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Abstract—Separation of speech mixtures, often referred to as whereA is anM x N mixing matrix.v(n) is additional noise.
the cocktail party problem, has been studied for decades. In Also, A is assumed not to vary as function of time. Often, the
many source separation tasks, the separation method is liméd  ,y0ctive s to estimate one or all of the source signals. An

by the assumption of at least as many sensors as sources. Fhet, . .. .
many methods require that the number of signals within the estimatey(n) of the original source signals can be found by

recorded mixtures be known in advance. In many real-world applying an (pseudo) inverse linear operation, i.e.,
applications these limitations are too restrictive. We prpose

a novel method for underdetermined blind source separation y(n) = Wx(n), (2
using an instantaneous mixing model which assumes closely . . . . )
spaced microphones. Two source separation techniques haveen ~WhereW is an N x M separation matrix. Notice that this
combined,independent component analysis (ICA) and binarytime-  inversion is not exact when noise is included in the mixing
frequency masking. By estimating binary masks from the outputs model. When noise is included as in (¥(») is a nonlinear

of an ICA algorithm, it is possible in an iterative way to extract  fnction ofx(n) [3]. In this paper, the inverse is approximated
basis speech signals from a convolutive mixture. The basigsals by a linear system

are afterwards improved by grouping similar signals. Usingtwo . . .
microphones we can separate in principle an arbitrary numbe In real environments, a speech signal does not only arrive
of mixed speech signals. We show separation results for mixtes from a single direction. Rather, multiple reflections frohe t
with as many as seven speech signals under instantaneoussurroundings occur as delayed and filtered versions of the
conditions. We also show that the proposed method is applitée o rce signal. In this situation, the mixing model is better

to segregate speech signals under reverberant conditiongnd aoproximated by @onvolutivemixina model. The convolutive
we compare our proposed method to another state-of-the-art Pproxi y volutivemixing ) Volutivi

algorithm. The number of source signals is not assumed to be FIR mixture is given as
known in advance and it is possible to maintain the extracted

X . K—1
signals as stereo signals. x(n) = Z Aws(n — k) + v(n) 3)
Index Terms—Underdetermined speech separation, ICA, time- k=0

frequency masking, ideal binary mask. ) . . )
Here, the source signals are mixtures of filtered versions of

. INTRODUCTION the anechoic source signals. The filters are assumed to be

HE problem of extracting a single speaker from a mixtu@ausal and of finite lengthk. Nu_merous algorithms have been
T of many speakers is often referred to as the cocktdjoposed to solve the convolutive problem [4], but few arle ab

party problem [1], [2]. Human listeners cope remarkablEP cope with underdetermined as well as reverberant camditi

well in adverse environments, but when the noise level .§]_[9]_ ) )
exceedingly high, human speech intelligibility also stgfeBy Independent Component Analysis (ICA) describes a class

extracting speech sources from a mixture of many speaketsmethods that retrieve the original signals up to an aabytr
we can potentially increase the intelligibility of each soey PerMutation and scaling [10]. Successful separationseire
by listening to the separated sources. assumptions on the statistical properties of the souraealsg

Blind source separation addresses the problem of recayerp Obtain separation, many ICA methods require that at most
N unknown source signalin) = [s1(n),...,sy(n)]” from ©ONe source be Gaussian. Many algorithms assume that the
M recorded mixturex(n) = [z1(n) ._’. I;w(n)]T of the Source signals are independent or the source signals are non

source signalsz denotes the discrete time index. Each of th§aussian [11]-{14]. Other methods are able to separate the
recorded mixtures; = x;(n) consists ofN, = f,T samples, SOUrce signals using only second order stz_;\tlst|cs. Hgns, it
wheref, is the sampling frequency affddenotes the duration typically assumed that th.e sources have dlfferent coroglat
in seconds. The term ‘blind’ refers to that only the recorddd>l—-[17] or the source signals are non-stationary [183]{1
mixtures are known. The mixture is assumed to be a ling3find source separation algorithms have been applied inyman
superposition of the source signals, sometimes with axfditi 2r€as such as feature extraction, brain imaging, telecarmu
noise. i.e. cations, and audio separation [10].
x(n) = As(n) + v(n) (1) ICA methods have several drawbacks. Often, it is required
) . . .
_ _ o o that the number of source signals is known in advance and only
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components cannot be recovered exactly without incorpmyat In this paper, we propose a novel approach to separating
additional assumptions, even if the mixing procAss known an arbitrary number of speech signals. Based on the output
[10]. Additional assumptions include knowledge about thef a square(2 x 2) ICA algorithm and binary T-F masks,
geometry, or detailed knowledge about the source distribodr approach iteratively segregates signals from a mixture
tions [22]. For example, the source signals are assumedutttii an estimate of each signal is obtained. Our method is
be sparsely distributed - either in the time domain, in thepplicable to both instantaneous and convolutive mixtutes
frequency domain or in the time-frequency (T-F) domain [8preliminary version of our work has been presented in [43],
[23]-[26]. Sparse sources have a limited overlap in the Twhere we demonstrated the ability of our proposed framework
domain. The validity of non-overlapping sources in the To separate up to six speech mixtures from two instantaneous
F domain comes from the observation that the spectrogranixtures. In [44] it has been demonstrated that the approach
of a mixture is approximately equal to the maximum ofan be used to segregate stereo music recordings into single
the individual spectrograms in the logarithmic domain [27]nstruments or singing voice. In [45] we described an extens
When the source signals do not overlap in the time-frequentoyseparate convolutive speech mixtures.

domain, high-quality reconstruction can be obtained [8]eT The paper is organized as follows. In Section Il, we
property of non-overlapping sources in the T-F domain hatow how instantaneous real-valued ICA can be interpreted
been denoted as the W-disjoint orthogonality [28]. Givea thyeometrically and how the ICA solution can be applied to
short-time Fourier transform (STFT) of two speech signalmderdetermined mixtures. In Sections Il and IV we de-
S;i(w,t) and S;(w,t), the W-disjoint orthogonality property velop a novel algorithm that combines ICA and binary T-

can be expressed as F masking in order to separate instantaneous as well as
convolutive underdetermined speech mixtures. In Sectipn V
Si(w,1)Sj(w,t) = 0,Vi # j,Vw,t, (4) we systematically evaluate the proposed method and compare

it to existing methods. Further discussion is given in Secti
wheret is the time frame index and is the discrete frequency v, and Section VIl concludes the paper.

index. This property holds, for example, when tones are
disjoint in frequency.

However, there is overlap between the source signals bLlllt GEOMETRICAL INTERPRETATION OF INSTANTANEOUS
good separation can still be obtained by applying a binary ICA
time-frequency mask to the mixture [24], [8]. tamputational ~ We assume that there is an unknown number of acoustical
auditory scene analysif29], the technique of T-F masking source signals but only two microphones. It is assumed that
has been commonly used for many years (see e.g. [3@ach source signal arrives from a distinct direction and no
Here, source separation is based on organizational cues fir@flections occur, i.e., we assume an anechoic environment
auditory scene analysis [31]. Binary masking is consisteint our mixing model. We assume that the source signals are
with perceptual constraints regarding human ability torheeixed by an instantaneous time-invariant mixing matrix as
and segregate sounds [32]. Especially, time-frequenckimgis in Eq. (1). Due to delays between the microphones, instanta-
is closely related to the prominent phenomenon of auditoneous ICA with a real-valued mixing matrix usually is not
masking [33]. More recently the technique has also becorapplicable to signals recorded at an array of microphones.
popular in the ICA community to deal with non-overlappingNevertheless, if the microphones are placed at the exaa sam
sources in the T-F domain [28]. T-F masking is applicablecation and have different gains for different directiptise
to source separation/segregation using one microphorie [3&paration of delayed sources can be approximated by the
[34]-[36] or more than one microphone [8], [24], [37]. T-Anstantaneous mixing model [46]. Hereby, a combination of
masking is typically applied as a binary mask. For a binasicrophone gains corresponds to a certain directionagpatt
mask, each T-F unit (the signal element at a particular tinThhe assumption that the microphones are placed at the exact
and frequency) is either weighted by one or by zero. In ordsame location can be relaxed. A similar approximation of
to reduce artifacts, soft masks may also be applied [38) Alglelayed mixtures to instantaneous mixtures is providedi. [
by decreasing the downsampling factor in the signal arslyJihere, the differences between closely spaced omnidireiti
and synthesis, a reduction of musical noise is obtained [39nicrophones are used to create directional patterns, where

