa-
tion. The main concern with regards to implementation is how much needs to
be implemented and ease of implementation. The combination Managed Di-
rectX and C# has free implementations of the algebra needed and mesh classes
with a built in intersection method. A drawback might be the relative youth
of Managed DirectX, which may limit the detail level of the documentation
available.



Chapter 4

Algorithm

The focus of the algorithm will be on how hardware optimized caustics filtering
can be achieved, with optimal visual appearance. Much effort has been put
into developing very efficient ray tracers and optimizations that complement
each other now exist. Ray tracing as a more important part of real-time ren-
dering is becoming more feasible. In this implementation focus will be on the
coherency of the caustic and an accelerated ray tracer will not be included in
this implementation.

4.1 Overview
Before we get into details on each part of the algorithm we will give a brief
overview. As described in 2.6 there are two passes in a classic photon map
algorithm, namely emission and rendering.

Emission

For emission we use a simple ray tracer and store the photons as positions and
offset positions in an array. The ray tracer supports simple meshes and meshes
from .x files. It has no optimizations and utilizes the built-in intersection method
of DirectX Mesh objects to test for intersection against objects (more detail on
this method can be found in Section 5.3). There is the option of either emitting
a full number of photons each frame or only emit the photons once and then use
the same photons for rendering. For a discussion of some of the optimizations
that could be considered for this implementation see the appendices.

Rendering

Rendering of the caustic will be composed of several rendering passes to achieve
the different improvement to the quality of the caustics that where discussed
in the analysis section. Before describing each part of the algorithm, short
descriptions of each render pass that happens during a frame rendering will be
given :

1. The first render pass is there to create the photon texture. During this
pass the mip levels are also auto generated. This pass needs to render the

35
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entire scene, without lighting or effects and the photons as points. This is
needed to get the right occlusion of photons.

2. If the ray footprint optimization is enabled an extra pass is needed. This
pass needs to render the scene, black with no light and then it needs to
render the photons as discs instead of points.

3. The second pass is to generate the quads for the quad speed optimization.
This pass need to either render the same scene as the first pass followed
by a render of a number of quad shaped polygons. Alternatively it needs
to render the same scene as the ray footprint pass followed by the quads.

4. The third pass is used to generate the texture with the information for
the pixel area optimization. This will only be generated and used if the
option is checked.

5. The final render pass is caustic rendering itself. This pass renders the full
scene and then blends in the caustic using filtering and either mip levels
or ray footprint texture.

4.2 Photon emission

For photon emission a ray tracer is used, which has the advantage of supporting
any geometry. Ray tracers are being optimized for full global illumination,
which requires a large amount of rays to be traced. For global illumination a
very large photons must be spread into the entire scene, which is not necessary
for caustics. Solutions for real-time global lighting using ray tracing has been
suggested, two such are found in [3] and [7]. Disitrubtion and speed is important
to the algorithm. The speed depends on the ray’s traversal through a medium
(we assume no participating media, see [4] for information on this topic) and
interaction with surfaces. The final distribution of photons is primarily decided
by the geometry of the scene, a scene built from parameterized geometry would
give a more accurate photon distribution than the mesh representation. How
great the difference is also depends on the tessellation of the mesh geometry. In
this implementation we will stick with mesh objects. A factor that affects the
final photon distribution, which we can control is the initial ray directions. We
use either a spot or point light source to distribute pick the initial directions.
The pseudo code for distributing from a point light source is given below on
Figure 4.1.

4.2.1 Distribution

The caustics generated are an approximation created by filtering a distribution
of points in both the classic algorithm in the one presented here. The distri-
bution of photons is very important to both appearance of the caustics and
performance of the algorithm. It should also be noted that the application is
set up to emit photons from a spot, but is also capable of emitting from a simple
point light source, the results appearance wise would be the same it would just
take longer to calculate.
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emit_photons(scene,irradiance)
{

for (no_of_photons) {
theta = random between [0,1]
phi = random between [0,1]

direction.x = sin(theta)*cos(phi)
direction.y = sin(theta)*sin(phi)
direction.z = cos(theta)

lightsource = choose random lightsource from scene
ray(lightsource.position, direction)
trace_photon(scene, ray, irradiance, 0)

}
}

trace_photon(scene, ray, irradiance, level)
{

if(level < maxlevel)
{

if(level == 0)
incident = nearest non-diffuse intersection

else
incident = nearest intersection

if(diffuse surface)
photonmap.store(incident.position)

else
{

phenomenon = use russian roulette to determine phenomenon
if(phenomenon == reflection)

trace_photon(scene, spawn_reflected_ray(ray,incident),
ray.irradiance, level++)

else
trace_photon(scene, spawn_refracted_ray(ray,incident),

ray.irradiance, level++)
}

}
}

Figure 4.1: Pseudocode for photon emission for a point light using explicit
sampling.

Number of rays

The number of rays needed to generate caustics in a scene differ from scene and
can be adjusted, this is a weakness of the algorithm in that it cannot handle
every scene equally well, without adjusting settings. If one shoots in random
directions from light sources a lot of noise might be the result of a high number
of rays. Photons, that do not add to the appearance of the caustic or caustics in
a scene, will be considered to be noise (this would not be the case in full global
illumination). Noise is unwanted in regards to the appearance of caustics and
will also make it more difficult to optimize the filtering operation (which will
become clear in Section 4.4.3). Noise is also costly with regards to time spent
calculating ray traversal, since the photons stored are unwanted.

To reduce noise in the scene the algorithm will only calculate ray traversal if
the first intersection is a caustics generator. The advantage is the elimination of
unwanted photon paths after one level of traversal. This assumes that the only
photon paths that add to a caustic are the ones that hit a caustic generator in
their first step of traversal and this assumption is not entirely correct. Diffuse
reflections can also add to caustics, but this will in most scenes be an unlikely
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occurrence. The result of the assumption is also that caustics generated after
several reflections and/or refractions will not be captured as seen on Figure
4.2.1. Another possible implementation would be to not emit all the photons

Diffuse surface 1

Diffuse surface 2

Caustic 

generator 

(specular)

x

Figure 4.2: Illustration of a with two diffuse surfaces and a specular surface
(caustic generator). The caustic is likely to form on diffuse surface 2 due to the
position of the light source. However light may hit a point x on diffuse surface
1. Diffuse reflection might be chosen and the direction is chosen at random and
light from this reflection may or may not add to the caustic. The most likely
outcome is that it wont and instead will strike a random diffuse surface, thus
adding noise to the scene.

every frame. This would work by dropping a percentage of the photons from
the distribution from the previous frame one will save a lot of ray traversal
calculations, which will likely be the bottleneck of an application. The result of
this will depend on how dynamic the scene is ie. for a dynamic scene with much
animation the reuse may be apparent even if a large number of photons are shot,
but for a static scene a caustic might flicker less, since only a smaller number
of random positions are removed and re-emitted rather than creating a new set
of photons. In our application we will not be going for this optimization since
we wont be testing in real-time and shooting once will suffice for the purpose of
this thesis. An application of this optimization can be found in [17].

Halton sequences

The visual appearance of caustics is dependent on the storage position of the
photons. For a caustic to look coherent it is preferable that the photons be
uniformly distributed. When dealing with animated caustics, a quasi-random
distribution will be preferable to a completely random distribution The reason
is that a quasi-random distribution can be more uniformly distributed. The
result is a more slightly more coherent caustic and less variance from frame to
frame resulting in less fluctuation in the caustic (less flickering).
Both random numbers and Halton sequences generate two values, r1 and r2, in
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the interval [0; 1], which can be used to generate two angles, ϕ ∈ [0, 2π] and
Θ ∈ [0, π]. These angles are spherical polar coordinates and represent a direc-
tional vector.
The Halton sequences are generated on startup and simple lookups are per-
formed during rendering. We do a random lookup in the distribution, which
should still have less variance.
This is not a solution to the problem of coherent caustics, but an improvement
that does not add any cost to the algorithm during rendering. Calculation of
the distribution takes place once at program start, during runtime look ups are
used.

4.2.2 Traversal

The traversal algorithm is the basic algorithm from the classic photon-map
method using Russian roulette to decide, whether to reflect or refract photons
on intersection with non-diffuse surfaces. We assume that between objects there
is vacuum and not participating media (such as milk, marble) so travelling
between objects does not require special attention or incur a computational
penalty. This ray tracer implementation is simple and thus rays are checked
for intersection with all objects in the scene, for large scenes this is expensive
and scene trees are common in advanced ray tracers. BSP-trees in particular
are popular. Intersections are handled by the black box method in the DirectX
Mesh class. An examination of the most popular optimizations for ray tracers
with photon tracing in mind, can be found in the appendices.

