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Abstract

This thesis presents an overview of the general problem of surface estimation
from 2D images. It describes the currently known approaches, and states the
pros and cons of them.

An algorithm proposed by Vogiatzis, using deformable models in a Bayes frame-
work for estimating the surface from a set of images with known intrinsic and
extrinsic parameters, is thoroughly described and reflected upon. The algorithm
is implemented in C++ using OpenGL and the OpenGL Shading Language to
help performance. A number of deviations to the work of Vogiatzis is proposed
and implemented as well.

The implementation is thoroughly tested in both a synthetic environment, where
the ground truth is known, and using several real world datasets. The result is
used to conclude on the algorithm by Vogiatzis, and the proposed deviations to
it.

Several conceptually new proposals are described, some of which has been im-
plemented and evaluated.

keywords: Surface estimation, 3D Reconstruction, Structure from Motion,
Deformable Models, Simulated Annealing, Bayes analysis, OpenGL, GPGPU,
Image Metric, Surface constraints, Mesh Simplification.





Resumé

Denne afhandling præsenterer en gennemgang af det generale problem - over-
flade estimering fra 2D billeder. Den beskriver de nuværende kendte frem-
gangsmåder og beskriver deres fordele og ulemper.

En algoritme foresl̊aet af G. Vogiatzis, hvori deformerbare modeller er brugt i et
Bayesiansk regi for at estimere overfladen fra et set billeder med kendte interne
og externe parameter, er grundigt beskrevet og reflekteret p̊a. Algoritmen er
implementeret i C++ med brug af OpenGL og OpenGL Shading Language, for
at forøge ydelsen. Et antal ændringer fra Vogiatzis’s arbejde er foresl̊aet og
implementeret liges̊a.

Denne implementering er grundigt gennemtestet i b̊ade et syntetisk miljø, hvor
den sande model er kendt, og ved brug af flere dataset fra den virkelige verden.
Resultatet er brugt til at konkludere p̊a Vogiatzis’s algoritme, og de foresl̊aede
ændringer deraf.

Flere konceptuelt nye forslag er beskrevet, hvoraf nogle er implementeret og
evalueret.

Nøgleord: Overflade estimering, 3D rekonstruktion, Strukturer fra bevægelse,
Deformerbare modeller, Simuleret nedkøling, Baysiansk analyse, OpenGL, GPGPU,
Billed sammenlignings mål, Overflade restriktioner, Mesh simplificering.
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C h a p t e r 1

Introduction

Since the childhood of computers, it has always been a dream to make computers
’see’, a task so simple and obvious to the human brain, that we normally neglect
it. From the early science fiction book R.U.R by Karel Capek (1920)[15], that
first introduced the term robot, to the newest filmatization of Isac Assimovs
’I, Robot’ [9], the task of ’seeing’ and acting upon the seen has been regarded
as something ’that will come’ in the not so distant future. However as the
scientific fields of image analysis and artificial intelligence has developed, it has
become more and more clear that there is no simple solution to the problem of
understanding the seen.

One of the more straightforward solutions proposed, is to setup a neural network
for processing the input data, to emulate the human approach, i.e. artificial
intelligence. The current neural networks however has only just reached the
point where they can emulate the behavior of the simple worm C.elegans [46],
thus there is a great deal of work to do, before one can emulate the billion of
neurons working to understand the human visual system in contrary to the 302
neurons in C. elegans, [36].

Instead of letting a neural network process the visual input, one can try to induce
some information in a more mathematical framework. This, also denoted Image
analysis, has largely been a success, as it has been developed to a state where
objects, lines, shapes and much more can be identified in images. But for a robot
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to navigate in a complex world as predicted of the future, a 3D understanding
of its surroundings is unavoidable.

Even though humans base most of their perception of the surroundings on their
sight, many different approaches has been taken, both technologically and bi-
ologically. Fx bats use an advanced bio-sonar to navigate in complete dark-
ness, while ship and plane navigation just would not be the same without the
RADAR first developed in 1904 by Christian Hülsmeyer. Another high preci-
sion approach is the well known laser scanner, creating a cloud of 3D points by
detecting the position of an intersection between an object and a laser beam.
Common for all these approaches are that they are actively interfering with
their subject, by emitting a media. This is in contrary to using visual percep-
tion, where the self reflected or emitted light of objects are measured. This can
limit their use since it is not always feasible to interfere, and it requires the
calibration of both sending and sensing equipment together. Further more this
equipment tends to be more expensive than the common off the shelf digital
cameras needed to percept the world visually. Thus a good surface estimation
method using digital images as input, would surely find its place in the modern
world.

Also in this research field, many approaches exists, however as the task is very
complicated and computational expensive, most approaches only functions un-
der special conditions, and generates 3D information of a various quality. It is
thus mostly limited to the research laboratories around the world, however as
we shall see, it is in rapid development and it is thus only a question of time
before off the shelf digital cameras can be used by common people to bring 3D
digital perception into the every day life.

1.1 Motivation and Objectives

Besides childish desires to build robots, there is also a good deal of arguments
for investing in the development of surface estimation, arguments of a more
economical nature. The future market of robots that can operate together with
humans, in the same environment as humans, is obviously huge. However al-
ready today estimating the surface of objects, can be used for plenty of things.
In the following a couple of the possibilities I see in surface estimation are de-
scribed.

Imagine an online auction showing a 3D model of the furniture they are sell-
ing. One could grab the 3D model and add it to a virtual 3D model of ones
living room, already produced by sending a bunch of digital photos to a server
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performing surface estimation. For architectural purposes, when an old build-
ing from the times before computers are to be modernized. Surface estimation
could aid the development of CAD schematics. Or when walking into a mu-
seum, searching for vases from 2000 B.C. to 1000 B.C. of Greek origin, on a
computer. Every object in the archive has been catalogued and a 3D model
has been reconstructed. From this a virtual museum is constructed from the
search criteria, ready to be explored by the guest. It is fact that 90% of the
objects of the Danish national heritage is stored away in the Danish National
museum, and not available to the public, simply because of lack of space. The
possibilities are endless and only constrained by your imagination.

However before all this is possible, a robust surface estimation setup is needed.
This thesis is a slow walk into the world of surface estimation using digital
images, and (hopefully) a contribution of improvements to one of the most
robust algorithm existing today. For simplicity the rest of this thesis will use
the term surface estimation in stead of the longer surface estimation using digital
images, as it will concentrate on the impact digital images has on this research
field.

The objectives of this thesis are:

• To summarize the field of surface estimation, and collect useful mathe-
matical concepts and methods available today.

• To implement a surface estimation algorithm proposed by Vogiatzis using
graphics hardware for GPGPU1.

• To test the quality and convergence of the implementation under various
conditions.

• To identify, implement, test and discuss some improvements of the basic
algorithm.

1.2 Thesis Overview

This thesis is composed of 4 parts, that naturally leads the reader through the
documentation of the work done. The contents of the 4 parts are as described
below.

1General Purpose computing using Graphics Processing Units.
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Part I, Surface Estimation in general. Presents a survey of the field of
Surface Estimation. Known methods are described and discussed, to-
gether with the necessary framework. Basic mathematical concepts are
presented.

Part II, Basic Algorithm Describes and analysis an algorithm for surface es-
timation presented by Vogiatzis in detail. The algorithm is reflected upon,
and lesser deviations to it is proposed. Documents an implementation of
this algorithm, and discusses uncertainties in Vogiatzis’s description of
the algorithm. Tests the implementation under various conditions, both
synthetical and real, and discusses the results obtained.

Part III, Improvements. Identifies parts of the basic algorithm, that can be
improved. Some proposed improvements are discussed in further detail,
and an implementation is documented. The proposed improvements are
tested, discussed and evaluated.

Part IV, Discussion Discusses ideas for future work, and evaluates and con-
cludes on the work done in this thesis.



Part I

Surface Estimation in
General





C h a p t e r 2

The History of Surface
Estimation

As the name suggests surface estimation is the problem of estimating a surface,
however, as this has various uses, representations and formulations, it also has
many synonyms that all means surface estimation in slightly different interpre-
tations. A short list of some of the more well known synonyms are: surface
reconstruction, stereo vision, multiple view vision, shape from ... (fx shading),
reverse rendering, computer vision and machine vision. In this thesis the term,
surface estimation, will be used as it covers the underlying meaning in these
terms. This chapter briefly surveys the history of the field of surface estima-
tion, and introduces the reader to some of the more well known approaches and
terms.

Stereopsis, the process in visual perception leading to perception of depth, were
first discovered by Charles Wheatstone in 1833. He recognized that because each
eye views the world from slightly different horizontal locations, the position of
the objects in the view also differs a small amount depending on the distance
from the eyes to the object. Until the 60’s when computer resources became
more widely available, stereopsis was mainly used for the well known binocular
views, where the eyes independently are shown two different images of the same
scene taken with a small horizontal disparity corresponding to the distance
between human eyes. An old example of such a card is shown in figure 2.1.
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Figure 2.1: A so-called binocular view of a Manhattan scene from approximately
1910. The image is taken from [4].

In the 60’s digital image analysis was born, in which computers where used to
extract meaningful and useful information from digital images. One very inter-
esting subfield of digital image analysis is to make computers doing stereopsis,
ie. make computers see in depth. The first attempts were brute force searches
along scan lines1 to identify the disparity of pixels. Some of the first are [31, 58],
that uses correlation of windows around the pixels to be matched to find the
best fit. Since then a myriad of different methods based on this basic idea of
stereo vision has been developed, all trying to improve the matching reliability,
or to improve the performance. A good survey of these can be found in [51],
where the methods are described and evaluated.

A different approach was taken by B.K.P. Horn in 1970 in his PhD thesis, where
he proposed using shades of the objects in the scene to recover their shape [35].
This method, opposed to the other only requires one image, however it is not as
robust. Many of these shape from shading methods are described in the survey,
[49], by R. Zhang et al. A fusion of methods using shades and methods using
stereo was proposed by P. Fua and Y. Leclerc in 1993 in [26], where shading is
used in uniform textured areas of the images, where normal stereo would fail.
This method was one of the first to use a deformable model of the surface, which
was optimized using the image data in stereo as well as the shading.

It was first in the 90’s that computational resources became large enough to
accommodate the needs for using more than two images. In the late 90’s a
couple of completely new approaches saw the light, all using a more general
view of the problem of surface estimation. One of the first of these is a method

1The horizontal lines of digital images.
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by Faugeras and Keriven in [24], where a global energy function are minimized
using so-called level sets for representing the surface. Not much later Kutulakos
and Seitz proposed a method where the space is divided into boxes called voxels,
that are removed one by one using a similarity measure of the projection of the
voxel into the images and a measure of local neighborhood of voxels [39].

In the 90s when the gaming industry had been established, graphics hardware
evolved rapidly. Thus it became possible to make fast projections of images unto
a 3D model and back into other images. This new resource was exploited by
G. Turk and P. Lindstrom to simplify 3D models in [56], and to perform image
driven triangulation in [45] by D. Morris and T. Kanade. These methods are
not surface estimation methods in themselves, however the idea to use image
data and 3D models together lead to such a method in 2001 by Li Zhang [60].
In 2003 Vogiatzis proposed to setup the problem in a Bayesian framework using
simulated annealing, [57], and let it control the deformations of the model.

The field of surface estimation is by far exhausted, as one can see by the number
of current articles on the subject. There is therefore a good chance that we,
with the combined efforts of the research and the ever increasing computational
resources, will see methods that will break the laboratory barrier and be a part
of every day life.





C h a p t e r 3

Surface Estimation Basics

As described in the last chapter, surface estimation is a very broad research
field. This chapter will try to identify some of the common basic properties and
define common terms and concepts.

3.1 Definition of the Problem

The task of performing surface estimation in general can be formulated as:

From a set of input images (I1 . . . In) of a scene, to estimate the
surface of the scene.

The following will clarify what is meant by input images, scene and surface

input images. An image in general can be defined as a discretization of the
intensity of the light passing through a plane in space. Mostly the light
passes through a lens beforehand, and the measuring of the light is ar-
ranged in a rectangular matrix, as we will assume here. The intensity
of the light can be measured in different wavelength giving rise to color
images.
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scene. A scene is a limited world, synthetic or real, from which images can be
captured. Associated with the capturing of an image is a camera defining
how the image are captured. In most of the literature, the pinhole camera
model is used, describing a camera using 5 intrinsic parameters for its
calibration and 7 extrinsic parameters describing the view or pose[18].

surface. The surface of a scene is the orientable 2-manifolds defined by the
boundary of the solid objects in it. As we shall see, the surface can be
represented in different ways. These ways are for most surfaces only ap-
proximate, since a surface is stepwise continuous.

In other words the problem of surface estimation is the problem of extracting
3 dimensional information of a scene of which a number of images have been
taken.

3.2 Classification of Methods

In general doing surface estimation can be divided into two steps, that may be
done iteratively. The first is to estimate the cameras capturing the input images,
that is the internal calibration and the viewpoint and pose of the cameras. Many
methods assumes that these parameters are known, which is a fair assumption
since there exists good semi or fully automatic methods for estimating these
parameters, fx [59].

The second step is to estimate the surface using the cameras and the input
images. This is the more difficult step where surface estimation methods differ
the most. One good and traditional classification of the different methods, is
to divide them into 3 main groups depending on the number of input images.
This gives the following classification:

Mono vision using knowledge of light distribution (shape from shading) and
empiric knowledge of objects, textures etc. Thus a single input image I is
used to estimate the surface. These methods generally produce low quality
results, as they are build on empiric knowledge of the scene, and the light
distribution in it, and therefore lack actual stereo information.

Stereo vision emulating the human stereopsis by estimating disparities be-
tween objects, features or pixels in two input images, commonly denoted
by the left and right input image, Il and Ir. These methods are fast since
only two images are compared, however they can obviously not estimate
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the full surface of scenes from the two input images. Most of these meth-
ods are based on the two cameras aligned as the human eyes or the images
being rectified beforehand to emulate this.

Multiple view vision taking a more general approach to the problem, by us-
ing the mutual information given in a set of n input images, (I1 . . . In).
In many cases n can be 2, and thus being used for stereo vision, however
most of these methods does not restrict the cameras to be aligned in a
specific way.

Unless extra information is given or empiric knowledge of the objects in the
scene are used, calibration from the input images are only given up to scale,
which is called an euclidian reconstruction. Other methods neglects the internal
calibration of the cameras which results in an projective reconstruction, since the
intrinsic parameters define the projective nature of the camera. Similar images
captured in an orthogonal view can be used for an orthogonal reconstruction.
The reconstructions can however easily be transform into a metric reconstruction
as a post processing of the result, if the information lacking for the surface
estimation method is obtained in other ways, fx using physical measurements.

The next two chapters will briefly describe some of the more important concepts
and methods in the last two of these groups. The group only using a single image
is not discussed further in this thesis, however a good example can be found in
[35].

3.3 Common Assumptions

As it is with other research fields, most methods solving the surface estimation
problem assumes that the world is a rather pleasant place to be. As one might
have notices, the definition of surface estimation used does not require any
temporal constraints of the capturing of the images. Thus the objects in the
scene may not be in the same position in the input images, and may even have
different shapes as it is deforming. A good example of this is the individual
frames of a movie showing a human face talking. Most, but not all methods,
assumes that the scene is static or rigid. A relaxation of this assumption is
to assume that the images are taken in a known order rapidly following each
other such that the intermediate movement and deformation is small, and can
be measured together with the surface. These methods are aimed for the images
captured by video cameras, as they have this behavior, see fx [17, 47]. This of
course adds a great deal of complexity to the method.
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Another common assumption is that the surface material reflects light in a com-
plete diffuse, also called the Lambertian assumption. The problem arising if this
is not the case, is that images may not perceive the same color information for
the same point in space, which may lead to difficulties when searching for cor-
respondences in the images. This mostly occurs when the objects have specular
(shiny) surfaces producing specularities in the images. The problem can be
avoided using a completely diffuse light source, which makes the assumption
viable, but at the same time constraints the use of the method.

Even if the scene is assumed to be static and Lambertian, another lighting
problem can occur. This is due to different lighting conditions when and where
the images are captured, which can cause a modern camera to auto-adjust for
lighting. The lighting conditions can be described as an affine transformation
in color space [16]. This can be accounted for by normalizing them to the same
mean and deviation, which some methods assumes. This can easily be done
beforehand, however it removes some of the information in the images.

The last and seldom mentioned assumption described here is that the objects
in the scene are opaque, and that the air medium is completely transparent.
It would impose great complications, to model fog properties and reflections in
semi transparent materials, which makes the assumption understandable.
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Stereo Vision

Even though it has been shown that computers can deduct some depth informa-
tion from a single image [35], and that humans to some extend can use empiric
knowledge of the world to estimate the depth to objects using only a single view
[11], it is necessary to have at least two views of a scene to obtain a robust
surface estimation. This chapter will describe this group of methods, in which
the methods are based on two and only two images.

Two different approaches to do stereo vision is, dense stereo matching and sparse
feature matching. The first estimates the depth of every pixel in one of the input
images, and is thus dense. The other identifies strong features in both images,
finds likely matches, and calculates the depth of these points. Common for the
two approaches is that they find corresponding points in the two images and
make use of the geometry of the two cameras to calculate the depth of the point,
usually denoted the camera geometry or the epipolar geometry of the setup. In
the following this geometric dependency will be explained, before the two groups
of stereo vision are described.
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Figure 4.1: The epipolar geometry in a stereo setup

4.1 Epipolar Geometry

From figure 4.1, it can be seen that there is a clear geometrical relation between
a point, p, in space and the projected points, pl and pr, in the two images, Il

and Ir. The two images center of projection, cl and cr, together with p forms
a plane denoted the epipolar plane. The interesting observation is that if only
pl is known, then p must be on the line connecting cl and pl and therefore pr

must be on the intersection between the epipolar plane and the image plane of
Ir. This line, the epipolar line (the blue line), is formed by the projection of
cl in Ir, the epipole cr, and the projection of an arbitrary point along the line
from cl and pl. This linear relationship between the points in the images can be
written

pt
lFpr = 0 (4.1)

, where the matrix F is called the fundamental matrix, and is a 3×3 matrix. To
describe the relation using F , pl and pr must be written as projective coordinates
or homogeneous coordinates, adding an extra projective dimension. As F is 3×3
it has 9 parameters, however it only has 7 degrees of freedom, as it is constrained
to have rank 2, that is det(F ) = 0 and only up to scale. The fundamental
matrix is independent to the contents of the scene, however it can be estimated
using corresponding image coordinates of the same points in space. One elegant
method is to use the 8 point algorithm as described in [33].

The fundamental geometry only describes the relationship between the image
planes of the two cameras, and thus does not include the internal calibration
of the cameras. This can be seen from the number of freedom degrees in F , as
it corresponds to the 7 external parameters describing the view and pose of a
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camera. Thus if nothing else is known, the left camera can be placed at origo of
a world coordinate system, which then defines the 7 external parameters of the
right camera using F . The essential matrix, however defines both the external
and internal relationship between the cameras. As a transformation between the
image plane, and the actual pixels can be described using a so-called calibration
matrix K, the essential matrix E is defined as:

E = K−1
l FKr (4.2)

4.2 Feature Matching

Using the epipolar geometry of a stereo setup, one can calculate points in space
from corresponding points in images. Thus if one can identify such pairs in the
images one can obtain a point cloud of the scene. In general this can be done
by finding a set of features in the images and matching them, hence the term
feature matching. A feature is something that can easily be identified in the
images, fx because it has strong gradients or because it has a unique texture.
One good and robust feature detector is the Harris corner detector [32], that
relies on the greatest local gradient. An example of using it can be seen in figure
4.2.
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(c) Identified features

Figure 4.2: The Harris corner detector used on a cactus being upside down for
reasons being clarified in Chapter 11.

