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Abstract

This thesis investigates and develops models for beer pasteurization. There are two dif-
ferent types of models which are used to describe the physics in the pasteurization. The
simplest models are developed from general physical considerations which allows a fairly
easy implementation in MATLAB. The implementations in MATLAB are examined with
the perturbation, initialization and initial guess in mind and hereby allowing determina-
tion of whether the results are reliable or not.

The other type of models is more complicated and is generated by using partial differential
equations for heat transfer and fluid flow. The models are produced in COMSOL Multi-
physics which among many other things allows a visual presentation of the pasteurization
process.

To collect the necessary data sets for the models, experiments was made in a small scale
pasteurizer located at Sander Hansen’s research facility. The data sets from these experi-
ments are used to make the implementation in MATLAB. Furthermore the data sets are
used to verify the results from the COMSOL based models.

By using the collected data sets it is possible to investigate the coefficients in the simple
models and thereby propose improvements to these models. The data set also made it
possible to examine the temperature in the pasteurizer and implement these new results
in the models.

In this public version of the thesis 6 sections from the preproject are not included because
they contain confidential information. This also means that some expressions in the thesis
are rewritten. If you would like to know more about these sections and expressions or if
something is difficult to understand because of the missing sections you are welcome to
contact Sander Hansen.

On the next page in the section Dansk resumé this abstract can be read in a Danish
version.
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Dansk resumé

Denne opgave undersøger og udvikler modeller for pasteurisering af øl. Der er to forskelling
modeltyper, som bruges til at beskrive fysikken i pasteuriseringen. The simpleste mod-
eller er lavet ud fra generelle fysiske betragtninger, som giver mulighed for en forholdsvis
let implementering i MATLAB. Implementeringerne i MATLAB er testede med henblik
p̊a perturbation, initialisering og startgæt, og derved gøres det muligt at afgøre, om man
kan stole p̊a resultaterne.

Den anden type af modeller er mere komplicerede og er udviklet ved hjælp af partielle
differentialligninger for varmeoverførsel og strømninger i væsker. Modellerne er lavet i
COMSOL Multiphysics, som blandt andet gøre det muligt at se en visuel præsentation of
pasteuriseringsprocessen.

For at samle de nødvendige datasæt til modellerne, blev der lavet eksperimenter i en
lille pasteuriseringsmaskine hos Sander Hansen. Datasættene fra disse forsøg bliver brugt
til implementeringen i MATLAB. Derudover bruges datasættene til at kontrollere resul-
taterne fra de COMSOL baserede modeller.

Ved at bruge de indsamlede datasæt bliver det muligt at undersøge koefficienterne i de
simple modeller og derved foresl̊a forbedringer til disse modeller. Datasættene gør det
ogs̊a muligt at undersøge temperaturen i pasteuriseringsmaskinen og implementere disse
nye resultater i modellerne.

I denne offentlige version af rapporten er 6 afsnit fra forprojektet udeladt fordi de inde-
holder fortrolig information. Dette betyder ogs̊a, at nogle af udtrykkene i rapporten er
omskrevet. Hvis du ønsker at vide mere om disse afsnit og udtryk eller hvis noget er
svært at forst̊a p̊a grund af de manglende afsnit er du velkommen til at kontakte Sander
Hansen.
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Chapter 1

Introduction

This thesis is made after a preceding preparatory project called preproject. The pre-
project was also written in co-operation with Sander Hansen. Sander Hansen produces
pasteurizers for their costumers which are mostly breweries.

It was Sander Hansen who suggested the projects because they wanted to achieve a greater
knowledge about the physics in their pasteurization process and examine some aspects
in the product model which regulates the pasteurizers. The results should make Sander
Hansen able to make a better regulation of the pasteurizers.

The purposes of the preproject was to become acquainted with the present product model
and try to develop a new product model which coincide better with the measured values.
The highlights from the preproject are described in chapter 2.

The purposes of this thesis are:

• To investigate the sensitivity of the implementation of the product models and the
estimation of the parameters and coefficients. The purpose is to find out if the
implementation and the results it gives are reliable.

• To investigate the initial guess of the coefficients to make sure that the product
models with the final coefficients coincide with the measured values. The purpose
is to make sure that the results from an initial guess are reliable.

• To investigate the initialization of the product models in the implementations so
that the first steps from the models coincide with the measured values. This is done
so the error at the start is as small as possible and the collected error at the end
does not stem from an error in the beginning.

• To investigate the temperature which a container experiences while it is transported
through the pasteurizer and specially through the gaps. The purpose is to estimate
the temperature more precisely and thereby achieve better results for the estimation
of the product temperature in the gaps.

• To investigate the coefficients in the product models to find out if they depend on
the temperature level and the difference between the spray temperatures in two

1



Chapter 1 Introduction

neighboring zones. The purpose is to achieve an improved information about the
behavior of the product models.

• To investigate the flow and the temperature which occurs inside the container when
it is heated/cooled from the outside of the container and hereby see if the flow and
temperature depend on the scale of the container. The purpose is to achieve better
knowledge about what happens and investigate where in the container the mean
product temperature can be measured.

The process of devising this thesis has been a mixture of doing research by the computer
and making experiments to collect the necessary data sets to support the theoretical
results.

2 March 16, 2006 Kristina Hoffmann Larsen



Chapter 2

From Preproject

2.1 The Tunnel Pasteurizers

Sander Hansen’s pasteurizers also called pasteurs consist of a tunnel in which there is a
belt conveyor. The cans, glass- or PET-bottles, called containers, whose content must be
pasteurized are placed on the belt conveyor and are transported through the tunnel. In
the tunnel water flows down over the containers, this water is called spray water. The
tunnel is divided into several zones, where the spray water has different temperature.
Before the water flows down over the containers it is collected in spray pans in the top of
the pasteur. Between the spray zones there are small gaps with air to prevent the water
and thereby temperature in the different zones to be mixed. Figure 2.1 shows a sketch of
a small tunnel pasteur with 5 zones.

65  C

20  C

45  C 45  C

25  C

Spray pans Gaps

Spray zones
Container

Spray temperature

Figure 2.1: Sketch of a tunnel pasteur with 5 spray zones.

The temperatures shown on the figure are only suggested values. The pasteurs which
Sander Hansen produces for their costumers are normally between 15 and 30 meters
long and have 7 to 15 spray zones. These pasteurs handles between 30000 and 140000
containers per hour. The products are normally beer, soft drinks and juice but also
ketchup and canned potatoes are pasteurized in pasteurs produced by Sander Hansen.
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Chapter 2 From Preproject

First the containers are transported through zones where the temperature of the spray
water increases hence the temperature in the product in the containers increases and
pasteurization units PU ’s are obtained.
When the product has obtained the decided number of PU ’s, the containers are trans-
ported through zones where the temperature of the spray water decreases and the product
is cooled down. The decided number of PU ’s is determined by the costumers and depends
on the product.
The PU ’s are calculated by integrating the expression (2.1) with respect to the time t.

dPU

dt
= 10

T−60
6.94 for T > Tx , (2.1)

where T is the temperature in the product and Tx is a temperature decided by the
costumer, normally 50℃ ≤ Tx ≤ 58℃. The unit for equation (2.1) is

[
PU
min

]
. This means

that a product which is 60℃ obtain 1PU per minute. The temperature in the product
and in the container are calculated from a product model which is described on the next
pages.
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Conclusion for preproject Section 2.2

2.2 Conclusion for preproject

The present product model is described and implemented and the implementation gives
satisfactory results. The present model has small variations from the measured tempera-
ture in the spray zones but by the gaps the variation is larger. A new product model is
developed and implemented and the implementation gives better results than the present
product model. The variation in the spray zones is almost the same, but the variation
by the gaps is smaller. A new spray temperature in the gaps modelled as the spray tem-
perature in the previous zone was tested. For the present model this did not give better
results. For the new model the results with the new spray temperature in the gaps gives
better results, but the largest variations are still by the gaps. All things considered the
purpose of the preproject is fulfilled.

Beer pasteurization models March 16, 2006 5



Chapter 3

Test of the implementation

To test whether the implementation of the two product models from the preproject is
stable and gives good and reliable results, two important parts of the implementation are
investigated: If the results changes if the perturbation, when finding the Jacobian matrix,
is changed to a smaller or larger value, and if the results changes if the initial value for
the coefficients is changed. Additionally it is examined why the implementation gives
the same temperature in the first two time steps. Before this investigation the general
sensitivity of the product models is tested.

3.1 Sensitivity of the present product model

Both expressions in the present product model are functions of two temperatures, the
time step and a coefficient

T1,new = T1,new(T2, T1,old, c, dt) , (3.1)

where c is the coefficient, 0 < c < 1 and dt is the time step, dt > 0. In the implementation
dt is constant. To see how the model behaves when the coefficients are changed, the
behavior of T1,new is investigated as a function of c for different constant T1,old.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
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25

30

35
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45

c
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T
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T
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T
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T
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Figure 3.1: T1,new as a function of c for constant dt = 10 and T2 = 45 for 5 different values
of T1,old = 20, 25, 30, 35 and 40.
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Sensitivity of the new product model Section 3.2

In the example on figure 3.1 T2 = 45, dt = 10 and T1,old is 20, 25, 30, 35 and 40. From
0.5 < c < 1 the value of T1,new gets closer and closer to 45. As it can be seen very small
changes in c only costs small changes in T1,new. The smaller the difference between T2

and T1,old is the less a change in c will affect T1,new. The larger c is the less a change in c
will affect T1,new.

3.2 Sensitivity of the new product model

The new product model also consists of to expressions. One of them is the same as the
expressions from the present model and therefore the behavior is like the present product
model. The other expression is a function of three temperatures, the time step and 3
coefficients

T1,new = T1,new(T1,old, T2, T3, c, C1, C2, dt) , (3.2)

where c, C1 and C2 are the coefficient, 0 < c < 1 and dt is the time step, dt > 0. In
the implementation dt is constant. The behavior of expression (3.2) with respect to the
3 coefficients c, C1 and C2 is investigated in two steps. First the dependency of the
coefficient c is examined by taking the other coefficients to be constant C1 = 0.9 and
C2 = 1−C1 = 0.1. T2 = 45 and dt = 10. T1,new is plotted as a function of c for 5 different
values of T1,old = 20, 25, 30, 35 and 40 . On figure 3.2 T3 = 20 and on figure 3.3 T3 = 35.
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Figure 3.2: T1,new as a function of
c for constant C1 = 0.9, C2 = 0.1,
dt = 10, T2 = 45 and T3 = 20 for
5 different values of T1,old = 20, 25,
30, 35 and 40.
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Figure 3.3: T1,new as a function of
c for constant C1 = 0.9, C2 = 0.1,
dt = 10, T2 = 45 and T3 = 35 for
5 different values of T1,old = 20, 25,
30, 35 and 40.

The two figures are very similar and also similar to figure 3.1. It can be seen on both of
them that small changes in c only costs small changes in T1,new. The smaller the difference
between T2 and T1,old is the less a change in c will affect T1,new. The larger c is the less a
change in c will affect T1,new. The difference in T3 in the two figures does not have very
big influence.

