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Preface
Introduction

The PARA workshops in the past have been devoted to parallel computing methods
in science and technology. There have been seven PARA meetings to date: PARA’94,
PARA’95 and PARA’96 in Lyngby, Denmark, PARA’98 in Umea, Sweden, PARA’2000
in Bergen, Norway, PARA’02 in Espoo, Finland, and PARA’04 again in Lyngby, Den-
mark. The first six meetings featured lectures in modern numerical algorithms, com-
puter science, engineering, and industrial applications, all in the context of scientific
parallel computing.

This meeting in the series, the PARA’04 Workshop with the title “State of the Art in
Scientific Computing”, was held in Lyngby, Denmark, June 20-23, 2004. The PARA’04
Workshop was organized by Jack Dongarra from the University of Tennessee and Oak
Ridge National Laboratory, and Kaj Madsen and Jerzy Wasniewski from the Technical
University of Denmark. The emphasis here was shifted to High-Performance Comput-
ing (HPC). The ongoing development of ever more advanced computers provides the
potential for solving increasingly difficult computational problems. However, given the
complexity of modern computer architectures, the task of realizing this potential needs
careful attention. For example, the failure to exploit a computer’s memory hierarchy can
degrade performance badly. A main concern of HPC is the development of software that
optimizes the performance of a given computer.

The high cost of state-of-the-art computers can be prohibitive for many workplaces,
especially if there is only an occasional need for HPC. A solution to this problem can
be network computing, where remote computing facilities are exploited via the internet.

PARA’04 featured invited talks, contributed talks, minisymposia, and software and
hardware vendors. The first day, June 20, was devoted to two parallel tutorials. The min-
isymposia and contributed talks during the main part of the Workshop, June 21-23, were
scheduled in parallel sessions. All invited and contributed talks were noncommercial.
The Workshop attracted 230 speakers from all over the world.

The PARA’06 Workshop with the title “State-of-the-Art in Scientific and Parallel
Computing” will be held in Umea (Sweden) on June 17-21, 2006.

Tutorials

Validated scientific computing using interval analysis was organized by George
E. Corliss from Marquette University (USA). This tutorial gave an introduction to con-
cepts and patterns of interval analysis. It was assumed that the participants had had a
first course in scientific computation, including floating-point arithmetic, error analysis,
automatic differentiation, Gaussian elimination, Newton’s method, numerical optimiza-
tion, and Runge-Kutta methods for ODE’s. The tutorial included lectures, with exam-
ples in MATLAB and Sun’s Fortran 95, and a set of supervised, hands-on exercises.

Automatic differentiation was organized by Andrea Walther from the Technical
University of Dresden (Germany). This tutorial gave a detailed introduction to the chain
rule based technique of automatic differentiation (AD) that provides first and higher
derivatives without incurring truncation errors. Several examples illustrated the theoret-
ical results. Some AD tools, selected as a reasonably representative sample, were tested
in supervised, hands-on exercises.



1I J. Dongarra, K. Madsen, and J. Wasniewski

Key speakers

Richard P. Brent, Oxford University Computing Laboratory (UK), Fast and re-
liable random number generators for scientific computing. Fast and reliable pseudo-
random number generators are required for simulation and other applications in scien-
tific computing. Richard outlined the requirements for good uniform random number
generators, and described a class of generators having very fast vector/parallel imple-
mentations with excellent statistical properties.

Bernd Dammann and Henrik Madsen, the Technical University of Denmark (Den-
mark), High Performance Computing and the importance of code tuning - some prac-
tical experiences from program tuning at the DTU HPC Center. This talk gave a short
overview of the High Performance Computer installation at the Technical University of
Denmark (DTU), as well as a summary of some code tuning experiments. It is easy to
reduce the run time of an application for a given problem by buying a computer with
a faster CPU (higher clock frequency). However, very often the same or even better
speed-up of the code can be achieved by analyzing and tuning the code - without the
need to invest in new hardware.

Jack Dongarra, the University of Tennessee and Oak Ridge National Labora-
tory (USA), High performance computing trends and Self Adapting Numerical Soft-
ware (SANS) - effort. In this talk Jack looked at how high performance computing has
changed over the last 10 years and predicted future trends. In addition, he advocated the
need for self adapting software.

Iain Duff, the Rutherford Appleton Laboratory (UK) and CERFACS (France), Par-
titioning and parallelism in the solution of large sparse systems. lain first reviewed the
various levels of parallelism that are available in the direct solution of large sparse linear
systems. He also briefly considered iterative as well as direct methods in this study.

Fred Gustavson, the IBM T.J. Watson Research Center (USA), Ideas for high per-
formance linear algebra software. In this talk Fred presented several ideas for the devel-
opment of sequential and parallel HPC dense linear algebra software. The main results
were obtained from the Algorithms and Architecture Approach.

Per Christian Hansen, the Technical University of Denmark (Denmark), Large-
scale methods in inverse problems. Inverse problems arise in geophysics, tomography,
image deblurring and many other areas where the goal is to compute interior or hidden
information from exterior data. This talk presented a survey of numerical methods and
paradigms suited for large-scale inverse problems.

Bo Kagstrom, the University of Umea (Sweden), Recursive blocked algorithms and
hybrid data structures for dense matrix library software. Matrix computations are both
fundamental and ubiquitous in computational science and its vast application areas.
Along with the development of more advanced computer systems with complex mem-
ory hierarchies, there is a continuing demand for new algorithms and library software
that efficiently utilize and adapt to new architecture features.

John K. Reid, the Rutherford Appleton Laboratory (UK), Fortran is getting more
and more powerful. There is much happening just now with respect to Fortran. The
features of Fortran 2003 have been chosen and the standard is very near completion.
John is the Convener of the ISO Fortran Committee.

Peter Sloot, the University of Amsterdam (The Netherlands). Scientific comput-
ing in the Grid: A biophysical case study. Workers at the University of Amsterdam
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conducted computer simulation experiments in pre-operative planning of vascular re-
construction with a physician in the experimental loop. Peter showed new results from
numerical simulations of blood flow with 3D cellular automata.

Zahari Zlatev, National Environmental Research Institute (Denmark), Large-scale
computations with the Unified Danish Eulerian Model. The Unified Danish Eulerian
Model (UNI-DEM) is a mathematical model for performing different comprehensive
studies related to damaging effects from high pollution levels in Denmark and Europe.
The model is described by a system of partial differential equations (PDEs).

Minisymposia

Interval methods, organized by Luke Achenie, University of Connecticut (USA),
Vladik Kreinovich, University of Texas at El Paso (USA), and Kaj Madsen, Techni-
cal University of Denmark (Denmark). In many practical problems there is a need to
(a) solve systems of equations and inequalities, and/or (b) optimize some performance
measure. The results obtained by conventional algorithms are either local or cannot be
guaranteed. Interval analysis provides guaranteed approximations of the set of all the
actual solutions of the problem. This ensures that no solution is missed. There were 21
speakers in this minisymposium.

Trends in large scale computing, organized by Scott B. Baden, University of Cal-
ifornia at San Diego (USA). Software infrastructure for large scale computation often
fails to realize the full potential afforded by technological advances, and the result is
lost opportunities for making scientific discovery. This minisymposium examined two
important issues in software infrastructure for large scale computation: achieving scala-
bility, and optimization through specialization. There were 5 speakers in this minisym-
posium.

High performance linear algebra algorithms, organized by Fred G. Gustavson,
IBM T.J. Watson Research Center (USA), and Jerzy Wasniewski, Technical University
of Denmark (Denmark). The algorithms of Linpack and Eispack and later LAPACK
and ScaLAPACK have stood the test of time in terms of robustness and accuracy. The
focus of this minisymposium was on explaining high performance versions of these
algorithms. There were 7 speakers in this minisymposium.

Substructuring, dimension reduction and applications, organized by Zhaojun
Bai, University of California (USA) and Rencang Li, University of Kentucky USA.
There are a variety of reasons to go for substructuring and dimension reduction in sci-
entific computations and applications. Substructuring makes it possible to solve large
and seemingly intractable computational problems by some kind of divide-and-conquer
technique. It also offers a general methodology for parallelization. There were 12 speak-
ers in this minisymposium.

Parallel processing in science and engineering, organized by Adam W. Bojariczyk,
Cornell University (USA). This minisymposium concerned selected aspects of parallel
and distributing computing as they arise in engineering. Both non-traditional applica-
tions as well as relevant software tools were presented. There were 9 speakers in this
minisymposium.

Distributed computing: tools, paradigms and infrastructures, organized by Be-
niamino Di Martino, Rocco Aversa, Second University of Naples (Italy), and Laurence
Tianruo Yang, Francis Xavier University (Canada). The Minisymposium presented re-
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cent advances in distributed computing technology, methodology and tools. The presen-
tations featured a variety of topics ranging from mobile and location-aware computing
to skeletons and high-level parallel languages, from programming environments and
tools for Grid applications’ development and tuning, to distributed monitoring and se-
curity issues. There were 9 speakers in this minisymposium.

High-performance computing in earth and space science, organized by Peter
Messmer, Tech-X Corporation at Boulder (USA). High-performance computing facil-
ities enable simulations of physical phenomena with ever increasing fidelity and ac-
curacy. The range of resolved scales in a single simulation, as well as the number of
physical processes included, yield results that can be directly compared with observa-
tional data. There were 7 speakers in this minisymposium.

Advanced algorithms and software components for scientific computing, orga-
nized by Padma Raghavan, Pennsylvania State University (USA). This minisymposium
concerned algorithms for sparse linear systems solution and function approximation and
their implementation using advanced software architectures. Discussions emphasized
the role of such techniques for improving the performance of long-running PDE-based
simulations. There were 7 speakers in this minisymposium.

Software engineering and problem solving environments for scientific comput-
ing, organized by José C. Cunha, Universidade Nova de Lisboa (Portugal) and Omer
FE. Rana, Cardiff University (UK). The emergence of computational grids in the last
few years provides new opportunities for the scientific community to undertake collab-
orative and multi-disciplinary research. The aim of this minisymposium was to bring
together experts who have experience in developing software tools to support applica-
tion scientists, and those who make use of these tools. There were 5 speakers in this
minisymposium.

Runtime software techniques for enabling high-performance applications, or-
ganized by Masha Sosonkina, lowa State University (USA). Parallel computing plat-
forms are advancing rapidly, both in speed and size. However, often only a fraction of
the peak hardware performance is achieved by high-performance scientific applications.
One way to cope with the changeability of hardware is to start creating applications able
to adapt themselves “on-the-fly”. The talks of the minisymposium discussed this issue
from both the application-centric and system-centric viewpoints. There were 6 speakers
in this minisymposium.

Sparse direct linear solvers, organized by Sivan Toledo, Tel-Aviv University (Is-
rael). The matrices of most of the systems of linear algebraic equations arising from
scientific and engineering applications are sparse. This minisymposium dealt with some
modern algorithms for sparse direct linear solvers. There were 12 speakers in this min-
isymposium.

Treatment of large scientific models, organized by Krassimir Georgiev, Bulgarian
Academy of Science (Bulgaria) and Zahari Zlatev, National Environmental Research
Institute (Denmark). The exploitation of new fast computers in the effort to avoid non-
physical assumptions and, thus, to develop and run more reliable and robust large sci-
entific models was the major topic of this minisymposium. There were 9 speakers in
this minisymposium.
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Performance evaluation and design of hardware-aware PDE solvers, organized
by Markus Kowarschik and Frank Hiilsemann, University of Erlangen-Nuremberg (Ger-
many). In an ideal situation, all performance optimization of computationally intensive
software would take place automatically, allowing the researchers to concentrate on
the development of more efficient methods rather than having to worry about perfor-
mance. However, for the time being, the need to identify and remove the performance
bottlenecks of computationally intensive codes remains. As an example of a class of
computationally intensive problems, this minisymposium concentrates on the numeri-
cal solution of PDEs. There were 7 speakers in this minisymposium.

Computationally expensive methods in statistics, organized by Wolfgang Hart-
mann, SAS Institute Inc. (USA) and Paul Somerville, University of Central Florida
(USA). A two-dimensional data set with N observations (rows) and n variables (columns)
and large scale data requires intensive computational work. Of course there may be even
more dimensions of the data set. There were 5 speakers in this minisymposium.

Approaches or methods of security engineering (AMSE), organized by Taihoon
Kim and Ho Yeol Kwon, Kangwon National University (Korea). Security engineering
software is needed for reducing security holes. The talks presented a number of methods
for designing such software. There were 16 speakers in this minisymposium.

Contributed talks

Some contributed talks were added to the minisymposium sessions. The rest were
organized in the following independent sessions: two sessions of “Grid and network",
two sessions of “HPC applied to security problems”, two sessions of “Clusters and
graphics”, one session of “HPC applied to cryptology”, one session of “ODEs, PDEs
and automatic differentiation”, one session of “Computer tools”, and a special session
of “Computer vendors”.

The Workshop Proceedings

The proceedings of the Para’04 Workshop are divided into two complementary
books, this (ISBN: 87-643-0041-2 and ISSN: 1601-2321), and the following Springer
book:

e J. Dongarra, K. Madsen and J. Wasniewski (Eds.)
» Proceedings of the Para’04 Workshop on State-of-the-Art in Scientific Com-
puting, Lyngby, Denmark, June, 2004.
» Springier Lecture Notes in Computer Science, number 3732.
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Masking Latency with Data Driven Program Variants

Scott B. Baden

University of California, San Diego
Department of Computer Science and Engineering
9500 Gilman Drive, MC 0114
La Jolla, CA 92093-0114 USA
baden@cs.ucsd.edu

Abstract. Application performance is sensitive to technological change, in par-
ticular to effects that have, over time, raised the cost of communication relative
to computation. A general approach for tolerating the cost of communication is
elusive. The difficulty is that the programmer must partition and schedule com-
putations in order to mask latencies, but the exact strategy and policy depends
on the application, the system, and even dynamic operating conditions. I present
the notion of a canonical program variant that relies on flexible scheduling of
coarse grain data flow tasks to reorder computations dynamically. This approach
is similar to classic data flow and to instruction level parallelism. It eliminates
the need to hard code the strategy for overlapping communication with compu-
tation, enabling the application to respond dynamically to data dependent and
environmental conditions.
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Dynamic Code Generation and Component Composition
in C++ for Optimising Scientific Codes at Run-time

Olav Beckmann! and Paul H J Kelly!

Department of Computing, Imperial College London
180 Queen’s Gate, London SW7 2AZ, United Kingdom
www.doc.ic.ac.uk/ ob3, phjk

Abstract. The TaskGraph Library is a C++ library for dynamic code generation
and component composition, which combines specialisation with dependence
analysis and restructuring optimisation. A TaskGraph represents a fragment of
code which is constructed and manipulated at run-time, then compiled, dynami-
cally linked and executed. The TaskGraph Library is implemented purely in C++,
using macros and operator overloading to define a simplified, C-like sub-language
that is used for constructing TaskGraphs. The internal representation for gener-
ated code is SUIF-1, which facilitates using a range of analysis and restructuring
passes.

We view the TaskGraph library as a research tool that can support effective large-
scale computation in two distinct ways: dynamic component modification, lead-
ing to code that can tune itself to a particular platform at run-time, and optimisa-
tion of dynamic component composition, where the internal structure of software
components is adapted at run-time to their calling context.



Communication Strategies for Parallel Cooperative Ant
Colony Optimization on Clusters and Grids*

Siegfried Benkner!, Karl F. Doerner?, Richard F. Hartl?, Guenter Kiechle?® and Maria
Lucka®

! Institute for Software Science, University of Vienna
Nordbergstrasse 15, A-1090 Vienna, Austria
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2 TInstitute for Management Science
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{karl.doerner, richard.hartl } @univie.ac.at
3 Salzburg Research Forschungsgesellschaft mbH
Jakob Haringer Strasse 5/1I, A-5020 Salzburg
guenter.kiechle @salzburgresearch.at

Abstract. In this paper we study different parallel variants of Ant Colony Op-
timization (ACO) for solving the Vehicle Routing Problem. We propose a new
parallelization strategy which is based on a cooperation of multiple ant colonies
and which combines fine-grained with coarse-grained parallelism. Moreover we
outline the realization of a Grid service for ACO using the Vienna Grid Environ-
ment.

1 Introduction

The Vehicle Routing Problem (VRP) involves the construction of a set of vehicle tours
starting and ending at a single depot and satisfying the demands of a set of customers,
where each customer is served by exactly one vehicle and neither vehicle capacities nor
maximum tour lengths are violated. Therefore no efficient exact solution methods are
available, and the existing solution approaches are of heuristic nature. In this article we
focus on solving the VRP using different parallel versions of Ant Colony Optimization
(ACO). Based on the observation of real ant’s foraging behavior ACO was developed
as a graph-based, iterative, constructive meta-heuristic by Dorigo et al. [11]. The main
idea of ACO is that a population of computational ants repeatedly builds and improves
solutions to a given instance of a combinatorial optimization problem. From one gen-
eration to the next a joint memory is updated that guides the work of the successive
populations. The memory update is based on the solutions found by the ants and more
or less biased by their associated quality.

Recently some possible parallelization strategies for ACO have been proposed,which
can be classified into fine-grained and coarse-grained strategies [12]. In fine-grained
parallelization strategies usually several artificial ants of a colony are assigned to each

* This work was supported by the Special Research Program SFB FO11 "AURORA" of the
Austrian Science Fund FWFE.
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processor and therefore frequent information exchange between the small sub-colonies
of ants (i.e. an information exchange between the processors) takes place [9, 14,22].
Coarse-grained parallelization schemes run several colonies in parallel. This strategy is
also referred to as multi colony approach. The information exchange among colonies is
done at certain intervals or numbers of iterations [3, 15]. The important questions in im-
plementing the multi colony approach are when, which and how information should be
exchanged among the colonies. Stuetzle [21] studied the effect on solution quality when
applying independent runs of the algorithm without communication in comparison to
one longer run of the algorithm.

In our work we consider both fine-grained and coarse-grained parallelization strate-
gies, as well as a combination of these two strategies. To our best knowledge this is the
first work which presents speed-up and efficiency for a fine-grained, coarse-grained and
mixed parallelization strategy for the Savings based ACO algorithm. First preliminary
results for the fine-grained strategy of one problem class were already shown in our
previous paper [10].

We evaluate the effectiveness of the different parallelization strategies on PC clus-
ters and outline the realization of a Grid service for Ant Colony Optimization.

2 Savings based ACO algorithms for the VRP

The Savings based ACO algorithm published in [19] and repeated here mainly consists
of the iteration of three steps: (1) generation of solutions by ants according to private
and pheromone information; (2) application of a local search to the ants’ solutions, and
(3) update of the pheromone information.

Solutions are constructed based on the well known Savings Algorithm due to Clarke
and Wright [7]. In this algorithm the initial solution consists of the assignment of each
customer to a separate tour. After that for each pair of customers ¢ and j the following
savings values are calculated:

sij = dio + doj — dij, 2.1)

where d;; denotes the distance between locations ¢ and j, the index 0 denotes the depot,
and s;; represent the savings of combining two customers ¢ and j on one tour contrary
to serving them on two different tours. In the iterative phase, customers or partial tours
are combined by sequentially choosing feasible entries from the list of saving values. A
combination is infeasible if it violates either the capacity or the tour length constraints.
The decision making about combining customers is based on a probabilistic rule taking
into account both savings values and the pheromone information. Let 7;; denote the
pheromone concentration on the arc connecting customers ¢ and j telling us how good
the combination of these two customers ¢ and j was in previous iterations. In each
decision step of an ant, we consider the k best combinations still available, where k
is a parameter of the algorithm which we will refer to as 'neighborhood’ below. Let
{2, denote the set of k neighbors, i.e. the k feasible combinations (4, j) yielding the
largest savings, considered in a given decision step, then the decision rule is given by



Communication Strategies for Parallel Ant Colony Optimization 5

equation (2.2).

P re
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In (2.2), P;; is the probability of choosing to combine customers ¢ and j on one tour,
while a and £ bias the relative influence of the pheromone trails and the savings values,
respectively. This algorithm results in a (sub-)optimal set of tours through all customers,
once no more feasible savings values are available.

The used pheromone update rule was proposed in [2] and its pheromone manage-
ment centers around two concepts borrowed from Genetic Algorithms, namely ranking
and elitism to deal with the trade-off between exploration and exploitation. In [19] this
paradigm was used for solving the VRP. Thus, we will just briefly depict the pheromone
update scheme here. Let 0 < p < 1 be the trail persistence and E the number of elitists.
Then, the pheromone update scheme can formally be written as

E-1
Tij = PTij + Z AT{J- + EAT;;- 2.3)

r=1

First, the best solution found by the ants up to the current iteration is updated as if £
ants had traversed it. The amount of pheromone laid by the elitists is A7; =1 JL* if
(i7) belongs to the best solution so far, 0 otherwise, where L* is the objective value of
the best solution found so far. Second, the &£ — 1 best ants of the current iteration are
allowed to lay pheromone on the arcs they traversed. The quantity laid by these ants
depends on their rank r as well as their solution quality L", such that the r-th best ant
lays A7l = (E —r)/L" on the arcs they traverse. Arcs belonging to neither of those
solutions just face a pheromone decay at the rate (1 — p), which constitutes the trail
evaporation.

A solution obtained by the above mentioned procedure can then be subjected to
a local search in order to ensure local optimality. In our algorithms we sequentially
apply the swap neighborhood [17] between tours to improve the clustering and the 2-
opt algorithm [8] within tours to improve the routing.

3 Granularity of Parallelization

Our goal in parallelization of the ACO algorithm is on the one hand to speed up its exe-
cution and on the other hand to improve the solution quality by exploiting the possibil-
ities provided by parallel architectures. We have considered three different paralleliza-
tion strategies: a coarse-grained, a fine-grained, and a mixed strategy which exploits
both coarse-grained and fine-grained parallelism.

The coarse-grained parallelization strategy is based on a multi-colony approach
where several colonies of ants cooperate in finding good solutions. We use a homo-
geneous approach where the different ant colonies have the same behavior. The infor-
mation exchange between the colonies is based on the exchange of single solutions.
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With the fine-grained parallelization strategy a colony of ants is partitioned into mul-
tiple subcolonies, depending on the number of processors available. Every subcolony
uses the same pheromone matrix. After all ants in a subcolony have found their solu-
tions, a local best solution is established. From these values the global best solution and
the E best solutions for the whole colony are found. The pheromone matrix for every
colony is updated separately.

The mixed parallelization strategy attempts to combine the advantages of the fine-
grained and coarse-grained strategies. With this strategy the MPI processes are orga-
nized into two hierarchical levels, where on the the higher level several colonies of ants
exploit coarse-grained parallelism by pursuing a multi-colony approach, while on the
lower level each of these colonies is split into multiple subcolonies in order to exploit
fine-grained parallelism. For example, if 8 MPI processes are used and 4 colonies of
ants are processed in parallel, each colony is partitioned into two subcolonies which
again are processed in parallel.

3.1 Fine-grained Parallelization

Our performance analysis of the fine-grained approach is based on the larger instances
of the 14 classic VRP benchmarks [6]. These instances range from 75 to 199 customers
and comprise both problems where all customers are randomly located in the plane and
problems where customer located in several clusters. Furthermore, some instances are
just capacity constrained while others also feature restrictions on the maximum tour
length. The experiments with the parallelized version were run on a Beowulf cluster
with 16 compute nodes, each equipped with four 700 MHz Pentium III Xeon proces-
sors and connected via Myrinet. We report detailed results on speedup with different
numbers of processors.

In Figure 1 we present average results on the speedup over 4 benchmark problem
instances ranging from 75 to 199 customers. The experiments clearly show satisfying
speedups up to 32 processors. The results are averaged over 5 runs for each problem
instance.

For example for the problems with 199 customers, on 8 processors a sixfold speed
up with an efficiency of more than 70% and on 32 processors a speedup of 12 with an
efficiency of approximately 40% was obtained.

The result is different when we consider the speedup of the 75 customer problem
instance and the usage of 16 processors. Here we have a maximum speedup of 4.88
(with an efficiency of 60%), which is smaller than the speedup on the larger problems.
The reason for the reduced speedup on the smaller problem is that the required runtime
in constructing a solution is also smaller than for the larger problems and therefore the
pheromone update which requires communication consumes more runtime compared
to the total amount of used runtime. This speedup is reached by using 4 processors per
node and two nodes. We have different speedup when we use a different assignment of
our 8 processors. The speedup is reduced to 4.26 when we execute the program on 4
nodes and on each node only 2 of the processors are used - when we use 8 nodes (on
each node 1 processor) then the speedup is reduced to 2.61.

In comparison to that we consider the speedup of the larger problem instances with
199 customers. Here the effect is not so drastic - it is even a contrary effect. When we
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Fig. 3.1. Speedup - Fine Grained Approach

use 4 processors per node and two nodes we have a speedup of 5.56 - this speedup
increases to 5.79 by using 4 nodes (2 processors an each node). We have even a further
increase in speedup when we use 8 nodes with one processor on each node to 6.28.

The reason for the different behavior in speedup of the problems with the different
problem sizes lies in cache effects. For the smaller problem we have a gain in speedup
when we use all the available processors on one node - the communication is faster
and the memory requirements are not so large as for the problems with more customers
where the pheromone matrix is larger.

Therefore, for smaller problem instances it is recommendable to use all the proces-
sors on one node. For the problems with 150 customers the speedup for 8 processors on
varying number of nodes is almost the same. For larger problems it is favorable to use
fewer processors per node in order to get a better speedup on our hardware architecture.

On our results we can also see that for the smaller instances we get a reduction in
the speedup. When too many processors are used the speedup reduces from 4.88 to 2.61
with the number of processors increasing from 8 to 32.

3.2 Coarse-grained and Mixed Parallelization

In Figure 2 performance results of our mixed parallelization strategy using 4, 8 and
16 processors for 2 colonies are shown both in terms of execution times and solution
quality, where the exchange of solutions between the colonies was performed every ex.
iterations (denoted on the x-axis). The solution quality is denoted on the y-axis. Note
that a smaller number represents a better solution quality. In the variant gb only the
global best solution is exchanged, whereas in the variant gb + el also the solutions of
the elitists in the population with the global best solution are broadcast to the other
colony. Moreover, we have also implemented the two variants where the converged
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Fig. 3.2. Computational Results - Mixed Approach for the Problem with 199 Customers

pheromone matrices are reset and only the globalbest and elitist solutions are updated
in the new initialized matrix. Another version of our algorithm exchanges the whole
pheromone matrix of the population where the globalbest solution was found. We apply
the algorithm for two times the number of customers iterations.

variant runtime|globalbest solution
no communication| 120.13 1389.80
gb 147.47 1389.76
gb+el 149.27 1384.09
restart + gb 206.29 1381.74
restart + gb+ el | 199.44 1381.56
matrix 201.18 1390.26

Table 1. Runtime of Cooperative Colonies for the Problem with 199 Customers

The average solution quality of two independent populations is provided as a yard-
stick. In this case no communication between the two populations occurs and the bet-
ter result of the two populations is reported (variant no communication). By using
pheromone information exchange we can easily improve the solution quality. The so-
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lution quality without communication is 1389.8. We can increase the solution quality
to 1381.56 if we exchange the global best and the elite solutions every 50 iterations
between the two colonies and reset the pheromone matrix. By communicating only the
global best solution we achieve almost the same solution quality. The runtime is in-
creased by reseting the pheromone matrix from about 150 seconds to over 200 seconds.
(see Table 1). A good tradeoff between solution quality and runtime can be the strategy
with no reset of the matrix and the communication of the global best and elite solutions
(sol. qual. 1384.09, runtime 149.27 sec.). The communication of the whole pheromone
matrix leads to a decrease in solution quality as well as worse runtime behavior.

4 Grid Services for Ant Colony Optimization

In the following we outline the provision of our parallel ant colony optimization codes
as Grid Services using the Vienna Grid Environment (VGE) [1,23].

4.1 Vienna Grid Environment

VGE is based on a service-oriented architecture and has been built on top of exist-
ing standard Grid and Web Services technologies. Under VGE, parallel applications
available on various HPC platforms, may be exposed via WSDL [25] as services and
securely accessed by multiple remote clients over the Internet using SOAP [20]. VGE
comprises a generic Grid service provision framework, a Grid client environment, one
or more service registries, and a certificate authority.

The VGE service provision framework automates the task of transforming existing
applications into Grid services without forcing the user to cope with the details of Web
Services and Grid technologies. VGE services encapsulate native HPC applications
available on clusters or other parallel hardware, and offer a common set of operations
for data transfer, job execution, job monitoring, error recovery, and application-level
quality of service support.

The VGE Grid client environment automates the provision of Web-based user inter-
faces to Grid services and offers a high-level application programming interface (API)
for the development of advanced client-side applications which gives developers full
control over service discovery, QoS negotiation and job handling while keeping the
underlying implementation details hidden from view.

VGE service registries maintain a list of service providers and the services they
support and are usually accessed during service selection and QoS negotiation.

The VGE Certificate Authority is in charge of creating user and service provider
certificates in accordance with the Internet X.509 PKI Certificate Policy and Certifi-
cation Practices [5]. X.509 certificates serve as digital identities in the VGE system
and are used to provide transport layer security utilizing SSL connections via https and
message layer security based on WS Security [26]. VGE adopts a purely client-driven
approach for accessing services, i.e. all interactions of a client with services are initiated
by the client and neither call-backs nor notification mechanisms are used. As a conse-
quence, there is no need for tunneling holes through site firewalls or any other special
site security compromises.
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VGE services support a model and process for agreeing dynamically various QoS
properties, including service completion time, cost and others. If for a VGE service
the optional QoS support mechanisms are employed, a user or client-application may
choose from a set of service providers the one which can satisfy a request subject to
certain QoS constraints, eg. within a certain deadline.

4.2 Provision of HPC Applications as Grid Services

Within VGE the transformation of HPC applications into Grid services is based on the
concept of generic application services. A generic application service provides com-
mon operations for data transfer, remote job management, error recovery, and QoS sup-
port. These operations are customized for a specific application by means of an XML
application descriptor, which includes information about the input/output files and the
script for initiating job execution. A generic application services is realized as a Java
component, which is transformed automatically into a Web Service with corresponding
WSDL descriptions.

In order to provide a parallel ACO code as a Web/Grid Service, the application has
to be pre-installed on some Grid host and a job-script for starting the application as
well as a corresponding XML application descriptor have to be provided. Using VGE,
a corresponding service is generated and deployed within the VGE hosting environ-
ment, which is based on Apache Tomcat/Axis. As a result of deployment, the ACO
code is exposed as a service and accessible over the Internet via SOAP. The VGE client
environment may then be used to automatically generate from the XML application de-
scriptor a Web-based user interface for accessing ACO services from remote machines.
Alternatively, the VGE Grid client API may be used to develop a customized client ap-
plication. VGE client applications usually run on PCs or workstations connected to the
Internet and make use of the VGE client API for communicating with services through
the VGE middleware. The client side applications handle the creation of service input
data, the job execution, and the post-processing of service output data.

