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Summary

This Ph.D. thesis focuses on temporal feature integration for music organisation.
Temporal feature integration is the process of combining all the feature vectors
of a given time-frame into a single new feature vector in order to capture rele-
vant information in the frame. Several existing methods for handling sequences
of features are formulated in the temporal feature integration framework. Two
datasets for music genre classification have been considered as valid test-beds for
music organisation. Human evaluations of these, have been obtained to access
the subjectivity on the datasets.
Temporal feature integration has been used for ranking various short-time fea-
tures at different time-scales. This include short-time features such as the Mel
frequency cepstral coefficients (MFCC), linear predicting coding coefficients
(LPC) and various MPEG-7 short-time features. The ‘consensus sensitivity
ranking’ approach is proposed for ranking the short-time features at larger
time-scales according to their discriminative power in a music genre classifi-
cation task.
The multivariate AR (MAR) model has been proposed for temporal feature
integration. It effectively models local dynamical structure of the short-time
features.
Different kernel functions such as the convolutive kernel, the product probability
kernel and the symmetric Kullback Leibler divergence kernel, which measures
similarity between frames of music have been investigated for aiding temporal
feature integration in music organisation. A special emphasis is put on the
product probability kernel for which the MAR model is derived in closed form.
A thorough investigation, using robust machine learning methods, of the MAR
model on two different music genre classification datasets, shows a statistical
significant improvement using this model in comparison to existing temporal
feature integration models. This improvement was more pronounced for the
larger and more difficult dataset. Similar findings where observed using the
MAR model in a product probability kernel. The MAR model clearly outper-
formed the other investigated density models: the multivariate Gaussian model
and the Gaussian mixture model.
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Resumé

Nærværende Ph.D. afhandling omhandler musik organisation ved brug af tidslig
integration af “features”. Tidslig integration af “features” er en proces hvor en
enkelt ny “feature” vektor dannes udfra et segment med en sekvens af “feature”
vektorer. Denne nye vektor indeholder information, der er nyttig i forbindelse
med en efterfølgende automatiseret organisering af musikken. I denne afhan-
dling er eksisterende metoder til h̊andtering af sekvenser af “feature” vektorer
blevet formuleret i en generel form. To datasæt blev generet til musik genre klas-
sifikation, og blev efterfølgende evalueret af en række individer, for at undersøge
graden af subjektivitet af genre angivelserne. Begge datasæt kan betragtes som
værende gode eksempler p̊a musik organisering.
Tidslig integration af “features” er blevet anvendt i forbindelse med en un-
dersøgelse af forskellige korttids “features” diskriminative egenskaber p̊a længere
tidsskalaer. Korttids “features”, s̊asom: MFCC, LPC og forskellige MPEG-7
varianter, blev undersøgt ved brug af den foresl̊aede “consensus sensitivity rank-
ing” til automatisk organisering af sange efter genre. En multivariabel autore-
gressiv model (MAR) blev foresl̊aet til brug i forbindelse med tidslig integration
af “features”. Denne model er i stand til at modellere tidslige korrelationer i en
sekvens af “feature” vektorer. Forskellige “kernel” funktioner s̊asom en “con-
volutive kernel”, en Kullback-Leibler symmetrisk “kernel” samt en “product
probability kernel” er blevet blev undersøgt i forbindelse med tidslig integration
af “features”. Der blev især lagt vægt p̊a sidstnævnte “kernel” hvor et analytisk
udtryk blev fundet for MAR modellen.
En grundig undersøgelse af MAR modellen blev foretaget p̊a de ovennævtne
datasæt i forbindelse med musik genreklassifikation. Undersøgelsen viste, at
MAR modellen klarede sig signifikant bedre p̊a de undersøgte datasæt i forhold
til eksisterende metoder. Denne observation var især gældende for det mere
komplekse af de to datasæt. Lignende resultater blev observeret ved at kom-
binere en “product probability kernel” med MAR modellen. Igen klarede MAR
modellen sig signifikant bedre end kombinationen af førnævnte “kernel” med en
multivariabel Gaussisk model samt en Gaussisk miksturmodel.
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Notation and Symbols

zk Short-time feature of dimension D extracted from frame k

z̃k̃ Feature vector of dimension D̃ extracted from frame k̃ using temporal
feature integration over the short-time features in the frame.

fsz Frame-size for temporal feature integration over a frame of short-time
features.

hsz Hop-size used when performing temporal feature integration over a frame
of short-time features.
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p(z | θθθ) Probability density model of z given some parameters θθθ of the model
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ICA Independent Component Analysis
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LPC Linear Predictive Coding

MFCC Mel Frequency Cepstral Coefficient
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PCA Principal Component Analysis

PPK Product Probability Kernel
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STFT Short-Time Fourier Transform
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Chapter 1

Introduction

Music has the ability to awaken a range of emotions in human listeners regardless
of race, religion and social status. Finding music that mimics our immediate
state of mind can have an intensifying effect on our soul. This effect is well-
known and frequently applied in the movie industry. For example, a sad scene
combined with carefully selected music can strengthen the emotions, ultimately
causing people to cry. Music can have a soothing or exciting effect on our
emotions, which makes it an important ingredient in many people’s everyday
lives - lives governed by increasing levels of stress. Enjoying music in our spare
time after a long hectic day at work can have the soothing effect required1. Being
in a more explorative mode, new music titles (and styles) can intrigue our mind,
develop and move boundaries in the understanding of our own personal music
taste. The discovery of new music titles are usually restricted by our personal
taste, which makes it hard to find titles outside the ordinary. Listening to radio
or e.g. dedicated playlists from Internet sites can to some extent provide users
with intriguing new music that is out of the ordinary.

With the increased availability of digital media during the last couple of years
music has become a more integrated part of our everyday life. This is mainly
due to consumer electronics such as memory and hard discs becoming cheaper,
changing our personal computers into dedicated media players. Similarly, the
boom of portable digital media players, such as the ’iPod’ from Apple Com-
puter, which easily stores more than 1500 music titles, enables us to listen

1In a recently published article [122], the authors investigated people’s stress levels, indi-
cated by changes in blood pressure, before, during and after the test persons where exposed
to two different genres - rock and classical where classical was the preferred genre of the test
persons. Classical music actually lowered the test persons stress level.
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to a big part of our private music collection wherever we go. With increas-
ing digitisation music distribution is no longer limited to physical media but
can be acquired from large online web-portals such as e.g. www.napster.com
or www.itunes.com, where users currently have access to more than a million
music titles2. Furthermore, a large number of radio and TV-stations allow free
streaming from the Internet to ones favourite music player, or to be stored on
a personal computer for later use.

The problem of organising and navigating these seemingly endless streams of
multimedia information is inherently at odds with the currently available sys-
tems for handling non-textual data such as audio and video. During the last
decade3 research in the field of ’Music Information Retrieval’ (MIR) has boomed
and has attracted attention from large system providers such as Microsoft
Research, Sun Microsystems, Philips and HP-Invent. These companies were
sponsors for last year’s International Symposium on Music Information Re-
trieval (ISMIR). Also the well known provider of the successful Internet searcher
www.google.com have provided the “Google desktop” for helping users to navi-
gate the large amounts of textual files on their personal computers. To date the
principal approach for indexing and searching digital music is via the metadata
stored inside each media file. Metadata currently consists of short text fields
containing information about the composer, performer, album, artist, title, and
in some cases, more subjective aspects of music such as genre or mood. The
addition of metadata, however, is labor-intensive and therefore not always avail-
able. Secondly, the lack of consistency in metadata can render the media files
difficult or impossible to retrieve.

Automated methods for indexing, organising and navigating digital music is of
great interest both for consumers and providers of digital music. Thus, devising
fully automated or semi-automated (in terms of user feedback) approaches for
music organisation will simplify the navigation and provide the user with a more
natural way of browsing their burgeoning music collection.

1.1 Organisation of music

There are many ways of organising a music collection. Figure 1.1 illustrate
some ways of organising music collections [65]. The ways of organising the
music titles can be classified either as objective or subjective. Typical objective
measures are instrumentation, artist, whether the song has vocal or not, etc.

2A press release of February 2006, stated that ’iTunes’ had their 1, 000, 000, 000 music
download.

3Research activities really started accelerating in this field.

www.napster.com
www.itunes.com
www.google.com
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Figure 1.1: Approaches to music organisation. The music organisation methods have been
divided into either subjective or objective.

This information can be added by the artist as metadata. Subjective measures
such as mood, music genre and theme, can also be added by the artist, but will
indeed depend on the artist’s understanding of these words. The music might,
in the artist’s view, seem uplifting and happy, however it could be perceived
quite differently by another individual. The degree of subjectivity of a given
organisation method can be assessed in terms of the level of consensus achieved
in a group of people believed to represent a larger group with a similar cultural
background.

A small scale investigation of the Internet portals www.amazon.com, www.mp3.com,
www.allmusic.com and www.garageband.com showed that music genre has been
selected as the primary method for navigating these repertoires of music. This
implies that, even though music genre is a subjective measure, there must be a
degree of consensus, which makes navigation in these large databases possible.
Only at www.allmusic.com, it was possible to navigate music by mood, theme,
instrumentation or which country the music originates from. Another frequently
used navigation method is by artist or album name, which was possible on all
the sites investigated.

Having acknowledged that music genre is a descriptor commonly used for nav-
igating Internet portals, music libraries, music shops, etc. this descriptor has
been selected as a good starting point for developing methods for automated

www.amazon.com
www.mp3.com
www.allmusic.com
www.garageband.com
www.allmusic.com
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organisation of music titles. Organisation of digital music into for example mu-
sic genre indeed requires robust machine learning methods. A typical song is
around 4 minutes in length. Most digital music is sampled at a frequency of
sr = 44100 Hz, which amounts to approximately 21, 000, 000 samples per song
(for a stereo signal). A review of the literature on automated systems for or-
ganisation of music leads to a structure similar to Figure 1.2. In Figure 1.2,
solid boxes indicate a common operation performed, whereas, the dotted boxes
indicate operations devised by some authors, see e.g. [14] and ([98], appendix
E).

This thesis will focus on methods for extraction of high-level metadata such as
music genre of digital music from its acoustic contents.
Music information retrieval (MIR) should in this context be understood in terms
of a perceptual similarity between songs such as e.g. genre or mood and not as
an exact similarity in terms of its acoustic content, which is the task of audio
fingerprinting.
The work has concentrated on existing feature extraction methods and primar-
ily on supervised machine learning algorithms to devise improved methods of
temporal feature integration in MIR. Temporal feature integration is the process
of combining all the feature vectors in a time-frame into a single new feature
vector in order to capture the relevant information in the frame.
Music genre classification with flat genre taxonomies has been applied as test-
beds for evaluation and comparison of proposed and existing temporal feature
integration methods for MIR.

The main contributions of this thesis (and corresponding articles) are listed
below:

• Ranking of short-time features at larger time-scales using the proposed
method of ’consensus feature analysis’. The research related to this work
was published in [4]. Reprint in appendix D.

• A systematic comparative analysis of the inclusion of temporal informa-
tion of short-time features by using a multivariate (and univariate) AR
model to that of existing temporal feature integration methods have been
conducted on a music genre classification task, see [98, 99, 3] and appendix
E, H and G for reprints.

• Combining existing temporal feature integration methods with kernel meth-
ods for improving music organisation tasks. Furthermore, the combination
of a product probability kernel with the multivariate AR model was in-
vestigated, see [100] and reprint in appendix F.

The content of this thesis has been structured in the following way:
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Music
Preprocessing Feature

Extraction
Temporal Feature

Integration
Learning
Algorithm

Postprocessing
Decision

Figure 1.2: The figure shows a flow-chart of a system usually applied for automated music
organisation. The solid boxes indicate typical operations performed whereas the dotted boxes
are applied by some authors.

Chapter 2 provides an introduction to problems inherent to music genre. Fur-
thermore, the rationale for considering automated systems for music genre
classification is given.

Chapter 3 introduces feature extraction and presents the various feature ex-
traction methods, which have been used in the thesis. A method for
selection of hop-size from the frame-size is provided.

Chapter 4 present a general formulation of temporal feature integration. Fur-
thermore, different statistical models as well as signal processing approaches
are considered.

Chapter 5 introduces two methods for kernel aided temporal feature integra-
tion, namely the ’convolution kernel’ and the ’product probability kernel’.

Chapter 6 is a compilation of selected experiments on two music genre datasets.
The datasets, which have been applied in the various papers are explained
in detail. Furthermore, a short introduction to the investigated classifiers
is given. This involves ways of assessing the performance of the system
and methods for selecting the best performing learning algorithm on the
given dataset. Selected sections from articles published as part of this
Ph.D. describing the experiments conducted for feature ranking at differ-
ent time-scales, temporal feature integration and kernel aided temporal
feature integration for music genre classification are presented and dis-
cussed.

Chapter 7 summaries the work, concludes the thesis, and gives direction for
future research.

Appendix A Derivation of the product probability kernel for the multivariate
autoregressive model (MAR).

Appendix B A detailed explanation of the simple PCA applied in [4, appendix
D].

Appendix C A snapshot of the different URL-addresses reported in the thesis
as of March 2006.

Appendix D-H Contains reprints of the papers authored and co-authored
during the Ph.D. study.
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Chapter 2

Music genre classification

Spawned by the early work of [148] that proposed a system for classification of
audio snippets using audio features such as pitch, brightness, loudness, band-
width and harmonicity, researchers have been intrigued by the task of music
genre classification. Some of the earlier papers on music genre classification
is by [80, 66]. In [66] the authors investigated a simple 4 class genre problem
using neural networks (ETMNN1) and Hidden Markov Models (HMM). The
work by [80] investigated a simple 3 genre classification setup consisting of only
12 music pieces in total. Recent work has considered even more realistic genre
taxonomies [18], and has progressively adopted even more versatile taxonomies
[94]. This chapter presents inherent problems of music genre classification that
every researcher faces. Furthermore, the existence of music genre classification
task is motivated as a valid test-bed for envisaging improved algorithms that
increases our understanding of music similarity measures.

2.1 Music taxonomies - genre

Music genre is still the most popular music descriptor for annotating the contents
of large music databases. It is used to enable effective organisation, distribu-
tion and retrieval of electronic music. The genre descriptor simplifies navigation
and organisation of large repositories of music titles. Music genre taxonomies
are used by the music industry, librarians and by consumers to organise their
expanding collections of music stored on their personal computers. The num-

1Explicit Time Modelling Through Neural Networks
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ber of music titles in the western world is currently around 10 million. This
figure would be close to 20 million if the music titles produced outside the west-
ern world were added [108]. The task of assigning relevant metadata to this
amount of music titles can be an expensive affair. The music genome project
www.pandora.com is a music discovery service designed to help users find and
enjoy music they like. In a recent interview with the funder of the this project
Tim Westergren, he reckons that each individual song takes on average around
25 − 30 minutes to annotate. The music genes contain information about the
music such as melody, harmony, rhythm, instrumentation, orchestration, ar-
rangement, lyrics and vocal quality.

Organisation of music titles by genre has been selected by music distributors
and naturally been accepted by users. There are problems related with mu-
sical genre however. An analysis performed by [109] investigated taxonomies
applied in various music environments such as: record company catalogues
(like Universal, Sony Music etc.), web-portals, web-radios and specialised books.
The first problem encountered was that music genre taxonomies can either be
based on music titles, artists or on albums. Record companies still sells col-
lections of music titles in form of CD’s, which means that the genre taxonomy
is ‘album-oriented’. Transforming a detailed album-oriented genre taxonomy
into a ‘music-title-oriented’ taxonomy are bound to create confusion among the
different genres, since artists might span different music styles on their albums.
However, for very distinct music genres such as rock and classical, the confusion
is minimal. An Internet database such as http://www.freedb.org, is an ex-
ample of a free metadata service to music players, which uses an album-oriented
taxonomy. Furthermore, record companies might distribute an album under a
certain mainstream music genre, such as rock to increase sales, which also leads
to greater confusion among genres. Another problem is inconsistencies between
different genre taxonomies [109]. Three different web-portals2: allmusic.com

(AMG, with 531 genres), amazon.com (with 719 genres) and mp3.com (with 430
genres) were used in this study. Their analysis revealed that only 70 genre
words were in common between the three taxonomies. A more detailed analysis
showed little consensus in the music titles shared among these genres, hence the
same rule set is not being applied to the different taxonomies. Another problem
is that of redundancies in the genre taxonomy. As an example consider the
genre ’import’ from www.amazon.com, which refers to music from other coun-
tries. Moving into the internal node of ’import’ the next level of genre nodes is
more or less similar to the level of the root node. Hence, the sub-genre rock,
classical etc. is repeated, just for all imported music.

From the above inconsistencies, the authors of [109] made an attempt to create

2The investigations where conducted in 2000, however, there is no reason to believe the
outcome of this analysis has changed.

www.pandora.com
http://www.freedb.org
allmusic.com
amazon.com
mp3.com
www.amazon.com
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a taxonomy of music titles as objectively as possible, minimising some of the
problems inherent to the investigated taxonomies. As mentioned in [7] they did
not solve the task due to several reasons: 1) bottom taxons of the hierarchy
were very difficult to describe objectively and 2) the taxonomy was sensitive to
music evolution (new appearing genres).

A basic assumption is that music titles belong to one genre only. However, some
music is not confined to only one genre. An example of two very different genres
combined into something musically provocative was provided by the Danish
band ’Sort Sol’ producing music in the genre rock/goth. This was in a duet
with the famous Norwegian singer ’Sissel Kyrkjebø’ (folk/classical/pop) on the
track ’Elias Rising’ of their album ’Snakecharmer’. Other rock and roll groups
have performed with live Symphony orchestras adding an extra dimension to
their music. Examples are the ’The Scorpions’, ’Metallica’ and most recently
’Evanescence’ just to name a few. All of these groups use the orchestra to
enhance their own sound. These examples illustrate that diverse music styles
can be combined without affecting humans decision on the resulting music genre.
Acoustically, the mixture of classical and rock will confuse the learning algorithm
and would require a different labelling of the music.

The above examples of irregularities found in different music genre taxonomies
serve to illustrate that music genre is inherently an ill-defined concept and that
care must be taken when developing methods for such systems.

2.1.1 Different types of genre taxonomies

A brief investigation of different taxonomies found at various web-portals3 re-
veals that genre taxonomies are either based on a hierarchical or a flat genre
structure. In Figure 2.1 an 11 genre taxonomy from www.soundvenue.com is
illustrated as an example of a flat genre taxonomy. An extract from a hi-
erarchical genre structures from www.allmusic.com, is shown in Figure 2.2.
After the second level, one discriminates between different music styles and
sub-styles. An artist typically produces music in a single sub-genre, but can
belong to several styles. One such example is ‘Madonna’ who’s songs belongs to
the sub-genres rock with styles dance-pop, adult contemporary, pop-rock and
club-dance. Other Internet portals that use a hierarchical structure are e.g.
amazon.com, mp3.com, mymusic.dk.

3www.amazon.com, www.mp3.com, www.garageband.com, www.soundvenue.dk,
www.mymusic.dk, for snapshots see Appendix C.

www.soundvenue.com
www.allmusic.com
amazon.com
mp3.com
mymusic.dk
www.amazon.com
www.mp3.com
www.garageband.com
www.soundvenue.dk
www.mymusic.dk
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Genre

Alternative /
Punk

Soul /
R&B

Funk /
Blues

World /
Folk

Hip-Hop Electronica Metal Rock Jazz Pop Other

Figure 2.1: Example of flat genre structure from www.soundvenue.com a Danish music portal
for music exchange.

...

..

Genre

Popular Classical

OperaBalletBlues Rock Jazz

Styles

Alternative/Indie-Rock

Pop Rock

Hard Rock

Soft Rock
Euro Pop

Foreign Language Rock

Sub-styles

Industrial

Funk Metal

Indie Rock

Grunge

Figure 2.2: An example of a music genre hierarchy found at www.allmusic.com. Only the
popular genre contains different styles and sub-styles, whereas the classical genre is at its leaf
node.

2.1.2 Other taxonomies in music

As indicated in Chapter 1 music genre is not the only method for organising
and navigating music titles. Several other approaches could be applied. From
the investigated Internet providers, only allmusic.com provided other ways of
navigating their repertoires. Here it is possible to navigate by mood, theme,
country of origin or by instrumentation. They present 179 mood categories
such as ’angry’, ’cold’ and ’paranoid’. This large taxonomy of moods, will natu-
rally lead to inconsistencies, since how does one discriminate between the moods
’sexy’ and ’sexual’? The theme taxonomy consists of 82 different music themes
such as ’anniversary’, ’in love’, ’club’, ’background music’. Some of the more
objective navigation methods are by country of origin or instrumentation. It
is only recently researchers have looked at supervised systems for mood and

allmusic.com
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emotion detection from the music acoustics [137, 114, 94]. Also more elabo-
rate taxonomies are spawned from collaborative filtering of metadata provided
by users of the service from www.moodlogic.com. Moodlogic delivers a piece
of software for generation of playlists and/or music organisation of the users
personal music collections. Here, metadata such as mood, tempo and year is
collected from user feedback and shared among the users of their system to
provide a consistent labelling scheme of music titles.

Another interesting initiative was presented at www.soundvenue.com, where
only 8 genres were considered. Each artist was rated with a value between 1−8
to indicate the artists activity in the corresponding genre. This naturally lead
to quite a few combinations, and since each artist was represented in multiple
genres, this made browsing interesting. Furthermore, most users have difficulty
in grasping low level detailed taxons from large hierarchical genre taxonomies,
but have an idea if the artist, for example should be more rock-oriented. From
the current homepage, www.soundvenue.com, this taxonomy is no longer in use.

2.2 Music genre classification

Having acknowledged that music genre is an ill-defined concept, it might seem
odd that much of the MIR research has focussed on this specific task, see e.g.
[110, 93, 2, 71, 86, 18, 97, 85, 141, 142] and [99, appendix H] just to mention a
few. The contributions have primarily focused on small flat genre taxonomies
with a limited number of genres. This minimises confusion and makes analysis of
the results possible. One can consider these small taxonomies as “playpens” for
creating methods, which works on even larger genre taxonomies. Furthermore,
machine learning methods that have shown success in music genre classifica-
tion, see e.g. [93, 13] have also been applied successfully to tasks such as artist
identification [14, 93], or active learning [94] of personal taxonomies.

Due to the risk of copyright infringements when sharing music databases, it has
been normal to create small databases for test purposes. It is only recently, that
larger projects such as [22] make large scale evaluations on common taxonomies
possible. It is projects like this, and contents like MIREX [38], which will lead
to a better understanding of important factors of music genre classification and
related tasks.

There are in principle two approaches to music genre classification, either from
the acoustic data (the raw audio) or from cultural metadata, which is based
on subjective data such as music reviews, playlists or Internet based searches.
The research direction in MIR has primarily focused on building systems to

www.moodlogic.com
www.soundvenue.com
www.soundvenue.com
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classify acoustic data into different simple music taxonomies. However, there is
an interplay between the cultural metadata and the acoustic data, since most
of the automatic methods work in a supervised manner, thus requiring some
annotated data. Currently, most research has focused primarily on flat genre
taxonomies with single genre labels to facilitate the learning algorithm. Only a
few researchers have been working with hierarchical genre taxonomies, see e.g.
[18, 142].
The second approach to music genre classification is from cultural metadata
which can be extracted from the Internet in the form of music reviews, Internet
based searches (artists, music titles etc.) or from playlists (personal playlists,
streaming radio, mix from DJ’s). People have been using co-occurrence analysis
or simple text-mining techniques for performing tasks such as hit detection [33],
music genre classification [78, 67], and classification of artists [12, 78].
The shortcomings of the cultural metadata approach is that textual information
on the music titles are needed, either in the form of review information, or
from other relational data. This drawback enforces methods, which are based
on purely acoustical data and learns relationships with appropriate cultural
metadata.

The current level of performance of music genre classification is close to aver-
age human performance, see e.g. [99, appendix H], for reasonably sized genre
taxonomies and furthermore, easily handles music collections of 1000 or more
music titles with a modern personal computer.

Music genre is to date the single most used descriptor of music. However, as
argued, music genre is by nature an ill-defined concept. It was argued that cur-
rent taxonomies have various shortcomings such as album, artist or title oriented
taxonomies, non-consistency between different taxonomies and redundancies in
the taxonomomies. Devising systems, which can help users in organising, nav-
igating and retrieving music from their increasing number of music titles is a
task that interests many researchers. Simple taxonomies have been investigated
using various machine learning approaches. Various music genre classification
systems have been investigated by several researchers and it is recognised as
an important task, which in combination with subjective assessment makes the
quality and predictability of such a learning system possible.
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Extraction
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Algorithm
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This chapter will focus on feature extraction at short-time scales1, denoted as
short-time features. Feature extraction is one of the first stages of music organi-
sation, and it is recognised that good features can decrease the complexity of the
learning algorithm while keeping or improving the overall system performance.
This is one of the reasons for the massive investigations of short-time features
in speech related research such as automatic speech recognition (ASR) and in
MIR.

Features or feature extraction methods for audio can be divided into two cat-
egories, either into a physical or perceptual category. Perceptually inspired
features are adjusted according to the human auditory system (HAS), whereas
physical features are not. An example is ’loudness’, or intensity of a sound per-
ceived by humans. Sound loudness is a subjective term describing the strength
of the ear’s perception of a sound. It is related to sound intensity but can by
no means be considered identical. The sound intensity must be factored by
the ear’s sensitivity to the particular frequencies contained in the sound. This
information is typically provided in the so-called ’equal loudness curves’ for the

1Typically in the range of 5 − 100ms.
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human ear, see e.g. [119]. There is a logarithmic relationship between the ear’s
response of an increasing sound intensity to the perception of intensity. A rule-
of-thumb for loudness states that the power must be increased by a factor of ten
to sound twice as loud. This is the reason for relating the power of the signal
to the loudness simply by applying the logarithm (log 10).

The individual findings by researchers in MIR does seem to move the commu-
nity in a direction of perceptual inspired features. In [97], the authors investi-
gated several feature sets, including a variety of perceptual inspired features in a
general audio classification problem including a music genre classification task.
They found a better average classification using the perceptual inspired fea-
tures. In the early work on general audio snippet classifications and retrieval by
[148], the authors considered short-time features such as loudness, pitch, bright-
ness, bandwidth and harmonicity. Since then, quite a few features applied in
other areas of audio have been investigated for MIR. Methods for compression,
such as wavelet features were investigated in [143] for automatic genre classifica-
tion. Features developed for ASR such as Mel Frequency Cepstral Coefficients
(MFCC) and Linear Predictive Coefficients (LPC) have also been investigated
for applications in MIR, see e.g. [98, 48, 7, 19].

The below mentioned music snippets have been applied in various illustrations
throughout this thesis:

• S1: Music snippet of 10 sec from the song ’Masters of revenge’ by the hard
rock band ’Body Count’.

• S2: Music snippet from the song ’Fading like a flower’ by the pop/rock
group ’Roxette’. A music snippet of length 10 sec and 30 sec was generated.

3.1 Preprocessing

In this thesis music compressed in the well known MPEG-1 layer III format
(MP3) as well as the traditional PCM format have been used. A typical pre-
processing of the music files consists in converting the signal to mono. A real
music stereo recording will contain information, which can aid extraction of e.g.
the vocal or instruments playing, if these are located in spatially different lo-
cations, see e.g. [111], which considers independent component analysis (ICA)
for separating instruments. The presented work in this thesis has focussed on
information obtained from mono audio. The music signals is down-sampled by
a factor of two from 44100 Hz to 22050 Hz, with only a limited loss of perceptual
information. The impact of such a down-sampling was briefly analysed in a
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z1 z2 z3 zK

Overlap

Hop-size

Frame-size

Figure 3.1: A 100ms audio snippet of the music piece S1 illustrating the idea of frame-,
hop-size and overlap. The hatched area indicates the amount of overlap between subsequent
frames. The short-time feature vector extracted from the music signal is denoted by z.

music similarity investigation in [9], and was found negligible. The digital audio
signal extracted from the file is represented as x[n] ∈ R for n = 0, . . . , N − 1,
where N is the number of samples in the music file. As a final preprocessing
stage the digital audio signal is mean adjusted and power normalised.

3.2 A general introduction to feature extraction

Feature extraction can be viewed as a general approach of performing some
linear or nonlinear transformation of the original digital audio sequence x[n]
into a new sequence zk of dimension D for k = 0, . . . , K − 1. A more strict
formulation of the feature extraction stage can be written as

zd,k = gd (x[n]w[hsk + fs − n]) for n = 0, 1, . . . , N − 1. (3.1)
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where w[m] is a window function2, which can have the function of enhancing
the spectral components of the signal. Furthermore, the window is selected such
that

w[n] ≥ 0 0 ≤ n ≤ fs − 1
w[n] = 0 elsewhere.

(3.2)

The hop- and frame-size are denoted as hs and fs, respectively3, and are both
positive integers. The function gd(·) maps the sequence of real numbers into a
scalar value, which can be real or complex. Figure 3.1 illustrates the block based
approach to feature extraction showing a frame-size of approximately 30 ms and
a hop-size of 20 ms. The hatched area indicate the amount of overlap (10 ms)
between subsequent frames.

3.2.1 Issues in feature extraction

Feature extraction is the first real stage of compression and knowledge extrac-
tion, which makes it really important for the overall system performance. Issues
such as frame/hop-size selection, quality of the features in the global setting as
well as the complexity of the methods are relevant. Frame/hop-size selection
has an impact on the complexity of the system as well as the quality of the
resulting system. If the frame-size is selected too large, detailed time-frequency
information of the music instruments, vocal etc. is lost and a performance drop
of the complete system is observed. Conversely, using too small a frame-size
results in a noisy estimate of especially the lower frequencies.

2Typical windows applied is the rectangular, Hann or Hamming type of windows.
3If the hop- or frame-size are provided in milliseconds, they can be converted to an integer

by multiplying with the samplerate (sr) and rounding to the nearest integer.
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3.3 Feature extraction methods

In the coming sections, the different feature extraction methods investigated
in the present work is discussed. Their computational complexity are based
on a single frame. The quality of the different features are measured in terms
of their impact of the complete system performance, which will be discussed
further in Chapter 6. In addition to the perceptual / non-perceptual division
of audio features, they can be further grouped as belonging to either temporal
or spectral features. In the present work the following audio features have been
considered:

• Temporal features: Zero Crossing Rate (ZCR) and STE.

• Spectral features: Mel Frequency Cepstral Coefficients (MFCC), Linear
Predictive Coding (LPC), MPEG-7: Audio Spectrum Envelope (ASE),
Audio Spectrum Centroid (ASC), Audio Spectrum Spread (ASS) and
Spectral Flatness Measure (SFM).

These features have been selected from previous works on various areas of music
information retrieval.

3.3.1 Spectral features

The feature extraction methods presented in this section are all derived from
the spectral domain. From a spectral investigation over a frame where the
music signal is considered stationary, one is left with a magnitude and phase
for each frequency component. The phase information for humans at the short-
time scales considered is less important than the magnitude. However, recent
studies have shown that phase information can be an important factor for music
instrument recognition [40]. In [40], the authors found the phase information in
the sustained part of the played instrument important. Also in [146], the phase
information was found useful for onset detection in music. The onset detection
algorithm was a part of a larger system for music genre classification. The
spectral feature methods considered in this thesis, is only using the magnitude
spectrum. Thus, we do not include any phase information. The spectral features
described in this section all have the discrete short-time Fourier transformation
(STFT) in common, see e.g. [116]:

zSTFT [d, k] =

N−1
∑

n=0

x[n]w[khs + fs − n]e−j2πdn/fs (3.3)
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Music Magnitude Spectrum
(STFT)

512

Filterbank

(sr = 22050 Hz)

3030

log10 DCT

5 − 30

MFCC

Figure 3.2: The figure illustrates a MFCC extraction scheme. The numbers above each stage
expresses the dimension of a typical dimensionality reduction taking place in such a feature
extraction stage.

where d = 0, . . . , fs/2 when fs is even and d = 0, . . . , (fs − 1)/2 when fs is odd.

3.3.1.1 Mel Frequency Cepstral Coefficient (MFCC)

These features were originally developed for automatic speech recognition for
decoupling the vocal excitation signal from the vocal tracts shape [29], but
have found applications in other fields of auditorial learning, including music
information retrieval. Just to mention a few, audio retrieval: [94, 9, 82, 104]
and [51], audio fingerprinting: [20, 21], automatic genre classification: [142,
93], [4, appendix D] and [98, appendix E], audio segmentation: [48] and [87].
The MFCCs are in principle a compact representation of the general frequency
characteristics important for human hearing. They are ranked in such a way
that the lower coefficients contain information about the small variations of the
spectral envelope. Hence, adding a coefficient will increase the detail level of
the envelope. These features belong to the group of perceptual features and
have shown to be good models of ’timbre’ spaces, see e.g. [139], where timbre
is a catch all term referring to all aspects of sound independent of its pitch and
loudness4. Timbre is not a frequently applied term in speech related research,
however, it is more often applied in the context of modelling music sounds and
especially applied in connection with the modelling of music instruments.

There is no single method for extraction of MFCCs, and the chosen approach
can differ from author to author. The original procedure for extracting the
MFCCs is illustrated in Figure 3.2, where the numbers above the various steps
gives an intuitive idea of the dimension. The audio is transformed to frequency
domain using a short-time Fourier transformation after which the power (or
amplitude) of each frequency component are summed in critical bands of the
human auditorial system using the Mel scale. The output of the filterbank is
weighted logarithmically, and finally applied a discrete cosine transform (DCT)
to decorrelate and sort the outputs of the Mel-filters. The Mel-filters are usually
triangular shaped. Other types of windows can be applied such as Hamming,

4The timbre definition is a definition of what timbre is not, and not what it actually is,
which makes the interpretation of the term timbre weak. There is a common understanding
of timbre being multidimensional [72].
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Figure 3.3: The figure shows the Mel-scaled filterbank with 30 filters distributed in the fre-
quency range from 0 − 11025 Hz.

Hann or rectangular windows. The MFCC extraction can be formulated in a
more strict manner as,

zMFCC [d, k] = DCTd

(

log10

[

WT
m

∣

∣zSTFT
k

∣

∣

])

(3.4)

where Wm is the Mel-scaled filterbank of dimension fs

2 ×Nf , assuming that fs

is even. The absolute operator is applied to each scalar of the vector zSTFT
k ,

independently. The DCTd is a linear operation on the elements in the paren-
thesis, and expresses the d’th basis function of the DCT. Figure 3.3 shows a
triangular filterbank with 30 filterbanks in the frequency range 0 − 11025 Hz
(sr = 22050 Hz). Some authors apply the loudness transformation (log10

operation) after the STFT, hence, they swap the filterbank operation and log-
scaling, see e.g. [51]. Furthermore, some authors normalises the filterbanks to
unit power [139], where others do not [99, appendix H]. No apparent proof or
clarifying experiment of preferring one to the other has been found. The delta
MFCCs have been included in initial investigations of the short time features
for music genre classification, and simply amounts to calculating

zDMFCC [d, k] = zMFCC [d, k] − zMFCC [d, k − 1]. (3.5)

These features encode information about the local dynamics of the MFCC fea-
tures. When there is a high correlation between frames, this feature will be zero,
or close to zero. The feature is likely to be more discriminative with little or
no overlap between subsequent frames, since for a large overlap little temporal
change will be observed. The implementation, which have been used in the ex-
periments are from the ’voicebox’ by [16]. The number of filters is by default set
to Nf = 3 log(sr), which amounts to 30 filters at a samplerate of sr = 22050 Hz.
In principle various authors are presenting the number of MFCCs applied, but
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typically does not state the number of Mel-filters applied, which can be an im-
portant information.
The complexity of the MFCC calculation is dominated by the complexity of the
STFT, which amounts to O(fs log2(fs)).

