
Stochastic PK/PD Modelling

Søren Klim and Stig Mortensen

Kongens Lyngby 2006

IMM-M.Sc.-2006-27

Supervisors: Henrik Madsen and Rune Viig Overgaard

External Supervisor: Niels Rode Kristensen



Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk



Abstract

This thesis describes the development of a software prototype implemented in
Matlab for non-linear mixed effects modelling based on stochastic differential
equations (SDEs). The setup aims at modelling measurements originating from
more than one individual and it represents a powerful way of modelling systems
with complicated and partially unknown dynamics. The incorporation of SDEs
enables the setup to separate noise into two fundamentally different parts: un-
correlated measurement noise, arising from data collection etc. and correlated
system noise, arising from model deficiencies or true random fluctuation of the
system. The mixed-effects model makes it possible to describe variation within a
population and to estimate parameters where only few observations are available
for each individual.

The setup has been implemented in a prototype, which enables maximum like-
lihood estimation of model parameters. The likelihood function is created using
the First-Order Conditional Estimate (FOCE) used in non-linear mixed effects
modelling. This is done in combination with the Extended Kalman Filter used
in models with SDEs. The prototype is able to use the estimated model for
prediction, filtering, smoothing and simulation for linear as well as non-linear
models.
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The work using the implemented prototype has focused on pharmacokinetic/
pharmacodynamic (PK/PD) modelling and has been carried out in collaboration
with Novo Nordisk A/S. The prototype is compared with existing software for
a range of PK models, but also used to perform analysis that is not readily
doable in any other software package. Particular attention is devoted towards
deconvolution of insulin secretion rate (ISR) and liver extraction of insulin based
on a 24h study with three standardized meals. Moreover, an intervention model
is proposed which utilizes knowledge of the three meal times and this is used
for modelling of the insulin secretion rate.

Overall, the prototype has proven to be a flexible and efficient tool for estimation
of non-linear mixed effects models based on SDEs and has been used with success
for a range of pharmacokinetic models.

KEY WORDS: stochastic differential equation (SDE), non-linear mixed ef-
fects, FOCE approximation, Extended Kalman Filter, maximum likelihood es-
timation, insulin secretion rate, pharmacokinetic, PK/PD modelling



Resumé

Dette eksamensprojekt omhandler implementeringen af en software prototype i
Matlab for en ikke-lineær mixed effekt model baseret p̊a stokatiske differential-
ligninger. Dette setup tilsigter modellering af målinger fra mere end et individ,
og det repræsenterer en effektiv måde at modellere systemer med kompliceret og
delvis ukendt dynamik. Brugen af stokatiske differentialligninger gør setup’et i
stand til at adskille støj i to fundamentale forskellige dele: ukorreleret målestøj,
der typisk stammer fra data opsamling samt korreleret system støj, der stam-
mer fra model mangler eller reelle tilfældige ændringer i systemet. Brugen af
mixed effekt modellen gør det muligt at beskrive variationerne indenfor en pop-
ulation og at estimere parametre i situationer, hvor der kun er f̊a observationer
tilgængelige fra hvert individ.

Setup’et er blevet implementeret som en prototype og kan blandt andet bruges
til parameter estimation baseret p̊a maksimum likelihood teorien. Likelihood-
funktionen er dannet ved hjælp af en første ordens betinget estimations metode,
der ofte bruges i ikke-lineære mixed effekt modeller. Dette er gjort i kombina-
tion med Kalman filteret, som kan bruges i modeller med stokatiske differential-
ligninger. Prototypen muliggør prædiktion, filtrering, udglatning og simulering
for b̊ade lineære og ikke-lineære systemer ved hjælp af den estimerede model.
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Arbejdet med brugen af den implementerede prototype er fokuseret omkring
pharmakokinetiske og pharmakodynamiske modeller og er blevet udført i samar-
bejde med Novo Nordisk A/S. Prototypen vil blive sammenlignet med eksis-
terende programmer ved brug af en række PK/PD modeller, og den vil blive
brugt til analyser, som p̊a nuværende tidspunkt ikke er mulige at udføre med
andre programmer. Analysen vil blive fokuseret p̊a foldning af insulin sekretion-
sraten samt leverekstraktion af insulin. Data stammer fra et 24 timers forsøg
med 3 standardiserede måltider. Endvidere vil en interventions model blive
præsenteret til estimation af insulin sekretionsraten ved udnytte viden omkring
måltidernes serveringstidspunkter.

Overordnet set har prototypen vist sig at være et fleksibelt og effektivt værktøj
til estimering af ikke-lineære mixed effekt modeller baseret p̊a stokastiske differ-
entialligninger. Prototypen har endvidere vist sig at være brugbar til analyse
af en række pharmakokinetiske modeller.
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Chapter 1

Introduction

This thesis deals with the creation of a software prototype, that is able to
handle non-linear mixed effects models based on stochastic differential equa-
tions (SDEs). This model framework will accommodate a need for better
modelling tools to aid in improving existing medication and the development
of new drugs in clinical trials. In recent years the focus on pharmacokinetic
(PK)/pharmacodynamic (PD) modelling has intensified. This is among other
things due to the American Food and Drug Administration who has encouraged
a wider use of PK/PD modelling in clinical trials [FDA 1999].

PK/PD modelling is used to describe the properties of a drug starting from
when it is introduced into the body, to the efficacy and toxicity of the drug and
finally describing how it leaves the body again. In PK/PD various modelling
methods are used, each for their specific purpose. The non-linear mixed effects
model has the ability to include measurements for several subjects from the same
experiment by splitting the variation into intra- and inter individual variation.

Stochastic differential equations in state space models are able to separate mea-
surement and system noise which enables it to account for model deficiencies.
Correlated residuals, which are often the result of modelling based on ordinary
differential equations, can be handled with the use of SDEs. This property is
gaining increased popularity. At present no standard program is able to handle
both non-linear mixed effects with SDEs.
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The main goal of the thesis is the implementation of a prototype able to han-
dle the combination of the non-linear mixed effects model and the stochastic
differential equation used in a state space setup. The prototype will be used
to analyse data from a clinical trial within diabetes research. Particular atten-
tion is devoted towards deconvolution of insulin secretion rate (ISR) and liver
extraction of insulin based on a 24h study with three standardized meals.

The topic of PK/PD modelling has been chosen due to personal interest and an
opportunity to write the thesis in cooperation with Novo Nordisk A/S.

A model for ISR and models for the insulin liver extraction will be proposed
and analysed. These PK/PD models will be used to illustrate the properties
of SDEs in a mixed effects setup. The implementation process should result
in a functional prototype and also provide experiences that can be used in a
final implementation. The work with the PK/PD models should also yield best
practises and desired functionality in the program.

The ambition with the thesis is that it will provide a step towards improved
PK/PD modelling and accommodate better insight into the properties of drugs.
For Novo Nordisk, this may potentially lead to improved diabetes treatments
or new drugs. The following section provides motivation for an increased focus
on PK/PD modelling within diabetes.

1.1 Diabetes

In Denmark approximately, 150.000 people are diagnosed with diabetes and an-
other 150.000 are expected to be unaware of their diabetes condition [Sundheds-
ministeriet 2003]. Worldwide, 171 millions are diagnosed with diabetes and by
2030 [WHO 2006] the number is expected to be 366 millions. The unfortunate
tendency is that people getting diagnosed with diabetes already suffer from
complications that could have been avoided by earlier treatment.

In Denmark, the cost of diabetes arises to around 2.5 billions Danish kroner
a year. The main part of the cost covers the treatment of complications due
to late diagnose of illness. The complications and long term effects of diabetes
are an increased risk for heart diseases, blindness, nerve damage and kidney
damage. The complications can be reduced or postponed significantly by proper
treatment improving the life of the patient and reducing the cost to society.

The full name for the disease is diabetes mellitius. Mellitus is a greek word
which translates into honey or honey sweet. This word describes the urine from
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untreated diabetes patients which contains a high concentration of glucose since
it is the main source of elimination of unused glucose from the body.

For healthy persons, carbohydrates from food intake are split into glucose molecules
which are converted into energy in the mitochondrions in the cells. The insulin
hormone is used to unlock the cellular walls and give access for the glucose
molecules. Insulin is produced in the β-cells in the pancreas and is distributed
through the body by the blood.

Diabetes is split into several different types of which Type 1 and 2 are the
most common ones. Type 1 diabetes is caused by an autoimmune destruction
of the β-cells resulting in a reduced or even a complete lack of production of
insulin. Type 1 diabetes is often diagnosed in childhood and results in a lifetime
dependency on insulin injections. Type 2 diabetes is an insulin resistance where
cells do not respond to insulin. Type 2 diabetes is a slowly progressing disease
and can go unnoticed for many years. Type 2 is the kind of diabetes that is
related to the life style and in particular the life style of the western world. It
is treated with changes in diet, weight loss and exercise which can often reduce
the complications and keep diabetes under control. Earlier, only elderly people
where diagnosed with Type 2 diabetes but now patients as young as 15 years
old have become more common.

Diabetes is the most common metabolic disease in the world and the number
of diagnosed will increase. Even small improvements in the understanding of
diabetes could results in better insulin dosage regimes. This could have immense
effect on population scale but also improve the quality of life for the individual
patient.
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1.2 Outline of thesis

Chapter 2 deals with the concepts of Pharmacokinetic and Pharmacodynamic
modelling. The pharmacokinetics principles used in this thesis are reviewed and
frequently used PK/PD models are introduced.

Chapter 3 explains the theory of single subject modelling. The use of stochas-
tic differential equations in state space models is explained and the Kalman
filter is presented as a solution to handle filtering. Finally, maximum likelihood
parameter estimation is introduced.

The theory for one individual is extended in Chapter 4 where the theory for
non-linear mixed effects is reviewed. An extended likelihood for the non-linear
mixed effect model is established.

Chapter 5 describes the creation of the software prototype and the numer-
ical issues encountered during the implementation process. The implemented
prototype is validated against NONMEM and CTSM in Chapter 6.

In Chapter 7, the implemented prototype is used in a PK/PD setting where
several PK/PD models are analysed. The data modelled originates from a
clinical trial within diabetes.

The experiences from the implementation and the model building are summa-
rized into a number of recommendations for the next implementation, all found
in Chapter 8.

Chapter 9 holds the discussion of the results from the PK/PD models, built
with the implemented prototype.

Chapter 10 summarizes the discussion and concludes on the goal of the thesis.
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PK/PD Modelling

Pharmacokinetics and Pharmacodynamics modelling covers the area of math-
ematical models describing the properties of a drug. PK/PD modelling is
used within clinical drug development to provide information on the proper-
ties of a drug and is especially good at describing the dose-effect relationship
[Tornøe 2005]. Moreover, PK/PD modelling is aiding in providing more efficient
drug development.

PK describes the movements of a drug and PD describes the pharmacological
effect at its destination. The processes described by PK are generally cate-
gorized in three different phases, namely the absorbtion after administration,
distribution and elimination of a drug. The absorbtion describes the movement
of a drug into systemic circulation in the body and it is often modelled with a
compartment describing the site of administration. This compartment could be
the depot from a subcutaneous injection or the gastrointestinal tract in an oral
administration. Distribution describes the movement of the drug into the cir-
culation typically blood and tissue. The distribution can be modelled through
flows, mass conservation and other laws from physics and biology. Elimination is
the removal of the drug from the body. This could be via the kidneys, excretion
or metabolism.

The main focus of this project is within PK and therefore the introduction and
models are mainly focused on PK modelling.
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In Figure 2.1 the differences between PK and PD and the three phases are
illustrated.
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Figure 2.1: Schematic representation of PK/PD. [Gabrielsson & Weiner 1997]

The modelling process uses mathematical and statistical tools combined with
biological and pharmacological knowledge resulting in a grey-box model. The
word grey-box refers to a mixture of empirical models based solely on data
(black-box) combined with theoretical physiological models (white-box).

2.1 Models

The models used in this thesis do not involve actual drugs instead it involves
hormones and substances already found in the body. The methods and models
from PK modelling can easily be transferred to the actual use. It also means
that the use of PK/PD principles in this report lies outside the general definition
of PK/PD modelling.
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The models are based on mathematical equations describing the dynamics of
the drug. The model equations can be stated by focusing on mass conservation
and Fick’s laws of diffusion between compartments[Warberg 1991, page 161].

The simplest model is the one-compartment model and it can be seen in Figure
2.2. The model equations are often stated as differential equations of order
one. This means that the changes in concentration depends on the current
concentration.

The analytical solution to a first order ordinary differential equation (ODE) is
an exponential decay and the one-compartment model is also referred to as the
mono-exponential model.

Input

Compartment

Eliminination

Figure 2.2: One-compartment model. [Gabrielsson & Weiner 1997, p. 60]

The one-compartment model is used when the drug has little distribution to
tissue. The drug concentration in the compartment is eliminated over time and
is generally modelled as dependent on the current concentration. The input can
be an instantaneous intravenous injection or a slower dosage regime.

dC

dt
= I(t) − keC (2.1)

where C is the current drug concentration in the main compartment, ke is the
elimination constant and I(t) is the input into the compartment at time t e.g.
an injection.

The two-compartment model has an extra peripheral compartment to model
the distribution into tissue and back into plasma again.
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Input

C1 - Central
Compartment

Eliminination

C2 - Peripheral
Compartment

Figure 2.3: Two-compartment model. [Gabrielsson & Weiner 1997, p. 85].

The two-compartment model is able to handle situations where an equilibrium
in concentration in tissue and plasma is not reached immediately.

dC1

dt
= I(t) − k1C1 + k2C2 − keC1

= I(t) − (k1 + ke)C1 + k2C2 (2.2)

dC2

dt
= k1C1 − k2C2 (2.3)

where k1 and k2 describes the distribution between compartment 1 and 2. ke is
the elimination from compartment 1.

The models in PK/PD Modelling are generally linear but non-linear models
describing more complicated processes are used.
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2.1.1 Diabetes Modelling

The modelling of data in connection with diabetes is typically based on glucose,
C-peptide and insulin measurements.

A deeper understanding of the processes surrounding diabetes will aid in the
model formulation. Insulin is used by the cells to produce energy from glucose
molecules in the mitochondrion. High levels of glucose will for a healthy person
result in a high secretion of insulin. In biological terms the glucose and insulin
have a negative feedback meaning that a increase in glucose will result in an
increase in insulin which will result in a decrease in glucose [Warberg 1991, page
213].

C-peptide is a by-product from the insulin production in pancreas and impor-
tantly it is produced in equimolar amounts. Insulin and C-Peptide is secreted
directly into the bloodstream and passes through the liver before entering the
systemic circulation. A large portion of the secreted insulin is extracted in the
liver where it is used in connection with the stored glucose (glucogen). C-peptide
passes directly through the liver and is eliminated from the body via elimination
from the kidneys. The half-life insulin is approximately 5 minutes whereas the
half-life for C-peptide is 30 minutes. This means that C-peptide is often used
as an indicator of the insulin secretion due to this rapid decrease in insulin over
time.

The extraction of insulin in the liver is not constant and is quite often modelled
using a Michaelis-Menten saturation. The liver has an upper limit for excretion
pr. time and in periods with high insulin secretion this limit is reached. This
threshold limit in the liver results in a non-linear output of insulin from the
liver. This process can be modelled using a Michaelis-Menten saturation.

The measurements of insulin, glucose and C-peptide originate from blood sam-
ples from the arms. The observations will due to measurement techniques have
an uncertainty that should be incorporated into the model.

The non-linear mixed effects model with SDEs is ideal to model clinical trials
as measurements from all subjects on the same process can be included and the
variation arising from individual differences and deviations from the specified
model can be handled. As an example within diabetes the individual differences
could be the steady state level of insulin secretion.

This modelling of individual variation is valuable when analyzing and optimizing
the treatment of patients. The aim is a treatment supported by information on
individual variation and thereby adapted for the individual patient.
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Chapter 3

Single Subject Modelling

This chapter will describe techniques used when modelling a single subject.
This is referred to as a 1st stage model. The emphasis is on reviewing the
mathematical and statistical methods and their properties used in this project.

Many mathematical models evolve around a physical problem. The modelling
of a system begins with the understanding on how the systems internal states
interact. e.g. how wind speed affects the wind power production or how tem-
perature affects bacterial growth. When dealing with dynamical systems it is of
interest to know the states of the system in order to monitor the performance or
condition of the system. These internal states are useful for prediction but also
for control purposes. One way of modelling using internal states of the system
is called state space modelling. The next section will give an introduction to
this topic.

3.1 State space models

This section will introduce State Space Models (SSM) which form the basis for
most of this project. The state space approach for modelling a system is based
on states which are observed indirectly as a function of the space observations.
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The states are modelled by differential equations which describes the dynamics
of the unobservable part of the system. Measurements are modelled through a
space equation which is a function of the states, where this function is observed
with noise.

The set of state/space equations are for most practical purposes either dis-
crete/discrete or continuous/discrete. In many physical systems the state model
is continuous and measurements are sampled at discrete time intervals. This is
also the case in PK/PD modelling and therefore the continuous/discrete version
will be used in this thesis.

State space models hold the property of being a Markov process as all informa-
tion about the system is embedded in the current states. This means that all
available information at present time is found in the current states and predic-
tion is therefore based solely on current model states.

The general mathematical formulation of a state space model is shown in Eq.
(3.1) and Eq. (3.2). This formulation can account for non-linearities in the
states and time variability in parameters.

dxt

dt
= f(xt, uk, t, θ) (3.1)

yk = h(xk, uk, tk, θ) + ek (3.2)

where k = 1...n, t ∈ R is time, xt ∈ R
s is a vector of state variables, ut ∈ R

m

is a vector of input variables, yk = ytk
∈ R

l is a vector of output variables and
θ is a vector of parameters. f (·) and h(·) are known non-linear functions and
ek ∈ N(0, S(uk, tk, θ)).

This formulation uses standard ordinary differential equations (ODEs) to model
the state system. A consequence of using ODEs for modelling the state is that
states are predicted without uncertainty incorporated into the model. This
highly deterministic behavior of the states is not well suited for PK/PD mod-
elling as it results in all unmodelled variation being categorized as measurement
noise.