By offering parallel ACO algorithms as Grid services it is possible to solve mul-
tiple vehicle routing problems concurrently based on transparent on-demand access to
clusters or other parallel hardware available in a Grid infrastructure.

Note that currently a VGE Grid service as outlined above does not employ multiple
Grid sites (clusters) for solving a single VRP. For the fine-grained parallelization strate-
gies the use of multiple Grid sites may not be feasible due to the high latencies over the
Internet. However, for coarse-grained parallelization strategies with minimal commu-
nication, a parallelization over multiple Grid sites (e.g. by using MPICH-G2 [13]) may
be beneficial.

5 Conclusion

In this paper we investigated different parallel versions of Ant Colony Optimization.
While most of the work published on parallel ACO focuses on solution quality and
competitiveness effects, we have analyzed the effects of different parallelization strate-
gies both with respect to solution quality and efficiency. Moreover, we have outlined the
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provision of ACO codes as Grid services using the Vienna Grid Environment. A more
detailed evaluation of ACO Grid services and corresponding strategies for solving large
scale real world problem instances in real time will be subject of future work.
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Abstract. As there is no central authority or fixed infrastructure in mobile ad hoc
network, key management should be performed by the nodes themselves, which
means that each distributed peer nodes perform the role of authority. If there is no
priori trust relationship between nodes in the network, peer nodes have to make
trust relationship by themselves. It is the “fully” self organized key management
problem. There must be no dependency of any infrastructure, any central server,
any secret share dealer and any initial trust relationship between nodes even from
the initial boot strapping stage. And transitivity of trust must be minimized. In
this paper we propose a fully self organized public key management scheme sup-
porting all those requirements and limitations. In this approach, all peer nodes
can issue public key certificate of other node. Certificate is issued after authenti-
cating physical entity when two peer nodes encounter physically. Trustworthiness
of the issuer of the certificate is evaluated by replying party. As there is no priori
trust, trustworthiness of the issuer is evaluated from reputation about the issuer.
Reputation made by other nodes reflects other node’s experience about the issuer.
Collected reputation reflects trustworthiness of the issuer in the whole network.
So it is possible to decide trustworthiness without any priori trust.

1 Introduction

The MANET (Mobile Ad hoc NETwork) is a network that consists of distributed wire-
less mobile hosts that provide networking function such as routing by themselves. There
is no fixed infrastructure and no previously defined configuration or topology. And wire-
less communication has inherent vulnerability.

There are 3 kinds of security related issues that must be considered due to those
characteristics of the MANETT(1]. First one is the secure routing. Secure routing is to
provide correct routing. To provide it, integrity and authenticity of routing information
must be guaranteed. And authenticity of source, intermediate, and destination nodes
is also important. Second issue is the co-operation enforcement. To make a MANET
work well, every node has to provide its networking function to the other nodes. To pro-
vide networking function, they have to use their resources such as battery power. There
might be some selfish node that only uses network and not provide their resources.
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Co-operation enforcement is a problem to enforce those selfish nodes to cooperate and
provide resources for other node’s benefit. The last issue is the key management. Key
management is the problem of how to create and exchange securely the cryptographic
key of each node. What make the key management in MANET different from that one
in conventional network is that there is no security infrastructure such as KDC, CA and
RA. And there is a priori trust issue. A MANET is organized by one of 2 kinds of man-
ners. In the managed environment, nodes start to work having priori trust information
about other nodes from the initial stage. Example of this case is network of military per-
sonals who know each other. But in the open environment, there is no trust information
about others at initial stage. Example of this case is civil application. This paper han-
dles the issue of open environment key management. It is defined as fully self organized
key management problem. To be “fully” self organized key management, there must be
no dependency of any infrastructure, any central server, or any secret share dealer. In
addition to those infrastructure issues, some requirements or limitation can be specified
as follows.

— Fully distributed: There must be no assumption about special role of any node or
group.

— Bootstrapping from scratch: There must not be any initial trust relationship be-
tween nodes even from the initial boot strapping stage.

— Minimized transitivity of trust: Long chain of trust by normal nodes is not appro-
priate.

— Fast usable: If a node can not communicate with other node from the beginning, it
is very impractical.

As far as we know, there is no previous research that confirms to all these require-
ments of fully self organized key management for MANET in open environment. In
this paper we propose a new approach that solves all these problems.

Our approach uses public key certificate, which is a largely accepted and proven
technology for key management. But it requires a certificate issuer that is trusted by
everybody. In our approach, any node can issue certificate, if it wants. It is possible that
there are many certificate issuers in a network. The relying party who receives a certifi-
cate has to decide the trustworthiness of the certificate based on the trustworthiness of
the issuer. Because, there is no priori trust or assigned role as a certificated authority,
the trustworthiness of an issuer can only be decided based on experience about the is-
suer. The experience consists of relying party’s own and other node’s experience. The
experience of other nodes is called reputation.

The rest of the paper is organized as follows. In section 2, we briefly introduce
some previous research related to key management in MANET. Section 3 describes our
approach in detail. In section 4, we analyze and evaluate feasibility of our approach.
Finally, section 5 draws a conclusion.

2 Related Works

In the previous works, there have been 3 kinds of approaches for key management
in MANET. They are methods using symmetric cryptography, approaches based on
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public key, and context based authentication approach4es. For using symmetric key,
each node should know and store all other node’s key from the beginning. And to store
all other node’s keys, large storage is required. Some mobile nodes may have very
limited storage. As it requires previous acquisition of communicating party, it is very
difficult to adapt to dynamic topology change. So this approach is not appropriate to
open environment.

There are various methods using public key. As there is no unique CA, distributed
CA was proposed[2][3]. A group of nodes works as a CA. This method is based on
threshold cryptography. Signatures from nodes are collected. If the number of signers
excesses a threshold, signature is accepted as valid. To get a certificate, the node has to
contact group of nodes. In this method, to distribute authority, the private key share for
signing certificate must be distributed at initial stage. And every node in the network
should know the corresponding public key. The other method using public key is a web
of trust[4]. That method is also used in wired environment with the name of PGP[5].
In this method, there is no group of authority and no need of distribution of private
key. Every node can issue a certificate to the nodes that they trust. In this point, our
method is similar to this method. But the issued certificate is only trusted by someone
who directly or indirectly trusts the issuer. To indirectly trust the issuer, there must be a
chain of trust. In other words, this method raises problem of transitive trust. And there
must be some previous trust relationship with other nodes, even though they are very
small portion of all nodes. To solve the problem of transitive trust, a newly proposed
method makes use of mobility of node as a way to make direct trust between each
node[6]. Even though this method does not make transitive trust, nodes that have not
met with each other cannot communicate with each other. It needs very long time for
every node to meet each other, if there is no transitive trust. Public key based methods
that do not use certificate are id-based cryptography and cryptography based id. Id-base
cryptography is a method that makes public key from identifier[7]. So there is no need
of certificate that guarantees the relation between id and public key. So there is no need
to evaluate the trustworthiness of the certificate issuer. But, to verify the public key
generated from identifier, there must be a trusted third party. Cryptography based id is
identifier generated from key[8][9]. It shares benefit of id based crypto and does not
need TTP. But identifier generated from cryptographic key is not human readable and
memorable.

Third approach is authentication based on context[10]. Shared password method is
one of them. People in the specific location share temporary password. This method has
limitation of coverage.

All of these previous approaches do not meet every requirements of fully self orga-
nized key management problem.

3 Reputation Based Distributed Certification

3.1 Overview

In our approach, when two nodes meet each other at the first time, they exchange their
public key. After verifying the other’s id and private key proof of possession, a node
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stores the other’s id and public key. If any node has certificate, it also exchange it. We
call this exchange a handshaking. What makes this physical meeting possible is the
mobility of nodes in the MANET. After handshaking, a node issues a certificate to the
other. When the other node already has a certificate for the public key, the certifier adds
its signature to the certificate. So there can be more than one signature in a certificate.
The certification is not mandatory. It is done by some volunteering nodes. The motiva-
tion for volunteering is that the certification is a way to gain credits in a network. Any
node can broadcast the certificate revocation message.

When two nodes that have never hand-shaken before communicate each other, they
exchange their certificates. The relying party validates received certificate. The trust-
worthiness of a certificate is dependent on the trustworthiness of the certifiers who re-
main their signatures in the certificate. Because there is no priori trust, trustworthiness
of the certifiers is evaluated based on different information. The information we use is
the relying party’s own experience about the certifiers and the reputation about the cer-
tifiers in the network. Reputation is the experience of the other nodes in the network. In
the following sections, we describe in detail the evaluation metrics of trust worthiness,
some operations, and operating scenario of our schemes.

3.2 Metrics

The trustworthiness of a certificate is defined as a summation of the certifiers’ trustwor-
thiness. The trustworthiness of a certifier is a metric about correctness of certificates
that is issued or signed by the certifier. It is calculated based on two types of the experi-
ence of the nodes that handle the certificate. First one is the experience of a node whose
certificate is issued or signed by the certifier. The node can verify that the content of its
certificate is correct. If it found something wrong, it can recognize that the certifier is
wrong. The second one is the experience of a node that verifies the content of the other’s
certificate during handshaking. The node can compare the submitted id, POP and public
key with the content of the submitted certificate. If something wrong was found, that
means all signers of the certificate are wrong. This experience of node ¢ about node j
is represented as E(i, §). The initial value of E is 0. Whenever a node views a correct
certificate, it increases its E values about the signers by one. When it finds an incorrect
certificate, it sets the E values about the signers as —1. If the E value is already neg-
ative, the node decreases E value by one. It is difficult to accumulate credit but easy
to lose it. What the E value means is that a node can gain credit by issuing or signing
certificates.

There are many cases that only a node’s own experience is not enough to evaluate
the trustworthiness of a certifier. A node can reference the reputation about the certifier
in the network. The reputation about a certifier is defined as follows.

R(j) = average(E(r,j) - rw),r € Set of Reputator

E(i,r)
= —————: Reputat Weight
w Average(E) eputator eig
Reputation is the weighted mean of other nodes’ experience. The other node is
called reputer . It is not necessary to get reputation from all nodes. And the reputation is
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weighted by the trustworthiness of the reputer itself. The trustworthiness of a reputer is
calculated based on only the node’s E values. The reason of not including the reputation
of the reputer is to prevent recursion.

The trustworthiness of a certifier T's(4, §) is the summation of the F value and the
R value as shown in the following.

Ts(i,j) = E(i,j) + R(j)

The trustworthiness of a certificate T'c is defined as follows.

Tc= ZTs(j, s)— RW - Z Ts(i,v)

sES veEV

S :Set of Signer
V :Set of Revokers
RW : Revocation Weight

The trustworthiness of a certificate is summation of all signers’ trustworthiness,
from which summation of all revokers’ trustworthiness is subtracted. Unlike certifica-
tion, revocation message is broadcasted by the revoker. Like reputation, the trustworthi-
ness of the revoker is included in calculation. So the signer or revoker that has negative
trustworthiness work in the opposite way.

A node trusts a certificate if the trustworthiness of a certificate exceeds a threshold.
The threshold of a node is defined by each node itself and the value changes as time
elapses. At the bootstrapping stage, there is not enough experience and reputation. So
at this stage, the threshold is set very low and it increases as time goes by.

3.3 Stored Data & Operations

A node stores the following data.

Handshake List : {{id, pub_key, key_id, hs_time}, ...}
Experience List : {{id,E},...}

Reputation List : {{reputer_id, E,reputation_time},...}
Revocation List : {{revoker_id, subject_id, key_id}, ...}

For Reputation List, reputation time is used to classify an obsolete record. But the
records of negative E value are not obsolete.
Some required operations and message format are defined in the followings.

Handshake

Handshake (Id, pub key, pop, previous cert)
HandshakeResponse (ack, Certificate (option))
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When two nodes meet each other physically, they exchange Handshake message. After
verifying the information in the message, a node may issue or sign a certificate option-
ally. The certificate is returned and verified by the certificate owner. The Handshake
message includes a node id, a public key of the node, proof of possession of matching
private key, and the certificate(if there is). Verifying Handshake message consists of
authenticating id, and comparing public key with pop. Verified information is stored in
the Handshake List. If there is a certificate in the Handshake message, the content of the
certificate is compared with the other information. E values about Signers are updated
based on the result of comparison. If something goes wrong, the verifier accuses all
signers and revokes the certificate. Accusation and revocation operations are defined in
the followings. After all verification, the node may issue or sign a certificate. When a
certificate is issued or signed, the certificate owner compares the content of the certifi-
cate with the information that it sends before. If there is something wrong, it updates
its Experience List and accuses the certifier. Then, the node removes the signature from
the accused certifier.

Reputation Query

ReputationRequest (certifier id)
ReputationResponse (sender id, certifier id, E, signature)

When a node needs, it sends the ReputationRequest messages to other nodes. The nodes
to be queried are selected based on the sender node’s Experience List. The n numbers
of nodes of most high E value are chosen. If there is not enough information in the own
Experience List, neighbor nodes are chosen.

Revocation

Revocation (sender id, subject id, key id, signature)

Any node can broadcast the Revocation message. As mentioned before, Revocation
message is reflected based on the trustworthiness of the sender. The revocation mes-
sage includes sender id, certificate owner’s id, key id and the sender’s signature. The
receiving node stores the information in its Revocation List.

Accusation

Accusation(sender id, certifier id, signature)

Revocation is about a certificate. Accusation is about a certifier that issued or signed
certificates. The Accusation message is also broadcasted. The message includes sender
id, accused certifier id and the sender;?s signature. The receiving node updates Reputa-
tion List.
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Certificate Validation When a node communicates with other nodes that are not in
the Handshake List, it sends its certificate and receives the other’s certificate. The node
validates the received certificate. Except the general process of the certificate validation,
the trustworthiness of certificate 7'c is evaluated. The node calculates 7'c based on in-
formation in its Experience List, Reputation List and Revocation List. If the calculated
Tc value does not exceed threshold, the node send Reputation Query to collect more
information. After recalculating the T'c value, if the T'c value is still not enough, the
node does not accept the certificate.

3.4 Scenario

With the metrics and operations that are defined in the previous section, the nodes of a
MANET use and manage public key system. The operating scenario is very simple. At
the bootstrapping stage, the nodes initialize their stored data and clock. They move and
meet other nodes. They handshake, certify, verify or accuse some one. They increase
their threshold for accepting a certificate. When a new node joins the network, it asks
its neighbor nodes;j? experience. Based on the reputation, the joining node meets the
most trusted nodes in the network and gets certified.

The Fig. 1 shows some example of these key management operations. Fig. 1 (a)
shows Handshake operation including certification. Node e issues certificates to the
node ¢ and node d. After verifying issued certificate, the two nodes update their experi-
ence about node e. As shown in the Fig. 1(b), node ¢ handshakes with node b and node
¢. Node b and node d verify node ¢’s certificate and update experience about issuer node
e. Node c transfers its certificate to the node a as in the Fig. 1(c). As node a does not
have data for validating the node c’s certificate that is issued by node e, node a queries
reputation to the node b and node d. The two queried nodes send their experience to
node a. Now node a has reputation data such as {b, e, 1}, {d, e, 2}. Average reputation
is 1.5. If node a’s threshold at this time is 1, node a accepts the certificate issued by
node e. As shown in this example, a node can evaluate a certificate, even when the node
has never met the owner or the issuer of certificate. Fig. 1(e) shows Accusation and Re-
vocation operations. If node ¢, node d, and node e conspire and node e makes a wrong
certificate, node b can detect that the node e issues the wrong certificate when node b
and node ¢ handshake. Node b executes Accusation and Revocation operations.

Then node a has Reputation List and Revocation List as shown in the Fig. 1(e).
When node a evaluate node c’s certificate, the average reputation is 0.5 that is below
the node a’s threshold 1. So the node a does not accept the certificate issued by node e.

4 Analysis

4.1 Security

To strengthen the security of key management, our approach includes a method for
accusing malicious certifier and revoking false certificate. There were no previous re-
searches that considered these factors for key management in MANET. In our method,
information about malicious certifier is broadcasted as an accusation message. As there
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E List: {e, 1} E List: {e, 1}
E List: {e, 1} E List: {e, 2}
(a)Handshake(Certification) (b)Handshake

) Rep List: {b, e, 1}, {d, e, 2}

g /__
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(c) Transfer Certificate (d) Reputation Query
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7 Rev List: {b, c}
e . Handshake (Certification)
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@ @ —— > Accusation or Revocation

(e) Accusation & Revocation

Fig. 3.1. Examples of key management operations

can be a malicious accuser that broadcasts false accuse message, trustworthiness of the
accuser is also considered in evaluating trustworthiness of a certifier. If some nodes
with high trustworthiness or many nodes repute positively about the issuer, the accusa-
tion that is send by lower trusted accuser affect not much in evaluation. Not accuser but
all reputers’ trustworthiness is considered. Revocation is also considered in validating a
certificate. Like accusation, revocation is also accepted based on the trustworthiness of
the revokers to prevent false revocation. It will take a certain amount of time for infor-
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mation about malicious nodes to propagate. To show how fast our scheme can excludes
malicious nodes, we are conducting some experiment with a simulation

In our scheme, there are two ways for a certificate owner to do for increasing trust-
worthiness of his own certificate. The one is to get signed by many certifiers. And
the other is to get certified by the highly trustworthy certifiers. The way to become a
highly trusted certifier is to do many certifications. Therefore, highly trusted certifier
will get more and more certification requests(Handshake) and their trustworthiness will
increase more and more. As time elapses, a few certifiers with highly trustworthiness
will emerge. This is one of some ways for a Trusted Third Party to be made in the hu-
man society. It is fully self organized manner without no priori information or trust. So
we call our scheme “ fully self organized”.

4.2 Requirement Conformation

In this section we show that how our approach solves four requirements defined in the
section 1.

— Fully distributed: In our scheme, there is no previous assumption about role of
any node.

— Bootstrapping from scratch: In our scheme, every node has empty data storage at
initial stage. There is no initial trust relationship.

— Minimized transitivity of trust: There is no transitivity of trust. Every node eval-
uates trustworthiness of certifier by itself with just referencing other nodes’ experi-
ence. There is no certificate chain as shown in the example described in the section
3.

— Fast usable: Every node that has obtained a certificate issued can communicate
securely with other nodes that it has never met before. This fact is shown in the
example in the section 3. If every node issues a certificate, it takes just one step of
move for every node to meet some node and get certified. If only small portion of
nodes issues certificate, it takes some steps of move. But it is much small time in
comparison with the time took for every node to meet each other.

5 Conclusion

In this paper, we proposed a new approach for key management in MANET environ-
ment. In our approach, nodes can evaluate the trustworthiness of a certificate issuer base
on its own experience and reputation about the issuer in the network. The authority of
certifying node is given by all participating nodes. Accusation of malicious certifier and
revocation of false certificate are used to maintain security in the network. Our method
does not require any priori trust or any assumption of role of a node. It is fully self
organized trust relationship. Moreover, our method makes it possible for every node to
communicate securely from the initial deployment stage of a network.

Our scheme can be applied to the other security problems of the MANET in addi-
tion to key management. With our scheme, any type of certifierj?s trustworthiness can
be evaluated. For example, self-organized attribute certifier is useful for privilege man-
agement and other security operations. For about cooperation enforcement problem, the
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certification of cooperation degree can be used as a kind of incentive for cooperation.
We think that our scheme can be a comprehensive solution for many security prob-
lems in MANET. We are now conducting a research for extending our scheme to the
integrated solution.
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Abstract. The number of bypassing attacks related to malformed packets contin-
ues to increase, along with more intelligent and skillful hacking techniques. Most
existing intrusion detection systems (IDSs) are unable to detect IP fragmenta-
tion attacks, as they could not support a packet reassembly method. Therefore, to
cope with these problems, the current paper® proposes a network-based IDS that
can efficiently detect attacks based on malformed packets. The system is mainly
composed of 5 components : Information collecting agent(IA), Simple analyzing
agent(SA), Fragment analyzing agnet(FA), Collaboration agent(CA) and Deci-
sion engine(DE). The IA extracts the important features from network packets.
The SA analyzes simple attacks using packet header information, while the FA
detects IP fragmentation attacks using an efficient algorithm. The CA collects not
only collecting information at the SA and the FA but also collecting other strange
information related to the malformed packet. The DE judges whether or not an
intrusion has occurred on the basis of information gathered from target systems
by CAs.
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Abstract. In general, the interactions between proteins are fundamental to a
broad area of biological functions. In this paper, we try to predict protein-protein
interactions in parallel on a 17-node PC-cluster using a parallel incremental sup-
port vector machine. According to the experiments, we obtained an average speed-
up of 4 with an 5-node cluster with 86.6% accuracy, 89.8 % precision and 84.5 %
recall. To our knowledge, it is the first try to predict protein-protein interactions
in parallel.

1 Introduction

A major post-genomic scientific pursuit is to describe the functions performed by the
proteins encoded by the genome. One strategy is to first identify the protein-protein in-
teractions in a proteome, then determine pathways and overall structure relating to these
interactions, and finally to statistically infer functional roles of individual proteins. Al-
though huge amount of genomic data are at hand, current experimental protein interac-
tion assays must overcome technical problems to scale-up for high-throughput analysis.
In this paper, we try to predict protein-protein interactions in parallel on a 17-node PC-
cluster using a parallel incremental support vector machine (SVM for short) [4].

The interactions between proteins are fundamental to the biological functions such
as regulation of metabolic pathways, DNA replication, protein synthesis, etc [1]. But,
biologists used experimental techniques to study protein interactions such as two-hybrid
screens. And these experimental techniques are labor-intensive and potentially inaccu-
rate. Thus, many bioinformatic approaches has been taken to predict protein interac-
tions.

Among them, Bock and Gough [2] first proposed a method to predict protein inter-
actions from primary structure and associated physicochemical features using SVM. It
is based on the following postulate: knowledge of the amino acid sequence alone might
be sufficient to estimate the propensity for two proteins to interact and effect useful bio-
logical function. The postulate is suggested by the virtual axiom that sequence specifies
conformation [5]. Here, primary structure of a protein is the amino acid sequence of the
protein.

* This work was supported by grant NO. R01-2003-000-10860-0 from the Basic Research Pro-
gram of the Korea Science& Engineering Foundation.
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In this paper, we try to predict protein-protein interactions using only one associated
physicochemical feature among amino acid’s diverse features such as hydrophobicity,
polarity, aroma, charge etc. and we get approximately 94% accuracy, 99% precision,
and 90% recall in average when using hydrophobicity feature, which is better than the
result of Bock and Gough.

And, it still takes much time to train huge biological data using SVM. But, to our
knowledge, there is no try to predict protein-protein interactions in parallel till now. In
this work, we get the following results.

— We do diverse experiments using our sequential method to confirm that our method
is reasonable.

— We try to predict protein-protein interactions in parallel using a parallel incremental
SVM [4] and measure speedup and performances of accuracy, precision and recall
on various configurations.

2 Our sequential method

SVM learning is one of statistical learning theory, it is used many recent bioinformatic
research, and it has the following advantages to process biological data [2]:

— SVM generates a representation of the nonlinear mapping from residue sequence
to protein fold space [7] using relatively few adjustable model parameters.

— SVM provides a principled means to estimate generalization performance via an
analytic upper bound on the generalization error. This means that a confidence level
may be assigned to the prediction and alleviates problems with overfitting inherent
in neural network function approximation [8].

In this paper, we use TinySVM among diverse implementations of SVM and its
web site is http://cl.aist-nara.ac.jp/ taku-ku/software/TinySVM. TinySVM uses many
techniques to make large-scale SVM learning practical and thus, it is good for our ap-
plication with large dimensions of a feature vector of SVM and huge amount of data
sets.

SVM is a supervised learning method. Thus we need both positive and negative ex-
amples to train SVM. We obtained positive examples (that is interacting proteins) from
the Database of Interacting Proteins (DIP for short) and its web site is http://www.dip.doe-
mbi.ucla.edu/. At the time of our experiments, the DIP database has 15117 entries. And
each entry represents a pair of interacting proteins. We make negative examples by
using global shuffling to the pairs not in DIP. Here, interacting mean that two amino
acid chains were experimentally identified to bind to each other. Our system generate a
discrete, binary decision, that is, interaction or no interaction.

Testing sets are not exposed to the system during SVM learning. The database is
robust in the sense that it represents protein interaction data collected from diverse
experiments. There is a negligible probability that the learning system will learn its
own input on a narrow, highly self-similar set of data examples. This enhances the
generalization potential of the trained SVM.
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hydro- |aromatic|small|tiny |aliphatic|polar|posi-|charged|nega-
phobicity tive tive
accuracy| 92.2 86.2 |75.2|74.6| 729 |71.1/69.7| 66.1 |62.6
precision| 97.1 93.6 |86.8|86.2| 84.5 |83.2(80.7| 76.2 |72.3
recall 87.5 777 |59.4|58.5| 56.1 |53.0|51.9| 46.7 [41.2

Fig. 3.1. Comparing 9 features

Now, we will explain how to make a feature vector of SVM. A protein has a various
length of an amino acid sequence and its length is from several hundreds to several
thousands. Thus, the first step is to normalize the length of each amino acid sequence of
a protein. And then, we simply concatenate these two normalized amino acid sequences
of protein pair which is interacting or non-interacting. And finally, we replace each
amino acid in the concatenated sequence with its feature value.

We evaluate the performance of SVM using accuracy, precision, and recall. Their
definitions are as follows.

— Accuracy = (pp+nn) / (pp+np+pn+nn)
— Precision = pp / (pp+pn)
— Recall = pp/ (pp+np),

where p indicates positive, which means there is an interaction, and n indicates negative,
which means there is no interaction. And pp is true positive, pn is false positive, np is
false negative, and nn is true negative because the right side value is a real value and the
left side value is a SVM’s predicted value.

The accuracy is the percentage of correct predictions among all the testing set, the
precision is the percentage of true positive among all the predicted positive, and the
recall is the percentage of true positive among all the real positive testing data. Note
that if accuracy is high, recall is an important factor to be a computational screening
technique that narrow candidate interacting proteins.

3 Experiments using our sequential method

Now, we will show our experimental results using a sequential method. At the first ex-
periment, we use each of 9 features as a feature vector of SVM and compare the results.
9 features are hydrophobic, aromatic, small, tiny, aliphatic, polar, positive, charged, and
negative features. For each features, we do 210 trials. For each try of experiments, we
use 4000 pairs of proteins of yeast in DIP database and these data set are selected ran-
domly.

Fig. 3.1 shows the summary of average performances of 9 features. When hydropho-
bic feature is used, all of accuracy, precision, and reall are best among all the 9 features.
And an aromatic feature shows the second performance. And the next is small feature,
the next is tiny feature and so on. In Fig. 3.1, from small to negative features, recall is
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near or below 50 %. Thus, these are not good criterions to predict protein interactions.
Hydrophobic feature shows near 90 % in all performances of accuracy, precision and
recall. Thus it is a good criterion to predict protein interactions.

Our results agree with the previous demonstration of sequential hydrophobicity pro-
files as sensitive descriptors of local interaction sites in Hopp and Woods paper [1].
Thus, we conclude that our feature vector model of SVM to predict protein interactions
is reasonable.

To confirm that our model is reasonable, we do 180 trials with increasing the number
of training data set of SVM. According to the experiments, as the number of training
data increases, all of performances accuracy, precision, and recall are getting better. This
results also confirm that our feature vector model of SVM to predict protein interactions
is reasonable.

Now, we will show the experimental results comparing kernel models of SVM. For
each kernel, we do 180 trials with increasing the number of training data set. When
using a linear kernel, average accuracy, precision, and recall are 97.78 %, 98.24 %, and
97.02 %, respectively. When using a polynomial kernel, average accuracy, precision,
and recall are 97.70 %, 98.22 %, and 96.88 %, respectively. In both two kernel mod-
els, the results are almost the same. But a polynomial kernel takes much more time.
And other kernel models of SVM such as neural, RBF and ANOVA show much worse
performances and they take much more times than a linear kernel. As a linear kernel
is a subset of a polynomial kernel, this result shows that a linear kernel is enough for
our protein-protein interaction prediction system. And the fact that linear kernel is the
best for our system is very important to parallelize our system. That is explained in the
following section.

4 Ouwur parallel method

Now, we will explain our parallel method to predict protein-protein interaction. Fig. 4.2
is the configuration of our 17-node PC-cluster, which consists of one master node and
16 computing nodes. Each PC has a Pentium III processor and they are connected by
gigabit ethernet. Each PC has 256M byte memory. Note that memory size is a main
constraint to deal with very large dimensions of a feature vector of SVM in our PC-
cluster system.

Our sequential protein-protein prediction system use a feature vector of twenty
thousand dimensions. And, SVM requires memory more than of n?, when n is the num-
ber of dimensions of a feature vector of SVM. Thus, our sequential prediction system
cannot work in our PC-cluster because of the lack of a memory. To solve this problem,
we do experiments using the following two methods and the results are described in the
next section.

— We develop a method to reduce dimensions of a feature vector using our feature
vector’s characteristics.
— We compress each pixel value with high dimensionality and encode it.

To do SVM training in parallel, we mainly refer to Fung and Mangasarian’s Incre-
mental SVM [4] and its parallel implementation [6]. Now, we will explain the main idea
of incremental SVM.
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Number of nodes | 16 computing nodes

1 master nodes

Processor Inter Pentium III coppermine 866Mhz
(32KB L1, 256KB L2 cache)
Main memory 256MB SDRAM

Hard disk 30GB EIDE HDD

Network 3com Gigabit Ethernet switch
100 Base-T Ethernet NIC

oS Redhat Linux

Language MPICH

Physical size W 180cm x D 60cm x H 130cm

Fig. 4.2. The configuration of our 17-node PC-cluster

4.1 Incremental SVM

As depicted in Fig. 4.3(a), we consider the problem of classifying m points in the n
dimensional input space R", represented by the m x n matrix A, according to member-
ship of each point A; in the class A+ or A— as specified by a given m x m diagonal
matrix D with plus ones or minus ones along its diagonal. For this problem, the standard
SVM with a linear kernel is given by the following quadratic program with paramenter
v>0[4]:

1
i ! —w' 4.1
(w,u’y)rrel}_tr’}ﬁwm ve'y + 2w w “4.1)
st. D(Aw —ey) +y > e,

y > 0.
As depicted in Fig. 4.3(a), w is the normal to the bounding planes:
Tw=v+1 4.2)
rw=y-1

that bound most of the sets A+ and A— respectively. The constant y determines
their location relative to the origin. When the two classes are strictly linearly separable,
that is the the error variable y = 0 in (4.1), the plane z'w = 7+ 1 bounds all of the class
A+ points, while the plane z'w = v — 1 bounds all of the class A— points as follows:

Aw>v+1,for Dy =1, 4.3)
Aw <vy—1,for Dy = —1.