3.3.1.2 Linear Predictive Coding (LPC)

Linear predictive coding originally developed for speech coding and modelling,
see e.g. [91] represents the spectral envelope of the digital audio signal in a
compressed form in terms of the LPC coefficients. It is one of the most successful
speech analysis techniques and is useful for encoding good quality speech at low
bit-rates. LPC is based on the source filter model, where a pulse train (with
a certain pitch) is passing trough a linear filter. The filter models the vocal
tract of the speaker. For a music instrument the vocal tract is exchanged with
the resonating body of the instrument. In linear prediction we estimate the
coefficients of the AR-model [91]:

x[n] =
P
∑

p=1

apx[n − p] + u[n], (3.6)

where the ap’s for p = 1, . . . , P is the filter coefficients of an all-pole model,
which controls the position of poles in the spectrum and u[n] is a noise signal
with zero mean and finite variance (finite power).

Several different extensions to the LPC have been proposed. One example is
the perceptual LPC (PLP5) [64], which extends the normal LPC model using
both frequency warping according to the Bark scale [138] and approximate equal
loudness curves. The authors of [64] illustrate that a 5th order PLP model is
performing just as well as a 14th order LPC model when suppressing speaker
dependent information from speech. The traditional LPCs have been applied
for singer identification in [75], where both the traditional and a warped LPC
[61] were compared. The warped LPC consists of a warping of the frequency
axis according to the Bark scale (similar to the PLP-coefficients). The warping
results in a better modelling of the spectral components at the lower frequencies
as opposed to the traditional LPC method where the spectral components of
the whole frequency span are weighted equally. Their investigation, however,
did not reveal any apparent gain from the warped LPC in terms of accuracy
for singer identification. In [150], the LPC model was applied for fundamental
frequency estimation. The model order has to be high enough to ensure a
proper modelling of the peaks in the spectra. They used a model order of 40

5Perceptual Linear Prediction
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and only considered spectras where the peaks were clearly expressed. Using
the greatest common divisor between clearly expressed peaks, reveals if there
is any harmonicity in the signal. Furthermore, the frequency corresponding to
the greatest common divisor was selected as an estimate of the fundamental
frequency. In this thesis the traditional LPC coefficients have been investigated
for music genre classification. These features are not perceptually inspired, and
will to some extent be correlated with the fundamental frequency. The LPC-
derived feature becomes

zLPC
k =

[

â1 â2 . . . âP σ̂2
]T

. (3.7)

There are several approaches to estimating the parameters of an autoregressive
model, see e.g. [115]. The voicebox [16] have been applied for estimating the
autoregressive parameters, which implements the autocorrelation approach. The
LPC model will be discussed further in Chapter 4.
The complexity of the inversion amounts to O(P 3), however, the process of

building the autocorrelation matrix is O(P (P−1)
2 fs). Exploiting the symmetry

in the autocorrelation matrix, the inversion problem can be solved in O(P 2)
operations.

3.3.1.3 MPEG-7 framework

The MPEG-7 framework (Multimedia Content Description Interface) standard-
ised in 2002 has been developed as a flexible and extensible framework for de-
scribing multimedia data. The successful MPEG-1 and MPEG-2 standards
mostly focused on efficiently encoding of multimedia data. The perceptual
coders use psychoacoustic principles to control the removal of redundancy to
minimise the perceptual difference of the original audio signal to that of the
coded for a human listener.

MPEG-4 is using structured coding methods, which can exploit structure and
redundancy at many different levels of a sound scene. According to [127] this
will in many situations improve the compression by several orders of magni-
tude compared to the original MPEG-1 and MPEG-2 encodings. Researchers
finalised their contributions to the MPEG-4 framework in 1998 and it became
an international standard in 2000. The encoding scheme has since then been
adopted by Apple computer in products such as iTunes and Quicktime.

To discriminate between the different standards one could say that the MPEG-
1, 2, 4 standards were designed to represent the information itself, while the
MPEG-7 standard [68] is designed to represent information about the informa-
tion [95].
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In this thesis the short-time features from the ’spectral basis’ group have been
investigated. This group consists of the Audio Spectrum Envelope (ASE), Au-
dio Spectrum Centroid (ASC), Audio Spectrum Spread (ASS) and the Audio
Spectral Flatness (ASF). Detailed information about the MPEG-7 audio stan-
dard can be found in [68]. In [114] the authors investigated how the MPEG-7
low level descriptors consisting of ASC, ASS, ASF and audio harmonicity per-
formed in a classification of music into categories such as perceived tempo,
mood, emotion, complexity and vocal content. The ASF was investigated in [5]
for robust matching (audio fingerprinting) applications, investigating robustness
to different audio distortions (cropping/encoding formats/dynamic range com-
pressions). In [145] the ASE features were investigated for audio thumbnailing
using a self-similarity map similar to [48]. [18] considered the ASC, ASS and
ASF features and others for hierarchical music genre classification. The Sound
Palette is an application for content based processing and authoring of music.
It is compatible with the MPEG-7 standard descriptions of audio [24].

3.3.1.4 Audio Spectrum Envelope (ASE)

The ASE describes the power content of the audio signal in octave spaced fre-
quency bands. The octave spacing is applied to mimic the 12-note scale, thus,
the ASE is not a purely physical feature. The filterbank has one filter from 0 Hz
to loEdge, a sequence of filters octave spaced between loEdge and hiEdge and
a single filter from hiEdge to half the sampling rate sr. The loEdge frequency
is selected such that at least one frequency component is present at the lower
frequency bands. The resolution in octaves is specified by r.

Except for r = 1/8, the loEdge and hiEdge is related to a 1kHz anchor point
by

fe
m = 2rm1000 Hz (3.8)

where fe
m specify edge frequencies for the octave filterbank and m is an inte-

ger. With a samplerate of sr = 22050 Hz, a frame-size of 1024 samples the low
edge frequency is selected to loEdge = 62.5 Hz and a high edge frequency of
hiEdge = 9514 Hz according to the standard. This results in a total of 32 fre-
quency bands. The filterbank consists of rectangular filters, which are designed
with a small overlap (proportional to the frequency resolution of the STFT)
between subsequent filters. The MPEG-7 filterbank for the above configuration
is illustrated in Figure 3.4. As observed from the figure, there are more filters
below 1 kHz than the Mel-scaled filterbank. The MPEG-7 ASE can also be
written compactly as

zASE[d, k] = cWT
M |zSTFT

k |2, (3.9)
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Figure 3.4: The MPEG-7 filterbank for a samplefrequency of sr = 22050 Hz and frame-size of
1024. This results in a loEdge frequency of 62.5Hz and hiEdge frequency of 9514 Hz.

where the |.|2 operation applies to each of the elements of the vector zSTFT
k

independently, c is a scaling proportional to the length of the frame fs (or
zero-padded6 length) and WM is the MPEG-7 filterbank.

The short-time ASE feature has been applied in applications such as audio
thumbnailing [145] and various audio classification tasks [23, 18] and [4, ap-
pendix D].
The complexity amounts to O(fs log2(fs)) if fs is selected such that log2(fs) is
an integer (otherwise zero padding is applied).

3.3.1.5 Audio Spectrum Centroid (ASC)

The ASC describes the center of gravity of the octave spaced power spectrum
and explains if the spectrum is dominated by low or high frequencies. It is
related to the perceptual dimension of timbre denoted as the sharpness of the
signal [68]. The centroid, calculated without a scaling of the frequency axis
has been applied in classification of different audio samples [148] and in [96]
for monophonic instrument recognition. The ASC short time feature was used,
among other features, for hierarchical music genre classification in [18]. The

6Zero-padding corresponds to “padding” a sequence of zeroes after the signal prior to the
DFT. The zero-padding results in a “better display” of the Fourier transformed signal X(ω),
however, does not provide any additional information about the spectrum, see [115].
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ASC feature is calculated as

zASC [k] =

∑fs/2
d=0 log2(fd/1000)|zSTFT [d, k]|2

∑fs/2
d=0 |zSTFT [d, k]|2

(3.10)

where fd is the dth frequency component (expressed in Hz) of zSTFT [d, k]. There
is special requirements for the lower edge frequencies, which is further explained
in the MPEG-7 audio standard. Having extracted the ASE feature, only O(fs)
operations is required to extract the ASC.

3.3.1.6 Audio Spectrum Spread (ASS)

The audio spectrum spread describes the second moment of the log-frequency
power spectrum. It indicates if the power is concentrated near the centroid, or
if it is spread out in the spectrum. A large spread could indicate how noisy the
signal is, whereas a small spread could indicate if a signal is dominated by a
single tone. Similar to the ASC, the ASS is determined as

zASS[k] =

∑f2/2
d=0

(

log2(fd/1000)− zASC [k]
)2

|zSTFT [d, k]|2
∑fs/2

d=0 |zSTFT [d, k]|2
. (3.11)

3.3.1.7 Audio Spectral Flatness (ASF)

The audio spectral flatness measure can be used for measuring the correlation
structure of an audio signal [39]. Like the audio spectral spread, the ASF can
be used for determining how tone, or noise like an audio signal is. The meaning
of a tone in this connection, is how resonant the power spectrum is compared to
a white noise signal (flat power spectrum). In [39] the spectral flatness measure
(SFM) for a continuous spectrum is given as

SFM =
exp

(

1
2π

∫ π

−π ln (S(ω)) dω
)

1
2π

∫ π

−π
S(ω)dω

(3.12)

where S(ω) is the power spectral density function of the continuous aperiodic
time signal x(t). In principle, the spectral flatness is the ratio between the geo-
metrical and arithmetical average of the power spectrum. The spectral flatness
measure has been applied both for audio fingerprinting [5], and for classification
of musical instruments [39].

The ASF is calculated according to the octave spaced frequency axis, hence, the
tonality is measured in the given sub-band specified by the MPEG-7 filterbank.
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The ASF is defined for a resolution of r = 1/4 and the low edge signal is
additional required to be 250 Hz. Furthermore, a larger overlap between the
filters is applied, such that filters overlap with 10% to their neighbouring filter.
The ASF is calculated as

zASF [d, k] =

(
∏

i∈bd
|zSTFT [i, k]|2

)1/Nd

1
Nd

∑

i∈bd
|zSTFT [i, k]|2

, (3.13)

where bd are the indices of the nonzero element of the d’th filter and Nd is the
number of non-zero elements in the d′th filter (bandwidth estimate of the filter).
Furthermore, when no signal is present in the band indexed by bd, zASF [d, k] is
set to 1. With the above definition zASF ∈ [0, 1], where 0 and 1 indicate tone
like and noise like signals, respectively.

It should be noted that the ASC, ASS and ASF are robust towards scaling of
the power-spectrum with some arbitrary constant value c.

3.3.2 Temporal features

3.3.2.1 Short-Time Energy (STE)

The short-time energy is the running estimate across the time signal of the
energy and is calculated as

zSTE
k =

N−1
∑

n=0

(x[n]w[khs + fs − n])
2
. (3.14)

In the investigations a simple rectangular window has been applied, which sim-
ply amounts to summing across the samples of x[n], hence,

zSTE
k =

fs−1
∑

d=0

x[khs + fs − d]2. (3.15)

It has been applied in a range of music applications, see e.g. [97, 88, 150,
82]. The STE is relevant since it is cheap to calculate, only O(fs) operations.
Furthermore, its temporal change pattern provide information of the tempo of
the music signal.
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3.3.2.2 Zero Crossing Rate (ZCR)

Defining the indicator variable v[n] as

v[n] =

{

1, x[n] ≥ 0
0, x[n] < 0

, (3.16)

and the squared difference g[n] = (v[n] − v[n − 1])2 then the ZCR over a frame
is calculated simply as

zZCR[k] =

fs−1
∑

d=1

g[khs + fs − d]. (3.17)

With the above definition it can be shown [74], that there exists the following
relation between the autocorrelation of the audio signal x[n] and the number of
zero-crossings as

ρ1 = cos

(

πE
[

zZCR[k]
]

fs − 2

)

, (3.18)

where ρ1 = E{x[n]x[n−1]}
E{x[n]2} since the mean of x[n] is zero. One can consider the

system as a binary Markov chain, being in one of its two states. For a random
signal with zero mean, the sign change probability of x[n] would be purely
chance, hence p = 0.5, which amounts to E{zZCR[k]} = fs−2

2 zero crossings.
For a signal with local correlations one would expect either a higher or smaller
zero crossing rate7.

The zero crossing rate has been applied in number of applications such as audio
segmentation [125, 150, 43], classification [114, 149], retrieval [82] and speech
processing [74, 73, 116]. The ZCR have been considered as a cheap alternative to
spectral analysis, see e.g. [74], where the author provides a detailed theoretical
investigation of the zero crossing rate.
The complexity of the ZCR amounts to O(fs) and must be considered the
cheapest of the discussed feature extraction methods.

3.4 Frame- and hop-size selection

The frame-size of an audio signal is normally selected from the local stationarity
of the signal. In speech recognition the audio signal is considered stationary for

7A high-frequency signal, which changes sign rapidly or a low frequency signal, where sign
changes occur less frequently.
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intervals of approximately 20 − 40 ms, see e.g. [30]. For music, the local sta-
tionarity varies slightly more and the frame-size is usually selected in the range
10-100 ms. In [8] an investigation of similarity between songs were investigated
when varying the frame-size of the short-time features between 10−1000 ms. The
performance dropped when the frame-size increased more than approximately
70 ms8. For feature extraction methods that can handle non-stationary data,
larger frame-sizes can be used [143], and results in better spectral resolution at
lower frequencies.

The hop-size hs is typically selected such that a 50% overlap between subsequent
frames is achieved. From a practical point of view, it would make more sense to
have no overlap, since this would decrease complexity considerably [101]. Tasks
such as audio fingerprinting are rather sensitive to overlap. Using a small hop-
size will compensate for so-called alignment noise, which is defined as the noise
resulting from a stored fingerprint is temporally out of phase with the analysis
frames [17, 59, 20]. This may happen when a music signal is represented in
different encoding formats.

From a signal point of view, it is possible to devise a method for selecting a
hop-size that minimises aliasing. This approach to hop-size selection, which
have been outlined in [116], will be discussed through a small example.
Many of the proposed feature extraction methods in the literature involves sums
of the audio data in the given frame. For the simple temporal short-time energy
(STE) feature, applied in the following analysis, a method, which is optimal
w.r.t. the Nyquist sampling criteria [115] is explained. The STE for a frame was
given as

zSTE
k =

N−1
∑

n=0

w[khs + fs − n]2x[n]2, (3.19)

for k = 0, 1, . . . , K−1. This corresponds to a linear filtering of the squared audio
signal x[n]2 using the squared filter w[khs + fs − n]2 9. In frequency domain
this corresponds to a multiplication of the spectrum of x[n]2 with that of the
squared window function w[n]2.

Using a rectangular window function, w[n] = 1
fs

for 0 ≤ n ≤ fs−1 and w[n] = 0
elsewhere, the Fourier transformation of the squared filter becomes

W (ω) =
1

f2
s

sin(ωfs/2)

sin(ω/2)
e−jω(fs−1)/2. (3.20)

The low pass filter characteristics of the rectangular window are evaluated by

8The MPEG-1 layer III (MP3) (ISO 11172-5) encoding standard, which has been popu-
larised the last couple of years, uses a fixed frame size of 1152 samples. For an audio signal
at a sample frequency 44100 Hz this amount to a frame-size of ∼ 26.12ms.

9The convolution is given as y[k] =
PM−1

n=0
x[n]h[k − n], where h[n] is the filter.
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determining the filters zero-crossings, hence, find ω where W (ω) = 0. The zero-
crossings are ωg = 2π

fs
g where g 6= 0. The approximate bandwidth determined

from the first zero-crossing is B = 2π
fs

, thus, the sampling rate of the short-time

features (or inverse hop-size) should be selected as

1

hs
≥ 2B → hs ≤

1

2B
=

fs

π
(3.21)

where π represents the half the samplerate (sr/2). For a samplerate of sr =
22.05 kHz and a frame-size of 46.44 ms (fs = 1024) the hop-size of the STE
feature is determined as

hs ≤
2fs

sr
= 23.2 ms, (3.22)

which amounts to an overlap of approximately 50% or more required to minimise
aliasing in the resulting STE feature. Researchers have been using features with
little or no overlap that introduce more aliasing at the higher frequencies of the
short-time features. A typical approach for obtaining features at larger time-
scales is to calculate the mean and variance across the temporal dimension of
the short-time features. This method is an efficient low-pass filter, and therefore
would result in little or no detoriation of system performance in tasks such as
music genre classification.

Figure 3.5(a) shows the STE feature extracted from the music signal S1 as a
function of sample index k, and Figure 3.5(b) shows the smoothed absolute
difference between the “true” magnitude spectrum of the STE feature across
the 10 sec (extracted using a small hop/frame-size ratio hf = 1/32) and that
extracted when varying the hop/frame-size ratio hf = hs/fs.

The error signal is calculated as

E[i] =
∣

∣ZSTE
g [i]

∣

∣−
∣

∣

∣ZSTE
hf=1/32[i]

∣

∣

∣ , (3.23)

where i = 0, 1, . . . , 511 and uppercase of z represents the discrete Fourier trans-
form of zSTE

k . As observed, aliasing is present at all frequencies, however, the
error is increased when selecting a larger hf ratio. The rectangular window has
a larger spectral leakage than e.g. the Hamming or Hann type of windows. The
above procedure for selecting hop-size, should only be considered as a rule-of-
thumb, since many applications are not relying on the temporal dynamics in
the short time features. We will, however, device methods for modelling the
temporal dynamics of the short-time features, and therefore select hf as 1/2 or
lower such that 50% overlap or more is applied.

The final impact on the system performance, however, will need to be established
through an investigation of the complete system. This have been done in e.g.
[99, appendix H].
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Figure 3.5: Figure (a) shows the STE of music piece S1 and figure (b) shows the smoothed
absolute difference between the “true” magnitude spectrum and that determined from varying
the hop-size (overlap ratio).
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3.5 Discussion

In this section the general idea of feature extraction has been presented. Per-
ceptual and non-perceptual feature extraction techniques were presented. Fur-
thermore, a method for selecting hop-size to minimize aliasing was outlined.
It must be emphasised that many of the short-time features explained in this
section are correlated with different perceptual quantities. In principle, when
selecting features, they should be selected as independent as possible, to ensure
a large span in the space relevant for the specific music organisation task. The
short-time feature explained in this section have been investigated in greater
detail in Chapter 6 and in published work [4, appendix D], where the short-time
features are ranked after discriminative power at different time-scales in a music
genre classification task.

The next section will consider methods for creating features at larger time-
scales from these short-time features, which have been denoted temporal feature
integration.



Chapter 4

Temporal feature
integration
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Feature extraction is the process of extracting useful information from the audio
samples over stationary periods of the audio signal. The features extracted at
this time-scale are denoted as short-time features. This section will introduce
the notion of temporal feature integration [99, appendix H] , which is an im-
portant part of this thesis. Essentially, temporal feature integration deals with
processing of the short-time features to construct features, which are more dis-
criminative at larger time-scales. Construction of features at a larger time-scale
usually results in a sample reduction, and can therefore be considered as an
efficient compression of the audio for the specific learning task, whether this is
for retrieval or music genre classification.

Methods for summarising information of short-time features have been applied
in earlier work in MIR. In the work by [148] simple statistics such as mean and
variance as well as a few autocorrelation coefficients were calculated over the
temporal dimension of the short-time features1 of the audio snippets. These
integrated short-time features was then applied for general audio classification.
In [142, 141], the notion of texture windows is applied for frames of short-time

1Pitch, amplitude, brightness, harmonicity and bandwidth.
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features. The author finds a texture window of approximately 1.0 sec to be opti-
mal for music genre classification of a 10 genre dataset. The mean and variance
of the short-time features (MFCC, spectral centroid, roll off, spectral flux and
ZCR2) are calculated over the size of the texture window. In [82], the author
extracts mean and variance of the short-time features over segments of 600ms.
In [97], the authors are investigating different perceptual and non-perceptual
short-time features at larger time-scales for general audio classification (music
genre included). Periodograms of each short-time feature dimension, indepen-
dently, are extracted from texture windows of 768 ms after which the power
is summarised in 4 predefined frequency bands. With this procedure, tempo-
ral fluctuations of the short time features are included. In [44], the authors
summarise short-time features over 1 minute windows and apply the temporal
integrated features for segmentation and classification of long-duration personal
audio.

In the following sections a definition of temporal feature integration is provided.
Furthermore, different temporal feature integration models such as the mean-
covariance (MeanCov), multivariate AR (MAR) and filterbank coefficient(FC)
model are presented. Furthermore, two methods for extracting the tempo of
music, the beat spectrum (BS) and beat histogram (BH) are presented.

4.1 Definition

Temporal feature integration is the process of combining all the feature vectors
in a time frame into a single feature vector, which captures the temporal infor-
mation of the frame. The new feature generated does not necessarily capture
any explicit perceptual meaning such as tempo or mood of the music, but cap-
tures implicit temporal information which is useful for the subsequent learning
algorithm.

The temporal feature integration can be expressed more rigorously by observing
a sequence of consecutive short-time features zk of dimension D where k repre-
sents the k’th short-time feature. Using a block-based approach these short-time
features are integrated into a new feature z̃k̃ of dimension D̃, hence

z̃k̃ = f(zk̃·hsz
, . . . , zk̃·hsz +fsz

), (4.1)

where hsz is the hop-size and fsz is the frame-size (both defined in a number of
samples manner, and k̃ = 0, 1, . . . , K̃ − 1 is the discrete time index of the larger

2The spectral flux is defined as the squared difference between the normalised magnitudes
of the current and previous short-time feature window. The roll-off is defined as the frequency
fR below which 85% of the magnitude distribution is concentrated.
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time-scale. In the above formulation, multiplication by a rectangular window is
indirectly assumed, however, in principle other windows could be applied, see
Chapter 3. There exists many functions f(·) which maps a sequence of short-
time features into a new feature vector. The function is not required to be
differentiable, however, differentiability allows investigations of the short-time
features effect at larger time-scales. In the coming sections, the following matrix
denotes a sequence of short-time feature vectors

Zk̃ =
[

zk̃·hsz
zk̃·hsz +1 . . . zk̃·hsz+fsz

]

, (4.2)

for some frame k̃.

4.2 Stacking

A simple approach to temporal feature integration is to stack the short-time
features of the frame. This operation can be written compactly as

z̃k̃ = vec
(

Zk̃

)

, (4.3)

where the vec-notation refers to stacking each column of the matrix Zk̃ into a

single vector3. The dimension of z̃k̃ becomes D̃ = D · fsz , hence, the data is
not compressed in any manner. Without any further preprocessing the learning
algorithm can select the most important dimensions which includes time lagged
versions of the original feature space. Stacking of short-time features was applied
in [4, appendix D] for feature ranking in music genre classification at different
time-scales, a process which will be elaborated on in Chapter 6. Stacking of
features has also been applied in [126, 66] in the task of music genre classification.
In [134, 135] the authors consider stacking of short time features for connecting
non-speech sounds with semantic data (words) for audio retrieval and indexing.
Hence, a sound of a horse in acoustic space is mapped to the word (or class of
words) in a semantic space.

3vec(Z
k̃
) =

»

zT

k̃·hsz

. . . zT

k̃hsz +fsz

–T
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4.3 Statistical models

The short-time features extracted from the music piece can be considered as
a multivariate time-series. Figure 4.1 shows the first 6 MFCCs of the music
example S1. Each of the feature dimensions have been normalised to unit vari-
ance. From the time series a temporal dependency in the features as well as
cross-dependencies among the feature dimensions are observed.
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Figure 4.1: The figure shows the first six normalised MFCCs of the music piece S1. The
temporal dependencies as well as cross-dependencies among feature dimensions can be seen.

There exists quite a few statistical models which can be applied for modelling
sequences of short-time features. This thesis will focus on the following models
for temporal feature integration: the Gaussian model (GM), the Gaussian Mix-
ture Model (GMM) and the multivariate autoregressive model (MAR). Of these
three it is only the latter model, which learn information about the dynamics
of the short-time features.

4.3.1 Gaussian Model (GM)

The mean and variance of the short-time features have been applied in various
papers for capturing the ’dynamics’ in a frame. This approach can be formulated
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more in general terms by the Gaussian model. Assume that the short-time fea-
tures in a frame are distributed according to a multivariate normal distribution,
then

zk ∼ N (µµµ,Σ) , (4.4)

for the features of that frame. This is a similar assumption as the bag-of-
words in text retrieval, which means that short-time features of a frame can be
randomly permuted without any change in the parameters of the model (µµµ and
Σ). The parameters of this model can be used as a new feature at the integrated
time-scale. Thus, the feature expressed at the larger time-scale becomes

z̃k̃ =

[

µ̂µµk̃

vech
(

Σ̂k̃

)

]

, (4.5)

where vech(·) refers to stacking only the upper triangular part (or lower) of the
covariance matrix with the diagonal included. The parameters of the GM can
be estimated from the short time features in the frame using e.g. a maximum
likelihood approach.

As the model implies, temporal correlations in the short-time features are not
modelled, while the covariation between the feature dimensions are. Using only
the diagonal of the covariance matrix results in the normal mean-variance ap-
proach. In the following, MeanVar refers to the simple statistics and MeanCov
refers to the full-covariance model. The spectral properties of the Gaussian
model, see e.g. [27] are dominated by low-frequencies, since mean and variance
calculation involves weighted sums of the short-time features over finite sized
frames. Thus, the parameters of z̃k̃ for k̃ = 0, . . . , K̃ − 1 will contain low fre-
quency information of the short-time features. Figure 4.2 illustrates the mean
value of MFCC0 using a hop-size of 100 ms and a frame-size of 1000 ms. The
figure clearly illustrate that the integrated feature at this timescale has temporal
information corresponding to the repetitions in the music. The music piece has
a 4/4 time-signature and a tempo of 60 beats per minute. The Gaussian model
has been applied with great success in music genre classification together with
a support vector classifier, see e.g. [93] and [100, appendix F]. Furthermore, a
similar setup as the one applied in [93] won the MIREX [38] contest on music
artist identification and finished second on the music genre classification task.
The computational complexity for the MeanVar and MeanCov on a frame basis
is presented in Table 4.1.

4.3.2 Multivariate Autoregressive Model (MAR)

Music is inherently temporal dependent, otherwise, it wouldn’t be music. Like
the dynamical change of the vocal tract creates words recognisable by other peo-
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Figure 4.2: The figure shows the mean of the MFCC0 over a frame-size (fsz ) of 1 sec with a
hop-size hsz of 100 ms. As indicated, this features temporal dynamics contain information of
the repetitions of the music. The time-signature is known to be 4/4, with a tempo of approx.
60 beats per minute.

Method Multiplications & Additions
MeanVar 4Dfsz

MeanCov (D + 3)Dfsz

Table 4.1: Complexity of the MeanVar and MeanCov calculation in temporal feature integra-
tion. D is the dimension of the short-time features.

ple, the dynamical changes of the spectral envelope let people recognise music
styles, instruments, etc. It seems natural that models of short-time features in-
deed include information about the temporal structure, whether this is the local
dynamics (modulations by instruments, etc.) or the longer temporal structure
in music (tempo, chorus etc.). The dynamics of the MFCCs of Figure 4.1 indi-
cated temporal correlations as well as correlations among the different feature
dimensions. Authors have recognised that modelling of the temporal dynam-
ics is important in for example, music genre classification [142, 97]. Also when
modelling music instruments spectral dynamics have been found to be a relevant
descriptor of timbre [72, 56]. In this connection the multivariate autoregressive
model has been suggested by the authors for temporal feature integration, see
[98, appendix E], [100, appendix F] and [99, appendix H].

Autocorrelation related features have been applied in various other audio min-
ing tasks. High level temporal statistics features such as the autocorrelation
function and partial autocorrelation function were applied in [105] for visuali-
sation of music. In [82] correlation like features were extracted from a sequence
of MFCC’s for general audio retrieval. In [60] the autoregressive model was
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applied specifically on the MFCCs and was found efficient for stress detection in
speech, simply by monitoring single model parameters. Also in the work by [6]
the autoregressive model is used in modelling of short-time features over 1 sec
frames in terms of ASR. In econometrics autoregressive models have been used
with great success4 [89] and also for Geo-science, where oscillations of a complex
systems are sometimes characterised by principal oscillation patterns. This is
basically the eigenmodes of a multivariate autoregressive model of first order
(MAR-1 model) fitted to the observations [107]5.

In the following, the multivariate autoregressive model is defined. The theory
underlying the multivariate autoregressive model is simply too large to be cov-
ered in this thesis and would be out of scope. Excellent books exists covering
the theory of stochastic processes, see e.g. [89, 27]. For a stationary time series
of features zk the general multivariate AR model is defined by

zk =
P
∑

p=1

Apzk−I[p] + uk (4.6)

where the noise term uk is assumed i.i.d. with mean v and finite covariance C.
The above formulation is quite general since I refers to a general set. E.g. for
a model order of 3, the set could be selected as I = {1, 2, 3} or as I = {2, 4, 8}
indicating that zk is predicted from these previous state vectors. Note that the
mean of the noise process v is related to the mean m of the time series by

m =

(

I −
P
∑

p=1

Ap

)−1

v. (4.7)

The matrices Ap for p = 1, . . . , P are the coefficient matrices of the P ’th order
multivariate autoregressive model. They encode how much of the information
in the previous short-time features {zk−I[1], . . . , zk−I[P ]} that can be used to
model zk. In this thesis the usual form of the multivariate AR model have been
used, hence, I = {1, 2, . . . , P}.

4.3.2.1 What can be modelled, and what is modelled?

For simplicity the diagonal multivariate autoregressive model (DAR) is investi-
gated in more detail in the following. The DAR model is simply an AR-model of

4Econometrics is a combination of economical mathematic, statistics and economic theory.
One of the more important tools of econometrics is time series analysis, where variables across
times are monitored. Variables could e.g. be the interest rate. Assuming that the error
term is an AR-model, this is also known as GARCH models which are especially useful in
Econometrics.

5If the model is adequate, the eigenmodes of the AR-model can reveal important dynamic
structure of the system.
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each feature dimension independently. The DAR model was suggested for tem-
poral feature integration in [98, appendix E] and compared with other temporal
feature integration methods for music genre classification. The DAR model can
be written as

z[d, k] =

P
∑

p=1

apz[d, k − p] + u[d, k], (4.8)

where ap for p = 1, . . . , P is the autoregressive coefficients, u[d, k] is the noise
term, assumed i.i.d. with finite variance and mean value v. The mean value is

related with the mean of the time-series m by m =
(

1 −
∑P

p=1 apzn−p

)−1

v.

Assuming a white noise process the parameters of the model can efficiently be
calculated with a least squares approach (the covariance method [91]). Esti-
mating the model parameters with a least squares approach there are some
interesting properties of the modelled spectrum [91]:

• The power spectrum of the autoregressive model, here denoted by P̂ (ω)
is a smoothed version of true power spectrum P (ω) of the process z[d, k].

• The smoothed power spectrum is an unbiased estimator of the true spec-
trum. Hence, in the limit as the number of samples goes to infinity, the
model power spectrum P̂ (ω) → P (ω),

• The ’global property’ states that the matching between the model power
spectrum and the “true” power spectrum performs uniformly over the
whole frequency range, irrespective of the shape of the power spectrum.
This means that all frequencies are getting equal importance, irrespective
if these frequencies have low or high energy.

• Resonant structures (peaks) of the true power spectrum are better mod-
elled than noisy parts of the signal.

To illustrate the modelling perspectives of the autoregressive model, consider the
spectrogram, see Figure 4.3(a), of a music snippet by the famous American-born
Greek soprano Maria Callas6 and the corresponding short-time energy feature
(STE) using a hop-size of 5.8 ms and frame-size of 23.2 ms, see Figure 4.3(b).
The spectrogram shows presence of a vibrato, with a modulation frequency of
approximately 6.4 Hz. Figure 4.3(c) and 4.3(d) show the corresponding peri-
odogram of the STE feature over the 2.7 sec as well as the AR estimate of the
power spectrum for a model order of 3 and 24, respectively. Even with a model
order of 3, some of the vibrato signal is modelled, although, not very detailed.
Increasing the model order, the level of detail of the power spectrum increases
as expected.

6Collected from www.findsounds.com

www.findsounds.com
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(a) Spectrogram of the soprano
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(b) short-time energy of the soprano
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(c) DAR with a model order of 3
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(d) DAR with a model order of 24
Figure 4.3: Figure (a) shows the spectrogram of 2.7s of a voiced part of the soprano Maria
Callas. The vibrato is clearly observed, and has a modulation frequency around 6.4Hz. Figure
(b) shows the corresponding STE of the music snippet. A hop-size of 5.8ms and frame-size
of 23.2ms were used. Figure (c) shows the periodogram of the STE (blue) and the power
spectrum estimation by the DAR model is shown in black for a model order of 3. Figure (d)
shows a model order of 24.

For the MAR model, also cross-correlations between the short-time feature di-
mensions are modelled. Figure 4.4 and 4.5 shows the autocorrelation and cross-
correlations of the first 5 MFCCs of the music snippet S2 as a function of lag
time for the measured and predicted correlation structure (using a MAR model
of order 3) from frames of 1.2 sec and 30 sec, respectively. The 1.2 sec frame
was selected randomly from the 30 sec music snippet S2. The figures show
that the local correlations in the short-time features are well approximated by
the MAR model. Furthermore, the trend of some of the cross-correlations are
captured nicely, see e.g. MFCC0 with MFCC3 in Figure 4.4. Increasing
the frame-size to 30 sec, see Figure 4.5, the correlations becomes smoother and
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Figure 4.4: The different figures illustrate the estimated and “measured” correlations and
cross-correlations between the first 5 MFCCs of the music snippet S2 by Roxette. The esti-
mated correlations is by a MAR model of order 3. This model order has been found optimal
in two datasets for music genre classification, see Chapter 6. The correlations have been
calculated for a frame-size (fsz̃ ) of 1.2 sec. The frame was randomly picked from the music
snippet. It seems as if local dynamics of the short-time features are well modelled with a 3
order AR model.

cross-correlations less pronounced7.

4.3.2.2 Estimation of parameters

There exists quite a few approaches for estimating the parameters of a multi-
variate autoregressive model. The parameters can be estimated from the time
or frequency domain, see e.g. [107, 89, 91]. In [99, appendix H] we used a nor-
mal least squares approach for estimating the parameters. In [100, appendix F]
we used the ARFIT package [107] that implements a regularised least squares
method.

7This can be motivated from the fact that the DCT of the MFCCs are in fact decorrelating
the feature dimensions.
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Figure 4.5: The different figures illustrate the estimated and “measured” correlations and
cross-correlations between the first 5 MFCCs of the music snippet S2 by Roxette. The esti-
mated correlations is by a MAR model of order 3. This model order has been found optimal in
two datasets for music genre classification, see Chapter 6. The correlations have been calcu-
lated from a frame size (fsz̃ ) of 30 sec, which is corresponding to the length of the song. Only
a lag of 1 sec has been illustrated, since the correlations and cross-correlations are decaying to
zero.

