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Abstract

Current web search engines generally do not enable searches into audio files. Informative
metadata would allow searches into audio files, but producing such metadata is a tedious
manual task. Tools for automatic production of metadata are therefore needed. This project
investigates methods for audio segmentation and speech recognition, which can be used for
this metadata extraction.

Classification models for classifying speech and music are investigated. A feature set con-
sisting of zero-crossing rate, short time energy, spectrum flux, and mel frequency cepstral
coefficients is integrated over a 1 second window to yield a 60-dimensional feature vec-
tor. A number of classifiers are compared including artificial neural networks and a linear
discriminant. The results obtained using the linear discriminant are comparable with the
performance of more complex classifiers. The dimensionality of the feature vectors is de-
creased from 60 to 14 features using a selection scheme based on the linear discriminant. The
resulting model using 14 features with the linear discriminant yields a test misclassification
of 2.2%.

A speaker change detection algorithm based on a vector quantization distortion (VQD)
measure is proposed. The algorithm works in two steps. The first step finds potential
change-points and the second step compensates for the false alarms produced by the first
step. The VQD metric is compared with two other frequently used metrics: Kullback Leibler
divergence (KL2) and Divergence Shape Distance (DSD) and found to yield better results.
An overall F-measure of 85.4% is found. The false alarm compensation shows a relative
improvement in precision of 59.7% with a relative loss of 7.2% in recall in the found change-
points. The choice of parameters based on one data set generalize well to other independent
data sets.

The open source speech recognition system SPHINX-4 is used to produce transcripts of the
speech segments. The system shows an overall word accuracy of ∼ 75%.
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Resumé

Nuværende web-søgemaskiner muliggør ikke direkte søgning i lydfiler. Informativt metadata
kunne gøre det muligt at søge i lydfiler, men fremstilling af metadata er en langsommelig
opgave, hvilket taler for at anvende automatiske metoder til at udtrække disse data. Dette
projekt undersøger metoder til segmentering af lyd og talegenkendelse, hvilket kan bruges
til at producere de omtalte metadata.

Klassifikationsmodeller til klassificering af tale og musik undersøges. Ved at integrere et
sæt ’features’, best̊aende af nulpunktskrydsninger, kort-tids energi, spektrum flux og mel
kepstrale koefficienter, over et sekund konstrueres et 60-dimensionalt feature-sæt. Et antal
klassificeringsmodeller undersøges, heriblandt kunstige neurale netværk og lineære diskrim-
inanter. Resultaterne viser at den lineære diskriminant opn̊ar lige s̊a gode resultater som
mere komplicerede klassificeringsmodeller. Dimensionaliteten af feature sættet bliver for-
mindsket fra 60 til 14 features ved at benytte en udvælgelsesmetode baseret p̊a den lineære
diskriminant. Den endelige model, der benytter 14 features med den lineære model, opn̊ar
en fejlklassifikation p̊a 2,2%.

En talerskift-detekterings-algoritme baseret p̊a et ’vector quantization distortion’ (VQD)-
m̊al bliver foresl̊aet. Algoritmen er opdelt i to trin. Første trin finder potentielle talerskift
og andet trin kompenserer for de falske positiver, der bliver introduceret i første trin. VQD-
m̊alet bliver sammenlignet med de to andre ofte brugte m̊al: Kullback-Leibler divergens
(KL2) og ’Divergence Shape Distance’ (DSD). VQD overg̊ar de to andre. Forsøgene med
VQD giver et F-m̊al p̊a 85.4%. Metoden til at mindske antallet af falske positiver giver en
relativ forbedring i præcision p̊a 59.7% med et fald i antallet af fundne taler-skift p̊a 7.2%
relativt. Parametrene valgt ud fra ét data sæt generaliserer godt til andre uafhængige sæt.

Open-source talegenkendelsessystemet SPHINX-4 bliver brugt til at generere transskrip-
tioner af talesegmenterne. Systemet giver en overordnet ord-nøjagtighed p̊a ∼ 75%.
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Chapter 1

Introduction

The amount of audio available in different databases on the Internet today is immense.
Successful access to such large amounts of data requires efficient search engines. Traditional
web search engines, such as Google, are often limited to text and image indexing, thus many
multimedia documents, video and audio, are excluded from these classical retrieval systems.
Even systems that do allow searches for multimedia content, like AltaVista and Lycos, only
allow queries based on the multimedia filename, nearby text on the web page containing
the file, and metadata embedded in the file such as title and author. This might yield some
useful results if the metadata provided by the distributor is extensive. Producing this data
is a tedious manual task, and therefore automatic means for creating this information is
needed.

Today many radio stations provide entire news or talk shows in form of podcasts or streaming
services, with general headlines of the content. In general no detailed index of the file is
provided, which makes it time consuming to look for the part of interest.

The optimal division of radio shows, such as broadcast news, debate programs, and music
programs, should be based on the topics covered in each part. Such a division requires that
it is possible extract topics and the parts related to this topic. Topic detection requires
transcription of the speech parts of the audio, but adding audio cues would aid in retrieving
coherent segments.

Adding audio cues is done by segmenting the audio based on the characteristics of the audio
stream. The segments generated can then be summarized on basis of the type of audio.

• Music clips would be described by genre and artist.

• Speech summaries naturally and would consist of identities of speakers and a tran-
scription of what is said.



2 Introduction

Below we will present some of the efforts that have been done to access audio files and
spoken documents in particular.

1.1 Audio Retrieval Systems

Research in audio retrieval has mainly been focused on music and speech. Music retrieval
has focused on quantifying different characteristics of the music such as mood, beat, and
other characteristics to classify genre or find similarities between songs. This area is not the
focus of this thesis and will not be covered further.

Approaches to spoken document retrieval have included automatic broadcast news tran-
scription and other speech retrieval systems. These system are described below.

1.1.1 Automatic Broadcast News Transcription

Broadcast news transcription has been heavily researched and is considered to be the most
demanding assignment in speech recognition, as the speakers and conditions vary much in
the course of a news show. The speakers range from anchor speaking in an ideal environment
to reporters speaking from noisy environments on an non-ideal telephone line. Non-native
English speakers make the problem even more challenging. The shows often use music
between different parts of the show and in the background of speakers.

These systems therefore often include a segmentation preprocessor, that removes the non-
speech parts and finds segments with homogenous acoustical characteristics. In this way
the speech recognizers can be adjusted to the differing acoustical environments. Solving the
task has required advances in both preprocessing and speech decoding.

The performance of these systems are evaluated in annual Rich Transcription workshops
arranged by [NIST, 2005]. The participants include commercial groups such as IBM and
BBN and academical groups such as LIMSI and CU-HTK, whose systems are described in
[Gauvain et al., 2002] and [Johnson et al., 2001], respectively. The aim of these projects is
not directly audio indexing, but to transcribe the spoken words as precisely as possible. As
mentioned above the systems incorporate audio classification to identify acoustically similar
parts of the audio. The classification is done so the recognition engines can be optimized
for female/male speakers, or narrow-/wideband channels, i.e. telephone or studio speech.

1.1.2 Speech Retrieval Systems

More retrieval oriented projects have also been developed in recent years. One approach
to access audio data (more or less derived from the broadcast news transcription efforts)
is presented in [Van Thong et al., 2002] namely the Speechbot-service. The system was
designed to index and transcribe a number of radio shows streamed from the Internet.

http://www.research.ibm.com/hlt/
http://www.bbn.com/
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The Speechbot-service is not using segmentation based on characteristics of the speech
stream, which means that the results are very long transcripts without any indication of
speaker turns. Instead the transcripts are indexed using a text-indexing engine to facilitate
user queries. The result of a query is the place in the transcript were the match is found. For
users to hear the part of the radio show returned by the query that is found, the group has
implemented a way to align the very long transcripts with the audio by assigning time marks
for every word very accurately. This service has only been running on an experimental basis
and was closed at the beginning of November 2005.

The SpeechFind project [Hansen et al., 2005] is a recent project that takes up speech retrieval
on a very large scale. The project is a part of the National Gallery of the Spoken Word that
contains speech recordings going back to the 19th century1. The project includes research
in metadata collection, audio segmentation, and speech recognition to produce segmented
transcripts that are searchable. Because of the very large scale of the database (as much as
60,000 hours of data) efficiency of the algorithms and automating the indexing are focus-
points of the research. The sound quality of the recordings varies greatly. Therefore another
important topic for this project is to improve noise robustness of speech recognition and
apply different speech analysis techniques such as accent recognition.

1.2 Segmentation Approaches

The segmentation approaches used in the systems mentioned above and in other retrieval
systems cover a wide range of methods. In general the methods can be divided into two
groups: audio classification and change detection. These approaches have different attributes
that qualify them for different uses as presented below.

1.2.1 Audio Classification

As mentioned above the typical first part of a speech retrieval system concerns identifying
different audio classes. The four main classes considered are speech, music, noise, and
silence but depending on the application more specific classes such as noisy speech, speech
over music, and different classes of noise, have been considered.

The task of segmenting or classifying audio into different classes has been implemented
using a number of different schemes. Following the paper by [Saunders, 1996] a multitude
of approaches have been proposed. Two aspects that must be considered are feature and
classification model selection.

Different features have been proposed, based on different observations on the characteristics
that separate speech, music and other possible classes of audio. The features are generally
divided on basis of the time horizon they are extracted.

The simplest features proposed include time domain and spectral features. Time domain

1The recordings include some of Edison’s first cylinder disks ranging over famous recordings such as ”A
small step for man...” to recent presidential speeches
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features typically represent a measure of the energy or zero crossing counts.

Cepstral coefficients have been used with great success in speech recognition systems, and
subsequently have shown to be quite successful in audio classification tasks as well [Gauvain
et al., 2002]. Other features have also been proposed based on psychoacoustic observations,
see e.g., [McKinney and Breebaart, 2003].

The other aspect to be considered is the classification scheme to use. A number of classifica-
tion approaches have been proposed, that can be be divided into rule-based and model-based
schemes. The rule-based approaches use some simple rules deducted from the properties of
the features. As these methods depend on thresholds, they are not very robust to changing
conditions, but may be feasible for real-time implementations.

Model-based approaches have included Maximum A Posteriori (MAP) classifiers, Gaus-
sian Mixture Model (GMM), K-nearest-neighbor (K-NN), and linear perceptrons. Another
approach in this context is to model the time sequence of features, or the probability of
switching between different classes. Hidden Markov Models (HMM) take this into account.

1.2.2 Speaker Change Detection

Another approach to identify homogenous audio segments could be done by performing
event detection.

Indexing the speech segments produced by audio classification into homogenous speaker seg-
ments is a natural part of an audio retrieval system. The indexing task has an impact on the
performance of speaker dependent speech recognizers. This will allow the system to adapt
its acoustic model to the given speaker and/or environment and thereby improve recognition
performance. Indexing speech streams into speaker turns also eases the readability of the
transcriptions made by an automatic transcription system.

Approaches to speaker change detection can be divided into supervised and unsupervised
methods. If the number of speakers and identities are known in advance, supervised models
for each speaker can be trained, and the audio stream can be classified accordingly. If the
identities of the speakers are not known in advance unsupervised methods must be employed.

Unsupervised speaker change detection approaches can roughly be divided into two classes,
namely energy-based and metric-based:

Energy-based methods rely on thresholds in the audio signal energy. Changes are found at
silence-periods. In broadcast news the audio production can be quite aggressive, with only
little if any silence between speakers, which makes this approach less attractive.

Metric-based methods basically measure the difference between two consecutive frames that
are shifted along the audio signal, with some minor variations. A number of distance mea-
sures have been investigated based on different parametric methods.
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Figure 1.1: Overview of the system developed in this project. The audio is first
classified to obtain segments containing either music or speech. The speech parts
can then be segmented based on speaker changes. Finally the speech is transcribed,
for each speaker segment.

A final approach proposed by [Kemp et al., 2000, Kim et al., 2005] is to develop hybrid-
methods that use unsupervised methods to make an initial partitioning. Subsequently these
segments are used to make models for re-segmentation.

1.2.3 Speech Recognition

Transcription of the segmented speech is done using an automatic speech recognition system.
Large vocabulary, speaker independent speech recognition has been widely researched in the
last decades and many freely available systems have been developed.

The efforts in broadcast news transcription have addressed speech recognition in noisy and
other non-ideal environments. The results from these efforts can therefore be used in our
context.

Large vocabulary speech recognition systems are typically implemented using Hidden Mar-
kov Model-based decoding but refinements and optimizations to these schemes are developed
continuously.

1.3 Project Description

The objective of this project is to make a system that can provide metadata for audio
documents. In this way the audio documents can be searched using current search engines.
The project will focus especially on speech. Spoken documents often deal with numerous
different topics. To aid in finding well-defined topic boundaries, different audio cues can be
used. The aim of this project is to investigate initial methods for this task.

The project will deal with three distinct methods for producing metadata for audio docu-
ments. The parts of the system are shown in figure 1.1.

The first part of the system will perform audio classification. Audio classification is used
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to perform an initial segmentation especially focused on extracting speech from the audio
stream. This aim of this classification is to split the audio into speech and music segments.
We will especially investigate which features should be used and how they should be repre-
sented for the classification task. Given a number of features we will look into a number of
different classifiers.

The next part concerns segmentation of speech into segments containing one speaker. In
addition to provide an useful indexing, this should also improve the performance of the
speech recognition and help the readability of the produced transcription. The change
detection part will look into metric based methods used for this domain.

The last part of the system will obtain transcriptions of the speech segments using an
automatic speech recognition system. As mentioned above, numerous speech recognition
systems have been developed, and the implementation is a comprehensive task. Therefore
an existing system will be employed.

The project will focus on broadcast news shows. The system should be able to generalize
to a broad number of channels, i.e., the system will not be adapted to a single radio station
or employ any kind of assumptions on speaker identities.

1.4 Report Overview

Our investigation of the problem is split into three parts, resembling the organization in
figure 1.1. The three parts will be investigated, implemented, and evaluated separately.
Because of this separation each chapter will be introduced with a presentation of previous
work in the corresponding field. Initially though, we will introduce the features as they are
common for the three parts. Finally the system will be combined to show the application
on an example. The chapters include:

Chapter 2 - Feature Extraction:

The feature extraction will be covered collectively in this chapter as the features
are reused in the following three tasks.

Chapter 3 - Audio Classification:

Presents audio classification. Features are evaluated for the task and a number of
classifiers are tested to find an appropriate setup.

Chapter 4 - Speaker Change Detection:

Presents the methods used to segment the speech parts to find speaker changes
in the audio stream.

Chapter 5 - Speech Recognition:

This chapter presents state-of-the-art speech recognition. Speech recognition en-
gines in general and the system chosen for this system is described, and the setup
of the system is reviewed.

Chapter 6 - Full System Example:

Presents the performance of the combined system using an example.
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Chapter 7 - Conclusion:

Gives the conclusion and further work.
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Chapter 2

Feature Extraction

Feature extraction is a very important issue to get optimal results in our application. Ex-
tracting the right information from the audio increases the performance of the system and
decrease the complexity of subsequent algorithms.

Generally applications require different features enhancing the characteristics of the problem.
The features considered in this project are zero-crossing rate, short-time energy, spectrum
flux, and mel-weighted cepstral coefficients. These features will be used for the audio classifi-
cation part. For the speaker change detection and speech recognition only the mel-weighted
cepstral coefficients will be used.

In this chapter the features will be described and illustrated through an example, where the
features are extracted from speech and music samples.

2.1 Audio Preprocessing

The type of signals we are dealing with, namely speech and music, are so called quasi-
stationary signals. This means that they are fairly stationary over a short period of time.
This encourages the use of features extracted over a short time period.

In this project the audio used is in 16 kHz, 16 bit, PCM wave format. The audio is partitioned
into frames of 20ms, with an overlap of 10ms. This means that each second of audio contains
100 frames, and each frame contains 320 samples.

A well-known problem of framing, comes from the truncation of the signal. The discontinuity
induced by using a rectangular window can be reduced by using a windowing function with
a greater attenuation in the side lobes. The Hamming and Hann windows accomplish this as
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Figure 2.1: Attenuation of the lobes using different windowing functions (rectan-
gular, Hann, Hamming)

seen in figure 2.1. As seen the Hamming window gives a better attenuation in the secondary
lobes. The Hamming and Hann windows are from the family of raised cosine windows given
by:

w(n) = ψ − (1 − ψ) cos
( 2πn

N − 1

)
(2.1)

Where for a Hamming window ψ = 0.54 and for Hann ψ = 0.50. N is the length of the
signal to be filtered.

In this project we will use the Hamming filter, thus let si(n) denote the i’th frame of the
original audio signal. Then the Hamming filtered frame is given by:

xi(n) = w(n)si(n) (2.2)

2.2 Zero-Crossing Rate

Zero-crossing rate (ZCR) has been used in a wide range of audio applications. It has es-
pecially been used in audio classification and segmentation applications, see e.g., [Lu and
Zhang, 2005, Huang and Hansen, 2004b].

ZCR is defined as the number of sign changes in a frame divided by the length N of the
frame:

ZCR =
1

N

N∑

n=2

∣∣∣sgn
[
x(n)

]
− sgn

[
x(n − 1)

]∣∣∣ (2.3)
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Where sgn is the signum function. ZCR has shown to have a high correlation to the spectral
centroid of a signal, giving an estimate of the dominant frequency. That is, a left-skewed
spectrum will yield a lower ZCR than a right-skewed.

Speech is in general composed of altering voiced and unvoiced sounds. In between words
small silence periods occur. The voiced sounds in speech are the sounds where a pitch can
be found. Unvoiced sounds on the other hand have a structure that resembles noise. Figure
2.2(a) shows 5 seconds of male speech along with the ZCR. The figure shows low ZCR-values
where voiced sounds are present and high ZCR-values where unvoiced sounds are present.
The altering voiced and unvoiced sounds in speech gives the ZCR-values a relatively large
variation. In figure 2.2(b) a zoom of the speech-signal is shown where it is more clear that
it is the unvoiced speech parts that gives the large ZCR-values.

In general music is more pitched than speech. This is caused by the clear tones made by the
instruments. Figure 2.2(c) shows 5 seconds of music with the corresponding ZCR-values.
The figure shows the ZCR does not have as many peaks as the speech-signal. This gives a
smaller variation of ZCR. Though, some peaks in the ZCR-plot can be seen. In this case
the peak is due to a part in the music where no instruments are playing and only the vocal
can be heard. Figure 2.2(d) is a zoom of the music signal. The first part of the plot is where
the vocal is dominant and the second part is where there is no vocal and the instruments is
the dominant part. The peak in the ZCR-value is due to a unvoiced vocal part.

2.3 Short Time Energy

Short time energy (STE) is another simple feature that has been used in various formats in
audio applications. STE is defined as the total energy in a frame:

STE =

N−1∑

n=1

x2(n) (2.4)

With N as the length of the frame.

As mentioned above speech is composed of altering voiced and unvoiced sounds and silence
periods. These unvoiced and silence periods carry less energy than the voiced sounds. Thus,
the STE-values for speech will have a large variation. This can also be seen in figure 2.3(a),
where the same speech signal as in figure 2.2(a) is shown with the corresponding STE-values.
A zoom of this plot is shown in figure 2.3(b), where it can be seen that the voiced speech
parts gives larger STE-values than the unvoiced and silence periods.

Because of the pitched nature of muzic the STE of music is more constant and larger than
speech. This can be seen in figure 2.3(c), where the same music signal as in figure 2.2(c) is
shown with the corresponding STE-values. A zoom of figure 2.3(c) is shown in figure 2.3(d),
where it is clear that the pitched parts of the music gives high STE-values.
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(a) ZCR for 5 seconds of speech.
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(b) Zoom of figure 2.2(a).
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(c) ZCR for 5 seconds of music.
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(d) Zoom of figure 2.2(c).

Figure 2.2: (a) shows the ZCR for 5 seconds of speech, where the altering voiced/un-
voiced structure is reflected in the ZCR. (b) shows a zoom of (a) where it is more
clear that the unvoiced parts of the speech signal gives a high ZCR. In (c) the
ZCR for 5 seconds of music is shown, where the ZCR-value is more stable than for
speech. In (d) a zoom of the only peak in (c) is shown, and as can be seen, this
peak is due to a noise-like sound in the music.

2.4 Spectrum Flux

Spectrum flux (SF) is defined as the change in amplitude spectrum between two successive
frames:

SF =
1

N

N−1∑

k=0

[
log

(
Si(k)

)
− log

(
Si−1(k)

)]2

(2.5)
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(a) STE for 5 seconds of speech.
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(b) Zoom of figure 2.3(a).
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(c) STE for 5 seconds of music.
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(d) Zoom of figure 2.3(c).

Figure 2.3: (a) shows STE for 5 second of music, where it can be seen that the
voiced speech parts gives large STE-values. This is more clear in (b), where a
zoom of (a) is shown. (c) shows 5 seconds of music where the STE-values are more
constant than for speech. (d) shows a zoom of (c), where it can be seen that the
pitched music parts gives large STE-values.

Where Si(k) is the amplitude spectrum, calculated using the discrete Fourier transform
(DFT), of the i’th frame of the input signal:

Si(k) =

∣∣∣∣∣

N−1∑

n=0

x(n) exp
{−2πkn

N

}∣∣∣∣∣ (2.6)

Where N is the length of the frame and k, n ∈ [0, N − 1].