Il
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Fig.4.3. A standard and a proximal SVMs
Consequently, the plane

r’'w =1, 4.4)

midway between the bounding planes in (4.2), is a separating plane that separates
A+ from A— completely if y = 0, else only approximately as depicted in Fig. 4.3(a).
The quadratic term in (4.1), which is twice the reciprocal of the square of the 2-norm
distance % between the two bounding planes of (4.2), maximizes this distance, often
called the “margin”. Maximizing the margin enhances the generalization capability of
SVM. If the classes are linearly inseparable, which is the case shown in Fig. 4.3(a), then
the two planes bound the two classes with a “soft margin” (i.e. bound approximately

with some error) determined by the nonnegative error variable y, that is:

Aw+yi >v+1, for Dy =1, 4.5)
Aw—y; <v—1, for Dj = —1.

The 1-norm of the error variable y is minimized parametrically with weight v in
(4.1), resulting in an approximate separating plane as depicted in Fig. 4.3(a). This plane
acts as a linear classifier as follows:

. =1, thenz € A+,
sign(z'w = 7) { =—1,thenz € A— 0
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Fund and Mangasarian [4] make a very simple change in the numerical formulation
of a standard SVM and changes the nature of an optimization problem of a standard
SVM significantly, which is depicted in Fig. 4.3(b) and it is called a proximal SVM.
This change can be applied only to a linear kernel of a standard SVM. Two planes,
which is represented by black lines in Fig. 4.3(b), are not bounding planes anymore.
But, they can be thought of as ‘proximal’ planes, that is, around the planes the points of
each class are clustered, and the two planes are pushed as far apart as possible.

Given m data points in R™ represented by the m x n matrix A and a diagonal matrix
D of + labels denoting the class of each row of A, the linear proximal SVM generates
classifier (4.6) as follows.

- Define E = [A — €] where e is an m X 1 vector of ones. Compute

l:] = (% + E'E)"\E'De @4.7)

for some positive . Typically +y is chosen by means of a tuning set.

— Classify a new z by using (4.6) and the above solution lw] .
v

Then, an incremental SVM can be generated by using a simple procedure to the
proximal SVM. An incremental SVM can process data using a divide-and-conquer ap-
proach and thus it can be implemented in parallel directly. Tveit and Engum [6] imple-
ment it and we use it for our experiments.

5 Experiments using our parallel method

As different values of v in (4.7) in subsection 4.1 can give difference in accuracy in the
classification, we get the following experimental result with various v values. Because
[12] shows that 10 is about the right number of folds to get the best estimate of error, we
do our experiments using a 10-fold Cross-Validation [12]. As shown in Table 1, when v
value is 100, we get the best result, i.e., accuracy is 86.8%, precision is 89.8% and recall
is 84.5%. We use this v value in the following experiments.

Table 2 compares the average performances of a standard SVM and an incremental
SVM. For each trial, we use 4000 protein pairs and we do 10 trials.

According to the experiments, our method using an incremental SVM shows aver-
age performances of 86.6% accuracy, 89.8 % precision, and 84.5 % recall. It is worse
than a standard SVM, which has 95.1% accuracy, 97.9 % precision, and 86.8 % recall.
But, the result of an incremental SVM is not bad because all of the performances of
accuracy, precision, and recall are above 80 %.

Our PC-cluster has 17 nodes but we get experimental results only using 1 node,
3 nodes and 5 nodes, respectively, till now. According to the experiments, all of the
performances of accuracy, precision, and recall are the same regardless of the number
of nodes as proved in the numerical formulation of an incremental SVM [4]. And we
obtained an average speed-up of 2.68 with a 3-node and 4.04 with a 5-node cluster.
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v-value | accuracy precision recall

0.001 76.6 74.0 78.0
0.01 76.6 74.2 78.0
0.1 77.4 74.5 79.0

1 80.2 78.6 81.2

10 82.4 81.3 83.2
100 86.6 89.8 84.5
1000 70.2 97.3 63.1
10000 50.9 100 50.4

Table 1. Testing of v values

incremental SVM | standard SVM
accuracy 86.6 95.1
precision 89.9 97.9
recall 84.5 86.8

Table 2. Comparing a standard and an incremental SVMs

To use all the proteins in a DIP database in our PC-cluster, we develop a method to
reduce dimensions of our feature vector using our feature vector’s characteristics. Then,
this experimental result shows average performances of 74.1% accuracy, 71.9 % preci-
sion, and 75.6 % recall with 10 trials, which is much worse than both of a standard and
an incremental SVMs. This degradation is caused by reduced dimensions of a feature
vector of SVM, because reducing dimensions always loses an information.

6 Conclusion

In this work, we showed how to predict protein-protein interactions in parallel using in-
cremental SVM and showed various experimental results. But, the most difficult thing
in using a supervised learning method such as a SVM to predict protein-protein inter-
actions is to find negative examples of interacting proteins, i.e., non-interacting pro-
tein pairs. If such a database of non-interacting protein pairs are constructed, the better
method to predict protein-protein interactions can be developed.

In the near future, we want to improve our parallel protein-protein interaction pre-
diction system by developing an improved SVM for our system. And, we want to
develop an effective method to reduce large dimensions of a feature vector of SVM.
With experimental validation, further development may produce a robust computational
screening techniques that narrow the range of candidate interacting proteins.
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1 Introduction

Computational fluid dynamics, in its conventional meaning, computes pertinent flow
fields in terms of velocity, density, pressure and temperature by numerically solving the
Navier-Stokes equations in time and space.

At the turn of the 1980s, the Lattice Boltzmann Method (LBM) has been proposed
as an alternative approach to solve fluid dynamics problems [1,2] and due to the re-
finements and the extensions of the last years [3-5], it has been used to successfully
compute a number of nontrivial fluid dynamics problems, from incompressible turbu-
lence to multiphase flow and bubble flow simulations. The main advantages of LBM
with respect to conventional CFD are its simpler mechanism for doing dynamics, its
easy numerical implementation and its intrinsic parallelism.

The most severe limitation of the original LB method is the uniform Cartesian grid
on which the LBM must be constructed, requiring the approximation of a curved solid
boundary by a series of stair steps. This represents a particularly severe limitation for
practical engineering purposes especially when there is a need for high resolutions near
the body or the walls. Among the recent advances in lattice Boltzmann research that
have lead to substantial enhancement of the capabilities of the method to handle com-
plex geometries [3-5], a particularly remarkable option is to use irregular lattices by
changing the solution procedure from the original “stream and collide” to a finite vol-
ume technique [6-8].

In most applications of LB it is necessary to employ large discretization meshes;
thus, it is appropriate to use parallel computing techniques, and this is a major theme of
this paper.

The paper is organized as follows: in section 2 we outline the finite volume formu-
lation of the Lattice-Boltzmann equation, in section 3 we discuss some implementation
issues, with some experimental results presented in 4; then we draw our conclusions
in 6.

2 The Unstructured LB model

LBM takes inspiration from the idea of solving fluid flows through a microscopic ki-
netic approach, trying to mathematically describe movements and interactions of the
small particles that constitute the flow with the assumption that the solute concentra-
tions are sufficiently low not to influence the solvent flow. In this method the collective
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degrees of freedom are discrete one-body distribution functions f(z,v,t), representing
the probability to find a particle at given point z at time ¢ with a velocity c. The key of
the LB method (inherited from its ancestor, the Lattice Gas Cellular Automata) is that
only a very limited set of discrete speeds c; is retained (see fig 2.1).

_ feq

dufite V=L @

The right hand side of eq. 2.1 is called collision function (or operator) and describes
molecular collisions via a single—time relaxation towards local equilibrium, €, on a
typical timescale, 7. For three-dimensional flows there are several cubic lattice models,
such as the 15-bit, the 19-bit and the 27-bit, for velocity space discretization. In this
paper the 19-bit model is used (Q19D3; see fig. 2.1); thus in eq. 2.1 we have ¢ =
1,...19 This local equilibrium is a (local) Maxwellian expanded to second order in the
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Fig.2.1. LB discretizations
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where w; are weighting factors normalized to unit value, u; = u - ¢; and 8 = 1/c2,
cs being the lattice sound speed, defined by the equation ¢2 = > wic, (cs = 1/ V3
in the present work). In the limit of weak departures from local equilibrium, i..e small
Knudsen numbers, it can be shown through a Chapman—Enskog analysis that LBE re-
covers the dynamic behaviour of a fluid with the fluid density, the flow velocity and
pressure given respectively by:

p=>_fi w=> cfilp p=pc (2.3)
i i
Crucial to the LB hydrodynamics is the momentum flux tensor, defined as:

P = Z fiCiCzT

The equilibrium component of this tensor controls advection and pressure terms, while
the non equilibrium part is in charge of describing dissipative effects. In order to pre-
cisely conserve hydrodynamic moments, the set of discrete speeds must be properly
defined.

The approach proposed here to numerically solve the LBE is a finite-volume scheme
of the cell-vertex type based on a space discretization into tetrahedral elements. The
19 discrete populations associated to each node P of the discrete grid represent the
unknowns of the problem. The finite volume over which eq. 2.1 is integrated is defined
by means of the set of K elements, which share P as a common vertex. Since the
discrete grid is unstructured each node is identified by its coordinates and each element
is identified by the connectivity.

The integration of the left hand side of eq. 2.1 over the finite volume k-th portion
W), is approximated as follows:

Wi
/W (Ocfi +€i- Vi) dVy = [fi (Pt + dt) — f; (P,t)] pr Dk (2.4)
k

where a first-order time marching solution has been chosen and &; j, is the flux asso-
ciated to the streaming operator of the i-th particle distribution function through the
edges of W, after the application of the Gauss theorem. The sum £ runs over the vol-
ume obtained by joining the centers of the tetrahedrons with the centers of the triangular
edges.

The molecular collision contributions arise from the integration of the collision term
over each volume Wy, The resulting collisional flux

. _ req
Ei,k :/ (f’l fz )de
Wh T

is computed by calculating the local non-equilibrium distribution function via a linear
interpolation.
Therefore, the finite-volume equation takes the following form:

K

dt
fi (Pt +dt) = f; (P,t) + sz (Pik — Zik) (2.5)
k=0
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where index k = 0 denotes the pivotal point P. The detailed expressions of the streaming
and collision matrices S;;, and C, are easily obtained by straightforward application of
the interpolation rules:

K K
f’i (Pat + dt) = f’i(P7 t) + dtz Szkfz(Pk7t) - % Z Czk[fz(Pk;t) - f;e(PkHt)]
k=0 k=0

(2.6)
The equation 2.6 defines a time-marching explicit scheme to compute the steady-state
particle distribution functions f;, ¢ = 1,...19; note that the basic step can be imple-
mented as a series of matrix-vector products, with a coefficient matrix that is constant
throughout the simulation.

The following sum rules hold:

K K
Zsik =0, Zoik =1, Vi
k=0 k=0

These play an important role in the theoretical analysis of the scheme, as detailed in [7].

3 The Implementation

The finite volume formulation outlined in the previous section uses matrix-vector prod-
ucts to advance the simulation through multiple time steps. The formulation has a nat-
ural consequence, i.e. the matrices involved are large and sparse: to each volume of the
discretization mesh there corresponds a row of the discretized streaming/collision oper-
ators, and there are non zero coefficients (i.e. interactions) only in correspondence with
physically contiguous volumes. Therefore the code can be implemented by making ap-
propriate use of a standard sparse linear algebra package such as PSBLAS [15], which
was originally developed at our university for usage in the context of solution of PDEs
by implicit discretization schemes. The library provides the computational kernels nor-
mally used in the implementation of sparse iterative solvers, including the matrix-vector
product, together with environment handling routines for implementation by means of
message-passing on distributed memory architectures. The parallelization is based on
domain decomposition techniques, in that the discretization space is allocated to the
various parallel processes, while the library handles the data structures necessary to the
underlying communication.
The implementation scheme proceeds along the following lines

1. Read the discretization mesh;
2. Build the streaming and collision matrices S and C';
3. Iterate:
(a) Apply boundary conditions;
(b) Apply streaming and collision operators;
(c) Compute macroscopic quantities by appropriately integrating the population
distributions.
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In the iteration loop most of the communication among processors takes place during
the matrix-vector products implementing the streaming and collision phases; the recov-
ery of macroscopic quantities is done independently for each node of the discretization
mesh, thus no communication is needed.

Note that the structure of the mesh does not vary at all during the simulation; this
means that the sparse matrices are constant, and thus the setup phase is negligible given
that the number of time steps is normally very high.

One of the most critical issues for Lattice Boltzmann techniques is the implementa-
tion of the boundary conditions, since the unknowns are the populations, while bound-
ary conditions in CFD are defined as functions of the macroscopic fluid dynamics vari-
ables (i.e. velocity and pressure) or their derivatives. The following strategies have been
applied for boundary conditions:

— co-volume method [6] for no-slip and free-slip boundary conditions;
— zero-longitudinal pressure or velocity gradients at open boundaries with buffers of
ghost nodes [7, 8].

In the co-volume method boundary nodes are treated as fluid nodes with the only dif-
ference that the fluxes through boundary edges must be computed)

Using the PSBLAS library facilities of [15] we have obtained very rapidly a work-
able parallel version of the application, which correctly reproduces the basic physical
features of the phenomena of interest.

4 Experimental results

We performed a series of experiments on the reference test case shown in Fig. 4.2. The
physical structure under consideration is a square duct with an embedded sphere. The
flow is initially at rest (zero speed) and is impulsively started with a uniform veloc-
ity profile Uy, at inlet. The chosen outflow boundary condition is the zero-longitudinal
velocity gradient with a prescribed pressure P.,. Tests have been carried out success-
fully for Reynolds number varying from 10 to 100. In order to prove the accuracy of
the present Lattice Boltzmann simulation numerical results have been compared with
experimental and numerical literature data.

A significant advantage of ULBE compared to traditional LBE and Navier-Stokes is
that both pressure and friction contributions to the aerodynamic force are locally avail-
able as a linear combination of the particle distribution functions [7, 8]. Upon reaching
steady-state, the drag coefficient Cp, a well known parameter used to characterize the
aerodynamic force, is measured as:

9F,

Op = pUZ A

where A is the projection area of the sphere and F, is the stream wise component of the
aerodynamic force acting on the sphere. The numerical values of the drag coefficient,
reported in Figure 4.3 over the range 10 + 100 of Reynolds numbers, show good agree-
ment with literature data [9-12], both numerical and experimental, since they fit the



S. Filippone, N. Rossi, G. Bella and S. Ubertini

Image: /mnthomeziicola/ULBE_3diToolsmydrovar3d net

Fig.4.2. Reference test case
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same curve. Figure 4.4 shows the pressure coefficient C'p as a function of the angular

coordinate 6
2P — Py)

pUS,

The pressure coefficient trend, which is simply the pressure at all points around the
sphere, has been compared to numerical data found in literature [13, 14].

Cp =

1,2 4 # Literature data

——ULBE 3D

0,8 4

0,4 1

0,0 4

-0,4 -

T ¥ T L) T ¥ T T T T T T T ¥ T ¥ T
-200 -150 -100 -50 0 50 100 150 200
6 (degrees)

Fig. 4.4. Pressure coefficient

The graph in fig 4.2 shows the velocity field in the fluid, as well as the pressure on
the sphere surface. This simulation requires a discretization mesh with 483000 nodes;
this is also the row/column size of the sparse matrices involved in the computations.
The nonzero pattern is quite irregular, since the discretization mesh is unstructured.
The physical results are based on a run of 50000 time steps; in serial computation on
an Intel PIV at 2.6 GHz each iteration takes approximately 3 seconds, and the whole
simulation more than 40 hours; thus the necessity of parallelization to obtain the good
physical results characteristic of the method in a reasonable amount of time.

To estimate the effectiveness of the parallelization we have performed two sets of
test runs on a cluster of AMD Athlon at 1.8 GHz connected with a Gigabit Ethernet
switch, shown in Table 1, on the same geometry shown in 4.5, but with different number
of discretization volumes. The test runs comprised about 300 time steps, and thus are
much shorter and more manageable than a complete simulation; they are nonetheless
representative, since the amount of computational load does not change throughout the
whole run.

Since a complete run would entail about 50000 time steps, we have computed the
speedups in Table 1 without accounting for the initialization phase; this is justified, since
the value we report in the table is of the order of 100s, and therefore would be negligible
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Fig. 4.5. Reference test case: enlarged view of the mesh

Medium (157 K nodes)

initialization 110s

Processors|Total time|Speedup|Avg. time per step|Speedup
1 724 1.00 240 1.00
2 389 1.86 1.28 1.88
3 283 2.56 0.93 2.58
4 218 3.32 0.71 3.38
Large (305 K nodes)
initialization: 145s
Processors|Total time|Speedup|Avg. time per step|Speedup
1 1508 1.00 5.01 1.00
2 751 2.01 2.48 2.02
3 616 245 2.03 2.47
4 460 3.28 1.50 3.34

Table 1. AMD Athlon, Gigabit Ethernet cluster




On the Parallelization of the Lattice-Boltzmann Method 41

in a full run. The speedup on the overall run is somewhat less than the speedup per time-
step; this is due to the post-processing routines that have not been parallelized yet. Since
they are invoked once every several time steps their impact is not too large.

We are currently testing the code on a cluster of Intel Xeon running at 3 GHz with
a Myrinet switch, and the preliminary results are encouraging, even though there still is
room for improvement.

Fig. 4.6. Natural numbering Fig.4.7. Band reduction numbering

One critical issue in achieving good parallel performance was the use of an ap-
propriate numbering strategy; indeed, the default numbering scheme used by the grid
generator, gave rise to the matrix sparsity pattern shown in Fig. 4.6; this pattern causes
a tremendous performance penalty if used directly, because:

1. At the serial level it enables little or no cache reuse;
2. At the parallel level a straightforward partition of the matrix will result in too much
data communication among processors.

Therefore we applied a standard renumbering tool to reduce the bandwidth, obtaining
the pattern in Fig. 4.7; future work will include testing alternative numbering strategies.

5 Conclusions and future work

We have presented an implementation of the Lattice Boltzmann method for unstructured
grids based on the formulation of [7, 8]; besides the nice numerical properties, such as
the numerical viscosity effects being within second order of accuracy in space, the
method readily ends itself to an implementation in terms of standard linear algebra
kernel.

It is therefore possible to apply a parallelization strategy based on standard soft-
ware [15], and this has been verified to be working.

Future developments include both tuning for optimal performance and application
to more difficult physical problems, where the computational requirements of the serial
version of the method are prohibitive.
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Abstract. This paper presents a system that extracts small, interconnected sub-
ontologies, from larger base ontologies, using parallel and distributed techniques.
The system has been designed for use in a grid environment as a grid resource
that also uses a High Performance Computer as a grid resource for the main
processing. The design presented aids the sharing of information between parties
without the need for a central ontology location or local processing plant.

1 Introduction

The next era of the Internet is the Semantic Web[14]. In this era, the Web will be struc-
tured so as to enable companies to share their data resources with other trusted compa-
nies through a fast and popular medium. The Semantic Web is gradually becoming a
popular way to share information and resources over the Internet through Web Services.
In order to harness this emerging technology more and more Web Services are being
developed in an attempt to decentralize systems and share computing ability[11]. Not
only software but also hardware resources are being integrated into the sharing domain.

The Semantic Grid is basically the same as the Semantic Web, except for the fact
that the Semantic Grid shares resources in accordance to certain architectures and stan-
dard grid infrastructures. The aim of the Semantic Grid is to standardize the use of these
structures so that anyone around the world can create their own programs to interact
with remote Grid resources easily and with no misinterpretation.

It is becoming more common for a community of entities, that have powerful com-
puting resources or rare computing facilities, to open their valuable resources to the
community so that many people can benefit. The idea of Grid Computing is to share
computer resources in a highly controlled area. Each Grid location has one or more re-
sources that it shares and maintains locally among the wider Grid community[5]. This
allows the less-advantaged users, often located in remote locations, to have the same
opportunity as the more advantaged users.

Ontologies have emerged as the current most ideal way to store and allow access
to large repositories[10, 12] of complex data and relationships. These ontologies have
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the potential to grow very large, in excess of millions of concepts and tens of millions
of complex relationships. Ontologies are an appropriate structure to enable efficient
storage and retrieval of information, however, the problems lie in the sheer amount of
processing required to manipulate them.

Sub-ontologies are valid independent ontologies, known as materialized ontologies,
that are specifically extracted from very large base ontologies to meet certain require-
ments. Throughout 2002 and 2003, the authors of this paper implemented a system to
extract sub-ontologies based on a number of Optimization Schemes (OS’s). This system
is referred to as Materialized OntologyView Extractor and abbreviated to MOVE[2, 3,
16, 17]. MOVE has addressed the problem, of long processing times, by implementing
a distributed architecture for the extraction / optimization of a sub-ontology from a large
scale, base ontology.

This paper will show how MOVE has been re-designed to be integrated into the Grid
as Grid resource. The main aim is to show how such a system can be better utilized by
the public if it were available as a Grid resource. Chapter 2 provides some related work
about MOVE and current grid infrastructures and applications. Chapter 3 outlines the
architecture of the Grid resource that MOVE will be built into. Chapter 4 is an outline
of the intended implementation of the Grid resource, including a simulated evaluation
of the whole system. Chapter 5 concludes the paper, highlights the main findings and
discusses the future of ontology processing in the Grid environment.

2 Related Work

MOVE enables the user to load in any large base-ontology, input their specific criteria
for extraction, and produce an optimized view of the base-ontology[17]. The optimized
ontology (sub-ontology) contains only the information that the user selected in their
criteria and additional required interconnecting pieces of information. It was envisaged
[15] that the processing required to extract these sub-ontologies would be very large,
thus the system was designed for a High Performance Computer (HPC).

A number of Optimization Schemes (OS’s) have been implemented[2, 3], and many
others designed[17, 16, 15], in MOVE to help extract semantically correct information.
The two optimizations schemes that have been implemented are:

— (RCOS) The Requirement Consistency OS checks for the consistency of the user
specified requirements for the target ontology in the form of the labeling. RCOS
itself is a combination of four sub-schemes that check for various forms of consis-
tency.

— (SCOS) The Semantic Completeness OS considers the completeness of the con-
cepts, i.e. if one concept is defined in terms of an another concept, the latter cannot
be omitted from the sub-ontology without loss of semantic meaning of the for-
mer concept. Currently, SCOS consists of three sub-schemes that check for various
forms of semantic completeness.

Other optimization schemes that have been designed include:

— (WFOS) Well Formedness Optimization Scheme contains the proper rules to pre-
vent the user labeling being inconsistent. In some cases it might be possible that
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the user requirements may contain certain statements that inevitably lead to a so-
lution that is not a valid ontology. WFOS stops this from happening. WFOS is a
combination of five sub-schemes.

— (TSOS) Applying the Total Simplicity OS to an existing solution (along with it’s
requirements specification) will result in the smallest possible solution that is still
a valid ontology. TSOS achieves this by working not only on the solution, but also
it’s requirements specification. TSOS consists of three sub-schemes.

MOVE is designed specifically to allow other people to integrate their own OS as well
as use any of the currently implemented OS’s.

The results from the project [3] show that for large ontologies many processors were
required to finish the task in a reasonable amount of time (a few minutes). The reliance
of this system on multiple processors exceeded our expectation, and because of this,
our project would be out of reach for the average user, with a single processor machine.

Clustered computing, at it’s most basic level, involves two or more computers serv-
ing as a single resource[4]. Grid computing is more than this. The resources in the
Grid are independently controlled by each local resource provider. These resources are
pooled together over some sort of network and can be used by any authenticated user or
application on that network. With the emergence of the Grid and Grid Technology[8], it
was decided that it would be wise to redesign the MOVE system for the Grid as a Grid
resource so that many more users could one day make use of it.

Transferring this highly parallelized system onto the Grid as a Grid resource, will
allow people from remote locations to extract sub-ontologies from large base ontolo-
gies without requiring their own HPC facility. Users could use the HPC to perform the
intensive ontology processing tasks from their location just as if they had their own
HPC.

3 System Architecture

The general architecture of the Grid consists of four basic layers[7], the application
layer, the middleware layer, the resources layer and the network layer. This architecture
is shown in Figure 3.1. The application layer where the user or the initiator runs an pro-
gram that may require a grid resource. The middleware layer handle the requests from
the application programs and determines what resources are required, where to get the
resources, and connects the resource to the application. The middleware layer also han-
dles things like security, resource brokering, scheduling and other resource management
tasks.

The third layer is where MOVE is located, in the Resources layer. These resources
may belong on different platforms, provide different functions, facilities and services.
The network layer consists of wires and cables, switches, hubs and routers that connect
all of the other layers together.

The implementation of MOVE as a grid resource would not be possible without a
pre-defined grid architecture. The best and most common existing grid system is the
globus toolkit[13]. It follows the conventions of proper grid architecture by following
the Open Grid Services Architecture (OGSA)[6] and the Open Grid Services Infrastruc-
ture (OGSI)[9]. It is these standards and conventions that design of the system for the
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grid adheres to. These standards define the methods to help set up the communication
between the system and available resources (like a HPC). The application program-
ming interface and software development kits as defined in [5] have been crucial for the
successful design of the interface to the project in the Grid environment. However, the
Globus Toolkit currently requires a third party implementation of of a resource broker
to search and discover appropriate resources to use.

Open Grid Services Infrastructure (OGSI)[9] is part of the Open Grid Services Ar-
chitecture (OGSA)[6] that has developed through the Global Grid Forum (GGF)[1] to
define Grid Services. Grid Services are Web services that conform to a specific set of
conventions. OGSI specifies a set of “service primitives’ that establish a nucleus of be-
havior common to all Grid/Web services that can be leveraged by system-level services.

Shown in Figure 3.2 is the MOVE system deployed as a resource. MOVE is con-
tained within the OGSI nucleus. This ensures that the Grid resource adhere’s to the
proper standards. The OGSA handles the overall interface between MOVE and the other
applications and resources. Using the OGSA as a means of interaction allows other 3rd
party programs to use the resource in a standard way and for MOVE to employ a Grid
resource of it’s own (The HPC).

One of the major architectural changes that MOVE has to undertake is the addition
of a ’Resource Determination” module. This module is shown in Figure 3.2 as reference
point 3. The purpose of this module is to determine what resources are required by
MOVE to complete the ontology processing as efficient as possible. In the past we just
told the HPC how many processors it should use to complete the processing.

The module’s main purpose is interface between MOVE and the Resource Bro-
ker. The module determines the optimum number of processors it should use and the
minimum specifications of the processors and provides the Resource Broker with this
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Fig. 3.1. Basic Grid Architecture
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information (point 4 in Figure 3.2). Based on this information the resource broker finds
suitable resources (a HPC), transfers the work to be done and sends the data back to
move (point 5 in Figure 3.2).

MOVE has been designed using the OGSA. The OGSA acts as the main inter-
face standard between resources, resource brokers and applications. The OGSI is the
blueprint that the Grid Resource is constructed on. The *Resource Determination” mod-
ule interacts between the resource Broker and MOVE using proper OGSA methods to
transport the information. MOVE is then able to collect the base-ontology from the ap-
plication, processes the ontology as best it knows how and returns the solution to the
initiating application.

4 Experimental Simulation

MOVE is designed to be implemented on a server that can be accessed through the grid
network and have access to other grid resources. MOVE has been designed to use a
HPC as a grid resource just as it would if the program were run at the HPC facility. It
performs the processing tasks using a number of available processors at the HPC facility
and returns the results back to MOVE.

A user’s local ontology manipulating program requires a sub-ontology to enable
faster searching and more focused information. The program then searches *The Grid’
for a suitable resource that matches it’s requirements through a resource broker. Once
MOVE is discovered, the program sends the ontology to MOVE which analyzes the
ontology to be extracted. MOVE gathers the required information from the user and
proceeds to start the Optimization Schemes.

OGSA 7

GRID RESOURCE

To and From

To and From
a Resource
Broker

Resource
Determination

Module | 0 G SI

Fig. 3.2. MOVE Resource Architecture
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At this point MOVE realizes that the task is too big for the local resources it houses
and therefore sets out to discover the required number of processors. Once a suitable
HPC has been discovered, MOVE uses the processors as if it were it’s own. MOVE
completes the task and presents the extracted sub-ontology to the remote program. Ide-
ally all of this happens without the user realizing the the bulk of the processing has
happened at a distant location. The user may only notice a slight lag as the program
itself if MOVE has to search and discover appropriate grid resources to use.

Figure 4.3 shows the experimental results when running MOVE using the Semantic
Completeness Optimization Scheme (SCOS). It shows the results from the local Cluster
Environment (HPC) as well as the simulated results from MOVE as implemented as a
Grid Resource in Grid Environment using the HPC as a Grid Resource.

The graphs in Figure 4.3 indicate that there is some loss between the original local
cluster system and the new Grid system. The lower of the two plots of each pair of the
same sized ontology, shows the time taken when the system was deployed locally on the
HPC cluster. The higher plot of each of the pairs shows the expected time taken for the
Grid implementation of the same system. The system is deployed on a server and uses
the same HPC but as a Grid resource instead of a local cluster. The only difference, in
the results, is the time taken to transfer the information across the medium between the
server and the HPC. The time lag is consistent, depending on the size of the ontology
that needs to be transferred. As the ontology grows larger, so too does the gap between
the local version of the system and the Grid version.

The graphs indicates a trade-off that may need to be considered between allowing
access to more users or timely results. The systems administrator may choose to restrict
access to the MOVE resource to only those users with a high bandwidth connection
during peak times. They may also like to restrict the size of the ontology during peak
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times so that the resource can be more efficiently shared between users. These are all
scheduling issues. By providing this evaluation, future schedulers may be able to be
more effectively tuned to suit the specifications of the advertised resource and the re-
quirements of the user.

5 Conclusion

This paper presented the design and simulation of a system that uses parallel and dis-
tributed techniques on the Grid as a Grid resource. The system has been transformed
into a Grid resource that uses a HPC as a Grid resource to perform the required tasks.
The preliminary results shown in this paper indicate that the MOVE system can be im-
plemented on the Grid as a resource in a Grid environment and prove successful. This
means that under-resourced users can perform the most computationally extensive tasks
on large ontologies. If the remote user hadn’t have had access to MOVE as a Grid re-
source then they would not have been able to perform the extensive ontology processing
required.