An advantage of using a T-F binary mask is that only @stantaneous ICA can be applied. In the AppendixA, we show
binary decision has to be made [32]. Such a decision chaw the recordings from two closely spaced omnidirectional
be based on clustering from different ways of direction-ofnicrophones can be used to make two directional microphone
arrival estimation [8], [24], [28], [37], [40]. ICA has beersed gains.
in different combinations with the binary mask [40]-[42). | Therefore, a realistic assumption is that two directional
[40], separation is performed by removing — M signals microphone responses recorded at the same location ate avai
by masking and then applying ICA in order to separate ttable. For evaluation purposes, we have chosen appropriate
remaining M signals. In [41], ICA has been used the othemicrophone responses; the frequency independent gain re-
way around. Here, ICA is applied to separate two signals Isponses are chosen as functions of the dirediasr;(0) =
using two microphones. Based on the ICA outputs, T-F maskst- 0.5 cos(f) andrq(0) = 1 — 0.5 cos(#), respectively. The
are estimated and a mask is applied to each of the ICA outptvi® microphone responses are shown in Fig. 1. Hence, instead
in order to improve the signal to noise ratio (SNR). of having a mixing system where a given microphone delay
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Fig. 1. The two directional microphone responses are shanaraction of 270
the directioné.

corresponds to a given direction, a given set of microphoRg. 2. The polar plots show the gain for different directiotCA is applied
gains corresponds to a certain direction, and the mixintggys with two sensors and seven sources. The two dots at the ceriengier show

is given by the null directions. We see that each row of the 2 ICA solution can make
just one null direction in the interval® < 6 < 180°. Symmetric nulls exist

d ; S o . - >
[ m (91) 1 (9N) in the interval 180_ < _9 < 360°. The lines pointing out from the origin

A0) = 0 0 . (5) denote the true direction of the seven numbered speechesouftie ICA

72( 1) e 72( N) solution tends to place the null towards sources spatiddigecto each other,

For the instantaneous case, the separation maffixcan and each of the two outputs represents a group of spatiabecsignals.

be regarded as direction-dependent gains. ForMark M

separation matrix, it is possible to have at mast— 1 null

directions, i.e., directions from which the interferenégnal pointing out from the origin illustrate the direction of theven

is canceled out, see e.g. [48], [49]. Signals arriving fraimeo source signals. Here, the sources are equally distribotéuki

directions are not completely canceled out, and they thus hanterval 0° < § < 180°. As shown in the figure, typically the

a gain greater thar-oc dB. nulls do not cancel single sources out. Rather, a null isgalac
Now consider the case wheré > M = 2. When there are at a direction pointing towards group of sources which are

only two mixed signals, a standard ICA algorithm only has twepatially close to each other. Here, it can be seen that in the

output signalsy(n) = [y1(n),y2(n)]”. Since the number of first output,y; (n), the signalss, 6 and7 dominate and in the

separated signals obtained by (2) is smaller than the numbetond outputy,(n), the signald, 2 and3 dominate. The last

of source signalsy does not contain the separated signalsignal,4 exists with almost equal weight in both outputs. As

Instead, if the noise term is disregardgdis another linear we show in Section Ill, this new weighting of the signals can

superposition of the source signals, i.e. be used to estimate binary masks reliably. Similar equicse

©6) has been shown between ICA in the frequency domain and

adaptive beamforming [49]. In that case, for each frequency

where the weights are given i3 = WA instead of justA Y (w) = G(w)S(w).

as in (1). ThusG just corresponds to another weighting of

each of the source signals depending fonThese weights ||| B||np SOURCEEXTRACTION WITH ICA AND BINARY

makey; (n) andyz(n) as independent as possible even though MASKING

y1(n) andyz(n) themselves are not single source signals. This . _ .

is illustrated in Fig. 2. The figure shows the two estimated- Algorithm for instantaneous mixtures

spatial responses fro@(0) in the underdetermined case. The The input to our algorithm is the two mixtures and z

response of then'th output is given byg,,(8) = |wZ a(f)|, of durationN;. The algorithm can be divided into three main

wherew,, is the separation vector from the’th output and parts: acore procedurge a separation stageand amerging

a(f) = [r1(0),72(0))" is the mixing vector for the arrival stage The three parts are presented in Fig. 3, Fig. 4 and Fig. 5,

direction 6 [48]. By varying 6 over all possible directions, respectively.

directivity patterns can be created as shown in Fig. 2. Thel) Core procedure:Fig. 3 shows thecore procedureThe

estimated null placement is illustrated by the two roundsdotore procedure is performed iteratively for a number of eycl

placed at the perimeter of the outer polar plot. The lines the algorithm. The inputs to the core procedure are twatinp

y =Gs,
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Fig. 3. Flowchart showing thecore procedure of the algorithm. Fig. 4. Theseparation _stage_Sep_aration is perfor_med i_tey_atively_ by the
The algorithm has three input signals: The two input mixturg, =  core procedure as described in Fig. 3. The stopping criteisoapplied to
[£a(0), 24 (1), -+ ,24(Ns)] andxy = [2(0), zp(1), - - - ,x5(Ns)], and a each set of outputs from the core procedure. If the outpusistsnof more

binary mask which has been applied to the two original medun order to than one speech signal, the core procedure is applied aftine output
obtain z, and z;. Source separation by ICA is applied to the two originakonsists of only a single source signal, the output and iteesponding mask
signals in order to obtaip; andys. §1 andjs are obtained by normalizing the are stored. The core procedure is applied to the outputatiitely until all
two signals with respect to the variance. The re-scalecatsgare transformed outputs consist of only a single signal. The outputs areedtaither as a
into the T-F domain, where the two binary masks are obtainedomparing candidate for a separated stereo sound signail a separated stereo signal
the corresponding T-F units of the two T-F signals and miyitig by the of poor qualityp.

input binary mask to prevent re-introduction of already keals T-F units.

The two estimated masks are then applied in the T-F domaihetmtiginal

signalsz; — X1 (w,t) andzs — X2(w, t). The output consists of the two

estimated binary masks and the four masked signals. wherew denotes the frequency andhe time window index.
From the two time-frequency signals, two binary masks are
estimated. The binary masks are determined for each T-F unit
mixturesz, andz;, and a binary mask (ste), which has been by comparing the amplitudes of the two spectrograms (step
applied to the original signals; and - in order to obtain E):

x, and z,. In the initial application of the core procedure, 1if Vi(w. D) > 7Y (w. D)

z, = x1 andx, = 22, and BM is all ones. BM;(w,?) = { 0 otr|1e1r\(/viée).| Ye(w,?) Vw, 49)
As described in the previous section, a two-input two-outpu T i

ICA algorithm is applied to the input mixtures, regardlessBMy(w,t) = { (1)’ gtﬂl?r\(/:;é?' > M@, 0)l; Yw(1,0)

of the number of source signals that actually exist in the
mixture (stepB). The two outputsy; andy» from the ICA where 7 is a parameter. The parameterin (9) and (10)
algorithm are arbitrarily scaled (ste@). Since the binary controls how sparse the mask should be, i.e., how much of
mask is estimated by comparing the amplitudes of the twie interfering signals should be removed at each iteratfon
ICA outputs, it is necessary to solve the scaling problem. ih = 1, the two estimated masks together contain the same
[43], we solved the scaling problem by using the knowledgeumber of retained T-F units (i.e. equal to 1) as the previous
about the microphone responses. Here we use a more ‘blingask. If~ > 1, the combination of the two estimated masks is
method to solve the scaling ambiguity. As proposed in [10jore sparse, i.e. having fewer retained units, than thequsv

we assume that all source signals have the same variance lsindry mask. This is illustrated in Fig. 6. In general, when
the outputs are therefore scaled to have the same variahee. ¥ > 1, the convergence is faster at the expense of a sparser
two re-scaled output signalg; and g» are transformed into resulting mask. When the mask is sparser, musical noise
the frequency domain (step), e.g. by use of the STFT sobecomes more audible. The performance of the algorithm is

that two spectrograms are obtained: considered forr = 1 and7 = 2. We do not consider the case
R where0 < 7 < 1 as some T-F units would be assigned the
o= Nwi) (7)  value ‘1’ in both estimated masks.

g2 — Ya(w,t), (8) In order to ensure that the binary mask becomes sparser for
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a Separation stage cochlea, including the Gammatone filterbank [50]. Freqyenc
o R ' warping of a spectrogram is another option, e.g. to fit the&kBar
b 81585500058 BM.{,’BM.eZ""vBM.ek Algorithm frequency scale [51].
Py bss--s0 BM, .BM, ,....BM output 2) Separation stageFig. 4 shows theseparation stage
J i.e. how the core procedure is applied iteratively in order
c X = xcorr(5.,5,) Correlation coefficient to s_egr_egate all the source signals from the mixtl_Jre. At the
y e between output signals  heginning, the two recorded mixtures are used as input to the

d if X, >7,:BM; =BM, O BM; Merge binary masks core procedure. The initial binary mask, BNl has the value
’ K h  fromcorrelated signals «1 for gl| T-F units. A stopping criterion is applied to thao