When features in the two input images are collected, they are matched to find
the pairs. If the epipolar geometry is known, only the matches that lies on or
close to the epipolar line needs to be searched, otherwise a brute force search
is needed. Evaluating a match is usually done by comparing a so-called feature
descriptor. This descriptor can either be a controlled sampling in the area of
the image around the feature, or some means of describing it. In large images
the number of features can be very high. It is important to limit the set of
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features, as every feature must be matched to every other feature, which can be
computationally expensive and error prone. Therefore a lot of work has been
put into making the matching as reliable and fast as possible. An example of
the inventiveness of the field is a method by M. Brown et al [14] using Gausian
image pyramids to sample a gradient oriented normalized window from which 3
wavelet coordinates are extracted and compared to other descriptors using the
summed square error. To further avoid errors only the matches of which the
best match is substantially larger than the second best are trusted.

When matching point pairs have been obtained the point cloud can be calculated
directly using the epipolar geometry. If this is not available then it can be
estimated first using the 8 point algorithm. A single wrong match, however,
could ruin such an estimation and render the whole result useless. This can
be accounted for using the RANSAC1 algorithm, see [25], iteratively estimating
the geometry using only a subset of the point pairs. After a number of steps the
geometry best capturing the point pairs are used to divide the pairs into good
pairs and outliers (wrong matches). The inliers can then be used to estimate the
geometry more accurately. One robust method using a variant of this method
can be found in [59].

4.2.1 Mosaicing

This framework, for finding features and matching them to find corresponding
pairs, are not only used for surface estimation. The task of stitching overlapping
images together, also called mosaicing, uses the same approach. Instead of
matching for the best 3D point, the best match, when projecting the images
onto some common surface is used. When projecting all images this surface
thus becomes the blended macro image. Stereo vision, and surface estimation
in general, can be seen as a generalized mosaicing technique, where not only the
matching is searched for, but also the surface to project the images on. More
information on mosaicing can be found in [16].

4.2.2 Delaunay Triangulation

The result of a feature matching is a point cloud of the surface of the scene. A
point cloud, however, does not represent the surface of the scene, as it does not
define the connectivity between the points. It is ambiguous, since every point in
the cloud can be thought of as a single floating object in space, and not a part of

1RANdom SAmple Consensus.
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a single or a few objects. To obtain a real representation one can triangulate the
point cloud, fx using Delaunay triangulation. This may not result in the correct
connectivity, however Morris and Kanade proposed that the initial triangulation
could be refined by iteratively evaluating the reprojection of the images onto the
mesh, while the connectivity is changed [45]. Thus both the image data, and
the point cloud would be used in the surface estimation giving a photorealistic
result.

4.3 Dense Stereo Matching

As opposed to feature matching, the dense stereo matching methods do not
attempt to find the best points to match. Instead every pixel is matched to
all pixels along the corresponding epipolar line in the other image. Therefore
dense stereo methods requires that the cameras are calibrated beforehand. To
increase performance it is normally required that the images are aligned so that
the epipolar lines are simply scan lines over the input images. If not, then
one or both of the images can be transformed to obtain this, which is called a
rectification of the image.

The result of the match is a disparity map describing the disparity of each pixel
and the best match found in the other image. The disparity map can either be
in pixel precision or in subpixel precision, if the matching method supports it.
Using the epipolar geometry the disparity map can be transformed to a depth
field, which for every pixel contains the estimated depth to the object. The
depth field representation of the surface is normally only regarded as 2 1

2D, as
they can not describe anything behind the surface covering the image. It can
however be transformed to fx a triangular mesh, which can be post processed
using techniques like in feature matching or a mesh simplification technique like
[56].

There exists a wide range of methods for doing the actual matching. Some
methods take the connectivity into consideration such that two neighboring
pixels have disparities relatively close to each other, while other smoothes the
disparity map, to remove outliers. Most methods use some means of a window
that is folded over the corresponding scan lines. A good survey and comparison
of the methods available can be found in [51].
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4.3.1 Depth Resolution

When designing stereo setups for doing dense stereo matching or stereo vision in
general, some consideration must be put into the desired depth resolution. It is
obvious that the depth resolution increases together with the image resolutions
as it allows a more precise measurements. A good rule to obtain satisfactory
results is that the ratio baseline

depth stays within [ 13 . . . 3],[19].

b

d

Figure 4.3: Illustration of the baseline and depth in a stereo setup. setup.

The baseline depth ratio is illustrated in figure 4.3, which gives an intuitive
understanding of this rule. If the object is too far away then the differences in
the two images are too small to estimate details in the object. On the other
hand, if the object is too close, then it either falls out of the field of view of the
cameras, or too much occlusion occurs. Further more materials tends to reflect
the same amount of light in viewing angles closer related, thus making matching
easier. It is thus a weighing between the achievable depth quality, and matching
reliability.
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Multiple View Vision

As the last chapter clarified, stereo vision can be used to estimate the depth
from the two cameras to the object in the scene. From this a 3D shell of the
object viewed from the cameras can be produced. It can not however in itself be
used to reconstruct a whole object as viewed from every angle. Further more the
depth resolution for a single stereo rig tends to be small. The direct approach
to accommodate for this is of course to increase the amount and distribution of
input data, which in this case means adding more input images.

Using more than two input images gives rise to a new problem that can be
approached in a number of different ways. This chapter describes some of the
more popular and interesting methods, that have been proposed to solve the
multiple image surface estimation problem.

5.1 Dense stereo matching and stitching

While stereo vision can be used to estimate the distance from the cameras to the
surface, it can not in itself reconstruct the full scene. The shells of the surface
produced by the stereo vision, can however be stitched together to recover the
full surface. Thus a simple multiple view vision method is to use stereo vision
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on pairs of the input images, and stitch the result together, see fx [44]. This
method however does not use the global mutual information given in more than
two images. Where the shells overlap some averaging can be done, however it is
not as strong as a real multiple view surface estimation method taking all views
into account at the same time.

Using dense stereo matching for multiple view vision either requires that the
cameras are calibrated beforehand, or that the cameras are naturally paired
with a known mutual calibration. The later can use the best fit when stitching
the shells together to calculate the outer calibration of the cameras.

5.2 Multiple View Geometry

As with the two camera case some geometrical considerations can be used to
calculate the 3D structure from known matches in the images. The fundamental
matrix used to describe the relation between two views is sometimes known as
the bifocal tensor. The idea can be extended to three and four views to obtain
the trifocal tensor and the quadrifocal tensor. Having m views can be described
using a m-focal tensor, however as we shall see it makes less sense describing
the camera geometry this way, when the number of views goes up.

As the two view geometry showed, the image coordinates of the projections
of a point in space M , is all that is needed to calculate it. In the case of
three cameras and three projections of M , more information is added, and thus
one does not need all information from all cameras to calculate M . It can be
shown ([27]) that only 4 parameters are needed, for the two view case it is the
4 coordinates of the projections, for the three view case it is two coordinates
of one of the views and one coordinate in each of the other views. Thus using
more than 4 cameras makes the problem over constrained, which would result
in not all cameras being used directly. It is of course waste of information only
using 4 parameters when calculating M . The next sections describe different
approaches to make use of the extra information.

5.2.1 The Factorization Method

If the image coordinates are subject to noise, the extra information given using
multiple views can be used to estimate M with more accuracy. This elegant
method called factorization, is somehow an extension to the idea of the 8 point
algorithm, that estimates the multiple view equivalent to fundamental matrices.
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It was first described by Tomasi and Kanade in [54], for orthogonal views of the
scene, but later rewritten by P. Sturm and B. Triggs in [53], to the projective
case as described here.

The idea is that having m cameras defined by their unknown camera matrices
P1 . . . Pm and the image coordinates of n 3D points M1 . . .Mn one can describe
the projection of each point into each camera by

ζj
i mj

i = PiM
j , i = 1 . . . m, j = 1 . . . n (5.1)

, where ζj
i is the projective depth of point j in camera i. These n×m equations

can be stacked into matrix form giving
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In this form only the measured image points in W are known. If however we
assume that the ζ’s are known, then W is known and can be decomposed into
UDV T using singular value decomposition. Using the arguments of [53], these
can be used to calculate P and S. If on the other hand P and S are known,
then the ζ’s can be calculated. The factorization method is thus to initialize
the ζ’s to one, and iteratively calculate P , S and the ζ’s until convergence.

The result using the factorization method is good, however there is some draw-
backs. As with the two view case, the result is a point cloud of non related
points and must be triangulated in some way before a real 3D model is ob-
tained. Further more, the feature matching is error prone, and occlusion in the
images makes some of the information unreliable. The problem can be addressed
to make a more robust factorization, an example of such research can be found
in [8].

5.2.2 Using Bundle Adjustment

A general approach to use all information is the so-called bundle adjustment
first discussed by D. Brown in 1976, [14]. The name of this method comes from
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the underlying idea which involves adjusting the bundle of rays between each
camera center and the set of 3D points. It is thus a method for calculating both
the 3D points and the geometry between the cameras at the same time. This
problem is approached using a minimization scheme to minimize the squared
geometric error between all image points and the projected world points. Thus
if reusing the notation in the last section, the goal is to minimize

min
Pi,Mj

m∑

i

n∑

j

||mj
i − PiM

j ||2. (5.3)

Minimizing such a problem can be a huge task, even using a relatively few
points and cameras. Fx if having 10 cameras and 100 world points corresponds
to a minimization problem solving for above 300 variables concurrently. The
nature of the problem, however, allows for a much faster minimization. Each
residual in the problem, ie. ||mj

i − PiM
j ||2, only depends on a single point and

a single view. This can be exploited, to reduce the computational efforts used
to minimize the problem considerably. The actual minimization can be done
using any minimization technique, however to avoid getting stuck in a minima
the Levenberg-Marquardt minimization can be used. Even though the problem
has been reduced, it still requires an initial guess, which makes it a suitable
choice for polishing the solution of other faster methods. The image points used
in this problem should be of high quality, or at least be uniformly distributed
around the correct image points.

One of the advantages of using this method, is its generality. It can thus handle
features not being visible in all views by leaving it out of the minimization
problem. It can not, however, in its basic form discard outliers, to avoid them.
A new and thorough description of bundle adjustment can be found in [55].

5.2.3 Using Lines and Curves

Points are not the only useful feature detectable in an image. Some research
has been done in extending the theory to using lines, patches and curves of
contours in the images. These primitives are larger, which makes them easier
to match correctly. Further more they do not only represent a single point in
space, and thus contains information on the connectivity of the surface as well.
It is however rather difficult identifying such primitives in a deterministic way.
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5.3 Space Carving

A conceptually different method is the so-called space carving method first pro-
posed by Kutulakos in [39] and based on the idea of voxel coloring in [52]. The
idea is that if a part of space is a part of the surface of the scene, then it should
be apparent in the images of it. Thus if a part of space in one image appear
to be white, and in another black, then it is probably not reflecting light and
therefore not opaque and part of the surface. To estimate the surface, an initial
block of space, in which the scene is assumed to be, is divided into a number of
voxels1. An iterative algorithm attempts to classify the not occluded pixels as
being either empty, partial full or full. The classification is of course based on the
image data, but can also use the local classification of the voxel neighborhood,
and shading etc.

When no more pixels are removed, then the partial full pixels can be subdivided
and carved again to achieve greater model resolution. An example of such an
estimated surface can be seen in 5.3, where the voxels are colored and painted
as small dots. In theory the interior of such a model is solid, ie. full of non-
empty voxels. The voxel model however shows some holes and is thus not solid.
The direct space carving method only evaluates a voxel once, thus if a voxel
has been erroneous labelled empty, then it will remain empty. When the voxels
behind the empty voxel are evaluated, they will not match the images data and
can thus risk being labelled empty as well. Thus a single voxel can extent into
the model making large wholes. Methods for avoiding this includes using the
neighborhood of voxels in the evaluation.

The drawback of the space carving algorithm is the limited spatial resolution
achieved compared to the needed voxel space. Thus two 1024 × 1024 images
requires a 1024×1024×1024 voxel space to use the full resolution of the images.

5.4 Level Set Method Using PDE

The level set method is a time varying PDE2 formulation of the reconstruction
problem (see [37, 50]). The representation of the surface is the zero crossing of a
4D shape in the 4th dimension, a so-called level set. The 3D shape is stored as
a 3D scalar field, like the voxel space, where each voxel has a scalar associated
to it. Thus all positive voxels are defined as being outside the object and all the
negative voxels inside the object. Unlike the binary voxel space used in voxel

1A voxel is the 3-dimensional equivalent to a pixel
2Partial Differential Equation
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Figure 5.1: One of the results of space carving by Broadhurst, Drummond and
Cipolla in [6].

coloring, the surface is not constrained to lie on actual voxels. To save space not
every voxel is stored, but instead the voxels of interest are stored dynamically,
that is the voxels near the current surface are stored. The real advantage using
level sets is that they can easily handle topological changes, without any further
complications.

Using level sets the surface is estimated by evaluating the gradient of some cost
function on the surface, and let the level set representation of the surface descent
down this gradient, until it is stabilized.

5.5 Using Deformable Models

Many of the methods known for estimating a surface are using some subtle de-
pendency of the information given in the input images to induce 3D information.
This method is a more intuitive approach that produces a photorealistic surface,
by simply deforming a model of the scene until it resembles the input images
and or data. The method can be compared to a child deforming a block of clay,
by simultaneously evaluating it to some memory of how the object should look
like. The task of implementing such a deformation is not simple and can be
done in many ways. In [60] L. Zhang proposes using an object based gradient
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of the image cost, while Vogiatzis in [57] takes a more random approach. When
the model is deformed it is to be evaluated using the given input data. If the
data consists of images, then Vogiatzis proposed that they are projected onto
the model, back into each other and compared using a generic image metric. If
the input data is geometric primitives, then the spatial error can be calculated.

This approach to do surface estimation is very general. The model in itself can
be represented in many different ways of which a few are a triangular mesh,
NURBS3, a voxel space and level sets. The last of these model representations
indicates that the level set method described earlier is in fact of this type.

5.6 Frontier Points

A Completely novel method is proposed by Vogiatzis in [30], where frontier
points are exploited to recover the illumination conditions and material proper-
ties. This, usually unknown information of the scene, can later be used together
with the input images to make a better estimation of the surface, see fx [34]. It
is thus one of the few methods relaxing the Lambertian assumption successfully.

A frontier point is defined, with respect to two cameras, as a point on the
surface of an object, that is tangential to the epipolar plane between the two
cameras and the point. This point has the interesting property that the normal
to the surface at that point is known as it is perpendicular to the epipolar plane.
Frontier points in an image pair can be obtained by extracting the contour of
the surface as seen in the images, and reproject it to find the intersection points
in which the projections share the same normal.

The results using frontier points to calculate material and lighting and later use
this to reconstruct the surface is astonishing. The detail level in the estimated
surface is claimed to be comparable (if not better) to that of a laser scanner, see
[30]. The method however requires that both the viewpoints and the lighting
conditions are changed systematically giving K×M input images for K different
lighting conditions and M camera viewpoints. The amount of computation
involved is denoted as about 5 hours using a high end PC, in [34].

3Non-Uniform Rational B-Spline. A common way to specify parametric curves and sur-
faces.
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Figure 5.2: One of the original (left) images and the result (right) using frontier
points, taken from [30].

5.7 Minimization Using Graph Cuts

A surprising approach to solve the surface estimation problem is to transform it
into a well known problem in graph theory. In [22] V. Kolmogorov shows that a
certain group of energy functions can be minimized by solving a maximum graph
cut problem. This problem can be shown to be the same as solving the minimum
flow problem of a graph, which is a well research method in graph theory. To
use this approach in surface estimation, the problem must be formulated as a
special energy function. The basic idea is to assign vertices to a cartesian grid in
a volume of interest in the space. Locally a cost is assigned to every composition
of triangles defining the connectivity of the local vertices. This cost is calculated
using the input images together with a smoothness term. The edge in the graph
going from one vertex to another is set to be some cost of letting that cut be a
part of the surface. This defines a large graph over the grid of vertices, in which
the minimum cut is sought. Vogiatzis showed the use of this in practice in [29].
One interesting property of using a graph algorithm solving such a problem is
that it is deterministic. Thus the result of the algorithm is the global minima
of the energy function. The downside is that setting up and solving the graph
problem can be relatively slow.
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Discussion

The last chapters have shown a part of the huge field of surface estimation.
Most of this research has been done in the last decade or so, and the field shows
no sign of stopping now. We are getting closer to methods that can be used for
practically purposes in real life.

One of the more promising method is using deformable models. The deforma-
tions of the model can be performed and controlled in many ways, which makes
the method very generic. The fact that graphics hardware offer an superior
and ever increasing performance, when projecting and evaluating images and
meshes, only makes the choice even more attracting. Therefore this method has
been chosen as the main focus of the rest of this thesis. In particular one very
interesting method by George Vogiatzis is considered [57].
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The Algorithm

As denoted in the last part, the rest of this thesis will concentrate on a specific
approach to do surface estimation, i.e. using deformable models on rigid bodies
under constant lighting conditions. This part will describe, document and test
the algorithm presented by Vogiatzis in [57], denoted as the basic algorithm.
The algorithm will be reflected upon and used as the base for a discussion on
surface estimation using deformable models. This is used to propose deviations
to the basic algorithm of which some will evaluated using the basic algorithm
as a foundation.

This chapter will introduce the algorithm in its most simple form, and then
gradually add deeper insight, up until the next chapter that will describe it all
in a Bayes framework using simulated annealing. Next the design of a mesh
representing the surface will be described in Chapter 9, followed by a docu-
mentation of the implementation of the algorithm in Chapter 10. At this point
Chapter 11 introduces the datasets used in this thesis, which is used to test and
evaluate the basic algorithm and some deviation to it in Chapter 12. Finally
the results are discussed and a conclusion on the basic algorithm is made in
Chapter 13.



34 The Algorithm

7.1 Foundation

The basic idea that makes the foundation for the algorithm is the general ob-
servation that:

Having the correct surface of some object, and a set of input
images and the corresponding cameras thereof.
Then projecting an arbitrary input image onto the surface and
back into an arbitrary (possibly the associated) camera, will
match the image of that camera in the domain of the image
being visible from the viewpoints of both cameras.
If on the other hand, the projection does not result in a perfect
match, then the surface is not correct. Thus a measure of the
’correctness’ of a surface, with respect to a set of input images,
can be defined as the how well, the surface reprojects the images
into each other.

This is an idealistic presentation of the fundamental idea, since it assumes a
number of idealistic assumptions of the world. These assumptions and a short
explanation is listed in the following.

1. The object is Lambertian. Thus every point on the surface radiates light
of the same color and intensity in all directions, and is thus perceived as
having the same color in the input images in which it is visible.

2. The input images must be of infinite resolution. If the images were a
quantification of the captured light rays, then the match may fail due to
the pixels not being projected perfectly into each other.

3. The images are noiseless and thus resembles the scene correctly as seen
from their viewpoint.

4. The projection1 of images onto the surface and the reprojection into a
camera are assumed to be perfect.

5. Lighting conditions are constant.

6. The space outside the object are completely transparent and space inside
the object is completely opaque.

7. The images are taken at the same time, or the scene is static.

1It should be noted that the term project is used in a mathematical sense, and not as light
would normally be projected as from a projector. In other words the perceived color and
intensity of a surface point is invariant to the normal to the surface at that point.



7.2 Formulation 35

Figure 7.1: Figure showing the famous Stanford bunny textured with a brick
texture, and three cameras from different viewpoints. The rightmost camera
is projecting its image onto the bunny, and the two other cameras show their
perception of the scene. The breast and part of the head is not visible from the
rightmost viewpoint, and thus the reprojections sees these areas as occluded
(red and yellow).

These assumption can somewhat be relaxed since the underlying idea still holds
without them. However when doing so, it is only possible to estimate the surface
up to a certain quality. Thus the objects can be a little non-Lambertian, final
resolution images with a relatively small noise can be used, reprojections can
contain a small error, the space can be a little opaque (like air) and finally the
object can be a little different in all the input images. An illustration of a scene
with 3 cameras can be seen in figure 7.1.

7.2 Formulation

As described in section 5.5, this method deforms a current model, M , by it-
eratively evaluating the model and discarding bad deformations. Using the
measurement of correctness as the evaluation of the model, the problem can be
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expressed as a minimization problem.