More projects like this are needed to make full use of the Grid Environment that
the world is moving toward. As the Grid environment expands and evolves more and
more resources will be developed for use on the Grid. There are endless ways that the
grid can help the general community. In the future MOVE will be extended to include
other tasks like merging large ontologies, synchronizing them and perform other general
maintenance operations. The need for ontology processing in a parallel environment
will be essential to allow all processing of large ontologies. The Grid will bring the
computing power to the masses, as few people have the resources to perform these
tasks on their own.
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Abstract. As an enhancement mechanism for the end-to-end congestion control,
Active Queue Management (AQM) can keep smaller queuing delay and higher
throughput by proposing fully dropping the packets at the intermediate nodes.
comparing with RED algorithm, although PI controller for AQM designed by
Hollot improves the stability, it seems other methods to design of robust con-
trollers may lead to better results. Morover, the transient performance of PI con-
troller is not perfect, such as the regulating time is so long. In order to overcome
to this drawback, in this paper, a novel adaptive fuzzy logic based controller is
designed for Active Queue Management (AQM) in TCP/AQM networks. From
control point of view, it is rational to regard AQM as a typical regulation sys-
tem. Recently many AQM algorithms have been proposed to address performance
degradations of end-to-end congestion control. However, these AQM algorithms
show weaknesses to detect and control congestion under dynamically changing
network situations. A simulation study over a wide range of IP traffic conditions
shows the effectiveness of the proposed controller in terms of the queue length
dynamics, the packet loss rates, and the link utilization.

1 Introduction

A typical information exchange over the Internet is guaranteed by several intermediate
nodes (routers) which direct packets originated by the sender to the receiver over links
with limited bandwidths. Each router has a finite buffer for storing packets exceeding
the total capacity of the link. When the packet net flow exceeds the buffer size the link
becomes congested causing a so-called packet drop to occur. Namely, the packet is lost
and the sender required to transmit it again.

TCP congestion control mechanism, while necessary and powerful, are not suffi-
cient to provide good service in all circumstances, specially with the rapid growth in
size and the strong requirements to Quality of Service (QoS) support, because there
is a limit to how much control can be accomplished at end system. It is needed to
implement some measures in the intermediate nodes to complement the end system
congestion avoidance mechanisms. Active Queue Management (AQM), as one class
of packet dropping/marking mechanism in the router queue, has been recently pro-
posed to support the end-to-end congestion control in the Internet [1-5]. It has been
a very active research area in the Internet community. The goals of AQM are (1) re-
duce the average length of queue in routers and thereby decrease the end-to-end delay
experimented by packets, and (2) ensure the network resources to be used efficiently
by reducing the packet loss that occurs when queues overflow. AQM highlights the
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tradeoff between delay and throughput. By keeping the average queue size small, AQM
will have the ability to provide greater capacity to accommodate nature-occurring burst
without dropping packets, at the same time, reduce the delays seen by flow, this is very
particularly important for real-time interactive applications. RED [6,7] was originally
proposed to achieve fairness among sources with different burst attributes and to control
queue length, which just meets the requirements of AQM. However, many subsequent
studies verified that RED is unstable and too sensitive to parameter configuration, and
tuning of RED has been proved to be a difficult job [8-10].

Fuzzy logic controllers have been developed and applied to nonlinear system for
the last two decades [11]. The most attractive feature of fuzzy logic control is that the
expert knowledge can be easily incorporated into the control laws [12].

The intuition and heuristic design is not always scientific and reasonable under any
conditions. Of course, since Internet is a rather complex huge system, it is very difficult
to have a full-scale and systematic comprehension, but importance has been consider-
ably noted. The mathematical modeling of the Internet is the first step to have an in-
depth understanding, and the algorithms designed based on the rational model should
be more reliable than one original from intuition. In some of the references, the non-
linear dynamic model for TCP flow control has been utilized and some controllers like
PI and Adaptive Virtual Queue Algorithm have been designed for that [13-17]. In the
research, we will apply a fuzzy controller to design the AQM system for congestion
avoidance. The simulation results show the superior performance of the proposed con-
troller in comparison with classic PI controller.

2 TCP flow control model

In [13], a nonlinear dynamic model for TCP flow control has been developed based on
fluid-flow theory. This model can be stated as follows

dw(t) 1 W(EHW(—R(®) dg(t) _ N(t)
dt  R(t) 2R(D) plt—Rt); = WW(t) —C@) .1

The definition of the parameters can be found in [2,13].

We believe that the AQM controller designed with the simplified and inaccurate lin-
ear constant model should not be optimal, because the actual network is very change-
ful; the state parameters are hardly kept at a constant value for a long time. Moreover,
the equations (1) only take consideration into the fast retransmission and fast recov-
ery, but ignore the timeout mechanism caused by lacking of enough duplicated ACK,
which is very usual in burst and short-lived services. In addition to, there are many non-
respective UDP flows besides TCP connections in networks; they are also not included
in equations (1). These mismatches in model will have negative impact on the perfor-
mance of controller designed with the approach depending with the accurate model. For
the changeable network, the robust control should be an appropriate choice to design
controller for AQM. The above nonlinear and time-varying system was approximated as
a linear constant system by small-signal linearization about an operating point [2,5,13]
(Fig. 1), where
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Fig. 2.1. Block diagram of AQM control system

To describe the system in state space form, suppose that 1 = e;zy = %, so the
plant depicted in Fig. 1 is described by a second order system as
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3 Design of fuzzy controller

Fuzzy logic control (FLC) has been demonstrated to solve some practical problems that
have been beyond the reach of conventional control techniques. Fuzzy logic control is a
knowledge-based control that uses fuzzy set theory, fuzzy reasoning and fuzzy logic for
knowledge representation and inference [11,12]. The apparent success of FLC can be
attributed to its ability to incorporate expert information and generate control surfaces
whose shape can be individually manipulated for different regions of the state space
with virtually no effects on neighboring regions.

In this paper, a fuzzy system consisting of a fuzzifier, a knowledge base (rule base),
a fuzzy inference engine and defuzzifier will be considered. The knowledge base of the
fuzzy system is a collection of fuzzy IF-THEN rules. Fuzzy logic control is ideal for
the AQM problem, since there is no complete mathematical model. However, human
experience and experimental results can be used in the control system, design.

The controller has two inputs, the error (e) and its derivative (é¢) and the control
input (p) . Five triangular membership functions are defined for speed error (Fig. 2),
namely, Negative Large (NL), Negative Small (NS), Zero, Positive Small (PS), and
Positive Large (PL). Similarly three triangular membership functions are defined for
derivative of the error (Fig. 3) and there are as follows, Negative Small (NS), Zero,
and Positive Small (PS). Also five triangular membership functions are defined for the
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control input (Fig. 4) and there are Zero, Small, Medium, Large and Very Large. The
complete fuzzy rules are shown in Fig. 5. The first rule is outlined below

Rule 1: If (e) is PL AND (%) is Zero, THEN (p) is Large.

The rest of the rules are derived similarly. The label names used here give an intu-
itive sense of how the rules apply. Through experimentation and tuning of the member-
ship functions it was determined that the number of rules was sufficient to encompass all
realistic combinations of inputs and outputs. This fuzzy logic controller is implemented
using product inference and a center-average defuzzifier.

Zero PS PL

A B C D E Error

Fig. 3.2. Error membership function

Negative Small Positive Small

C Derivative of Error

Fig. 3.3. Membership function for the derivative of Error

Medium Large

K
Control Input

Fig. 3.4. Control input membership function
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Ie € Ns | zero | ps
NL

ZERO ZERO ZERO

NS | SMALL | SMALL | SMALL

ZERO| ZERO | ZERO | ZERO

PS SMALL | LARGE |MEDIUM

VERY
PL | MEDIUM L ARGE LARGE

Fig. 3.5. Fuzzy rules

4 Simulation results

The network topology used for simulation, is depicted in Fig. 6 [2,5]. The only bottle-
neck link lies between node A and node B. the buffer size of node A is 200 packets,
and default size of the packet is 350 bytes. All sources are classed into three groups.
The first one includes N; greedy sustained FTP application sources, the second one
is composed of Ny burst HTTP connections, each connection has 10 sessions, and the
number of pages per session is 3. The thirds one has N3 UDP sources, which follow
the exponential service model, the idle and burst time are 10000msec and 1000msec,
respectively, and the sending rate during "on" duration is 40kbps. We introduced short-
lived HTTP flows and non-responsive UDP services into the router in order to generate
a more realistic scenario, because it is very important for a perfect AQM scheme to
achieve full bandwidth utilization in the presence of noise and disturbance introduced
by these flows. The links between node A and all sources have the same capacity and
propagation delay pair (L1, 71) . The pair (Lo, 72) and (L3, 73) define the parameter of
links AB and BC, respectively.

Buffer size = 200 packets

Fig. 4.6. The simulation network topology

In the first study, we will use the most general network configuration to testify
whether the proposed Adaptive Fuzzy Logic Controller (FLC) can reach the goals of
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AQM, and freely control the queue length to stabilize at the arbitrary expected value.
Therefore, given that (L1,7) = (10Mbps,15ms), (L2, 2) = (15Mbps,15ms),
(L3, 73) = (45Mbps, 15ms), Ny = 270, and Ny = N3 = 0. Let the expected queue
length equal to 75 packets. The instantaneous queue length using the proposed FLC is
depicted in Fig. 7. After a very short regulating process, the queue settles down its sta-
ble operating point. RED algorithm is unable to accurately control the queue length to
the desired value [7,9]. The queue length varies with network loads. The load is heavier
the queue length is longer. Attempting to control queue length through decreasing the
interval between high and law thresholds, then it is likely to lead queue oscillation. To
investigate the performance of the proposed FLC, we will compare the results with that
of PI controller designed in [13]. The queue evaluation using PI controller is shown in
Fig. 8. As it can be seen FLC acts much better that PI one.
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Finally, we evaluate the integrated performance of the the proposed controller using
one relatively real scenario, i.e., the number of active flows is changeable, which has
270 FTP flows, 400 HTTP connections and 30 UDP flows. Figs. 9 and 10 show the
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evaluation of queue controlled by FLC and PI controllers, respectively. It is clear that the
integrated performance of FLC controller, namely transient and steady state responses is
superior to that of PI controller. The FLC controller is always keeping the queue length
at the reference value, even if the network loads abruptly change, but PI controller
has the inferior adaptability. In other words, the former is more powerful, robust and
adaptive than the later one, which is in the favor of achievement to the objectives of the
AQM policy.
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Fig.4.9. Queue evaluation (FLC) for (FTP+UDP+HTTP) queue
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Fig. 4.10. Queue evaluation (PI) for (FTP+UDP+HTTP) queue

5 Conclusion

In this paper, an adaptive fuzzy logic based controller was applied to TCP/AQM net-
works for the objective of queue management and congestion avoidance. For this pur-
pose, a linearized model of the TCP flow was considered. We took a complete compari-
son between performance of the proposed FLC and classical PI controller under various
scenarios. The conclusion was that the integrated performance of FLC was superior to
that of PI one.
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Abstract. The two elliptic curve operations are the Add and Double, which are
computed by field arithmetic operations, such as additions, modular multiplica-
tions, modular squarings and divisions. The addition operation for field elements
is trivial and squaring is so much faster than regular multiplication that it can be
ignored in rough comparisons of the timings. The important contributors to the
run time are divisions. Thus we propose efficient division architecture by recur-
sive AB? multiplication algorithm based on Cellular Automata (CA) in Elliptic
curve cryptosystems (ECC) over GF'(2"). The proposed architectures can be
used in the effectual hardware design of coprocessor for ECC since they have
high regularity and a reduced latency.

1 Introduction

Elliptic Curve Cryptosystem was introduced by Victor Miller and Neal Koblitz in 1985.
ECC proposed as an alternative to established public-key cryptosystem such as RSA
and ElGamal, have recently gained a lot attention in industry and academia [1]Miller86.
The main reason for attractiveness of ECC is the fact that there is no sub-exponential
algorithm known to solve the discrete logarithm problem on a properly chosen elliptic
curve.

The two elliptic curve operations that are most relevant to the complexity of multi-
plying a group element by a constant are the Add and Double operations, which are
composed of field arithmetic operations such as additions, modular multiplications,
modular squarings and divisions. The mostly cost field arithmetic operation is divi-
sion [3]. Moreover the division can be computed by applying AB? multiplication re-
peatedly. Fast computation of a division operation can generally be classified into two
approaches: a faster or smaller architecture design or noble algorithm generation, and
this paper focused on the former approach.

Finite field GF(2™) arithmetic operations have recently been applied in a variety
of fields, including cryptography and error-correcting codes [4]. A number of modern
public key cryptography systems and schemes, for example, Diffie-Hellman key pre-
distribution, the Elgamal cryptosystem, and ECC, require the operations of division,
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exponentiation, and inversion, which are normally implemented using AB or AB? mul-
tiplier [5]. Wei designed a cellular power-sum circuit with a latency of n(n — 1) critical
path of n(Tanp +Tsxor) over GF(2™) [12]. Wang proposed parallel-in parallel-out
AB? + C architecture [13].

Cellular automata, which is introduced by Von Neumann in [6] has been accepted as
a good computational model for the simulation of complex physical systems. It has been
used for various applications, such as parallel processing computations and number
theory etc. Zhang in [7] proposed architecture with programmable cellular automata
and a cell complexity of 3SWITCH + 2X OR, while Choudhury in [8] designed an
LSB multiplier based on a CA with a cell complexity of 2AND + 2XOR.

This paper proposes architectures for modular AB? multiplications and divisions
based on CA architecture. We focused on the architectures in ECC, which uses re-
stricted irreducible polynomials, specially, trinomials. The division structure has a time
complexity of n(n — 1)(TAND + TXOR) and hardware complexity of n(AND +
XOR+ MUX + 3REGISTER) + 2XOR. Our architectures offer a fair area/time
performance trade-off.

The remainder of this paper is organized as follows. The conceptional background,
including finite fields, ECC, and CA are described in section 2. Section 3 presents the
proposed division architecture by recursive AB? multiplication architecture based on
CA, In section 4, we presents discussion and performance analysis. Finally, section 5
gives concluding remarks.

2 Preliminaries

In this section, we present mathematical background in the finite field and ECC, and
the characteristics and properties of CA.

2.1 Finite Fields

A finite field or Galois Field(GF'), which is a set of finite elements, can be defined by
commutative law, associative law, and distributive law and facilitates addition, subtrac-
tion, multiplication, and division. Numbers of architectures have already been devel-
oped to construct low complexity bit-serial and bit-parallel multiplications using var-
ious irreducible polynomials to reduce the complexity of the modular multiplication.
Since a polynomial basis operation does not require a basis conversion, it can be readily
matched to any input or output system. Also, due to its regularity and simplicity, the
ability to design and expand into high-order finite fields with polynomial basis is easier
to realize than with other basis operations [9].

The finite field GF(2™) can be viewed as a vector space of dimension n over
GF(2™). That is, there exists a set of n elements {1,,...,a""2,a"" !} in GF(2")
such that each A € GF(2") can be written uniquely in the form A = Y A;af, where
A; € {0,1}. This section provides one of the most common based of GF(2™) over
GF(2) [9], polynomial bases. Let f(z) = z" + X! f;z?, where f; € 0,1, for
1 =0,1,...,n — 1, be an irreducible polynomial of degree m over GF'(2). For each
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irreducible polynomial, there exists a polynomial basis representation. In such a rep-
resentation, each element of GF'(2™) corresponds to a binary polynomial of degree
less than n. This is, for A € GF(2") there exist n numbers A; € {0,1} such that
A = An,la"’1 —|— An,2a”*2 + . —|— A]_Oé + Ao.

The field element A € GF(2™) is usually denoted by the bit string (A, 1...A;
Ag) of length n. The following operations are defined on the elements of GF(2")
when using a polynomial representation with irreducible polynomial f(z). Assume
that A = (An—l .. Ale) and B = (Bn—l .. .BlBo). 1) Addition: A + B = C =
(Cn—1...C1Cy), where C; = (A; + B;)mod 2. That is, addition corresponds to bit-
wise exclusive-or. 2) Multiplication: A- B = C' = (Cp_1 ... C1C)), where C(z) = ¥
", Cizt is the remainder of the division of the polynomial( X7 ' A;2%) (£ '~ B;z?)
by f(x). In many applications, such as cryptography and digital communication ap-
plications, the polynomial basis is still the most popularly employed basis [9]. In the
following, we confine our attention to the computations that use the polynomial basis.

2.2 Elliptic Curve Cryptosystems

In ECC, computing kP is the most important operation, where k is an integer and P
is a point on the elliptic curve. This operation can be computed using the addition of
two points k times. ECC can be done with at least two types of arithmetic, each of
which gives different definitions of multiplication [10]. The types of arithmetic are
1) Zp arithmetic(modular arithmetic with a large prime p as the modulus) 2) GF(2™)
arithmetic, which can be done with shifts and exclusive-ors. This can be thought of as
modular arithmetic of polynomials with coefficients mod 2.

We focused on GF'(2™) arithmetic operation. Let GF'(2™) be a finite field of char-
acteristic. Then the set of all solution to the equation E : y? + zy = 2° + a2z? + as,
where a2, a6 € GF(2"), ag # 0, together with special point called the point at infinity
O is a non-supersingular curve over GF(2™). Let Py = (z1,y1) and P> = (22,9y2)
be points in E(GF(2™))) given in affine coordinates [12]. Assume Py, P, # O, and
P, # —P,. The sum P3 = (z3,y3) = P1 + P, is computed as follows: If P, # P,
(called point addition) Then A = (y1+y2)/(z1+%2), 23 = N2+ A+21+T2+a2,y3 =
(x1 + x3)A + 23 + y1. If Py = P, (called point doubling) Then A = y1 /z; + 21,23 =
A+ A+ ag,y3 = (21 + 23)A + T3 + Y1

>From these formulas, we can determine the number of field operations required for
each kind of elliptic curve operation. The addition algorithm for field elements is trivial:
the two blocks of bits are simply combined with the bitwise zor operation. Because
our field has characteristic 2, subtraction is the same as addition. The squaring can be
substituted by multiplication. Multiplication of field elements uses the same shift-and-
add algorithm as is used for multiplication of integers, except that the ” add” is replaced
with ”zor”. The important contributors to the rum time are divisions.

2.3 Cellular Automata

CA is a collection of simple cells arranged in a regular fashion. CAs can be character-
ized based on four properties: the cellular geometry, neighborhood specification, num-
ber of states per cell, and rule to compute to successor state. The next state of a CA
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depends on the current state and rules [6]. CA can also be classified as linear or non-
linear. If the neighborhood is only dependent on an X O R operation, the CA is linear,
whereas if it is dependent on another operation, the CA is non-linear. If the neighbor-
hood is only dependent on an EXOR or EX N O R operation, then the CA can also be
referred to as an additive CA.

Among additive CAs, CA of which dependency on neighbors is shown only in terms
of XOR is called a non-complemented CA, and the corresponding rule is called the
non-complemented rule. If the dependency on neighbors is shown only in terms of
XNOR, the CA is called a complemented CA, and the corresponding rule is called
the complemented rule. A hybrid CA can be subject to either the complemented or non-
complemented rule. Also, there are the 1-dimensional, 2-dimensional, and 3-dimensional
CAs according to the structure of arrangement of cells [6].

Furthermore, if the same rule applies to all the cells in a CA, the CA is called a
uniform or regular CA, whereas if different rules apply to different cells, it is called a
hybrid CA. And in the structure of CAs, the boundary conditions should be taken into
consideration, where the boundary conditions incur since there exist no left neighbor
of the leftmost cell and right neighbor of the rightmost cell among the cells composing
CA. According to the conditions, they are divided into three types.

1) Null Boundary CA (NBCA): CA of which left neighbor of the leftmost cell and
right neighbor of the rightmost cell are regarded to be *0’.

2) Periodic Boundary CA (PBCA): CA of which leftmost cell and rightmost cell are
regarded to be adjacent to each other, i.e., the left neighbor of the leftmost cell becomes
the rightmost cell, and the right neighbor of the rightmost cell becomes the leftmost
cell.

3) Intermediate Boundary CA (IBCA): The left neighbor of the leftmost cell is
regarded to be the second right neighbor, and right neighbor of the rightmost cell is
regarded to be the second left neighbor.

The next state transition for the ¢th cell can be represented as a function of the
present states. If next state determine by 2 bits shifting to the left, then it can be ex-
pressed as Q;(t +1) = @Q;_2(t),(0 < i < n — 1), where Q(t + 1) denotes the next
state for cell Q(t). The proposed structure carries out efficient modular reduction based
on using irreducible trinomials.

3 Proposed Architecture based on PBCA

In this section, we propose efficient AB?2 multiplication architecture and division archi-
tecture by applying recursive AB? multiplication architecture.

3.1 Proposed A B2 Multiplication Architecture

This subsection presents efficient A B? multiplication algorithm using irreducible trino-
mials based on PBCA by the MSB-first method on GF'(2"). Let us suppose that A(x)
and B(z) are the elements on GF'(2"). Then the two polynomials A(z), B(x) are as
follows:

A(J)) = An_libn_l + ... +A1.CL'1 +A0, B(J}) = Bn_libn_l + ... +Bl$1 +B0 (31)
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By equation (1), we have
B(z)> = B, 12" 2+ B,, 22" * + ...+ Bi2* + B,. (3.2)

A(z)B(z)?modP(x) can be induced from equations (1) and (2) as shown in equa-
tion(3).

{...[A(z)Bp_12*mod P(x) + A(zx)B,_s]z*modP(z) +
..+ A(2) B }2*mod P(z) + A(z)Bo (3.3)

A definite algorithm for implementing Equation (3) in the above is as follows:

[Algorithm 1] AB? Multiplication Algorithm using general irreducible
polynomials

Input : A(z), B(z), P(zx)
Output : A(z)B(z)? mod P(z)

Stepl : M(z) =0
Step2 : fori=n—1to0
Step3 :  M(z) = M(z) - 22 mod P(z) + A(z)B;

The M (z) - £? mod P(x) operation and A(z)B;(0 < i < n — 1)operation can be
performed simultaneously in Step 3 of Algorithm 1, where the basic computations for
implementing the above are as follows:

C1 : 2-bit left shift: M (z) - 2*
C?2 : Modular reduction: M (z) - 2 mod P(x)
C3:A(x)B;(0<i<mn-—1)

First, in order to perform C'1, which requires a two-bit left-shift to implement z2 a
cellular automata with an initial value of 0 and n registers is used. The next state of each
register is defined as the state of the second right neighbor in cellular automata with n
registers. Here, the leftmost register and rightmost register of the cellular automata are
adjacent.

In order to perform C'2, which is the modular reduction, two modular reduction op-
erations are required due to the two-bit left-shift resulting from C'1. Since the resultant
value obtained from the cellular automata has been shifted to the left by two bits as a
result of C'1, two modular reductions are implemented. The following equations yield
C2.Let M(z)-z mod P(z) be M} _z" '+ M z" 2+, .+ Mjz*F+.. .+ Mz’ +
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Fig. 3.1. Periodic boundary cellular automata structure reflecting C'1.

M|z' + M{ ,where P(z) = 2™ + z¥ + 1. Then following equation (4) holds.

(Mp_y APp_1) & My_2)z™ ' + (Mp—1 A Py_3) @ My_3)z" >
+ooit (Mp_y APY) ® My_1)z® + ... 4+ (Mp_1 A Py) @ My)2?
+((Mp_1 AP) @ Mg)z' + (My_1 ARy) ®0)  (3.4)

In equation (4), P;(0 < ¢ < n — 1) has zero values but P, and Py have always ’1’
since we only consider trinomial as irreducible polynomial introduced in section 2.2.
The equation is rewritten as follows.

Mn—2 . .CL'n_l + Mn—3 . .CL'n_Q + ...+ (Mn—l D Mk_l).CL'k
+oo+ My 2+ My -2t + M, (3.5)

Equation (5) needs one more computation shown in equation (4) and (5) for shift
operation and modular reduction. The resultant equation by operating C1 and C2 is
shown as follows.

M(z) - 2*modP(z) = M, _3z™ ' + M,,_42" >
oo (Mp_1 @ My_1)z* + (My_o & My_p)z*
o+ My-22+ My -zt + M, (3.6)

Fig. 2 shows periodic boundary cellular automata structure considering modular
reduction.

('3 can be easily obtained using n AN D gates since each element of A(z) should
be multiplied by the element B,,_;_1 in the 4(0 < i < n — 1)th clock in order to
perform C3. A method is presented for obtaining AB? based on Algorithm 1 using
described C'1,C2, and C3. The proposed AB? multiplication architecture is shown in
Fig.3 as C'1 and C2 are performed simultaneously. The proposed algorithm based on
irreducible trinomials, T'(z), is shown as follows.

To perform our scheme based on Algorithm 2, cellular automata shown in Fig.2 is
initialized as zero values.

The proposed AB? can be divided into two parts. The upper part performs A(z)B; (0 <
i < n—1) and the lower part executes 2bit-circularly-left-shift and modular reductions.
It is possible to perform AB? multiplication in n clock cycles using nAND gates,
(n + 2) XOR gates and only n-bit register.
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Fig. 3.2. Periodic boundary cellular automata structure reflecting C'2.

[Algorithm 2] Proposed AB? Multiplication Algorithm using trinomial for ECC

Input : A(z), B(x),T(x)
Output : A(z)B(x)? mod T (x)

Stepl : M(z) =0

Step2 : fori=n—1to0

Step 3 : M(z) = M,_3x™ 1 + M, 4272
+oit (My 1 ® My_1)x*tt +(M,, 2 ® My,_5)x*
+...+ Mox? + M,, 13' + M, 2+A(x)B;

(%>
(&

ByB,...B,,B,, % ﬁ%
Fig.2
Cellular Automata reflecting C1 and C2

Fig. 3.3. Architecture of AB? multiplication using irreducible trinomials.
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3.2 Proposed inversion/division architecture

Finite field division operation in GF'(2") can be performed using a multiplication and
a inversion, that is, A/B = A - B~!, where the A and B are the elements of GF(2").
Here, the multiplicative inverse of the field elements B can be obtained by recursive
squarings and multiplications, since the field element B can be expressed as

B™! =B»~2 = (B(B(B---B(B(B)?)?---)%)%)? (3.7)
Division also can be easily induced by equation (7).
D=A-B™' = A(B(B(B---B(B(B)*)?---)%?)? (3.8)

Here, AB? operations can be used as an efficient method. The equation can be
computed as [9]:

[Algorithm 3] A/ B Division Algorithm

Input : A(z), B(z), P(z)
Output : D(z) = A(z)/B(z)

Step 1 : D(z) = B(z)

Step2 : fori=n—2to1l
Step3 :  D(z) = B(z) - D(x)?
Step4 : D(z) = A(z) - D(x)?

The results is D = A - B~! and when A = 1, the algorithm realizes the inverse
operation B~!. In this case, AB? operation can be used to compute the operations in
step3 and 4. Each initial value is as follows: Cellular automata: all zeros, B register :
B(CL') = B, _1...ByB1 By, Shift register : B(ZL') =B, 1...ByB1 By

After AB? computation by Fig.3, the computed values transfer to Shift register.
B~ is computed after mentioned process n—2 times. After the whole previous process,
system chooses A(z) instead of B(z) in upper registers by Muxes for final resultant
values. It is possible to perform A/B division in n(n — 1) clock cycles using nAN D
gates, (n + 2) XOR gates, nMuxes and three n-bit registers.

4 DISCUSSION AND ANALYSIS

As usually, parallel fashion architectures need much more hardware equipments than
serial fashion architectures, and latency is reverse. However the proposed architecture
has better complexities than serial or parallel fashion architectures on the fields of the
both sides, area and time. Our I/O format, the multiplicand input parallel while the
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Fig. 3.4. division architecture using irreducible trinomial.

multiplier input serial fashion, differs from typical ways. Thus there are advantages
compared to typical architectures.

1) Faster implementation: Bit-serial architectures, for small silicon area, usually
takes much more time to perform the operations, and it cannot reduce both time and area
complexity though irreducible trinomials are used because of the computation nature.

2) Smaller silicon area: Bit-parallel architectures, such as systolic architectures, usu-
ally demand wide silicon area though they are faster. Our architecture is not only much
smaller but also faster as much as parallel fashion architectures.

Another advantage is that our architectures can be expanded for other public cryp-
tosystems using general irreducible polynomials, but existing systolic architectures in-
cluding Wang’s and Wei’s can be hardly reduced their complexities though they use
the restricted irreducible polynomials for ECC, because the binary value of irreducible
polynomial in systolic array should be computed with other inputted values whenever
it passes through every register. Thus though some of the binary values in irreducible
polynomial have zero values, the architecture should input zeros.

S CONCLUSION

This paper has presented a division architecture based on a modular AB? multiplier us-
ing irreducible trinomials, which are restricted in ECC. Our scheme has been designed
by characteristics of irreducible trinomials and periodic boundary CA. The proposed
architecture has been minimized the both time complexity and area complexity such
that it has only time complexity of n(n — 1)(Tanp+Txor) and area complexity of
n(AND+XOR+MUX +3REG.)+2XOR. Therefore, They have shown outstand-
ing advantages in both area and time compared to typical structures. Our architecture
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has a regularity and modularity. Accordingly, it can be used as a efficient basic arith-
metic architecture in ECC.
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Abstract. To debug explicitly shared-memory programs with nested parallelism
effectively, it is important to detect efficiently the first data races to occur in such
programs because they incur non-deterministic executions and then may make
other affected races hidden or appeared. The previous on-the-fly techniques used
to detect the first races in such kind of programs are inefficient, as the number
of the accesses stored for each shared variable during the execution depends on
the maximum parallelism of the program. This paper presents a novel on-the-
fly technique to detect the first races efficiently, in which a small constant is the
number of accesses stored for each shared variable during the execution.

1 Introduction

The data race [10] is an access error which can arise in an execution of explicitly
shared-memory program [1, 11] in which the parallel threads use shared variables and
include at least one write access without appropriate synchronization. Since such the
races result in unintended non-deterministic executions of programs, it is important
to detect the races for the effective debugging of such programs, especially to detect
efficiently the first races [2,4, 10] to occur as they are unaffected by other races and
may lead other races to appeared or hidden.