The parameters, which are estimated from the model are the AR-matrices
Â1, . . . , ÂP , the intercept term v̂, and the noise covariance Ĉ. The tempo-
ral feature integrated vector of frame k̃ then becomes

z̃k̃ =









v̂k̃

vec
(

B̂k̃

)

vech
(

Ĉk̃

)









, (4.9)

where B̂k̃ =
[

Â1,k̃ Â2,k̃ . . . ÂP,k̃

]

and z̃k̃ has a dimension of (P +

1/2)D2 + (3/2)D. For the DAR model, only the diagonals of the Âp and Ĉ
are used. This amounts to a total of (P + 2)D parameters.

The computational complexity of the DAR and MAR features across a frame fsz
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Method Multiplications & Additions

DAR D
3 (P + 1)

3
+ ((P + 6)(P + 1) + 3)Dfsz

MAR 1
3 (PD + 1)

3
+
(

(P + 4 + 2
D ) + (D + 2)

)

Dfsz

Table 4.2: Complexity of the DAR and MAR approach to temporal feature integration.

in terms of multiplications and additions are shown in Table 4.2. The complexity
has been obtained using standard values for matrix inverses.

4.3.3 Other statistical models

The two models considered (GM and MAR) are models with no latent vari-
ables. The parameter estimates of these models can be used directly as features
at larger time-scales. More general models such as the Gaussian mixture model,
hidden Markov model and other linear Gaussian models, see e.g. [120], does
not have unique solutions, which renders direct comparison of parameters su-
perfluous. Instead of a direct comparison of parameters one can measure a
distance between the model density functions. Researchers in MIR have been
evaluating the similarity between songs, simply by evaluating the log-likelihood
of a given song with the short-time features of the other songs in the dataset.
This method, although not explicitly stated, is in fact related to the estimated
KL-divergence between density functions, see e.g. [15]. In [9], the MFCCs of
each song are modelled by a GMM. The authors apply the models for accessing
the similarity of songs in terms of their timbre for music retrieval. In [47], the
authors compare the modelling power of each songs MFCCs using a HMM and
a GMM. Using approximately the same number of model parameters the author
finds that the HMM is a better model of the MFCCs in terms of log-likelihood,
however, there is no direct performance increase observed when comparing the
models in a music genre classification task. Detailed information such as confu-
sion matrices are not provided, which makes it difficult to conclude if the models
are misclassifying the same examples. In [93], the author considers a symmetric
KL-divergence kernel applied with a support vector classifier for music genre
classification. Different kernel functions for measuring similarity between prob-
ability distributions will be considered in more detail in Chapter 5.

4.3.4 Model order selection

For the MAR model (or the GMM) a model order needs to be selected. The
model order which best models the data, and still generalises, can be found
using a model order criteria such as the Bayesian Information Criterion (BIC)
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or Akaike Information Criterion (AIC), see e.g. [107, 136]. For the music or-
ganisation tasks considered in Chapter 6, we are interested in finding a single
optimal model order across data which has the best generalisation performance.
Having different model orders from frame to frame would require specialised
classifiers. Classifiers, which rely on divergence based similarity measures are
able to compare songs modelled with different model orders. In this thesis, the
optimal model order have been selected to maximise the cross-validation test
accuracy, which is discussed further in Chapter 6.

4.4 Filterbank coefficients (FC)

The method described in this section was proposed in [97] for including tem-
poral information in the integrated short-time features at larger time-scales for
general audio classification (music genre was also investigated). The idea is to
extract a summary of the periodogram of each short-time feature dimension, in-
dependently. The summary consists of 4 pre-defined frequency bands, in which
the periodogram is summarised. The temporal feature integration approach
simply amounts to

z̃k̃ = vec
(

Pk̃W
)

, (4.10)

where the matrix Pk̃ contains the periodogram of each short-time feature di-
mension arranged row-wise. The dimension of Pk̃ is D × N , where N = fsz/2
when fsz is even and (fsz − 1)/2 for odd values. The filter matrix W of dimen-
sion N × 4, summarises the spectral information of selected frequency bands.
In [97], the frequency bands investigated were: 1) 0 Hz (Corresponding to the
DC-value), 2) 1−2 Hz, which is on the order of music beat rates, 3) 3−15 Hz mod-
ulation energy (on the order of speech syllabic rates, or vibrato) and 20− 43 Hz
is a lower range of modulations corresponding to perceptual roughness. The
dimension of z̃k̃ then becomes 4D.

The DAR and FC model both involve a modelling of the power spectrum (pe-
riodogram for the latter approach). Whereas a smooth estimate of the power
spectrum is optimised for the DAR model, a periodogram is summarised in pre-
defined frequency bands for the FC model. The method could be generalised
to handle cross-spectras, which would involve Fourier transformations of the
cross-correlation spectras.

The selection of four filterbanks in the pre-specified frequency range is rather
arbitrary. To obtain best possible performance in some music organisation task,
the number of filters as well as their spectral shape could be extracted from the
data.
Finding an optimal filter can be approached either supervised or unsupervised.
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In principle, using cross-validation and a gradient based approach optimality
in sense of generalisation error can be found. However, the method would be
expensive and not very practical. Other methods such as canonical correla-
tion analysis (CCA) or partial least squares (PLS) applied in a regression like
manner8 one would obtain the d leading discriminative eigenvectors. These
eigenvectors could be interpreted as the filterbanks. Since the methods are ap-
plied to the power spectrum, one would need to impose a positivity constraint
on each dimension of the eigenvectors. This method has not been considered in
greater detail in this thesis.
The spectral approach, is very intuitive since each of the feature dimensions
relate to a physical quantity of the short-time features, whether this is a mod-
ulation corresponding to beat, vibrato or some higher order modulations. The
complexity of the spectral method (assuming a fixed sized filter bank W) is
governed by the FFT operation, hence,

(4 log2(fsz) + 3)Dfsz . (4.11)

The next section introduces two ’perceptual’ temporal feature integration meth-
ods, the beat histogram and the beat spectrogram.

4.5 Extraction of tempo and beat

Without any detailed level of music experience most people are able to tap
according to the beat of the music. Tapping on the beat feels natural since it
requires much more attention to tap off the beat. This human phase-locking
system illustrate that the phase is important at low frequencies. The problem
of finding the phase of the beat has been considered in more detail in [53, 128].
The normal measure of tempo in music is beats per minute (BPM). For most
music it is suffices to consider tempi in the range 40−240bpm, see e.g. [128]. The
tempo of music can be important in categorising music after slow or fast music
titles. Also when searching for music, a search phrase like: “slow rock”, should
retrieve songs from the music genre rock having a slow tempo. Furthermore,
with automatic phase locking systems one can devise automatic DJs for mixing
playlists, see e.g. [49, 26].

Music tempo extraction has been investigated by several researchers, see e.g.
[54, 142, 53, 50, 128]. It is common practice to distinguish between notated and
perceptual tempo9. In [128], the author discusses the terminology of a strong

8Regression on the labels.
9This leaves tempo of music a subjective measure. However, the degree of subjectivity

depend on the beat strength.
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beat. A strong beat refers to large consensus among humans on the perceived
tempo, whereas a weak beat results in little or no consensus among humans.

For most music, the instruments are played on and around the beat [130]. This
have been exploited in [126] for music genre classification. Temporal feature
integration by simple statistics were applied to short-time features in frames
centred on the beat, hereby insuring that the short-time features include a mix
of the instruments being played. There were, however, no apparent accuracy
increase when considering this approach rather than using fixed frames of 1 sec.

Two methods have been investigated in this thesis for music genre classifica-
tion, one suggested by [142], denoted the beat histogram and another approach
suggested by [50, 49] denoted the beat spectrum. Both of these methods, can
be considered as being temporal feature integration methods, since short-time
features are extracted after which temporal structure is extracted and used as
a new feature at a larger time-scale.

4.5.1 Beat Histogram (BH)

The beat histogram was suggested by Tzanetakis in [142] as a rhythmic con-
tent feature. The rhythmic feature consists of several processing steps. The
complete system for extracting the beat histogram is illustrated in Figure 4.6.
The author applies a discrete wavelet transform to the audio signal, which to
some extent is similar to decomposing the audio into octave spaced frequency
bands. In the implementation, octave space filterbanks have been applied with
center frequencies of 62.5, 125, 250, 500, 1000, 2000, 4000, 8000 Hz. To motivate
the octave spaced filterbanks the author of [128] found that his algorithm was
less sensitive to different filterbank implementations.

The following listing supports figure 4.6:

• Octave spaced filterbank with center frequencies at 62.5, 125, 250, 500,
1000, 2000, 4000, 8000 Hz

• Full wave rectification, y1[n] = |y[n]|

• Low pass filtering using an IIR10 filter y2[n] = (1 − α)y1[n] + αy2[n − 1].
α = 0.99 gives a 3dB cutoff normalised frequency of ∼ ωc = 0.0032π

• Down-sampling, z[d, k] = y2[dn], where d = 16 is the chosen down-
sampling factor11

10Infinite Impulse Response
11Actually a larger down-sampling factor could have been selected.
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Figure 4.6: The beat histogram similar to the one proposed in [142].

• Mean removal, calculated from the samples in the frame

• Adding the envelopes from each filterbank and applying an enhanced au-
tocorrelation [140] method for detecting periodicities. The three most
dominant peaks are added to the beat-histogram.

In [142] the beat histogram was applied to frame-sizes of 3 sec, which allows for
a changing tempo through the music piece. The output of the beat histogram is
a vector of dimension 6 where the first five dimensions summarise the amount
of beats in the ranges 30 − 55, 55 − 80, 80 − 105, 105 − 160, 160 − 250 bpm
and the final feature is correlated with the beat-strength of the corresponding
frame.

4.5.2 Beat Spectrum (BS)

The beat spectrum was proposed in [50] for rhythm analysis and tempo extrac-
tion. In [49] the authors apply the beat spectrum for arrangement of songs after
rhythmic similarity. The beat spectrum is based on acoustic self similarity ver-
sus lag-time of spectral short-time features. The beat spectrogram is formed to
address rhythmic changes over time. The below listing shows the beat spectrum
extraction

• Extract spectral short-time features from the raw audio samples (in our
implementation, the MFCCs were used).

• From the short-time features zk, for k = 0, . . . , K − 1, calculate the self
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similarity matrix between short-time features S(zi, zj). Two simple dis-
tance measures was suggested

1. Euclidean : S(zi, zj) = zT
i zj , and

2. Cosine : S(zi, zj) =
z

T
i zj

||zi||2||zj ||2
.

The latter ensures that windows with low energy, can still yield a large
similarity score.

• From the similarity matrix S, the beat spectrum is calculated as

B[l] ≈
1

|R|

∑

k∈R

S(k, k + l). (4.12)

When l = 0 the beat spectrum is simply the sum along the main diagonal
of S, and when l = 1, the sum along the first super-diagonal. |R| is the
cardinality of the number of elements in the l’th diagonal.

The beat spectrum, denoted by B[l] for l = 0, . . . , K − 1, expresses the self
similarity as a function of lag l. Peaks in the beat spectrum, corresponds to
repetitions in the music. The cosine similarity measure was selected due to
its robustness. The beat spectrum of the music snippet S2 has been shown in
Figure 4.7(a). The annotated beat have been marked by ’beat’-arrows, while the
sub-beats marked in-between with dotted arrows indicate a 4/4 time signature.
To extract explicit information about the tempo a DFT is applied to the beat
spectrum. Only frequencies in the range 40 − 240bpm is retained for further
processing [100, appendix F]. The DFT of the beat spectrum is illustrated in
Figure 4.7(b).

4.6 Stationarity and frame-size selection

Using a block based approach to temporal feature integration, an optimal hop-
and frame-size have to be determined. With the presented statistical models,
stationarity is indirectly imposed, but not necessarily fulfilled. The frame-size is
usually selected to maximise the generalisation performance of the system after
which a hop-size can be determined to minimise information loss in terms of
aliasing as discussed in Chapter 3.

A simple yet expensive approach for determining an optimal frame-size for a
given setup, would be to use cross-validation [15]. Figure 4.8 illustrates the
mean classification test accuracy obtained from 10-fold cross-validation on a
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Figure 4.7: (a) A zoom on the beat spectrum for the music snippet “Fading like a flower” by
the music band Roxette (S2). The 4/4 time signature can be read of the peaks in-between the
perceptual beat arrows. (b) illustrates the corresponding DFT of the beat spectrum of (a) in
the range 40 − 240 BPM.

music genre classification task12 using MFCCs as short-time features and a
MAR model of order 3 for temporal feature integration. The hop-size is fixed at
200 ms and the frame-size is varied between 200 ms and 4000 ms. The mean clas-
sification test accuracy of two classifiers, the GLM (Generalised Linear Model)
and LM (Linear Model) are illustrated. The classification accuracy is calculated
at 30 sec from a late fusion technique denoted as the sum-rule, which is related
with majority voting.

In [142], the importance of the texture window size (frame-size) was investi-
gated for music genre classification. The author found that a texture window
of approximately 1 sec was optimal w.r.t. the classification test accuracy on
a 10 genre dataset. In [44], new features were created using simple statistics
(mean-variance) over frames of 1 min short-time features. These new features
were applied for segmentation and classification of long duration recordings of
personal audio13. It is believed that the frame-size is selected partly from a
computational perspective and partly from the fact that adequate detection of
environments can be performed at this time-scale. Lately, a few authors [146, 14]
have looked at methods for working with non-fixed frame-sizes, hence selecting
frame-sizes from the stationarity of the short-time features. The author of [146]
suggests to use an onset detection algorithm for determining optimal segment

12An 11 genre dataset, which will be discussed in greater detail in chapter 6.
13Audio was recorded from various environments, e.g. library, campus, street, barber, meet-

ing, subway, etc. In total 62 hours of annotated data was investigated. Several spectral short
time features was investigated for this analysis.
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Figure 4.8: The mean classification test accuracy from 10-fold cross-validation on an 11 music
genre classification task, plotted for different frame-sizes of the MAR features. The error bars
are ± the standard deviation on the mean test accuracy. The results are shown for the LM
and GLM classifier. The hop-size was set to 200ms. The investigated dataset will be discussed
in more detail in chapter 6.

boundaries. Thus, by allowing a variable frame-size, important parts of the
music can be modelled better, whether this is the attack of the instruments or
the sustained part. The authors reported a small increase in classification ac-
curacy in a music genre classification setup when comparing to the block based
approach.

4.7 Discussion

The general idea of temporal feature integration was introduced and differ-
ent approaches to temporal feature integration were discussed. By considering
a sequence of short-time features as a time series, it was illustrated that the
temporal characteristics of these short time features can carry important struc-
tural information such at beat, vibrato and other temporal structure, which has
no perceptual interpretation. The general multivariate autoregressive model
(MAR) was suggested for modelling sequences of short-time features. The ef-
fect of modelling the temporal information in the short-time features will be
elaborated on in Chapter 6, where the different temporal feature integration
methods will be compared in a music genre classification task.
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The computationally complexity of the different temporal feature integration
methods was calculated from typical values of inversion of matrices and fast
Fourier transforms and it was noted that the MAR and DAR models are com-
putationally more expensive than the FC, MeanCov and MeanVar approaches.

The next chapter introduces the notion of kernel aided temporal feature inte-
gration, where statistical models with a latent structure can be used as input to
kernel functions. The generated kernel matrix can then applied in combination
with a support vector classifier for e.g. music genre classification.



Chapter 5
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feature integration
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The previous chapter introduced temporal feature integration, which is a method
for integrating short-time features into a feature vector at a larger time-scale.
Additionally, advanced temporal feature integration models were mentioned,
such as Gaussian mixture models and hidden Markov models. These latent
generative models cannot be compared directly, since their parameters are not
uniquely defined.

In this chapter, kernels which aid temporal feature integration or actually per-
form temporal feature integration are presented.
The general idea of a kernel method is to embed the input data, which could
be the short-time features or the model parameters from the temporal feature
integration step, into a vector space denoted as the feature space1 [132]. The
learning algorithms, which are devised for learning in the feature space, are
implemented in such a way that the coordinates of the embedded points in
feature space are not needed, but only their pairwise inner products. Kernel
functions indirectly calculates the inner product in the feature space. This is
frequently referred to as the “kernel trick” and enables efficient calculations

1Also denoted as the Reproducing Kernel Hilbert Space.
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of high-dimensional embeddings. Algorithms devised in the feature space are
normally linear, however, when transformed back to input space they become
non-linear. This can lead to versatile solutions, which can detect and effectively
use non-linear relations in the input space.

Two of the investigated kernel functions, the product probability kernel (PPK)
[70], and the symmetric KL-divergence kernel (KL) [102], take density functions
as inputs. Closed form solutions of the Gaussian model, multivariate AR and
Gaussian mixture model in a PPK can be obtained analytically. For the KL
kernel only the MAR and GM model can be derived analytically.

5.1 Kernel methods

The indirect embedding into a potentially infinite dimensional feature space
using kernel functions allow well known dimensionality reduction methods such
as principal component analysis (PCA), canonical correlation analysis (CCA),
partial least squares (PLS) to have efficient implementations in feature space.
In that manner, possible non-linear relationships in input data can be learned,
see e.g. [132].

Let the input space be denoted by X ⊆ R
D, and the feature space by F ⊆ R

L,
where, in principle, L can be infinite dimensional. Then,

The kernel of F is a function κ that for all x, z ∈ X satisfies

κ(x, z) = 〈φφφ(x),φφφ(z)〉, (5.1)

where φφφ is a mapping from X to feature space F , hence

φφφ : x → φφφ(x) ∈ F , (5.2)

and the operation 〈·, ·〉 denotes the inner product.

For a function to be a valid kernel of some feature space, it must be symmetric
and fulfil Mercer’s theorem. By combining simple kernel functions, even more
complex kernels can be constructed. In [132], it is shown that kernel functions
fulfil various closure properties. For example a kernel function is closed under
addition and multiplication2.

2Thus, both operations shown in Equation 5.3 produce a new valid kernel function,

κ(z,x) = κ1(z, x) + κ2(z, x) and/or κ(z, x) = κ1(z, x) · κ2(z, x). (5.3)
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Figure 5.1: The function Φ embeds the input data into feature space. The linear decision
boundary learned in feature space transforms to a non-linear decision boundary in input
space.

The support vector classifier is a robust discriminative classifier, which typically
shows “state of the art” performance in many areas of machine learning. In
particular it has shown to be useful for the music genre classification task, see
e.g. [93, 14, 126]. The support vector classifier (SVC) [144, 132] exploits the
implicit embedding of data into feature space through the kernel function for
creating non-linear decision boundaries. The SVC will be discussed shortly in
Chapter 6.

Figure 5.1, shows a hypothetical classification example consisting of a two class
problem with a non-linear decision boundary. The points in input space are
embedded into the feature space using the embedding function φφφ(x) where x
denotes a point in the input space and φφφ(x) its corresponding projection. The
support vector classifier finds the linear discriminating boundary in feature space
with maximum margin between the two classes using only the input data, the
kernel function and the labels from the dataset. As indicated, the kernel function
is a crucial point in any kernel based learning algorithm, hence, special emphasis
must be placed on selecting an appropriate kernel which reflects our underlying
beliefs of the input space. A kernel function such as the Gaussian kernel embeds
the data into a potentially infinite dimensional feature space, which favours the
expressive power of the classifier.
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5.2 Kernels for music

As noted in the previous section, the kernel function is calculated between vec-
tors of the input space, from which some similarity measure is obtained3. For
the music organisation task, one is typically faced with sets of short-time fea-
tures.
The temporal feature integration technique discussed in the previous chapter
was applied to create a single new feature at a larger time-scale. In the limit,
a single vector could represent an entire song. Two kernel-based approaches
can be used for comparing sets of features: either creating a kernel matrix for
each feature in the set (similar to the beat spectrum in Chapter 4) or to create
a kernel function, which produces a single number representing the similarity
between the sets of features. The latter kernel has been denoted the high-level
kernel [32]. Examples of high-level kernels will be presented in the following
subsections.

Consider the short-time features of two music snippets, denoted here as Z =
[

z1, . . . , zfsz

]

and Z′ =
[

z′1, . . . , z
′
f ′

sz

]

, then a single score value between the

music pieces can be calculated through a high-level kernel as κ(Z′,Z).

5.2.1 Previous work

In the last couple of years, kernel methods, especially in connection with the
support vector classifier, have achieved increasing attention from researchers in
MIR. In [104], the authors investigated the usage of a Fisher kernel [69] for web
audio classification. The Fisher kernel is constructed by modelling the short-
time features of each class with a generative model4. After that, the generative
model is used to map short-time features of variable length into a linear space
of fixed dimension.
In [57] the task of audio classification and retrieval was approached using the
Gaussian kernel

κ(x, z) = exp

(

−
||z − x||2

2σ2

)

, (5.4)

where σ controls the width of the kernel. Temporal feature integration is per-
formed on the short-time features5 using mean and variance to obtain a single
feature for each audio snippet. The audio database presented in [148] was inves-
tigated, and the authors reported an improved performance on both the retrieval

3The cosine measure applied for tempo extraction in Chapter 4 is an example of a valid
kernel.

4A GMM was applied.
5Timbre based features + pitch information
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and classification tasks. At the 6th International Symposium on Music Infor-
mation Retrieval (ISMIR, 2005) a few authors suggested high-level kernels. The
symmetric KL-divergence kernel was investigated by [93] for music genre classi-
fication in combination with a support vector classifier. Each song in the dataset
was first modelled with a generative model6 and then a kernel was evaluated to
measure the distance between the models of different songs. Although a closed
form solution exist for the Gaussian model, sampling techniques are required to
calculate a distance between e.g. Gaussian mixture models. The combination
of using a Gaussian model on each song and measuring the distance using the
symmetric KL-divergence kernel won the (MIREX, 2005) [38] ’artist identifica-
tion’ contest and finished second in the ’music genre classification’ contest.
A different approach to music genre classification was outlined in [83] which
considered an LZ78-based string kernel. A finite size vocabulary was learned
using a vector quantiser from sequences of short-time features. From the vocab-
ulary each song was represented by a finite alphabet. Using an LZ78 algorithm,
see e.g. [123], a similarity between songs of varying length was obtained. A
comparison of the LZ78-based string kernel with the approach of [142] on a 10
genre dataset investigated by the latter author showed a slight improvement
when using the LZ78 string kernel, although differences were not statistically
significant. The vocabulary was build from the MFCCs using a frame length
of 25ms. Better results might have been obtained by generating the codebook
from feature vectors of a larger time-scale as proposed in [2].
In the same line, a string kernel was investigated in [124] to identify famous
concert pianists from their playing style. The so-called ’performance worm’ was
used to extract relevant information of the movements. The performance worm
is an animation of the tempo and loudness as a function of time [37]. The tempo
is smoothened such that local changes in timing do not change the tempo signif-
icantly. A performance alphabet of the recorded songs are generated by cutting
the trajectories into short segments of fixed length (2 beats) and clustering the
segments into groups of similar patterns. A given performance can then be
transcribed in terms of this performance alphabet and be compared by using
string matching techniques.

5.3 High-level kernels

Three high-level kernels for sets of short-time features are explained in this
section. Two of the methods, the convolutive kernel and the product probability
kernel have been suggested by the author for music genre classification in [100,
appendix F].

6Both a Gaussian mixture model (GMM) and Gaussian model (GM) were considered.
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5.3.1 Convolution kernel

The convolution kernel [62] handles all kinds of discrete structures such as
strings, trees and graphs. In this work, the convolution kernel has been applied
to measure the distance between sets of short-time features7. The convolution
kernel between two songs represented by their short-time features Z and Z′ of
finite size is given by

κ(Z,Z′) =
1

f2
sz

fsz−1
∑

i,j=0

κI(zi, z
′
j), (5.5)

where κI(z, z
′) must be a valid kernel and fsz represents a frame of short-time

features. In the above formulation it is assumed that the songs are of same
length, however, this is not a requirement. The theory covering R-convolution
kernels is provided in [62]. The convolution kernel performs an averaging in
feature space since

κ(Z,Z′) =
∑

i

∑

j

κI(zi, z
′
j)

=
∑

i

∑

j

〈φφφI(zi),φφφI(z
′
j)〉

=

〈

∑

i

φφφI(zi),
∑

j

φφφI(z
′
j)

〉

= 〈φφφ(Z),φφφ(Z′)〉 . (5.6)

Hence, the convolution kernel amounts to calculate an inner product between
the smoothed embedding functions φφφ(Z) =

∑

i φφφ(zi) and φφφ(Z′) =
∑

j φφφ(z′j).
The kernel matrix can be shown to be positive semidefinite, since

N−1
∑

j=0,i=0

αiαjκ(Zi,Zj) =

N−1
∑

j=0,i=0

αiαj〈φφφ(Zi),φφφ(Zj)〉

=

〈

N−1
∑

i=0

αiφφφ(Zi),

N−1
∑

j=0

αjφφφ(Zj)

〉

=

∥

∥

∥

∥

∥

N−1
∑

i=0

αiφφφ(Zi)

∥

∥

∥

∥

∥

2

2

≥ 0, (5.7)

where αi ∈ R for i = 0, . . . , N − 1.

7It is also possible to include an intermediate step of temporal feature integration before
applying the convolutive kernel.
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It is noted, that for kernels where the feature space can be explained explicitly
by φφφ(z), the computational complexity of the convolution kernel amounts to
O(fsz ). For the linear kernel this simply amounts to calculate the mean value
across the short-time features. When the inner products is evaluated through
their kernel functions an evaluation between two sets (Z(Z′)) amounts to O(f2

sz
)

kernel evaluations. It should be noted that a normalisation in feature space of
the convolution kernel is proportional to the cosine Euclidean distance between
the feature space vectors.

5.3.2 Product Probability Kernel

The product probability kernel (PPK) was introduced by [70] as a method for
handling different type of sets8. The product probability kernel function is one
out of the many kernels proposed in the literature for handling distances between
sets of data. There are, however, some practical aspects of this kernel, which
make it especially useful. In the following definition of the PPK, θθθ refers to the
parameters of the statistical model applied. Hence, for a Gaussian model, this
would amount to the mean and covariance matrix. From [70]

Let p(z|θθθ) and p(z|θθθ′) be probability distributions on a space Ω and
ρ be a positive constant. Assume that p(z|θθθ)ρ, p(z|θθθ′)ρ ∈ L2 (Ω), i.e.
that

∫

Ω
p(z|θθθ)2ρdz and

∫

Ω
p(z|θθθ′)2ρdz are well defined (hence, not in-

finite), then the product probability kernel between the distributions
p(z|θθθ) and p(z|θθθ′) is defined as

κρ(θθθ,θθθ
′) =

∫

Ω

p(z|θθθ)ρp(z|θθθ′)ρdz = 〈p(z|θθθ)ρ, p(z|θθθ′)ρ〉L2 , (5.8)

where L2(Ω) is a Hilbert space.

In the above formulation sets of features are modelled using some statistical
model, which is similar to the temporal feature integration stage, presented in
the previous section. The parameters of the statistical model are then passed
to a kernel, which returns a measure of similarity between the chosen statistical
model.
Figure 5.2 illustrates the product probability kernel, with ρ = 1/2 between
two univariate Gaussian distributions. The upper figure shows the individual
distributions and the lower figure illustrates the product between the two. The
area under the product between the two distributions is calculated efficiently by
the evaluation of κ(θθθ,θθθ′).
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Figure 5.2: The upper figure shows to univariate Gaussian distributions with mean value of
µ = −0.5 and µ′ = 0.5, and variance of σ2 = 0.1 and σ′2 = 0.5, respectively. The product
of the two distributions is illustrated in the lower figure with ρ = 1/2. Evaluating the area
under this product gives the output of the kernel function, namely κ(θθθ, θθθ′) = 0.57.

Next, we introduce three different models that can be used as inputs to the
product probability kernel, the GM, MAR and GMM.

5.3.2.1 Gaussian model

Assuming that the short-time features over a frame are independent and identi-
cally Gaussian distributed, hence z ∼ N (m,C), then the PPK can be evaluated
in closed form in terms of the model parameters [70]:

κρ(θθθ,θθθ
′) =

∫

Ω

N (m,C)ρN (m′,C′)ρdz = (2π)(1−2ρ)D/2ρ−D/2·

|C†|1/2|C|−ρ/2|C′|−ρ/2e

“

− ρ
2

“

m
T
C

−1
m+m

′T
C

′−1
m

′−m
†T

C
†
m

†
””

, (5.9)

where C† =
(

C−1 + C′−1
)−1

and m† = C−1m + C′−1m′.

8Both structured, such as timeseries, and unstructured data sets.
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Assuming independence among the short-time feature dimensions (univariate)
the PPK matrix can be generated by addition or multiplication of each dimen-
sions individual PPK matrix.
A rough estimate of the complexity of a single kernel operation scales as O

(

D3
)

given that the matrix inverses and determinants each scale with O
(

D3
)

, where
D is the input dimension of z. For the univariate case, the complexity is only
O(D)9

5.3.2.2 Multivariate autoregressive model

The MAR model was suggested in Section 4.3.2 for temporal feature integration
to include temporal information of the short-time features. This was the primary
motivation for extracting the closed form solution of this model. The derivation
of the PPK for a MAR model have been shown in appendix A.1. In order to
obtain a closed form solution, we indirectly assume that the noise process is
Gaussian distributed.
The closed form solution of the product probability kernel of the MAR model
parameters can be expressed as

κ(θθθ,θθθ′) = (2π)(1−2ρ)(P+1)D/2ρ−(P+1)D/2

|M + M′|−1/2|C|−ρ(P+1)/2|C′|−ρ(P+1)/2, (5.10)

where P is the model order of the MAR, and M and M′ are square symmetric
matrices of size D(P + 1) created from the parameters of the MAR model:
Ai(A

′
i) for i = 1, . . . , P and C(C′), respectively.

The complexity of a single kernel evaluation amounts to O
(

(D(P + 1))3
)

. The

univariate case is computationally cheaper than the multivariate case, although
it still scales with the model order O

(

D(P + 1)3
)

for a single kernel evaluation.

5.3.2.3 Other statistical models

In [70], a range of different statistical models is suggested from latent models
such as the GMM and HMM to other linear dynamical systems. The GMM
has been used for timbre modelling of short-time features for music retrieval in
[9]. A similarity function was obtained by measuring a symmetric likelihood
established on a sample basis from the individual songs. This distance measure,
however, requires sampling, and unavoidable becomes an expensive affair. This

9It should be noted that the complexity does not compare directly with those of the con-
volutive kernel, since the parameters are given as inputs to the PPK.
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technique has further been applied for measuring artist similarity and for music
genre classification in [93].

The GMM has been investigated by the author in a product probability kernel
since it has a closed form solution that makes the method computationally
attractive. An exact closed form solution can be obtained between song GMMs
using a PPK with ρ = 1. The Gaussian mixture model

z ∼
P−1
∑

p=0

πpN (mp,Cp) , (5.11)

where
∑

p πp = 1 and P is the number of clusters is inserted into the PPK
function 5.8 and evaluates to

κ(θθθ,θθθ′) =

P−1
∑

i=0

P−1
∑

j=0

πiπ
′
j

∫

Ω

N (mi,Ci)N (m′
j ,C

′
j)dz. (5.12)

For ρ 6= 1 the following approximation is applied

κ(θθθ,θθθ′) =
P−1
∑

i=0

P−1
∑

j=0

(

πiπ
′
j

)ρ
∫

Ω

N (mi,Ci)
ρN (m′

j ,C
′
j)

ρdz. (5.13)

In [100, appendix F], we investigated the PPK kernel for a GMM with ρ = 1/2
for music genre classification. The parameters of the GMM were found using
the NETLAB software package [106].
The complexity of the PPK with a GMM amounts to O

(

P 2D3
)

. Modelling each

dimension independently (univariate), the complexity reduces to O
(

P 2D
)

.

A more versatile (and complex) model have been considered by [102, 42] ap-
plying the Bhattacharyya kernel (PPK with ρ = 1/2). This approach embeds
the input space, which could be the short-time features, into feature space using
some kernel κ1(z, z

′). In this feature space, the data is assumed Gaussian, which
is a crude assumption. The Bhattacharyya kernel is then applied between the
sets of embedded feature vectors. In other words, a statistical model is learned
from each set of feature space vectors Φ1(Z), where Φ1(Z) = [φφφ1(z1), . . . ,φφφ1(zℓ)].
Principal component analysis is applied in feature space to reduce the dimen-
sions of the feature space vectors prior to modelling, after which one can evaluate
the Bhattacharrya kernel. In [45] instrument recognition in polyphonic music
was tackled using the above procedure.
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5.3.3 The symmetric KL-divergence kernel

The use of the symmetric KL-divergence kernel for multimedia applications
was suggested in [103]. The kernel has further been applied for music genre
classification in [93]. Moreover, it won the artist identification task of MIREX
(2005) [38].
The KL-divergence between two distributions is defined as

KL(p(z|θθθ)||p(z|θθθ′)) =

∫

Ω

p(z|θθθ) log
p(z|θθθ)

p(z|θθθ′)
dz. (5.14)

Symmetry and positive definiteness is obtained using the symmetric version of
KL-divergence and applying the exponential function, hence,

κ(θθθ,θθθ′) = e−
γ
2 (KL(p(z|θθθ)||p(z|θθθ′))+KL(p(z|θθθ′)||p(z|θθθ))), (5.15)

where it is observed that the kernel is normalised since the KL-divergence is
zero for similar density models.
As with the product probability kernel, different kernels are obtained when
using different models for p(z|θθθ). Next, we give the closed form solution for
the Gaussian model, although the MAR model also results in a closed form
expression.

5.3.3.1 Gaussian Model

When considering the multivariate Gaussian model, z ∼ N (m,C) the kernel
function can be evaluated in closed form:

κ(θθθ,θθθ′) = e−γ(tr(C−1
C

′+C
′−1

C)+(m−m
′)T (C−1+C

−1)(m−m
′)−2D), (5.16)

where tr denotes the trace operation10. This kernel have certain similarities
with the PPK using a Gaussian model. In Equation 5.16, γ is an additional
parameter that controls the decay of eigenvalues of the kernel matrix. It can be
determined from cross-validation on the given dataset.
The kernel is computationally similar with the product probability kernel and
scales with D as O(D3).

10Sum of the main diagonal of a matrix.
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5.3.4 Other relevant kernels

One of the drawback of the probability based kernels are the problems inherent
to density estimation in high dimensional spaces. Naturally, one can consider a
dimensionality reduction step to increase the power of the density based methods
or, as suggested in [32], to use level sets of probability density functions. Where
by the level set of a density function they refer to the part of the space that
contains a given fraction of the probability mass.