Figure 2.4(a) shows SF for 5 seconds of speech. The altering structure of speech tends to
give a large variation of SF. Figure 2.4(b) shows SF for 5 seconds of music. This figure
shows that music gives less variation in SF than speech. It is in general the silence parts of
the speech that gives large SF-values. Most music does not include such silence parts, thus
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(a) SF for 5 seconds of speech.
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(b) SF for 5 seconds of music.

Figure 2.4: (a) shows SF for 5 seconds of speech and (b) shows SF for 5 seconds of
music. The SF tends to have a larger variation for speech than for music.

SF is more constant for music.

2.5 Cepstrum

Cepstral coefficients were mentioned in section 1.2.1, as features used in audio classification.
Initially cepstral analysis was introduced in conjunction with speech recognition, as a way
to model the human articulatory system as described below. Later the features have shown
useful in speaker recognition as well as other audio applications such as audio classification
and music summarization.

As described in [Deller et al., 1993] the speech signal is composed of a quickly varying part
e(n)(excitation sequence) convolved with a slowly varying part θ(n) (vocal system impulse
response):

s(n) = e(n) ∗ θ(n) (2.7)

The convolution makes it difficult to separate the two parts, therefore the cepstrum is
introduced. The cepstrum is defined as:

cs(n) = IDFT
{

log
∣∣DFT{s(n)}

∣∣
}

(2.8)

Where DFT is the Discrete Fourier Transform and IDFT is the Inverse Discrete Fourier
Transform. By moving the signal to the frequency-domain the convolution becomes a mul-
tiplication:

S(k) = E(k)Θ(k) (2.9)

Further, by taking the logarithm of the spectral magnitude the multiplication becomes an
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Figure 2.5: (a) shows how the signal is composed of a slowly varying envelope
part convolved with quickly varying excitation part. By moving to the frequency
domain, the convolution becomes a multiplication. Further taking the logarithm
the multiplication becomes an addition. Figure taken from [Deller et al., 1993].

addition:

log
∣∣S(k)

∣∣ = log
∣∣E(k)Θ(k)

∣∣

= log
∣∣E(k)

∣∣ + log
∣∣Θ(k)

∣∣

= Ce(k) + Cθ(k) (2.10)

IDFT is linear and therefore works individually on the two components:

cs(n) = IDFT
{
Ce(k) + Cθ(k)

}

= IDFT
{
Ce(k)

}
+ IDFT

{
Cθ(k)

}

= ce(n) + cθ(n) (2.11)

The domain of the signal cs(n) is called the quefrency-domain. Figure 2.5 shows the speech
signal transformation process.

2.6 Mel-frequency Cepstral Coefficients

The cepstrum described above has been used with success in speech recognition applications.
A further improvement to this method can be obtained by using the mel-weighted cepstrum
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Figure 2.6: MFCC calculation

or mel-cepstrum for short. The mel-cepstrum is calculated in the same way as the real
cepstrum except that the frequency scale is warped to the mel scale.

The mel scale is based on an empirical study of the human perceived pitch or frequency.
The scale is divided into the mel units. The test persons in the study started out hearing a
frequency of 1,000 Hz, which was labeled 1,000 mels for reference. The persons were then
asked to change the frequency until they perceived the frequency to be twice the reference.
This frequency was then labeled 2,000 mels. This was then repeated with 1

10 , 1
2 , 10 and so

on, labeling these frequencies 100 mels, 500 mels, and 10,000 mels. Based on these results a
mapping of the linear frequency scale to the mel scale was possible.

The mel scale is generally speaking a linear mapping below 1,000 Hz and logarithmic spaced
above. The mapping between the mel frequency scale fmel and the linear scale f is usually
done using an approximation, [Feng, 2004]:

fmel = 2595 ∗ log10

(
1 +

f

700

)
(2.12)

The calculation of the mel cepstrum leads to the mel-weighted cepstral coefficients (MFCC).
The procedure for calculating these coefficients is illustrated in figure 2.6. After the DFT
of the signal the magnitude spectrum S(j) is obtained. The mel frequency warping is most
conveniently done by utilizing a filter bank with filters centered according to mel frequencies,
as seen in figure 2.7. The width of the triangular filters vary according to the mel scale,
so that the log total energy in a critical band around the center frequency is included. Let
Hk(j) be the sampled representation of the k’th triangular filter. Then the output of the
k’th filter is:

Y (k) =

N/2∑

j=1

S(j)Hk(j) (2.13)

The last step of the cepstral coefficient calculation is to transform the log of the quefrency
domain coefficients to the frequency domain. For this we utilize the IDFT, where N ′ is the
length of the DFT used previously:

c(n) =
1

N ′

N ′−1∑

k=0

log
(
Y (k)

)
exp

{
j
2kπ

N ′
n

}
(2.14)
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Figure 2.7: Mel spaced filter bank with 20 filters

Which can be simplified, because Y (k) is real and symmetric about N ′/2, by replacing the
exponential by a cosine:

c(n) =
1

N ′

N ′∑

k=1

log
(
Y (k)

)
cos

(
2kπ

N ′
n

)
(2.15)

The implementation of MFCCs in our application used the Voicebox toolbox [Brookes, 1998].

Figure 2.8(a) shows 12 MFCCs for 5 seconds of speech and figure 2.8(b) shows 12 MFCCs for
5 seconds of music. The speech shows a large variation in the coefficients. This is due to the
altering voiced/unvoiced/silence structure in speech. These different structures has different
spectral characteristics, which are reflected in the MFCCs. The MFCCs for the music seems
to be much more structured and do not show the same variation in the coefficients.

Delta Coefficients

To catch the dynamic changes in the MFCCs the time differentiated or delta coefficients are
used. Let ci(n) be the n’th coefficient extracted at time ti. Then the delta coefficients are
defined as:

∆ci(n) =
1

2

(
ci+1(n) − ci−1(n)

)
(2.16)

Similarly the delta-delta coefficients are defined as:

∆∆ci(n) =
1

2

(
∆ci+1(n) − ∆ci−1(n)

)
(2.17)
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Figure 2.8: (a) shows 12 MFCCs for 5 seconds of speech, and (b) shows 12 MFCCs
for 5 seconds of music. The figures shows that the speech has a larger variation in
the coefficients than the music does. This is due to the altering voiced/unvoiced/si-
lence structure in speech.



Chapter 3

Audio Classification

The task of segmenting or classifying audio into different audio classes has been implemented
using a number of different schemes. The first aspect to consider is the features to use. A
multitude of different features have been proposed, based on different observations on the
characteristics that separate speech, music and other classes of audio. The simpler features
include spectral and time domain features. Some of the most frequently used features
are Zero-Crossing Rate (ZCR) and Short Time Energy (STE) [Huang and Hansen, 2004b,
Zhang and Jay Kuo, 2001]. Variations of these features were proposed by [Lu et al., 2002],
introducing High Zero-Crossing Rate Ration (HZCRR), and Low Short Time Energy Ratio
(LSTER). [Scheirer and Slaney, 1997] propose a number of other features including Spectrum
Flux (SF), 4 Hz modulation energy, Spectral Centroid, Spectral Rolloff Point.

Cepstral coefficients have been investigated for audio classification for instance in [Li et al.,
2001] and [McKinney and Breebaart, 2003], and also utilized in larger automatic broadcast
news transcription systems [Gauvain et al., 2002, Hain and Woodland, 1998].

The other aspect to be considered is the classification scheme to use. A number of classifica-
tion approaches have been proposed, that can be be divided into rule-based and model-based
schemes. The rule-based approaches use some simple rules deducted from the properties of
the features. [Zhang and Jay Kuo, 2001] use this approach on simple features, yielding
a recognition rate of more than 90% for audio classification. As these methods depend on
thresholds, they are not very robust to changing conditions, but may be feasible for real-time
implementations.

Model-based approaches such as GMM classifiers are employed frequently for instance in
[Gauvain et al., 2002, Hain et al., 1998, Scheirer and Slaney, 1997]. [Scheirer and Slaney,
1997] combine a number of features for 1 second windows and achieve a recognition rate in
simple speech/music classification of about 94%. The classification is done using Gaussian
Maximum A Posteriori classifier, GMM, K-NN, and a spatial partitioning classifier based
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on k-d trees. The results show that these classifiers perform almost equally well. The
correct classification rate rose to 98.6% for a 2.4 seconds window. Introducing a third class
containing speech mixed with music reduced the classification rate to 65%.

[McKinney and Breebaart, 2003] investigate four feature sets, including modulation energies
of different frequency bands. The feature sets are: (1) Low-level signal parameters including
RMS-level, spectral centroid, bandwidth, ZCR, spectral roll-off frequency, pitch (2)MFCCs
giving a feature set containing 13 DC values of the MFCCs and the modulating energies
as above. (3) psychoacoustic features including roughness, loudness and sharpness; and
(4) an auditory model representation of temporal envelope fluctuations. For classification
quadratic discriminate analysis was used on 7.5 seconds frames. The classification result for
general audio (5 classes including speech, music, and noise) is 92 ± 3%.

Some studies has been performed using clean samples, e.g. using windows only containing
speech or music, [Li et al., 2001] investigate classification on mixed data. They investigate
143 mean and variance features, based on temporal and spectral features, MFCCs, LPCs.
The classification is done on continuous audio data, obtained by recording tv-news shows.
MFCC-based features are reported to perform best yielding an overall classification rate of
≃ 95% using 6 classes (speech, music, noise, and 3 classes of noisy speech) and a simple
Gaussian MAP classifier.

The systems mentioned above observe features over windows of up to 7.5 s, calculating
variances to catch the varying nature of the audio. Hidden Markov Models (HMM) on the
other hand try to model the time sequence of the features to take this into account [Kemp
et al., 2000], sometimes combined with GMMs as output probabilities. HMMs are employed
in [Vandecatseye and Martens, 2003] to classify audio into 5 acoustic classes. The features
used are MFCCs and pitch. The classification of speech yields a correct classification rate
of 99.5%. The switching between different audio classes is also considered in [Huang and
Hansen, 2004b] with a network of GMMs based on heuristics achieves an accuracy of 96%.

In this project we have chosen to limit the number of audio classes to consider speech and
music. This is based on the observation that our speech recognition system 1 can handle
both noise and silence segments. In addition music is often used as separators for logically
coherent speech segments. Therefore the main purpose of this audio classification is to
extract as much speech as possible.

This chapter is organized as follows: First we review the theory behind different classification
models used in this chapter. Next we introduce the audio-database used for the audio
classification. Then we show how the features are adapted for the audio classification. We
then compare the different classification models followed by feature selection. Finally we
examine the performance of the selected model and features.

3.1 Classifiers

A supervised classifier works by modelling the posterior probability p(Ck|x) that an input
vector x belongs to class Ck. Generative classifiers assume that the input density function

1presented in chapter 5
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p(x) has a specific functional form, which depends on a set of parameters θ. Optimizing
the parameters θ to a given training set D can be done using either maximum likelihood or
Bayesian inference. Once the class-conditional probability p(x|Ck) and the prior probability
P (Ck) have been estimated, Bayes theorem can be used to calculate the posterior probability:

p(Ck|x) =
P (Ck)p(x|Ck)

p(x)
(3.1)

Discriminative classifiers do not assume a specific functional form for the input density
function, but model the posterior probability p(Ck|x) directly.

In general it is not possible to say in advance which kind of classifier is the best. The
performance of the classifiers depend on the amount of training data, as well as the nature
of the data. Another aspect to be considered is the computational aspects, i.e. the runtime
of the training algorithm and of the classification.

In the following section we will describe different discriminative and generative classifiers,
which are later compared in the work of classifying audio into speech and music.

For reference we define a training set D = {(xn, tn)} of corresponding input-vectors xn and
class labels tn, where x = (x1, ..., xd)

⊤, and t = (t1, ..., tc)
⊤ is a 1-of-c decoded vector with

tk = 1 if x belongs to class Ck and zero otherwise. d is the dimension of the input space
and c is the number of output classes.

3.1.1 Discriminative Classifiers

Linear Discriminant

The linear discriminant defines an output function yk(x) of the input-vector x for each
output class Ck. With yk given by:

yk(x) = wk0 +

d∑

i=1

wkixi

= wk0 + w⊤
k x (3.2)

Where wk0 is the bias and wk is the weight vector. A given input sample x is then assigned
to class Ck if yk(x) > yj(x), j 6= k. By including the bias in the weight vector and setting
x = (1, x1, ..., xd) the notation becomes:

yk(x) =
d∑

i=0

wkixi

= w⊤
k x (3.3)

The weights wk are found by minimizing the sum-of-squares error function for the given
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…x0 x1 x2 xn

y
n

y
1

inputs

outputs

Figure 3.1: Graphical interpretation of linear discriminant. The linear discrimi-
nant can be seen as a 1-layer neural network with linear activation functions. x0

constitutes the bias

training set D = {(xn, tn)} with N samples:

E(wk) =
1

2

N∑

n=1

c∑

k=1

{
w⊤

k xn − tnk

}2

(3.4)

Defining X with dimension N × c and elements xn
i , W with dimension c × d and elements

wki and T with dimension N × c and elements tnk equation 3.4 can be rewritten:

E(W) =
1

2
(W⊤X⊤XW + T⊤T − 2W⊤X⊤T) (3.5)

By setting the derivative of equation 3.5 w.r.t. W to zero gives the normal equations for
the least-squares problem:

(X⊤X)W = X⊤T (3.6)

Solving for W gives:

W = (X⊤X)−1X⊤T = X†T (3.7)

Where X† is the pseudo inverse of X.

The linear classifier trained using the sum-of-squares error function is very simple to imple-
ment and can be trained very quickly, because of the closed form solution. In general the
sum-of-squares error function is not optimal for classification problems because it was de-
rived from maximum likelihood problems where targets are Gaussian distributed variables.
The classification with 1-of-c decoded outputs on the other hand yields binary values, which
differs clearly from the Gaussian approximation.

Neural Network Classifier

The linear discriminant presented above could be seen as a one-layer linear network. We
have also investigated an artificial neural network (designated NN below). The network used
in this project is a two-layer fully connected feed-forward network. The model contains nI

input units, nH hidden units, and nc output units. The graphical representation is seen in
figure 3.2.
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Figure 3.2: Graphical interpretation of a neural network

The functions evaluated in each unit are given below. The hidden layer utilizes tanh as
activation function i.e. ψ = tanh(·), while the output layer uses a linear activation function.

hj(x) = ψ

( nI∑

l=1

wI
jlxl + wI

j0

)
(3.8)

φi(x) =

nH∑

j=1

wO
ijhj + wO

i0 (3.9)

The output of output unit k of the neural network should model the posterior probability of
the k’th class p(Ck|x), To interpret the outputs of the neural network as probabilities they
should consequently lie in the range [0,1] and sum to 1. This is accomplished by applying
the SoftMax function on the outputs:

yi =
exp(φi)∑c

j=1 exp(φj)
, i = 1, 2, ..., c (3.10)

Training of the NN to model the classification problem does not have a closed form solution
like the linear discriminant. Instead the training algorithm adjusts weights using gradi-
ent descent methods utilizing the backpropagation algorithm described in [Bishop, 1995,
chap. 4].

Using gradient descent for NN training basically starts with an initial set of weights w(0)

chosen randomly. The weights are changed iteratively, i.e. the weights at the j’th step w(j)

is used for: w(j) = w(j−1) + η∆w(j). Using the gradient descent approach the step ∆w(j)

is chosen as the negative gradient with respect to the error function.

∆w(j−1) = −∇E |w(j−1) (3.11)

Obtaining the gradient for the weights in the network is done through the backpropagation
algorithm. The basis of the backpropagation procedure is to look at the derivative of the
error En with respect to a weight wji:

∂En

∂wji
=

∂En

∂aj

∂aj

∂wji
(3.12)
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Using the chain rule for partial derivative, as we know that the error only depends on the
weights wji through the summed input to the unit j. Introducing the notation δj ≡ ∂En

∂aj

and calculating the derivative
∂aj

∂wji
= ∂

∂wji

∑
i wjizi = zi, we can write (3.12) as

∂En

∂wji
= δjzi (3.13)

For the output units this gives:

δk ≡
∂En

∂ak
= ψ′(ak)

∂En

∂yk
(3.14)

And for the hidden units:

δj ≡
∂En

∂aj
=

∑

k

∂En

∂ak

∂ak

∂aj
(3.15)

This leads to the backpropagation formula:

δj = ψ′(aj)
∑

k

wkjδk (3.16)

In general the complexity and convergence of the backpropagation algorithm means that
training a neural network is quite time consuming. The performance of the optimization can
be improved by employing second order algorithms (Levenberg-Marquardt, Gauss-Newton,
pseudo-Gauss-Newton). These algorithms utilize a quadratic approximation of the error
surface using a Taylor expansion of the second order term of the cost function E around ŵ:

E(w) = E(ŵ) + (w − ŵ)′gŵ +
1

2
(w − ŵ)Hŵ(w − ŵ) + O(w3) (3.17)

gŵ is the first order gradient of the cost function in ŵ and Hŵ is the second order derivative
- the Hessian - of the cost function in ŵ. The first order derivative of w is:

∇E(w) = gŵ + Hŵ(w − ŵ) (3.18)

We want to find a local minimum w = w0, i.e. finding: ∇E(w0) = 0, which means that we
now can isolate w0:

w0 = ŵ + (−H−1
ŵ

gŵ) (3.19)

Taking this step is the (full) Newton algorithm. Evaluating the full Hessian and calculating
the inverse H−1

ŵ
is a complex operation. Therefore easier methods use an approximation to

the Hessian, for instance the pseudo-Gauss-Newton only uses the diagonal elements of the
Hessian (here for each variable wi in w):

∆wi = −
∂E

∂wi

/∂2E

∂w2
i

(3.20)

As mentioned earlier the sum-of-squares error function are linked to the assumption that
targets are normal distributed. However, as y models a probability and t is a 1-of-c decoded
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target vector, the Gaussian error is inappropriate. We can write the conditional likelihood
function:

p(tn|xn) =
c∏

k

(yn
k )tn

k (3.21)

This will give the more appropriate cross-entropy cost function [see Bishop, 1995, p. 237].
To optimize we need the negative log-likelihood which, for an entire data set of independent
samples, is:

Eentropy = −
N∑

n

c∑

k

tnk ln yn
k (3.22)

For a two-class problem with just a single output this reduces to:

Eentropy = −
N∑

n

(
tnk ln yn

k + (1 − tnk ) ln(1 − yn
k )

)
(3.23)

Using the entropy error function yields some simple derivatives for the use in the backprop-
agation algorithm.

Differentiating the cross-entropy error function yields quite a simple derivative:

∂Eentropy

∂yn
=

yn − tn

yn(1 − yn)
(3.24)

Which makes the back-propagation of entropy-based errors feasible.

Neural Network Pruning

A property of the neural network is that it tends to overfit to the training data, which is of
course a problem of generalization. Because of this tendency a method has been developed
to make neural networks more generalizable. The method is called pruning, and is based on
the observation that some of the weights in a neural network are less significant than others.
A popular pruning method is called Optimal brain damage, which utilizes the concept of
saliency of a weight.

Saliency is a measure of the importance of the weight. The saliency is estimated by changing
a weight wi to wi + δwi. This gives a change in the error function E:

δE =
∑

i

δE

δwi
δwi +

1

2

∑

i

∑

j

Hijδwiδwj + O(δw3) (3.25)

Using the Hessian matrix defined above:

Hij =
∂2E

∂wi∂wj
(3.26)

Using the diagonal approximation of the Hessian and observing that the first term of (3.25)
should vanish if training has converged and discarding the higher order term O(δw3) gives:

δE =
1

2

∑

i

∑

j

Hijδwiδwj =
1

2

∑

i

Hiiδwi
2 (3.27)
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If a weight is removed, i.e. set to zero, the change in the error function can be approximated
by setting δwi = wi in (3.27). The saliency for a weight wi is thereby approximated to
Hiiwi

2/2. This measure can be used to remove the least salient weights. The pruning can
be done by the following procedure:

1. Train a reasonably large network using some appropriate stopping criterion

2. Compute the second order derivatives Hii for each weight wi, to calculate the saliency
Hiiwi

2/2

3. Remove a number of the weights with lowest saliencies

4. Retrain the network and repeat from step 2.

This approach may both improve the speed of the trained network and generalizability
performance.

K-Nearest Neighbor Classifier

The K-Nearest Neighbor (K-NN) classifier is an example of a non-parametric classifier.
The basic algorithm in such classifiers is simple. For each input-vector x to be classified,
the K nearest training samples are found, and then x is assigned to the class Ck if the
number of training samples included in K from this class is larger than for all other classes:
Kk > Kj , for all j 6= k. Euclidean distance is usually used to calculate the distance between
two input-vectors x = {x1, ..., xd} and y = {y1, ..., yd}:

dE(x,y) =

√√√√
d∑

i=1

(xi − yi)2 (3.28)

For the special case of K = 1 we will obtain the nearest neighbor classifier, which simply
assigns the input-vector to the same class as that of the nearest training vector.