Among the previous on-the-fly detection techniques [2,5, 12, 14] to detect the first
races, the most practical one [12] for programs with nested parallelism employs a two-
pass monitoring algorithm. The first pass examines the logical concurrency between
each current access to a shared variable and the previous conflicting accesses main-
tained in a shared data structure for the shared variable in order to collect a subset of
candidate accesses [4—0, 12] for being involved in a first race. The second pass also
examines the logical concurrency between each current access and the conflicting can-
didate accesses already collected in the first pass in order to supplement the set of can-
didate accesses if they are concurrent with each other, and then reports the set as a
representation of the detected first races in the end of the pass. This technique is how-
ever inefficient with regard to the execution time and memory space, as the number of
accesses stored for each shared variable to discriminate the set of candidate accesses
depends on the maximum parallelism of the program.

* This work is supported in part by Ministry of Information and Communication, South Korea.
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This paper presents a novel two-pass monitoring algorithm for detecting the first
races to occur in programs with nested parallelism. In its first pass, the number of ac-
cesses stored is kept constant based on examining the happened-before relation [7] and
the left-of relation [8] between every two accesses to the shared variable in order to
collect a constant number of candidate accesses for being involved in first races. In the
second pass, the candidates collected in the first pass are examined also based on the
happened-before relation and the left-of relation with each current conflicting access in
order to complete the set of candidate accesses. This technique is still more efficient
with regard to the execution time and memory space, because a small constant is the
number of accesses stored for each shared variable during the execution.

After describing the background to this work in the next section, we present our
technique in Section 3 which include subsections to introduce the constant number of
candidate accesses collected in the first pass and the two-pass monitoring algorithm.
Section 4 analyzes the efficiency of the technique in terms of its time and space com-
plexities, and compares it with the previous technique. The final section derives some
conclusions and future work.

2 Background

We consider OpenMP programs [1, 11] as a representative example of explicitly shared-
memory programs with nested parallelism. In an execution of OpenMP program, more
than one thread can be forked to share the work based on a ‘PARALLEL DO’ directive,
and joined based on the corresponding ‘END PARALLEL DO’ directive. The nesting
level of such parallel construct is equal to one plus the number of enclosing outer con-
struct. Figure 2.1 shows an OpenMP Fortran program where three parallel loops are
specified with corresponding pairs of directives. The variable X is declared as a shared
variable by specifying ‘SHARED (X) * and the three variables {I, J1, J2} are declared
as private variables of each thread by specifying ‘PRIVATE (I,J1,J2) .

The concurrency relation among threads in an execution can be represented by a
directed acyclic graph called Partial Order Execution Graph (POEG) [3] as shown in
Figure 2.2. In a POEG, a vertex indicates a fork or join operation, and an arc starting
from a vertex represents a forked thread. For indicating a read or write access executed
in a thread, we usually put a small filled circle on the thread which is accompanied with
a letter r or w respectively and a number indicating the order in which those accesses
are observed.

Concurrency determination is not dependent on the number or relative speeds of
processors executing the program. Because the graph captures the happened-before re-
lationship [7], it represents a partial order over the set of events executed by the program
and may be denoted as Ordered(e;, e;). An event e; happened before another event e
if there exists a path from e; to e; in the POEG; and e; is concurrent with e; if neither
one happened before the other. For example, consider the accesses in Figure 2.2, where
r0 happened before w7 because there exists a path from 70 to w7, and 70 is concurrent
with w11, because there is no path between them. The maximum parallelism of a POEG
is the maximum number of mutually-concurrent events in the graph.
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CSOMP PARALLEL DO SHARED (X)
C$OMP PRIVATE (I, J1,J2)
DO I =1, 2
... = X {r0, r8}
IF (I.EQ.2) THEN
C$SOMP PARALLEL DO
DO J1 =1, 2
. =X {rl, r2}
... =X {r3, r4}
CS$SOMP END PARALLEL DO
END IF
... =X {r5, r9}
IF (I.EQ.2) THEN
C$OMP PARALLEL DO
DO J2 =1, 2
IF ... THEN ... {ro6}
IF ... THEN X = {wl0}
X = ... {w7, wl3}
CS$OMP END PARALLEL DO
END IF
X = ... {wll, wl4d}
IF (I.EQ.1l) THEN {r12}

CSOMP

END PARALLEL DO

Fig.2.1. An OpenMP Program

Two accesses to a shared variable are conflicting if at least one of them is a write.
If two accesses {a;,a;} are conflicting and concurrent with each other then the two
accesses are involved in a race denoted a;-a;. An access a; is affected by another access
a;, if a; happened before a; and a; is involved in a race. A race a;-a; is unaffected, if
neither a; nor a; are affected by any other accesses. The race is partially affected, if only
one of a; and a; is affected by another access. A tangle is a set of partially affected races
such that if a;-a; is a race in the tangle then exactly one of a; or a; is affected by ay,
such that ax-a; is also in the same tangle. A tangled race is a partially affected race that
is in a tangle. A first race is either an unaffected race or a tangled race.

There are twenty-seven races in the POEG shown in Figure 2.2; all of the accesses
in the POEG are involved in races. Among them, only three races {r0-wll, w7-r8,
r8-w10} are first races which are tangled races. Eliminating the three tangled races
may make the other twenty-four affected races disappear. The term tangled race was
introduced by Netzer and Miller [9] describing the situation when no single race from a
special set of races is unaffected by the others. Note that there can never be exactly one
tangled race in an execution. They also introduce a tighter notion of first race called non-
artifact race which uses the event-control dependences to define how accesses affect
each other.

The previous on-the-fly techniques to detect the first races in programs with nested
parallelism can be classified into three classes with respect to the number of re-executions
required for monitoring the debugged program: Race Frontier [2] with an indefinite
number of re-executions, RecPlay [14] with at least three re-executions, and another
one [12] with at most two re-executions. The most practical technique [12] employs a
two-pass monitoring algorithm. Its first pass examines the logical concurrency between
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Fig. 2.2. A Partial Order Execution Graph (POEG)

each current access to a shared variable and the previous conflicting accesses main-
tained in a shared data structure called access history for the shared variable in order
to collect a subset of candidate accesses [4-6, 12] for being involved in a first race. Its
second pass also examines the logical concurrency between each current access and the
conflicting candidate accesses already collected in the first pass in order to supplement
the set of candidate accesses if they are concurrent with each other, and then reports the
set as a representation of the detected first races in the end of the pass. This technique is
however inefficient with regard to the execution time and memory space, as the number
of accesses stored for each shared variable to discriminate the set of candidate accesses
depends on the maximum parallelism of the program.

3 The Monitoring Algorithms

We present a novel two-pass monitoring algorithm for detecting the first races to occur
in programs with nested parallelism based on the notion of frontier candidates which
are a small subset of candidate accesses for being involved in first races and determined
using happened-before [7] and left-of [8] relations of any pair of two accesses. The
first pass collects the frontier candidates; the second pass completes the set of candidate
accesses for being involved in first races including the frontier candidates collected in
the first pass.

3.1 The Frontier Candidates

Consider that a fork event ey happened before two mutually-concurrent accesses {e;,
e;} which are executed in two different threads preceded by their ancestor threads
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forked by e; with the index 4 and j (¢ < j) respectively. In this case, we say e; is
left of e; and denote the relation as Leftof (e;, e;). Given two accesses {e;, e;} of the
same access type, if there does not exist any pair of two accesses {ey, ex} such that
Leftof (en, e;) A Leftof (e, ey) is satisfied, then we say that {e;, e; } are executed out-
side. Otherwise, we say that e; is more inside than ey, or e; is more inside than ey,.
For instance, the two accesses {r2, r8} in Figure 2.2 are outside, because there does
not exist any two accesses {7, r, } which satisfies Leftof (ry, r8) A Leftof(r2,r,). On
the other hand, an access r1 is more inside than the two accesses, because it satisfies
Leftof (r8,r1) A Leftof (r1,r2).

In this work, an access history AHx for a shared variable X is composed of two
subsets of most recent accesses: AHx[R] and AHx[W]. AHx[R] stores two read
accesses which were executed outside: AH x[Ry] for the leftmost read, and AH x[REg)]
for the rightmost read. AH x[W] stores only one write access. Thus, the total number
of entries in an access history is always three.

We say that an access is a frontier access, if it is executed outside at that time and
involved in a race. For example, 78 shown in Figure 2.2 is a frontier access, because it is
outside at that time and involved in a race w7-r8. A frontier access can be a candidate
access for being involved in first races. A read or write access is a read (or write)
candidate, if there does not exist any accesses that happened before the access. A write
access is a read-write candidate or r-write candidate, if there does not exist any other
write access but a read access that happened before the access. A read or write candidate
is effective by itself, yet an r-write candidate is only effective when there is no write
candidate in the execution. If there exists an access involved in a first race, it must be
an effective candidate access. Figure 2.2 shows two read candidates {r0, 8}, no write
candidate, and three r-write candidates {w7, w10, w11}.

A candidate history CHx for a shared variable X is composed of two subsets
of the effective frontier candidates: CHx[R] and CHx [W]. The number of frontier
candidates is therefore at most four, which is composed of two frontiers for each one of
CHx|[R] and CHx[W]. CHx|[R)] stores two read frontier candidates: CHx[Ry] for
the leftmost and C Hx [RRg] at the rightmost. Like CH x[R], C H x [W] also stores two
write frontier candidates: C H x [W] for the leftmost and C H x [Wg] for the rightmost.
A candidate set C'Sx of a shared variables X is the set of all the effective candidates in
the corresponding execution instance of monitored program. C'Sx is composed of two
subsets of effective candidates: C'Sx [R] and C'Sx[W]. Note that these two notions, the
candidate history and the candidate set, do not discriminate the r-write candidate from
the write candidate, because the two candidate types of write accesses are not effective
together in an execution instance.

3.2 The First-Pass Protocol

The first monitoring pass keeps a constant number of accesses to be stored in an ac-
cess history based on examining the happened-before relation and the left-of relation
between every pair of two accesses to the shared variable in order to collect a constant
number of frontier candidates for being involved in first races. Figure 3.3 shows two
protocol procedures for the two types of accesses in the first monitoring pass: check-
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0 checkread_1st(X, current) 0 checkwrite_1st(X, current)
1 if = Ordered(AH x [W], current) then 1 forall cin AHx do
2 racing_current := true; 2 if - Ordered(c, current) then
3 if = Leftof(AHx[R1], current) then 3 racing_current := true;
4 AHx[RL] := current; 4 AHx[W] := current;
5 if = Leftof(current, AHx[Rg]) then 5 if = racing_current then
6 AHx[Rg] := current; 6 return;
7 if = racing_current then 7 if CHx[WL] =0 or
8 return; 8 Leftof(current, CHx[W]) then
9 ifCHx[RL] =0 or 9 CHx[W_.] := current,
10  Leftof(current, CHx[RL]) then 10 if CHx[Wg] = 0 or
11 CHx[RL] := current; 11 Leftof(C Hx [WR], current) then
12 if CHx[Rg] =0 or 12 CHx|WRg] := current;
13 Leftof(CHx[RRg], current) then 13 add current to CSx[Backup);
14 CHx[RRg] := current; 14 halt;
15 end checkread_1st 15 end checkwrite_1st

Fig. 3.3. The First-Pass Protocol

read_1st( ) and checkwrite_1st( ), where current represents the current access to a
shared variable X .

In checkread_1st( ), line 1-2 determines if the current is involved in a race by
checking the happened before relation with one write access stored previously in AH x [W].
Line 3-6 checks the left-of relation between the current and every read stored in AH x [R]
in order to maintain AH x [R] to store the only outside accesses. If the current was not
involved in a race by line 1, this procedure returns to exit in line 7-8, as the current is
not a frontier. Otherwise, it checks in line 9-14 the left-of relations between the current
and the previous frontier candidates stored in C'H x [R] to determine if it becomes a new
frontier candidate to replace the previous access there.

In checkwrite_1st( ), line 1-3 determines if the current is involved in a race by
checking the happened-before relations with three previous accesses stored in AH x.
In line 4, the current is stored into AH x [W] unconditionally, because a future access
that is involved in a race with the access stored previously in AH x[W] must be also
involved in another race with the current. If the current was not involved in a race by
line 1-3, this procedure returns to exit in line 5-6 as the current is not guaranteed to be
involved into a first race. Otherwise, it checks in line 7-12 the left-of relations between
the current and the previous candidates stored in CH x [W] to determine if it becomes
a new frontier candidate to replace the previous access there. And, the racing current is
stored into a part of the candidate set C'Sx [Backup] to be reported optionally, because
it becomes an effective r-write candidate if C'Sx [W] becomes empty in the second pass
in which the thread is halted for efficiency immediately after any effective candidate is
determined. Finally, this current thread is also halted to eliminate unnecessary monitor-
ing time thereafter, because all accesses which are preceded by a racing write must not
be a candidate.
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Table 1. The Final States of Our Technique for Figure 2.2

‘ ‘The First Pass|The Second Pass

AHx[R] r6, r9 -
AHx[W] wll -
CHx|[R] r8, 18 r0,78
CHx[W] w10, wll w10, wll
CSx[R] - r0,r8
CSx[W] - -
CSx[Backup]| wl0,wll -

Table 1 shows an example of the final state which is resulted by applying these
two procedures of the first-pass monitoring protocol to the execution instance shown in
Figure 2.2.

3.3 The Second-Pass Protocol

In the second pass, the frontier candidates collected in the first pass are examined also
based on the happened-before relation and the left-of relation with each current con-
flicting access in order to complete the set of candidate accesses. Figure 3.4 shows
two protocol procedures for the two types of accesses in the second monitoring pass:
checkread_2nd( ) and checkwrite_2nd( ).

In checkread_2nd( ), line 1-3 determines if the current is involved in a race by
checking the happened-before relation with the two frontier candidates of CH x [W]
collected in the first pass. If the current was not involved in a race by being checked
in line 1-3, this procedure returns to exit in line 4-5 because this case implies that
CHx[W] is empty and then the current is not a frontier. Otherwise, it checks in line
6-11 the left-of relations between the current and the previous frontier candidates stored
in CHx[R)] to determine if it becomes a new frontier candidate to replace the previous
there. And, the racing current is added into C'Sx[R] to be reported, because it is an
effective read candidate. Finally, this current thread is halted to eliminate unnecessary
monitoring time thereafter, because an effective r-write candidate is the only candidate
that can be preceded by a racing read candidate and might have been already reported
in CSx [Backup] in checkwrite_1st().

In checkwrite_2nd( ), line 1-3 determines if the current is involved in a race by
checking the happened-before relations with all of the four frontier candidates stored
in CHx. And then, the remaining part of the procedure is similar to that in check-
read_2nd().

Table 1 shows an example of the final states which are resulted by applying these
procedures of the two-pass monitoring protocols shown in Figure 3.3-3.4 to the execu-
tion instance shown in Figure 2.2.
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0 checkread_2nd(X, current) 0 checkwrite_2nd(X, current)
1 forall cin CHx[W] do 1 forall cin CHx do
2 if = Ordered(c, current) then 2 if - Ordered(c, current) then
3 racing_current := true; 3 racing_current := true;
4 if = racing_current then 4 if = racing_current then
5 return; 5 return;
6 if CHx[RL] =0 or 6 if CHx[Wr] =0or
7 Leftof(current, CHx[RL]) then 7 Leftof(current, CHx[WL]) then
8 CHx[RL] := current; 8 CHx[W¢] := current;
9 ifCHx[RR]Z@OI‘ 9 ifCHx[WR]Z(Z)OI‘
10 Leftof(C Hx[RRr], current) then 10 Leftof(C Hx [Wr], current) then
11 CHx[RR] := current; 11 CHx[WR] := current;
12 add current to CSx|[R]; 12 add current to CSx[W];
13 halt; 13 halt;
14 end checkread_2nd 14 end checkwrite_2nd

Fig. 3.4. The Second-Pass Protocol

4 Analysis

This two-pass monitoring technique stores ar most seven entries of access information
for each shared variable into the two kinds of monitoring histories: three accesses for
access history and four accesses for candidate history. This makes the efficiency of this
technique depend on the worst-case complexities of two factors: (1) the memory space
required for each entry of the monitoring histories, and (2) the time required for com-
paring an access with another accesses to determine the happened-before relation and
the left-of relation. Since these two factors are dependent on the labeling schemes like
NR-Labeling [13] which generate constant-sized access information, the complexities
of this technique are constant for both the space required for each monitoring history
and the number of event comparisons for each access to a shared variable.

Let V be the number of shared variables, N be the nesting depth, and 7" be the max-
imum parallelism of the monitored parallel program. The worst-case complexities of
the technique includes therefore O(V') space for seven constant-sized entries of mon-
itoring histories except the space to generate access information which is O(NT') by
NR-Labeling for all of the simultaneously active threads each of which has O(N); and
O(log, N) time by NR-Labeling on every access for comparing with at most seven pre-
vious accesses in monitoring histories except the time to generate access information
which is O(IN) by NR-Labeling at every fork or join operation. On the other hand, the
worst-case complexities of the most practical previous technique [12] includes O(V T
space for the monitoring histories with constant-sized entries except the space to gen-
erate access information which is O(INT') by NR-Labeling; and O(T log, N) time by
NR-Labeling on every access for comparing with the previous accesses in monitor-
ing histories except the time to generate access information which is O(N) by NR-
Labeling, as the number of the accesses stored for each shared variable during the exe-
cution depends on the maximum parallelism of the program.
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Table 2. The Final States of the Previous Technique [12] for Figure 2.2

‘ ‘The First Pass|The Second Pass
AHx[R] r6, r8 -
AHx[W] |wT,w10,wll -

CSx|[R] r8 r0,78
CSx[W] | w10,wll -
CSx[RW] - w7, w10, wll

For example, Table 1 and 2 show the final states resulted by applying to Figure 2.2
the previous technique [12] and our technique, respectively. Note that Table 2 uses C'S x
to share the usages of both CHx and C'Sx in Table 1. After the first pass, Table 1 re-
ports two candidate accesses optionally in C'Sx[Backup] using the two monitoring
histories which are full in its seven entries without regard to the maximum parallelism
of the graph, but Table 2 reports three candidate accesses in C'Sx using the two mon-
itoring histories in which the number of write accesses in AH x [W] is the maximum
parallelism of the graph. After the second pass, Table 1 reports additional two candi-
date accesses in C'Sx using the two monitoring histories which are full only in its four
entries of candidate history without regard to the maximum parallelism of the graph,
but Table 2 reports additional two candidate accesses in C'Sx shared for the candidate
history in which the number of write accesses is the maximum parallelism of the graph.

5 Conclusions

The previous on-the-fly techniques used to detect the first races in the programs with
nested parallelism are inefficient, as the number of the accesses stored in monitoring
histories for each shared variable during the execution depends on the maximum par-
allelism of the program. This paper presents a novel two-pass monitoring algorithm
for detecting the first races to occur in such kind of programs. In its first pass, the
number of accesses stored in monitoring histories is kept constant based on examining
the happened-before relation and the left-of relation between every two accesses to the
shared variable in order to collect a constant number of frontier candidates for being in-
volved in first races. In the second pass, the frontier candidates collected in the first pass
are examined also based on the happened-before relation and the left-of relation with
each current conflicting access in order to complete the set of candidate accesses. This
technique is still more efficient with regard to the execution time and memory space,
because a small constant is the number of accesses stored in monitoring histories for
each shared variable during the execution. We have been extending our technique for
a broader class of programs with inter-thread coordination, and developing a visualiza-
tion scheme that is easy for programmers to debug programs in accordance with the
power of this technique.
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Abstract. This paper presents a new architecture for inversion and division based
on a Cellular Automata over GF(2™). The Proposed architecture uses the charac-
teristics of AB? operation in finite field. The architecture proposed in this paper
is more efficiently in terms of the space and time.

Introduction

In this paper, we propose the new architecture for inversion and division over GF(2™).
In finite field, the division can be computed using the multiplication and the inversion
of the multiplication since A(z)/B(x) is equal to A(z)B(x)~!. For an element over
finite fields, the methods that compute the inversion for multiplication are being way
using logical function [1], Euclid’s algorithm [2] or a lot of multiplication’s operation
[3]. In this paper we use the AB? architecture[4] to design the inversion and division
architecture.

2

Inversion and Division

2.1 Inversion

The inversion of the multiplication is a special case of the exponentiation since B(z)~

1

is equal to B(z)?>™~? in finite field. The B(z)>™~2 can be represented as B(z)2™2=(B(x)?)(
B(@)**)...(B(z)*™).

Because the inversion of the multiplication is the case that the exponentiation is

equal to (2m-2), where (2m-2) is represented by m-tuple vector [1 1 1 1 ... 0](eo=0,
e;i=1(1 <i < m — 1)). So, B(x)?™~2 can be represented as follows:

B(z)*™? = (...((B(x)*~)?B(z)°~=2)*...B(x)"*)*B(z)*°
)0 (B(x)e1... (B(x)em=2 (B(z)em1 )2 )2...)?
(2)°(B(x)...(B(z) (B(x) )* )*....)’
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= (B(z)...(B(z) (B(z) > )2...)* (1)

In the equation (1), the regularity is discovered as follows:

C(z) = B(z)

CW(z) = B(z)C©(z)?
C®(z) = B(z)CW (z)?

C® (x) = B(z)C? (z)?
Cm=2)(z) = B(z)Cm=3) (2)?

Accordingly, C (z) is represented by C) () = B(z)CU~1(2)2(1< i < m-2,
CO(z) = B(z)) and C¥ (z) = C V) (2)%(i = m-1). Therefore, the equation (1)
can be represented by as follows:

C(z) = B(z)CU ) ()2 for 1< i < m-1 (if i = m-1 then B(z)=1) (2)
where C©(z) = B(z) and ™~V (z) = B(z)~ ' if i = m-1.

As in the equation (2), the AB? architecture is used in each step. The algorithm 1
which computes the inversion for multiplication using AB2architecture is as follows:

Algorithm 1 : Inversion(B(z), P(x))
Input : B(z), P(x)

Output : C (z) = B(z) ! mod P(x)
:CO)(z) = B(x)

:fori=1tom-2

: CO(z) = B(x)C ) ()2 mod P(x)
: end for

:C (z) = C™=2)(z)2 mod P(z)

AW =

The algorithm 1 can be implemented such as in Fig. 3.1 using the AB2architecture
which is proposed in [4]. In Fig. 3.1, an AB? architecture is used for operation B(z) "' mod
P(z) over finite fields GF(2™).

2.2 Division

In the 5" phase of algorithm 1, If C'(z) = C(x)?mod P(z) is converted by C'(z) =
A(z)C(z)? mod P(z) , then we can obtain the result of A/B operation. As mentioned
above, because A/B=AB~!. The Fig. 3.2 shows the A/B architecture using this prop-
erty.

3 Results

The MUX is unnecessary and the number of latch is (m? — m — 3) in the proposed
inversion for multiplication and division.
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Fig. 2.1. A structure for performing an B(z)~! mod P(z) operation.
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Fig. 2.2. Structure for performing an A(x)/B(x) mod P(z) operation.

The proposed architecture is much more efficient in terms of the space and time
than that of the systolic array and can be utilized more efficiently in crypto systems.
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Abstract. Many different numerical algorithms contain the solution of linear
equation systems as a subproblem. Because of these aspects, this work aims the
development of solvers to linear systems (for dense and sparse matrices) with
high accuracy on cluster computers using C-XSC library (a C++ class library for
extended scientific computing). We want to combine the high accuracy given by
C-XSC with the computational gain provided by parallelization.

1 Introduction

One of the most frequent tasks in numerical analysis is the solution of linear systems of

equations
Az =50 (1.1)

with an m X n matrix A and a right hand side b € IR™. Many different numerical al-
gorithms contain this task as a subproblem. Because of these aspects, this work aims
the development of solvers with high accuracy for linear systems of equations and the
adaptation of the algorithms implemented to cluster computers using C-XSC library
(see details about this library in [2] and [3]). This library is available for download
in www.math.uni-wuppertal.de/wrswt/index_en.html. Our solvers work with dense and
sparse (in special banded matrices) linear systems of equations. Nowadays, the solver
for dense matrices works with all four basic numerical C-XSC data types: real, interval,
complex, and complex interval and the solver for sparse matrices works with real and
interval data types. All our programs are freeware (C++ templates and the C++ excep-
tion handling are not used in the actual implementations, these characteristics will be
used in future versions of our solvers).

2 The Algorithms

The algorithms implemented in our work were described in [4] and can be applied to
any system of linear equations which can be stored in the floating point system on
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the computer. They will, in general, succeed in finding and enclosing a solution or, if
they do not succeed, will tell the user so. In the latter case, the user will know that the
problem is very ill conditioned or that the matrix A is singular. In the implementation in
C-XSC, there is a chance that if the input data contains large numbers or if the inverse of
A or the solution itself contain large numbers, an overflow may occur, in which case the
algorithms may crash. In practical applications, this has never been observed, however.
This could also be avoided by including the floating point exception handling which
C-XSC offers for IEEE floating point arithmetic [5].

For this work we implemented interval algorithms for solution of linear systems of
equations with dense and sparse matrices. There are numerous methods and algorithms
computing approximations to the solution z in floating-point arithmetic. However, usu-
ally it is not clear how good these approximations are, or if there exists a unique solution
at all. In general, it is not possible to answer these questions with mathematical rigour
if only floating-point approximations are used. These problems become especially dif-
ficult if the matrix A is ill conditioned. We present some algorithms which answer the
questions about existence and accuracy automatically once their execution is completed
successfully. Even very ill conditioned problems can be solved with these algorithms.
Most of the algorithms presented here can be found in [6].

3 Solvers for Dense and Sparse Linear Systems

The C-XSC programs implemented in our solver for dense linear systems were written
for the case of real input data (i.e.A is of type rmatrix and b is of type rvector) and for
the case of the data types interval, complex, and complex interval. The changes made
for the use of these other types are mainly changes of the data type of certain variables
and functions in the program. Our C-XSC program verifies the existence of a solution
and computes an enclosure for each of the following types of problems:

(s) compute an enclosure for the solution of system (1.1) for a square n x n matrix A.

(0) compute an enclosure for the solution of system (1.1) in the over-determined case,
i.e.for an m x n matrix A where m > n.

(u) compute an enclosure for the solution of system (1.1) in the under-determined case,
i.e.for an m x n matrix A where m < n.

(S) compute an enclosure of the inverse A~! of A.

(O) compute an enclosure of the pseudo inverse At of A in the over-determined case,
i.e.for an m x n matrix A where m > n.

(U) compute an enclosure of the pseudo inverse A™ of A in the under-determined case,
i.e.for an m X n matrix A where m < n.

This solver has two modules: the module 1ss_aprx contains the function MINV
which computes an approximate inverse of the input matrix A of type rmatrix using
the Gauss-Jordan algorithm (see i.e. [7]), when A is a square matrix. In the over- or
under-determined case we use the Moore-Penrose pseudo inverse AT of A (if A has
full rank). The second module 1ss contains the functions which solve the dense linear
system. This system may be square and non square (m X n). In the over-determined case
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(m > m) avector x € IR™ is sought whose residuum b — Az has minimal Euclidian
norm whereas in the under-determined case (n < m) a solution z € IR™ is sought
which has minimal norm. Example solved with this solver is showed in Sect. 5.

For the solution of a sparse linear system we present an implementation of an al-
gorithm to compute efficiently componentwise good enclosures. Our implementation
works with point as well as inferval data (data afflicted with tolerances). We assume lin-
ear systems whose coefficient matrix has a banded structure. In this case the well known
general algorithm (using the Krawczyk operator) to solve systems with dense matrices
is not efficient. Since the approximate inverse R of a banded matrix A is in general a
full matrix, a lot of additional storage would be required, especially if the bandwidth
of A is small compared with its dimension. So a special algorithm is used to reduce
the amount of storage and runtime. This method is based on the fact that matrices with
banded structure are closely related to difference equations. For the banded system, we
apply a LU -decomposition without pivoting (to avoid fill in) to the coefficient matrix A
and derive an interval iteration similar to the well known interval iteration used in case
of dense matrices. Here, however, we do not use a full approximate inverse R, but rather
the interval iteration will be performed by solving two systems with banded triangular
matrices L and U. The banded triangular systems are solved with the special method for
difference equations described in [4]. In case of point matrices the method is designed
to give almost sharp enclosures for all components (large or small in modulus) of the
solution vector. A different approach to compute an enclosure for the solution vector of
a large linear systems with banded or arbitrary sparse coefficient matrix (which gives
enclosures with respect to the infinity norm || || only) is described in [6].

In addition to the implementation of the solution method in C-XSC, the program
includes a small demonstration part (a driver) which can be used to solve some simple
systems. First the program reads the number of lower and upper bands and then one
value for each of the bands, i.e.initially a Toeplitz matrix is generated. In the next step,
however, any number of elements of the matrix can be changed, such that arbitrary
banded matrices can be entered. To change the element a; ;, only 7, j and the new value
for this element must be entered. Changing of elements is finished by entering zeros for
1 and j. Next the right hand side must be entered. There are several choices of predefined
solutions, such that the right hand side b will be determined from this given solution.
Alternatively b can be set to a constant value in all components or all components can
be entered successively. In any case, the values of the components of b may be changed
again similarly as for the matrix. When no changes are done anymore, the solution
algorithm starts. The banded solver is called and the solution and error statistics are
printed. In this way it is quite easy to explore the our C-XSC solver. Examples solved
with these solvers are showed in section 5.

4 Integration between C-XSC and MPI Libraries

As part of our research, we did the integration between C-XSC and MPI libraries on
cluster computers. This step was necessary and essential for the future adaptation of
our solvers to high performance environments. This integration was developed using,
initially, algorithms for matrix multiplication in parallel environments of cluster com-
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puters. We did some comparations about the time related to the computational gain
using parallelization, the parallel program performance depending on the matrix order,
and the parallel program performance using a larger number of nodes. We also stud-
ied some other information like the memory requirement in each method to verify the
performance relation with the execution time and memory. This integration has been
developed on LabTeC Cluster at II-UFRGS (cluster with 20 Dual Pentium III 1.1 GHz
(40 nodes), 1 GB memory RAM, HD SCSI 18 GB and Gigabit Ethernet; cluster server
(front-end) with Dual Pentium IV Xeon 1.8 GHz, 1 GB memory RAM, HD SCSI 36
GB and Gigabit Ethernet). We want to join the high accuracy given by C-XSC with the
computational gain provided by parallelization [8]. This parallelization was developed
with the tasks division among various nodes on the cluster. These nodes execute the
same kind of tasks and the communication between the nodes and between the nodes
and the server uses message passing protocol. About the C-XSC programs executed on
cluster, some changes were made in the programs for their correct use in this environ-
ment, mainly about how to manipulate dotprecisions variables (high accuracy variables
of C-XSC).