5.4 The effect of normalisation

Normalisation is a common preprocessing stage for most machine learning tasks.
Typically, normalisation improves the generalisation error, or at least does not
make it worse. The effect of normalisation of kernels can be considered in both
the input space as well as the feature space. Normalisation of the input space
[55] according to

x̃ =
x

||x||2
(5.17)

amounts to placing every data sample in a hypersphere of R
D. For the linear

kernel (given as κ(x, z) = xT z) this amounts to measuring the angle between
vectors (see also subsection 4.5.2), since

κ(x̃, z̃) =
xT z

||x||2||z||2
= cos(θ). (5.18)

Normalisation in feature space can be performed efficiently through the kernel
function since

κ̃(x, z) =

〈

φ(x)

||φ(x)||2
,

φ(z)

||φ(z)||2

〉

=
κ(x, z)

√

κ(x,x)κ(z, z)
. (5.19)

The normalisation in feature space results in every point is placed on an unit
hypersphere. It should be noted, however, that the normalisation is no longer
confined to a preprocessing stage since the kernel matrix will be needed in or-
der to perform the normalisation. In [63], the author argues that normalisation
improves generalisation error. Both theoretical justification and numerical sim-
ulation of two benchmark datasets illustrates the importance of normalisation.
For the above mentioned reasons, normalisation has been applied in all experi-
ments involving kernels.
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5.5 Discussion

This chapter introduced the notion of kernel aided temporal feature integration
and introduced kernels such as the convolution kernel and product probabil-
ity kernel, which can be evaluated between sets of short-time features. It was
illustrated that the convolution kernel implicitly performs temporal feature inte-
gration, since it corresponds to performing an averaging of the embedded short-
time features in feature space. The product probability kernel efficiently encodes
distances between density functions modelling songs and can be regarded as a
measure of acoustical similarity between songs. Closed form solutions have been
derived for the Gaussian, multivariate AR and Gaussian mixture density models.
Not explicitly discussed in this chapter is combinations of kernels. Especially,
when initially applying a product probability kernel after which the convolution
kernel is applied. This corresponds to an averaging in feature space, hence, an
averaging across the density models from each frame of the song. Another inter-
esting density model, which has not been discussed is the simple factor analyser
model. Combined with stacking of the short-time features, important temporal
information can be included in the density model in a highly compressed man-
ner.
The increased interest in kernels for MIR comes from the versatile modelling of
possible non-linear relationships between songs together with the good general-
isation obtained from the discriminatively trained support vector classifiers.
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Chapter 6

Experiments in music genre
classification

This chapter will present results of published [4, 98, 100, 3], see Appendix D,
E, F, G, and yet unpublished work [99, appendix H]. The returning topic of
this chapter will be that of temporal feature integration. Special emphasis is
put on ranking of short-time features at different time-scales, on the multivari-
ate autoregressive model (MAR) for temporal feature integration, as well as on
kernel aided temporal feature integration. Furthermore, a detailed description
of the datasets and problems of estimating the ’ground-truth’ of these is given.
A small description of the different classifiers: Linear Model (LM), Generalised
Linear Model (GLM), Support Vector Classifier (SVC), Gaussian Mixture Model
(GMM) and the Gaussian Classifier (GC), which have been used in the various
experiments, is provided. Late information fusion (postprocessing) schemes and
methods for accessing the performance of algorithms for the music genre classi-
fication task are discussed. The different experiments presented have an impact
on the whole system chain illustrated in Figure 6.1, and therefore care must be
taken when comparing different methods.
The selected experiments will be presented in three different sections:

Feature Extraction Temporal feature integration Classifier Postprocessing

z z̃ P̂ (Ck|z̃)

Decision
Music

Figure 6.1: The figure illustrates the flowchart of the whole system chain. Dimensionality
reduction can be enforced at several places in the system chain and has therefore not been
illustrated.
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Section 6.4: Discriminative features; this section describes and utilises a
method for finding discriminative short-time features at different time-
scales for music genre classification using the consensus feature ranking
method. This method is not limited to music genre but generalises to
other supervised music organisation tasks. The results of this section
have been published in [4, appendix D].

Section 6.5: Temporal feature integration; the different temporal feature
integration models discussed in Chapter 4 are compared on two different
datasets. This investigation deals with temporal feature integration for
music genre classification. Two datasets are investigated by combining
temporal feature integration and late information fusion. Existing tempo-
ral feature integration models such as the FC, MeanVar and MeanCov are
compared with the MAR and DAR feature models. This section primarily
holds results from [98, appendix E] and [99, appendix H].

Section 6.6: Kernel methods; selected kernel methods from Chapter 5 are
compared in a music genre classification task. Selected models are put
in a context comparable with the results of the previous section. Special
emphasis will be put on the Gaussian model, Gaussian mixture model and
the multivariate AR model in a product probability kernel for music genre
classification. The different kernels investigated were presented in [100,
appendix F].
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6.1 Classifier technologies

Quite a few tasks in MIR are formulated in a supervised manner, in which clas-
sifiers are an inevitable part. Classifiers can usually be divided according to
the models they build. A generative model is a model for randomly generating
observed data, and usually involves latent variables. The generative model can
be used for modelling the data of a given class after which the conditional dis-
tribution of class membership can be found using Bayes rule. A discriminative
model does not model the data, but is formulated to achieve the best possible
discriminative behaviour between classes. Lately, discriminative methods have
achieved a lot of attention in MIR due to their good generalisation performance,
see for example [93, 94, 14]. Several workarounds have been suggested in the
literature to obtain good discrimination with generative models. One such ex-
ample is given in [117], where a HMM is trained discriminately by minimising
a distance between the true and estimated labels.

The following classifiers have been considered in the present work,

• Discriminative models : Linear model classifier (LM), generalised linear
model classifier (GLM) and Support Vector Classifier (SVC)

• Generative models : Gaussian classifier (GC), Gaussian mixture model
classifier (GMM)

and will be briefly discussed in the following subsections.

6.1.1 Discriminative Classifiers

6.1.1.1 Linear Model (LM)

One can formulate the binary classification task as being a single neuron with
linear activation function. The model then takes a feature vector x as input,
and outputs a single value y. To obtain a multi-class architecture (c classes) a
single neuron can be added for each class [90, 15] and each input is connected to
all the output neurons1. The weights of the model are found by minimising the
sum-of-squares error between the true labels and outputs of the neurons across
all the training examples. The method is fast, non-iterative and inherently
discriminately trained due to the selected cost-function. The training simply

1one-v-all



70 Experiments in music genre classification

amounts to finding the pseudo-inverse of the data matrix. Since the classifier
is trained using hard assigned classes, the target values are selected as ti

k̃
= δi,l

for l = 1, . . . , c. Hence the target vector is only different from zero at the
corresponding index of the class. A more thorough introduction to the linear
model classifier is presented in [15]. To estimate the posterior probability of
a class Cl given some data z̃k̃, the softmax function has been applied to the
outputs of the linear model classifier, hence

P̂ (Ci|z̃k̃) =
exp(yi

k̃
)

∑c
l=1 exp(yl

k̃
)

(6.1)

where yi
k̃

= wT
i z̃k̃+bi and bi is the offset. The number of parameters to estimate

is c(D̃ + 1) when the input data z̃ has dimension D̃.

The LM for multi-class problems has been applied in ([4, 98, 100], appendix
D,E,F), for music genre classification, and have shown good and robust perfor-
mance.

6.1.1.2 Generalised Linear Model (GLM)

In the linear model it is indirectly assumed that the true class can be ap-
proximated by a smooth function with additive Gaussian noise. The sum-of-
squares error cost-function is then found to be optimal when minimising the
log-likelihood. This assumption is reasonable for most regression problems.
However, for classification purposes, the labels are typically binary, hence, each
example belongs to a single class exclusively. Restricting the output yi

k̃
of the

linear model between 0 and 1 using e.g. the softmax function, a more reasonable
error function is the cross entropy for multiple classes [15]. Assuming indepen-
dence among the c outputs of the linear model with a softmax function, the
conditional distribution of the true class and the input data to the classifier is
given as

p(tk̃|z̃k̃) =

c
∏

l=1

(

yl
k̃

)tl
k̃ , (6.2)

where yi
k̃

for i = 1, . . . , c represents the bounded output. The cost-function is
created by forming the negative log likelihood, hence

Em = −
Ntrain−1
∑

k̃=0

c
∑

l=1

tl
k̃
ln yl

k̃
, (6.3)

where Ntrain represents the number of training examples. The NETLAB package
[106] was used in the experiments involving the GLM classifier. The package,
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includes a weight decay regulariser, which for the multi-class problem means
that the following term is added to the cost function:

Ew =
α

2

c
∑

l=1

||wl||2. (6.4)

The regularisation constant α is known as the weight decay rate, and helps the
classifier not to overfit the training data, thereby improving the generalisation
error. Cross-validation has been applied for selecting an optimal value for α in
the experiments involving the GLM. As with the LM c(D̃ + 1) parameters have
to be estimated. The GLM classifier has been applied in [99, appendix H] for
music genre classification.

6.1.1.3 Support Vector Classifier (SVC)

The support vector machine [144, 28] and related methods have lately received
a lot of attention in different fields of MIR. The SVM has the ability to work
in very high dimensional feature spaces, which ensures a high flexibility but
apparently seems to be at odds with the curse of dimensionality. Normally, a
good fit on the training data leads to a poor generalisation error, but support
vector machines manage to avoid this problem by optimising a bound on the
generalisation error in terms of quantities that do not depend on the dimension
of the feature space [131], hence enabling good performance unaffected by the
curse of dimensionality.
The SVC optimisation criterion involves the 2-norm of the weight vector real-
izing a linear function that separates the positive and negative examples with
maximum margin together with a sum over any violations of this margin con-
straint.
The margin optimisation problem with constraints is usually formulated in a
primal version and transformed to a dual version2 involving only inner products
between feature vectors. The inner products can then be calculated using the
kernel-trick. For further details regarding generalisation bounds and issues on
the cost-functions the author encourages the reader to look for more information
in [28], which provides a good introduction to the support vector machines and
the mathematics that support them.
There exists many different SVC implementations, which are available from
the Internet. The LIBSVM software package3 [25] has been applied in experi-
ments involving the SVC. The constrained quadratic problem, inherent to most
support vector classifiers is solved in this package using a Sequential Minimal

2Using the Karush-Kuhn-Tucker(KKT) conditions at the solution.
3Although this implementation is written in C-code, there exist several wrappers for using

the package in Matlab, R and other high-language programs.
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Optimisation (SMO) algorithm. SMO is an efficient (and memory friendly) al-
gorithm for solving quadratic problems when the solution involves sparseness.
The uniqueness of the convex quadratic problem ensures a single solution for
the given dataset. This make comparisons between different implementations
easy.

The support vector machine is inherently a two-class discriminator. However,
there exists several methods for handling multi-class problems. The LIBSVM
package implements a one-v-one approach, hence, having c classes the number of
classifiers, which need to be trained is ( c

2 ). Each of the training rounds, however,
involves fewer datapoints than when using the the one-v-all scheme. In the one-
v-all scheme a single decision boundary is determined between the class under
investigation and the remaining classes. This results in training c different
classifiers. Also, error correcting codes have been suggested to maximise the
difference between outputs of the individual one-v-one classifiers, see e.g. [36].
A thorough investigation of the different approaches for the multi-class problem
was performed by [118], where the author compared different approaches on
several benchmark toy-sets. No significant differences among the various ways
of combining the outputs were found. However, there was a weak evidence
in favour of the one-v-one combination scheme on small datasets consisting of
many classes and an overall high test error.
An early paper on audio organisation applied the support vector machine [104].
Here, the authors investigated a simple audio classification problem combining
the modelling capabilities of a GMM with the good discriminative performance
of a support vector machine using a Fisher kernel [69]. In [57], the support
vector machine was applied with success in a content-based audio classification
and retrieval task comparing their approach with that of [148]. Recently, [93, 83]
and [100, appendix F] investigated more complicated kernel functions for the
task of music genre classification.

6.1.2 Generative Classifiers

6.1.2.1 Gaussian Mixture Model (GMM)

Instead of focussing on good discriminative performance, which in principle says
little on the generating process, the task of a generative model is to learn the
underlying structure of the data. The probability density function of a GMM
is defined as

p(z̃) =

L−1
∑

l=0

πlp(z̃|θθθl), (6.5)
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where L is the number of clusters, {πl} are a set of mixing coefficients satisfying
∑L−1

l=0 πl = 1, and p(z̃|θθθl) ∼ N (ml,Σl). When applied in a supervised manner
for music genre classification, this amounts to fitting a GMM to each music
genre. Hence, p(z̃|Cl) ∼ GMM.
The NETLAB package [106] has been applied in experiments involving the
GMM. The number of cluster components L can be estimated from the data us-
ing model order selection methods such as e.g. Bayesian Information Criterion
(BIC) [136], or by methods such as cross-validation. In our case, the number of

clusters were found using cross-validation. The GMM has cL D̃(D̃+1)
2 +cL(D̃+1)

parameters, which need to be estimated when using a full covariance struc-
ture. With a diagonal covariance structure the number of parameters reduces
to cL(2D̃ + 1).

To some extent, the GMM compares with the K-means algorithm [90]. Whereas
the normal K-means algorithm is utilising hard assignment of data points to
clusters, the GMM is using soft assignments. Hence, a single data point can
belong to several clusters. The traditional K-means algorithm has been used as
an initial starting guess to fit the GMM parameters, after which a traditional
EM-algorithm [31] was applied.
The GMM has been applied in MIR both for modelling individual songs [93, 9]
and for the task of structural learning in, for example, music genre classification
[99, 10] and singer identification [75].

6.1.2.2 Gaussian Classifier (GC)

The Gaussian classifier [41] can be seen as a GMM with a single cluster. The
probability density function for a class Cl is assumed to follow a Gaussian dis-
tribution, thus

p(z̃|Cl) ∼ N (µµµl,Σl). (6.6)

Using the negative log-likelihood of the observed data as the error function
makes the training fast and non-iterative. When Σl has a full covariance struc-
ture for all l, the decision surface becomes non-linear, whereas for an isotropic,
diagonal covariance and when Σl = C ∀l, where C is a full covariance matrix,
the decision surface is linear. The number of parameters to be estimated for
this model is similar to the GMM using L = 1.

6.1.3 Postprocessing and late information fusion

The task of combining classifier outputs has been considered by several re-
searchers in machine learning, see e.g. [76, 34]. One can, for example, combine
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several classifier outputs and reach a consensus across the different classifiers.
Adaboost type algorithms where several weak-learners are combined to obtain
a decision of improved quality, have proved to be one of the most successful
combination strategies, see e.g. [121]. In [14] an adaboost algorithm is applied
with great success in music genre classification.

In the current work, late information fusion or temporal fusion, as noted in [34],
have been applied to obtain decisions at larger timescales. Late information
fusion is the task of combining a sequence of outputs from a classifier into a
single consensus decision.
Late information fusion has successfully been applied in combination with tem-
poral feature integration for music genre classification in [98, appendix E] where
different voting methods such as majority-voting, sum-rule, and median-rule
were investigated. The sum-rule over a frame of length K̃ of temporal inte-
grated features amounts to

argmaxl

∑

k

P̂ (Cl|z̃k̃) for k̃ = 0, . . . , K̃ − 1, (6.7)

where for the median-rule, the median is calculated instead of the sum. In
majority voting one counts the hard decisions from the classifier and select the
class that received the most votes.

6.2 Performance measures and generalisation

For music genre classification (and related tasks of MIR) a common applied
error measure is the classification accuracy. Researchers usually apply either the
normalised or unnormalised accuracy. The normalised accuracy is calculated by
taking prior information of the different classes into account. The two datasets
described in Section 6.3 (A and B) have the same number of examples in the
different classes, which corresponds to an uniform prior on the classes. The
classification accuracy is computed as the number of correctly classified examples
out of a test dataset of size Ntest. Another frequently applied measure for
accessing the quality of a classifier is the ‘confusion matrix’. For the normalised
confusion matrix, all numbers in one row, which are estimations for the same
true class should sum to 1. Each column contains the probability of estimating
a given class for all the true classes. Table 6.1 illustrates a simple two class
problem with the true classes being A and B and the estimated classes given
by a and b.

Comparing only the classification accuracy of two algorithms does not provide
enough knowledge of the algorithms individual behaviour. Two classifiers C-I
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P̂ (a|A) P̂ (b|A)

P̂ (a|B) P̂ (b|B)

Table 6.1: Simple confusion matrix illustrated with estimated probabilities. All numbers in
one row, which are estimations for the same true class should sum up to 1. Each column
contains the probability of estimating a given class for all true classes.

and C-II may have the same classification accuracy without failing on the same
examples. E.g. having a similar classification accuracy, classifier C-I might
be better at detecting jazz, whereas classifier C-II could be especially good at
detecting rock. Confusion matrices provide a more complete characterisation
of a classifier performance and can be especially useful when combining several
classifiers for obtaining a better overall consensus accuracy. Confusion matrices
have been applied constructively in hierarchical music genre classification by
aggregating classes with large confusion, see e.g. [10, 84].

The above error measures are relatively simple when considering hard decisions.
However, more complex error measures can be thought of when songs, for exam-
ple, are allowed to belong to more than one class. Also from a user perspective,
it might be more relevant to penalise some errors harder than others. If a user
is very keen on jazz music he/she might consider errors made in this specific
genre more important than other types of errors. This type of information can,
in principle, be included in the cost-function of the classifier. In line with a
more specialised cost-function, the notion of ‘graceful’ errors was mentioned in
[7]. Graceful errors refer to some errors being weighted less than others. E.g.
confusion between rock and alternative should not be penalised as hard as errors
between rock and classical.

6.2.1 Generalisation error and finding the best learning
algorithm

When devising new learning algorithms for machine learning the optimal goal is
to prove that the suggested method indeed performs better than other methods
irrespective of the dataset applied. The generalisation error expresses the over-
all error of a model irrespective of the dataset applied, and it simply becomes
a question of achieving better generalisation than the competing algorithms.
There is, however, a problem, since the generalisation error is not easily ob-
tained. One of the major topics of support vector machines is to obtain, and
improve bounds on the generalisation error. The bounds, however, are provided
with a certain confidence, see e.g. [131, 63].
A frequently applied suboptimal approach for accessing the generalisation error
is to evaluate the algorithms on several benchmark datasets. Hence, if the sug-
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gested learning algorithm performs better on most of the different benchmark
datasets, it must be preferred.

In [35], the author provides a good overview of statistical tests which can be
applied when comparing supervised learning algorithms. The author concludes
that the McNemar test and the k-fold cross-validated paired t-test have reason-
able type-I errors4.
When using cross-validation, see e.g. [15], the dataset is divided at random into
S non overlapping segments. The learning algorithm is then trained using data
from S − 1 segments and evaluated on the remaining set. This procedure is
repeated for each of the possible choices of segments. The leave-one-out proce-
dure is the limit of performing N -fold cross validation (where N is the number
of samples in the dataset).

In the experiments learning algorithms are compared using the McNemar test
when applied on fixed size training/test set, whereas the cross-validation paired
t-test has been applied when the test accuracy is obtained by cross-validation.
Furthermore, it should be noted that nuisance parameters of e.g. the SVC have
been determined from cross-validation. It is noted that using too few folds
when determining nuisance parameters results in larger discrepancy between
the training and training/test splits which can lead to sub-optimal performance
of the classifier.

Ensuring that the classifier is not overfitting the training data, which leads to
a poor generalisation error is an important aspect when comparing different
systems for music organisation. To ensure the best possible generalisation error
of the different systems on the given dataset, learning-curves can be produced
[77]. A learning-curve is produced by plotting the test accuracy as a function
of an increased number of training examples. Increasing the number of train-
ing samples the test accuracy at some point levels out. If not, dimensionality
reduction might be the only possibility to ensure a fair comparison between the
different systems. Cross-validation (or a separate validation set) has been used
to obtain the learning curves in the different experiments where learning-curves
have been used.

4A type-I error occurs when one rejects the null hypothesis even though it was true.
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6.3 Datasets

The field of MIR have had, and still has, problems with legal obstacles when
sharing music between sites. This can lead to suboptimal solutions where re-
searchers apply in-house datasets with unwanted side effects to evaluate their
methods. One such example is the album-effect pointed out by Berenzweig [11]5.
In related areas such as text retrieval, and ASR, benchmark datasets have been
available for a long time [81, 46]. This have led to a common ground for com-
paring algorithms. Furthermore, the generalisation performance of an algorithm
has been accessed by measuring the performance over several such benchmark
datasets.

It has shown to be possible to share datasets across different labs, see [12],
where the short-time features of the USPOP2002 dataset6, which consists of
approximately 8700 different songs distributed across 400 different US music
pop artists, were shared for joint work between LabROSA (Columbia), MIT and
HP Labs(Cambridge). Lately, a benchmark dataset for music classification (and
clustering) was proposed in [65], avoiding legal obstacles by only releasing 10 sec
music snippets sampled randomly from the full length songs. Furthermore,
initial investigations of this dataset have been given in [65, 105]. A common
repository of audio, metadata, ontologies and algorithms is proposed in [22],
as a framework where researchers across the globe can test and evaluate their
algorithms on various audio mining tasks.

One of the main problems when creating a dataset for MIR is how to obtain
“ground truth”. The work by [12], which investigated similarity among artists,
considered various sources of ground truth, such as ‘a survey’, ‘expert opin-
ion’, ‘playlist co-occurrence’, ‘user collections’ and ‘web text’. The different ap-
proaches for obtaining ground truth can be divided into three main categories
[108]:

• ‘Editorial metadata’, which is literally inserted by the editor. Typically
this information is added by experts

• ‘Cultural metadata’, can be a result of analysing emerging patterns and
categories. Methods such as collaborative filtering and machine learning
approaches can be used to learn similarities of data (e.g. co-occurrence in
playlists)

5Consider two music pieces X ,Y from the same album. Let Y2 represent the same recording
of the song Y , just sampled from another album. Let d(X ,Y) be a measure of acoustic
similarity between two songs. The consequence of the album effect is that d(X ,Y) > d(X ,Y2),
even though Y and Y2 are exactly the same songs. This effect stems from producer artifacts
and might blur the conclusions of the experiments.

6http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html
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Dataset A

Genre Artists Total

Classical
9

9
5

Rock
8

8
5

Jazz
15

18
4

Pop
12

13
5

Techno
13

18
5

Table 6.2: The five genres, number of artists in cases where the dataset was divided into a
training and test set, and the total number of artists in the corresponding genre. The scheme
should be read as follows : for rock a total of 8 artists is present. The training set contains 8
artists, which corresponds to a complete overlap of artists in the test and training set. Jazz
and techno have distinct artists in training and test samples.

• ‘Acoustic metadata’ is the purely objective information in the music data.
Vocal presence, silence/non-silence could be objective measures.

Cultural metadata can be accessed in various ways. A common approach is the
use of co-occcurence methods. For instance, finding co-occurring words with a
genre or an artist. Co-occurrence can be based on closeness on a web-page, or
in playlists, where playlists can be from the radio, from users7 or from album
compilations, see e.g. [113].

6.3.1 “Dataset A” for music genre classification

This dataset was constructed by the author and a fellow researchers own col-
lection (in-house) and was created for music genre classification task. Ground
truth was provided by the authors. This dataset has been applied in various
experiments, see e.g. appendix D, E and H. It consists of 100 music titles from
66 different artists. The music pieces are extracted in mono PCM format8 at a
samplerate of 22050 Hz. The music distributes evenly among the 5 music genres:
classical, hard rock, jazz, pop and techno. Table 6.2 shows a detailed overview
of the number of artists in the dataset. The middle column shows the partition
of artists when the data is divided into a fixed training and test set. A splitting
ratio of 75/25 was used when the dataset was applied in a fixed training/test
scenario.

7www.audioscrobbler.com
8Microsoft wave-format.

www.audioscrobbler.com
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6.3.1.1 Human evaluation - (cultural metadata)

Although the selected genres were chosen as distinct as possible (some overlap
with pop), the genre labels are still subjective. To access the ground truth of
the dataset 22 persons9 were asked to evaluate the test set. This test set is
believed to be representative of the complete dataset. From the middle of each
music piece 30 seconds were extracted. Each music snippet was divided into 5
overlapping 10 second snippets. This resulted in a total of 125, 10 seconds music
snippets. Each of the evaluators were kindly instructed to classify each music
piece into one of the 5 genres on a forced choice basis. No prior information ex-
cept for genre names was given. Considering all classifications performed across
the different persons as that of a single “average” human10, a 95% binomial
confidence interval is [97%, 98%, 99%] ([lower bound, mean, upper bound]).

The human evaluation provides a measure of complexity of the applied taxon-
omy and how well the used metadata show consensus with the average human
perception of the music titles.

6.3.2 “Dataset B” for music genre classification

This dataset consists of 1317 music pieces distributed evenly among the eleven
music genres: alternative, country, easy listening, electronica, jazz, latin, pop &
dance, rap & hip-hop, r&b and soul, reggae and rock, except for latin, which had
117 music pieces. The dataset consists of 720 different artists, which amounts
to approximately 2 music pieces per artist, on the average. This dataset is
considered complex w.r.t. the number of artists per music title compared to
previously suggested datasets in MIR. For instance, the USpop dataset [12]
consists of 8700 music pieces distributed among 6 genres with a total of 400
artists. Another recently applied dataset is that collected from Magnatune11,
see e.g. [110]. This dataset consists of 10 music genres with a total of 3248 music
tracks distributed among 147 different artists which amounts to 22 music pieces
per artist.

The music pieces of dataset B are all encoded in MPEG1-layer 3 format (stereo)
at a bitrate of 128 kbps. In the experiments, the music pieces were downsam-
pled to 22050 Hz and a mono signal extracted. A more detailed overview of
the database can be seen from Table 6.3. In [100, appendix F], the dataset was
applied using a fixed training/test partition of 1097/220. Accessing the gen-

9specialists and non-specialists
10Assuming independence among samples.
11Music pieces collected from www.magnatune.com.

www.magnatune.com
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Dataset B

Genre Artists Total

Alternative
55

73
20

Country
15

31
19

Easy Listening
44

62
20

Electronica
64

81
19

Jazz
48

60
18

Latin
24

38
19

Pop & Dance
73

89
20

Rap & Hiphop
49

62
20

R&B & Soul
63

76
20

Reggae
47

65
20

Rock
67

83
20

Table 6.3: The eleven genres, number of artists in cases where the dataset was divided into a
training and test set, and the total number of artists in the corresponding genre. As indicated
there is little or no overlap of artists when the dataset is divided into a single training/test
set.

eralisation performance using cross-validation results in little overlap between
training / test splits. It is believed that this dataset is a good representation of
music genre. The labels have been provided by an external reference.

6.3.2.1 Human evaluation

The genre labels obtained by an external reference were investigated by 25 per-
sons. The test set, consisting of 220 music snippets of each 30 seconds sampled
from the middle of each music piece, was considered as being representative
of the complete dataset. Each of the subjects was asked to classify 33 music
snippets into one of the 11 genre categories on a forced choice basis. No prior
information, except for the genre names was given. Considering all the classi-
fications performed across the different test individuals as independent a 95%
binomial confidence interval becomes [0.54 0.58 0.61]. The consensus accuracy
obtained by voting across 3 or more persons vote results in a 95% binomial con-
fidence interval of [0.61 0.68 0.75]. Only 172 music snippets out of the 220 did
have three or more votes. Another interesting measure is the confusion among
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Figure 6.2: The figure shows the confusion matrix from evaluations of the 25 people. The
“true” genres are shown on along the different rows, hence, each row sums to 100%. The
diagonal of the confusion matrix illustrates the accuracy of each genre separately.

the music genres. The “average” single human confusion matrix has been illus-
trated in Figure 6.2. As illustrated in the confusion matrix, music genres such as
reggae, rap&hiphop and jazz are recognised with accuracies above 70%, whereas
music genres such as alternative and easy-listening are not well understood by
the test subjects.
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D · fsz

Genre

Rank
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Feature
extraction
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Figure 6.3: Feature ranking for music genre classification using Dynamic PCA and sensitivity
analysis. The short-time features of dimension 103 were investigated at lag values of fsz =
0, 50, 100 after which PCA was applied. It was found optimal to project the high dimensional
spaces into the leading 50 eigenvectors.

6.4 Feature ranking in music genre classification

Finding an optimal set of features for the task of automated music genre clas-
sification is not easy, since music genre is not restricted to a single time-scale.
Instrumentation, rhythm, vocal, etc. are all characteristics of music that makes
discrimination between different genres possible for a human. The results pre-
sented in this section have been published in [4, appendix D].

The main questions considered were: 1) does the ranking of short-time features
change with a different decision time horizons, 2) which features are generally
ranking the better at these time-scales.
To work with the short-time features at larger time-scales stacking was ap-
plied (see Section 4.2). A sensitivity analysis was performed using the proposed
technique of consensus feature ranking. The flowchart of the complete ranking
system have been illustrated in Figure 6.3.
The following sub-sections will discuss the approach and results in more detail.

Dataset A has been applied for this investigation.

6.4.1 Short-time features

The investigated short-time features are listed in Table 6.4. The short-time
features are extracted using a frame-size of 30 ms, and a hop-size of 10 ms,
which minimises aliasing along the temporal dimension.
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S.T.F. Dim. Comments

MFCC 13 0th order MFCC included
DMFCC 13

LPC 13 12th order model+gain
DLPC 12 No delta gain

ASE 27
r = 1/4

loEdge = 125 Hz,hiEdge = 9514Hz
ASC,ASS 2

ASF 21
r = 1/4

loEdge = 250 Hz,hiEdge = 9514Hz
STE, ZCR 2

Total 103

Table 6.4: The different investigated short-time features. Each of the features are explained
in detail in Section 3. S.T.F. is an acronym for short-time feature.

6.4.2 Feature stacking and dimensionality reduction

As discussed in Chapter 4, stacking is one approach to temporal feature inte-
gration. The stacked features were denoted as z̃, where the dimension becomes
D̃ = fszD. The largest possible frame-size (lag time) to work with at that time
was fsz = 100, which corresponds to an effective time-scale of 1 sec. Maximum
overlap between frames was applied, hence, hsz = 1. With a short-time fea-
ture dimension of D = 103, the dimensionality of the stacked vector becomes
D̃ = 10300 for fsz = 100, which is high, even for a linear classifier and would
lead to overfitting on dataset A. Dimensionality reduction in form of princi-
pal component analysis (PCA) was applied. Applying PCA to time-stacked
features is known as dynamic PCA, see e.g. [79]. Dynamic PCA extends regu-
lar PCA by both decorrelating feature dimensions and temporal correlations in
the short-time features. In principle, one can view the eigenvectors in which the
high-dimensional data is projected onto as filters, where relevant temporal infor-
mation in the short-time features are retained. The leading principal directions
will contain information of the lower frequencies across the temporal dimension
of the short-time features. Figure 6.4 shows the leading 25 principal directions
extracted from the 0’th order MFCC stacked with a lag value of fsz = 100 and
a hop-size of hsz = 10, from dataset A. As indicated, several of the projections
carry information on specific frequencies, and show resemblance with cosine ba-
sis functions. The eigenvalues and eigenvectors can be determined by forming
the covariance matrix of the temporal feature integrated vectors, after which
an eigenvalue decomposition is performed. Collecting the stacked short-time
features (z̃) of each song in the training data in the matrix Z̃

Z̃ =
[

z̃1
1, . . . , z̃

1
K̃

, . . . , z̃N
1 , . . . , z̃N

K̃

]

, (6.8)

of dimension D̃ × NK̃, where K̃ indicate that music pieces are of same length,
then the biased covariance matrix can be formed as

C = Z̃Z̃T , (6.9)
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Figure 6.4: Basis functions extracted from the leading eigenvalue/vector pairs of the covariance
matrix C. As indicated many of the basis functions show similar behaviour as the DCT basis
functions. The upper left figure shows the eigenvector corresponding largest eigenvalue.

which has a dimension of D̃× D̃. For large frame-sizes it becomes computation-
ally expensive to build, and calculate eigenvector/value pairs of the covariance
matrix. Furthermore, the memory requirements increases drastically. To over-
come some of the memory and time problems a method that we denoted the
‘simple’ PCA was applied, see Appendix B.1. The method estimates the leading
principal components by sampling the training data quite heavily after which
the PCA problem is solved in the smaller of the two spaces [132]. A small ex-
periment was conducted to verify the robustness of the method. With a lag
of fsz = 50, the classification accuracy was measured on a separate validation
set when the number of randomly selected training points were varied between
200−1500. The variation in the mean accuracy using only the leading 50 eigen-
vectors was less than one percent, indicating robust behaviour. This is ascribed
to the large redundancy in the data due to the small hop-size (oversampling).
Experimenting with the dimensionality of the projection, and to avoid overfit-
ting problems, learning curves revealed that a projection into the leading 50
principal components for both the GC and LM classifier was optimal.
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6.4.3 Ranking features

Feature ranking concerns the problem of ranking features after importance for
the given learning problem. It is closely related to the task of feature selection
where a subset of discriminant features is found. A good introduction to feature
selection can be found in [58], which also describes inherent problems of different
ranking methods. Faced with a rather large amount of features, a fairly simple
approach was taken. We are interested in finding the short-time features, which
have the largest impact on the classification accuracy of music genre. Thus,
being able to rank the short-time features after relevance.

A simple measurement of how much the classifier reacts on each input is the
sensitivity map, see e.g [133, 151]. The perturbation of the classifier cost w.r.t.
each of the inputs is found by calculating the gradient of each output with
respect to all the inputs. For the investigated classifiers, this amounts to evaluate
the derivative of the estimated posterior P̂ (Cl|z̃) of each class with respect to
the individual feature dimension. Cl is the lth genre. One way of calculating
the sensitivity map for a given system is the absolute value average sensitivity
[133],

s =
1

ℓtestc

c
∑

l=1

ℓtest
∑

n=0

∣

∣

∣

∣

∣

∂P̂ (Cl|z̃p
n)

∂z̃n

∣

∣

∣

∣

∣

, (6.10)

where z̃n is the n’th stacked short-time feature of the test set and z̃p
n is feature

projected into the p = 50 leading eigenvectors. ℓtest is the total number of test
frames and c = 5 is the number of genres. The absolute operator works on
each element of the vector. Taking the absolute value of each test example’s
perturbation is necessary to avoid possible cancellation of positive and negative
values because of multiple decision boundaries. Averaging has been performed
across samples and genres, since we are interested in features, which have the
largest discriminative power on the complete system. It should be noted that
the sensitivity map expresses the importance of each feature individually, hence,
if large correlations exists between feature dimensions, similar features might be
ranked as being equally important.

Figure 6.5 illustrates the absolute value average sensitivity in a simple classifi-
cation setup. Two classes in 2 dimensions, shown by red and black dots, were
learned by a Gaussian classifier. The sensitivity was evaluated by sampling 1000
points from each distribution and evaluating Equation (6.10). The s values have
been indicated on the axis’s of the 4 figures as sx and sy. A larger numeric value
illustrate that the feature is more relevant. The contours illustrated on the fig-
ures, show the absolute value of the derivative of the posterior distribution,
which as expected, are only non-zero around the classification boundary. The
values of s shown on the x-y axis, have been normalised, hence s̃ = s

||s||max
.
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Figure 6.5: Feature sensitivities in different configurations. Upper left: discriminate power in
x1, upper right : discriminative power in x2, lower left : discriminative power in both x1 and
x2 and lower right: discriminative power in x2 for overlapping data.

Working with a fixed training/test set, this ranking technique will provide one
single ranking. Random sampling of the training set will provide new estimates
of the posterior distribution. Furthermore, at lag values larger than 0, we need
some way of combining the sensitivity ranks to convey information about the
short-time features at larger lags. A simple method that we denoted ‘consensus
feature ranking’ was proposed to handle these iterations for finding the most
discriminate short-time features at different time-scales for the music genre clas-
sification task. The consensus feature ranking method is listed in Table 6.5. The
matrix R is denoted the sensitivity rank matrix. Each row contains a histogram
of the ranks achieved by the specific feature. A very narrow histogram (little
spread), indicate robustness of that feature, hence, achieve a similar ranking in
each permutation of the training set, whereas wider histograms reveals that the
feature is very sensitive to the training splits. Figure 6.6 shows the sensitivity
rank matrix at lag fsz = 100 using the LM classifier with noperms=50, where
the posterior distribution is estimated using the softmax function. The dots
shown in each row illustrate the median of the histogram. Furthermore, the
average classification accuracy of the LM classifier on the 5 genre music setup
at this lag size was ∼ 71%, where random guessing would give 20%. Table (6.6)
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Table 6.5: Consensus feature ranking procedure as applied in [4, appendix D].