A ' , , sets of masked output signals. The masked output signals are
e 8158y, 8y, N <k Reestimate signals from o . . . . -
updated binary masks divided into three categories defined by the stopping éoiter
in Section 1V:
s — ' n A Correlation coefficient . . .
f X, =xcorr(8;,p;) between output signals 1) The masked signal is of poor quality.
| and poor quality signals 2) The masked signal consists of mainly one source signal.
if X >7.,:BM, =BM, 0 BM, Merge binary masks 3) T_he masked signal consists of more than one source
g ! ! / from correlated signals 3|gnal.
v In the first case, the poor quality signal is stored for later
A A ~ Reestimate signals from f :
h §1,85,...8y updated binary masks ~ US€ @nd marked as a poor quality signal. We denote these
_ Estimate signals asp. When we refer to a signal of poor quality, we
i M, =NOT(BM, L BM, L..L BM, ) .\ und mask mean a signal whose mask only contains few T-F units. Such a
_ ' Backaround mask = signal is distorted with many artifacts. In the second ctse,
j M, =M,,? orovious backaround  Signal is stored as a candidate for a separated source siggal
Yes No mask? denote those signals dsIn the third case, the masked signal
' ' consists of more than one source. Further separation is thus
Go to
Stop step a necessary, and the core procedure is applied to the signhals.

F units that have been removed by a previous mask cannot
Fig. 5. Flowchart showing the steps of theerging stage The details of D€ re—|r-1troduced. in a later mask. Thus, for eaCh. iteration,
the separation stage in step ‘a’ are shown in Fig. 3 and in #igrrom the estimated binary masks become sparser. This iterative

the separation stage, the outputs shown in step ‘b’ areadl@ilsy, . . ., Sg ; ; ; ;
denote thek separated signals, afd, . . ., p; denotes theé separated signals procedure is followed until no more Slgnals consist of more

of poor quality. BM denotes the corresponding binary masthefestimated than one source signal. o )
signal. The outputs from the main algorithm are further pesed in orderto ~ 3) Merging stage:The objective of our proposed method is

improve the separated signals. Mgsks of output signalsl'm@ie qorrelated to segregate all the source signals from the mixture. Becaus
are merged. Also masks output signals which are correlaitfd signals of . . .
poor quality are merged with these masksbackground masks estimated & signal may be present in both ICA outputs, there is no
from T-F units that have not been used so far. This mask is isexkecute the guarantee that two different estimated masks do not lead
main algorithm again. If the background mask has not charthedsegregated {4 the same Separated source signal. In order to increase
signals are not changed any further and the algorithm stops. .-

the probability that all the sources are segregated and no

source has been segregated more than onogerging stage

is applied. Further, the merging stage can also improve the
every iteration, a simple logical AND operation between thguality of the estimated signals. The merging steps are show
previous mask and the estimated mask is applied. in Fig. 5. The output of the separation stage (stpis

Next, each of the two binary masks is applied to the originghown in stepb. The output of the algorithm consists of
mixtures in the T-F domain (step), and by this non-linear the k segregated sources,, ..., 5, thel segregated signals
processing, some of the speech signalsadtenuatedoy one of poor quality, p1,...,p;, and their corresponding binary
of the masks while other speakers are attenuated by the otimaisks. In the merging stage, we identify binary masks that
mask. After the masks have been applied to the signals, theginly contain the same source signal. A simple way to decide
are reconstructed in the time domain by the inverse STFP (si@hether two masks contain the same signal is to consider the
G). correlation between the masked signals in the time domain.
Time-frequency decomposition can be obtained in mamptice that we cannot find the correlation between the binary

ways, of which the STFT is only one way. The STFT hamasks. The binary masks are disjoint with little correlatio
a linear frequency scale. A linear frequency scale does rB#cause we have overlap between consecutive time frames,
accord well with human perception of sounds. The frequensggregated signals that originate from the same source are
representation in the human ear is closer to a logarithmiorrelated in the time domain.
scale. The frequency resolution at the low frequencies ishmu In stepc, the correlation coefficients between all the sep-
higher than that at the high frequencies [33]. Therefore, @rated signals are found. If the normalized correlatiorffcoe
F decomposition, where the frequency spacing is logarithngient between two signals is greater than a threshpld a
may be a better choice than a linear scale. T-F decompositimew signal is created from a new binary mask as shown in step
based on models of the cochlea are ternvedhleagrams d ande. The new mask is created by applying the logical OR
[29]. Different filterbanks can be used in order to mimic theperation to the two masks associated with the two cormtlate
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r=1 Start

Fig. 6. The first two iterations for the estimations of thedmnmasks. Black indicates ‘1’, and white ‘0. For each itema, two new masks are estimated
by comparison of the ICA output as shown in equations (9) df. (The previous mask ensures that no T-F units are redimted. The plot above shows
the case ofr = 1. Whenr = 1, the estimated masks contain the same T-F units as the mabkk iprevious iteration. The plot below shows the case of
T = 2. Here the two estimated masks together contain less T-BE thmwin the binary mask at the previous iteration. Therefooan be used to control the
convergence speed. The separation performance with thel andr = 2 is presented in Table V and VI, respectively.

signals. Here, we just find the correlation coefficients fame 7, the mask of the segregated signal is expanded by merging
of the two microphone signals and assume that the correlatibe mask of the signal of poor quality (stgpandh). Hereby
coefficient from the other channel is similar. the overall quality of the new mask should be higher, because
e new mask is less sparse. After the correlations between
e output signals have been found, some T-F units still
ave not been assigned to any of the source signal estimates.
illustrated in Fig. 7, there is a possibility that some of
sources in the mixture have not been segregated. In the

Even though a segregated signal is of poor quality, it migﬁi
still contribute to improve the quality of the extractedrsadg. h
Thus, the correlation between the signals with low qualitx
(energy) and the signals that contain only one source sig 1
is found (stef). If the correlation is greater than a threshol
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Fig. 8. A simple reverberant environment with three soureash having
one reflection. As in Fig. 1 the impinging signals are recdrily a two-
shaded areas, the gain is almost equal. Source signals riat from a microphone array \_Nith directio_nal responses, so that eaactibn corre-

! : sponds to a certain set of directional microphone resporidese, each

direction close to where the gains are almost equal will ¢dejng on the : p P :
parameterr) either exist in both masked signals or in none of the maskergerCtIon can be regarded as a single source impinging tbeopiione array.

signals. Therefore, the algorithm may fail to segregaténh ssmurce signals
from the mixture.

Fig. 7. As in Fig. 2 the polar plots show the gain for differafitections.
Comparison between the gains determines the binary maskkinWhe

ko), s3(n), a1s1(n — k1), s2(n)]* and

ri(6r) - i)
direction where the gains from the two ICA outputs are almost A(9) = ra(01) - 1a(f) | (11)

equal, there is a higher uncertainty on the binary decision i .
which means that a source in that area may appear in bWﬁ can therefore apply the iterative instantaneous ICA al-

outputs. Furthermore, if > 1 some T-F units in the shadedd°ithm to the mixture, and we can segregate the convolu-

area of Fig. 7 are assigned the value ‘0’ in both binary masKYe r_mxture Into numerous compqnents, as independent as
Therefore, sources are assumed to exist in the T-F unitith:OSS'ble' where each component is a source or a reflection

have not been assigned to a particular source yet. ThusM®'"9Ng from a certain direction. Similarly, a mergingge

background masls created from all the T-F units which have“@n determine if two segregated components originate from

not been assigned to a source (s)ef he background mask isth::‘NshamehsourC(;. di lied b . b

then applied to the original two mixtures, and possible sisun en the method Is applied to reverberant mixtures, we ob-
that remain in the background mask are hereby extracted. ve that the estimated blr?ary masks becomes more fre;que_nc
separation algorithm is then applied to the remaining digma ePe”de“t SO that the binary mask for some frequent_:les
ensure that there is no further signal to extract. This mecd"@nly contains zeroes and for other frequency bands mainly
continues until the remaining mask does not change any m&Rhtains ones. This results in band-pass filtered versiéns o