4.3 Photon storage and representation
Photon storage and photon representation is dictated by the photon filtering
part of the algorithm. Filtering will be done in image space because we wish to
take advantage of the possible hardware acceleration by using the gpu instead
of the cpu. The only way to pass large amounts of data on to the shaders are
through textures. This means that advanced data structures (such as Henrik
Wann’s classic photon-map) are not possible and for we will only be able to
display 8-bit values ie. 8-bit (alpha,red,green,blues) values. The 8-bit texture

0 0 0 4 11
0 5 0 5 7
0 0 0 0 8
0 2 1 7 0
0 0 0 0 0
1 0 3 0 0
0 0 0 0 0
0 0 0 0 0

Figure 4.3: Illustration of a photon texture after the photons have been rendered
additively as points.

means that there is a limit to the number of values that it is possible to store,
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ie. from 0 to 255. In the future the precision of the display buffer may change
allowing greater numbers if needed. Whether 255 is enough depends on the
geometry, number of photons emitted and the screen resolution. The greater
the screen resolution the more precisely the photons will be projected onto the
screen ie. photons that might be stored at the same position at lower resolu-
tion will now be stored in different pixels. This is a problem that occurs due
the screen space filtering which means that the area of the filter in world space
changes, so it’s size relative to the photon distribution changes. That is not the
case with the classic density estimation, which fully takes place in world space.

Due to technical issues we will be limited to less than 255 photons per pixel
in this implementation, when using mip-maps. This is caused by auto mip-map
generation only working for 8-bit textures. Fractions has to be either floored
and ceiled. It seems that the hardware used for implementation floors the val-
ues, meaning that low values are quickly eroded. Therefore we scale the photon
value by 20, which means that a pixel can contain 12.8 photons, which of course
is not physically accurate, but sadly necessary. We adjust for this scaling in the
shading and for the rest of this thesis, this will be transparent.

One of the drawbacks of the single texture method is that we are forced to
make the assumption that all photons emitted have the same color (or power),
which could be especially limiting in scenes with several light sources.

For use with occlusion culling, which will be explained in next chapter, the
photon storage points are also stored as 3d points in an array.

4.4 Photon rendering

Filtering will take place in a pixel shader to take advantage of hardware ac-
celeration. This is likely to be a good solution with regards to speed and will
become better as graphics cards are improved. GPU speeds are evolving faster
than speeds of the CPU’s, which is promising. However more and more algo-
rithms are moved to the GPU, so it hard to predict what the future results on
the GPU in a full application setting (such as a game) will be.
As mentioned earlier we are working in screen space and we will need a texture
with viewport size.

The most precise caustics are achieved using the classic algorithm for photon-
maps by Henrik Wann. In his algorithm filtering takes place in world space,
which as stated previously is not possible in a shader. In this algorithm filtering
takes place in screen space and the loss of depth information leads to several
issues, that produce less accurate caustics. This is a sacrifice that might be
acceptable for real-time applications (the assumption that this is the case is the
motivation for the research in the area).

Note that in the following, the descriptions of the parts of the algorithm will
not be described in the order they are run. See the overview for that information.
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4.4.1 Caustic rendering

The rendering of a caustic is achieved by filtering the texture containing the
stored photons. The basic filtering equation suggested by [3] is as follows :

cempirical(x, y) = s

k∑

i=−k

k∑

j=−k

t(x + i, y + j)
√

1 + 2k2 − (i2 + j2) (4.1)

where c is the caustic contribution to the color of the pixel, that comes from
reading the finest level of the texture.The value s is scale factor, t is the texture
value read from the photon texture and

√
1 + 2k2 − (i2 + j2) is a radius based

scale (where k=4 means a 9x9 kernel) to round the caustic and preventing a
blocky appearance. It is assumed that all light sources has the same color.
Bent’s is not based in physical reality, a method that closer resembles the was
used by [17]. They use a square filter and simply divide

csquare(x, y) =
s

A

k∑

i=−k

k∑

j=−k

t(x + i, y + j) (4.2)

by the area, A = (1+2r)2. This closer approximates the radiance estimate given
by equation 2.28. However the square shape produces blocky looking textures
except at a distance. Instead we suggest using a rounded filter, in the same way
a Bent, but present a version that resembles the radiance estimate more closely.

cround(x, y) =
s

A

k∑

i=−k

k∑

j=−k

ratio ∗ t(x + i, y + j) (4.3)

where c is the final color, s is a scale factor, A is an area and ratio is the ratio
between distance from the kernel center to the pixel, and the length diagonal. A
and ratio will now be explained. We will not divide by the exact area in pixels,
and note that the pixels positions are already approximated (which happens
when going from world to screen space ie. rasterization). Perhaps a using the
(u,v)-area of contained by the pixel one would make a more precise approxima-
tion. Different possible kernel areas are shown on 4.4.1. We could choose to use

Figure 4.4: Illustration of (a) kernel with area contained by circle (b) kernel
with area containing circle and (c) a square filter kernel.

the area contained by a circle to get an accurate result, but we would be wasting
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samples. Using all samples and then using the area containing the circle would
be inaccurate, so instead we approximate the area, by using the following area :

A = π(k + 1.5)2 (4.4)

Where k is the kernel radius, we adjust by 0.5 because we want to use the center
of the pixel and add 1.0 to increase the area (how good an approximation this
makes depends on filter size) and the ratio value is given by:

ratio = 1− r/d (4.5)

This value will
d = (1 + r)

√
(2) (4.6)

and r is the radius from the center of the central pixel of the kernel :

r =
√

(abs(i) + 0.5)2 + (abs(j) + 0.5)2 (4.7)

This way all the pixel will be weighted, but the filter will be round and be
linearly gradient.

4.4.2 Occlusion
First step of the caustic reconstruction as suggested by [3] is rendering the
photons to the texture which will be filtered in the final step. First a black
version of the scene is rendered to fill the z-buffer with depth values. Afterwards
the photon positions is rendered as points. The purpose of this is to get the right
depth occlusion for the photons. Rendering the black scene should be relatively
cheap, of course depending on the scene, however no lighting or effects need to
be calculated.

4.4.3 Quad filtering
The filtering shader is a large shader as it needs to sample a texture for use
with the kernel. If a 4x4 filter is used that means 81 samples is needed for
the kernel. For each of the samples equation 4.17 is calculated. In addition
to this, a sample from either mip-mapping or ray footprint may be used. To
reduce the number of pixels for which the shader is run [3] introduces an ac-
celeration method that works by using the stencil buffer in the graphics pipeline.

The idea is to segment the screen with a grid. Each grid cell containing
photons needs to be rendered. Finding out what cells needs to be drawn is
achieved in two passes.

1. The photons are rendered with the stencil buffer enabled and set to incre-
ment on z-pass.

2. Now the stencil buffer is set to always keep the current values. The stencil
buffer is also set to only let pixels, where the stencil value is greater than
0, pass. For each grid cell a polygon that fills out the screen space of
that grid cell is drawn. During drawing occlusion queries are used. An
occlusion query returns the number of pixels that was changed during the
beginning and the end of the query.
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The information from the occlusion queries is then used during the final ren-
dering stage, where a blend is made between the scene rendered to a texture
(without caustics) and the photon texture. Quads are drawn where pixels are to
be filtered and the blend between the two textures is therefore only calculated
in pixels that covered by these quads. Bent D. Larsen uses points to decide

Figure 4.5: Illustration of a grid of quads.

which grid positions contain pixels. This solution is not ideal when zooming in,
because as photons disperse one might have grid cells inside the caustic contain-
ing no photons, thus these areas will not be filtered at all. We suggest using
ray footprints to solve this issue. Rendering discs at pixel positions with radius
given by the ray footprint will give a better idea of what grid cells needs render-
ing. This is important when using coherency improving methods suggested in
this thesis, because unfiltered areas will be very noticeable. A constant radius
was considered, but with thin caustics with large area, the ray footprints will
give a better solution. The drawback to this method is that rendering discs
instead of points can be very costly. Two different methods was tried, one using
a polygon disc and one using a polygon square with a texture containing a circle
(combined with blending). Surprisingly, with this implementation, the polygon
method was cheaper and is the one used. This optimization is best when the
caustic only takes up a small part of the screen space, which will be the case
most of the time. When the caustic takes up most of the screen space, the quads
optimization will turn into an extra rendering cost instead. Also noise in the
scene will hurt the efficiency of the optimization.