Initialise R = 0 of dimension D × D
Repeat noperms times

1. Train classifier

2. Calculate sensitivity rank using Equation (6.10)

3. For fsz > 0 apply the mean value of the sensitivity
across time of each feature dimension to produce
savg of dimension D

4. Update R as

v = sort(savg)
for j = 1 to D

Rvj ,j = Rvj ,j + 1
end for

where v represents a vector of indices to the sorted
rank values. Hence, v1 contains the index to the
feature with the highest rank.

Output the sensitivity rank matrix R



88 Experiments in music genre classification

Figure 6.6: The figure shows the sensitivity rank matrix R obtained from the consensus feature
ranking procedure outlined in Table 6.5 at lag fsz = 100, which corresponds to approximately
1 sec. The matrix was obtained using a LM classifier and 50 permutations of the training
data. The last 4 features are the ASC, ASS, STE and ZCR, respectively. The ordinate show
each of the 103 features investigated, whereas the abscissa shows the obtained rank in each
of the 50 permutations of the training set. The dots in each row illustrates the median of the
“histogram” from each row.

shows the 10 best ranked features of the LM classifier using the consensus fea-
ture ranking for the lags fsz = 0, 50, 100. The best ranked features have been
selected from the median of the sensitivity rank matrix. Hence, we do not take
the robustness into account, but rather look at the best ranked values across
the different permutation runs.

6.4.4 Discussion

The consensus feature ranking analysis showed that selected feature dimensions
from the MFCCs and LPCs were the most salient at three different time-scales,
namely at 30 ms, 500 ms and 1000 ms for discrimination between the five music
genres: classical, hard rock, jazz, pop and techno. From the experiments in
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fsz = 0 fsz = 50 fsz = 100
1 LPC-2 MFCC-0 MFCC-0
2 LPC-1 MFCC-3 MFCC-3
3 MFCC-1 MFCC-5 MFCC-5
4 LPC-3 MFCC-1 MFCC-6
5 MFCC-3 LPC-2 ASE-19
6 LPC-4 MFCC-6 MFCC-1
7 LPC-5 ASE19 LPC-2
8 GAIN LPC-1 MFCC-12
9 MFCC-0 ASS ASS
10 MFCC-12 MFCC-9 ZCR

Table 6.6: The 10 best ranked features at the three time-scales: 30 ms, 500ms and 1000ms
obtained from the LM classifier with a softmax activation function, have been illustrated.
They have been obtained from the median value of each row in the sensitivity rank matrix R.

[4, appendix D] , it was further concluded that the DMFCC and DLPC per-
formed poorly at the different time-scales. The MPEG-7 features did not show
robust behaviour, and generally ranked lower than the LPCs and MFCCs. The
structure of the basis functions displayed cosine behaviour across the temporal
dimension. Projection of the test-data into these basis functions will correspond
to a filtering of the test-data, picking out dynamics with most energy.
One could argue that the dataset is not very representative given the few gen-
res represented, however, for the present analysis, the good consensus achieved
among humans indicate little subjectivity on the labels provided by the author.
This makes the dataset relevant for small scale analysis as the one presented
above.
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6.5 Temporal feature integration for music genre
classification

This section will present and discuss results from published work [98, appendix
E] , [3, appendix G] and yet unpublished work [99, appendix H] . The DAR
and MAR models are suggested for temporal feature integration for music genre
classification. Section 6.5.1 provide an overview of the experiments and main
conclusions of the work presented in [98, appendix E]. Section 6.5.2 takes the
previous work a step further introducing the MAR model for temporal feature
integration, extending the investigation with more classifiers, and a more real-
istic dataset.

6.5.1 Initial time-scale investigations

Inspired from the previous work on ranking short-time features, where tempo-
ral feature integration in terms of feature stacking did have a positive effect
on the classification accuracy [4, appendix D], it seemed natural to investigate
models that include information about the dynamics of the short-time features.
Furthermore, it was illustrated how the basis functions found from PCA indeed
show cosine behaviour at the time-scales investigated. This enforces methods
with bases similar to the cosine transform. In this section we compare pre-
vious suggested temporal feature integration methods such as the Filterbank
coefficients (FC), mean-variance (MV) against a diagonal AR model (DAR) at
preselected time-scales.

The following three time-scales where considered in these experiments:

1. A “short time-scale” with a frame and hop-size of 30 ms and 10 ms, re-
spectively. Instant frequency characteristics.

2. A “medium time-scale” with a frame and hop-size of 740 ms and 370 ms,
respectively. Information such as modulations of instruments and the voice
can be extracted at this time-scale.

3. And a “long time-scale” with a frame and hop-size of 9.62 sec and 4.82 sec,
respectively. Information about beat and long structural correlations in
the data.

The MFCCs were selected as short-time features, and the first 6 MFCCs were
found adequate for a decent classification accuracy. Furthermore, it must be em-
phasised that our main interest stems in investigating methods for performing
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Figure 6.7: Investigated combinations of temporal feature integration and late information
fusion techniques. ST, MT and LT denotes short, medium and long time-scale, respectively.
Arrows above the dotted line means temporal feature integration, while lines below denotes
late information fusion (postprocessing).

temporal feature integration and not as much on the actual performance ob-
tained. The largest decision time horizon considered was approximately 10 sec,
corresponding to the long time-scale. To reach a decision at this time-scale,
combinations of temporal feature integration and late information fusion can be
used. The different combinations investigated are illustrated in Figure 6.7. For
temporal feature integration the DAR model, the static mean-variance (Mean-
Var) and the Filterbank coefficients (FC) were investigated. Figure 6.8 illus-
trates the features that were extracted at the three time-scales. The parenthesis
indicates the dimensionality of the features. The feature named MV12a indi-
cates temporal feature integration of the DAR medium time features to the long
time-scale using a MeanVar model. The model order of the DAR was accessed
for each of the combinations considered and was determined from resampled
cross-validation on the training set12. In addition to the features created from
temporal feature integration, a few features, explicitly derived for the medium
and long time-scales were investigated. These were the LSHZ at the medium
time-scale, beat spectrum (BS) and beat histogram (BH) at the long time-scale.
The LSHZ is a concatenation of LSTER and HZCRR. These have not been
described previously, but integrate information from the STE and ZCR short-
time features, respectively13. The different combinations were investigated on
two datasets (dataset A) and an additional 6 genre dataset consisting of 354
music pieces (described in more detail in appendix E). Both datasets where di-
vided into a fixed training/test set as described in Section 6.3.1. Two classifiers,
the GC and LM classifier were applied in the experiments. The classification
accuracy of the different combinations has been illustrated in Figure 6.9. The
higher dimensional features (DAR23a, DAR23m and MV23a and the combined
features at the long time-scale denoted as All were projected onto the 20 lead-

12We later found that this method is less robust to type-I errors [35].
13HZCRR(High Zero-Crossing Rate Ratio) : Number of frames whose ZCR are above 1.5

the average. LSTER(Low short-time energy ratio) : ratio of number of frames whose STE is
less than 0.5 times the average.
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Figure 6.8: Short(1), medium(2) and long(3) time features and their relationships. The arrow
from e.g. MV to the long-time feature AR23m indicate temporal feature integration from
medium to long time-scale. Thus, for each of the 12 time-series of MV coefficients, a 5th
order DAR model is fitted, resulting in a 7 · 12 = 84 dimensional vector (mean+gain). The
model orders of the DAR models have been selected from a validation set. The LSHZ consists
of HZCRR and LSTER.

ing principal components of a PCA, to avoid overfitting the data. The number
of leading principal components were determined from learning curves using
resampled cross-validation.

6.5.1.1 Discussion

The best results obtained were from a three-step procedure14: 1) Extract MFCCs,
2) Temporal feature integration using the DAR model, 3) Late information fu-
sion using the sum-rule to reach a final decision at the long time-scale. A
McNemar test was applied and it was found that the three-step procedure using
the DAR model differed from the MV and FC features on a 1% significance level.
The beat spectrum (BS) and beat histogram (BH) features provided individual
classification accuracies better than random at the long time-scale, however, no
clear indication of a performance increase was observed when combining these
with features created from temporal feature integration. This could imply that
the temporal information present in the integrated features implicitly holds in-
formation about the tempo of the music. One of the larger problems when
performing several layers of temporal feature integration is the drastic increase
of feature dimensions. PCA was applied for projecting data into a lower dimen-
sional subspace, however, there is no guarantee that the subspace is optimal in
sense of music genre. Other projection techniques, such as the canonical corre-

14Observed on both datasets.
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Figure 6.9: The figure illustrates the classification test accuracy for dataset A. The accuracy
obtained from the test set is shown for the long decision time horizon of approximately 10 sec.
Thus the block “Medium to long late fusion” includes all the medium-time features, such as
DAR and the FC features, where the sum-rule has been used to fuse information from the
medium to long time-scale. The single “average” human accuracy has been indicated with a
95% binomial confidence interval.

lation analysis (CCA) or partial least squares (PLS) could have been considered
as extensions, ensuring a better subspace for discrimination. Also more robust
classifiers such as support vector classifier could have been considered.

6.5.2 Extending the model

The performance increase observed when applying the three-step procedure of
short-time feature extraction (MFCC), temporal feature integration and late
information fusion using the sum-rule were investigated in more detail in [99,
appendix H] . Since, the MFCCs are not decorrelated at the time-scales inves-
tigated, see Figure 4.4, the multivariate autoregressive model that also has the
capability of modelling cross-correlations was suggested. Our hypothesis is that
the MAR model is performing better than existing temporal feature integration
methods, usually applied in music genre classification.
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Figure 6.10: The full music genre classification system. The names below the flow-chart are
the specific choices which gave the best performing system. The numbers in the bottom part
of the figure illustrate the dimensionality reduction which takes place in such a system. Here
the number of genres are 11.

6.5.2.1 Experiment description

The system presented as a flow-chart in Figure 6.10 was considered in this in-
vestigation. From each music piece the first six MFCCs were extracted. The
MeanVar, MeanCov, Filterbank coefficients (FC), DAR and MAR models were
considered for temporal feature integration. The LM, GLM, GC and GMM
classifier were investigated in this setup. Preliminary investigations of dimen-
sionality reduction of the high-dimensional feature vectors MAR and DAR did
not prove beneficial for the GLM and LM classifier, however, it was necessary
for the GC and GMM to avoid overfitting. Furthermore, the effect of whitening
the data15 did not show any significant effect w.r.t. classification test accuracy.

The optimisation of the system follows the data stream, which means that the
MFCCs were optimised first (frame- hop-size, whether to use normalisation
etc.). Afterwards, the temporal feature integration stage was optimised, and
so forth. In order to ensure a fair comparison between the different temporal
feature integration methods, their optimal hop- and frame-sizes were examined
individually, since especially the frame-size is important for the classification
accuracy (see Section 4.6). For the MFCCs we found an optimal hop- and
frame-size of 7.5 ms and 15 ms, respectively. The optimal hop-size was 400 ms
for the DAR, MAR, MeanVar and MeanCov features and 500 ms. for the FC
features. The frame-sizes were 1.2 sec for the MAR features, 2.2 sec for the
DAR, 1.4 sec for the MeanVar, 2 sec for the MeanCov and 2.4 sec for the FC
features. Furthermore, the optimal parameter of the DAR and MAR models
were determined to 5 and 3, respectively. The resulting feature dimensions were:
MAR-135, DAR-42, FC-42, MeanCov-27 and MeanVar-12.

The above results were obtained using 10-fold cross-validation using the GLM
and LM classifiers, since these classifiers are robust towards overfitting.

15Zero mean and unit variance of each feature dimension independently.
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Figure 6.11: The figure show the music genre classification test accuracies for the GC, GMM,
LM and GLM classifiers on the five different temporal integrated features. The mean accuracy
of 10-fold cross-validation is shown along with error bars which are one ± standard deviation
of the mean to each side. 95% binomial confidence intervals have been shown for the human
accuracy. Using random guessing, an accuracy of 9.1% would be obtained.

Figure 6.11 shows the achieved classification test accuracies of the different
combinations investigated. The mean accuracy of a 10-fold cross-validation with
errorbars of ± the standard deviation of the mean value is plotted. Furthermore,
the average human classification accuracy obtained from this dataset has been
illustrated with its 95% binomial confidence interval. The lower bound on the
classification test accuracy is ≈ 9.1% on this dataset. Comparing the MAR
features against the other four temporal feature integration schemes using a
cross-validation paired t-test gave t-statistics estimates all above 3.90 which
is well above the percentile critical value of t9,0.975 = 2.26 for 10-fold cross
validation. Thus, the null-hypothesis of “similar performance” can be rejected.
The DAR features gave t-statistics of 2.67 and 2.83 for the FC and MeanVar
features, but only 1.56 for the MeanCov, hence, the null hypothesis cannot be
rejected for the MeanCov features. Table 6.7 illustrates the complexity measured
on a framebasis of the investigated temporal feature integration methods. As
seen, in exchange for an increased performance, the computational complexity
increases.

The confusion matrices obtained by the average ‘single’ human performance, as
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Model Estimated multiplications & additions

MeanCov 3.21
FC 15.6

DAR 27.2
MAR 32.25

Table 6.7: Calculated complexities from Chapter 4 using the frame-sizes optimal for the
individual temporal feature integration methods. The complexities are scaled by the MeanVar
complexity. Thus, the complexity of the MeanVar model is 1.

well as best performing combination is illustrated in Figure 6.12. All the classes
is well above random performance.

We further investigated the robustness of the best performing method for
music genre classification to different encoding qualities. For that purpose we
selected the MP3 encoding standard. A small scale experiment was carried
out on dataset A (which have not been through a perceptual coder). The
best combination scheme for dataset A (MAR with LM classifier) was used.
The mono PCM samples were encoded using the LAME version 3.96.116 into
16, 32, 64, 128 kbps, respectively. The classification test accuracy was accessed
by 10-fold cross validation. In each fold, the test classification accuracy was
calculated for each of the 4 encodings considered, as well as PCM. The above
experiment was repeated with the different encodings for training. Figure 6.13
shows the different classification accuracies obtained from this analysis. Training
with PCM, 128 kbps, 64 kbps or 32 kbps, did not provide a significant perfor-
mance decrease, whereas a performance decrease was observed when encoding
the music in 16 kbps. To make the results comparable, all the music signals
were downsampled to 16kHz. This ensures that the Mel-filters are similar for
the different sampling rates.

6.5.2.2 MIREX contest on music genre classification

The best combination from the above analysis on dataset B was a MAR model
of order 3 extracted from the initial 6 MFCCs over a frame-size corresponding
to 1.2 sec. Classification was done using the GLM classifier and a sum-rule was
applied to achieve a classification at a decision time of 30 sec. This combination
was submitted to MIREX [38] music genre classification task, see [3, appendix
G] . Two independent datasets, the ’USpop’ and ’Magnatune’ dataset were
considered. The USpop dataset consists of a training/test set of 940/474 songs
distributed unevenly between the 6 genres: country, electronica&dance, newage,
rap&hiphop, reggae and rock. The Magnatune dataset consists of a training/test

16http://lame.sourceforge.net/
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Figure 6.12: The above confusion matrices were created from data set B. The upper figure
shows the confusion matrix from evaluations of the 25 people, and the lower figure shows the
average of the confusion matrices over the 10 cross-validation runs of the best performing
combination (MAR features with the GLM classifier). The ”true” genres are shown as the
rows which each sum to 100%. The predicted genres are then represented in the columns.
The diagonal illustrates the accuracy of each genre separately.

set of 1005/510 distributed unevenly among the 10 music genres: ambient, blues,
classical, electronic, ethnic, folk, jazz, newage, punk and rock. It should be noted
that no prior datasets were released, and that the evaluations were performed
exclusively by the MIREX team in a dedicated software environment. See [38]
for technical details.



98 Experiments in music genre classification

20 30 40 50 60 70 80 90 100

128 kbps

128 kbps

128 kbps

128 kbps

128 kbps

64 kbps

64 kbps

64 kbps

64 kbps

64 kbps

32 kbps

32 kbps

32 kbps

32 kbps

32 kbps

16 kbps

16 kbps

16 kbps

16 kbps

16 kbps

PCM

PCM

PCM

PCM

PCM

Training : MP3 - 128 kbps

Training : MP3 - 64 kbps

Training : MP3 - 32 kbps

Training : MP3 - 16 kbps

Training : PCM

Cross-validation test accuracy [%]

Figure 6.13: The figure illustrate the test classification accuracy of the best performing
setup(MAR and LM) on dataset A when encoding the music snippets in the following au-
dio formats : PCM (Microsoft wave), MP3-128 kbps, MP3-64 kbps, MP3-32kbps and MP3-
16 kbps. The top illustration, shows a training with MP3-16kbps. The mean cross-validation
accuracy and standard deviation of the mean value have been calculated from the 10 folds.

The unnormalised classification test accuracy of the two datasets as well as
the combined accuracy on the two datasets has been illustrated in Figure 6.14
for the contributions of the different researchers. A 95% binomial confidence
interval has been included together with the test accuracy to indicate the un-
certainty on the specific dataset. The best performing method was suggested
by [13] which considered a total of 402 short-time features consisting mostly
of spectral features and included among other features the MFCCs and ZCR.
Temporal feature integration using the MeanVar model were calculated over
frames of short-time features of 13.9 sec. Using an Adaboost classifier an overall
classification accuracy of ∼ 82% was obtained. The second best method was
suggested in [92], which used the initial 20 MFCCs as short-time features. Tem-
poral feature integration over the short-time features was performed a Gaussian
model (MeanCov) for the entire song. A support vector classifier was applied
using the symmetric KL-divergence kernel that was discussed in Chapter 5, re-
sulting in an overall performance on the two datasets of ∼ 79%.
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Figure 6.14: The classification accuracies obtained on the two benchmark datasets, the Mag-
natune and USpop dataset as well as the combined mean accuracy illustrated under the bar
’Combined accuracy (mean)’. A 95% binomial confidence interval has been added to the mean
accuracies obtained on the individual datasets. The method prepared by the author is denoted
’Ahrendt&Meng’.

Without optimisation of the model order of the MAR-model, frame-size opti-
misation and optimisation of regularisation parameter of the classifier an accu-
racy of 72 % was achieved. Comparing with the other approaches it must be
emphasised that only the initial 6 MFCCs were used. Comparing the confu-
sion matrices on the Magnatune dataset of the algorithms of Bergstra, Mandel
and Ahrendt&Meng (our method) several differences were found. For example,
an accuracy of 11%17 was achieved on the genre ambient by Mandel whereas
Bergstra and Ahrendt&Meng obtained accuracies of 76% and 59%, respectively.
Another example is the genre punk that had an accuracy of ∼ 85% with the
Bergstra and Mandel algorithms, where Ahrendt&Meng had an accuracy of
97%. These examples illustrates that combining the different learning methods
most likely will boost the overall performance even further.

17Which is pure chance
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The method proposed by Mandel won the artist identification task, and will be
compared with the product probability kernel using both the Gaussian model,
GMM and the MAR model in a music genre classification setup in section 6.6

6.5.2.3 Discussion

This section presented results of work presented in [98, appendix E], [99, ap-
pendix H] and [3, appendix G]. A comparison was performed on existing tem-
poral feature integration models, the MeanVar, MeanCov and FC with the pro-
posed MAR and DAR models using different classifiers. The different param-
eters of the system were optimised to provide a basis for comparison between
the different methods. The MAR feature has an overall larger computational
complexity, however, also better accuracy on the investigated datasets. With
the best combination: a MAR model of order 3, classification using a GLM
classifier and finally late information fusion using the sum-rule to reach a deci-
sion at 30 sec, a mean test accuracy on dataset B of ∼ 48% was obtained. The
average human performance on this dataset was ∼ 57%. The dataset is believed
to generalise well due to its high average song-per-artist complexity (∼ 2 songs
per artist). It was further noticed that the DAR features only performed 5%
worser than the MAR features on this dataset, which indicate that some of the
cross-correlations provide little or no information.
Comparing the confusion matrices of the average human performance and the
confusion matrix obtained from the MAR combination, it was observed that
the genres that humans often classify correctly, i.e. country, rap& hiphop and
reggae are the same genres that our system typically classifies correctly.
The results from the MIREX contest illustrated that the MAR model in the
prescribed combination achieved comparable or better results than some of the
other contributions. Again, it should be emphasised that the model was not op-
timised to the specific datasets, which indicates that the setup is rather robust
to different datasets and is expected to generalise well.

Using the MAR model in the three-step procedure results in a 135 dimensional
feature vector for each 1.2 sec of music. This is a rather hard compression
considering the original size of a song.
A further compression is possible without cutting the mean accuracy, which will
be the topic of Section 6.6. Selected kernel aided temporal feature integration
methods, which have been discussed in Chapter 5, are investigated on dataset
B for music genre classification.
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Figure 6.15: Flow-chart of kernel aided temporal feature integration. The numbers below the
flow-chart indicate the dimensionality reduction of a single music piece which takes place. The
numbers above the flow-chart indicate the time-scale of the feature.

6.6 Kernel methods for music genre classifica-
tion

Selected methods from the work in [100, appendix F] are put in a context
comparable to the results of sub-section 6.5.2. The reader is encouraged to read
[100, appendix F] before continuing this sub-section.

The experiments in this section are reported for dataset B using cross-validation
to access the classification accuracy. The investigations in [100, appendix F]
considered different approaches to obtain a decision for a music snippet at 30 sec.
This section have focused on selected temporal feature integration methods for
creating feature sets at a song time-scale. Three different models, the GM,
MAR and GMM model for temporal feature integration have been considered
in combination with PPK and RBF kernel (only GM and MAR). Furthermore,
the KL-divergence kernel with a Gaussian model have been included due to its
good performance at this years MIREX [38]. Figure 6.15 shows the flow-chart
of the setup. As indicated, the only classifier applied in this investigation is the
support vector classifier.

The numbers below the flow-chart indicate the dimensionality reduction taking
place with one of the best performing methods, a MAR model of order 3 in a
PPK.
As in the previous sub-section, the MFCCs have been extracted using a frame-
size of 15 ms and a hop-size of 7.5 ms. Again, the first 6 MFCCs have been
applied in these experiments. The optimal model order for the MAR model
was determined to 3 using cross-validation. Also, the single best model order
was determined to 3 using full covariance matrices for the Gaussian mixture
model. Different values of ρ = 1, 1

2 , 1
4 , 1

8 , 1
16 were investigated. There was a

small drop in accuracy for ρ = 1, otherwise, the classification test accuracy was
constant for ρ = 1/2, 1/4, 1/8 and ρ = 1/16. A value of ρ = 1/2 was selected
due to the automatic normalisation of the kernel. A similar investigation was
conducted for the KL-divergence kernel where an optimal value of γ = 1/4 was
found. The nuisance parameter C of the support vector classifier is selected
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Figure 6.16: The figure shows the mean cross-validated classification accuracy on dataset B
from selected kernel approaches from [100, appendix F]. The mean accuracy of 10-fold cross-
validation is shown along with error bars, which are one ± standard deviation of the mean to
each side. The short-time features (6-MFCCs) of each music piece 30 sec is modelled either
by the Gaussian model, MAR or GMM with 3 mixtures, after which different kernels have
been applied and investigated with a SVC. The lowercase indicate kernel type. Two kernels,
the GMPPK and MAR3PPK where added to produce a new kernel GMPPK + MAR3PPK,
which provided a small increase in performance. For all experiments involving the product
probability kernel, ρ = 1/2.

from cross-validation on the training data from each of the 10 folds.

Figure 6.16 illustrate the mean classification test accuracy obtained from 10-
fold cross validation. The mean value ± the standard deviation of the mean
has been plotted. It is observed that the temporal information in the lower 6
MFCCs has a big influence on the music genre classification task. An increase of
approximately 8% is achieved by using the MAR model in a PPK compared to
the mean accuracy obtained using a Gaussian model in a PPK. Furthermore, a
performance increase is clearly observed when applying the product probability
kernel instead of the RBF kernel on the MAR or GM model parameters. For the
MAR model a performance increase of approximately 5% is achieved. It should
be noted that there is no statistical difference in performance whether one is
using the symmetric KL-divergence kernel or a PPK with a Gaussian model on
this dataset. Adding the different kernels can provide a boost in performance,
which has been indicated by the adding of the GMPPK and MAR3PPK without
any weighting (hence they have not been combined in an optimal manner). This
combination provided a small performance boost, but it is believed that combin-
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ing kernels in a proper manner, which individually expresses good performance
in different music genres, will boost the performance even further. This issue,
however, have not been considered further in this work.
The confusion matrices of the two best performing kernels have been illustrated
in Figure 6.17. Comparing the confusion matrices of the MAR3 model in a
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Figure 6.17: The figure shows the average of the confusion matrices over the 10 cross-validation
runs of the two best performing kernel methods MAR3PPK and the combination of the GMPPK

and MAR3PPK. The latter kernel have only been included to illustrate that if the kernels
produce diverse results their combinations can provide increased performance.
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PPK with that of figure 6.12, there is good agreement. Comparing the MAR in
a PPK and the combined kernel shows an improvement in the two genres latin
and reggae.

6.6.1 Discussion

Selected experiments from [100, appendix F] were put in a context which made
them comparable to those of the previous section. Special emphasis was placed
on illustrating the performance obtained using the product probability kernel
with the three temporal feature integration models the GM, GMM and MAR
model. Furthermore, the Gaussian model in a symmetric KL-divergence kernel,
which won the MIREX artist identification task were compared with the PPK
using the same density model. Using a cross-validation paired t-test the null
hypothesis that the two models are equal could not be rejected. The obtained
mean test accuracy obtained with the MAR model of order 3 in a product kernel
was comparable with the mean accuracy of a MAR model in combination with
a GLM classifier and late information using the sum-rule.

Regarding memory requirements, the effect of retaining only a single vector per
song compresses the large database. For the larger dataset, which consist of
1210 songs we only need to store 135× 1210 datapoints using a MAR model of
order 3. This corresponds to a compression factor of 156800 when compared to
the original music pieces. Training can be done using a support vector classifier,
or e.g. a K-nearest neighbour classifier, since the kernel matrix can be converted
to a distance measure.

6.7 Discussion

This chapter introduced the different classifiers, which were applied in the ex-
periments, presented the investigated datasets and discussed methods for com-
paring learning algorithms on the given datasets. Furthermore, it was argued
that especially dataset B was a good representation of music genre since the
large amount of different artists led to as few as ∼ 2 songs per artist on the
average. The ground truth on the datasets provided by the authors and an
external reference, were accessed by a human evaluation on selected parts of the
datasets.

Three experiments were described: 1) feature ranking of short-time features at
different time-scales, 2) temporal feature integration for music genre classifica-
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tion where the multivariate AR model was investigated in detail, and finally 3)
kernel aided temporal feature integration for music genre classification investi-
gating different high-level kernels.

The consensus sensitivity ranking approach showed that the MFCC short-time
features generally ranked better at three time-scales: 30 ms, 500 ms and 1000 ms.
The eigenvectors of the stacked short-time features indicated cosine like basis-
functions, which motivates spectral methods for modelling the dynamical struc-
ture of short-time features. An experiments, involving features extracted at a
medium and long time-scale illustrated that the best overall classification ac-
curacy in a music genre eksperiment was obtained from a three-step procedure
consisting of:

1. Extraction of short-time features (MFCCs)

2. Temporal feature integration to an intermediate time-scale (Medium time-
scale)

3. Late information fusion using e.g. the sum-rule

Using the three-step procedure with the multivariate AR model for temporal
feature integration of the first 6 MFCCs across a frame of 1.2sec on dataset
B, resulted in a mean cross-validation accuracy of 48% ± 2% using the GLM
classifier and sum-rule. This result was statistical significant in comparison to
the other temporal feature integration methods.
The final results of the kernel aided temporal feature integration illustrated that
a similar performance could be obtained using the temporal information of the
initial 6 MFCCs. A MAR model of order 3 was created for each 30 sec music
snippet, and a kernel matrix was created using the product probability kernel.
A cross-validated accuracy of 47% ± 1% was obtained using this kernel matrix
with a support vector classifier on dataset B for music genre classification. A
95% binomial confidence interval for the ‘average’ single human on dataset B
was estimated to [54% 57% 61%].
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Chapter 7

Conclusion

The field of music information retrieval is expanding, which is an inevitable pro-
cess due to the large digitalisation of all kinds of information, and especially mu-
sic. The increasing interest from researchers will spawn new ideas in the coming
future, where this thesis is no exception. In this thesis, we have provided sev-
eral methods that have shown to be useful for unveiling music organisation, and
therefore can be of great importance for music retrieval systems. This includes
a method for ranking short-time features at larger time-scales, a framework,
which we denoted as temporal feature integration, where existing methods were
compared with the proposed MAR model. Moreover, kernel functions, which
directly or indirectly aid temporal feature integration were suggested for music
organisation.

Ranking of short-time features for music organisation
A method that we denoted ‘consensus sensitivity ranking’ was suggested for
ranking of short-time features at larger time-scales. Temporal feature integra-
tion by stacking was applied to include temporal information of the short-time
features. Two classifiers, the Gaussian and the linear model classifier, were ap-
plied in an investigation on a 5 genre music genre classification setup. Short-time
features such as the MFCC, LPC, STE, MPEG-7: ASE, ASC, ASS, ASF and
ZCR were carefully analysed. The features that had the best overall consensus
ranking at the three time-scales: 30 ms, 500 ms and 1000 ms, mainly consisted
of the lower order MFCCs.

Temporal feature integration
A general introduction to temporal feature integration was provided, and various
existing methods such as the mean-variance, mean-covariance, and filterbank
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coefficient approach were described. The general multivariate autoregressive
model (MAR) was proposed for temporal feature integration. It was illustrated
that this model captures the local dynamics of the short-time features.

A three-step procedure was found optimal for music genre classification, which
consists of:

1. Extract short-time features (MFCC)

2. Temporal feature integration to an intermediate time-scale (1.2 sec was
optimal for the MAR model on dataset B).

3. Perform late information fusion using e.g. the sum-rule.

A thorough evaluation of the MAR (and DAR) model on dataset B in a music
genre classification setup was provided, comparing it with existing temporal fea-
ture integration methods using several classifiers carefully optimised to provide
a standard of reference. Using a cross-validated paired t-test, it was shown that
the MAR model in the three step procedure, significantly outperformed compet-
ing temporal integration schemes. To measure the subjectivity of the applied
datasets a human evaluation was conducted. A 95% binomial confidence in-
terval for an average “single” human on dataset B was [54% 57% 61%], where
the best mean cross-validated accuracy obtained from the three-step procedure
was 48% ± 2%. Moreover, the MIREX contest showed robust behaviour of the
three-step procedure without any optimisation of the system.

Kernel aided temporal feature integration
An overview of different existing kernel functions, which handles sequences of
short-time features denoted as high-level kernels, was provided. The product
probability kernel and convolutive kernel were investigated for music genre clas-
sification. A Gaussian model, Gaussian mixture model, and a MAR model were
investigated in a product probability kernel. A closed form solution of the MAR
model in a product probability kernel was derived. Experiments on dataset B
illustrated that a significant increase in accuracy was obtained when modelling
a single song with a MAR model in a product probability kernel. A mean
cross-validation test accuracy of 47% ± 1% was obtained, close to that of the
three-step procedure. Using this approach, we are only required to store a 135
dimensional feature vector per song.

Suggestions for further work
Currently a fixed frame-size is used when performing temporal feature integra-
tion. However, from the varying stationarity of a music signal, it seems more
appropriate to impose variable frame length, such that local stationarities can
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be modelled more efficiently. A method considered (not implemented) is to
apply several parallel adaptive filters using different forgetting factors (what is
equivalent to using different frame-sizes) and select the filter with the best mod-
elling capabilities using an intelligent selection algorithm. With this approach,
interesting audio cues would achieve more attention.
Another issue which would be interesting to investigate would be the modelling
of the different short-time feature dimensions using different density models.
E.g. cross-correlations were found to be more pronounced for the lower MFCCs
than the higher coefficients. Thus, by using appropriate density models one
could cut the dimensions of the final feature vector and likely improve general-
isation.

It was hypothesized that the product probability kernel could handle different
model orders, which were partly investigated in [100, appendix F]. This idea is
interesting since the level of detail required will differ from song to song.

As a final remark, it should be noted that the methods presented in this work are
of great benefit for both consumers and companies for navigation and retrieval
of music in large databases and constitutes a range of business opportunities in
the near future.
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Appendix A

Derivation of kernel
function for the
multivariate AR-model

In this appendix a closed form derivation of the product probability kernel for a
multivariate autoregressive model is provided. The parameters of the AR model
is considered known a priory. The normal multivariate AR-model is repeated
here for completeness,

zk =
P
∑

p=1

Apzk−p + v + u, (A.1)

where u ∼ N (0,C) and v is related to the mean value of the time-series by

m = (I−
∑P

p=1 Ap)
−1v and P is the model order. For simplicity, we will write
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the model in its mean adjusted form (z0
k = zk − m), thus

zk =

P
∑

p=1

Apzk−p + v + u

zk =

P
∑

p=1

Apzk−p +

(

I −
P
∑

p=1

Ap

)

m + u

zk − m =

P
∑

p=1

Ap(zk−p − m) + u

z0
k =

P
∑

p=1

Apz
0
k−p + u. (A.2)

We are interested in calculating the joint distribution between the correlated
variables, denoted as p(z0

0, z
0
1, . . . , z

0
fsz

|θθθ), however, since we are using a finite
order MAR model it is adequate to consider only the initial P + 1 variables,
since the density model repeats. Thus, we only consider the following joint
distribution

p(z0
0, z

0
1, . . . , z

0
P ) = p(z0

0)p(z0
1|z

0
0) . . . p(z0

p|z
0
P−1, . . . , z

0
0). (A.3)

Each of the above densities is Gaussian, due to noise assumption on u. Thus,

p(z0
0) = N (0,C)

p(z0
1|z

0
0) = N (A1z0,C)

...

p(z0
P |zP−1, . . . , z

0
0) = N

(

P
∑

p=1

Apz
0
P−p,C

)

. (A.4)

Stacking the variables of z0 into a single vector, simplifies further calculation:

ẑ =











z0
0

z0
1
...

z0
P











, (A.5)
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since the operation allows the densities to be written compactly as

p(z0
0) = c0 · exp

{

−
1

2

(

Â0ẑ
)T

C−1
(

Â0ẑ
)

}

p(z0
1|z

0
0) = c0 · exp

{

−
1

2

(

Â1ẑ
)T

C−1
(

Â1ẑ
)

}

...

p(z0
P |z

0
P−1, . . . , z

0
0) = c0 · exp

{

−
1

2

(

ÂP ẑ
)T

C−1
(

ÂP ẑ
)

}

. (A.6)

where c0 = |C|−1/2

(2π)D/2 and

Â0 = [ I 0 0 . . . 0 ]

Â1 = [ −A1 I 0 . . . 0 ]
... =

...

ÂP = [ −A1 −A2 . . . −AP I ] .