The evaluation of the model can be done in two different ways depending on
the viewpoint of the algorithm, an object centered and an image centered. If
an object centered algorithm is used, a number of points are sampled uniformly
over the model. These points are projected into the images fetching colors,
which are compared using some similarity measure. This is the approach used
in [26, 60]. The image centered approach on the other hand projects points
sampled in the image (the pixels) and projects these onto the model, and back
into the other images where they are compared using a so-called image metric.
By letting the number of points sampled go to infinity, the two viewpoints can
be described as either integrating a cost function over the surface, or over the
images.

The goal of the algorithm is a photorealistic surface estimation, thus it is more
natural to use an image centered approach, which is what is done in the algo-
rithm by Vogiatzis. When sampling points on the surface, the density of the
samples projected into the images will rarely be uniform. Therefore some parts
of the surface is weighed harder in the evaluation, which is not ’fair’ as the input
data is in the image domain. An example of this is a surface patch oblique with
respect to the frustum of a camera. It is only barely visibly in the camera, and
thus should be weighed lower than a surface patch parallel to the image plane.
In [60] Zhang and Seitz accounts for some of this by classifying primitives of
their surface into three classes: oblique, far-away and typical. It would be possi-
ble, but computational expensive to adjust the matching error of each sampled
point with respect to each camera using the surface normal and the distance to
the cameras.

The image centered approach is chosen in this thesis, following the ideas of
Vogiatzis. Having an image metric one can now formulate an objective function,
which should be minimized. This is done by iteratively deforming a model of the
surface of the scene, hence the term deformable model. For each iteration the
quality of the model is evaluated using the objective function, and a decision
on keeping the last deformation is based hereon. At a specific step in the
minimization the model is thus the current estimation of the surface.

7.2.1 Algorithm

The minimization of this objective function can now be formulated into a very
simple algorithm:
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Algorithm 1 Basic Algorithm I
while converging do

deform the model
evaluate objective function
if better than not deformed model then

keep the deformed model
else

discard the new model
end if

end while

7.2.2 Mathematical Formulation of the Problem

To formulate the problem mathematically, the notation of Pons in [47] are used.
The surface is therefore denoted

S ⊂ R3 (7.1)

, the set of images I1 . . . In, and the projection from world coordinates to image
i,

Πi : R3 → R2. (7.2)

The later also exists in an inverse version for reprojecting the image onto the
surface, however it is dependent on the surface, thus it is denoted Π−1

i,S . The
part of the surface, S, visible in image i is denoted Si, and thus the reprojection
can be described as a function from S projected into Ii to Si,

Π−1
i,S : Πi(S) → Si (7.3)

The input images has a number of channels denoted by d, which is normally
either 1 for gray scale images, 3 for color images or 4 for color images with an
alpha channel. Thus an image can be described as the function

Ii : Ωi ⊂ R2 → Rd (7.4)

, where Ωi is the part of R2 space that image i describes.
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Using equation 7.1, 7.2, 7.3 and 7.4 the projection of image i, Ii onto the surface,
S and back into image j, Ij can be described by a simple function

Ij ◦Πj ◦Π−1
i,S : Ωi ∩Πi(Sj) → Rd (7.5)

Thus from an image, i, and the surface, S, one can reconstruct the part of
another image, j, that is also visible in the first image. Since Ii is only defined
for Ωi, and the reprojection of image j is only defined for Πi(Sj), the domain
of the reconstruction in image i is only defined for

Πi(Sj) ∩ Ωi (7.6)

When the reprojection is defined we introduce a generic image metric M , that
compares the dissimilarity of two images into a single scalar

M : (Ii, Ij) → R (7.7)

Using equation 7.7, we can now introduce the final image matching term, I, of
the surface, that compares all the ordered pairs of images (i, j) using the image
metric M in the domain visible in both the original image and the reprojected
image.

I(S) =
∑

i

∑

j 6=i

M |Πi(Sj)∩Ωi
(Ii, Ij ◦Πj ◦Π−1

i,S) (7.8)

Thus the surface estimation problem can then be expressed as

min
S
I(S) (7.9)

Nothing is assumed of the representation of the surface, S. If this representation
used a fixed number of variables, then the minimization could be done using
the Levenberg-Marquardt method like in section 5.2.2. It would however be
beneficial to exploit some of the special properties of this problem, which is
what will be done here.
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7.3 Image Similarity Measure

Having two images Ii and Ik we wish to be able to calculate a single scalar
value describing how similar these two images are. It is also called an image
metric, since it allows the measuring of the distance between images, like in a
metric space. A simple and widely used method is the summed squared error,
SSE, or the closely related mean squared error, MSE, the later being simply a
normalized version of the first. SSE is defined as:

I(Ii, Ik) =
∑
u,v

(Ii(u, v)− Ik(u, v))2 (7.10)

When applied to two similar images, SSE will give a low image cost, while ap-
plied to two different images will give a really large cost because of the quadratic
term. This is a desirable property, since small errors are avoidable because of
numerical errors and noise and thus should be neglectable in the big picture.

In the real world captured images may have been exposed to different lighting
conditions, and or an automatic gain control. The result of this is that images
may differ globally, giving rise to high errors even when the ground truth surface
is used. It may thus be possible for the model to find a not true surface having
a lower image cost. The differences can be modelled as an affine transform
between the images color space, see [27].

Vogiatzis suggests normalizing the images beforehand to account for these global
differences. He then assumes that each pixel intensity in each image Ii is nor-
mally and independently distributed about the corresponding image intensity in
the image reconstructed using projections. Using this he defines the similarity
measure to be SSE. It may however be interesting to use the correlation of the
data, CORR, instead. CORR is a similarity measure which is independent of
the mean and the variance of the data. This would thus rule out the affine trans-
formation in color space, which could then be neglected. The sample correlation
is given as.

∑
(xi − x̄)(yi − ȳ)√

(
∑

(xi − x̄)2
∑

(yi − ȳ)2)
(7.11)

The downside using correlation is that it requires at least two inspections of
every variable, one to calculate the mean and one to calculate the upper term
of equation 7.11.
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The two similarity measures described up till now, however, are not the only
way to compare two datasets. One could use mutual information in the two
images, by regarding them as dependent populations X and Y , and calculating

I(Ii, Ik) = I(X; Y ) =
∑

y∈Y

∑

x∈X

p(x, y) log
p(x, y)

f(x)g(x)
(7.12)

One way to do this is to estimate the entropy, and the joint entropy of the
images, which can be done using the Parzen window method as in the algorithm
by Pons, see [47]. If these are estimated well, that is not only estimated as a
first order entropy, then this image metric would not only give a measure of
how close each pixel are to each other, but also use the relationship between the
pixels in the image. This metric however is relatively complex and is therefore
not considered further here.

7.3.1 The Occlusion Problem

The image metrics discussed here are simply some means to compare data. Thus
the input needs not to be a full image. The pixels assumed to be occluded in ei-
ther Ii or Ik, that is W/Πi(Sk)∩Ωi, can therefore be left out of the comparisons.
This is both good and bad. It ensures that only relevant data is compared, how-
ever, it also enables the model to fool the objective function. The reason for this
is that the model can deform in such a way that areas of the input images giving
high image cost becomes occluded and thus not counted in. The effect of this is
like a so-called lenticular print, that shows two different images if viewed from
two different angels, see figure 7.2. The result is that all pixels are occluded
in all images. This trick only works for two cameras, however it may still be
worthwhile for the model to adopt such a surface, if the matching cost between
two cameras are high. Using SSE represents an even worse problem, since SSE
is depending on the number of un-occluded pixels. The result can be that the
model shrinks, and eventually only covers a few pixels, that has low image cost.

Vogiatzis does not mention this problem, and thus does not present a solution
to avoid it. A common way to counteract this shrinking is to add a ballooning
effect to the mesh. This however does not prevent erroneous occlusion like in
figure 7.2 and thus something more sophisticated is needed. The calculation
of the image metric involves labelling pixels as either visible or not, and thus
a counting of not visible pixels could be done simultaneously. The count of
these occlusion pixels, could then be used to add a small, but significant penalty
for each occluded pixel to the objective function. It should be large enough to
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Figure 7.2: A figure of the workings of a lenticular print describing a problem
that can occur in the algorithm. All the blue surfaces can only be seen from the
blue camera and visa versa.

avoid shrinking, but small enough to make it worthwhile for the model to have
occluded pixels, when the true surface has.

To further develop this idea an alpha pixel is introduced. The term alpha pixel
comes from reasons being described later in Chapter 10. It is introduced because
of the observation that a pixel can be not-visible for two reasons. The first is
real occlusion, that is the model describes an object in this pixel, but it is not
visible in the any other image. These are the pixel denoted as occlusion pixels
and penalized as described before. The second is that when comparing an image
to a reprojection and either of them defines a certain pixel, that is if p = (u, v)
is the pixel, then p /∈ Ωk ∧ p /∈ Ωi. These are the alpha pixels, that can be
used to counteract the shrinking effect. The alpha pixels should be penalized
harder than occlusion pixels, since occlusion is bound to happen in real object
and alpha pixels should not. A figure illustrating an object with alpha and
occlusion can be seen in 7.3. One further advantage of using alpha pixels in
the objective function is that they enable a domain mask for the input images.
The domain mask can be given using the alpha channel of the images, hence
the term alpha pixel.
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Figure 7.3: Figure showing the different possible compositions when comparing
an image Ii to a reprojection Ik. n means that the area is not defined for that
image, a means that it is defined and o means that it contains an object, but is
not defined.
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The Bayes Formulation

As the previous chapter showed, surface estimation can be done by minimizing
an objective function in a simple iterative algorithm. However even though the
algorithm in time will converge to a minima of the objective function, it can
be difficult to control that the minima is the global minima. This problem can
be addressed by setting the problem up in a Bayes framework using simulated
annealing, as done in Vogiatzis work. This chapter will introduce this idea
together with the related concepts, and use it to improve the basic algorithm.

8.1 Bayes Theorem

The Bayes theorem, introduced by Thomas Bayes in 1764 in[12], describes a re-
lationship between conditional properties and their unconditional counterparts.
It can be formulated as: ”The probability of a hypothesis, H, conditional on a
given body of data, E, is the ratio of the unconditional probability of the con-
junction of the hypothesis with the data to the unconditional probability with
the data alone”, [2]. This can be expressed as the formula

p(H|E) =
p(E|H)× p(H)

p(E)
. (8.1)
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local minima

global minima

local maxima
that must be
bypassed

f(T, V )

(T, V )

Objective function

Model

Figure 8.1: Example of a model trapped at a local minima. To continue the
descent the local maxima must be bypassed.

, or using the classical notation

posterior =
likelihood× prior

normalizing constant
. (8.2)

, where the posterior is H, conditional on E, the likelihood is E conditional
on H and the prior is the probability of the hypothesis.

Using this to formulate the probability of a model can be expressed as: Having
a model, M , the probability for it to be correct is the probability of it given the
data, I (the image metric), times the probability of the model alone (a mesh
cost) divided by a normalizing term. This gives the simple expression of the
posterior of a model given a set of images:

p(M |I) =
p(I|M)× p(M)

p(I)
. (8.3)

As it can be seen, the normalizing term is actually the somewhat artificial
probability of the input images and their pose, however, as this term is constant
for all iterations it can be neglected when the resulting probability is compared
to the probability achieved in another iteration. To calculate the probabilities
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negative logarithmic are taken of their cost function. The cost function for the
model with respect to the data are already defined as the matching function
I, however the cost of the model is yet to be defined, for now it is denoted as
M(M), where M is the model. If inserted into equation 8.3 this gives:

p(M |I) =
exp(−I(I)) exp(−M(M))

p(I)
=

exp(−f(M))
C

(8.4)

, where f is the objective function I(I) + M(M) and C is the normalizing
constant.

Now the importance ratio, µ, of a new model compared to another model can
be defined as

µ ←
[
p(M′|I)
p(M|I)

]
(8.5)

, where M and M′ are two different proposals. The importance ratio thus
describes a measure of belief in M′ compared to M. If p(M′|I) > p(M|I),
then µ > 1 and thus M′ should be chosen over M. If on the other hand
p(M′|I) < p(M|I), then M′ should only be chosen over M with probability µ.
The relationship is shown in figure 8.2, where the flat top indicates that M ′ is
always chosen.

8.1.1 Algorithm In a Bayes Framework

Using the Bayes formulation a new and hopefully better algorithm can be setup:

Algorithm 2 Bayes framework
M ← M0

while converging do
deform the surface, to get M′

set the importance ratio µ ←
[

p(M′|I)
p(M|I)

]

with probability min(1, µ) set M ← M′

end while

Now, why is this better compared to the straight forward approach where the
result of the objective function is compared directly and the best is chosen?
The answer is that it is not necessarily better, however, it allows for a more
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Figure 8.2: Figure of the relationship between p(M′|I), p(M|I) and µ. M′ is
chosen over M with probability µ.

lively convergence, that will not always choose the best solution. Thus it has
a chance of escaping local minima, and reaching, if not the global minimum,
then a better minima. Figure 8.1 illustrates this problem, where the probability
that a long jump in search space escaping the local minima is taken is small.
If small jumps up hill are allowed, then a small jump in the correct direction,
but with a relatively small extra cost, will make the jump escaping the minima
more probable.

8.2 Using Simulated Annealing

Another method to avoid being trapped in a local minima is to use simulated
annealing, as stated in [20, 41]. The name comes from the idea to simulate
the process when metal cools and anneals, which brings it from a state of total
disorder to an ordered grid of metal atoms. The minimum energy state for a
piece of metal is when it is one large crystal, however normally it consists of
a number of smaller crystal structures that are not aligned. One large crystal
is seldom achieved, since the metal starts crystalizing at different places of the
metal with no constraints on the alignment of the local crystal structure. The
size of the crystal structures in the metal varies with the annealing process,
and can thus be controlled. This process can be simulated when one wants to
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minimize an objective function, and thus give the method a larger chance to
converge to the global minima, and not get trapped.

The idea, to simulate the annealing, is to start the algorithm making proposals
from a ’wild’ proposal distribution and and slowly let the proposals be closer
to the current model. To do this one can define an artificial temperature T ,
that starts at some starting temperature T0, and gradually descents using an
annealing schedule described further later. For each iteration, k, a new model
M ′, the proposal, is sampled using one of the deformations, with the current
temperature as a measure of how lively it should be done. Thus when having a
high temperature, the spatial movement between proposal and model is larger,
and when the system cools down they become smaller. The acceptance of the
models should also be affected by the temperature, thus models not being better
should have a larger chance being chosen when T is high. The later can be
expressed using

µ = exp(−δf

T
) (8.6)

, where δf is the difference in the evaluation of the objective function, ie.
(f(M ′) − f(M)). From equation 8.6 an expression closer to equation 8.5 used
for the Bayes formulation, can be derived:

µ = exp(−δf)
1
T = exp(−(f(M ′)− f(M)))

1
T =

[
exp(−f(M ′))
exp(−f(M))

] 1
T

(8.7)

From equation 8.4, using the Bayes framework, we have that p(M |I) = exp(−f(M))
C .

Inserting this into equation 8.7 yields the result used in Vogiatzis work:

µ =
[
p(M ′|I)
p(M |I)

] 1
T

(8.8)

From this equation it can be seen that altering the temperature of the system
does not change the acceptance when p(M ′|I)

p(M |I) ≥ 1. But if p(M ′|I)
p(M |I) < 1, then

a high temperature will make M ′ more probable and visa verse with a low
temperature.
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8.2.1 Numerical Aspects of µ

Evaluating equation 8.8, can give serious numerical errors, if it is done directly.
When calculating the posterior of some model from equation 8.4, e is raised
to the negative power of the objective function. There is no assumption on
the range of the objective function, except that they should be positive. It
thus only requires the cost of a model to be above approximately 750 before
the result is rounded off to zero, depending on the numerical precision of the
system. Dividing by zero gives an error or infinite, and in both cases the choice
of model can not be done.

This problem, however can easily be solved by rearranging the evaluation of µ:

µ =
[
p(M ′|I)
p(M |I)

] 1
T

=
[
exp(−f(M ′)
exp(−f(M)

] 1
T

= exp(−f(M ′) + f(M))
1
T

= exp
[
f(M)− f(M ′)

K

]
; (8.9)

This formulation avoids using exponential factors, before all other calculations
are done. The numeric precision can still be overflowed, however if so, the result
will be infinite, which ensures that the new model is chosen anyway.

8.2.2 The Annealing Schedule

The annealing schedule is the rate at which the system cools down. In [28],
Bounds formulated the choice of the annealing schedule as follows: “choosing
an annealing schedule for practical purposes is still something of a black art”.
The annealing schedule should take the temperature from some starting temper-
ature T0 and gradually descent it. This can be done in many ways, however two
of the most used is a stepwise linear and an exponential method. The cooling
can both be based on the number of iterations of the algorithm, i.e. the number
of proposals, or the number of successful iterations, i.e. the accepted proposals.
The last is generally more robust, since it ensures that something is happen-
ing in the system while the temperature is lowered. In the rest of this thesis
the term iterations is used of accepted proposals. The following describes the



8.2 Using Simulated Annealing 49

two mentioned annealing schedules together with the slightly different schedule
proposed by Vogiatzis, which is of exponential nature.

Exponential Using a constant α smaller than, but close to 1, each successful
step the temperature is lowered by

Tk+1 = αTk (8.10)

This way the temperature will go down fast to start with and then gradually
descent slower and slower. α is usually chosen to be 0.95 or higher to prevent a
too fast descent.

stepwise Linear For every L successful iterations, the temperature is lowered
by ∆T

Tk+1 = Tk + ∆T. (8.11)

Using this schedule allows the system to stabilize at every level.

Vogiatzis’s Schedule The annealing schedule proposed by Vogiatzis is a little
different, however it is of exponential nature. It is defined by

Tk =
C

log(1 + k)
(8.12)

, where C is a constant.

The three schedules used are shown in figure 8.3. The schedule proposed by
Vogiatzis is shown using C = 0.4, which is equivalent to the schedule used in his
paper. The other are shown with α = 0.998, T0 = 0.4, L = 20 and ∆T = 0.008.
Vogiatzis proposal descents extremely fast to T ≈ 0.1 in under 200 iterations.
In his work, it is mentioned that approximately 2500 iterations are needed to
converge. Thus 2300 iterations are done using a relatively stable temperature.
This makes the probability of choosing a proposed model with δf = 1.0 in the
magnitude of 10−5. It may thus be interesting to investigate the impact the
annealing schedule has on the overall performance of the algorithm.
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Figure 8.3: The three annealing schedules

8.2.3 Simulated Annealing in a Bayes Framework

Putting these two methods together using the annealing schedule proposed by
Vogiatzis yields the final algorithm, which is the one used in his work and also
the one that we will base our implementation on.

Algorithm 3 Simulated annealing
(V,T) ← (V0,T0)
k ← 1
while converging do

K ← C
log(1+k)

deform the surface, to get (V′,T′)

set the importance ratio µ ←
[

p(V′,T′|I)
p(V,T|I)

]1/K

with probability min 1, µ set (V,T) ← (V′,T′)
end while
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A Deformable Mesh

One of the cornerstones of the algorithm is the mesh, which represents the
current model. Up until now, the presence of such a deformable mesh has been
assumed, however designed it is no trivial task. The design of the mesh should
fulfill the requirements listed in the following:

• Represent the surface.

• Be deformable, both in shape and connectivity.

• Capable of rolling back deformations.

• Define a mesh metric.

This chapter will describe the design of the mesh chosen, and how the require-
ments of the mesh is met. The actual implementation of the mesh is first
discussed in Chapter 10.
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9.1 Mesh Representation

A mesh can be viewed as a piecewise linear approximation of a surface. It can
be defined as a set of vertices, V = (v1, . . . , vm), vi ∈ R3, giving the shape of
the mesh, and a set of triangles, T = (t1, . . . , tn), tj = (va, vb, vc), determining
the connectivity of the mesh, i.e. M ≡ (V, T ). It should be noted that since the
model of the algorithm and the mesh are equivalent, they are both denoted M
and the terms are used interchangeably.

