
Fixed-Charge Network Design and
Protection Problems

Yao Liang

Supervisor: Thomas K. Stidsen

Master thesis

IMM-M.Sc-2006-47

Informatics and Mathematical Modelling

Technical University of Denmark

May 2, 2006

2

Abstract

This thesis describes eleven models in all for fixed-charge network design

problems. Seven models, five of which implement protection schemes, are pre-

sented for large scale mesh and ring networks. Other four models are presented

for small scale tree, star and bus networks. To check whether these models work

well, some test instances are used, and their solutions are compared.

The discussion of different network types is also appended. The components

and hardwares in the networks are analyzed. And from the perspective of

cost, networks are divided into fixed-charge dominating style and cable costs

dominating style. All these factors are considered in mathematical modelling.

i

ii

Acknowledgements

With regard to the introduction of operation research in my study and the

development of mathematical models in my final project, I would like to express

my sincere gratitude to my supervisor Prof. Thomas K. Stidsen. I would like to

thank him not only for his patience in answering my questions and instructing

on my programming but also for his help in managing my master project

schedule. He always makes me clear on what to do.

Since the day I was born, my parents have been supporting me incessantly

for 25 years. They keep doing their best to foster me and I am provided with

the best education physically, intellectually and mentally. They never prevent

me from leaving to pursue my dreams, even though I am the only child in the

family. We have not been living together for almost 7 years, and during this

period, they have suffered from missing me, busy working and illness. All of

these make me feel owing to them. My parents deserve my appreciation and

respect all through my life, and I promise to be a good son.

Yao Liang

KGS.Lyngby

Denmark

May 2, 2006

iii

iv

Contents

Abstract . i

Acknowledgements . ii

List of Figures . vii

List of Tables . xi

1 Introduction 1

1.1 Motivation and Optimization Objective 1

1.2 Thesis Outline . 2

2 Telecommunication Network Topologies 3

2.1 The Graph Model of Networks 3

2.2 Five Basic Network Topologies 5

2.2.1 Backbone Network: Multiplexing Technology, Mesh and

Ring Topologies . 6

2.2.2 Regional Network and LAN: Tree, Star and Bus Topologies 8

2.2.3 A Brief Summary . 11

2.3 Network Instances and Statistical Features 12

3 Mesh Network and Protection 15

3.1 Fixed-Charge Network Design 15

3.1.1 Mathematical Model . 15

3.1.2 Comments and Solutions 17

3.2 1+1 Protection for Mesh Network 19

3.2.1 1+1 Protection . 19

3.2.2 Mathematical Model . 20

3.2.3 Comments and Solutions 22

3.3 Link Protection for Mesh Network 24

3.3.1 A Link Protection Method 24

v

vi CONTENTS

3.3.2 Mathematical Model . 25

3.3.3 Column Generation . 27

3.3.4 Modification of Mathematical Model and The Master

Problem . 28

3.3.5 The Sub-problems . 30

3.3.6 Solving Process, Solutions and Comments 31

4 Ring Network and Protection 33

4.1 Non-Protective Ring Network Design 33

4.1.1 Mathematical Model . 33

4.1.2 Comments and Solutions 34

4.2 1+1 Protection for Ring Network 35

4.2.1 Mathematical Model, Solutions and Comments 35

4.2.2 An Improved Mathematical Model: TSP Problem 36

4.3 Two-Fibre Unidirectional Self-Healing Ring 39

4.3.1 Mathematical Model . 39

4.3.2 Comments and Solutions 42

5 Tree, Star and Bus Network 45

5.1 Tree Network Design . 45

5.1.1 Sort of Nodes and Mathematical Model 45

5.1.2 Comments and Solution 47

5.2 Star Network Design . 49

5.2.1 Star Characteristics . 49

5.2.2 Mathematical Model: No Multiplexing 50

5.2.3 Comments and Solution: No Multiplexing 51

5.2.4 Mathematical Model: With Multiplexing 52

5.2.5 Comments and Solution: With Multiplexing 54

5.3 Bus Network Design . 55

5.3.1 Mathematical Model . 55

5.3.2 Solutions . 57

6 Conclusion 59

6.1 Future Research . 59

6.1.1 Improvement of Mathematical Models 59

6.1.2 Large Scale Optimization Algorithms 60

CONTENTS vii

6.2 Summary of Objective Values 61

6.3 Achievement . 62

A Fixed-Charge Network Instances 65

B Is Link Protection Cheaper? 69

C GAMS Programs Code 73

C.1 Basic Fixed-Charge Network Design Model 73

C.2 1+1 Protection Mesh Model . 76

C.3 Link Protection Mesh Model . 80

C.4 Non-Protective Ring Model . 85

C.5 1+1 Protection Ring Model . 88

C.6 1+1 Protection Ring(TSP) Model 92

C.7 Two-Fibre Unidirectional Self-Healing Ring Model 95

C.8 Tree Model . 99

C.9 Star Model(No Multiplexing) 102

C.10 Star Model(Multiplexing and Continuous Flow Decision) 107

C.11 Star Model(Multiplexing and Binary Flow Decision) 110

C.12 Bus Model . 114

D C Program Code 119

viii CONTENTS

List of Figures

2.1 A General Telecommunication Network. 4

2.2 The Affiliation of Network Topologies. 5

2.3 The Multiplexing Function of A Node with MUX and DEMUX

Pair. 6

2.4 The Multiplexing Function of A Node with An ADM. 6

2.5 A Mesh Network. 7

2.6 A Fully Connected Mesh Network. 7

2.7 A Ring Network. 8

2.8 A Two-Fibre Unidirectional Self-Healing Ring Network.[4] . . . 8

2.9 A Tree Network. 9

2.10 A Star Network without Multiplexing. 10

2.11 A Star Network with Multiplexing. 10

2.12 A Bus Network. 10

2.13 Arne Network with 5 Nodes and 7 Links. 12

2.14 A Network of Germany with 7 Nodes and 14 Links. 12

2.15 A Network of Poland with 12 Nodes and 18 Links. 12

3.1 Mesh Solution of Germany Network. The Fixed-Charge is Dom-

inating. 18

3.2 Mesh Solution of Poland Network. The Cable Cost is Dominating. 18

3.3 How 1+1 Protection Works: There are 1 unit demand for BD

and AC respectively. Path B → D and A → C are primary

paths. Path B → E → F → D and A → E → F → C are

backup paths. All numbers in the figure show the capacities

that reserved on links. 20

ix

x LIST OF FIGURES

3.4 1+1 Mesh Solution for Germany Network: The primary path for

Demand′D′′F ′ is D → F . The protection paths for Demand′D′′F ′

are D → E → F with 0.562 of demand and D → G → F with

0.438 of demand. 23

3.5 1+1 Mesh Solution for Poland Network: The primary path for

Demand′Szczecin′′Warsaw′ is Szczecin → Poznan → Bydgoszcz →

Warsaw. The protection path is Szczecin → Kolobrzeg →

Gdansk → Warsaw. 23

3.6 Link Protection Scheme. 24

3.7 The Structure of Basis and Non-basis. 27

3.8 Solving Process of Arne Network. 31

4.1 Non-Protective Ring Solution of Germany Network. (Also The

Solution of 1+1 Protection Model and Two-Fibre Unidirectional

Self-Healing Ring Model.) . 35

4.2 Non-Protective Ring Solution of Poland Network. (Also The

Solution of 1+1 Protection Model and Two-Fibre Unidirectional

Self-Healing Ring Model.) . 35

4.3 An Example of Two-Fibre Unidirectional Self-Healing Ring So-

lution. 42

5.1 Tree Solution of Germany Network. The Fixed-Charge is Dom-

inating. 48

5.2 Tree Solution of Poland Network. The Cable Cost is Dominating. 48

5.3 Star Solution(No Multiplexing) of Germany Network. 51

5.4 Star Solution(No Multiplexing) of Poland Network. 51

5.5 Star Solution(With Multiplexing) of Germany Network. 54

5.6 Star Solution(With Multiplexing) of Poland Network. 54

5.7 Bus Solution of Germany Network. 57

5.8 Bus Solution of Poland Network. 57

A.1 Arne Network with 5 Nodes and 7 Links. 65

A.2 A Network of Germany with 7 Nodes and 14 Links. 65

A.3 A Network of Poland with 12 Nodes and 18 Links. 66

A.4 A Network of France with 25 Nodes and 45 Links. 66

A.5 A Network of Pioro with 40 Nodes and 89 Links. 67

LIST OF FIGURES xi

B.1 An Example Network. 69

B.2 Primary Link Flows by Shortest Path Algorithm. 70

B.3 Two Protection Sub-rings. 70

B.4 Solution of Link Protection. Black Numbers for Primary Flows

and Red Numbers for Protection Flows. 70

B.5 Primary (Black) and Backup (Red) Paths for DemandAB, DemandAC

and DemandAD. 71

B.6 Primary (Black) and Backup (Red) Paths for DemandBC , DemandBD

and DemandCD. 71

B.7 Solution of 1+1 Protection. Black Numbers for Primary Flows

and Red Numbers for Protection Flows. 71

xii LIST OF FIGURES

List of Tables

2.1 A Brief Summary of Network Topologies and Hardwares. 11

2.2 Instances Statistics. 13

3.1 Running Time and Objective Values for Mesh Networks. 19

3.2 Running Time and Objective Values for 1+1 Mesh Networks. . . 23

3.3 Running Time and Number of Iterations for Link Protection

Mesh Networks. 32

4.1 Running Time and Objective Values for Non-Protective Ring

Networks. 34

4.2 Running Time and Objective Values for 1+1 Protection Ring

Networks. 36

4.3 Running Time and Objective Values for Protection Ring(TSP

Model) Networks. 39

4.4 Running Time and Objective Values for Two-Fibre Unidirec-

tional Self-Healing Ring Model. 43

5.1 Running Time and Objective Values for Tree Networks. 48

5.2 Running Time and Objective Values for Star(No Multiplexing)

Networks. 52

5.3 Running Time and Objective Values for Star(No Multiplexing)

Networks. 55

5.4 Running Time for Bus Networks. 57

6.1 Comparison of Objective Values. 61

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation and Optimization Objective

Telecommunication Networks have became indispensable in people’s daily

life and have always been changing people’s mind. Telecommunication Net-

works provide numerous kinds of services, including telephone, community an-

tenna television, internet, mobile phone and so on. The attempts to introduce

networks into most fields of the society never stop, and people’s demands of

bandwidth keep growing. Therefore network design problems will keep being

an important subject. In addition, the development of transmitting materials

and routing schemes result in the improvement of design methods.

Several aspects need to be considered when designing Telecommunication

Networks. However, in a single network, there should be an unique optimiza-

tion objective. It could be minimizing the cost, minimizing the transmission

time, minimizing the failure recovery time, maximizing the robustness and

so on. Fixed-charge network models are basic and can describe the practi-

cal situations well. The emphasis of this thesis is minimizing the total cost

of constructing a new network. The final solution consists of two parts, the

fixed-charge and the cable laying cost.

In addition, more requirements, such as protection and network topologies,

should be discussed in the models according to technical restriction. In a

word, what this thesis focuses on is the fixed-charge network design models for

1

2 CHAPTER 1. INTRODUCTION

different topologies.

1.2 Thesis Outline

The reminder of the thesis is structured as follows:

In Chapter 2, the concept of graph model is introduced. The shape of five

topologies, mesh, ring, tree, star and bus, are also presented. Moreover, a brief

summary of network instances makes the following analysis easier.

The non-protective mesh network model is presented in Chapter 3. After-

wards, two protection schemes, 1+1 path protection method and link protec-

tion method, are implemented in mesh design. Furthermore, column generation

algorithm is applied in link protection mesh model.

In Chapter 4, fixed-charge ring models, both non-protective and protective,

are demonstrated. A simplified TSP model is furthermore introduced to replace

the 1+1 protection ring model. And a special model of two-fibre unidirectional

self-healing ring is presented.

In Chapter 5, fixed-charge tree, star and bus models are built. Since all

these 3 topologies are for small scale networks, protection is not considered.

Star topology is divided into two models according to the technical difference.

Some future works are listed in Chapter 6.

Chapter 2

Telecommunication Network

Topologies

2.1 The Graph Model of Networks

Before mathematical models are built, we need to transfer the practical

Telecommunication Networks, including components, locations and architec-

tures, into graphes which can later be easily formulated. Something is ignored

or simplified in this kind of transformation. The graph of a general Telecom-

munication Network is shown in fig. 2.1[3].

Nodes, links and paths are the three basic elements of Telecommunication

Networks. A node is located in a position where requirement of bandwidth is

concentrating, and a link is the straight connection between two nodes. Nodes

need to communicate between each another. We denote Demand as a demand

matrix, in which dkl is the statistical quantity of flow in a certain time period

from node k to node l.

A flow of data, i.e. packets in a packet switching network, goes from one

node to another through a path which is a sequence of nodes. For example, in

fig. 2.1, node A sends packets to node B through path A → C → D → B,

and correspondingly, node B sends packets to node A through an opposite

directional path B → D → C → A. All paths are directed. There might exist

more than one paths connecting a nodes pair, e.g. two paths connecting A and

3

4 CHAPTER 2. TELECOMMUNICATION NETWORK TOPOLOGIES

B are depicted in fig. 2.1.

In order to make sure that a communication path exists, capacities need to

be reserved on some links. We denote SetupCost(i,j) as the cost, e.g. digging

cost, to build link (i, j). It is a fixed-charge which relies on the distance, set

up technology and so on. We also denote CablePrice
c
(i,j) as the cost to add

a cable/fibre c, with certain CableCapacityc, on link (i, j).

Figure 2.1. A General Telecommunication Network.

Physically, it is possible to have two-way communication on a single wire/cable.1

This factor and the undirected feature of links result in the following principles

(unless otherwise noted, we perform the simplification below for all network

models):

• Principle 2.1: links are considered undirected, i.e. link (i, j) and all

parameters on it equal link (j, i) and the relevant parameters.

• Principle 2.2: Flows and paths are directed.

• Principle 2.3: On every single link, reservation of capacity caused by

different-directed flows are same.

1The only exception which we will introduce later is two-fibre unidirectional self-healing

ring. In this topology, flows only transmit in one direction.

2.2. FIVE BASIC NETWORK TOPOLOGIES 5

• Principle 2.4: We do not distinguish between dkl and dlk, and we simply

add them up and result in a triangular demand matric.

However, considering the network hierarchy, nodes and links in different net-

works may represent different hardwares. For instance, nodes can be servers,

switches/routers, multiplexers, de-multiplexers, add-drop multiplexers, termi-

nals, telephones, personal computers and so on. And links can be coaxial

lines, twisted-pair cables, fibres, wireless transmission path and so on. Typi-

cal equipments are usually related with typical network topologies. Therefore

when we construct Telecommunication Networks, we need not only to consider

the topologies, but also to take the effects of different hardwares into account.

2.2 Five Basic Network Topologies

"A network topology is the pattern of links connecting pairs of nodes of a

network."[2] Therefore it is determined only by the configuration of connections

between nodes. Five common network topologies, mesh, ring, tree, star and

bus are studied in this thesis, and so are the hardwares equipped in each one

of them. Fig. 2.2 demonstrates the affiliation of topologies.

Figure 2.2. The Affiliation of Network Topologies.

It is not specific that one kind of network topology is only implemented in

a certain occasion or scale. Telecommunication Networks are various and com-

plicated, however, what we discussed below is just based on normal situations.

6 CHAPTER 2. TELECOMMUNICATION NETWORK TOPOLOGIES

2.2.1 Backbone Network: Multiplexing Technology, Mesh

and Ring Topologies

Mesh and ring topologies are widely applied in backbone networks which

cover most area of nations. The nodes are switches/routers, and they are

usually placed in big cities where the demands for bandwidth are huge. Cor-

respondingly, the links are fibres2 which provide huge capacity.

Figure 2.3. The Multiplexing Function of A Node with MUX and DEMUX Pair.

Figure 2.4. The Multiplexing Function of A Node with An ADM.

A backbone network must be able to support Tbit/s bandwidth transmis-

sion. A key factor to organize and manage such huge data flow is the application

of multiplexing technology. Low-level user signals are multiplexed to high-level

transport signal, so a pair of multiplexer(MUX) and de-multiplexer(DEMUX)

are equipped at each node to take out or add in some tributaries. Moreover,

the cost of the whole network would be reduced if we introduce a add-drop

multiplexer(ADM) instead of the MUX DEMUX pair. An ADM can add and

drop tributaries without slowing down the transmission of signals.

In a narrow sense, "there are at least two nodes with two or more paths

between them in a mesh topology."[2] Whereas, in a broad sense, any kind of

2For backbone networks, fibre is gradually popular in the last decade. Sometimes wireless

medium with large bandwidth, such as satellite and microwave communication, are used.

2.2. FIVE BASIC NETWORK TOPOLOGIES 7

topology can be seen as mesh, and it makes mesh network design to be a basic

problem.

Fig. 2.6 indicates a special kind of mesh topology, the fully-connected mesh.

In this case, a link exists between all pairs of nodes, and there are totally
n(n−1)

2
direct links. Fully-connected mesh is the most expensive network, have

the most paths between every two nodes and makes the protection of network

considerably simple. But usually people just construct ordinary mesh networks

as demonstrated in fig. 2.5.

Figure 2.5. A Mesh Network.
Figure 2.6. A Fully Connected Mesh Net-

work.

In a ring network, each node is connected to two other nodes. An out-

standing characteristic of ring is that, comparing with other topologies, data

normally travels through more nodes before arriving its destination. For in-

stance, data from node A has to pass at least one other node before reaching

B in fig. 2.7. Meanwhile it is possible to add a new link AB if it was of mesh

topology. This feature allows ring networks to span greater distances, but also

make them only cheaper than fully-connected mesh. Furthermore, without

protection, a failure of a single node or link may destroy the whole network.

We will discuss the protection of ring networks in Chapter 4, but here we

introduce the structure of two-fibre unidirectional self-healing ring, which is

described in fig. 2.8. One fibre is active, and only carries signals in one direc-

tion. From a technical point of view, unidirectional transmission brings high

speed. Unlike the other topologies, we need to distinguish demand AB from

8 CHAPTER 2. TELECOMMUNICATION NETWORK TOPOLOGIES

demand BA, since the previous one travels in path A → C → ETC. → B and

the latter one goes in path B → A. On the other hand, another fibre carries

protection signals in the reverse direction. The protection signals would only

be used when failure occur.

Figure 2.7. A Ring Network.
Figure 2.8. A Two-Fibre Unidirectional

Self-Healing Ring Network.[4]

2.2.2 Regional Network and LAN: Tree, Star and Bus

Topologies

According to the network hierarchy, nodes will be sorted when we design

tree, star and bus topologies. One type is hub, gateway or central nodes which

are the roots of every level in networks, and the other type is terminal or

peripheral nodes.

Hubs have these functions: Since many network facilities, i.e. servers and

switches, are expensive, we only equip them in limited-numbered hubs. More-

over, all terminals straightly-connected to a hub are controlled by it when they

want to communicate with each others or with outside environment. And this

achieves the hierarchical management of some big networks.

Tree topology is applicable in a regional network which connects several

local area networks(LAN). For example, an university may have a network

as indicated in fig. 2.9. Node D and E are two terminals which connect

their department’s switch A. Their communication needs to pass through

2.2. FIVE BASIC NETWORK TOPOLOGIES 9

A, but not necessarily through node B, G and the other nodes. Similarly,

The communication between A and B has to pass through G. G is a border

switch which probably accesses to a metro area network(MAN), or an even

bigger education network. It is also very possible that the principal in node C

connects directly to G. If node D and F have demand between each other or

with some nodes outside the tree, they need the permission of their respective

roots and G.

Figure 2.9. A Tree Network.

A tree with only two levels, i.e. one root and its "sons", is a star. Since all

terminals only transmit data with the hub, a star network is easy to implement

and extend, and the failure of any peripheral will not have effect on the whole

network. We do not study bus-based star networks where hubs rebroadcast all

transmission. Instead, we choose the local loop of telephone networks as an

example to discuss the two models of star.

In fig. 2.10, all peripheral telephones connect straightly to hub A by twisted-

pair cable. Though the cable from node D pass through node C, the two

distribution cables, DA and CA, are independent and will just be packed into

a feeder cable from C. So node C is not only a terminal telephone, but also a

pedestal or a serving area interface where cables concentrate.

Nowadays, some feeder cables are substituted by fibres since users’ demands

of bandwidth are increasing. A MUX DEMUX pair must be placed at node

10 CHAPTER 2. TELECOMMUNICATION NETWORK TOPOLOGIES

Figure 2.10. A Star Network without

Multiplexing.

Figure 2.11. A Star Network with Multi-

plexing.

C as shown in fig. 2.11. The cost of MUX, DEMUX and fibre gets in return

with the save of bandwidth. For example, if each terminal has a demand of 1

Mbit/s with outside while we only have distribution cables provide 1.55 Mbit/s

bandwidth, we should provide a piece of cable for every single user. However, if

a fibre provide 20 Gbit/s bandwidth, it carry data for 20,000 terminals while 11

Gbit/s bandwidth is saved. When the fibres extend to buildings which are very

close to terminals, the coverage of twisted-pair cables will be greatly decreased.

Two models of star topology are built in Chapter 5.

Figure 2.12. A Bus Network.

Terminals are connected by sharing a single cable with fixed capacity in a

bus topology, and at one end of the cable is a hub. Bus network is easiest and

cheapest, however, there are problems when two terminals want to transmit

data at the same time.3 Thus bus systems normally have scheme of collision

3This is the situation in LAN. On the other hand, we can surely handle the bandwidth

problem by setting more cables in a backbone bus.

2.2. FIVE BASIC NETWORK TOPOLOGIES 11

avoidance, but it is not a consideration of physical network construction.

2.2.3 A Brief Summary

What the Section 2.2.2 demonstrates is summed up in table 2.1. As men-

tioned before, we only discuss the common application of network topologies.

In real life, Telecommunication Networks are much more complicated, and their

whole structures are often the combination of the basic topologies.

Topology Node Link Mostly

Applied

Mesh Switch, ADM Fibre Backbone net-

work, MAN

Ring Switch, ADM Fibre Backbone net-

work, MAN

Tree Switch, server, etc.

(roots); PC, telephone,

etc. (terminals)

Twisted-pair cable,

coaxial-cable, fibre

Regional

network

Star (no

multi-

plexing)

Switch, server, etc.

(hub); PC, telephone,

etc. (terminals)

Twisted-pair cable,

coaxial-cable

LAN, regional

network

Star

(multi-

plexing)

Switch, server, etc.

(hub); telephone, PC,

etc. (terminals); MUX,

DEMUX, etc. (serving

area interface)

Twisted-pair cable,

coaxial-cable, fibre

LAN, regional

network

Bus Switch, server, etc.

(hub); PC etc. (termi-

nals)

Twisted-pair cable,

coaxial-cable

LAN

Table 2.1. A Brief Summary of Network Topologies and Hardwares.

12 CHAPTER 2. TELECOMMUNICATION NETWORK TOPOLOGIES

2.3 Network Instances and Statistical Features

Some operation researchers have provided a library of fixed-charge network

design instances on web.[1] We chose three from the set, and made other two

examples following the instances’ pattern. They are used to test our mathe-

matical models. All the five graph models are listed in Appendix A, however,

those will appear frequently in later chapters are shown below:

Figure 2.13. Arne Network with 5 Nodes

and 7 Links. Figure 2.14. A Network of Germany with

7 Nodes and 14 Links.

Figure 2.15. A Network of Poland with 12

Nodes and 18 Links.