The ODE basis for the state space models, limits the number of systems it is
able to handle. A much wider class of systems can be modelled by extending
the ODE to Stochastic Differential Equations (SDE). An in depth review of the
theory of SDEs is a substantial topic and is beyond the scope of this thesis.
However, a general introduction to SDEs and their properties are needed to
understand the pros and cons.
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3.2 SDEs and stochastic state space models

The standard state space model uses ODEs to model the dynamics of the states.
By using SDEs noise is allowed into the state equations which is beneficial within
many fields including PK/PD modelling [Øksendal 1995], [Kristensen et al. 2005]
and [Jazwinski 1970].

The extension to a state space model with SDEs is called a stochastic state space
model. By using SDEs the states are assumed to evolve with a stochastic be-
havior and are thus predicted with uncertainty as opposed to state space models
based on ODEs. This is useful in system where fluctuations or disturbances are
expected to be present in the states. These disturbances may be due to unmod-
elled dynamics. A powerful property of the SDE extension is the possibility to
split variation into correlated system noise and uncorrelated observation noise.

The extension to the state space models can be seen in equations (3.3) and (3.4).

dxt = f(xt, ut, t, θ)dt + σ(ut, t, θ)dωt (3.3)

yk = h(xk, uk, tk, θ) + ek (3.4)

where ωt is a standard Wiener process also often referred to as a random walk,
and it holds the property ωt2 − ωt1 ∈ N(0, |t2 − t1|I). f(·)dt is called the drift
term and σ(ut, t, θ)dωt is called the diffusion term where σ(·) is the magnitude
of the Wiener process.

The notation using dx/dt cannot be used since the quotient dω/dt is ill defined
due to the changing values of ω. Several methods exists for dealing with the
integral of the diffusion term where one of the them is the Itô method which
has been chosen in this thesis. The diffusion is in rare cases possible to solve
analytically but must generally be solved numerically.

The model formulation reduces back into a system of ordinary differential equa-
tions when the magnitude σ is zero. The chosen scheme for estimating the
states of the model is the Kalman filter explained in the following.
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Figure 3.1: EKF filtering for different variances.

3.3 Extended Kalman filter

R.E. Kalman published his article on ”A new approach to linear filtering and
prediction” in 1960 [Kalman 1960]. The Kalman filter has since proven use-
ful within a range of applications. The Kalman filter is a recursive minimum
variance estimator for the states. The Kalman filter minimizes the prediction
variance for the model by combining the observation and model variance and
propagating it in time.

The Kalman filter is a 2 part algorithm consisting of prediction and updating.
In the prediction part the current states and covariances are used to create a
prediction of states, covariance and observation to a time point tk given the
information in time tk−1. In the updating part an observation has just arrived
and the states and covariances are updated accordingly.

The updating is based on a compromise between the observation and current
model state. In a situation where the model is good but the observations are
dominated by measurement error, the Kalman states should rely on the model
as opposed to fitting the observations. Vice versa if the model is incomplete
the states should rely more on the observations than the model. This trust in
model versus observations can be adjusted by the magnitude of system noise σ

and observation noise S.

In Figure 3.1 the two extremes of observation variances can be seen. The ex-
ample shows an exponential decay with a log-normal observation noise. If S is
low the filtered output is almost identical to the observations and for high S the
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filtered output follows the state model.

In the present thesis the Kalman filter is based on the equations found in
[Kristensen & Madsen 2003, p.12] and [Gelb et al. 1982, p.188]. In the fol-
lowing a review of the Extended Kalman Filter (EKF) will be given [Kalman &
Bucy 1961] [Tornøe 2005]. Although the linear Kalman filter (KF) is also used
in the thesis, it will not be presented here, since EKF reduces into KF for linear
systems. The presented EKF is able to handle multi-variate input sampled at
measurement times. It has been decided to use zero-order hold for the input
meaning that it is assumed constant in between measurements.

As previously mentioned the Kalman filter consists of two parts - an updating
and a prediction part. Initial conditions are needed to start the recursive filter
as specified below.

x̂1|0 = x0 (3.5)

P 1|0 = P 0 =

∫ t2

t1

eAtsσσT (eAts)T ds (3.6)

where P t|t−1 is the prediction covariance on the states. The initial prediction
covariance is either specified or generally estimated using the time interval be-
tween the two first observations, the model dynamics and the magnitude of the
system noise as seen in Eq. (3.6). The latter is chosen in this thesis.

At is a linearization around the state prediction x̂(t|k) based on the predicted
state, defined as:

At =
df

dx

∣

∣

∣

x=x̂t|k

(3.7)

In the linear case A is independent of the state and may also be time invariant.
The initial conditions are used to form the prediction for the first observation.
The prediction equations are shown in the following.

dx̂t|k

dt
= f (x̂t|k, uk, t, θ) (3.8)

dP t|k

dt
= AtP t|k + P t|kAT

t + σσT (3.9)

where t ∈ [tk, tk+1]. uk is the input at time tk
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The prediction of the output from the system is based on the predicted states
and the predicted covariance.

ŷk|k−1 = h(x̂k|k−1, uk, tk, θ) (3.10)

Rk|k−1 = CkP k|k−1C
T
k + S (3.11)

The output prediction is calculated as the output given the predicted state.
The observation covariance S forms a lower boundary for the expected 1-step
prediction covariance and C propagates the state covariance into the expected
prediction covariance.

Ck =
dh

dx

∣

∣

∣

x=x̂k|k−1

(3.12)

C is in the linear case state independent and again as with A it may also be
time invariant.

The updating part of the Kalman filter occurs when an observation has just
arrived and the states and covariances should be updated accordingly to the
residual εk.

εk = yk − ŷk|k−1 (3.13)

The states are updated by the Kalman gain K which is a combination of the
predicted state covariance and prediction covariance.

Kk = P k|k−1C
T
k R−1

k|k−1 (3.14)

The compromise of covariances discussed earlier is connected directly to the
value of the Kalman gain. Large observations covariances leads to a small
Kalman gains resulting in the updated state being almost identical to the pre-
dicted - hence following the model closely.

The updated state and covariance is often referred to as the filtered estimate of
the state and covariance.
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2. Output prediction

1. State prediction

Updating

2. State update

1. Kalman gain

Prediction

x̂1|0 = x0

P1|0 = P0

dx̂t|k−1

dt
= f (x̂t|k−1, uk, t, θ)

dP t|k−1

dt
= AtP t|k−1 + P t|k−1A

T
t

+σσT

ŷk|k−1 = h(x̂t|k−1, uk, tk , θ)

Rk|k−1 = CkPk|k−1CT
k + S

Kk = Pk|k−1CT
k R−1

(k|k−1)

x̂k|k = x̂t|k−1 + Kk(yk − ŷk|k−1)

Pk|k = Pk|k−1 − KkRk|k−1KT
k

Figure 3.2: Schematic overview of the Kalman filter. [Welch & Bishop 2004]

x̂k|k = x̂k|k−1 + Kkεk (3.15)

P k|k = P k|k−1 − KkRk|k−1K
T
k (3.16)

The Extended Kalman filter explained in this section is summarized in Figure
3.2. The figure shows the recursive structure repeated for every observation
with an updating and a prediction part.

The Extended Kalman filter reduces into the ordinary Kalman filter when the
functions f(·) and h(·) are linear. The approximations A and C are for this
case exact and thus in the linear case the Kalman filter is an exact minimal
variance estimator for the state filtering problem.
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3.4 Parameter estimation

The maximum likelihood principle is used to estimate parameters for the stochas-
tic state space model. This is also denoted the first stage model and this section
introduces the first stage likelihood function [Overgaard et al. 2005] [Kristensen
& Madsen 2003].

The optimal set of parameters is found by maximizing the likelihood Li for
the model. The notation with subscript i is bound to individual i. It is not
important at present but becomes relevant when the likelihood for an entire
population is examined. For the same reason the data structure is defined for
more than one individual although it is not used in the first stage model.

The data from a study on a number of individuals has the following general
structure

yij , i = 1, ..., N, j = 1, ..., ni (3.17)

where N is the number of individuals and ni is the number of measurements
for individual i. Note that the number of measurements for each individual can
vary.

The likelihood function is a product of the probabilities for each observation.
When working with SDEs, the residuals from the ODE part of the model are
correlated and it is thus necessary to use conditional densities to form the likeli-
hood function. By introducing the notation Yij = [yi1, yi2, ..., yij ] the first stage
likelihood function is defined as

Li(θ|Yini
) = p1(Yini

|θ) (3.18)

and by applying Bayes rule P (A ∩ B) = P (B|A)P (A) it follows that

Li(θ|Yini
) = p(yini

|Yi(ni−1), θ) p1(Yi(ni−1)|θ) (3.19)

= p(yini
|·) p(yi(ni−1)|·) p1(Yi(ni−2)|θ) (3.20)

...

=





ni
∏

j=2

p(yij |Yi(j−1), θ)



 p(yi1|θ) (3.21)
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By approximation the conditional density of each observation in Eq. (3.21) is
assumed to be Gaussian. This is identical to the assumption for the EKF, and
therefore the conditional density for each observation is given by the one-step
prediction density from EKF

ŷi(j|j−1) = E(yij |θ,Yi(j|j−1)) (3.22)

Ri(j|j−1) = V (yij |θ,Yi(j|j−1)) (3.23)

By using the above, the conditional density of the one-step prediction error is
approximated by

εij = yij − ŷi(j|j−1) ∈ N(0, Ri(j|j−1)) (3.24)

In order to evaluate the likelihood function Li the multivariate normal distri-
bution is used for calculating the probability p(yij |θ,Yi(j|j−1))

p(yij |θ,Yi(j|j−1)) = p(εij |θ,Yi(j|j−1)) (3.25)

≈ |2πRi(j|j−1)|−
1
2 exp

(

−1

2
εT

ijRi(j|j−1)εij

)

(3.26)

The individual likelihood function can now be defined given Eq. (3.21) and the
conditional density in (3.26) such that

Li(θ|Yini
) ≈

ni
∏

j=1

exp
(

− 1
2εT

ijRi(j|j−1)εij

)

√

|2πRi(j|j−1)|
(3.27)

By further taking the logarithm of Li gives the individual log-likelihood function
defined as

log Li(θ|Yini
) ≈ −1

2

ni
∑

j=1

(

εT
ijRi(j|j−1)εij + log |2πRi(j|j−1)|

)

(3.28)

It should be noted that an initial state must be given in order to evaluate
log Li with EKF, but this condition can be included into the parameters to be
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maximum likelihood estimated. For a linear system where EKF reduces to KF
the likelihood function in Eq. (3.28) is exact.

The parameters in the stochastic state space model is estimated by maximizing
the log-likelihood function. The parameters in the model can be anything from
the covariance elements, initial starting conditions or model parameters.

θ̂ = arg max
θ

log Li(θ|Yini
) (3.29)

3.5 Smoothing

The Kalman filter provides the minimal variance estimate for the state pre-
diction and filtering problem. In post hoc analysis of a study it is of interest
to use all available data to obtain an optimal estimate at every time point.
This is called the state smoothing problem. A smoothed estimator is based
on information from all the observations. That is before and after the time
of interest whereas the estimates previously discussed have been based on past
observations.

The smoothed estimate can be created by combining a forward prediction and a
backward filtering. By combining the two filtering sweeps all information from
observations is included into the smoothed estimate at each time point. The
following two sections contain descriptions of the linear and non-linear smoother.

3.5.1 Linear smoothing

For the linear model the Bryson Frazier algorithm has been used to create a
smoother. The Bryson Frazier algorithm can be found in Kailath et al. (2000,
pages 373-374).

The forward prediction is performed with the linear Kalman filter. The back-
ward filter and the combined smoothed estimate are described below.

The initial conditions are shown below

λN+1|N = 0 (3.30)

ΛN+1|N = 0 (3.31)
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The filtering equations.

F k = Ak − Kp,kCk (3.32)

λk|N = F T
k λk+1|N + CT

k S−1
k ek (3.33)

Λk|N = F T
k Λk+1|NF k + CT

k S−1
k Ck (3.34)

where the prediction Kalman gain is

Kp,k = AkKk (3.35)

The smoothing equations are

x̂k|N = x̂k|k−1 + P k|k−1λk|N (3.36)

P k|N = P k|k−1 − P k|k−1Λk|NP k|k−1 (3.37)

3.5.2 Non-linear smoothing

The smoothing of a non-linear process is in this project a forward filtering
combined with a backwards prediction found in [Gelb et al. 1982] and [Kristensen
& Madsen 2003]. The EKF is used to create the standard forward filtered
estimates and the backward filter is defined in the following.

For use in the backward filtering a new time variable is introduced

τ = tN − t (3.38)

This new time variable runs backward from the last observation time point.
This leads to a changed state equation.

dxtN−τ = −f(xtN−τ , utn−τ , tN − τ, θ)dτ − σ(utN−τ , tN − τ, θ)dωτ (3.39)

where the observation equation remains unchanged.

The actual smoothing is done by combining the results from the forward filtering
and the backwards prediction. The equations used to create the smoothed esti-
mates are (3.40) and (3.41). The line over the estimates P and x characterizes
estimates originating from the backwards sweep.
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P k|N =
(

P−1
k|k + P

−1

k|k+1

)−1

(3.40)

x̂k|N = P k|N

(

P−1
k|kx̂k|k + P

−1

k|k+1x̂k|k+1

)

(3.41)

The forward sweep has the original initial conditions but the backwards sweep
does not have a defined starting state or covariance. An intuitive solution would
be to create a prediction from the final filtered estimate and use it as initial
conditions for the backward sweep. However, this is not feasible as the final
observation would be used twice. Instead, the initial conditions for the backward
sweep can be found by noting that the forward filtered state covariance P N |N

is equal to the smoothed covariance at time t = tN . This implies that the initial
inverse covariance from the backwards sweep must be zero according to equation
(3.40).

The initial condition for the states in the backward sweep is handled through a
variable transformation.

st = P
−1

t x̂t (3.42)

The new transformed variable s is zero as initial starting point due to the
covariance. The prediction and updating equations are rewritten to match the
new variable.

The updating equations become

sk|k = sk|k+1 + CT
k S−1

k

(

yk − h(x̂k|k−1, uk, tk, θ) + Ckx̂k|k−1

)

(3.43)

P
−1

k|k = P
−1

k|k+1 + CT
k S−1

k Ck (3.44)

The prediction equations become

dstN−τ |k

dτ
= AT

τ stN−τ |k − P
−1

tN−τ |kστσT
τ stN−τ |k (3.45)

−P
−1

tN−τ |k

(

f(x̂tN−τ |k, utN−τ , tN − τ, θ) − Aτ x̂tN−τ |k

)

dP
−1

tN−τ |k

dτ
= P

−1

tN−τ |kAτ + AT
τ P

−1

tN−τ |k − P
−1

tN−τ |kστσT
τ P

−1

tN−τ |k (3.46)
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Using the initial condition of sN |N+1 = 0 and P
−1

N |N+1 = 0, the backward
update and prediction equations can be used to create an smoothed estimate
by use of equation (3.47) and (3.48).

P k|N =
(

P−1
k|k + P

−1

k|k+1

)−1

(3.47)

x̂k|N = P k|N

(

P−1
k|kx̂k|k + sk|k+1

)

(3.48)

3.6 Simulation

So far methods for filtering, prediction and smoothing have been presented,
which are all based on a set of observations Y being available. Simulation can
be useful in assessing model properties without any observations available. It
can be used for analysing identifiability in model components e.g. testing for
the ability to separate system and measurement noise or testing for parameter
identifiability.

By using simulation a new set of observations can be produced given the model.
A simulated observations set is a combination of the model, given parameters,
the realization of the Wiener process and the realization of the observation noise.

Simulation on SDEs are most easily performed with an Euler method. It is im-
portant to have a small step length such that the approximation to the stochastic
behavior of the states is reevaluated often and the Wiener process in allowed to
enter into the states more continuously. The Wiener process will hence have the
possibility to disturb the approximation in every small sub-step. More advanced
methods for simulation of SDEs are described in Kloeden & Platen (1992) but
have not been considered.

If the model considered does not include a diffusion term a deterministic and
more robust method for estimating the ODEs may be used to allow for a faster
and more accurate simulation using a larger step length. To account for this
situation a Runge Kutta method has been chosen. However, it is important to
note that for realistic simulation of SDEs the step length must still be chosen
sufficiently small for proper simulation of the Wiener process.

The sample points are named T = {t1, t2, ..., tni
}, and the subsampled points

are named t∗1, t
∗
2, ..., t

∗
s, where dt = t∗i+1− t∗i . It follows that s = (tni

− t1)/dt+1.
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A 4th order Runge-Kutta method is used to find the state at each subsample
point. Zero-order hold are used for the input between subsampled points. The
Runge-Kutta method is shown below:

k1 = f(xti
, uti

, ti, θ) (3.49)

k2 = f(xti
+ 1/2k1, uti

, ti + 1/2dt, θ) (3.50)

k3 = f(xti
+ 1/2k2, uti

, ti + 1/2dt, θ) (3.51)

k4 = f(xti
+ k3, uti

, ti + dt, θ) (3.52)

xti+1
= xti

+
1

6
(k1 + k4) +

1

3
(k2 + k3) (3.53)

The next step is to add the Wiener noise. The Wiener Process is a continuous-
time stochastic process ωt characterized by [ωt2−ωt1 ] ∼ N(0, |t2−t1|I), and can
thus be approximated by a sum of gaussian increments. By setting t2 = t1 + dt
it follows that the increments at each subsample point should be sampled from
N(0, t + dt − t) = N(0, dt).

The updating formulas at each subsample point is thereby

yti
= h(xti

, uti
, ti, θ) +

√
S · e1 (3.54)

xti+1
= xti

+
1

6
(k1 + k4) +

1

3
(k2 + k3) + σ(uti

, ti, θ)
√

dt · e2 (3.55)

where e1, e2 ∼ N(0, I). The initial state is given from the non-linear model
setup to start the updating formulas.

Single subject summary

This chapter has shown how single subject modelling through state space models
extended with SDEs can be treated with the Kalman filter. It has been presented
as the basic method for dealing with single subject filtering, prediction and
smoothing. Furthermore, it has been presented how parameter estimation can
be performed via maximum likelihood principles.



Chapter 4

Population Modelling

The first stage stochastic state space model is only able to model a single in-
dividual. Most often measurements are available for several individuals in the
same experiment and it would be beneficial to be able to use the measurements
as one whole instead of just as a set of individual data series.