5 Tests and Results

Measures and tests were made to compare the routines execution time in C/C++ lan-
guage, C/C++ using MPI library, C/C++ using C-XSC library and C/C++ using C-XSC
and MPI libraries. Our first tests were made to compare the routines execution time and
your accuracy:

— scalar product: tests comparing the accuracy and execution time between programs
in C/C++ language (scalar product) and C/C++ using C-XSC library (optimal scalar
product). In the tables 1, 2 and 3 we showed the results of test with scalar product
between two vectors a and b. The values of this vectors are:

a = [10%°,1.25,10%°,1.1,...,10%,1.25,10°, 1.1]

and
b=[1,1,-1,-1,...,1,1,—1,—-1]

with size of this vectors (n) equal to 30000, 90000 and 180000;

Order (n)|program in C/C++|program in C-XSC|Factor
30000 0.031205 0.041015 1.31
90000 0.096727 0.113847 1.18
180000 0.188670 0.225083 1.19

Table 1. Parallel Scalar Product (Optimal in C-XSC) a X b (using 4 nodes of cluster
labtec — time in seconds)
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— matrix multiplications: tests with sequential and parallel programs in C/C++ lan-
guage, C/C++ using MPI library, C/C++ using C-XSC library and C/C++ using
C-XSC and MPI libraries (see table 4);

— Methods to solve linear systems (Conjugate Gradient, Householder, Givens, Gauss-
Seidel, Gauss Elimination, LU Decomposition, ...): tests with sequential version
of these methods in C/C++ language and C/C++ using C-XSC library (only with
high accuracy operations, not using interval arithmetic).

— solvers to linear systems with dense and banded matrices: tests with sequential
versions using C-XSC library (interval versions);

A very well known set of ill conditioned test matrices for linear system solvers are

the n x n Hilbert matrices H,, with entries (Hy); ; 1= — L Asatest problem, we

1+5—1°

report the results of our program for the linear systems H, njzv = ey, where e is the first
canonical unit vector. Thus the solution z is the first column of the inverse H,, * of the
Hilbert matrix H,,. Since the elements of these matrices are rational numbers which can
not be stored exactly in floating point, we do not solve the given problems directly but
rather we multiply the system by the least common multiple lem,, of all denominators
in H,,. Then the matrices will have integer entries which makes the problem exactly
storable in IEEE floating point arithmetic. For the system (lemi1oH1o)z = (lemyoer),
the program computes the enclosures (here an obvious short notation for intervals is
used) showed in (5.2), which is an extremely accurate enclosure for the exact solution
(the exact solution components are the integers within the computed intervals).

Order (n) axb Exact Result
30000 [—3.3000000000000002664535259100375697016716 1125
90000 |—3.3000000000000002664535259100375697016716| 3375

180000 |[—3.3000000000000002664535259100375697016716 6750
Table 2. Scalar Product a x b in C/C++ (results)

Order (n) axb Exact Result
30000 |1124.999999999999317878973670303821563720703 1125
90000 [3374.999999999998181010596454143524169921875 3375

180000 [6749.999999999996362021192908287048339843750 6750
Table 3. Scalar Product a x b in C-XSC (results)

Program/Order (256 x 256| 512 x 512
C/C++ with MPI|0.4172185| 4.0385343

C-XSC with MPI|4.7586004|39.3353821
Table 4. Parallel Matrix Multiplication (using 8 nodes of cluster labtec — time in sec-
onds)
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T1 1.000000000000000E + 002,
) — 4.950000000000000E + 003,
z3 7.920000000000000E + 004,
T4 — 6.006000000000000E + 005,
zs | 2.522520000000000E + 006,
z¢ | | — 6.306300000000000E + 006,
T7 9.609600000000000E + 006,
zg — 8.751600000000000E + 006,
Zg 4.375800000000000E + 006,
Z10 — 9.237800000000000E + 005,

C.A. Holbig and et al.

1.000000000000000E + 002
— 4.950000000000000E + 003
7.920000000000000E + 004
— 6.006000000000000E + 005
2.522520000000000E + 006
— 6.306300000000000E + 006
9.609600000000000E + 006
— 8.751600000000000E + 006
4.375800000000000E + 006

— 9.237800000000000E + 005

(5.2)

As other example, we compute an enclosure for a very large system. We take a
symmetric Toeplitz matrix with five bands having the values 1,2,4,2,1 and on the
right hand side we set all components of b equal to 1. Then the program produces the
following output for a system of size n = 200000 (only the first ten and last ten solution

components are printed):

Dimension n = 200000 Bandwidths

change elements ? (y/n) n b = =1
(y/n) n x =
1: [ 1.860146067479180E-001, 1
2: [ 9.037859550210300E-002, 9
3: [ 7.518438200412189E-002, 7
4: [ 1.160876404875081E-001, 1
5: [ 1.003153932563721E-001, 1
6: [ 9.427129202687645E-002, 9
7: [ 1.028361799416204E-001, 1
8: [ 1.005240450090008E-001, 1
9: [ 9.874921290539136E-002, 9
10: [ 1.004617422430963E-001, 1
199990: [ 1.001953939326196E-001,
199991: [ 1.004617422430963E-001,
199992: [ 9.874921290539136E-002,
199993: [ 1.005240450090008E-001,
199994: [ 1.028361799416204E-001,
199995: [ 9.427129202687645E-002,
199996: [ 1.003153932563721E-001,
199997: [ 1.160876404875081E-001,
199998: [ 7.518438200412189E-002,
199999: [ 9.037859550210300E-002,

1,k : 22A=12421
change elements ?

.860146067479181E-001 1
.037859550210302E-002 ]
.518438200412191E-002 ]
.160876404875082E-001 ]
.003153932563722E-001 ]
.427129202687647E-002 ]
.028361799416205E-001 ]
.005240450090009E-001 ]
.874921290539138E-002 ]
.004617422430964E-001 ]

1.001953939326197E-001
1.004617422430964E-001
9.874921290539138E-002
1.005240450090009E-001
1.028361799416205E-001
9.427129202687647E-002
1.003153932563722E-001
1.160876404875082E-001
7.518438200412191E-002
9.037859550210302E-002

O V(S T U T
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200000: [ 1.860146067479180E-001, 1.860146067479181E-001 ]

max. rel. error = 1.845833860422451E-016 at i1 = 3 max.
abs. error = 2.775557561562891E-017 at i = 1 min. abs.
x[3] = [ 7.518438200412189E-002, 7.518438200412191E-002 ]

max. abs. x[1] =
[ 1.860146067479180E-001, 1.860146067479181E-001 ]

Our last example is about the matrix inversion (test about accuracy). In this example

110 -10
A=|0e0 |,andA 1 = 0% 0
00 ¢2 00 &

With € = 1.084202172485504E — 019, our program in C-XSC obtained:

1.0E + 000, 1.000000000000000E + 000, 0.000000000000000E + 000
A= 0.0E + 000, 1.084202172485504E — 019, 0.000000000000000E + 000
0.0E + 000, 0.000000000000000E + 000, 1.175494350822288F — 038

1.0E + 000, 1.000000000000000E + 000, 0.000000000000000E + 000
A7 = | 0.0E + 000, 7.136238463529799F + 044, 0.000000000000000E + 000
0.0E + 000, 0.000000000000000F + 000, 8.507059173023462E + 037

In the results obtained until now, the execution time of the algorithms using C-XSC
library are much larger than the execution time of the algorithms that do not use this
library. Even in this initial tests, it is possible to conclude that the use of high accuracy
operations make the program slower. It shows that the C-XSC library need to be opti-
mized to have an efficient use on clusters, and make it possible to obtain high accuracy
and high performance in this kind of environment [8].

6 Conclusions

In our research some programs were developed in C-XSC with the validated numeric
paradigm, where the results are obtained with a good quality. The main contributions of
our work are: integration between the libraries C-XSC and MPI; effective use of library
C-XSC on cluster computers; and resolution of linear systems with high accuracy. In
our work we provide the development of selfverifying solvers for linear systems of
equations with dense and sparse matrices and the integration between C-XSC and MPI
libraries on cluster computers. This integration was not trivial because was necessary to
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send correctly the special high accuracy variables (dotprecision) of C-XSC to the cluster
processors using the library MPI without lost of the high accuracy characteristic.

Nowadays, our software run on labtec cluster at UFRGS and the integration be-
tween C-XSC and MPI was done correctly. Our tests with matrix multiplication, scalar
product and methods to solve linear system of equations show that the C-XSC library
needs to be optimized to be efficient in a High Performance Environment [9]. Nowa-
days we are working in the implementation of parallel versions of methods to solve
linear systems (without and with high accuracy). These methods (Conjugate Gradient,
Householder, Givens, . ..) are used in real life applications like hydrodynamic (parallel
computational model with local refinement and dynamic load balancing for the simu-
lation of substances transportation and hydrodynamic), agriculture (optimization of the
air distribution in grain storehouse with aeration of the mass of grains) and in weather
applications.
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Abstract. This paper proposes two new multipliers to compute AB? based on
cellular automata over finite field. First, a multiplier with a generalized irreducible
polynomial is implemented. Then, a new algorithm and a circuit are proposed to
reduce the size of the first multiplier. They are suitable for VLSI implementation
and could be used in IC cards because they have a particularly simple architecture.

1 Introduction

Finite field or Galois fields play an important role in error-control coding, digital signal
processing and cryptography [1-2]. The finite field GF(2™) is suitable for computation
to implement computer architecture. Since, finite extension field GF(2™) of finite field
GF(2) has 2™ elements and these elements are composed of bits string of zeroes and
ones [3-4]. The finite field operation is necessary to implement an efficient and low-
complexity cryptosystem.

In 1984, Yeh, et al. [5] developed a parallel systolic architecture for performing
the operation AB + C' in a general GF(2™). Semi-systolic array architecture in [6]
was represented with the standard basis. Architecture to compute multiplication and
inverse were represented with the normal basis [7]. Systolic power-sum circuit was pre-
sented in [8]. Since then, many bit-parallel systolic multipliers have been proposed.
However, these multipliers are not efficient for cryptography application due to the
system complexity. To reduce the system complexity, Itoh and Tsujii[9] designed two
low-complexity multipliers for the class of GF(2™), based on the irreducible AOP (All
One Polynomial) of degree m and the irreducible equally spaced polynomial of degree
m. Later, Kim in [10] developed linear feedback shift register based multipliers with a
low complexity of hardware architecture using the property of AOP. CA(Cellular au-
tomata), first introduced by John Von Neumann in the 1950s, have been accepted as a
good computational model for the simulation of complex physical systems [11]. Kim
et al. proposed an LSB-first multiplier using CA with a low latency [12]. Ku et al. in
[13] proposed an MSB-first AB? multiplier using PBCA. However, all such previously
designed systems still have certain shortcomings.

Accordingly, the purpose of this paper is to propose two new modular multipliers
to compute AB? based on CA over GF(2™). Two multipliers deploy the mixture ad-
vantages from the previous architectures in the perspective of area and time complexity.
First, a multiplier is implemented with a generalized irreducible polynomial. Then, a
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new algorithm and a circuit are proposed to reduce the hardware requirement of the
first one. This uses the property of irreducible all one polynomial as a modulus.

2 Background

This section provides the necessary operations in the public-key cryptosystem and a
brief description of finite fields. These properties will be used to derive new multipliers.

2.1 Public-key Cryptosystem

ElGamal proposed a public-key cryptosystem[14]; it gets its security from the difficulty
of calculating discrete logarithms in a finite field. To generate a key pair, first choose
a prime, p, and two random numbers, g and z, such that both g and x are less than p,
then calculate y = g® mod p. The public key is y, g, and p. Both g and p can be shared
among a group of users. The private key is . The ElGamal scheme can be used for both
digital signatures and data encryption. The modular exponentiation over finite fields is
a very critical operation to implement the public-key cryptosystem. So, it is necessary
to see the operation in detail. Let C' and M be elements of GF(2™), the exponentiation
of M is then defined as C = MP,0 <= E <=n.
The exponent E, which is an integer can be expressed by

E = 6m,12m71 + 6m722m72 + ...+ 6121 + e .
The exponent can also be represented with a vector [ e,,_1€,,_2...e1€g ]. A popular al-
gorithm for computing the exponentiation is the binary method [10]. The exponentiation
of M can be expressed as

MP = Meo(Mer(...(Mem-2(Mem-1)2)2 )2
An algorithm for computing exponentiation is presented as follows :

[Algorithm 1] MSB-first Exponentiation
Input: M, E, f(x)
Output: C = M¥ mod f(z)

1: if(em_1==1)C=MelseC =a°
2: fori=m—-2t00

3: if (e; == 1) C = MC? mod f(z)
4: else C = a°C? mod f(z)

The exponentiation can be computed using power-sum operations or AB? multi-
plications. Next section presents two new architectures for the operation with a signifi-
cantly low complexity of operations.

2.2 Finite Fields

A finite field GF(2™) contains 2™ elements that are generated by an irreducible polyno-
mial of degree m over GF(2). A polynomial f(z) of degree m is said to be irreducible
if the smallest positive integer n for which f(z) divides 2™ + 1isn = 2™ — 1 [1,10].
Let f(z) = 2™ + fm_12™ ! + ... + fiz! + fo be an irreducible polynomial over



Finite Fields Multiplier based on Cellular Automata 93

GF(2) and « be a root of f(x). Any field element GF(2™) can be represented by a
standard basis such as ¢ = apm_10™™ ' + am_20™~2 + ... + ag, where a; €GF(2)
for 0 <= i <=m— 1. {l,a,0?,....a™ 2 o™ '} is an ordinary standard basis of
GF(2™).

It has been shown that an AOP (All One Polynomial) is irreducible if and only if
m+1is a prime and 2 is a generator of the field GF(m + 1) [9-10]. The values of m for
which an AOP of degree m is irreducible are 2, 4, 10, 12, 18, 28, 36, 52, 58, 60, 66, 82,
and 100 for m <= 100. Let f f(z) = ™ + 2™ + ... + = + 1 be an irreducible AOP
over GF(2) and a be the root of f f(z) such that f f(a) = a™+a™ ' +...+a+1 = 0.
Thenwe have o™ = a™ ' +a™ 24+ ...+ a+1,a™ = 1.

The reduction is often performed using the polynomial ™*! + 1. This property
of the irreducible polynomial is very adaptable for PBCA (Periodic Boundary Cellular
Automata) architecture. If it is assumed that {1, @, a2, a?, ...,a™} is an extended stan-
dard basis, the field element A can also be represented as A = A,,a™ + Ap_10™ 1 4+
Apm_20™ 2 + .+ Ag, where A,, = 0 and A; € GF(Q2) for 0 <= i <= m. Here,
a = A (mod ff(x)), where ff(z) is an AOP of degree m, then the coefficients of a
are givenby a; = A; + A, (mod 2),0 <=1i <=m — 1.

3 AB? Multipliers

This section presents two new multipliers over GF(2™"). These multipliers are based
on cellular automata. First, we propose a new modular multiplier using a generalized
irreducible polynomial with the ordinary AB? multiplication. Then, devise a new mul-
tiplication algorithm and a new multiplier, which uses the property of irreducible AOP
as a modulus.

3.1 Generalized A B2 Multiplier

Let a and b be the elements over GF(2™) and f(x) be a modulus. Then each ele-
ment over the ordinary standard basis is expressed as follows: @ = ap_1a™ ' +
A 20™"2 + .+ ag,b = by @™ 4 by 0™ 2 + L+ by, f(z) = 2™ +
fm1Z™ + fr0z™ 2 4+ L+ fo.

For step 3 of the Algorithm 1, the modular multiplication p = ab? mod f(x) can be
represented with a recurrence equation as follows : p = ab? mod f(x) = agb + a1 [ba?
mod f(z)] + az[ba* mod f(z)] + ... + am—1[ba®™~2 mod f(z)]. Following shows the
ordinary modular multiplication.

[Algorithm 2] Ordinary AB? Multiplication

Input : a, b, f(x)

Output : p = ab® mod f(x)

Initial value : p(™) = (pp_1™) | pra_a (™, .., po{™) = (0,0, ..., 0)
1: fori=m-—1to0

2: forj=m—1t00
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3: bj(i)=bj_2(i+1) + bm—l(i-’_l)fj-i-l + bm_2(i+1)fj
4: p;D=p; 1) 4 b]-("“) a;

The following are the basic operations for steps 3 and 4.

Step 3-1: m-tuple of b is circular shifting 2-bits to the left as follows:

(bme 7bm74 PR bO 7bm71 ) bm72 ) <= (bm_fly bm72; ey bl; bO)

Step 3-2: Apply modular operation with b, 1 %) + by, ,(+1) f; as follows:
(bm_ll, bm—2,---,01,b0) <= (bm—3 ,bm_,4 sy 00 3 bm—1 ,bm—2 )+

bm—2 (fﬂ’L—la fm—27 ey fl; f07 0) + bm_2 (fm—17 fWL—Za ey f17 fO)

Step 4: Multiply b to m-tuple of a;, add it to m-tuple of p as follows:
(Pm—15Pm—25 - P1,P0) <= (Pm—1,Pm—2, s P1,P0) +@i(bm—1,bm—2, ..., b1, bo)

In order to perform step 3-1, an 1-dimensional PBCA, where extreme cells are ad-
jacent, having m cells is used which is the upper part with the gray colored in Fig. 1. b
is inputted into m cells of CA and CA has a characteristic matrix with the characteristic
matrix 7' shown in Fig. 2 for the step 3-1. Fig. 1 shows the proposed generalized AB?
multiplier using PBCA. It is possible to perform the multiplication in m clock cycles
over GF(2™).

PBC A with the characteristics in Fig. .2 15t Carry  und

1
| | | |
é

Bl

ol
SiN ﬂf ﬂf

N Y
R R

LL° T AL T AL AL
O U 9| U

Fig. 1 Generalized AB? modular multiplier.

3.2 AOP AB? Multiplier

Let A and B be the elements over GF(2™) and #(z) be a modulus which uses the
property of an irreducible AOP. Then each element over an extended standard basis
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oo 00 .01
1 00 0 .. 0 0
o1

Fig.2 Characteristic matrics 7'

is expressed as follows: A = A,,a™ + A, 1™ L+ A, 0a™ 2 4+ .+ A, B =
Ba™ + By, 1™ + By, 2™ ? + ... + By, t(z) = o™t 4+ 1.

A new modular multiplication P = AB? mod #(z) can be derived which ap-
plied the property of AOP as a modulus as follows : P = AB? mod t(z) = AgB +
A1[CLS3(B)] 4+ A2[CLS4(B)] + ... + A [C LSap, (B)], where circular shifting i-bits
to the left is represented as C'LS;(). After the applying the property of AOP as a mod-
ulus, the modular reduction is efficiently performed with just CLS;() operation. Fol-
lowing shows the proposed A B2 multiplication with AOP as an irreducible polynomial.

[Algorithm 3] Proposed AB? Multiplication

Input: A, B

Output : P = AB? mod o™*! + 1

Initial value : P(m+1) = (p, (m+D) p_ (m+1)  p(m+1)y = (0,0,...,0)

1: fori=mto0

2: B0 = CLS,(BlH1)

3: forj=mto0

4: Pj(i)=Pj(i+1) + Bj(i+1)Ai

The following are the basic operations for performing the modular multiplication
from the above algorithm.

Step 2: (m + 1)-tuple of P is circular shifting 2-bits to the left as follows:

(Bm—2 B3 B0, Bm s Bm-1) <= (Bm, Bpn—1,Bm_3, -, Bo)

Step 4: Multiply A; to (m + 1)-tuple of B and add it to (m + 1)-tuple of P as
follows:

(Pm, Pm_ll, Pm_gl, aeey PO)/ <= I(Pm, ow_l, Pm—Z; ceey P0)+

Ai(Bm_g ,Bm_3 ,---,BO ,Bm aBm—l )

In order to perform step 2, the 1-dimensional PBCA having m + 1 cells is also used
which is the upper part with the gray colored in Fig. 3. B is inputted into m + 1 cells of
CA and CA has the same characteristic matrix with the first architecture. Fig. 3 shows
the proposed AOP AB? multiplier using PBCA. It is possible to perform multiplication
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in m + 1 clock cycles over GF(2™). Each cell has a lower hardware complexity than
the first one.

PBC A with the characteristics in Fig. 2

S e S e e———— R
1 i 1 ] =

Fig. 3 AOP AB? modular multiplier.

4  Analysis

Proposed two AB? multipliers were simulated using ALTERA MAX+PLUSII simu-
lation tool with FLEX10K device. Table. 1 shows a comparison between the proposed
and the previous modular multipliers. For the comparison, it is assumed that nn AND
and n XOR represent n number of 2-input AND gate and XOR gate, respectively, and
REG and Latch represents 1-bit register and latch, respectively. Comparison shows that
the proposed architectures hybrid the advantages from previous architectures. Proposed
two architectures have the good property in the perspective of hardware and time com-
plexity compared with the architecture of Wei in [8]. Wei proposed a systolic multiplier
with a latency of 3m and a critical path of 1-AND+2-XOR. Ku et al. in [13] proposed
a multiplier based on cellular automata with the MSB-first fashion. The multiplier has
similar property with our first multiplier but our multiplier has advantage in the critical
path. Kim in [10] designed modular multipliers based on LFSR architecture. His archi-
tecture used the property of AOP as the irreducible polynomial.

5 Conclusion

This paper proposed two new A B2 multipliers over GF(2™). They are based on cellular
automata, especially PBCA. First, a multiplier with a generalized irreducible polyno-
mial was implemented. Then, a new algorithm and it’s architecture were proposed to
reduce the size of the first one. The new algorithm and architecture use the property
of irreducible all one polynomial as a modulus. Proposed AB? multipliers hybrid the
advantages from previous architectures.

Since the proposed multipliers have regularity, modularity and concurrency, they
are suitable for VLSI implementation. The proposed multipliers can be used as a ker-
nel circuit for public-key cryptosystems, which requires exponentiation, inversion, and
division as their basic operation.
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Table 1. Comparison for AB2 multipliers.
hiem | Funetion Irre ducihle Number | Lakenwy Hardware Critical
Pobmomial | ofcells Complexity Paih
EE
Wed AR-HT Ceneralized m Jm Fm AND AND+I XOR
in Bl 3m XOR
10 Laich
Kuetal AR- Generalized m m Jm2 AND AND+3 XOR
in [13] Fm-2 XOR
31 REG
Kinin AR- AQP m Il ImAND AND
[10] 2 1XOR | +XORilog)
Jm+ REG
Gen. AR Generalized ”m m 3m2 AND AND
FIul 3m2 X0R +2 X0RK
ImREG
AOP T AOP m+l m+1 m+1 AND AND+XOR
Blul m+1XOR
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Abstract. This paper® presents a new modular multiplication algorithm and its
systolic realizations in GF(2™). The proposed algorithm is based on the LSB-
first scheme using a standard basis representation. From the proposed algorithm,
a parallel systolic array is derived, and the architecture has a lower hardware com-
plexity and smaller latency than the conventional approaches. Additionally, since
the proposed architecture incorporates simplicity, regularity, and modularity, it
is well suited to VLSI implementation and can be easily applied to the modular
exponentiation architecture. Furthermore, the architecture will be utilized for the
basic architecture of the crypto-processor.

1 Introduction

The arithmetic operations in the finite field have several applications in error-correcting
codes[1], cryptography[2, 3], digital signal processing[4], and so on. Information pro-
cessing in such areas usually requires performing multiplication, inverse/division, and
exponentiation. Among these operations, the modular multiplication is known as the
basic operation for public key cryptosystems over GF(2™) [2- 4]. Exponentiation is
computed efficiently by the sequences of modular multiplications. And division and in-
verse can be regarded as a special case of an exponentiation because B—' = B>" 2[5,
6].

Recently, three types of multipliers over GF(2™*) have been proposed that are easily
realized using VLSI techniques. These are normal, dual, and standard basis multipliers,
which have their own distinct features. The normal and dual basis multipliers need basis
conversion, while the standard does not. In the following, we restrict our attention to
the standard basis multiplier.

Numerous architectures for the modular multiplication in GF(2™) have been pro-
posed in [7-10] over the standard basis. In 1984, Yeh et al. proposed two systolic array
architectures with the LSB-first modular multiplication [7]. Wang et al. in [8] proposed
two systolic architectures with the MSB-first fashion with less control problems as com-
pared to [6]. Jain et al. proposed another multiplier architecture [9]. Its latency is smaller
than those of other standard-basis multipliers, but there are broadcast lines in the circuit.

2 This work was supported by the research fund of Kyungil University.
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Wu et al. in [10] proposed bit-level systolic arrays with a simple hardware complexity
with the MSB-first modular multiplication.

This paper proposes a new modular multiplication and its architecture with a parallel-
in parallel-out systolic architecture. The proposed algorithm supports the LSB-first
fashion. The proposed parallel architecture has a good time and area complexity com-
pared to the previous multipliers.

2 Modular Multiplication

A finite field GF(2™) has 2™ elements and it is assumed that all the 2 — 1 non-
zero elements of GF(2™) are represented using the standard basis. Let A(z) and B(z)
be two elements in GF(2™) and F'(x) be the primitive polynomial, where A(z) =
A 1™+ @ 22™ 2 + ...+ a17 + ag, and B(x) = by 1™ + by 2™ 2 +
... + b1z + by, where a; and b;€GF(2) (0 <=1¢ <= m — 1). A finite field of GF(2™)
elements is generated by a primitive polynomial of degree m over GF(2). Let F'(z) be
an irreducible polynomial that generates the field and is expressed as F(z) = ™ +
frmo1z™ Y + ...+ fiz + fo. If a is the root of F(z), then F(a) = 0, and F(a) =
a™ = fr_1a™ 4+ .+ fia+ fo, where f; € GF(2) (0 <=i <=m — 1).

To compute a modular multiplication, AB mod F'(z), the following equation is a
common LSB-first algorithm

P = AB mod F(z)
= bo[Aa® mod F(x)] + b1[Aa! mod F(z)] + ... + byp—1[Aa™ " mod F(z)]

A new recursive multiplication is derived that is suitable for the systolic array im-
plementation. The modular reduction is necessary because of the operation [Aa? mod
F(z)] on the i-th step. We just try to concentrate on the modular reduction from the
first term of the above equation, by A mod F'(z). The subsequent terms in the above
equation are accumulated until reaching the end. The procedure of the new algorithm is
as follows :

First of all,

P = by[Aa® mod F(z)] = [Y 1y arboa*]a® mod F(z).

However, in this step we can overlap the modular multiplication of [Aa mod F'(x)]
for the next step operations. For the better understanding, we will use the symbol A ()
for the ¢-th snapshot for A, which has the value of Aa® mod F'(x). Thereby, our algo-
rithm computes two operations as follows

-1 (1

PM = b A® =[S pilak]

AW = A®q mod F(z) = [X7 0l aFla mod F(z) = [X7 otV ak]
where

pg) = ag))bo, (k=0,1,....m—1)
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a? =a? i +a”,,(k=1,2,...,m—-1)

o) =a® fo.

In the general case, P() = P(=1) 4 b, ; AG-1) =[S (p(z Yy (i)) k]
Aw=A%ﬂammF@y42$;@}”ﬂamMFupqz$;¢>ﬂ

where

0 = by (k= 0, 1)
(i) — (z = +a§; f),(kz 1,2,..,m—1)
m_aunf

Finally,
p(m) — p(m-1) + bm_lA(m—l) — [Z (p(m 1) (m))ak]
where

pzm) = agcm Dbmei, (k=0,1,...m—1).

x e @ e @
) L L I L T T
= fz aw)— »""/fz aw)— """f1 - =)
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Fig.1 Dependency graph.
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Thus, the multiplication of two elements A and B in GF(2™) can be computed
using the above new recursive algorithm. From the algorithm, we can derive an efficient
systolic multiplier by following the procedures in [8-9].

3  Systolic Modular Multiplier

This section proposes a parallel systolic multiplier. Fig.1 shows the dependency graph
for our new multiplication over GF(2*). The inputs A and F enter the array in parallel
from the top row, while B is from the leftmost column. The output P is transmitted
from the bottom row of the array in parallel.

Fig. 3 (a) shows a basic cell in Fig. 1 for the general case where the circuit function
is primarily governed by the following recurrence equation:

P =af by, (k=0,1,..,m —1)
a) =ap ) e+ as) (k=1,2,.m — 1)

al’ = ali=Y fo

where P(9) is the i-th intermediate result of the product. Fig. 3 (b) shows a process-
ing element for the case that the cell is located in the last row.

™ = a\™" by 1, (k=0,1,...,m—1).

By applying the cut-set systolization from Fig. 1, we obtain a parallel systolic mul-
tiplier as shown in Fig. 2 over GF(2%) with the processing elements in Fig. 3. Since the
vertical path of each cell only requires two delay elements, except for the cells in the
bottom row, the latency is 3m — 1.

Note that the processing element in the bottom row, Fig. 3 (b), is very simple and
reduces the total cell complexity compared to the previous architectures.

4 Analysis

Our multiplier was simulated and verified using the ALTERA MAX+PLUSII simulator.
Table 1 shows comparisions between the proposed architecture and the related circuits.
We will give a comparison of systolic architectures with Yet et al.’s in [7] and Wang et
al.’s in [8].

Before the comparison, it was assumed that AND and XOR,; denote a 2-input
AND gate and ¢-input XOR, respectively. And T'4np and T'x og—; are the propagation
delay of a 2-input AND gate and ¢-input XOR gate, respectively.

As shown in Table 1, our multiplier has a good area and time complexity compared
with the previous architectures.

5 Conclusion

This paper has explored a new algorithms for computing the modular multiplication into
a low-complexity systolic architecture in GF(2™). A comparison between related sys-
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Table 1. Comparison for AB?2 multipliers.
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o CHout | yobetal [7] | Wangetal [3] Proposed

Mo of cells e m- e

Function AF+T AR+ AF+HT

Throughput 1 1 1

Latency 3m 3m 3m-1

Computation Taro +*Txors Tavn +Twops Taro +*Txora

time per basic

cell

Cell 2 Linput AND 2 Zinput AND | PE| 2 Zoinpant AND

cottple xity 2 2-inpat XOR 1 3-input XOR | ! | 2 Zinput XOR

7 1-hit latches T 1-hit latches T 1-hit latches
FE| 1 2-input AND
2|1 2-input XOR
2 1-hit latch
Algorithm L=E MZE LZE
faghion

tolic architectures reveals that the new systolic architecture has lower property than the
conventional architectures for the hardware complexity and the latency. Furthermore, it
can be used as the basic architecture for computing an inverse/division operation. More-
over, the architecture has a simplicity, regularity, and modularity. Thereby, it is well
suited to VLSI implementation and it can be easily utilized for the crypto-processor
chip design.
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Abstract. In this paper, we address formal verification methodologies and de-
velop SPR(Safety Problem Resolver) tool to verify security model’s safety prop-
erty. Using our technique it is possible to examine the protections of thousands of
security-related objects on a multi-user system and identify security drawbacks.
By acting on this information, security officers or system administrators can sig-
nificantly reduce their system security exposure.