Statistical features of the instances are important, and can, to some extent,

explain the solutions. Table 2.2 lists the instances’ details, and there are three

main factors:

• We define Average Node Degree as the fraction of double links’ number

over nodes’ number. It shows the number of nodes which a node connects

to on average.

2.3. NETWORK INSTANCES AND STATISTICAL FEATURES 13

• Similarly, we define Max Node Degree. It tells the hot spot of a graph

which is potentially the hub node when we build tree, star or bus network.

• On every link, we calculate the fraction of its fixed-charge over the cost

of cable with least capacity. And Fixed-Charge Weight is defined as the

mean value of the previous quantity. It tells which cost is dominant, the

fixed-charge or the cable cost.

Details Arne Germany Poland France Pioro

No. of Nodes 5 7 12 25 40

No. of Links 7 14 18 45 89

No. of Demands 10 21 66 300 780

Max Node Degree 4 5 5 10 5

Hot Nodes C D, E Warsaw N15 N0, N3,

N8, etc.

Average Node Degree 2.8 4 3 3.6 4.45

Fixed-Charge Weight 0 5.17 1 10.86 1

Table 2.2. Instances Statistics.

14 CHAPTER 2. TELECOMMUNICATION NETWORK TOPOLOGIES

Chapter 3

Mesh Network and Protection

Fig. 2.2 indicates that mesh category covers all the other network topologies,

thus mesh network design is a basic problem. In fact, when we build models

for other topologies, we just modify the mesh model and add more constraints.

3.1 Fixed-Charge Network Design

We describe the mathematical model for the simplest fixed-charge network

design problem in this section. The topology is mesh, and there is no protection

scheme.

3.1.1 Mathematical Model

There are three sets: N for nodes, L for links and C for cables. And the

indices are:

i, j, k, l : Nodes in the network; i, j, k, l ∈ N

(i, j) : Links in the network; if (i, j) ∈ L, (j, i) ∈ L

c : Types of cables; c ∈ C

The parameters are:

SetupCost(i,j) : The fixed-charge to establish link (i, j)

CableCapacityc : The capacity that cable c can provide

CablePrice
c
(i,j) : The cost of adding a cable c on link (i, j)

Demandkl : The statistical demand of data between node k and l

15

16 CHAPTER 3. MESH NETWORK AND PROTECTION

We perform the simplification based on principle 2.1 and 2.4. Thus on every

single link, SetupCost(i,j) equals to SetupCost(j,i), and CablePrice
c
(i,j)

equals to CablePrice
c
(j,i). We add up Demandkl and Demandlk to make

an upper triangular matrix. Afterwards, only Demandkl, k < l are possibly

nonzero. It will decrease the number of variables.

The model contains three types of variables: one continuous flow decision

xkl
(i,j), one binary setup decision y(i,j) and another integer capacity decision zc

(i,j).

xkl
(i,j) :

The fraction of demand kl which flows on link (i, j) from

node i to node j (principle 2.2)

y(i,j) : Whether to set up link (i, j)

zc
(i,j) : How many cables c are laid on link (i, j)

Finally, the mixed integer programming(MIP) model is:

Minimize:

∑

(i,j)

∑

c

zc
(i,j) × CablePrice

c
(i,j) +

∑

(i,j)

SetupCost(i,j) × y(i,j) (3.1)

Subject To:

∑

j

xkl
(i,j)−

∑

j

xkl
(j,i) =











1 if i = k

0 otherwise; ∀i ∈ N ; k, l ∈ N and Demandkl 6= 0

−1 if i = l

(3.2)

∑

kl

(xkl
(i,j)+xkl

(j,i))×Demandkl ≤
∑

c

zc
(i,j)×CableCapacityc ; (i, j) ∈ L and i < j

(3.3)

xkl
(i,j) ≤ y(i,j) ; (i, j) ∈ L and i < j ; ∀k, l ∈ N (3.4)

xkl
(i,j) ≤ y(j,i) ; (i, j) ∈ L and j < i ; ∀k, l ∈ N (3.5)

3.1. FIXED-CHARGE NETWORK DESIGN 17

xkl
(i,j) = 0 ; ∀(i, j) ∈ L ; k, l ∈ N and Demandkl = 0 (3.6)

y(i,j) = 0 ; (i, j) ∈ L and i > j (3.7)

zc
(i,j) = 0 ; ∀c ∈ C ; (i, j) ∈ L and i > j (3.8)

xkl
(i,j) ∈ R

+ ; ∀(i, j) ∈ L ; ∀k, l ∈ N (3.9)

y(i,j) = 0 or 1 ; ∀(i, j) ∈ L (3.10)

zc
(i,j) ∈ Z

+ ; ∀(i, j) ∈ L ; ∀c ∈ C (3.11)

Eq. 3.2 describes the paths for every Demandkl: Both the sum of fractional

outward flows at the origin node k and the sum of fractional inward flows at

the destination node l equal to 1. Meanwhile, at all the other nodes, flows for

Demandkl only pass but not enter or drop. Eq. 3.3 ensures that enough cables

will be laid on links, and it is contributing for the first part of objective, i.e. eq.

3.1. Eq. 3.4 and eq. 3.5 ensure that if there are flows going through link (i, j),

we should at least set up link (i, j). These two equations are contributing for

the second part of objective.

Since we do not need flows for zero demands, half of xkl
(i,j) are set to zero in

eq. 3.6. Moreover, eq. 3.7 - eq. 3.8 are based upon principle 2.1 and principle

2.3. We consider either y(i,j) or y(j,i) and either zc
(i,j) or zc

(j,i), thus set all y(i,j)

and zc
(i,j), (i, j) ∈ L, i > j to zero.

3.1.2 Comments and Solutions

The objective consists of two parts, the cable cost and the fixed-charge. If

the fixed-charge is much larger than the cable cost, the solution would set

up links as fewer as possible. When cable cost is zero, the problem becomes

a exact minimum spanning tree(MST) problem. Contrarily, if the cable cost

is dominating, we will just concern more on routing the flow to use cables

18 CHAPTER 3. MESH NETWORK AND PROTECTION

as fewer as possible. When the setup cost is zero, the problem becomes an

approximative all-to-all shortest path problem. The solutions(which links are

set up) for Germany and Poland networks are shown below, the instances’

details are recorded in table 2.2:

Figure 3.1. Mesh Solution of Germany

Network. The Fixed-Charge

is Dominating.

Figure 3.2. Mesh Solution of Poland Net-

work. The Cable Cost is

Dominating.

If we eliminated the integer variable zc
(i,j) by introducing a continuous pa-

rameter, cost per unit capacity, the problem described by eq. 3.1 - eq. 3.11

would be much easier. There would be no otiose capacities in the solutions.

Moreover, we will have an exact all-to-all shortest path problem when setup

costs are zero.

Nevertheless, the actual problem is hard. The solution is not only measuring

the weights between fixed-charge and cable cost, but is also trying to route the

flows precisely to deplete cable capacities.

Table 3.1 shows the running time of GAMS programs and the MIP solutions

for 4 network instances. Within the time limitation, 270,000 seconds(almost 3

days), the CPLEX solver could not solve Pioro network completely. However,

it provides a solution with 0.63% relative gap away from the best possible lower

bound.

3.2. 1+1 PROTECTION FOR MESH NETWORK 19

Germany Poland France Pioro

No. of Nodes 7 12 25 40

No. of Links 14 18 45 89

Running Time 2 s 32 m 20 s 14 h 40 m 75 h

Obj. Value 22650 27691 52775
430680 (Best Possi-

ble: 427988.2)

Table 3.1. Running Time and Objective Values for Mesh Networks.

3.2 1+1 Protection for Mesh Network

No matter how much it cost, we should guarantee that networks are running

continuous. The network operators surely realize the huge amount of money

that they invest to construct such networks, but they just do not want to take

the consequences of losing clients’ data. The importance of network reliabil-

ity and the increasingly cheaper fibre price make protection necessary for all

Telecommunication Networks.

The protection schemes discussed in this thesis only aim at single link fail-

ures. What a protection method does is to ensure that data transmitted on

the failed link will be transmitted through other links without troubling other

data. Thus extra protective bandwidth should be reserved aforehand. The

research of protection is based on how to reserve protective capacities. There

are mainly two protection methods, the path protection scheme and the link

protection scheme. An kind of link protection method is studied in Section 3.3,

and a widely used path protection method, 1+1 protection, is accomplished in

this section.

3.2.1 1+1 Protection

Just as its name implies, path protection scheme tries to protect link failures

by protecting all flows of different paths on that link. Moreover, a path flow

contains a series of link flows as demonstrated in eq. 3.2. Since we do not know

which link would fail, we need to protect all links for a path.

20 CHAPTER 3. MESH NETWORK AND PROTECTION

In 1+1 protection, at least two paths1 that do not share any link are provided

for each demand as indicated in fig. 3.3[5]. One is called the primary path,

and the alternate one is called the backup path. Signals are transmitted in

both paths, and in normal status, the destination node just receives data by

primary path. When a link failure occurs on the primary path, the destination

will just switch to the backup path. Thus 1+1 protection scheme has a fast

recovering time.

Figure 3.3. How 1+1 Protection Works: There are 1 unit demand for BD and AC respec-

tively. Path B → D and A → C are primary paths. Path B → E → F → D

and A → E → F → C are backup paths. All numbers in the figure show the

capacities that reserved on links.

In the basic fixed-charge network design problem, the solution paths for

Demandkl are possibly cheapest. Therefore the new alternate paths must be

more expensive, and this characteristic makes 1+1 protection "requires more

than 100% and most often more than 130% extra capacity".[6] In a word, it is

a fast but also an expensive protection method.

3.2.2 Mathematical Model

Compared with the data in previous model, the only difference is the two

continuous flow decision variables, xakl
(i,j) for primary path and xbkl

(i,j) for backup

path.

xakl
(i,j) :

The fraction of demand kl which flows on link (i, j) from

node i to node j, primary path

xbkl
(i,j) :

The fraction of demand kl which flows on link (i, j) from

node i to node j, backup path

1We may already have more than one primary path for a single demand.

3.2. 1+1 PROTECTION FOR MESH NETWORK 21

And the MIP model for 1+1 protection mesh network is:

Minimize:

∑

(i,j)

∑

c

zc
(i,j) × CablePrice

c
(i,j) +

∑

(i,j)

SetupCost(i,j) × y(i,j) (3.12)

Subject To:

∑

j

xakl
(i,j)−

∑

j

xakl
(j,i) =











1 if i = k

0 otherwise; ∀i ∈ N ; k, l ∈ N and Demandkl 6= 0

−1 if i = l

(3.13)

∑

j

xbkl
(i,j)−

∑

j

xbkl
(j,i) =











1 if i = k

0 otherwise; ∀i ∈ N ; k, l ∈ N and Demandkl 6= 0

−1 if i = l

(3.14)

∑

kl(xakl
(i,j) + xakl

(j,i) + xbkl
(i,j) + xbkl

(j,i)) × Demandkl

≤
∑

c zc
(i,j) × CableCapacityc ; (i, j) ∈ L and i < j

(3.15)

xakl
(i,j) + xakl

(j,i) + xbkl
(i,j) + xbkl

(j,i) ≤ 1 ; ∀(i, j) ∈ L ; ∀k, l ∈ N (3.16)

xakl
(i,j) ≤ y(i,j) ; (i, j) ∈ L and i < j ; ∀k, l ∈ N (3.17)

xakl
(i,j) ≤ y(j,i) ; (i, j) ∈ L and j < i ; ∀k, l ∈ N (3.18)

xbkl
(i,j) ≤ y(i,j) ; (i, j) ∈ L and i < j ; ∀k, l ∈ N (3.19)

xbkl
(i,j) ≤ y(j,i) ; (i, j) ∈ L and j < i ; ∀k, l ∈ N (3.20)

xakl
(i,j) = 0 ; ∀(i, j) ∈ L ; k, l ∈ N and Demandkl = 0 (3.21)

22 CHAPTER 3. MESH NETWORK AND PROTECTION

xbkl
(i,j) = 0 ; ∀(i, j) ∈ L ; k, l ∈ N and Demandkl = 0 (3.22)

y(i,j) = 0 ; (i, j) ∈ L and i > j (3.23)

zc
(i,j) = 0 ; ∀c ∈ C ; (i, j) ∈ L and i > j (3.24)

xakl
(i,j) , xbkl

(i,j) ∈ R
+ ; ∀(i, j) ∈ L ; ∀k, l ∈ N (3.25)

y(i,j) = 0 or 1 ; ∀(i, j) ∈ L (3.26)

zc
(i,j) ∈ Z

+ ; ∀(i, j) ∈ L ; ∀c ∈ C (3.27)

Actually, xakl
(i,j) and xbkl

(i,j) are the same type of variables, so eq. 3.15 shows

that they both contribute to the reservation of cable capacities. However,

eq. 3.16 ensures that at most 100% of flow pass through link(i,j) for every

Demandkl, no matter whether it is primary flow or backup flow. I.e. the two

paths do not share any link.

All other equations have the same functions as those of eq. 3.1 - eq. 3.11.

3.2.3 Comments and Solutions

Since at least two disjunct paths have to be found, each node must be the

ends for at least two links, and this factor makes solutions to set up more links.

It may brings high setup cost in those fixed-charge-dominating networks, e.g.

the Germany network. The solutions(which links are set up) for Germany and

Poland networks are shown in fig. 3.4 and fig. 3.5. The primary and backup

paths for Demand′D′′F ′ and Demand′Szczecin′′Warsaw′ in their respective net-

works are indicated.

3.2. 1+1 PROTECTION FOR MESH NETWORK 23

Figure 3.4. 1+1 Mesh Solution for Ger-

many Network: The pri-

mary path for Demand′D′′F ′

is D → F . The protection

paths for Demand′D′′F ′ are

D → E → F with 0.562 of de-

mand and D → G → F with

0.438 of demand.

Figure 3.5. 1+1 Mesh Solution for Poland

Network: The primary path

for Demand′Szczecin′′Warsaw′

is Szczecin → Poznan →

Bydgoszcz → Warsaw.

The protection path is

Szczecin → Kolobrzeg →

Gdansk → Warsaw.

Compared with the basic problem, 1+1 protection mesh is harder to solve

because there are more variables. Table 3.2 shows the running time of GAMS

programs, the MIP solutions and the relative rise of objective values compared

with the previous problem. Pioro network can still not be solved completely,

and neither can France network because of the limitation of resource. The

relative gap of Pioro network solution is 0.36%, and the relative gap of France

network is 0.70%.

Germany Poland France Pioro

No. of Nodes 7 12 25 40

Running Time 12 s 10 m 36 s 75 h 75 h

Obj. Value 46090 62757
112688 (Best Pos-

sible: 111897.6)

981042 (Best Pos-

sible: 977531.6)

Rise in Obj. 103.5% 126.6% 113.5% 127.8 %

Table 3.2. Running Time and Objective Values for 1+1 Mesh Networks.

24 CHAPTER 3. MESH NETWORK AND PROTECTION

3.3 Link Protection for Mesh Network

1+1 protection scheme is expensive , and the problems are so hard to be

solved that we need to find another protection method and build another model.

A link protection scheme for mesh network is introduced in this section, and we

use a 2-level solving method, column generation, to handle the new problem.

3.3.1 A Link Protection Method

1+1 protection provides primary paths and backup paths. In fact, if a failure

occurs on an individual link, all the paths going through this link will break

down. However, though the other links on these paths are still good, we leave

capacities reserved for paths on the healthy links unused. It results in a kind

of waste, and it is a disadvantage of 1+1 protection.

Figure 3.6. Link Protection Scheme.

In link protection schemes, we protect single links without concerning the

other links which are on the same paths. One way to accomplish that is to find

one or more paths which connects the two ends of the failed link and let the

data goes through them instead.

3.3. LINK PROTECTION FOR MESH NETWORK 25

Fig. 3.6 demonstrates an example: We only consider the communication for

Demand′Szczecin′,′Bialystok′ and assume that link (′Warsaw′,′ Bialystok′) fails.

In 1+1 protection, a backup path would be used, and the capacities reserved for

Demand′Szczecin′,′Bialystok′ on link (′Szczecin′,′ Poznan′), (′Poznan′,′ Bydgoszcz′)

and (′Budgoszcz′,′ Warsaw′) would be useless. On the other hand, in link pro-

tection, we still use the first three links on the path. In addition, we find other

paths, e.g. path Warsaw → Gdansk → Bialystok, to transmit data instead

of Warsaw → Bialysrok.

These link-protection paths and the failed link would constitute sub-rings2,

e.g. the red circles depicted in fig. 3.6. Actually, the Warsaw ↔ Gdansk ↔

Bialystok sub-ring can be used for the protection of three links, (′Warsaw′,′ Gdansk′),

(′Warsaw′,′ Bialystok′) and (′Bialystok′,′ Gdansk′). Similarly, if we reserve

capacities on other more sub-rings, it is possible to guarantee the protection of

every single link in the whole mesh network.

Now the problem is: With a primarily designed network at hand, how to

discover enough cheap sub-rings and how to reserve capacities on them only

for protection usage? It is the mission of building a link protection model.

3.3.2 Mathematical Model

The new model we discuss in this section is reserving protection bandwidth,

and the precondition is that a working network with primary capacities is

given. For the primary networks, the solutions of basic fixed-charge network

design problems can be used. Or we may simply perform all-to-all shortest path

algorithms3, e.g. Floyd-Warshall algorithm, to obtain such networks. However,

MST algorithms can not be applied, since links jointing the bottom nodes of

the tree can not be protect by any sub-rings. We do not set up additional links

in the new model.

As mentioned before, our intention now is to discover sufficient cheap sub-

rings. In fact, all the sub-rings of a given network are determinate. Thus

2We call it sub-ring to distinguish with ring topology.
3Ignore the discrete cable capacities.

26 CHAPTER 3. MESH NETWORK AND PROTECTION

comparison of sub-rings instead of searching is implemented. And we get a

new set and a new index, R and r for sub-rings.

There is also some change in parameters:

Pattern
r
(i,j) :

Whether sub-ring r contains link (i, j); 1 if con-

tains, otherwise 0; Pattern
r
(i,j) = Pattern

r
(j,i)

CableCapacityc : The capacity that cable c can provide

CablePrice
c
(i,j) :

The cost of adding a cable c on link (i, j);

CablePrice
c
(i,j) = CablePrice

c
(j,i)

Flow(i,j) :
The primary flow of data going through link (i, j);

Flow(i,j) = Flow(j,i)

The continuous flow decision xr is endowed with new meaning as well: The

bandwidth reserved for sub-ring r. MIP model for protection sub-rings is:

Minimize:

1

2

∑

(i,j)

∑

c

zc
(i,j) × CablePrice

c
(i,j) (3.28)

Subject To:

∑

r

xr × Pattern
r
(i,j) ≥ Flow(i,j) ; ∀(i, j) ∈ L (3.29)

∑

r

xr × Pattern
r
(i,j) ≤

∑

c

zc
(i,j) × CableCapacityc ; ∀(i, j) ∈ L (3.30)

xr ∈ R
+ ; ∀r ∈ R (3.31)

zc
(i,j) ∈ Z

+ ; ∀(i, j) ∈ L ; ∀c ∈ C (3.32)

Eq. 3.29 ensures that on every link (i, j), the sum of protection bandwidth

provided by different sub-rings is greater or at least equal to the primary band-

width. Though the left-hand-side of eq. 3.29 and eq. 3.30 are same, we can

not combine them together to eliminate xr. Because xr is the only variable to

keep link protection feature, i.e. the existence of sub-rings.

3.3. LINK PROTECTION FOR MESH NETWORK 27

A disadvantage of the new model is that we have to list all sub-rings of a

given network. If a primary network is a fully-connected mesh and has n nodes,

there would be
∑n

m=1
n!

m!(n−m)!
sub-rings!4 Whereas, eq. 3.1 - eq. 3.11 solve

problems for O(n4) number of variables. Therefore link protection model may

break down for huge amount of variables.

On the other hand, link protection model contains fewer constraints(O(n2))

than the basic network design problem(O(n4)). It implies that column gener-

ation method could be applied.

3.3.3 Column Generation

Column Generation is a 2-level method for solving Linear Programming(LP)

problems with many columns(variables). A generic structure of LP problems is

Minimize cT x

s.t. : Ax ≤ b

x ≥ 0

(3.33)

where A is a m × n matrix. When n is much larger than m, linear algebra

theory indicates that setting all non-basic variables to zero and solving the

basis can give a feasible solution. The structure is shown below:

Figure 3.7. The Structure of Basis and Non-basis.

In a 2-level representation of LP problems, suppose now a basic solution is

found. Looking for a possible better solution, a column from the non-basis is

added to the basis. Hence, the (master) problem in each iteration is

4 n!
m!(n−m)! is the number of sub-rings which contain m links(nodes).

28 CHAPTER 3. MESH NETWORK AND PROTECTION

Minimize

[

c′

cp

]T [

x′

xp

]

s.t. : [A′, Ap]

[

c′

cp

]

≤ b

[

c′

cp

]

≥ 0

(3.34)

where A′ is composed of a subset of A, and c′ and x′ are chosen correspondingly.

Ap is a new-added column and xp is a new-added variable.

Let π be a multiplier vector associated with the current basis, and it is usually

an array of constraints’ dual values. Applying column generation method, the

master problems sends π to the sub-problems. The task of the sub-problems is

to generate a new column Ap as it is needed with a minimal reduced cost, cp −

πAp, and introduce the column to the master problem. When it is determined

that there is no more profitable column to submit, the current solution is

optimal.

The vector π and reduced cost have different sense in various problems. So

is the method of generating a new column.

3.3.4 Modification of Mathematical Model and The Mas-

ter Problem

Column generation is only applied in LP problems. We need to remove eq.

3.30, since it contains integer variables and can not provide dual values. This

remind us of the old imagination: Can we introduce a continuous parameter,

i.e. cost per unit capacity?

Statistical data demonstrates that prices and capacities of cables are not in

a linear relationship. For example, all the 5 network instances have at most

two types of cables(electrical signals or optical carriers), one for 155.52 Mbit/s

3.3. LINK PROTECTION FOR MESH NETWORK 29

STM-1 signals and the other for 622.08 Mbit/s STM-4 signals.5 On each link,

the price of STM-1 is one third of STM-4’s, meanwhile its capacity is one forth

of STM-4’s. Therefore the solution normally use 622.08 Mbit/s cables as more

as possible and set 155.52 Mbit/s cables for the remainder. This makes the

simplification possible:

• It would not waste much money and bandwidth if STM-4 signal cables

are the only used cables.

• Dividing the prices of STM-4 signal cables by its bandwidth, we can get

a rough parameter, cost per unit capacity.

Assuming that parameter UnitCost(i,j), the cost per unit bandwidth, is

available at hand, we can further introduce another parameter PatternCostr =
1
2

∑

(i,j) UnitCost(i,j) × Pattern
r
(i,j). It is the unit capacity cost of sub-ring

r. The integer capacity decision zc
(i,j) is removed, and the modified LP model

for link protection is:

Minimize:

∑

r∈R

PatternCostr × xr (3.35)

Subject To:

∑

r∈R

xr × Pattern
r
(i,j) ≥ Flow(i,j) ; ∀(i, j) ∈ L (3.36)

xr ∈ R
+ ; ∀r ∈ R (3.37)

xr is the only continuous variable. The precondition of column generation

is that we have a basis A′ and the corresponding variables x′, but not all of

them. So in every iteration, the master problem of link protection model is

substituting set R in eq. 3.35 - eq. 3.37 by its subset R′. Then the goal is to

generate new columns Ap and xp one by one.

5STM-n, synchronous transfer modules-n, are levels of transmitted signals in SDH, syn-

chronous digital hierarchy.