The representation using triangles are not the only known. Another well known
approach is the half edge mesh, where so-called half edges determine the con-
nectivity of the mesh. The half edge mesh has the advantage over triangular
meshes, that it can represent polygonal surfaces as simple primitives in contrary
to the triangle mesh, that can only represent triangles. It is however unlikely
that a mesh in this algorithm will contain a large number of coplanar triangles
that could benefit from half edges. Because of this and reasons being described
further in section 10.2.3, the triangular mesh has been chosen.

The next two sections will describe operations and enforcements on the mesh.

9.1.1 Mesh Operations

To ease the description of the mesh deformations, a set of simple operations are
introduced here, inspired by the operations in [56]. As a reference figure 9.1
shows a triangle and the vertices it connects.

• dve: The owners1 of the set of vertices v.

• btc: The vertices of the set of triangles t.

• Edges(M): A set of all the edges in M .

• NBE(M): A set of all non-border edges in M .

9.1.2 Mesh enforcements

To simplify operations on the mesh, some enforcement on the connectivity are
made. These enforcements must be held in the initial mesh, and whenever the

1An owner of a vertex is a triangle having the vertex as a corner.
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Figure 9.1: Figure showing a triangle connecting three vertices. Notice that
because of the righthand rule, the triangle is outwards facing.

mesh is deformed to ensure persistent mesh properties. The first is to ensure
that all triangles have the same orientation. Figure 9.1 shows the orientation
of a triangle and its neighbors. Consistent triangle orientation is useful in two
ways. First, it allows deterministic searches which again allows deterministic
operations on the mesh. If there were no orientation enforcement on the mesh,
the same operation on the same triangle, but with different orientation, could
have different results. Second, the mesh is to be rendered on graphics hardware,
which distinguish between clock wise and counter clockwise triangles. Usually
the right hand rule is used to define a front face and a back face of a triangle,
which can be rendered differently.

The other enforcement is that an edge e ∈ Edges(M) may never be shared
by more than two triangles. This greatly simplifies searches and operations on
the mesh, while making the structure for containing the mesh simpler. Since a
surface is defined as a 2-manifold, it does not constraint the solution space.

9.2 Defining a Mesh Smoothness Term

The image metric is useful for measuring how well the surface fits the images,
however using this alone to do surface estimation could easily end up with ill
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formed surface, that would not resemble the object being reconstructed. In other
words, if nothing is said about the surface, it is likely that it will be deformed
into a spiky surface, that fits the images according to the image metric, but
does not have the smoothness, that is normally expected of real world objects.

To account for this, one can add a mesh smoothness term, M, to the objective
function, to make it penalize spiky surfaces or surfaces having other unwanted
properties. Vogiatzis proposed a smoothness term penalizing the angles between
the normal of the triangles and the size of the mesh. A non-border edge e ∈
NBE(M) has two neighboring triangles with the normals n1 and n2. A simple
way to calculate a measure of the angle, cos ϑ(e), between the two normals is to
use the dot product, ie. cos ϑ(e) = n1ṅ2, which gives 1 when they are parallel
and −1 when they are opposing. A non-negative error can thus be formulated
as:

M(M) = Asize(V ) + B
∑

e∈NBE(M)

(1− cos ϑ(e)||e||) (9.1)

, where A and B are constants. This smoothness term has a number of desirable
properties. The mesh is to be deformed into a shape defined by the image data.
This requires the mesh to adjust its resolution locally, which should not change
the cost of the mesh, except the extra cost of the new vertices. The smoothness
term defined has this property, since the angular term is defined on the global
curvature. Thus both triangles and edges can be divided without changing the
angular cost, as illustrated in figure 9.2.

Research has been done into defining more advanced smoothness terms. Instead
of simply evaluating all edges, the local neighborhood could be used. Thus it
could be penalized harder if a sudden edge appears in an otherwise smooth
surface, while it should be acceptable if the edge is part of a larger structure.
Other regularization terms, that could be added to the smoothness term is a
triangle skewness penalty to avoid too skew triangles or an odd-size penalty to
obtain a smooth mesh resolution.

9.3 Deforming a Mesh

Each loop in the algorithm samples a new model from a proposal distribution
around the current model. The model in this context is the mesh, thus the mesh
must be changed or more correctly expressed deformed, using this distribution.
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Figure 9.2: Figure showing how the angular smoothness term are invariant to
the division of triangles and edges.

A deformation is defined as an operation on the mesh taking it from M → M ′.
Gelman et al [7] lists 5 criteria for a good proposal distribution.

1. It is easy to sample from the proposal function, M → M ′, i.e. it is easy
to deform the mesh.

2. It is easy to calculate µ, or in other words the objective function.

3. Each deformation jumps a reasonable distance in parameter space. If not
the model would deform to slowly.

4. Proposals are accepted with a reasonable frequency. Otherwise too many
proposals are rejected making the model standing still.

5. Any model can be reached using a series of deformation from any other
model.

Vogiatzis proposes two different groups of deformation to account for this, vertex
deformations altering the shape by changing the position of the vertices and
connectivity deformations changing the connectivity of the mesh. The vertex
deformations can take the model reasonably around the parameter space, both
at random, and using the image data as a guidance to speed up the convergence.
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The connectivity deformations ensures that all parts of parameter space can be
visited. All the deformations are designed such that they are relatively simple
and easy to implement to satisfy the easy sampling, while it is always easy
evaluating the objective function as already described.

Sampling a model in the proposal distribution is thus simply to deform the
surface using one of the deformations at random. However as will be exploited
later, sampling is not limited to a single deformation, and thus a series of defor-
mations can be merged to allow both connectivity and shape changes in a single
deformation. To define the liveliness of the deformations the δ-value are intro-
duced. The temperature defined in section 8.2 is used to control the δ-value,
however it can not be used in itself to define the liveliness as no constraints on
the spatial size of the scene has been made. The δ-value is defined as

δ = CδT
∑

c∈(cams)

P(c, ||c−Mcenter||) 1
||cams|| (9.2)

, where Cδ is a constant,Mcenter the center of gravity of the mesh calculated by∑
v∈bMc v

size(M) and P (c, d) is a function calculating the width of a pixel at distance
d from the camera c. The δ-value is thus a measure of the average distance in
space at the center of the mesh corresponding to a single pixel modified by the
temperature and the constant Cδ. As the mesh is deformed, the δ-value must
be updated regularly.

Now we can start describing the actual deformation types. Vogiatzis proposes
6 of these, 3 changing the shape, and 3 changing the connectivity. These are
described in the following sections with the 3 vertex deformations first. It is
of uttermost importance that all deformations preserves the properties of the
mesh. A thorough description of how this is achieved is included, however as it
can be technical and outside the scope of the reader it can be skipped.

9.3.1 Random Deforms

The random deformation type is the simplest vertex deformation. It simply
samples a displacement vector, δv, from a normal distribution with spread equal
to the current δ-value. This is added to a random vertex, v, yielding v ← v+δv.

In [47] J. Pons et al mentions, that for small vertex changes only the change
along the surface normal at that vertex changes the visual appearance of the
mesh. This especially holds if the mesh is smooth, which is expected as the
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mesh is regularized by the smoothness term. Using this it would be interesting
to evaluate the differences between displacing a vertex at random or along the
normal.

The random deformations, and the vertex deformations in general does not
change the connectivity of the mesh and does therefore automatically preserve
the enforcements.

9.3.2 Gradient Deforms

Moving in parameter space at random may take a long time to converge. To
speed up performance some of the input data can be used to guide the defor-
mation. A gradient deform is a small displacement of a random vertex, v, in
the opposite direction of the gradient of an estimate of the image metric when
varying the coordinates of v. Like the full image metric, this estimate can either
be image centered or object centered. Vogiatzis proposes an object centered ap-
proach, where a number of sample points on dve are projected into the images.
The resulting colors are compared using SSE, however other metrics could be
used as well.

On the other hand an image centered gradient deform samples a number of
pixels in each input image around the projections of v. Thus oblique triangles
would be weighed lower like using the full image centered matching term.

9.3.3 Correlation Deforms

Another way to exploit the input images in the deformations is to use the epipo-
lar geometry of a random vertex, v and match a small window of image data
along the corresponding epipolar lines in the images using one of the similarity
measures. To do this one image is chosen as the base image from which epipolar
lines in the remaining images are found. To avoid outliers the search is limited
to a distance d around the projections of the vertex. Because of its connection
to the epipolar geometry, the correlation deforms are also denoted as epipolar
deformations.

Basically this is the same as is done in stereo matching, and thus the interested
reader is referred to [51] for more information. Like with the random deforma-
tions, it may be beneficial to move the vertex along the normal vector instead of
the epipolar lines. The search would still be a search along lines in the images,
but the search would be object centered, which in this case is more natural than
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selecting a single image as the base.

9.3.4 Edge Swap

The edge swap deformation takes an edge e and swaps it in the quadrilateral in
such way that the edge now connects the two vertices it did not connect before,
see figure 9.3.

The input for a swap deformation is the edge, e, consisting of the two connected
vertices v1 and v2. From these the two triangles t1 and t2 making up the
quadrilateral can be found using (t1, t2) = dv1e

⋂dv2e. These can again be
used to get the two other vertices v3 and v4 using (v3, v4) = bt1, t2c/(v1, v2).
The two neighboring triangles n1 and n2 can be found in a similar way using the
correct pair of vertices. It should be noted that these operations can be done
in an oriented manner exploiting the orientation of the triangles, which returns
an oriented list rather than a set. If this was not the case, then operations on
the mesh like this would not be deterministic. For the mesh to be correct after
the swap operation the following must be ensured:

• t1 must swap v1 with v4.

• t2 must swap v3 with v2.

• ownership of the two vertices v1 and v2 must be set to t2 and t1.

• n1 must swap neighbor t1 with t2.

• n2 must swap neighbor t2 with t1.

• t1 and t2 are notified that there position have changed.

It is important that one can only swap e if both the triangles t1 and t2 are
present, thus e cannot be a bordering edge.

9.3.5 Edge Collapse

The collapse deformations are the deformations used to simplify the mesh. It
takes as input an edge e connecting two vertices v1 and v2, see figure 9.4. The
two neighboring triangles sharing e, (t1, t2) = dv1e

⋂dv2e, are removed from the
mesh together with v2, as v1 takes over the triangles connected to v2. The edge
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Figure 9.3: Illustration showing the swap deformation.

e can be a border edge, in this situation either t1 or t2 does not exist and thus
the corresponding set of neighbors can be ignored. To ensure mesh correctness
the following steps must be performed:

• The necessary triangles and vertices must be obtained from the two known
vertices v1 and v2. If t1 exists n1, n2 and v3 are obtained, and if t2 exists
n3,n4 and v4 are obtained using the operations described.

• v2 is swapped with v1 for all triangles around v2, dv2e/(t1, t2), since v2

will cease to exist.

• neighboring relation (connectivity) between n1 and n2 and between n3

and n4 are created if they exist.

• v1’s owner is set to be one of n1, n2, n3 and n4, that exists.

• v1 is repositioned to the center of e.

• All triangles around v1 in the deformed mesh are notified, that their rela-
tionship and vertices may have been changed.

• v2, t1 and t2 are removed from the mesh.

It can happen that n2 and n4 or n1 and n3 are the same triangle. If so no special
care needs to be taken, since they should be altered as both neighbors, at the
same time, and not as a single. It should be noted that the ni triangles cannot
be the same as t1 or t2 since two triangles cannot share more than one edge.
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Figure 9.4: Illustration of an edge collapse deformation.

When collapsing further care must be taken to avoid spawning a baby mesh2.
This involves checking that e has sufficient neighbors when collapsing it.

A simple edge collapse deformation assumes that positioning the resulting vertex
between v1 and v2 is a fair guess. In many cases, especially near sharp edges
or the border, this is not the case, which makes the probability that the model
is kept low. One solution to this is to allow a more advanced choice based on
the local curvature and connectivity. Thus a collapse near a sharp edge or a
border should preserve the edge or border if possible. Another approach is to
let a vertex deformation use the image data to position the vertex after the
collapse. This way merging two deformations into one may improve the chance
of them both, the collapse, since the vertex is positioned better and the vertex
deformation since it is used on a vertex that is very likely to be positioned
wrong.

9.3.6 Vertex Split

The split deformation is used to increase the quality of the mesh. The operation
on the mesh can be seen as the opposite of collapsing an edge. To do a split
deformation in a deterministic way, it is necessary to specify where the new edge
e should be placed and therefore also the possible two new triangles. One way
to do this is to specify the last vertex in the two new triangles t1 and t2, ie. v3

2A small mesh connected to the mother mesh by only a single vertex, or two edges con-
necting the same two vertices.



9.3 Deforming a Mesh 61

and v4, see 9.5. Another way of describing this is that one should specify the
two edges from v3 to v1 and from v1 to v4, where the two new triangles should
be placed. If either v3 or v4 are not existing, for example if v1 is a border vertex,
then the corresponding triangle should not be inserted. The following must be
done to ensure the correctness of the mesh:

• The neighboring triangles (n1,n2,n3 and n4) should be obtained from the 3
vertices, if the corresponding vertex is existing using the mesh operations.

• Get all the triangles around v1 in the current mesh using dv1e. Divide
them into two groups, one group for all the triangles lying on one side of
the edges v3 to v1 and v1 to v4. These respectively are the ones that will
have v1 and the new vertex v2 as a corner. There is no simple operation
doing this, however it can be done by walking on the mesh around v1

picking up the triangles, and use ni to determine which vertex will be
their new owner.

• Create the new vertex v2 and the new triangles t1 and t2 if the correspond-
ing vertices exists.

• Set the neighborhood between t1, t2, n1, n2, n3 and n4 if they exist.

• Position v1 and v2. The position is given by calculating the average of the
endpoints of the n triangles if they exist. The new position is then 2

3 from
the old v1 to this point.

• Swap v1 with v2 in the group of triangles corresponding to v2. This is not
necessary to do for the other group, since they already know their corner
v1.

• Set the ownership of v1 and v2 to be one of the new triangles.

As with collapse some of the n triangles can be one triangle, however no special
care should be taken. Since the split operation is expanding the mesh, it can not
spawn baby meshes. Further more the split deformation could benefit of being
merged together with two vertex deformations as well, using the same argumen-
tation as with the collapse deformation. On the other hand the deformation
of existing vertices could be avoided by introducing another deformation, the
triangle split. Like the vertex split, it will refine the mesh, however it will not
move any existing vertices, which may render the deformation improbable in
the probabilistic framework. The idea is simply to insert a new point into the
center of a triangle and thus divide the triangle into three new triangles.
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Figure 9.5: Illustration of a split deformation.

9.4 Rollback of Deformations

When deforming the mesh, which is done when sampling from the proposal
distribution, the mesh itself is changed and the old mesh is thus lost. If the
proposal is discarded, then the old mesh is to be used, and thus it should either
be possible to roll back the deformations or to have a local copy of the old mesh.
Copying the mesh back and forth can be a demanding task, if the mesh is large
and should therefore be avoided. By recording the deformations of the mesh
into a deformation queue, the deformations can be rolled back in such a way
that the old mesh is obtained.

To roll back a deformation, an inverse deformation is needed for every deforma-
tion. For the shape changing deformations this is simply to deform the involved
vertices back again. An edge can only be swapped between two different states
and thus edge swap is its own inverse deformation. As already mentioned the
edge collapse and the edge split can be seen as inverse operations on the mesh.
In fact, the deformations have been designed specifically to be inverting oper-
ations of each other. Thus the mesh can be considered to be the exact same
after a deformation and rolling it back. This can then be extended to series of
deformations, since each rollback will bring the mesh to be in the same state as
the previous deformation record expects.

It should be mentioned that numerical errors can occur, and that the triangles
and vertices involved need not be the exact same. Fx if they have been removed
from the mesh in the deformations and another triangle is added in the rollback.
The flow, when deforming a mesh, and rolling back is shown in figure 9.6. If the
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Figure 9.6: Figure of the flow, when rolling back the deformation buffer. Every
deformation is matched by its inverse.

proposal is accepted, the deformation buffer can be emptied, as the information
is no longer needed.

Vogiatzis does not discuss the actual implementation of the mesh he uses. It
is however assumed that he uses some means of saving resources as it would
otherwise become a bottleneck for larger meshes.

9.5 Topological Considerations

One of the drawbacks of using a mesh to represent the surface is that it is
difficult to change the topology of a mesh. The normal way to explain topological
changes in a surface is that it would require a tearing or gluing (or both) of the
mesh. In short this means that if the topology of the mesh is static, then the
mesh can not be divided, wholes can not emerge, and the mesh can not merge
together with another mesh, or itself.

Many real world objects, like a cup, have holes in them, and thus its surface
can not be derived from a simple sphere mesh. In [10] Attene and Spagnuolo
proposes a method for punching wholes in a closed mesh. It however complicates
the algorithm considerably, and is therefore not discussed further in this thesis.
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Implementation

To be able to achieve results within a satisfactory time frame, an implementation
of an algorithm must have a certain performance. On the other hand, this thesis
is not an investigation into how fast this algorithm can be implemented, and
thus the emphasis put into the performance has to be weighted up against the
actual gain.

One of the properties of the approach chosen to do surface estimation is the
ability of it to be performed by modern highly optimized graphics hardware.
This is thus a good start to achieve good performance. As an interface to
the graphics hardware the Open Graphics Library (OpenGL) have been chosen
as it is open, fast, well documented and already widely used in the research
community. C++ has been chosen as the implementation language, as it is
fast, interfaces OpenGL nicely and gives the choice of object oriented design.
Further more the free Borland C++ compiler has been chosen for its platform
independency. The current implementation of the program is done for Microsoft
Windows, but a port to fx linux should be fairly simple.

In this chapter the implementation of the basic algorithm will be described. It is
divided into two sections, the first documenting the general program structure
used, major implementation issues, and the general flow. The intention is not to
provide an in depth walk-trough of the source code, but rather to give the reader
an idea of how the program is structured. The second section documenting
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the parts of the implementation related to OpenGL. Here emphasis has been
put on describing the important uses of the graphics hardware to solve some
of the computational heave parts of the algorithm, i.e. GPGPU. To be able
to distinguish program elements from the concepts described elsewhere, these
elements will be printed using the ’typewriter font’.

10.1 Program Structure

There are two main tasks that should be handled by such an implementation.
The first, and most important, is off course the surface estimation, however it
would be beneficial to be able to test the algorithm using synthetical and perfect
input data, and therefore the other task is to be able to capture such datasets.
The program is built as two executable files, one for capturing synthetic data of
textured models, and one for performing the surface estimation, however they
share many of the same elements. In the following these elements and how
they function together will be described. Please refer to figure 10.1 giving an
overview of the program structure and its elements.

main , the main executable file for doing surface estimation. It interfaces and
initializes OpenGL, and creates a Scene to load and operate on the in-
put data given as a job description file. It provides a set of keyboard
shortcuts to set parameters and options and perform actions on the Scene,
f.x. starting the surface estimation algorithm using the given input data.
It thus handles the human interface to the program. A user guide is in-
cluded in Appendix A, describing how to install and use the program with
its various short cuts.

capture , the executable for capturing synthetic datasets. The input data is
given as either a .ms3D file or a .X3D file. The input file is used to create
a Model, that can be displayed. The user can then manually choose an
arbitrary number of views, from which images are captured, and camera
parameters saved into a job description. This job description can
then be executed using main.exe.

Mesh , handles, represents and provides deformation functionality of a triangular
mesh. The mesh is implemented using triangles and vertices as described
in Chapter 9 and is described in more detail in the next section.

Camera , contains image data and camera parameters for one of the input im-
ages. It provides functionality to project the image, take snap shots of the
Scene, and finally compare its image data to other images or snap shots
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Figure 10.1: Overview of the program structure showing the major elements.
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using one of the similarity measures. The Camera is implemented with
heavy use of GPGPU, and thus contains most of the functionality related
to OpenGL.

Scene , represents a scene that holds a Mesh and a set of Cameras. The Scene
can perform a fit of the Mesh to the set of Cameras using the algorithm
described in this thesis, with respect to a set of options describing how
the fit should be done.