The K-NN algorithm, is very simple yet rather powerful, and used in many applications.
The use of the Euclidian distance makes the assumption that each dimension is equally dis-
tributed. If one input dimension has larger values than the other dimensions, this dimension
will dominate in the sum of distances. The solution to this problem could be to normalize
the feature sets.

To sum up the K-NN classifier has some qualities that are important such as

• It requires no training and this is helpful especially when new training data is added.

• Uses local information and hence can learn complex functions without the need to
represent them explicitly, which is demonstrated in figure 3.3

While the disadvantages are
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Misclass

Figure 3.3: Illustration of the knn-classifier using 3 nearest neighbors. Filled sam-
ples represent the training set that are used to construct the class boundaries shown
by the grey area.

• The classifier needs to store the entire training set for use when a new input-vector is
to be classified.

• The classification time is longer when compared to other classifiers.

The storage problem and slow speed of the algorithm can be counteracted by performing
vector quantization on the data, to reduce the number of training samples.

3.1.2 Generative Classifiers

The last classifier considered is the Gaussian Mixture Model, which is the only generative
classifier considered.

Gaussian Mixture Model

The basis of the Gaussian Mixture Model is to combine a number of Gaussian distributions
using a linear combination of the components. So the probability density function is given
as:

p(x) =

M∑

j=1

p(x|j)P (j) (3.29)

Let each component density be a multivariate Gaussian distribution, given by:

p(x|j) =
1

(2π)n/2|Σj |1/2
exp

{
−

1

2
(x − µj)

⊤Σ−1
j (x − µj)

}
(3.30)
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If we constrain the covariance matrices to be scaled unit matrices: Σ = σ2
j I the densities

becomes:

p(x|j) =
1

(2πσ2
j )d/2

exp
{
−

(x − µj)
2

2σ2
j

}
(3.31)

P (j) is the prior probability that the data-point x is generated from component j.

The maximum likelihood solution for the parameters µj , σ2
j , and P (j) given a training set D

can be determined using the expectation-maximization (EM) algorithm, described in more
detail in [Bishop, 1995, Chap. 2]. This gives the following update equations:

µnew
j =

∑N
n=1 P old(j|xn)xn

∑N
n=1 P old(j|xn)

(3.32)

(σnew
j )2 =

1

d

∑N
n=1 P old(j|xn)(xn − µnew

j )2

∑N
n=1 P old(j|xn)

(3.33)

P (j)new =
1

N

N∑

n=1

P old(j|xn) (3.34)

The parameters are updated iteratively, where the ’old’ parameters are used to calculate the
’new’ parameters.

3.2 Audio Database

For the audio classification a database of speech and music was collected. The speech con-
tains a wide range of different radio shows. The samples are chosen to reflect many different
kinds of typical speech, ranging from anchor2 speakers in almost perfect conditions to con-
versations between multiple speakers. Also, narrow-band telephone interviews are present.
Some of the speech clips contain speech from reporters speaking from noisy environments.
50 speech clips are gathered and the length of each clip is 45 seconds. The sources of the
clips are listed in table 3.1. The clips were collected in October and November 2005.

A collection of music clips has also been made. The choice of music has been done to reflect
a diverse range of genres. This is to make our classifiers versatile for the broad range of
music that could occur on a radio show. 50 music clips each 45 seconds long were collected.
The clips cover the 10 genres listed in table 3.1.

3.3 Feature Integration

The features presented in chapter 2 make the basis for the speech/music classification.

2Hosts of news shows are often called news anchors, we will therefore use this term for host speakers.



3.3 Feature Integration 29

Speech
no. of pieces Description

21 CNN Hourly News Update
1 60 minutes
5 BBC radio 4 talk radio
3 CBS What’s in news
3 CNN Biz update
3 NPR ’talk radio’
4 Sportsweek
3 Talking 6 Music

Music
no. of pieces Description

5 rock
5 easy listening
5 country
5 jazz
5 electronica
5 alternative
5 reggae
5 latin
5 rb&soul
5 pop&dance

Table 3.1: Speech and music clips in the audio-database

The time resolution of the features was set to 20 ms. Classification based solely on such
short intervals is not very feasible. Instead schemes for integrating the features for longer
windows have shown more useful. A simple method for such an integration is to calculate
means and variances for a larger window. More elaborate methods such autocorrelation
of features have also been utilized [Meng et al., 2005]. The use of mean and variance have
shown useful in [Saunders, 1996] and [Li et al., 2001], so we have chosen to use this approach.

The size of the window (which we will call the decision-window) to integrate over depends
on a number of factors. The optimal size of the decision-window has been discussed in
the literature. Saunders [1996] for instance showed that a 2.4 seconds decision-window was
feasible.

In general the length should be long enough to yield adequate precision of the statistics, and
maybe catch some of the longer term characteristics. On the other hand the length should
be short enough to yield an adequate resolution. In the work by [Scheirer and Slaney, 1997]
on speech/music classification it is indicated that a 1 second window is feasible. We have
thus chosen to work with 1 second decision-window.

In chapter 2 a feature set of 29 features was presented. The feature set included: ZCR,
STE, SF, 13 MFCC, and 13 ∆MFCC. The 0’th MFCC is identical to the log energy. Using
these features the means and variances are calculated over the decision-window giving 58
integrated features.

In addition to the means and variances more elaborate features have been developed, for
instance [Lu et al., 2002] proposed the high zero-crossing rate ratio (HZCRR). The definition
is:

HZCRR =
1

2N

N∑

n=1

[
sgn(ZCR(n) −

3

2
MZCR) + 1

]
(3.35)

I.e. the HZCRR is the ratio of the number of feature-windows whose ZCR-value is above
1.5 times the average ZCR in a decision-window. The motivation for this feature is that the
ZCR has more peaks in speech compared to music.
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Figure 3.4: The windowing involved in classification feature extraction. The feature
frames are used to calculate the basic features. Features from the frames are then
summed up in a decision window (dw) giving the features used for classification.

A similar reasoning was done for the STE-feature. The definition of the low short-time
energy ratio (LSTER), which is built on the fact that speech generally contains less energy
than music. It is defined as the ratio of the number of feature-windows whose STE are less
than 0.5 times of average short time energy in a decision-window:

LSTER =
1

2N

N∑

n=1

[
sgn

(1

2
MSTE − STE(n)

)
+ 1

]
(3.36)

In all the feature integration leads to 60 features for each decision-window. The features are
listed in table 3.2 and the hierarchy is schematically shown in figure 3.5.

3.3.1 Feature Space Exploration

In this section we will explore the feature space graphically. The exploration of the 60-
dimensional feature space is using principal component analysis (PCA). PCA is in short a
linear transform that can be used to transform data onto a smaller number of dimensions,
retaining as much as possible of the variance of the data. PCA is for instance presented in
[Bishop, 1995, chap. 8]. Projecting features onto the largest principal components, we are
able to observe the features in the directions of most variability.

First we consider the time and spectral features. Figure 3.6(a) shows a PCA-plot using the
8 derived features from these three basis features. This plot does show some separability
but a large overlap of distribution is seen. Figure 3.6(b) shows the PCA-plot of the features
derived from the MFCCs. This figure shows a clearer separation between the two classes.
Figure 3.7 shows the PCA-plot using all 60 features. This figure shows that the separability
is better for the combination of all 60 features.

Though, the PCA-plot does not show the correlation between the different features. Thus, it
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Figure 3.5: Schematic presentation of feature calculation showing the dependencies
among the 60 features.

is not easily seen which features are redundant. Even though MFCC-based features exhibited
better separability than the other features, it is clear that the addition of the basic features
improved the separability.

Generally it is not easily seen which features and how many are most feasible for the task,
as the number of combinations is insurmountable. Graphically inspecting all combinations
of the 60 features is simply not manageable. Consequently methods for qualified feature
selection are needed and introduced in later sections.

The feature extraction includes one last step, namely normalization. The features were
normalized to have zero-mean and unit variance.

3.4 Classifier Evaluation

Section 3.1 described four classification models. In this section they are applied to the
speech/music classification problem, to determine their applicability for the problem.

3.4.1 Test Setup

The evaluation of the classifiers was done using a 10-fold cross-validation setup. The audio-
database was divided into 10 evenly sized subsets, each subset containing 225 seconds of
speech and 225 seconds of music. The training was then performed on 9 subsets and validated
on the remaining subset. This was then repeated by leaving each of the ten subsets out and
training on the remaining 9 subsets.
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(a) ZCR, STE, and SF-based features.

−12 −10 −8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

No. 1 Principal Component

N
o.

 2
 P

rin
ci

pa
l C

om
po

ne
nt

Speech (red) / music (green)

(b) MFCC-based features.

Figure 3.6: PCA-plots of the features for the two subsets, namely the 8 time-
and spectral-based features (a) and the 52 MFCC and ∆MFCC-based features (b)
described in section 3.3. Red samples represent music and green represent speech.
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Figure 3.7: PCA-plot of all 60 features. Red samples represent music and green
represent speech. The addition of the ZCR, STE, and SF-features seems to increase
the separation that was already present using only MFCCs

Feature no. Description Short

1 Variance of zero-crossing rate VZCR
2 Variance of spectrum flux VSF
3 Variance of short-time energy VSTE
4 Mean of zero-crossing rate MZCR
5 Mean of spectrum flux MSF
6 Mean of short-time energy MSTE
7 High zero-crossing rate ratio HZCRR
8 Low short-time energy ratio LSTER
9 Mean of log energy

10-21 Mean of MFCC 1-12
22 Mean of delta log energy

23-34 Mean of delta MFCC 1-12
35 Variance of log energy

36-47 Variance of MFCC 1-12
48 Variance of delta log energy

49-60 Variance of delta MFCC 1-12

Table 3.2: Features used in the classification experiments. The numbers are some-
times used for easier reference in some of the experiments/figures but textual or
abbreviated forms will mainly be used.
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A feature set consisting of the 60 features was extracted from the audio on a 1 second basis
as described in section 3.3. This means that each subset contained 450 labelled patterns.

In the tests the classifiers were trained as follows:

• Linear discriminant: The weights of the classifier was found by minimizing the
sum-of-squares error function.

• NN : The weights was found by performing 5 gradient descent iterations followed by
50 pseudo-Gauss-Newton iterations. The NNwas implemented using the DTU:Toolbox
[Kolenda et al., 2002]

• GMM : Training the GMMs was done by performing 150 EM-iterations. The covari-
ances were constrained to be diagonal matrices.

• K-NN : No training needed, except saving the training data.

GMMs and K-NN was implemented using the Netlab toolbox [Nabney and Bishop, 2004].

The evaluation of the classifiers was done by varying the complexity of the models.

3.4.2 Results

Linear Discriminant

A mean training misclassification rate of 2.1% with 0.2% standard deviation, and a mean
test misclassification of 2.6% with 2.1% standard deviation was obtained using the linear
discriminant.

Neural Network

Figure 3.8 shows training and test misclassification rate for the NN-classifier as function
of number of hidden units. The test misclassification rate is relatively constant with a
mean value of approximately 3%. No significant improvement was obtained by increasing
the number of hidden units. The figure shows a very low training misclassification rate,
indicating that the NN-classifier tends to overfit the training data.

Gaussian Mixture Model

Figure 3.9 shows training and test misclassification rate for the GMM-classifier as function
of number of mixture components for each of the two classes. As expected the mean mis-
classification rate on the training sets decreased when the number of mixture models was
increased. The best misclassification rate on the test sets is observed using 11 mixture mod-
els for each class. Increasing the number of mixture models beyond 11 the model overfits
the training data and the test misclassification rate tends to increase.
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Figure 3.8: Training and test misclassification rate for the NN-classifier as function
of number of hidden units used in the NN. The figure shows mean and standard
deviation for 10 runs using the cross-validation setup.

KNN

Figure 3.10 shows the test misclassification rate as function of the number of neighbors
(K) to consider in the K-NN-classifier. Setting K = 5 or K = 7 minimizes the mean test
misclassification rate. This gives a mean test misclassification rate of 3.4% with standard
deviation of 2.5%.

Classifier Comparison

Table 3.3 summarizes the best results obtained with the four classifiers.

All four classifiers showed very good results. A bit surprisingly the linear discriminant
showed the best test performance. On the other hand a very low mean misclassification rate
on the training set for the NN-classifier indicates that the training data has been overfitted.
The linear discriminant does not, because of the simplicity of the decision boundaries, ex-
hibit the same tendency to overfit the training data. This causes a relatively high training
misclassification rate but a lower test misclassification. The GMM-classifier does not show
the same stability as the other classifiers and the performance depends more clearly on the
choice of number of mixtures used.

Another important issue to consider when choosing a classifier is how the misclassifications
are distributed. In our system it is important that as much speech as possible is classified
correct. This is primarily because wrongly classified speech is impossible to recover, while
music is not crucial in the speech recognition. On the other hand the segmentation of the
audio stream should be as precise as possible as processing music in the speech recognition
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Figure 3.9: Training and test misclassification rate for the GMM-classifier as func-
tion of number mixture models used for each of the two classes. The figure shows
mean and standard deviation for 10 runs using the cross-validation setup.
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Figure 3.10: Training and test misclassification rate for the K-NN-classifier as func-
tion of number of neighbors to be considered in the K-NN-classifier. The figure
shows mean and standard deviation for 10 runs using the cross-validation setup.
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mean test std test mean train std train

Linear 0.026 0.021 0.020 0.002
NN 0.027 0.020 0.002 0.002
GMM 0.029 0.017 0.015 0.002
K-NN 0.034 0.025

Table 3.3: Results obtained with the four classifiers: Linear discriminant, NN,
GMM, and K-NN. The table shows mean and standard deviation using the cross-
evaluation setup for the test and training sets. The performance of the four clas-
sifiers are comparable, though K-NN gives a higher misclassification rate than the
three other classifiers.

Linear pred speech pred music

true speech 2149 101
true music 16 2234

NN pred speech pred music

true speech 2193 57
true music 68 2182

GMM pred speech pred music

true speech 2204 46
true music 104 2146

K-NN pred speech pred music

true speech 2137 113
true music 40 2210

Table 3.4: Confusion matrices for the four classification models.

system is very time demanding and should be avoided.

Table 3.4 shows the confusion matrices for a test run for the four classifiers. Most of the
misclassification of the linear discriminant is due to predicting speech as music. The NN-
classifier has a more even distribution of misclassification among the two classes. The GMM
classifies most speech correct among the four classifiers but classifies a high number of music
samples as speech. Similar to the linear discriminant, most of the misclassifications of the
K-NN-classifier are due to predicting speech as music.

Based on these observation we have chosen to focus on the NN and the linear discriminant
in the following sections.

3.5 Feature Evaluation

Section 3.4 showed that very good classification results can be obtained using the feature
set consisting of the 60 proposed features. The very high dimensionality of the feature space
may require very large training sets, cf. ’the curse of dimensionality’. It is therefore natural
to find smaller feature sets easing the model training and remove redundant features.

This section introduce two approaches to reduce the number of features. The first approach
is based on pruning a NN. The second approach uses a sequential search of the features
using the linear discriminant.
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3.5.1 Neural Network Pruning Scheme

Initially pruning of the NN was inferred to investigate if the method could be made more
robust, i.e. reduce the overfitting problem. These initial runs showed that some of the
features were consistently pruned out. Therefore we developed a procedure to do an initial
pruning of the features so that the obviously redundant features could be removed. This
procedure is step 1 of our NN-based feature evaluation.

Step 2 takes a more exhaustive approach and tries to find the best combination of the
features that were left after the observations in step 1.

The following subsections describe the procedures used in two steps.

Step 1

The algorithm used in this step is shown in Algorithm 1 and is called pruningStep1.
Basically the procedure trains a fully connected NN and prunes this network. Hereby the
network with the lowest test error is found. The features that are not pruned out in this
network are stored.

Each iteration of the pruningStep1 starts out with a call to train&pruneNet.

Each run of train&pruneNet consist of the following: A fully connected NN is trained
with 5 gradient descent iterations followed by 50 pseudo-Gauss-Newton iterations. Then
the 2 lowest saliency weights are pruned out and the network is retrained. This procedure
is repeated until all weights are pruned out. After each training period the network is
tested on a test set, and the set of features F̂i, used in the network giving the lowest test
misclassification rate are returned. Likewise the number of hidden units Nhi used in the
best network is stored.

The pruningStep1 algorithm is setup using the feature set F, which contains all 60 features.
When a feature is not present in F̂i in three succeeding iterations, the feature is deleted from
the feature set, and thereby not considered in the remaining iterations.

To reduce the complexity of the network topology, we have inferred a small heuristic to
reduce the number of hidden units between iterations. In the first three iterations 14 hidden
units are used. In the remaining iterations the average number of hidden units in the results
of the last three iterations.

The features in the feature set after 100 iterations of the pruningStep1 algorithm is used
in the set of features used by the pruning algorithm in step 2.

The pseudo-code for the pruningStep1 algorithm is showed in Algorithm 1 and the
pseudo-code for the train&pruneNet is showed in Algorithm 2.
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Algorithm 1 pruningStep1

Dtrain ← {(xtrain
n , ttrain

n )}
Dtest ← {(xtest

n , ttest
n )}

F ← f1, f2, .., fn

Nh ← 14

for i=1:100 do

F̂i,Nhi ← train&pruneNet(Nh,F,Dtrain,Dtest)
for each fn ∈ F do

if fn /∈ (F̂i−2 ∪ F̂i−1 ∪ F̂i) then

F ← F \ {fn}
end if

end for

Nh ← ⌊< Nhn >⌋, n ∈ [i − 2, i]
end for

return F

Algorithm 2 train&pruneNet(Nh,F,Dtrain,Dtest)

N ← fully connected neural network
minErr ← ∞

while numberOfWeights(N) > 2 do

N ← gradientDescent(N,Dtrain)
N ← pseudoGaussNewton(N,Dtrain)
if errRate(N,Dtest) < minErr then

minErr ← errRate(N,Dtest)
Nbest ← N

end if

N ← prune2weights(N)
end while

Fout ←featuresUsed(Nbest)
Nhout ←numberOfHiddenUnitsUsed(Nbest)
return Fout,Nhout,minErr
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Algorithm 3 pruningStep2

Dtrain ← {(xtrain
n , ttrain

n )}
Dtest ← {(xtest

n , ttest
n )}

F ← pruningStep1

Nh ← 4
maxErr ← 0

while sizeOf(F > 1) do

for each fn ∈ F do

F̂ ← F \ {fn}

Erate ← train&pruneNet(Nh, F̂,Dtrain,Dtest)
if Erate > maxErr then

fdel ← fn

end if

end for

F ← F \ {fdel}
end while

Step 2

Step 1 should indicate that a number of the features could be left out without any loss of
classification performance. The purpose of step 2 is to make a more exhaustive search of
the remaining features to find the optimal feature set.

The initial feature set of step 2 contains the features selected from step 1. Basically this step
is done uses backward elimination. That is, the network is trained leaving out one feature
from the feature set. The altering training and weight pruning procedure train&pruneNet

is done in the same way as is step 1. The feature which is let out in the model giving the
lowest test misclassification rate is deleted form the feature set. This procedure is repeated
until two features are left. The pseudo-code for the pruningStep2 algorithm is shown in
Algorithm 3.

3.5.2 Neural Network Pruning Results

In this section the results from running the NN pruning algorithms are presented.

The audio-database was divided into two evenly sized subsets set1 and set2. The prun-
ing procedures are very time demanding, thus the cross-evaluation used for the classifier
evaluation has not been utilized for this setup.

Step 1 Results

The pruningStep1 algorithm was run 10 times, 5 times with set1 used as training set and
set2 as test set, and 5 times vice versa.
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Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10

Nh=4 Nh=4 Nh=5 Nh=2 Nh=6 Nh=4 Nh=2 Nh=2 Nh=3 Nh=3
3.20% 2.93% 2.80% 3.07% 2.80% 2.80% 1.91% 2.22% 2.22% 2.00%

1 1 1 1
2 2 2 2 2 2 2 2 2 2

3
4 4 4 4 4

5 5 5 5 5
6 6 6 6 6
9 9 9 9 9 9 9
10 10 10 10 10 10 10 10 10 10
11 11 11 11 11 11 11 11
12 12 12 12 12 12 12

14
20

35 35 35 35 35 35 35 35 35 35
36 36 36 36 36 36 36 36 36 36
38 38 38 38 38 38 38

41
48 48 48 48 48

49 49 49 49 49 49
51 51 51 51 51 51

52 52 52 52 52 52 52 52 52 52
55 55 55 55 55 55

57 57 57 57

Table 3.5: This table shows the results from 10 runs of the pruningStep1 algo-
rithm. The first 5 runs are using set1 as training set and set2 as test set, and
vice versa for the last 5 runs. The table shows the number of hidden units used
in the final model along with the test misclassification rate. Also the features left
after 100 iterations are shown. The features numbers are defined in table 3.2

Table 3.5 shows the features left in the models after 100 iterations of the pruningStep1

algorithm. The table also shows the misclassification rate and the number of hidden units
used in the network giving the lowest misclassification rate.

The evolution of each run is shown in appendix B.