4.4.4 Pixel area
Due to the sampling being in screen space the closer the camera is to the caustic
the less photons will be contained by the view frustum. This means that less
photons are filtered and the power of the caustic thus is affected by the relative
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position of the camera to the caustic. Furthermore the orientation of the caustic
in the frustum will also affect the power of the caustic. This is due to the fact
that the greater the angle between the surface normal and eye direction is, the
more likely a single pixel is to contain a high number of photons.

image plane

surface

Ans

ne

pixel

eye

Figure 4.6: Illustration of a situation containing the variables used for the cal-
culation of dot product.

The solution suggested by [3] is to calculate the world space area, A, of the
pixel projected onto geometry contained by that pixel. The area is given by :

A = (ns · ne)
(

4d2tan

(
fx

2px

)
tan

(
fy

2py

))
(4.8)

where ns is the surface normal, ne is the direction from geometry to the eye
position, d is the distance from the eye point to the geometry that is contained
by the pixel.

eye

surface

ne

image plane

fy

d

A

Figure 4.7: Illustration of a situation containing the variables used for the cal-
culation of distance.

This area is used by the final caustic rendering, but we can calculate them
in a rendering pass of its own, where the scene is rendered black. The eye point
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and scene is naturally the same for both render passes (ie. this pass and the final
pass). Due to the fact that we use segmented filtering (which will be described
in depth later), the geometry values of the scene is not available at the time of
caustic filtering and this is the reason for this pass. The values are rendered to
a texture (dot product to one color value and area to another), which is then
passed to the final caustic render pass. The calculations are implemented as
follows.
Both of the following calculations use the screen space position ps and this is
calculated in a vertex shader by applying the model view projection matrix,
Mp, to the world coordinates of the vertex, pw, as such:

ps = Mppw (4.9)

This will produce coordinates in the intervals (xs, ys, zs) ∈ [−1, 1]. The raster-
izer will interpolate the coordinates for use with the pixel shader. The following
calculations will be performed in a fragment shader.

The rotation

The dot product of ne and ns is calculated in a pixel shader to achieve better
surface precision of ne. The value, ne, is the normal from the world position to
eye position (which is a constant value, that is passed to the shader).

The area

The depth value, zs, of ps after perspective division is given in the interval
zs ∈ [−1, 1]. We will find a new depth value, z, by applying

z =
ps.z
ps.w + 1

2
(4.10)

The result is a value, z ∈ [0, 1].

Application

In the final caustic filter the distance value, d, from eye to pixel is brought from
the interval [0,1] to world space by calculating

d = − nf

z(f − n)− f
(4.11)

The reason why this calculation is deferred to the final shader is that float point
textures hold values between [0,1] so we can transfer the depth value in this way
without loss of precision.

The pixel area shader is applied for all pixels in the scene, and one might
consider using the quad optimization (described in Section 4.4.3 on page 42) to
reduce the number of pixels. This shader is however very simple and the time
saved by shading fewer pixels might not outweigh the time spent on rendering
the quads.

This method alone does not solve the problems due to loss world position
information. When one zooms in on the caustic less photons are filtered and
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they are farther apart in screen space positions. This method increases the
power of the photons that are filtered with the kernel in the final shader and
improves the appearance of the caustic while the eye position is still at a some
distance. This optimization simply gives a better looking caustic at different
distances, but when zooming in to close the caustic will appear very bright an
unfiltered.

4.4.5 Coherency optimization candidates

There are three implementations in the final version of the program.

Empirical Mip-Map method

The empirical mip-map method requires that mip-levels are auto generated for
the photon texture upon rendering. It should be noted firstly that this is not a
physically accurate method. A fixed number of levels is sampled, we use 6 and
these are weighted using functions on the form :

f = a
1
xb

(4.12)

This is the form that the transformations of x,y-takes see Section 2.9. The exact
functions used are:

Level 0: c0 = 1
dist0.6 t(x, y)

Level 1: c1 = 1
dist0.8 t(x, y)

Level 2: c2 = 1
dist1.0 t(x, y)

Level 3: c3 = 1
dist1.4 t(x, y)

Level 4: c4 = 1
dist1.8 t(x, y)

Level 5: c5 = 1
dist2.2 t(x, y)

Where the dist value is the same value that was calculated for the pixel area
method. These are summed together.

c = c0 + c1 + c2 + c3 + c4 + c5; (4.13)

As we know from the perspective division equations 2.34 for the screen x and y
positions are non-linearly determined by the distance (and it is these functions
we are approximating). This means that the dispersion will accelerate the closer
the camera is to the object. The slope, b, controls the pace at which the different
levels are blended in. Level 0 needs to be filtered, since this is the original level.

However this means that at some point the photon power will saturate the
image. Finally using mip-maps in this manner will lead to squarely pre-filtered
values ie. blocky appearance. All the calculations take place in a Pixel Shader.
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Empirical Splatter method

This is another empirical method that uses a different set of pre-filtered data,
which we will generate. The ray differentials are not based on (x,y)-offset as in
the theory, but rather a (Θ, φ)-offset, which is chosen arbitrarily. Photons are
traced and then discs at photon positions are splattered on to a texture with
additive blending, so that overlapping photon discs add their energy together.
The reason for this is that a pixel that would be the center of a filter kernel
would receive energy from the photons contained within the kernel. If we instead
considered every photon as the center of a kernel and every pixel contained
within these kernels was incremented for each kernel. If the value written to the
pixels, p, where the photon count, n, of the pixel divided by area of the kernel
Ak combined with additive rendering, it would be the same as using a uniform
filter if the kernel radius was the same for both the filter and photon disc. The
value, p, is given by:

p = ss
n

Ak
(4.14)

and the final color of a pixel, c, in the texture when all discs where rendered
would be

c =
∑

i

pi (4.15)

Where i represents an index of a photon disc that covers the pixel. In the final
algorithm we only use one look-up in the texture so c is the value used. The
idea is illustrated on Figure One could use a fixed size radius, but this would
lead to very inaccurate shapes. Instead use the ray footprint given by the ray
differentials to give the radius of the photon discs. This not perfect either, since
the final value is given by the initial choice of (Θ, φ). The varying size leads
to inaccurate results. In classic photon mapping the photons, that contribute
to an area, is divided by that area. In this method each photon is divided by
their own area estimate. Also the method we use weights the photon count by
their distance from the kernel center, we could consider using the inverse of that
weight here, which would give something similar, but we leave this possibility for
future work. Several images (varying (Θ, φ)-offsets) could be used in the same
way as mip-maps, but a photon splatter texture is more expensive to generate.
We are rendering discs (using polygons, which is not optimal) instead of points
and this can get quite costly with many photons emitted.
A drawback to this method is that we are working in world space with discs that
rendered independently from geometry. This results in the method not working
correctly for receiving surfaced to which the entire disc cannot adhere.
Weighting is handled in a simple manor, where the normal filtered color and the
sampled value from the splatter texture are linearly interpolated by an arbitrary
fraction. The pixel area will saturate the image with the color, which means
that at some point the splatter value will become more and more apparent in
the image.
The splatter texture is passed to Pixel Shader which handles the blending.

Variable Area by Mip-Maps

The classic photon map technique varies the area in its radiance estimate to
find a desired number of photons, due to the speed requirement we are not
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Figure 4.8: Illustration of the idea, where the white square a pixel containing
photons. The red squares are the kernel centers and the red stippled shape is
the filter outline. The images contain (a) a square filter kernel, (b) a square
splatter area, (c) a round filter kernel, (d) a round splatter kernel and (e) a
round splatter kernel with varying radius.

able to just scale the filter kernel. Mip-maps provide information about how
many photons are contained in the area of size depending on the Mip-level. The
original texture level is 0 where pixel’s holds values of an area we consider 1 to
1. At level 1 the area is 4 to 1, at level k the area is 22k. These level have been
down sampled using a uniform average. The photon texture will have mip-map
levels auto generated possibly as show on 4.4.5, however whether fractions are
floored or ceiled is dependant on hardware. The idea is then that going up a
level could be the same as expanding the search radius. If we expand the search
radius, until a maximum radius is reached or we have found a photon value.
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Figure 4.9: Illustration of mip-mapping of photons. Part (a) is the level0 image,
(b) is the level1 image in floating points and (c) is the level1 image in 8-bit, where
the values are floored.