Model , represents a 3D model, that is a set of Mesh’s each having a mesh
appearance connected to it. A Model can be loaded from either an .X3D
file or from a .ms3d file, and can be used to save a Mesh to an .X3D file.
The mesh appearance describes the material and the texture of a mesh.
This division of the mesh data and the mesh appearance has been chosen,
to speed up the algorithm where no material or texture of the mesh is
used.

job description , contains data of a job. A job is a set of images, with
corresponding camera parameters, an initial mesh, and possibly a set of
options and parameters describing how the algorithm should run. The
job description file is a plain text file where lines starting with ’#’ are
ignored. An explanation of the contents of a job description can be
found in Appendix A.3.1.

.X3D , is an open ISO standard for representing real time 3D graphics. X3D is
the successor to VRML1, and gives good functionality to share 3D objects
and scenes. It has therefore been chosen as the output data type of the
estimated surface. More information on the standard can be found in [5].

.ms3d , is a simple file type containing Milkshape textured 3D models. The
accompanying program can transform a wide variety of different 3D data
types into .ms3d, and has thus been chosen to be able to load many dif-
ferent models into the program. See [21], for more information.

Devil , is an open source library of many image loading and saving routines.
It is used as the interface to loading and saving images. It enables the
program to use a wide range of input image types. It should be noted
that only a few of these supports an alpha channel needed to specify the
image domain Ωi, if used in the algorithm. Refer to the web page at [1]
for download and documentation.

Clapack , stands for C - Linear Algebra PACKage. It is a C translation of a
fortran library for solving simultaneous linear equations. In the program
it is used to perform some of the more advanced mathematical operations.

1Virtual Reality Modelling Language, see [3] for further information
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Figure 10.2: A screen shot from the program showing 8 narrow angled Camera’s
displaying their input image, and an initial mesh.

It has been necessary to modify it slightly to allow a compilation with the
Borland compiler used.

This ends the description of the elements of the program. A screen shot example
of the implementation can be seen in figure 10.2.

10.2 Interfacing OpenGL

The graphics hardware in a modern system is interfaced through a driver pro-
vided by the graphics card vendor. In OpenGL this is done by series of function
calls, that alters the current state of the graphics driver. Whenever rendering,
this state defines the parameters describing how it should be done. Interfac-
ing OpenGL can thus be boiled down to setting up the state, and rendering
primitives.

The main task that we would like the graphics hardware to handle is the fol-
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lowing:

1. Make a Camera project its image data.

2. Render the Mesh onto a framebuffer, using the current projections.

3. Evaluate the view from a Camera.

Most graphics hardware and the associated drivers are designed to handle com-
puter graphics. This means that they are optimized for creating contents for the
screen, which is usually in the rgba color format2. In image analysis, gray scale
images are very often used as they are faster to handle and represents most of
the information of the corresponding color image. The design of the graphics
hardware makes the extra computational cost for handling colors almost negli-
gible. Therefore colors will be used wherever possible in this implementation,
as they do provide some extra information.

The rest of this section describes how these tasks together with a summation of
the OpenGL extensions used.

10.2.1 Used Extensions

The basic OpenGL implementation provides many standard procedures, how-
ever to fully utilize the computational power available, some of the many ex-
tensions must be used. Table 10.1 shows the extensions that is used in the
implementation, and a short description of the functionality they provide. Al-
most any medium to high end graphics card supports these features, allowing
the program to be run on a wide range of systems.

10.2.2 Projecting from a Camera

When loading a job description the camera parameters for the projection Π,
defined in equation 7.2, are specified as a 3×4 camera matrix C. Since only linear
dependencies can be described in this way, radial and tangential distortion is not
taken into consideration. This distortion can however be corrected beforehand
and thus ignored in the algorithm. The camera matrix is defined as

2Color with a Red, Green, Blue and an Alpha channel.
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name description
Rectangular texture Provides rectangular textures that unlike the stan-

dard textures need not be in power of 2. Further
more they are indexed as a double array instead of
the normal [−1..1].

FBO Frame Buffer Object - Provides offscreen rendering
to textures and a wider choice of input and output
channels. Thus it allows the result to stay in graph-
ics memory and avoids slow copying from the frame-
buffer.

NV float buffer Makes a new type of texture representation available,
that consist of floating point channels, that are not
clamped to the normal [0..1] range. This allows to
use textures as general floating point arrays in the
computations. The precision used is 32 bits. The
extension is developed by NVidea3, but is supported
in most cards today.

Shaders Enables actual programming of the graphics hard-
ware, through small programs called shaders. A C-
like language is used, which is compiled at runtime.
A shader program consists of a vertex shader work-
ing on the vertices, and a fragment shader handling
the fragments of the primitives when rendering.

Table 10.1: The extension used in the implementation.
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C = K[R|t] (10.1)

, where R is a 3×3 rotation matrix, t, a translation vector and K the calibration
matrix defined by

K =




2
width 0 −1

0 2
height −1

0 0 1




︸ ︷︷ ︸
normalizing term




λf sf x0

0 f y0

0 0 1




︸ ︷︷ ︸
normal calibration

(10.2)

Here f is the focal length, s is the skew, (x0, y0) the coordinates of the principal
point in pixels and finally λ the aspect ratio of the pixels. As can be seen it has
been chosen to define K in a normalized form making the domain of the image
in the range [−1..1]× [−1..1]. The reason for this is twofold. First it corresponds
to the domain of the framebuffer in OpenGL. This makes it possible to apply
it directly when capturing images. Second the dimension of the corresponding
image is already given in the image data, and thus C can easily be adjusted to
any image size as we shall see later.

To project the image of a Camera onto the Mesh, one must calculate the corre-
sponding texture coordinates for vertices in the mesh. This can be calculated on
the fly in OpenGL by specifying a 4×4 texture matrix T that are applied to the
vertex coordinates. This corresponds to the projection defined by C, however
as T has one more row than C an extra value is calculated. If setup correctly
this can be used to calculate the depth from the vertex to the projecting cam-
era. When compared to a depth buffer this depth can be used to determine if
it is visible in the projecting camera or not. This requires that a depth buffer
has been rendered beforehand, by rendering the Mesh to the Camera. To ob-
tain maximum depth precision two clipping planes, a near, n, and a far, f , is
defined covering the mesh as seen from the camera. According to the OpenGL
specifications in [42], the depth can then be calculated using

d =
[
0, 0,−n + f

f − n
,− 2nf

f − n

]

︸ ︷︷ ︸
Tzc




xc

yc

zc

wc


 (10.3)

, where (xc, yc, zc, wc) are a vertex in camera coordinate system. To adjust for
the rotation and translation of the camera matrix, from the camera to the world
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coordinate system, these are applied giving

Tzw = Tzc




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1




︸ ︷︷ ︸
Flipping z direction

[
R t
0 1

]
(10.4)

As can be seen, the z-direction are flipped to be consistent with OpenGL. We do
not however want to adjust for the internal calibration of the camera as the depth
has nothing to do with it. To further complicate matters, the domain of the
rectangular textures are [0..width]×[0..height], which requires a transformation,
that yields the final texture matrix:

T =




width
2 0 0 width

2

0 height
2 0 height

2
0 0 1 0
0 0 0 1



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C11 C12 C13 C14

C21 C22 C23 C24

Tzw

C41 C42 C43 C44


 (10.5)

This also shows how easy the size of an image can be changed. Thus to reduce
the amount of input data, the images can be down sampled without changing
the camera calibration parameters in C. Another advantage of this method
is that everything is handled by the OpenGL projections. Thus the different
images can have arbitrary resolutions and still be used together. It is however
recommendable to chose resolutions relatively close to each other, because the
sampling rate in the images should be comparable to avoid super sampling.

To summarize, we setup the projection from a Camera, by activating a texture
with the image data, and specify a texture matrix, T , to calculate texture
coordinates. If a comparison with the depth buffer at the texture coordinate is
positive, it is used again to lookup in the image data. The final result can either
be saved in the frame buffer or used directly in a similarity measure together
with the evaluating cameras image data in a shader program. This approach
can further be used to project multiple cameras at the same time reducing
the number of renderings, however there is a hardware dependent limit on the
number of active textures and texture matrices.



74 Implementation

10.2.3 Rendering the Mesh

OpenGL provides 3 different ways of sending triangles to the graphics hardware
for rendering. The first and simplest is to specify the vertex coordinates of the
triangles using function calls. This however is highly inefficient for larger meshes
and is thus not an option. The second is to arrange the vertex coordinates
in an array and the indices of the vertices in this array, for the corners of
the triangles in another array. These arrays can now be sent to OpenGL for
rendering by specifying a pointer to them using an OpenGL call. This is much
faster, since only a few function calls are needed, however it requires that the
triangles and vertices are aligned nicely in memory. The third method is to
use buffer objects to store the arrays of vertices and triangle vertex indices in
graphics memory. This eliminates the sending of the data for each draw, since
the data is already available to the graphics hardware, however the mesh used
is to be highly dynamic, and it would thus require re-specifying at least parts
of the data every time the mesh is deformed.

For simplicity sake, the second solution has been chosen, even though it would
be faster to use the third. If the third method was to be used it should identify
the mesh operations that changes the mesh, and incorporate a repair of the
OpenGL image of mesh every time it is altered.

Arranging data in arrays

Using the chosen rendering method puts some constraints on how the mesh can
be arranged in the memory. As mentioned the vertex coordinates and the indices
herein for the triangle corners, must be aligned in two arrays. Since these are
sent to OpenGL for rendering, they cannot contain any rubbish data or holes of
triangles or vertices that should not be rendered. This is not completely true,
since the vertex array can contain vertices not to be drawn, however as they are
sent to the graphics hardware anyway, it is desirable that this is limited.

Arranging the vertices and the triangle vertex indices into arrays could be done
every time the mesh was to be rendered using a dynamic data structure for
representing the mesh, fx the half edge data structure4. When rendering, the
dynamic data structure would have to copy the data into the arrays. This
however becomes a demanding task, when the mesh grows, and as such would
not be a good solution.

4A mesh data structure where primitives are stored as circular lists of its edges, termed
half edges. Every element of the list has a reference to the next vertex and the neighboring
half edge, being a part of the neighboring primitive. See [43] for more information.
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Another way to achieve this is to design the mesh in such away that the triangles
and the vertices are already arranged in arrays, and preserves this property
when deformed. Figure 10.3 shows the design that has been chosen for the
mesh. The aligned data sent to OpenGL is the vertex array and the vertex
index array describing the indices of the vertices associated to the corners of
the triangles. The dynamic functionality is implemented by interleaving extra
data in each vertex, and by having an extra array of triangles keeping track of
the connectivity of the mesh, the vertices and the vertex indexes used. Note
that interleaving data is only present in client memory and is not sent when
rendering. From the figure it can be seen that each vertex knows a single owner
triangle, from which a lookup in the triangle connectivity can be used to do the
mesh operations.

To limit the amount of holes in the arrays, whenever a vertex or a triangle is
no longer needed, it is added to a set of dead vertices or dead triangles. New
vertices are taken from this list, or if there is none, a completely new triangle
is created in the end of the array. This way one can keep track of the parts
of the arrays used, and limit the amount of dead vertices sent. To completely
avoid holes in the index array, a ’dying’ triangle automatically swaps its vertex
indices with the rightmost triangle.

This design allows dynamic deformations while requiring a minimum of copy-
ing and memory consumption. It preserves the dynamic functionality, while
arranged in arrays and are thus always ready to be send for drawing.

10.2.4 Evaluating a View

A view, in this context, is defined as what can be seen from one of the Camera’s.
Thus to calculate the objective function of some model, the view of every camera
must be evaluated and the result summed. Evaluating a view is done projecting
one or more of the other Camera’s, and take a snap shot from the viewpoint of
the Camera to be evaluated. The snap shot can then be compared to the image
data of the evaluating Camera using one of the similarity measures described in
Section 7.3. Capturing such a snap shot is done similar to taking a real world
photograph using the same camera. Recall that the pinhole camera model, used
to define the camera parameters in Section 10.2.2, is an attempt to emulate
what is actually happening in the real camera. Therefore setting the projection
matrix to the camera matrix, and setting the model view matrix to an identity
matrix, will project the mesh into the image like the vertices where light rays
reflected through the lens. This is similar to when projecting from a Camera,
however this time the projection matrix is set and no transformation to image
domain is done. Further more, when projecting into the framebuffer, OpenGL
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Figure 10.3: Overview of the memory design of the mesh.
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can handle the depth test for visibility automatically.

As mentioned not all the Camera’s need to project at the same time. This gives
rise to the following proposals for evaluating a view, differing in which Camera’s
are projected and how the snap shots are collected.

pairing. This is the most idealistic and simple approach where each Camera’s
image data is compared to a snap shot of every other Camera projecting.
This approach is slow since the number of comparisons is n(n− 1), for n
input images. The amount of information mutual between two images of
an object taken at opposite direction is relatively low. Thus this approach
is best with a few Camera’s within a relatively close viewing angle.

blending. This approach is slightly faster, and the one used by Vogiatzis. Each
Camera lets all other Camera’s project their data into the same frame buffer
blending the result using alpha blending. This still requires n(n − 1)
projections, however the result is only compared n times. The tradeoff
is that occlusion is only evaluated globally and thus some version of the
lenticular print surface discussed in Section 7.3.1 may result.

only neighbors. This approach is even faster, by only comparing b neighbors
of each Camera. Thus the number of projections is down to n × b, and
the number of comparisons can be either n if blending is used or n × b
if not. If b is chosen sufficiently low (1 or 2), one could fit both the
projections and the comparisons into a single shader using only a single
sweep. The neighbors of each Camera should be chosen using the baseline

depth
ratio described in section 4.3.1. Unfortunately this interesting capturing
method has not been implemented because of lack of time.

Figure 10.4 shows a sketch of how the evaluation is done for the three methods.
An example of an original image, its depth buffer, the snap shot taken and a
visualization of the error can be seen in 10.6. The error is calculated using SSE,
as it is more friendly for visualization. The evaluation of this and the evaluation
of correlation is described in the two next sections.

Evaluating SSE Using Shaders

Using shaders, the SSE of a pair of images can be calculated in a simple and fast
way. The direct approach is of course to acquire the snap shot from the graphics
card to local memory and let the CPU handle the calculations. This however is
slow since the snap shot must then be transported over the bandwidth limited
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Figure 10.4: A sketch of the evaluation of the three proposed methods for eval-
uating a view.

graphics bus. Instead the parallelism in the GPU can be exploited. A shader
is setup to calculate the squared error of every set of pixels if both are visible,
and save the result in the red color channel. At the same time the other 3 color
channels are used to indicate the type of the pixel (normal, occluded, alpha),
by storing 1.0 in the channel associated to the type.

After this the resulting texture is used as input for a summing algorithm using
another shader. For every iteration 4 pixels are summed channel-wise and stored
in a single pixel. By swapping input and output texture each iteration, the values
in the texture gets summed to a single pixel. This is illustrated in figure 10.5,
where the texture is summed using only 5 iterations for summing the 32 × 32
colors. Reading the single pixel yields no problem for the bus. The result is 4
values, where the first is the SSE and the three others are counts of the type of
pixels, which can be used in a more sophisticated cost evaluation of the image
pair.
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Figure 10.5: Figure of the summing algorithm using shaders.

(a) original (b) depth buffer (c) snapshot (d) compared (e) wire frame

Figure 10.6: Example of the buffers used evaluating a view. The black and
white checkerboard pattern in the snapshot means that the alpha channel is
0, while the red and yellow checkerboard pattern is occluded areas. The small
figure of the bunny in the lower left corner of the comparison buffer is the effect
of the summation, that reuses this texture to save space.

Evaluating Correlation Using Shaders

Calculating the correlation is not as simple as the SSE, as it requires a minimum
of two sweeps of two different shaders and a sum of the values like in SSE. Further
more, to avoid using too many textures only the correlation at a gray scale level
is calculated. The first sweep calculates the sum of the gray scale colors in the
visible pixels for each of the two images. These sums takes up two channels,
thus the third and fourth are free for a pixel count and an occlusion count. The
texture is summed using the summing algorithm, and the pixel count is used to
calculate the mean of the two images. This is used as input to another shader
calculating the squared value of the gray scale colors in the two images, together
with (x− x̄)(y− ȳ), where x and y are the gray scale colors. The fourth channel
is used to indicate if the pixel is an alpha pixel. Another sum sweep is used, and
now the correlation can be calculated as given in equation 7.11. Like before the
resulting correlation is accompanied by a count of the type of pixels involved.
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10.3 Pitfalls

This section presents some of the pitfalls, that may degrade the performance of
the algorithm if not taken care of. It is not an exhaustive listing of problems
encountered, but a short list of the most important.

10.3.1 A Good Pseudo Random Number Generator

Many of the procedures in the algorithm are based on some degree of random-
ness. True random numbers is only available in special hardware, thus some
pseudo random number generator (PRNG) must be used. Unfortunately most
standard PRNG’s, that comes with the compiler or the operating system, only
have a resolution of 215, that is, a call to the PRNG gives a pseudo random num-
ber between 0 . . . 32767. Further more poor PRNG’s tends to repeat themselves
in relatively short periods. The number of calls to the PRNG in an implemen-
tation of this algorithm is high, and it is thus of uttermost importance that
the PRNG is of good statistical quality (close to uniform distribution), have
high resolution (at least 31 bits) and a long period. Two such generators are
the Mersenne Twister and r250, of which the last is used in this thesis. The
r250 PRNG has the same resolution as the machine architecture, a period of
2250, hence the name, and a good statistical nature. More information can be
obtained in [38].

10.3.2 Projective Errors

One problem, that surprisingly is not mentioned in any of article concerning
projections mentioned in this thesis, is that projective errors occur, when in-
terpolating the reprojected texture coordinates. When rendering a snap shot,
the texture coordinates of the vertices in the projecting images are calculated
using T . When coloring the fragment of a primitive, the texture coordinates are
interpolated in the domain of the camera taking the snap shot. Interpolating
the projected vertices represents no problem, however the texture coordinates
are reprojected from another domain, giving rise to a projective error. This is
illustrated in two dimensions in figure 10.3.2.

There is no easy solution to this problem, since it would require a reprojection of
every fragment coordinate onto the mesh and project them into the projecting
Camera to get the correct coordinates. A subdivision of the mesh minimizes the
problem, but to fully avoid it would require a subdivision corresponding to the



10.3 Pitfalls 81

Figure 10.7: Figure showing the projective error due to the interpolation in
texture space and not in world space. The red curve shows how the line would
be perceived after the projection.

resolution in the textures, i.e. approximately a triangle pr pixel. The problem
however is only significant when having large (compared to the resolution in the
images) planer surfaces. The resulting error would then draw the model towards
a finer grained mesh than actually required by the ground truth surface, which
is not destructive to the algorithm. An example showing the original texture,
the projective error and the projective error corrected by using a finer grained
mesh can be seen in figure 10.8.

10.3.3 Depth Errors

A common problem in computer graphics is to use the depth buffer directly for
comparisons to determine if some object is visible (used fx in shadow mapped
light). First of all, if the depth stored in the depth buffer is of a lower resolution
than the depth used in the comparison, or if the two depths are not calculated
in the exact same way, giving rise to numerical errors, then the comparison
may maliciously fail. This simply requires good programming practise to solve.
Another harder problem comes from the quantized nature of the depth buffer.
The values in the depth buffer are only samples of the real depth of the scene.
When comparing to the depth buffer at sub-pixel accuracy, as is the case when
checking visibility, then only an interpolated depth is available. Figure 10.3.3
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(a) Original (b) Projected (c) Corrected using subdivi-
sion

Figure 10.8: An example of the projective error. From left, is the original tex-
ture, a square made of 2 triangles on which the texture is projected from a
Camera at a skew angle, and right the same square subdivided sufficiently to
minimize the projective error. The bad quality of the projections is an unavoid-
able effect of the reprojection.

shows how this will fail, when the mesh is not simple.