1 Introduction

Assurance that a system behavior will not result in the unauthorized access is funda-
mental to ensuring that the enforcing of the security policy will guarantee a system
security. The greater the assurance, the greater the confidence that a security system
will protect its assets against the threat with an acceptable risk. Most existing systems
lack adequately secure interconnectability and interoperability. Each vendor has taken
its own approach, relatively independent of the others. The revealing of all this vul-
nerable features comprises the goal of security evaluation process. There is very little
understanding as to how security can be attained by integrating a collection of compo-
nents, and even less understanding as to what assurance that security might provide.

A number of individual countries developed their own security evaluation stan-
dards[2]. In addition to, opening the way to universal standardization of security eval-
uation results, the new Common Criteria(CC)[3] has been developed. For example, CC
defines seven level of assurance for security systems, rising from EAL1 to EAL7. To get
a higher assurance over EALS, developers of security systems require to specify secu-
rity models and verify their safety properties using a formal and semi-formal approach.

* This work was supported by Korea Information Security Agency.
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For high assurance systems, the difficulties of using formal methods add further com-
plexity to both development and evaluation. However, given the lack of suitable mature,
“industrial-strength tools” and the cost of a formal verification activity, informal ap-
proach generally represents a suitable compromise. This paper discusses a technique to
evaluation of the security policy enforcement and a logical verification tool, SPR(Safety
Problem Resolver). All of these allow specification of the system security-related ele-
ments and verification of the system safety.

This paper is structured as follows. Section 2 gives an overview of background of
this paper. Section 3 introduces SEW (Safety Evaluation Workshop) structure to eval-
uate the safety of security model. Sections 4 illustrates SPR tool, the core of evalua-
tion. In section 5, we explain the example of formal specification and verification for
SACM(Simple Access Control Model) using SPR tool. Section 6 show the experimen-
tal results that SPR tool uses system resources. Finally, section 7 discusses conclusion
and future directions.

2 Background

Since Harrison, Ruzzo, and Ullman showed that the safety problem was undecidable in
common case[6], research has focused on determining whether safety could be decided
for access control models with limited, but practical, expressive power. First, the take-
grant model has a linear time safety algorithm, but there is still a significant difference
in expressive power between take-grant and HRU[10]. Sandhu et al eliminates most
of this difference in his models(SPM, TAM, ESPM, and non-monotonic ESPM)[11].
They demonstrated that an access control model could be designed for which safety
is efficiently decidable (i.e., in polynomial time) given a few restrictions. Ultimately,
despite proven expressive power and safety determination, these access control models
have not been adopted in practice. We claim that there are two reasons for the lack
of acceptance: (a) rather complex to use due to the subtlety of the restrictions and the
complex relationship and (b) it is difficult to define the safety requirements and write
practical algorithms that enforce these requirements.

With RBAC[8], access decisions are based on the roles that individual users have
as part of an organization. Users take on assigned roles. The process of defining roles
should be based on a thorough analysis of how an organization operates and should
include input from a wide spectrum of users in an organization. Thus, we declare the
determining whether the system implementing access control model is safe in the given
state must be resolved for every system and every state.

In spite of the mentioned lacks, the great majority of the systems (e.g. operating
systems, DBMS, Firewalls) uses DAC-based security models as the basis of access
control mechanism. Thus, in general case safety cannot be verified for arbitrary DAC
access control system. Therefore, the safety verification is the actual problem for the
security evaluation, especially for the wide-spread computer systems.

In this paper we solve the safety problem proposing an universal specification and
SPR model checking tool. SPR allows the analyzer to describe the system security
elements and verify the security safety.
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3 Safety Evaluation Workshop

According to principals of the computer system modeling, we use the term of security
model[1][9] as the combination of system security states, transitions through access
control rules, and constraints like the state security criteria. The access control model
was first formulated by Lampson[4]. Access control model can be grouped into three
main classes(DAC, MAC, RBAC) according to security policies[6][7][8]. The structure
of the model is that of a state machine where each state is a triple (S,0,M), where S is
a set of subjects, O is a set of objects, and M is an access matrix which has one row
for each subject, one column for each object, and is such that cell M[s,0] contains the
access rights. Fig. 3.1 shows an overall framework of SEW to evaluate the safety of
security model.

[ )
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Fig.3.1. SEW(Safety Evaluation Workshop)

The type of security system which is mentioned in this paper refers to operating
systems, IDSs, Firewalls, and etc. For safety evaluation of security systems, we propose
SEW(Safety Evaluation Workshop) framework which consists of seven components.
For the detailed information about SEW refer to [12].

1) System State Analyzer:
investigates the system being evaluated and builds the state of security model
automatically according to the access control model.
2) Security Criteria Manager:
evaluator inputs the state security criteria in Security Criteria Manager.
3) Scopes:
(a) M3S (Model-related System Security) - scope:
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specifies the system security state and behavior in SPSL.
(b) ACR (Access Control Rules) - scope:
describes access control rules in SPSL.
(c) SSC (State Security Criteria) - scope:
expresses state security criteria in SPSL.
4) SPR:
formal verification tool implemented on C and SWI-Prolog[5]). SPR checks
the initial system security state by the security criteria, then it generates all
reachable states and checks them. The detailed information about SPR tool is
described in Section 4.
5) SPSL(Safety Problem Specification Language):
specification language for security model with 3 scopes, based on Prolog syn-
taxes.
6) Security Flow Explorer:
demonstrates the sequence of the counter example events which leads to the
security fault.
7) Evaluation Reporter:
produces the final report containing an access control model, a system, an ini-
tial state, access control rules, security criteria, an evaluation result, and a se-
curity flaws trace.

4 Safety Problem Resolver(SPR)

SPR is a major component of Safety Evaluation Workshop framework. It is a model
checking tool for safety evaluation, which allows processing the given specifications of
security systems and produces the verdict whether the security system is safe or not.

To specify the system security-related elements in security systems we have devel-
oped the SPSL(Safety Problem Specification Language). SPSL is a logical specification
language to express a Model-related System Security Scope(security states), Access
Control Rules Scope(access control rules), and Security Criteria Scope(security crite-
ria) based on the Prolog-style syntax(SWI-Prolog usage)[5]. We have composed SPR
tool which helps evaluator to process SPSL-based specifications of the system security
and to verify whether system security policy has a safety problem. SPR checks the ini-
tial system security state by the given security criteria, then it generates all reachable
states and checks them according to the criteria. The process of producing the sets of the
reachable states and the evaluating of the criteria is called a safety problem resolving.

The definition of system and security model and the security evaluation algorithm
in SPR tool can be formally described as follows;

Definition 1. A general system, ¥ = {S*, T, s .., Q}, is a finite state machine
where; S¥ is the set of the system states. Q denotes the set of the safety evaluation
query by system. T is the state transition function. T: Q x S¥ — S* moves the system
from on state to another. A safety evaluation query ¢ is issued in the state s and moves
the system to the next state s31, = T(q, s*).

Definition 2. A security model M consists of three elements, M = {S, R, C}, where;
S denotes the set of the system security states defined by the model. R is the set of
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the access control rules in the form of the logical predicates r(s, s’) defined on S and
checking the the transition from s to s” meets to the access control model. C is the set of
safety property in the form of logical predicates c(s) defined on S and checking security
of the state s.

Definition 3. A safety property can be written as A = {M, X, D} where; M is sys-
tem. X denotes the system. D is the mapping function, D: §* — S, which sets the
relation between the system state and the system security states.

Algorithm 1. The security evaluation algorithm in SPR tool consists of three steps
and it may be formalized as following.

Firstly, SPR evaluates a given system state siEm.t € S* by the security criteria C; if
Y ¢ € C: c(s=D(s:.;,)) = true then a security system is secure.

Secondly, SPR proves that the system access control mechanisms realize the access
control rules R; if V s, s7%, in S¥: s7,; =T(q, s7°) Is; = D(s7"), si41 = D(s3,) and
VreR: r(s;, si+1) = true then a security system is secure.

Lastly, SPR generates the states s;° € S¥ reachable from the given state s;.., € S*
and evaluate their safety by the security criteria C; if V siE in S¥: sf is reachable from
SiEm't’ S; = D(siz): VceC: c(s;) = true then a security system is secure.

5 Security Evaluation Example

For easy understanding of security specification and SPR’s functionality technique, we
show a very Simple Access Control Model(SACM) example in Fig. 3.2. Subjetl, Sub-
ject2, Objectl and Object2 are in a High group. Subject3 and Object3 are involved in
a Low group. In this example, Subject refers to a user, and Object points out a file.
This example access control model should satisfy following safety properties: No Read
Up, No Write Down. Satisfaction of these principles prevents information in high level
objects to flow to objects at lower levels.

High Low

No Write Down
Subjectl Objectl ; 5 Subject3

No| Read Up
Subject2 Object2 Object3

NS
AN

Fig. 5.2. Simple Access Control Model Example
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Table 1. Simple Access Control Model’s ACLs

) object piectl | Object2 | Object3
subject

High Group |read,write|read,write|read,write

Low Group read,write

Subjectl read,write|read,write|read, write

Subject2 read,write|read,write| read

Subject3 read,write

5.1 Security States

Like in well-known operating systems, our security states are the collection of all en-
tities of the system(subjects, objects) and their security attributes(access rights, ACLs,
and so on). In this example model, we assume that a subject has each object in his
own directory. SACM(Simple Access Control Model) includes users groups and files.
User groups are divided into High and Low and they are noted as security subjects.
Subjectl, Subject2 and Subject3 represent three users. File system elements(files and
directories)are regarded as security objects. Objectl, Object2 and Object3 are noted as
3-scope files in each user’s directory. The object access by subject depends on the ACLs
shown in table. 1. System security states may be presented as the M3S (Model-related
System Security Scope)-scope.

Security States(M3S-scope) = Subjects + Objects + Security Attributes

According to M3S-scope mentioned above, we specify SACM’s security states us-
ing SPSL. Example 1 shows M3S-scope of SACM written in SPSL.

Example 1. M3S-scope of SACM

subjectAttr (subjectGroups) .

subject (sl, [subjectGroups (high)]) .

subject (s2, [subjectGroups (high)]) .

subject (s3, [subjectGroups (low) ]) .

objectAttr (objectType) .

objectAttr (high) .

objectAttr (low) .

objectAttr(sl).

objectAttr (s2).

objectAttr (s3).

object (0l, [objectType (file),

objectOwner (sl),high (rd, rp,wd, wp), low, sl (rd, rp, wd, wp),
s2(rp,rd,wd,wp),s3]) .

object (02, [objectType (file), objectOwner (s2),

high(rd, rp,wd,wp), low, sl (rd, rp, wd, wp), s2 (rd, rp,wd, wp),s3]) .
object (03, [objectType (file), objectOwner (s3),
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high(rd, rp),low(rd, rp), sl (rd, rp,wd,wp),s2 (rd, rp),
s3(rd, rp,wd,wp) 1) .

Predicate subjectAttr means a subject security attribute. Attribute subjectGroups
depicts the user membership in the groups. With predicate subject we declare an initial
set of the subjects in the SACM. Predicate subject has two parameters: name of the
subject and its attribute values. With predicate objectAttr we declare a set of the objects
security attributes. The objectType attribute in Prolog list of predicates depicts type
of objects. Attribute objectOwner describes the owner of object. Then there are five
attributes with names of users and groups. With predicate object we declare an initial
set of the objects in SACM. Predicate object has two parameters: name of the object
and its attribute values. Therefore, the 11th line in example 1 can be interpreted as
follows: “the object of o1 is file. The owner of o/ object is s/. High group has a access
permission rights of rp, rd, wd, wp to ol. Low group possesses no access rights to ol.
The subject of s/ has a access rights of rd, rp, wd, wp to ol. The subject of s2 possesses
access rights of rd, rp, wd, wp to ol. The subject of s3 has no access rights to 0/.” In
the same way any securable object of the real system can be specified. To automate
this approach we have developed a special tool, e.g. State Analyzer for Windows, that
investigates the system and forms the system security state.

5.2 Access Control Rules and Security Criteria

Access control rules express the restrictions on a system behavior. The system states
transformation is possible after the access authorized by the system reference moni-
tor(access control mechanism). It checks the authorization possibility against the se-
curity policy requirements represented by access control rules. In a SACM example, a
subject can have the actions of rd, rp, wd or wp. The command rd allows the reading of
directory entries, i.e. listing files and reading data stored in file. The command rp allows
reading of privileges of the file. The command wd allows file creation in the directory.
The command of wp allows modification of the privileges of the file. Such specification
can be called ACR(Access Control Rules)-scope. Example 2 shows ACR-scope which
contains security criteria in SACM. For want of paper space, we do not describe all of
ACR-scope in SPSL.

Example 2. ACR-scope of SACM

testStatel (S,0) :— validSubject (S),isFile (0),canReadFile(S,0),
not (isGroupMember (S, high) ), 0=01,0=02.

testState2 (S,0) :— validSubject (S),isFile (0),canWriteFile (S,
03) ,not (isGroupMember (S, low) ) .

The SPSL source code shown in example 2 above can be divided into two categories:
one is for security policy requirements, the others define predicate prototypes for check-
ing security criteria. TestStatel and TestState2 predicates represent the security criteria
clauses for security policy requirement. TestStatel depicts the “No Read Up” policy.
TestState2 denotes the “No Write Down” policy.



112 II-Gon Kim et al.

The security criteria allows customer or evaluator to check the secure and insecure
states in the security model. The security criteria has the form of constraints which state
the necessary conditions of the secure system state. The system is safe if ;.5 €7 =
true, where cr; is an undesirable state criterion. The notation of ¢r; is the negation of
cr;. In other words, er; which represents unsafe state should not be found in the security
model.

5.3 Safety Evaluation Results Processing

We have SPR input with triple scopes(M3S-scope, ACR-scope, and SSC-scope) writ-
ten in SPSL. Then we have run the executable program for SACM. After the running
procedure, we have got two result files: security logical deduction trace (SRP.TRC) and
evaluation report (SPR.REP). Example 3 represents the output file SPR.REP.

Example 3. SPR.REP of SACM

testStatel (_,_) succeeded
testState2 (_,_) failed

The result for checking festStatel criteria is “succeeded”. It means that there is no
subject in a Low group which can read any object in a High group. The evaluation
verdict for festState2 is “failed”. That means that SACM initial state is unsafe. After
analyzing unsafe state, we found that s/ in a High group has an access right permission
of wd, wp to ol in a Low group. The wrong setting of ACLs for subjects and objects
makes SACM violate its security requirements.

6 Experimental Results

The CPU time and memory usage in the model checking tool are very important, be-
cause they are primary factors which decide on the possibility of the verification of
practical systems with a million reachable states.

We have implemented SPR tool on the Microsoft Windows 2000 and XP platforms.
To reduce the time to verify the security model, SPR tool is optimized in the control
of thread. Because the main thread has no need to monitor the child thread activity, the
thread switching was reduced, and the number of Win32 API calls was decreased, too.
Besides, the control over verification proceeding belongs now to Prolog thread. Thus,
there are less time wasting and system calls, because the thread-control and Prolog-C
data transfer operations became rare. Fig. 3.3 shows the CPU usage of SPR tool.

In Fig.3.3, we find that the quantity of the logical conclusion of Prolog depends
on the CPU time(CPU is Intel Celeron-500 processor). SPR is the logical resolution
machine based on Prolog language. Therefore, the major index of its productivity is
dependent on the number of logical resolutions. Fig.3.4 shows the SPR memory usage.

In Fig.3.4, we find that the dynamic memory of the program is increasing with the
rise of the logical conclusion, and SPR tool needs the minimum heap memory size of
500,000 bytes to be executed. In Fig.3.3 and Fig.3.4, the CPU and memory usage of
SPR are the linear function. It means that SPR tool can verify the safety of practical
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Fig. 6.4. SPR Memory usage

security systems. In practice, we extracted a access control based the security model
from a Windows 2000 system. The code size of M3S scope in the security model is
15963 lines. In the case of the large security model, we confirm that SPR tool enables
to verify the safety of them.

7 Conclusion

In this paper, we address formal specification and verification approach for security
model. Then we illustrate SPR tool which enables to verify safety properties for secu-
rity models, based on the security scopes. SPR tool helps security system’s customers
and evaluators to verify the safety of access control based security systems, because of
these kinds of tools are rare in the security field. In addition, the experimental result
of SPR tool shows that the SPR allows the safety problem resolving in practice. For
future works, we will develop and elaborate the SEW components such as System State
Analyzer, Security Criteria Manager, Security State Explorer to support easy modeling
for system security and easy analysis for safety problems.
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Abstract. The service provider of cryptography solution has to use platform-
dependent cryptographic APIs for developing their security facilities. In contrast,
component developers need platform-independent ways to support their develop-
ment, which have nothing to do with platform’s cryptographic APIs. Therefore,
it is desirable to develop a set of standardized security interfaces to provide ade-
quate security mechanisms according to the required cryptographic concepts such
as confidentiality and integrity, not to the specific cryptographic algorithms. Al-
though we can use well-known SSL implementations such as OpenSSL or JSSE
in the form of embedded functions for applications, they lack of customizing
facilities for component environment. The CBD-based SSL component model
proposed in this paper supports easy discovery and integration for business com-
ponents as well as flexible configuration of cryptographic mechanisms according
to platform’s security policies.

1 Introduction

As information technology through the Internet is exponentially increasing, the secu-
rity issues against the open system are sharply increasing. Recently, a secure sockets
layer(SSL)[1] is generally used as a information security protocol. It provides privacy
over the Internet and allows the client and server applications to communicate in a way
that cannot be eavesdropped. The Eric Young’s OpenSSL and the Sun Microsystems’s
JSSE(java secure socket extension)[2] support a SSL protocol function in the form of
embedded functions for the applications. However, they are not flexible to customize se-
curity facilities for component environment. To support SSL function as an application,
developers who provide cryptography solutions, have to use platform-dependent cryp-
tographic API(application program interface). This means that the developers should
be an expert about security and security API for SSL. Furthermore, SSL protocol has
some problems. First, it doesn’t support APIs-exchange function for component envi-
ronment bacause the SSL protocol supported by the applications is used as the form of
function in the applications. Second, all data, which are transported between a client
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and a server should be encrypted in a established SSL connection[3,4]. For this reason,
it can be occurred overhead by transition of a encryption of data.

To overcome this limitation, we propose the SSL. component model. The SSL com-
ponent is capable of supporting a serutity requirement independantly apart from a cryp-
tographic APIs of the understructure, and is executable according to the platform’s se-
curity policies as the form of security component.

The rest of this paper is organized as follows: Section 2 presents background related
with SSL protocol. Section 3 proposes requirements for SSL Component and Section
4 presents the SSL component model using UML notation[5, 6]. Section 5 shows com-
parisons between the SSL protocol and the SSL component. Section 6 concludes the

paper.

2 Background

The SSL protocol was developed by Netscape Communications Corporation to pro-
vide security and privacy over the Internet. The protocol supports server and client
authentication. The SSL protocol is application independent, allowing protocols like
HTTP(hypertext transfer protocol), FTP(file transfer protocol), and telnet to be layered
on top of it transparently. Still, SSL is optimized for HTTP, for FTP, IPSec might be
preferable. The SSL protocol is able to negotiate encryption keys as well as authenticate
the server before data is exchanged by the higher-level application. The SSL protocol
maintains the security and integrity of the transmission channel by using encryption,
authentication and message authentication codes[7].
The SSL protocol is composed of two layers showed in Fig. 1.

SSL SSL Change SL Al
Handshake | Cipher Spec | SSLAlert HTTP
P Protocol
rolocol Protocol

S5 Record Protocol

e

P

Fig. 2.1. The Structure of SSL Protocol[4]

At the lowest level, layered on top of some reliable transport protocol (e.g., TCP), is
the SSL Record Protocol. The SSL Record Protocol is used for encapsulation of various
higher-level protocols. One such encapsulated protocol, the SSL Handshake Protocol,
allows the server and client to authenticate each other and to negotiate an encryption
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algorithm and cryptographic keys before the application protocol transmits or receives
its first byte of data. One advantage of SSL is that it is application protocol independent.
A higher-level protocol can layer on top of the SSL Protocol transparently[4, 8].

However, as mentioned above, the SSL protocol has some liminations. First, the
SSL protocol performs authentication and encryption on the data, which is transported
between a client and a server. Therefore, it is expected to perform poorly when the size
of data became large. As a result, it can be occurred lowering of efficiency and system
overhead. Second, the SSL protocol has restricted algorithms, which don’t include hash
algorithm such as HAS-160[9] and SEED[10], which were created by Korea. Third,
other countries cannot be supported of SSL protocol(e.g cryptographic key size) due to
place restriction except for USA. Fourth, A number of minor flaws in the protocol and
several new active attacks on SSL are discovered[11]. In this paper, we can overcome
this limitation through the SSL component. More detail description will be presented in
the following sections.

3 The Requirements for the SSL. Component

As mentioned previous section, the SSL protocol do not directly adapt to the require-
ments of the security facilites in distributed environment. The SSL component model
proposed in this paper will help developers of security application design and imple-
ment security facilities. To implement the SSL component, which support confidential-
ity and integrity, the SSL component should meet following requirements:

First, security programming should be required at a minimum in the code of appli-
cation component, which exist or will be developed.

Second, the SSL component should be able to be customized in the form of deploy-
ment unit. At this point, the security properties can be a authentication path to decide a
cipher suite, a certificate and trust.

Third, the message type defined in standard SSL protocol should be supported when
we implement message protocol such as handshake, record protocol and so on.

Fourth, There are connection request of a client or a server, various key exchange
between a client and a server according to the choice of cipher algorithm, request for
certificate, and change of cipher spec.

Fifth, the confidentiality and integrity component, which implement the standard-
ized security component interface, create a MAC or execute encryption in the record
protocol. Therefore, the SSL component should be able to fragment a SSL. message
into transmission units, compress, create and encrypt a MAC, and add record header in
the business component through communication channel.

Sixth, the SSL component have to maintain session state parameter such as ses-
sion id, peer certificate, cipher spec, master secret and so on, and connection state pa-
rameter such as server/client random, write key, write MAC secret, IV (initial vector),
sequence number and so on. Therefore, the SSL component should be implemented
as EJB(enterprise java beans)[12] in the form of session bean, which has session and
connection state.
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4 Design of SSLL Component

In this section, we design the SSL. Component based on CBD(Component-Based De-
velopment) using a usecase diagram for requirement of SSL component, a sequence
diagram for the message flow between SSL components, and a class diagram for the
static view of SSL. Component. The SSL component is capable of working together
with Confidentiality Component and Integrity Component of KISA(Korea Information
Security Agency)[13].

4.1 Usecase Diagram

Usecase diagram models a sequence of interactions between a user(that is, Actor) and
the system, undertaken by the Actor in pursuit of a goal. As mentioned above, we use
the usecase diagram to present requirement of SSL component. Therefore, we show the
interactions between a business componet and the SSL component through the usecase
diagram. Fig. 2 depicts the usecase scenario of SSL component.
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Fig.4.2. The Scenario of SSL. Component

The actor is divided into a user, who uses SSL component service, a caller, who use
s a SSL client service, and a callee, who uses a SSL server service. The Security Service
Start usecase start SSL component and the SSL Service usecase supply SSL protocol.
The SSL Service usecase supports SSL security protocol through Handshake Process,
Record Process, and Session Management.

Fig.3 shows the usecase of Handshake Process.

The Handshake Process usecase is composed of Hello Request, Key Exchange, and
Cipher Spec. Exchange usecase. The Handshake Process constitutes the most complex
part of the SSL component using the Hello Request, Key Exchange, and Cipher Spec
usecases. It is used to initiate a session between the server and the client. Within the
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Fig.4.3. The Usecase of Handshake Process

message of this protocol, various components such as algorithms and keys used for
data encryption are negotiated. Due to this process, it is possible to authenticate the
parties(that is, server and client) to each other and negotiate appropriate parameters of
the session between them.

Fig. 4 shows the usecase of Record Process. The Record Process usecase is com-
posed of MAC generation, Compression, and Encryption usecase.
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Fig.4.4. The Usecase of Record Process

The SSL Record Process is used to transfer any data within a session - both mes-
sages and other SSL protocols (for example the handshake protocol), as well as for any
application data.

4.2 Sequence Diagram

In this paper, we use a sequence diagram to show the message flow between SSL com-
ponents. A Sequence diagram depicts the sequence of actions that occur in a system.
The invocation of methods in each object, and the order in which the invocation occurs
is captured in a Sequence diagram. This makes the Sequence diagram a very useful tool
to easily represent the dynamic behavior of a system.

Fig. 5 shows a sequence diagram of SSL component.



120 Young-Gab Kim et al.

[ -C alet | | :ssgcn.mJ :SSL Seree | | Callse J

+ ekdmeneptontiont) {1
-

L T

St A e ) ‘I-
= Eochierttelio] 3 |

A4 epiballe )

i i s b B P e

A ety erb=qbols ored )

£
. ciier by chagef) |

fob ahiaiape Tt e S e

G S e

3, snangsliphecSoes)

L 11 fnEhed )

4 mc_nsﬁégﬁeg%

HY. 12 are teriitess agal

A<k, FaSies )

eyt Sibdess ag

preie s T

|
|
|
| T
|
|

Fig.4.5. Sequence Diagram of SSL. Component

The user executes a SSL component, Security Service. A component, which wants
a client service becomes a caller component. On the other hand a component, which
wants a server service becomes a callee component. When the caller sends a message,
which requests a SSL connection with remote method invocation(RMI), a SSL service
system is executed. The SSL service in the SSL component executes a handshake pro-
cess, a record process, and session management like the existing SSL protocol.

We summarize the main methods as follows:

— executeApplication() : executes a client component to act an application

— requestSSLConnection() : requests a connection with RMI to create SSL connec-
tion between caller and callee

— startHandShake() : starts handshake protocol to exchange a session key and algo-
rithm

— clientHello() : client calls a server to start handshake protocol

— serverHello() : server calls a client to start handshake protocol

— serverKeyExchange() : server sends server’s public-key

— serverHelloDone() : alarms an end of transmission of hello message

— clientKeyExchange() : client sends a client’s public-key

— changeCipherSpec() : sends a cipher spec.

— finished() : alarms that the protocol finish.

— encryptSSLMessage() : encrypts data using a session key

— decryptSSLMessage() : decrypts data using a session key

— sendData() : sends an encrypted data
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4.3 Class Diagram

In this section, we use the class diagram to describe the static and structural view of SSL
component. Fig 6. depicts the relationship between SSL Component and client-server.
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Fig. 4.6. Sequence Diagram of SSL. Component

As shown above figure, SSL. Component is consist of 4 structual elements: Clien-
tApp, Server, SSLClient and SSLServer componet. In this class diagram, we omit the
Confidentiality Component and the Integrity Component, which support confidentiality
and integrity services using the handshake protocol and the record protocol as sub-
structure of SSL Component.

5 Comparisons

When the solution providers develope the security facilities using the exiting SSL pro-
tocol, they have to use platform-dependent cryptographic APIs. That is, they should be
an expert about security and security API for SSL. If not, it is possible that there are
many vulnerability in the applications. Furthermore, it is expected to perform poorly
when the size of data became large because the SSL protocol performs authentication
and encryption on the data, which is transported between a client and a server. As a
result, it cause the lowering of efficiency and system overhead. Thus, the SSL protocol
has restricted algorithms, which don’t include hash algorithm such as HAS-160 and
SEED.

In contrast, in SSL component environment, developer needs platform-independent
ways to support their development, which have nothing to do with platform’s cryp-
tographic APIs. The SSL component also guarantees the reuse of a component and
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supports a security requirement independently apart from a kind of cryptographic API
in the SSL component platform. Furthermore, it follows the standard of handshake pro-
tocol, record protocol, and so on in SSL protocol. Most of all, the SSL. component can
encrypt partial of data, and support diverse hash algorithm such as HAS-160 and SEED
created by Korea. As a result, we can improve the efficiency of data transaction.

6 Conclusion and Future Work

In this paper, we proposed a SSL component model based on CBD. The SSL component
provides confidentiality and integrity for any component that uses it as a secure commu-
nication facility. We can expect the compatibility of core security services and Return
On Investment(ROI) by reusing the standardized security components. Furthermore, we
can expect the ease of developing business components that require security facilities.
The SSL component model can be applied to develop various component-based security
applications such as e-commerce, e-government, and e-financial systems.
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Abstract. This paper presents a MSB-first exponentiation over GF(2™) using a
cellular automata. The ABZmultiplication is an essential operation in modular
exponentiation, which is the basic computation for most public key crypto sys-
tem. For more efficient exponentiation, it is necessary to develop more fast AB?
multiplier. We propose the AB? multiplier which is much more efficient in terms
of time and space than that of previous researches on other architectures. And
propose a new architecture for exponentiation which is more efficient in terms of
space even though it is the same in terms of time. The proposed architecture of
the exponentiation uses only one AB? multiplier. Since cellular automata archi-
tecture is simple, regular, modular and cascadable, proposed architecture can be
utilized efficiently for the implementation of VLSI.

1 Introduction

With the ever-increasing growth in data communication, the need for security and pri-
vacy has become a basic necessity. Cryptography is an essential requirement for com-
munication privacy or the concealment of data in a data bank.

Finite field, GF(2™), arithmetic is fundamental to the implementation of a num-
ber of modern cryptographic systems[1]. Most public key crypto systems, for example,
the Diffie-Hellman key exchange and ElGamal, are based on a modular exponentiation
computation in a finite field[2][3]. Such modular exponentiation uses a modular mul-
tiplier as the basic structure for implementation. In addition, the Elliptic Curve Crypto
system is based on constant multiplication[4], and the algorithms involved in the imple-
mentation of the multiplier include the LSB-first multiplication algorithm[5], MSB-first
multiplication algorithm[6], and Montgomery algorithm[7].

The purpose of the current paper is to investigate and develop a simple, regular,
modular, and cascadable architecture for the VLSI implementation of exponentiation
on GF(2™). Accordingly, Firstly a new structure is shown which facilitates AB? multi-
plication for effective exponentiation on GF(2™) using a cellular automata[8]. And then
we propose new architecture for exponentiation using proposed AB? multiplier.
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The proposed architecture for exponentiation is much more efficient in terms of
space even though it is the same in terms of time[8].

The remainder of this paper is organized as follows. Chapter 2 outlines the concept
of a cellular automata, while Chapter 3 shows the structure of 4AB? on GF(2™). Chapter
4 introduces the structure of the exponentiation using the AB2 multiplier. Chaper 5
gives the analysis and final conclusions.