Beer pasteurization models March 16, 2006 7



Chapter 3 Test of the implementation

The dependency on C1 and C2 is examined by taking c = 0.01 constant and plotting
T1,new as a function of C1 for the same 5 different values of T1,old. On figure 3.4 T3 = 20
and on figure 3.5 T3 = 35.
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Figure 3.4: T1,new as a function of
C1 for constant c = 0.01, dt = 10,
T2 = 45 and T3 = 20 for 5 different
values of T1,old = 20, 25, 30, 35 and
40.
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Figure 3.5: T1,new as a function of
C1 for constant c = 0.01, dt = 10,
T2 = 45 and T3 = 35 for 5 different
values of T1,old = 20, 25, 30, 35 and
40.

The two figures looks similar and a small change in C1 does not affect T1,new very much. A
change in C1 gives the same change in T,new no matter what the difference between T1,new

and T2 are, there is a linear dependency on C1 when c, T1,old, T2 and T3 are constant. The
difference in T3 in the two figures does only have a very small influence and can almost
not be seen on the figures.

3.3 General for both product models

Both product models are only affected a little by small changes in the constants. When
the residue is found in the implementation it normally lies in an interval with a range of
approximately 3.5 ℃. This means that when two residues from the same data set, but
with different perturbation or initial value for the coefficients, is compared the maximum
absolute difference between the two residues should to be in the order of 10−2 because
when this is the case the difference can not be seen on the graph and it is less than 1.5% of
the residue. Two residues from the same model and with same data set but with different
perturbations or initial values of the coefficients which fulfill this can be assumed to be
the same and thereby the measured temperatures can be assumed to be the same.
From each data set approximately 300 interconnected values of t, Ts and Tp are used.
This means that each residue and absolute difference between two residues also consists
of approximately 300 values. If each of the 300 values in the absolute difference are less
than or equal to a value in the order of 10−2 the sum of the absolute difference between
two residues is less than 15. 15 is the worst case limit where all 300 values are equal to
5 · 10−2, so in most cases the sum of the absolute difference will be much less than 15.

8 March 16, 2006 Kristina Hoffmann Larsen



Test of perturbation in present product model Section 3.4

3.4 Test of perturbation in present product model

The perturbation in the implementation of the present product model is tested by choos-
ing a small perturbation as a reference perturbation and then compare the results for this
perturbation with the results for 8 different larger perturbations. This is repeated for
different data sets. The reference perturbation is set to 0.00001 and the other 8 perturba-
tions pertub is 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05 and 0.1. The initial values
for the coefficients are the same for each perturbation and each data set. The results
that are tested are the absolute difference between the final coefficients for the reference
perturbation and the final coefficients for each of the other perturbations |∆coe|, the sum
of the absolute difference between the final residue for the reference perturbation and the
final residue for each of the other perturbations

∑ |∆res| and the maximum value of the
absolute difference between the final residue for the reference perturbation and the final
residue for each of the other perturbations max |∆res|. The number of iterations #it for
each perturbation is also recorded to make sure that the implementation converge for each
perturbation. The perturbation is tested for 26 different data sets and the results for all
of them looks the same and are similar to the results in the tables 3.1 and 3.2 which is
for the two data sets m824cs.m and m824rd.m.

pertub
∑ |∆res| max |∆res| |∆coe| #it

m824cs.m

0.00005 0.0024 2.0725 · 10−5 10−4 · [0.0001 0.0008 ... 34
0.0006 0.0001 0.4075]

0.0001 0.0053 4.6623 · 10−5 10−4 · [0.0002 0.0018 ... 34
0.0013 0.0003 0.9161]

0.0005 0.0288 2.5372 · 10−4 10−3 · [0.0001 0.0010 ... 34
0.0007 0.0002 0.4991]

0.001 0.0582 5.1232 · 10−4 10−2 · [0.0000 0.0002 ... 34
0.0001 0.0000 0.1008]

0.005 0.2921 2.5699 · 10−3 10−2 · [0.0001 0.0010 ... 34
0.0007 0.0002 0.5094]

0.01 0.5810 5.1144 · 10−3 10−1 · [0.0000 0.0002 ... 34
0.0001 0.0000 0.1022]

0.05 2.2408 2.3110 · 10−2 10−1 · [0.0001 0.0009 ... 33
0.0007 0.0001 0.5201]

0.1 3.6663 4.3193 · 10−2 [0.0000 0.0002 ... 31
0.0001 0.0000 0.1049]

Table 3.1: Results in the present product model of the test of the perturbation. Reference
perturbation = 0.00001.

It can be seen that the results increases as the perturbation increases. In table 3.1 and
table 3.2 all the perturbations can be used because all values of max |∆res| are smaller
than or in the order of 10−2. This is the case for 25 out of the 26 data sets, in the last data
set the value of max |∆res| for the largest perturbation is in the order of 10−1, so this
perturbation is to large. The values of

∑ |∆res| for all perturbations and all data sets are

Beer pasteurization models March 16, 2006 9



Chapter 3 Test of the implementation

pertub
∑ |∆res| max |∆res| |∆coe| #it

m824rd.m

0.00005 0.0023 1.7135 · 10−5 10−5 · [0.0009 0.1411 ... 31
0.0043 0.0009 0.2908]

0.0001 0.0052 3.8566 · 10−5 10−5 · [0.0019 0.3176 ... 31
0.0097 0.0019 0.6546]

0.0005 0.0281 2.1003 · 10−4 10−4 · [0.0011 0.1729 ... 31
0.0053 0.0011 0.3563]

0.001 0.0568 4.2418 · 10−4 10−4 · [0.0021 0.3488 ... 31
0.0106 0.0021 0.7102]

0.005 0.2760 2.1044 · 10−3 10−3 · [0.0009 0.1367 ... 31
0.0048 0.0011 0.3486]

0.01 0.5017 3.5519 · 10−3 10−3 · [0.0017 0.1833 ... 31
0.0045 0.0019 0.4911]

0.05 2.4912 1.8067 · 10−2 10−2 · [0.0009 0.1331 31
0.0032 0.0009 0.2629]

0.1 4.6610 3.3629 · 10−2 10−2 · [0.0018 0.2498 ... 31
0.0058 0.0018 0.4694]

Table 3.2: Results in the present product model of the test of the perturbation. Reference
perturbation = 0.00001.

much smaller than the worst case limit on 15. The number of iterations for each data set is
almost the same for all perturbations. This means that all perturbations between 0.00005
and 0.05 can be used. If the perturbation is 0.001, as it was in the implementations
in the preproject, the values of max |∆res| are in the order between 10−5 and 10−3 and
most of them are in the order of 10−4 which are 102 times smaller than the limit. The
values of |∆coe| are all very small except for the last coefficient for pertub = 0.1 for the
data set m824cs.m which value is approximately 0.1. The final coefficients for the data
set m824cs.m with the reference perturbation are [0.0041 0.0152 0.0038 0.0052 0.3883], so
according to section 3.1 a change by 0.1 will almost not affect the temperature when the
coefficient is 0.3883.

3.5 Test of initial values for coefficients in present
model

The initial values for each of the coefficients in the implementation of the present product
model are tested by taking a initial value which gives good results as a reference initial
value and then compare the results for this initial value with the results for other initial
values. The test is made to find an interval for the initial value for each coefficient by
trying different combinations and then examine the results. If a value gives a good result
the interval is made larger and if the results are not good the interval is made smaller.
The results that are tested are the absolute difference between the final coefficients for the
reference initial value and the final coefficients for each of the other initial values |∆coe|,

10 March 16, 2006 Kristina Hoffmann Larsen



Test of initial values for coefficients in present model Section 3.5

the sum of the absolute difference between the final residue for the reference initial value
and the final residue for each of the other initial values

∑ |∆res| and the maximum value
of the absolute difference between the final residue for the reference initial value and the
final residue for each of the other initial values max |∆res|. The number of iterations #it
for each initial value is also recorded to make sure that the implementation converge for
each initial value. The intervals are found from testing 6 data sets and are found to

0.004 ≤c1 ≤ 0.01

2c1 ≤c2 ≤ 10c1

0 <c3 ≤ 0.04c2

0.003 ≤c4 ≤ 0.01

c5 ≈ 2c4 ,

(3.3)

where coe = [c1 c2 c3 c4 c5]. To test these limits on more data sets the initials values in
table 3.3 are tested on 26 data sets. Initial value No. 1 is used as the reference initial
value.

Initial value No. initial value
1 [0.004 0.008 0.002 0.004 0.008]
2 [0.01 0.02 0.002 0.004 0.008]
3 [0.004 0.1 0.002 0.004 0.008]
4 [0.004 0.008 0.00000000002 0.004 0.008]
5 [0.004 0.008 0.0032 0.004 0.008]
6 [0.004 0.008 0.002 0.003 0.006]
7 [0.004 0.008 0.002 0.01 0.02]

Table 3.3: Initial values used for the present product model for the test of initial values.

All data sets give results similar to the results in the tables 3.4 and 3.5 which are for the
data sets m824cs.m and m824rd.m.
It can be seen that all the values of max |∆res| in the table are in the order of 10−2 or
less and all values of

∑ |∆res| are much less than the worst case limit on 15. This is also
the case for all the other 24 data sets. The values of |∆coe| are all very small except for
the last coefficient for the initial value No. 2, 6 and 7 for the data set m824cs.m. These
values are approximately 0.1 or 0.3. The last coefficients for the data set m824cs.m with
the reference initial value is 0.3883, so according to section 3.1 a change by 0.1 or 0.3 will
almost not affect the temperature when the coefficient is 0.3883. This means that all data
sets gives good results if the initial values for the coefficients are inside the intervals.
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Iv No.
∑ |∆res| max |∆res| |∆coe| #it

m824cs.m

2 2.2010 1.1873 · 10−2 10−1 · [0.0001 0.0001 ... 36
0.0001 0.0001 0.1822]

3 1.6297 1.5271 · 10−2 [0.0000 0.0000 ...] 35
0.0001 0.0000 0.1054

4 0.3141 6.0653 · 10−3 10−1 · [0.0000 0.0000 ...] 34
0.0002 0.0000 0.4971

5 0.0688 7.5293 · 10−4 10−2 · [0.0000 0.0001 ... 34
0.0001 0.0000 0.4746]

6 1.5601 1.4178 · 10−2 [0.0000 0.0000 ... 39
0.0000 0.0000 0.2509]

7 3.1420 3.5182 · 10−2 [0.0000 0.0000 ... 33
0.0000 0.0000 0.1088]

Table 3.4: Results of the test of the initial values in the present product model. Reference
initial value No. 1 = [0.004 0.008 0.002 0.004 0.008].