This problem can somewhat be minimized by adjusting the near and far clipping
plane to match the actual spatial span of the mesh, but the error is still notable.
Many other solutions have been proposed, some involving filter operations on
the depth buffer. To keep the visibility check fast, a simple solution is chosen
where a pixel is accepted as being visible if it is within a certain range of the
depth. Making the range too large, however, will accept otherwise occluded
pixels, and thus the range must be chosen with care.

10.4 Discussion

This section will discuss some issues of the implementation not fitting in else-
where.

10.4.1 Limitations

OpenGL is designed to be dynamic, both as a programmer interface, and as a
hardware implementor interface. To accommodate for the ever changing hard-
ware changes, it has some build in hardware dependent limitations. Thus there
is a maximum of how large images can be used, and how many. As new graphics
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depth interpolation

(a) 2D (b) 3D

(c) Example

Figure 10.9: Figure illustrating the depth error in 10.9(a) in 2 dimensions,
10.9(b) 3 dimensions and 10.9(c) an example from the program, where the light
gray is occluded pixels.

hardware is developed it is expected that these limits will go up.

As an example, the computer used in this thesis has a maximum texture size
of 4096 × 4096 and can only have 8 sets of textures and depth textures at the
same time. This should be plentifully for the basic implementation, as most
digital images today have lower resolution, however it makes it impossible to
have more than 8 Cameras projecting at the same time.

10.4.2 Memory Considerations

While images can be compressed considerably when stored on a hard drive,
they must be in an uncompressed form, if used for fast rendering. This section
will try to make an estimate on the amount of video memory used for the
various textures involved. It is clear that the amount of video memory is a
limited resource. As an example the computer used in this thesis for testing
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the implementation has 256 Mb of video memory. The implementation uses 4
textures for each Camera, one for the image data, one for the depth buffer, one
for the captured snapshots and finally one for the error calculations. Some of
these textures could be shared between the Camera’s, however they can be used
to visualize the flow of the convergence. If btex is the number of bytes used for
a texture the following estimation of the memory consumption can be written

mem = w × h× (n× (bimg + bsnap + bdepth + berr) + bgen) (10.6)

, where w and h are the width and height of the input images, assumed to be
the same. bgen is a general shared texture used i.a. the summing algorithm.
The precession used in the implementation are 4 bytes pr color channel, except
the input images, where 2 bytes are used. Using equation 10.6 on an example
with eight 512× 512 Camera’s uses approximately 70 Mb. Thus it would not be
necessary to swap the image data back and forth between client memory and
graphics memory, which would be catastrophic for the performance.

10.4.3 Choosing Constants

Throughout the description of the basic algorithm many constants controlling
the convergence has been introduced. Table 10.2 shows these constants and the
default values chosen. Some of these constants overlap in terms of controlling
the algorithm, however they have been chosen this way to clarify their use.

The weighing constants controlling the proposal distribution are at default cho-
sen to be uniform. It is however very likely that some of the deformations
will perform better than others. Therefore an automatic adjustment has been
implemented, based on the performance of the deformations a number of pro-
posals back. Thus if having a model with far too many vertices to represent the
structure, deformations removing vertices are likely to perform well. Therefore
they should be allowed to continue at a high rate, while other deformations
are chosen less. To ensure that all deformations are used, a lower limit to the
auto-adjustment are set.



10.4 Discussion 85

Name Description Value
T0 The initial temperature when using simulated

annealing
0.4

pixel penalty The weight of the cost when comparing pixels. 2
vertex penalty The cost of each vertex in the mesh 0.3
angular penalty The weight of the smoothness term. 1.0
alpha penalty The cost of every alpha pixel. Should be

slightly higher than the expected mean pixel
error.

0.7

occlusion penalty The cost of an occluded pixel. Should be lower
than the alpha penalty, but relatively high
compared to the expected mean pixel error.

0.6

δ-modifier Adjusts the δ-value before the effect of simu-
lated annealing. Thus determines the average
number of pixels a deformation should take.

2.0

deformation weights The weights of the deformations in the selec-
tion of the proposal distribution. A uniform
selection has been chosen as default.

1.0

Table 10.2: The constants used in the implementation together with a small
description and the default value.





C h a p t e r 11

Datasets

5 different datasets has been chosen together with the synthetical datasets pro-
duced by capture.exe. Emphasis has been put on choosing different datasets,
with different attributes. Unfortunately a dataset showing specular highlights
from a shiny surface has not been available. A listing of the datasets are:

• Synthetic

– The Box

– The Bunny

• The Cactus

• The Gargoyle

• The Pot

• The Face

• The Masters Lodge

These names will be used as a reference to the datasets when testing. Please refer
to the Dataset/ directory provided on the CD. All datasets are accompanied
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by a coarse mesh, either hand annotated using Matlab, or included from the
source. Further more some of the datasets have been used to produce cropped
versions of the input images only showing the actual object. In the following
the datasets, their origin and their attributes will be presented.

11.1 Synthetic Datasets

Synthetic datasets are chosen in order to provide images and camera parameters
sampled from the same environment as the algorithm will be tested in. Thus
the images are subject to no noise except that of numerical errors, and the
associated Camera’s project the light rays in the exact same way as when the
images where captured. Furthermore global illumination is assumed, and thus
the material will act under the Lambertian assumption. Using OpenGL to
capture the images it is also possible to include the ground truth alpha channel
of the scene in the images, and thus simulate a perfect cropping. Two 3D models
are used, a simple and detailed.

11.1.1 The Box

The first model is a simple box textured using a landscape image. The box is
one of the most simple real 3D structures possible, and is thus used to test that
the basic functionality of the implementation. An example dataset of the box
with two cameras can be seen in figure 11.1.

11.1.2 The Bunny

The second model used for a dataset is the well known Stanford Bunny, which
can be seen in figure 11.2. The bunny presents a more detailed surface, with
different levels of details. The model is textureless, and thus a texture must be
applied. It is expected that the texture used has a high influence on the amount
of 3D information that can be extracted from the input images. The images
are captured using ambient lighting and thus a uniform texture would result in
images which only contains information of the outline of the object. The texture
chosen can be seen in figure 11.3 together with an image of the textured bunny.
This texture has been chosen for no specific reason, except that it is a real world
texture, and contains both large and small details.
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Figure 11.1: Simple example of a dataset of the Box.

Figure 11.2: A real image of the bunny, and two rendered images of the the
model.

11.2 The Cactus

This dataset and the next, the Gargoyle have been obtained at [40]. They have
been widely used in a great deal of the articles concerning surface estimation.
The dataset consists of 30 images with a resolution of 768× 484 and are in the
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Figure 11.3: The left image is the texture used in this text, and the right is
textured Stanford bunny.

tif format. They have been obtained using a robot arm making a controlled
circular movement around the object. This may explain why they are upside
down. The intrinsic and extrinsic parameters are given in the Vista format, for
more information see [48]. A small Matlab program has been implemented to
convert the Vista format into the one used in the job description. Image 0,
1 and 2 can be seen together with the annotated mesh and a full setup of all
cameras in the scene in figure 11.4.

11.3 The Gargoyle

This dataset has been obtained from the same source and in the same way as the
cactus dataset. It consists of 16 images of a gargoyle, each having a resolution
of 719 × 485. As seen in figure 11.5 the gargoyle is almost in gray, contains a
texture and many small details. The background is alternately black and white
paper, which should make it easier for an algorithm not to use the background.
An interesting detail is that the gargoyle has two holes under the arm, which is
clearly visible in some of the input images.

11.4 The Pot

The Pot dataset is a nice painting work by one of my supervisors, Henrik Aanæs.
It is a pot with a radius of about 30 cm, painted in a black and white camouflage
pattern. It consists of 5 images with a resolution of 512 × 512. The intrinsic
and extrinsic parameters of the camera are given in camera matrices suited for
the Matlab image package. These have been converted into the domain used in
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(a) Image 0 (b) Image 1 (c) Image 2

(d) Annotated mesh (e) Overview

Figure 11.4: Image 0, 1 and 2 of the cactus dataset, the annotated mesh and an
overview of the distribution of the Camera’s.

the program. The object in this dataset is fairly simple, see figure 11.6, however
the illumination level is quite different, and the checkerboard pattern on the
baseplate can present a challenge to a surface estimation algorithm, since the
pattern can be shifted.

11.5 The Face

The face dataset was generously donated by Kenneth Møller, taken with the
setup used in his master thesis, see [44]. The images are taken in pairs, and later
rectified to prepare for a stereo vision algorithm, see figure 11.7. The dataset
contains 13 such pairs, each with a resolution of 1024×768, however they are only
calibrated in pairs and thus only a single pair can be used simultaneously. As
will be discussed later, living tissue presents a large challenge when estimating
the surface.



92 Datasets

(a) Image 1 (b) Image 2 (c) Image 3

(d) Annotated mesh (e) Overview

Figure 11.5: Image 1, 2 and 3 of the gargoyle dataset together with the hand
annotated mesh and an screen shot from the program showing the setup of the
scene.

11.6 Masters Lodge

This dataset is of architectural nature, like the one used in Vogiatzis’ evaluation
of his implementation. It was obtained from [6], and is popular in the literature
as a dataset. The scene contains an inner corner of a building with a tower and
an extruding lodge (see figure 11.8), hence the name. Vogiatzis claims that the
algorithm is well suited for architectural datasets, as they are largely planar and
can be represented using relatively few vertices.
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(a) Image 1 (b) Image 2 (c) Image 3

(d) Annotated mesh (e) Overview

Figure 11.6: Image 1, 2 and 3 of the pot dataset, an overview of the composition
of the scene and the annotated mesh.
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(a) Left (b) Right

(c) Annotated mesh (d) Overview

Figure 11.7: The left and right image of the face dataset. Below the annotated
mesh are shown together with a screen shot showing the setup.
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(a) Image 5 (b) Image 7 (c) Image 10

(d) Annotated mesh (e) Overview

Figure 11.8: Image 5, 7 and 10 of the Masters Lodge dataset, the setup and the
annotated mesh.
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Results

The purpose of this chapter is to present the results of the implementation run
with the datasets presented in the last chapter. As it is difficult to visualize
the resulting 3D models on paper, the reader is encouraged to supplement the
images provided here with the corresponding X3D models stored on the CD
accompanying this document. References to the relevant models will be given
in the context, while more information about the CD, and how to open X3D
files can be found in Appendix B.

The intention of this testing is the following:

• To clarify that the basic algorithm operates as expected.

• To evaluate on the performance, both convergence wise and of the resulting
quality of the 3D models.

• To compare some of the possible implementation choices described in
Chapter 7-10, and where adequate, use the results of Vogiatzis as a refer-
ence.

This will be achieved, by first using synthetical datasets to evaluate the foun-
dation, and later, in increasing order of difficulty, the real world datasets. For
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clearness, the test results are arranged using the datasets as a basis. To show
the spectra of objects to which this algorithm can be applied, the implementa-
tion choices are evaluated using different datasets. Where appropriate, datasets
enhancing the differences in these choices are used. To summarize, these are:

• Image metric using Correlation or SSE.

• Deformation Strategies, both the 6 proposed by Vogiatzis, the normal
deformation strategy and the triangle divide strategy.

• Simulated annealing / Static algorithm.

• Bayes selection / Best choice selection.

• Capturing using Blending or Pairing.

• Annealing schedules.

• Using auto-adjusting constants or not.

12.1 Synthetic results

Using a synthetical dataset, one can test how well the implemented algorithm
performs under perfect conditions. Two different models are used to prepare
datasets, a simple box, and the famous Stanford bunny.

12.1.1 The Box

To test the basic workings of the algorithm, two 256 × 256 images of a simple
textured box is captured. The initial mesh is set to be a distorted version of
384 vertices uniformly distributed over the ground truth box, see figure 12.1 for
a screen shot from the program showing the initial composition of the scene.
The input parameters are set as closely as possible to that of the same test by
Vogiatzis, however an occlusion penalty has been added to avoid a model collapse
as described in 7.3.1. It should be mentioned that such a test without occlusion
penalty has been done, however as the result is simply empty buffers it has
not been included here. Figure 12.3 shows the buffers as seen before and after
convergence, which took approximately 1000 iterations, 4000 proposals and less
than a minute. It clearly shows that the final model resembles the input images
much better than the initial, and how the mesh is greatly simplified. The SSE
error buffer still shows errors, however as we shall see later this is unavoidable.
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Figure 12.1: Screen shot of the initial composition of scene in the simple box
test.

In figure 12.2, the convergence of the objective function is shown as a plot of
the deformations distinguished using different colors for the different strategies.
As expected the first part of the convergence is dominated by edge collapse
deformations, while the second part has more spatially adjusting deformations.
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Figure 12.2: The objective function versus the number of iteration used for the
Box test.

The resulting model contains 20 vertices and 22 triangles, which is more than
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the 7 vertices and 6 triangles needed to represent the surface as viewed from the
two cameras. This is partly a product of the fact that collapsing more vertices
together would move one of the border vertices producing a large error in the
images as mentioned in section 9.3.5, and partly because of the projective error
discussed in section 10.3.2.

Figure 12.3: The first row shows the buffers of the initial situation. The second
row shows the result after convergence. The resulting model can be found in
Box/test1/model1.x3d.

To ensure that the later of these error sources are in fact influencing the result,
the image metric of the ground truth box has been measured in different mesh
resolutions starting from the minimum of 6 triangles. The result is shown in
figure 12.4, which strengthens the projective error theory. Subdivision of the
mesh greatly reduces the image cost, until some limit is reached. The dashed red
line shows the metric when using the adaptive subdivision technique proposed in
section 10.3.2. The result of this technique is very close to what can be achieved
by continuously subdividing the triangles. Ideally it should thus be added to
the standard algorithm for better results, however it is rather slow, and should
thus only be used as a possible polishing of the final solution. When applied to
this result, the size of the mesh is allowed to go further down to 16 vertices and
16 triangles, before the cost collapsing an edge gets too high.

Vogiatzis achieved a mesh with only 8 vertices, however he does not mention the
re-projective error, and can thus have used some unknown method to avoid it.
The minimum solution however, can easily be obtained by enlarging the penalty
for having vertices to a sufficiently high level out ruling the image errors caused
by the edge collapses. In this case it has been sufficient to raise the vertex
penalty to about 300, which brings the size of the mesh down to 7 vertices. A
vertex penalty at this size is however highly unrealistic in real models. This final
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Figure 12.4: The the size of triangles versus the image cost for the box.

result has a mean euclidian error of 0.3 compared to box size of 10 × 10 × 10.
Most of this error comes from the back most vertex, which is natural, since least
information is available there.

12.1.2 The Bunny

The box is a very simple object, that can easily be represented using only a
few vertices. To test the system using a more difficult object, while still using
synthetical data, the Stanford bunny has been chosen. 3 512 × 512 images are
captured using different viewpoints, to show that the algorithm is not limited
to the stereo case. The scene with the 3 images and the annotated initial mesh
can be seen in figure 12.5.

As with the Box, the initial situation and the result have been included, see
figure 12.6. This time the amount of vertices is less important and thus the
vertex penalty has been set substantially lower. It should be noted that since we
have included an occlusion penalty, the convergence is not only determined by a
search for the correct model with respect to the images and the smoothness term.
The initial mesh contains a substantial amount of occluded and alpha pixels, as
can be seen in the snap shot buffer. The cost of these pixels are relatively high,
which in turn means that the first part of convergence is mainly concentrated on
limiting this cost, in some situation on behalf of the photorealism of the model.

The result shows that the general appearance of the bunny has been improved
and some of the errors due to the triangulation has been corrected. The result
is a smooth low resolution mesh that re-projects the input images fairly well.
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Figure 12.5: The initial composition of the scene using the Stanford bunny as
an object
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Figure 12.6: The buffers of the initial situation, and the result after
convergence of the Bunny test. The resulting model can be found in
Bunny/test2/model1.x3d.

Many of the smaller details are not captured, fx the ear is represented as a
flat shape, while the ground truth clearly is concave. The curls in the wool is
far to detailed to be captured at this mesh resolution, however the hips, the
rear ear and the tail have the correct form even though the initial mesh lacked
these details. The snap shot in the result contains occluded pixels, which is
also expected since the input images are captured from different views. The
differences between the two error buffers shows a large improvement, however
there are still a considerably amount of information, not captured by the model.

It would be interesting to hold the resulting model up against the ground truth
Bunny, measuring the MSE of the vertices. Such an evaluation however has not
been implemented, as the focus has been on improving the algorithm.

Deformation Strategies

The actual distribution of the deformations in this test is shown together with
their acceptance ratio and their relative gain in Table 12.1. As can be seen, the
distribution of the deformations is not completely uniform. The reason for this
can be found in the deformation selection process. If a deformation is chosen,
but can for some reason not be performed, then another deformation is chosen
at random. Thus if a deformation type has a high drop ratio, then it will have
a lower overall usage. This is the case with the swap deformation. An edge can
only be swapped if it has two neighboring triangles, thus it fails at every border
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Figure 12.7: The objective function versus the number of iterations used in the
bunny test.

edge.

Deformation Acceptance Usage Gain
random 23.21% 13.14% 15.94%
epipolar 15.60% 11.46% 23.83%

edge swap 5.47% 9.80% 6.35%
edge collapse 2.40% 13.18% 11.73%
vertex split 0.98% 12.99% 9.77%

gradient 13.13% 13.12% 15.88%
normal 25.06% 13.19% 13.08%

triangle divide 3.60% 13.12% 3.40%

Table 12.1: Bunny test run without auto adjusted constants.

Surprisingly the normal and the random deformations are most successful on
average. This can have several reasons. First of all, these deformations are
uniformly distributed in space about the old vertex. Thus some of them will
not change the mesh very much, which gives a high chance of acceptance using
the simulated annealing approach. Second, the initial mesh does not fit the
bunny’s outline in the images. This requires movement perpendicular to the
normal at the border, which may explain why the random deformations are
relatively well accepted. When refining the mesh, the proposed triangle split
deformations performs significantly better than the vertex split as expected.

Vogiatzis claims to have obtained acceptance ratios of 20.2% for random, 30.5%
for gradient and 47.2% for epipolar deformations. This is similar to our result
for the random deformation, however he achieves much better acceptance for
gradient and epipolar deformations. The source of this difference can either be
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Figure 12.8: The distribution of the deformations in the first 200 proposals of
the Bunny test.

differences in the implementations and or the nature of the data. As such, no
single reason can be identified.

A more fair basis for comparison is the relative gain of the deformation types.
Using this the epipolar strategy performs best, while the 3 other vertex defor-
mations are similar. Interesting is that the 3 original connectivity deformations
has a high gain compared to the acceptance ratio. This however is understand-
able as they move the vertices in space perpendicular to the normal of the mesh.
The new triangle divide was chosen for not doing this, which explains its low
gain.

Auto-adjusting Constants

To evaluate the impact of using an adaptive distribution of the deformations, the
same test is run again. The resulting model is very close to what is already ob-
tained, however as table 12.2 shows, the acceptance ratio has increased. In total
the first test accepted 11.3% while using a non-uniform distribution gave 15.3%.
Especially the deformation types having low acceptance before is now accepted
a little more often. This shows that the convergence needs fewer connectivity
deformations than is gained from a uniform distribution.

The result on the distribution of using auto-adjusted constants is illustrated,
for the first 200 proposals, in figure 12.8. All constants start out using the
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Deformation Acceptance Usage Gain
random 23.95% 21.62% 23.00%
epipolar 14.80% 13.12% 19.94%

edge swap 6.47% 6.29% 7.15%
edge collapse 3.55% 8.29% 8.57%
vertex split 1.56% 7.24% 3.89%

gradient 14.09% 13.08% 11.41%
normal 23.70% 21.37% 13.25%

triangle divide 5.23% 8.99% 3.02%

Table 12.2: Test run with auto adjusted constants

uniform distribution. The vertex split deformation takes a long time before
enough information is gathered to base a constant on, which is why it has such
a large part of the deformations to start with. After this, the distribution finds
a more natural bearing.