The solution to this problem is to introduce a second stage model to describe
the observed variations between individuals in a given population. This type
of model is called a non-linear mixed effects model and has a hierarchical
model structure which splits the variation in intra- and inter-individual vari-
ation [Racine-Poon & Wakefield 1998], [Overgaard et al. 2005]. For the first
stage the stochastic state space model has been chosen for modelling the indi-
vidual data whereas the second stage extension includes the ability to model
relationship between individuals. The intra-individual variation accounts for
the random variation in individual data which is not explained by the first stage
model and the inter-individual variation accounts for the differences between
individual parameters for the first stage model. The hierarchical model allows
for an estimation of these variance components in order to describe a population
statistically.
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4.1 Model definition

The second stage model for the individual parameters can be defined in a number
of ways, each with different properties. In the present work it is chosen to use

φi = g(θ, Zi) · exp(ηi) (4.1)

This formulation restricts variations in ηi from changing the sign of g(θ, Zi)
which is typically an advantages as φi may be used as parameter for a variance
or other sign sensitive parameters. θ is the fixed effect parameter and Zi is
an optional covariate such as height, weight or other individually measurable
covariates. ηi is the multivariate random effect parameter for the ith individual,
which are assumed normally distributed with mean zero and covariance Ω:

ηi ∈ N(0,Ω) (4.2)

where the dimension of ηi is v. By looking at Equation (4.1) it is seen that the
individual fixed effect parameters φi has a log-normal distribution.

4.2 Parameter estimation

In order to estimate parameters in the population model it is necessary to define
a likelihood function L. The second stage distribution p2(ηi|Ω) is a multivari-
ate Gaussian density and by combining this with the first stage distribution
p1(Yini

|φi) using Bayes theorem it results in the population likelihood function

L(θ|YNni
) ∝

N
∏

i=1

∫

p1(Yini
|φi)p2(ηi|Ω)dηi (4.3)

=

N
∏

i=1

∫

exp(li)dηi (4.4)

where li is the a posteriori log-likelihood function for the random effects of the
ith individual. As mentioned p2(·) is simply a multivariate Gaussian distribu-
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tion, and using this in connection with the first stage log-likelihood function in
Eq. (3.28) it follows that li is given as

li = −1

2

ni
∑

j=1

(

εT
ijR

−1
i(j|j−1)εij + log |2πRi(j|j−1)|

)

− 1

2
ηT

i Ω−1ηi −
1

2
log |2πΩ|

(4.5)

The population likelihood function in Eq. (4.4) can not be evaluated analyti-
cally, and therefore li is approximated by a second-order Taylor expansion in
Eq. (4.6). The is done using the First-Order Conditional Estimation (FOCE)
where the expansion is made around the value η̂i that minimizes li given θ. In
this minimum ∇li|η̂i

= 0 and it thus reduces to Eq. (4.7).

L(θ|YNni
) ≈

N
∏

i=1

|∆li|−1/2 exp

[

li −
1

2
∇lTi ∆l−1

i ∇li

]

(4.6)

≈
N
∏

i=1

|∆li|−1/2 exp(li)
∣

∣

∣

η̂i

(4.7)

The Hessian of the individual log-likelihood function which is needed in the
evaluation of the population log-likelihood function is approximated by

∆li ≈ −
ni
∑

j=1

(

∇εT
ijR

−1
i(j|j−1)∇εij

)

− Ω−1 (4.8)

To avoid numerical problems with large numbers, the population log-likelihood
function is derived by taking the logarithm of Eq. (4.7). This yields the main
objective function which will for the remainder of this thesis be called the Ap-
proximate Population Likelihood (APL).

log L(θ|YNni
) ≈

N
∑

i=1

[

li −
1

2
log |∆li|

]

(4.9)



28 Population Modelling

The maximum likelihood estimate of the parameters are found by

θ̂ = arg max
θ

log L(θ|YNni
) (4.10)

4.3 Parameter uncertainty

It is as important to asses the uncertainty of the parameter estimates as it is
to estimate the parameters themselves. The assessment of uncertainty reveals
knowledge about which parameters estimates that should be trusted and per-
haps also about which parameters that can be omitted from the model.

The maximum likelihood theory states that the covariance matrix for the esti-
mated parameters are given by the inverse of the observed information [Thyregod
& Madsen 2004]. If the parameters to be estimated are θ the observed informa-
tion is defined as

j(θ) = − ∂2

∂θ∂θT
log L(θ) = −∇

2 log L(θ) (4.11)

which is equal to the Hessian matrix of the negative log-likelihood function.
If the parameters maximizing the likelihood function are called θ̂ they will
asymptotically have the distribution

θ̂ ∼ N(θ, j(θ̂)−1) (4.12)

By using Eq. (4.12) it is possible to test for significance of specific parameters.
A test of the assumption H0 : θi = θi,0 is given by the Walds test statistics

zi =
θ̂i − θi,0

σ̂θ̂i

(4.13)

where σ̂θ̂i
=

√

diagi(j(θ̂)−1) and diagi means the ith diagonal element. Under

H0 the Wald test statistics is approximately N(0, 1)-distributed.
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4.3.1 Numerical computation of Hessian

The Hessian is evaluated using a approximation, calculated as a slight extension
of the formulas found in [Dennis & Schnabel 1983]. Let f : R

p → R, an example
of f being a likelihood function, then the Hessian of f , denoted ∇

2f can be
approximated by H. The ijth element of H is calculated as

k+ = f(x + hei + hej) − f(x + hei) − f(x + hej) + f(x) (4.14)

k− = f(x − hei − hej) − f(x − hei) − f(x − hej) + f(x) (4.15)

Hij =
k+ + k−

2h2
(4.16)

where ex ∈ R
p is a unit vector along the x axis. In [Dennis & Schnabel 1983]

only the foreward permutation of x is used, that is H ij = k+/h2 where as this
version also includes the backward permution and then takes the mean of the
two. The benefit of this extra step is a more robust Hessian estimate at the
cost of a longer computation time, but a good estimate of Hessian is vital for
a robust uncertainty which is important in the evaluation of the model being
considered.

The brute force way of calculating the Hessian is simply by doing a double loop
over i and j. With p parameters in the model this would require 1 + 2 · 3p2

function evaluations. By taking a closer look at the formulas (4.14) and (4.15)
it is seen that all the function evaluations where just one parameter is changed is
calculated 2p2 times instead of just 2p times (2 is for the forward and backward
calculation). By taking the function evaluations where one parameter is changed
out of the double loop, the required evaluation are reduced to 1 + 2p + 2p2. By
further analysis it is seen that the function evaluations where two parameters
are changed are identical across the diagonal, then the upper triangular elements
can be omitted leading to just 1+2p+2 1

2p(p+1) required function evaluations.

In Table 4.1 the required number of function evaluations is displayed to get a
feel of the computational intensity of the Hessian evaluation. The brute force
method is also shown as reference.

p 2 3 4 5 6

1 + 2 · 3p2 25 55 97 151 217
1 + 2p + 2 1

2p(p + 1) 11 19 29 41 55

Table 4.1: Number of function evaluations required.
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The step length h in the Hessian approximation should be chosen sufficiently
small to ensure a robust estimate.

Population modelling summary

This chapter has presented the non-linear mixed effects model with SDEs and
showed the strong property of being able to model situations with a correlated
residual structure in a setup with fixed and random effect population parame-
ters. Furthermore, the approximate population likelihood is defined to enable
maximum likelihood parameter estimation. The approximate population likeli-
hood is also used to estimate the parameter uncertainties through the evaluation
of the Hessian.



Chapter 5

Population Stochastic
Modelling using PSM

The previous chapters have reviewed the theoretical background. This chapter
describes the algorithms and the numerical implementation of the developed
prototype based on the presented theory. The prototype was developed in Mat-
lab that is a mathematical flexible language but slow compared to other more
low-level languages. The goal of the project was to build a prototype that could
easily be modified to test variations of the implemented modules.

Parameter estimation is a time consuming task as it requires numerous calcu-
lations of the APL. For simpler purposes as plotting the prediction for a single
subject given the parameters the Kalman filter or the Extended Kalman filter
is all that is needed.

The prototype was named Population Stochastic Modelling - PSM. The follow-
ing sections will describe the different parts of the implementation.
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5.1 Model specification

PSM is able to handle all models of the type non-linear mixed effects models with
SDEs described in the previous chapters. The model specification is achieved
through a set of m-files.1 and it has been chosen that the complete model should
be supplied. This means that no derivatives of states or observations equations
are found automatically. A complete model specification consists of:

• State dynamics f(·) and diffusion term σ

• Output function h(·) and uncertainty S

• Derivatives of state df/dt and output dh/dt

• Initial state x0

• Second stage parameter model g(·) and variance Ω

Additionally, for the parameter estimation an initial guess for the parameters
must be provided along with boundaries θmin < θ < θmax. Finally, a list of
files names for the Matlab function defining the complete model is required. In
the linear case some of the functions are simply matrices which simplifies the
model specification.

5.2 Extended Kalman filter implementation

The Kalman filter is reviewed in Chapter 3.3. It is an exact minimal variance
filter for the linear case whereas the Extended Kalman filter is an approximate
filter for the non-linear case.

The linear Kalman filter has to be implemented with several special cases to
overcome e.g. singular state matrix A and input u. PSM has been implemented
to account for both but not at the same time. The EKF should be used in
cases where this need arises. This can be done without any loss in accuracy
unfortunately at the price of longer computation times.

In the non-linear case the main part of the filter can be easily implemented
using standard linear algebra calculations. More effort has to be put into the
prediction part. In the non-linear case the derivative of the states can be state

1Matlab functions and script files.
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dependent. For an accurate state prediction it is important that the linearization
of f(·) is reevaluated during the prediction. To obtain the desired level of
accuracy in the predictions a frequent subsampling combined with the Euler
method could be a solution.

An alternative and the chosen solution is to use an existing ODE-solver. The
advantage of using an existing ODE-solver is a higher accuracy in the predic-
tions. This is achieved by using the work put into creating robust algorithms for
solving ODEs. ode15s2 is a solver for stiff systems but can also handle non-stiff
differential equations. It has variable step length which gives desired accuracy
in fewer steps. By choosing a standard solver as a module in the implementa-
tion, it enables easy interchange of solvers without the need for a complete code
update. An interchange of solver could be interesting in later analysis.

The prediction differential equations (3.8) and (3.9) can be seen to be coupled
through A. To account for this coupling, the two prediction equations have
been collected into one system with a combined input vector Z which stores
both the states and the covariance matrix. The symmetry in the covariance
matrix is exploited so only the upper part is transferred.

Z =

(

Z1

Z2

)

=

(

x̂t|k

U(P t|k)

)

(5.1)

where U() is the upper matrix.

The conversion to Z is then used in conjunction with ode15s and the output is
converted back into states and covariance.

The implemented Kalman filter and Extended Kalman filter returns the negative
log-likelihood Eq. (3.28). This returned neg. log-likelihood value is used in
parameter estimation where it should be minimized using a minimizer. The
next section describes the minimizers and their work.

5.3 Minimizers

The main computational effort in this project is spent on minimizing functions.
The problem of minimization is encountered in many areas and a wide range
of algorithms exists to determine the optimal parameters. The goal is to find

2odes15s is a built-in Matlab ODE-solver for stiff ODE systems.
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Figure 5.1: Minimization paths for the 2 different minimizers.

the set of parameters that corresponds to the global minima of the objective
function.

In our project two methods have been used. These are a Quasi-Newton method
based on a BFGS scheme and a Nelder-Mead pattern search.

The pattern search method3 explorers the local neighbourhood of the parameter
space by creating small changes in the parameters. The method does not require
the calculation of a gradient and is ideal to search in a small area around the
initial parameters.

The BFGS method utilizes the gradient in the current parameters to move
forward to a new set of parameters. fminunc4 was used in the beginning of the
project but at a later stage ucminf 5 was used. The shift was done due to lack
of transparency of the built-in function. ucminf is an implementation of the
BFGS algorithm [Frandsen et al. 2004]. The gradients of the objective function
with relation to the parameters are calculated numerically by either a forward
or central gradient. A property of the Quasi-Newton algorithm is that it ensures
quadratic convergence near optimum [Frandsen et al. 2004, p.42].

In Figure 5.1 the two minimizers have been used on a modified Rosenbrock6

function. It is clear that the pattern search method searches through the lo-

3fminsearch is the built-in pattern search method in Matlab
4fminunc Matlabs built-in gradient minimizer
5ucminf is a minimizer developed at IMM - www.imm.dtu.dk/ hbn/Software/
6Rosenbrock is a standard example used for testing minimizations algorithms.
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cal neighborhood while Quasi-Newton utilizes the gradient as the direction to
move. It should be noticed that the Quasi-Newton method uses extra function
evaluations to calculate the gradient in each step. The choice of minimizer is
a compromise between the overhead in calculating gradient versus the same
number of function evaluations in the local neighborhood.

Both methods requires a set of options for the criteria for termination. The used
options are tolerance on parameter changes, tolerance on objective function
changes, tolerances on gradient or maximum number of function evaluations.
These options are set accordingly to the specific minimization.

The minimizers are used both for parameter estimation for a single subject and
population case. The population likelihood minimization is described in the
following section.

5.4 Minimization of APL

Population modelling is described in Chapter 4. The modelling now deals with
two different kind of parameters - population and individual parameters. Popu-
lation parameters θ are identical for all subjects whereas the individual param-
eters φ are unique for each subject.

The algorithm to calculate the approximate population likelihood involves the a
posteriori individual log-likelihood and its gradient. The FOCE approximation
requires that the individual log-likelihoods are minimized for a given set of pop-
ulation parameters. Hence for each set of population parameters a minimization
must be performed on each subject.

In Figure 5.2 the overview of the minimization of the APL is shown. In the
overview the Kalman filter (KF) is used as an example but the scheme is identical
for the EKF. The goal of the population minimization is to find the optimal
population parameters. The workload of the population minimization is highly
dependent on the number of parameters to be estimated but also on the number
of individual minimizations N .

The workload for the individual minimization is heavily dependent on the num-
ber of random effects η. The individual minimization is performed with the
Quasi-Newton method.

The extent of a minimization of the APL is also seen in Figure 5.2. With increas-
ing model complexity and larger parameters spaces to search, this minimization
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Quasi-Newton/Pattern Search

argmin APL(·)

APL(·) =
∑N

i=1

[

1
2 log |∆li| − li

]

Population

Single Subject

η̂ = argmin
η

li(φi, yi)

KF (φi, Yi)

1
2 log |∆li,η̂| − li,η̂

Figure 5.2: Schematic overview of PSM.
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can become a massive task. The minimization task is further reviewed in the
following sections.

5.4.1 Population Minimization

The minimization of the APL is the main minimization in the parameter es-
timation for a population. The minimization can be performed with either a
Quasi-Newton or a pattern search method.

The gradient used in the Quasi-Newton method is numerically computed with a
relative step size of 10−2 of the parameter. The gradient is a forward gradient as
the objective function can be a substantial computational task. The parameter
step size in the gradient is chosen relatively large to capture the global trend as
small step sizes can result in unstable gradients due to noise. The noise levels
will be further discussed in Section 7.2.1.

To overcome the noise disturbing the gradient near minimum, the pattern search
method can be used for a final minimization. In general it is advisable to
generate profiles of the objective function (APL) for each parameter and thereby
confirming if a minimum was found.

The APL calculation consists of a sum of contributions from each individual.
These contributions are the result of an individual minimization where the opti-
mal η̂ is found. These individual minimizations are the subject of the following
section.

5.4.2 Single Subject Minimization

The single subject minimization finds the optimal η̂s for each subject given a
set of population parameters. The dimensionality of the parameter space for
the minimization is given by the number of individual parameters.

The minimization is performed using Quasi-Newton which has been found to
perform well on minimizing the individual log-likelihood in examples tested in
this thesis. The initial guess is always η = 0 which is expected to be in the
proximity of the global minimum when the population parameters are close to
optimum. On the other hand, when the population parameters are far from
optimum the individual minimizations will be more demanding.

The gradient of the individual log-likelihood used in the Quasi-Newton mini-
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mizations is a central gradient based on a additive change in η by 10−4. An
additive change is chosen since ηs are assumed to be normally distributed with
mean zero so a relative change would be less robust.

The approximated Hessian for the individual log-likelihood function is calculated
based on the gradient of the prediction residuals with respect to η. The gradient
is a central gradient with an additive step length of 10−5.

The minimization termination criteria for the individual minimization are de-
fined by the infinity norm of the gradient and the relative change in step length
given as

‖d(li)/dη‖∞ < c1 (5.2)

‖∇η‖2 < c2(c2 + ‖η‖2) (5.3)

where both c1 and c2 are set to 10−4 to ensure an accurate estimate of η̂ is
obtained. These termination criteria are an important factor in the compromise
between speed and accuracy for the inner optimization.

5.5 Parameter uncertainty

The assessment of the parameter uncertainty reviewed in Section 4.3 is evaluated
in the minimum found by the optimal parameters. A description of the equations
used in the numerical approximations for the Hessian is found in Section 4.3.1.

The step length h used in the numerical Hessian calculation is a relative to the
parameter and unless other is specified it is set to 10−3. The step length were
tested for a small range of values from 10−2 to 10−4 and were found to provide
robust estimates.

The implemented function calculating the parameter covariance matrix also
returns the correlation matrix for the parameters. The covariance matrix shows
the uncertainty of the specific parameter whereas the correlation matrix shows
the interaction among parameters. A high correlation indicates that the model
specification makes it hard to separate the effect of each parameter in the APL
function.
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5.6 Parallel computing

The scale and magnitude of the computational effort in estimating parameters
are extensive. The combination of an optimization of several optimizations
generates a large need for computational power. Adding to this workload the
program language Matlab results in longer execution times compared to other
languages. An implementation in another language would increase the speed
significantly but it would still be a large computational task.

The preferred solution and what seems to be the trend is to use parallel com-
puting. There are several areas in the PSM prototype where parallel computing
would be beneficial. It has been chosen to implement parallelization in the
prototype in the split from overall minimization to minimization pr. individ-
ual. The parallelization results in N separate calculations which is seen clearly
by all the arrows in Figure 5.2. Furthermore, but not implemented it would
be advantageous to introduce parallel execution of the numerically calculated
gradients.

Matlab does not have the option of parallel computing by default. MatMPI7

enables parallel computing in Matlab by creating a set of scripts that is executed
in separate processes. MatMPI uses message parsing but it was found faster to
parse all data and parameters through files. The individual calculation extracts
its unique part of data by using its identifier number. The individual log-
likelihood result is parsed back into the leader thread by proper message parsing
to avoid deadlocks or race conditions. A shared memory environment is required
as the message parsing is implemented through shared files.