(stepj). Notice that the final output signals are maintained dae se_gregated_signals. For example, one binary mask mai_nly
two signals. contains the high-frequency part of a speech signal, while

another mask mainly contains a low-frequency part of thessam
speech signal. This high-pass and low-pass filtered ves siom
poorly correlated in the time-domain. In order to merge ¢hes
B. Modified algorithm for convolutive mixtures band-pass filtered speech signals that originate from thee sa
source, we compute the correlation between the envelopes
In a reverberant environment, reflections from the signat$ the signals instead. This approach has successfully been
generally arrive from different directions. In this sitiest, applied in frequency domain ICA in order to align permuted
the mixing model is given by (3). Again, we assume thdtequencies [52], [53]. The following example shows that th
the sounds are recorded by a two-microphone array wignvelope correlation is a better merging criterion thart jus
directional responses given in Fig. 1. A simple reverberafitding the correlation between the signals, when the signal
environment is illustrated in Fig. 8. Here three souregs), are bandpass-filtered.
s2(n) andss(n) are impinging the two-microphone array and Two speech signalsA and B with a sampling rate of
direction-dependent gains are obtained. Also one reflectidO kHz are each convolved with a room impulse response
from each of the sources is recorded by the directional micreaving 759 = 400 ms. Both signals are divided into a high-
phonesiu; s (n— k1), assa(n— ko) andasss(n—ks). In this  frequency (HF) part, and a low frequency (LF) part. Hereby
environment, we can write the mixture with an instantaneotfsur signalsA, r, Ayr, BLr, and Byg are obtained. The two
mixing modelx = Aswith s = [a3s3(n—k3), s1(n), azs2(n—  LF signals are obtained from binary masks which contain ones



IEEE TRANSACTIONS ON NEURAL NETWORKS, IN PRESS, 2008 8

. . TABLE |
for frequencies below 2500 Hz and zeros otherwise, and the correlaTION BETWEEN HIGH AND LOW-PASS FILTERED SPEECH

two HF signals are obtained from binary masks which contain sIGNALS, THE ENVELOPE OF THE SIGNALS AND THE SMOOTHED

ones for frequencies above 2500 Hz and zeros otherwise. We ENVELOPE OF THE SIGNALS
now find the correlation coefficients between the four signal ALr Ane Bir Bur
and the envelopes. The envelope can be obtained in different ALr 1 0.0006 0.0185  0.0001
ways. The envelopé of the signalz(n) can be calculated as Anr 1 0.0001  0.0203
Bir 1 0.0006
[54] . BHF l
E(x(n)) = [z(n) + jH(x(n))], (12)
) E(AF)  E(Auwr)  E(Bir)  E(Bur)
whereH(x(t)) denotes the Hilbert transform, anpddenotes E(ALF) 1 0.0I76 0.0118 0.0131
the imaginary unit. Alternatively, we can obtain a smoother E(Anr) 1 0.0106  0.0202
. A E(BLF) 1 0.0406
estimatet as £(Bur) 1
E(x(n)) = E(@(n—1)) +a(n)(jz(n)] - E(z(n - 1))), (13) E(AE)  E(Awe)  EBie)  E(Bup)
E(ALF) 1 0.0844  0.0286  0.0137
where R E(Anr) 1 0.0202  0.0223
o— 0.04, if |z(n)| —&(x(n—1))>0; (14) E(BLr) 1 0.0892
“ 1 0.01, if |z(n)| = Ex(n—1)) < 0. £(Brr) 1

The above values ofi have been found experimentally. The
attack time and release time of the low-pass filter have begropose a stopping criterion based on the covariance matrix
chosen differently in order to track the onsets easily. Wsf the masked sensor signals. An estimate of the covariance

initialize (13) by setting€ ((0)) = 0. matrix is found as
To prevent the DC component of the envelope from con- . 1,
tributing to the correlation, the DC components are removed Roe = (xx7) = N (15)

S

from the envelopes by a high-pass filter, before the coroglat . . . .
coefficient between the envelopes is computed. In Tablev‘fhere N IS the number (.)f S_""”?p'es . By |n§ert|ng_a(ﬁl),

the correlation coefficients between the four signals haenb and assuming that the noIse 1s mdepgndent with varianice
found, as well as the correlations between the envelopes é’ﬂ% covariance can be written as function of the mixing matri

the smoothed envelopes. It is desirable that the correlati%nd the source signals:

between signals that originate from the same source be high Ree = ((As+v)(As+v)T) (16)
while the correlation between different signals be low. As i — AGEEAT 1+ w7 17)
can be seen, the correlation coefficients between the signal B VAT 4 o2

do not indicate thatd r and Ayr (or B r and Byg) belong = Afss)HA" + o7l (18)
to the same source signal. When the correlation coefficients = U407, (19)

between the envelopes are considered, the correlationseet |, ... ¢ — AR, A7

Air and Aye (or Bir and By are a little higher than the y,o masked sensor signal consists of a single source if the
cros;—correlatmn betwee_n the source signals. The best '®s .4 qition number (based on the 2-norm) [55] is greater than
obtained for the correlation between the smoothed envelopg 1 esholdr.. i.e

(2]

Here the correlations betweedA r and Ayr (or B and
Byg) are significantly higher than the correlations between the condRy;;) > . (20)

glﬁersnt sourcels.tlln trgetr\zverbtehrant cas?r,] V\ée thuslmerg\ismr?A high condition number indicates that the matrix is close to
ased on correlation between he smoothed envelope. vve (\—.(%g singular. Sinc®,, is symmetric and positive definite,

also tried to apply the envelope-based merging criterion andR ) — maxeig(R,. )/ min eig(Ry. ), where eigR..)
the instantaneous case, but found that the simple comﬂatiis the Ui/zector of eigen\iglues R gge(':ause the dggired

based criterion gives better results. The reason, we s‘us;secSi nals are speech signals, we bandpass filter the masked

that.the temporal fine structure of a signal that is presgnt xed signals before we calculate the covariance matrix, so
the |n§tantaneous case but weakened by re\./erberauon-(s MRGt only frequencies where speech dominates are condidere
effective than the signal envelope for revealing correfati The cutoff frequencies of the bandpass filter are chosen to be
500 and 3500 Hz.
IV. STOPPING CRITERION In order to discriminate between zero and one source signal,

As already mentioned, it is important to decide whether thvee consider the power of the masked signal. If the power of
algorithm should stop or the processing should repeat. Ttee masked signal has decreased by a certain amount compared
algorithm should stop when the signal consists of only orie the power of the original mixture, the signal is considere
source or when the mask is too sparse (hence the qualitytetbe of poor quality. We define this amount by the parameter
the resulting signal will be poor). Otherwise, the separati 7z, which is measured in dB.
procedure should continue. When there is only one source inThis stopping criterion is applied for instantaneous ad wel
the mixture, the signal is expected to arrive only from onas convolutive mixtures. In the case of convolutive mixgre
direction and thus the rank of the mixing matrix is one. Wkhe stopping criterion aims at stopping when the energy of

of size M x M. We assume that
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the segregated signal mainly comes from a single directidBecause there is good perceptual correlation between the
i.e. the iterative procedure should stop when only a singieie speech signal and the resynthesized speech signal from
reflection from a source remains in the mixture. Note thahe ideal mask [32], we should not let the inaudible values
as illustrated in Fig. 8, our algorithm for convolutive mixés of the true signal contribute disproportionately to the SNR
treats each reflection as a distinct sound source. Becausge mestimation. Therefore, it is better to use the ideal mashas t
reflections have low energy compared to the direct path, fa higround truth. Also the signal-to-noise ratio before sefiamna
number of segregated signals of poor quality are expectedttire input SNR (SNR, is calculated. The SNRs the ratio

the reverberant case. between the desired signal and the interfering signals én th
recorded masked mixtures. The SNR gain is measured in dB
V. EVALUATION by
ASNR= SNR, — SNR. (24)

A. Evaluation Metrics

When using a binary mask, it is not possible to reconstruétwe instead were using the original signals as ground fruth
the speech signal perfectly, because the signals partiyapre the SNR gain would be about 1-2 dB lower (see also [34]).
An evaluation method that takes this into account is theeefo
used [56]. As a computational goal for source separatian, tB. Setup and parameter choice

ideal binary maskhas been suggested [32]. The ideal binary For evaluation, twelve different speech signals - six male
mask for a signal is found for each T-F unit by comparingng six female - from eleven different languages have been
the energy of the signal to the energy of all the interferingsed. All speakers raised voice as if they were speaking in
signals. Whenever the signal energy is higher within a T-f nojisy environment. The duration of each of the signals is
unit, the T-F unit is assigned the value ‘1’ and whenever thge seconds and the sampling frequencyfis= 10 kHz.
combined interfering signals have more energy, the T-F unijj the source signals have approximately the same loudness
is assigned the value ‘0'. The ideal binary mask produces tB@paration examples and Matlab source code are available
optimal SNR gain of all binary masks in terms of comparingpine [57], [58]. The signal positions are chosen to be seve
with the entire signal [34]. positions equally spaced in the interval < 6 < 180° as