The photon value returned by a texture lookup (with bilinear sampling) is

c(x, y) =
1
A

k∑

i=−k

k∑

j=−k

t(x + i, y + j) (4.16)

Where A is the is the area of the filter used to create the level given by 22n for
level n. By using trilinear interpolation for texture lookups between the levels
one can get blended values of the different levels. The color value of trilinear
value is

c(x, y) = wclevel(n)(x, y) + (1− w)clevel(n−1)(x, y) (4.17)

where w is the weighting factor (or depth). The value of w is determined by
looping through the levels of the mip-map until values are found, if any are
found at all. The current method skips an entire level at the time. This will
produce a crude appearance. One does not have to skip one level at a time,
10 tests per level where tested, this means 50 samples are need for 10 levels,
which is unacceptable. Another method that was considered was using several
loops, where the first loop skips an entire level to find the two levels between
the interpolation takes place, then another loop uses a finer division between
only these two levels. This would accomplish the same precision except it would
"only" cost 20 samples, this is quite a bit considering that the standard filter of
4x4 uses 81 samples. The algorithm is as show on Figure 4.4.5.
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texcoords.w = 0
maxlevel = chosen max level
desired = chosen desired value

value = sample level 0 using texcoords
while(w less than level && value < desired)
{

texcoords.w++;
value = sample level++;

}

color = sample the tex using filtering and LOD samples with texcoords
color *= scale



Chapter 5

Implementation

5.1 Overview

An overview of the implementation is given here in two UML diagrams. In
Figure 5.2 the diagram shows the class structure of the main functionality (ray-
tracing, rendering and photon-mapping) centered around the RayView class.
In Figure 5.1 the diagram shown is the class structure of the Graphical User
Interface. Below the figureťs are short descriptions of the purpose of each class.
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Figure 5.1: UML diagram for the GUI of RayView
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Figure 5.2: UML diagram for the main functionality of RayView

5.1.1 Main classes

The main classes are considered the classes pertaining to the generation of the
resulting image. Also the Ray Feeler class has been included here.

RayView

RayView is the class that contains the Main() function and the Render loop.
It also acts as the binding link between the different Interface event and the
Graphic User Interface.

rvRay

The rvRay class contains RayViewťs representation of a ray used for raytracing.
It is used in Trace calls and if intersection occurs the information pertaining
to incidents are written to the ray and used when spawning a new ray, if max
depth has not been reached. The rvRay also contains information related to Ray
Differentials ie. a differential Position and Direction. The Fresnel coefficient, is
accumulated during a rays traversal through a scene.



5.1. OVERVIEW 53

rvPhoton

The rvPhoton class is RayViewťs representation of a photon. This is used when
a photon is stored as surface. It contains the storage position and surface normal
at the stored position. It also contains the accumulated Fresnel coefficient and
final values of the Ray Differentials.

rvIncident

The rvIncident class is created upon a rays intersection with a surface. It
contains all the information needed to calculate spawned rays, shading and
Fresnel coefficients at an incident.

rvTimer

The rvTimer is the timer class used for generating the results. It is able to
measure time with a precision of less than 1 ms. Start begins the measurement,
Stop end the measurement and Duration is the resulting time span.

rvCamera

The rvCamera class is RayViewťs representation of a camera, it holds and calcu-
lates information needed to set up projection and perspective transformations.

rvLight

The rvLight is the basic light class. The support light types are spot and point
light sources.

rv3DModel

The rv3DModel class is an abstract class used to define the different Mesh
classes. Each class contains information regarding transformation, appearance
and surface constants (including reflection index).

rvSphere

A mesh class derived from rv3DModel. This class contains a Mesh.Sphere ob-
ject.

rvMesh

A mesh class derived from rv3DModel. This class contains a Mesh.FromFile
which is able to load .x files. The .x format is Microsoftťs object format and
plug-ins for importing and exporting this format exist for most major graphics
programs such as Maya and SoftImage.

rvPolygon

A mesh class derived from rv3DModel. This class contains a Mesh.Polygon
object.
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rvBox

A mesh class derived from rv3DModel. This class contains a Mesh.Box object.

rvRayTracer

This is the class that supplies a standard Monte Carlo Ray Tracer and also con-
tains the photon tracing capabilities of RayView. After a call to EmitPhotons,
the resulting photons are contained by the rvRayTracer class.

rvRayFeeler

The rvRayFeeler class was implemented and used during the development and
has been left in. It can trace a ray or photon through a scene and show the
resulting path of the ray and its ray differentials.

HaltonSequence

This is RayViewťs implementation of Halton Sequences as discussed earlier. It
provides the ray tracer with random values in the interval [0,1] for use with
photon emission.

5.1.2 Graphical User Interface classes

The classes used in the GUI and for creating the user interface.

rvMouseControl

This contains the mouse event handler for the Windows Form ie. RayView.
It also contains RayView and upon receiving an event it calls the methods in
RayView to handle the event.

rvKeyControl

This contains the key event handler for the Windows Form ie. RayView. It
also contains RayView and upon receiving an event it calls the methods in the
RayView class that corresponds to the pressed key.

guiFrame

This is a GUI element that controls the area of the screen that will ray traced.
It is used only in the Ray Tracing mode of RayView.

guiElement

This is an abstract class that defines the different guiElements (guiCheckBox
and guiButton). The Status method of guiElements are used by RayView during
the rendering loop to check different settings.

guiCheckBox

This is a check box.
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guiButton

This is a button.

guiElementGroup

This class contains a list of guiElements and when drawn to screen the guiEle-
mentťs contained by this guiElementGroup are drawn appropriately as well.

guiControlPanel

This is the main GUI class. It contains a list of guiElementGroups, which in
turn contain the guiElements. When the guiControlPanel all parts of the GUI
is drawn. The elements are drawn in the order added to the guiControlPanel
and guiElementGroups.

5.2 Direct3D and HLSL

The DirectX 9.0 SDK that was used during development and testing was the
October 2005 release. The shader version targeted was Shader Model 3.0. It
would have been nice to implement the shaders to support Shader Model 2.0.
However Pixel Shader 2.0 is limited to 32 texture instructions and 64 arithmetic
instructions, which is insufficient considering that with a filter of radius 2, 25
texture lookups would be needed. Pixel Shader 2.x promises the possibility of
unlimited texture instructions, but can only guarantee 96 arithmetic instruc-
tions, which i not enough for our complex filtering algorithm. Pixel Shader 3.0
guarantees a minimum of 512 arithmetic instructions as well as unlimited tex-
ture instructions.

Due to Managed DirectX being new, the normal DirectX re-distributable
installer does not install the files needed for Managed DirectX support. If the
command line switch

/InstallManagedDX

is used the files will be installed. The Managed DirectX environment at this
point is also undergoing large changes and support between versions is far from
guaranteed. This was developed with the October 2005 release of the DirectX
SDK. The dllťs used are

• . . ./1.0.2902.0/microsoft.directx.direct3d.dll

• . . ./1.0.2909.0/microsoft.directx.direct3dx.dll

• . . ./1.0.2902.0/microsoft.directx.dll

When using C# and .NET the .NET Framework 1.1 (in this case) is required.

The Managed DirectX 9.0 October release (which includes the DirectX Re-
dist MSI installer), which was used is included on the cd that is supplied with
this paper as well as the .NET Framework 1.1 installer.
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5.3 Mesh class

The Mesh class, along with ease of coding, was the main reason that Managed
DirectX and C# was chosen for this project. The Mesh class delivers two
important things, support for any mesh (such as the Cognac glass we use)
and an Intersection method. Mesh classes can represent standard models such
as a Sphere, Box, Cone, Polygon (read: mesh surface) etc. with standard
implementations in DirectX. It can also load .x files into a mesh and will support
intersections for these. The Mesh class has it’s own draw function and also
has advanced functions such as generation of tessellation levels and cloning for
instancing.

5.4 Microsoft .x file format

The .x file format is Microsoft 3D model class. It can contain a mesh model,
animations, materials, texture and more. Most major graphics illustration soft-
ware, such as Maya, SoftImage and 3d Studio Max either has standard support
for the file format or have plug-ins available to add support.

5.5 AutoMipMapGeneration

AutoMipMapGeneration is key to the use of Mip-Maps, this feature is not cur-
rently supported for 32-bit floating point textures, but only 8-bit texture. The
result in stored photons can quickly erode completely from an image, which will
happen as soon as a value is less than 1. How quickly depends on how dense the
distribution of photons is since mip-mapping uses an averaging filter on values.
In computer graphics greater color resolution is a active topic of development
and in the future the author hopes auto mip-map generation will be available
for 32-bit textures.

5.6 Graphical user interface

Here descriptions of the different options in the graphical user interface will be
given.

Modes

The first element group is modes, where RayView is set to the desired mode.
The mode of interest is photon-map, the others where necessary steps in devel-
opment.