The average misclassification rate in the final models is 2.96% when using set1 as training
and 2.23% when using set2. This should be compared with the misclassification rate when
using all 60 features as input to the model, where set1 gives a misclassification rate of 3.36%
and set2 gives a misclassification rate of 2.15%. Thus, the reduction in the feature set gives
a minor decrease in the misclassification rate when using set1 and a minor increase when
using set2.

The final models after 100 iterations use between 2-6 hidden units. The number of features
used in the final model are decreased from 60 to 9-17 features.

When looking at the features left it can be seen that a large number of features only appear
once or never appears. These features are listed in table 3.6. In general the features based on
the higher order MFCC are deleted in the pruning process. Only the variances of ∆MFCC-4,
∆MFCC-7, and ∆MFCC-9 are left among the MFCC-features with order 4-12.
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Feature no. Description

3 var STE
7 high ZCR ratio
8 low STE ratio

13-21 mean MFCC4-12
22 mean delta log energy

23-34 mean ∆MFCC1-12
37 var MFCC2

39-47 var MFCC4-12
50 var ∆MFCC2

53-54 var ∆MFCC5-6
56 var ∆MFCC8

58-60 var ∆MFCC10-12

Table 3.6: Features that are pruned out 9 or 10 times in 10 runs of pruningStep1

Feature no. Description

2 var SF
10 mean MFCC1
35 var log energy
36 var MFCC1
52 var ∆MFCC4

Table 3.7: Features never deleted in 10 runs of pruningStep1

Some features are never deleted in the 10 runs of the pruningStep1 algorithm. These
features are listed in table 3.7.

Step 2 Results

As earlier mentioned the purpose of step 2 is to make a more exhaustive search of the
remaining features. The goal is to find the best combination of the features.

All features that survived one or more runs of pruningStep1 are used in the initial set of
features used in pruningStep2. This yields in total 22 features.

The pruningStep2 has been run 20 times, 10 times with each data-set as training. Figure
3.11 shows the mean test misclassification rate along with the standard deviation for the
10 runs for each training set as function of the number of features used in the model. The
figures show that the number of features can be reduced to 10 without any loss in test
misclassification.

The figure also shows a clear difference between the two sets. When testing on set2 the
misclassification is larger which suggests that the set contains some kind of outlier.

Table B.1 in appendix B shows the order the features was deleted from the feature set for
each of the 20 runs of the pruningStep2 algorithm. This table shows that there is no
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Figure 3.11: The figure shows the mean test misclassification rate and standard
deviation for 10 runs of the pruningStep2 algorithm for each of the two training
sets.

consistency in the choice of features. Very similar results can be obtained using different
combinations of the features.

3.5.3 Feature Evaluation Using Linear Discriminant

The linear discriminant is trained a lot faster than the NN. Therefore another approach is
taken when doing the feature evaluation using the linear discriminant. Two approaches has
been considered, namely the backward elimination and forward selection schemes [Bishop,
1995].

In the backward elimination scheme all 60 features are considered in the initial setup. Each
feature is in turn left out of the feature set, and the linear discriminant is trained and
evaluated on the test set. The feature that is left out of the model giving the lowest mis-
classification rate on the test set is deleted from the feature set. This procedure is repeated
until the feature set is empty.

The forward selection scheme starts out with an empty feature set. In turn each feature is
temporarily added to the feature set and the linear discriminant is trained and evaluated
on the test set. The feature added to the model giving the best test misclassification rate
is then permanently added to the feature set. The procedure is repeated until all features
have been added to the feature set.
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The 10-fold cross-validation scheme described in section 3.4.1 is also used in this setup. This
means that the test misclassification rate is taken as a mean over 10 different test sets.

Results

Figure 3.12(a) shows the misclassification rate for the training and test sets using the back-
ward selection scheme. Figure 3.12(b) shows the results for the forward selection scheme.
The figures show marginal difference, though placing the test curves in the same plot shows
that the backward selection gives marginally better performance. This can be seen in figure
3.13. The figure shows that using the linear discriminant a performance of 3% misclassifi-
cations is attainable using only 8 features.

Table 3.8 shows the ranking order of the features using the two different approaches. The
first line shows the order in which the features were selected using the forward selection
scheme. The second line shows the reverse order in which the features were pruned in the
backward selection scheme. The 14 best features are shown, and only 6 features are in
common in the two approaches.

3.5.4 Test Discussion

The purpose of this section has been to reduce the number of features used in the model
without reducing the performance of the model. Two approaches have been considered. The
NN-approach showed that the number of features could be reduced from 60 to about 10 and
still obtain a test misclassification rate below 3%. Section 3.5.2 showed that several feature
combinations can obtain this result

Using the linear discriminant two other feature reduction schemes were investigated, namely
the backward elimination and the forward selection scheme. Also these two schemes showed
ambiguity in the feature selection. Despite this ambiguity the results obtained using the
different schemes were very similar. This again shows that several feature combinations can
obtain almost equal results.

3.6 Final Model Evaluation

The past sections have described and analyzed different classifiers. Also the features have
been investigated. PCA-plots showed that speech and music is well separated in feature
space. It was shown that the number of features used could be reduced from 60 to about 10-
14 features without any loss in test misclassification rate. The linear discriminant showed
very good performance and no improvement was obtained using the more complex NN-
classifier.

Because of its simplicity, the linear discriminant has been chosen for the speech/music
classification part of our system. In this section the properties of the linear discriminant are
investigated.
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(a) Backward elimination
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(b) Forward selection

Figure 3.12: Misclassification rate on test sets as function of number of features for
the backward elimination scheme(a) and the forward selection scheme(b).
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Figure 3.13: Misclassification rate on test sets as function of number of features
for the backward elimination and forward selection scheme. The figure shows
marginally difference between the two approaches.

Forward selection 36 38 35 52 54 10 2 9 44 12 15 58 45 42
Backward elimination 36 9 10 38 52 5 57 8 12 3 6 15 11 19

Table 3.8: The first line shows the order in which the features were selected in the
forward selection scheme. The second line shows the reverse order the features
were deleted from the backward elimination scheme. Only the 14 best features are
listed.
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3.6.1 Features

Section 3.5.3 showed that the number of features could be reduced without any loss in
test misclassification rate. It was also shown that several combinations of the features
gave similar results. For the final classifier the 14 best features according to the backward
elimination scheme for the linear discriminant are chosen. The features are listed in table
3.9 with the first feature being the feature with the highest rank, that is the feature that
was deleted last in the backward elimination scheme.

In figure 3.14 the histograms for the 6 highest ranking features are shown. The largest
separation between the two classes can be found in feature 36, 38, and 52. Though, these
feature probability densities are much similar. The other features show less separation.

In figure 3.15 a PCA-plot using the final 14 features are shown. This figure shows that the
two classes are well separated in feature space.

3.6.2 Training Set Size

An important property of a classifier is the amount of training data needed to make a fully
reliable model. This section investigates the amount of training data needed for the linear
discriminant.

The audio-database was divided into two sets, each set containing 1125 seconds of speech
and 1125 seconds of music. The training set was enlarged by choosing random data from
one of the sets. The model was tested using the other set.

Figure 3.16 shows the test misclassification rate as function of the amount of training data
used. This figure shows that the test misclassification has stabilized using 500 seconds of
training data.

3.6.3 Training and Run Time

A nice feature of the linear classifier is its fastness. Because of the closed form solution to
the weight settings, no iterative training procedure is needed. Thus, once the features has
been extracted it takes less than 1 second to train and test a model with 4500 seconds of
audio.

3.6.4 Error Investigation

The confusion matrix for the linear discriminant using all 60 features was shown in table
3.4. This table showed that most of the misclassifications was due to classifying speech as
music. Table 3.10 shows the confusion matrix for the linear discriminant using the selected
14 features. In this table the audio-database has been divided into two evenly sized sets used
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Feature no. Description

36 var MFCC-1
9 mean log energy
10 mean MFCC-1
38 var MFCC-3
52 var ∆MFCC-4
5 mean SF
57 var ∆MFCC-9
8 low STE ratio
12 mean MFCC-3
3 var STE
6 mean STE
15 mean MFCC-6
11 mean MFCC-2
19 mean MFCC-10

Table 3.9: The features chosen for the final classification model. The features are
chosen according to the backward elimination scheme for the linear discriminant.
The first feature is the feature with the highest rank.
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Figure 3.14: Histograms for the 6 features with highest rank according to the
backward elimination scheme for the linear discriminant.
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Figure 3.15: PCA-plot using the 14 features used in the final classifier.
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Figure 3.16: This figure shows the test misclassification rate as function of the size
of the training set.
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linear pred speech pred music

true speech 1082 43
true music 6 1119

Table 3.10: Confusion matrix for the linear discriminant.

linear pred speech pred music

true speech 1111 14
true music 23 1102

Table 3.11: Confusion matrix using the biased linear discriminant.

for training and test respectively. An overall test misclassification rate of 2.2% is observed.
Again, most of the misclassifications are due to classifying speech as music.

As earlier described, it is more crucial to classify speech correct than classifying music
correct. If the softmax function is applied at the outputs of the linear discriminant the
outputs can be seen as probabilities. Then, by applying the rule that the audio is classified
as speech if the probability of speech exceeds 0.45. This biased classifier gives the confusion
matrix shown in table 3.11. This table shows that the misclassification rate for speech
can be reduced without increasing the overall misclassification rate. In fact, the overall
misclassification rate was reduced to 1.6% in this case.

An investigation of the misclassifications showed that when speech was classified as music
it was mainly due to two kinds of error sources. The main error source is speakers are in
a noisy environment, for instance with reporters reporting from the field. This background
noise makes it difficult for the system to catch the characteristics of speech. The other
error source is laughter. Some speech parts in the audio-database contains small segments
of laughter, and this was classified as music by the classifier. However it is not crucial to
classify laughter as non-speech, as it indeed is non-speech and no word information is lost
when removing laughter.

The music parts classified as speech mainly consist of parts where no instruments are playing.
Some of these parts are vocal parts in the music. These parts in general have the same
altering voiced/unvoiced/silence structure as speech, which makes it difficult for the system
to classify correct.

3.6.5 Segmentation

The actual segmentation of the audio stream into speech/music segments is done by clas-
sifying each second of speech into speech or music, and then segmenting the audio where
changes in output classes occurs. To avoid single misclassifications a simple rule is applied
to the classification output. The rule transforms a sequence of XXYXX to XXXXX, where X is
1 second of audio classified as either music or speech, Y then represent the opposite class.
This output rule is applied to avoid too many 1 seconds segments.

An example of a segmentation of a 182s long audio stream is shown in figure 3.17(a). The
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Figure 3.17: The upper plot of (a) shows the segmentation of our system on a 182s
long audio stream. The lower part show the true segmentation of audio stream.
The system makes two misclassifications. (b) shows the audio signal where the
errors occurs, and it can be seen that the misclassifications are due to two silence
periods in the music.

audio stream contains speech from 0−56s, music from 56−113s, and speech from 113−182s.
The estimated class from the system is shown in the upper plot and the true class is shown
in the lower plot. The system makes two misclassifications at 66 − 67s and 68 − 69s. In
figure 3.17(b) the audio signal from 66 − 70s is shown. The figure shows that the audio
signal contains two silence periods, which are causing the misclassifications. Note that the
output rule does not work in this case, as the output sequence is: MMSMSMM, where M is music
and S is speech.

3.7 Discussion

The results of the work on speech/music classification showed that very good results were
obtainable using a feature set consisting of a limited number of features.

The overall test misclassification rate was 2.2% for the linear classifier using the 14 features
proposed by the backward elimination scheme. This is comparable to the results reported
by for instance [Li et al., 2001] using MFCCs, and comparable to other results reported in
the audio classification field.

The good result obtained using the simple linear discriminant and the observation that many
combinations of features giving more or less similar results, suggest that the classes are well
separated in feature space, as was also indicated by [Scheirer and Slaney, 1997].

Among the features that were selected in the feature selection schemes, there is a tendency
that the features, measure the energy of signals, are preferred. The fact that speech in
general contains less energy than music governs our model somewhat. If more classes such
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as environment sounds, noise, speech over music etc. were considered, energy-based features
may not be sufficient. If more audio classes where considered, other features and more
complex classifier may be needed.

The choice to classify based on 1-second windows does yield a very high correct classification
rate. Decisions would be even clearer if longer windows were considered. On the other hand
longer decision windows would make it harder to locate the exact time of changes because
of the lower resolution.

3.8 Summary

In this chapter four different classifiers were used to classify audio into speech and music.
We saw that the classifiers performed almost equally well using the 60 proposed features
extracted on a 1 second basis. Then we used two approaches to decrease the dimensionality
of the feature space. The first approach was based on pruning a NN. We saw that the number
of features could be decreased without loss in the classification performance. We also showed
that different feature combinations where able to obtain the same performance. The second
approach to decrease the number of features was based on backward elimination and forward
selection of the linear discriminant. Also this simple classifier was able to obtain very good
results with a low number of features. Finally the linear discriminant and 14 features was
selected as the final classification model, and the model was evaluated.
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Chapter 4

Speaker Change Detection

The speech/music classification gives an initial partitioning of the audio stream. Observing
a typical news broadcast, shows that different stories are sometimes separated using a jingle
but most commonly only indicated by speaker changes. Using only music to separate speech
segments could result in long segments with multiple unrelated stories. Thus, by finding
speaker changes in the audio will make a transcription easier to inspect.

Speaker change detection is an aspect of event detection which in the case of audio streams
concerns finding notable changes in the stream, namely changes in channel conditions, en-
vironment and speaker changes. This segmentation of the audio stream into homogenous
speaker segments is a research topic that has been widely studied over the last years. The
indexing task has an impact on the performance of speaker dependent speech recognizers as
it allows the system to adapt its acoustic model to the given speaker and/or environment
and thereby improve recognition performance.

Speaker change detection approaches can roughly be divided into three classes: energy-
based, metric-based and model-based methods.

Energy-based methods rely on thresholds on the audio signal energy, placing changes at
’silence’ events or by considering sudden changes in energy levels. This approach could be
used to give an initial segmentation that could be refined by more elaborate methods. In
news broadcasts we have observed that the audio production can be quite aggressive, with
only little if any silence between speakers, making this approach less attractive.

Metric-based methods basically measure the difference between two consecutive frames that
are shifted along the audio signal. A number of distance measures have been investigated
such as the symmetric Kullback-Leibler distance [Siegler et al., 1997]. Parametric models
have also been deployed for instance using a likelihood ratio to perform statistical hypoth-
esis tests [Kemp et al., 2000]. Parametric models corrected for finite samples using the
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Bayesian Information Criterion (BIC) are also widely used which is thoroughly investigated
in [Cettolo et al., 2005]. The BIC procedures proposed are computationally heavy which has
resulted in a number optimizations. Huang and Hansen [Huang and Hansen, 2004a] argued
that BIC-based segmentation works well for longer segments, while a BIC approach with
a preprocessing step that uses a T 2-statistic to identify potential changes, was superior for
short segments and reduced the computational load.

Nakagawa and Mori [Nakagawa and Mori, 2003] compare different methods for speaker
change detection, including Generalized Likelihood Ratio, BIC, and a vector quantization
based (VQ) distortion measure. The comparison indicates that the VQ method is supe-
rior to the other methods. A simplification of the Kullback-Leibler distance, the so-called
divergence shape distance (DSD), was presented in [Lu and Zhang, 2005] for a real-time im-
plementation. The system includes a method for removing false alarms using ”lightweight”
GMM speaker models.

Model -based methods are based on recognizing specific known audio objects, e.g., speakers,
and classify the audio stream accordingly like the approach we used for speech/music dis-
crimination in chapter 3. This approach has been very successful for event detection if the
audio classes are well-defined, for instance in separating male and female speakers where
representative training data may be obtained. The model-based approach has been com-
bined with the metric-based to obtain hybrid-methods that do not need prior data [Kemp
et al., 2000, Kim et al., 2005].

In general performance of unsupervised speaker change detection methods reported recall1

(RCL) 79.4 % and precision (PRC) 78.9 % for the T2-BIC algorithm in [Huang and Hansen,
2004a]. The DSD-metric used in Lu and Zhang [2005] resulted in RCL/PRC of 89%/85%
for long speaker segments (longer than 3 seconds). The results are obtained by applying
false alarm compensation schemes.

One of the requirements to our system is that it should work with no prior information on
speaker identity. This also means that the speaker indexing system must be unsupervised,
with no prior information on speaker identities, number of speakers and so on. Since we are
interested in segmenting news with an unknown group of speakers we limit our investigation
to metric-based methods. Furthermore we are interested in a system that is not too special-
ized to a given channel, hence, in both system design and in the evaluation procedure we
will focus on the issue of robustness.

This chapter presents our investigation of speaker change detection. The presentation will
present the features, followed by an introduction of metric-based change detection and the
distance measures used. We then present how an algorithm for the change detection is
built. The evaluation is done on a database that will be presented in conjunction with the
evaluation of the algorithms.

Our focus has been on applying the vector quantization distortion metric to the change
detection. In addition we have implemented two other widely used metrics to compare the
performance.

1Recall is defined as the number of correctly found change-points divided by the total number of true
change-points. Precision is the number of correctly found change-points divided by the number of hypothe-
sized change-poins.
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A B

Feature vector sequence

Analysis windows

Figure 4.1: The feature vector sequence is divided into two succeeding analysis
windows A and B.

The work in speaker change detection has been reported in the paper Unsupervised

Speaker Change Detection for Broadcast News Segmentation, which is included
in appendix A. Some changes in the notation have been inferred, though.

4.1 Feature Selection

The features proposed for event detection are numerous. Different features have been intro-
duced, depending on the application. As the intention is to separate different speakers, it
has been natural to look at features used for speaker recognition. MFCCs have proven to
be very useful for this task, see e.g., [Ganchev et al., 2005] and our investigation of speaker
recogniton [Jørgensen and Mølgaard, 2005]. Therefore the MFCCs have been chosen for the
features for the speaker change detection, and other features are not considered.

The use of MFCCs moreover saves overall computation time because the values calculated
can be reused.

4.2 Distance Measures

Basically change detection tries to locate significant changes in the audio signal. Metric-
based change detection is done by compare two successive analysis windows that are shifted
along the signal. The distance indicates the similarity between the two windows, so a peak
in the metric may indicate a change in the sound stream.

We define A and B to be two succeeding sequences of feature vectors of length N: A =
{xA

1 ,xA
2 , ...,xA

N} and B = {xB
1 ,xB

2 , ...,xB
N}, see figure 4.1.

Figure 4.2 shows a PCA-plot of such two succeeding feature vector sequences, where a
speaker change-point occurs in between the two sequences. Each sequence is three seconds
long. The audio is taken from a CNN broadcast news show, and the feature vector consist of
12 MFCCs. The figures show quite a large overlap in the feature vector distributions of the
speakers, but one of them seems to have a larger variance along the 1st principal component.

Below we present three different distance measures that have been considered in this context.
The basic approach of the three methods is to summarize the features in each window, and
then infer a metric that can be evaluated.
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(a) Plot with blue segment at back
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(b) Plot with red segment at back

Figure 4.2: PCA-plot of 3 seconds of speech from two different speakers in a CNN
news broadcast show. Crosses and circles marks the cluster centers from speaker
one and speaker two respectively. (a) and (b) show the same plot the only difference
is the order in which the feature vectors are plotted.
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4.2.1 Vector Quantization

The vector quantization distortion measure is based on clustering the feature vector sequence
into K centroids. In [Kinnunen et al., 2000] five different clustering algorithms are compared
for use in a speaker identification setup using vector quantization. The comparison shows
only marginal difference in the results obtained with the five algorithms. Thus, in this
project we have chosen the K-means clustering algorithm, see e.g., [Bishop, 1995].

K-means Clustering Algorithm

K-means works by assigning each feature vector in the sequence A = {xA
1 ,xA

2 , ...,xA
N} to one

of K centroids C = {c1, c2, ..., cK} in a way to minimize the sum-of-squares error function:

E =

K∑

j=1

∑

n∈Sj

||xA
n − cj ||

2, (4.1)

Where Si is the set of feature vectors assigned to centroid ci. The centroid is simply
calculated as the mean of the feature vectors assigned to that centroid.

cj =
1

Nj

∑

n∈Sj

xA
n (4.2)

Nj is the number of data points in Sj .

The K-means algorithm begins by choosing K random feature vectors in A as initial centroid.
Each feature vector in A is assigned to the nearest center, and each centroid is re-computed
using equation (4.2). Each feature vector is then re-assigned to its new nearest centroid.
This procedure is repeated until no more changes occur in the assignment. Each cluster
centroid cj is called a code-vector and the set of code-vectors C is called a codebook.

Vector Quantization Distortion

The vector quantization based metric is based on clustering the analysis windows. The
windows are then compared using the so-called VQ-distortion measure VQD between the
features in window B and the codebook CA calculated on A, as defined in [Nakagawa and
Mori, 2003]:

VQD(CA, B) =
1

N

N∑

n=1

arg min
1≤k≤K

{
d
(
cA

k ,xB
n

)}
, (4.3)

Where cA
k denotes the k-th code-vector in CA, 1 ≤ k ≤ K. d is a distance between two

feature vectors. In this context the well-known Euclidean2 distance dE is used. Thus, the
VQD measure is the mean distances from all the feature vectors xB

n in B to the nearest
code-vector cA

k in CA.