12.2 Architectural results

The next set of tests of the implementation is done using architectural scenes
from the real world. Architectural scenes are chosen next, as they have some
nice properties for 3D reconstruction. They mostly consists of large planar
or smoothly curved surfaces, that can easily be represented by relatively few
vertices.

12.2.1 The Pot

The Pot dataset would probably not be described as a piece of architecture
by most people, but it has been included here because it is simple and has
many of the same properties as architecture. Image 1, 2 and 3 are chosen as
input for the algorithm as they present a challenge because of their difference in
light distribution, as will be discussed later. First a simple reconstruction using
SSE is performed, as is documented in figure 12.9. As can be seen, the result
resembles the pot much better than the initial mesh. The occluded areas has
been minimized and the mesh simplified to a balance between the image error
and the mesh cost. The general shape of the pot is reconstructed, however the
extruding edge in the bottom of the pot has not. When comparing the error
buffers, it is difficult to identify the edge as a significant error, which may explain
why the model has not adopted to it. In figure 12.10 the convergence is plotted.
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Like the Box, it shows a large amount of edge deletes to start with and spatial
adjusting towards the end. Interesting is that there also is a notable amount of
edge inserts used to adjust the mesh throughout most of the convergence.

Figure 12.9: The first row shows the initial situation. The second row
shows the result after convergence. The resulting model can be found in
Pot/test1/model1.x3d.
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Figure 12.10: The objective function versus the number of proposals used.

Image metric - SSE versus Correlation

The images from this dataset are real world images having visible differences
in the color distribution, which would thus make a good foundation to evaluate
the differences between the two proposed image metrics, correlation and SSE.
The algorithm is based on a randomized search and it would thus provide an
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inaccurately comparison if evaluating the two image metrics separately. There-
fore both have been calculated and stored for each iteration, while only one of
them has been the controlling metric, ie. the one used in the proposal selec-
tion. To avoid ambiguities, two tests are conducted to let both metrics control a
test. Further more the same tests are performed on normalized images from the
same dataset, to reveal the possible differences. In theory the random nature
of the algorithm could favor one of the image metrics, however because of the
vast number of proposals this should not be significant. Figure 12.11 shows the
convergence of these 4 tests each with the metric either itself controlling the
convergence, or not. To account for the difference in the actual cost, the cost
have been normalized.
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Figure 12.11: The convergence using SSE and CORR, both controlled by itself
and the other. The upper row shows the result from the original Pot dataset,
while the lower shows the result on a normalized version of the same dataset.

As can be seen, the two metrics follow each other in the convergence. In general
it seems like the convergence is slightly better when SSE is in control. In the
normalized images, the gab between the two metrics are enlarged, which is nat-
ural since the advantage using CORR lies in the 1 order statistical differences
between the input images. It however is surprising that SSE performs better
than CORR in the non-normalized case. In the upper left graph, when SSE
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is in control it is expected that the convergence is better than when CORR is
controlling, which is the case. In the upper right, however it is unclear if the
corresponding is true for CORR. It is expected that CORR would perform no-
table better in control than when not, however only a little difference is present.
The test has been performed 3 times, to exclude the possibility of the this result
being extra ordinary. All 3 tests showed the same with a significance similar to
this. One of the possibly explanation is that SSE uses all 3 color channels in
its comparison, while CORR is limited to use a gray scale evaluation. If not,
then it comes down to an implementation error, which is highly unlikely the
relatively small difference taken into consideration. The last explanation is that
the data could favor one of the metrics. Fx the initial model could have areas
being wrong, but giving a lower cost to CORR than SSE. Thus it would make
SSE seem better, however also this is unlikely to be the case in the amount seen
here.

12.2.2 The Masters Lodge

The Masters Lodge shows a real piece of architecture, which is what Vogiatzis
proposed as subject for this method to do surface estimation. The surface has a
simple overall structure, however it contains a number of small details, that can
be difficult to capture. A number of these in increasing level of detail are the
actual masters lodge extending from the surface, the roof extending backwards,
the windows intruding a little inwards, the embrasures in the walls at the roof
etc. For this test, the three images presented in the dataset are used.

The result of a simple test is shown in figure 12.12. The initial mesh only
contains 14 vertices, and thus requires many deformations to reach an optimum.
The result shows a much finer grained mesh which encapsulates some of the
details mentioned above. The structure of the masters lodge and the tower is
captured and the roof extends backwards. The walls in general contains more
vertices than seems necessary at first sight. This however is due to the windows
in the walls as can be seen in the 3D model. The error buffer shows that there are
many details not captured. Fx the structure in the windows are finer than were
possible to achieve with the extra vertices. The convergence took approximately
20 minutes.

Annealing Schedules

This datasets is very similar to the second dataset used in Vogiatzis article.
As mentioned in 8.2.2, Vogiatzis uses an annealing schedule, that very rapidly
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Figure 12.12: The first row shows the initial situation. The second row
shows the result after convergence. The resulting model can be found in
MastersLodge/test2/model18.x3d.

descents to an almost constant temperature. Two other proposed schedules
having a more slow temperature descent where discussed. This together with
the choice of having a constant temperature gives 4 different choices. These
are tested using the masters lodge dataset, to be able to compare the results to
Vogiatzis’s result on the similar dataset.
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Figure 12.13:

The result can be seen in figure 12.13, which shows a clear difference between
the annealing schedules. The exponential schedule starts in the lead however it
is closely followed by the linear method. Both of them converges at close to 1000
iterations since a too small temperature for progress is reached. The schedule
proposed by Vogiatzis never gets the chance to use the high temperature which
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explains the slow, but steady descent. It does not however reach the same
level in the objective function despite the 2500 iterations. As a reference a
static schedule is included. Because of the too fast descent of the linear and
the exponential schedule, it reaches the same cost at the same time they stop.
However, it is static and thus continues. It somehow shows the potential of
when using a good annealing schedule, as it should be able to reach this level
of convergence and by lowering the temperature go even lower. It however also
converges since the model has reached a level, where the temperature are too
high for progress. This clearly shows the importance of the annealing schedule,
and that great improvement count be achieved choosing the right one.

12.3 Difficult objects

To test if the method can be used on more difficult objects, it will be tested on
the Cactus, the Gargoyle and the Face.

12.3.1 The Gargoyle

The Gargoyle is an object, that contains very little color information. It has a
general humanoid shape, with many small details, because of small bumps in
the material. The bumps are perceived as dark areas in the input images, which
should help capturing the general shape, but unlikely to be captured as small
deviations in the surface. Image 1, 2 and 3 has been chosen as input images
sub-sampled to 360× 243 pixels.

The result is shown in figure 12.14. It shows that the complexity of the object
is causing problems for the algorithm. Most of the overall shape has been
improved, and the error buffer shows that many details have been corrected.
The bottom of the gargoyle (the top in the upside down images), the arms and
the shoulder has been captured fairly well. Almost all small details are not
visible in the resulting model. Especially the right side of the model presents
a problem. Some of the texture below the head has been stretched to cover
occluded areas, which shows that the penalty for occlusion has been set too
high.
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Figure 12.14: The first row shows the initial situation of the Gargoyle test.
The second row shows the result after convergence. The resulting model can be
found in Gargoyle/test2/model1.x3d.

Bayes selection / best choice

The gargoyle dataset has been chosen to test the difference between an algorithm
setup in the Bayesian framework and an implementation based on the best
choice. Therefore the test is run again, however this time the algorithm has been
made greedy using the best choice selection rule. As can be seen in figure 12.15,
the difference between the selection methods are relatively small to start with. It
seems like the greedy approach has a small advantage over Bayes selection, which
is naturally since no bad choices are made. This situation, however, changes
when nearing convergence. While the greedy approach has difficulties finding
good deformations, Bayes selections continues downwards. The convergence is
reached after approximately the same amount of proposals. When studying
the amount of deformations accepted, it is clear that Bayes selection allows for
a wider range of deformations to be taken. Most of the time, almost twice
the amount of when being greedy. All these small step backwards is clearly
weighed up by the advantage of the ability to tunnel through small bumps in
the objective function. This is not the singlehanded conclusion from this test,
but have been shown in multiple other tests. This test using the gargoyle is
merely an example of the effect.
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Figure 12.15: Left is the objective function when using either the best proposals
of Bayes selection. Right is a histogram showing the acceptance in the same
test.

12.3.2 The Cactus

The cactus is a rather difficult object. Each plant has a distinct color, which
should make the overall surface easy to estimate. The texture of each plant,
however is repetitive, and contains spikes, that appear as a blurry cloud, difficult
to model. Image 1, 2 and 3 has been used in a simple test setup, like in the
previous tests. The result is shown in figure 12.16. The error buffer shows an
improvement, however admittedly, it is rather small. The rim of the pot and
some of the figures on it has been improved, however the spikes of the cactus are
visible, which shows that there is unused information. This however can also be
due to the spikes making these areas appear different from different angles, which
is supported by the fact that only one set of spikes can be identified in the error
buffer. Like in the Gargoyle, the texture of the red cactus has been stretched
to cover occluded areas. In the wireframe, the rim of the pot is not visible at
all, which may be due to the small angular difference the input images has. It
however shows the adaptiveness of the mesh, as the red cactus requires more
vertices to present its structure than fx the pot. Studying the 3D model will
show that the reconstructed pot is not very smooth and round. Especially the
rim presents a problem. The cause of this can be that the texture at the rim is
almost uniform going round the pot. Thus it gives the same visual appearance
when some of the texture is ’copied’ to other areas of the rim by erroneous
structure. The result obtained here is far away from what other algorithms
have shown possible. They however achieve this using conceptually different
approaches.
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Figure 12.16: The first row shows the initial situation. The second row
shows the result after convergence. The resulting model can be found in
Cactus/test1/model1.x3d.

Capture Method - Blending or Pairing

The Cactus dataset contains images from all around the cactus. Therefore most
of the cactus are visible in more than one image, or in other words only a few
pixels in each Camera are occluded. This is only when taking all cameras into
consideration, like when using blending to capture the snap shots. If using
pairing many pixels in each image will be occluded, giving rise to large errors.
To show this difference 5 images have been chosen covering half of the cactus.
These are image 0, 2, 4, 7 and 9. The convergence of the two tests have been
recorded and can be seen in 12.17. As expected, the blending method copes best
with the multiple images. The pairing method has difficulties finding a good
minima, as it is too affected by the occlusion cost. The result is a strange mix
of trying to remove occlusion and fitting the images. This single test is provided
here to illustrate the differences, however many other tests has shown the same.

12.3.3 The Face

The Face datasets presents a large challenge, since human skin can not be mod-
elled in a convincing way using the standard light model, see [23]. The algorithm
implemented assumes Lambertian objects, however it is interesting to see how
the algorithm behaves under these circumstances. A single set of the rectified
images are used for the test. Figure 12.19 shows the resulting buffers. The
overall structure of the face has been captured, that is the chin, the cheek and



12.3 Difficult objects 115

0 200 400 600 800 1000 1200 1400 1600 1800
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Proposals

O
bj

ec
tiv

e 
fu

nc
tio

n

Convergence with different capturing methods

Blending
Pairing

Figure 12.17:

0 500 1000 1500 2000 2500 3000 3500 4000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Proposals

O
bj

ec
tiv

e 
fu

nc
tio

n

All pairs controlled convergence

All pairs
Blending

0 500 1000 1500 2000 2500 3000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Proposals

O
bj

ec
tiv

e 
fu

nc
tio

n

Blending controlled convergence

All pairs
blending

Figure 12.18: Two plots of the image metric, when capturing using blending or
all pairs. The first plot is controlled by the image metric resulting from using
pairs of images, while the other is controlled by blending

the forehead. The eyes are showing as inwards intrusions, but not very well.
The nose is curled up in a complete unrealistic manner. If studying the input
images, one will find, that the nose has a specular highlight at different places
on the two images. The curling up of the nose can be an attempt to match this
highlight without changing the texture of the rest of the nose. The error buffers
shows almost no improvement, except that the final model fits the outline of
the input images better. This can either be because the initial mesh represents
the surface well, or because of the lack of details in the texture of the face.
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Figure 12.19: The initial buffers and the result from the Face test. The resulting
model can be found in FaceDataKHM/test2/model1.x3d.

12.4 Summary of Test

To summarize the main results from the test are

• The algorithm is good at capturing the general structure.

• The algorithm is bad at capturing details.

• The algorithm has problems adapting the mesh resolution.

• Using the SSE image metric has a slight advantage over using correlation,
because of using colors in SSE.

• Using an auto-adjusted proposal distribution gives better convergence.

• The annealing schedules used descents too fast and requires more work to
become optimal.

• Using pairing for input is only advisable for small angular differences in
the input images.

• The Bayes selection has a positive influence on the convergence.

• The implementation is not good for facial reconstruction.
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Discussion

This section discusses an concludes on the workings of our implementation of
the basic algorithm.

13.1 Identified Flaws and Issues

The largest problem identified in almost all tests is the general reluctance to
adapt to lesser details in the input images. The overall structure of the model
rarely presented a problem to the algorithm, however when refining this result,
the model either adapted using some unrealistic surface or not at all. An exam-
ple having both successfully adopted and erroneous areas can be seen in figure
13.1, which was obtained manually adjusting the constants and run the algo-
rithm multiple times with increasing mesh resolutions. The problem relies in
the smoothing term. Setting it too strongly cripples the algorithm and setting
to weak allows a distorted surface.

The relative low resolution in the results presented in the last chapter was
chosen to avoid too long running times. Each proposal only deforms a few
vertices, making the convergence very slow for large meshes. Some long runs,
fx the one in figure 7.1, took over 16 hours, because of the large amounts of
vertices involved.
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Figure 13.1: A screen shot of a model the Bunny achieved using the algorithm
multiple times. The screen shot shows areas where the model has captured the
details nicely and areas, where the surface is distorted. The X3D model can be
found in Bunny/curly.x3d

13.2 Conclusion

As can be seen from the results in the last chapter, the implementation of
the algorithm functions as expected. Models deform into more visually correct
surfaces under the constraints of the smoothness term. The algorithm however
has problems adapting to details making it weak, when details are needed. It
however is good at reducing the resolution in the input mesh in an adaptive
way.

It is believed that the performance of the algorithm could be improved consider-
ably using the correct constants, however as can be seen finding these constants
is a time consuming task, not completed yet.
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Improvements
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Discussion of Possible
Improvements

As concluded in the last part, the basic algorithm does converge, however it has
several drawbacks, that makes it reach a non global minima of the objective
function. This part is a presentation of a number of proposals to better this.
Some deviations to the algorithm presented by Vogiatzis was already discussed in
the last part, however these were merely different implementation choices, which
either were necessary or deserved to be evaluated. The proposals presented here
are new ideas, that would change the algorithm in a way that would not fit well
into last part. Some of these proposals are implemented as an extension to the
algorithm, and has thus been tested and evaluated. Others are theoretical ideas,
that has not been implemented because of lack of time.

Presenting, implementing and evaluating such proposals would normally require
a substantially work, however as the basic algorithm already provides the needed
framework, this can done fairly simple. The rest of this chapter introduces the
proposals presented, and the background for doing so.
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Figure 14.1: Figure of a group of vertices trapped in a local minima. The red
arrows shows a possible, but improbable escape from the minima.

14.1 Coarse to Fine Technique

The algorithm, as presented until now, requires a good initialization. It would
be interesting to investigate the possibilities of using this surface estimation
technique in a full scale algorithm, that starts of a simple guess, fx a cube. This
will be described in Chapter 15, where a coarse to fine technique will be used
to stepwise increase the information available, i.e. the resolution of the input
images. This technique is therefore denoted as the zooming approach.

14.2 Improving Convergence

When improving such an algorithm one must ask one self: what is going wrong.
It is known that the scene has some (possibly unknown) ground truth surface,
that can be achieved by deforming the model using the current deformations,
as discussed in [57]. It may however be that achieving this is very improbable,
and thus very unlikely to happen when running the algorithm. Thus the ques-
tion can be reformulated into: what makes the real surface improbable to reach.
This question has many interesting answers, some of which has already been
discussed. The following discusses some of the answer to this question.

One of the key elements of the algorithm is the deformation of the vertices. Using
the random deformation, all possible surfaces can be reached if the accompany-
ing mesh has sufficient resolution. The non random deformations makes it more
probable that a vertex is moved so that it will fit the image information better,
however sometimes vertices can be trapped in local minima, simply because it is
too improbable that it would deform into the right shape. An example viewed in
2D is a spiky surface estimated with a plane, please refer to figure 14.1. Moving
any single vertex will make the current model deviate more from the real surface
than gained, and thus make the cost higher. Moving all vertices along the red
arrows will make it fit the surface and make the cost lower. Thus to escape the
minima, series of improbable steps must be chosen. To improve this, it could be
penalized not being on an edge, and thus making a single step towards the real
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surface more probable. One useful observation of such sharp edges, is that they
usually appear as a feature in the images. Thus using the features in the input
images to adjust the vertices may improve the convergence. This is discussed
further in Chapter 16.

14.2.1 Error Based Selection

One of the main problems relating to the speed of convergence is that the
algorithm blindly picks a triangle or vertex and deforms it. It can thus in theory
always pick the same deformation, and thus newer converge. As the algorithm
is defined now, the algorithm is image based, ie. the cost is evaluated in image
space. This makes the result photorealistic, however it also makes the choice of
the deformations a blind search. In most image based algorithm the evaluation
of the estimated surface is used directly in the deformations, see fx [26] and [60].
Similar primitive selected as base for a deformation could be chosen using the
cost the primitives infer on the model. This will be discussed further in Chapter
17.
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The Zooming Approach

This chapter will describe an attempt to use the basic algorithm without an
initialized mesh obtained using another surface estimation method. As described
in Part I, making such an initial guess is a thoroughly researched area, and
robust methods for doing so have been developed for most cases. It is thus not
out of necessity, but more curiosity that this is investigated here. First the idea
is introduced, then the algorithm build on these ideas is presented. It is tested
and conclusions upon it is made.

15.1 Introduction

Using the algorithm without proper initialization is straight forward, fx a sim-
ple cube could be used as a starting guess. The result doing so, however is
rather poor and the convergence is very slow. Especially areas of the surface
with repeating patterns is subject to errors, as no initial information of the 3D
structure is given, and thus the algorithm may find a strong local minima at
a wrong ’shift’ in the pattern. An example of this can be seen in figure 15.1,
where the regularity of the spikes in the cactus dataset fooled the algorithm.

A simple method to both speed up the algorithm and improve the result is to
make a coarse solution first using a down sampling of the input images. This



126 The Zooming Approach

Figure 15.1: Two screenshots of a piece of the cactus dataset, where the patterns
on one of the cactus’ has been shifted. The left shows the cactus from an angle
visualizing the shift, while the right is from an angle similar to the one of the
Camera’s.
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Figure 15.2: A pyramid from the Cactus dataset. For every level of detail, the
model is refined.
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argument can be used again on the algorithm running on the down sampled
images until single pixel images are reached. This would correspond to run
the algorithm on an image pyramid (see figure 15.2), jumping down the steps
as a final solution is reached, or to iteratively zoom into the object, for better
detail, hence the term, zooming approach. It should be noted that it does not
correspond to real zoom, as it would result in the field of view getting narrower
for each step. In addition to the faster convergence with respect to the number
of proposals used, it also much faster to operate on smaller images.

By running the algorithm on down sampled input images, some of the errors
originating from repetitiveness in the texture is avoided, as the down sampled
images has smoothed out the patterns. Thus the problematic cactus from before
would start out as a green blob, from which the general structure of the cactus
could be achieved before the algorithm is introduced to the repeating spikes.

15.2 The Zooming Algorithm

To describe the zooming, we define lod as the level of detail in the same spirit
as OpenGL. lod0 is thus the highest resolution available in the input data. As
very little can be induced from very low resolution images, a minimum initial
resolution is defined to be 32× 32 pixels. The algorithm assumes no uniformity
in the size of input images, however best results are expected when the images
have approximately the same δ-value. If not the convergence may concentrate
on reducing the error in the high resolution images, while low resolution images
are neglected.