Rendering

This mode set RayView to ordinary rendering (using the standard pipeline) of
the selected test scene.
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Figure 5.3: Image of the application and GUI.

Rayfeeler

This mode uses the ray tracer to emit a single ray into the chosen test scene.
The resulting path is displayed in the scene (which is rendered in a standard
fashion) and the ray differential paths are also drawn.

Raytracer

This mode ray traces an image. It takes a long time and no status is shown,
so one should be aware that the program has not frozen if it appears so after
selecting this mode, it is simply working hard. The frame can be used to decide
how much of the window area is to be rendered.

Photon-map

This mode blends a caustic into a scene rendered in a standard fashion. This is
the where the results of the thesis can be seen.
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Projection
The projection category is used to decide on the type of projection used, the two
options are perspective and orthogonal projections. This also affects standard
ray tracing.

Fillmode
This chooses the fill mode. Solid or wire frame. This does not affect ray tracing.

No of photons
Since a text input was not implemented, options for the number of photons
emitted for the photon-map has been added. The number of photons range
from 1 to 100,000.

Test scene
Chooses from the different test scenes that have been used for testing. In the
result section each of these scenes will be described in more detail.

Misc
Under misc the are options to take a screenshot, save the current splatter and
hide the gui. The screenshot is generated by saving the current backbuffer to
file, which means that everything rendered to the window is captured (including
the GUI). The splatter is the texture generated for use with one of the caustic
generation methods.

Options and Display
There are several options in these two categories:

Mark light if checked the light sources contained by the chosen scene will be
marked with a sphere to indicate position and a line to indicate a direction.

Show x,y and z-axis if either of these are checked the relevant axis are shown.

Lighting if checked will enable the render pipelines Phong illumination for the
scene.

Frame if checked the frame for ray tracing, will be shown and can be resized
by click and dragging it.

Use Halton if checked Halton sequences will be used to generate directions,
otherwise the system random generator will be used.

Photon dirs if checked photon paths of stored photons will be shown. This
must be enabled at the time of emission to occur.

Initial dirs if checked the initial photon dirs of photons will be shown. This
must be enabled at the time of emission to occur.

Normals if checked the normals of surfaces will be shown.
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Stats if checked different statistics for the scene will be shown in the top left
corner. The time measurements are averages of 10 (this value is a constant
in the program) renderings.

Show quads if checked the quads, used for accelerating the filtering, will be
drawn as black squares over the scene.

Pixel Area if checked the pixel area method will be used.

Use quads if checked the quad acceleration method will be used.

From discs if checked the quads will be generated using discs, rather than
photons.

Use mip-map if checked the mip-map method will used.

Ray footprint if checked the splatter (ray footprint) method will be used. Will
only be used is mip-map is unchecked.

Emit once if checked photons will only be emitted once and then reused the
following frames.
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Chapter 6

Results

The emission part of the algorithm can be disconnected from the filtering part of
the algorithm since at some point most emission methods generate intersection
points in space. This enables us to use a simple ray tracer quality testing and
evaluate how the algorithm would work with an advanced ray tracer by using
results from a different implementation.

The implementing and testing will take place on a system with the following
characteristics:

• The CPU is a Pentium M 1.9 GHz.

• The graphics card is an nVIDIA GeForce Go6800

• The OS is Windows XP

• The editor is Microsoft Visual Studio .NET 2003

• The SDK is Microsoft Managed DirectX 9.0 (see more details in the Im-
plementation chapter)

• The programming language is C# and the shader language is HLSL

• The resolution is fixed at 700x700.

We will use the performance measurement tool PIX supplied with the DirectX
SDK to measure most values. The rvTimer class will be used to measure some
times in milliseconds.

6.1 Emission
In our tests we will use our own results and extrapolate what results would be
possible with a faster Ray Tracer.

6.1.1 Reference Ray Tracer : OpenRT

The ray tracer we will use as a reference is Wald’s OpenRT as described [7].
The OpenRT system uses a selection of the optimizations some of which are

61
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described in short in the Appendices. The OpenRT ray tracer has been tested
on a 2.5 GHz Pentium IV notebook processor. Using scenes, with the following
polygon count, with an unknown, but a seemingly high amount of objects (see
Wald’s paper for images). The complexity of the scene is given in Figure 6.1.
Wald includes some performance tests for these scenes, we’ve plucked a few,

Name #Triangles
ERW6 804
ERW10 83.600
Office 34.000
Theater 112.306
Conference 282.801
Soda Hall 2.247.879
Cruiser 3.637.101
Power Plant 12.748.510

Table 6.1: The scenes used by Wald for testing the OpenRT ray tracer.

which are shown on Figure 6.2. Here we only include the results for pure ray

Scene FPS @ 1024x1024
ERW6 (static) 8.95
ERW6 (dynamic) 4.00
ERW10 5.82
Office (static) 4.68
Office (dynamic) 2.61
Theater 2.68
Conference (static) 4.40
Conference (dynamic) 3.17
Soda Hall (in) 3.68
Soda Hall (out) 4.47
Cruiser 3.38
Power Plant (in) 1.43
Power Plant (out) 1.59

Table 6.2: These are some of the results of the OpenRT ray tracer. The values
are Frames Per Second.

tracing (ie. no shading), but results for shaded ray tracing are also given in
Wald’s thesis. The average of these value is :

FPSavg,openrt = 3.9123 (6.1)

The algorithm scales quite well for increasing scene complexity so using the
average should be acceptable. However Wald is testing ray tracing and shooting
a large amount of rays, that is 1.000.000 rays. This is very likely more than is
needed to generate caustics and in the test program the maximum is 100.000.
If we assume that cost scales linearly with the number of rays an average for
the number of photons we can test are given on Figure 6.3. These are very fast
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No of rays ∼ FPS ∼ time to trace
1 30.0123 · 105 0.0003
200 15.0650 · 103 0.0664
1000 30.0123 · 102 0.3332
2000 15.0615 · 102 0.6639
3000 10.0400 · 102 0.9960
5000 600.0246 1.6666
10000 301.23 3.3197
20000 150.6150 6.6494
50000 60.2460 16.5986
100000 30.123 33.1972

Table 6.3: These are some of the results of the OpenRT ray tracer. The values
are Frames Per Second and the time it takes to trace the rays in milliseconds.

tracing times as we shall discuss, when we below compare OpenRT to the ray
tracer created for this thesis.

6.1.2 Thesis Ray Tracer

The implementation of the ray tracer for this thesis is a simple one, and the
interesting thing about it, is the performance of the Mesh.Intersect method.
The test scenes have between 1 and 5 objects and thus scene hierarchies would
do little to improve our purpose.
In Figure 6.1 images of the test scenes rendered using standard rendering with
Phong shading, are shown in Figure The complexity of the test scenes are shown
in Figure 6.4. The results of emitting a tracing 2000 rays in the different rays

Name #Triangles
Single sphere 4900
Sphere & Box 1768
Cognac glass 5700
Sphere in Box 4920
Brass Ring 644
Wave plane 2010

Table 6.4: The scenes used in this thesis and their polygon count.

through the scene are given on Figure 6.5. Column shows the average level
reached by the rays. The ray level can average below 1 because the ray starts at
level 0 and level 1 is reached only after a ray is either reflected or refracted. For a
perhaps more natural measure add 1 to the values in column one. Our emission
scheme means that rays that hit a non-specular surface on the first bounce will
be eliminated, therefore many rays are eliminated early on. It should also be
mentioned that we are using a spot light source to emit the photons, but the
spots are not perfectly adjusted.
The second column is the average time of the tracing the full ray paths. This
value changes roughly with the complexity of the objects, but it also seems that
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Figure 6.1: Top-left: Single sphere, Top-right: Sphere & Box, Center-left:
Cognac glass, Center-right: Sphere in Box, Lower-left: Brass Ring, Lower-right:
Wave

the object type has an effect. The cognac glass is only a bit more complex than
the single sphere (from triangles, 116%), but it takes much more time to trace
(448%). The cognac scene also contains a plane, but this plane is only 2 flat
polygons.
The third column shows the total time to trace a ray, while also calculating ray
differentials for two offset rays (none where calculated in column). These values
follows the values from column two as expected, and are only slightly lower

RDcost ≈ 0.0025 = 1.1353% (6.2)

The fourth column is the average time of the intersection tests in the scene, no
data to compare these with where available for this thesis. These are not pure
measures of the Mesh.Intersect method, but includes inverse transformations of
the ray using the vector and matrix algebra package that comes with DirectX.
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Name ray level trace ray no ray diff intersect total
Single sphere 1,0336 0, 1059 0,1016 0, 0828 140,3572
Sphere & Box 0,6662 0, 0900 0,0814 0, 0222 344,9263
Cognac glass 0,5185 0, 4740 0,4718 0, 3809 718,7494
Sphere in Box 0,0401 0, 0074 0,0072 0, 0622 284,7446
Brass Ring 0,0625 0, 0178 0,0176 0, 1029 65,3781
Wave plane 1.2583 0, 3325 0,3252 0, 0627 275,5466

Table 6.5: The results of testing the ray tracer is given in the table. 2000 rays
where emitted and the values are averages of the times measured. ’Ray level’ is
the average depth of a ray, ’trace ray’ is the average time to trace a single ray,
’no ray diff’ is the same without calculation ray differentials, ’intersect’ is the
average time of the intersection tests and ’total’ is the total cost of tracing the
2000 rays. Times are measured in milliseconds.