MatMPI works by issuing commands in blocks. This means that all working
processors are started at the same time and next block of data is not started
until all have finished. Some consideration should be put into matching the
number of CPUs with the data or simply just choosing the maximum number
of CPUs available.

In Figure 5.3 a simulated data set consisting of 20 series of objects in free fall
was generated. A single APL was calculated for a different number of working
processors. The server handled a large number of jobs simultaneously for other
users which have influenced the computation times. It can be seen that the
computation time is reduced to around a fifth of the original. In this example it
appears that the overhead is relatively large, however for more computational
intensive models the benefit of adding more CPUs may be substantial.

7MatMPI is a package to Matlab - developed at MIT Lincoln Laboratory by Dr. Jeremy
Kepner. - http://www.ll.mit.edu/MatlabMPI/
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Figure 5.3: Computation Times using Parallel Computing

PSM summary

A prototype has been developed in Matlab implementing a non-linear mixed-
effect model with SDEs. The numerical implementation is based on an ODE-
solver, minimizers and own code.

Functions for estimating the parameter uncertainty have been implemented.
The Hessian calculation has been analysed and optimized to avoid unnecessary
calculations of the costly APL function.

The computational work in solving parameter estimation in the prototype is
substantial but parallelization has been shown to improve execution time. A
more thorough validation of the implemented prototype is performed in the next
chapter.



Chapter 6

Validation of PSM

The main purpose of the validation of PSM is to ensure that the results produced
can be trusted. This will be done by comparing with existing PK/PD software
programs. However, no single program can handle non-linear mixed effects
models with SDEs and for this reason the prototype is validated against two
different programs. The first is CTSM (Continuous Time Stochastic Modelling)
is able to handle stochastic state space models for a single subject. The second
program NONMEM is able to handle non-linear mixed effects model but only
in ODE context.

The implemented prototype consists of several functions which together are able
to handle both the stochastic state space model and the non-linear mixed effect
part. Many of the functions are interlinked making it possible to test several
functions at the same time as it is unlikely that erroneous subfunctions will
produce a correct result in the overall function.

The validation will be done in two steps. Firstly, the Kalman filter will be
verified by comparing results with CTSM using a model based on SDEs on a
single individual. Secondly, the APL function will be compared with NONMEM.
This can only be done with ODEs in NONMEM, and thus the validation is based
upon that the SDE extension is validated against CTSM.
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CTSM 259.028450
PSM EKF 259.027492
PSM KF 259.027543

Table 6.1: Comparison of CTSM and PSM log-likelihood functions.

It is also needed to validate that the parameter estimation yields correct popula-
tion parameters as well as individual parameters. Finally, the Kalman smoother
will be validated.

All of the above must further more be carried out for both the linear and non-
linear versions of the implementation.

6.1 Kalman filter

The Kalman filter is the basis for the implemented population model since the
likelihood function is based on the one-step predictions and variances. The
Kalman filter in PSM is validated against CTSM by comparing the values of
the likelihood functions for one individual, see Eq. (3.28). This is done by
comparing with a two-compartment C-Peptide model which will be described
in further detail in Section 7.2. The data are taken from subject 1.

The model parameters to be estimated are the initial states, C0
1 , C0

2 , ISR0, mea-
surement noise S, and Wiener magnitude for the secretion rate σISR. Normally,
the initial state is constrained to steady state giving just one parameter to
estimate, but it is not possible to set this constraint in CTSM. The model is es-
timated using CTSM, and the resulting estimates are θ̂ = (C1, C2, ISR, S, σISR)
= (906.62,−8.7908, 104.58, 13763, 7.1796). It is noted that C2 is estimated to a
negative initial concentration, which is of course not physically possible. How-
ever, the estimated standard deviation in CTSM is 29.8 and it can therefore not
be assumed significantly different from 0.

The estimated parameter values from CTSM are used with both the non-linear
and linear Kalman filters in PSM and the resulting likelihood values are shown
in Table 6.1. It is seen that the values deviate but they are still acceptably
close to being equal. The deviation can be caused by numerical differences in
implementation or that the parameters from CTSM were only available with 5
significant digits.

As mentioned the likelihood value is only based on the predictions from the
Kalman filter. To verify the filtered values from the Kalman filter, it is compared
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to CTSM by plotting the secretion rate (3rd state) and by visual inspection it
is seen that both the non-linear and linear Kalman filters in PSM yields filtered
estimates approximately equal to CTSM.

6.1.1 Kalman smoother

The Kalman smoother is validated against CTSM using the same example as in
the previous section. Smoothed estimates are generated in CTSM and in Fig-
ure 6.1 the smoothed ISR-state is compared to the non-linear PSM smoother
estimates. By looking at the figure it is seen that they are practically identical
in estimate as well as standard deviation. CTSM only returns values for obser-
vation time points whereas PSM has inserted subpoints between observations.
The comparison should only be based on the value at observation time points.
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Figure 6.1: Comparison of EKF smoothed secretion rate values.

The linear version of the Kalman Smoother based on the Bryson-Frazier (B-F)
formulas is also tested against CTSM and the output is shown in Figure 6.2.
At a first glance this also corresponds with the CTSM smoother. However,
there seems to be some small numerical problems with the method just before
T = 600s for this model, see Figure 6.3. It is expected that the smoothed
estimate of the state and standard deviation are continuous, and not exhibit
the discontinuous behavior seen in the figure. However, right after T = 600 the
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B-F method returns to the CTSM estimates. A thorough investigation of the
problem should be carried out, but it has not been done as it is considered of
minor interest.
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Figure 6.2: Comparison of KF smoothed secretion rate values.

The Kalman filter and smoother have been successfully validated with CTSM
as reference. This is considered sufficient for the present need and in line with
focus of the thesis.

6.2 Population likelihood function

To validate the approximate population likelihood function, a one-compartment
ODE model for insulin data is set up and used for simulation to create validation
data. The model only includes elimination, which is modelled as a constant
K = CLi/Vi multiplied by the concentration of insulin in the compartment.
The model is initiated at t = 0 with a bolus injection of 10pmol insulin, giving
an initial concentration of 10/Vi in the compartment.

If the measurement equation for the concentration is modelled with additive
white noise, then the model can be written as
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Figure 6.3: Close up of KF smoothed secretion rate values.

dC = −KCdt (6.1)

Yij = C + eij (6.2)

where C is the concentration of insulin in the compartment. Given the state
equation it is seen that the initial concentration will decay toward zero expo-
nentially. Since the noise is additive this will result in negative measured con-
centrations in a simulation, which is obviously meaningless. One way to avoid
this, is to stop the simulation before the concentration becomes close too zero,
but the preferred way is to introduce a log-transformation of the concentration
in the compartment

B = log C (6.3)

which results in the following ODE state space model

dB =
1

C
dC = −Kdt (6.4)

log Y = B + eij (6.5)

This formulation of the model results in multiplicative measurement noise since
Y = exp(B + eij) = C · exp(eij) but is otherwise the same. The advantage
is that it will not lead to negative measured concentrations and the noise is
proportional with the concentration which is not unlikely. Figure 6.4 shows an
example of one simulation with the log-transformed model.
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Figure 6.4: Example of a simulation with the log-transformed model. The two
figures illustrate the same data on a linear and logarithmic scale.

NONMEM objective function
Individuals 2 4 10 20
1 ind. par. -21.581 -28.298 -55.527 -331.700
2 ind. par. -52.494 -104.863 -239.831 -519.315

PSM negative log-likelihood function
Individuals 2 4 10 20
1 ind. par. 11.264 29.959 82.510 54.713
2 ind. par. -2.355 -4.647 -0.454 -20.733

Table 6.2: Comparison of NONMEM and PSM log-likelihood functions.

The data used for the comparison with NONMEM is simulated using two in-
dividual parameters for CL and V . A total of four validation data sets are
created with 2, 4, 10 and 20 subjects. The two individual parameters are cho-
sen in the range from approx. [−1.5 1.5]. The data is estimated using the true
model as well as a reduced model where only CL is modelled with an individual
parameter.

The estimation is done using NONMEM, and estimated parameters are then
evaluated in PSM in order to compare the APL value. The population param-
eters for the true model are CL, V , ΩCL, ΩV and S. In the reduced model
the individual parameter on V and its corresponding variance ΩV is removed.
Table 6.2 shows the resulting likelihood values.

The values from Table 6.2 are also plotted in Figure 6.5. First of all it is quite
obvious that values are not the same. For 2, 4 and 10 individuals it looks like
there is a linear dependence indicating a constant difference in the likelihood
function per individual. The extension to 20 individuals yields that the linear
relationship does not hold.
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Figure 6.5: Plot of NONMEM and PSM log-likelihood functions.

In terms of parameter estimation, it is not a problem that the likelihood func-
tions differ in values as long as they have optimum for the same parameters. To
test this, the APL profiles are plotted around the optimal NONMEM parameters
which are seen in Figure 6.6 as the center point.
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Figure 6.6: PSM likelihood function around NONMEM optimum.

Figure 6.6 shows the PSM APL plotted around the NONMEM optimum, which
is the center point in all plots. The width of the interval for each parameter
is the optimum value ±5%. The data contains 20 individuals and the model
has two individual parameters. By plotting the APL profiles it is seen that
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the NONMEM optimal parameters also minimizes the PSM likelihood function.
The same is done for the remaining data sets, and in all cases it is found that
the NONMEM optimum also minimizes the PSM likelihood function. The con-
clusion is that the implemented likelihood function yields the same parameter
estimates as NONMEM.

As a further confirmation of the equivalence of the two population likelihood
functions it should hold that also the individual likelihood function has the same
optima. The individual likelihood function is a function of ηi as stated in Eq.
(4.1). In Figure 6.7 the optimal η values from PSM and NONMEM are plotted
against each other. The data with 20 individuals has been used with the model
with two individual parameters. By a visual inspection of the plot it is found
that the estimated parameters are very similar.
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Figure 6.7: NONMEM vs. PSM individual η-values.

6.2.1 Likelihood ratio test

Even though the two log-likelihood functions differ in absolute values, they
should still yield the same difference to a model of lower dimension. This is
used in the likelihood ratio test to test for significance of specific parameters in
a given model [Bickel & Doksum 1976].

If two models with m and n parameters are considered where m > n, it holds
that the difference of −2 logL is χ2(m − n) distributed if the model based
on n parameters is sufficient.
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NONMEM objective function difference
Individuals 2 4 10 20

30.9130 76.5650 184.3040 187.6150

2× PSM negative log-likelihood function difference
Individuals 2 4 10 20

27.2380 69.2120 165.9280 150.8920

Table 6.3: Comparison of NONMEM and PSM log-likelihood difference.

In the example used previously in this section the large model is based on
5 population parameters (CL, V, ΩCL, ΩV , S) and the reduced is based on 4
(CL, V, ΩCL, S). Thus the difference in −2 logL can be tested against χ2(1).
NONMEM’s objective function is based on −2 logL where as PSM’s is based
on − log L and this difference should thus be multiplied by 2. The comparison
based on the results in Table 6.2 is shown in Table 6.3.

The log-likelihood differences are similar but in no way equal. The reason is
most likely implementation issues concerning the approximation of the likelihood
function. It is observed that all the NONMEM differences are larger resulting
in the reduced model being rejected more often.

The 99.9% percentile of χ2(1) is 10.8276, and the reduced model can thus be
strongly rejected in all cases. This is also expected since the data is simulated
using the large model.

6.3 Simulation

The simulation part of PSM is validated using the log-transformed one-compartment
insulin model from Section 6.2 only this time there is also insulin added to the
system. The insulin secretion is modelled as a Wiener process. The system is
defined as

dB = −CL

V
dt + σdω (6.6)

log Y = B + eij (6.7)

Figure 6.8 shows the result of a simulation with the model for t = 0, 2, 4, ..., 300
giving 151 measurements. The parameters used are (CL, V, σ, S) = (0.5, 10, 0.2, 0.3).
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The simulation program outputs the simulated states and measurements. Since
the ODE solution is known (the left most figure) this can be subtracted from the
states to reveal the Wiener process. The measurement noise process is found as
the states subtracted from the measurements, see Eq. 6.7.
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Figure 6.8: Illustration of a simulation.

To validate the implementation it is necessary to verify that the measurement
noise eij comes from an N(0, S) distribution and that the Wiener noise has the
property [ω(u) − ω(t)] ∼ N(0, u − t). Since all increments are multiplied by σ
the resulting distribution is N(0, σ2[u − t]) in this 1-dimensional problem.

The moments of the measurement noise is estimated as µ̂e = 0.0064 and ŝ2
e =

0.2924. A t-test for µe = 0 yields t = (µ̂e−0)/ŝe = 0.0119. This gives p = 0.5047
and can thus not be rejected. A χ2-test for ŝ2

e = .3 yields χ2 = (151−1)ŝ2
e/.3 =

146.1946. This gives p = 0.4274 and can thus neither be rejected.

The Wiener noise is tested by looking at W = ωt − ωt+10 which should have
a N(0, 0.22 · 10) distribution. A t-test for the mean yields p = 0.4810 and a
χ2-test for the variance yields p = 0.5514.

In short it has been shown that it can not be rejected that the measurement
and Wiener noise is correct.
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6.3.1 Validation summary

The validation chapter has shown that the Kalman filter and smoother have
output similar to corresponding functions found in CTSM. Small deviations
are seen but probably caused by difference in numerical implementation, ODE-
solver or specified parameters.

The APL function is compared to NONMEM in an ODE case. They differ but
the found optimum for parameter estimation is shown to be identical for the two
programs. The difference is also examined for effects in a likelihood ratio test.
The conclusion is that a difference exists and in short that NONMEM rejects
parameters less frequent. It has been not been possible to find documentation for
the APL function for NONMEM and various attempts to explain the difference
in values have not been successful.

Finally a validation showed that properties specified in simulation could also be
found in simulated data.
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Chapter 7

Insulin Secretion

This chapter will focus on estimating properties of the insulin process using the
PSM setup based on data from type 2 diabetic patients. The methods however
are generally applicable and can also be used on healthy individuals.

The first part focuses on estimating insulin secretion rate (ISR) using deconvo-
lution, whereas the second part takes it a step further and suggests a model for
ISR. In the last part of the chapter it is shown how the PSM setup can be used
with multi-variate data to estimate ISR and the insulin extraction by the liver.

7.1 Data

The data originates from a double-blind1, placebo-controlled, randomized crossover2

study with a duration of 24 hours starting at 8 a.m. in the morning. Thirteen
patients (5 women and 8 men) with type 2 diabetes were examined. Their age
given as mean ± 1 standard deviation was 56.4 ± 9.2 years, BMI was 31.2 ±

1A study comparing two or more treatments where neither the subject nor the person
giving the treatment knows who has received which treatment.

2 A study in which subjects are randomly assigned to different treatments and then switched
at the halfway point in the treatment.
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3.6 kg/m2 and the duration of diabetes was 3.0 ± 2.6 years (range 5 months to
8 years).

For each patient a number of variables are measured. C-peptide and insulin
measurements will be used for analysis in this thesis. Also for this thesis only
the placebo data is used since the effect of the drug given in the study is not of
interest. One of the patients was discarded since the measurement times were
delayed compared to the rest. The data used in this thesis thus consists of
24-hour C-peptide and insulin profiles for 12 individuals.

The profiles were sampled 35 times during the 24 hours at varying time interval
mainly concentrated after meal times. A total of 3 standard meals were given
at 8 a.m., noon and 6 p.m., each to be finished within 20 minutes. These times
corresponds to 0, 240 and 600 minutes after the study was initiated, see Figure
7.1. The meal times are naturally important, since food intake is a main factor
of controlling insulin secretion.
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Figure 7.1: Meal times during 24H study period.

In Figure 7.2 the individual profiles can be seen for the two measured variables.
It is clearly visible that insulin production increases rapidly right after meal
intake. Overall there is generally a high resemblance between the profiles but
the scale and level of the 3 hill profile is different.

7.2 Deconvolution of ISR

The first model approach to estimate the insulin secretion rate (ISR) by decon-
volution is performed with a standard two-compartment model for C-peptide
measurements, see Figure 7.3. The model is created using the stochastic differ-
ential equations for the C-peptide kinetics with the ISR modelled as a Wiener
process (also loosely denoted a random walk) with magnitude σISR. The magni-
tude parameter influences the Kalman gain for the Wiener process, and a larger
magnitude will thus lead to a more fluctuating Wiener process with larger in-
crements and vice versa.



7.2 Deconvolution of ISR 55

0 240 600 840 1140 1440
0

2000

4000

6000

8000
Individual C−peptide profiles

C
−

pe
pt

id
e 

C
on

c.
 (

pm
ol

/L
)

0 240 600 840 1140 1440
−2000

0

2000

4000

6000
Mean profile for C−peptide ± 1 st.dev.

0 240 600 840 1140 1440
0

500

1000

1500

2000
Individual Insulin profiles

In
su

lin
 C

on
c.

 (
pm

ol
/L

)

0 240 600 840 1140 1440
−1000

0

1000

2000

Time (min)

Mean profile for Insulin ± 1 st.dev.

Figure 7.2: C-peptide and insulin data for 12 individuals.

The setup requires three states, namely a central compartment state C1 con-
taining the measured C-peptide concentration, a peripheral compartment state
C2 and a state ISR for the estimation of ISR. The C-peptide kinetic parame-
ters k1, k2, ke are set equal to the Van Cauter estimates [Cauter et al. 1992]. In
the model there will only be a magnitude parameter for the Wiener process on
the ISR but not on C1 and C2. This would otherwise lead to a model where
C-peptide could randomly appear and disappear and this is a violation of the
law of mass conservation.

ISR

C1 C2

k1

k2ke

Figure 7.3: Two-compartment model used for estimation of ISR.
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The C-peptide measurement error is assumed to be additive gaussian white noise
with variance S. The model states are constrained to steady state at t = 0 given
an initial estimated concentration in C1 as shown in Eq. (7.1).

x0 =





C0
1

C0
2

ISR0



 =





C0
1

k1
k2C0

1

keC
0
1



 (7.1)

C0
1 is estimated individually (denoted Ci) resulting in one random effect η and

a corresponding population parameter for the variance ΩC1
. The population

parameters to be estimated are C1, S, σISR and ΩC1
, which is illustrated in the

model layout shown in the box below.

Standard two-compartment C-peptide Model

Description: A two-compartment model with individualized starting
point in the initial conditions. ISR is modelled as a random walk.