Iv No.
∑ |∆res| max |∆res| |∆coe| #it

m824rd.m

2 6.8382 5.2126 · 10−2 10−2 · [0.0030 0.2019 ... 28
0.0062 0.0002 0.1927]

3 3.7819 2.1604 · 10−2 10−3 · [0.0060 0.2868 ... 27
0.0153 0.0050 0.7657]

4 0.8187 6.2802 · 10−3 10−3 · [0.0032 0.1946 ... 32
0.0097 0.0009 0.2776]

5 0.1298 1.2345 · 10−3 10−3 · [0.0002 0.0472 ... 31
0.0042 0.0003 0.1154]

6 1.9842 2.0968 · 10−2 10−3 · [0.0002 0.1782 ... 31
0.0073 0.0073 0.2518]

7 3.7563 3.3246 · 10−2 10−2 · [0.0001 0.0088 ... 32
0.0047 0.0013 0.2082]

Table 3.5: Results of the test of the initial values in the present product model. Reference
initial value No. 1 = [0.004 0.008 0.002 0.004 0.008].

3.6 Test of perturbation in new product model

The perturbation in the implementation of the new product model is tested in the same
way as the present model and the same results are investigated. The data sets used to
test the new product model are also the same. The results are more dissimilar for the
new model but there are still some similarities. All data sets can not converge for the two
largest perturbations 0.05 and 0.1 so these perturbations are to large. Some of the data
sets can also not converge for the third largest perturbation 0.01 so this perturbation is also
to large. Finally a few of the data sets can not converge for some random perturbations
this is the case if the data set has some irregularities in the measured product temperature.
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Test of perturbation in new product model Section 3.6

The results of the converging data sets for the 5 smallest perturbations have the same
tendency as the results for the present model namely that the values increases as the
perturbation increases. But the difference between the values for different data sets varies
more. In the tables 3.6 and 3.7 the result for the two data sets m824cs.m and m824rd.m

are shown.

pertub
∑ |∆res| max |∆res| |∆coe| #it

m824cs.m

0.00005 0.0169 2.6775 · 10−4 10−2 · [0.0001 0.0001 0.0000 ... 516
0.0010 0.0078 0.0034 0.0002 ...
0.0125 0.0126 0.1084 0.1070]

0.0001 0.1181 4.2304 · 10−3 10−2 · [0.0012 0.0009 0.0014 ... 530
0.0029 0.0952 0.0500 0.0030 ...
0.3426 0.3509 0.3256 0.3215]

0.0005 0.0897 1.6015 · 10−3 10−1 · [0.0002 0.0002 0.0001 ... 524
0.0014 0.0012 0.0043 0.0033 ...
0.00507 0.0517 0.1509 0.1491]

0.001 0.1239 2.5845 · 10−3 10−1 · [0.0003 0.0002 0.0000 ... 525
0.0029 0.0045 0.0030 0.0022 ...
0.0719 0.0733 0.3021 0.2985]

0.005 20.5876 7.9977 · 10−1 [0.0004 0.0002 0.0006 ... 601
0.4313 0.3158 0.0289 0.0021 ...
0.1277 0.1317 0.7525 0.7426]

0.01 31.6941 1.0009 [0.0002 0.0000 0.0002 ... 599
0.4949 0.3847 0.0377 0.0490 ...
0.0585 0.0609 0.7596 0.7489]

0.05 111.6186 2.3231 [0.0042 0.0031 0.0047 ... 3000
1.1238 1.0160 7.5089 7.8489 ...
0.4583 0.4697 0.7920 0.7775]

0.1 100.3573 2.0248 [0.0022 0.0020 0.0048 ... 3000
1.0985 0.9910 8.7916 9.0318 ...
0.3318 0.3372 0.7877 0.7738]

Table 3.6: Results in the new product model of the test of the perturbation. Reference
perturbation = 0.00001.
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pertub
∑ |∆res| max |∆res| |∆coe| #it

m824rd.m

0.00005 0.0034 5.6331 · 10−5 10−3 · [0.0004 0.0010 0.0001 ... 322
0.0007 0.0143 0.0090 0.0090 ...
0.0538 0.0542 0.1631 0.1710]

0.0001 0.0063 1.1162 · 10−4 10−3 · [0.0009 0.0016 0.0000 ... 322
0.0016 0.0047 0.0060 0.0069 ...
0.1151 0.1164 0.3672 0.3840]

0.0005 0.0726 5.9105 · 10−4 10−2 · [0.0005 0.0013 0.0001 ... 323
0.0009 0.0134 0.0075 0.0078 ...
0.0655 0.0660 0.2007 0.2109]

0.001 0.1065 2.8883 · 10−3 10−2 · [0.0012 0.0034 0.0005 ... 322
0.0019 0.0600 0.0467 0.0438 ...
0.1418 0.1425 0.4121 0.4333]

0.005 0.5941 1.6974 · 10−2 10−1 · [0.0007 0.0015 0.0004 ... 321
0.0011 0.0352 0.0265 0.0242 ...
0.0803 0.0809 0.2404 0.2553]

0.01 49.7581 8.862 · 10−1 [0.0004 0.0087 0.0015 ... 923
0.7824 0.6957 0.2919 0.3495 ...
0.0382 0.0371 0.8399 0.8634]

0.05 89.9720 1.3023 [0.0053 0.0177 0.0023 ... 3000
0.7597 0.6759 0.2295 0.2917 ...
0.3016 0.2995 0.8465 0.8688]

0.1 101.9661 1.5011 [0.0801 0.0433 0.0020 ... 3000
1.0492 0.7615 0.2080 1.2249 ...
0.5013 0.7075 0.8212 0.8485]

Table 3.7: Results in the new product model of the test of the perturbation. Reference
perturbation = 0.00001.

For pertub = 0.005 most of the maximum values of the difference of the residuals is of
order of 10−1 and the other varies in the order of 10−3 − 1. For pertub = 0.001 most of
the maximum values of the difference of the residuals is of order of 10−3 and the other
varies in the order of 10−4− 10−1. The sum of the absolute difference of the residues is in
most cases much smaller than the worst case limit on 15 when the perturbation is equal
to 0.001. For perturbations equal to 0.005 this sum is in some cases larger than the limit
on 15. This means that a perturbation equal to 0.001 is a good choice in many cases and
that pertub = 0.005 is to large. If pertub = 0.001 does not give nice results the value of
the perturbation can be decreased.

3.7 Test of initial values for coefficients in new model

The initial values for the coefficients in the implementation of the new product model
are tested in the same way as the present model. The new product model contains 11
coefficients coe = [c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11], c1 − c5 correspond to the coefficients
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from the present model and c6−c11 are the new coefficients. The initial values for the new
coefficients fulfills the conditions c6 = c8 = c10, c7 = c9 = c11 and c6 + c7 = 1, c8 + c9 = 1,
c10 + c11 = 1. The intervals are found from the 6 same data sets as the intervals for the
present model. The intervals are

0.003 ≤c1 ≤ 0.009

c2 ≈ 2c1

0 <c3 ≤ 0.0022

0.003 ≤c4 ≤ 0.007

2c4 ≤c5 ≤ 0.014

0.89 ≤c6 ≤ 0.91

0.17 ≤c7 ≤ 0.11

0.89 ≤c8 ≤ 0.91

0.17 ≤c9 ≤ 0.11

0.89 ≤c10 ≤ 0.91

0.17 ≤c11 ≤ 0.11

(3.4)

To test these limits on more data sets 26 data sets are tested with all the initial values in
table 3.8. Initial value No. 1 is used as the reference initial value.

Initial value No. initail value
1 [0.004 0.008 0.002 0.004 0.008 0.9 0.1 0.9 0.1 0.9 0.1]
2 [0.003 0.006 0.002 0.004 0.008 0.9 0.1 0.9 0.1 0.9 0.1]
3 [0.009 0.018 0.002 0.004 0.008 0.9 0.1 0.9 0.1 0.9 0.1]
4 [0.004 0.008 0.00000000002 0.004 0.008 0.9 0.1 0.9 0.1 0.9 0.1]
5 [0.004 0.008 0.0022 0.004 0.008 0.9 0.1 0.9 0.1 0.9 0.1]
6 [0.004 0.008 0.002 0.003 0.008 0.9 0.1 0.9 0.1 0.9 0.1]
7 [0.004 0.008 0.002 0.007 0.014 0.9 0.1 0.9 0.1 0.9 0.1]
8 [0.004 0.008 0.002 0.004 0.008 0.91 0.09 0.91 0.09 0.91 0.09]
9 [0.004 0.008 0.002 0.004 0.008 0.89 0.11 0.89 0.11 0.89 0.11]

Table 3.8: Initial values used for the new product model for the test of initial values.

Most of the 26 data sets converge when the initial value for the coefficients are on the
limits for the intervals and they all gives results similar to the results in table 3.9 and
table 3.10.
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Iv No.
∑ |∆res| max |∆res| |∆coe| #it

m824cs.m

2 1.1160 3.8963 · 10−2 [0.0006 0.0005 0.0005 ... 773
0.0009 0.0109 0.0468 0.0420 ...
0.1868 0.1904 0.0789 0.0778]

3 1.3963 7.3816 · 10−2 10−1 · [0.0030 0.0025 0.0046 ... 507
0.0052 0.2100 0.3840 0.2960 ...
0.8982 0.9185 0.5243 0.5171]

4 1.4851 7.2301 · 10−2 10−1 · [0.0011 0.0012 0.0008 ... 455
0.0016 0.1950 0.0994 0.1735 ...
0.2742 0.2762 0.1401 0.1389]

5 1.1839 3.9073 · 10−2 [0.0007 0.0006 0.0004 ... 773
0.0013 0.0101 0.0366 0.0321 ...
0.2221 0.2263 0.1108 0.1094]

6 0.6186 7.5054 · 10−3 10−1 · [0.0017 0.0016 0.0001 ... 710
0.0036 0.0056 0.0427 0.0447 ...
0.4733 0.4821 0.3512 0.3467]

7 1.5577 6.7282 · 10−2 [0.0003 0.0003 0.0003 ... 474
0.0015 0.0155 0.0098 0.0024 ...
0.0995 0.1018 0.1308 0.1291]

8 0.3853 1.4567 · 10−2 10−1 · [0.0009 0.0009 0.0015 ... 535
0.0034 0.0442 0.1993 0.1805 ...
0.2391 0.2430 0.3507 0.3465]

9 0.6450 2.3401 · 10−2 10−1 · [0.0028 0.0026 0.0005 ... 546
0.0067 0.0554 0.2334 0.2533 ...
0.8297 0.8459 0.6268 0.6187]

Table 3.9: Results of the test of the initial value in the new product model. Reference
initial value No. 1 = [0.004 0.008 0.002 0.004 0.008 0.9 0.1 0.9 0.1 0.9 0.1].