2For reference: dE(x,y) =
√∑

d

i=1
(xi − yi)2
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4.2.2 Kullback-Leibler Distance

The VQD approach models each window using clustering. The Kullback-Leibler distance
approach is based on estimating whether the density functions of the feature distributions
are equal.

The symmetric Kullback-Leibler distance (KL2) has been used in speaker identification sys-
tems and applied to general change detection [Meinedo and Neto, 2003]. The KL2 distance
between two analysis windows A and B is defined as:

KL2(A,B) =

∫

x

[pA(x) − pB(x)] log
pA(x)

pB(x)
dx (4.4)

Assuming that the feature sequences A and B are n-variate Gaussian distributed, pA ∼
N (µA,ΣA), pB ∼ N (µB ,ΣB), i.e.

p(x) =
1

(2π)d/2|Σ|1/2
exp

{
−

1

2
(x − µ)⊤Σ−1(x − µ)

}
(4.5)

Combining equations (4.4) and (4.5) (details are given in appendix C) yields the following
expression:

KL2(SA, SB) =
1

2
Tr

[
(ΣA − ΣB)(Σ−1

B − Σ−1
A )

]
+

1

2
Tr

[
(Σ−1

A + Σ−1
B )(µA − µB)(µA − µB)⊤

]
(4.6)

This expression is called the divergence for two gaussian distributed classes.

4.2.3 Divergence Shape Distance

The KL2 distance presented above is composed of two terms, the former is based solely on
differences between the covariance matrices and the latter involves differences between the
mean vectors. These components can be characterized as differences in shape and size of the
probability density functions, respectively. The mean vectors, included in the latter term,
can vary much depending on the environment [Lu and Zhang, 2005], which may be reflected
in the metric even though actual speaker changes are not present. Using only the first term
should remove this dependency, so that only the difference between covariances contribute.
This metric is called the divergence shape distance (DSD).

DSD(A,B) =
1

2
Tr

[
(ΣA − ΣB)(Σ−1

B − Σ−1
A )

]
(4.7)
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Figure 4.3: The three metrics VQD, KL2, and DSD are calculated on a CNN
broadcast news show. The show contains four speaker change-point indicated by
the vertical lines.

4.2.4 Example

In the sections above three distance metrics were introduced, namely the VQD, KL2, and
DSD. In the three presented distance metrics a greater value means a greater difference
in the two distributions. In figure 4.3 the three metrics are calculated on CNN broadcast
news show. The sample contains four speaker change-points indicated by the vertical lines.
All three metrics gives peaks at the true change-points. Though, not all change-points are
equally well indicated, and peaks aside from the true change-points are seen. The DSD
metric shows the largest ambiguity in the distance-values.

4.3 Change Detection Algorithm

Based upon the calculated distance metric the change detection algorithm determines whether
or not a speaker change occurred. Our algorithm works in two steps. The first step is the
change-point detection where candidate change-points are found. The second step is the
false alarm compensation.

The speaker change detection algorithm was developed using the VQ approach. This section
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An Bn

… …

law

An+ls Bn+ls

Feature vector sequence

Analysis windows

tn tn+ls

ls

Figure 4.4: The feature vector sequence is divided into analysis windows. An is
the analysis window with length law and endtime tn. Bn is the succeeding analysis
window with starttime tn and length law. The analysis windows are shifted with
ls along the feature vector sequence.

first presents how the VQD distance metric are calculated. Then we describe how the
change-point detection algorithm finds potential change-points. Next we propose a false
alarm compensation algorithm, that is used to reject some of the wrongly detected change-
points. We then give some considerations about how the parameters of the algorithm should
be adjusted. Finally we present an example, where we demonstrate how our algorithm is
used to first find candidate change-point and afterwards the false alarm compensation is
rejecting the false alarms.

4.3.1 Vector Quantization Distortion Measure Calculation

The feature vector sequence is divided into analysis windows of length law. Let An be the
analysis window with endtime tn and Bn the succeeding analysis window with starttime tn.
The analysis windows are shifted with length ls, thus the shifted analysis windows at time
tn + ls are called An+ls and Bn+ls . See figure 4.4 for a graphical illustration.

As described above, the conventional VQ-algorithm computes the distortion measure be-
tween two feature vector sequences An and Bn by computing VQD(CA

n , B), clustering An,
to obtain the codebook CA

n . We have considered two optimizations for this VQ-algorithm.

The first improvement is done by using the codebook CB
n of B instead of comparing with

the whole sequence of feature vectors. Thus, the metric used at time tn in the change point
detection is instead VQDn = VQD(CA

n ,CB
n ). This optimization should save a number of

comparisons, as the number of vectors is reduced to the number of code vectors used in the
codebook.

The second optimization concerns the K-means algorithm. The clustering is by far the most
time consuming operation in the overall change detection method. It is observed that there
is a large overlap of An and the next window An+ls . It is therefore very convenient to use
the cluster centers obtained for An as initial centers for An+ls . This makes the K-means
algorithm converge faster and minimizes the distance between two succeeding codebooks,
resulting in less fluctuating distortion measures.
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The implementation of the k-means clustering algorithm was done using the voicebox toolbox
[Brookes, 1998]

4.3.2 Change-point Detection

Figure 4.3 showed the three distance measures for a sample file. Based on this metric the
change-point detection algorithm should find the speaker changes. We have defined a simple
change-point detection algorithm. The basic algorithm evaluates the calculated distance
metric VQDn at every time step time tn. A change-point is found if VQDn is larger than
a threshold thcd. The figure 4.3 shows that near the true change-points there are typically
more than one local peak, thus to detect only the true change-point VQDn should be the
local peak within Ti seconds.

This procedure is called the changePointDetection and the pseudo-code for the algo-
rithm can be seen in Algorithm 4. This algorithm works in three steps. Firstly codebooks
for every time step tn are calculated using K-means. The K-means uses Cn−ls as initial
cluster centroids when Cn are calculated. Next are the VQDn measure found for each time
step. Note that Cn and Cn+law

are two succeeding feature vector sequences corresponding
to An and Bn in figure 4.4 respectively. Finally the change-points are found. A change-
point to time tn is detected if VQDn is larger than the threshold thcd and is the largest
VQD values within Ti seconds.

4.3.3 False Alarm Compensation

When running the changePointDetection algorithm it is necessary to keep the analysis
window relatively short in order to be able to detect short speaker segments. On the other
hand short analysis windows may lack data to make fully reliable models, which consequently
may cause false alarms.

The baseline approach yields a number of potential change-points, dividing the audio stream
into speaker segments. The generated speaker segments can be used to make more accurate
models, because of the larger amount of data. Comparing these more accurate models can
then be used to accept or reject the potential change-point.

The false alarm compensation algorithm simply works by making two speaker VQ-codebooks,
for the speaker segment before the change-point Cbefore and another after the change-point
Cafter.

The two VQ-distortion measures VQD(Cbefore,Cafter) and VQD(Cafter,Cbefore) are com-
puted and the mean VQDmean of these two measures is found. The change-point is then
accepted if the measure is larger than the threshold thfac and rejected if it is below. We
found that using the mean of the two distortion measures is more stable than using just one
of the measures.

If a real speaker change is missed during the initial change-point detection, the resulting
speaker model would contain data from two speakers, meaning that the speaker codebook
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Algorithm 4 changePointDetection

{x1,x2, ...,xN} ←feature vector sequence

// Calculate codebooks
n ← law

while n < N do

An ← {xn−law+1, ...,xn}
Cn ← K-means(An)
n ← n + ls

end while

// Calculate distortion measure
n ← law

while n < N do

VQDn ← VQD(Cn,Cn+law)
n ← n + ls

end while

// Find change-points
n ← law

while n < N do

if VQDn > thcd then

if VQDn == max
(
{VQDn−Tmax

, ...,VQDn+Tmax
}
)

then

CPn ← TRUE

else

CPn ← FALSE

end if

end if

n ← n + ls
end while

return CPn

models both speakers. To counteract this problem only the Tmax seconds closest to the
change-point are used to make the speaker codebook.

4.3.4 Parameter Settings

The proposed change-point detection algorithm requires some parameters to be adjusted.
The two thresholds thcd and thfac should be set to optimize the desired relation between
finding all the true changes and inferring false alarms. As proposed by [Lu and Zhang, 2005]
an automatic threshold adjustment method is used.

We use VQDn,avr as the average of the distortion measure in a window of 2Tmax around tn:

VQDn,avr =
1

2Tmax + 1

∑

i

VQDn+i (4.8)
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Algorithm 5 falseAlarmCompensation

{x1,x2, ...,xN} ←feature vector sequence
{ACP1

, ACP2
, ..., ACPN

} ← get speaker segments
CPn ← get potential change-points
n ← law

// Iterate all potential change-points
while n < N do

if CPn == TRUE then

// Find speaker segment before change-point
if length(ACPn

) > Tmax then

Abefore ← {xn−Tmax
, ...,xn}

else

Abefore ← ACPn

end if

// Find speaker segment after change-point
if length(ACPn+1

) > Tmax then

Aafter ← {xn+ls , ...,xn+Tmax
}

else

Aafter ← ACPn+1

end if

// Calculate codebooks
Cbefore ← K-means(Abefore)
Cafter ← K-means(Aafter)

// Calculate V QDmean

VQDmean ← 1
2

(
VQD(Cbefore,Cafter) + VQD(Cafter,Cbefore)

)

// Accept or reject change-point
if VQDmean > thfac then

CPn ← TRUE

else

CPn ← FALSE

end if

end if

n ← n + ls
end while

return CPn
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Figure 4.5: The upper part of the figure shows the VQ-distortion measure VQDn

for a sample file. The true speaker changes are indicated by vertical lines. The
dotted line indicates the threshold thcd and the estimated change-points found are
shown with circles. In addition to the true speaker change-points four false change-
points are found. The lower part of the figure shows the VQ-distortion VQDmean

for the found change-points. The threshold thfac is indicated and the accepted
change-points are shown by circles, and the rejected are shown by crosses.

Where −Tmax/ls < i < Tmax/ls. The thresholds at time tn are thereby set to:

thcd,n = αcdVQDn,avr (4.9)

thfac,n = αfacVQDn,avr (4.10)

The two amplifiers αcd and αfac must be set in advance.

The timing parameters law, Ti, and Tmax should be set according to the expected distribution
of speaker turn lengths. ls defines the resolution of the detected change-points.

4.3.5 Example

An example of the change-point detection algorithm is shown in figure 4.5. The audio clip
in this example is 113 seconds long and contains speaker change-points at 14.6, 29.3, 33.7,
43.8, 63.5, and 78.9 seconds indicated by the vertical lines. The upper part of the figure
shows the VQ-distortion measure VQDn as function of time. The dotted line indicate the
threshold thcd and the estimated change-points found by our change-point algorithm are
shown with circles. It is seen that in addition to the true speaker change-points four false
false alarms occur.

The lower part of the figure shows the VQ-distortion measure VQDmean for the found change-
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Figure 4.6: Histogram of the speaker segment lengths contained in the database

Total length
(min)

Avg. seg-
ment length
(sec)

Speaker
changes

CNN 38 17.0 134
CBS 20 9.9 121
WNYC 26 22.6 69
PRI 19 15.8 64

All 103 15.6 388

Table 4.1: Database information

points. Again, the dotted line indicate the threshold thfac and the accepted change-points
are shown by circles, and the rejected are shown by crosses.

In this example all the true speaker changes are found, and false alarms are removed by the
false alarm compensation step.

4.4 Experiments and Results

In this section we will evaluate the various VQD parameters. Next we will compare the
VQD measure with the two other measures KL2 and DSD. The generalizability of the
change detection algorithm using the VQD measure is then evaluated.

4.4.1 Speech Database

The speech data used was news-podcasts obtained from four different news/radio channels
CNN, CBS, WNYC, and PRI.
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The data consists of 103 min of broadcast news, which contains speech from numerous
speakers in different environments. The database only contains speech segments as we are
only interested in evaluating the speaker change detection performance.

The length of the speaker segments range from 0.4 seconds to 119 seconds with an average
length of approximately 14 seconds. Figure 4.6 shows the distribution of the segment lengths.
The number of speaker changes is 388, distributed over 47 files. The data was manually
labelled into different speakers. The total number of segments is 435, and 75 of these have
a length less than 5 seconds. These segments are generally considered difficult to detect [Lu
and Zhang, 2005, Huang and Hansen, 2004a].

4.4.2 Evaluation Measures

A change-point proposed by the algorithm may not be precisely aligned with the manual
label. This occurs for instance if the change occurs at a silence period or if speakers interrupt
each other. To take this into account, a found change is counted as correct if it is within 1
second of the manual labelled change-point as in [Huang and Hansen, 2004a]. The mismatch
is defined as the time between a correct found change-point point and the manually labelled
one.

Two kinds of errors are possible in this context. A missed change-point and inferring a false
alarm. These errors are also referred to as deletions and insertions. The evaluation measures
frequently used are recall (RCL) and precision (PRC):

RCL =
no. of correctly found change-points

no. of true change-points
(4.11)

(4.12)

PRC =
no. of correctly found change-points

no. of hypothesized change-points
(4.13)

The F-measure combines RCL and PRC into one measure,

F =
RCL × PRC

α × RCL + (1 − α)PRC
(4.14)

with α as a weighting parameter that can be used to emphasize either of the two quantities.
The results presented below use the equal weighting, with α = 0.5.

4.4.3 Parameter Tuning

The speaker change detection algorithm requires some parameters to be set. In this section
we will investigate the parameters influence on the change detection performance.



4.4 Experiments and Results 67

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

principal component 1

pr
in

ci
pa

l c
om

po
ne

nt
 2

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

principal component 1

pr
in

ci
pa

l c
om

po
ne

nt
 2

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

principal component 1

pr
in

ci
pa

l c
om

po
ne

nt
 2

Figure 4.7: The figure shows how the two feature vector sequences from figure 4.2
are clustered using 8, 32, and 56 clusters. Crosses and circles represent the cluster
centers from the two sequences (speakers) respectively.
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Figure 4.8: F-measure as function of the number of clusters used when creating the
codebooks. The figure shows the mean and standard deviation from 3 runs of each
codebook size.

Codebook Size

The VQD measure is based on clustering the feature vectors into K disjoint clusters. The
number of clusters K, which also defines the codebook size, must be set in advance. In
[Kinnunen et al., 2000] the performance dependency of the codebook size are investigated in
a speaker identification setup using vector quantization. The conclusion of this investigation
is that the identification rate is increased when increasing the codebook size. The only
drawback of increasing the codebook size, is an increase in the runtime of the algorithm.

Figure 4.7 shows the cluster centers of clustering the feature vector sequences from figure
4.2 using 8, 32, and 56 clusters respectively.

Figure 4.8 shows the F-measure as function of codebook size in the VQD measure. The
codebook size has been varied in both the change-point detection and the false alarm com-
pensation scheme. The figure shows mean and standard deviation of three runs for each
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Figure 4.9: RCL-PRC-curve for different choices of codebook size. (a) shows the
curve before the false alarm compensation, (b) shows the curve after the false
alarm compensation. The figures are created by varying the αcd, in (b) αfac is kept
constant.

codebook size using all the data from our speech database. The threshold parameters αcd

and αfac has been optimized to obtain the highest F-measure in each run. The analysis
window length is set to 3 seconds, which means that each analysis window contains 300
feature vectors. The figure shows the highest F-measure using 32 clusters. Further increase
in codebook size does not increase the F-measure further.

The F-measure is a good indication of the performance of the algorithm, but it only tells
something about one specific choice of the threshold parameter. By varying the thresholds a
RCL-PRC-curve can be created. Figure 4.9 shows this RCL-PRC-curve for different choices
of codebook sizes. The figure shows, similar to figure 4.8, that there is not a single best
choice of the codebook size, though it should be chosen to be 32 or beyond.

Analysis Window Length

The length of the analysis window has a great impact on the change detection performance.
The analysis window should be large enough to contain enough data to estimate the segment
models. Though, if a too large window length is chosen, the window could contain speech
from multiple speakers. This could result in that a change-point could be missed.

Figure 4.10 shows the F-measure as function of the length of the analysis window. The
threshold parameters αcd and αfac has been optimized to obtain the highest F-measure in
each run. The figure shows that the optimal F-measure is obtained when setting the analysis
window to 3 seconds.
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Figure 4.10: F-measure as function of the length of the analysis windows. The
figure shows the mean and standard deviation from 3 runs of each length.
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Figure 4.11: F-measure as function of the Tmax parameter.

Maximum Window Size - Tmax

In the false alarm compensation algorithm only the Tmax seconds nearest the potential
change-point is used to create the codebooks. Figure 4.11 shows the F-measure obtained
by varying Tmax. The figure shows that the specific choice of this parameter has no great
influence of F-measure. Though, not having the Tmax constraint the F-measure is decreased
to 0.814, which should be compared to the F-measure 0.845 that is obtained when setting
Tmax = 9s. In addition to the improved performance on having the Tmax constraint, the
runtime is improved, due to the reduced amount of data for each evaluation.
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Metric F RCL PRC Mismatch

VQD32 0.761 0.838 0.697 191ms
VQD32-FAC 0.845 0.763 0.946 188ms

VQD48 0.717 0.840 0.627 208ms
VQD48-FAC 0.839 0.766 0.928 206ms

VQD56 0.687 0.863 0.573 220ms
VQD56-FAC 0.854 0.801 0.915 202ms

KL2 0.763 0.833 0.704 212ms
KL2-FAC 0.823 0.789 0.860 212ms

DSD 0.623 0.766 0.526 308ms
DSD-FAC 0.732 0.665 0.814 288ms

Table 4.2: Results obtained with αcd and αfac adjusted to optimize the F measure
after the false alarm compensation (FAC). Both the results before and after the
FAC are shown.

4.4.4 Metric Comparison

In the past section the optimal settings for the change detection were found. In this section
we will compare the three distance metrics VQD, KL2, and DSD.

In the tests the following settings are used: law = 3s, Ti = 2s, Tmax = 8s, and ls = 0.1s.
αcd and αfac are set to maximize the F-measure after the false alarm compensation (FAC).
The VQD-approach is evaluated using 32, 48, and 56 clusters for both the change detection
and in the false alarm compensation. In the false alarm compensation using the KL2 and
DSD approaches, 56 clusters are used.

Table 4.2 shows the results obtained using all the data from our database. This table shows
the results both before and after the false alarm compensation (FAC). The best performance
is obtained using VQD with 56 clusters, with a F-measure of 0.854. In this case 80.1% of the
true change-points are detected with a false alarm rate of 8.5 %. A relative improvement
of 59,7% in precision with a relative loss of 7.2% in recall is obtained with our false alarm
compensation scheme. The KL2 metric gives a F-measure of 0.823 and DSD gives a F-
measure of 0.732.

Varying αcd a recall-precision curve can be created. Figure 4.12(a) shows the RCL-PRC
curve for the three metrics VQD-56, KL2, and DSD for the baseline algorithm. The curves
for VQD-56 and KL2 are comparable, though VQD-56 gives better precision at lower recall.
VQD-56 and KL2 is clearly better than DSD. Figure 4.12(b) shows the RCL-PRC curves
after the false alarm compensation. These curves are created by varying αcd and keeping
αfac constant. Though, the baseline recall-precision curve for VQD and KL2 is very similar
the VQD-FAC performs better than KL2-FAC. A reason for this could be that VQD and
KL2 do not locate the same change-points and FAC then rejects more true change-points
found by KL2 than found by VQD.

The change-points are found with a relatively small average mismatch of approximately 0.2s,
which is acceptable for most applications.
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Figure 4.12: RCL-PRC-curve for the three distance metrics VQD, KL2, and DSD.
(a) shows the curve for the baseline, and (b) shows the curve after false alarm
compensation. The curves are created by varying αcd. In (b) αfac is kept constant.

metric CD (s) FAC (s) total (s)

VQD16 347 141 488
VQD32 916 138 1054
KL2 54 146 200
DSD 51 145 196

Table 4.3: Runtime in seconds to run the change detection algorithm using the
different metrics. The audio used to measure the time is 683s long and contains
40 speaker changes.

Runtime Analysis

Another important measure to consider when choosing a metric is the runtime of the algo-
rithm. Table 4.3 shows the runtime for the change detection (CD), the false alarm compen-
sation (FAC), and the total runtime using the different distance metrics. The audio used
for this test is 683 seconds long and contains 40 speaker change points.

The table shows that using KL2 and DSD are remarkably faster than using VQD. VQD
requires the feature vectors to be clustered and this clustering process is a relatively time
consuming process. The table also shows that increasing the number of clusters from 16 to
32 increases the time duration from 488 seconds to 1054 seconds.

4.4.5 Generalizability

To investigate the generalizability of our system, another test was set up where the database
was divided into a training set and four test sets. The training set contains files randomly
chosen from three of the channels, CNN, CBS, and WNYC. Four test sets were created, one
for each of the channels including PRI, using the remaining files in the database.
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Figure 4.13: This figure shows the results obtained for different test sets. The
system optimized for each of the tests are compared with a system optimized for a
training set. The figure shows that a threshold chosen on a training set generalize
reasonable well to other data sets.