30 CHAPTER 3. MESH NETWORK AND PROTECTION

A dummy pattern could be used as the basis at the beginning of every master

problem. As its name implies, a dummy pattern could not be found in real

life, but it could be recognized by the master problem. Furthermore, it helps

in the way that we are not necessary to list even one pattern. All sub-rings

are left to be generated by the model. A dummy sub-ring in this problem is

a "ring" which contains all the links and suffering from its immense pattern

cost. Anyway, it would soon disappear.

3.3.5 The Sub-problems

In the master problem, each constraint’s dual value, π(i,j), represents the

currently most expensive pattern which contains link (i, j). If a unit flow on

link (i, j) is taken by another new sub-ring p, π(i,j) would be saved. Similarly

the new sub-ring p would totally save
∑

(i,j) Pattern
p

(i,j)×π(i,j). On the other

hand, we pay PatternCostp for that sub-ring. Hence, to decide whether a

column in the non-basis should be added is to decide whether there exists a

profitable new sub-ring.

In a sub-problem, the most profitable sub-ring is generated by inspecting

PatternCostp −
∑

(i,j) Pattern
p

(i,j) × π(i,j). The termination criterion is: if

the sub-problem solution is non-positive, there still exists a cheaper sub-ring.

Contrarily, no pattern should be generated and the optimal solution is found.

Thus the integer programming(IP) model of sub-problem is:

Minimize:

∑

(i,j)

(UnitCost(i,j) − π(i,j)) × y(i, j) (3.38)

Subject To:

∑

j

y(i, j) −
∑

j

y(j, i) = 0 ; ∀i ∈ N (3.39)

y(i, j) + y(j, i) ≤ 1 ; ∀(i, j) ∈ L (3.40)

y(i,j) = 0 or 1 ; ∀(i, j) ∈ L (3.41)

3.3. LINK PROTECTION FOR MESH NETWORK 31

The binary setup decision y(i,j) is the only variable in sub-problems. It

represents whether the solution sub-ring contains arc (i, j). Eq. 3.39 generate

a sub-ring, and eq. 3.40 ensures that the two arcs on a same link will not be

considered as a pattern.

In fact, the solution might generate several sub-rings, since eq. 3.39 does not

restrict the number of rings. It means that these rings are equally profitable, and

they can together be considered as one pattern. Moreover, eq. 3.40 also makes

the sub-ring to be directed, and we need to keep the symmetry of patterns

before passing them back to the master problems.

3.3.6 Solving Process, Solutions and Comments

Fig. 3.8 demonstrates the solving process of Arne network as an example. It

last 6 iterations, and 5 new sub-rings were generated. The dummy basis was

abandoned after the third iteration.

Figure 3.8. Solving Process of Arne Network.

Link protection problems are much easier to be solved by column genera-

tion method. Firstly, listing and inspecting of expatiatory columns is avoided.

Secondly, integer capacity decisions are replaced by continuous capacity cost

parameters. Table 3.3 shows the running time of GAMS programs. Number

32 CHAPTER 3. MESH NETWORK AND PROTECTION

of generated sub-rings is number of iterations minus 1. Since the link flow

parameter and the unit capacity costs parameter are approximate, we do not

list the objective values of the last master problems.

Arne Germany Poland France Pioro

No. of Nodes 5 7 12 25 40

Running Time <1 s 4 s 4 s 11 s 5 m 7 s

No. of Iterations 6 16 17 36 99

No. of Generated Patterns 5 15 16 35 98

Table 3.3. Running Time and Number of Iterations for Link Protection Mesh Networks.

In Appendix B, a simple example illustrates that link protection is usually

more economical than 1+1 protection. The saving of capacity derives from

the fact that sub-rings which consist of nearby links are normally shorter than

alternate backup paths.

Chapter 4

Ring Network and Protection

Ring topology is significant, and it is broadly used in various network levels.

However, in this chapter, we only design large scale ring networks, i.e. backbone

networks and metro area networks. Ring topology for local area networks, e.g.

token ring scheme, is not studied.

4.1 Non-Protective Ring Network Design

The importance of ring relies on the factor that this topology is compatible

with network protection problems. It allocates additional capacities on all

links, and data is just transmitted through the other links when a single link

breaks down. Anyway, we start from the design of basic ring networks, i.e.

rings without protection.

4.1.1 Mathematical Model

Ring topology can be considered as a subset of mesh topology. Hence, what

we need to do when designing rings is to add more constraints to the mesh

model. Considering the MIP model of basic fixed-charge network, eq. 3.1 - eq.

3.11, only one more constraint is appended:

∑

j

y(i,j) +
∑

j

y(j,i) = 2 ; ∀i ∈ N (4.1)

33

34 CHAPTER 4. RING NETWORK AND PROTECTION

Eq. 4.1 indicates that every node is the ends of two links and joints to exact

two other nodes. Actually, it is possible to result in sub-rings. Nevertheless,

eq. 3.2 shows that the existence of demands lead to the paths between every

nodes pair. And the paths rush out of sub-rings and generate only one ring.

All sets, indices, parameters and variables are same as those of the basic

fixed-charge network model, so they are not specified. Neither are the other

constraints.

4.1.2 Comments and Solutions

The fixed-charge network design model is a relaxation of the non-protective

ring model, since the latter one has an extra constraint. According to the ring

characteristic, number of setup links must be equal to the number of nodes.

Therefore the objective values of latter problems must be larger, especially for

those cable cost dominating networks which have to reserve more expensive

cables.

Table 4.1 supports the comments in the last paragraph. Rise in objective

values are compared with solutions in table 3.1. France network has no integer

solution, since no ring could be found based on the current network. Pioro

network can even not be solved within 270,000 seconds.

Germany Poland France Pioro

No. of Nodes 7 12 25 40

Running Time 5 s 86 m 29 s 5 s 75 h

Obj. Value 28210 38911 No Integer Solution Not Solved

Rise in Obj. 24.5% 40.5% No Integer Solution Not Solved

Table 4.1. Running Time and Objective Values for Non-Protective Ring Networks.

The non-protective ring problem is almost as hard as the basic fixed-charge

network problem. Solutions(which links are set up) for Germany and Poland

networks are illustrated in fig. 4.1 and fig. 4.2:

4.2. 1+1 PROTECTION FOR RING NETWORK 35

Figure 4.1. Non-Protective Ring Solution

of Germany Network. (Also

The Solution of 1+1 Protec-

tion Model and Two-Fibre

Unidirectional Self-Healing

Ring Model.)

Figure 4.2. Non-Protective Ring Solution

of Poland Network. (Also The

Solution of 1+1 Protection

Model and Two-Fibre Uni-

directional Self-Healing Ring

Model.)

4.2 1+1 Protection for Ring Network

Protection of backbone networks must be guaranteed. If link protection

scheme is performed, the unique generated pattern is the original ring. Thus

path and link protection methods result in the same solution to ring topology.

And we only apply 1+1 method for ring networks.

4.2.1 Mathematical Model, Solutions and Comments

As the same idea in non-protective ring network design, the MIP model of

1+1 protection ring consists of 1+1 mesh model and a ring constraint, i.e. eq.

3.12 - eq. 3.27 plus eq. 4.1. Sets, indices, parameters and variables are not

changed. This problem is also hard to be solved. Solution of setup links for

Germany and Poland networks keep unaltered as the previous problem.

There is a distinct feature of ring topology: Every nodes pair have exactly two

paths connecting them. The two paths do not share any link, and meanwhile

they contain all links in the ring together.

36 CHAPTER 4. RING NETWORK AND PROTECTION

Hence, 1+1 protection ring is much more expensive than non-protective ring.

In any case, 100% flow of a demand travel in the two paths respectively, and the

backup path might be much longer than the primary path. In those cable cost

dominating networks, e.g. Poland network, long backup paths are inevitably

costly. Comparison of objective values is shown in table 4.3.

Germany Poland France Pioro

No. of Nodes 7 12 25 40

Running Time 7 s 28 s 12 s 75 h

Obj. Value 62790 133280 No Integer Solution Not Solved

Table 4.2. Running Time and Objective Values for 1+1 Protection Ring Networks.

In addition, 100% flow of every demand goes through every link on the ring.

In other words, certain numbers of cables would be laid if a link is decided to

be set up, because the allocated capacity on a link equals to the total demands.

This factor is proved by the values of integer capacity decision, zc
(i,j), in solution.

zc
(i1,j1) = zc

(i2,j2) ; (i1, j1), (i2, j2) ∈ L and i1 < j1, i2 < j2 (4.2)

Therefore we can define new fixed costs on all links by adding their former

setup costs and the determinate capacity costs. Now the problem is simplified

to a travelling salesman problem(TSP).

4.2.2 An Improved Mathematical Model: TSP Problem

Given a collection of cities and the cost of travelling between each pair of

them, the TSP problem is to find the cheapest way of visiting all the cities and

returning to the starting point. Normally the formulation is:

Minimize:

∑

l

dlyl (4.3)

Subject To:

4.2. 1+1 PROTECTION FOR RING NETWORK 37

y(δ(i)) = 2 ; ∀i ∈ N (4.4)

y(δ(S)) ≥ 2 ; ∅ ⊂ S ⊂ N (4.5)

yl ∈ {0, 1} ; ∀l ∈ L (4.6)

dl is the distance of link l, and δ is the symbol of cut. Eq. 4.4 tells that

the cut of every node i has two links, i.e. it is the ring constraint. Eq. 4.5

tells that there are at least two links jointing nodes between two subsets. It is

used to eliminate sub-tours(sub-rings). However, the huge number of subsets

brings some difficulty to implement constraints in GAMS programs. So eq. 4.5

is substituted in the later mathematical model.

Translating TSP to protection ring design problems, some new parameters

need to be introduced:

FixedCost(i,j) : A replacement of dl

CableNumberc : How many cable c are laid on each link

TotalDemand : Sum of all demands; TotalDemand =
∑

kl Demandkl

As mentioned before, the unit costs of larger capacity cables are compara-

tively cheaper, so we tend to use them as many as possible. CableNumberc

is obtained by dividing TotalDemand by high-level capacities and leaving

the reminder to low-level capacities. Furthermore, we have:

FixedCost(i,j) = SetupCost(i,j) +
∑

c CableNumberc × CablePrice
c
(i,j)

; ∀(i, j) ∈ L

(4.7)

and the MIP model is:

Minimize:

∑

(i,j)

FixedCost(i,j) × y(i,j) (4.8)

38 CHAPTER 4. RING NETWORK AND PROTECTION

Subject To:

∑

j

y(i,j) +
∑

j

y(j,i) = 2 ; ∀i ∈ N (4.9)

∑

j

x
′Node1′l
(i,j) −

∑

j

x
′Node1′l
(j,i) =











1 if i = ’Node1’

0 otherwise; ∀i ∈ N ; l ∈ N and l 6= ’Node1’

−1 if i = l

(4.10)

xkl
(i,j) ≤ y(i,j) ; (i, j) ∈ L and i < j ; ∀k, l ∈ N (4.11)

xkl
(i,j) ≤ y(j,i) ; (i, j) ∈ L and j < i ; ∀k, l ∈ N (4.12)

xkl
(i,j) = 0 ; ∀(i, j) ∈ L ; k ∈ N and k 6= ’Node1’ (4.13)

y(i,j) = 0 ; (i, j) ∈ L and i > j (4.14)

xkl
(i,j) ∈ R

+ ; ∀(i, j) ∈ L ; ∀k, l ∈ N (4.15)

y(i,j) = 0 or 1 ; ∀(i, j) ∈ L (4.16)

Eq. 4.10 is a bit different from 3.2 that index k is set to be a certain node,

’Node1’. ’Node1’ could be any single node in the network, and eq. 4.10 just

illustrates that there exists a path between ’Node1’ to every other node. Thus

sub-tours would be eliminated, and meanwhile there is not redundant non-zero

flow between any other nodes pairs. In a word, compared with eq. 4.3 - eq.

4.6, the additional variable xkl
(i,j) makes the model easier to be formulated.

We get the same solutions as expected. Running time is greatly reduced by

removing variable zc
(i,j).

4.3. TWO-FIBRE UNIDIRECTIONAL SELF-HEALING RING 39

Germany Poland France Pioro

No. of Nodes 7 12 25 40

Running Time <1 s <1 s 2 s 25 s

Obj. Value 62790 133280 No Integer Solution 3371049

Rise in Obj. (Com-

pared with Basic Ring)
122.6% 242.5% No Integer Solution ?

Rise in Obj. (Com-

pared with 1+1 Mesh)
36.2% 112.4% No Integer Solution 243.6%

Table 4.3. Running Time and Objective Values for Protection Ring(TSP Model) Net-

works.

4.3 Two-Fibre Unidirectional Self-Healing Ring

4.3.1 Mathematical Model

The structure of two-fibre unidirectional self-healing ring is described in Sec-

tion 2.2.1 fig. 2.8. Compared with the former topologies, its outstanding fea-

ture is that demands are directed. I.e. parameter Demandkl is the statistical

demand of data from node k to node l. On both active and protection fibre, the

two demands between a nodes pair goes through complementary links. Thus

principle 2.3 and principle 2.4 are not suitable for this model.

Moreover, an active flow, which must carry 100% of a demand, transmits

in an unique path and direction. And the respective protection flow, which

also carries 100% of the demand, transmits in the opposite directed path. In

other words, all active flows transmit in the same direction, either clockwise

or anticlockwise. And all protection flows transmit in the opposite direction.

Therefore we introduce the concept of arc, i.e. a directed link. It will later

simplify the formulation. A graph contains arcs(but not links) is called a

digraph. In this thesis, concepts of arc, digraph and directed demands are

merely defined in two-fibre unidirectional self-healing ring model.

The modification of variables are noticeable: Since there is only one active

flow in one direction for every demand, xkl
(i,j) becomes a binary decision. And

40 CHAPTER 4. RING NETWORK AND PROTECTION

optical carriers on different fibre are identified into two integer capacity deci-

sions, zac
(i,j) and zbc

(i,j). We list all of them below:

xkl
(i,j) :

Whether the active flow of demand kl transmits on arc

(i, j) from node i to node j

y(i,j) : Whether to set up arc (i, j) on the active fibre ring

zac
(i,j) :

How many optical carriers c are leased on arc (i, j) for

active fibre

zbc
(i,j) :

How many optical carriers c are leased on arc (i, j) for

protection fibre

Ultimately, the MIP model of two-fibre unidirectional self-healing ring is:

Minimize:

∑

(i,j)

∑

c zac
(i,j) × CablePrice

c
(i,j) +

∑

(i,j)

∑

c zbc
(i,j) × CablePrice

c
(i,j)

+
∑

(i,j) SetupCost(i,j) × y(i,j)

(4.17)

Subject To:

∑

j

xkl
(i,j)−

∑

j

xkl
(j,i) =











1 if i = k

0 otherwise; ∀i ∈ N ; k, l ∈ N and Demandkl 6= 0

−1 if i = l

(4.18)

∑

kl

(xkl
(i,j)+xkl

(j,i))×Demandkl ≤
∑

c

zac
(i,j)×CableCapacityc ; (i, j) ∈ L and i < j

(4.19)

∑

kl

(xkl
(i,j)+xkl

(j,i))×Demandlk ≤
∑

c

zbc
(i,j)×CableCapacityc ; (i, j) ∈ L and i < j

(4.20)

xkl
(i,j) + xlk

(i,j) = y(i,j) ; ∀(i, j) ∈ L ; k, l ∈ N and Demandkl 6= 0 (4.21)

4.3. TWO-FIBRE UNIDIRECTIONAL SELF-HEALING RING 41

xkl
(i,j) = 0 ; ∀(i, j) ∈ L ; k, l ∈ N and Demandkl = 0 (4.22)

∑

j

y(i,j) = 1 ; ∀i ∈ N (4.23)

∑

j

y(j,i) = 1 ; ∀i ∈ N (4.24)

zac
(i,j) = 0 ; zbc

(i,j) = 0 ; ∀c ∈ C ; (i, j) ∈ L and i > j (4.25)

xkl
(i,j) = 0 or 1 ; ∀(i, j) ∈ L ; ∀k, l ∈ N (4.26)

y(i,j) = 0 or 1 ; ∀(i, j) ∈ L (4.27)

zac
(i,j), zbc

(i,j) ∈ Z
+ ; ∀(i, j) ∈ L ; ∀c ∈ C (4.28)

Eq. 4.23 and eq. 4.24 indicate that, on the active fibre, there is exact

one arc goes into and out of every node. This ensures the active ring to be

unidirectional. Moreover, we do not need to consider arcs on the protection

ring, because they are exactly opposite arcs of those on the active ring. The

protection ring is also unidirectional. In objective eq. 4.17, setup costs on links

are accounted once, i.e. only for active arcs. The existence of two fibres only

effects on the different reservation costs for optical carriers.

Eq. 4.21 indicates that, on the active fibre, xkl
(i,j) and xlk

(i,j) transmit in arcs

complementarily. I.e. if xkl
(i,j) is not passing through arc (i, j), then xlk

(i,j) is,

and vice versa. Eq. 4.21 also makes active flows keep transmitting in the same

direction as active arcs.

Eq. 4.20 indicates that if the active flow of Demandkl transmits through

arc (i, j) on the active fibre, the protection flow of Demandlk must transmit

through the opposite arc (j, i) on the protection fibre. It is also the reason why

we leave out the potential variable, "xbkl
(i,j)", for flows on the protection fibre.

42 CHAPTER 4. RING NETWORK AND PROTECTION

4.3.2 Comments and Solutions

Basically, the flow of Demandkl on the active fibre and the flow of it on

the other fibre are two paths of Demandkl. In other words, the active path

of Demandkl contains the same links as the protection path of Demandlk

does. The only difference is direction. Fig. 4.3 illustrates this comment. For

example, on the active fibre, demand AB goes through arc AB(of link AB),

and demand BA goes through arc BC(of link BC) → arc CA(of link AC).

On the protection fibre, demand AB goes through arc AC(of link AC) → arc

CB(of link BC), and demand BA goes through arc BA(of link AB).

Figure 4.3. An Example of Two-Fibre Unidirectional Self-Healing Ring Solution.

Fig. 4.3 also shows that, on every link, the sum of active and protection

capacities is the total demand. It implies that the solution of two-fibre unidi-

rectional self-healing ring would be a little more expensive than the solution of

1+1 protection ring. The reason for increased costs is: The capacities on active

ring and protection ring are accounted individually. Hence, the discrete cable

capacity feature results in a little more otiose capacity on all links. However,

if we have continuous parameter, the unit capacity cost, the objective values

of both problems must be the same.

There are no continuous variable in the two-fibre unidirectional self-healing

ring model. Large number of binary flow decision xkl
(i,j) makes the problem very

hard to be solved. Solutions of setup links for Germany and Poland networks

4.3. TWO-FIBRE UNIDIRECTIONAL SELF-HEALING RING 43

are shown in fig. 4.1 and fig. 4.2. Uncomplete Pioro solution has a 0.35%

relative gap away from its best possible lower bound.

Germany Poland France Pioro

No. of Nodes 7 12 25 40

Running Time 54 s 10 m 3 s 18 s 100 h

Obj. Value 65410 136768
No Integer

Solution

3378485

(Best

Possible:

3366722.7)

Rise in Obj. (Com-

pared with 1+1 Ring)
4.2% 2.6%

No Integer

Solution
0.2%

Table 4.4. Running Time and Objective Values for Two-Fibre Unidirectional Self-Healing

Ring Model.

44 CHAPTER 4. RING NETWORK AND PROTECTION

Chapter 5

Tree, Star and Bus Network

In this chapter, we discuss the fixed-charge network design models of tree,

star and bus topologies for small scale networks. Although the network in-

stances at hand are of large scale, they are still suitable for programming,

solving and comparing.

Different from mesh and ring network design, protection is not studied, and

we need to answer the following questions:

• As mentioned in Chapter 2, nodes are sorted according to the network

hierarchy. Some nodes might be equipped with hardwares of which costs

can not be neglected. How to express that in the model?

• How to implement the management of networks?

5.1 Tree Network Design

5.1.1 Sort of Nodes and Mathematical Model

As shown in fig. 2.9, all nodes in a tree network, except those at the bottom,

are roots in various levels. A bottom node is simply a peripheral which is not

equipped, and they can only be "sons". We furthermore divide hubs into two

types, the unique border router(gateway) which can only be a "father" in the

top level and the middle roots which can be a "father" and a "son" in other

levels. It is assumed that same hardwares, e.g. LAN switches, are placed at

45

46 CHAPTER 5. TREE, STAR AND BUS NETWORK

all middle roots, and they have the same costs. Some more costly hardwares,

e.g. important servers, are only placed at the border router.

Thus a new binary variable si, whether node i is a root, comes into being.

In addition, we have new scalars:

LanSwitchCost : Cost of facilities which equipped at middle roots

SonsNumber : Number of nodes which joint to the border router

NodesNumber : Number of nodes

The value of scalars are given in advance. They might differ in various

instances. The cost of gateway is not considered, since it is unique and fixed.

Unless otherwise noted, ’Nodetop’ is denoted as the gateway from now on. And

its location is also given beforehand.

Communication between any single node in the tree and the outside envi-

ronment of the tree pass through ’Nodetop’. Therefore although demands to

outside are non-zero, they are uniformly counted as demands to ’Nodetop’.

Unchanged demand matrices make the basic fixed-charge mesh model avail-

able. Tree topology can also be considered as a subset of mesh topology. All

sets, indices, the other parameters and variables are same as those of the basic

mesh model. The MIP formulation of fixed-charge tree network design is:

Minimize:

∑

(i,j)

∑

c zc
(i,j) × CablePrice

c
(i,j) +

∑

(i,j) SetupCost(i,j) × y(i,j)

+ (
∑

i si − 1) × LanSwitchCost

(5.1)

Subject To:

∑

j

xkl
(i,j)−

∑

j

xkl
(j,i) =











1 if i = k

0 otherwise; ∀i ∈ N ; k, l ∈ N and Demandkl 6= 0

−1 if i = l

(5.2)

∑

kl

(xkl
(i,j)+xkl

(j,i))×Demandkl ≤
∑

c

zc
(i,j)×CableCapacityc ; (i, j) ∈ L and i < j

(5.3)

5.1. TREE NETWORK DESIGN 47

xkl
(i,j) ≤ y(i,j) ; (i, j) ∈ L and i < j ; ∀k, l ∈ N (5.4)

xkl
(i,j) ≤ y(j,i) ; (i, j) ∈ L and j < i ; ∀k, l ∈ N (5.5)

∑

j

y(′Nodetop′,j) +
∑

j

y(j,′Nodetop′) = SonsNumber (5.6)

∑

j

y(i,j) +
∑

j

y(j,i) ≤ si × NodesNumber + 1 ; ∀i ∈ N (5.7)

∑

(i,j)

y(i,j) = NodesNumber − 1 (5.8)

Eq. 3.6 - Eq. 3.11

One more term appears in the objective, and
∑

i si is the number of roots.

However, the cost of ’Nodetop’ is not counted, so the additional term represents

the total cost of middle roots.

Eq. 5.6 ensures that certain numbers of middle roots connect straightly to

’Nodetop’. It is a kind of management constraint. In practical cases, we can

add more management description in the model by adding more constraints.

Eq. 5.7 indicates that i is a root if more than one nodes joint it. Eq. 5.8 is a

tree constraint. It demonstrates that in any tree, the number of links must be

the number of nodes minus one.

5.1.2 Comments and Solution

In fact, there exists only one path for every nodes pair in tree topology. If

node A is the nearest common "ancestor" of both node B and C, the path for

DemandBC should be the combination of path for DemandAB and path for

DemandAC . Eq. 5.8 supports this feature well: A connected graph with links

one less than nodes must be of tree topology, and thus provide only one path

for every nodes pair.