As in [34], for each of the separated signals, the percentagigown in Fig. 2. Hereby, the minimum angle between two
of energy lossPe. and the percentage of noise residbg:  signals is30°. During the experiments, each mixture is chosen

are calculated: randomly and each source is randomly assigned to one of the
Zef(n) seven positions. _ _ _

- We have experimented with several different random mix-

Pe = W (21) tures. Sometimes the method fails in separating all the mix-
~ tures. In those cases, typically two segregated signals are

9 merged because they are too correlated, resultidg-nl seg-

262(”) regated signals, where one of the segregated signals tonsis

PR = ”72, (22) of two source signals which are spatially close to each other

ZO (n) Alternatively, one source signal may occur twice resulting

n

in N + 1 separated signals. Therefore, as another success
where O(n) is the estimated signal, anf{n) is the signal criterion we also count the number of times where Al
re-synthesized after applying the ideal binary maskin) sources in the mixture have been segregated into exactly
denotes the signal present ii{n) but absent inO(n) and signals and each of th® sources are dominating in exactly
e2(n) denotes the signal present@(n) but absent inf(n). one of the segregated signals. We call the ratio “correstnes
The performance measufé, can be regarded as a weighte@f detected source number” or “Correct #” in the result table
sum of the T-F unit power present in the ideal binary mask, bWe then calculate the average performance from those where
absent in the estimated mask, while the performance measiinee number of sources has been correctly detected when
Pyr can be regarded as a weighted sum of the T-F unit powte algorithm stops. Although not all signals are correctly
present in the estimated binary mask, but absent in the ideaparated, it is still useful for some applications to recov
binary mask. some of the signals. Subjective listening could determine
Also the output signal-to-noise ratio (Sh)JRcan be mea- which of the source signals in the mixture the segregated
sured. Here the SNRis defined using the re-synthesizedignal is closest to. Here we use an automatic method to
speech from the ideal binary mask as the ground truth determine the pairing between the segregated signal and a
) source signal by comparing the corresponding estimate# mas
Z I(n) of the segregated signal and the ideal masks of differemteou
n (23) signals. The source signal whose corresponding ideal nsask i
> (I(n) - O(n))? closest (in terms of most number of ones in common) to the
n estimated mask is determined to correspond to the segtegate
If instead the original signal is used as the ground truthh& t source. This method correlates well with subjective lisign
numerator in (23), the relatively low target energy from Thie Different instantaneous ICA algorithms can be applied & th
units that have been assigned the value ‘0’ will also contdb method. For evaluation we use an implementation of the IN-

SNR, = 10log;, [
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TABLE Il TABLE Il
ROBUSTNESS OFr¢ AND T FOR INSTANTANEOUS MIXTURES OFN = 4 PERFORMANCE FOR DIFFERENT WINDOW LENGTHS
AND N = 6 SIGNALS.

Window length | Pe (%) Pnr(%) ASNR | Correct #
T 256 (25.6 ms) 9.17 11.38  13.56) 44/50
N=4 N=6 512 (51.2 ms) 6.07 8.62 15.23| 46/50
T || 2000 | 3000 | 4000 || 2000 | 3000 | 4000 1024 (102.4 ms) 6.86 9.92 14.75| 46/50
15.45| 15.34 | 15.24 || 13.85 | 14.04 | 13.87 The window length is given in samples and in milliseconds.
15 || 10/10 | 10/10 | 9/10 || 6/10 | 5/10 5/10 The DFT length is four times the window length.
15.34 | 1523 | 15.18 || 13.91| 13.94 | 14.06 The number of signals in each instantaneous mixturd is- 4.
20 10/10 | 10/10 | 10/10 8/10 9/10 6/10
15.64 | 15.19 | 14.36 || 14.39 | 13.86 | 14.06 TABLE IV
25 || 4/10 | 4/10 | 510 || 1/10 | 4/10 | 6/10 COMPARISON BETWEENJADE AND INFOMAX ICA ALGORITHMS.
ASNR and the number of times
(out of the ten cases) where all signals have been segregated Algorithm | P (%) Pnr(%) ASNR Correct #
JADE 6.20 8.86  15.17| 46/50
INFOMAX 6.07 8.62  15.23| 46/50

FOMAX ICA algorithm [13] which uses the BFGS (Broyden- Instantaneous mixtures consisting of four sources have beed.
Fletcher-Goldfarb-Shanno) optimization method [59], ][60

Unless otherwise stated, the parametén Equations (9) and

(10) is set tor = 1. 2) Window function:In [8], the Hamming window is found

1) Choice of thresholdsDifferent thresholds have to peto perform slightly better than other window functions. het
chosen. The thresholds have been determined from iniff@llowing, the Hamming window will be used.
experiments as described below. 3) Window length: Different window lengths have been

Regarding the two correlation thresholds;; and 7o tried. The overlap factor is selected to B8%. An overlap
shown in F|g 5, our experiments show that most Corre|ati0f@t0r of50% has also been Considered, but better performance
between the time signals are very close to zero. Two carefidas obtained with75% overlap.
for separated signals are merged if the correlation coeffici With an overlap of75% the separation has been evaluated
is greater than 0.1. ¢ is increased, some signals may nofor window lengths of 256, 512 and 1024 samples, which with
be merged even though they mainly contain the same sourfe= 10 kHz give window shifts of 12.8, 25.6 and 51.2 ms,

If 70 is decreased, the probability of merging different sourd@spectively. For a Hamming window the 3 dB bandwidth of
signals is increased. The low energy signals are even I#ae main lobe is 1.30 samples [61]. The frequency (spectral)
correlated with the candidates for separated signals eftwer, resolution is thus 50.8, 25.4 and 12.7 Hz, respectively. The
we have chosenrcs = 0.03. If 7¢2 is increased, the masksDFT length is four times the window length. Hence, the
become sparser, and more artifacts occurrdt becomes spectrogram resolution is 513, 1025 and 2049, respectively
smaller, noise from other sources becomes more audible. By selecting a DFT length longer than the window length,

The thresholds in the stopping criterion are estimated froifie spectrogram becomes smoother, and when listening to the
the initial experiments too. The condition number relategegregated signals, the quality becomes much better toenWh
threshold is chosen to be: = 3000. The signal is consideredthe DFT size is longer than the window size, there is more
to contain too little energy when the energy of the segrehateverlap between the different frequency bands. Furthezmor
signal has decreased tg; = —20 dB, when the power of a artifacts from aliasing are reduced by zero-padding thelam
recorded mixture is normalized to 0 dB. function.

The robustness of the two thresholgs and 7z has been  The results are shown in Table Ill. The average performance
evaluated.r~ has been evaluated for the values 2000, 300® given for fifty random mixtures, each consisting of four
and 4000. Likewisesr has been evaluated for the valuespeech sources. The highest SNR improvement is achieved for
15, 20 and 25 dB. For each pair of and 7z ten different a window length of 512. A similar performance is achieved
random speech mixtures drawn from the pool of twelve speefei the window length of 1024, while the window length of
signals are segregated. The experiment has been perfored performs a little worse. In the following experimentg w
for mixtures consisting of four or six speech signals. Inheagise a window length of 512.
case,ASNR is measured. Also the number of times (out of 4) ICA algorithm: We have chosen to use the INFOMAX
ten) where exactly all the sources in the mixture are beafgorithm [13] for evaluation, but other ICA algorithms ddu
segregated is found. The results are reported in Table Il. Ae used also. To examine how much the performance of
it can be seen, th& SNR does not vary much as function ofour method depends on the chosen ICA algorithm, we have
the two thresholds. The number of times where the methodmpared the INFOMAX and the JADE algorithm [62] in the
fails to segregate exactliy speech signals from the mixturelCA step. In both cases, the code is available online [59],
is minimized forrc = 3000 and 7 = 20 dB, which will be [63]. The two algorithms have been applied to the same fifty
used in the evaluation. mixtures each consisting of four signals drawn from the pool

The algorithm could be applied to a mixture several timesf twelve signals. The results are given in Table IV. As it can
each time with different thresholds. Such a procedure coute seen, the performance of our method does not depend much
increase the chance of extracting all the sources from tbe whether the chosen ICA algorithm is the INFOMAX or the
mixture. JADE algorithm.