The system was set up using the VQD measure with 56 clusters. The system parameters
αcd and αfac were optimized for the training set and then evaluated on the test sets. Figure
4.13 shows the F-measure for this test. The results are compared with the system optimized
for each of the specific test sets.

Generally our system performs better on the two test sets CNN and CBS compared to
WNYC and PRI. This is most likely due to the fact that WNYC and PRI contain more
short segments (< 3s) than CNN and CBS. The analysis window length of 3 seonds makes
these segments hard to locate.

Only a minor reduction in the F-measure for all test sets is observed when using the training
setting compared to the optimal settings for these test sets. Even the data from PRI that
was not present in the training set show the same behavior. This demonstrates that the
system is robust and lend support to the use in different media without need for further
supervised tuning of parameters for new channels.

4.4.6 Analysis of False Alarms and Missed Change-points

Unfortunately not all change-points are detected and despite the false alarm compensation
false alarms still occur. In this section we will look into the various reasons for these errors.

Broadcast news speech contains speech in un-ideal conditions. This occurs for instance when
reporters report from noisy environments or the anchor speakers speak with background
music. A great deal of the false alarms are due to these noisy environments.

As mentioned earlier short speaker segments are difficult to detect. An investigation reveals
that approximately 62% of the missed change-points are due to segments that are shorter
than 5 seconds.
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4.5 Discussion

The results obtained in the speaker change detection compare well to other results presented
in the field. The optimal F-measure reported for the VQD approach of 85.4% which is
comparable to other state-of-the-art systems, mentioned in the introduction to this chapter.

The VQD approach that we employed was compared to the KL2 and DSD metrics. The
performance of the VQD approach was shown to be superior in change-point detection over
the two other metrics. One downside of the improved performance is that it comes at a
large cost in runtime of the algorithm.

The errors that occur in the segmentation are typically due to short speaker segments. This
is a problem that is hard to address using fixed sized windows. Speaker changes are also very
difficult to locate if there is a strong constant background sound, such as noise or music.
Separating the background noise and speaker could maybe enhance the method. These
artifacts however aid the change detection in some cases, as a change in background noise
may indicate a change from a studio anchor to a reporter in the field.

4.6 Summary

In this chapter a speaker change detection algorithm based on vector quantization has been
developed. The algorithm works in two steps. This first step finds potential change-points,
the seconds step either accept or reject the change-points by using more data to estimate the
models. We showed that the VQD metric performed better that the two other frequently
used measures KL2 and DSD. A F-measure of 0.854 was obtained using all the data in the
speech database. We showed that the false alarm rate can be significantly reduced using the
false alarm compensation step on the change-points suggested by the first step. We showed
that the choice of the thresholds based on one data set generalized reasonably well to other
different data sets from different stations.
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Chapter 5

Speech Recognition

The final part of the system concerns the transcription of the speech segments. The area
of speech recognition has been widely researched for the last decades, which has resulted
in many successful systems. Additionally the evaluation of systems has been standardized
using a number of speech corpora. Fully investigating the theory and techniques used in
modern speech recognition could be the subject of a full thesis, so this description will only
review the commonly used methods.

5.1 Introduction

Automatic speech recognition (ASR) systems can be divided into three classes; based on the
size of the vocabulary used.

Small vocabulary:

Used to recognize tens of words. One task is for instance to recognize the digits
from 0 to 9. This has for instance been tested using the TIDigits database, which
consists of fluent reading of digits. This task can result in more than 99% correct
word recognition.

Medium vocabulary:

Systems recognizing hundreds or few thousands of words. Systems for medium
vocabulary tasks can benefit from making speaker dependent models. Systems in
this context can achieve a recognition rate of 90-95%.

Large vocabulary:

The most demanding assignment uses a vocabulary of many thousands words.
60,000 words might for instance be sufficient to recognize the speech in broadcast
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news. The large vocabulary automatic speech recognition (LVASR) systems are
usually speaker independent, but may still yield a recognition rate of up to 85%.

Several factors contribute to the difficulty of correctly recognizing speech:

Nature of the speech:

In a dictation system sentences are read with distinct breaks between words. In
this way words are clearly separated. Continuous speech on the other hand does
not contain clear breaks in between words, making it harder to spot the word
changes.

Continuous speech can be either planned/read or spontaneous. Planned/read
speech is normally more clearly pronounced and grammatically correct. Sponta-
neous speech on the other hand contains incoherent and unfinished sentences.

Environment conditions:

A noisy environment naturally makes the recognition harder, and therefore re-
search has also been done to counteract noisy speech. Another aspect may be
channel conditions, for instance if telephone conversations are considered.

Optimization of the ASR-system therefore depends greatly on the task at hand. Systems
that are excellent for one task may very well be infeasible in other contexts. To get satis-
factory results, one must therefore take care to choose methodology and parameters of the
recognition engine depending on the task at hand.

A number of academical groups have developed ASR-systems, made freely available for
instance under the GNU public licence. Popular freely available systems (for academic
purposes) include the Hidden markov model ToolKit (HTK) developed at Cambridge Uni-
versity, Sonic [Pellom and Hacioğlu, 2001] from University of Colorado, Torch which was
developed at IDIAP in Switzerland and the SPHINX systems originating from Carnegie
Mellon University [Walker et al., 2004].

The purpose of this project has not been to develop or improve speech recognition, therefore
special optimization or alteration of the speech recognition system has not been considered.
Instead a fully developed ASR-system must be considered for the transcription part of our
system. The requirements for the ASR-system in our case was therefore:

Large vocabulary:

The recognition of general broadcast audio requires a large vocabulary.

Speaker independence:

We have no prior knowledge of speaker identities.

Ease of use:

The actual ASR implementation is not the focus of this project. Therefore it
should be possible to set up the system fairly easily. Additionally we do not have
extensive training data, so systems that already are adapted for broadcast news
would be preferable.

An initial review of the above systems showed that the general structure of the systems is
quite common. This chapter will briefly discuss the structure and some of the theory behind
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Figure 5.1: General parts of an ASR-system. The frontend does feature extraction.
The features are then translated into words by the decoder based on the models in
the knowledge base.

common LVASR-systems. This is done to understand how to setup the ASR-system. Finally
we present the SPHINX-4-system that was chosen.

5.2 General Speech Recognition

The general concepts and parts of current ASR-systems are commonly accepted among all
variants. Generally ASR-systems can be split into the parts shown in figure 5.1. The task
of the frontend is to transform the raw speech data into features that are convenient for the
decoder or recognition engine. The decoder then uses models of the speech in the knowledge
base to map the incoming features onto a sequence of words to obtain the transcript.

Below we present the three parts.

5.2.1 Frontend

The task of the frontend is to do feature extraction, which includes enframing the signal
waveform, and transforming the signal to feature vectors used by the decoder. The feature
extraction is predominantly some form of cepstral analysis e.g., MFCCs or perceptual linear
prediction coefficients (PLP) [Gauvain et al., 2002, Hain et al., 1998]. Features are usually
supplemented by first and second order time differences as described in section 2.6.

Features may furthermore be adapted to compensate for noise and channel conditions. Cep-
stral Mean Normalization (CMN) for instance estimates the long-term average of cepstral
feature vectors sequence to subtract it from the computed cepstral features. Vocal Tract
Length Normalization (VTLN) estimates a factor that warps the cepstral features to ac-
count for variance of the vocal tract of different speakers. This method requires adaption to
specific speakers and may therefore not be applicable to the broadcast news task as there is
no knowledge of the speakers present in the speech streams.
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5.2.2 Knowledge Base

In general the modeling of speech is split into two aspects. The first model is used to map
the uttered sounds onto language units. These units may be words, or more predominantly;
phonemes.

All words can be split into a sequence of sound units called phonemes. The English language
has 40-50 phonemes and thus all words can be described by a combination of these phonemes.
The acoustic model maps features to phonemes.

The choice of phonemes is guided by using a model of the linguistic structure of the language.
This model is called the language model. The language model is based on observing the
sequence of words so it is usually necessary to employ a dictionary to map the phoneme
sequence to words. The connection between the three models is illustrated in figure 5.2.

Acoustic Model

The acoustic model attempts to map sounds to a textual representation, which could for
instance be words, however, in the case of LVASR, there are simply too many words to be
modeled in this way. To create speaker-independent models for each word it is necessary
to obtain several samples of every word from several different speakers. Furthermore, the
process must be repeated for each new word that is added to the vocabulary, which is why
phonemes are preferred.

One problem of phonemes is that the pronunciation of one phoneme is influenced by the
neighboring phonemes. For example, the /AE/1 phoneme in the word ’man’ sounds different
from that in ’lack’. Therefore almost all ASR-systems use triphone or context-dependent
phoneme models. Triphone model combinations of phonemes, for instance there is a model
for /M/→/AE/→/N/ and one for /L/→/AE/→/K/. If a system uses 40 phonemes, it means
that there are 403 = 64000 possible triphones, though.

In present LVASR-systems triphones are modeled using Hidden Markov Models (HMM),
see e.g., [Pellom and Hacioğlu, 2001, Walker et al., 2004]. HMMs have been described for
example in [Rabiner, 1989], see these references for descriptions of Markov processes.

Basically a HMM models a time sequence as a piecewise stationary process, exactly the way
we model speech by extracting short time frames for feature calculation.

The HMM consists of a number of states tied together by transitions. The HMM consists
of two stochastic processes, namely a Markov process to model the random sequence of
states, and an emission probability assigned to each state modeling the features at that time
step. I.e. each state of the HMM corresponds to a stochastic feature vector drawn from the
corresponding emission probability density function. The Markov process is governed by the
transition probabilities denoted aij in figure 5.2 denoting the probability of going from state
i to state j. Based on the nature of a phoneme, ASR-systems find it suitable to use three

1The symbols for phonemes used here are correspond to the ones used in the CMU-dictionary:
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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Figure 5.2: Illustration of the relationship between the recognition models.
Phoneme-HMMs are concatenated into words, building sentences using the lan-
guage model

state ’left-to-right’ HMMs to model a single context dependent phoneme, so transitions to
earlier states are excluded.

The emission probability of an observation (i.e. a feature vector) is either discrete or con-
tinuous.

• Discrete distributions return discrete values from an alphabet A. Each symbol
then has a probability attached depending on the HMM state. This approach requires
that feature vectors are clustered to assign them to the alphabet A.

• Continuous distributions are modeled by using GMM for each HMM state, yield-
ing continuously valued outputs. Using a large number of mixture components any
continuous distribution can be estimated.

Continuous models have been superior in LVASR applications, at the cost of larger compu-
tational load in decoding and training.

To use the HMMs for acoustical modeling each phoneme must have an associated HMM
trained2 on a very large corpus of annotated data, to optimize the likelihood of the models.
A broadcast news transcription system may require as much as 150 hours of meticulously
transcribed training data [Gauvain et al., 2002].

Using the HMMs to decode a sequence of feature vectors is done by evaluating each of
the phoneme-HMMs on the feature sequence to obtain the model which yields the highest

2Training HMMs is a non-trivial task but will not be covered in this context. On the training algorithm
see [Rabiner, 1989]
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Figure 5.3: Phoneme scoring using an HMM. The HMM models the feature se-
quence based on the state of the markov model. Each state has a GMM attached.
Evaluating the probability of a phoneme therefore is a sequence of state changes
assigning each feature to a state.

probability. The evaluation of a HMM is illustrated in figure 5.3.

Language Model

The matching of phonemes must be constrained in some way, for instance ’how to recognize
speech’ may sound like ’how to wreck a nice beach’. Therefore the phoneme decoding is
aided by a language model (LM).

The LM defines the prior probability of a sequence of words. The LM-probability of a
sequence of words (w1, w2, ..., wn) is given by:

P (w1)P (w2|w1)P (w3|w1, w2)...P (wn|w1, ..., wn−1)

=

n∏

i=1

P (wi|w1, ..., wi−1) (5.1)

In the expression P (wi|w1, ..., wi−1), the sequence (w1, ..., wi−1) is the word history for wi.
In practice it is not possible to obtain reliable probability estimates given arbitrarily long
histories since that would require enormous amounts of training data. Instead, the word
sequence is estimated using uni-, bi-, or trigram grammars. These are defined respectively
as follows:

P (w) = probability of word w

P (wj |wi) = probability of wj given a one word history wi

P (wk|wi, wj) = probability of wk given a two word history wi, wj
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Figure 5.4: Illustration of decoding using the search graph. In general each point
in the search graph has a probability assigned using Viterbi decoding based on the
acoustic scoring and language model. The complexity of the Viterbi decoding is
commonly reduced by applying beam pruning as illustrated, so that only the most
probable paths are considered.

Other higher-order n-gram grammars can be defined similarly.

Trigram models are the most frequently used among contemporary systems, but bi- or four-
gram models are also seen. The n-gram models have been the most popular because they
can be trained almost unassisted, i.e. without any knowledge of language constructs, given
enough appropriate training data.

5.2.3 Decoder

The acoustic model, dictionary, and language model, can be tied together to form a very
large trellis or search graph, where each transition has an associated transition probability,
based on the acoustic and language models.

The objective of the decoding is thus to map the sequence of features onto a path through
the graph, i.e. find the optimal sequence of states and thereby aligning the input onto
phonemes and words.

Searching the trellis is most commonly done by Viterbi decoding. The Viterbi algorithm
processes all states completely at time t before moving on to time t+1. The search graph for
the search is illustrated in figure 5.4. One dimension represents the states in the network,
and the other represents the feature sequence. The Viterbi algorithm assigns a score to each
point in this 2-D space. This score represents the probability of the best path leading up to
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that state. That is, given a time t and state s, the value at (t, s) represents the probability
corresponding to the best state sequence leading from the initial state at time t = 0 to state
s at time t.

Observing all paths through the search graph, though, is not feasible, as it would lead to a
practically infinite search space. Therefore paths at time t are pruned out based on some
heuristic. This procedure is called beam pruning, and the resulting algorithm is thus called
Viterbi beam search.

5.3 The SPHINX-4 System

The introduction presented some requirements for the ASR-system. The systems mentioned
in the introduction are all capable of speaker independent large vocabulary recognition.

The choice to use SPHINX-4 was made because it is provided with a number of pre-trained
acoustic and language models. One of these models is trained on the HUB4 corpus which
is specially tailored to evaluate ASR performance on broadcast news. The Sonic system is
also provided with a number of models but the only LVASR acoustic model provided was
trained on the Wall Street Journal Corpus, containing read speech in noiseless environments.
The SPHINX suite was thus the only system providing acoustic models for the versatile
environments seen in broadcast news.

The SPHINX systems are open-source systems that started out at Carnegie Mellon Uni-
versity. Different versions have been developed to investigate various applications and ap-
proaches to recognition. SPHINX-2 is for fast, almost real-time recognition, with a limited
recognition accuracy. SPHINX-3 and SPHINX-4 are capable of large vocabulary speech
recognition at comparable recognition rates and speed. SPHINX-3 is written in C, while
SPHINX-4 is written entirely in JAVA.

Another plus of the SPHINX-4 system is that it was developed with focus on modularity,
which makes it easily configurable and versatile. This section will review the SPHINX-4
system based on [Walker et al., 2004].

The system architecture is shown schematically in figure 5.5, and generally has the same
structure as described above. The description below refers to the designations in the figure.

5.3.1 Frontend

The FrontEnd of SPHINX-4 is a pipeline performing the following tasks:

Speech extraction:

This part does silence removal based on the energy values of the signal.

Cepstral coefficient extraction:

The cepstral analysis is done as described in section 2.6, yielding 13 MFCCs
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Figure 5.5: SPHINX-4 system overview. Figure from Walker et al. [2004].

including log energy as feature vectors. In addition ∆MFCCs and ∆∆MFCCs
are used to obtain a 39 dimensional feature vector for each frame.

Normalization:

To make the speech recognition more robust to different channel conditions Cep-
stral Mean Normalization (CMN) is applied. Running in batch-mode the mean is
calculated over the entire audio stream passed on to the frontend.

5.3.2 Linguist

The SPHINX-4 organization includes the module Linguist, that builds a search graph based
on the acoustic and language models as well as the dictionary.

Acoustic model

The AcousticModel used in SPHINX-4 are made using HMMs that can have an arbitrary
number of states, depending on the implementation. The SPHINX-suite includes the pro-
gram SphinxTrainer, that is used to train an acoustic model.

Training acoustic models for broadcast news, because of the broad range of speakers and
environments, must include very large amounts of data, as mentioned above. Collecting
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representative data and transcribing them is a major task, and was not tractable for a
project like ours. This tedious task is tackled as SPHINX-4 provide pre-trained models.
Especially one trained on the large HUB4 corpus containing broadcast news. To reduce the
number of tri-phones to be considered in the decoding, clustering is employed. In SPHINX-4
the set of the tri-phone HMM and the matching output probability distribution models is
called senones. The acoustic model used for our system uses 6000 senones with continuous
density three-state HMMs, using GMMs with 8 Gaussian components per state.

LanguageModel

The LanguageModel is trained using text corpora preferably from the same source as the
context the system will work in. Typically this means using as many as 100 million words
to train on. These may be obtained from text sources, such as news papers. The LM used
in this setup was trained on the HUB4 corpus using a dictionary of ∼ 64, 000 words.

The HUB4 LM uses tri-grams. The SPHINX-system has a number of classes to handle the
models, to optimize the speed and memory requirements. The optimal class for large vo-
cabulary tri-gram models is called LargeTrigramModel. This model is especially optimized
to handle the memory management, as the HUB4 LM takes up more than 100 MB.

Building the search graph, is as mentioned before, a combination of the acoustic and language
models. This combination is handled by the Linguist class. In a simple system the linguist
can build a static graph containing all possible combinations. This is simply not possible
for LVASR, therefore the graph must be built dynamically when the decoding of the speech
features advances. The LexTreeLinguist does just this.

The lex(ical) tree representation is a compact method to represent the search graph. The
implications of using the lex tree representation are quite elaborate, for interested readers
cf. to [Ravishankar, 1996, Chap. 4]. The use of context-dependent tri-phones and the lex
tree leads to quite intricate problems but these will not be covered here.

5.3.3 Decoder

The search graph constructed by the Linguist is passed on to the Decoder that han-
dles the actual decoding. As mentioned above the most tedious task lies in this search.
Search is implemented using SearchManager, which in this system is implemented by the
WordPruningBreadthFirstSearchManager. The search algorithm is done by assigning
states to features, as described in section 5.2.3, discarding states that are least probable,
thereby reducing the search space using the Pruner.

5.3.4 SPHINX-4 Parameter Setup

The practical setup of SPHINX-4 is done using the ConfigurationManager which is actually
an XML-file. The configuration used for our system is listed in appendix D. There are a
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number of adjustable parameters, but as we did not have very much transcribed material
at our disposal, an intensive test of the system was not possible. Instead we have relied on
parameters found on the SPHINX-homepage [Sphinx-4, 2004] for typical settings for LVASR.

Parameters for the frontend-processing were more or less fixed due to the pre-trained acoustic
model. The main parameters to tune in the system are therefore the ones used in the
decoding. As mentioned before search is done using Viterbi beam search. Adjusting the
parameters that control the beamwidths used in the search are the primary way to adjust
both the speed and accuracy of the recognition.

The beamwidth parameter settings are listed below. As we know nothing of word duration,
new word generation is also governed by probabilities, and the probability of word changes
is set by the parameter wordInsertionProbability. The last important parameter is the
languageWeight, which sets the weight of the language model compared to the phone scores.
Setting this to a higher value means that word sequence probability is emphasized over the
actual phone scores.

• absoluteBeamWidth=20000

• relativeBeamWidth=1E-80

• absoluteWordBeamWidth=20

• relativeWordBeamWidth=1E-30

• wordInsertionProbability=0.01

• languageWeight=6.0

SPHINX-4 also includes a number of monitors to retrieve performance information, such as
runtime and word recognition. The setup of these monitors is also seen in the XML-file

5.4 Recognition Evaluation Measures

When evaluating ASR-systems the output sentence (hypothesis) from the ASR-system must
be aligned with the true transcription (reference). When this is done, three error types can
occur:

Substitutions:

Cover words that are recognized wrongly. These include words that are in plural
instead of singular.

Insertions:

Extra words in the hypothesis that are not present in the reference.

Deletions:

Are words present in the reference but not in the hypothesis.



86 Speech Recognition

Words Matches Errors Subs Ins Del WER(%) WA(%)

1301 932 387 227 18 142 29.75 71.64

Table 5.1: Speech recognition performance using the audio track from an ABC
Night Line TV news show. The audio track is 7 minutes and 40 seconds long.

Quantification of the errors is done using the two measures, word error rate (WER) and
word accuracy (WA), defined as:

WER =
total word errors

total words

WA =
total words − substitutions − deletions

total words

where
total word errors=substitutions+insertions+deletions

and total words is the number of words in the reference.

5.5 Example

The performance of SPHINX-4 was tested using the audio track from an ABC Night Line
TV news show. A transcription of the TV show was obtained from ABC’s homepage. The
audio track has a length of 7 minutes and 40 seconds. SPHINX-4 was setup using the
parameters listed above.

Table 5.1 lists the performance of SPHINX-4. A total WER of 29.75% and a WA of 71.64%
was obtained.