The fifth column is the total time of tracing 2000 rays with the thesis ray tracer.
From previously (Table 6.3) we have the estimated value 0.6639 ms. This result
is far smaller than any of our values as seen in Table 6.6. What we are interested

Scene Name %
1 Single sphere 99.53
2 Sphere & Box 99.81
3 Cognac glass 99.91
4 Sphere in Box 99.77
5 Brass Ring 98.98
6 Wave plane 99.76

Table 6.6: How many percent faster OpenRT would likely be compared to the
thesis tracer. Of course the OpenRT value used is an interpolation and in
practice a direct interpolation is not realistic.

in for the remainder of the results are how much time, after emission, is left for
filtering. FPS is a frequency measure and means Frames Per Second. FPS is a
common value for measuring the speed of an graphics application, however we
will measure in ms. FPS is calculated by

FPS = 1/t (6.3)

Where is divided by the time in seconds. If we set a goal of 30fps we calculate
the milliseconds at our disposal as

tmax = 1/30 ≈ 0.0333s = 33.3ms (6.4)

After emitting photons we should thus in theory have the disposable times given
in Table 6.7. These values are based on the values in Table 6.3. These values are
the basis of comparison for the rest of the thesis. For different applications there
will be different expectations with regards to speed. In computer gaming a single
part of the full algorithm cannot be allowed to take up a 33.3ms. Caustics is
considered just an effect and would probably not be used in a framework, where
it was the only effect.
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No of rays tdisposable ∼ time to trace
1 33.2997 0.0003
200 33.2336 0.0664
1000 32.9668 0.3332
2000 32.6361 0.6639
3000 32.3040 0.9960
5000 31.6334 1.6666
10000 29.9803 3.3197
20000 26.6506 6.6494
50000 16.7014 16.5986
100000 0.1028 33.1972

Table 6.7: How many percent faster OpenRT would likely be compared to the
thesis tracer. Of course the OpenRT value used is an interpolation and in
practice a direct interpolation is not realistic. Time values are in milliseconds.

6.2 Filtering
The two main categories that we consider when evaluating the caustic filtering
algorithm are performance and appearance. First we will look at the standard
filtering method with no optimizations. Then we will review the results for each
part of the algorithm, including each of the suggested methods. We use 5 of
the 6 test scenes from previously, we drop Scene 1 because the scene contains
no diffuse surfaces. Since filter takes place in image space and we do not use
quads we will always be filtering the same amount of pixels ie. 700x700 pixels.
For this reason we need only test filtering speed with one scene.

6.2.1 Basic filtering
Basic filtering means that the Pixel Area area will be disabled. So will all of the
coherency optimizations. Quads will be enabled. For the irradiance estimate we
need to generate the caustic texture and then filter it. We emit photons once
and then filter with only quads enabled in some cases. The basic filter is pri-
marily affected by how much of the screen area is to be filtered, we can see the
percentage filtered by showing the quads. However when generating the photon
texture, we are rendering the scene and the cost of this may very depending on
camera position. Also the number of photons would affect the rendering time
of the photon discs used to determine the quads. We chose to use only Scene
4 and two different amounts of photons with filter kernel of size, 4x4. on figure
6.2. The results of the test are shown in 6.8. On Figure 6.3 we show the images
saved at the positions, where the stats was gathered. As expected the number
of photons have minimal impact on the performance of the filtering algorithm.
The quad optimization is already hinting that it is valuable. Table 6.9 shows
the values if we add the appropriate OpenRT tracing times from Table 6.3.
These are the estimates of the frame rates the algorithm should run at using
OpenRT for photon emission. With the added cost the cost of the basic filter
is reasonable.

Quality of the caustic is fine given an appropriate amount of photons and
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Figure 6.2: The setup for the basic filter test.

# Test # Photons Quads Screen% # Pixels FPS Duration (ms)
1 2000 2 5.56 27440 53.12 18.82
2 2000 8 22.22 108878 49.68 20.13
3 2000 36 100.00 490000 19.04 52.52
4 20000 2 5.56 27440 46.21 21.64
5 20000 8 22.22 108878 47.05 21.25
6 20000 36 100.00 490000 20.05 49.87

Table 6.8: The screen percentage is calculated from the number of quads, which
is set to 6x6 during the tests and the screen size is 700x700. The FPS is measured
using PIX, and averaged over the frames, and the rest is calculated from the
other two values.

#Test ∼ Duration ∼ FPS
1 19.49 51.31
2 20.79 48.10
3 53.18 18.80
4 28.29 35.35
5 27.90 35.84
6 56.52 17.70

Table 6.9: The estimated runtime values using the quad optimization in some
cases.

distance. If one zooms in the expected results is a visible change in the power of
the caustic. From a distance many photons are considered in a few pixels and
thus, while up close few photons are filtered. Some caustics in scene 2 is shown
on figure 6.3. These images also show how this method in a natural way handles
non-planar surfaces like the corners of a box. Another problem is rotation of
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Figure 6.3: (Distance,Photons) Top-left:(1,2000), Top-right:(1,20000), Center-
left:(2,2000), Center-right:(2,20000), Lower-left:(3,2000), Lower-right:(3,20000)

the camera about the caustic, this will be shown in the next section.

6.2.2 Pixel Area
The pixel area part of the algorithm is an empirical method used to scale the
caustics power with regard to distance. Ideally this would be replaced by the
coherency optimizations, but this has not been done in this implementation.
Figure 6.4 shows It is clear that the power of the caustic appears less affected
by distance and rotation. It however only scale the filter values, meaning that
it does not solve coherency problems.

We will test the cost of pixel area by using standard filtering and quads
generated from points. The pixel area algorithm should be impacted by the
number of pixel that contain geometry, we will test this by zooming in on the
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Figure 6.4: Are series of images where the left column contains images, where
pixel area was not used and in the right column the images are rendered using
the pixel area optimization.

contents of Scene 4 and measure the speed with and without pixel area enabled.
The setup is shown on Figure 6.5. Table 6.10 shows the results of test at the
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Figure 6.5: The setup for the basic filter test.

top (Test 1) and bottom (Test 2) positions show in Figure 6.3. It should be

#Test ∼ Duration w PA ∼ Duration wo PA Difference
1 32.69 24.46 8.23
2 27.49 23.79 3.70

Table 6.10: The estimated runtime cost (in milliseconds) of using the pixel area
optimization.

noted that the values are averages of 500 samples each. It seems clear and
reasonable that there is a cost associated with using the pixel area. However
it does not seem a high cost and the variance in the rendering calls add great
noise to the data. Test 2 should in theory cost more to calculate than Test 1,
but the variance seems to be too great to get a clear measurement. If we check
the rvTimer in the program it estimates that the pixel area pass costs around
0.1ms and this would naturally not be noticeable with the values we found with
PIX.

6.2.3 Quads
The quad optimization is expected to increase the speed of the filtering process,
without harming the appearance of the caustic. An issue with using single
points to generate quads is that at some point they will become incoherent
and if grid cells are small enough they may be empty. Figure 6.6 illustrates
an image filtered using original quads and the quads rendering as suggested
in this thesis. Figure 6.6 shows how a combination of finely divide quad grid
and point rendering can cause unfiltered holes in a caustic, when zooming in.
Using photons discs does not guarantee a perfect solution, since the filtered area
depends on kernel size, rather than the ray differential size. It should however
be sufficient for most situations.
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Figure 6.6: The four images contain (topleft) contains the quads generated with
points, (topright) contains the image generated using the quads from topleft,
(bottomleft) contains the quads from photon discs and (bottomright) contains
the image rendered using bottomleft quads.

Quads also improve speed and Figure 6.7 shows how the amount of screen space
is rendered depends on the distance from the caustic.