IEEE TRANSACTIONS ON NEURAL NETWORKS, IN PRESS, 2008 11

TABLE V
EVALUATION WITH RANDOM INSTANTANEOUS MIXTURES CONSISTING CF
N SIGNALS.
N | Pa(%) Pw(%) | SNR  SNR, ASNR | Correct #
2 1.01 2.00 0 18.92  18.92| 47/50
3 2.99 4.86| -3.95 1250  16.45 46/50
4 6.07 8.62| -598  9.26  15.23| 46/50
5 10.73 13.02| -7.40 556  14.27| 44/50
6 14.31 13.63| -8.39 525  13.64| 44/50
7 18.34 22.43| -9.24 424  13.48| 41/50
The parametet- = 1.
TABLE VI
EVALUATION WITH RANDOM INSTANTANEOUS MIXTURES CONSISTING CF
N SIGNALS.
N | Pa(%) Pw(%) | SNR  SNR, ASNR | Correct #
2 3.43 0.50 0 1822  18.22| 50/50
3 7.36 2.60| -3.96 11.10  15.06/ 46/50
4 12.26 4.17| -5.89 881  14.70| 42/50
5 19.81 6.21| -7.32 659  13.91| 40/50 Y I T
6 25.91 8.81| -8.36 531  13.67| 23/50 Time [s]
7 30.52 11.86| -9.12  3.00  13.46| 4/50

The parametet = 2.
Fig. 9. Separation example. A segregated speech signal dromxture of
three speech signals. The two upper masks show the ideay esk for each
of the two directional microphones. For this estimated aigie. = 1.38%,
C. Separation results for instantaneous mixtures Pyr = 0.46%, and ASNR = 20.98 dB. Notice, unless the ideal masks from
both microphones are exactly the sanfe, and Pyr are always greater than
Tables V and VI show the average separation performaneeo. Perceptually, the segregated signal sounds cleaowiigny artifacts.
for mixtures of N signals forr = 1 andr = 2. For eachN, The separation quality is similar for the two other signa&f the mixture.
the algorithm has been applied fifty times to different speak
mixtures from the pool of twelve speakers/dtof the seven TABLE VII
random positions. EVALUATION OF SEPARATION PERFORMANCE AS FUNCTION OF THE
. . . SIGNAL LENGTHT.
As it can be seen, the proposed algorithm is capable of
. . J PeL(%) Puwr(%) | SNR SNR, ASNR | Correct #
separating at least up to seven source signals. It can also be 753 683 638 944 1583 34550

T
1

seen that the probability of recovering all speech signals 2 785 823| 598 900  14.88 43/50
3
4

decreases ad’ increases. Also, the quality of the separated 6.87 9.69| -6.04 880  14.85 46/50
signals deteriorates whe¥ increases. WhelV increases, the 7.57 9.05| -6.04 881  14.86 46/50
T-F domain becomes less sparse because of higher overlap5 607  862] 598 926  15.23) 46/50
. Instantaneous mixtures consisting of four sources have hsed.

between the source signals. When the performance forl
in Table V is compared with that far = 2 in Table VI, it can
be seen that the performance is better#fet 1. However the
algorithm with7 = 1 uses more computation time comparedll four speech signals are active in the selected time frame
to 7 = 2. As it can be seen in Table V, the algorithm fails td’he separation results are shown in Table VII. Fifty mixture
separate two sources from each other in three cases. Thisfifour source signals have been separated and the average
probably because the masks at some point are merged dupdrformance is shown. As it can be seen, the probability of
a wrong decision by the merging criterion. In Fig. 9, the Ideaecovering all the source signals decreases when less data
binary masks for a source from an example mixture of thrée available. On the other hand, the performance does not
speech signals are shown, along with the estimated masknisrease further for data lengths above three seconds. By
shown. As it can be seen, the estimated mask is very similatening to the separated signals, we find that among the
to the ideal masks. mixtures where all sources have been successfully rectyvere

1) Stationarity assumptionThe duration of the mixture is there is no significant difference in the quality of the sepead
important for separation. It is required that the sourcealg signals.
remain at their positions while the data is recorded. Otisw  2) Different loudness levelstn the previous simulations,
the mixing matrix will vary with time. Therefore, there is aall the speech signals are approximately equally strongv No
tradeoff between the number of available samples and the time test the separation performance in situations where the
duration during which the mixing matrix can be assumed ®ignals in the mixture have different levels of loudnesse Th
be stationary. Mixtures containing four speech signalsehamixtures consist of four speech signals, drawn from the pool
been separated. The durati@his varied between 1 and 5of twelve signals. Before mixing, the first speech signal is
seconds. The average performance has been found from fiftyltiplied by 1, the second speech signal is multiplied I 0.
different mixtures. Since the speech mixtures are randonmdnd the remaining two speech sources are multiplied by 0.25.
picked, one second is selected as the lower limit to ensuaite tifthe average performance from fifty simulations is found. The
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TABLE VI
EVALUATION OF SEPARATION PERFORMANCE AS FUNCTION OF ADDITIE
MICROPHONE NOISE

Noise | Per(%) Pur(%) | SNR SNR, ASNR | Correct # 1
-10 dB 15.29 15.52| -6.51 5.95 12.43| 19/50 i
-20 dB 7.42 10.26| -6.02 8.37 14.39| 45/50 3
-30 dB 6.24 8.53| -5.99 9.27 15.26| 46/50 ]
-40 dB 6.23 8.72| -5.97 9.19 15.16| 47/50 5
-50 dB 6.39 8.15| -5.98 9.29 15.27| 45/50 . Microphone 2 ideal binary mask

-60 dB 6.04 8.62| -598 927  15.25 46/50 T ZoHE ORI ,

Instantaneous mixtures consisting of four sources hava beed.

o
TABLE IX o ] : == 3
EVALUATION OF DIRECTIONAL MICROPHONE APPROXIMATION. L 0 05 1 15 2

Estimated binary mask
T

Mic. dist. | Pe (%) Pwr(%) ASNR | Correct # R e
d=1cm 7.63 8.84 14.83| 17/50 . :
Ideal case 6.07 8.62 15.23| 46/50

Anechoic mixtures consisting of four sources have been.used

25 3 . X 5

. Time [s]

two strongest sources are segregated in all the exampl@s. Ir

of the 50 simulations, all of the four signals are segrega®ed

averageASNR is 16.57 dBP=, = 6.65% and Py = 14.64%. Fig. 10. Separation example. A segregated speech sigmal dranixture
e ep . of four speech signals. The speech signal impinges on ay amasisting

When we compare to the more difficult case in Table V WheB@ two omnidirectional microphones spaced 1 cm apart. The tywper

all four speakers have equal loudness, we see that the @veragsks show the ideal binary masks for each of the two omuiitireal
ASNR here is 1 dB better. microphones. Because the directional gains are slightigufency dependent,

. L . . . . _the performance for the high frequencies is deterioratedpeoed to the ideal
3) Microphone noise:In the previous simulations, NoiS€case when the microphone gain is not frequency dependestias in Fig. 9.

is omitted. We now add white noise to the directional mi-

crophone signals with different noise levels. The simolati

results are given in Table VIII. The noise level is calcutate

with respect to the level of the mixtures at the microphonE: Separation results for reverberant recordings
The mixtures without noise are normalized to 0 dB. As it can A
be seen from the table, noise levels of up to -20 dB can R§
well tolerated.

s described in Section Ill, the method can be applied
recordings of reverberant mixtures. We use recordings
from a hearing aid with two closely-spaced, vertically jgldc
omnidirectional microphones. The hearing aid is placedé t
right ear of a Head and Torso Simulator (HATS) [64]. Room
impulse responses are estimated from different loudspeake
As mentioned in Section Il, directional microphone gaingositions. The source signals were then created by comglvi
can be obtained from two closely-spaced microphones. Bignée room impulses with the clean speech signals from the pool
impinging at a two-microphone array have been simulat&d twelve speakers.
and the directional microphone gains have been obtainedThe impulse responses are found in a reverberant room
as described in the AppendixA. The distance between tiwere the room reverberation time was, = 400 ms. Here
microphones is chosen ds= 1 cm. Hereby an instantaneougeflections from the HATS and the room exist. The microphone
mixture is approximated from delayed sources. With thigset distance is 12 mm. The room dimensions w&ex 7.9x 3.5 m
fifty mixtures each consisting of four speech signals dravand the distance between the microphones and the loudspeak-
from the pool of twelve speakers have been evaluated. Tées were 2 m. Impulse responses from loudspeaker positions
results are given in Table IX. Because the microphone gadh 0°, 90°, 135°, and 180° are used. The configuration is
is slightly frequency-dependent, the performance dai@iés shown in Figure 11. Fifty different mixtures consisting of
compared to the ideal case where the gain is frequerfour speakers from the pool of twelve speakers are created.
independent, especially for the frequencies above 4 kHis TiThe parameters of the algorithm have to be changed. When
is illustrated in Fig. 10. This might be explained by the filiett reverberation exists, the condition number never becorses a
the approximatiorkd < 1 (described in the Appendix) doeshigh as the chosen threshold®f = 2000. Therefore we need
not hold for higher frequencies. Fortunately, for the pptime  much lower thresholds. The separation performance is found
of speech, the higher frequencies are less important. It dan different values ofrc. The remaining thresholds are set to
also be seen that the number of times where the exactly fayr = 25, 7¢1; = 0.1 and 72 = 0.05, with parameterr = 1.
sources have been segregated is decreased. In many case3loaeseparation results are provided in Table X. Four sources
source is segregated more than once, which is not mergedaie not always segregated from a mixture. Therefore we count
the merging stage because the correlation coefficient is thow many times the algorithm manages to segregate 0, 1, 2,
low. 3 or all four sources from the mixture. This is denoted as