It can be seen that all the values of max |∆res| in the tables are almost in the order of
10−2 or less and all values of

∑ |∆res| are much smaller than the worst case limit on 15.
This is also the case for the other data sets which converge. The data sets which does not
converge are the same data sets which did not converge in the test for the perturbation
in the new product model and it is therefore assumed that these data sets are not good
to use with the new product model because of the irregularities. This means that all
converging data sets give good results if the initial values for the coefficients are inside
the intervals.
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Iv No.
∑ |∆res| max |∆res| |∆coe| #it

m824rd.m

2 1.7559 4.6047 · 10−2 [0.0042 0.0045 0.0001 ... 361
0.0005 0.0001 0.0257 0.0275 ...
0.3077 0.3113 0.1305 0.1345]

3 1.9094 1.4553 · 10−2 10−2 · [0.0047 0.0041 0.0002 ... 313
0.0014 0.0120 0.0181 0.0104 ...
0.4859 0.4990 0.3399 0.3486]

4 0.0926 2.0752 · 10−3 10−2 · [0.0028 0.0029 0.0003 ... 326
0.0005 0.0310 0.0067 0.0615 ...
0.3676 0.3723 0.1062 0.1107]

5 0.0534 1.2922 · 10−3 10−3 · [0.0021 0.0062 0.0016 ... 323
0.0001 0.2054 0.2095 0.1649 ...
0.2279 0.2287 0.0079 0.0033]

6 0.5220 4.4774 · 10−3 10−3 · [0.0039 0.0268 0.0027 ... 341
0.0022 0.5227 0.7416 0.1684 ...
0.8424 0.8557 0.2238 0.2664]

7 1.9665 1.6729 · 10−2 10−2 · [0.0019 0.0079 0.0003 ... 301
0.0032 0.1409 0.0366 0.1517 ...
0.1498 0.1479 0.4890 0.5354]

8 0.1422 2.0916 · 10−3 10−1 · [0.0008 0.0009 0.0003 ... 318
0.0004 0.0039 0.1081 0.0913 ...
0.0981 0.0993 0.1001 0.1034]

9 0.1267 1.1592 · 10−3 10−1 · [0.0008 0.0009 0.0003 ... 326
0.0004 0.0018 0.1060 0.0932 ...
0.0982 0.0994 0.1001 0.1033]

Table 3.10: Results of the test of the initial value in the new product model. Reference
initial value No. 1 = [0.004 0.008 0.002 0.004 0.008 0.9 0.1 0.9 0.1 0.9 0.1].

3.8 Test of the first steps both models

Both models are initiated by setting the first calculated product temperature Tp and
container temperature Tc equal to the first value of the measured product temperature in
the data set. In the for-loop in the implementations Tp is calculated first, afterwards Tc

is calculated.
As s result the two first Tp’s will always be the same. To avoid this, a new implementation
is tested by comparing the mean value and the variance of the residue to the same values
from the present implementation. This is done for 26 different data sets.

3.8.1 The present product model

All the 26 data sets gives results similar to the results for the data sets m824cs.m and
m824rd.m in table 3.11.
The mean values and the variances for the same data set are almost the same for both
implementations. The minimum value of the variances for all the data sets for present
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Data set Present implementation New implementation
mean variance mean variance

m824cs.m -0.0234 0.4668 -0.0114 0.4891
m824rd.m 0.0300 0.5189 0.0374 0.5282

Table 3.11: The mean values and the variances for the present model with the present
and the new implementation.

implementation is 0.1541 and the maximum value of the variances for all data sets for
present implementation is 0.9790. The minimum value of the variances for all data sets
for the new implementation is 0.1600 and the maximum value of the variances for all data
sets for new implementation is 0.9835. The minimum values are found for the same data
set in both implementations and are almost completely the same and the same holds true
for the maximum values. This means that it does not make a difference if the order of
the if-statements is exchanged.

3.8.2 The new product model

Almost all the 26 data sets, except 2 which does not converge with the present imple-
mentation, give results similar to the results for the data sets m824cs.m and m824rd.m in
table 3.12.

Data set Present implementation New implementation
mean variance mean variance

m824cs.m -0.0371 0.1670 -0.0638 1.1300
m824rd.m -0.0345 0.2032 -0.0834 1.0718

Table 3.12: The mean values and the variances for the new model with the present and
the new implementation.

The mean values for all the converging data sets for the new implementation are fur-
ther from 0 than the mean values for the present implementation. The variances for all
converging data sets for the new implementation are larger than for the present imple-
mentation.

The minimum value of the variances for all the data sets for present implementation is
0.0065 and the maximum value of the variances for all data sets for present implementation
is 0.2740. The minimum value of the variances for all data sets for the new implementation
is 0.0182 and the maximum value of the variances for all data sets for new implementation
is 2.8990. The minimum values are found for the same data set in both implementations
but this is not the case for the maximum value.

This means that for the new model it makes a large difference if the order of the if-
statements is exchanged and it is a bad choice to do so.
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3.9 Summary

Both models give good results if the perturbation is 0.001 as it was used in the preproject.
Intervals for the initial values for all coefficients in both models are found. The first steps
in both models are investigated. In the present model it does not make a difference if
the order of the if-statements is exchanged, but in the new model it gives bad results to
exchange the order. In general the variance for the residue in the new model is smaller
than the variance for the residue in the present model if the present implementation where
the order of the if-statements is not exchanged is used. The mean values of the residues
for the present implementation are almost the same for both models.
Thereby the new product model gives the best results, but during the tests is was also
found that the new model is more sensitive for irregularities in the data sets than the
present model is.
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Chapter 4

Experiments

The experiments are made by letting a container with a thermometer inside be transported
through a mini pasteur like the one on figure 2.1. Three different types of containers are
used, 33cl cans, 75cl cans and 25cl bottles. There are two types of thermometers, one
with only one measuring point at the end of the thermometer and one with 10 measuring
points separated with approximately 1 cm, see figure 4.1. Both types of thermometers
are connected to a computer which collects the data.

1.5cm

2.3cm

2.9cm

Air

Figure 4.1: Small and large can with the thermometer with 10 measuring points.

To get the thermometer into the cans they are turn up side down and a little hole is made
in the center of the bottom. In this hole a threaded bolt with a rubber disk is screwed,
se figure 4.4. In the bolt a metal tube is screwed and through this tube the thermometer
is placed in the can, se figure 4.2 and figure 4.3. The small can is 10.8cm high and 6.4cm
wide. The large can is 14.2cm high and 8cm wide.
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Figure 4.2: Experi-
mental set-up for the
can.

Figure 4.3: Experi-
mental set-up for the
can.

Figure 4.4: The
threaded bolt with
rubber disk and metal
tube.

To get the thermometer into the bottles they are opened and a plastic stopper with a
small hole in the center is glued on. In the hole the thermometer is placed, se figure 4.5
and figure 4.6. The bottle is 18.5cm high and 5.6cm wide.

1cm

Figure 4.5: Experimental
set-up for the bottle.

Figure 4.6:
Experimental
set-up for the
bottle.

When the thermometer is placed in the container, the container is placed on the belt
conveyor in the mini pasteur and the cables from the thermometer is arranged so they do
not interfere with the experimental set-up, se figure 4.7.
Then the belt conveyor is started and the containers are transported into the first zone.
When the containers are in the middle of the first zone the belt conveyor is stopped. This
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Figure 4.7: Experimental set-up in mini pasteur.

is done because the zones in the mini pasteur are not as wide as in a real pasteur. When
the containers have been in the first zone for a decided time they are transported to zone
2, here they are stopped again and in this way the containers are transported through
all 5 zones. The results from the experiments with the thermometer with 10 measuring
points are described in chapter 5. The results from the experiments with the thermometer
with 1 measuring point are described in chapter 6 and chapter 7.
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Chapter 5

Results from thermometer with 10 measuring
points

Experiments with the thermometer with 10 measuring points are made with the 33cl beer
can, the 75cl beer can and the 25cl beer bottle. An experiment where the large can is
filled with water is also made.

5.1 Results for the small can

The product temperatures for the small can in the points in figure 4.1 are shown on figure
5.1.
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Figure 5.1: Product temperatures as function of time measured with the 10 point ther-
mometer in the small can.

The temperatures are only plotted for the nine lowest measuring points because in the
small can the top measuring point is often in the air at the top of the can. The results
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Chapter 5 Results from thermometer with 10 measuring points

are not plotted for the first zone because this zone is used to get the product temperature
at a certain level. This means that the first zone on the figures really is zone 2 but is
referred to as zone 1 because it looks like the first zone on the figures. The lowest blue
graph corresponds to the lowest measuring point in the can and the top black graph is
the ninth point numbered from the bottom. On figure 5.2 to figure 5.5 there is zoomed
in on zone 1, zone 2, zone 3 and zone 4 respectively.
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Figure 5.2: Temperatures as func-
tion of time zoomed in on zone 1 in
the small can.
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Figure 5.3: Temperatures as func-
tion of time zoomed in on zone 2 in
the small can.
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Figure 5.4: Temperatures as func-
tion of time zoomed in on zone 3 in
the small can.
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Figure 5.5: Temperatures as func-
tion of time zoomed in on zone 4 in
the small can.

As it can be seen on figure 5.2 and figure 5.3 the behavior of the product temperatures
in the heating zones are very regular. The temperature increases from the top of the can
and then down through the product. In the cooling zones on figure 5.4 and figure 5.5 the
product temperatures behave more irregular than in the heating zones. On figure 5.6 and
figure 5.7 there is zoomed further in on the beginning of zone 3 and zone 4 respectively.
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Figure 5.6: Temperatures as func-
tion of time zoomed further in on
zone 3 in the small can.
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Figure 5.7: Temperatures as func-
tion of time zoomed further in on
zone 4 in the small can.

At the beginning of zone 3 the highest temperature in the highest point suddenly falls
and then after a while the temperature becomes the highest again. In zone 4 the three
highest temperatures in three the highest points suddenly falls and then after a while the
temperatures become the three highest again.
The reason for these leaps on the graphs is probably a result of the can being mostly
affected by the spray water at the top of the can.
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Chapter 5 Results from thermometer with 10 measuring points

5.2 Results for the large can

The product temperatures for the large can in the points on figure 4.1 are shown on figure
5.8.
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Figure 5.8: Product temperatures as function of time measured with the 10 point ther-
mometer in the large can.

Here the temperature is plotted for all ten measuring points, because in the large can
the top measuring point is not in the air at the top of the can. The lowest red graph
corresponds to the lowest measuring point in the can and the top blue graph is the top
point. On figure 5.9 to figure 5.12 there is zoomed in on zone 1, zone 2, zone 3 and zone
4 respectively.
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Figure 5.9: Temperatures as func-
tion of time zoomed in on zone 1 in
the large can.
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Figure 5.10: Temperatures as func-
tion of time zoomed in on zone 2 in
the large can.
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Figure 5.11: Temperatures as func-
tion of time zoomed in on zone 3 in
the large can.
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Figure 5.12: Temperatures as func-
tion of time zoomed in on zone 4 in
the large can.