There exists a number of different methods for downsampling images, fx gaussian
pyramids, wavelet pyramids, nearest neighbor pyramids etc. For simplicities
sake, and to exploit the build in software in OpenGL a simple averaging method
is chosen, where each pixel at a level k is the average of the 4 corresponding
pixels in level k − 1.

The formulation for the algorithm using the zooming approach is straight for-
ward. We simply add an extra outer while loop, that increases the detail level
for each run of the basic algorithm. The algorithm can be seen in algorithm
15.2. To account for some of the problems regarding mesh refinement, each
loop subdivides the mesh. Thus each run of the basic algorithm will be able to
remove the unnecessary vertices, while the others can be adjusted to fit the new
information in the data.
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Algorithm 4 The Zooming Algorithm
Set lod to lodstart

while lod ≥ 0 do
while converging do

deform the surface
evaluate objective function
if better than not deformed surface then

keep the deformed surface
else

discard the new surface
end if

end while
increase the lod

end while

15.3 Results

The new algorithm was tested using both the Cactus dataset and the Pot
datasets. To visualize the refinement steps of the Cactus dataset, the resulting
buffers of each level of detail are shown in figure 15.3. The algorithm took about
a half hour to converge. As can be seen, the simple cube is deformed into an
object of the correct size and position in the highest level. From there each
level refines the mesh, and adjusts the vertices. The final mesh resembles the
cactus well, which can also bee seen in the 3D model. Not much is happening
in the buffers from level 2 to level 0, which is mainly because of the limited
resolution of the printed buffers. The mesh is subdivided at each refinement
step which makes the mesh resolution explode. It seems like the algorithm does
not complete exhaust the information given in each step well enough. Thus not
all unnecessary vertices are removed, which causes even more new vertices in
the next subdivision. The result of this test is as good, if not better, than the
result obtained using the basic algorithm using an initial mesh.

Figure 15.4 shows the same test using the pot dataset. As can be seen also
this has succeeded fairly well. The structure of the pot has been reconstructed
with the exception of an artifact in the top. This example shows that using
the standard algorithm as a base for the zooming approach makes it inherit
the problems already discussed in Chapter 12. These problems however grows
larger as they are used at a lower level of detail, and next multiplied. As can
be seen from the Cactus results most of the errors done in an earlier steps are
taken care of, when sufficient information is available to correct it. The Pot
however shows that this is not always the case.
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Figure 15.3: The result of using the zooming approach on the Cactus dataset.
The buffers are shown in chronological order, i.e. from lod6 to lod0. The result-
ing model can be found in Cactus/zoom2/zoom0.x3d.
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Figure 15.4: The result of using the zooming approach on the Pot dataset. The
error buffer is blue because CORR is used, which does not visualize well. The
resulting model can be found in Pot/zoom1/zoom0.x3d.

15.4 Conclusion

The tests clearly shows that an initial mesh is not a necessity for estimating the
surface using the deformable models method. The model takes longer time to
converge, and the result can contain major defects, if the individual steps can
not cope with them before they become to large. Besides that the quality of the
models obtained are good.
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Use of Feature Maps

In this chapter the use of extracted feature maps will be discussed. As mentioned
one of the problems reaching the global minima of the objective function (the
correct surface) is that there is no control of the distribution of the vertices
on the surface, as long as their projections resembles the images to the current
quality of the reconstruction. Thus when deforming the model, the vertices
may be positioned in an unfortunate way that makes a successful refinement
improbable.

16.1 Introduction

One proposal that may better this, is to extract feature information from the
input images, like in feature matching, and use it in the positioning of the
vertices. The argument for doing so is twofold. Firstly, features provide good
correspondences, and thus, if a point in space both match a strong feature in all
images and gives low error when the local mesh is evaluated, then it is even more
certain that the position of the point is correct. Secondly many difficult parts of
a surface gives strong features in the images thereof. Examples of this could be
corners or sharp edges, that due to lighting conditions or occlusion of underlying
objects with different texture, is a stronger feature than the surrounding surface.
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Figure 16.1: Figure of one of the images of the cactus dataset and the cor-
responding Harris Field (cubical root of it to improve visualization ), and a
Voronoi diagram of 288 of the strongest features.

Figure 16.1 shows what features extracted from images may look like. There
exists a number of feature detection algorithm that can produce this kind of
data. The feature field in the figure is the result of Harris Corner Detector as
discussed in Chapter 4.

16.2 Implementation

Aside from the normal objective function, one could add a lookup for every
vertex into the Harris field of every image and favor vertices being at strong
features while penalizing when low feature. The cost for not being at a strong
feature should be big enough to encourage the positioning there, but small
enough to secure that vertices avoids being positioned at positions with weak
features, if these are correct regarding the input images. Thus it should make
vertices attracted to nearby features, but not force the model to remove all
vertices in uniform areas with no features. This can be achieved by removing
a part of the penalty for having a vertex in the mesh, discussed in section 9.2,
based on how strong the features are in the projections of the vertices into the
images. As the cost for having a vertex is now, it is not high enough to make
the model remove all vertices. Thus it will only be an extra reduction in the
cost, when a vertex is placed at a strong feature in space.

To be able to adjust the significance of the feature cost in the results a weighing
constant, w, is introduced. This gives the final feature term

F(M) =
1

|cams|
∑

c∈cams

∑

v∈dMe
max(0, vertexpenalty × (1− wf(v, c))) (16.1)
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, where f(v, c) is the feature strength of v in camera c. The max term are used
to ensure that the cost is positive.

Figure 16.2: The result of one of the tests using feature cost, where w = 30.
The resulting model can be found in Cactus/feature30/model1.x3d.

16.3 Results

One of the datasets that presented large problems because of uncontrolled vertex
placement are the Cactus dataset. As can be seen in figure 16.1, the rim of the
pot and many of the spikes are clearly visible in the feature field. It may thus
be worthwhile to add this feature penalty, to make it beneficial for the vertices
to use these points in space. This has been done for 5 different weighings of the
feature cost, where a high weight gives large bonuses for using feature points. In
general w is chosen relatively high, as only the strongest features would otherwise
be useful. The resulting convergences can be seen in figure 16.3. Recall that
adding a feature cost actually removes some of the cost with respect to the basic
implementation. As can be seen in the right plot, the amount is much less than
what is actually gained in the objective function using the feature cost.

As an example the result using a weighing of the feature cost of 30 can be
seen in figure 16.2. If studying the 3D models of the result it can be seen that
many of the vertices are placed on or close to strong features. In general less
errors in the models occurred when using the feature cost, which is natural,
since erroneous surfaces that appear correct with respect to the images, seldom
match the features as well.

16.4 Conclusion

The feature cost adds a new constraint to the mesh, making it more willingly
to use good feature points in space. The result is that some errors are avoided,
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Figure 16.3: The convergence of 5 different tests weighing the feature cost dif-
ferent. To the right the actual feature cost is shown.

and that the result in general fits better. It has a small but significant impact
on the objective function satisfying the objective for introducing it.
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Error Based Selection

This chapter will describe a novel idea, where the randomized selection of a
primitive for deformation, is substituted with a more sophisticated selection
based errors. The idea has not been implemented fully, and this is thus only a
presentation of it.

The algorithm as described makes use of some of the image data in its defor-
mation of the model, however the selection of the primitive to be deformed are
completely random. This makes the algorithm awfully slow for large meshes,
as the algorithm may ’guess’ wrong many times before finding a primitive, that
actually needs a deformation.

17.1 Using Errors

One intuitive way of improving this is to store the cost of each triangle in the
evaluation, and use it to select a bad triangle or one of its corners. This however
is not straight forward when using an image based algorithm. It would require
projecting the triangles into the Camera’s and sum the error at the pixels that
they cover. This is both slow and difficult as some pixels are shared between
triangles.
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Figure 17.1: The automatic sampling and evaluation of triangles arranged in a
texture. The actual triangles and their internal error can be made out.

On the other hand an object based approach could be used as in a correlation
deformation. Sampling on the triangles and projecting them into the images
to compare their colors are relatively slow using the straight forward approach
on the CPU. The task however can be formulated as a problem solvable on a
graphics card. Figure 17.1 shows how arbitrary triangles could be sent to the
graphics hardware. Sampling in the triangles could be done using the automatic
interpolation, lookup of the color values could be done using texture matrices
like in section 10.2.4, and comparison of the colors using an image metric. The
result for each sample, stored in the corresponding pixel, can even be summed
into scalar values of each triangle using a modified summing algorithm.

As the algorithm only deforms a limited number of primitives each iteration,
all triangle errors need not be updated each time. A deformation may how-
ever render a distant triangle occluded or un-occluded, thus changing its cost.
Therefore to avoid too large errors the cost would have to be fully reevaluated
regularly.

The triangle cost can not be used directly as a vertex cost, when searching for
an expensive vertex to deform. A vertex’s cost could however be defined as the
average cost of its owners. Thus if a vertex causes its nearby triangles to have
a large cost, it will itself have a large cost, while the neighboring vertices bdvec
would only be effected by a few of the high cost triangles.
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Figure 17.2: Illustration of the selection using cost queues.

17.2 Setup Using Queues

Using one of the methods described for obtaining individual costs for the tri-
angles, a primitive must be selected. A simple solution would be to either take
the worst triangle or the worst vertex by searching through all the error costs.
Two issues advocates not using this directly. First, the search through all ver-
tices and triangles are slow. It would be wiser to implement a queuing data
structure, where the triangles and vertices are sorted by their cost. Inserting
into such a queue only requires n log(n), where n is the number of triangles or
vertices. Second, always selecting the worst primitive can block the algorithm.
Fx if a primitive for some reason causes a large cost, but is very unlikely to be
improved without other deformations as well. In stead it is proposed to select
from the cost queue using some selection distribution. Fx this could be the
positive normal distribution. The cost queues and the selection are illustrated
in figure 17.2.

17.3 Discussion

This method, if implemented correctly would provide a more error based algo-
rithm. It is expected that it would help the speed of convergence, however, it
may be that it will make the algorithm get trapped at local minimas easier,
because of the constraints in the selection process. The proposal can be seen
as a bridge between the image based and the object based algorithm, as the
advantages of both are used. Unfortunately the time to implement this fully
has not been available, and it must therefore remain as an idea.





Part IV

Discussion





C h a p t e r 18

Future Work

As described in Part I, the field of surface estimation is in rapid development.
Complete novel ideas are spawned, old ideas are improved on and ideas are
fusioned together. This research area is still to be discovered by the heavy
investments that are seen in other areas with great potential. In this chapter
some proposals to future work is presented together with a discussion of the
most important catch-ups of the current implementation. This should be seen
as an extension to the ideas already proposed in the last part of this thesis.

18.1 General improvements

As has already been discussed, the algorithm has a greater potential than has
been achieved here using a limited amount of time. Thus the following issues
could be addressed in order to improve the implementation:

• A study of the annealing schedule, to find a more optimal schedule than
used.

• Some means of reducing the computational cost when evaluating a single
deformation. Fx locality of the involved primitives in the input images
could be exploited.
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• Better tuned constants.

• Implement a feature matching and the 8-point algorithm to achieve a full
framework for surface estimation as described in section 3.2.

18.2 Model Texture Creation

Many applications that could have use of a surface estimation method requires
textured surface models. The X3D models resulting from a surface fit using
the implementation are texturized, however for simplicity this is done using a
single input image and the coordinates projected herein. Thus for a complete
surface reconstruction, the ’backside’ would be textured with the same texture
as the ’front side’. In [13] multiple textures are used to create a super-resolution
texture of a model. Such a method could be used to create a full texture of the
model, improving the use of the algorithm.

18.3 Using Frontier Points

As proposed in [29] and discussed in 5.6, frontier points can be used to estimate
materials and lighting conditions in a scene. The graphics hardware used in
the implementation could easily be programmed to take lighting and material
into consideration when producing the reprojections. Thus the Lambertian
assumption could be relaxed, which would enable the use of the method in a
new range of more difficult images.

18.4 Higher Order Topologies

As the mesh and its deformations are designed now, it can not change its initial
topology. In other words, no deformations exists to break the mesh and glue it
together again. Many real world objects, as fx the gargoyle in figure 18.1 has
holes in them. Therefore it would be necessary to extend the algorithm with
gluing and breaking deformations in order to be able to reconstruct this class
of objects.
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Figure 18.1: One of the images of the gargoyle dataset showing that there is a
hole in the statuette under the arm.
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Figure 18.2: An example of Perlin noise.

18.5 Study of the Textures Impact on the Algo-
rithm

One very interesting future challenge, that could unfortunately not fit into the
time frame of this work, is the study of the impact the input image properties
has on the quality of the result. As mentioned, intuition tells, that objects
textured with many different frequencies of details would be easier to match.
Thus it could be that the perfect texture would be so-called Perlin noise, a mix
of random textures at different frequencies as seen in figure 18.2. A thorough
research of the dependency between the statistical properties of the texture and
the algorithm is thus called for.
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Discussion

This Chapter will be used to discuss and conclude on the work done in this
thesis. First the main contributions are listed and discussed. This is followed
by a final conclusion.

19.1 Main Contributions

19.1.1 A Survey of the Field of Surface Estimation

A research in the area of surface estimation has been done. The major methods
and concepts encountered has been described, both in a historical context and
technically in a classification.

19.1.2 Preparation of Datasets

5 datasets acquired elsewhere has been prepared and standardized for the use
in this thesis. Where not available a simple 3D structure has been annotated



146 Discussion

and created in Matlab. Further more a program for creating new synthetical
datasets from a wide range of 3D models has been implemented.

19.1.3 A GPGPU Implementation

An algorithm proposed by G. Vogiatzis has been implemented using GPGPU.
The implementation has been thoroughly tested together with a set of small
deviations to the proposed algorithm.

19.1.4 Presentation and Implementation of Improvements

3 major changes to the basic algorithm has been proposed. Two of which are
implemented using the framework of the basic algorithm and evaluated. These
are

• The Zooming Approach for using the algorithm without initialization.
Implemented and evaluated.

• Feature Cost, where a feature map is used to add a feature cost to the
objective function. Implemented and evaluated.

• Error Based Selection, where selection of primitives to deform are based
on the error the primitives infer on the global cost. Described.

19.2 Conclusion

The objectives of this thesis were: 1) to conduct a research of the current state of
surface estimation, 2) to describe and implement an algorithm using deformable
models and GPGPU, 3) to evaluate and conclude upon it and finally 4) to
propose, implement and test improvements to such an algorithm.

As described in the previous section, all of these objectives have been fulfilled.
Chapter 2-6 presents the current state of development, both historically and
technically, thus satisfying the first objective. The second objective is fulfilled
in Chapter 3-10, especially in Chapter 10 where the use of GPGPU is described.
The evaluation and the testing framework presented in Chapter 11-13 meets the
third objective and finally, the fourth objective is achieved in Chapter 14-17,
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where 3 conceptually new ideas are presented, two of which are implement and
evaluated.

The main focus in the work documented in this thesis has been on designing and
implementing a program for surface estimation using GPGPU. Using graphics
hardware can both be a fruitful and treacherous task. Programming GPGPU
can sometimes feel like groping in the darkness. However, the implementation
has largely been a success, though it has also shown that a great deal of the
effort, to make such an algorithm perform well, should be put into tuning all the
bits together. The result has proved that the underlying idea holds. It however
has also shown and that it has a larger potential if future work is conducted.

To be able to make a computer ’see’ is a dream. It is something that scientists
will strive for, like they strived for putting a man on the moon in the sixties.
The road to the current state of development has been tough, however it is my
belief that with the current progress, we will soon begin to see small applications
using surface estimation for various purposes. The work presented in this thesis
has, at least for me, been a small contribution to the great goal of making this
possible.
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A p p e n d i x A

User guide

In this chapter the installation and use of the two program files will be explained.
All files mentioned here can be found on the CD in the Install directory. As
the implementation is now, it only works under Microsoft windows. It is a
requirement that the system has a relatively new graphics card and that new
drivers for OpenGL is installed.

A.1 Installation

To install the program, all files must be copied to a user directory. From there
the two bat files can be run to test the installation.

A.2 capture.exe

capture.exe is a small program for capturing datasets. It only takes a single
argument which is a path to a model to load. This must be in either .txt, .x3d
or .ms3d format. When started the arrows can be used for navigation around
the center and ’page up’ and ’page down’ can be used to zoom. Further more
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short-cut Description
’c’ Captures an image of the current view,

and adds the corresponding camera pa-
rameters to the job file.

’.’ Decreases the resolution of the output
images.

’-’ Increases the resolution of the output
images.

Table A.1: The shortcuts for capture.exe.

the view can be tilted using ’Home’ and ’End’. The images captured are taken
from the current viewing angle, thus it is similar to what can be seen on the
screen. Please refer to table A.1 for the available shortcuts. Some information
are displayed in the window.

A.3 main.exe

main.exe is the main program for doing surface estimation. The input is a job
description as will be described later. If successfully loaded, the scene with the
initial mesh is displayed. This can be navigated like in capture.exe. A large
amount of shortcuts can be used to control the actual convergence, which can be
started there. These shortcuts are listed in table A.2. Information are displayed
onscreen.

A.3.1 Job description file

The job description file describes the job to be done. It can be fully automatic,
thus it starts the algorithm right away, without using resources on displaying
anything and saves the result. In the job description file, ’#’ in the start of a
line ignores the full line. If an error is made, the program will tell and stop.
Pathes in the file is either relative to the main.exe or full paths.

The main purpose of the job description file is to give the paths for images and
the camera parameters. The images are described together with all the other
options and parameters in table A.3, however the camera parameters are a little
special. They must follow this example form:
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short-cut Description
Main functionality

’s’ Starts the algorithm with the current
options.

’z’ Decreases the level of detail used.
’x’ Increases the level of detail used.
’w’ Jumps to window form.
’f’ Goes to full screen.

ctrl-’s’ save the current buffers.
ctrl-’z’ Starts a zoom deform.

0-9 Sets the projecting cameras.
shift-0-9 Shows the buffers of the cameras.

’c’ Evaluates the current view.
’d’ Divides all triangles into 4 triangles.
’p’ Render point cloud.
’l’ Render wireframe.
’t’ Render triangles.

Options and parameters
F2 Enables option menu. Can change pa-

rameters by moving up and down and
back and forth. The menu is closed if
nothing is done for 2 seconds.

F4 Enables/disables auto-divide.
F5 Enables/disables update of the screen

during algorithm.
F6 Enables/disables the rendering of the

cameras.
F8 Changes capture mode between pairing

and blending.
F9 Switches between the contents viewed

in a camera. This can be one of the
buffers or nothing.

Test functionality
’q’ Deforms all vertices at random.
’e’ Random epipolar deform.
’r’ Random edge collapse.
’h’ Random edge split.
’g’ Random Gradient descent deform.
’j’ Random Swap.
’k’ Random random vertex deform.
’n’ Random normal deform.
’o’ Selects a deform at random, and dis-

cards if worse than last.
’v’ View vertex information. Very slow on

large meshes.
space Select a random vertex.

backspace Rollback a single deformation.
’a’ Rollback all deformations.

Enter Clear rollback buffer.
F1 Run mesh check test.
F3 Start memory monitoring.
F6 Prints the mesh to the console.

Table A.2: The shortcuts for main.exe.
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short-cut Description
’c’ Captures an image of the current view,

and adds the corresponding camera pa-
rameters to the job file.

’.’ Decreases the resolution of the output
images.

’-’ Increases the resolution of the output
images.

Table A.3: Options and parameters in a job description file.

cam[id].matrix= [0.912936 0.000000 0.766044 0.000000 ]
[0.262003 1.119882 -0.312243 0.000000 ]
[0.604023 -0.342020 -0.719846 12.582236 ]

, where [id] should be substituted with an id number.



A p p e n d i x B

CD - Thesis Data

The file structure of the accompanying CD can be seen in figure B.1. The CD
contains the following main elements:

• Source code for the program

• Source text for the report

• Datasets used

• Models

• Installation

• This report in .ps and .pdf format

The X3D models stored on the CD, can be opened using any X3D compliant
browser. An example of a free X3D browser is Octaga Player which can be
downloaded from http://www.octaga.com/.
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Figure B.1: The file structure of the CD