D. Separation results for anechoic mixtures
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TABLE X
SEPARATION OF CONVOLUTIVE MIXTURES CONSISTING OF FOUR
SIGNALS.
Tc = 200
#seg.| Per(%) Pnr(%) ASNR | Freq.
0 - - - 0/50
1 - - - 0/50
2 - - - 0/50
3 56.30 45.74 6.22| 29/50
4 65.21 49.85 5.57| 21/50
— Tc = 250
0 - - - | 0/50
1 7.65 93.32 -5.20| 1/50
2 45.61 49.19 6.73] 1/50
3 56.42 48.90 6.01| 30/50
4 62.90 50.32 5.62| 18/50
Tc = 300
0 - - - | 0/50
1 - - - | 0/50
2 29.11 53.02 5.38| 4/50
3 57.68 47.12 6.05| 32/50
4 64.58 51.00 5.58| 14/50
: ) . . Tc = 350
Fig. 11.‘ Room‘conflgu‘ratlon. The Head‘ and Torso Slr_nulatoer(s‘eom 0 — — — 0750
above) is p_Iaced in the middle of a room with a reverberatiore tof 400 ms. 1 _ _ _ 0/50
The two-microphone array is placed at the right ear. Theadcst between the
microphones is 12 mm. The four sources arrive from positioh8°, 90°, 2 36.86 53.85 5.56  9/50
135°, and 180°. The distance from the center of the head to each of the 3 54.83 47.63 5.97| 30/50
loudspeakers was 2 m. The room dimensions vie2ex 7.9 x 3.5 m. 4 65.02 49.55 5.71] 11/50
T = 400
0 - - - | 0/50
1 - - - | 0/50
‘freq.” in the table. We find the averag@: , Pygr and ASNR 2 41.86 52.88 5.40/ 7/50
for all these cases. It can be seen that often three of the four 3 54.71 48.09 5.92) 31/50
signals are segregated from the mixture. The avefsgNR is 4 64.16 50.06 5.56 12/50

around 6 dB. Even though the separation is not as good as in
anechoic cases, it is worth noting that instantaneous 1GAé&n
time domain may be used to segregate convolutive mixtures.

Another option is to apply a convolutive ICA algorithm Several other methods have been proposed for separation
[19] instead of an instantaneous ICA method. This was doné& an arbitrary number of speech mixtures with only two
in [45]. The advantage of using a convolutive algorithmrmicrophones by employing binary T-F masking [8], [24],
compared to a instantaneous algorithm is that the convelut{66]. In [24], speech signals were recorded binaurally and
algorithm is able to segregate sources, with larger miasaph the interaural time difference (ITD) as well as the intesdur
distances. Still, we have to assume that the convolutive-algntensity difference (lID) are extracted. The speech dgna
rithm at each step is able to segregate the sources into e separated by clustering in the joint ITD-IID domain.
groups, where some sources dominate in one group and otBeparation results for three-source mixtures are givers MR
sources dominate in the other group. The stopping criterigain of almost 14 dB is achieved. The gain also depends on
from Section IV which is used to discriminate between one attlde arrival directions of the source signals. Similarly,tlre
more-than-one signal performs worse under the reverber®WET algorithm described in [8], speech signals are sepdrat
condition. Even though the criterion is applied to narrowy clustering speech signals in the amplitude/phase damain
frequency bands, the performance becomes worse as repolted], the DUET algorithm was evaluated with synthetic
in [65]. In [45], we used a single-microphone criterion lhseanechoic mixtures, where amplitude and delay values are ar-
on the properties of speech. There are some advantagedifially chosen, as well as real reverberant recordingeese
applying an instantaneous ICA as opposed to applyingneethods also have the advantage that the number of sources
convolutive ICA algorithm. The instantaneous algorithm i the mixture need not be known in advance. In [24], the 128
computationally less expensive. Further, frequency pemufrequency channels are (quasi) logarithmically distéoutvith
tions which exist in many convolutive algorithms [19] areenter frequencies in the range of 80 Hz and 5000 Hz, while
avoided. the frequency channels are linearly distributed in our psepgl

The method used here cannot directly be compared to thethod and in [8] with a much higher frequency resolution.
method used in [45] which was applied with a much larger In [40], the mask estimation is based on direction-of-airiv
microphone distance. In [45], artificial room impulse respes (DOA) techniques combined with ICA. The DOA technique
were used witliso = 160 ms, and here we have used recordeld used to subtraclv — M sources, and the ICA algorithm
room impulses withl'so = 400 ms. The SNR gains obtainedis applied to the remaining/ sources in the mixture. The
by the two methods are approximately the same. method may be applied with binary masks, but in order to

Comparison with other methods



IEEE TRANSACTIONS ON NEURAL NETWORKS, IN PRESS, 2008 14

. . . TABLE Xl
re_duc_e_mus'cal noise, more Contm_uous masks bas_ed ON #)8 UATION OF THE DUET ALGORITHM WITH RANDOM INSTANTANEOUS
directivity patterns have been applied. The method is shown MIXTURES CONSISTING OFN SIGNALS.

for separation of mixtures containing up to four speechalign N TR0 P [ SNR SNR  ASNR | Coneci#
i < EL(/0 NR( 70 orreci
In _contrgst to [40], our m_et.hod separate§ speech mlxturew3 661 004l 304 317 =11 1150
by iteratively extracting individual source signals. Samito 4 36.44 2321| 577 204  7.63| 2050
5
6

other multi-microphone methods our method relies on sihatia 39.42 22.95| -7.25 173 8.98| 10/50
different source locations, but unlike the previous methaodir 52.80 40.97| -820  0.30 8.51] 1/50
method uses ICA to estimate the binary masks by iteratively TABLE XIi

eStimating independent SUbsetS Of the miXtureS' Whlle Mh SEPARATION OF CONVOLUTIVE MIXTURES CONSISTING OF FOUR SIGNIAS
based on DOA may sweep all possible directions in order WITH THE DUET ALGORITHM.

to estimate the null directions, our proposed ICA technique

automatically steers the nulls. Our approach can be used to #seg. | Pe(%) DIwr(%) ASNR | Freq.
iteratively steer the nulls in settings with more sourceanth 2 B B _ 8;28
microphones. In [41], binary masks are also found based on 2 _ _ —| o0
the ICA outputs. Our method differs from the method in [41] 3 65.28 29.92 5.80 7/50
for our method is able to segregate more sources than msxture 4 82.56 37.79 5.55| 43/50

Another method for extraction of multiple speakers with

only two microphones is presented in [67]. This method is
based on localization of the source signals followed by 18 finding the exact number of sources under reverberant

cancellation part where for each time frame different nulgonditions. The DUET is able to extract all four sources in
are steered for each frequency. Simulations under anechicOf the 50 experiments, while our method is able to extract
conditions show subtraction of speech signals in mixtur&4 sources in 21 of the 50 experiments. The lower number
containing up to six equally loud source signals. In [67] th@f extracted sources in our proposed method is caused by
SNR is found with the original signals as ground truth. AQUI merging criterion which often tends to merge different

SNR gain of 7-10 dB was reported. Our method gives Spurces. On the other hand, the SNR gain is a little higher for
significantly higherASNR. our method. In the remaining 29 experiments we are able to

The microphone placement is different in our method corgégregate three of the four sources, again with a higher SNR
pared to the microphone placement in the DUET algorithfin than the DUET algorithm.
[8]. Therefore, in order to provide a fair comparison betwee [N summary, our comparison with DUET suggests that the
our proposed and the DUET algorithm, we have implement@§ePosed method produces better results for instantaneous
the DUET algorithm for demixing approximately W—disjointm'Xtures and comparable results for convolutive mixtures.