The product temperature behavior for the large can is similar to the behavior for the
small can. The only difference is that the can spends more time in each zone to get the
entire product at the same temperature. Further zooming on the two cooling zones can
be seen on figure 5.13 and figure 5.14.
The figures for the cooling zones show that the temperatures that makes the leaps in
the two cooling zones takes a longer part of the time in the zone to reach the highest
temperatures again.
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Figure 5.13: Temperatures as func-
tion of time zoomed further in on
zone 3 in the large can.
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Figure 5.14: Temperatures as func-
tion of time zoomed further in on
zone 4 in the large can.
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Chapter 5 Results from thermometer with 10 measuring points

5.3 Results for the bottle

The product temperature for the bottle is shown on figure 5.15.
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Figure 5.15: Product temperatures as function of time measured with the 10 point ther-
mometer in the bottle.

The temperature is plotted for all ten measuring points. The lowest red graph corresponds
to the lowest measuring point in the bottle and the top blue graph is the top point.
On figure 5.16 to figure 5.19 there is zoomed in on zone 1, zone 2, zone 3 and zone 4
respectively.
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Figure 5.16: Temperatures as func-
tion of time zoomed in on zone 1 in
the bottle.
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Figure 5.17: Temperatures as func-
tion of time zoomed in on zone 2 in
the bottle.
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Results for the bottle Section 5.3
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Figure 5.18: Temperatures as func-
tion of time zoomed in on zone 3 in
the bottle.
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Figure 5.19: Temperatures as func-
tion of time zoomed in on zone 4 in
the bottle.

The product temperatures for the bottle for all four zones behave regular. The small
fall for the highest temperature in zone 1 on figure 5.16 is due to a fall in the spray
temperature in the zone during the experiment. The temperatures behave regular also
in the cooling zones because the bottle is higher than the cans and is made of glass.
The glass bottle is heated slower than the metal cans so the product is not immediately
affected by the spray temperature.
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Chapter 5 Results from thermometer with 10 measuring points

5.4 Results for the large can with water

The product temperature for the large can with water is shown on figure 5.20.
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Figure 5.20: Product temperatures as function of time measured with the 10 point ther-
mometer in the large can with water.

The temperature is plotted for all ten measuring points. The lowest red graph corresponds
to the lowest measuring point in the can and the top blue graph is the top point. On figure
5.21 to figure 5.24 there is zoomed in on zone 1, zone 2, zone 3 and zone 4 respectively.
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Figure 5.21: Temperatures as func-
tion of time zoomed in on zone 1 in
the large can with water.
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Figure 5.22: Temperatures as func-
tion of time zoomed in on zone 2 in
the large can with water.
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Results for the large can with water Section 5.4
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Figure 5.23: Temperatures as func-
tion of time zoomed in on zone 3 in
the large can with water.
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Figure 5.24: Temperatures as func-
tion of time zoomed in on zone 4 in
the large can with water.

The product temperature behavior for the large can with water is similar to the behavior
for the large can with beer. The difference is that the temperature in the top of the can
with water increases faster than the temperature in the top of the large can with beer. The
temperature down through the can with water is more scattered than the temperature in
the large can with beer. The last difference means that it takes longer time for the can
with water to get the same temperature down through the can than it takes for the same
can with beer. Further zooming on the two cooling zones can be seen on figure 5.25 and
figure 5.26.
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Figure 5.25: Temperatures as func-
tion of time zoomed further in on
zone 3 in the large can with water.
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Figure 5.26: Temperatures as func-
tion of time zoomed further in on
zone 4 in the large can with water.

These figures show that the temperature for the can with water makes approximately the
same leaps in the two cooling zones as the leaps on the graph for the large can with beer.
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Chapter 6

Investigation of the temperature in the gaps

In the preproject a new spray temperature in the gaps was tested. This new spray
temperature in the gaps did not give better results for the present product model. The
results for the new product model were better but the largest variation of the residue was
still by the gaps.

6.1 Gap temperature

To investigate if the residue in the gaps can be of the same size as in the spray zones the
actual spray temperature in the gaps is examined.
To test how the actual spray temperature in the gaps is, some experiments are made. The
experiments are made by placing the thermometer with 1 measuring point in a plastic cup
with many small holes in the bottom. In this way the thermometer is in water in the spray
zones because more spray water comes into the cup than out and the thermometer is in air
when the cup is transported into the gap because the water runs quickly out when no more
water comes in. This means that the thermometer will measure the spray temperature
that the containers goes through while it is transported through the mini pasteur. On
figure 6.1 the present modelled spray temperature spray and two with thermometer in a
cup measured spray temperature is shown.
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Gap temperature Section 6.1
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Figure 6.1: Modelled and measured spray temperature.

As it can be seen the measured spray temperature coincide with the modelled spray
temperature in the spray zones, but in the gaps there is a difference. Figure 6.2 to figure
6.5 shows the same as figure 6.1 but zoomed in on each gap.
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Figure 6.2: Modelled and
measured spray temperature,
zoomed in on the first gap.
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Figure 6.3: Modelled and
measured spray temperature,
zoomed in on the second gap.
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Chapter 6 Investigation of the temperature in the gaps
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Figure 6.4: Modelled and
measured spray temperature,
zoomed in on the third gap.
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Figure 6.5: Modelled and
measured spray temperature,
zoomed in on the fourth gap.

To model this the function

Ts,gap(t) = A + B tanh

(
t− b

a

)
− C · t (6.1)

is used, where A − B is the spray temperature in the previous zone, A + B is the spray
temperature in the next zone, a = 4 if the next zone is warmer than the previous and
a = −4 if the next zone is colder than the previous, C = 0.02 if the next zone is warmer
than the previous and C = −0.02 if the next zone is colder than the previous. b is the
length of the time the container is in the gap. Function (6.1) is in MATLAB implemented
like
k=1;

for h=1: length(time)

if gab(h)==0

gaplength =0;

end

if gab(h)==1

gaplength=gaplength +1;

end

if gab(h)==1 & gab(h+1)==0

gapL(k)=gaplength;

k=k+1;

end

end

gaplength=gapL (1);

figure

plot(time ,spraytemp)

for h=1: length(time)

if gab(h)==1 & gab(h-1)==0

gaptime =1: gaplength +40;

Tfor=spraytemp(h-1);

Tefter=spraytemp(h+gaplength);

B=abs(Tfor -Tefter)/2 -0.5;

if Tfor >Tefter

a=-4; b=gaplength; A=Tfor -B; C= -0.02;

else

a=4; b=gaplength; A=Tfor+B; C=0.02;

end

spraytemp ((h):(h)+length(gaptime) -1)=A+B*tanh((gaptime ’-b)/a)+C*gaptime ’;

end

end
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Gap temperature Section 6.1

The first for-loop finds the lengths of the gaps and the second for-loop substitutes the
present spray temperature in the gaps with the new spray temperature.
With the data set m824cs.m where all measurements are used the present and the new
spray temperature in the gap can be seen on figure 6.6 to figure 6.9.
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Figure 6.6: Present and new
spray temperature.
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Figure 6.7: Present and new
spray temperature, zoomed in
on the first gap.
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Figure 6.8: Present and new
spray temperature, zoomed in
on the second gap.
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Figure 6.9: Present and new
spray temperature, zoomed in
on the third gap.

The new spray temperatures in the gaps are very similar to the measured spray tem-
perature in the gaps on figure 6.2 to figure 6.5. 26 data sets are tested with the new
spray temperature in the gaps. This is done for both the present product model and the
new product model. All the results are made with all measurements from the data sets
because if only every tenth were used, the new modelled spray temperature in the gaps
would not look like the measured spray temperature in the gaps.
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Chapter 6 Investigation of the temperature in the gaps

6.1.1 The present product model

With the present product model the mean value and the variance for the two data sets
m824cs.m and m824rd.m are shown for both the present spray temperature in the gaps
and the new in table 6.1.

Data set Present Ts in gaps New Ts in gaps
mean variance mean variance

m824cs.m -0.0114 0.2339 -0.0161 0.2584
m824rd.m 0.0312 0.2582 0.0356 0.2687

Table 6.1: Mean value and variance for the residue for the present model with the present
and the new spray temperature in the gaps.

The results in this table are similar to the results for the 24 other data sets which are
tested. The new spray temperature in the gaps does not give better results than the
present spray temperature in the gaps. The results are almost the same.

6.1.2 The new product model

With the new product model the mean value and the variance for the two data sets
m824cs.m and m824rd.m are shown for both the present spray temperature in the gaps
and the new in table 6.2.

Data set Present Ts in gaps New Ts in gaps
mean variance mean variance

m824cs.m -0.0239 0.1705 -0.0255 0.1560
m824rd.m -0.0273 0.1801 -0.0232 0.1943

Table 6.2: Mean value and variance for the residue for the new model with the present
and the new spray temperature in the gaps.

The results in this table are similar to the results for the 18 other data sets which con-
verged for spray temperatures in the gaps. The results are almost the same so the new
spray temperature in the gap does not give better results than the present spray temper-
ature in the gaps.

6.2 Summary

For both product models the results for the present spray temperature in the gaps and
the new spray temperature in the gaps are almost the same. The reason for this is that in
the experiments in the mini pasteur the containers are in the gaps for a very small part
of the total time, only approximately 3% of the time. In the real pasteurs the containers
are in the gaps 5 − 10% of the time, so there it might give better results with the new
spray temperature in the gaps.
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Chapter 7

Coefficients dependency on T and ∆T

To investigate the coefficients from the product models dependency on the spray temper-
ature level Ts and the difference between spray temperatures in two neighboring zones
∆T some experiments are made. The experiments are made with the thermometer with
1 measuring point. In all of them ∆T1 = ∆T4 and ∆T2 = ∆T3, see figure 7.1. Two types
of experiments are made, one where the difference in the spray temperatures are the same
on both the high and the low Ts level, ∆T1 = ∆T2. This is done for several different
values ∆T . These experiments are made to test if the coefficients has a dependency on
the spray temperature level. The other experiments are made with different ∆T ’s on
the high and the low Ts level, ∆T1 6= ∆T2. These experiments are made to test if the
coefficients depends on ∆T .

Ts,1

Ts,2

Ts,3

Ts,4

Ts,5

∆T1

∆T3

Low Ts

High Ts
level

level

∆T2

∆T4

Figure 7.1: Temperatures for the experiments.

The temperatures for the experiments that are made are shown in table 7.1.
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Chapter 7 Coefficients dependency on T and ∆T

Exp. No. ∆T1 ∆T2 ∆T3 ∆T4 Ts,1 Ts,2 Ts,3 Ts,4 Ts,5

1 15 15 15 15 25 40 55 40 25
2 20 20 20 20 20 40 60 40 20
3 25 25 25 25 15 40 65 40 15
4 10 30 30 10 20 30 60 30 20
5 30 10 10 30 20 50 60 50 20
6 15 35 35 15 15 30 65 30 15
7 35 15 15 35 15 50 65 50 15

Table 7.1: Temperature values for the experiments measured in ℃.

Experiment 1 − 3 is to test the coefficients dependency on the spray temperature level
and experiment 4 − 7 is to test the coefficients dependency on ∆T . To avoid influence
from the other coefficients each data set is divided into smaller data sets where each spray
zone is in its own data set. In this way the heating coefficients and the cooling coefficients
are separated. In experiment 6 it was not possible to keep ∆T2 and ∆T3 on 35℃. The
difference between spray temperatures were approximately 31℃ , so the results from this
experiment are for ∆T = 31 in these zones.