48 CHAPTER 5. TREE, STAR AND BUS NETWORK

Figure 5.1. Tree Solution of Germany

Network. The Fixed-Charge

is Dominating.

Figure 5.2. Tree Solution of Poland Net-

work. The Cable Cost is

Dominating.

Fig. 3.1 shows that the mesh solution of a fixed-charge dominating network

is tend to be a tree. Therefore the tree solutions for these networks are similar.

Table 5.1 indicates that, for Germany network, the rise of objective only comes

from an additional LAN switch at node D. On the other hand, tree solution

cost much more in cable cost dominating networks. Setup links for Germany

and Poland networks are shown in fig. 5.1 and fig. 5.2. The bound router and

middle roots are lined out. Fixed-charge tree design problems are as hard as

basic mesh and ring design problems.

Germany Poland France Pioro

No. of Nodes 7 12 25 40

SonsNumber 3 3 4 5

Running Time 1 s 16 m 27 s 181 m 30 s 75 h

Obj. Value 23050 37085 57424
525456 (Best Pos-

sible: 506727.6)
Rise in Obj.

(Compared with

Basic Mesh)

1.8% 33.9% 8.8% 22.0%

Table 5.1. Running Time and Objective Values for Tree Networks.

5.2. STAR NETWORK DESIGN 49

Cost of middle roots effect on the solutions as well. If these middle hardware

costs are considerable, the network would set up middle roots as fewer as pos-

sible. And the number of levels would correspondingly decrease. Nevertheless,

LAN switch cost is comparatively little, and it might result in "long history"

trees, e.g. Poland network.

5.2 Star Network Design

5.2.1 Star Characteristics

In a logical point of view, the distinct feature of star topology is that com-

munication between every nodes pair passes through the only hub. Therefore

the demands between peripheral i and the other peripherals, the hub and the

outside environment can be considered as the demands between i and the hub.

This truth is so useful that the number of variables would be decreased.

’Nodetop’ is still denoted as the hub. We define parameter DemandHubk

as the total demands from terminal k to outside.1

DemandHubk =
∑

l Demandkl +
∑

l Demandlk

DemandHub′Nodetop′ = 0.
(5.9)

Correspondingly the flow decision is modified to xk
(i,j).

Like the tree topology, another important feature of star is that the path

between any node i to ’Nodetop’ is unique. Hence, xk
(i,j) could be defined as a

binary variable which tells whether the path for DemandHub′k′ contains link

(i, j). IP mathematical models based on the binary flow decision were built.

Though the running time for Germany, Poland and France networks are within

10 seconds, the largest Pioro network could not be solved. So the formulation

with binary xk
(i,j) is not presented in this chapter, but GAMS code is attached

in Appendix C.11.

1Principle 2.1 - principle 2.4 are available.

50 CHAPTER 5. TREE, STAR AND BUS NETWORK

On the other hand, star topology is a subset of tree. In a physical point of

view, a star may have more than two levels as shown in fig. 2.10 and fig. 2.11.

That means not all terminals are jointed straightly to the hub. Eq. 5.8 is a

tree constraint,2 and it can be applied in star models. As mentioned before,

eq. 5.8 also ensures the unique path feature. Thus the flow decision xk
(i,j) could

be kept continuous, though its only possible value in solutions is either 0 or 1.

5.2.2 Mathematical Model: No Multiplexing

Fig. 2.10 describes a star network with no multiplexing. Cables are inde-

pendent from each other, and so are flows.

Since the path is unique, cables laid for every single DemandHub′k′ is fixed

in advance. A new parameter CableNumber
c
k is defined as the number of ca-

ble c for DemandHubk. Like the disposal in 1+1 ring protection models(TSP),

it is obtained by dividing DemandHubk by high-level capacities and leaving

the reminder to low-level capacities. Hence, the MIP model is:

Minimize:

∑

k

∑

(i,j)

∑

c CableNumber
c
k × xk

(i,j) × CablePrice
c
(i,j)

+
∑

(i,j) SetupCost(i,j) × y(i,j)

(5.10)

Subject To:

∑

j

xk
(i,j)−

∑

j

xk
(j,i) =











1 if i = k

0 otherwise; ∀i ∈ N ; k ∈ N and k 6= ’Nodetop’

−1 if i =’Nodetop’

(5.11)

xk
(i,j) ≤ y(i,j) ; (i, j) ∈ L and i < j ; ∀k ∈ N (5.12)

xk
(i,j) ≤ y(j,i) ; (i, j) ∈ L and j < i ; ∀k ∈ N (5.13)

2Since it is a constraint for setup decision y(i,j), it only effects on physical level but not

logical level.

5.2. STAR NETWORK DESIGN 51

∑

(i,j)

y(i,j) = NodesNumber − 1 (5.14)

x
′Nodetop′

(i,j) = 0 ; ∀(i, j) ∈ L (5.15)

y(i,j) = 0 ; (i, j) ∈ L and i > j (5.16)

xk
(i,j) ∈ R

+ ; ∀(i, j) ∈ L ; ∀k ∈ N (5.17)

y(i,j) = 0 or 1 ; ∀(i, j) ∈ L (5.18)

Eq. 5.14 ensures the unique path feature, and furthermore results in the

{0,1} solution of xk
(i,j), i.e. xk

(i,j) could only be 0 or 1. That is the reason why

xk
(i,j) operates like an integer decision in objective eq. 5.10. The first part of

eq. 5.10 is cable cost and the second part is setup cost.

5.2.3 Comments and Solution: No Multiplexing

Figure 5.3. Star Solution(No Multiplex-

ing) of Germany Network.
Figure 5.4. Star Solution(No Multiplex-

ing) of Poland Network.

52 CHAPTER 5. TREE, STAR AND BUS NETWORK

Compared with tree networks, star networks have extra cost on capacities.

In a tree network, nodes pairs which are close and have considerably large de-

mands are tend to be dealt with the "father"-and-"son" relationship. However,

in a star network, all terminals only connect to the hub, no matter how long

the distances are.

Thus peripherals in a star network always connect to the hub as closely as

possible. The solutions of Germany and Poland networks show that all links

which joint the hub are set up. That also results in fewer physical levels. When

setup costs are zero, the star network design problem(without multiplexing)

can be decomposed to several independent one-to-one shortest path problems,

i.e. one for every peripheral.

Removing of zc
(i,j) and decreasing of variables(from O(n4) to O(n3)) make the

non-multiplexing star model very easy to be solved. Basically, the objective

values of star networks are more expensive, especially in large scale. Table 2.2

indicates that the average node degree of a network is normally less than 5, so

in large scale star networks, most nodes are far away from the hubs(physically

several levels lower than the hubs). Therefore much more capacities need to

be reserved.

Germany Poland France Pioro

No. of Nodes 7 12 25 40

Running Time <1 s <1 s 1 s 2 s

Obj. Value 24235 38104 57916 860026

Rise in Obj. (Com-

pared with Tree)
5.1% 2.7% 0.9% 63.7%

Table 5.2. Running Time and Objective Values for Star(No Multiplexing) Networks.

5.2.4 Mathematical Model: With Multiplexing

Fig. 2.11 describes a star network which bases on the implementation of

multiplexing. For saving capacities, a MUX DEMUX pair is placed at every

5.2. STAR NETWORK DESIGN 53

pedestal, i.e. a middle root in physical perspective. The hardware cost is

denoted as scalar MuxCost, and we have the corresponding binary variable

mi, whether node i is equipped with MUX.

The continuous flow decision xk
(i,j) follows the previous star model. And since

capacities are multiplexed at pedestals, cables which are laid for DemandHubk

on every link of its unique path are not determinate beforehand. Thus the

integer capacity decision zc
(i,j) appears again. The MIP formulation is:

Minimize:

∑

(i,j)

∑

c zc
(i,j) × CablePrice

c
(i,j) +

∑

(i,j) SetupCost(i,j) × y(i,j)

+ (
∑

i mi − 1) × MuxCost

(5.19)

Subject To:

∑

j

xk
(i,j)−

∑

j

xk
(j,i) =











1 if i = k

0 otherwise; ∀i ∈ N ; k ∈ N and k 6= ’Nodetop’

−1 if i =’Nodetop’

(5.20)

∑

k

(xk
(i,j)+xk

(j,i))×DemandHubkl ≤
∑

c

zc
(i,j)×CableCapacityc ; (i, j) ∈ L and i < j

(5.21)

∑

j

y(i,j) +
∑

j

y(j,i) ≤ mi × NodesNumber + 1 ; ∀i ∈ N (5.22)

zc
(i,j) = 0 ; ∀c ∈ C ; (i, j) ∈ L and i > j (5.23)

zc
(i,j) ∈ Z

+ ; ∀(i, j) ∈ L ; ∀c ∈ C (5.24)

Eq. 5.12 - Eq. 5.18

54 CHAPTER 5. TREE, STAR AND BUS NETWORK

The fixed-charge star design model(with multiplexing) is almost the same as

the tree model, and it implies the subset affiliation. Actually, it is a special

tree problem in which the demand matrix only have one row3. Hence, xk
(i,j) is

not a change of the tree model but a simplification which expresses the star

characteristic.

5.2.5 Comments and Solution: With Multiplexing

Fig. 5.5 and fig. 5.6 show the solution of setup links for Germany and Poland

networks. The hubs and pedestals are lined out.

Figure 5.5. Star Solution(With Multi-

plexing) of Germany Net-

work.

Figure 5.6. Star Solution(With Multi-

plexing) of Poland Network.

In any network, the star solution can be considered as the tree solution.

If fig. 5.5 was looked upon as a tree, there would be no reserved capacity for

demand BD on link DE. And the tree solution would save this cost. However,

as mentioned before, all peripherals connect to the hub as closely as possible

in a small scale star network. Therefore links like DE, which lays cables for

more than one demands, are limited. In a word, the tree solution, which may

have the same setup links as the star solution, is not too much cheaper in a

small network.

3The index of this row is ′Nodetop′.

5.3. BUS NETWORK DESIGN 55

Contrarily, in a large scale star network, there are much more links which

apply multiplexing technology like DE, and these links even exist in much

lower physical levels. Thus the tree solution would save a lot.

Germany Poland France Pioro

No. of Nodes 7 12 25 40

Running Time <1 s <1 s 1 m 27 s 75 h

Obj. Value 24050 37204 56453
847842 (Best Pos-

sible: 846391.5)

Rise in Obj. (Com-

pared with Tree)
4.3% 0.3% 1.7% 61.4%

Save in Obj. (Com-

pared with Non-

Multiplexing Star)

0.07% 2.4% 2.5% 1.4%

Table 5.3. Running Time and Objective Values for Star(No Multiplexing) Networks.

In addition, star solutions with multiplexing are apparently a little cheaper

than star solutions without multiplexing. It is explained in Section 2.2.2. Com-

parison of objective values is demonstrated in table 5.3. Uncomplete Pioro

solution has a 0.17% relative gap away from its best possible lower bound.

5.3 Bus Network Design

5.3.1 Mathematical Model

In a bus network of LAN scale, terminals are connected by sharing a single

cable with fixed bandwidth. Hence, reservation of capacity is not described

in this model. Since the setup costs are in direct proportion with the cable

costs, what needs to be concerned in this model is just a general "distance"

parameter between cities. Furthermore, the bus network design problem can

be considered as an Open TSP problem which has different starting city and

end city. We assume that the hub node ’Nodetop’ is the staring point.

All sets, indices, parameters and variables have the same meaning as those

of the star model. Ultimately, the MIP model is:

56 CHAPTER 5. TREE, STAR AND BUS NETWORK

Minimize:

∑

(i,j)

SetupCost(i,j) × y(i,j) (5.25)

Subject To:

∑

j

xk
(i,j)−

∑

j

xk
(j,i) =











1 if i = k

0 otherwise; ∀i ∈ N ; k ∈ N and k 6= ’Nodetop’

−1 if i =’Nodetop’

(5.26)

xk
(i,j) ≤ y(i,j) ; (i, j) ∈ L and i < j ; ∀k ∈ N (5.27)

xk
(i,j) ≤ y(j,i) ; (i, j) ∈ L and j < i ; ∀k ∈ N (5.28)

∑

(i,j)

y(i,j) = NodesNumber − 1 (5.29)

∑

j

y(i,j) +
∑

j

y(j,i) ≤ 2 ; ∀i ∈ N (5.30)

∑

j

y
(’Nodetop’,j) +

∑

j

y
(j,’Nodetop’) = 1 (5.31)

Eq. 5.15 - Eq. 5.18

The function of eq. 5.26 - eq. 5.28 is only eliminating sub-tours. Eq. 5.29

indicates that bus topology is also a subset of tree topology. Physically, it is

a tree in which every "father" only has one "son". Eq. 5.29 and eq. 5.30

together ensure that only two nodes in the network will joint to one link, and

the other nodes will joint to two links. Eq. 5.31 tells that ’Nodetop’ is one of

the two nodes, and is the staring point of the tour.

Eq. 5.29 - eq. 5.31 are the bus constraints. They can be applied in large

scale network design models where cost of capacity will be taken into account.

However, we do not discuss more on that.

5.3. BUS NETWORK DESIGN 57

5.3.2 Solutions

Figure 5.7. Bus Solution of Germany Net-

work.
Figure 5.8. Bus Solution of Poland Net-

work.

Eq. 5.25 illustrates that setup costs(representing the "distances") are the

only contribution to the objective. Thus it is not necessary to compare bus

solutions with tree and star topology. Like TSP problem studied in Section

4.2.2, the bus network design problem is very easy to be solved.

Germany Poland France Pioro

No. of Nodes 7 12 25 40

Running Time <1 s <1 s 5 s 28 s

Table 5.4. Running Time for Bus Networks.

58 CHAPTER 5. TREE, STAR AND BUS NETWORK

Chapter 6

Conclusion

6.1 Future Research

The possible future research for fixed-charge network design problems include

the improvement of mathematical models and the application of large scale

optimization algorithms.

6.1.1 Improvement of Mathematical Models

The mathematical models shown in the previous chapters are still not accu-

rate enough to describe the real Telecommunication Networks. And we need

to consider several more aspects when designing networks.

Firstly, the concept of hop-limit paths can be introduced. In the old models,

the length of paths are not restricted. Though the solutions indicate that most

paths are comparatively short, there always exist few long paths which are

generated for filling the otiose capacities on other links. For example, there

might be a 9-links path which carrying 5.6% data for a single demand, and it

is different from the practical routing scheme.

We can deal with hop-limit paths by adding indices or new binary counting

decisions to mark the length of paths, but both methods bring a great amount of

variables which would make the problem much harder. We can also decompose

the problems into 2 levels, one of which only concerning how to generate the

network with a required topology and the hop-limit paths.

59

60 CHAPTER 6. CONCLUSION

Secondly, the hardwares equipped at the nodes should be specified even in

backbone networks. Their costs may result in totally different solutions. In

addition, there might be limitation on the usage of some particular facilities.

Thirdly, the modelling for tree management has to be improved. We can

control the number of physical levels to restrict the "history" of the trees. It is

similar to the hop-limit paths constraints. We can furthermore control the num-

ber of "sons" that a "father" could have. And this can simply be implemented

by modifying eq. 5.6 to
∑

j y(i,j) +
∑

j y(j,i) ≤ SonsNumberi ; ∀i ∈ N .

In a word, the more precise constraints the models describe, the more vari-

ables there are and the harder the problems would be. Moreover, large net-

works, e.g. Pioro network which has 40 nodes, could not be solved completely

in most previous models. Therefore it is necessary to apply large scale opti-

mization algorithms at the same time.

6.1.2 Large Scale Optimization Algorithms

Basically, as demonstrated in Section 3.3.4, the elimination of integer capac-

ity decision zc
(i,j) would not effect a lot on signal routing and the final results,

meanwhile it greatly simplifies all models. Hence, we even do not have to

implement large scale optimization algorithms on network instances at hand.

However, there always exist extreme huge networks for which application of

methods would greatly decrease the solving time.

Column generation has already been applied to solve the link protection

mesh problems. In fact, this method is possible to be applied for models of all

topologies. Assuming that a network of given topology is available at hand, the

sub-problems could generate few more links which can, together with original

links, keep that topology. Only using the generated links, the master problems

would find solutions(rings by TSP algorithms, trees by MST algorithms and

so on) base on a simple "distance" parameter.

However, the expression of "distance" is difficult. Ignoring the influence of

zc
(i,j), "distance" would be a balance of setup costs and continuous capacity

costs. And it varies in different models.

6.2. SUMMARY OF OBJECTIVE VALUES 61

In addition, branch-and-cut and heuristics are assistant methods which can

be applied combinatively with column generation. It is attemptable to design

the network part by part.

6.2 Summary of Objective Values

The objective values(except bus solutions and link protection mesh solu-

tions) are summed up in table 6.1. Germany and France are representatives of

fixed-charge dominating networks, and Poland and Pioro are representatives

of cable costs dominating networks. Obviously, the non-protective fixed charge

design is cheapest. On the other hand, the 1+1 protection ring design and the

two-fibre unidirectional self-healing ring design are most expensive. Costs of

star and tree designs are close.

Germany Poland France Pioro

No. of Nodes 7 12 25 40

Obj. Value

(Basic Mesh)
22650 27691 52775

430680 (Best Possi-

ble: 427988.2)
Obj. Value

(1+1 Mesh)
46090 62757

112688 (Best Pos-

sible: 111897.6)

981042 (Best Possi-

ble: 977531.6)
Obj. Value

(Basic Ring)
28210 38911 No Integer Solution Not Solved

Obj. Value

(1+1 Ring)
62790 133280 No Integer Solution 3371049

Obj. Value (Self

Healing Ring)
65410 136768 No Integer Solution

3378485 (Best Pos-

sible: 3366722.7)

Obj. Value (Tree) 23050 37085 57424
525456 (Best Pos-

sible: 506727.6)

Obj. Value (Non-

Multiplexing Star)
24235 38104 57916 860026

Obj. Value (Mul-

tiplexing Star)
24050 37204 56453

847842 (Best Pos-

sible: 846391.5)

Table 6.1. Comparison of Objective Values.

62 CHAPTER 6. CONCLUSION

From the perspective of protection, ring protection designs are much more

expensive than mesh protection designs. However, ring networks require the

simplest routing scheme, and furthermore provide the fastest recovering time.

This is also an important advantage in nowadays network design issues. Hence,

mesh and ring topologies are both referencable for backbone networks which

can not survive without protection.

6.3 Achievement

In this thesis mathematical models are built for fixed-charged network design

problems.

Six models are presented for non-protective mesh, ring, tree, star and bus

topologies. The models of non-multiplexing star and bus topologies are easy to

be solved. However, the other models are hard to be solved, and the complete

solutions for some large networks are not obtained. Thus these models still

need to be improved.

Besides, five protection models are presented for backbone mesh and ring

topologies. 1+1 protection mesh and ring models are built respectively, but

they are as hard as the non-protective designs. Therefore link protection mesh

model and TSP model for 1+1 protection ring are presented. Both two models

guarantee 100% protection and short solving time. Finally, the mathematical

model of a special practical ring, the two-fibre unidirectional self-healing ring,

is provided.

Other achievements are the comments on solutions and the comparison

of objective values. The analysis indicates which topology fits into the net-

work(either fixed-charge dominating or cable costs dominating) at hand. And

this is the designers’ ultimate task.

Bibliography

[1] Library of test instances for survivable fixed telecommunication network

design. http://opt36.zib.de:8080/sndlib/home.action.

[2] Network topology from wikipedia, the free encyclopedia.

http://en.wikipedia.org/wiki/Network-topology.

[3] Indra Widjaja Alberto Leon-Garcia. Communication Networks: Funda-

mental Concepts and Key Architectures. McGraw-Hill Companies, Inc.,

2003.

[4] I. Saniee O. Wasem S. Cosares, D. Deutsch. SONET Toolkit: A Deci-

sion Support System for Designing Robust and Cost-Effective Fiber-Optic

Networks. Interfaces 25: 1 January - February, 1995.

[5] T. Stidsen. Efficient Protection. Informatics and Mathematical Modelling,

DTU, 2005.

[6] T. Stidsen. Routing and Protection. Informatics and Mathematical Mod-

elling, DTU, 2005.

63

64 BIBLIOGRAPHY

Appendix A

Fixed-Charge Network Instances

Figure A.1. Arne Network with 5 Nodes

and 7 Links.

Figure A.2. A Network of Germany with

7 Nodes and 14 Links.

65

66 APPENDIX A. FIXED-CHARGE NETWORK INSTANCES

Figure A.3. A Network of Poland with 12 Nodes and 18 Links.

Figure A.4. A Network of France with 25 Nodes and 45 Links.

67

Figure A.5. A Network of Pioro with 40 Nodes and 89 Links.

68 APPENDIX A. FIXED-CHARGE NETWORK INSTANCES

Appendix B

Is Link Protection Cheaper?

Fig. B.2 - fig. B.7 illustrate that link protection is usually more economi-

cal than 1+1 protection. The relevant demand matrix for this example is given:

B C D

A 1 2 1

B 2 1

C 2

We assume that the setup costs on all links are same, and so are the cable

prices of unit capacity. The network is:

Figure B.1. An Example Network.

69

70 APPENDIX B. IS LINK PROTECTION CHEAPER?

Figure B.2. Primary Link Flows by

Shortest Path Algorithm.
Figure B.3. Two Protection Sub-rings.

Figure B.4. Solution of Link Protection. Black Numbers for Primary Flows and Red

Numbers for Protection Flows.

71

Figure B.5. Primary (Black) and

Backup (Red) Paths for

DemandAB , DemandAC

and DemandAD.

Figure B.6. Primary (Black) and

Backup (Red) Paths for

DemandBC , DemandBD

and DemandCD.

Figure B.7. Solution of 1+1 Protection. Black Numbers for Primary Flows and Red

Numbers for Protection Flows.

72 APPENDIX B. IS LINK PROTECTION CHEAPER?

Appendix C

GAMS Programs Code

The GAMS code for all the 11 models are listed below. The network instance

which is included in the code is Germany network.