(A.7)

Multiplying the distributions of Equation A.6 together as in Equation A.3, the
following result is obtained:

p(ẑ|θθθ) = cP+1
0 exp

{

−
1

2
ẑT

(

P
∑

i=0

ÂT
i C−1Âi

)

ẑ

}

. (A.8)

Setting M =
∑P

i=0 ÂT
i C−1Âi, the following density model is obtained:

p(ẑ|θθθ) ∼ |C|−(P+1)|M|−1/2N (0,M−1). (A.9)

Using rule 8.82 in [112] on block-matrices, see Equation A.10

∣

∣

∣

∣

[

Am×m Bm×n

Cn×m Dn×n

]∣

∣

∣

∣

= |Am×m| · |C2n×n| , (A.10)

where C2 = Dn×n − Cn×mA−1
m×mBm×n,

it is possible to show that

|M|−1/2 · |C|−(P+1) = 1, (A.11)

hence

p(ẑ|θθθ) = N (0,M−1). (A.12)
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The product probability kernel between two multivariate Gaussian models, can
then be calculated simply as (using Equation 5.9 and Equation A.12)

κ(θθθ,θθθ′) = (2π)(1−2ρ)(P+1)D/2ρ−(P+1)D/2|M†|1/2|M|ρ/2|M′|ρ/2, (A.13)

where M† = M + M′. Applying Equation A.11 reduces the kernel function to

κ(θθθ,θθθ′) = (2π)(1−2ρ)(P+1)D/2ρ−(P+1)D/2

|M + M′|−1/2|C|−ρ(P+1)/2|C′|−ρ(P+1)/2. (A.14)

The complexity of this evaluation lies in the determinant of the matrix M+M′,
which is a square symmetric matrix of size D(P + 1), hence the complexity

becomes O
(

(D(P + 1))
3
)

. It is also straightforward to implement the MAR

model in a symmetric KL-divergence kernel, using the expression in Equation
A.12.

A.1 Memorandum

A similar approach was considered in [147]. The author investigated how corre-
lated variables can be considered independent by difference observations. The
same results of the inverse covariance matrix M was reported. However, since
cyclic boundary conditions is assumed the inverse covariance matrix M becomes
singular.
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Simple PCA

This appendix will introduce the ‘simple’ PCA, which has been applied in [4,
appendix D] . The method to be presented draw inspiration from the ideas
presented in [129]. The general idea is to sample the data retaining only a small
percentage of the original data, which is believed to be representative of the
original data space. If there is a lot of redundancy in the data, decimation, using
random sampling techniques is adequate. Using a more intelligent sampling
method, which selects the most informative data vectors would be an extension
to the applied method, see e.g. [52]. Consider a sequence of stacked features1

using a frame-size (lag) of fsz . Then each music snippet “i” can be represented
as a matrix

Z(i) =
[

z
(i)
1 z

(i)
2 . . . z

(i)

K̃(i)

]

Dfsz×K̃(i)
, (B.1)

for i = 0, . . . , N−1, where N represents number of music snippets in the dataset
and K̃(i) represent the number of stacked features in each music snippet i.
In the following derivation the music snippets are assumed to have the same
length, however, this is not a requirement.

Randomly select r feature vectors from each Z(i), for i = 0, . . . , N − 1 and
construct the matrix

Zr =
[

Z(0)
r , . . . ,Z(N−1)

r

]

, (B.2)

which is of dimension Dfsz ×rN . In the following we assume that Dfsz >> rN .
Form the smaller of the two biased covariance matrices ZT

r Zr of dimension

1The method works for general feature sequences, hence, it is not required that the features
are stacked.
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rN × rN , and perform an eigenvalue decomposition, thus

ZT
r Zr = UrΛrU

T
r , (B.3)

where Λr is a square symmetric matrix with ordered eigenvalues, of size rN .
Ur contains the corresponding eigenvectors.
Next, calculate the outer product eigenvectors of ZrZ

T
r using the relationship

between inner and outer products from the singular value decomposition (SVD,
economy description). Furthermore, we only retain the p ≤ rN eigenvectors
with largest eigenvalues, hence

Zr = VpSpU
T
p → Vp = ZrUpS

−1
p (B.4)

where Vp is of dimension Dfsz × p, Sp is the singular values of dimension
p × p, and Up is of dimension rN × p. For stability reasons, Vp is obtained by
calculating ZrUp and normalising the columns of Vp such that ||vi||2 = 1, for
i = 1, . . . , p.

Retaining only the p largest eigenvalue/eigenvector pairs, one finds that the
eigenvectors is an approximation to the corresponding p largest eigenvector/eigenvalue
pair of the complete matrix

ZZT = VΛVT (B.5)

which is of dimension Dfsz × Dfsz , hence VpΛrV
T
p ≈ ZZT .

Calculating the eigenvalue decomposition of the rN × rN matrix instead of the
p×p matrix results in better approximations of the eigenvalue/vector pairs when
rN > p, see [129].

New data Ztest(Dfsz × Ntest) can be projected into the p leading eigenvectors
as

Z′
test = VT

p Ztest, (B.6)

where Z′
test is of dimension p × Ntest.

B.1 Computational complexity

The computational complexity can be divided into three parts,

1. Creation of ZT
r Zr . This amounts to approximately

(

(rN)2−rN
2

)

Dfsz op-

erations.
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2. Eigenvalue decomposition of ZT
r Zr amounts to O

(

(rN)3
)

operations.

3. Calculation of the outer product eigenvector Vp amounts to ≈ (Dfsz ) ·
rN · p operations.

For the investigations conducted in [4, appendix D] , the values which largest
computational complexity was fsz = 100, D = 103. Only the largest p =
50 eigenvalue/vector pairs were used. The amount of operations required to
perform the eigenvalue decomposition of the original matrix of size Dfsz ×Dfsz ,
would amount to approximately 1012 operations. This is without considering the
complexity of creating the matrix. The above suggested scheme with r·N = 1500
(as applied in the article), results in a complexity less than 1.2 ·1010 operations,
thus, an overall decrease in complexity of approximately 102.
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Appendix C

Homepages as of March
2006

Links to screenshots of relevant homepages

• www.pandora.com: see page 120

• www.freedb.org: see page 120

• www.itunes.com: see page 121

• www.napster.com: see page 122

• www.allmusic.com: see page 123

• www.amazon.com: see page 123

• www.garageband.com: see page 124

• www.soundvenue.dk: see page 125

• www.mymusic.dk: see page 126

• www.mp3.com: see page 127

• www.findsounds.com: see page 128

• www.audioscrobbler.com: see page 128

• www.google.com: see page 129

• www.magnatune.com: see page 130

www.pandora.com
www.freedb.org
www.itunes.com
www.napster.com
www.allmusic.com
www.amazon.com
www.garageband.com
www.soundvenue.dk
www.mymusic.dk
www.mp3.com
www.findsounds.com
www.audioscrobbler.com
www.google.com
www.magnatune.com
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Figure C.1: The figure shows a screen dump of the Internet portal ’www.pandora.com’.

Figure C.2: The figure shows a screen dump of the Internet portal ’www.freedb.org’.
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Figure C.3: The figure shows a screen dump of ’http://www.apple.com/itunes/’.
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Figure C.4: The figure shows a screen dump of ’http://www.napster.com’.
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Figure C.5: The figure shows a screen dump of the Internet portal ’www.allmusic.com’.

Figure C.6: The figure shows a screen dump of the Internet portal ’www.amazon.com’.
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Figure C.7: The figure shows a screen dump of the Internet portal ’www.garageband.com’.
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Figure C.8: The figure shows a screen dump of the Internet portal ’www.soundvenue.dk’.
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Figure C.9: The figure shows a screen dump of the Internet portal ’www.mymusic.dk’.
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Figure C.10: The figure shows a screen dump of the Internet portal ’www.mp3.com’



128 Homepages as of March 2006

Figure C.11: The figure shows a screen dump of the Internet site ’www.findsounds.com’

Figure C.12: The figure shows a screen dump of the Internet site ’www.audioscrobbler.com’,
their pages have been moved to ‘http://www.last.fm’
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Figure C.13: The figure shows a screen dump of the Internet site ’www.google.com’
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Figure C.14: The figure shows a screen dump of the Internet music portal
’www.magnatune.com’
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This appendix contain the article Decision time horizon for music genre classi-
fication using short time features. In Proceedings of European Signal Processing
Conference (EUSIPCO), pages: 1293-1296. Author list: P. Ahrendt, A. Meng
and J. Larsen. Own contribution estimated to approximately 40%.
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DECISION TIME HORIZON FOR MUSIC GENRE CLASSIFICATION USING SHORT
TIME FEATURES

Peter Ahrendt, Anders Meng and Jan Larsen

Informatics and Mathematical Modelling, Technical University of Denmark
Richard Petersens Plads, Building 321,DK-2800 Kongens Lyngby, Denmark
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ABSTRACT

In this paper music genre classification has been explored withspe-
cial emphasis on the decision time horizon and ranking of tapped-
delay-line short-time features. Late information fusion as e.g. ma-
jority voting is compared with techniques of early information fu-
sion1 such as dynamic PCA (DPCA). The most frequently sug-
gested features in the literature were employed including mel-
frequency cepstral coefficients (MFCC), linear prediction coeffi-
cients (LPC), zero-crossing rate (ZCR), and MPEG-7 features. To
rank the importance of the short time featuresconsensus sensitivity
analysisis applied. A Gaussian classifier (GC) with full covariance
structure and a linear neural network (NN) classifier are used.

1. INTRODUCTION

In the recent years, the demand for computational methods to or-
ganize and search in digital music has grown with the increasing
availability of large music databases as well as the growing access
through the Internet. Current applications are limited, but this seems
very likely to change in the near future as media integration is a
high focus area for consumer electronics [6]. Moreover, radio and
TV broadcasting are now entering the digital age and the big record
companies are starting to sell music on-line on the web. An example
is the popular product iTunes by Apple Computer, which currently
has access to a library of more than 500,000 song tracks. The user
can then directly search and download individual songs through a
website for use with a portable or stationary computer.

A few researchers have attended the specific problem of music
genre classification, whereas related areas have received more at-
tention. An example is the early work of Scheirer and Slaney [17]
which focused on speech/music discrimination. Thirteen different
features includingzero-crossing rate(ZCR), spectral centroidand
spectral roll-off pointwere examined together using both Gaussian,
GMM and KNN classifiers. Interestingly, choosing a subset of only
three of the features resulted in just as good a classification as with
the whole range of features. In another early work Woldet al. [22]
suggested a scheme for audio retrieval and classification. Perceptu-
ally inspired features such as pitch, loudness, brightness and timbre
were used to describe the audio. This work is one of the first in
the area of content-based audio analysis, which is often a supple-
ment to the classification and retrieval of multimodal data such as
video. In [12], Li et al.approached segment classification of audio
streams from TV into seven general audio classes. They find that
mel-frequency cepstral coefficients(MFCCs) andlinear prediction
coefficients(LPCs) perform better than features such as ZCR and
short-time energy(STE).

The genre is probably the most important descriptor of music
in everyday life. It is, however, not an intrinsic property of mu-
sic such as e.g. tempo and makes it somewhat more difficult to
grasp with computational methods. Aucouturieret al. [2] exam-
ined the inherent problems of music genre classification and gave

1This term refers to the decision making, i.e., early information fusion
is an operation on the featuresbeforeclassification (and decision making).
This is opposed to late information fusion (decision fusion) that assembles
the information on the basis of the decisions.

an overview of some previous attempts. An example of a recent
computational method is Xuet al. [23], where support vector ma-
chines were used in a multi-layer classifier with features such as
MFCCs, ZCR and LPC-derived cepstral coefficients. In [13], Liet
al. introduced DWCHs (Daubechies wavelet coefficient histograms)
as novel features and compared these to previous features using four
different classifiers. Lambrouet al.[11] examined different wavelet
transforms for classification with a minimum distance classifier and
a least-squares minimum distance classifier to classify into rock,
jazz and piano. The state-of-art percentage correct performance is
around 60% considering 10 genres, and 90% considering 3 genres.

In the MPEG-7 standard [8] audio has severaldescriptorsand
are meant for general sound, but in particular speech and music.
Casey [5] introduced some of these descriptors, such as theaudio
spectrum envelope(ASE) to successfully classify eight musical gen-
res with a hidden markov model classifier.

McKinneyet al. [15] approached audio and music genre classi-
fication with emphasis on the features. Two new feature sets based
on perceptual models were introduced and compared to previously
proposed features with the use of Gaussian-based quadratic discrim-
inant analysis. It was found that the perceptually based features
performed better than the traditional features. To include temporal
behavior of the short-time features (23ms frames), four summarized
values of the power spectrum of each feature is found over a longer
time frame (743ms). In this manner, it is argued that temporal de-
scriptors such as beat is included.

Tzanetakis and Cook [20] examined several features such as
spectral centroid, MFCCs as well as a novel beat-histogram. Gaus-
sian, GMM and KNN classifiers were used to classify music on
different hierarchical levels such as e.g. classical music into choir,
orchestra, piano and string quartet.

In the last two mentioned works, some effort was put into the
examination of the time-scales of features and the decision time-
horizon for classification. However, this generally seems to be a
neglected area and has been the motivation for the current paper.
How much time is, for instance, needed to make a sufficiently ac-
curate decision about the musical genre? This might be important
in e.g. hearing aids and streaming media. Often, some kind of early
information fusion of the short-time features is achieved by e.g. tak-
ing the mean or another statistics over a larger window. Are the best
features then the same on all time-scales or does it depend on the
decision time horizon? Is there an advantage of early information
fusion as compared to late information fusion such as e.g. majority
voting among short-time classifications, see further e.g., [9]. These
are the main questions to be addressed in the following.

In section 2 the examined features will be described. Section 3
deals with the methods for extracting information about the time
scale behavior of the features, and in section 4 the results are pre-
sented. Finally, section 5 state the main conclusions.

2. FEATURE EXTRACTION

Feature extraction is the process of capturing the complex struc-
ture in a signal using as few features as possible. In the case of
timbral textual features a frame size, in which the signal statistics
are assumed stationary is analyzed and features are extracted. All
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features described below are derived fromshort-time 30ms audio
signal frames with a hop-size of 10ms.

One of the main challenges when designing music information
retrieval systems is to find the most descriptive features of the sys-
tem. If good features are selected one can relax on the classification
methodology for fixed performance criteria.

2.1 Spectral signal features

The spectral features have all been calculated using a Hamming
window for theshort time Fourier transform(STFT) to minimize
the side-lobes of the spectrum.

MFCC and LPC. The MFCC and LPC both originate from the
field of automatic speech recognition, which has been a major re-
search area through several decades. They are carefully described
in this context in the textbook by Rabiner and Juang [16]. Addi-
tionally, the usability of MFCCs in music modeling has been ex-
amined in the work of Logan [14]. The idea of MFCCs is to cap-
ture the short-time spectrum in accordance with human perception.
The coefficients are found by first taking the logarithm of the STFT
and then performing a mel-scaling which is supposed to group and
smooth the coefficients according to perception. At last, the coef-
ficients are decorrelated with the discrete cosine transform which
can be seen as a computationally cheap PCA. LPCs are a short-time
measure where the coefficients are found from modeling the sound
signal with an all-pole filter. The coefficients minimizes a least-
square measure and the LPC gain is the residual of this minimiza-
tion. In this project, the autocorrelation method was used. The delta
MFCC (DMFCC≡ MFCCn - MFCCn−1) and delta LPC (DLPC≡
LPCn - LPCn−1) coefficients are further included in the investiga-
tions.

MPEG-7 audio spectrum envelope (ASE). Theaudio spectrum
envelopeis a description of the power contents in log-spaced fre-
quency bands of the audio signal. The log-spacing is done as to
resemble the human auditorial system. The ASE have been used in
e.g. audio thumbnailing and classification, see [21] and [5]. The fre-
quency bands are determined using an 1/4-octave between a lower
frequency of 125Hz, which is the “low edge” and a high frequency
of 9514Hz.

MPEG-7 audio spectrum centroid (ASC). Theaudio spectrum
centroiddescribes the center of gravity of the log-frequency power
spectrum. The descriptor indicates whether the power spectrum is
dominated by low or high frequencies. The centroid is correlated
with the perceptual dimension of timbre namedsharpness.

MPEG-7 audio spectrum spread (ASS). Theaudio spectrum
spreaddescribes the second moment of the log-frequency power
spectrum. It indicates if the power is concentrated near the cen-
troid, or if it is spread out in the spectrum. It is able to differentiate
between tone-like and noise-like sounds [8].

MPEG-7 spectral flatness measure (SFM). Theaudio spectrum
flatness measuredescribes the flatness properties of the spectrum of
an audio signal within a number of frequency bands. The SFM
feature expresses the deviation of a signal’s power spectrum over
frequency from a flat shape (noise-like or impulse-like signals). A
high deviation from a flat shape might indicate the presence of tonal
components. The spectral flatness analysis is calculated for the
same number of frequency bands as for the ASE, except that the
low-edge frequency is 250Hz. The SFM seem to be very robust
towards distortions in the audio signal, such as MPEG-1/2 layer 3
compression, cropping and dynamic range compression [1]. In [4]
the centroid, spread and SFM have been evaluated in a classification
setup.

All MPEG-7 features have been extracted in accordance with
the MPEG-7 audio standard [8].

2.2 Temporal signal features

The temporal features have been calculated on the same frame basis
as the spectral features.

Zero crossing rate (ZCR). ZCR measures the number of time
domain zero-crossings in the frame. It can be seen as a descriptor

of the dominant frequency of music and to find silent frames.
Short time energy (STE). This is simply the mean square power

in the frame.

3. FEATURE RANKING - SENSITIVITY MAPS

3.1 Time stacking and dynamic PCA

To investigate the importance of the features at different time scales
a tapped-delay line of time stacking features is used. Define an
extended feature vector as

zn = [xn,xn−1,xn−2, . . . ,xn−L]T ,

whereL is the lag-parameter andxn is the row feature vector at
framen. Since the extended vector increases in size as a function
of L, the data is projected into a lower dimension using PCA. The
above procedure is also known as dynamic PCA (DPCA) [10] and
reveals if there is any linear relationship between e.g.xn andxn−1;
thus not only correlations but also cross-correlations between fea-
tures. The decorrelation performed by the PCA will also include
a decorrelation of the time information, e.g. is MFFC-1 at timen
correlated with LPC-1 at timen−5?

At L = 100 the number of features will be 10403 which makes
the PCA computational intractable due to memory and speed. A
“simple” PCA have been used where only 1500 of the total of 10403
largest eigenvectors is calculated by random selection of training
data, see e.g. [19]. To investigate the validity of the method 200
eigenvectors was used atL = 50 and the number of random selected
data points was varied between 200−1500. The variation in clas-
sification error was less than a percent, thus indicating that this is a
robust method. Due to memory problems originating from the time
stacking, the largest used lag time isL = 100, which corresponds to
one second of the signal.

3.2 Feature ranking

One of the goals of this project is to investigate which features are
relevant to the classification of music genres at different time scales.
Selection of single best method for feature ranking is not possible,
since several methods exists each with their advantages and disad-
vantages. An introduction to feature selection can be found in [7],
which also explains some of the problems using different ranking
schemes. Due to the nature of our problem a method known as the
sensitivity mapis used, see e.g. [18]. The influence of each feature
on the classification bounds is found by computing the gradient of
the posterior class probabilityP(Ck|x) w.r.t. all the features. Here
Ck denotes thek’th genre. One way of computing a sensitivity map
for a given system is theabsolute value average sensitivities[18]
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∑
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∣
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∣

∣

∣

∣

, (1)

wherexn is then’th time frame of a test-set and ˜xn is then’th time
frame of the same test-set projected into theM largest eigenvectors
of the training-set. Boths andxn are vectors of lengthD - the
number of features.N is the total number of test frames andK is
the number of genres. Averaging is performed over the different
classes as to achieve an overall ranking independent of the class. It
should be noted that the sensitivity map expresses the importance
of each feature individually - correlations are thus neglected.

For the linear neural network an estimate of the posterior dis-
tribution is needed to use the sensitivity measure. This is achieved
using the softmax-function, see e.g. [18].

4. RESULTS

Two different classifiers were used in the experiments: a Gaussian
classifier with full covariance matrix and a simple single-layer neu-
ral network which was trained with sum-of-squares error function
to facilitate the training procedure. These classifiers are quite simi-
lar, but they differ in the discriminant functions which are quadratic
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and linear, respectively. Furthermore the NN is inherently trained
discriminatively. They are also quite simple, but after experimenta-
tion with more advanced methods, like the Gaussian mixture mod-
els and HMMs, this became a necessity in order to carry out the vast
amount of training operations needed. Further, the purpose of this
study is not to obtain optimal performance rather to investigate the
relevance of relevant short-time features.

The data set was split into training, validation and test sets.
The validation set was used only to select the number of DPCA-
components. The best classification was found with 50 components
at bothL = 50 andL = 100. The data was split with 50, 25 and
25 sound files in each set, respectively, and each of these were dis-
tributed evenly into five music genres: Pop, Classical, Rock, Jazz,
Techno. All sound files have a duration of 10s and with a hop-size
of 10ms. This resulted in 1000 30ms frames per sound file. The
used sampling frequency is 22050Hz. The size of the training set
as well as duration of the sound files was determined from learning
curves2 (results not shown). After the feature extraction, the fea-
tures were normalized to zero mean and unit variance to make them
comparable.
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Figure 1: Classification error as a function of the lag of the GC and
NN using DPCA and majority voting, respectively.

Figure 1 summarizes the examination of the decision time hori-
zon as well as the comparison between early and late information
fusion using DPCA and majority voting, respectively. It is seen
from the figure that there is not an obvious advantage of using
the DPCA transform instead of the computationally much cheaper
majority voting. However, it can be seen from table 1 and 2 that
the methods’ performance depends on the genre. The tables show
test classification error for each genre with error-bars obtained by
repeating the experiment 50 times on randomly selected training
data. The number in parenthesis shows the percentage relative to
lag L = 0 of the classifier. For instance, it is seen that the DPCA
gives remarkably better classification of jazz than majority voting.
This might be used constructively to create a better classifier.

Figure 1 also shows the results after choosing the 10 features
with the best sensitivity consensus ranks (see below). There is a
small deviation for the GC and a large deviation for the NN between
the 10 best features and the full feature set when majority voting is
used. This might be connected to the differences in the number
of variables in the two classifiers which implies that the curve for
the NN with 10 features is dominated by bias since the number of
variables is only 5·11= 55. Thus, 10 features is not really enough

2Classification error orlog-likelihood as a function of the size of the
training set.

for this classifier. In contrast, the GC with 103 features has more
than 25000 different variables and might be dominated by variance
which increases the test error. However, the sensitivity ranking still
seems reasonable when compared to the full feature sets and when
comparisons are made with the classification error from a set of 10
random features (illustrated in the figure).

Another examination of early information fusion was also car-
ried out by using the mean values of the short-time features over
increasing time frames (from 1 to 1000 frames). The classification
results are not illustrated, however, since approximately the same
classification rate as without the time information (lagL = 0) was
achieved at all time scales, though with a lot of fluctuations.

Full Feature Set
Pop Classic Rock Jazz Techno

NN
(L=0)

36% ±
0.8%

27% ±
2%

29% ±
1.1%

67% ±
1.1%

41% ±
0.7%

Maj.Vote
(L=100) 17%(−19) 19%(−8) 26%(−3) 63%(−4) 29%(−12)

Time Stacking
(L=100) 21%(−15) 22%(−5) 21%(−8) 45%(−22) 34%(−7)

GC
(L=0)

50% ±
0.2%

39% ±
0.5%

27% ±
0.2%

71% ±
0.5%

31% ±
0.3%

Maj.Vote
(L=100) 32%(−18) 28%(−11) 22%(−5) 68%(−3) 17%(−14)

Time Stacking
(L=100) 28%(−22) 29%(−10) 21%(−6) 39%(−32) 26%(−5)

Table 1: Test error classificstion rates of Gaussian Classifier (GC)
and Neural Network (NN) using the full feature set.

Best 10 Feat.
Pop Classic Rock Jazz Techno

NN
(L=0)

38% ±
1.4%

30% ±
2.5%

40% ±
2.1%

86% ±
1.4%

37% ±
0.96%

Maj.Vote
(L=100) 27%(−11) 23%(−7) 38%(−2) 88%(+2) 25%(−12)

Time Stacking
(L=100) 21%(−17) 23%(−7) 45%(+5) 65%(−21) 37%(0)

GC
(L=0)

34% ±
0.6%

35% ±
1.5%

38% ±
1.4%

65% ±
1.2%

47% ±
0.8%

Maj.Vote
(L=100) 22%(−12) 26%(−9) 32%(−6) 62%(−3) 39%(−8)

Time Stacking
(L=100) 36%(+2) 32%(−3) 22%(−16) 43%(−22) 12%(−35)

Table 2: Test error classification rates of Gaussian Classifier (GC)
and Neural Network (NN) using the 10 best features.

The training of the models has been repeated 50 times on differ-
ent song clips, and the sensitivies have been calculated and ranked.
It is now possible to obtain a consensus ranking from the cumulated
sensitivity histograms of the 103 features, which is shown in fig-
ure 2. Each row shows the cumulated sensitivity histogram where
dark color corresponds to large probability. ForL = 0 the number
of features isD = 103, but forL = 100 the amount of features is
D = 10403 due to the time stacking. A similar plot could be gen-
erated atL = 100 but the histograms of each feature would not be
easy to see and interpret. To rank the features, at e.g.L = 100, the
mean value of the sensitivity over time of each feature is applied,
which results in only 103 time-averaged features in figure 2. The
mean value is applied since only low frequency variation in sen-
sitivity over lag-parameters are present (below 5Hz). To provide
the consensus features, the feature which has the highest cumulated
histogram frequency in each column is selected.

Experiments with ranking of the features atL = {0,50,100}
clearly indicates that delta features generally ranks lower at higher
lag time, see also areaB and D in figure 2 for L = 100. The
MFCC(A) and LPC(C) generally rank better than e.g. the ASE(E)
and SFM(F) coefficients. However, the high frequency components
of both the ASE and SFM also show relevance, which is an indicator
of “noise-like” parts in the music. The 10 best consensus features
for L = {0,50,100} are shown in table 3. A sanity check of the sen-
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sitivity map was performed using the Optimal Brain Damage [3] for
L = 0 and showed similar results.
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Figure 2: Consensus feature ranking of individual feature atL =
100. See text for interpretation. The features are MFCC(A), DM-
FCC(B), LPC(C), DLPC(D), ASE(E), SFM(F) and the single fea-
tures ASC, ASS, STE and ZCR. The ten best features in decreasing
order are:{1,4,6,7,70,2,28,13,101,103}.

L=0 (1 to 5) LPC2 LPC1 MFCC2 LPC3 MFCC4
L=50 (1 to 5) MFCC1 MFCC4 MFCC6 MFCC2 LPC2
L=100 (1 to 5) MFCC1 MFCC4 MFCC6 MFCC7 ASE19

L=0 (6 to 10) LPC4 LPC5 GAIN MFCC1 MFCC3
L=50 (6 to 10) MFCC7 ASE19 LPC1 ASS MFCC10
L=100 (6 to 10) MFCC2 LPC2 MFCC13 ASS ZCR

Table 3: The 10 best consensus features of the NN classifier as a
function of the time stack lag,L. The DPCA transform was em-
ployed.

5. CONCLUSION

Music genre classification has been explored with special emphasis
on the decision time horizon and ranking of tapped-delay line short-
time features. A linear neural network and a Gaussian classifier
were used for classification. Information fusion showed increasing
performance with time horizon, thus state-of-art 80% correct classi-
fication rate is obtained within 5s decision time horizon. Early and
late information fusion showed similar results, thus we recommend
the computational efficient majority decision voting. However, in-
vestigation of individual genres showed that e.g. jazz is better classi-
fied using DPCA. Consensus ranking of feature sensitivities enabled
the selection and interpretation of the most salient features. MFCC,
LPC and ZCR showed to be most relevant, whereas MPEG-7 fea-
tures showed less consistent relevance. DMFCC and DLPC showed
to be least important for the classification. With only the 10 best fea-
tures, 70% classification accuracy was obtained using a 5s decision
time horizon.
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ABSTRACT

Many different short-time features, using time windows in the
size of 10-30 ms, have been proposed for music segmentation, re-
trieval and genre classification. However, often the available time
frame of the music to make the actual decision or comparison (the
decision time horizon) is in the range of seconds instead of mil-
liseconds. The problem of making new features on the larger time
scale from the short-time features (feature integration) has only
received little attention. This paper investigates different methods
for feature integration and late information fusion1 for music genre
classification. A new feature integration technique, theARmodel,
is proposed and seemingly outperforms the commonly used mean-
variance features.

1. INTRODUCTION

Classification, segmentation and retrieval of music (and audio in
general) are topics that have attracted quite some attention lately
from both academic and commercial societies. These applications
share the common need for features which effectively represent the
music. The features ideally contain the information of the orig-
inal signal, but compressed to such a degree that relatively low-
dimensional classifiers or similarity metrics can be applied. Most
efforts have been put in short-time features, which extract the in-
formation from a small sized window (often10 − 30 ms). How-
ever, often the decision time horizon is in the range of seconds
and it is then necessary either to find features directly on this time
scale or somehow integrate the information from the time series of
short-time features over the larger time window. Additionally, it
should be noted that in classification problems, the information fu-
sion could also be placed after the actual classifications. Such late
fusion could e.g. be majority voting between the classifications of
each short-time feature.

In [1] and [2], features are calculated directly on the large
time-scale (long-time features). They try to capture the percep-
tual beats in the music, which makes them intuitive and easy to
test against a music corpora. In contrast, short-time features can
only be tested indirectly through e.g. their performance in a clas-
sification task.

Feature integration is most often performed by taking the mean
and variance of the short-time features over the decision time hori-
zon (examples are [3], [4] and [5]). Computationally, the mean

1Late information fusion assemble the probabilistic output or decisions
from a classifier over theshort-time features (an example is majority vot-
ing). In early information fusion (which includes feature integration) the
information is integrated before or in the classifier.

and variance features are cheap, but the question is how much of
the relevant feature dynamics they are able to capture. As an at-
tempt to capture the dynamics of the short-time features, [6] uses
a spectral decomposition of the Mel-Frequency Cepstral Coeffi-
cients (MFCCs) into 4 different frequency bands. Another ap-
proach, by [7], takes the ratio of values above and below a constant
times the mean as the long-time feature. Their short-time features
are Zero-Crossing Rate and Short-Time Energy.

In a previous investigation [8], the authors examined feature
integration by dynamic PCA where the idea is to stack short-time
features over the decision time horizon and then use PCA to reduce
the dimensionality (finding correlations both across time and fea-
tures). Dynamic PCA was compared with late fusion in the form
of majority voting, but the results did not strongly favor any of the
methods.

Altogether, the idea of short-time feature integration seems
scarcely investigated, although several researchers (necessarily)
make use of it. This has been the main motivation for the current
work, together with methods for late information fusion.

In Section 2, the investigated features and feature integration
techniques are described. Section 3 concerns the employed classi-
fiers and late information fusion schemes. In section 4, the results
are analyzed and, finally, section 5 concludes on the results.

2. FEATURE MODEL

In this article the selected features exist either on a short, medium
or long time scale. The timescales used can be seen from table
1. Short time only consider the immediate frequencies, and do

Time scale Frame size Perceptual meaning
Short time 30ms timbre

(instant frequency)
Medium time 740ms modulation

(instrumentation)
Long time 9.62s beat, mood

vocal etc.

Table 1. The different time levels with corresponding perceptual
interpretation.

not contain long structural temporal information. Medium time
features can contain temporal information such as e.g. modulation
(instrumentation) and long time features can contain structural in-
formation such as beat. Classification at short time only provide
reasonable results using a computer, since human decision time
horizons typically are250ms or above for a moderate error [5].
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Depending on the decision time horizon, the performance at short
time might not be adequate, in which more time is needed. There
are several possibilities to increase the decision time horizon,ei-
ther using the classifier in an early/late information fusion setting,
which will be elaborated in section 3, or to use features derived at
these time horizons. Figure 1 show the investigated features for
the music genre setup and their relationships.

2.1. Short time features (1)

The short time features have been derived using a hop- and frame
size of10 and30ms, respectively. Typically the frame size is se-
lected such that the in-frame signal is approximately stationary.

Mel Frequency Cepstral Coefficientswere originally devel-
oped for automatic speech recognition systems [9, 10], but have
lately been used with success in various audio information retrieval
tasks. Recent studies [8, 11] indicate that they outperform other
features existing at a similar time level. From the previous in-
vestigations [8], good performance was achieved, hence, these are
the only features considered at this decision time horizon. It was
found that the first6 MFCCswere adequate for the music genre
classification task, in line with [5].

2.2. Medium time features (2)

The medium time features are based on a frame size of740ms
similar to [6] and a hop size of370ms.

Mean and variance (MV) of the MFCCs. Mean and vari-
ance is a simple way to perform feature integration and the most
commonly used, see e.g. [1, 3, 4].

Filterbank Coefficients (FC) is another method of feature in-
tegration. This method was proposed in [6] and suggests to calcu-
late the power spectrum for eachMFCCon a frame size of740ms.
The power is summarized in four frequency bands: 1)0 Hz av-
erage ofMFCCs, 2) 1 − 2 Hz modulation energy of theMFCCs,
3) 3-15Hz and 4) 20-50 Hz (50Hz is half the sampling rate of the
MFCCs). Experiments suggested that better performance could be
achieved using more than4 bins, which seems reasonable since
these features was originally developed for general sound recogni-
tion.

Autoregressive model (AR) is a well-known technique for
time series regression. Due to its simplicity and good performance
in time-series modelling, see e.g. [12], this model is suggested for
feature integration of theMFCCs. The AR method andFC ap-
proach resembles each other since the integrated ratio of the signal
spectrum to the estimated spectrum is minimized in theARmethod
[13]. This suggests that the power spectrum of eachMFCC is
modelled. TheARparameters have been calculated using the win-
dowed autocorrelation method, using a rectangular window. To
the authors knowledge anAR-model has not previously been used
for music feature integration. In all of the AR-related features, the
mean and gain are always included along with a number of AR-
coefficients. This number is given by the model order, which is
found by minimizing validation classification error on the data set.

High Zero-Crossing Rate Ratio (HZCRR) is defined as the
ratio of the number of frames whose time zero crossing rates (No.
of times the audio signal crosses0) are above1.5 times the aver-
age.

Low Short-Time energy ratio (LSTER) is defined as the ratio
of the number of frames whose short time energy is less than 0.5
times the average.

Both theLSTERand HZCRRfeatures are explained further
in [7]. They are derived directly from the audio signal, which
makes them computationally cheap. It should be mentioned that
the HZCRRandLSTERwere originally meant for speech/music
segmentation. In the experiments, they were combined into the
featureLSHZto improve their performance.

2.3. Long time features (3)

All the long time features have a hop- and frame size of4.81 and
9.62 seconds, respectively. Many of the features at this decision
time have been derived from features at an earlier timescale (fea-
ture integration), e.g.AR23a is integrated from medium time to
long time using anARmodel on each of theARmedium time fea-
tures. The different combinations applied can be seen from fig-
ure 1, where the arrows indicate which features are integrated to
a longer time scale. Additionally, all the long-time features have
been combined into the feature,All, and PCA was used for dimen-
sionality reduction.

Beat spectrum (BS) has been proposed by [2] as a method to
determine the perceptual beat. TheMFCCsare used in the beat
spectrum calculation. To calculate the frame similarity matrix,
the cosine measure has been applied. The beat spectrum displays
peaks when the audio has repetitions. In the implementation the
discrete fourier transform is applied to the beat spectrum in order
to extract the main beat and sub beats. The power spectrum is then
aggregated in6 discriminating bins wrt. music genre.