orthogonal sources by following the stepwise description BY listening to our results and those published in [8], the
8]. quality of our results seems at least as good as the quality

1) Comparison with DUET in the instantaneous case:Of the separated signals of [8]. In terms of computational
The DUET algorithm has been applied to the same set @@MPplexity, our method depends on the number of sources
instantaneous mixtures that were used in Table V and VI. THethe mixtures, whereas the complexity of the DUET algo-
results of the DUET algorithm for separation of 3-6 sourcé§hm mainly depends on the histogram resolution. We have
are reported in Table XI. When comparing the separatiéhoSen & histogram resolution o1 x 101 and a smoothing
results in Table XI with the results from our proposed methdgfne! of size20 x 20. With this histogram resolution, the
in Table V and VI, it can be seen that our proposed meth&JET algorithm and our proposed method take comparable
gives a betterASNR. Note that ouASNR is different from @mounts of computing time, for convolutive mixtures abolit 2
the signal-to-interference ratio used in [8] and tends tmbee Minutes per mixture on average on an HP 320 server. For the
stringent. Furthermore, our method is better at estimatieg INStantaneous case, our algorithm is faster; for examplé, w
exact number of sources, as the Correct # column indicatB¥€€ sources, it takes about 4:30 min=( 1) and 3:40 min
The histogram smoothing parameter in the DUET algorithfi = 2) t0 segregate all the sounds from a mixture, and about
provides a delicate trade-off. If the histogram is smoottued 10 Min (- = 1) and 7 min { = 2) to segregate all the sounds
much, it results in sources that merge together. If the gisin When the instantaneous mixture consists of seven sources.
is smoothed too little, erroneous peaks appear resulting in

too high an estimate of the number of sources. The best VI. DiscussION
performing setting of the smoothing parameter is used in ourln this paper directional microphones placed at the same
implementation. location are assumed. This configuration allows the mixing

2) Comparison with DUET for convolutive mixture$he matrix to be delay-less, and any standard ICA algorithm
DUET algorithm has been applied to the same synthetic revean therefore be applied to the problem. The configuration
berant data set that was used in Section V-E. The separati@eps the problem simple and still realistic. As shown in
performance can be found in Table XlI. When comparing thgection V-D, the algorithm may still be applied to delayed
results of the first parte in Table X and Table XIl we find thamixtures without significant changes. Alternatively, th@Al
the performance of the DUET algorithm and our proposedgorithm can be modified in order to separate delayed mix-
method is generally similar. Both algorithms have diffimgdt tures (see e.g. [4]). Since beamformer responses are uded to
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noise, it has been suggested to use continuous masks [40]. By
listening to the signals, we have observed that a mask create
by combining masks produced with different thresholds and
weighted by the thresholds results in less musical artifdat
our case, a more graded mask could be obtained by finding
masks using different parameterand weighting the T-F units
of the masks with the corresponding thresholds or simply by
0 smoothing the binary mask in time and in frequency.
Our method has also been applied to separate stereo music.
Stereo signals are often constructed by applying diffegairts
to the different instruments on the two channels. Sometimes
stereo signals are created with directional microphonassol
at the same location with &90° angle between the directional
' patterns. Our method is able to segregate single instriament
270 or vocal sounds from the stereo music mixture [44].
Fig. 12. A typical high-frequency microphone response. Téponse is _In the e\_/aluz?\tlon the_z source .d|r.ect|ons are I|m|ted. to seven
given for the frequency of 4000 Hz, and a distance of 20 cm &emthe different directions uniformly distributed on a half-dec In
o e it e e mcopienes. okempoan e 2121 enronment, speech signals may aive from closer
;/r\llt;r\?al 0° <0< 1g80°. Such a beampatternp canno,t efficir:ﬂl)y be used tg'reFt'F’”S-_A'SO' with only two mlcro_phones, itis nOt_ pdssi
estimate the binary mask. to distinguish the two half-planes divided by the micropaon
array. If two arrival angles become too close, the souragedsg
can no longer be segregated and two spatially close sources
) _ ) _ may be considered as a single source by the stopping criterio
termine the binary masks, the microphone distance cannot\R&en two sources are treated as a single source depends on
too big. If the distance between the microphones is greeT t the number of sources in the mixture. In the evaluation, it
half the wavelength, spatial aliasing occurs, and frequengecomes harder to segregate All sources asV increases.
dependent null directions and sidelobes occur. An example Qs the level of background/microphone noise influences th
such multiple null directions and sidelobes is shown in ERy. spatial resolution.
Therefore, for large microphone distances, the perfor@IC  geyeral issues in our proposed method need further inves-
expected to decrease, especially at high frequenciesulisol qaiion. Different criteria have been proposed in order to
to this problem could be to use the envelope of the m'x%‘%cide when the iterations should stop and when different
high-frequency signal as ICA input directly. binary masks should be merged. These criteria need to set
By only using instantaneous ICA in the reverberant case, Weany parameters and many experiments are needed on order
assume that the sources can be divided into many independgmptimize these parameters. Furthermore, the optimaipar
components that can be merged afterwards. However, tBigrs most likely depend on a given setting, e.g. the number
assumption has some limitations. Sometimes, the indepénds sources in the mixture or the amount of reverberation. The
components are very sparse, and hence it is difficult to apRlyspping criterion was proposed for the instantaneousngixi
reliable grouping. A way to better cope with this problengase but applied to reverberant mixtures too. A more robust
and the delays may be to apply a convolutive separati@fhpping criterion in the convolutive case would be a subjec
algorithm instead of an instantaneous separation stefy, Stpr future work. Our grouping criterion in the convolutive
we believe it is an advantage to use instantaneous SoUggge is based on correlation between different envelopes. O
separation compared to convolutive source separatiorusecacgyid interpret the grouping problem as a problem similar
it is computationally much simpler - it only has four valuegs a frequency permutation problem known in blind source
to estimate, WhereaS COﬂVOlutive ICA haS thousands Of ﬁltgéparation (See e.g. [68]) The merging Criterion may b&mor
coefficients to estimate. reliable if it is combined with other cues, such as DOA
When binary time-frequency masks are used, artifacts (mdformation.
sical noise) are sometimes audible in the segregated signal
especially when the masks are sparse. The musical noise
degrades the perceptual quality of the segregated signal. M
sical noise is caused by several factors. The binary maskMe have proposed a novel method for separating instan-
can be regarded as a time-variant gain function multipleed taneous and anechoic mixtures with an arbitrary humber of
the mixture in the frequency domain. This corresponds tospeech signals of equal power with only two microphones.
circular convolution in the time domain. Therefore arttfac We have dealt with underdetermined mixtures by applying
due to aliasing occur. From an auditory point of view, muisichCA to produce independent subsets. The subsets are used to
noise appears when separated T-F regions are isolated frestimate binary T-F masks, which are then applied to separat
each other. As a result, the sound of such an isolated regmniginal mixtures. This iterative procedure continuesiluhe
becomes an audible tone, which does not group with tirdependent subsets consist of only a single source. The seg
other sounds in the auditory scene. In order to reduce musicegated signals are further improved by merging masks from

VII. CONCLUSION
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correlated subsets. Extensive evaluation shows that netuthe denominator with a factox so that

of up to seven speech signals under anechoic conditions can (Afod + cB) + (¢B — Af,d)z~1

be separated. The estimated binary masks are close to the 51 = 2fd(1—hzT) (34)
ideal binary masks. The proposed framework has also been ° .

applied to speech mixtures recorded in a reverberant room. 8y = (Afsd —cB) — (¢B + Afsd)z (35)
We find that instantaneous ICA applied iteratively in thedim 2fsd(1 = Az71)

domain can be used to segregate convolutive mixtures. TWWe choose\ = 0.75. A controls the gain that amplifies the low

performance of our method compares favorably with oth@lequencies. The choice of is not very important, because
methods for separation of underdetermined mixtures. B&#cayhe signals are used for comparison only.

the sources are iteratively extracted from the mixture the|n order to obtain the directional patterns in F|g 1 we can

number of sources does not need to be assumed in advafig@; A and B by solving (26) for two different gains. For

except for reverberant mixtures our method gives a goc,)@b) =1 andr(7) = 0.5, we obtainA = 0.75 and B = 0.25.
estimate of the number of sources. Further, stereo signals por r(0) = 0.5 and r(7) = 1, we obtainA = 0.75 and

maintained throughout the processing. B = —0.25. -
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