C.1 Basic Fixed-Charge Network Design Model

* Network Design Model.gms

* Feb. 16, 2006

* 14th Program: Included Network Data

*

* Fixed Cost, Cable Prices And Cable Capacities And Etc. From SNDLib Instances

* Cables In Fact Are Optical Carriers; Cable Prices Are Leased Fee

* A Mesh Network Model; An Undirected Demand Mesh

* Switches, MUXs And De-MUXs Are Equipped At All Nodes

* Equipments’ Costs Are Not Considered

* No Protection

*

* x Is Between [0, 1]

* Non-used z And y Is Removed

*

$eolcom //

option iterlim=999999999; // avoid limit on iterations

option reslim=270000; // timelimit for solver in sec.

option optcr=0.0; // gap tolerance

option solprint=OFF; // include solution print in .lst file

option limrow=0; // limit number of rows in .lst file

option limcol=0; // limit number of columns in .lst file

//--

73

74 APPENDIX C. GAMS PROGRAMS CODE

Sets

Node name of cities

ALIAS(Node,i)

ALIAS(Node,j)

ALIAS(Node,k)

ALIAS(Node,l);

Set

Cbl types of cables with different capacities;

Parameters

XX(Node) x-bar of a city

YY(Node) y-bar of a city

Cbl_Cpy(Cbl) cable capacities

Cbl_Prc(i,j,Cbl) cable prices on link #ij#

SPAN(i,j) whether the link between #ij# exsits

Pre_Cap(i,j) pre-installed capacity already exsits on #ij#

Pre_Cst(i,j) how much have to pay on the pre-installed capacity

Unt_Rt_Cst(i,j) unit routing cost on #ij#

Stp_Cst(i,j) if not set up, how much should pay to set up

D(k,l) how much is the demand of flow between #kl#

Rt_Unt(k,l) the size of a routing unit on demand #kl#

Dmd_Amt(k,l) how much is the demand of unit between #kl#

TOTAL_DEMAND sum of demands of the entire network;

$INCLUDE "deutsch.dat";

// build a symmetric network

SPAN(i,j)$(ord(i)<ord(j)) = SPAN(i,j) + SPAN(j,i);

SPAN(i,j)$(ord(i)>ord(j)) = SPAN(j,i);

Pre_Cap(i,j)$(ord(i)<ord(j)) = Pre_Cap(i,j) + Pre_Cap(j,i);

Pre_Cap(i,j)$(ord(i)>ord(j)) = Pre_Cap(j,i);

Pre_Cst(i,j)$(ord(i)<ord(j)) = Pre_Cst(i,j) + Pre_Cst(j,i);

Pre_Cst(i,j)$(ord(i)>ord(j)) = Pre_Cst(j,i);

Unt_Rt_Cst(i,j)$(ord(i)<ord(j)) = Unt_Rt_Cst(i,j) + Unt_Rt_Cst(j,i);

C.1. BASIC FIXED-CHARGE NETWORK DESIGN MODEL 75

Unt_Rt_Cst(i,j)$(ord(i)>ord(j)) = Unt_Rt_Cst(j,i);

Stp_Cst(i,j)$(ord(i)<ord(j)) = Stp_Cst(i,j) + Stp_Cst(j,i);

Stp_Cst(i,j)$(ord(i)>ord(j)) = Stp_Cst(j,i);

Cbl_Prc(i,j,Cbl)$(ord(i)<ord(j)) = Cbl_Prc(i,j,Cbl) + Cbl_Prc(j,i,Cbl);

Cbl_Prc(i,j,Cbl)$(ord(i)>ord(j)) = Cbl_Prc(j,i,Cbl);

// transfer data to demand matrix D, and make it upper triangular

// so here the demands are considered as undirected

D(k,l) = Dmd_Amt(k,l)*Rt_Unt(k,l)$(Rt_Unt(k,l)>0) + Dmd_Amt(k,l)$(Rt_Unt(k,l)=0);

TOTAL_DEMAND = sum((k,l), D(k,l));

D(k,l)$(ord(k)<ord(l)) = D(k,l) + D(l,k);

D(k,l)$(ord(k)>=ord(l)) = 0;

BINARY Variables

y(i,j) whether to build the arc #ij#;

// set all y to be #0#

y.fx(i,j) = 0;

// set all y on half of the exsited links possible to be #1#

y.up(i,j)$(SPAN(i,j) and (ord(i) < ord(j))) = 1;

INTEGER Variables

z(Cbl,i,j) whether to lease carrier #Cbl# in arc #ij#, and how many;

// set all z to be #0#

z.fx(Cbl,i,j) = 0;

// set all z on half of the exsited links possible to be non-zero integer

z.up(Cbl,i,j)$(SPAN(i,j) and (ord(i) < ord(j))) = ceil (TOTAL_DEMAND/Cbl_Cpy(Cbl));

Variables

cost total cost

x(i,j,k,l) how much percentage of flow through arc #ij# for demand #kl#;

// set all x to be #0#

x.fx(i,j,k,l) = 0;

// set all x on exsited links to have upper bound as #1#

x.up(i,j,k,l)$(SPAN(i,j) and (D(k,l) <> 0)) = 1;

Equations

obj define objective function

c1(j,k,l) demand constraints

c2(i,j) link capacity constraints

c3(i,j,k,l)

76 APPENDIX C. GAMS PROGRAMS CODE

c4(i,j,k,l) ;

obj.. cost =E= sum((Cbl,i,j), z(Cbl,i,j)*Cbl_Prc(i,j,Cbl))

+ sum((i,j), Stp_Cst(i,j)*y(i,j));

c1(j,k,l)$(D(k,l) <> 0)..

sum(i, x(i,j,k,l)) - sum(i, x(j,i,k,l))

=E= -1$(ord(j)=ord(k)) + 0 + 1$(ord(j)=ord(l));

c2(i,j)$(SPAN(i,j) and (ord(i) < ord(j)))..

sum((k,l), x(i,j,k,l)*D(k,l)) + sum((k,l), x(j,i,k,l)*D(k,l))

=L= sum(Cbl, z(Cbl,i,j)*Cbl_Cpy(Cbl));

c3(i,j,k,l)$(SPAN(i,j) and (ord(i) < ord (j)))..

x(i,j,k,l) =L= y(i,j);

c4(i,j,k,l)$(SPAN(i,j) and (ord(i) > ord (j)))..

x(i,j,k,l) =L= y(j,i);

Model NetworkDesign /all/ ;

NetworkDesign.holdfixed=1;

Solve NetworkDesign using MIP minimizing cost;

DISPLAY SPAN, D, Stp_Cst, Cbl_Prc, cost.l, x.l, y.l, z.l, TOTAL_DEMAND;

C.2 1+1 Protection Mesh Model

* Network Design Model.gms

* Feb. 16, 2006

* 14th Program: Included Network Data

*

* Fixed Cost, Cable Prices And Cable Capacities And Etc. From SNDLib Instances

* Cables In Fact Are Optical Carriers; Cable Prices Are Leased Fee

* A Mesh Network Model; An Undirected Demand Mesh

* Switches, MUXs And De-MUXs Are Equipped At All Nodes

* Equipments’ Costs Are Not Considered

* Protection; But Use Only One Fiber

*

* x Is Between [0, 1]

C.2. 1+1 PROTECTION MESH MODEL 77

* Non-used z And y Is Removed

*

$eolcom //

option iterlim=999999999; // avoid limit on iterations

option reslim=270000; // timelimit for solver in sec.

option optcr=0.0; // gap tolerance

option solprint=OFF; // include solution print in .lst file

option limrow=0; // limit number of rows in .lst file

option limcol=0; // limit number of columns in .lst file

//--

Sets

Node name of cities

ALIAS(Node,i)

ALIAS(Node,j)

ALIAS(Node,k)

ALIAS(Node,l);

Set

Cbl types of cables with different capacities;

Parameters

XX(Node) x-bar of a city

YY(Node) y-bar of a city

Cbl_Cpy(Cbl) cable capacities

Cbl_Prc(i,j,Cbl) cable prices on link #ij#

SPAN(i,j) whether the link between #ij# exsits

Pre_Cap(i,j) pre-installed capacity already exsits on #ij#

Pre_Cst(i,j) how much have to pay on the pre-installed capacity

Unt_Rt_Cst(i,j) unit routing cost on #ij#

Stp_Cst(i,j) if not set up, how much should pay to set up

D(k,l) how much is the demand of flow between #kl#

Rt_Unt(k,l) the size of a routing unit on demand #kl#

Dmd_Amt(k,l) how much is the demand of unit between #kl#

TOTAL_DEMAND sum of demands of the entire network;

$INCLUDE "deutsch.dat";

78 APPENDIX C. GAMS PROGRAMS CODE

// build a symmetric network

SPAN(i,j)$(ord(i)<ord(j)) = SPAN(i,j) + SPAN(j,i);

SPAN(i,j)$(ord(i)>ord(j)) = SPAN(j,i);

Pre_Cap(i,j)$(ord(i)<ord(j)) = Pre_Cap(i,j) + Pre_Cap(j,i);

Pre_Cap(i,j)$(ord(i)>ord(j)) = Pre_Cap(j,i);

Pre_Cst(i,j)$(ord(i)<ord(j)) = Pre_Cst(i,j) + Pre_Cst(j,i);

Pre_Cst(i,j)$(ord(i)>ord(j)) = Pre_Cst(j,i);

Unt_Rt_Cst(i,j)$(ord(i)<ord(j)) = Unt_Rt_Cst(i,j) + Unt_Rt_Cst(j,i);

Unt_Rt_Cst(i,j)$(ord(i)>ord(j)) = Unt_Rt_Cst(j,i);

Stp_Cst(i,j)$(ord(i)<ord(j)) = Stp_Cst(i,j) + Stp_Cst(j,i);

Stp_Cst(i,j)$(ord(i)>ord(j)) = Stp_Cst(j,i);

Cbl_Prc(i,j,Cbl)$(ord(i)<ord(j)) = Cbl_Prc(i,j,Cbl) + Cbl_Prc(j,i,Cbl);

Cbl_Prc(i,j,Cbl)$(ord(i)>ord(j)) = Cbl_Prc(j,i,Cbl);

// transfer data to demand matrix D, and make it upper triangular

// so here the demands are considered as undirected

D(k,l) = Dmd_Amt(k,l)*Rt_Unt(k,l)$(Rt_Unt(k,l)>0) + Dmd_Amt(k,l)$(Rt_Unt(k,l)=0);

TOTAL_DEMAND = sum((k,l), D(k,l));

D(k,l)$(ord(k)<ord(l)) = D(k,l) + D(l,k);

D(k,l)$(ord(k)>=ord(l)) = 0;

BINARY Variables

y(i,j) whether to build the arc #ij#;

// set all y to be #0#

y.fx(i,j) = 0;

// set all y on half of the exsited links possible to be #1#

y.up(i,j)$(SPAN(i,j) and (ord(i) < ord(j))) = 1;

INTEGER Variables

z(Cbl,i,j) whether to lease carrier #Cbl# in arc #ij#, and how many;

// set all z to be #0#

z.fx(Cbl,i,j) = 0;

// set all z on half of the exsited links possible to be non-zero integer

z.up(Cbl,i,j)$(SPAN(i,j) and (ord(i) < ord(j))) = ceil (TOTAL_DEMAND/Cbl_Cpy(Cbl));

Variables

cost total cost

C.2. 1+1 PROTECTION MESH MODEL 79

x1(i,j,k,l) how much percentage of flow through arc #ij# for demand #kl#, path 1

x2(i,j,k,l) how much percentage of flow through arc #ij# for demand #kl#, path 2;

// set all x to be #0#

x1.fx(i,j,k,l) = 0;

x2.fx(i,j,k,l) = 0;

// set all x on exsited links to have upper bound as #1#

x1.up(i,j,k,l)$(SPAN(i,j) and (D(k,l) <> 0)) = 1;

x2.up(i,j,k,l)$(SPAN(i,j) and (D(k,l) <> 0)) = 1;

Equations

obj define objective function

c1(j,k,l) demand constraints

c2(j,k,l) demand constraints

c3(i,j) link capacity constraints

c4(i,j,k,l) different path constraints

c5(i,j,k,l)

c6(i,j,k,l)

c7(i,j,k,l)

c8(i,j,k,l) ;

obj.. cost =E= sum((Cbl,i,j), z(Cbl,i,j)*Cbl_Prc(i,j,Cbl))

+ sum((i,j), Stp_Cst(i,j)*y(i,j));

c1(j,k,l)$(D(k,l) <> 0)..

sum(i, x1(i,j,k,l)) - sum(i, x1(j,i,k,l))

=E= -1$(ord(j)=ord(k)) + 0 + 1$(ord(j)=ord(l));

c2(j,k,l)$(D(k,l) <> 0)..

sum(i, x2(i,j,k,l)) - sum(i, x2(j,i,k,l))

=E= -1$(ord(j)=ord(k)) + 0 + 1$(ord(j)=ord(l));

c3(i,j)$(SPAN(i,j) and (ord(i) < ord(j)))..

sum((k,l), x1(i,j,k,l)*D(k,l)) + sum((k,l), x1(j,i,k,l)*D(k,l)) +

sum((k,l), x2(i,j,k,l)*D(k,l)) + sum((k,l), x2(j,i,k,l)*D(k,l))

=L= sum(Cbl, z(Cbl,i,j)*Cbl_Cpy(Cbl));

c4(i,j,k,l)$SPAN(i,j)..

x1(i,j,k,l) + x1(j,i,k,l) + x2(i,j,k,l) + x2(j,i,k,l) =L= 1;

c5(i,j,k,l)$(SPAN(i,j) and (ord(i) < ord (j)))..

x1(i,j,k,l) =L= y(i,j);

c6(i,j,k,l)$(SPAN(i,j) and (ord(i) > ord (j)))..

80 APPENDIX C. GAMS PROGRAMS CODE

x1(i,j,k,l) =L= y(j,i);

c7(i,j,k,l)$(SPAN(i,j) and (ord(i) < ord (j)))..

x2(i,j,k,l) =L= y(i,j);

c8(i,j,k,l)$(SPAN(i,j) and (ord(i) > ord (j)))..

x2(i,j,k,l) =L= y(j,i);

Model NetworkDesign /all/ ;

NetworkDesign.holdfixed=1;

Solve NetworkDesign using MIP minimizing cost;

DISPLAY SPAN, D, Stp_Cst, Cbl_Prc, cost.l, x1.l, x2.l, y.l, z.l, TOTAL_DEMAND;

C.3 Link Protection Mesh Model

* Network Design Model.gms

* Mar. 15, 2006

* 15th Program: Included Network Data

*

* Cable Prices And Demands From SNDLib Instances

* Consider Cable Prices As A Kind Of Cost, Unit Flow Cost, On Links

* A Mesh Network Adds Rings Protection Model; An Undirected Demand Mesh

* Switches, MUXs And De-MUXs Are Equipped At All Nodes

* Equipments’ Costs Are Not Considered

* Advanced 1+1 Protection

*

* Give Solutions Only For Protection

*

$eolcom //

option iterlim=999999999;// avoid limit on iterations

option reslim=270000; // time limit for solver in sec.

option optcr=0.0; // gap tolerance

option solprint=OFF; // include solution print in .lst file

option limrow=0; // limit number of rows in .lst file

option limcol=0; // limit number of columns in .lst file

//--

C.3. LINK PROTECTION MESH MODEL 81

Set

Node name of cities

ALIAS(Node,i)

ALIAS(Node,j)

ALIAS(Node,k)

ALIAS(Node,l);

Set

Pattern /P1*P10000/;

ALIAS(Pattern, p);

Set

sub_p(p);

Set // which is unused

Cbl types of cables with different capacities;

Parameters

SPAN(i,j) whether the link between #ij# exsits

DD(i,j) how much flow goes between #ij#, given by shortest path

C(i,j) unit flow cost on link #ij#

A(i,j,p) column for the program

Phi(i,j) dual values for each link #ij#

PATTERN_COST(p) cost of pattern #p#, which is one or several rings

MAS_O(p) objective value of master programs

SUB_O(p) objective value of sub-programs;

Parameters // which is unused

XX(Node) x-bar of a city

YY(Node) y-bar of a city

Cbl_Cpy(Cbl) cable capacities

Cbl_Prc(i,j,Cbl) cable prices on link #ij#

Pre_Cap(i,j) pre-installed capacity already exsits on #ij#

Pre_Cst(i,j) how much have to pay on the pre-installed capacity

Unt_Rt_Cst(i,j) unit routing cost on #ij#

Stp_Cst(i,j) if not set up, how much should pay to set up

D(k,l) how much is the demand of flow between #kl#

Rt_Unt(k,l) the size of a routing unit on demand #kl#

Dmd_Amt(k,l) how much is the demand of unit between #kl#

82 APPENDIX C. GAMS PROGRAMS CODE

TOTAL_DEMAND sum of demands of the entire network;

$INCLUDE "Arne.dat";

C(i,j) = 0;

DD(i,j) = 0;

// build a symmetric network

SPAN(i,j)$(ord(i)<ord(j)) = SPAN(i,j) + SPAN(j,i);

SPAN(i,j)$(ord(i)>ord(j)) = SPAN(j,i);

Cbl_Prc(i,j,Cbl)$(ord(i)<ord(j)) = Cbl_Prc(i,j,Cbl) + Cbl_Prc(j,i,Cbl);

Cbl_Prc(i,j,Cbl)$(ord(i)>ord(j)) = Cbl_Prc(j,i,Cbl);

C(i,j) = sum(Cbl$(ord(Cbl) = 1), Cbl_Prc(i,j,Cbl)) / sum(Cbl$(ord(Cbl) = 1), Cbl_Cpy(Cbl));

D(k,l) = Dmd_Amt(k,l)*Rt_Unt(k,l)$(Rt_Unt(k,l)>0) + Dmd_Amt(k,l)$(Rt_Unt(k,l)=0);

TOTAL_DEMAND = sum((k,l), D(k,l));

DD(i,j)$((ord(i)<ord(j)) and SPAN(i,j)) = round(uniform(0.6, 1.4)*TOTAL_DEMAND/card(Node));

DD(i,j)$(ord(i)>ord(j)) = DD(j,i);

// give the basis, which is a kind of dummy one

A(i,j,p) = 0;

PATTERN_COST(p) = 0;

A(i,j,’P1’)$SPAN(i,j) = 1;

sub_p(’P1’) = YES;

PATTERN_COST(’P1’) = 100*sum((i,j), C(i,j));

// master problems

//--

Variable

mas_obj;

Positive Variable

x(p);

Equations

MAS_OBJECTIVE

MAS_CONSTRAINTS(i,j);

MAS_OBJECTIVE..

C.3. LINK PROTECTION MESH MODEL 83

mas_obj =E= sum(sub_p, PATTERN_COST(sub_p)*x(sub_p));

MAS_CONSTRAINTS(i,j)$SPAN(i,j)..

sum(sub_p, A(i,j,sub_p)*x(sub_p)) =G= DD(i,j);

Model MASTER /MAS_OBJECTIVE, MAS_CONSTRAINTS/;

//--

// sub-problems

//--

BINARY Variable

y(i,j);

y.fx(i,j) = 0;

y.up(i,j)$SPAN(i,j) = 1;

Variable

sub_obj;

Equation

SUB_OBJECTIVE

SUB_CONSTRAINTS1(i)

SUB_CONSTRAINTS2(i,j);

SUB_OBJECTIVE..

sub_obj =E= sum((i,j)$SPAN(i,j), (C(i,j) - Phi(i,j))*y(i,j));

SUB_CONSTRAINTS1(i)..

sum(j, y(i,j)) - sum(j,y(j,i)) =E= 0;

SUB_CONSTRAINTS2(i,j)$SPAN(i,j)..

y(i,j) + y(j,i) =L= 1;

Model SUB /SUB_OBJECTIVE, SUB_CONSTRAINTS1, SUB_CONSTRAINTS2/;

//--

File data /_Arn_Columns.res/;

Put data;

// column generation loop

//--

Parameter

STOP

Iteration;

84 APPENDIX C. GAMS PROGRAMS CODE

STOP = 0;

Iteration = 0;

loop(p$(ord(p) > 1 and STOP = 0),

solve MASTER using LP minimizing mas_obj;

Phi(i,j)$SPAN(i,j) = MAS_CONSTRAINTS.m(i,j)$SPAN(i,j);

Phi(i,j)$(ord(i)<ord(j)) = Phi(i,j)$(ord(i)<ord(j)) + Phi(j,i)$(ord(i)<ord(j));

Phi(i,j)$(ord(i)>ord(j)) = Phi(j,i)$(ord(i)>ord(j));

MAS_O(p) = mas_obj.l;

display mas_obj.l, x.l;

solve SUB using MIP minimizing sub_obj;

SUB_O(p) = sub_obj.l;

display sub_obj.l

if(sub_obj.l >= -0.01, // iteration stops

STOP = 1;

else // record the new-generated column, and extend the sub-set

A(i,j,p)$SPAN(i,j) = y.l(i,j)$SPAN(i,j);

A(i,j,p)$(ord(i)<ord(j)) = A(i,j,p)$(ord(i)<ord(j)) + A(j,i,p)$(ord(i)<ord(j));

A(i,j,p)$(ord(i)>ord(j)) = A(j,i,p)$(ord(i)>ord(j));

sub_p(p) = YES;

PATTERN_COST(p) = sum((i,j)$SPAN(i,j), C(i,j)*A(i,j,p))/2;

display A, PATTERN_COST;

);

iteration = iteration + 1;

// record the master and sub objective values into another file

put ’iteration: ’, iteration:<12:0, ’mas: ’, mas_obj.l:<12:2, ’ sub: ’, sub_obj.l:<12:2 /;

);

putclose;

//--

display x.l;

C.4. NON-PROTECTIVE RING MODEL 85

C.4 Non-Protective Ring Model

* Network Design Model.gms

* Feb. 14, 2006

* 14th Program: Included Network Data

*

* Fixed Cost, Cable Prices And Cable Capacities And Etc. From SNDLib Instances

* Cables In Fact Are Optical Carriers; Cable Prices Are Leased Fee

* A Ring Network Model; Model 1; An Undirected Demand Ring

* Switches, MUXs AND DE-MUXs Are Equipped At All Nodes

* Equipments’ Costs Are Not Considered

* No Protection

*

* x Is Between [0, 1]

* Non-used z And y Is Removed

*

$eolcom //

option iterlim=999999999; // avoid limit on iterations

option reslim=270000; // timelimit for solver in sec.

option optcr=0.0; // gap tolerance

option solprint=OFF; // include solution print in .lst file

option limrow=0; // limit number of rows in .lst file

option limcol=0; // limit number of columns in .lst file

//--

Sets

Node name of cities

ALIAS(Node,i)

ALIAS(Node,j)

ALIAS(Node,k)

ALIAS(Node,l);

Set

Cbl types of cables with different capacities;

Parameters

XX(Node) x-bar of a city

YY(Node) y-bar of a city

Cbl_Cpy(Cbl) cable capacities

Cbl_Prc(i,j,Cbl) cable prices on link #ij#

86 APPENDIX C. GAMS PROGRAMS CODE

SPAN(i,j) whether the link between #ij# exsits

Pre_Cap(i,j) pre-installed capacity already exsits on #ij#

Pre_Cst(i,j) how much have to pay on the pre-installed capacity

Unt_Rt_Cst(i,j) unit routing cost on #ij#

Stp_Cst(i,j) if not set up, how much should pay to set up

D(k,l) how much is the demand of flow between #kl#

Rt_Unt(k,l) the size of a routing unit on demand #kl#

Dmd_Amt(k,l) how much is the demand of unit between #kl#

TOTAL_DEMAND sum of demands of the entire network;

$INCLUDE "deutsch.dat";

// build a symmetric network

SPAN(i,j)$(ord(i)<ord(j)) = SPAN(i,j) + SPAN(j,i);

SPAN(i,j)$(ord(i)>ord(j)) = SPAN(j,i);

Pre_Cap(i,j)$(ord(i)<ord(j)) = Pre_Cap(i,j) + Pre_Cap(j,i);

Pre_Cap(i,j)$(ord(i)>ord(j)) = Pre_Cap(j,i);

Pre_Cst(i,j)$(ord(i)<ord(j)) = Pre_Cst(i,j) + Pre_Cst(j,i);

Pre_Cst(i,j)$(ord(i)>ord(j)) = Pre_Cst(j,i);

Unt_Rt_Cst(i,j)$(ord(i)<ord(j)) = Unt_Rt_Cst(i,j) + Unt_Rt_Cst(j,i);

Unt_Rt_Cst(i,j)$(ord(i)>ord(j)) = Unt_Rt_Cst(j,i);

Stp_Cst(i,j)$(ord(i)<ord(j)) = Stp_Cst(i,j) + Stp_Cst(j,i);

Stp_Cst(i,j)$(ord(i)>ord(j)) = Stp_Cst(j,i);

Cbl_Prc(i,j,Cbl)$(ord(i)<ord(j)) = Cbl_Prc(i,j,Cbl) + Cbl_Prc(j,i,Cbl);

Cbl_Prc(i,j,Cbl)$(ord(i)>ord(j)) = Cbl_Prc(j,i,Cbl);

// transfer data to demand matrix D, and make it upper triangular

// so here the demands are considered as undirected

D(k,l) = Dmd_Amt(k,l)*Rt_Unt(k,l)$(Rt_Unt(k,l)>0) + Dmd_Amt(k,l)$(Rt_Unt(k,l)=0);