State variables
x = [ C1 C2 ISR ]T (7.2)

Initial Conditions:

Ci = C0
1 exp η (7.3)

x0 =

[

Ci
k1

k2
Ci keCi

]

(7.4)

Model :

dx =





−(k1 + ke) k2 1
k1 −k2 0
0 0 0



x dt + diag





0
0

σISR



 dω (7.5)

Output :

y =
[

1 0 0
]

x + ε, where ε ∈ N(0, S) (7.6)

Parameters to estimate

θ = [ C0
1 σISR S] (7.7)
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The model is only to be used for estimating ISR after a clinical trial has been
performed. It cannot be used for simulation studies since it follows from the
model setup that ISR will be estimated as strictly positive random walk. Any
simulation will yield both positive and negative values for the ISR random walk
leading to a physically invalid realization of the process.

It should be noted that although this way of estimating ISR using stochastic
differential equations is loosely denoted deconvolution, it is in fact not strictly
speaking a deconvolution. A true deconvolution using the model shown in Figure
7.3 will estimate ISR at each measurement to be equal to the rate giving the
’missing’ amount in C1. With the SSSM approach the measurement noise on
C1 is taken into account by the Kalman gain in a minimal variance way and this
leads to a more smooth estimate of ISR where the effect of noise is reduced.

The problem of fitting to noise in data when performing deconvolution is well
known and has been addressed by existing software. An example is WinNonlin
[Pharsight 2004], which is a standard software solution used for deconvolution of
PK/PD data. The program addresses the problem by introducing a smoothness
factor and as a consequence it is simply left up to personal choice and preference
of the user to specify the level of smoothing. Another better solution can be
found using WinStoDec presented by Sparacino et al. (2002) which is based on
stochastic deconvolution and can be used for linear time-invariant systems. It
has been shown by Kristensen et al. (2004) that the stochastic deconvolution
approach is equivalent to the SDE approach presented here, which is further
more by nature also able handle to non-linear time-variant systems.

7.2.1 Optimization of likelihood function and noise

The model is estimated by an optimization of the population likelihood func-
tion. This has proven to be a non-trivial task because the likelihood function
is not entirely continuous but is distorted by a level of noise. This gives rise
to significant problems for the optimization. A gradient based method such as
Quasi-Newton is the most sensitive, since it is likely to fail on the ’line search’
part of the algorithm. This happens when the chosen search direction does not
yield a lower likelihood function value and this is usually the case when the
found solution is close to the optimum. This is unfortunate since this prob-
lem constrains the Quasi-Newton method from achieving quadratic convergence
near the optimum and it is instead necessary to use the pattern search method
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to achieve an optimal solution.

It is of interest to estimate the extent of this noise. Figure 7.4 shows likeli-
hood profiles for a very narrow relative range (±0.0005%) around the optimal
parameters. For this range the likelihood function is almost completely flat
and it is thus possible to see any significant noise present. The dots in the
figure represents evaluated values and the smooth curve is a fitted 2nd degree
polynomial.
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Figure 7.4: Log-likelihood profiles around optimum.

The residuals from the fitted curve are uncorrelated and the 2nd degree polyno-
mial shape is thus a good approximation without bias. The standard deviation
of the residuals from the fitted curve gives an indication of the noise. In the
plots in Figure 7.4 the smooth curve has been outlined with a ±3 standard de-
viations confidence band. The width of the bands is shown in Table 7.1. For
this example the σISR direction appears to have the most significant noise with
a standard deviation around 10−7.
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Parameter C1 S σISR ΩC1

Width of band 1.1586 · 10−10 1.1577 · 10−10 1.1832 · 10−7 1.1562 · 10−10

Table 7.1: Confidence bands for the population likelihood function.

The reason for this noise have not been studied more thoroughly and therefore
just a few observations regarding the problem will be presented here. The
individual likelihood functions are for the example shown above entirely smooth,
that is the function values have increments of machine uncertainty size. The
population likelihood function is a sum of the individual optimizations and the
Hessian approximations for the individual likelihood functions. The noise must
thus arise from a combination of these two. An attempt was made to set a very
low termination criteria for the individual optimizations, but the resulting noise
were very similar for all parameters to those seen in Table 7.1.

7.2.2 Results of deconvolution

The found optimal parameters are shown in Table 7.2 together with the stan-
dard deviation and coefficient of variation. Parameter correlations are shown
in Table 7.3. To verify that an optimum of the likelihood function has been
found a likelihood profile plot is made (appendix Figure B.1) which confirms
the optimum.

Parameter Estimate Std. deviation CV

C1 912.5 119.1 0.13
S 8574.6 1533.9 0.18
σISR 6.064 0.277 0.05
ΩC1

0.170 0.083 0.49

Table 7.2: Parameter estimates for two-compartment C-peptide model.

C1 S σISR ΩC1

C1 1
S 0.0124 1
σISR 0.0026 -0.2944 1
ΩC1

-0.1426 -0.0054 -0.0196 1

Table 7.3: Correlation estimates.

Most noticeable is the negative correlation between S and σISR. This is as
expected since a smaller S leads to a less smooth estimate of ISR with large
increments in the Wiener process and thus a larger σISR.
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An analysis of the 1-step prediction rediduals for the model is found in Figure
7.5. The residuals are studentized by the prediction variance from the Kalman
filter to remove the effect of the varying time intervals. The residuals for all
individuals have been appended to each other into one vector containing 35·12 =
420 residuals. Looking at the figure, the overall the assumption of normality
for the residuals seems to be reasonable, although there seems to be too heavy
tails. This can also be seen from the ’S’ shape in the QQ-plot.
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Figure 7.5: APL for θopt ± 5%.

The autocorrelation function shows a large correlation for lag 35 equal to the
number of samples per individual. This indicates that there is a large bias in
the model i.e. the model is consistently over and under estimating at the same
time points for all individuals. This is expected since the model will use the last
update of ISR for prediction. Thus when ISR has peaked then the following
prediction of C1 will be to high since the model does not know that ISR has
started to decrease.

Figure 7.6 shows the predictions of C-peptide for the 1st and 2nd individual.
The figure visualizes the bias indicated by the ACF - it is underestimating before
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peaks and over estimating after peaks. The bias is more clearly seen in the mean
profile of the residuals shown as the lower right plot in Figure 7.5.
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Figure 7.6: C-Peptide prediction for individual 1 and 2.

The problem with bias in the predictions using the model is not of great concern
since it is not the intended use. The aim of the model is to estimate ISR, and
here the Kalman smoothing technique eliminates the bias by using all observa-
tions at all times. This yields an optimal estimate of ISR based on the model.
More importantly it is also seen from Figure 7.6 that the individualized starting
concentration seems appropriate for the first two individuals and this also holds
for the remaining 10.

Figure 7.7 shows the smoothed estimate of ISR for the first two individuals to-
gether with the ± 1 standard deviation band equal to a 67% confidence interval.
The assumption of steady state in the beginning defines the initial level of ISR
based on C1 and this appears valid.

The width of the confidence bands is varying but does not depend on the data
since both the drift and diffusion term of model are state independent. Thus
the uncertainty of ISR only increases with distance a to sample point and
is therefore mainly dependent on the sampling rate. This is not a desirable
property. An example is the time after T=900min where ISR has stabilized
and is thus fairly certain. Due to the low sampling rate the model estimates
large confidence band between the observations which seems large for a stabilized
system and may not be realistic.

Taking a closer look at the confidence interval for ISR (Figure 7.8) reveals
that it is in fact at its narrowest just prior to a measurement. The confidence
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Figure 7.7: Smoothed estimate of ISR for individual 1 and 2.

interval for C1 is at its narrowest at a measurement, since it is directly observed.
The reason for the difference is that C1 depends on ISR, and the most certain
estimate of ISR is thus found just prior to the most certain estimate of C1.
Consequently also for C2 the narrowest band is found after a measurement
since it depends on C1.
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Figure 7.8: Behavior of ISR uncertainty around measurements.

To conclude on the deconvolution model it has been shown that the ISR and
uncertainty can be found by deconvolution. The analysis showed signs of bias
for the prediction, but this can be eliminated by using the Kalman smoothing
technique to obtain the best possible estimate of ISR based on the model.
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7.2.3 Log Model

The previous analysis with the two-compartment model for C-peptide was based
on the assumption of additive gaussian noise for the C-peptide concentration
measurements. However, when dealing with measurements of concentrations it
is often found that it is more appropriate to use a proportional noise model.
This will be tried in the following to investigate whether it might improve the
model performance.

The PSM prototype works with the assumption that the error term in the
observation equation is additive. In order to work with proportional error terms
a log transformation can be used. The proportional error can be stated and
reformulated for PSM as follows.

y = ŷεprop (7.8)

log(y) = log(ŷ) + log(εprop) (7.9)

Using the reformulation in equation (7.9) it can be seen that the log(εprop)
should be normally distributed or the εprop log normal distributed.

The predictions from the standard two-compartment model are used to form
the εprop using equation (7.8). In Figure 7.9(a) a slight skewness is noticed but
the log-transformation removes this skewness. This indicates that an analysis
using a proportional error term should be performed.
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Figure 7.9: Histrogram of the relative error.
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The standard two-compartment model is transformed to examine the effect of
proportional error compared to additive error. The transformation only occurs
in the observation equations. The state equations remain the same.

Log Model

Description: Identical to the standard two-compartment model formu-
lation but with a log transformed observation equation.

State variables:
x = [ C1 C2 ISR ]T (7.10)

Initial Conditions:

Ci = C0
1 exp η1 (7.11)

x0 =

[

Ci
k1

k2
Ci keCi

]T

(7.12)

Model:

dx =





−(k1 + ke) k2 1
k1 −k2 0
0 0 0



x dt + diag





0
0

σISR



 dω (7.13)

Output :

log(y) = log(x1) + ε, where ε ∈ N(0, S) (7.14)

Parameters to estimate

θ = [ C0
1 σISR S] (7.15)

The new model will have a new set of parameters that maximizes the likelihood
for the data. The initial starting parameters for the parameter estimation is
based on the previous model estimates. The σISR parameter is however affected
by the reformulation. By looking at Figure 7.9(b) is seen that the residuals are
expected to be within 0 ± 0.3. An appropriate starting guess is thus S =
(0.3/2)2 = 0.02.
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The Log Model has properties that are less convenient. The prediction for the
first compartment can for poor choices of parameters become negative. This is
not physiologically correct but the model holds no limitations. This will result
in a observation prediction that is the logarithm to a negative number and this
can not be handled.

The implementation is unable to handle algebraic inequations or equations for
the states, so the limitation is a hard-coded in the f (·) function that ensures a
positive value in the states. This is not a desirable solution but it is necessary
to complete the parameter estimation. The hope is that the optimal parameters
will not lead to any negative numbers in the states.

The parameters were estimated and the likelihood profiles can be seen in ap-
pendix Figure B.2. In Table 7.4 the parameter estimates can be seen together
with the estimated standard deviation. The correlation matrix for the param-
eters can be seen in table 7.5. By looking at the tables it is seen that the
estimates for C1 and S are fairly certain and non-correlated. On the other hand
the estimate for S is correlated with the two others and has a high uncertainty.
This indicates that the Log Model has had difficulties separating measurement
noise from system noise for ISR.

Parameter Estimate Std. deviation CV

C1 903.33 121.23 0.13
S 0.00227 0.04652 20.48
σISR 5.5526 0.2607 0.05

Table 7.4: Parameter estimates for the Log Model.

C1 S σISR

C1 1
S 0.379 1

σISR 0.003 -0.374 1

Table 7.5: Correlation matrix for the estimated parameters

The individual predictions can be seen in appendix Figure B.3, note that there
are no negative predictions. The distribution of errors and general overview of
the residuals can be seen in Figure 7.10. The histogram shows the distribution
of the studentized residuals. The histogram and the QQ-plot shows that the
studentized residuals are fairly normally distributed and perhaps slightly better
than for the additive error model.

The ACF shows some bias in the residual and the peak at lag = 35 is still clearly
seen. The bias is also seen in the mean profile for the residuals. The model still
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shows signs of too slow adjustment for prediction. The residuals are positive as
the C-peptide levels increase and negative at decrease.
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Figure 7.10: Residual analysis of the Log Model.

The Log Model is widely used to describe data since it enables the use of pro-
portional error. The downside is a mathematically unstable model that requires
a number of hacks to work during parameter estimation and also it appears
to be more difficult for the model to separate measurement and system noise.
It has been decided that shortcomings of the Log model outweigh the slight
improvement in distribution of the residuals and thus the model with additive
noise is concluded to be most adequate.
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7.3 Intervention model for ISR

This section will focus on not just estimating but also at the same time mod-
elling the insulin secretion rate (ISR) in order to achieve a lower uncertainty
estimate for ISR. The idea is to utilize the knowledge of the three meal times
and incorporate it into the model.

An attempt was made modelling the ISR through a predefined input which
resembled the peaks after meals and the input was then scaled individually.
The complete analysis can be found in appendix B.3.2 but the result was that
the decay did not correspond to decay seen in data. A solution that included
better control of the 3 peak structure is wanted.

According to the study plan a meal is to be digested over a period no longer than
20 min. but due to the sampling rate of data it will be assumed to last 30 min.
Based on a review of the previously estimated ISR curves, it is assumed that
ISR is increasing during meal intake and afterwards somewhat slowly decreasing
in an exponential decay. This can be modelled with an intervention model with
a 30 min. input impulse burst after meal times. It is observed that ISR does
not decay toward zero and therefore the model for ISR also contains an basal
level for ISR.

The modelling of ISR as an intervention model using state space models enables
one to control the order of decay. The desired order of decay for the ISR is 2
hence 1 extra state denoted Q is required.

In order to limit the number of parameters it is chosen to model each of the
three meals with identical parameters. It is without doubt a too simple approach
since the meals and time of day are likely to influence the dynamics of ISR. The
positive coefficients a1 and a2 defines the decay from the 2 states and combined
they constitute the double exponential decay. The gain for the process (or
more loosely speaking the height of the three peak profile) is controlled by a
single parameter K and the basal level is controlled by B. Each of these two
parameters are modelled as individual parameters, since they are both observed
to vary significantly between individuals. As the model still can not be assumed
to constitute a sufficient modelling of ISR a stochastic contribution ω is added
to the ISR.

The relation of the two states defining the intervention model for ISR is shown
in Eq. (7.16) and (7.17). The parameters for the ISR model is estimated along
with the remaining parameters.
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dISR = (−a1ISR + a1Q + B)dt + dω (7.16)

dQ = (−a2Q + a2Ku1)dt (7.17)

In Figure 7.11 an overview of the ISR model is shown. The input is a 2 dimen-
sional input u = [ u1 u2 ]T . The first dimension describes the intervention part
by having ones at time points where meals are served.3 Since the meals are
assumed to last 30 minutes and remembering the first order hold on input, the
input u1 is one at time points (0, 15, 240, 600, 615) and zero otherwise. The
second dimension in the input is constantly 1 and is a standard work around for
a linear model used to add a constant in a differential equation. In the present
case the constant creates the basal level for ISR.

ISR Q

Bu2

ω

a2Ku1

a1

a1

a2

Figure 7.11: Model for ISR with second order dynamics.

The new ISR modelling is appended onto a standard two-compartment model
for C-peptide measurements, see Figure 7.12. The model is as usual initiated
at steady state, but it is decided to fix the initial concentration in C1 to C0

1

= 900pmol/L based on previous results in order to limit the number of model
parameters. It is also found necessary to remove the individual estimate of C1

since the individual optimizations will otherwise be 3-dimensional and thereby
too cumbersome.

The modelling of ISR will give this model the property that it enables simulation
of the entire system since the random walk is only used to describe deviations
from the ISR model and will thus have a mean close to zero. Previous models
have had ISR as a complete random walk, which has forced the estimated ran-
dom walk to be positive. These models are unusable for simulation purposes.
This model has ISR modelled and a simulation will thus yield different outcomes
of ISR which are biologically feasible.

3Meals are served at time points 0, 240 and 600 minutes.
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Intervention Model

Description: A two-compartment model with ISR modelled via an in-
tervention model with a double exponential decay for ISR.

State variables:

x =
[

C1 C2 ISR Q
]T

(7.18)

Initial Conditions:

C0
1 = 900 (7.19)

x0 =

[

C0
1

k1

k2
C0

1 keC
0
1 0

]T

(7.20)

Model:

dx =

















−(k1 + ke) k2 1 0
k1 −k2 0 0
0 0 −a1 a1

0 0 0 −a2









x

+









0 0
0 0
0 B exp(η2)

a2K exp(η1) 0









u









dt + diag









0
0

σISR

0









dω (7.21)

Output:

y = C1 + ε, where ε ∈ N(0, S) (7.22)

Parameters to estimate :

θ =
[

a1 a2 σISR K B
]T

(7.23)

The estimated parameters are based on a starting guess which is found by initial
experimentation with the model. The coefficients a1 and a2 should be positive
and chosen to give a reasonable decay profile. The baseline B is found by
assuming that the ISR is at steady state at the end of the deconvolved ISR
profiles from the previous section. The mean end level is 64.8 pmol/L and it
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can thus be expected to approximately find B/a1 = 64.8.

The model consists of 5 population and 2 individual parameters. This makes the
minimization of the population likelihood function a huge computational task.
The optimization has been carried out over several steps where the resulting
intermediate likelihood profile curves have been used as new start guesses. The
main problem has been noise in the likelihood function which makes gradient
based optimization difficult and the problem naturally increases with the size
of the parameter space.

The profile likelihood for the found optimal parameters can be seen in appendix
Figure B.19. The optimum is found for each parameter and the curves are
almost symmetrical around the center. The curvature of the profiles gives a
hint to the uncertainty for each parameter but this will be calculated more
accurately later on. The optimal ηs are plotted in appendix Figure B.20 and it
can be seen that they are close to being normally distributed. This indicates
that the population parameters handle the overall variation and the individual
parameters only handle the individual variation from the population.

Parameter Estimate Std. deviation CV

a1 0.02798 0.0038 0.13
a2 0.01048 0.0015 0.14
σISR 6.9861 0.5590 0.08
K 427.63 67.8181 0.16
B 1.7434 0.3378 0.19

Table 7.6: Parameter estimates for the Intervention Model.

a1 a2 σISR K B
a1 1
a2 -0.7197 1
σISR 0.8038 -0.5952 1
K 0.1296 -0.3546 0.1161 1
B 0.6790 -0.3923 0.5472 -0.0236 1

Table 7.7: Parameter correlation estimates for the Intervention Model.