7.1 Present product model

There are 5 coefficients in the present product model, coe = [c1 c2 c3 c4 c5]. c1 is the
heating coefficient for the container temperature. c2 is the heating coefficient for the
product temperature. c3 is the gap coefficient. c4 is the cooling coefficient for the container
temperature. c5 is the cooling coefficient for the product temperature.
The new small data sets are tested with the present model. In the two heating zones the
model gives nice results and the residues are very small. c1 as function of ∆T can be seen
on figure 7.2 and c2 as function of ∆T is shown on figure 7.3.
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Figure 7.2: c1 as function of ∆T .
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Figure 7.3: c2 as function of ∆T .

On figure 7.2 the points for the high and the low spray temperature level are not separated,
so c1 does not have a dependency on the spray temperature level however the figure shows
that c1 has a linear dependency on ∆T with a positive slope. On figure 7.3 there is a
tendency that shows that the value of c2 for the high spray temperature level is larger
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New product model Section 7.2

than for the low spray temperature level. This means that c2 has a dependency on the Ts

level and should be found separately in each zone. The figure shows no dependency on
∆T .
The product model for the heating becomes

Tc,heat(tn) = Tc,heat(tn−1, Ts, c1(∆T ), dt)

Tp,heat(tn) = Tp,heat(tn−1, Tc, c2(Ts−level), dt) ,
(7.1)

where c1(∆T ) = A ·∆T + B and c2(Ts−level) is constant in each zone, but different from
zone to zone.
In the two cooling zones the model does not coincide very well with the measured product
temperature so the residue is fairly high. Therefore these data sets are inappropriate and
can not be used to test the cooling coefficients.

7.2 New product model

There are 11 coefficients in the new product model, coe = [c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11].
c1 to c5 are equivalent to the coefficients in the present product model. c6 and c7 are
the weights of the spray temperature and the product temperature respectively for the
container temperature in the gap. c8 and c9 are the weights of the spray temperature and
the product temperature respectively for the container temperature during heating. c10

and c11 are the weights of the spray temperature and the product temperature respectively
for the container temperature during cooling.
The new product model also gives nice results in the two heating zones. c1 as function of
∆T is shown on figure 7.4 and c2 as function of ∆T can be seen on figure 7.5.
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Figure 7.4: c1 as function of ∆T .
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Figure 7.5: c2 as function of ∆T .

The results for c1 and c2 for the new product model are similar to the results for c1 and c2

for the present product model. c1 does not depend on the spray temperature level but has
a linear dependency on ∆T with a positive slope. c2 depends on the spray temperature
level with the highest values for the high spray temperature level and smaller values for
the low spray temperature level. c2 does not depend on ∆T .

Beer pasteurization models March 16, 2006 39



Chapter 7 Coefficients dependency on T and ∆T

c8 as function of ∆T can be seen on figure 7.6 and on figure 7.7 c9 as function of ∆T is
shown.
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Figure 7.6: c8 as function of ∆T .

10 15 20 25 30 35
−0.1

−0.05

0

0.05

0.1

0.15

∆ T

c 9

Low T
s
 level

High T
s
 level

Figure 7.7: c9 as function of ∆T .

Most of the values of c8 are approximately 0.9 and the values of c9 are approximately 0.1
only some single values differ from these values. The values which differs from the almost
constant values are all for the low spray temperature level, but some values from the low
spray temperature level are also on the constant level, so there is no dependency on the
spray temperature level. c8 and c9 does not seem to have a dependency on ∆T .
The product model for heating becomes

Tc,heat(tn) = Tc,heat(tn−1, Ts, Tp, c1(∆T ), c8, c9, dt)

Tp,heat(tn) = Tp,heat(tn−1, Tc,−c2(Ts−level)) ,
(7.2)

where c1(∆T ) = A ·∆T + B, c2(Ts−level) is constant in each zone, but different from zone
to zone and c8 and c9 are constants.
Again the model does not coincide very well with the measured product temperature in
the two cooling zones so these data sets are inappropriate and can also not be used to
test the cooling coefficients in the new product model.
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Chapter 8

COMSOL modelling

To describe the flow and the temperature in the product during pasteurization the heat
transfer equation coupled with the non-isothermal Navier-Stokes equations are investi-
gated.
The expectations to the flow are that it during heating flows up along the side of the
container and down in the middle because the product is heated from the side. During
cooling it is expected that the flow turns and flows down along the side and up in the
middle. Because of this flow it is expected that the temperature increases from the top of
the container during heating and that the temperature decreases from the bottom during
cooling. These expectations are based on that beer behaves almost like water and when
water is above 4℃ and is heated the density decreases.
To the investigation of the flow and temperature the program COMSOL Multiphysics is
used. COMSOL uses the finite element method to solve the partial differential equations,
[8, p312–319, p328–335, p521].
Normally the finite volume method would be used to solve the Navier-Stokes equations
but in this case the velocities in the flow are so small that the finite element method can
also be used.

8.1 Partial differential equations

The partial differential equations used to the COMSOL model are the general heat transfer
equation coupled with the non-isothermal Navier-Stokes equation, [9, p121–139,p151–
166].
The general heat transfer equation through a fluid with both convection and conduction
is

δtsρCp
∂T

∂t
+∇ (−k∇T + ρCpu∇T ) = Q , (8.1)

where T is the temperature, t is the time, δts is the time scaling coefficient, k is the
thermal conductivity, ρ is the density, Cp is the heat capacity, Q is the heat source and
u = [u v] is the velocity field, where u is the r−velocity and v is the z−velocity, [2].
In this case δts = 1 as the calculations are made in seconds. Q = 0 because the added
heat is added through the boundaries. k, ρ and Cp are all functions of the temperature
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Chapter 8 COMSOL modelling

k = k(T ), ρ = ρ(T ) and Cp = Cp(T ). u and v are calculated in the Navier-Stokes equa-
tions.

The non-isothermal Navier-Stokes equations are

ρ (u∇) u = ∇
(
−pI + η

(
∇u + (∇u)T

)
−

(
2η

3
− κ

)
(∇u) I

)
+ F (8.2)

∇ (ρu) = 0 , (8.3)

where p is the pressure, η is the dynamic viscosity, κ is the dilatational viscosity and
F = [Fr Fz] is the volume force, where Fr is the volume force in the r−direction and Fz

is the volume force in the z−direction, [3, ch11,p1–10]. η is a function of the temperature
η = η(T ), κ = 0, Fr = 0 and Fz = 9.81 · (ρ(T0)− ρ(T )) which is the gravity force and has
effect as a volume force. When ρ increases the gravity force will increase in downward
direction.

The initial conditions for the partial differential equations are T (t0) = T0, u(t0) = 0,
v(t0) = 0, p(t0) = 0. The boundary conditions for the heat transfer are different depending
on the place on the boundary. On the sides and the top of the container a Dirichlet
boundary conditions is used. The boundary condition is a time depending temperature
T = Tb(t) which is equivalent to the spray temperature. In the bottom of the container
the boundary is insulated and the boundary condition is −n(−k∇T +ρCpuT ) = 0 which
is a Neumann boundary condition. The bottom is insulated because the container during
pasteurization stands on a plastic belt conveyor and this means that the bottom is not
very much affected by the surrounding temperature. The boundary conditions for the
Navier-Stokes equations on all boundaries are that the fluid’s velocity equals the velocity
of the boundaries which is 0. This is also called no slip and the boundary condition is
u = 0 which is a Dirichlet boundary condition.

The expressions for k(T ), ρ(T ), Cp(T ) and η(T ) are found from the values in table 8.1,
[10].

T [K] ρ[ kg
m3 ] Cp[

J
kgK

] η[Pas] k[ W
mK

]

273.15 999.84 4217.6 0.001793 0.5610
283.15 999.70 4192.1 0.001307 0.5800
293.15 998.21 4181.8 0.001002 0.5984
303.15 995.65 4178.4 0.0007977 0.6154
313.15 992.22 4178.5 0.0006532 0.6305
323.15 988.03 4180.6 0.0005470 0.6435
333.15 983.20 4184.3 0.0004665 0.6543
343.15 977.78 4189.5 0.0004040 0.6631
353.15 971.82 4196.3 0.0003544 0.6700
363.15 965.35 4205.0 0.0003145 0.6753
373.15 958.40 4215.9 0.0002188 0.6791

Table 8.1: Values of ρ, Cp, η and k for different values of T .
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The values in the table is for water. MATLAB’s fitting tools are used to find cubic
expressions for each of the variables as function of the temperature. The cubic expressions
are

ρ(T ) = 1.569 · 10−5T 3 − 0.018774T 2 + 6.7647T + 233.17 , (8.4)

Cp(T ) = −1.5227 · 10−4T 3 + 0.16194T 2 − 56.582T + 10691 , (8.5)

η(T ) = −2.9827 · 10−9T 3 + 3.0756 · 10−6T 2 − 0.0010615T + 0.12302 , (8.6)

k(T ) = −6.6628 · 10−9T 3 − 2.9149 · 10−6T 2 + 0.0051701T − 0.49841 . (8.7)

On figure 8.1 to figure 8.4 the values and the cubic expressions for each variable as
functions of the temperature can be seen. The figures also show the residuals for each
expression. The residuals for each expression are small compared to the size of the variable
so the expressions are fine models for the variables.
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Figure 8.1: ρ as function of T
and the residuals.

270 280 290 300 310 320 330 340 350 360 370 380

−2

0

2

residuals

270 280 290 300 310 320 330 340 350 360 370 380

4180

4190

4200

4210

4220

C
p
(T)

T

C
p

C
p
 data

   cubic

Figure 8.2: Cp as function of T
and the residuals.
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Figure 8.3: η as function of T
and the residuals.
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Figure 8.4: k as function of T
and the residuals.
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8.2 Data entry for making the COMSOL model

Before the actual model in COMSOL is made a .txt-file with the boundary temperatures
as function of time must be made. The file should look like

0 295.0

1 295.004

2 295.00899999999996

3 295.0265

4 295.04999999999995

. .

. .

. .

where the times stand to the left and the matching temperatures stands to the right. It
is not necessary to have a time and a temperature for all times because the temperatures
are interpolated.

Then the model in COMSOL can be made.

Because the containers are cylindrical it is assumed that the geometry of the container
is axisymmetric. This means that there are variations in the radial r and the vertical z
direction only and not in the angular θ direction.

In the Model Navigator the Space dimension is set to Axial symmetry (2D) and Multiphysics
is chosen. Under the Heat Transfer Module the General Heat Transfer (GHT) and the
Non-Isothermal Flow (NIF) is added to the same geometry.

Then the container is drawn in Draw Mode. COMSOL works with SI-units so the r− and
z-axis are in meters. Because axial symmetry is used only half of the container should be
drawn from r = 0 to r equal to the width of the container and from z = 0 to z equal the
height of the container.