We will test the effectiveness of the optimization by rendering Scene 4 with
quads enabled with discs, photons and disabled. We will disable pixel area and
coherency optimizations. We will test with a different amount of photons in the
scene, since this should have a great effect on whether using discs is actually an
optimization in it is current implementation. Table 6.11 shows the results. The

#Test # Photons Duration wo Quads ∼ Duration w Photons ∼ Duration w Discs
1 2000 49.95 27.72 32.14
2 20000 49.97 28.75 107.94

Table 6.11: How quad affects the FPS in at different settings. The values are
times of total rendering in ms. Emission takes place once.

values indicate that discs are more expensive than photons. Photons for quad
generation will be an optimization over no acceleration in most cases ie. it seems
to handle large amounts of photons fine. Discs however become very expensive
at a relatively small amount of photons (most scenes would likely require more
than 2000 photons to create caustics in), this would have to be solved for the
method to be truly useful. It is not perfect either, if using a different filter that
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Figure 6.7: The four images contain (topleft) contains the quads generated with
points, (topright) contains the image generated using the quads from topleft,
(bottomleft) contains the quads from photon discs and (bottomright) contains
the image rendered using bottomleft quads.

produce a different (larger) caustic it could still be broken by the quads. This
can be the case with the mip-maps, but the method is naturally ideally suited
for the splatter method, since they use the same ray footprints.

6.2.4 Empirical Blend with Mip-Maps

Empirical mip-maps was a simple method used to see what the auto generated
mip-maps would look like. The result are given for Scene 1 to 6 in Figure 6.8.
The result are caustic with increased power, which is caused in part by the blend-
ing functions used and in part by the application of the pixel area optimization
(saturation would occur without pixel area, just slower). Also the shape is not
accurate, whether this is acceptable depends on the user. The method does
create coherency, but the images are not physically accurate. However they
do treat the surface more correctly, since it is based on the original photons.
However it is not perfect since the mip-map does not use depth to see if it
overlaps other geometry as seen with the brass ring on Figure 6.8. The cost of
the rendering will be measured using quads, pixel area and empirical mip-maps
(Mip-maps v2) enabled. The different scenes are tested in a close up situation
as shown on 6.8. The results are shown on Table 6.12. The being close results
in the quad optimization not giving much of a speed up, this results in a lower
FPS. The FPS is not considered real-time, but is still interactive. At a distance
the FPS is real-time with the method turned on.
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Figure 6.8: The quality test for empirical mip-maps.
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# Scene # Photons FPS Duration FPS w OpenRT
2 (near) 5000 14.99 66.71 14.62
2 (far) 5000 28.98 34.50 27.65
3 (near) 5000 15.01 66.62 14.64
3 (far) 5000 32.56 30.71 31.48
4 (near) 5000 14.56 68.68 14.21
4 (far) 5000 29.60 33.78 28.21
5 (near) 5000 19.48 51.33 18.87
5 (far) 5000 30.62 32.66 29.13
6 (near) 5000 14.84 67.39 12.41
6 (far) 5000 29.33 34.09 27.97

Table 6.12: The rendering times of running the application with the Empirical
Mip-map method

6.2.5 Empirical Blend w Photon Discs
The empirically blended splatter map uses photon discs rendered to a texture.
The quality tests are shown on Figure 6.9 for scenes 1 to 6. This method
produces nice results in some cases, but cannot handle edges and bumpy surfaces
as seen, since the discs will stick out and also through objects. The method
produces nice looking caustics for open planar surfaces, which means that it is
not a very general method. The of the splatter method was measured using pixel
area and quads. And was measured at a distance and close up. The results are
shown on Table 6.13. The method, with it is current implementation is not able

# Scene # Photons FPS Duration FPS w OpenRT
2 (near) 5000 11.36 88.28 11.11
2 (far) 5000 11.72 85.32 11.63
3 (near) 5000 14.25 70.18 13.92
3 (far) 5000 28.88 34.63 27.55
4 (near) 5000 14.44 69.25 14.44
4 (far) 5000 17.74 56.37 17.23
5 (near) 5000 22.51 44.42 21.70
5 (far) 5000 34.04 29.38 32.21
6 (near) 5000 11.73 85.25 11.50
6 (far) 5000 14.91 67.07 14.63

Table 6.13: The rendering times of running the application with the Empirical
Splatter method

to what is considered real-time frame rates, interactive frame rates are realistic.

6.2.6 Level adjusted Mip-Maps
The last method considered gives the quality tests shown on Figure 6.10. The
quality is unacceptable and not an improvement. There seems to be unresolved
issues with using a mip level that is unique to each pixel. during develop this
was also seen using a splatter texture to give values for blending. We attempted
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Figure 6.9: The quality test for empirical splatter
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to use loops to get a finer resolution for the trilinear sampling, but the results
are not satisfying. This however is far from the expected result and the author
has of yet not been able to explain the appearance. So it is possible that there
are flaws in the implementation.

6.2.7 Various observations
Here some general observations will be reviewed.

Filtering method

The different filter types described in Section 4.4.1 give different results. A caus-
tic from a sphere filtered using the different filters is shown on Figure 6.11. The
square filter produces noticeably blocky images at almost any distance. Bent’s
filter produces images similar to the new filter, except as one zooms in the filter
shape changes towards a square filter. The author, whose opinion might be
colored, prefers the image produced with the new filter. It utilizes the entire
filter kernel and produces nice rounded filtered photons.

Critical Angles of Ray Differentials

Using ray differentials leads to an issue with critical angles for ray differentials,
when the photon path does not surpass the critical angle. An image of the
photon paths of a ray traced scene is shown on Figure 6.12. Figure 6.12 shows
that in some scenes it can be quite a lot of photons, whose ray differentials
exceed the critical angle. Of course this only happens in scenes with refractive
objects.

Texture coordinates for Mip-map sampling

There seem to be unresolved issues with the filter coordinates as can be seen on
6.8. The photon is not positioned at the center of the filtered square. We do
adjust the screen coordinate, before using it for the loop-up. The adjustment
is needed since pixels are defined by a point in the center of the pixel, which is
not the case with texels. The adjustment is given by [25] as :

t(u, v) = cs(x, y)− (0.5, 0.5) (6.5)
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Figure 6.10: The quality test for empirical splatter
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Figure 6.11: The different filter types. Top row are the square filtered images,
the center row is Bent’s filter and the bottom row is the filter presented in this
thesis.
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Figure 6.12: This is test scene 4, where the green ray are the initial directions,
the white paths are the photons paths of the stored photons and the red rays
are the photon paths of stored photons, where the ray differential exceeded a
critical angle at some point.
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Figure 6.13: The path that changes color is the photon path, the red and green
paths are ray differential paths and the black path segments are used to indicate
that this ray differential has exceeded a critical angle.



Chapter 7

Discussion

7.1 Conclusion

Three methods have been presented for adding coherency to a caustic, a new
filter kernel has been presented as well as a new method for improving the gen-
erality of the quad optimization.

The filter kernel presented creates a softer and more round appearance. It
also utilizes all the samples in a kernel.

The improvement to the generation of quads is necessary. Normally the
quads would cover the filtered area, but when we add coherency the quads gen-
erated using photons are no longer sufficient as seen en the results section. The
method using quads improves on the quality of the method, but it is rather slow
in its current implementation.

The quality of the caustics generated using the empirical methods are crude
and due to the blending method the caustic saturates the image, thus appear-
ing more powerful. There also exist a need for adjusting the lookup since the
center of the filter used for sub sampling the mip-map is not actually place in a
center pixel. The center on the test machine is instead positioned in the topleft
pixel of a square kernel. However the method handles arbitrary surfaces like the
standard filtering method and is also cheap.

A good implementation of the Level adjusted mip-map level for simulating
dynamic radius in the filter kernel was not reached and the caustic is ruined
by the current implementation. The idea was included in this thesis because it
could possibly be developed further.

Mip-maps are crude and alone would probably not give nice looking caustic.
They are however generated fast and offer support for arbitrary surfaces. There-
fore the idea should not be abandoned completely. If combined perhaps with
ray differentials or a combination of filtering and blending it may become useful.

The last method used a splattered texture and produced nice looking caus-
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tics if emitted onto planar open surfaces. There is however issues concerning
speed, this could perhaps be remedied with a better implementation. A sprite
implementation of photon discs was tried, but was even slower than the polygon
based discs, the reason for this could be inexperience and the idea should not
be abandoned. Arbitrary surfaces are not handled well by this method either.

The estimated speeds of the mip-map method was very good and combined
with a fast ray tracer such as OpenRT, fast real-time caustics are not out of
reach.