In Table 7.6 it can be seen that the parameters are well estimated and are sig-
nificantly different from zero. The high correlations indicate that the model
parameters have high influence on each other and it might be possible to refor-
mulate the model with fewer parameters.

In Figure 7.13 the predictions can be seen for individuals 1 and 2. The pre-
dictions for all 12 individuals can be seen in appendix Figure B.21. It can be
seen that the bias around increasing and decreasing ISR levels have disappeared.
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Figure 7.12: Overview of the Intervention Model.
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Figure 7.13: Predictions and C-peptide observations for individual 1 and 2.
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Due to the fact that the model does not include the individual estimate of C0
1

the first residual is extremely large, since the first observation is used to find the
initial level. The standard deviation of the 1-step prediction residuals for all in-
dividuals are 210.4 pmol/L whereas the same for the Standard two-compartment
C-peptide Model is 287.2 pmol/L. The overall conclusion on the predictions are
that they fit the observations well and show a significant improvement to the
previous model.

The residual analysis supports this impression. In Figure 7.14 various exam-
inations of the residuals are shown. The histogram shows some skewness but
overall not far from a normal distribution which the QQ-plot verifies. The ACF
shows no significant trends in the residuals and the auto-correlation for lag 35
is reduced.
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Figure 7.14: Analysis of the prediction residuals from the Intervention Model.

The improvement in the intervention model compared to previous models is the
modelling of the ISR. Previously, the ISR has been modelled as a random walk.
However, all the properties of a random walk were not satisfied. The ISR should
not be negative and a prior knowledge on the expected behavior is known. In
Figure 7.15 the smoothed and the modelled ISR are shown and furthermore the
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difference which should be the random walk is plotted. The difference has mean
zero but the increments should be larger in larger time intervals. The difference
for these 2 individuals does not exhibit this behavior but it is closer to a random
walk than previous ISR models.
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Figure 7.15: Smoothed and model ISR for individual 1 and 2.

The model and smoothed ISR for all individuals can be seen in appendix Figure
B.22. The ISR model should be able to fit to the common height of the hills, the
increase and decrease in levels and the baseline seen at the end. For all individ-
uals the model for ISR can been seen to fit nicely and especially the baselines
with the individually estimated levels are modelled close to the smoothed result.
It appears that middle hill is generally slightly lower than the two others, but
due to the assumption of equal dynamics for all three meals the model lies above
the middle hill.

It is important to note that the estimate of ISR is almost identical to the estimate
found using the Standard two-compartment C-peptide Model. This is fairly
obvious since the C-peptide models are identical and the small differences in
the ISR estimates by the two models only are caused mainly by a different
estimate of the measurement error S for the two models. Appendix Figure B.23
shows smoothed estimates of ISR for the two models. However, it was the hope
that the modelling of ISR would yield more narrow confidence bands. Figure
7.16 shows ISR for the first two individuals and by comparison with Figure 7.7
it is seen that this is not the case. The reason is that σISR = 6.99 estimate is
similar to the previous estimate of 6.06. At first this may seem illogical since the
range covered by the random walk is much smaller in the Intervention Model.
However, σ is estimated based on the increments in the random walk, which is
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of similar size. The conclusion is thus that the new model does not give more
narrow confidence bands, but they are probably more trustworthy since they
are based on an estimate from a more true random walk process.
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Figure 7.16: Smoothed estimate of ISR for individual 1 and 2.

The model analysis has successfully shown that it is possible to model the C-
peptide measurements accurately by including ISR knowledge into an interven-
tion model.

The residual errors were less correlated and the properties of the deconvolved
random walk are much closer to assumptions.

The confidence bands around ISR shows no improvement in width but can
probably be trusted to a greater extent compared to earlier models. Finally, the
model is more adequate for simulation if required.

7.4 Combined models

The previous models of ISR have been based solely on the C-peptide measure-
ments. However, it may also be useful to include the insulin measurements as
well in a combined model [Kjems et al. 2001]. Insulin has a very short half-
life and is thus usually modelled with a one-compartment model. The hope is
that using the insulin and C-peptide measurement in combination will lead to
a better estimate of ISR.
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7.4.1 Initial approach

It is known that equi-molar amounts of C-peptide and insulin are secreted from
the pancreas. The pre-hepatic insulin secretion rate (ISR) are thus equal to
the C-peptide secretion rate. It is difficult to asses how much of the insulin is
extracted by the liver. For this initial model it is chosen to model the extraction
simply by a fixed constant denoted Fc. Using this with the 1-compartment
insulin model results in the combined model illustrated in Figure 7.17.

Pancreas

ISR

Liver

Fc · ISR

I C1 C2

ke ke,I

k1

k2

Figure 7.17: Dynamics of the Combined model.

The insulin part of the model introduces two new parameters into the model,
namely the liver extraction F and the insulin elimination constant ke,I . Both
are chosen to be maximum likelihood estimated. It is assumed that the model is
initiated in steady state, and this fixes C0

2 and ISR0 based on C0
1 as previously

shown in Eq. 7.1 page 56. Also the insulin compartment can be fixed based on
C0

1 since it must hold that Fc · ISR = ke,I · V in steady state. This gives V =
ISR · Fc/ke,I = C1ke · Fc/ke,I . The resulting model is shown in the model box
below.
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Initial Combined Model

Description: A combined model with 2 compartments for C-peptide
and 1 compartment for insulin. Liver extraction Fc is a fixed constant.

State variables:
x = [ C1 C2 I ISR ]T (7.24)

Initial Conditions:

Ci = C1 exp(η) (7.25)

x0 =

[

Ci
k1

k2
Ci

ke

ke,I
FcCi keCi

]

(7.26)

Model:

dx =









−(k1 + ke) k2 0 1
k1 −k2 0 0
0 0 −ke,I Fc

0 0 0 0









x dt + diag









0
0
0

σISR









dω (7.27)

Output:

y =

[

1 0 0 0
0 0 1 0

]

x + ε, where ε ∈ N

(

0,

[

SC 0
0 SI

])

(7.28)

Parameters to estimate

θ =
[

C0
1 Fc ke,I SC SI σISR

]

(7.29)

7.4.1.1 Model estimation and performance

The model is setup with the initial concentration in C0
1 as individual parameter.

The variance of the individual ηs for C1 are set to ΩC1
= 0.15 and the C-

peptide kinetic parameters are set to the Van Cauter values. The remaining
population parameters to be estimated are thereby C1, Fc, ke,I , SC , SI and
σSR. The estimates are shown in Table 7.8 and the correlation estimates for
the parameters are shown in Table 7.9. Most noticeable are the correlation of
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0.9956 between Fc and ke,I . This shows that the effect of the two parameters
cannot be separated, and thus only the estimated fraction Fc/ke,I should be
trusted. The high correlation between Fc and ke,I also results in rather high
uncertainty estimates which again leads to a high coefficient of variation (CV)
for the two parameters.

Parameter Estimate Std. deviation CV

C1 925.16 113.49 0.12
Fc 0.3047 0.0639 0.21
ke,I 0.1410 0.0299 0.21
SC 7483.9 1328.7 0.18
SI 13514 952.14 0.07
σSR 6.1682 0.2774 0.05

Table 7.8: Parameter estimates for Initial Combined Model.

C1 Fc ke,I SC SI σSR

C1 1
Fc 0.0176 1
ke,I 0.0168 0.9956 1
SC 0.0089 0.0027 0.0012 1
SI -0.0065 -0.0534 -0.0528 0.0131 1
σSR 0.0078 -0.0354 -0.0343 -0.2925 -0.0188 1

Table 7.9: Parameter correlation estimates.

To verify that the optimal parameters have been found the profile likelihoods
have been plotted around the parameter estimates (see appendix Figure B.26).
The plot shows that a satisfactory optimum has been found. It should also hold
that η ∈ N(0, ΩC1

). In order to limit the parameters to be estimated, ΩC1
was

set to 0.15. The sample variance of the estimated ηs equals 0.1425, and is thus
close to the specified value. To check the normal distribution, a QQ-plot is made
and shown in Figure 7.18. From the figure it is seen that the ηs can be assumed
to be normally distributed.

However, it is of concern to see that SI has been estimated to 13514 = 116.22

whereas SC = 86.52. This insulin measurement variance seems much to large,
especially knowing that insulin concentrations are always lower than C-peptide
concentrations.

This indicates that the insulin part of the combined model is too simple, which
is further supported by an analysis of the studentized residuals found in Fig-
ure B.24. The histogram and QQ-plots show that the residuals are fairly well
approximated by a normal distribution although they show a tendency toward
too heavy tails. The insulin residual histogram appears skewed with a few very
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Figure 7.18: QQ-plot of individually estimated η-values.

large residuals and (as a consequence) a too large proportion of negative resid-
uals. This is also seen in the autocorrelation for the insulin residuals, which
are positive for all lags. These observations indicates that the insulin model is
insufficient and is generally over-estimating.

The effect of the insufficient insulin model is that no extra accuracy is obtained
for ISR using insulin measurements together with C-peptide measurements. The
reason is that insulin measurements are given a low emphasis in the Kalman
state update of ISR due to a large SI . This results in basically unchanged esti-
mates of the ISR compared to the Standard 2-compartment C-peptide Model.

The most probable deficiency of the combined model is the use of a constant liver
insulin extraction proportion. Many studies have shown that a more complex
model should be used e.g. Michaelis-Menten saturation as discussed in Section
2.1.1. Instead of using one of these models, a choice is made to instead use the
combined model to estimate the dynamics of the liver extraction. This can be
done by including F as a state and this will be the focus of the next proposed
model.

7.4.2 Combined model to estimate liver extraction

The initial approach above to construct a combined model indicated a need for
a time varying liver extraction, F (t). This possible by including F (t) in the
state equation in order to be able to estimate it over time. F (t) is modelled as a
random walk similar to the approach for ISR. The insulin elimination constant
is chosen to be a fixed number. In the model above ke,I was found to be 0.1410
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and in a similar study by Kjems et al. (2001) using the same model also on type
2 diabetic patients, it was found that ke,I = 0.355. It is chosen to use the latter
value, since the analysis of the model above showed that the estimate of ke,I

was highly correlated with the estimate of F .

In order to limit the parameter space for the optimization the estimate of C0
1 is

fixed to 900 pmol/L and σISR is fixed to 6.2. This is done since the C-peptide
part of the model is not expected to change. The initial state C0

1 is still estimated
individually. The initial guess for the level of F is set to F0 = 0.2, which is a
little lower than the estimate of the constant Fc in the previous model.

The general layout of the model has not changed, and is thus still the one shown
in Figure 7.17. The idea is that ISR will be estimated using the C-peptide part
of the model as usual, and with an estimated ISR it will be possible to estimate
F (t) by using the insulin measurements and having a fixed insulin elimination
constant. The model is non-linear due to the multiplication of the two states F
and ISR in the state equations. The model details are shown in the box below.
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Liver Extraction Model

Description: A combined model with 2 compartments for C-peptide
and 1 compartment for insulin. Liver extraction F is modelled as a random
walk.

State variables:

x = [ C1 C2 I ISR F ]
T

(7.30)

Initial Conditions:

Ci = C0
1 exp(η) (7.31)

x0 =

[

Ci
k1

k2
Ci

ke

ke,I
F0Ci keCi F0

]T

(7.32)

Model:

dx =













−(k1 + ke)C1 + k2C2 + ISR
k1C1 − k2C2

−ke,II + F · ISR
0
0













dt + diag













0
0
0

σISR

σF













dω (7.33)

Output:

y =

[

C1

I

]

+ ε, where ε ∈ N

(

0,

[

SC 0
0 SI

])

(7.34)

Parameters to estimate:

θ = [ SC SI σF ] (7.35)

7.4.2.1 Model estimation

The population parameter estimates are shown in table 7.10. The estimate of
SC , the C-peptide measurement noise, seems reasonable as does the σF which is
the Wiener noise gain for F . However the estimate of the insulin measurement
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noise for SI = 0.1 is much to low. For practical purposes the insulin concen-
tration measurement error is assumed to be around 1%-10%. The mean of all
insulin measurements are 221pmol/L and it would thus roughly be expected to
find a maximum error in the range from 2.21pmol/L to 22.1pmol/L. If this
maximum error is seen as a 95% confidence interval this corresponds finding SI

in the range from 1 to 1204. There may be several factors causing this unreason-
ably low estimate of SI , e.g. the starting guess for F0 = 0.2 and the initialization
of the state covariance. However, the most important thing is that the model
for F is too flexible and it is thus not possible to separate the measurement
noise from the variation of F .

Parameter Estimate Std. deviation CV

SC 4013.8 700.88 0.17
SI 0.1 N/A N/A

σF 0.0290 0.0003 0.01

Table 7.10: Parameter estimates for combined model with F as state.

SC SI σF

SC 1
SI N/A 1
σF -0.0140 N/A 1

Table 7.11: Correlation estimates.

An analysis of the residuals (see Figure B.27) shows similar results as seen for the
first combined model. It appears as if the improved model for F has removed
some of the bias in the insulin residuals mainly for the last half of the time
interval.

Figure 7.19 shows the profile likelihood function around the optimal parameters.
The figure shows that the estimates of SC and σF are accurate and robust. On
the other hand there appears to be significant noise in the likelihood profile for
SI although it still seems to have a nice minimum around 10−2. Due to this noise
around the parameter estimate it was not possible to estimate the uncertainty
for the estimate of SI or find correlation with the other two parameters.

A look at the insulin predictions reveals a peculiar effect of the model. In Figure
7.20 the one step prediction of insulin measurements for individual 1 is seen.
Due to the low estimate of insulin measurement noise the prediction update after
measurement is almost equal to the last measurement. What is more surprising
is the fact that the prediction remains constant between measurements. This
seems to hold for all time intervals and is the same for all individuals.

42 ·
√

SI = 221 · 10% ⇒ SI = 120



82 Insulin Secretion

4000 4200
0

0.02

0.04

S(CPEP)

Tol.: θ ⋅ (1 ±0.05)

 M
in

F
: 5

27
2.

52
4

10
−5

10
0

0

0.05

0.1

S(INS)

 M
in

F
: 5

27
2.

52
34

0.028 0.029 0.03
0

0.2

0.4

0.6

σ (F)

Tol.: θ ⋅ (1 ±0.05)

 M
in

F
: 5

27
2.

52
4

Figure 7.19: Likelihood function plotted around optimal parameters.
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Figure 7.20: 1-step prediction of insulin measurements for individual 1.
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A closer look at the model can tell more about what is going on. The insulin
prediction if found by calculating the ODE solution for the state Xk+1|k after
the state is updated by the last measurement, Xk|k. By looking at the state
equations (Eq. 7.33) it is seen that for the insulin prediction to remain constant,
it must hold that Fk|kISRk|k = ke,IIk (since Ik ≈ Ik|k due to the low SI). F
and ISR remains constant between measurements since dF/dt = dISR/dt = 0.
Thus if F is updated such that (Fk|kISRk|k)/(ke,IIk) = 1, then the prediction
of insulin is constant. In Figure 7.21 this fraction has been found and shown
with a mean profile for all individuals over time. The figure shows that it is in
fact very close to 1 with minor deviations around meal times.
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Figure 7.21: Mean profile for the fraction between the amount running in and
out of the insulin compartment at the beginning of each time interval.

The conclusion on the analysis is that a less flexible model for F is needed such
that it is possible to separate the liver extraction dynamics from the measure-
ment noise.

7.4.3 Improved model for liver extraction

The analysis in the previous section has shown that the first Liver Extraction
Model yields poor performance and that this most likely is due to a too flexible
model for F . In order to solve this problem a slight change in the model setup
for the liver extraction is made. It is chosen to model the derivative of F as
a random walk instead of directly F as done before. This can be achieved by
introducing a new state named X such that
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dF

dt
= X (7.36)

dX = σXdω (7.37)

The change in the model for F causes the increments of the derivative of F to
be penalized by the Wiener noise gain σ instead of directly the increments of
F . This results in a less flexible model for F where fluctuations are constrained.
The change is incorporated into the existing model for the liver extraction which
results in the model shown in the following.
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Constrained Liver Extraction Model

Description: A combined model with 2 compartments for C-peptide
and 1 compartment for insulin. Liver extraction F is constrained by modelling
dF/dt as a random walk.

State variables:

x = [ C1 C2 I ISR F X ]
T

(7.38)

Initial Conditions:

Ci = C0
1 exp(η1) (7.39)

x0 =

[

Ci
k1

k2
Ci

ke

ke,I
F0Ci keCi F0 X0

]T

(7.40)

Model:

dx =

















−(k1 + ke)C1 + k2C2 + ISR
k1C1 − k2C2

−ke,II + F · ISR
0
X
0

















dt + diag

















0
0
0

σISR

0
σX

















dω (7.41)

Output:

y =

[

C1

I

]

+ ε, where ε ∈ N

(

0,

[

SC 0
0 SI

])

(7.42)

Parameters to estimate:

θ = [ SC SI σX ] (7.43)

The parameters to be estimated are SC , SI and σX . F0 is fixed to 0.4 based
on the mean of the smoothed estimate of F (t = 0) for all individuals from the
previous model. X0 is fixed to 0.01. The model estimates are shown in Table
7.12 and 7.13. The likelihood profiles and a residual analysis can be found in
Figure B.30 and B.31. The figures verifies that a good optimum has been found
and that no large deviations from normality of the residuals are present in the
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model.

Parameter Estimate Std. deviation CV

SC 5505.6 855.4 0.16
SI 392.7 73.9 0.19
σX 6.437 · 10−4 0.401 · 10−4 0.06

Table 7.12: Parameter estimates for the Constrained Liver Extraction Model.

SC SI σX

SC 1
SI 0.0068 1
σX -0.0512 -0.3449 1

Table 7.13: Correlation estimates.

From the correlation matrix it is seen that SI and σX are strongly negatively
correlated. The reason is that a lower SI yields a more fluctuating F and thereby
a higher σX , hence giving a negative correlation between the two. However, due
to the constrained model for F it is for this model possible to separate the two
and find reasonable estimates.