TOTAL_DEMAND = sum((k,l), D(k,l));

D(k,l)$(ord(k)<ord(l)) = D(k,l) + D(l,k);

D(k,l)$(ord(k)>=ord(l)) = 0;

BINARY Variables

y(i,j) whether to build the arc #ij#;

// set all y to be #0#

C.4. NON-PROTECTIVE RING MODEL 87

y.fx(i,j) = 0;

// set all y on half of the exsited links possible to be #1#

y.up(i,j)$(SPAN(i,j) and (ord(i) < ord(j))) = 1;

INTEGER Variables

z(Cbl,i,j) whether to lease carrier #Cbl# in arc #ij#, and how many;

// set all z to be #0#

z.fx(Cbl,i,j) = 0;

// set all z on half of the exsited links possible to be non-zero integer

z.up(Cbl,i,j)$(SPAN(i,j) and (ord(i) < ord(j))) = ceil (TOTAL_DEMAND/Cbl_Cpy(Cbl));

Variables

cost total cost

x(i,j,k,l) how much percentage of flow through arc #ij# for demand #kl#;

// set all x to be #0#

x.fx(i,j,k,l) = 0;

// set all x on exsited links to have upper bound as #1#

x.up(i,j,k,l)$(SPAN(i,j) and (D(k,l) <> 0)) = 1;

Equations

obj define objective function

c1(j,k,l) demand constraints

c2(i,j)

c3(i,j,k,l)

c4(i,j,k,l)

c5(i) ring constraints;

obj.. cost =E= sum((Cbl,i,j), z(Cbl,i,j)*Cbl_Prc(i,j,Cbl))

+ sum((i,j), Stp_Cst(i,j)*y(i,j));

c1(j,k,l)$(D(k,l) <> 0)..

sum(i, x(i,j,k,l)) - sum(i, x(j,i,k,l))

=E= -1$(ord(j)=ord(k)) + 0 + 1$(ord(j)=ord(l));

c2(i,j)$(SPAN(i,j) and (ord(i) < ord(j)))..

sum((k,l), x(i,j,k,l)*D(k,l)) + sum((k,l), x(j,i,k,l)*D(k,l))

=L= sum(Cbl, z(Cbl,i,j)*Cbl_Cpy(Cbl));

c3(i,j,k,l)$(SPAN(i,j) and (ord(i) < ord (j)))..

x(i,j,k,l) =L= y(i,j);

c4(i,j,k,l)$(SPAN(i,j) and (ord(i) > ord (j)))..

x(i,j,k,l) =L= y(j,i);

88 APPENDIX C. GAMS PROGRAMS CODE

c5(i).. sum(j, y(i,j)) + sum(j, y(j,i)) =E= 2;

Model NetworkDesign /all/ ;

NetworkDesign.holdfixed=1;

Solve NetworkDesign using MIP minimizing cost;

DISPLAY SPAN, D, Stp_Cst, Cbl_Prc, cost.l, x.l, y.l, z.l;

C.5 1+1 Protection Ring Model

* Network Design Model.gms

* Feb. 14, 2006

* 14th Program: Included Network Data

*

* Fixed Cost, Cable Prices And Cable Capacities And Etc. From SNDLib Instances

* Cables In Fact Are Optical Carriers; Cable Prices Are Leased Fee

* A Ring Network Model; Model 2; An Undirected Demand Ring

* Switches, MUXs And De-MUXs Are Equipped At All Nodes

* Equipments’ Costs Are Not Considered

* Protection; But Use Only One Fiber

*

* x Is Between [0, 1]

* Non-used z And y Is Removed

*

$eolcom //

option iterlim=999999999;// avoid limit on iterations

option reslim=270000; // timelimit for solver in sec.

option optcr=0.0; // gap tolerance

option solprint=OFF; // include solution print in .lst file

option limrow=0; // limit number of rows in .lst file

option limcol=0; // limit number of columns in .lst file

//--

Sets

Node name of cities

ALIAS(Node,i)

ALIAS(Node,j)

C.5. 1+1 PROTECTION RING MODEL 89

ALIAS(Node,k)

ALIAS(Node,l);

Set

Cbl types of cables with different capacities;

Parameters

XX(Node) x-bar of a city

YY(Node) y-bar of a city

Cbl_Cpy(Cbl) cable capacities

Cbl_Prc(i,j,Cbl) cable prices on link #ij#

SPAN(i,j) whether the link between #ij# exsits

Pre_Cap(i,j) pre-installed capacity already exsits on #ij#

Pre_Cst(i,j) how much have to pay on the pre-installed capacity

Unt_Rt_Cst(i,j) unit routing cost on #ij#

Stp_Cst(i,j) if not set up, how much should pay to set up

D(k,l) how much is the demand of flow between #kl#

Rt_Unt(k,l) the size of a routing unit on demand #kl#

Dmd_Amt(k,l) how much is the demand of unit between #kl#

TOTAL_DEMAND sum of demands of the entire network;

$INCLUDE "deutsch.dat";

// build a symmetric network

SPAN(i,j)$(ord(i)<ord(j)) = SPAN(i,j) + SPAN(j,i);

SPAN(i,j)$(ord(i)>ord(j)) = SPAN(j,i);

Pre_Cap(i,j)$(ord(i)<ord(j)) = Pre_Cap(i,j) + Pre_Cap(j,i);

Pre_Cap(i,j)$(ord(i)>ord(j)) = Pre_Cap(j,i);

Pre_Cst(i,j)$(ord(i)<ord(j)) = Pre_Cst(i,j) + Pre_Cst(j,i);

Pre_Cst(i,j)$(ord(i)>ord(j)) = Pre_Cst(j,i);

Unt_Rt_Cst(i,j)$(ord(i)<ord(j)) = Unt_Rt_Cst(i,j) + Unt_Rt_Cst(j,i);

Unt_Rt_Cst(i,j)$(ord(i)>ord(j)) = Unt_Rt_Cst(j,i);

Stp_Cst(i,j)$(ord(i)<ord(j)) = Stp_Cst(i,j) + Stp_Cst(j,i);

Stp_Cst(i,j)$(ord(i)>ord(j)) = Stp_Cst(j,i);

Cbl_Prc(i,j,Cbl)$(ord(i)<ord(j)) = Cbl_Prc(i,j,Cbl) + Cbl_Prc(j,i,Cbl);

90 APPENDIX C. GAMS PROGRAMS CODE

Cbl_Prc(i,j,Cbl)$(ord(i)>ord(j)) = Cbl_Prc(j,i,Cbl);

// transfer data to demand matrix D, and make it upper triangular

// so here the demands are considered as undirected

D(k,l) = Dmd_Amt(k,l)*Rt_Unt(k,l)$(Rt_Unt(k,l)>0) + Dmd_Amt(k,l)$(Rt_Unt(k,l)=0);

TOTAL_DEMAND = sum((k,l), D(k,l));

D(k,l)$(ord(k)<ord(l)) = D(k,l) + D(l,k);

D(k,l)$(ord(k)>=ord(l)) = 0;

BINARY Variables

y(i,j) whether to build the arc #ij#;

// set all y to be #0#

y.fx(i,j) = 0;

// set all y on half of the exsited links possible to be #1#

y.up(i,j)$(SPAN(i,j) and (ord(i) < ord(j))) = 1;

INTEGER Variables

z(Cbl,i,j) whether to lease carrier #Cbl# in arc #ij#, and how many;

// set all z to be #0#

z.fx(Cbl,i,j) = 0;

// set all z on half of the exsited links possible to be non-zero integer

z.up(Cbl,i,j)$(SPAN(i,j) and (ord(i) < ord(j))) = ceil (TOTAL_DEMAND/Cbl_Cpy(Cbl));

Variables

cost total cost

x1(i,j,k,l) how much percentage of flow through arc #ij# for demand #kl#, path 1

x2(i,j,k,l) how much percentage of flow through arc #ij# for demand #kl#, path 2;

// set all x to be #0#

x1.fx(i,j,k,l) = 0;

x2.fx(i,j,k,l) = 0;

// set all x on exsited links to have upper bound as #1#

x1.up(i,j,k,l)$(SPAN(i,j) and (D(k,l) <> 0)) = 1;

x2.up(i,j,k,l)$(SPAN(i,j) and (D(k,l) <> 0)) = 1;

Equations

obj define objective function

c1(j,k,l) demand constraints

c2(j,k,l) demand constraints

c3(i,j)

c4(i,j,k,l) different path constraints

c5(i,j,k,l)

c6(i,j,k,l)

C.5. 1+1 PROTECTION RING MODEL 91

c7(i,j,k,l)

c8(i,j,k,l)

c9(i) ring constraints;

obj.. cost =E= sum((Cbl,i,j), z(Cbl,i,j)*Cbl_Prc(i,j,Cbl))

+ sum((i,j), Stp_Cst(i,j)*y(i,j));

c1(j,k,l)$(D(k,l) <> 0)..

sum(i, x1(i,j,k,l)) - sum(i, x1(j,i,k,l))

=E= -1$(ord(j)=ord(k)) + 0 + 1$(ord(j)=ord(l));

c2(j,k,l)$(D(k,l) <> 0)..

sum(i, x2(i,j,k,l)) - sum(i, x2(j,i,k,l))

=E= -1$(ord(j)=ord(k)) + 0 + 1$(ord(j)=ord(l));

c3(i,j)$(SPAN(i,j) and (ord(i) < ord(j)))..

sum((k,l), x1(i,j,k,l)*D(k,l)) + sum((k,l), x1(j,i,k,l)*D(k,l)) +

sum((k,l), x2(i,j,k,l)*D(k,l)) + sum((k,l), x2(j,i,k,l)*D(k,l))

=L= sum(Cbl, z(Cbl,i,j)*Cbl_Cpy(Cbl));

c4(i,j,k,l)$SPAN(i,j)..

x1(i,j,k,l) + x1(j,i,k,l) + x2(i,j,k,l) + x2(j,i,k,l) =L= 1;

c5(i,j,k,l)$(SPAN(i,j) and (ord(i) < ord (j)))..

x1(i,j,k,l) =L= y(i,j);

c6(i,j,k,l)$(SPAN(i,j) and (ord(i) > ord (j)))..

x1(i,j,k,l) =L= y(j,i);

c7(i,j,k,l)$(SPAN(i,j) and (ord(i) < ord (j)))..

x2(i,j,k,l) =L= y(i,j);

c8(i,j,k,l)$(SPAN(i,j) and (ord(i) > ord (j)))..

x2(i,j,k,l) =L= y(j,i);

c9(i).. sum(j, y(i,j)) + sum(j, y(j,i)) =E= 2;

Model NetworkDesign /all/ ;

NetworkDesign.holdfixed=1;

Solve NetworkDesign using MIP minimizing cost;

92 APPENDIX C. GAMS PROGRAMS CODE

DISPLAY SPAN, D, Stp_Cst, Cbl_Prc, cost.l, x1.l, x2.l, y.l, z.l, TOTAL_DEMAND;

C.6 1+1 Protection Ring(TSP) Model

* Network Design Model.gms

* Feb. 14, 2006

* 14th Program: Included Network Data

*

* Fixed Cost, Cable Prices And Cable Capacities And Etc. From SNDLib Instances

* Cables In Fact Are Optical Carriers; Cable Prices Are Leased Fee

* A Ring Network Model; Model 2; An Undirected Demand Ring

* Switches, MUXs And De-MUXs Are Equipped At All Nodes

* Equipments’ Costs Are Not Considered

* Protection; But Use Only One Fiber

* A TSP Problem

*

* x Is Between [0, 1]

* Non-used z And y Is Removed

*

$eolcom //

option iterlim=999999999; // avoid limit on iterations

option reslim=100000; // timelimit for solver in sec.

option optcr=0.0; // gap tolerance

option solprint=OFF; // include solution print in .lst file

option limrow=0; // limit number of rows in .lst file

option limcol=0; // limit number of columns in .lst file

//--

Sets

Node name of cities

ALIAS(Node,i)

ALIAS(Node,j)

ALIAS(Node,k)

ALIAS(Node,l);

Set

Cbl types of cables with different capacities;

Parameters

XX(Node) x-bar of a city

C.6. 1+1 PROTECTION RING(TSP) MODEL 93

YY(Node) y-bar of a city

Cbl_Cpy(Cbl) cable capacities

Cbl_Prc(i,j,Cbl) cable prices on link #ij#

SPAN(i,j) whether the link between #ij# exsits

Pre_Cap(i,j) pre-installed capacity already exsits on #ij#

Pre_Cst(i,j) how much have to pay on the pre-installed capacity

Unt_Rt_Cst(i,j) unit routing cost on #ij#

Stp_Cst(i,j) if not set up, how much should pay to set up

D(k,l) how much is the demand of flow between #kl#

Rt_Unt(k,l) the size of a routing unit on demand #kl#

Dmd_Amt(k,l) how much is the demand of unit between #kl#

TOTAL_DEMAND sum of demands of the entire network

z(Cbl) the cables used on every link;

$INCLUDE "deutsch.dat";

// build a symmetric network

SPAN(i,j)$(ord(i)<ord(j)) = SPAN(i,j) + SPAN(j,i);

SPAN(i,j)$(ord(i)>ord(j)) = SPAN(j,i);

Pre_Cap(i,j)$(ord(i)<ord(j)) = Pre_Cap(i,j) + Pre_Cap(j,i);

Pre_Cap(i,j)$(ord(i)>ord(j)) = Pre_Cap(j,i);

Pre_Cst(i,j)$(ord(i)<ord(j)) = Pre_Cst(i,j) + Pre_Cst(j,i);

Pre_Cst(i,j)$(ord(i)>ord(j)) = Pre_Cst(j,i);

Unt_Rt_Cst(i,j)$(ord(i)<ord(j)) = Unt_Rt_Cst(i,j) + Unt_Rt_Cst(j,i);

Unt_Rt_Cst(i,j)$(ord(i)>ord(j)) = Unt_Rt_Cst(j,i);

Stp_Cst(i,j)$(ord(i)<ord(j)) = Stp_Cst(i,j) + Stp_Cst(j,i);

Stp_Cst(i,j)$(ord(i)>ord(j)) = Stp_Cst(j,i);

Cbl_Prc(i,j,Cbl)$(ord(i)<ord(j)) = Cbl_Prc(i,j,Cbl) + Cbl_Prc(j,i,Cbl);

Cbl_Prc(i,j,Cbl)$(ord(i)>ord(j)) = Cbl_Prc(j,i,Cbl);

// calculate the bandwidth which is needed on every link

D(k,l) = Dmd_Amt(k,l)*Rt_Unt(k,l)$(Rt_Unt(k,l)>0) + Dmd_Amt(k,l)$(Rt_Unt(k,l)=0);

TOTAL_DEMAND = sum((k,l), D(k,l));

z(Cbl) = 0;

94 APPENDIX C. GAMS PROGRAMS CODE

scalar IT;

IT = card(Cbl);

scalar TD;

TD = TOTAL_DEMAND;

while (IT > 0,

loop(Cbl$(ord(Cbl) = IT),

z(Cbl) = floor(TD/Cbl_Cpy(Cbl));

TD = mod(TD, Cbl_Cpy(Cbl));

if (IT = 1,

z(Cbl) = z(Cbl) + 1;

if ((Cbl_Cpy(Cbl+1)/(z(Cbl)*Cbl_Cpy(Cbl)) > 0.95)

and (Cbl_Cpy(Cbl+1)/(z(Cbl)*Cbl_Cpy(Cbl)) < 1.05),

z(Cbl) = 0;

z(Cbl+1) = z(Cbl+1) + 1;

);

);

);

IT = IT - 1;

);

BINARY Variables

y(i,j) whether to build the arc #ij#;

// set all y to be #0#

y.fx(i,j) = 0;

// set all y on half of the exsited links possible to be #1#

y.up(i,j)$(SPAN(i,j) and (ord(i) < ord(j))) = 1;

Variables

cost total cost

x(i,j,k,l) how much percentage of flow through arc #ij# for demand #kl#;

// set all x to be #0#

x.fx(i,j,k,l) = 0;

// set all x for demand #node1 node*# possible to be 1;

x.up(i,j,k,l)$(SPAN(i,j) and (ord(k) = 1) and (ord(l) <> 1)) = 1;

Equations

C.7. TWO-FIBRE UNIDIRECTIONAL SELF-HEALING RING MODEL95

obj define objective function

c1(j,k,l) demand constraints or sub-circles elimination constraints

c2(i,j,k,l)

c3(i,j,k,l)

c4(i) ring constraints;

obj.. cost =E= sum((i,j), y(i,j)*(sum(Cbl, z(Cbl)*Cbl_Prc(i,j,Cbl)) + Stp_Cst(i,j)));

c1(j,k,l)$((ord(k) = 1) and (ord(l) <> 1))..

sum(i, x(i,j,k,l)) - sum(i, x(j,i,k,l))

=E= -1$(ord(j)=ord(k)) + 0 + 1$(ord(j)=ord(l));

c2(i,j,k,l)$(SPAN(i,j) and (ord(i) < ord (j)))..

x(i,j,k,l) =L= y(i,j);

c3(i,j,k,l)$(SPAN(i,j) and (ord(i) > ord (j)))..

x(i,j,k,l) =L= y(j,i);

c4(i).. sum(j, y(i,j)) + sum(j, y(j,i)) =E= 2;

Model NetworkDesign /all/ ;

NetworkDesign.holdfixed=1;

Solve NetworkDesign using MIP minimizing cost;

DISPLAY SPAN, D, Stp_Cst, Cbl_Prc, TOTAL_DEMAND, Cbl_Cpy, z;

DISPLAY cost.l, y.l;

C.7 Two-Fibre Unidirectional Self-Healing Ring

Model

* Network Design Model.gms

* Feb. 14, 2006

* 14th Program: Included Network Data

*

* Fixed Cost, Cable Prices And Cable Capacities And Etc. From SNDLib Instances

* Cables In Fact Are Optical Carriers; Cable Prices Are Leased Fee

* A Ring Network Model; Model 3; An Directed Demand Ring

96 APPENDIX C. GAMS PROGRAMS CODE

* Switches, ADMs Are Equipped At All Nodes

* Equipments’ Costs Are Not Considered

* Two-Fibre Unidirectional Self-Healing Protection

*

* x Is Between [0, 1]

* Non-used z And y Is Removed

*

$eolcom //

option iterlim=999999999; // avoid limit on iterations

option reslim=720000; // timelimit for solver in sec.

option optcr=0.0; // gap tolerance

option solprint=OFF; // include solution print in .lst file

option limrow=0; // limit number of rows in .lst file

option limcol=0; // limit number of columns in .lst file

//--

Sets

Node name of cities

ALIAS(Node,i)

ALIAS(Node,j)

ALIAS(Node,k)

ALIAS(Node,l);

Set

Cbl types of cables with different capacities;

Parameters

XX(Node) x-bar of a city

YY(Node) y-bar of a city

Cbl_Cpy(Cbl) cable capacities

Cbl_Prc(i,j,Cbl) cable prices on link #ij#

SPAN(i,j) whether the link between #ij# exsits

Pre_Cap(i,j) pre-installed capacity already exsits on #ij#

Pre_Cst(i,j) how much have to pay on the pre-installed capacity

Unt_Rt_Cst(i,j) unit routing cost on #ij#

Stp_Cst(i,j) if not set up, how much should pay to set up

D(k,l) how much is the demand of flow between #kl#

Rt_Unt(k,l) the size of a routing unit on demand #kl#

Dmd_Amt(k,l) how much is the demand of unit between #kl#

C.7. TWO-FIBRE UNIDIRECTIONAL SELF-HEALING RING MODEL97

TOTAL_DEMAND sum of demands of the entire network;

$INCLUDE "deutsch.dat";

// build a symmetric network

SPAN(i,j)$(ord(i)<ord(j)) = SPAN(i,j) + SPAN(j,i);

SPAN(i,j)$(ord(i)>ord(j)) = SPAN(j,i);

Pre_Cap(i,j)$(ord(i)<ord(j)) = Pre_Cap(i,j) + Pre_Cap(j,i);

Pre_Cap(i,j)$(ord(i)>ord(j)) = Pre_Cap(j,i);

Pre_Cst(i,j)$(ord(i)<ord(j)) = Pre_Cst(i,j) + Pre_Cst(j,i);

Pre_Cst(i,j)$(ord(i)>ord(j)) = Pre_Cst(j,i);

Unt_Rt_Cst(i,j)$(ord(i)<ord(j)) = Unt_Rt_Cst(i,j) + Unt_Rt_Cst(j,i);

Unt_Rt_Cst(i,j)$(ord(i)>ord(j)) = Unt_Rt_Cst(j,i);

Stp_Cst(i,j)$(ord(i)<ord(j)) = Stp_Cst(i,j) + Stp_Cst(j,i);

Stp_Cst(i,j)$(ord(i)>ord(j)) = Stp_Cst(j,i);

Cbl_Prc(i,j,Cbl)$(ord(i)<ord(j)) = Cbl_Prc(i,j,Cbl) + Cbl_Prc(j,i,Cbl);

Cbl_Prc(i,j,Cbl)$(ord(i)>ord(j)) = Cbl_Prc(j,i,Cbl);

// transfer data to demand matrix D

// so here the demands are considered as directed

D(k,l) = Dmd_Amt(k,l)*Rt_Unt(k,l)$(Rt_Unt(k,l)>0) + Dmd_Amt(k,l)$(Rt_Unt(k,l)=0);

TOTAL_DEMAND = sum((k,l), D(k,l));

D(k,l)$(ord(k)<ord(l)) = D(k,l) + D(l,k);

D(k,l)$(ord(k)>ord(l)) = round(uniform(0.3, 0.7)*D(l,k)$(ord(k)>ord(l)));

D(k,l)$(ord(k)<ord(l)) = D(k,l)$(ord(k)<ord(l)) - D(l,k)$(ord(k)<ord(l));

D(k,l)$(ord(k)=ord(l)) = 0;

BINARY Variables

y(i,j) whether to build the arc #ij#;

// set all y to be #0#

y.fx(i,j) = 0;

// set all y on the exsited links possible to be #1#

y.up(i,j)$SPAN(i,j) = 1;

INTEGER Variables

z1(Cbl,i,j) whether to lease carrier #Cbl# in arc #ij# for active ring, and how many

z2(Cbl,i,j) whether to lease carrier #Cbl# in arc #ij# for protect ring, and how many;

98 APPENDIX C. GAMS PROGRAMS CODE

// set all z1 to be #0#

z1.fx(Cbl,i,j) = 0;

// set all z1 on half of the exsited links possible to be non-zero integer

z1.up(Cbl,i,j)$(SPAN(i,j) and (ord(i) < ord(j))) = ceil (TOTAL_DEMAND/Cbl_Cpy(Cbl));

// set all z2 to be #0#

z2.fx(Cbl,i,j) = 0;

// set all z2 on half of the exsited links possible to be non-zero integer

z2.up(Cbl,i,j)$(SPAN(i,j) and (ord(i) < ord(j))) = ceil (TOTAL_DEMAND/Cbl_Cpy(Cbl));

BINARY Variables

x(i,j,k,l) how much percentage of active flow through arc #ij# for demand #kl#;

// set all x to be #0#

x.fx(i,j,k,l) = 0;

// set all x on exsited links to have upper bound as #1#

x.up(i,j,k,l)$(SPAN(i,j) and (D(k,l) <> 0)) = 1;

Variables

cost total cost;

Equations

obj define objective function

c1(j,k,l) demand constraints

c2(i,j) active capacity

c3(i,j) protection capacity

c4(i,j,k,l) unidirectional flow constraints

c5(i) unidirectional ring constraints

c6(i) unidirectional ring constraints;

obj.. cost =E= sum((Cbl,i,j), z1(Cbl,i,j)*Cbl_Prc(i,j,Cbl))