Beat histogram (BH) was proposed in [1] as a method for
calculating the main beat as well as sub-beats. The implementation
details can be found in [1]. In our implementation the discrete
wavelet transform is not utilized, but instead an octave frequency
spacing has been used. The resulting beat histogram is aggregated
in 6 discriminating bins.

MFCC(6)

MV(12) AR(30) FC(24)

BS(6)
MV

23a
(60)

MV
23m

(24)
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23m

(84) MV
13
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Fig. 1. Short(1), medium(2) and long(3) time features and their re-
lationships. The arrow from e.g. medium timeMV to the long time
featureAR23m indicate feature integration. Thus, for each of the
12 time-series ofMV coefficients,7 AR features have been found,
resulting in a7 · 12 = 84 dimensional feature vectorAR23m. The
optimal feature dimension (shown in parenthesis) for the various
features have been determined from a validation set, hence select-
ing the dimension which minimizes the validation error.

3. CLASSIFIERS AND COMBINATION SCHEMES

For classification purposes two classifiers were considered: 1) A
simple single-layer neural network (LNN) trained with sum-of -
squares error function to facilitate the training procedure and 2)
A gaussian classifier (GC) with full covariance matrix. The two
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classifiers differ in their discriminant functions which are linear
and quadratic, respectively. Furthermore the LNN is inherently
trained discriminatively. More sophisticated methods could have
been used for classification, however, the main topic of thisre-
search was to investigate methods of information fusion in which
the proposed classifiers will suffice.

The two fusion schemes considered were early and late in-
formation fusion. In early information fusion the complex inter-
actions that exist between features in time is modelled in or be-
fore the statistical classification model. The feature integration
techniques previously mentioned (such as theAR, FC, AR23a and
MV13 features) can be considered as early fusion. Late informa-
tion fusion is the method of combining results provided from the
classifier. There exists several combination schemes for late infor-
mation fusion, see e.g. [14]. In the present work, the majority vote
rule, sum rule and the median rule were investigated. In the ma-
jority vote rule, the votes received from the classifier are counted
and the class with the largest amount of votes is selected, hereby
performing consensus decision. In sum-rule the posterior proba-
bilities calculated from each example are summed and a decision
is based on this result. The median rule is like the sum rule except
being the median instead of the sum. During the initial studies it
was found that the sum rule outperformed the majority voting and
median rule, consistent with [14], and therefore preferred for late
information fusion in all of the experiments.

4. RESULTS AND DISCUSSION

Experiments were carried out on two different data sets. The pur-
pose was not so much to find the actual test error on the data sets,
but to compare the relative performances of the features.

For some of the features, dimensionality reduction by PCA
was performed. Learning curves, which are plots of the test er-
ror as a function of the size of the training set, were made for all
features. From these curves, it was found necessary to use PCA
on AR23a, AR23m, MV23a and the combined long-time features
set (denotedAll). It was found that approximately20 principal
components gave optimal results.

The classification test errors are shown in figure 2 for both of
the data sets and both the medium time and long time classification
problems.

4.1. Data set 1

The data set consisted of the same100 songs, that were also used
in [8]. The songs were distributed evenly among classical, (hard)
rock, jazz, pop and techno. The test set was fixed with5 songs
from each genre and using30 seconds from the middle of the
songs. The training set consisted of three pieces each of30 sec-
onds from each song, resulting in45 pieces. For cross-validation,
35 of these pieces were picked randomly for each of the10 training
runs.

4.1.1. Human classification

To test the integrity of the music database, a human classification
experiment was carried out on the data set.22 persons were asked
each to classify (by forced-choice)100 of the740 ms and30 of 10

s samples from the test set. The average classification rate across
people and across samples was98% for the 10 s test and92%
for the740 ms test. The lower/upper95% confidence limits were
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Fig. 2. The figure illustrates the classification test errors for data
set1 in the upper part and data set2 in the lower. Each part con-
tains test errors from both the long decision time horizon (10 s)
and the medium decision time horizon (740 ms). Thus, the block
”Medium to Long Late Fusion” under ”Long Decision Time Hori-
zon” include all the medium-time features, such asARandFC fea-
tures, where the sum rule has been used to fuse information from
the medium to long time scale. The results for the same medium-
time features without any late fusion, would then be placed in
”Medium Time Features” under ”Medium Decision Time Hori-
zon”. The results from both classifiers on the same features are
placed in the same block (GC is Gaussian Classifier, LNN is Lin-
ear Neural Network). All the abbreviations of the features are ex-
plained in section 2. The95%- confidence intervals have been
shown for all features.

97/99% and91/93%, respectively. This suggests that the genre
labels, that the authors used, are in good agreement with the com-
mon genre definition.
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4.2. Data set 2

The data set consisted of354 music samples each of length30 sec-
onds from the ”Amazon.com Free-Downloads” database [15]. The
songs were classified evenly into the six genres classical, country,
jazz, rap, rock and techno and the samples were split into49 for
training and10 for testing. From the training samples,45 were
randomly chosen in each of the10 cross-validation runs. The au-
thors found it much harder to classify the samples in this data set
than in the previous, but it is also considered as a much more real-
istic representation of an individuals personal music collection.

4.3. Discussion

Notably, as seen in figure 2, the featureLSHZ, BSandBH perform
worse than the rest of the features on both data sets. This may not
be surprising since they were developed for other problems than
music classification and/or they were meant as only part of a larger
set of features. TheFC did not do as well as theAR features. A
small investigation indicated thatFCshave the potential to perform
better by changing the number of frequency bins, though still not
as good asARs.

A careful analysis of theMV andAR features, and the feature
integration combinations of these, has been made. By comparing
the early fusion combinations of these, as seen in figure 2 (in the
part ”Long-time features”), it is quite unclear which of these per-
form the best. When the late fusion method is used (in the part
”Medium to long late fusion”), the results are more clear and it
seems that theAR feature performs better than theMV and FC
features. This view is supported by the results in the ”Medium-
time features” part. Using the McNemar-test, it was additionally
found that the results from theAR feature differ from theMV and
FC features on a1% significance level.

The late fusion of theMFCC features directly did not perform
very well compared to theMV andARfeatures. This indicates the
necessity of feature integration up to at least a certain time scale
before applying a late fusion method.

5. CONCLUSION

The problem of music genre classification addresses many prob-
lems and one of these being the identification of useful features.
Many short-time features have been proposed in the literature, but
only few features have been proposed for longer time scales.

In the current paper, a careful analysis of feature integration
and late information fusion has been made with the purpose of
music genre classification on longer decision time horizons. Two
different data sets were used in combinations with two different
classifiers. Additionally, one of the data sets were manually classi-
fied in a listening test involving22 test persons to test the integrity
of the data set.

A new feature integration technique, theARmodel, has been
proposed as an alternative to the dominating mean-variance fea-
ture integration. Different combinations of theARmodel and the
mean-variance model have been tested, both based on theMFCC
features. TheARmodel is slightly more computationally demand-
ing, but performs significantly better on the tested data sets. A
particularly good result was found with the three-step information
fusion of first calculatingMFCC features, then integrating with
theARmodel and finally using the late fusion techniquesum rule.
This combination gave a classification test error of only5% on
data set1, as compared to the human classification error of3%.
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ABSTRACT

In music genre classification the decision time is typically
of the order of several seconds, however, most automatic
music genre classification systems focus on short time fea-
tures derived from10− 50ms. This work investigates two
models, themultivariate Gaussian modeland themulti-
variate autoregressive modelfor modelling short time fea-
tures. Furthermore, it was investigated how these models
can be integrated over a segment of short time features
into a kernel such that a support vector machine can be
applied. Two kernels with this property were considered,
theconvolution kernelandproduct probability kernel. In
order to examine the different methods an11 genre music
setup was utilized. In this setup theMel Frequency Cep-
stral Coefficientswere used as short time features. The
accuracy of the best performing model on this data set was
∼ 44% compared to a human performance of∼ 52% on
the same data set.

Keywords: Feature Integration, Product Probability
Kernel, Convolution Kernel, Support Vector Machine,
Music Genre

1 INTRODUCTION

The field of audio mining covering areas such as audio
classification, retrieval, fingerprinting etc. has received
quite a lot of attention lately both from academic and com-
mercial groups. Some of this interest stems from an in-
creased availability of large online music stores and grow-
ing access to live radio-programs, music stations, news on
the internet etc. The big task for the academic world is
to find methods for effectively searching and navigating
these large amounts of data.

The genre is probably the most important descriptor of
music in everyday life, however, it is not an intrinsic prop-
erty of music such as e.g. tempo, which makes it more

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without feepro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2005 Queen Mary, University of London

difficult to grasp with computational methods. Still, for a
limited amount of data and for coherent music databases
there seem to be a link between computational methods
and human assessment, see e.g. [1, 2].

It is a well established fact that the success of a pat-
tern recognition system is closely related to the task of
finding descriptive features. There exist a large amount
of descriptive audio features, each designed for a specific
audio mining task. The various features can be grouped as
perceptual features such as pitch, loudness, beat or as non-
perceptual features as the Mel Frequency Cepstral Coeffi-
cients (MFCC). The MFCCs have been applied in a range
of audio mining tasks, and have shown good performance
compared to other features at a similar time scale.

In music genre classification the typical time horizon
for a human to classify a piece of music as belonging to
a specific genre is of the order of a quarter of a second
up to several seconds, see [3]. Typically for automatic
music genre classification systems whole pieces of music
are available, so the decision time is generally longer than
just a few seconds.

Short time featuressuch as the MFCCs are typically
derived at time horizons around10− 50ms depending on
the stationarity of the audio signal. A few authors [4, 5, 1]
have looked at methods for integrating (modelling) the
short time features to classify at longer time horizons. In-
tegration of short time features (feature integration) is also
known as early information fusion. Late information fu-
sion is another way of classifying at larger time horizons.
The idea of late information fusion is to combine the se-
quence of outputs from a classifier, like e.g. majority vot-
ing. Some techniques of information fusion (both early
and late) have been considered in more detail in [4, 2].

The focus of this work was to extend the model of
[2] for modelling the temporal structure of short time fea-
tures and secondly to investigate different methods for
handling audio data using kernel methods such as the
Support Vector Machine (SVM). The support vector ma-
chine is known for its good generalization performance in
high-dimensional spaces, furthermore, its ability to work
implicitly in a possible high-dimensional feature space
makes it possible to investigate non-linear relations in the
data.

The paper is structured as follows. An overview of
the investigated features as well as a description of the
two feature integration models themultivariate Gaussian
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model (GM)and themultivariate autoregressive model
(MAR) are given in section2. Section3 briefly explains
the classifiers applied to a music genre setup and further-
more explains the idea of information fusion. Section
4 presents the results of an11 genre music genre setup.
Last, but not least a conclusion in section5.

2 FEATURES

The work presented in this paper will focus on construct-
ing descriptive features at larger time scales by modelling
short time features. Earlier work by [2, 1, 5] suggested
to work with an intermediate time scale around1 second.
Here three time scales have been considered, ashort time
scaleof 30ms where short time features are extracted, a
medium time scaleat 2 seconds (selected from the data
set, see section 4) and along time scaleof 30 seconds,
limited by the length of the music snippets. The long time
scale contains information such as the ”mood” of the song
as well as long-structural correlations.

2.1 Short Time Features (30ms)

The short time feature extraction stage is really impor-
tant in all audio processing applications, since it is the
first level of feature integration performed1. Earlier results
[4, 5] indicate good performance in music genre classifi-
cation using the MFCCs and therefore these will be the
preferred choice in this investigation. These features were
originally developed for classification of speech, however,
they have been applied in various audio mining tasks, see
e.g. [6] where they were used in a timbre similarity ex-
periment. The low order MFCCs contain information of
the slowly changing spectral envelope while the higher or-
der MFCCs explains the fast variations of the envelope.
Several authors report success using only the first6 − 10
MFCCs. In the music genre classification setup, see sec-
tion 4, we found that the first seven MFCCs were ade-
quate. Furthermore, a hop- and frame-size of10ms and
30ms, respectively, were used. The larger overlap results
in more smooth transitions between consecutive feature
vectors.

2.2 Feature Integration (> 30ms)

Feature integration is a method for capturing the tempo-
ral information in the features. With a good model the
most salient structural information remains and the noisy
part is suppressed. The idea of using feature integration in
audio classification is not new, but has been investigated
in earlier work by e.g. [1, 5, 2] where a performance in-
crease was observed. The idea of feature integration can
be stated more strict by observing a sequence of consecu-
tive features

xn+1, . . . ,xn+L → f(xn+1, . . . ,xn+L) = z, (1)

where the sequence{xn+1, . . . ,xn+L} ∈ RD×L are inte-
grated into a new feature vector denoted asz ∈ RM where
typicallyM << D·L andL indicates the number of short

1Basically this first step is denoted as feature extraction and
not feature integration.

time features used in the integration step. A commonly
used feature integration technique is themean-varianceof
features, which provides a performance increase, but gen-
erally does not capture the temporal structure of the short
time features. An improvement to this is thefilter-bank
approach considered in [5] to capture the frequency con-
tents of the temporal structure in the short time features.
This improvement indicated a performance increase com-
pared to the mean-variance model, see [2]. Recently an
autoregressive model [2] was suggested for feature inte-
gration and provided a performance increase compared to
the mean-variance and filter-bank approach.

Figure 1 shows the first seven normalized MFCCs of
a10 second excerpt of the music pieceMaster of Revenge
by the heavy metal groupBody Count. As observed from
the coefficients there is both temporal correlations as well
as correlations among features dimensions.
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Figure 1: The first seven normalized MFCCs of a10 second
snippet of ”Body Count- Masters of Revenge”. The temporal
correlation and correlations among feature dimensions are very
clear from this piece of music.

2.2.1 Multivariate autoregressive model (MAR)

Themultivariate autoregressivemodel handles both tem-
poral and correlations among feature dimensions, which
makes it a good candidate for feature integration. In [2]
a simple autoregressive model was suggested where sim-
ple refers to considering each feature dimension indepen-
dently. The MAR model is popular in time-series mod-
elling and prediction being both simple and well under-
stood, see e.g. [7]. For a stationary time series of state
vectorsxn ∈ RD the MAR model is defined by

xn =
K
∑

p=1

Apxn−I(p) + µµµ + un, (2)

where the noise termun (error-term) is assumed to be zero
mean Gaussian distributed, henceun ∼ N (un;0,C).

TheD-dimensional parameter vectorµµµ is a vector of
intercept terms that is included to allow for a non-zero
mean of the time-series, see [8]. The matricesAp ∈
RD×D for p = 1 . . . K are the coefficient matrices of
the K ’th order multivariate autoregressive model. They
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encode how much of the previous information given in
xn−I(1),xn−I(2), ..,xn−I(K) is present inxn. The above
formulation is quite general asI refers to a general set.
For a model order ofK = 4, the set could be selected
asI = {1, 2, 3, 4} or I = {1, 2, 4, 8} indicating thatxn

is predicted from these previous state vectors. In thispa-
per we focus on the standard multivariate autoregressive
model whereI = {1, 2, 3, . . . ,K}. When estimating the
parameters of the model there is several methods avail-
able, see e.g. [7]. The authors have used theARFIT pack-
age, a regularized ordinary least squares approach, de-
scribed in [8]. This package ensures the uniqueness of
the estimated parameters of the model.

2.2.2 Multivariate Gaussian model (GM)

Neglecting the temporal correlations in the data, hence
setting theAp matrices forp = 1, . . . ,K in equation (2)
to zero leads to the much simpler model

xn = µµµ + un, (3)

whereµµµ encode the mean value of the time series and
un ∼ N (un;0,C) is denoted the multivariate Gaussian
model. The previous mentionedmean-variancemodel
is the mean valueµµµ and the variance components given
from the diagonal of the covariance matrixv = diag{C}.
If the full covariance matrix is used, only the upper (or
lower) triangular coefficients are needed due to the sym-
metry. The multivariate Gaussian model will be consid-
ered as the ”base-line” against the MAR model in the ex-
perimental section since it performs better than the typical
mean-variancemodel.

The two feature integration techniques described
above can be used to derive features at themedium time
scaleor used directly to derive features at thelong time
scale. The model order for the MAR model can be se-
lected from e.g. Schwarz’s Bayesian Criterion (SBC) [8],
which is implemented in theARFIT package or as in our
experimental setup, where a separate validation set was
used to determine the optimal model order across data ex-
amples (music snippets).

2.3 Unique Solutions

Performing feature integration the model parameters are
typically used as new feature vectors at the new time scale.
If the model does not have a unique solution, two similar
audio pieces could risk being classified as dissimilar. Con-
sider using amixture of Gaussian (MoG), given as

p(x|θθθ) =
K
∑

k=1

p(k)p(x|k,θθθ),

wherep(k) (and
∑K

k=1 p(k) = 1) are the mixing pro-
portions andp(x|k,θθθ) ∼ N (x;µµµk,Ck), as a feature in-
tegration model. Optimizing the model parameters from
the likelihood function using e.g. theEM-algorithmdoes
not necessarily provide a global maximum since the likeli-
hood function has many local maximums. So using these
model parameters (mixing proportions, means and covari-
ances) directly in a classifier2 would make no sense. Re-

2Stacked in a vector.

cent studies in kernels indicate that it is possible to inte-
grate this type of complicated models in a kernel, see e.g.
[9, 10]. The mixture of Gaussian model was considered as
modelling music snippets in [6] and will be investigated as
a feature integration model in section 4.

3 CLASSIFIERS

Earlier work in the field of music information retrieval
(MIR) considered simple yet efficient classifiers such as
K-nearest neighbors, however, lately more computation-
ally demanding algorithms have been investigated. Only
a few researchers within the field ofMIR have consid-
ered support vector machines (SVM), see e.g. [11, 12].
In the following subsections the support vector classifier
(SVC) and the linear neural network classifier (LNN) will
be briefly discussed.

3.1 Support Vector Classifier

The challenge of machine learning is to provide the
learner with as broad a range of functions as possible
while still ensuring that accurate learning can be achieved.
Using high-dimensional feature spaces satisfies the first
constraint of ensuring high flexibility, but appears to be at
odds with the second since it is undermined by the curse
of dimensionality. As a result we would expect that a good
fit on the training data could still leave the generalization
very poor. Support vector machines [13] manage to avoid
this difficulty by optimizing a bound on the generalization
error in terms of quantities that do not depend on the di-
mension of the feature space [14], hence enabling good
performance unaffected by the curse of dimensionality. In
the present work, the C-libraryLIBSVM [15] was used.
This library implements the one-against-one voting termi-
nology to handle more than two classes.

3.1.1 Kernels

A typical applied kernel for the support vector classifier is
the linear kernel, which is defined as
κ(x,x′) = x

T
x
′, hence an inner product between the in-

put vectors. Another well known kernel is the Gaussian
kernel (orRBF-kernel) with width parameterσ defined as
κ(x,x′) = exp(− ‖ x − x

′ ‖2 /2σ2). Using this kernel
the support vector classifier is basically finding discrimi-
nating dimensions in an infinite feature space.

The linear and RBF kernel can be used in comparing
vector data, however, when handling audio we are typi-
cally forced to calculate the distance between two audio
snippets of varying lengths, which for two pieces of audio
is presented by the sequence of short time features:X =
[x1,x2, . . . ,xL] ∈ RD×L andX

′ = [x′
1,x

′
2, . . . ,x

′
L′ ] ∈

RD×L′

. The two audio files are not required to be of
same length, though in the present investigation they are
(L = L′). Two different kernels have been investigated,
which calculate a similarity between sequences of data,
the convolution kernel[16] and theproduct probability
kernel[9]. These kernels naturally incorporate feature in-
tegration.
Convolution Kernel - CK
The convolution kernel [16] handles all kinds of discrete
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structures such as strings, trees and graphs. In this work
the convolution kernel measures the distance (correlation)
between two audio pieces (between their feature vectors).
The kernel is defined as

κ(X,X′) =
1

L2

L
∑

v=1

L
∑

v′=1

κI (xv,x′
v′) , (4)

whereκI(x, z) must be a valid kernel. It is interesting to
note that if a linear kernel is used a fast calculation can be
obtained.

Product Probability Kernel - PPK
Theproduct probability kernelintroduced in [9] measures
the distance between probability models of the feature
vectors. Other divergence based kernels have beensug-
gested, see e.g. [10], for measuring a similar distance. In
[6] the Kullback-Leibler similarity measure was applied
to measure the distance between timbre models of mu-
sic snippets modelled by a mixture of Gaussian, however,
no closed form solution could be found using this diver-
gence measure. With theproduct probability kernel, a
closed form solution can be determined for e.g. a mixture
of Gaussian, furthermore, thePPK fulfills the requirement
for a kernel to be positive semi-definite. From [9] thePPK
is given as

κ(θθθ,θθθ′) =

∫

p(x|θθθ)ρp(x|θθθ′)ρdx, (5)

whereθθθ(θθθ′) are the parameters from modellingX(X′),
ρ > 0 andp(x|θθθ) is the probabilistic model of the short
time features of a music piece.ρ controls the weight-
ing of low or high density areas of the probability dis-
tribution. Selectingρ = 1/2 the Bhattacharyyaaffinity
between distributions is found. A nice bi-product of se-
lecting ρ = 1/2 is a normalized kernel structure, since
κ(θθθ,θθθ) =

∫

p(x|θθθ)dx = 1. This kernel can directly com-
pute the distance between the models suggested in section
2.2, and thus incorporates feature integration. As men-
tioned in section 2.3 the problem of uniqueness is allevi-
ated for this kernel, since probabilistic models are com-
pared instead of model parameters.

Closed form solutions of the kernel for the multivari-
ate Gaussian and mixture of Gaussian can be found in [9].
Additionally, we have calculated a closed form solution of
the MAR model, but the details have been omitted through
lack of space3.

3.2 Linear Neural Network classifier (LNN)

The linear Neural Network hasc outputs and is trained
using a squared loss function [17]. This classifier has pre-
viously been applied with success in music genre classifi-
cation, see e.g. [2, 4].

3.3 Fusion Techniques

The early information fusion (feature integration) was dis-
cussed in section 2.2. Late information fusion is the prob-

3Regarding computational complexity the methods ranked
after numerical complexity are (top: least computationalinten-
sive): GM, MAR, MoG. The GM and MAR are closer related in
complexity than the MAR and MoG.

lem of combining the results from the classifier. There ex-
ist several ways of performing late information fusion, see
[18]. In the present work, the majority voting rule was ap-
plied due to the SVM classifier. In the majority vote rule,
the votes received from the classifier are counted and the
class with the largest amount of votes is selected, hereby
performing consensus decision.

4 EXPERIMENTS

To evaluate the different feature integration techniques an
11 genre music setup was investigated. As discussed in
the introduction, decisions can be made at different time
scales. In the present work, the best achievable perfor-
mance at30 seconds will be pursued, using the above fea-
ture integration techniques, voting technique and combi-
nations of the two.

4.1 Data set

The data set consists of11 music genres distributed evenly
among the following categories:Alternative, Country,
Easy Listening, Electronica, Jazz, Latin, Pop&Dance,
Rap&Hiphop, R&B and Soul, Reggae and Rock. The data
set consists of a training set of1098 music snippets,100
from each genre except for latin, of each30 seconds and a
separate test set of220 music snippets each of30 seconds
in length. The music snippets wereMP3 encoded music
with a bit-rate≥ 128kB down-sampled with a factor two
to 22050Hz.

4.1.1 Human evaluation

To test the integrity of the data set a human evaluation
was performed on the music snippets (at a30 second time
scale) of the test set. Each test person out of9 was asked to
classify each music snippet into one of the11 genres on a
forced choice basis. Each person evaluated33 music snip-
pets out of the220 music pieces. No information except
for the genre of the music pieces was given prior to the
test. The average accuracy of the human evaluation across
people and across genre was51.8% as opposed to ran-
dom guessing, which is∼ 9.1%. The lower/upper95%
confidence limits were46.0%/57.7% (results shown in
figure 2, upper figure). The human evaluation shows that
the common genre definition is less consistent for this data
set, however, it is still interesting to observe how an auto-
matic genre system works in this setup.

4.1.2 Results & Discussion

In each genre90 out of the100 music snippets from the
training set were randomly selected10 times to assess the
variations in the data. In each of these runs the remaining
music pieces (10 in each genre, exceptlatin) was used as a
validation set for tuning parameters such asC in the sup-
port vector classifier andσ in the RBF kernel. Optimal
model order selection for the MAR models were deter-
mined across music samples and evaluated on the valida-
tion set. A model order ofK = 3 at both2 and30 seconds
was found optimal.

The medium time scale was selected by evaluating the
performance at30 seconds using both theGMMV and the
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Table 1:Description of the different combinations investigated.
All investigations with the product probability kernel,ρ = 1/2

was used.

Scheme Description

MOG,PPK
Mixture of Gaussian applied to each30

second music snippet. A PPK kernel was
generated (dimension990 × 990).

GM,PPK
A multivariate Gaussian is fitted for each
30 second music snippet. A PPK kernel
was generated.

GM,PPK,MV
A multivariate Gaussian is fitted for each
2 seconds of music data. A PPK kernel
is generated (sampling applied using only
3 samples from each music pieceresult-
ing in a kernel of2970 × 2970). After
classification with SVM, majority voting
is applied.

GM,CONV
A multivariate Gaussian is fitted for each
2 seconds of music data and a linear con-
volution kernel is applied (taking mean of
the parameters).

GM,MV
A multivariate Gaussian is fitted for each
2 seconds of music data and majority vot-
ing is applied to the outputs of the clas-
sifiers. For the SVM a RBF-kernel was
applied.

GM
A multivariate Gaussian is fitted for each
30 second music snippet. For the SVM a
RBF-kernel was applied.

MAR,PPK
Same as above (see GMPPK), just with a
multivariate AR process.

MAR,PPK,MV
Same as above, just with a multivariate
AR process.

MAR,PPK,CONV
Same as above, just with a multivariate
AR process.

MAR,CONV
Same as above, just with a multivariate
AR process.

MAR,MV
Same as above, just with a multivariate
AR process.

MAR
Same as above, just with a multivariate
AR process.

MARMV method explained in table 1 varying theframe-
/hop size of the medium time scale4. No big performance
fluctuation was observed in this investigation, however, a
small favor of a frame-/hop size of2/1 second was ob-
served. The various combinations investigated have been
described in more detail in table 1. For the mixture of
Gaussian model incorporated in a product probability ker-
nel (MOG,PPK) the optimal model order for each music
snippet of30 seconds were selected by varying the model
order between2 − 6 mixtures, and selecting the optimal
order from the Bayesian Information Criterion (BIC).

The average accuracy over the ten runs of the various
combinations illustrated in table 1 have been plotted in fig-
ure 2 (upper figure) with a95% binomial confidence ap-
plied to the average values. From the accuracy plot there
is a clear indication that the MAR model is performing
better than the GM for both theSVMandLNN classifier.
Performing a McNemar test, see e.g. [19], on the mixture
of Gaussian model (MOGPPK) and the Gaussian model in
a product probability kernel (GMPPK) the probability that

4The investigated frame-/hop sizes were:{1s/0.5s, 1.5s/0.75s,
2s/1s, 2.5s/1.25s, 3s/1.5s, 3.5s/1.75s}.
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Figure 2:Upper: Average accuracy at30 seconds shown with
a 95% binomial confidence interval for all investigated combi-
nations. The larger confidence interval for humans is due to only
nine persons evaluating a part of the test-data.Lower: Aver-
age accuracy with95% confidential interval of each genre at a
time scale of30 seconds using the two best performing combi-
nations,MARMV andMARPPK. The average human accuracy
in each genre is also shown with a75% confidence interval.

the two models are equal is76%, hence the hypothesis that
the models are equal cannot be rejected on a5% signifi-
cance level. This observation, together with the good per-
formance of the MAR model illustrate the importance of
the temporal information in the short time features. Even
with the various techniques applied in this setup we are
still around∼ 8% from the average human accuracy of
∼ 52% on this data set, but it is interesting to notice that
reasonable performance is achieved with fairly simple fea-
ture integration models and fusion techniques using only
the first seven MFCCs. The two best performing mod-
els are the MAR model in a product probability kernel
(MARPPK) and the MAR model modelled at2 seconds,
after which majority voting is applied on the LNN outputs
(MARMV), see figure 2 (upper). The McNemar test on
these two models showed a43% significance level thus it
can not be rejected that the two models are similar.

The advantage of the MARPPK model is that we only
need to store the model parameters at30 seconds, while
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for the MARMV model a sequence of model parameters
need to be saved for each music snippet. Thecomputa-
tional workload though, is a little larger for the MARPPK
model when compared to the MARMV model.

Figure 2 (lower) shows the accuracy on each of the
11 genres of the two models MARMV and MARPPK.
The MARPPK seem to be more robust in classifying all
genres, whereas the MARMV is much better at specific
genres such asRap & Hiphop and Reggae. However,
the MARMV does not capture any of theRock pieces,
but generally confuses them withAlternative(not shown
here). Also illustrated in this figure is the human perfor-
mance in the different classes. A confidence interval of
75% has been shown on the human performance, due to
the few test persons involved in the test. The humans are
much better at genres such asRap & HiphopandReggae
than, e.g.Alternative, which also corresponds to some of
the behavior observed with the MARMV method.

5 CONCLUSION

The purpose of this work has partly been to illustrate
the importance of modelling the temporal structure in the
short time features, and secondly how models of short
time features can be integrated into kernels, such that the
support vector machine can be applied. In the music genre
setup the best performance was achieved with the MAR
model in a product probability kernel (MARPPK) used in
combination with an SVM and with the MAR model used
in combination with majority voting (MARMV) in a lin-
ear neural network. The average accuracy of these two
methods were∼ 43% compared to a human average ac-
curacy of∼ 52%.

Even though the results presented in this article were a
music genre setup, the general idea of feature integration
and generating a kernel function, which efficiently evalu-
ates the difference between audio-models can be general-
ized and used in other fields ofMIR.
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1 INTRODUCTION

Music genre classification systems are normally build as
a feature extraction module followed by a classifier. The
features are often short-time features with time frames of
10-30ms, although several characteristics of music require
larger time scales. Thus, larger time frames are needed to
take informative decisions about musical genre. For the
MIREX music genre contest several authors derive long
time features based either on statistical moments and/or
temporal structure in the short time features. In our con-
tribution we model a segment (1.2 s) of short time features
(texture) using a multivariate autoregressive model. Other
authors have applied simpler statistical models such as the
mean-variance model, which also has been included in
several of this years MIREX submissions, see e.g. Tzane-
takis (2005); Burred (2005); Bergstra et al. (2005); Lidy
and Rauber (2005).

2 FEATURES & FEATURE
INTEGRATION

The system is designed to handle 22.5kHz mono signals,
but could easily be extended to arbitrary sample-rate of
the audio signal. Each song is represented by a 30s mu-
sic snippet taken from the middle of the song. From the
raw audio signal the first 6 Mel Frequency Cepstral Coef-
ficients (MFCC) are extracted (including the 0th order co-
efficient) using a hop- and framesize of 7.5ms and 15ms,
respectively. Thus, each song is now represented by a
6 dimensional multivariate time-series. The time series
typically display dependency among feature dimensions
as well as temporal correlations. Simple statistical mo-
ments can be used to characterize important information
of the short time features or more elaborate models can
be applied. Statistical models which include correlations
among feature dimensions as well as time correlations is
e.g. the multivariate autoregressive model. Assume that
xn for n = 1, . . . , N is the time series of short time fea-
tures then the multivariate AR model (MAR) can be writ-
ten as

xn =

P
∑

p=1

Apxn−p + v + un, (1)

where the noise termun is assumed i.i.d. with zero
mean and finite covariance matrixC. The6 dimensional
parameter vectorv is a vector of intercept terms related to
the mean of the time series. TheAp’s are the autoregres-
sive coefficient matrices andP denotes the model order.
The parameters of the model are estimated using ordinary
least squares method and the new feature now consists of
elements ofv, C (diagonal + upper triangular part) and
Ap for p = 1, . . . , P . In the actual setup a hopsize of
400ms, framesize of 1200ms and a model order ofP = 3
results in72 medium time feature vectors each of dimen-
sion135 (v ∼ 6,C ∼ 15 andA1,2,3 ∼ 36 ∗ 3 = 108) for
each music snippet. The hopsize, framesize as well as the
model order ofP = 3 have been selected from earlier ex-
periments on other data sets (a-priori information). Thus,
not tuned specifically to the unknown data sets in contest.
To avoid numerical problems in the classifier each feature
dimension of the MAR features is normalized to unit vari-
ance and zero mean. The normalization constants for each
dimension are calculated from the training set.

3 CLASSIFIER

A generalized linear model (GLM), Bishop (1995), with
softmax activation function is trained on all the MAR-
feature vectors from all the songs. This classifier is sim-
ply an extension of a logistic regression classifier to more
than two classes. It has the advantage of being discrimi-
native, which makes it more robust to non-equal classes.
Furthermore, since it is a linear model it is less prone to
overfitting (as compared to a generative model). Each
frame of size 1200ms is classified as belonging to one
of c classes, wherec is the total number of music gen-
res. In the actual implementation theNetlab package
was used, seehttp://www.ncrg.aston.ac.uk/
netlab/ for more details.

3.1 Late information fusion

To reach a final decision for a 30s music clip the sum-
rule, Kittler et al. (1998), is used over all the frames in the
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music clip. Thesum-rule assigns a class as

ĉ = arg max
c

nf
∑

r=1

P (c|xr) (2)

wherer andnf is the frame index and number of frames
of the music clip, respectively, andP (c|xr) is the esti-
mated posterior probability of classc given the MAR fea-
ture vectorxr. As mentioned earliernf = 72 frames for
each music clip.

Figure 1 shows the full system setup of the music
genre classification task from the raw audio to a decision
on genre of each music snippet.

Audio

MFCC

Feature Integration

GLM

MAR

Feature Extraction

Normalization

Linear Classifier

Late Fusion

Sum-Rule

Decision

15ms

1.2s

1.2s

30s

Figure 1: Overview of system from audio to a genre deci-
sion at 30s. The time scale at each step is indicated to the
right.

4 CONTEST RESULTS

This yearsAudio Genre Classificationcontest consisted of
two audio databases

• USPop(single level genre),
http://www.ee.columbia.edu/˜dpwe/research/

musicsim/uspop2002.html

• Magnatune(hierarchical genre taxonomy)
www.magnatune.com

from which two independent data sets were com-
piled. Originally, a third database,Epitonic (http://www.

epitonic.com ), was proposed, but due to lack of time only
the first two databases were investigated.

The first data set was generated from the USPop
database and consisted of a training set of940 music files
distributed un-evenly among6 genres (Country, Electron-
ica/Dance, Newage, Rap/Hiphop, Reggae and Rock) and a
test set of474 music files. The second data set was gener-
ated from the Magnatune database with a training/test set
of 1005/510 music files distributed un-evenly among the
10 genres: Ambient, Blues, Classical, Electronic, Ethnic,
Folk, Jazz, Newage, Punk and Rock.

4.1 Parameter optimization

The various parameters of both the feature extraction and
integration step as well as nuisance parameters for the
GLM classifier were preselected, and therefore not tuned
to the specific data sets. Cross-validation or an approx-
imative approach could have been utilized in order to
optimize the values of the classifier and feature extrac-
tion/integration step.