As expected the Constrained Liver Extraction Model finds an ISR which is
almost identical to the one found using just a C-peptide model. The smoothed
liver extraction F is shown in Figure 7.22 for individual 1 and 2. The plots
illustrates that the liver extraction cannot be assumed constant. The proportion
sent through the liver, F , is below one over the entire time interval as it naturally
should be. This also holds for 8 out of the remaining 10 individuals. For the
two last individuals F varies between 0.5 and 1.8. This is however not of great
concern, because F and ke,I are correlated and it is thus probably just indicating
that ke,I for this particular individual is set to high.

It is expected that the estimate of F with the Constrained Liver Extraction
Model should be more smooth compared to the previous unconstrained model.
A comparison of the two models are shown in Figure 7.23 where the con-
strained movement is clearly seen. Moreover the confidence interval for F is
also smoother due to the constrained movement of F .

It is of interest to see how ISR and F relates to each other. Appendix Figure
B.32 shows the two plotted against each other. There is an obvious linear
relationship between them. By testing for equal slope using a standard General
Linear Model
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Figure 7.22: Smoothed liver extraction ±SD for individual 1 and 2.

0 240 600 840 1140 1440
0.2

0.4

0.6

0.8

1
F for individual 1

Unconstrained
Constrained

0 240 600 840 1140 1440
0

0.1

0.2

0.3

0.4
Std. dev. of F for individual 1

0 240 600 840 1140 1440
0

0.5

1

Time (min)

F for individual 2

0 240 600 840 1140 1440
0

0.1

0.2

0.3

0.4
Std. dev. of F for individual 2

Time (min)

Figure 7.23: Comparison of estimation of F using the constrained and uncon-
strained model.



88 Insulin Secretion

H0 : Fij = µi + α · ISRij + εij

H1 : Fij = µi + αi · ISRij + εij

where i = 1...12 and j = 1...35, the slopes are found to be significantly different
(H0 is rejected with p < 0.001). It should be noted though that this simple
test does not take correlation between measurements into account, which would
increase the p-value for the test.

Having found a linear relationship between ISR and F it is also of interest to
see if more information about their co-variation can be revealed such as the
presence of a hysteresis loop. To study this a phase plot of smoothed estimates
of ISR and F for the first individual are plotted in Figure 7.24 (4 more are
found in appendix Figure B.33). The smoothed estimates are subsampled with
5 extra points between measurements and is split up with one plot for each
meal. Based on these plots it is not possible to draw any further conclusions on
the relation between the two.

100 150 200

0.4

0.6

0.8

ISR

F

After breakfast

100 150 200

0.4

0.6

0.8

ISR

After Lunch

100 150 200

0.4

0.6

0.8

ISR

After dinner

Figure 7.24: Phase plot of F vs ISR for the 1st individual; the circle is 1st obs.

In Figure 7.25 the smoothed confidence bands for ISR, F and X can be seen.
They are scaled to resemble each other to visualize the delays between them.
The insulin secretion rate has the lowest uncertainty just before an observation
arrives. The F is estimated based on ISR and insulin observations. This means
that F is optimally estimated just in between the minimal ISR uncertainty and
observation time. X is the change in F and is best estimated just before the
optimal for F . All these relations can be more clearly seen in the figure.
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Figure 7.25: Relatively scaled comparison of the smoothed standard deviation
for the first individual for state ISR, F and X .

7.4.4 Modelling summary

The PSM prototype has been used to develop different models for insulin and
C-peptide measurements. Different models were proposed for deconvolution of
the insulin secretion rate with different properties.

The intervention model included a model for the ISR thereby improving the
residual and Wiener process properties. The deconvolved ISR and uncertainty
are not significantly improved but the result is probably more trustworthy.

Finally, a model which exploited the knowledge on equi-molar secretion of C-
peptide and insulin was analysed. The model makes use of the deconvolved ISR
to estimate the time varying dynamics of the liver extraction. The final model
proposed had a less flexible model for the extraction rate. This model did not
over-fit the data but on the contrary showed a tendency towards more bias in
the predictions. The analysis showed that this model is able to successfully
estimate the liver extraction of insulin.
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Chapter 8

Future Work with PSM

The work with implementing the prototype has resulted in several experiences.
Moreover, the process with model building afterwards has provided experiences
on functionalities that would be beneficial to include. These experiences should
be considered before proceeding with the next version of PSM.

A large but necessary step is to move to another programming language. Mat-
lab is ideal for numerical implementations but it lacks in speed and parallel
computing options. The standard within scientific programming is Fortran1

although other languages such as C++ or java are potentially faster but have
shortcomings in other areas. Important factors when choosing programming
language for this task is its ability to handle linear algebra calculations and the
accessibility to already available modules - minimizers and ODE-solvers. PSM
does not use any toolboxes in Matlab to obtain functionality and the main work
is done through standard matrix calculations.

The numerical capabilities in Fortran are well ahead of competitors and further-
more the standard has for many years been Fortran in the academic world. This
results in a great deal of scientific modules already being available in Fortran.
An example is the used Quasi-Newton minimizer ucminf already implemented
in Fortran and several ODE-solvers exists eg. ODEPACK2. Further investiga-

1Fortran 95 is the current Fortran version
2http://www.llnl.gov/CASC/odepack/ or http://www.netlib.org/odepack/
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tion of an ideal ODE-Solver is advised as it is a requirement that it is thread
safe. Based on these considerations Fortran would be the language of choice for
a new implementation of PSM.

The program should also take full use of parallelism as the computational task
is substantial. Several alternatives have emerged within recent years and limits
are constantly expanded. The GRID technology could be an obvious choice as it
offers enormous amounts of computer power at a low cost. The small data sizes
which are common for PK/PD trials, are also ideal for GRID computing. The
problem arises in the granularity of the parallelism. Many of the calculations in
PSM are interlinked and in PSM there are several levels ideal for parallelization.
The APL parallelization already implemented is ideal for the GRID due to long
computational times and little data transfer.

The parameter estimation pr. individual is based on multiple Kalman filter
calculations which are fast small calculations. Numerous small interlinked cal-
culations are preferred to be performed on a High-Performance Computer setup
compared to a GRID setup due to the overhead in communication on network
connections.

A High-Performance Computing setup consists of several processors with ac-
cess to shared memory. This makes communication fast and provides a vast
amount of computer power as well. A High-Performance setup is typically more
expensive compared to a GRID setup but can most often be found in scientific
institutions. Furthermore, the trends from the processor industry is a move to-
wards dual-core system or hyper threading making parallelism available on small
systems. An interesting awaited arrival is the CELL processor which forms the
basis of the PlayStation 3. It is targeted towards home entertainment but if its
potential can be exploited within linear algebra the effects will be immense.

The optimal platform for a future implementation would be a High-Performance
Computing setup also know as a Shared-Memory system. Shared-Memory Par-
allelism can be implemented in Fortran using the OpenMP3 package. This
package supports parallelism through meta tags that will make portability to
single processor units easy. Very low level parallelism can be obtained by tuning
compiler options. Some new compiles are able to create parallel calculations by
automatically analyzing the code but the largest improvement is achieved using
manual parallelization.

Another big challenge lies within the model specification. In Matlab the model
specification is through script files which are not a part of the actual compiling.
A simple and powerful model would be model specification through a text file e.g.

3www.openmp.org
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similar to the NONMEM model specification. This approach requires a lexical
parser that is able to translate the model specification into objects that can be
evaluated just as functions can. This text file could also hold important values,
e.g. for termination criteria for the optimization. The model specification should
enable quick changes from the user such as which parameters to estimate, limits
for parameters and what output to return from the estimation.

The model specification could be extended with a GUI interface making options
and model specification easy accessible. The GUI should then prepare the model
specification file for the user and start the desired functions.

Finally, a large effort should be put into the output of the program. The poten-
tial users of the program are from a wide range of fields – PK/PD, construction,
chemical, physicist and statisticians each group having their own favorite pro-
gram to analyse data. The output should comply with the needs from a wide
range of users. The data format should be in a universal format that most pro-
grams are able to import. This a difficult task as the output consists of many
different data types – predictions, covariance matrices and parameter estimates.
Some research should be put into analyzing the different programs and their ca-
pabilities before deciding on a format. A potential candidate is netCDF4 which
is a universal data format that looks promising but no consensus has yet been
reached on a common standard.

A final time estimate for a new implementation of PSM is not given as it de-
pends on too many factors, for example choices of implementation, programming
experience and to what extent available modules can be used.

4http://www.unidata.ucar.edu/software/netcdf/



94 Future Work with PSM



Chapter 9

Discussion

This thesis covers a number of fields such as statistics, numerical computation,
PK/PD Modelling and diabetes. Results and perspectives will be discussed in
this chapter leading to the final conclusion in the next chapter.

The first part of the thesis presents an approach for using stochastic state space
models in a mixed-effects setup. The model is based on a Kalman filter approach
by assuming Gaussian conditional densities and that the individual likelihood
function can be approximated by a 2nd order Taylor expansion in the FOCE
approximation. An alternative approach is to use the Markov Chain Monte
Carlo (MCMC) simulation to estimate the population likelihood funcion. This
approach does not rely on the two assumptions. However, the computational
task of the MCMC simulation is extensive and simulation studies suggest that
the two assumptions yields a good approximation as long as the system is not
highly non-linear [Singer 2002]. The results from an analysis of studentized
residuals for the various models studied in this thesis suggested that the condi-
tional densities are well approximated by a Gaussian distribution.

The implementation of the chosen approach encompasses two standard problems
of solving differential equations and minimization of an objective function. The
implemented prototype makes use of available modules to solve these problems
- an ODE-solver and a minimizer.
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The prediction in the Extended Kalman filter consists of coupled ordinary dif-
ferential equations where an analytical solution is generally not available. The
solution must thus be calculated numerically by an ODE-solver. For the pro-
totype it has been chosen to use a standard Matlab interface which opens up
for easy interchange between ODE-solvers. The ODE-solver of choice in the
prototype is based on a robust algorithm which is able to handle stiff systems.
The ODE-solver is a central part of the approach and the chosen solver is a
compromise between accuracy and robustness and overall speed of the proto-
type. The importance of a robust ODE-solver is most clearly present in more
complex models where the degree of non-linearity will make an accurate predic-
tion more demanding. A robust ODE-solver with variable step length and error
measurement is able to adopt and decrease step length when necessary whereas
a simpler algorithm will just predict poorly.

The second module required is a minimizer. It is used to minimize the negative
likelihood function for parameter estimation on both population and individual
level. The individual likelihood functions are minimized to estimate the random
effects η and the population likelihood is used to estimate the population pa-
rameters. The combination of an optimization of several optimizations results
in an extremely demanding computational task. The minimizers’ termination
criteria and the step length for the gradient approximation influences the result.
A further investigation of the linked effects could hopefully reveal valuable infor-
mation. The current options are based on empirical investigations that resulted
in robust results in the analysed models.

The outcome of the project has been a functional prototype that was validated
and used in model building. A side product are numerous experiences on nu-
merical issues and considerations on useful options that resulted in a set of rec-
ommendations for the next implementation. Fortran has been suggested as the
evident choice of programming language mainly because of numerical capabili-
ties and easy implementable parallelization. A key issue in the implementation
is to consider parallelization since a considerable reduction in computation time
is achievable.

The final prototype PSM was successfully shown to yield parameter estimates
consistent with CTSM and NONMEM and to be able to handle SDEs correctly.
However, the validation with NONMEM showed differences in approximate pop-
ulation likelihood values. This was investigated thoroughly but no conclusion on
the difference could be made. This was due to the fact that no documentation
was sufficiently detailed on the NONMEM likelihood calculation to establish a
statistical and/or numerical reason for the observed difference. The difference
in APL was accepted as the maximum likelihood parameter estimation yielded
identical parameter estimates.
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A further investigation revealed issues concerning the likelihood ratio test. The
log-likelihood ratios found by NONMEM were consistently larger than for the
prototype. As a consequence, NONMEM will more often reject the reduced
model. This is a problem in modelling as different conclusions can be drawn
based on the choice of software. Today NONMEM is the defacto standard for
PK/PD modelling and therefore a more detailed specification of the evaluation
of the likelihood function would be valuable. This is however not likely to come
about in near future as NONMEM is a commercial software based on proprietary
code.

The actual use of PSM to build models has resulted in several pharmacokinetic
models with different characteristics. The PK models have been modelled with
insulin and/or C-peptide measurements. The models have shown how the vari-
ation can be split into population and individual parameters and also how the
noise is divided into uncorrelated observation noise and correlated system noise
(Wiener process).

The first models focused on extracting the insulin secretion rate (ISR) by de-
convolution with the stochastic state space model. It was found to give reliable
estimates of the ISR. However, the estimated confidence band did not seem en-
tirely realistic since the confidence band was seen to be relatively wide at the
end of the experiment where the ISR had stabilized. This effect is a result of
ISR being modelled entirely as a random walk with variance proportional to
time intervals. An intervention model was proposed to model the behavior of
ISR with the diffusion term handling the deviations from this ISR model. The
intension with the model was to reduce the confidence by modelling the mean
of the process which was successfully achieved. However, the confidence bands
were still relatively wide but it was found that the properties of the deconvolved
random walk were much closer to a theoretical random walk. For this reason
the latter confidence band may be more trustworthy.

A combined model for deconvolution of the liver extraction rate was proposed.
The model used both insulin and C-peptide measurements to determine the
ISR. Given the ISR, the liver extraction rate can be estimated in a non-linear
model setup using insulin measurements. The analysis of the model has shown
that deconvolution is possible also for non-linear models and it was found that
the model for the liver extraction had to be constrained to be able to estimate
the measurement noise.
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Chapter 10

Conclusion

A functional prototype has been developed with the ability to handle stochastic
differential equations in a mixed-effects setup. The maximum likelihood ap-
proach was used in parameter estimation on individual and population level.
The Extended Kalman filter was used to create approximate conditional densi-
ties required for the likelihood function when working with SDEs.

The numerical implementation uses an accurate and robust standard Matlab
ODE-solver for the prediction in the non-linear case. This choice was based
on a compromise between speed and accuracy and resulted in a reliable model
prediction for all tested PK/PD models.

The optimization of the maximum likelihood function was performed with a
Quasi-Newton method and/or a pattern search. The parameter estimation was
possible but a computational cumbersome task. It was found that noise in the
objective function disturbed the parameter estimation but optimal parameter
estimates were still able to be found and could be validated through profile plots.

The final prototype PSM was validated with CTSM and NONMEM. Since no
standard solution exists for handling SDEs with mixed effects the validation
was divided into separate parts. The SDE extension was validated with CTSM
for a single subject and the population part was validated with NONMEM. The
single subject validation was performed on a two-compartment model where the
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individual likelihood functions were compared with CTSM. The differences in
likelihood values were within expectation of numerical differences. The compar-
ison of the smoother for the linear and non-linear cases with CTSM showed that
the results were also acceptably similar. The validation with NONMEM showed
different approximate population likelihood (APL) values but it was found that
the optimal parameters were almost identical. The difference in APL values
resulted in different loglikelihood ratio tests which could result in different mod-
elling results. It was not possible to come to any conclusion on what caused this
difference since the NONMEM likelihood function is not publicly documented.

The prototype was used to analyse models within Pharmacokinetic modelling.
The data set consisted of measurements of insulin and C-peptide from 12 sub-
jects which made it ideal for mixed-effects modelling.

The insulin secretion rate was the focus of the first model which was used to
form estimates of ISR by deconvolution. In this model ISR was assumed to be
a random walk.

The second model included a priori knowledge on the meal times and durations
in order to model the behavior of the ISR. This was achieved through a classic
intervention model incorporated into the stochastic state space model. It was
concluded that the ISR can be modelled well with this model and the diffusion
term is able to account for deviations in ISR from the model.

A combined model for deconvolution of the liver extraction rate F was proposed.
The model used both insulin and C-peptide measurements to determine the ISR.
The initial model had F modelled as a pure random walk which resulted in a
model where the insulin measurement noise and system noise on F could not be
separated. A less flexible constrained F was introduced by adding another state
to the model and redefining the derivative of F to the new state. The model
with the constrained F produced more reliable results for the liver extraction
and at the same time making it possible to estimate the insulin measurement
noise. The liver extraction rate for one individual was estimated to be above one
at certain times. This contradicts theory but is an effect of a shared elimination
constant for all individuals. An interesting extension could be to estimate the
elimination constant in a separate study and incorporate this into the model.

The overall conclusion based on the project is that a functional prototype in-
corporating SDEs into a non-linear mixed effects model is now available and it
has been shown to be a flexible tool for working with models within PK/PD.
Hopefully, the development of this program will continue in order to aid and
guide in clinical drug development as well as in other areas.
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Appendix A

Matlab Implementation

The population model based on stochastic differential equations (SDE’s) has
been implemented in Matlab. It has been done both based on the Kalman
Filter and Extended Kalman filter to be able to handle linear as well as non-
linear models.

A.1 Considerations

The Matlab implementation has been based on a set of functions which all
together are responsible for calculating population likelihood values by calling
either APL_KF or APL_EKF. Figure A.2 and A.1 illustrates the functional rela-
tionship for the linear and non-linear version.

The idea behind the functional setup is to make the implementation simple
to change and improve. It is thus simple to e.g. use another minimization
algorithm for the individual optimizations or another ODE solver for the EKF,
since the functions have a standard input/output interface.
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Figure A.1: Overview of functions for the non-linear model.
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Figure A.2: Overview of functions for the linear model.
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A.1.1 Non-linear case

The non-linear model has been implemented in the most general case, as speci-
fied below:

dxt = f(xt, ut, t, θ)dt + σ(ut, t, θ)dωt (A.1)

yk = h(xk, uk, tk, θ) + ek (A.2)

where t ∈ R is time, xt is a vector in R
s of state variables, ut is a vector in

R
m of input variables, yk is a vector in R

l of output variables, θ is a vector
of parameters, f (·), σ(·) and h(·) are non-linear functions, {ωt} is a standard
Wiener process and {ek} is a white noise process with ek ∈ N(0, S(uk, tk, θ)).

A.1.2 Linear case

The linear model is a special case of the non-linear model. It has been imple-
mented to achieve high computation speed in Matlab, since the Kalman Filter
can be solved explicitly without the use of an ODE solver. The speedup is eas-
ily a factor 100 or more. Also for the sake of computation speed it has been
implemented as a time and partly parameter invariant linear model, which can
be described as follows:

dxt = (Axt + But)dt + σ(θ)dωt (A.3)

yk = Cxk + Duk + ek (A.4)

where t is time, xt is a state vector in R
n , ut is an input vector in R

m , yk

is an output vector in R
l, θ is a vector of parameters, A is a matrix R

n×n,
B is a matrix R

n×m, σ(·) is a matrix R
n×n, C is a matrix R

l×n and D is a
matrix R

l×m, {ωt} is an n-dimensional standard Wiener process and {ek} is an
l-dimensional white noise process with ek ∈ N(0, S(uk, tk, θ)).