Under the Solve menu in the menu bar Solver Parameters is chosen. Here Analysis is set to
Transient, the Solver is set to Time dependent and under General in the Time stepping area
the output Times are entered as a vector and should be in seconds. The default values
are used for the tolerances.

Under the Mesh menu in the menu bar Mesh Parameters is chosen. Here the Predefined
mesh sizes is chosen to be empty, Maximum element size is set to 0.008, Maximum element
size scaling factor is set to 1, Element growth rate is set to 1.2, Mesh curvature factor is
set to 0.3, Mesh curvature cut off is set to 0.001 and Resolution of narrow regions is set
to 1. Mesh geometry to level is chosen to Subdomain and Refinement method is chosen to
Regular. Then the mesh is made. In the top of the container the mesh should be refined.

Under the Multiphysics menu in the menu bar it is possible to switch between the General
Heat Transfer and the Non-Isothermal Flow.

In the Subdomain Settings for the GHT both the conductive and the convective heat transfer
are enabled. Under Conduction δts is set to 1, k (isotopic) is set to k(T ), ρ is set to rho(T ),
Cp is set to Cp(T ) and Q is set to 0. These values are automatically set under Convection
so here it is only necessary to set u to u and v to v. Under Init T (t0) is set to T0.

In the Subdomain Settings for the NIF ρ is set to rho(T ), η is set to eta(T ), κ is set to 0,
Fr is set to 0 and Fz is set to 9.81 ∗ (rho(T0)− rho). Under Init u(t0), v(t0) and p(t0) are
all set to 0.

In the Subdomain Settings for both GHT and NIF it is not necessary to change anything
under Element.
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In the Boundary Settings for GHT the vertical boundaries at r = 0 is set to Axial symmetry,
the boundary in the bottom of the container is set to Thermal insulation and the other
boundaries on the side and the top of the container is set to Temperature and T0 is set to
Tb(t).
In the Boundary Settings for NIF the vertical boundaries is again set to Axial symmetry.
All the other boundaries are set to No slip.
In the Point Settings for NIF the Point constraint is used for the point for r equal to the
width of the container and z = 0 and p0 for this point is set to 0. Nothing needs to be
changed for the other points.
Under the Options menu in the menu bar Expressions and Scalar Expressions is chosen.
Here the name T0 is written under Name and the value of T0 is written under Expression
Under the Options menu in the menu bar Functions is chosen. A new function with the
Function name Tb is made as Interpolation with Use data from File and then finding the
.txt-file with the boundary temperatures. The Interpolation method should be Linear, the
Extrapolation method should be Constant and the Value outside range should be NaN (not
a number). New functions with the Function name rho, eta, k and Cp respectively are
made for each of the expressions by using Analytic. Then Arguments for all four functions
are set to T and Expression is set to the respective expression from the expressions (8.1)
to (8.4).
Then the model can be solved by starting the solver.

Beer pasteurization models March 16, 2006 45



Chapter 8 COMSOL modelling

8.3 Results from COMSOL

Three different models are made in COMSOL, one model with the small can, one model
with the large can and one model with a glass ”can”.

8.3.1 Results for the small can

The model for the small can is made with the following data. As the boundary tem-
perature as function of time a measured spray temperature from an experiment saved
in the file tb17a.txt is used. The initial temperature is T0 = 295.0 and the time is
0 ≤ t ≤ 2300. The model is solved on the mesh on figure 8.5 and the solution time is
approximately 9.5h on the DTU system.

Figure 8.5: The mesh on which the COMSOL model for the small can is solved.

The mesh consist of 4308 elements where as 280 are on the boundaries. The mesh is finer
at the boundaries and the top of the can because the heating/cooling affects the product
from the boundaries and the interesting phenomena occurs at the top. On figure 8.6 the
temperatures as function of time in nine points on the axisymmetric boundary of the
small can on figure 4.1 is shown together with the spray temperature from tb17a.txt at
the point (0.032, 0.108).
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Figure 8.6: Temperatures at r = 0 and the spray temperature as functions of time for the
small can.

The points on the legend are rounded automatically by COMSOL and should be (0, 0.015),
(0, 0.025), (0, 0.035), (0, 0.045), (0, 0.055), (0, 0.065), (0, 0.075), (0, 0.085), (0, 0.095) and
(0.032, 0.108). The points at r = 0 corresponds to points in the middle of the 3D can. On
figure 8.7 and figure 8.8 there is zoomed in on zone 3 and zone 4 respectively, the spray
temperature is not plotted on these figures.

Figure 8.7: Temperatures as func-
tion of time zoomed in on zone 3.

Figure 8.8: Temperatures as func-
tion of time zoomed in on zone 4.
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As it can be seen the temperatures behave regular during the two first zones which are
heating zones. The temperature is highest at the top of the can and decreases down
through the can. In the two cooling zones the behavior of the temperatures are irregular.
The temperatures make some leaps where some of the temperatures suddenly fall and
then gets up again. When the product temperature approaches the spray temperature
the highest product temperatures are again at the top of the can and the temperature
decreases down through the can.
The product temperatures for the 2D cross section of the half can are plotted for the
times t = 50, t = 250, t = 470, t = 960, t = 970, t = 980, t = 1000, t = 1100, t = 1610,
t = 1630, t = 1850 and t = 2000 and are shown on figure 8.9 and figure 8.10. Note that
the temperature interval for each time is different.

Time=50 Time=250 Time=470

Time=960 Time=970 Time=980

Figure 8.9: Temperatures in the small can for the times t = 50, t = 250, t = 470, t = 960,
t = 970 and t = 980. Note that the temperature interval for each time is different.

The two first plots on figure 8.9 for t = 50 and t = 250 are for the first heating zone
and here the temperature increases from the top of the can and down to the bottom. At
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t = 470 the can has just entered the second zone and here the temperature also increases
from the top of the can. At t = 960 the can has just entered the third zone which is a
cooling zone and at t = 970 and t = 980 the cooling is started. The temperature decreases
from the bottom for the can but much more disordered than the cooling. It looks like the
cooled product runs down along the side of the can and then splashes up when it reaches
the bottom. At t = 1000 there is a cold liquid drop which goes down in the middle of the
can almost to the bottom. It is drops like this which is responsible for the leaps on figure
8.6 to figure 8.8. At t = 1610 the can has just entered the fourth zone. The behavior in
this cooling zone is the same as for zone 3. The only difference is that the drops in the
middle of the can do not reach as far to the bottom. There are also liquid drops in the
top of the can away from the middle.

Time=1000 Time=1100 Time=1610

Time=1630 Time=1850 Time=2000

Figure 8.10: Temperatures in the small can for the times t = 1000, t = 1100, t = 1610,
t = 1630, t = 1850 and t = 2000. Note that the temperature interval for each time is
different.

On figure 8.11 and figure 8.12 the velocity fields are shown with arrows for the same times
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as the temperatures. All arrows have the same length.

Time=50 Time=250 Time=470

Time=960 Time=970 Time=980

Figure 8.11: Velocity field plotted with arrows in the small can for the times t = 50,
t = 250, t = 470, t = 960, t = 970 and t = 980.

At t = 50 and t = 250 the heating in the first zone is in progress. The velocity field
flows up along the side of the can and flows down in the middle. This is as expected
because the product is heated from the sides so the product along the sides gets hotter
than in the middle and thereby the density gets smaller and the product flows upwards.
At t = 470 the can has just entered the second zone and a little disorder occurs in the
top of the can. This disorder does not affect the temperature very much. At t = 960 the
cooling is just started. In the beginning of the cooling the velocity field turns around so
the cold product along the side of the can flows downwards to the bottom and then forces
the hotter product up in the middle. Very quickly the regular flow gets disordered in
the top and the bottom of the can where substructures with opposing flow occur and the
product starts to flow down in the middle. After a while in the cooling zone at t = 1100
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the regular flow is back with only small substructures with opposing flow at the top. At
t = 1610 the can has just entered the fourth zone. The velocity field behaves like in the
third zone. The flow gets disordered again and after a while the flow is regular again with
only small opposing flows.

Time=1000 Time=1100 Time=1610

Time=1630 Time=1850 Time=2000

Figure 8.12: Velocity field plotted with arrows in the small can for the times t = 1000,
t = 1100, t = 1610, t = 1630, t = 1850 and t = 2000.

On figure 8.13 and figure 8.14 the velocity fields are shown as a contour plot for the same
times as the temperatures and the velocity fields with arrows. Note that the velocity
interval for each time is different.
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Time=50 Time=250 Time=470

Time=960 Time=970 Time=980

Figure 8.13: Velocity field plotted as contour plot in the small can for the times t = 50,
t = 250, t = 470, t = 960, t = 970 and t = 980. Note that the velocity interval for each
time is different.

The figures with the contour plots are made to show the order of the velocity field. The
largest velocity on the plots is 5.8 · 10−2 m

s
. During the heating zones for the times t = 50,

t = 250 and t = 470 the velocity is largest near the side of the can. When the disordered
substructures with opposing flows occurs in the middle of the can the largest velocity is
in these flows and also still near the sides.
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Time=1000 Time=1100 Time=1610

Time=1630 Time=1850 Time=2000

Figure 8.14: Velocity field plotted as contour plot in the small can for the times t = 1000,
t = 1100, t = 1610, t = 1630, t = 1850 and t = 2000. Note that the velocity interval for
each time is different.
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8.3.2 Results for the large can

The model for the large can is made with the following data. As the boundary temperature
as function of time a measured spray temperature from an experiment saved in the file
tb19a.txt is used. The initial temperature is T0 = 294.6 and the time is 0 ≤ t ≤ 3700.
The solution time is approximately 12h on the DTU system. The model is solved on the
mesh on figure 8.15.

Figure 8.15: The mesh on which the COMSOL model for the large can is solved.

The mesh consist of 6014 elements where as 364 are on the boundaries. On figure 8.16
the temperatures as function of time in the 10 points on the axisymmetric boundary of
the large can on figure 4.1 is shown together with the spray temperature from tb19a.txt

at the point (0.04, 0.142).
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Figure 8.16: Temperatures at r = 0 and the spray temperature as functions of time for
the large can.

Here the points should be (0, 0.119), (0, 0.109), (0, 0.099), (0, 0.089), (0, 0.079), (0, 0.069),
(0, 0.059), (0, 0.049), (0, 0.039), (0, 0.029) and (0.032, 0.108). On figure 8.17 and figure
8.18 there is zoomed in on zone 3 and zone 4 respectively, the spray temperature is not
plotted on these figures.

Figure 8.17: Temperatures as func-
tion of time zoomed in on zone 3.

Figure 8.18: Temperatures as func-
tion of time zoomed in on zone 4.
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As it can be seen on the figures the temperatures in the points in the middle of the large
can behave like in the small can. The only difference is that the process is slower for
the large can so the timescale is different. The product temperature behavior is regular
during the two heating zones and has some leaps after entering the cooling zones. After
a while in the cooling zones the behavior of the temperature gets regular again.
The product temperatures for the 2D cross section of the half can are plotted for the times
t = 100, t = 600, t = 970, t = 1620, t = 1640, t = 1650, t = 1730, t = 1900, t = 2575,
t = 2590, t = 2700 and t = 3000 and are shown on figure 8.19 and figure 8.20. Note that
the temperature interval for each time is different.