Figure 5.6 contains a sample output from SPHINX-4, where the reference sentence REF

and the hypothesis HYP are listed. Below the ALIGN REF lists the reference sentence where
the substitutions are written with capital letters. Also the ALIGN HYP are listed where
again substitutions are written with capital letters and deletions are marked with stars.
ALIGN REF and ALIGN HYP are aligned, thus the difference between the reference and the
hypothesis sentences is easy to see.

5.6 Discussion

The use of the SPHINX4 system was obvious for two reasons. The setup was easy because
of the modular design and easy configuration.

The other and main reason to use the system was the pre-trained acoustic and language
models trained with the HUB4 corpus consisting of broadcast news audio. This was a huge
advantage for us as it made it possible to get reasonable results for the broadcast news data
used in our evaluations. The pretrained models on the other hand constrains the tuning
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REF: since nineteen ninety eight more than two hundred and sixty

people have died in terrorist attacks on u. s. diplomatic facilities

HYP: since nineteen ninety eight with two hundred sixty

people have died in terrorist attacks on u. s. diplomatic tussle

ALIGN_REF: since nineteen ninety eight MORE THAN two hundred AND sixty

ALIGN_HYP: since nineteen ninety eight WITH **** two hundred *** sixty

people have died in terrorist attacks on u. s. diplomatic FACILITIES

people have died in terrorist attacks on u. s. diplomatic TUSSLE

Accuracy: 80.952% Errors: 4 (Sub: 2 Ins: 0 Del: 2)

Words: 21 Matches: 17 WER: 19.048%

Figure 5.6: Output sample from SPHINX-4. The output contains the reference and
hypothesis sentences. Also the aligned reference and hypothesis are listed.

of parameters of the system but it was simply not feasible to train our own models given
the limited amount of data collected in our databases. Furthermore it was actually not
possible to do a thorough test of the speech recognition performance because the amount of
transcribed material was limited.
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Chapter 6

Full System Example

In this chapter the audio classification, speaker change detection, and speech recognition
will be combined to a full system. The system performance will be illustrated through an
example.

6.1 System Setup

Figure 6.1 shows the system setup. First the features are extracted on a 20 ms basis as de-
scribed in chapter 2 and propagated to the audio classification and speaker change detection
parts.

Audio classification is performed to find the speech segments of the audio stream for further
processing while music segments are not processed further in this system. For this part the
linear discriminant described in chapter 3 is used. The linear discriminant is trained on the
audio-database containing 2250 seconds of speech and 2250 seconds of music.

The extracted speech segments are further processed in the speaker change detection algo-
rithm, where the speech is segmented into speaker segments. For this we use the change
detection algorithm using the VQD measure with 32 clusters as described in chapter 4.

The generated speaker segments are finally passed on to the SPHINX-4 speech recognizer to
make transcriptions of the individual segments. SPHINX-4 is setup as described in chapter
5.
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Figure 6.1: The setup of the full system.

6.2 Example

The audio stream used for this example is the podcast edition of the CNN news update
from December 5th, 2005 at 7AM. The audio stream is 118 seconds long and contains an
1.9 seconds long intro jingle and an 2.8 seconds long outtro jingle. The stream contains
9 speaker segments, that is 8 speaker changes. 5 different speakers are present. Table 6.1
shows the start and end time and a description for each segment.

6.2.1 Audio Classification

The first part of the system is the extraction of speech segments. Figure 6.2 shows how the
system segments the audio stream into the classes speech and music. The system segments
0− 2 s as music 2− 115 s as speech and 115− 118 s as music. Thus, the two jingle segments
are detected and removed, and no other speech segments are detected, which is in accordance
with the true segmentation.

6.2.2 Speaker Change Detection

The next part of the system is the speaker change detection. The upper part of figure
6.3 shows the VQDn measure for the speech part of the audio stream. Potential speaker
change-points are marked with circles. The dotted line indicate the threshold thcd. The
lower part of the figure shows the VQDmean for the found change-points. Again, the dotted
line indicate the threshold thfac. The accepted change-points are marked with circles and
the rejected change-points are marked with crosses.
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No. Time (s) Description Gender Environment

- 0.0 - 1.9 jingle - -
1 1.9 - 20.7 anchor male studio
2 20.7 - 32.5 speaker 1 male press conference
3 32.5 - 48.4 anchor male studio
4 48.4 - 62.8 reporter 1 male studio
5 62.8 - 67.6 speaker 2 male press conference
6 67.6 - 83.5 reporter 1 male studio
7 83.5 - 91.4 anchor male studio
8 91.4 - 102.9 reporter 2 male telephone
9 102.9 - 115.2 anchor male studio
- 115.2 - 118.0 jingle - -

Table 6.1: Times and descriptions for the segments of the audio stream used for
this example.

20 40 60 80 100

speech

music 

Time (s)

E
st

im
at

ed
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la
ss

Figure 6.2: This figure shows how the audio is segmented into speech and music.

All true speaker change-points are found by our system and no false alarms occur. The
change-points are found at 20.7, 32.7, 48.0, 62.2, 67.8, 83.6, 91.5, and 103.1 seconds. This
gives an average mismatch of 0.225 seconds.

6.2.3 Speech Recognition

The final part of the system is the speech recognition. Two approaches have been investi-
gated for the speech recognition. In the first approach the full speech segment is processed
in SPHINX-4. The second approach divides the speech into speaker segments and process
each segment individually in SPHINX-4. The segmentation is based on the change-points
found by the speaker change detection algorithm.

Table 6.2 shows the word accuracy (WA) and word error rate (WER) for each of the speaker
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Figure 6.3: The upper part of the figure shows the VQDn measure for the speech
part of the audio stream. The threshold thcd is marked with dotted line, and
the potential change-points are marked with circles. The lower part of the figure
shows the VQDmean measure for the potential change points. Again, the dotted
line indicates the threshold thfac and the accepted change-points are marked with
circles and the rejected change-points are marked with crosses. In this case all true
change-points are found, and no false alarms occur.

segments in the audio stream. The table shows that a small improvement is obtained by
segmenting the audio stream into speaker segments.

As seen in the table an overall WA of 75.1% and WER of 28.3% is obtained. For the anchor
speaker the WA is 80.2% and WER is 23.6% and for reporter 1 WA is 82.8% and WER
19.4%. The performance of the speech recognition is seen to degrade for segment 2 and
segment 8. Segment 2 contains speech from a press conference, where background noise
is present and in addition figure 6.4 shows that the bandwidth for this segment is limited.
Segment 8 is a telephone report from Israel. Listening to this segment clearly reveals that
signal has been transmitted through a telephone line, where compression has been applied.
Thus, this show that clear speech with full bandwidth gives the best recognition rate.

Appendix E lists the true transcriptions and the output from the ASR for each of the speaker
segments in the case where no segmentation was done.

The runtime of the speech recognition was 1091 seconds on an 113 seconds long audio stream.
This means that the speech recognition can be done in a little less than 10 times realtime.

6.3 Discussion

We have showed that the system is capable of producing an useable output for indexing and
retrieval tasks.
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no speaker segmentation speaker segmentation
No. Description WA (%) WER (%) WA (%) WER (%)

1 anchor speaker male 84.8 18.2 84.8 18.2
2 press conference 1 male 48.2 51.7 48.3 55.2
3 anchor speaker male 72.0 34.0 76.0 30.0
4 reporter 1 male 90.4 9.5 88.1 11.9
5 press conference 2 male 78.5 28.5 78.5 35.7
6 reporter 1 male 82.3 21.5 78.4 25.5
7 anchor speaker male 78.5 21.4 82.1 17.9
8 reporter 2 male 53.8 46.1 51.3 58.7
9 anchor speaker male 60.5 39.4 76.3 28.9

total 73.6 28.5 75.1 28.3

Table 6.2: Word accuracy (WA) and word error rate (WER) for the 9 speech
segments. Both the results obtained with and without segmenting the audio stream
into speaker segments before processing in the speech recognizer are shown.

The system performs best by dividing the audio into speaker segments. The advantage
of doing this segmentation most likely comes from the use of cepstral mean normalization
(CMN). This method clearly works best if it is applied on homogenous data, i.e. speech
from one speaker in one environment. The disadvantage of doing speaker segmentation is the
potential mismatch between true change-points and the change-points found by the speaker
change detection algorithm. If a change-point is not correctly estimated the first/last words
could be destroyed in the segmentation. However this seems not to be a problem in this
example, as the average mismatch is relatively small.
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Figure 6.4: Spectrogram of the speech where it can be seen that the bandwidth in
the segment from 20.7 − 32.5s is limited.



Chapter 7

Conclusion

This project has investigated and implemented methods for an audio indexing using segmen-
tation and transcription system for audio retrieval. The system includes audio classification,
speaker change detection, and speech recognition. The three parts of the system were im-
plemented and evaluated separately. Finally the system was combined and evaluated on an
example.

A number of features were investigated, and through integration over 1 second windows using
means and variance, a total number of 60 features were proposed. Using these 60 features
several classifiers where investigated. The classifiers all showed very good performance,
giving a test misclassification rate of 2.6% to 3.4% using a feature set of 60 proposed features.
Two feature selection schemes, based on NN and the linear discriminant respectively, where
developed for finding an optimal set of features. The NN pruning scheme showed that the
number of features could be reduced to 10 without increasing the test misclassification rate.
The exact set of features to use was not clearly evident as several feature combinations
where able to get equal performance. The feature selection scheme based on the linear
discriminant classifier also showed that the number of features could be decreased to about
14 without decrease in test performance. The backward elimination and forward selection
showed almost same performance. The model finally chosen for audio classification, was the
computationally simple linear discriminant with a 14-dimensional feature.

We have developed a speaker change detection algorithm based on the vector quantization
distortion measure. The change detection algorithm works in two steps. The first step
finds potential speaker change-points. The second step is a false alarm compensation step,
that uses longer segments to build more reliable models, and thereby either accept or reject
potential change-points. The optimal parameters for the speaker change detection was
found, and the performance using VQD was compared with the two other frequently used
metrics KL2 and DSD. This comparison showed that the VQD metric was superior to the
other two metrics. The best performance was observed using VQD with 56 clusters, where
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an F-measure of 0.854 was obtained. The improved performance using VQD, compared to
KL2 and DSD, comes with a cost in computational runtime. We showed that a relative
improvement of 59.7% in precision with a relative loss of 7.2% in recall is obtained with
our false alarm compensation scheme. The generalizability of our proposed algorithm was
investigated, and showed that the choice of the thresholds based on one data set generalized
reasonably well to other different data sets from different stations.

SPHINX-4 was selected as the speech recognition system for the transcription part of our
system. SPHINX-4 is an open source, speaker independent system capable of doing large
vocabulary speech recognition. The system was adapted for broadcast news transcription
using the pre-trained acoustic and language models trained on the HUB4 corpus. SPHINX-4
was setup using the typical parameters for large vocabulary recognition. The performance
was demonstrated on a 7 minutes and 40 seconds long audio track from a TV show, where
a total word accuracy of 71.6% was obtained.

Finally an example of the full system was given on a CNN news show. This example showed
that the system was able to detect speech segments and further segment this into speaker
segments. The example showed an improved word recognition performance by segmenting
the audio into speaker segments before processing in the ASR. An overall word accuracy of
75.1% was found.

7.1 Further Work

The segmentation provided by our system provides a starting point for further extraction
of information.

The implemented speaker change detection takes an unsupervised approach. The algorithm
finds change-points between two speakers producing speaker segments. These segments
could be further processed. Clustering the speaker segments could gather the speech one
speaker has uttered along the show. In this way a recurring speaker, e.g. an anchor, could
be picked out. Speaker detection could be applied if speaker identities are known a priori.
In broadcast news it would for instance be beneficial to make a database of the anchor
speakers. This could improve the segmentation performance.

The performance of the speech recognition could be increased by speaker or environment
adaption. This would require that more specific acoustic models should be trained. Methods
to adapt speaker independent acoustic models to specific speakers have been proposed. Also
language model adaption could be considered. If the topics of the speech is known a priori,
related words and word combinations could be made more probable in the language model.

In this project the only information extracted from the speech is the transcription and
speaker changes. Other information such as gender, mood, accent, age, etc. could make the
audio retrieval more valuable.



Appendix A

Eusipco 2006 Paper

This appendix contains the paper: Unsupervised Speaker Change Detection for

Broadcast News Segmentation, which we have submitted to the European Signal Pro-
cessing Conference (EUSIPCO) 2006. The paper can also be found at:

http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=4416
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Appendix B

Pruning Figures

Figure B.1-B.10 in this appendix contain figures obtained from each run of the pruning-

Step1 algorithm. The upper part of each figure show the best test misclassification in each
iteration of the algorithm. The middle part of each figure show the features used in the
model giving the best test misclassification in each iteration. White means that the feature
is used, black means that the feature is pruned out. When a feature is pruned out in three
succeeding iterations, the feature is deleted from the feature set and not considered in the
remaining iterations. The lower part of each feature show the number of hidden units in the
NN in each iteration.

Table B.1 shows the order the features are pruned out in each of the 20 run of the pruning-

Step2 algorithm. The features to the left are the features pruned out first, and the features
to the right is the last features deleted in the pruning scheme.
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Figure B.1: pruningStep1, run1
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Figure B.2: pruningStep1, run2
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Figure B.3: pruningStep1, run3
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Figure B.4: pruningStep1, run4
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Figure B.5: pruningStep1, run5
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Figure B.6: pruningStep1, run6
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Figure B.7: pruningStep1, run7
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Figure B.8: pruningStep1, run8
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Figure B.9: pruningStep1, run9
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Figure B.10: pruningStep1, run10
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Appendix C

Kullback-Leibler Derivation

The directed divergence or Kullback-Leibler number for class ω1 versus class ω2 is given by:

I(1, 2) =

∫
p1(x) ln

p1(x)

p2(x)
dx

=

∫
p1(x) ln p1(x) −

∫
p1(x) ln p2(x)dx

Assuming that the distributions pi are n-variate normal distributions, i.e. p1((x)) ∼ N (µ1,Σ1)p2((x)) ∼
N (µ2,Σ2), we get:
∫

p1(x) ln p2(x)dx =

∫
p1(x) ln

1

(2π)n/2|Σ2|1/2
exp

{
−

1

2
(x − µ2)

⊤Σ−1
2 (x − µ2)

}
dx

= −
1

2
ln |(2π)nΣ2| −

1

2

∫
p1(x) (x − µ2)

⊤Σ−1
2 (x − µ2)︸ ︷︷ ︸

dx

Using δ = (x − µ2)
∑

j,j′

(δ⊤
j Σj,j′δj′) =

∑

j,j′

(Σj,j′δjδ
⊤
j′ )

=
∑

j,j′

(Σj,j′Aj,j′)

=
∑

j,j′

(Mj,j′), (M = ΣA)

= Tr(Mj,j′)

∫
p1(x) ln p2(x)dx = −

1

2
ln |(2π)nΣ2| −

1

2

∫
p1(x)Tr(Σ−1

2 (x − µ2)(x − µ2)
⊤)dx

= −
1

2
ln |(2π)nΣ2| −

1

2
Tr

[
Σ−1

2

∫
p1(x)(x − µ2)

⊤(x − µ2)

︸ ︷︷ ︸
dx

]
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∫
p1(x)(x − µ2)(x − µ2)

⊤dx =

∫
p1(x)((x − µ1) + (µ1 − µ2))

((x − µ1) + (µ1 − µ2))
⊤dx

=

∫
p1(x)

(
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⊤

)
dx
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+
〈
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〉
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⊤
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⊤
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<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
<!−− Sphinx−4 Configuration f i l e −−>
<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>

5

<con f ig >
<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
<!−− f r e quen t l y tuned proper t i e s −−>
<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>

10 <property name=”absoluteBeamWidth” value=”20000”/>
<property name=”relativeBeamWidth” value=”1E−80”/>
<property name=”absoluteWordBeamWidth” value=”20”/>
<property name=”relativeWordBeamWidth” value=”1E−30”/>
<property name=” word In s e r t i onProbab i l i t y ” value=” 0 .01 ”/>

15 <property name=” languageWeight” value=” 6 .0 ”/>
<property name=” s i l e n c e I n s e r t i o nP r o b a b i l i t y ” value=” .005 ”/>
<property name=” frontend ” value=”epFrontEnd”/>
<property name=” r e c ogn i z e r ” value=” r e c ogn i z e r ”/>
<property name=” showCreations ” value=” f a l s e ”/>

20 <con f ig >
<property name=” logLeve l ” value=”SEVERE”/>

</con f ig >

<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
25 <!−− Batch mode −−>

<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
<component name=”batch” type=”edu . cmu . sphinx . t o o l s . batch . BatchModeRecognizer ”>

<p r o p e r t y l i s t name=” inputDataProcessors ”>
<item>streamDataSource</item>

30 </p r op e r t y l i s t >
<property name=” sk ip ” value=”0”/>
<property name=” r e c ogn i z e r ” value=”${ r e c ogn i z e r }”/>

</component>

35 <!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
<!−− word recognizer conf igurat ion −−>
<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
<component name=” r e c ogn i z e r ” type=”edu . cmu . sphinx . r e c o gn i z e r . Recognizer ”>

<property name=”decoder ” value=”decoder ”/>
40 <p r o p e r t y l i s t name=”monitors ”>

<item>accuracyTracker </item>
<item>speedTracker </item>
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<item>memoryTracker </item>
<item>r ecogn ize rMoni tor </item>

45 </p r op e r t y l i s t >
</component>

<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
<!−− The Decoder conf igurat ion −−>

50 <!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
<component name=”decoder ” type=”edu . cmu . sphinx . decoder . Decoder”>

<property name=”searchManager ” value=”wordPruningSearchManager”/>
<property name=” f ea tu r eB l o ckS i z e ” value=”10”/>

</component>
55

<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
<!−− The Search Manager −−>
<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
<component name=”wordPruningSearchManager” type=”edu . cmu . sphinx . decoder . s earch .ց

→WordPruningBreadthFirstSearchManager”>
60 <property name=”logMath” value=”logMath”/>

<property name=” l i n g u i s t ” value=” l exTreeL ingu i s t ”/>
<property name=”pruner ” value=” t r i v i a lP r un e r ”/>
<property name=” s c o r e r ” value=” threadedScorer ”/>
<property name=” act iveListManager ” value=” act iveListManager ”/>

65 <property name=” growSkipInterva l ” value=”0”/>
<property name=” checkStateOrder ” value=” f a l s e ”/>
<property name=”bui ldWordLatt ice ” value=” f a l s e ”/>
<property name=”maxLatticeEdges” value=”3”/>
<property name=”acousticLookaheadFrames ” value=” 1 .7 ”/>

70 <property name=”relativeBeamWidth” value=”${ relativeBeamWidth}”/>
</component>

<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
<!−− The Active L i s t s −−>

75 <!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
<component name=” act iveListManager ” type=”edu . cmu . sphinx . decoder . s earch .ց

→SimpleActiveListManager ”>
<p r o p e r t y l i s t name=” a c t i v eL i s tF a c t o r i e s ”>

<item>s tandardAct iveL i s tFactory</item>
<item>wordAct iveListFactory</item>

80 <item>wordAct iveListFactory</item>
<item>s tandardAct iveL i s tFactory</item>
<item>s tandardAct iveL i s tFactory</item>
<item>s tandardAct iveL i s tFactory</item>

</p r op e r t y l i s t >
85 </component>

<component name=” standardAct iveL i s tFactory ” type=”edu . cmu . sphinx . decoder . s earch .ց
→Par t i t i onAct i v eL i s tFac to ry ”>

<property name=”logMath” value=”logMath”/>
<property name=”absoluteBeamWidth” value=”${absoluteBeamWidth}”/>

90 <property name=”relativeBeamWidth” value=”${ relativeBeamWidth}”/>
</component>

<component name=”wordAct iveListFactory ” type=”edu . cmu . sphinx . decoder . s earch .ց
→Par t i t i onAct i v eL i s tFac to ry ”>

<property name=”logMath” value=”logMath”/>
95 <property name=”absoluteBeamWidth” value=”${absoluteWordBeamWidth}”/>

<property name=”relativeBeamWidth” value=”${ relativeWordBeamWidth}”/>
</component>

<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
100 <!−− The Pruner −−>

<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
<component name=” t r i v i a lP run e r ” type=”edu . cmu . sphinx . decoder . pruner . SimplePruner ”/>

<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
105 <!−− The Scorer −−>

<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
<component name=” threadedScorer ” type=”edu . cmu . sphinx . decoder . s c o r e r .ց

→ThreadedAcoust icScorer ”>
<property name=” frontend ” value=”${ f rontend }”/>
<property name=” isCpuRelat ive ” value=” f a l s e ”/>

110 <property name=”numThreads” value=”10”/>
<property name=”minScoreablesPerThread” value=”10”/>
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<property name=” scoreab lesKeepFeature ” value=” f a l s e ”/>
</component>

115 <!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
<!−− The l i n g u i s t conf igurat ion −−>
<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
<component name=” l exTreeL ingu i s t ” type=”edu . cmu . sphinx . l i n g u i s t . l e x t r e e .ց