The linear case has been implemented with zero-order hold on inputs, meaning
that input is assumed constant between observations. In the current implemen-
tation it is only possible to use input if A has full rank.
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A.2 Function specification

Throughout the implementation a number of standard data types has been used,
which are listed in Table A.1.

Input Name Type Default
THETA Population param. Vector
phi/theta Individual param. Vector
eta Individual param. Matrix (v × 1)
X State Matrix (s × 1)
Y Observations Matrix (l × n × N)
Yi Obs. for 1 ind. Matrix (l × n)
Yk Obs. for 1 ind. at t=k Matrix (l × 1)
U Input Matrix (m × n × N)
Ui Input for 1 ind. Matrix (m × n)
Uk Input for 1 ind. at t=k Matrix (m × 1)
T Time Matrix (n × 1)
t 1 timepoint Scalar
fktList User def. functions Cell array
LB, UB Bounds for THETA (p × 1) No bounds
GUIFlag Display progress False
MPIFlag Parallel computation False

Table A.1: Overview of common input data types.

A.2.1 Non-linear

The non-linear model is setup by the user by defining a list of required functions.
The user may choose the function names, and they must be listed in a cell array
in the correct order shown in Table A.2. As it can be seen from the table, the
program does not calculate the partial derivatives, but they must instead be
derived and specified by the user.

Function number 8 and 9 are wrapper functions for the parameters. Function
#8 takes in the population parameters defined in THETA and returns OMEGA
(Ω) and theta. The parameters are mapped if lower and upper bounds are spec-
ified. theta contains the individual parameters η (set to NaN) and population
parameters, exept for those used in OMEGA. Function #9 inserts eta values
into theta, which is then called phi.
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No. Function Input Output Reference
1 f X, U, t, phi Matrix (s × 1) Eq. A.1
2 ∂f/∂xt X, U, t, phi Matrix (s × s)
3 h X, U, t, phi Matrix (l × 1) Eq. A.2
4 ∂h/∂xt X, U, t, phi Matrix (s × s)
5 σ Uk, t, phi Matrix (s × s) Eq. A.1
6 S Uk, t, phi Matrix (l × l) Eq. A.2
7 X0 Uk,t,phi Matrix (s × 1)
8 THETA THETA, (LB, UB) OMEGA, theta
9 parH eta, theta phi Eq. (4.1)

Table A.2: En tabel

APL Approximate Population Likelihood
etaList Estimated η’s for each individual
optimStat Infomation about individual optimizations

Table A.3:

A.2.1.1 APL EKF

[APL,etaList,optimStat] =

APL_EKF(THETA,Y,U,T,fktList,LB,UB,GUIFlag,MPIFlag)

This function calculates the Approximate Population Likelihood.

A.2.1.2 APL EKF worker

APL EKF worker is a script which is distributed to different CPUs for parallel
computation of individual likelihood.

A.2.1.3 APL EKF individualloop

[LiPart_i eta_i optimStat_i] =

APL_EKF_individualloop(theta,fktList,T,Yi,Ui,OMEGA,GUIFlag)

APL EKF individualloop is a function which computes the individual likeli-
hood. It has been made to ensure that the serial and parallel version will
perform the exact same calculations.
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A.2.1.4 IndividualLL EKF wrapper

[Li GRAD] =

IndividualLL_EKF_wrapper(eta,theta,fktList,T,Yi,Ui,OMEGA,GradStep);

IndividualLL EKF wrapper is a wrapper function for IndividualLL EKF. It re-
turns the function value and gradient to be used by an optimizer.

A.2.1.5 IndividualLL EKF

Li = IndividualLL_EKF(eta,theta,fktList,T,Yi,Ui,OMEGA)

IndividualLL EKF is a function, which runs the Extended Kalman Filter and
calculates the Individual Log-Likelihood.

A.2.1.6 EKF

[LL,o] =

EKF(phi,fktList,T,Y,U,LB,UB,GUIFlag)

EKF is function which returns the input filtered by the Extended Kalman Filter.
The first output is the negative log-likelihood for a single individual model,
which is not relevant for the population model. The second output is a struct
array with all relevant computations, as shown i table A.4

EKF can handle missing observations stored as NaN. Missing observations are
handled by setting the corresponding diagonal element in the observation co-
variance matrix to 10300. This ensures correct prediction by EKF, but the
likelihood function will not be correct. This is not a problem however, since
the purpose of implementing missing observations is to be able to observe un-
certainty between measurement timepoints, which is done after estimating the
model.

A.2.1.7 dStatePred

dZ = dStatePred(t,Z,U,phi,fktList,dimX,Index)
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LL Negative log-likelihood
o Output object
o.Yp Space prediction
o.R Space prediction covariance
o.Xf Filtered state
o.Pf Filtered state covariance
o.Xp State prediction
o.Pp State prediction covariance
o.KfGain Kalman filter gain
o.sub foreward Used for smoothing

Table A.4: Output from EKF.

dStatePred is the function which is called by the ODE solver in EKF to predict
the devellopment of the state and state covariance. They are solved simultan-
iously by introducing a new variable Z = (X P u), where P u is the vector
containing the upper triangular elements of P . This is done because P is sym-
metric, and it is thus only necessary to let the ODE solver work on one triangular
part.

A.2.1.8 EKF Smoother

[o Tsubs] = EKF_Smoother(phi,fktList,T,Y,U,subs)

EKF Smoother computes smoothed estimates of the state. The input subs
is a variable ≥ 0 which inserts missing observations between measurements,
in order to easily let the EKF estimate the state and uncertainties between
measurements. By specifying subs > 0 a number of missing observations are
inserted linearly distributed between measurements, and the output Tsubs is
the new time vector to be used for plotting etc.

The backward state prediction in the smoother requires f(·) evaluated at the
forward state estimate between observations. Since there is no fixed step length
when solving the ODE’s with an ODE solver, the forward filter estimate of the
state is estimated by linear interpolation of the solution of the state develop-
ment from the forward EKF. The ODE solver will automatically decrease the
step length when there are fast changes in the solution, and therefore a linear
interpolation of the solution should in general be close to the true development
in the state. This technique enables a standard ODE solver to be used in both
the forward and backward Kalman filter together with an easy estimate of the
state prediction at any given timepoint.
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A.2.1.9 dSmoothPred

dZ = dSmoothPred(t,Z,Uk,phi,fktList,dimX,Index,sub_foreward)

dSmoothPred is the function used by the ODE solver in EKF Smoother for the
backward filtering. It is similar in structure to dSmoothPred and also uses the
trick with a vector containing the state and upper covariance matrix elements.

A.2.2 Linear

The linear model setup is almost identical to the non-linear model. The user
must specify the some of the same functions as in the non-linear case. The
system dynamics are given in the time and parameter invariant matrices A, B,
C and D. Table A.5 gives an overview of the usersupplied functions.

No. Function Input Output Reference
1 σ phi Matrix (s × s) Eq. A.1
2 S phi Matrix (l × l) Eq. A.2
3 X0 phi Matrix (s × 1)
4 THETA THETA, (LB, UB) OMEGA, theta
5 parH eta, theta phi

Table A.5: User defined functions for the linear model.

The linear functions are all similar to the non-linear, except from the fact that
they also take A, B, C and D as input argument. The call to the main function
that calculates the population log-likelihood value is looks like

[APL,etaList,optimStat] =

APL_KF(THETA,fktList,A,B,C,D,T,Y,U,LB,UB,GUIFlag,MPIFlag)

A.2.2.1 KF Smoother

[o Tsubs] =

KF_Smoother(theta,fnk,A,B,C,D,T,Y,U,subs)

The smoother in the linear case uses an algorithm by Bryson & Fraiser [Kailath
et al. 2000].
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A.2.3 Simulation

[T,X,Y] =

Simulation(fktList,phi,U,dt,SamplePoints)

Simulation is a function that based on the functions from the non-linear model
setup is able to simulate data.

dt Step length when solving the differential equation for the state.
SamplePoints Sample points where observations are stored.

Table A.6: Input to Simulation.

To make the simulation accurate, a small dt must be chosen for subsampling
the desired sample points. All sample points must be a product of dt.

The function Simulation returns T, X = {Xti
|ti ∈ T }, Y = {Y ti

|ti ∈ T } and
an output object containing the added Wiener and measurement noise.

A.2.4 Common functions

x = mapping(xtilde,LB,UB,inv)

The linear and non-linear versions share a common mapping function. The
mapping function is used to to give bounds for parameters in the optimization
of the likelihood function.

A mapping function is of the type Θi = f(Xi), f : R → [Li; Ui], where Li and
Ui are the lower and upper bound respectively for the i’th parameter. The use of
a mapping function makes the standard unconstrained minimizer more robust
since it is constrained from trying extreme extreme values of the parameters,
e.g. a negative variance.

Two different mapping functions defined in Eq. A.5 and A.6 were considered.
fe is a logistic mapping and fa is mapping based on the inverse tangent.

θi = fe(Xi) =
exp(Xi)Ui + Li

exp(Xi) + 1
(A.5)

θi = fa(Xi) =
arctan(Xi) + π/2

π
(Ui − Li) + Li (A.6)



A.2 Function specification 113

−15 −10 −5 0 5 10 15
4

6

8

10

X

θ

Exp mapping
Arctan mapping

−15 −10 −5 0 5 10 15
0

0.5

1

1.5

2

X

dθ
 / 

dX
 

diff Exp mapping
diff Arctan mapping

Figure A.3: Comparisson of logistic and arctan mapping.

The functions and their derivatives are plotted for (Li, Ui) = (5, 10) in Figure
A.3. From the upper plot it is seen that fa approaches its asymptotes slower
than fe. This is an advantage, because this means that the gradient with respect
to X will not go toward zero as fast. Based on this analysis the mapping based
on Arctan is chosen.
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B.1 2 compartment C-peptide model
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Figure B.1: APL for θopt ± 5%.
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B.2 2 compartment C-peptide log Model

Figure B.2 shows the APL curves for the estimated parameters in the Log Model.
The plot shows that a reasonable minimum has be found. The width of the plot
is ±5%.
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Figure B.2: APL for θopt ± 5%.

–

Figure B.3 shows the log model 1-step predictions for the CPEP measurements.
The predictions have been inverted from the logarithmic transformation by use
of the exponential function.
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Figure B.3: Individual CPEP predictions.
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B.3 Modelling of ISR
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Figure B.4: Residuals plotted vs. time

In figure B.4 the model deficiency is more clearly seen. The model estimates too
low when the Cpep concentrations are going up and when the concentration is
coming down again the estimates tend to be too high. The prediction is based
on the current summed ISR and predicted rise in the glucose levels just after a
meal are not modelled.

The ISR profile is extracted as a mean of the summed ISR adjusted for the
length of the time interval. This input will incorporate the knowledge of a
known increase in cpeptide concentrations after meals.

The summed ISR’s smoothed variance is shown in figure B.6. The variance is
parameter specific an depends on the length of the time intervals.

B.3.1 Second Stage

The ISR profile is used as an input in the second model formulation.
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Mean Input Model

Description: A 2 compartment model with the ISR profile as input.

Initial Conditions:

Ai = 900 eθ1 (B.1)

x0 =





C1

C2

ISR



 =





Ai
k1
k2Ai

keAi



 (B.2)

Model :

dx =









−(k1 + ke) k2 1
k1 −k2 ·
· · ·



x +





·
·

eθ2



ut



 dt

+





1e−3

1e−3

θ4



 dω (B.3)

Output :

y =
[

1 0 0
]

x + ε, whereε ∈ N(0, θ3) (B.4)

The second stage model is almost identical to the first one except the population
parameter in the starting point is changed into a individual scaling of the ISR
input.

The prediction residuals are shown for the second model as for the first one in
figure B.7. It is seen that there is no obvious trends in the residual plot.

The ACF for the prediction residuals from the second model can be seen in
figure B.8. There is clear improvement in the auto correlation.

Finally the smoothed variance from the ISR profile is compared to the one from
the first model.
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Figure B.7: Prediction residuals from the second model
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Figure B.8: ACF for the second model
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Figure B.9: Comparison of the smoothed variances

B.3.2 Extended Mean Input Model

The previous modelling of the insulin secretion rate has been a two stage model.
There are statistical arguments against this kind of modelling as the data is used
twice. The first stage is used to extract the mean ISR. This extracted ISR is
then used as an input to a model that returns the ISR.

Instead of using the ISR from the first stage a ISR is constructed using math-
ematical formulaes. This curve is built on the knowledge on how the secretion
rate should be. It could be considered a A priori knowledge.

The secretion of insulin goes up immediately the food is spotted. Just as the
secretion of saliva goes up immediately. The maximum of the secretion is relative
quickly archived and as the glucose levels in the blood goes down the secretion
stops. The curve sought is a fast rising curve with a slower decrease. The
χ2-distribution is used as curve.

Pr(x) =
xr/2−1e−x/2

Γ(1
2r)2r/2

(B.5)

The formulae (B.5) can be found in [Conradsen 1999] or on the internet 1. The

1http://mathworld.wolfram.com/Chi-SquaredDistribution.html
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number r is the degrees of freedom in the density. It has been found that r = 7
gave a sequence as the secretion is believed to progress. The curve was moved
and scaled by simple variable transformation and then subsampled according to
the samplings in the dataset. It can be expected that 3 humps should be in the
ISR as 3 meals were served during the trial. The created curves can be seen in
figure (B.10).
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Figure B.10: Scaled χ2-distributions and the derivative.

The 3 humps were subsampled inorder for them to be used as discrete input to
the model.
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Figure B.11: Subsampled derivatives - Input to the model.

Extended Mean Input Model

Description: A standard 2 compartment model with individualized starting
point in the initial conditions. The ISR over time intervals is modelled as a
random walk with magnitude as parameter and the observation variance is a pa-
rameter as well. 3 dimensional input each scaled with individualized parameters.

Initial Conditions:

Ai = 900 exp(η1) (B.6)

x0 =





C1

C2

ISR



 =





Ai
k1
k2Ai

keAi



 (B.7)

Model :

dx =









−(k1 + ke) k2 1
k1 −k2 0
0 0 0



x +





η2 η3 η4



u



 dt

+





1e−3

1e−3

θ2



 dω (B.8)

Output :

y =
[

1 0 0
]

x + ε, whereε ∈ N(0, θ1) (B.9)
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B.3.2.1 Results

The model is used on the data set and the parameters are estimated using
ucminf. The minimization were very time costly due to the 4 individualized
parameters that has to be found for each subject in each population calculation.
The residuals are analyzed again to give an indication of the model fit.
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Figure B.12: Auto Correlation of the residuals from model.

The ACF in figure B.12 shows high resemblance to the ACF from the initial
standard 2 compartment model. There is still clear trends and some variance
to account for in the model.

A histogram and a QQ-plot was constructed to check if the residuals can be
assumed to be normally distributed. The plots can be seen in figure B.13.

The a priori derivative of the ISR and the obtained states from the filtering
are compared in figure B.14. The a priori derivative was constructed so it
would mimic the filtered ISR. The a priori derivative is scaled accordingly to
the individual parameters and hereafter integrated and has offset in the steady
state solution for the ISR state. The difference between the 2 curves are the
unmodelled secretion of Insulin which should be handled by the stochastic part
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Figure B.13: Histogram and QQ plot of the residuals from Model 3

of the state space model. It can be seen that the ISR originating from the input
peaks too late and should decrease faster. The scaling factor is disturbed by the
slow decrease so the top is lowered to account for the long tails.
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Figure B.14: The individualized summed input and the filtered ISR.

The smoothed variance is plotted along with the smoothed variance from the
other 2 models in figure B.15. It can be seen that the two stage model is still
the best choice based on the smoothed variances.
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Figure B.15: Smoothed ISR from the 3 models.

B.3.3 Cross Validation

The two stage model has weakness in the data usage. The data is used twice and
this could cause problems with the releability of the estimates. This is tested via
cross validation. The data is split into 4 groups of 3 individuals. The parameters
are now estimated on 9 individuals and used to predict for the remaining 3. The
model used in the parameter estimation is the two compartment model with
input. The during the training the input is scaled accordingly to the 9 training
individuals and during prediction with the 3 validation individuals.

The 4 groups each provide 3 sets of prediction residuals which are augmented
and analyzed.
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Figure B.16: Prediction residuals from validation groups.
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Figure B.18: QQ-Plot of the validation residuals.

B.4 Intervention Model

Figure B.19 shows the profile of the APL function for the found optimum of the
5 population parameters in the intervention model.

In figure B.20 the corresponding optimal ηs for the found optimal parameters
are examined for the assumption that they are normally distributed by plotting
them in QQ-plot.

In figure B.21 the predictions from the intervention model are plotted with the
C-PEPTIDE observations.

In figure B.22 the model and smoothed ISR can be seen for all individuals.

In figure B.23 the smoothed estimates of ISR is compared for the Intervention
Model and the Standard 2-compartment C-peptide Model. It should be seen
that they are very similar.
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Figure B.19: Profile of APL for the found optimum in parameters.
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Figure B.21: Predictions and C-PEPTIDE observations for each of the 12 indi-
viduals.
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Figure B.22: Model and smoothed ISR for all individuals.
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Figure B.23: Smoothed ISR for the standard 2-comp. and intervention model.
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B.5 Model validation for the combined model

Figure B.24 shows residual analysis for the combined model with 2D-data (C-
peptide and Insulin) found in Section 7.4.1. Figure B.25 shows the 1-step pre-
dictions for the model for all 12 individuals. Figure B.26 verifies that the correct
optimum of the likelihood function has been found.
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Figure B.24: Residual analysis for C-Peptide and Insulin measurements.
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Figure B.25: 1-step predictions for C-peptide and Insulin measurements using
the combined model.
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Figure B.26: Likelihood function plotted ±5% of optimal parameters.
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B.6 Liver Extraction Model
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Figure B.27: Residual analysis for C-Peptide and Insulin measurements for the
Liver Extraction Model.
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B.7 Constrained Liver Extraction Model
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Figure B.30: Likelihood profiles for the Constrained Liver Extraction Model.
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Figure B.31: Residual analysis for the Constrained Liver Extraction Model.
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