Time=100 Time=600 Time=970

Time=1620 Time=1640 Time=1650

Figure 8.19: Temperatures in the large can for the times t = 100, t = 600, t = 970,
t = 1620, t = 1640 and t = 1650. Note that the temperature interval for each time is
different.

The times are selected so that the temperature plots correspond to the temperature plots
for the small can to show the similarities. The temperatures look very similar to the
temperatures in the small can. In the heating zones the temperature increases from the
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top of the can and down to the bottom. In the cooling zones the temperature decreases
from the bottom of the can and to the top. The cooling is more disordered than the
heating.

Time=1730 Time=1900 Time=2575

Time=2590 Time=2700 Time=3000

Figure 8.20: Temperatures in the large can for the times t = 1730, t = 1900, t = 2575,
t = 2590, t = 2700 and t = 3000. Note that the temperature interval for each time is
different.

On figure 8.21 and figure 8.22 the velocity fields are shown with arrows for the same times
as the temperatures.
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Time=100 Time=600 Time=970

Time=1620 Time=1640 Time=1650

Figure 8.21: Velocity field plotted with arrows in the large can for the times t = 100,
t = 600, t = 970, t = 1620, t = 1640 and t = 1650.

The velocity fields for the large can also look very similar to the velocity field for the
small can. In the heating zones the velocity field flows up along the side of the can and
flows down in the middle. When the cooling begins the flow turns around and flows down
along the side and up in the middle. In the beginning of the cooling zones substructures
with opposing flows occurs in the top and bottom of the can. When the can has been in
a cooling zone in a while the flow gets regular again with only small opposing flows in the
top.
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Time=1730 Time=1900 Time=2575

Time=2590 Time=2700 Time=3000

Figure 8.22: Velocity field plotted with arrows in the large can for the times t = 1730,
t = 1900, t = 2575, t = 2590, t = 2700 and t = 3000.

On figure 8.23 and figure 8.23 the velocity fields are shown as contour plots for the same
times as the temperatures and the velocity fields with arrows.
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Time=100 Time=600 Time=970

Time=1620 Time=1640 Time=1650

Figure 8.23: Velocity field plotted as contour plot in the large can for the times t = 100,
t = 600, t = 970, t = 1620, t = 1640 and t = 1650. Note that the velocity interval for
each time is different.

The velocity fields as contour plot are made to show the order of the velocities. The
maximum velocity on the plots is 5.4 · 10−2 m

s
. As for the small can the velocity in the

large can is largest near the side of the can during heating. During cooling the largest
velocities are still near the side but also in the substructures with opposing flows.
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Time=1730 Time=1900 Time=2575

Time=2590 Time=2700 Time=3000

Figure 8.24: Velocity field plotted as contour plot in the large can for the times t = 1730,
t = 1900, t = 2575, t = 2590, t = 2700 and t = 3000. Note that the velocity interval for
each time is different.

8.3.3 Other results

There was made an attempt to make a model with air in the top of the cans. A small
subdomain was drawn in the top of the can and the material coefficients for air from the
material library in COMSOL was used on this subdomain. During this thesis it was not
possible to solve this model in COMSOL.

A model of a glass ”can” was made. A subdomain around the existing boundaries was
drawn and the material coefficients for glass from COMSOL were used on this subdomain.
The results were very similar to the results for the normal can without glass. The only
difference was that the heat transfer was slower than for the normal can because the heat
the cold had to go through the glass first. The results for the glass ”can” are not shown
because they are practically the same as the results for the cans.
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8.3.4 Summary

The results for the small can, the large can and the glass ”can” are very similar. The only
difference is the timescale. During the heating zones the product temperature increases
regular from the top of the can to the bottom and the velocity field flows up along the side
of the can and down in the middle. In the beginning of the cooling zones the flow turns
around and flows down along the side and up in the middle. Very quickly this regular
flow gets more irregular and substructures with opposing flow occurs. After a while in the
cooling zones the flow again gets more regular and only small substructures with opposing
flows occurs in the top of the can.
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8.4 Investigation of the mean temperature

To get an idea of where in the container the mean temperature should be measured the
solutions from COMSOL are used. When the product temperature is measured in the
experiments this is always done in the middle of the container which corresponds to the
symmetric axis.
The solution data on a 10×10 grid for each time from COMSOL is exported to MATLAB.
From these data the mean temperatures Tmean for each time are found. Solution data on
the axisymmetric boundary is also exported to MATLAB. These data corresponds to the
product temperature Tp down in the middle of the container.
The differences between the mean temperature and the temperatures in the middle of the
container are plotted as function of time with different colors depending on the height h,
measured in cm from the bottom in the container where each temperature is found. The
closer Tmean − Tp is to 0 the closer Tp is to Tmean.
The result for the small can can be seen on figure 8.25.
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Figure 8.25: The difference between the mean temperature Tmean and the product tem-
perature Tp in the middle of the small can.

The figure shows that Tmean − Tp = 0 lies in the yellow area almost all the time except
for very small time periods which is in the beginning of each zone. In the end of zone
2 Tmean − Tp = 0 is on the boundary between the yellow and the blue area. The yellow
area corresponds to 4.5 ≤ h < 6. The small can is 10.8cm high so 4.5 ≤ h < 6 is in the
middle of the height of the can. If the mean product temperature should be measured
the middle of the height would be a good place.
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On figure 8.26 the result for the large can is shown. Note that the colors now correspond
to different height intervals.
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Figure 8.26: The difference between the mean temperature Tmean and the product tem-
perature Tp in the middle of the large can.

The result on the figure is similar to the result for the small can. Tmean−Tp = 0 lies in the
yellow area almost all the time except in the beginning of the zones. In the end of zone
1 and zone 2 Tmean − Tp = 0 is on the boundary between the yellow and the blue area.
Also in the large can the mean product temperature should be measured in the middle of
the height of the can.

As mentioned earlier there is air in the top of the real cans. This means that the mean
product temperature should be measured in the middle of the height of the product in
the can and not in the middle of the height of the can.
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Comparisons between measured data and
results from COMSOL

The figures 5.1 and 5.8 which shows the measured product temperature as function of
time from data sets and the figures 8.6 and 8.16 which shows the calculated product
temperatures as function of time from COMSOL are very similar. They are all very
regular during the heating zones and do all have leaps in the beginning of the cooling
zones. The temperatures from COMSOL has more leaps than the measured temperature.
The reason for this is that there is air in the top of the real can in the experiments but it
was not possible to model this air in COMSOL during the work with this thesis. The air
means that there is no contact between the can and the product in the top of the can and
this causes that the heat transfer has to go through the air. The air insulates the water
a little bit against the heat from the top.
Another difference on the two types of figures is that the product temperature down
through the can varies more on the figures from COMSOL than on the figures made from
the data sets. This is due to the fact that the models from COMSOL are made with values
for water but the figures 5.1 and 5.8 are for cans with beer. On figure 5.20 the product
temperature from a data set made in water is shown. On this figure the temperature
down through the can also varies more than on the two figures for beer. So this difference
is due to that values for water is used instead of values for beer.
The COMSOL model with glass gives almost the same results as without the glass. This
is not what figure 5.15 from a bottle shows. This figure shows that the temperatures in
the glass bottle do not make the leaps in the cooling zones. The difference between the
experiment and the COMSOL model is due to that it was not possible to model the air
in the top of the container. If this had been possible the glass would have made the heat
transfer slower and the air would have insulated the product from the heat and cold. The
results from a model with air and glass would probably have coincided with the result
from figure 5.15.
Another difference on the results from COMSOL and the results from experiments is that
axisymmetry is used in COMSOL. Because this is not exactly the case in the experiments
in the pasteur, the results which appears on the axisymmetric boundary in COMSOL
could appear anywhere in the container in the experiments.
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Chapter 10

Relation to the regulation of the pasteurs and
future work

The implementation of the models is stable and gives good results with a perturbation
on 0.001 or smaller if the initial values for the coefficients are in the found intervals.
The new product model is better than the present product model but it should be taken
in to the considerations that the new model is more sensitive to irregularities in the
measurements in the data sets.
The new spray temperature in the gaps from function (6.1) should be implemented and
tested in a real pasteur because it might give better results because the containers in the
real pasteurs spend a larger part of the total time in the gaps.
The coefficients in the models dependency on the spray temperature level and the differ-
ence between the spray temperature in two neighboring zones should be implemented to
see if the results are better than before.
The mean product temperature can be measured in the middle of the height of the product
in the cans.
The substructure with opposing flows which appears during the cooling zones means that
the product gets cooled bit faster than expected because the is more flow in the product.
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Chapter 11

Conclusion

In this thesis the implementation of two product models was examined. The perturbation
which is used to find the Jacobian matrix in the implementation was investigated and it
was found that the value used in the preproject, was a good perturbation because it gave
good result. If the value is larger, the new product model gives bad results. The value
can be smaller for both models. So as long as the perturbation is equal to or smaller than
the found value the implementation of both models gives good and reliable results.

The initial values for the coefficients in both models were tested and intervals for each
initial value were found. When the initial values for the coefficients are inside these in-
tervals the results from the implementation are reliable.

The initialization of the two models in the implementation was also tested. Before the
test the implementation gave the same product temperature in the first step as the initial
product temperature. The reason for this was found and a new implementation of both
models was tested. For the present product model there was no change in the results.
For the new model the results with the new implementation was bad. Therefore the ini-
tialization and the implementation should be maintained.

The spray temperature which the container experiences while being transported through
the pasteur was examined. In the spray zones the current spray temperature coincided
with the measured temperature. In the gaps a new modelled spray temperature was
tested for both models. The new spray temperature in the gaps basically gave the same
results as the other spray temperature in the gaps. This is because the container spends
very short time in each gap in relation to the time it spends in the spray zones.

The coefficients dependency on the spray temperature level and the difference between
the spray temperature in two neighboring zones was analyzed. The model coincided very
bad with the data sets in the cooling zones so the available data sets were inappropriate to
this investigation. For both models in the heating zones it was found that c1 has a linear
dependency on ∆T but does not depend on the spray temperature level, c2 depends on
the spray temperature level but does not have a dependency on ∆T . For the new model
the coefficients c8 and c9 neither have a dependency on the spray temperature level nor
∆T .
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Chapter 11 Conclusion

The flow and the temperature during the pasteurization were investigated. During the
heating zones the flow and temperature behaved as expected. The flow and tempera-
ture showed some unknown phenomena during the cooling zones with some substructures
with opposing flows. These unknown phenomena were verified by experiments. The mean
product temperature was found to be in the middle of the height of the product in the cans
almost all the time so this would be a good place to measure in mean product temperature.

Thus it can be concluded that all purposes of this thesis were investigated and that much
greater knowledge about the pasteurization process is achieved. It proved possible to
improve the existing models and it should thereby be possible to make a better regulation
of the pasteurs.
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