→LexTreeLinguist ”>
<property name=”logMath” value=”logMath”/>

120 <property name=” acoust icModel ” value=”hub4”/>
<property name=” languageModel ” value=” trigramModel ”/>
<property name=” d i c t i ona ry ” value=”dictionaryHUB4”/>
<property name=”addFil lerWords ” value=” f a l s e ”/>
<property name=” f i l l e r I n s e r t i o n P r o b a b i l i t y ” value=”1E−10”/>

125 <property name=” genera teUn i tSta te s ” value=” true ”/>
<property name=”wantUnigramSmear” value=” true ”/>
<property name=”unigramSmearWeight” value=”1”/>
<property name=” word In s e r t i onProbab i l i t y ” value=”${ word In s e r t i onProbab i l i t y }”/>
<property name=” s i l e n c e I n s e r t i o nP r o b a b i l i t y ” value=”${ s i l e n c e I n s e r t i o nP r o b a b i l i t y ց

→}”/>
130 <property name=” languageWeight” value=”${ languageWeight}”/>

<property name=”unitManager” value=”unitManager”/>
</component>

<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
135 <!−− The Dictionary conf igurat ion −−>

<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
<component name=” d i c t i ona ry ” type=”edu . cmu . sphinx . l i n g u i s t . d i c t i ona ry . Fu l lD i c t i onaryց

→”>
<property name=” dict ionaryPath ” value=” r e s o u r c e : /edu . cmu . sphinx . model . a c ou s t i c .ց

→WSJ 8gau 13dCep 16k 40mel 130Hz 6800Hz . Model ! / edu/cmu/ sphinx /model/ a cou s t i c /ց

→WSJ 8gau 13dCep 16k 40mel 130Hz 6800Hz/ d i c t / cmudict . 0 . 6 d”/>
<property name=” f i l l e r P a t h ” value=” r e s o u r c e : /edu . cmu . sphinx . model . a c ou s t i c .ց

→WSJ 8gau 13dCep 16k 40mel 130Hz 6800Hz . Model ! / edu/cmu/ sphinx /model/ a cou s t i c /ց

→WSJ 8gau 13dCep 16k 40mel 130Hz 6800Hz/ d i c t / f i l l e r d i c t ”/>
140 <property name=” addSi lEndingPronunciat ion ” value=” f a l s e ”/>

<property name=”wordReplacement” value=”&l t ; s i l&gt ; ”/>
<property name=”unitManager” value=”unitManager”/>

</component>

145 <!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
<!−− dic t ionary −−>
<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
<component name=”dictionaryHUB4”

type=”edu . cmu . sphinx . l i n g u i s t . d i c t i ona ry . Fu l lD i c t i onary ”>
150 <property name=” dict ionaryPath ” value=” r e s o u r c e : /edu . cmu . sphinx . model . a c ou s t i c .ց

→HUB4 8gau 13dCep 16k 40mel 133Hz 6855Hz . Model ! / edu/cmu/ sphinx /model/ a cou s t i cց

→/HUB4 8gau 13dCep 16k 40mel 133Hz 6855Hz/cmudict . 06d”/>
<property name=” f i l l e r P a t h ” value=” r e s o u r c e : /edu . cmu . sphinx . model . a c ou s t i c .ց

→HUB4 8gau 13dCep 16k 40mel 133Hz 6855Hz . Model ! / edu/cmu/ sphinx /model/ a cou s t i cց

→/HUB4 8gau 13dCep 16k 40mel 133Hz 6855Hz/ f i l l e r d i c t ”/>
<property name=” addSi lEndingPronunciat ion ” value=” f a l s e ”/>
<property name=”allowMissingWords ” value=” f a l s e ”/>
<property name=”unitManager” value=”unitManager”/>

155 </component>

<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
<!−− The Language Model conf igurat ion −−>
<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>

160 <component name=”trigramModel ” type=”edu . cmu . sphinx . l i n g u i s t . language . ngram . l a r g e . ց
→LargeTrigramModel”>

<property name=”unigramWeight” value=” . 5 ”/>
<property name=”maxDepth” value=”3”/>
<property name=”logMath” value=”logMath”/>
<property name=” d i c t i ona ry ” value=”dictionaryHUB4”/>

165 <property name=” l o c a t i o n ” value=”/gbar/ e r l ang /home1/ s00 / s001498/pep/ sphinx4/ l i b /ց

→hub4/ language model . arpaformat .DMP”/>
</component>

<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
<!−− The acous t ic model conf igurat ion −−>

170 <!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
<component name=”wsj ” type=”edu . cmu . sphinx . model . a c ou s t i c .ց

→WSJ 8gau 13dCep 16k 40mel 130Hz 6800Hz . Model”>
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<property name=” loade r ” value=”wsjLoader ”/>
<property name=”unitManager” value=”unitManager”/>

</component>
175

<component name=”wsjLoader ” type=”edu . cmu . sphinx . model . a c ou s t i c .ց
→WSJ 8gau 13dCep 16k 40mel 130Hz 6800Hz . ModelLoader”>

<property name=”logMath” value=”logMath”/>
<property name=”unitManager” value=”unitManager”/>

</component>
180

<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
<!−− HUB4 −−>
<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
<component name=”hub4” type=”edu . cmu . sphinx . model . a c ou s t i c .ց

→HUB4 8gau 13dCep 16k 40mel 133Hz 6855Hz . Model”>
185 <property name=” loade r ” value=” sphinx3Loader ”/>

<property name=”unitManager” value=”unitManager”/>
</component>

<component name=” sphinx3Loader ” type=”edu . cmu . sphinx . model . a c ou s t i c .ց
→HUB4 8gau 13dCep 16k 40mel 133Hz 6855Hz . ModelLoader”>

190 <property name=”logMath” value=”logMath”/>
<property name=”unitManager” value=”unitManager”/>

</component>

<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
195 <!−− The unit manager conf igurat ion −−>

<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
<component name=”unitManager” type=”edu . cmu . sphinx . l i n g u i s t . a c ou s t i c . UnitManager”/>

<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
200 <!−− The frontend conf igurat ion −−>

<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
<component name=”epFrontEnd” type=”edu . cmu . sphinx . f rontend . FrontEnd”>

<p r o p e r t y l i s t name=” p i p e l i n e ”>
<item>streamDataSource </item>

205 <item>s p e e c hC l a s s i f i e r </item>
<item>speechMarker </item>
<item>nonSpeechDataFi lter </item>
<item>premphasizer </item>
<item>windower </item>

210 <item> f f t </item>
<item>melFi lterBank </item>
<item>dct </item>
<item>liveCMN </item> <!−− batchCMN for batch mode −−>
<item>f e a tu r eExt ra c t i on </item>

215 </p r op e r t y l i s t >
</component>

<component name=”streamDataSource” type=”edu . cmu . sphinx . f rontend . u t i l .ց
→StreamDataSource ”>

<property name=”sampleRate” value=”16000”/>
220 <property name=”bitsPerSample ” value=”16”/>

<property name=”bigEndianData” value=” f a l s e ”/>
<property name=” signedData” value=” true ”/>
<property name=”bytesPerRead” value=”320”/>

</component>
225

<component name=”microphone” type=”edu . cmu . sphinx . f rontend . u t i l . Microphone”>
<property name=” closeBetweenUtterances ” value=” f a l s e ”/>

</component>

230 <component name=” s p e e c hC l a s s i f i e r ” type=”edu . cmu . sphinx . f rontend . endpoint .ց
→Sp e e c hC l a s s i f i e r ”>

<property name=” thre sho ld ” value=”10”/>
<property name=”debug” value=” f a l s e ”/>

</component>

235 <component name=”nonSpeechDataFi lter ” type=”edu . cmu . sphinx . f rontend . endpoint .ց
→NonSpeechDataFilter ”>

<property name=”mergeSpeechSegments” value=” true ”/>
</component>

<component name=”speechMarker ” type=”edu . cmu . sphinx . f rontend . endpoint . SpeechMarker”>
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240 <property name=” spee chTra i l e r ” value=”50”/>
</component>

<component name=”premphasizer ” type=”edu . cmu . sphinx . f rontend . f i l t e r . Preemphasizer ”/>

245 <component name=”windower” type=”edu . cmu . sphinx . f rontend . window . RaisedCosineWindowerց
→”/>

<component name=” f f t ” type=”edu . cmu . sphinx . f rontend . transform .ց
→DiscreteFour ie rTrans form ”/>

<component name=”melFi lterBank” type=”edu . cmu . sphinx . f rontend . frequencywarp .ց
→MelFrequencyFilterBank”/>

250

<component name=”dct ” type=”edu . cmu . sphinx . f rontend . transform .ց
→DiscreteCos ineTransform ”/>

<component name=”liveCMN” type=”edu . cmu . sphinx . f rontend . f e a tu r e . LiveCMN”/>

255 <component name=”batchCMN” type=”edu . cmu . sphinx . f rontend . f e a tu r e .BatchCMN”/>

<component name=” f ea tu r eExt ra c t i on ” type=”edu . cmu . sphinx . f rontend . f e a tu r e .ց
→DeltasFeatureExtractor ”/>

<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
260 <!−− monitors −−>

<!−− ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ −−>
<component name=”accuracyTracker ” type=”edu . cmu . sphinx . ins t rumentat ion .ց

→BestConfidenceAccuracyTracker”>
<property name=” con f i d enceSco r e r ” value=” con f i d enceSco r e r ”/>
<property name=” r e c ogn i z e r ” value=”${ r e c ogn i z e r }”/>

265 <property name=”showRawResults” value=” true ”/>
<property name=” showAlignedResults ” value=” true ”/>

</component>

<component name=” con f i d enceSco r e r ” type=”edu . cmu . sphinx . r e s u l t . SausageMaker”/>
270

<component name=”memoryTracker” type=”edu . cmu . sphinx . ins t rumentat ion . MemoryTracker”>
<property name=” r e c ogn i z e r ” value=”${ r e c ogn i z e r }”/>
<property name=” showDetai l s ” value=” f a l s e ”/>
<property name=”showSummary” value=” f a l s e ”/>

275 </component>

<component name=” speedTracker ” type=”edu . cmu . sphinx . in s t rumentat ion . SpeedTracker ”>
<property name=” r e c ogn i z e r ” value=”${ r e c ogn i z e r }”/>
<property name=” frontend ” value=”${ f rontend }”/>

280 <property name=” showDetai l s ” value=” f a l s e ”/>
</component>

<component name=” recogn ize rMoni tor ” type=”edu . cmu . sphinx . ins t rumentat ion .ց
→RecognizerMonitor ”>

<property name=” r e c ogn i z e r ” value=”${ r e c ogn i z e r }”/>
285 <p r o p e r t y l i s t name=” a l l o ca t edMon i to r s ”>

<item>conf igMonitor </item>
</p r op e r t y l i s t >

</component>

290 <component name=” conf igMonitor ” type=”edu . cmu . sphinx . ins t rumentat ion . ConfigMonitor ”>
<property name=”showConfig” value=” f a l s e ”/>

</component>

<component name=”logMath” type=”edu . cmu . sphinx . u t i l . LogMath”>
295 <property name=” logBase ” value=” 1.0001 ”/>

<property name=”useAddTable” value=” true ”/>
</component>

</con f ig >
§ ¦
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Appendix E

Speech Recognition Results

This appendix lists the result from SPHINX-4 using the CNN example described in section
6.2. Each speaker segment is listed separately.

The listings contain the following:

REF is the true transcriptions (reference).

HYP is the output from the ASR (hypothesis).

ALIGN REF is the reference where substitutions (wrong words) are written with capital letters,
and deletions (missing words) are marked with stars (*).

ALIGN HYP is the hypothesis where substitutions are written with capital letters and inser-
tions (inserted words) are marked with stars.

The ALIGN REF and ALIGN HYP are aligned, thus it is easy to see the difference between the
true transcript and the output from ASR.
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E.1 Segment 1

REF: c. n. n. radio i’m jim ribble saddam husseins defense team walked

out of the courtroom today after a heated argument over the legitimacy of the

trial after some deliberation the judge allowed them back in to resume

proceedings one issue was over whether former u. s. attorney general ramsey

clark who was helping the defense team would be allowed to speak eventually

he was allowed

HYP: c. n. n. radio and jim rubble so i was sainz defense team walked

out the courtroom today after a heated argument over the legitimacy of the

trial after some deliberation the judge allowed them back into resumed

proceedings one issue was over whether former u. s. attorney general ramsey

clark who was hoping defense team would be allowed to speak eventually

he was allowed

ALIGN_REF: c. n. n. radio I’M jim ****** ** RIBBLE SADDAM HUSSEINS defense

ALIGN_HYP: c. n. n. radio AND jim RUBBLE SO I WAS SAINZ defense

team walked out OF the courtroom today after a heated argument over the

team walked out ** the courtroom today after a heated argument over the

legitimacy of the trial after some deliberation the judge allowed them back

legitimacy of the trial after some deliberation the judge allowed them back

IN TO RESUME proceedings one issue was over whether former u. s.

INTO RESUMED ****** proceedings one issue was over whether former u. s.

attorney general ramsey clark who was HELPING THE defense team would be

attorney general ramsey clark who was HOPING *** defense team would be

allowed to speak eventually he was allowed

allowed to speak eventually he was allowed

Accuracy: 84.848% Errors: 12 (Sub: 7 Ins: 2 Del: 3)

Words: 66 Matches: 56 WER: 18.182%
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E.2 Segment 2

REF: this trial can either divide or heal and unless it is seen as

absolutely fair and is absolutely fair in fact it will irreconcilably divide

the people of iraq

HYP: trial either divide or he’ll let fishing as after the ferron is

absolutely fair in fact ewing irreconcilable a divide people of iraq

ALIGN_REF: THIS trial CAN either divide or HEAL AND UNLESS IT IS SEEN as

ALIGN_HYP: **** trial *** either divide or HE’LL LET FISHING ** ** **** as

ABSOLUTELY FAIR AND is absolutely fair in fact IT WILL

AFTER THE FERRON is absolutely fair in fact EWING IRRECONCILABLE

IRRECONCILABLY divide THE people of iraq

A divide *** people of iraq

Accuracy: 48.276% Errors: 15 (Sub: 9 Ins: 0 Del: 6)

Words: 29 Matches: 14 WER: 51.724%
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E.3 Segment 3

REF: at one point hussein himself stood up and shook his fist

shouting long live iraq the nine eleven commission releases a new report

today assessing how well the government is responded to its recommendations

for making the country safer correspondent dick uliano reports it is expected

to handout low marks

HYP: or one point hussein and soul stood up and shook his fist

chopping long live iraq final elam commission lisa’s a new report

today assessing how well the government is responded to its recommendations

for making the country safer correspondent achille all reports his expected

to hand out some lobel arcs

ALIGN_REF: AT one point hussein *** HIMSELF stood up and shook his fist

ALIGN_HYP: OR one point hussein AND SOUL stood up and shook his fist

SHOUTING long live iraq THE NINE ELEVEN commission RELEASES a new report

CHOPPING long live iraq FINAL ELAM ****** commission LISA’S a new report

today assessing how well the government is responded to its recommendations

today assessing how well the government is responded to its recommendations

for making the country safer correspondent DICK ULIANO reports IT IS

for making the country safer correspondent ACHILLE ALL reports HIS **

expected to **** *** HANDOUT LOW MARKS

expected to HAND OUT SOME LOBEL ARCS

Accuracy: 72.000% Errors: 17 (Sub: 12 Ins: 3 Del: 2)

Words: 50 Matches: 36 WER: 34.000%
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E.4 Segment 4

REF: former nine eleven commission leaders lee hamilton and thomas

kane say president bush in congress deserve failing grades for failing

to follow the commission’s recommendations to make the nation safer against

another nine eleven style attack lee hamilton telling meet the press

HYP: former eleven commission leaders lee hamilton and thomas

kane say president bush in congress deserve failing grades for failing

to follow the commission’s recommendations to make a nation safer against

another not olefins style attack lee hamilton telling meet the press

ALIGN_REF: former NINE eleven commission leaders lee hamilton and thomas

ALIGN_HYP: former **** eleven commission leaders lee hamilton and thomas

kane say president bush in congress deserve failing grades for failing to

kane say president bush in congress deserve failing grades for failing to

follow the commission’s recommendations to make THE nation safer against

follow the commission’s recommendations to make A nation safer against

another NINE ELEVEN style attack lee hamilton telling meet the press

another NOT OLEFINS style attack lee hamilton telling meet the press

Accuracy: 90.476% Errors: 4 (Sub: 3 Ins: 0 Del: 1)

Words: 42 Matches: 38 WER: 9.524%
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E.5 Segment 5

REF: there is a lack of sense of urgency and that’s what

impresses us overall

HYP: or zaid lack of a sense of urgency and that’s what

impresses us overall

ALIGN_REF: THERE IS A lack of * sense of urgency and that’s what

ALIGN_HYP: OR ZAID * lack of A sense of urgency and that’s what

impresses us overall

impresses us overall

Accuracy: 78.571% Errors: 4 (Sub: 2 Ins: 1 Del: 1)

Words: 14 Matches: 11 WER: 28.571%
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E.6 Segment 6

REF: the white house’s changes are being implemented we’re safer

but not yet safe but hamilton and kane say first responders still unable

to communicate on the same radio frequencies homeland security money being

foolishly spent and slow going securing the nation’s nuclear facilities

reporting live dick uliano c. n. n. washington

HYP: the white house’s changes are being implemented or safer

but not yet safe but hamilton taints a first responder still are unable

i communicate on the same radio frequencies public security money being

foolishly spent and slow going securing the nation’s nuclear facilities

reporting live to kill iago c. n. n. washington

ALIGN_REF: the white house’s changes are being implemented WE’RE safer but

ALIGN_HYP: the white house’s changes are being implemented OR safer but

not yet safe but hamilton AND KANE SAY first RESPONDERS still *** unable

not yet safe but hamilton TAINTS A *** first RESPONDER still ARE unable

TO communicate on the same radio frequencies HOMELAND security money being

I communicate on the same radio frequencies PUBLIC security money being

foolishly spent and slow going securing the nation’s nuclear facilities

foolishly spent and slow going securing the nation’s nuclear facilities

reporting live ** DICK ULIANO c. n. n. washington

reporting live TO KILL IAGO c. n. n. washington

Accuracy: 82.353% Errors: 11 (Sub: 8 Ins: 2 Del: 1)

Words: 51 Matches: 42 WER: 21.569%
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E.7 Segment 7

REF: a suicide bomber killed at least five people injured about three

dozen at a mall in the northern israeli city of netania correspondent john

wauss reports from israel

HYP: a suicide bomber killed at least five people injured about three

dozen of a bald northern israeli city of titania correspondent john

paul’s reports from israel

ALIGN_REF: a suicide bomber killed at least five people injured about

ALIGN_HYP: a suicide bomber killed at least five people injured about

three dozen AT a MALL IN THE northern israeli city of NETANIA correspondent

three dozen OF a BALD ** *** northern israeli city of TITANIA correspondent

john WAUSS reports from israel

john PAUL’S reports from israel

Accuracy: 78.571% Errors: 6 (Sub: 4 Ins: 0 Del: 2)

Words: 28 Matches: 22 WER: 21.429%
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E.8 Segment 8

REF: the suicide bomber waited in line outside the shopping mall

in netania tonya when security guards and police thought something was up they

asked him to step away from the crowd as he walked away he detonated his

explosives

HYP: the suicide all white in line outside dissolving molding

that tonya insecurity godsend laced billets awning was outlay

aussie to step away from the crowd as he walked away he detonated his

explosives

ALIGN_REF: the suicide BOMBER WAITED in line outside THE SHOPPING MALL

ALIGN_HYP: the suicide ALL WHITE in line outside DISSOLVING MOLDING THAT

IN NETANIA tonya WHEN SECURITY GUARDS AND POLICE THOUGHT SOMETHING

** ******* tonya INSECURITY GODSEND LACED BILLETS AWNING ******* *********

was UP THEY ASKED HIM to step away from the crowd as he walked away he

was OUTLAY AUSSIE ***** *** to step away from the crowd as he walked away he

detonated his explosives

detonated his explosives

Accuracy: 53.846% Errors: 18 (Sub: 12 Ins: 0 Del: 6)

Words: 39 Matches: 21 WER: 46.154%
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E.9 Segment 9

REF: the military says two us helicopters made emergency landings in

afghanistan after being hit by enemy fire five american and one afghan

soldier were reported injured none seriously the most trusted name in news

this is c.n.n. radio

HYP: all jory says to us helicopters made emergency landings in

afghanistan after being hit by enemy fire five american one afghans

soldier were reported jerk and seriously most trusted ne menus d’souza

yen in reading

ALIGN_REF: THE MILITARY says TWO us helicopters made emergency landings in

ALIGN_HYP: ALL JORY says TO us helicopters made emergency landings in

afghanistan after being hit by enemy fire five american AND one AFGHAN soldier

afghanistan after being hit by enemy fire five american *** one AFGHANS soldier

were reported INJURED NONE seriously THE most trusted NAME IN NEWS

were reported JERK AND seriously *** most trusted NE MENUS D’SOUZA

THIS IS C.N.N. RADIO

YEN IN READING *****

Accuracy: 60.526% Errors: 15 (Sub: 12 Ins: 0 Del: 3)

Words: 38 Matches: 23 WER: 39.474%
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