+ sum((Cbl,i,j), z2(Cbl,i,j)*Cbl_Prc(i,j,Cbl))

+ sum((i,j), Stp_Cst(i,j)*y(i,j));

c1(j,k,l)$(D(k,l) <> 0)..

sum(i, x(i,j,k,l)) - sum(i, x(j,i,k,l))

=E= -1$(ord(j)=ord(k)) + 0 + 1$(ord(j)=ord(l));

c2(i,j)$(SPAN(i,j) and (ord(i) < ord(j)))..

sum((k,l), x(i,j,k,l)*D(k,l)) + sum((k,l), x(j,i,k,l)*D(k,l))

=L= sum(Cbl, z1(Cbl,i,j)*Cbl_Cpy(Cbl));

c3(i,j)$(SPAN(i,j) and (ord(i) < ord(j)))..

sum((k,l), x(i,j,k,l)*D(l,k)) + sum((k,l), x(j,i,k,l)*D(l,k))

=L= sum(Cbl, z2(Cbl,i,j)*Cbl_Cpy(Cbl));

C.8. TREE MODEL 99

c4(i,j,k,l)$(SPAN(i,j) and (D(k,l) <> 0))..

x(i,j,k,l) + x(i,j,l,k) =E= y(i,j);

c5(i).. sum(j, y(i,j)) =E= 1;

c6(i).. sum(j, y(j,i)) =E= 1;

Model NetworkDesign /all/ ;

NetworkDesign.holdfixed=1;

Solve NetworkDesign using MIP minimizing cost;

DISPLAY SPAN, D, Stp_Cst, Cbl_Prc, cost.l, x.l, y.l, z1.l, z2.l;

C.8 Tree Model

* Network Design Model.gms

* Feb. 22, 2006

* 14th Program: Included Network Data

*

* Fixed Cost, Cable Prices And Cable Capacities And Etc. From SNDLib Instances

* A Tree Network Model; LAN Switches Are Equipped At Some Nodes

* Hub Node Is Given

* No Protection

*

* x Is Between [0, 1]

* Non-used z And y Is Removed

*

$eolcom //

option iterlim=999999999; // avoid limit on iterations

option reslim=270000; // timelimit for solver in sec.

option optcr=0.0; // gap tolerance

option solprint=OFF; // include solution print in .lst file

option limrow=0; // limit number of rows in .lst file

option limcol=0; // limit number of columns in .lst file

//--

Sets

Node name of cities

100 APPENDIX C. GAMS PROGRAMS CODE

ALIAS(Node,i)

ALIAS(Node,j)

ALIAS(Node,k)

ALIAS(Node,l);

Set

Cbl types of cables with different capacities;

Parameters

XX(Node) x-bar of a city

YY(Node) y-bar of a city

Cbl_Cpy(Cbl) cable capacities

Cbl_Prc(i,j,Cbl) cable prices on link #ij#

SPAN(i,j) whether the link between #ij# exsits

Pre_Cap(i,j) pre-installed capacity already exsits on #ij#

Pre_Cst(i,j) how much have to pay on the pre-installed capacity

Unt_Rt_Cst(i,j) unit routing cost on #ij#

Stp_Cst(i,j) if not set up, how much should pay to set up

D(k,l) how much is the demand of flow between #kl#

Rt_Unt(k,l) the size of a routing unit on demand #kl#

Dmd_Amt(k,l) how much is the demand of unit between #kl#

TOTAL_DEMAND sum of demands of the entire network;

$INCLUDE "deutsch.dat";

// build a symmetric network

SPAN(i,j)$(ord(i)<ord(j)) = SPAN(i,j) + SPAN(j,i);

SPAN(i,j)$(ord(i)>ord(j)) = SPAN(j,i);

Pre_Cap(i,j)$(ord(i)<ord(j)) = Pre_Cap(i,j) + Pre_Cap(j,i);

Pre_Cap(i,j)$(ord(i)>ord(j)) = Pre_Cap(j,i);

Pre_Cst(i,j)$(ord(i)<ord(j)) = Pre_Cst(i,j) + Pre_Cst(j,i);

Pre_Cst(i,j)$(ord(i)>ord(j)) = Pre_Cst(j,i);

Unt_Rt_Cst(i,j)$(ord(i)<ord(j)) = Unt_Rt_Cst(i,j) + Unt_Rt_Cst(j,i);

Unt_Rt_Cst(i,j)$(ord(i)>ord(j)) = Unt_Rt_Cst(j,i);

Stp_Cst(i,j)$(ord(i)<ord(j)) = Stp_Cst(i,j) + Stp_Cst(j,i);

C.8. TREE MODEL 101

Stp_Cst(i,j)$(ord(i)>ord(j)) = Stp_Cst(j,i);

Cbl_Prc(i,j,Cbl)$(ord(i)<ord(j)) = Cbl_Prc(i,j,Cbl) + Cbl_Prc(j,i,Cbl);

Cbl_Prc(i,j,Cbl)$(ord(i)>ord(j)) = Cbl_Prc(j,i,Cbl);

// transfer data to demand matrix D, and make it upper triangular

// so here the demands are considered as undirected

D(k,l) = Dmd_Amt(k,l)*Rt_Unt(k,l)$(Rt_Unt(k,l)>0) + Dmd_Amt(k,l)$(Rt_Unt(k,l)=0);

TOTAL_DEMAND = sum((k,l), D(k,l));

D(k,l)$(ord(k)<ord(l)) = D(k,l) + D(l,k);

D(k,l)$(ord(k)>=ord(l)) = 0;

SCALAR LAN_S_C LAN switch cost;

LAN_S_C = 400;

BINARY Variables

s(i) whether to equip a LAN switch at node #i#

y(i,j) whether to build the arc #ij#;

// set all y to be #0#

y.fx(i,j) = 0;

// set all y on half of the exsited links possible to be #1#

y.up(i,j)$(SPAN(i,j) and (ord(i) < ord(j))) = 1;

INTEGER Variables

z(Cbl,i,j) whether to lease carrier #Cbl# in arc #ij#, and how many;

// set all z to be #0#

z.fx(Cbl,i,j) = 0;

// set all z on half of the exsited links possible to be non-zero integer

z.up(Cbl,i,j)$(SPAN(i,j) and (ord(i) < ord(j))) = ceil (TOTAL_DEMAND/Cbl_Cpy(Cbl));

Variables

cost total cost

x(i,j,k,l) how much percentage of flow through arc #ij# for demand #kl#;

// set all x to be #0#

x.fx(i,j,k,l) = 0;

// set all x on exsited links to have upper bound as #1#

x.up(i,j,k,l)$(SPAN(i,j) and (D(k,l) <> 0)) = 1;

Equations

obj define objective function

c1(j,k,l) demand constraints

c2(i,j) link capacity constraints

102 APPENDIX C. GAMS PROGRAMS CODE

c3(i,j,k,l)

c4(i,j,k,l)

c5 hub management constraint

c6(i) switch constraints

c7 tree constraint;

obj.. cost =E= sum((Cbl,i,j), z(Cbl,i,j)*Cbl_Prc(i,j,Cbl))

+ sum((i,j), Stp_Cst(i,j)*y(i,j))

+ (sum(i, s(i)) - 1)*LAN_S_C;

c1(j,k,l)$(D(k,l) <> 0)..

sum(i, x(i,j,k,l)) - sum(i, x(j,i,k,l))

=E= -1$(ord(j)=ord(k)) + 0 + 1$(ord(j)=ord(l));

c2(i,j)$(SPAN(i,j) and (ord(i) < ord(j)))..

sum((k,l), x(i,j,k,l)*D(k,l)) + sum((k,l), x(j,i,k,l)*D(k,l))

=L= sum(Cbl, z(Cbl,i,j)*Cbl_Cpy(Cbl));

c3(i,j,k,l)$(SPAN(i,j) and (ord(i) < ord (j)))..

x(i,j,k,l) =L= y(i,j);

c4(i,j,k,l)$(SPAN(i,j) and (ord(i) > ord (j)))..

x(i,j,k,l) =L= y(j,i);

c5.. sum(j, y(’E’,j)) + sum(j, y(j,’E’)) =E= 3;

c6(i).. sum(j, y(i,j)) + sum(j, y(j,i)) =L= s(i)*card(Node) + 1;

c7.. sum((i,j), y(i,j)) =E= card(Node) - 1;

Model NetworkDesign /all/ ;

NetworkDesign.holdfixed=1;

Solve NetworkDesign using MIP minimizing cost;

DISPLAY SPAN, D, Stp_Cst, Cbl_Prc, cost.l, x.l, y.l, s.l, z.l;

C.9 Star Model(No Multiplexing)

* Network Design Model.gms

C.9. STAR MODEL(NO MULTIPLEXING) 103

* Feb. 22, 2006

* 14th Program: Included Network Data

*

* Fixed Cost, Cable Prices And Cable Capacities And Etc. From SNDLib Instances

* A Star Network Model; No Equipment At Any Node; No Multiplexing

* Hub Node Is Given

* No Protection

*

* x Is Between [0, 1]

* Non-used z And y Is Removed

*

$eolcom //

option iterlim=999999999; // avoid limit on iterations

option reslim=270000; // timelimit for solver in sec.

option optcr=0.0; // gap tolerance

option solprint=OFF; // include solution print in .lst file

option limrow=0; // limit number of rows in .lst file

option limcol=0; // limit number of columns in .lst file

//--

Sets

Node name of cities

ALIAS(Node,i)

ALIAS(Node,j)

ALIAS(Node,k)

ALIAS(Node,l);

Set

Cbl types of cables with different capacities;

Parameters

XX(Node) x-bar of a city

YY(Node) y-bar of a city

Cbl_Cpy(Cbl) cable capacities

Cbl_Prc(i,j,Cbl) cable prices on link #ij#

SPAN(i,j) whether the link between #ij# exsits

Pre_Cap(i,j) pre-installed capacity already exsits on #ij#

Pre_Cst(i,j) how much have to pay on the pre-installed capacity

Unt_Rt_Cst(i,j) unit routing cost on #ij#

Stp_Cst(i,j) if not set up, how much should pay to set up

104 APPENDIX C. GAMS PROGRAMS CODE

D(k,l) how much is the demand of flow between #kl#

Rt_Unt(k,l) the size of a routing unit on demand #kl#

Dmd_Amt(k,l) how much is the demand of unit between #kl#

TOTAL_DEMAND sum of demands of the entire network

Hub(i) which node is the hub

DH(k) the demand between node #i# and the hub

zH(k,Cbl) the cables used for every DH #k#;

$INCLUDE "deutsch.dat";

// build a symmetric network

SPAN(i,j)$(ord(i)<ord(j)) = SPAN(i,j) + SPAN(j,i);

SPAN(i,j)$(ord(i)>ord(j)) = SPAN(j,i);

Pre_Cap(i,j)$(ord(i)<ord(j)) = Pre_Cap(i,j) + Pre_Cap(j,i);

Pre_Cap(i,j)$(ord(i)>ord(j)) = Pre_Cap(j,i);

Pre_Cst(i,j)$(ord(i)<ord(j)) = Pre_Cst(i,j) + Pre_Cst(j,i);

Pre_Cst(i,j)$(ord(i)>ord(j)) = Pre_Cst(j,i);

Unt_Rt_Cst(i,j)$(ord(i)<ord(j)) = Unt_Rt_Cst(i,j) + Unt_Rt_Cst(j,i);

Unt_Rt_Cst(i,j)$(ord(i)>ord(j)) = Unt_Rt_Cst(j,i);

Stp_Cst(i,j)$(ord(i)<ord(j)) = Stp_Cst(i,j) + Stp_Cst(j,i);

Stp_Cst(i,j)$(ord(i)>ord(j)) = Stp_Cst(j,i);

Cbl_Prc(i,j,Cbl)$(ord(i)<ord(j)) = Cbl_Prc(i,j,Cbl) + Cbl_Prc(j,i,Cbl);

Cbl_Prc(i,j,Cbl)$(ord(i)>ord(j)) = Cbl_Prc(j,i,Cbl);

// transfer data to demand matrix D, and make it upper triangular

// so here the demands are considered as undirected

D(k,l) = Dmd_Amt(k,l)*Rt_Unt(k,l)$(Rt_Unt(k,l)>0) + Dmd_Amt(k,l)$(Rt_Unt(k,l)=0);

TOTAL_DEMAND = sum((k,l), D(k,l));

D(k,l)$(ord(k)<ord(l)) = D(k,l) + D(l,k);

D(k,l)$(ord(k)>=ord(l)) = 0;

// preparation for a star

Hub(i) = 0;

Hub(’E’) = 1;

DH(k) = sum(l, D(k,l)) + sum(l, D(l,k));

C.9. STAR MODEL(NO MULTIPLEXING) 105

DH(’E’) = 0;

zH(k,Cbl) = 0;

scalar IT;

parameter DHH(k);

DHH(k) = DH(k);

loop (k$(ord(k) <> 5),

IT = card(Cbl);

while (IT > 0,

loop(Cbl$(ord(Cbl) = IT),

zH(k,Cbl) = floor(DHH(k)/Cbl_Cpy(Cbl));

DHH(k) = mod(DHH(k), Cbl_Cpy(Cbl));

if (IT = 1,

zH(k,Cbl) = zH(k,Cbl) + 1;

if ((Cbl_Cpy(Cbl+1)/(zH(k,Cbl)*Cbl_Cpy(Cbl)) > 0.95)

and (Cbl_Cpy(Cbl+1)/(zH(k,Cbl)*Cbl_Cpy(Cbl)) < 1.05),

zH(k,Cbl) = 0;

zH(k,Cbl+1) = zH(k,Cbl+1) + 1;

);

);

);

IT = IT - 1;

);

);

BINARY Variables

y(i,j) whether to build the arc #ij#;

// set all y to be #0#

y.fx(i,j) = 0;

// set all y on half of the exsited links possible to be #1#

y.up(i,j)$(SPAN(i,j) and (ord(i) < ord(j))) = 1;

Variables

106 APPENDIX C. GAMS PROGRAMS CODE

cost total cost

x(i,j,k) how much percentage of flow through arc #ij# for DH #k#;

// set all x to be #0#

x.fx(i,j,k) = 0;

// set all x on exsited links to have upper bound as #1#

x.up(i,j,k)$(SPAN(i,j) and (DH(k) <> 0)) = 1;

Equations

obj define objective function

c1(j,k) demand constraints

c2(i,j,k)

c3(i,j,k)

c4 tree constraint;

obj.. cost =E= sum((k,Cbl,i,j), zH(k,Cbl)*x(i,j,k)*Cbl_Prc(i,j,Cbl))

+ sum((i,j), Stp_Cst(i,j)*y(i,j));

c1(j,k)$(DH(k) <> 0)..

sum(i, x(i,j,k)) - sum(i, x(j,i,k))

=E= -1$(ord(j)=ord(k)) + 0 + 1$(ord(j)=5);

c2(i,j,k)$(SPAN(i,j) and (ord(i) < ord (j)))..

x(i,j,k) =L= y(i,j);

c3(i,j,k)$(SPAN(i,j) and (ord(i) > ord (j)))..

x(i,j,k) =L= y(j,i);

c4.. sum((i,j), y(i,j)) =E= card(Node) - 1;

Model NetworkDesign /all/ ;

NetworkDesign.holdfixed=1;

Solve NetworkDesign using MIP minimizing cost;

DISPLAY SPAN, D, DH, zH, cost.l, x.l, y.l;

C.10. STAR MODEL(MULTIPLEXING AND CONTINUOUS FLOW DECISION)107

C.10 Star Model(Multiplexing and Continuous

Flow Decision)

* Network Design Model.gms

* Feb. 22, 2006

* 14th Program: Included Network Data

*

* Fixed Cost, Cable Prices And Cable Capacities And Etc. From SNDLib Instances

* A Star Network Model; MUXs At Some Nodes; Multiplexing

* Hub Node Is Given

* No Protection

*

* x Is Between [0, 1]

* Non-used z And y Is Removed

*

$eolcom //

option iterlim=999999999; // avoid limit on iterations

option reslim=270000; // timelimit for solver in sec.

option optcr=0.0; // gap tolerance

option solprint=OFF; // include solution print in .lst file

option limrow=0; // limit number of rows in .lst file

option limcol=0; // limit number of columns in .lst file

//--

Sets

Node name of cities

ALIAS(Node,i)

ALIAS(Node,j)

ALIAS(Node,k)

ALIAS(Node,l);

Set

Cbl types of cables with different capacities;

Parameters

XX(Node) x-bar of a city

YY(Node) y-bar of a city

Cbl_Cpy(Cbl) cable capacities

Cbl_Prc(i,j,Cbl) cable prices on link #ij#

108 APPENDIX C. GAMS PROGRAMS CODE

SPAN(i,j) whether the link between #ij# exsits

Pre_Cap(i,j) pre-installed capacity already exsits on #ij#

Pre_Cst(i,j) how much have to pay on the pre-installed capacity

Unt_Rt_Cst(i,j) unit routing cost on #ij#

Stp_Cst(i,j) if not set up, how much should pay to set up

D(k,l) how much is the demand of flow between #kl#

Rt_Unt(k,l) the size of a routing unit on demand #kl#

Dmd_Amt(k,l) how much is the demand of unit between #kl#

TOTAL_DEMAND sum of demands of the entire network

Hub(i) which node is the hub

DH(k) the demand between node #i# and the hub;

$INCLUDE "deutsch.dat";

// build a symmetric network

SPAN(i,j)$(ord(i)<ord(j)) = SPAN(i,j) + SPAN(j,i);

SPAN(i,j)$(ord(i)>ord(j)) = SPAN(j,i);

Pre_Cap(i,j)$(ord(i)<ord(j)) = Pre_Cap(i,j) + Pre_Cap(j,i);

Pre_Cap(i,j)$(ord(i)>ord(j)) = Pre_Cap(j,i);

Pre_Cst(i,j)$(ord(i)<ord(j)) = Pre_Cst(i,j) + Pre_Cst(j,i);

Pre_Cst(i,j)$(ord(i)>ord(j)) = Pre_Cst(j,i);

Unt_Rt_Cst(i,j)$(ord(i)<ord(j)) = Unt_Rt_Cst(i,j) + Unt_Rt_Cst(j,i);

Unt_Rt_Cst(i,j)$(ord(i)>ord(j)) = Unt_Rt_Cst(j,i);

Stp_Cst(i,j)$(ord(i)<ord(j)) = Stp_Cst(i,j) + Stp_Cst(j,i);

Stp_Cst(i,j)$(ord(i)>ord(j)) = Stp_Cst(j,i);

Cbl_Prc(i,j,Cbl)$(ord(i)<ord(j)) = Cbl_Prc(i,j,Cbl) + Cbl_Prc(j,i,Cbl);

Cbl_Prc(i,j,Cbl)$(ord(i)>ord(j)) = Cbl_Prc(j,i,Cbl);

// transfer data to demand matrix D, and make it upper triangular

// so here the demands are considered as undirected

D(k,l) = Dmd_Amt(k,l)*Rt_Unt(k,l)$(Rt_Unt(k,l)>0) + Dmd_Amt(k,l)$(Rt_Unt(k,l)=0);

TOTAL_DEMAND = sum((k,l), D(k,l));

D(k,l)$(ord(k)<ord(l)) = D(k,l) + D(l,k);

D(k,l)$(ord(k)>=ord(l)) = 0;

C.10. STAR MODEL(MULTIPLEXING AND CONTINUOUS FLOW DECISION)109

// preparation for a star

Hub(i) = 0;

Hub(’E’) = 1;

DH(k) = sum(l, D(k,l)) + sum(l, D(l,k));

DH(’E’) = 0;

SCALAR MUX_C cost of a MUX;

MUX_C = 100;

BINARY Variables

m(i) whether to equip a MUX at node #i#

y(i,j) whether to build the arc #ij#;

// set all y to be #0#

y.fx(i,j) = 0;

// set all y on half of the exsited links possible to be #1#

y.up(i,j)$(SPAN(i,j) and (ord(i) < ord(j))) = 1;

INTEGER Variables

z(Cbl,i,j) whether to lease carrier #Cbl# in arc #ij#, and how many;

// set all z to be #0#

z.fx(Cbl,i,j) = 0;

// set all z on half of the exsited links possible to be non-zero integer

z.up(Cbl,i,j)$(SPAN(i,j) and (ord(i) < ord(j))) = ceil (TOTAL_DEMAND/Cbl_Cpy(Cbl));

Variables

cost total cost

x(i,j,k) whether a flow for DH #k# passes through arc #ij#;

// set all x to be #0#

x.fx(i,j,k) = 0;

// set all x on exsited links to have upper bound as #1#

x.up(i,j,k)$(SPAN(i,j) and (DH(k) <> 0)) = 1;

Equations

obj define objective function

c1(j,k) demand constraints

c2(i,j) capacity constraints

c3(i,j,k)

c4(i,j,k)

c5(i)

c6 tree constraint;

obj.. cost =E= sum((Cbl,i,j), z(Cbl,i,j)*Cbl_Prc(i,j,Cbl))

110 APPENDIX C. GAMS PROGRAMS CODE

+ sum((i,j), Stp_Cst(i,j)*y(i,j))

+ (sum(i, m(i)) - 1)*MUX_C;

c1(j,k)$(DH(k) <> 0)..

sum(i, x(i,j,k)) - sum(i, x(j,i,k))

=E= -1$(ord(j)=ord(k)) + 0 + 1$(ord(j)=5);

c2(i,j)$(SPAN(i,j) and (ord(i) < ord(j)))..

sum(k, x(i,j,k)*DH(k)) + sum(k, x(j,i,k)*DH(k))

=L= sum(Cbl, z(Cbl,i,j)*Cbl_Cpy(Cbl));

c3(i,j,k)$(SPAN(i,j) and (ord(i) < ord (j)))..

x(i,j,k) =L= y(i,j);

c4(i,j,k)$(SPAN(i,j) and (ord(i) > ord (j)))..

x(i,j,k) =L= y(j,i);

c5(i).. sum(j, y(i,j)) + sum(j, y(j,i)) =L= m(i)*card(Node) + 1;

c6.. sum((i,j), y(i,j)) =E= card(Node) - 1;

Model NetworkDesign /all/ ;

NetworkDesign.holdfixed=1;

Solve NetworkDesign using MIP minimizing cost;

DISPLAY SPAN, D, DH, cost.l, x.l, y.l, m.l, z.l;

C.11 Star Model(Multiplexing and Binary Flow

Decision)

* Network Design Model.gms

* Feb. 22, 2006

* 14th Program: Included Network Data

*

* Fixed Cost, Cable Prices And Cable Capacities And Etc. From SNDLib Instances

* A Star Network Model; MUXs At Some Nodes; Multiplexing

* Hub Node Is Given

* No Protection

C.11. STAR MODEL(MULTIPLEXING AND BINARY FLOW DECISION)111

*

* x Is Between [0, 1]

* Non-used z And y Is Removed

*

$eolcom //

option iterlim=999999999; // avoid limit on iterations

option reslim=270000; // timelimit for solver in sec.

option optcr=0.0; // gap tolerance

option solprint=OFF; // include solution print in .lst file

option limrow=0; // limit number of rows in .lst file

option limcol=0; // limit number of columns in .lst file

//--

Sets

Node name of cities

ALIAS(Node,i)

ALIAS(Node,j)

ALIAS(Node,k)

ALIAS(Node,l);

Set

Cbl types of cables with different capacities;