4.2 Results & Discussion

Figure 2 shows the raw mean classification accuracy of
both data sets of the methods, which completed within
the 24 hour time limit (8th of September). A95% bi-
nomial confidence interval was applied on each method
to illustrate the possible variation in mean value. Our al-
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Figure 2: Mean accuracy on both USPop and Magnatune
data sets illustrated with a95% binomial confidence inter-
val. The ”Combined accuracy” is the mean accuracy on
the two data sets.

gorithm, denoted asAhrendt&Meng, shows a mean ac-
curacy of60.98% for uncorrected classes on the Mag-
natune data set and a mean accuracy of78.48% on the
USpop data set. Our method showed a mean accuracy of
71.55% when averaging across data sets compared with
the best performing method of78.8% by Mandel&Ellis.
There is several observations, which can be made from
this years contest. Our model is solely based on the first 6
MFCCs, which subsequently are modelled by a multivari-
ate autoregressive model, hence, the temporal structure is
modelled. The best performing method in this years con-
test is by Mandel and Ellis (2005) (8th of September), see
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figure 2). Their approach consist of extracting the first
20 MFCCs and then model the MFCCs of the entire song
by a multivariate Gaussian distribution with meanµµµ and
covarianceΣ. This model is then used in a modifiedKL-
divergence kernel, from which a support vector classifier
can be applied. Since the mean and covariance are static
components no temporal information is modelled in this
approach, however, good results were observed. Even
better results might have been achieved by using models,
which include temporal information.

In order to make a proper statistical comparison of the
different methods the raw classifications should have been
known.
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Figure 3: Upper: Confusion matrix (accuracy) of pro-
posed method on the USPop data set.Lower: The prior
probabilities of the genres.

The upper figure of figure 3 and 4 shows the confusion
matrix of our method on the USPop and Magnatune data
set, respectively. The lower figures shows the prior prob-
ability on the genres calculated from the test sets. The
true genre is shown along the horizontal axis. The con-
fusion matrix on the Magnatune data set illustrates that
our method provides reasonable predictive power ofPunk,
Classical and Blues, whereasNewageis actually below a
random guessing of2.9%.
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Figure 4: Upper: Confusion matrix (accuracy) of pro-
posed method on the Magnatune data set.Lower: The
prior probabilities of the genres.

5 CONCLUSION & DISCUSSION

A mean accuracy over the two data sets of71.6% was
achieved using only the first6 MFCCs as compared to
a mean accuracy of78.8% by Mandel and Ellis (2005)
(8th of September) using the first20 MFCCs. A further
performance increase could have been achieved by opti-
mizing nuisance parameters of the classifier and by cor-
recting for uneven classes. Furthermore, the model order
of the multivariate autoregressive model could have been
optimized using cross-validation on the training set. Fu-
ture perspectives would be to use a support vector classi-
fier, which would alleviate problems of overfitting. The
approach presented in this extended abstract could easily
have been applied in theAudio Artist Identificationcontest
as well.
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Temporal Feature Integration for Music Genre Classification
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Abstract. Feature integration is the process of combining all the feature vectors in
a time frame into a single feature vector in order to captures the relevant information
in the frame. The mean and variance along the temporal dimension are often used for
feature integration, but captures neither the temporal dynamics nor dependencies
among the individual feature dimensions. Here, a multivariate autoregressive feature
model is proposed to solve this problem for music genre classification. This model
gives two different feature sets, the DAR and MAR features, which are compared
against the baseline mean-variance as well as two other feature integration tech-
niques. Reproducibility in performance ranking of feature integration methods were
demonstrated using two data sets with five and eleven music genres, and by using
four different classification schemes. The methods were further compared to human
performance. The proposed MAR features perform significantly better than the
other features without much increase in computational complexity.

Keywords: Temporal feature integration, autoregressive model, music genre clas-
sification

1. Introduction

In recent years, there has been an increasing interest in the research
area of Music Information Retrieval (MIR). This is spawned by the
new possibilities on the Internet such as on-line music stores like Ap-
ple’s iTunes and the enhanced capabilities of ordinary computers. The
related topic of music genre classification can be defined as computer-
assigned genre labelling of pieces of music. It has received much atten-
tion in its own right, but it is also often used as a good test-bench for
music features in related areas where the labels are harder to obtain
than the musical genres. An example of this is (Gouyon et al., 2004),
where rhythm features are assessed in a music genre classification task.

Music genre classification systems normally consist of feature ex-
traction from the digitized music, followed by a classifier that uses
features to estimate the genre. In this work we focus on identifying
features integration methods, which give consistent good performance
over different data sets and choices of classifier.

In several feature extraction models, perceptual characteristics such
as the beat (Foote and Uchihashi, 2001) or pitch (Tzanetakis, 2002) are

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.
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modelled directly. This has the clear advantage of giving features which
can be examined directly without the need of a classifier. However, most
of the previous research has concentrated on short-time features e.g.
Audio Spectrum Envelope and the Zero-Crossing Rate (Ahrendt et al.,
2004)) which are extracted from 20 − 40ms frames of the song. Such
features are thought to represent perceptually relevant characteristics
such as e.g. music roughness or timbre. They have to be evaluated
as part of a full classification system. A song or sound clip is thus
represented by a multivariate time series of these features and different
methods exist to fuse this information into a single genre label for the
whole song. An example is (Soltau et al., 1998), based on a hidden
Markov model of the time series of the cepstral coefficient features.

Feature integration is another approach to information fusion. It uses
a sequence of short-time feature vectors to create a single new feature
vector at a larger time scale. It assumes that the short-time features
describe all (or most) of the important information for music genre
classification. Feature integration is a very common technique. Often
basic statistic estimates like the mean and variance of the short-time
features have been used (Srinivasan and Kankanhalli, 2004; Zhang and
Zhou, 2004; Tzanetakis, 2002). Another similar feature is the mean-
covariance feature which simply uses the upper triangular part of the
covariance matrix instead of the diagonal.

Here, a new multivariate autoregressive feature integration model is
proposed as an alternative to the mean-variance feature set. The main
advantage of the autoregressive model is its ability to model temporal
dynamics as well as dependencies among the short-time feature dimen-
sions. In fact, the model is a natural generalization of the mean-variance
feature integration model.

Figure 1 illustrates the full music genre classification system which
was used for evaluating the feature integration methods.

MAR features

Raw
Data

FeatureFeature

Extraction Integration
Classifier

Post-

processing
Decision

MFCC features GLM Classifier Sum-rule

661500× 1 4008 × 13 72 × 135 72 × 11 1 × 1
(30 s song @ 22050Hz)

Figure 1. The full music genre classification system. The flow-chart illustrates the
different parts of the system, whereas the names just below the chart are the specific
choices that gives the best performing system. The numbers in the bottom part of
the figure illustrates the (large) dimensionality reduction that takes place in such a
system (the number of genres are 11).

FeatureJournal.tex; 24/03/2006; 13:04; p.2
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Section 2 describes common feature extraction and integration meth-
ods, while section 3 gives a detailed explanation of the proposed multi-
variate autoregressive feature model. Section 4 reports and discusses the
results of experiments that compare the newly proposed features with
the best of the existing feature integration methods. Finally, section 5
concludes on the results.

2. Feature extraction and integration

Several different features have been suggested in music genre classifi-
cation. The general idea is to process fixed-size time windows of the
digitized audio signal with an algorithm which can extract the most
vital information in the audio segment. The size of the windows gives
the time scale of the feature. The features are often thought to represent
aspects of the music such as the pitch, instrumentation, harmonicity or
rhythm.

The following subsections explain popular feature extraction meth-
ods. They are listed on the basis of their time scale. The process of
feature integration is explained in detail in the end of the section.

2.1. Short-time features

Most of the features that have been proposed in the literature are short-
time features which usually employ window sizes of 20−40ms. They are
often based on a transformation to the spectral domain using techniques
such as the Short-Time Fourier Transform. The assumption in these
spectral representations is (short-time) stationarity of the signal which
means that the window size has to be small.

In (Ahrendt et al., 2004), we found the so-called Mel-Frequency Cep-
stral Coefficient (MFCC) to be very successful. Similar findings were
observed in (H.-Gook. and Sikora, 2004) and (Herrera et al., 2002).
They were originally developed for speech processing (Rabiner and
Juang, 1993). The details of the MFCC feature extraction are shown in
figure 2. It should be mentioned, however, that other slightly different
MFCC feature extraction schemes exist.

Raw

Data

DiscreteDiscrete

Cosine

TransformTransform

Mel-scaleLog of

amplitude

spectrum
and

smoothing

MFCC

features
Fourier

Figure 2. MFCC feature extraction as described in (Logan, 2000).
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According to (Aucouturier and Pachet, 2003), short-time represen-
tations of the full time-frequency domain, such as the MFCC features,
can be seen as models of the music timbre.

2.2. Medium-time features

Medium-time features are here defined as features which are extracted
on time scales around 1000−2000ms. (Tzanetakis, 2002) uses the term
Texture window for this time scale where important aspects of the
music lives such as note changes and tremolo (Martin, 1999). Examples
of features for this time scale are the Low Short-Time Energy Ratio
(LSTER) and High Zero-Crossing Rate Ratio (HZCRR) (Lu et al.,
2002).

2.3. Long-time features

Long-time features describe important statistics of e.g. a full song or a
larger sound clip. An example is the beat histogram feature (Tzanetakis
and Cook, 2002), which summarize the beat content in a sound clip.

2.4. Feature Integration

Feature integration is the process of combining all the feature vectors in
a time frame into a single feature vector which captures the information
of this frame. The new features generated do not necessarily capture
any explicit perceptual meaning such as perceptual beat or mood, but
captures implicit perceptual information which are useful for the subse-
quent classifier. In (Foote and Uchihashi, 2001) the “beat-spectrum” is
used for music retrieval by rhythmic similarity. The beat-spectrum can
be derived from short-time features such as STFT or MFCCs as noted
in (Foote and Uchihashi, 2001). This clearly indicates that short-time
features carry important perceptual information across time, which is
one of the reasons for modelling the temporal behavior of short-time
features. Figure 3 shows the first six MFCCs of a ten second excerpt of
the music piece ”Masters of Revenge” by ”Body Count”. This example
shows a clear repetitive structure in the short-time features. Another
important property of feature integration is data reduction. Consider
a four minute piece of music represented as short-time features (using
the first 6 MFCCs). With a hop- and framesize of 10ms and 20ms,
respectively, this results in approximately 288 kB of data using a 16 bit
representation of the features. The hopsize is defined as the framesize
minus the amount of overlap between frames and specifies the ”effec-
tive sampling rate” of the features. This is a rather good compression
compared to the original size of the music (3.84MB, MPEG1-layer 3

FeatureJournal.tex; 24/03/2006; 13:04; p.4
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Figure 3. The first six normalized MFCCs of a ten second snippet of ”Body Count
- Masters of Revenge”. The temporal correlations is very clear from this piece of
music as well as the cross-correlations among the feature dimensions. This suggests
that relevant information is present and could be extracted by selecting a proper
feature integration model.

@ 128 kBit). However, if the relevant information can be summarized
more efficiently in less space, this must be preferred.

The idea of feature integration can be expressed more rigorously by
observing a sequence of consecutive short-time features, xi ∈ RD where
i represents the i’th short time feature and D is the feature dimension.
These are integrated into a new feature zk ∈ RM

zk = f(x(k−1)Hs+1, . . . ,x(k−1)Hs+Fs
), (1)

where Hs is the hopsize and Fs framesize (both defined in number of
samples) and k = 1, 2, . . . is the discrete time index of the larger time
scale. There exists a lot of different models, here denoted by f(.) which
maps a sequence of short-time features into a new feature vector.

In the following the MeanVar, MeanCov and Filterbank Coefficients
will be discussed. These methods have been suggested for feature inte-
gration in the literature.

2.4.1. Gaussian model
A very simple model for feature integration is the so-called MeanVar
model, which has been used in work related to music genre classifi-
cation, see e.g. (Tzanetakis and Cook, 2002; Meng et al., 2005). This

FeatureJournal.tex; 24/03/2006; 13:04; p.5



162 Contribution: IEEE 2006

6 Anders Meng and Peter Ahrendt

model implicitly assumes that consecutive samples of short-time fea-
tures are independent and Gaussian distributed and, furthermore, that
each feature dimension is independent. Using maximum-likelihood the
parameters for this model are estimated as

mk =
1

Fs

Fs
∑

n=1

x(k−1)Hs+n

ck,i =
1

Fs

Fs
∑

n=1

(

x(k−1)Hs+n,i − mk,i

)2

for i = 1, . . . ,D, which results in the following feature at the new time
scale

zk = f(x(k−1)Hs+1, . . . ,x(k−1)Hs+Fs
) =

[

mk

ck

]

, (2)

where zk ∈ R2D. As seen in figure 3, the assumption that each feature
dimension is independent is not correct. A more reasonable feature
integration model is the multivariate Gaussian model, denoted in the
experimental section as MeanCov, where correlations among features
are modelled. This model of the short-time features can be formulated
as x ∼ N (m,C), where the mean and covariance are calculated over
the given feature integration window. Thus, the diagonal of C contains
the variance features from MeanVar. The mean vector and covariance
matrix are stacked into a new feature vector zk of dimension D

2 (3+D).

zk =

[

mk

vech(Ck)

]

, (3)

where vech(C) refers to stacking the upper triangular part of the matrix
including the diagonal.

One of the drawbacks of the Gaussian model, whether this is the
simple (MeanVar) or the multivariate model (MeanCov), is that the
temporal dependence of the data is not modelled.

2.4.2. Filter-bank coefficients (FC)
The filter-bank approach was considered in (McKinney and Breebaart,
2003) aims at capturing some of the dynamics in the sequence of short-
time features. They investigated the method in a general audio and
music genre classification task. The idea is to extract a summarized
power of each feature dimension independently in four specified fre-
quency bands. The feature integration function f(.) for the filter bank
approach can be written compactly as

zk = vec (PkW) , (4)
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where W is a filter matrix of dimension N × 4 and Pk contains the
estimated power spectrum of each short-time feature and has dimension
D × N , where N = Fs/2 when Fs is even and N = (Fs − 1)/2 for odd
values.

The four frequency bands in which the power is summarized are
specified in the matrix W. In (McKinney and Breebaart, 2003) the
four filters applied to handle the short-time features are: 1) a DC-filter,
2) 1− 2Hz modulation energy, 3) 3− 15Hz modulation energy and 4)
20 − 43Hz modulation energy.

The advantage of this method is that the temporal structure of the
short-time features is taken into account, however, correlations among
feature dimensions are not modelled. In order to model these, cross-
correlation spectra would be required.

3. Multivariate Autoregressive Model for feature integration

The simple mean-variance model does not model temporal feature cor-
relations, however, these features have shown to perform remarkably
well in various areas of music information retrieval, see e.g. (Tzanetakis
and Cook, 2002; Ellis and Lee, 2004). The dependencies among features
could be modelled using the MeanCov model, but still do not model the
temporal correlations. The filterbank coefficient (FC) approach includes
temporal information in the integrated features, but the correlations
among features are neglected.

This section will focus on the multivariate autoregressive model
(MAR) for feature integration, since it has the potential of modelling
both temporal correlations and dependencies among features.

For simplicity we will first study the diagonal multivariate autore-
gressive model (DAR). The DAR model assumes independence among
feature dimensions similar to the MeanVar and FC feature integra-
tion approaches. The full multivariate autoregressive model (MAR) in
considered in section 3.2.

3.1. Diagonal multivariate autoregressive model (DAR)

The DAR model was investigated in (Meng et al., 2005) where dif-
ferent feature integration methods were tested and showed improved
performance compared to the MeanVar and FC approaches, however,
the theory behind the model was not fully covered. For completeness
we will present a more detailed description of the model.

Assuming independence among feature dimensions the P ’th order
causal autoregressive model for each feature dimension can be written
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as

xn =
P
∑

p=1

apxn−p + Gun, (5)

where ap, for p = 1, .., P is the autoregressive coefficients, un is the
noise term, assumed i.i.d. with unit variance and mean value v. Note
that the mean value of the noise process v is related to the mean m of
the time series by m = (1 −

∑P
p=1 ap)

−1v.
Equation 5 expresses the ”output” xn as a linear function of past

outputs and present inputs un. There are several methods for estimat-
ing the parameters of the autoregressive model, either in the frequency
domain (Makhoul, 1975) or directly in time-domain (Lütkepohl, 1993).
The most obvious and well-known method is the ordinary least squares
method, where the mean squared error is minimized. Other methods
suggested are the generalized (or weighted) least squares where the
noise process is allowed to be colored. In our case the noise process
is assumed white, therefore the least squares method is applied and
described in the following. The prediction of a new sample based on
estimated parameters, ap, becomes

x̃n =
P
∑

p=1

apxn−p, (6)

and the error signal en measured between x̃n and xn is

en = xn − x̃n = xn −
P
∑

p=1

apxn−p, (7)

where en is known as the residual. Taking the z-transformation on both
sides of equation 7, the error can now be written as

E(z) =



1 −
P
∑

p=1

apz
−p



X(z) = A(z)X(z). (8)

In the following we will switch to frequency representation z = ejω

and in functions use X(ω) for representing X(ejω). Assuming a finite
energy signal, xn, the total error to be minimized in the ordinary least
squares method, Etot, is then according to Parseval’s theorem given by

Etot =
Fs
∑

n=0

e2
n =

1

2π

∫ π

−π
|E(ω)|2dω. (9)

To understand why this model is worthwhile to consider, we will
now explain the spectral matching capabilities of the model. First, we
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look at the model from equation 5 in the z-transformed domain which
can now be described as

X(z) =
P
∑

p=1

apX(z)z−p + GU(z), (10)

where v = 0 is assumed without loss of generalizability. The gain factor
G sets the scale. The system transfer function becomes

H(z) ≡
X(z)

U(z)
=

G

1 −
∑P

p=1 apz−p
, (11)

and its corresponding model power spectrum

P̂ (ω) = |H(ω)U(ω)|2 = |H(ω)|2 =
G2

|A(ω)|2
. (12)

Combining the information in equations 8, 9, 12 and the fact that
P (ω) = |X(ω)|2, the total error to be minimized can be written as

Etot =
G2

2π

∫ π

−π

P (ω)

P̂ (ω)
dω. (13)

The first observation is that trying to minimize the total error Etot is
equivalent to minimization of the integrated ratio of the signal spectrum
P (ω) and its estimated spectrum P̂ (ω). Furthermore, at minimum error
Etot = G2 the following relation holds

1

2π

∫ π

−π

P (ω)

P̂ (ω)
dω = 1. (14)

The two equations 13 and 14 result in two major properties, a global
and local property (Makhoul, 1975):

− The global property states that since the contribution to the total
error Etot is determined as a ratio of the two spectra, the matching
process should perform uniformly over the whole frequency range,
irrespective of the shaping of the spectrum. This means that the
spectrum match at frequencies with small energy is just as good
as frequencies with high energy.

− The local property deals with the matching of the spectrum in each
small region of the spectrum. (Makhoul, 1975) basically concludes

that a better fit of P̂ (ω) to P (ω) will be obtained at frequencies

where P (ω) is larger than P̂ (ω), than at frequencies where P (ω)
is smaller. Thus, for harmonic signals the peaks will be better
approximated than the area in between the harmonics.
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Figure 4. Power density of a first order MFCC of a piano note A5 played for a
duration of 1.2 s. The four figures show the periodogram as well as the AR-model
power spectrum estimates of orders 3, 5, 9 and 31, respectively.

It is now seen that there is a clear relationship between the AR-
model and the FC approach since in the latter method, the power
spectrum is summarized in four frequency bands. With the AR-model
approach selection of proper frequency bands is unnecessary since the
power spectrum is modelled directly.

Figure 4 shows the periodogram of the first order MFCC coefficient
of the piano note A5 corresponding to the frequency 880Hz recorded
over a duration of 1.2 seconds as well as the AR-model approximation
for four different model orders, 3, 5, 9 and 31. The hopsize of the MFCCs
were 7.5ms corresponding to a samplerate of 133.33Hz. As expected,
the model power spectrum becomes more detailed as the model order
increases.

3.2. Multivariate autoregressive model (MAR)

In order to include both temporal and among feature correlations the
multivariate AR model with full matrices is applied instead of only
considering the diagonal of the matrices as in the DAR model. A
full treatment of the MAR models are given in (Lütkepohl, 1993) and
(Neumaier and Schneider, 2001).

FeatureJournal.tex; 24/03/2006; 13:04; p.10



167

Temporal Feature Integration for Music Genre Classification 11

For a stationary time series of state vectors xn the multivariate AR
model is defined by

xn =
P
∑

p=0

Apxn−p + un (15)

where the noise term un is assumed i.i.d. with mean v and finite co-
variance matrix C. Note that the mean value of the noise process v is
related to the mean m of the time series by m = (I−

∑P
p=1 Ap)

−1v.
The matrices Ap for p = 1, . . . , P are the coefficient matrices of the

P ’th order multivariate autoregressive model. They encode how much
of the previous information in {xn−1,xn−2, . . . ,xn−P } is present in xn.

A frequency interpretation of the vector autoregressive model can,
as for the univariate case, be established for the multivariate case. The
main difference is that all cross spectra are modelled by the MAR
model. In e.g. (Bach and Jordan, 2004), a frequency domain approach
is used for explaining the multivariate autoregressive model by intro-
ducing the autocovariance function, which contains all cross covariances
for the multivariate case. The power spectral matrix can be defined
from the autocovariance function as

f(ω) =
Fs−1
∑

h=−Fs+1

Γ(h)e−ihω, (16)

where the autocovariance function Γ(h) is a positive function and fulfills
∑∞

h=−∞ ||Γ(h)||2 < ∞, under stationarity.
As with the DAR model the ordinary least squares approach has

been used in estimating the parameters of the MAR model, see e.g.
(Lütkepohl, 1993) for detailed explanation of parameter estimation.

The parameters which are extracted from the least squares ap-
proach for both the DAR and MAR models are the AR-matrices:
{A1, . . . ,AP }, the intercept term v and the noise covariance C. The
feature integrated vector of frame k then becomes

zk = [vec (Bk)
T

vT
k vech (Ck)

T ]T , (17)

where B = [A1,A2, . . . ,AP ] ∈ RD×PD and zk ∈ R(P+1/2)D2+(3/2)D.
Note that for the DAR model, only the diagonals of the Ap matrices
are used as well as only the diagonal of C.

3.2.1. Issues on stability
Until now we have assumed that the time-series under investigation
is stationary over the given feature integration frame. The frame-size,
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however, is optimized to the given learning problem which means that
we are not guaranteed that the time-series is stationary within each
frame. This could e.g. be in transitions from silence to audio, where
the time-series might locally look non-stationary. In some applications,
this is not a problem, since reasonable parameter estimates are obtained
anyhow. In the considered music genre setup, the classifier seems to
handle the non-stationary estimates reasonably. In other areas of music
information retrieval, the power-spectrum estimate provided through
the AR-model might be more critical, hence, in such cases it would be
relevant to investigate the influence of non-stationary frames.

3.2.2. Selection of optimal length
There exists multiple order selection criteria. Examples are BIC (Bayesian
Information Criterion) and AIC (Akaike Information Criterion), see
e.g. (Neumaier and Schneider, 2001). The order selection methods are
traditionally applied on a single time series, however, in the music
genre setup, we are interested in finding one single optimal model order
for a large set of time-series. Additionally, there is a tradeoff between
model order and feature space dimensionality and, hence, problems
with overfitting of the subsequent classifier, see figure 1. Therefore, the
optimal order of the time-series alone is normally not the same as the
optimal order for the vector time-series.

3.3. Complexity considerations

Table I shows the complete number of multiplications and additions for
a frame of all the examined feature integration methods. The column
”multiplications & additions” shows the number of calculated multipli-
cations / additions of the particular method. D is the dimensionality
of the feature space, P is the DAR/MAR model order, and Fs is the
framesize in number of short-time feature samples. In the calculations
the effect of overlapping frames have not been exploited. Figure 5 shows
the computational complexity in our actual music genre setup.

4. Experiments

Quite a few simulations were made to compare the baseline MeanVar
features with the newly proposed DAR and MAR features. Addition-
ally, the FC features and MeanCov features were included in the com-
parisons. The FC features performed very well in (Meng et al., 2005)
and the MeanCov features were included for the sake of completeness.
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Table I. Computational complexity of algorithms of a
frame of short-time features

METHOD MULTIPLICATIONS & ADDITIONS

MeanVar 4DFs

MeanCov (D + 3)DFs

FC (4 log2(Fs) + 3)DFs

DAR D
3
(P + 1)3 + ((P + 6)(P + 1) + 3)DFs

MAR

1

3
(PD + 1)3+

(

(P + 4 + 2

D
)(PD + 1) + (D + 2)

)

DFs

3.21

MeanCov
�
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32.08

MAR

Figure 5. Computational complexity of the music genre setup using the op-
timized values from the experimental section, hence P = 3, D = 6 and
Fs = 188, 268, 322, 188, 162 for the MeanVar, MeanCov, FC, DAR and MAR, re-
spectively. Note that the complexity values are scaled such that the MeanVar has
complexity 1.

The features were tested on two different data sets and four different
classifiers to make the conclusions generalizable. In all of the exper-
iments, 10-fold cross-validation was used to estimate the mean and
standard deviation of the mean classification test accuracy, which was
used as the performance measure. Figure 1 in section 1 illustrates the
complete classification system. The optimization of the system follows
the data stream, which means that the MFCC features were optimized
first (choosing number of coefficients to use, whether to use normaliza-
tion etc.). Afterwards, the feature integration part was optimized and
so forth.
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4.1. Preliminary investigations

Several investigations of preprocessing both before and after the feature
integration were made. Dimensionality reduction of the high-dimensional
MAR and DAR features by PCA did not prove beneficial1, and neither
did whitening (making the feature vector representation zero-mean and
unit covariance matrix) or normalization (making each feature compo-
nent zero-mean and unit variance individually) for any of the features.
To avoid numerical problems, however, they were all normalized. Pre-
processing, in terms of normalization of the short-time MFCC features
didn’t seem to have an effect either.

4.2. Features

To ensure a fair comparison between the features, their optimal hop-
and framesizes were examined individually since especially framesize
seems important with respect to classification accuracy. An example of
the importance of the framesize is illustrated in figure 6.

For the short-time MFCC features, optimal hop- and framesizes were
found to be 7.5ms and 15ms, respectively. The optimal hopsize was
400ms for the DAR, MAR, MeanVar and MeanCov features and 500ms
for the FC features. The framesizes were 1200ms for the MAR features,
2200ms for the DAR features, 1400ms for the MeanVar, 2000ms for
the MeanCov and 2400ms for the FC features.

An important parameter in the DAR and MAR feature models is
the model order parameter P . The optimal values for this parameter
were found to be 5 and 3 for the DAR and MAR features, respectively.
This optimization was based on the large data set B, see section 4.6.
Using these parameters, the resulting dimensions of the feature spaces
become : MAR - 135, DAR - 42, FC - 24, MeanCov - 27 and MeanVar
- 12.

4.3. Classification and Post-processing

Several classifiers have been tested such as a linear model trained by
minimizing least squares error (LM), Gaussian classifier with full covari-
ance matrix (GC), Gaussian mixture model (GMM) classifier with full
covariance matrices and a Generalized Linear Model (GLM) classifier
(Nabney and Bishop, 1995). Due to robust behavior, the LM and GLM
classifiers have been used in all of the initial feature investigations.

The LM classifier is simply a linear regression classifier, but has the
advantage of being fast and non-iterative since the training essentially

1 This is only true for the standard GLM and LM classifiers, that does not have
significant overfitting problems.
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Figure 6. Classification test accuracy is plotted against framesize for the MAR fea-
tures using the LM and GLM classifiers. The hopsize was 200ms in these experiments
and data set B, section 4.6, was used. The importance of the framesize is clearly
seen. The baseline classification accuracy by random guessing is ∼ 9.1%.

amounts to finding the pseudo-inverse of the feature-matrix. The GLM
classifier is the extension of a logistic regression classifier to more than
two classes. It can also be seen as an extension of the LM classifier,
but with inclusion of a regularisation term (prior) on the weights and
a cross-entropy error measure to account for the discrete classes. They
are both discriminative, which could explain their robust behavior in
the fairly high-dimensional feature space. 10-fold cross validation was
used to set the prior of the GLM classifier.

4.3.1. Post-processing
Majority voting and sum-rule were examined to integrate the c classifier
outputs of all the medium-time frames into 30 s (the size of the song
clips). Whereas majority voting counts the hard decisions
arg maxc P (c|zk) for k = 1, . . . ,K of the classifier outputs, the sum-rule
sums over the ”soft” probability densities P (c|zk) for k = 1, . . . ,K. The
sum-rule was found to perform slightly better than majority voting.
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4.4. Human evaluation

The level of performance in the music genre setups using various algo-
rithms and methods only shows their relative differences. However, by
estimating the human performance on the same data sets the quality
of automatic genre classification systems can be assessed.

Listening tests have been conducted on both the small data set
(A) and the larger data set (B) consisting of 5 and 11 music genres,
respectively. At first, subsets of the full databases were picked randomly
with equal amounts from each genre (25 of 100 and 220 of 1210) and
these subsets are believed to represent the full databases. A group of
people (22 specialists and non-specialists) were kindly asked to listen
to 30 different snippets of length 10 s (randomly selected) from data
set A and classify each music piece into one of the genres on a forced-
choice basis. A similar setup was used for the larger data set B, but
now 25 persons were asked to classify 33 music snippets of length
30 s. No prior information except the genre names were given to the
test persons. The average human accuracy on data set A to lies in a
95%-confidence interval [0.97; 0.99], and for data set B it is [0.54; 0.61].
Another interesting measure is the confusion between genres, which
will be compared to the automatic music classifier in figure 8.

4.5. Data set A

The data set consists of 5 music genres distributed evenly among the
categories: Rock, Classical, Pop, Jazz and Techno. It consists of 100
music snippets each of length 30 s. Each of the music snippets are
recorded in mono PCM format at a sampling frequency of 22050Hz.

4.6. Data set B

The data set consists of 11 music genres distributed evenly among
the categories: Alternative, Country, Easy Listening, Electronica, Jazz,
Latin, Pop&Dance, Rap&HipHop, R&B Soul, Reggae and Rock. It con-
sists of 1210 music snippets each of length 30 s. The music snippets are
MPEG1-layer 3 encoded music with a bit-rate of 128 kBit which were
converted to mono PCM format with a sampling frequency of 22050Hz.

4.7. Results and discussion

The main classification results are illustrated in figure 7 for both the
small and the large data set. The figure compares the classification test
accuracies of the FC and MeanCov features and the baseline MeanVar
with the newly proposed DAR and MAR features. It is difficult to see
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much difference in performance between the features for the small data
set A, but note that it was created to have only slightly overlapping
genres which could explain why all the features perform so well com-
pared to the random guess of only 20% accuracy. The accuracies are
all quite close to the average human classification accuracy of 98%.

The results from the more difficult, large data set B are shown
on the lower part of figure 7. Here, the MAR features are seen to
clearly outperform the conventional MeanVar features when the LM
or GLM classifiers are used. Similarly, they outperform the MeanCov
and DAR features. The DAR features only performed slightly better
than the three reference features, but in a feature space of much lower
dimensionality than the MAR features. The GMM classifier is the best
for the low-dimensional MeanVar features, but gradually loses to the
discriminative classifiers as the feature space dimensionality rises. This
overfitting problem was obviously worst for the 135-dimensional MAR
features and dimensionality reduction was necessary. However, a PCA
subspace projection was not able to capture enough information to
make the GMM classifier competitive for the MAR features. Improved
accuracy of the GMM classifier on the MAR features was achieved by
projecting the features into a subspace spanned by the c − 1 weight
directions of the partial least squares (PLS) (Shawe-Taylor and Cris-
tianini, 2004), where c refers to the no. of genres. The classification
accuracy, however, did not exceed the accuracy of the GLM classifier
on the MAR features.

It is seen that the MAR features perform almost as well as humans
which have an average classification test accuracy of 57%. Note that
the random classification accuracy is only 9%.

The cross-validation paired t-test (Dietterich, 1998) was made on
both data sets to test whether the best performances of the DAR and
MAR features differed significantly from the best performances of the
other features. Comparing the MAR features against the other four
features gave t-statistics estimates all above 3.90; well above the 0.975
percentile critical value of t9,0.975 = 2.26 for 10-fold cross-validation.
Thus, the null hypothesis of similar performance can be rejected. The
comparison between the DAR features and the three reference features
gave t-statistics estimates of 2.67 and 2.83 for the FC and MeanVar
features, but only 1.56 for the MeanCov features which means that the
null hypothesis cannot be rejected for the MeanCov.

As described in section 4.2, the framesizes were carefully investigated
and the best results were found using framesizes in the range of 1200ms
to 2400ms, followed by the sum-rule on the classifier decisions up to
30 s. However, in e.g. music retrieval and regarding computational speed
and storage, it would be advantageous to model the whole 30 s music
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Figure 7. The figures show the music genre classification test accuracies for the
GC, GMM, LM and GLM classifiers on the five different integrated features. The
results for the small data set A is shown in the upper panel of the figure and the
results for the larger data set B in the lower panel. The mean accuracy of 10-fold
cross-validation is shown along with error bars which are one ± standard deviation
of the mean to each side. 95% binomial confidence intervals have been shown for the
human accuracy.
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snippet with a single feature vector. Hence, experiments were made
with the MAR features with a framesize of 30 s, i.e. modelling the
full song with a single MAR model. The best mean classification test
accuracies on data set B were 44% and 40% for the LM and GLM
classifiers, respectively, using a MAR model order of 3. In our view, this
indicates that these MAR features could be used with success in e.g.
song similarity tasks. Additional experiments with a Support Vector
Machine (SVM) classifier (Meng and Shawe-Taylor, 2005) using a RBF
kernel even improved the accuracy to 46%. The SVM classifier was
used since it is less prone to overfitting. This is especially important
when each song is represented by only one feature vector, which means
that our training set only consists of 11 · 99 = 1089 samples in each
cross-validation run.

Besides the classification test accuracy, an interesting measure of
performance is the confusion matrix. Figure 8 illustrates the confusion
matrix of the MAR system with highest classification test accuracy and
shows the relation to the human genre confusion matrix on the large
data set. It is worth noting that the three genres that humans clas-
sify correctly most often, i.e., Country, Rap&HipHop and Reggae, are
also the three genres that our classification system typically classifies
correctly.
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Figure 8. The above confusion matrices were created from data set B. The upper
figure shows the confusion matrix from evaluations of the 25 people, and the lower
figure shows the average of the confusion matrices over the 10 cross-validation runs
of the best performing combination (MAR features with the GLM classifier). The
”true” genres are shown as the rows which each sum to 100%. The predicted genres
are then represented in the columns. The diagonal illustrates the accuracy of each
genre separately.
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5. Conclusion

In this paper, we have investigated feature integration of short-time
features in a music genre classification task and a novel multivariate
autoregressive feature integration scheme was proposed to incorporate
dependencies among the feature dimensions and correlations in the
temporal domain. This scheme gave rise to two new features, the DAR
and MAR, which were carefully described and compared to features
from existing feature integration schemes. They were tested on two dif-
ferent data sets with four different classifiers and the successful MFCC
features were used as the short-time feature representation. The frame-
work is generalizable to other types of short-time features. Especially
the MAR features were found to perform significantly better than ex-
isting features, but also the DAR features performed better than the
FC and baseline MeanVar features on the large data set and in a much
lower dimensional feature space than the MAR.

Human genre classification experiments were made on both data
sets and we found that the mean human test accuracy was less than
10% above our best performing MAR features approach.

A direction for future research is to investigate the robustness of
the MAR feature integration model to various compressions such as
MPEG1-layer 3 and other perceptually inspired compression techniques.
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