Managed DirectX is very new and may improve, which could affect the
speed of the implementation. Is noted that normally OpenGL or Unmanaged
DirectX with C++ is used. The author had only had experience with OpenGL
at the beginning of the project and better implementations could also affect the
speed in a significant way. In particular parts with many draw calls, such as
photons or more importantly discs, there could be much to gain from reducing
the number of draw calls, buffer locks and more according to the Microsoft SDK
Documentation. The author however did not become aware of this in time to
effectively put the knowledge to use.

7.2 Future work
Future work could use a ray tracer and as computers become more powerful
the fast ray tracers will be more useful, for generating effects. The ray tracer
can handle surfaces and geometry more physically accurate than the rasterized
techniques at the moment.

The splatter method presented would have to be sped up. Drawing photon
discs would have to be optimized. A fast implementation might use a square
(defined with 4 vertices) and a texture containing a circle to draw fast photon
discs. However there are many drawbacks to this method that would have to
be solved and it seems unlikely that it will succeed.
Also the splatter method currently overlaps objects, this might be render for
occlusion as was done when drawing photons to a texture. This is done by
simply drawing the black scene before, drawing the discs. However this would
add further cost to the method.

Using ray tracers would likely include the use of a fast filtering method, but a
method would need to be more robust than the methods presented here in their
current states. Mip-maps promises fast generation of data levels and conserves
the values of the texture to a certain level. Fast mip-level generation for floating
point textures would enable the method to handle more photons, this is however
a hardware problem. A better blending method might be developed using ray
differentials.
Also for mip-maps the texture coordinate look up issue should be examined.

Finally more research is likely to be focused on Caustic Maps, mentioned in
related work, which is promising method, that however is less accurate when
distributing photons. If the accuracy is increased this method might become
dominant.



Appendix A

Ray tracing and photon-map
optimizations

Here we will give a overview of some of the possible methods for accelerating ray
tracing in regards to photon emission and photon mapping that was considered
during the planning of this thesis. An overview of many more methods can be
found in [7], this encompasses methods that are not directed at caustics, but
ray tracing in general.

A.1 Intersection

Intersection tests are where much of the calculation in a ray tracer takes place.
Making sure that these are optimized is therefore very important and several
optimizations can that complement each other.

Primitive intersections

At the base level is the intersection between primitives, which could be pa-
rameterized or meshed depending on implementation. SIMD implementations
would probably be used, to take advantage of modern computers multi thread-
ing capabilities. Some papers on the subject primitive intersection testing are
[26, 27, 28, 29, 30, 31].

Bounding volumes

Bounding volumes where introduced in [32] and applied in [2]. A bounding
volume is used to encapsulate complex objects with a simpler shell. Intersection
testing with the shell is faster, because of the lower complexity and can therefor
be used to quickly eliminate objects that a ray path does not intersect with in
a complex scene. Common bounding volumes are a box or a sphere. A box
is faster to test intersections against, but a sphere might give a more accurate
intersection test by enclosing the encapsulated object tighter.
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Spatial subdivision

With spatial partitioning the object is divided in to voxels containing pointers
to faces they contain. For rigid objects a BSP-tree containing the information
needed is generated once. Walking through a tree to the voxel containing faces
and intersecting the contained faces is likely faster than checking intersections
against all the faces of the object. Itťs important to decide on how fine a division
is used is important, since too many voxels will increase the cost of walking the
tree.

A.2 Initial rays

If one can find methods to cheaply reduce the number of initial rays, it could
greatly reduce the number of intersections that needs to handed.

Projection maps

A simple method for determining in what directions shooting rays would be
useful is using projection maps as is done in [17]. Projection maps are 6 images
containing the scene rendered in each direction from the light source. Only caus-
tics generators would be rendered and when emitting one can check whether or
not to emit a photon with a lookup in the projection map using the direction.
Whether this is an optimization depends on the scene. In a scene with complex
geometry and movement of the generators, the cost of rendering for the projec-
tion maps might be too great. We use scenes that are sparsely populated and
ray’s are only checked for intersection a few times, so elimination is quick as is.

Simple sample reuse

In [17] a simple method for reducing the number of photons emitted is suggested
and tested. This involves elimination of a percentage of the photons emitted
last frame and shooting the same amounts of new photons. This was not tested
in animated scenes, but is assumed to work in relatively static environments.
In static environment the authors found it to be acceptable. The author of this
thesis imagines that it would reduce flickering in the caustic. Since this thesis
is not going for an

Sample reuse

For ordinary ray tracing of dynamic scenes an optimization has been suggested
by Formella in [11], in which the entire path of a ray is saved. Thus when this
ray is intersected by moving objects it is retraced. It is possible that this could
be adapted for photons, although it would require extra memory storage.

A.3 Traversal

Eliminating a ray, that does not contribute to the final image (here under caus-
tic), can possibly save many intersection calculations. Ray tracing a scene could
lead to explosive growth of the ray tree, with photon emission each intersection
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leads to a maximum of 1 emitted ray, so there is less gain, but it still should be
noticeable.

Spatial and Hierarchical subdivision of scenes

The scene, much like the objects themselves, can be segmented into voxels using
splitting planes. This would be saved in a tree structure that, if balanced, could
save a lot of intersection tests. This is the case since once a ray is know to travel
on one side of the plane, things on the other side can be eliminated. There are
several different tree types and many of these where included in a test by Havran
et al. in [33]. BSP-tress and Kd-trees are generally considered the best options.
These methods where originally developed for static scenes where the trees can
be build on startup thus not incurring a penalty of building during rendering.
However for dynamic scenes the tree would have to be updated, which could
mean that it is not a speed-up. An issue that can occur with scene divided by a
large number of small voxels is that an object can be contained by several voxels
and thus need several intersection tests against. Mail boxing was suggested by
Amanatides et al. in [34] for use with ray tracing. In mail boxing every object
is given an ID and the ray stores the last ID it was tested for intersection with.
A concern might be the added memory usage.
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Appendix B

Math

B.1 Taylor approximation

A Taylor approximation can be used to approximate a complex function, f(x),
with a sum of polynomial functions. This requires that the f(x) is n times
differentiable. The precision of the approximation is dependant on the order, n,
of the approximation given by

Pn(x) = f(x0) +
f ′(x0)

1!
(x− x0) + . . . +

f (n)(x0)
n!

(x− x0)n (B.1)

the higher the order, the better the approximation is.

B.2 Spherical polar coordinates

Spherical polar coordinates can be used to describe a vector in in cartesian
coordinates by two angles, ϕ and Θ. We can use this to generate a vector from
two random numbers. The positions are given by:

x = rsinΘcosϕ (B.2)
y = rsinΘsinϕ (B.3)
z = rcosΘ (B.4)

where r ∈ [0,∞] is the vector length, and ϕ ∈ [0, 2π] and Θ ∈ [0, π]. For
normalized vectors r = 1.

B.3 Quaternions

Rotation is a common operation in computer graphics and a natural way to
think of rotation is by three angles ie. one for a rotation around each axis. This
is not perfect however. The rotations in that notation will be dependant on each
other (which is hinted at by the non-commutative nature of rotation matrices)
and can produce problems such as Gimble lock ([18]).
Quaternions are an extension of complex numbers (introduced by Sir William
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rθ

φ

(x,y,z)

(x,y,0)

Figure B.1: Illustration of polar coordinates.

Hamilton in the 1830s) that has found application in computer graphics as a
representation for rotations. A quaternion, q, can be written as such :

q = a + bi + cj + dk (B.5)

with a being the real part and i, j, k being complex. For our purposes we use
the notation :

q = (s, v) = s + vxi + vyj + vzk (B.6)

where s is a scalar and v is a vector on axes i, j, k. The conjugate of q is q :

q = (s,−v) (B.7)

Assuming unit vector, n, we can write the q on the form :

q = (cos(Θ/2), sin(Θ/2)n) (B.8)

where |n| = 1. A point p can be written on the form :

p = (0, r) (B.9)

with r(x, y, z) being the vector to the point. Rotating p is achieved by the
operation :

protated = qpq−1 (B.10)

which if the p is a unit vector n is :

nrotated = qnq (B.11)
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The general rotation operation can be written on matrix form :



1− 2vy
2 − 2vz

2 2vxvy − 2svz 2vxvz − 2svy 0
2vxvy + 2svz 1− 2v2

x − 2v2
z 2vyvz − 2svx 0

2vxvz − 2svy 2vyvz − 2svx 1− 2v2
x − 2v2

y 0
0 0 0 1


 (B.12)

using the general notation for q.
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