Parameters

XX(Node) x-bar of a city

YY(Node) y-bar of a city

Cbl_Cpy(Cbl) cable capacities

Cbl_Prc(i,j,Cbl) cable prices on link #ij#

SPAN(i,j) whether the link between #ij# exsits

Pre_Cap(i,j) pre-installed capacity already exsits on #ij#

Pre_Cst(i,j) how much have to pay on the pre-installed capacity

Unt_Rt_Cst(i,j) unit routing cost on #ij#

Stp_Cst(i,j) if not set up, how much should pay to set up

D(k,l) how much is the demand of flow between #kl#

Rt_Unt(k,l) the size of a routing unit on demand #kl#

Dmd_Amt(k,l) how much is the demand of unit between #kl#

TOTAL_DEMAND sum of demands of the entire network

Hub(i) which node is the hub

112 APPENDIX C. GAMS PROGRAMS CODE

DH(k) the demand between node #i# and the hub;

$INCLUDE "deutsch.dat";

// build a symmetric network

SPAN(i,j)$(ord(i)<ord(j)) = SPAN(i,j) + SPAN(j,i);

SPAN(i,j)$(ord(i)>ord(j)) = SPAN(j,i);

Pre_Cap(i,j)$(ord(i)<ord(j)) = Pre_Cap(i,j) + Pre_Cap(j,i);

Pre_Cap(i,j)$(ord(i)>ord(j)) = Pre_Cap(j,i);

Pre_Cst(i,j)$(ord(i)<ord(j)) = Pre_Cst(i,j) + Pre_Cst(j,i);

Pre_Cst(i,j)$(ord(i)>ord(j)) = Pre_Cst(j,i);

Unt_Rt_Cst(i,j)$(ord(i)<ord(j)) = Unt_Rt_Cst(i,j) + Unt_Rt_Cst(j,i);

Unt_Rt_Cst(i,j)$(ord(i)>ord(j)) = Unt_Rt_Cst(j,i);

Stp_Cst(i,j)$(ord(i)<ord(j)) = Stp_Cst(i,j) + Stp_Cst(j,i);

Stp_Cst(i,j)$(ord(i)>ord(j)) = Stp_Cst(j,i);

Cbl_Prc(i,j,Cbl)$(ord(i)<ord(j)) = Cbl_Prc(i,j,Cbl) + Cbl_Prc(j,i,Cbl);

Cbl_Prc(i,j,Cbl)$(ord(i)>ord(j)) = Cbl_Prc(j,i,Cbl);

// transfer data to demand matrix D, and make it upper triangular

// so here the demands are considered as undirected

D(k,l) = Dmd_Amt(k,l)*Rt_Unt(k,l)$(Rt_Unt(k,l)>0) + Dmd_Amt(k,l)$(Rt_Unt(k,l)=0);

TOTAL_DEMAND = sum((k,l), D(k,l));

D(k,l)$(ord(k)<ord(l)) = D(k,l) + D(l,k);

D(k,l)$(ord(k)>=ord(l)) = 0;

// preparation for a star

Hub(i) = 0;

Hub(’E’) = 1;

DH(k) = sum(l, D(k,l)) + sum(l, D(l,k));

DH(’E’) = 0;

SCALAR MUX_C cost of a MUX;

MUX_C = 100;

BINARY Variables

m(i) whether to equip a MUX at node #i#

y(i,j) whether to build the arc #ij#;

C.11. STAR MODEL(MULTIPLEXING AND BINARY FLOW DECISION)113

// set all y to be #0#

y.fx(i,j) = 0;

// set all y on half of the exsited links possible to be #1#

y.up(i,j)$(SPAN(i,j) and (ord(i) < ord(j))) = 1;

INTEGER Variables

z(Cbl,i,j) whether to lease carrier #Cbl# in arc #ij#, and how many;

// set all z to be #0#

z.fx(Cbl,i,j) = 0;

// set all z on half of the exsited links possible to be non-zero integer

z.up(Cbl,i,j)$(SPAN(i,j) and (ord(i) < ord(j))) = ceil (TOTAL_DEMAND/Cbl_Cpy(Cbl));

Variables

cost total cost;

BINARY Variable

x(i,j,k) whether a flow for DH #k# passes through arc #ij#;

// set all x to be #0#

x.fx(i,j,k) = 0;

// set all x on exsited links to have upper bound as #1#

x.up(i,j,k)$(SPAN(i,j) and (DH(k) <> 0)) = 1;

Equations

obj define objective function

c1(j,k) demand constraints

c2(i,j) capacity constraints

c3(i,j,k)

c4(i,j,k)

c5(i) ;

obj.. cost =E= sum((Cbl,i,j), z(Cbl,i,j)*Cbl_Prc(i,j,Cbl))

+ sum((i,j), Stp_Cst(i,j)*y(i,j))

+ (sum(i, m(i)) - 1)*MUX_C;

c1(j,k)$(DH(k) <> 0)..

sum(i, x(i,j,k)) - sum(i, x(j,i,k))

=E= -1$(ord(j)=ord(k)) + 0 + 1$(ord(j)=5);

c2(i,j)$(SPAN(i,j) and (ord(i) < ord(j)))..

sum(k, x(i,j,k)*DH(k)) + sum(k, x(j,i,k)*DH(k))

=L= sum(Cbl, z(Cbl,i,j)*Cbl_Cpy(Cbl));

114 APPENDIX C. GAMS PROGRAMS CODE

c3(i,j,k)$(SPAN(i,j) and (ord(i) < ord (j)))..

x(i,j,k) =L= y(i,j);

c4(i,j,k)$(SPAN(i,j) and (ord(i) > ord (j)))..

x(i,j,k) =L= y(j,i);

c5(i).. sum(j, y(i,j)) + sum(j, y(j,i)) =L= m(i)*card(Node) + 1;

Model NetworkDesign /all/ ;

NetworkDesign.holdfixed=1;

Solve NetworkDesign using MIP minimizing cost;

DISPLAY SPAN, D, DH, cost.l, x.l, y.l, m.l, z.l;

C.12 Bus Model

* Network Design Model.gms

* Feb. 22, 2006

* 14th Program: Included Network Data

*

* Fixed Cost, Cable Prices And Cable Capacities And Etc. From SNDLib Instances

* A Bus Network Model; No Equipment At Any Node; No Multiplex

* Hub Node Is Given

* Do Not Consider Demands

*

* x Is Between [0, 1]

* Non-used z And y Is Removed

*

$eolcom //

option iterlim=999999999; // avoid limit on iterations

option reslim=270000; // timelimit for solver in sec.

option optcr=0.0; // gap tolerance

option solprint=OFF; // include solution print in .lst file

option limrow=0; // limit number of rows in .lst file

option limcol=0; // limit number of columns in .lst file

//--

Sets

Node name of cities

C.12. BUS MODEL 115

ALIAS(Node,i)

ALIAS(Node,j)

ALIAS(Node,k)

ALIAS(Node,l);

Set

Cbl types of cables with different capacities;

Parameters

XX(Node) x-bar of a city

YY(Node) y-bar of a city

Cbl_Cpy(Cbl) cable capacities

Cbl_Prc(i,j,Cbl) cable prices on link #ij#

SPAN(i,j) whether the link between #ij# exsits

Pre_Cap(i,j) pre-installed capacity already exsits on #ij#

Pre_Cst(i,j) how much have to pay on the pre-installed capacity

Unt_Rt_Cst(i,j) unit routing cost on #ij#

Stp_Cst(i,j) if not set up, how much should pay to set up

D(k,l) how much is the demand of flow between #kl#

Rt_Unt(k,l) the size of a routing unit on demand #kl#

Dmd_Amt(k,l) how much is the demand of unit between #kl#

TOTAL_DEMAND sum of demands of the entire network

Hub(i) which node is the hub;

$INCLUDE "deutsch.dat";

// choose a hub node

Hub(i) = 0;

Hub(’E’) = 1;

// build a symmetric network

SPAN(i,j)$(ord(i)<ord(j)) = SPAN(i,j) + SPAN(j,i);

SPAN(i,j)$(ord(i)>ord(j)) = SPAN(j,i);

Pre_Cap(i,j)$(ord(i)<ord(j)) = Pre_Cap(i,j) + Pre_Cap(j,i);

Pre_Cap(i,j)$(ord(i)>ord(j)) = Pre_Cap(j,i);

Pre_Cst(i,j)$(ord(i)<ord(j)) = Pre_Cst(i,j) + Pre_Cst(j,i);

116 APPENDIX C. GAMS PROGRAMS CODE

Pre_Cst(i,j)$(ord(i)>ord(j)) = Pre_Cst(j,i);

Unt_Rt_Cst(i,j)$(ord(i)<ord(j)) = Unt_Rt_Cst(i,j) + Unt_Rt_Cst(j,i);

Unt_Rt_Cst(i,j)$(ord(i)>ord(j)) = Unt_Rt_Cst(j,i);

Stp_Cst(i,j)$(ord(i)<ord(j)) = Stp_Cst(i,j) + Stp_Cst(j,i);

Stp_Cst(i,j)$(ord(i)>ord(j)) = Stp_Cst(j,i);

Cbl_Prc(i,j,Cbl)$(ord(i)<ord(j)) = Cbl_Prc(i,j,Cbl) + Cbl_Prc(j,i,Cbl);

Cbl_Prc(i,j,Cbl)$(ord(i)>ord(j)) = Cbl_Prc(j,i,Cbl);

// transfer data to demand matrix D, and make it upper triangular

// so here the demands are considered as undirected

D(k,l) = Dmd_Amt(k,l)*Rt_Unt(k,l)$(Rt_Unt(k,l)>0) + Dmd_Amt(k,l)$(Rt_Unt(k,l)=0);

TOTAL_DEMAND = sum((k,l), D(k,l));

D(k,l)$(ord(k)<ord(l)) = D(k,l) + D(l,k);

D(k,l)$(ord(k)>=ord(l)) = 0;

BINARY Variables

y(i,j) whether to build the arc #ij#;

// set all y to be #0#

y.fx(i,j) = 0;

// set all y on half of the exsited links possible to be #1#

y.up(i,j)$(SPAN(i,j) and (ord(i) < ord(j))) = 1;

Variables

cost total cost

x(i,j,k,l) how much percentage of flow through arc #ij# for demand #kl#;

// set all x to be #0#

x.fx(i,j,k,l) = 0;

// set all x on exsited links to have upper bound as #1#

x.up(i,j,’A’,l)$(SPAN(i,j) and (ord(l) > 1)) = 1;

Equations

obj define objective function

c1(j,l) demand constraints to eliminate sub ring

c2(i,j,k,l)

c3(i,j,k,l)

c4 bus constraint

c5(i) bus constraints;

obj.. cost =E= sum((i,j), Stp_Cst(i,j)*y(i,j));

C.12. BUS MODEL 117

c1(j,l)$(ord(l) > 1)..

sum(i, x(i,j,’A’,l)) - sum(i, x(j,i,’A’,l))

=E= -1$(ord(j)=1) + 0 + 1$(ord(j)=ord(l));

c2(i,j,k,l)$(SPAN(i,j) and (ord(i) < ord (j)))..

x(i,j,k,l) =L= y(i,j);

c3(i,j,k,l)$(SPAN(i,j) and (ord(i) > ord (j)))..

x(i,j,k,l) =L= y(j,i);

c4.. sum((i,j), y(i,j)) =E= card(Node) - 1;

c5(i).. sum(j, y(i,j)) + sum(j, y(j,i)) =L= 2 - Hub(i);

Model NetworkDesign /all/ ;

NetworkDesign.holdfixed=1;

Solve NetworkDesign using MIP minimizing cost;

DISPLAY SPAN, Stp_Cst, cost.l, x.l, y.l;

118 APPENDIX C. GAMS PROGRAMS CODE

Appendix D

C Program Code

A C program "Convert.c" is written to convert the digital maps into GAMS-

readable files.

/* This file converts a digital map to a GAMS_READABLE map. */

/* For version 1.0 instances from SND*Lib */

#include <stdio.h>

char InFile[99999], /* the entire input file */

InFileName[20], /* name of the input file */

OutFileName[20], /* name of the output file */

Word[30], /* current word or number */

LastWord[30], /* last word or number */

RecordWord1[30], /* 1st recorded word or number for link end */

RecordWord2[30]; /* 2nd recorded word or number for link end */

int InFileSize, /* number of characters in the input file */

CurrInFilePlace, /* current scanning place in the input file */

RereadPlace, /* record the place where is needed to be re-read */

WordLength, /* length of the current word */

counter1, /* count how many ’(’ there are */

counter2; /* count how many ’)’ there are */

int NodeNumber, /* number of nodes */

CableNumber; /* number of cables */

FILE *InFilePtr, /* pointer to input file */

OutFilePtr; / pointer to output file */

119

120 APPENDIX D. C PROGRAM CODE

GetFileName(char* name) /* get the input file name */

{

int i;

for (i=0; name[i]!=’\0’; i++)

{

InFileName[i] = name[i];

OutFileName[i] = name[i];

if (i>20) break;

}

InFileName[i]=’.’; OutFileName[i++]=’.’;

InFileName[i]=’s’; OutFileName[i++]=’d’;

InFileName[i]=’l’; OutFileName[i++]=’a’;

InFileName[i]=’n’; OutFileName[i++]=’t’;

InFilePtr = fopen(InFileName, "r");

OutFilePtr = fopen(OutFileName, "w");

ReadInFile();

}

ReadInFile() /* read the input file into the array InFile */

{

char C;

InFileSize = 0;

while(fscanf(InFilePtr, "%c", &C) != -1) InFile[InFileSize++] = C;

}

ReadBlanksAndEOLs() /* starting at the current position in the input file, keep

scanning until get a "real" character */

{

char C;

while (1)

{

C = InFile[CurrInFilePlace];

if (C == ’ ’ || C == ’\n’) CurrInFilePlace++;

else break;

}

}

int GetWord() /* scans one word until hit its end; copy the word to the array

Word; also, return 1 if successful in getting a word, 0 otherwise

121

(failed when reaching the end of file); copy to the last word */

{

char C;

RecordWord(0); /* record the last word */

WordLength = 0;

while (1)

{

/* if reach the end of the file, leave, reporting failure */

if (CurrInFilePlace == InFileSize) return 0;

C = InFile[CurrInFilePlace];

/* if hit the end of the word, leave, otherwise record the

current character in the array Word */

if (C == ’ ’ || C == ’\n’)

{

Word[WordLength] = ’\0’; break;

}

else

{

if (C != ’,’) Word[WordLength++] = C;

CurrInFilePlace++;

if (C == ’(’ || InFile[CurrInFilePlace] == ’)’)

{

Word[WordLength] = ’\0’; break;

}

}

}

return 1;

}

RecordWord(int a) /* to record a word for further use */

{

int i;

switch (a)

{

case 0: for (i=0; i<30 && Word[i] != ’\0’; i++)

LastWord[i] = Word[i]; LastWord[i] = ’\0’; break;

case 1: for (i=0; i<30 && Word[i] != ’\0’; i++)

RecordWord1[i] = Word[i]; RecordWord1[i] = ’\0’; break;

case 2: for (i=0; i<30 && Word[i] != ’\0’; i++)

122 APPENDIX D. C PROGRAM CODE

RecordWord2[i] = Word[i]; RecordWord2[i] = ’\0’; break;

}

}

CountAndCheckEmpty() /* check whether there is a situation like "()" */

{

if (Word[0] == ’(’) counter1++;

if (Word[0] == ’)’ && LastWord[0] != ’(’) counter2++;

if (Word[0] == ’)’ && LastWord[0] == ’(’) counter1--;

}

WriteWord(char* W) /* write a word into the file */

{

fprintf(OutFilePtr, "%s", W);

}

NewCount() /* start a new count of ’(’ and ’)’ */

{

counter1 = 0; counter2 = 0;

}

SetNodes() /* set the SET Node */

{

fprintf(OutFilePtr, "SET \n");

fprintf(OutFilePtr, " Node / ");

/* record the place for reread for XX && YY */

RereadPlace = CurrInFilePlace;

NewCount();

while(1) /* begin to scan which word is a node */

{

ReadBlanksAndEOLs();

if (GetWord())

{

CountAndCheckEmpty();

if (Word[0] != ’(’ && Word[0] != ’)’ && (counter1-counter2) == 1)

{

if (counter1>1) fprintf(OutFilePtr, ", ");

NodeNumber++;

WriteWord(Word);

}

123

if ((counter1-counter2) == 0 && counter1 > 0)

{

fprintf(OutFilePtr, " /; \n\n");

CurrInFilePlace = RereadPlace;

break;

}

}

}

}

SetXXYY() /* set node X and Y position */

{

int i, XXorYY = 0;

NewCount();

while(1)

{

ReadBlanksAndEOLs();

if (GetWord())

{

CountAndCheckEmpty();

if (Word[0] != ’(’ && Word[0] != ’)’ && (counter1-counter2) == 1)

RecordWord(1);

if (Word[0] != ’(’ && Word[0] != ’)’ && (counter1-counter2) == 2)

{

if (XXorYY == 0) fprintf(OutFilePtr, "XX(’");

else fprintf(OutFilePtr, "YY(’");

XXorYY = XXorYY ^ 1;

WriteWord(RecordWord1);

fprintf(OutFilePtr, "’)=");

WriteWord(Word);

fprintf(OutFilePtr, ";\n");

}

}

if ((counter1-counter2) == 0 && counter1 > 0) break;

}

}

SetCableCapacitys() /* set the SET Cbl and the Parameter Cbl_Cpy(Cbl) */

124 APPENDIX D. C PROGRAM CODE

{

int i, counter3 = 0, j = 0; /* count how many kinds of calbes there are */

/* record the place for reread for Link Parameters */

RereadPlace = CurrInFilePlace;

NewCount();

while(1) /* write the SET Cbl */

{

ReadBlanksAndEOLs();

if (GetWord())

{

CountAndCheckEmpty();

if (counter1 == 3 && counter2 == 1) counter3++;

if (counter3 == 2 && Word[0] == ’U’ && Word[1] == ’N’) break;

if (counter3 == 2 && Word[0] != ’U’ && counter1 < 4)

{

fprintf(OutFilePtr, "\nSET \n");

fprintf(OutFilePtr, " Cbl / ");

}

if (counter1 == 3 && Word[0] == ’)’)

{

counter3 = (counter3-1)*0.5;

CableNumber = counter3;

fprintf(OutFilePtr, "Cbl1*Cbl%d /;\n\n", counter3);

counter3 = 0;

}

if (counter1 == 5 && counter2 == 3)

{

counter3++; j = j ^ 1; i = (counter3+1)*0.5;

if (j == 0) /* write the Parameter Cbl_Cpy(Cbl*)*/

{

fprintf(OutFilePtr, "Cbl_Cpy(’Cbl%d’)=", i);

WriteWord(Word);

fprintf(OutFilePtr, ";\n");

}

}

if (counter2 > 3) break;

}

}

}

125

SetLinks()

{

int counter3 = 0; /* mark1 the position in a link line */

int k = 0; /* mark2 which ’(’ 1st or 2nd, in this line */

int i, j = 0;

fprintf(OutFilePtr, "\nSPAN(i,j)=0;\n");

CurrInFilePlace = RereadPlace;

NewCount();

while(1)

{

ReadBlanksAndEOLs();

if (GetWord())

{

CountAndCheckEmpty();

counter3++;

if (Word[0] == ’(’)

{

counter3 = 0;

k = k ^ 1; /* k=0 when in the 1st () and k=1 when in the 2nd () */

}

/* record the two ends of this link */

if (k == 0 && (counter1 - counter2) == 2) RecordWord(counter3);

/* set Parameters SPAN, Pre_Cap, Pre_Cst, Unt_Rt_Cst, Stp_Cst of a link */

if (k == 0 && counter1 > 1 && (counter1 - counter2) == 1)

{

switch (counter3)

{

case 3: fprintf(OutFilePtr, "\nSPAN(’%s’,’%s’)=1;\n", RecordWord1, RecordWord2);

break;

case 4: fprintf(OutFilePtr, "Pre_Cap(’%s’,’%s’)=", RecordWord1, RecordWord2);

break;

case 5: fprintf(OutFilePtr, "Pre_Cst(’%s’,’%s’)=", RecordWord1, RecordWord2);

break;

case 6: fprintf(OutFilePtr, "Unt_Rt_Cst(’%s’,’%s’)=", RecordWord1, RecordWord2);

break;

case 7: fprintf(OutFilePtr, "Stp_Cst(’%s’,’%s’)=", RecordWord1, RecordWord2);

break;

}

126 APPENDIX D. C PROGRAM CODE

if (Word[0] != ’)’)

{

WriteWord(Word);

fprintf(OutFilePtr, ";\n");

}

}

/* set Parameter Cbl_Prc of a link */

if (k == 1 && counter1 > 1 && Word[0] != ’(’ && (counter1 - counter2) == 2)

{

j = j ^ 1; i = counter3*0.5;

if (j == 0)

{

fprintf(OutFilePtr, "Cbl_Prc(’%s’,’%s’,’Cbl%d’)=", RecordWord1, RecordWord2, i);

if (Word[0] != ’)’)

{

WriteWord(Word);

fprintf(OutFilePtr, ";\n");

}

}

}

if ((counter1 - counter2) == 0 && counter1 > 1) break;

}

}

}

SetDemands()

{

int counter3 = 0; /* mark the position in a link line */

int i, j = 0;

NewCount();

while(1)

{

ReadBlanksAndEOLs();

if (GetWord())

{

CountAndCheckEmpty();

counter3++;

if (Word[0] == ’(’) counter3 = 0;

127

/* record the two ends of this link */

if ((counter1 - counter2) == 2) RecordWord(counter3);

/* set Parameters Rt_Unt, Dmd_Amt, Max_PLgth of a demand */

if (counter1 > 1 && (counter1 - counter2) == 1 && counter3 == 4)

fprintf(OutFilePtr, "\nRt_Unt(’%s’,’%s’)=", RecordWord1, RecordWord2);

if (counter1 > 1 && (counter1 - counter2) == 1 && counter3 == 5)

fprintf(OutFilePtr, "Dmd_Amt(’%s’,’%s’)=", RecordWord1, RecordWord2);

if (counter1 > 1 && (counter1 - counter2) == 1 && counter3 == 6 && Word[0] != ’U’)

fprintf(OutFilePtr, "Max_PLgth(’%s’,’%s’)=", RecordWord1, RecordWord2);

if (counter1 > 1 && (counter1 - counter2) == 1 && counter3 != 3 && counter3 < 6

|| counter3 == 6 && Word[0] != ’U’)

{

WriteWord(Word);

fprintf(OutFilePtr, ";\n");

}

if ((counter1 - counter2) == 0 && counter1 > 1) break;

}

}

}

main(int argc, char** argv)

{

GetFileName(argv[1]);

CurrInFilePlace = 0;

NodeNumber = 0;

CableNumber = 0;

/* keep alternating this cycle: scan through blanks and end-of-line

characters, copying them to the output file */

while(CurrInFilePlace < InFileSize)

{

ReadBlanksAndEOLs();

if (GetWord())

{

if (Word[0] == ’N’ && Word[1] == ’O’ && Word[2] == ’D’

&& Word[3] == ’E’ && Word[4] == ’S’)

{

SetNodes();

SetXXYY();

128 APPENDIX D. C PROGRAM CODE

}

if (Word[0] == ’L’ && Word[1] == ’I’ && Word[2] == ’N’

&& Word[3] == ’K’ && Word[4] == ’S’)

{

SetCableCapacitys();

SetLinks();

}

if (Word[0] == ’D’ && Word[1] == ’E’ && Word[2] == ’M’ && Word[3] == ’A’

&& Word[4] == ’N’ && Word[5] == ’D’ && Word[6] == ’S’)

SetDemands();

}

}

fprintf(OutFilePtr, "\nThe End!");

printf("\nNetwork %s is converted to a GAMS readable file.\n\n", argv[1]);

}