2  Cellular Automata

A Cellular Automata(CA) consists of numbers of interconnected cells arranged spa-
tially in a regular manner[8][9]. The next state of a cell depends on the present states
of ’k’ of its neighbors, for a k-neighborhood CA. Example of one rule of a 2-state 3-
neighbor 1-dimensional CA is shown below.

State of neighbor: 111 110 101 100 011 010 001 000
Next state :0 1 0 1 1 0 1 O0(Rule90)

In this case, the state of the neighbors refers to 8 available states of 3 neighbors at
time t. Among the 3 bits used to indicate the states, the middle bit represents the state
of the cell itself, while the left and right bits indicate the states of the left and right
neighbors, respectively. Rule 90 shows the state of the i** cell at time ¢ + 1, where 90
means the 8 bits of the next state shown in a decimal system. It can be seen that, in
rule 90, the state of the cell is renewed in terms of the value resulting from the XOR
of the state values of its left and right neighbors. Therefore, if it is assumed that g;(t)
is the state value of the i** cell at time ¢, rules 90 can be expressed in terms of the
following equation: Rule 90 : ¢;(t + 1) = q(;—1)(t) + q(i41) () where + represents the
XOR computation, g(; 1 represents the left neighbor of ¢;, and ¢(;11) represents the
right neighbor of g;.

3 AB? Multiplication Algorithm[8]

A concrete algorithm for implementing AB? multiplication in this paper is shown in
Algorithm 1.

Algorithm 1 : AB? Multiplication Algorithm
AB? (A(z), B(x), P(x))
Input : A(z), B(z), P(x)
Output : A(z)B(x)? mod P(x)

Step 1: M(z) =0;
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Fig. 3.1. Structure of AB? Multiplication using Cellular Automata.

Step2:fori=m —1to 0

Step3:  M(z)=M(z)? mod P(x) + A(z)b;
The entire structure is shown in Fig. 3.1. Each initial value is as follows:
Initial values of cellular automata : all O
Initial values of A register : A(x) = a(;m—1) i| a2 a1 ao

Initial values of B register : B(2) = b(,,—1) i| b2 b1 bo
Initial values of P register : P(x) = p(m—1) i| pP2p1

As such, it is possible to perform AB? multiplication in m clock cycles using m
cells, 3m — 2 AND gates, m 2-input XOR gates, m — 1 3-input XOR gates, and 1
m — 1-bit register, 2 m-bit registers if the structure shown in Fig. 3.1 is used.

4 MSB-first Exponentiation

The MSB-first exponentiation algorithm using Algorithm 1 is shown in Algorithm 2.
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Fig.4.2. Architecture for MSB-First Exponentiation using AB? Architecture

Algorithm 2 : MSB-frst EXP(A(z), E, P(z))
Input: A(z), E, P(x)
Output : B(z)=A(z)E mod P(z)
Step 1 : if e(;,—1) == 1 then B(®) (z)=A(z)
else B (z)=0
Step2:fori=0tom —2

Step 3 : ife(m_i_2)==1
then BO+1) (2)=AB? (A(z), BY (z),P(z))
else BU+) (2)=AB? (0, BY (), P(z))

The architecture for exponentiation explained this paper is shown in Fig. 3.2.
The proposed structure was much more efficient in terms of space and time when

compared to [9] and [10].
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Structure Systolic Array[9] Proposed Paper
Operation Exponentiation Exponentiation
No. of basic cells (m — 1) AB? multipliers| 1 AB? multipliers*
No. of AND gates 3m?(m — 1) (3m —2)
No. of XOR gates 3m?(m —1) 2-input: m 3-input:(m — 1)
No. of one bit latches 11m? — 13m? + 2m m?2—m —2
No. of MUXex m 2
No. of registers 0 (m —1)bit: 1 mbit:3
Execution Time (Clock Cycles) 3m(m — 1) m?+m — 2

* A B? multipliers : Architecture for A(z)B(x)?modP(x)

Table 1. Comparison of MSB-first Exponentation

5 Conclusions

Many cryptosystems have been developed up to the present time because of the im-
portant of the security and privacy is rapidly increased. The core computation of the
cryptosystems is the exponentiation computation. In addition, the AB2 multiplication
is the basic structure for exponentiation.

This paper presented a new AB? multiplier in which AB? multiplication for effec-
tive exponentiation on GF(2™) can be performed and an architecture for exponentiation
using proposed AB? multiplier. A new architecture for exponentiation using only 1
AB? multiplier proposed in this paper. It can perform the computation of MSB-first
exponentiation in m? 4+ m — 2 cycles. As a result, the proposed architecture for expo-
nentiation is much more efficient in terms of space even though it is the same in terms
of time than that of previous research based on systolic array[9]. Table 1 shows the
comparison of architecture for exponentiation.

We can efficiently implement the division and the inversion architecture based on
the proposed AB? multiplier. Futhermore, proposed architecture for exponentiation can
be efficiently used for implementing public key crypto systems.
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Abstract. This paper? proposes a new LFSR multiplier for modular multiplica-
tion over GF(2™). The multiplier is based on an all one polynomial (AOP). Fenn
et al. proposed two efficient LFSR multipliers, AOPM and MAOPM, using the
property of AOP. AOPM is a multiplier with a result of an extended fields whereas
MAOPM for an ordinary fields. They just focused on the time efficiency to de-
rive MAOPM from AOPM. Therefore, they resulted about twice the hardware
requirement from AOPM. Our main idea is contrast with the Fenn et al.’s idea.
Since there are lots of applications with the strict hardware requirements, we fo-
cused on the area efficiency to derive a multiplier with the ordinary fields result.
Therefore, we get a multiplier with almost the same hardware requirements with
AOPM but with the additional constant clock cycles.

1 Introduction

Finite field GF(2™) arithmetic is fundamental to the implementation of a number of
modern cryptographic systems and schemes of certain cryptographic systems [1,2]. The
performance of elliptic curve cryptosystems is primarily determined by an efficient im-
plementation of the arithmetic operations (addition, multiplication and inversion) in the
underlying finite field [3]. Inversion can be carried out using just two modular multipli-
ers or a power-sum modular architecture. Therefore, to reduce the complexity of elliptic
curve cryptosystems, efficient architectures for a multiplication and a power-sum oper-
ation over GF(2™) are necessary.

An AOP (All One Polynomial) is used for irreducible polynomials to reduce the
complexity of the field operations. Several architectures have already been developed
to construct low complexity bit-serial and bit-parallel multiplications using AOP [6]-
[10]. In 1989, Itoh and Tsujii designed two low complexity multipliers based on AOP
and the irreducible equally spaced polynomial [6]. Since then many bit-parallel low
complexity multipliers have been proposed for cryptographic applications. To increase
computational time, Koc and Sunar designed multipliers with a low complexity which
require m? AND gates and m? — 1 XOR gates [8]. In 1997, Fenn et al. presented two
bit serial multipliers using LFSR (Linear Feedback Shift Register) architecture with a
low area complexity [7]. Liu et al. in [9] and Lee et al. in [10] proposed bit-parallel
AB? multipliers with the systolic architecture, respectively.

This paper proposes a new LFSR multiplier for the modular multiplication over
GF(2™). The multiplier is based on an AOP. Fenn et al. proposed two efficient LFSR

2 This work was supported by the research fund of Kyungil University.
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multipliers, AOPM and MAOPM, using the property of AOP. AOPM is a multiplier with
a result of one dimensional extended fields. Thereby, to get a result with the ordinary
fields element MAOPM is proposed. They just focused on the time efficiency to derive
MAOPM from AOPM. Therefore, they resulted about twice the hardware requirement
from AOPM.

Our main idea is contrast with the Fenn et al.’s idea. Since there are lots of ap-
plications with the strict hardware requirements, we focused on the area efficiency to
derive a multiplier with the ordinary fields result. Therefore, a multiplier is proposed
with almost the same hardware requirement with AOPM’s but requires additional time
clock cycles. The additional clock cycles is not depended on the size of fields but fixed
with a constant. Also, it can be generalized. Our multiplier could be used as a basic
architecture for error-control coding, digital signal processing and cryptography.

2 Preliminaries

The public-key schemes and other applications are based on a modular exponentiation.
Let B and M be elements of GF(2™), the exponentiation of M is then defined as B =
MFP 0<=E <=n,wheren = 2™ — 1. Fora special case, M = «, the exponent E,
which is an integer can be expressed by E = €, 12" L +e,, 22m 2+ ... +e12 +ep.
The exponent also can be represented with a vector representation [€,,—1€m,—2...€1€g].
A popular algorithm for computing the exponentiation is the binary method [5]. Start-
ing from the LSB(Least Significant Bit) of the exponent, the exponentiation of M can
be expressed as ME = Meo (M2 )er (M2 )2 (M2 )em=1 . An algorithm for com-
puting exponentiation is presented as follows :

[Algorithm 1] LSB-first Exponentiation Algorithm.
Input: M, E, f(z)
Output C = M mod f(z)
T=M
if (g ==1)C =TelseC =a°
fori=1tom—1

T =TT mod f(x)

if (e, ==1) C = CT mod f(z)

AR

The exponentiation can be computed using two multipliers or a multiplier and a
squarer. Inversion can be regarded as a special case of the exponentiation because
M1 =mn1L,

A finite field GF(2™) contains 2™ elements that are generated by an irreducible
polynomial of degree m over GF(2). A polynomial f(z) of degree m is said to be
irreducible if the smallest positive integer n for which f(x) divides x™+1isn = 2™ —1
[4]. It has been shown that an AOP is irreducible if and only if m 4+ 1 is a prime and 2
is a generator of the field GF(m + 1) [6]. The values of m for which an AOP of degree
m is irreducible are 2, 4, 10, 12, 18, 28, 36, 52, 58, 60, 66, 82, and 100 for m <= 100.
Let f(z) = 2™ + 2™ ! + ... + = + 1 be an irreducible AOP over GF(2) and « be the
root of f(z). Then any field element a € GF(2™) can be represented by a standard
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basis such as @ = a;,_10™ ! + apm_20™"2 + ... + a1a' + ag, where a; € GF(2) for
0<=1i<=m-—1{l,a,0?% a3, ...,a™ '} is the standard basis of GF(2™). If it is
assumed that {1,a,a?,a3,...,a™} is an extended standard basis, the field element A
can also be represented as A = A,,a™ + A, 10™ 1 + A, 20™ 2 +...+ Ay, where
A =0and A; €GF(2) for 0 <= i <= m. Here, a = A (mod f(z)), where f(z) is
an AOP of degree m, then the coefficients of a are given by a; = A; + A,, (mod 2),
0<=i<=m-—-1.

3 Bit-Serial architecture over GF(2™)

This section gives a bit serial architecture for the modular AB multiplication. A new
modular multiplier is proposed to improve Fenn et al. architecture in [7].

AB multiplication can be efficiently simplified based on using the AOP property of
a™t! =1 as follows

AB = (Apa™ + Ap_10™ 1 + .+ Ag)(Bpma™ + By_1a™ ™ + ..+ By)
= mOém —+ Pm_lam_l + ...+ PO

For example, the multiplication of two elements a = as a® + aza? + a1 + ag and
b = bza® + b2a? + bia + by over GF(2*) where {1,a,a? a3} is a standard basis,
the product of @ and b, p = ab, is given by p = p3a® + paa® + pra + po, p; EGF(2)
for 0 <=1 <= 3. Here we can define two elements A and B over an extended basis
with {1, @, a?,a®,a%} as A = Ao + Aza® + Asa® + Aja + Ap and B = Bya* +
Bsa® + Bya? + Bia + By, where A; = a; for0 <=1 <=3, A4y = 0and B; = b;
for 0 <= 4 <= 3, By = 0. Then the product P = AB ( mod o® + 1) to be the
multiplication shown in Fig. 1.

A= A-l 4‘13 z‘lg Al Au
E g8= 34 33 Bg Bl Bu
AsFy AzBy Aaby 418y AoBa
A8 AsE A5 AE AaE
HAgBy AzBy A.By A B, ApBs
AsBy AzBs A3B; A1 B: A
A8y AzBy AaBy 1By Anby

L O S R T

(a) AB multiplication over GF(24).

The multiplication in Fig. 1 uses the inputs with m bits while the outputs withm+1
bits. It requires an additional modular reduction after it’s operation. Thereby, the inputs
and outputs of the algorithm with m bits are required. To achieve AB multiplication
with m bits result, the operation from Fig. 1 (b) is modified as shown in Fig. 2. The value
Py, which is the most significant bit of result, must be calculated before the computation
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at @ oa? oot o
AaBy AzBy AxBy A1By Aofa
A5y A8 A4 5 4B 445
AaBy A By ApBy AgB; AzHh
415z Al A4S A8 AxSs
HoBy A8y AzBy A8y A5

Fy P Py A Fa

(b) Simplified multiplication using the AOP property.
Fig.1. AB multiplication.

of the multiplication and used at an additional modular reduction as shown in Fig. 2.
The most significant bit of the multiplication result over GF(2*) can be computed as
follows: P4 = A4BO + A3B1 + AQBQ + A1B3 + AOB4.

To be an extended basis elements, the most significant bits of A and B are padded
with 0 to become A4 = 0 and By = 0, respectively. Therefore, the above equation can
be reformed as P4 = A3Bl + A232 + A1B3.

o o ol o
2 r, 7, £,
4By 4By 4B 4B
4B 48 AuB | AE
A18;  HoBy | AdBy  A:E;
AoBs 4By dsBy  AaBs
4By dsBy a8y 1By
3 Fa 2”1 P

Fig.2. Proposed algorithm for AB multiplication.

Example 1 Here, we verify the correctness of the configuration of the multiplica-
tion in Fig. 1. Leta = 2® + z and b = 2 + z + 1 be elements in GF(2*), respectively.
Then p = ab = z° mod f(z), where f(z) = z* + 2% + 2 + z + 1. On the other hand,
we have A = (A4, A3, AQ, Al, Ao) = (0, 1, 07 ]., 0) and B = (B4, B3, Bz, Bl, Bo) =
(0,0,1,1,1). Then the coefficients of P are given by

P,=0x14+1x14+0x1+1x0+0x0=1
P;=1x14+0x1+1x1+0x0+0x0=0
P,=0x141x140x14+0x0+1x0=1
P=1x140x14+40x1+1x0+0x0=1
PP=0x14+0x1+1x1+0x0+1x0=1

Since p; = P; + P4 for 0 <=1 <= 3, it follows that
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p3=P3+P=0+1=1
p2=P2+P4=].+1=0
p1=P1+P4=].+1=0
po=Py+Pi=1+1=0

The result is equal to p = ab = x* mod f(z).

Fenn et al. in [7] proposed a modular multiplier, denoted by MAOPM, based on the
ordinary modular multiplication shown in Fig. 1 and using the property of AOP as a
modulus. Fig. 3 shows MAOPM for example 1 over GF(2*).

by sy
cy

0001111 1 E”Jj—Tﬁ—‘
; = s h
I —)1_“%}:431{}?: s
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e i H—a H—{a H—{a H—fa

[t pads
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Fig.3. Fenn’s MAOPM architecture over GF(2*).

MAOPM requires 2m — 1 clock cycles with a complex hardware architecture. To
get a better structure with a low hardware complexity, we designed a new modular
multiplier using the proposed algorithm in Fig. 2.

B,8,8,5.5,
cel

0000111113 ri ,._l—-
—[q :D]j i, [
" S

Aottt o, ]

Fig.4. Proposed AB multiplier over GF(2*).

Fig. 4 shows the proposed architecture for AB multiplication. The difference be-
tween Fenn’s and the proposed one is the right part of the architecture for an additional
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modular reduction. Total m + 1 clock cycles are needed for data initialization for the
z; and y; registers with input data A and B, respectively. At the last input clock cy-
cle, it computes and outputs the first result. Total m + 1 clock cycles are needed for
the data initialization and computation, respectively, but there exists a common clock
between the last initial clock cycle and the first computation clock cycle. The total re-
sults are output after 2m + 1 clock cycles over GF(2™). A control signal is required to
distinguish the status of input from computation. The sequence of the control signal is
composed of m + 1 ones and m zeroes.

4 Comparison and analysis

Proposed architecture was simulated by Altera’s MAX+PLUSII. Table 1 shows a com-
parison of bit serial arithmetic architectures. Proposed AB multiplier is compared with
a previous systolic architecture by Wang et al. and a LFSR architecture by Fenn et al.
[7,11]. The proposed multiplier has significantly smaller area complexity than previous
architectures. As a result, the proposed arithmetic architecture has a very good hard-
ware complexity than the previous architectures. Therefore, if the architecture is used
for some cryptographic applications, we can get a system with a great hardware com-
plexity.

Table 1. Comparison of bit-serial multipliers.

Item ] Irreducthle | MNumber Hardware
) Function ) Latency )
Circu FPolynomial | of cells Complexity
3m AND
Wang in . 3m XOR
AF Generalized mn 3m
[11] Im MUX
15m Latch
2m-1 AMD
Fenn in 2m-2 HOR
AB AODP e 2m-1
[7] m+2 MUX
2m+2 REG
mt+l AND
Proposed mt+l XOR
o AB ADP m+l amt1
multiplier w3 MU
2mtd REG
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S Conclusions

This paper presented a bit-serial modular multiplier with an irreducible AOP over GF(2™).
Comparisons showed that the proposed architecture had certain advantages with the cir-
cuit complexity over previous architectures. Accordingly, the proposed multiplier can
be used as a kernel circuit for public-key crypto-systems, which requires the operations
of exponentiation, inversion, and division. It is easy to implement VLSI hardware and
use in IC cards as it has a particularly simple architecture.
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Abstract. In this paper, we present an efficient authenticated key agreement pro-
tocol called AKA, which provides mutual authentication and key agreement over
an insecure channel between a client and a server. To increase the efficiency of the
protocol, we further propose a parallelizable authenticated key agreement proto-
col called P-AKA by slightly modifying AKA. In our protocols, a client uses his
own plaintext password to be authenticated from a server, while a server stores
and uses a verifier for the client’s password to authenticate him. The proposed
protocols do not allow an adversary who compromises the server to directly im-
personate the client. In addition, when the client wants to change his own pass-
word, he can freely do it without using other password changing schemes.

1 Introduction

Itis necessary to verify the identities of communicating parties when they initiate a con-
nection. This authentication is usually provided in combination with a key agreement
protocol. Techniques for user authentication are broadly based on one or more of the
following categories: (1) what a user knows, (2) what a user is, or (3) what a user has.
Among them, the first category is the most widely used method due to the advantages
of simplicity, convenience, adaptability, mobility, and less hardware requirement. It re-
quires users only to remember their knowledge like a password. However, traditional
password-based protocols are susceptible to off-line password guessing attacks (called
dictionary attacks) since many users tend to choose memorable passwords of relatively
low entropy.

Since Bellovin and Merrit [1] presented a protocol called EKE for password-based
authentication and key agreement which was resistant to off-line dictionary attacks,
many password-based authenticated key agreement protocols have been proposed [2].

Corresponding author: Kee-Young Yoo (yook@knu.ac.kr)
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Specially, augmented password-based authenticated key agreement schemes (usually
called verifier-based protocol) [3, 4, 5, 6, 7] are suitable for client-server environ-
ment. In the verifier-based protocols, two parties (denoted client and server) use related
password-based values to negotiate one or more shared ephemeral keys such that the
shared keys are established if and only if they use values that correspond to the same
password. Server uses password verification data (usually called verifier) that is derived
from client’s password data. The scheme forces an attacker who steals the password ver-
ification data to further perform a successful brute-force attack in order to masquerade
as client.

In this paper, we present an efficient authenticated key agreement protocol called
AKA, which provides mutual authentication and key agreement over an insecure chan-
nel between a client and a server. To increase the efficiency of the protocol, we further
propose a parallelizable authenticated key agreement protocol called P-AKA by slightly
modifying AKA. In our protocols, a client uses his own plaintext password to be authen-
ticated from a server, while a server stores and uses a verifier for the client;?s password
to authenticate him. The proposed protocols do not allow an adversary who compro-
mises the server to directly impersonate the client. In addition, when the client wants to
change his own password, he can freely do it without using other password changing
schemes.

The remainder of this paper is organized as follows. In section 2, we propose AKA
and P-AKA protocols. In section 3, we show security analysis of our protocols. In sec-
tion 4, we compare them with the related protocols. Finally, section 5 gives our conclu-
sions.

2 The proposed protocols

2.1 Notations

The following notations are used throughout this paper.

2.2 AKA

In this section, we present an efficient authenticated key agreement protocol which pro-
vides mutual authentication and key agreement over an insecure channel between a
client and a server.

In our protocols, the server stores a verifier to verify a client’s password. The verifier
v is the information computed from a password 7. We assume there is an initialization
in which a client, called Alice, chooses a memorable password 7, computes a verifier
v = ¢g"Mid:57) and then sends her identity id and v to a server, called Bob, over a secure
channel for registration. Bob stores (id, v). To enhance the efficiency of the protocol,
v = ghlidS7) where h(-) is a collision-free one-way hash function, and h(id, S, )"
can be pre-computed before the protocol runs. We will omit 'mod p’ from expressions
for simplicity. The steps for the proposed protocol are as follows:

1. Alice chooses a €g Z; and computes X4 = g* @ v. Then, she sends her id and
X 4 to Bob.
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Notation Description

id A client’s identity

S A server’s identity

s A client’s password

v A verifier derived from a client’s password
a,b Session-independent random numbers

p A large prime

g A generator in the cyclic group Z7

h(-) A secure one-way hash function

@ Bit-wise exclusive-OR (XOR) operation
K A session key

[M]x  Encrypt M with key K using symmetric key algorithm

c Inverse of ¢ on Z;

Table 1. Notations

2. After receiving the message from Alice, Bob retrieves v from the verification table,
chooses b €r Z7, and computes Xp = (v)? D v, Kp = (X4 ®v)? = g, and
VB = [id, S, X o]k, in sequence. Then he sends X g and V to Alice.

3. After receiving the message from Bob, Alice computes K 4 = (X p®v)
g%, Then, she decrypts Vg using K 4 and checks whether the decrypted X 4 is
correct. If correct, she is convinced that Bob is authenticated. After that, she com-
putes V4 = [id, S, XB]Kk, and sends it to Bob. When she wants to change her
own password, she chooses a new password 7’ and computes v’ = gh(id’s’ﬂl) and
Va4 =[id, S, Xp,v'|k,, where v' is a new verifier for the new password.

4. After receiving the message from Alice, Bob decrypts V4 using Kp and checks
whether the decrypted X p is correct. If correct, Bob is convinced that Alice is
authenticated. If v' was included in the value V4, Bob updates v with v’ in the
verification table.

5. Finally, Alice and Bob compute a common session key K = h(K 4) = h(Kp) =
h(g®®), respectively.

a-h(id,S,m)~" —

2.3 P-AKA

AKA requires both Alice and Bob to compute a shared Diffie-Hellman key. This might
take a long time due to exponentiations which are time-consuming operations, i.e., per-
haps some seconds on slow device. However, the total execution time of the protocol
can be speeded up if Alice and Bob can compute the time-consuming operations at the
same time. Thus, we present a parallelizable key agreement protocol, called P-AKA,
which can reduce the total execution time of the AKA. The idea to make AKA a paral-
lelizable protocol is simple. P-AKA takes up massage exchange of 4 steps in place of



Efficient Authentication and Key Agreement for Client-Server Environment

Alice(n)
a €r Z;
Xa=g"0v “ﬁf

Bob(id,v)

ber Z;
retrieve v
Xp=@)ov

KBZ(XA@U)ngab

Ka=(Xp® ,U)wh(id,SJr)_l = g XﬂB
decrypt Vp

compare X 4

{ choose 7' }

{,UI — gh(id,SJr’) }

Va = [id, S, X5, {v' k. Ya,

VB = [ld7 ‘5’7 XA]KB

decrypt V4

K = h(Ka4) compare Xp

{ update v with v }

K = h(Kp)

Fig. 2.1. AKA protocol

Alice(n) Bob(id,v)

a €ER Z; ber Z;

Xa=g"dv i(ﬁ)’“ retrieve v

K4 = (Xp @v)ahlidSm™ = gab X2 Xp=@w)lowv

{ choose 7' } Kp=(Xa@v)b =g

{’Ul = gh(id’s’ﬂl) } VB = [id, S, XA]KB

Va=[id,S,XB,{v'} k. Ya, decrypt Va

compare X g

decrypt Vg NECE { update v with v’ }

compare X 4 K = h(Kp)
K = h(K4)

Fig. 2.2. P-AKA protocol
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3 steps to quickly compute the message having influence on execution of the opposite
party and to send it to him. Note that the definitions of all parameters are identical to

AKA. The P-AKA protocol is given in Figure 2.
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3 Security Analysis

For considering the security of our protocol, suppose that all communications among
interacting parties are under control of an adversary called Eve as in [8]. That is, Eve can
read the messages produced by the parties, provide her own messages to them, modify,
delay, or replay them, and make new instances of any parties. The security of our proto-
cols is based on the secure one-way hash function, the secure symmetric key algorithm,
the difficulty of the discrete logarithm problem and the Diffie-Hellman problem [9]. We
merely describes the security of P-AKA because AKA is almost similar with P-AKA.

1. Suppose that Eve sent a forged message X 4 to Bob to masquerade Alice and re-
ceived a response message X g from Bob. However, Eve cannot compute K 4 equal
to Kp due to not knowing Alice’s password 7. Thus, Bob can detect this mas-
querading attack when he decrypts V4 using Kp and verifies the correctness of
XB.

2. Suppose that Eve received a message X 4 from Alice to masquerade Bob. However,
Eve cannot compute K p equal to K 4 due to not knowing the verifier v for Alice’s
password 7. Thus, Alice can detect this masquerading attack when he decrypts Vg
using K 4 and verifies the correctness of X 4.

3. Off-line password guessing attack succeeds when there are pieces of information in
communications that can be used to verify the correctness of the guessed password.
Eve first eavesdrops the transmitted messages, X 4, Xp, V4, and Vg, guesses a
password candidate 7', and then tries to verify her guess by using the information.
However, she has no way to verify her guess using them. Also, we consider the
password guessing attack through active attacks and divide it into two cases. If
Eve masquerades Alice, she may know a and X 4 = g® made by herself and Xp =
(v)® @ v sent from Bob. However, she cannot confirm the correctness of the guessed
password due to not knowing b. If Eve masquerades Bob, she may know b and
Xp = g° by herself and X4 = ¢® ® v and Va4 = [id, S, gb](g,,@v)a.h(id,s,,,)-l sent
from Alice. However, she cannot confirm the correctness of the guessed password
due to not knowing a. Therefore, P-AKA is secure against the off-line password
guessing attack.

4. Perfect forward secrecy is provided in the situation that even though the client’s
password is compromised, Eve cannot derive previous session keys. Suppose that
Eve knows the password 7. She tries to find previous session keys from the pass-
word and the information collected by eavesdropping in past communication ses-
sions, i.e., m, X4, XB, Va4, and V. However, Eve has no way to compute K =
h(g®®) from the values. Therefore, P-AKA provides the property of perfect for-
ward secrecy.

5. To be secure against the Denning-Sacco attack, the protocol should be designed
such that even though a session key is compromised, Eve cannot compute the pass-
word and confirm the correctness of the guessed password. Suppose that Eve knows
a session key h(g?%). Eve tries to compute the password or confirm the correctness
of the guessed password from the session key and the information collected by
eavesdropping in past communication sessions, i.e., h(g“b), Xa,XB,Va,and Vp.
However, Eve has no way to do them from the values. Therefore, P-AKA is secure
against the Denning-Sacco attack.
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| A-EKE|B-SPEKE|SRP|AMP|PAK-X|AKA|P-AKA|

Message exchange 5 4 4 | 4 3 3

Random number

|Alice
Exponentiation|Bob
Parallel
hash function |Alice
Bob

Symmetric enc./dec.

A=A ND
AN W[W
S|lW|h|[r|W| W

o|lh||w|wW|]| N
olwn|wn|oo| A | w
A== RN
A== W

Table 2. Comparison with other related protocols

6. The protocol being secure against stolen-verifier attack means Eve not being able
to pose as a client after stealing a verifier of the client from the server. In P-AKA,
if Eve gains the verification table, she may knows Alice;j?s verifier v = gh(id:5m)
However, she cannot directly pose as Alice because of not knowing h(id, S, 7).
Therefore, P-AKA is secure against server compromise.

4 Efficiency Analysis

In this section, the protocol protocols are compared to the existing well-known protocols
such as PAK-X[3], A-EKE[4], AMP[5], B-SPEKE[6], and SRP[7] which were submit-
ted to IEEE 1363.2 [2]. Performance of key agreement protocols is usually approxi-
mated in terms of communication and computation loads. We compare them regarding
with several efficiency factors such as the number of message exchanges, random num-
bers, exponentiations, hash functions, and symmetric encryption/decryption.

For the measure of total execution time, we will consider modular exponentia-
tion, which is the most time-consuming operation in key agreement protocols. We use
E(Alice:Bob) which means parallel execution for modular exponentiation between both
parties. That is, one party is able to compute something while he or she is waiting
for the other party’s reply. AKA has 4E, E(g%: -), E(-: (v)?), E(-: (X4 © v)?), and
E(Xg ® v)“'h(id’s’”)_lz -), while P-AKA has 3E, that is, E(g%: -), E(-: (v)?), and
E(Xp @ v)2h(id:Sm ™" (X4 @ v)b). Here ;?-? means no exponentiation.

Table 2 shows that AKA and P-AKA are very efficient compared with other key
agreement protocols.

5 Conclusion

The password-based authentication protocols are the most widely used because of its
advantages of simplicity, convenience, adaptability, mobility, and less hardware require-
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ment. Users just need to remember simple information like a password. This paper pro-
posed two efficient password-based authenticated key agreement protocols called AKA
and P-AKA. They not only are secure against various attacks, and but also provides
perfect forward secrecy. In addition, the proposed protocols are very efficient compared
with other password-based key agreement protocols. In particular, when a client wants
to change his own password, he can freely do it without using other password changing
schemes.
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Abstract. This paper implements a new digit-serial systolic array for the com-
putation of AB? multiplication and a new digit-serial systolic divider using the
proposed systolic AB? multiplier in GF(2™) with the standard basis representa-
tion. The proposed systolic arrays have a significant improvement in reducing the
AT complexity compared with previous architecture, although have one control
signal. Furthermore, these arrays have regularity, modularity, and unidirectional
data flow, and thus are well suited to VLSI implementation.

1 Introduction

The performance of an elliptic curve cryptography (ECC) is primarily determined by the
efficient realization of the arithmetic operations in the underlying finite fields GF'(2™).
The design of circuits with high performance computing (HPC) to perform finite fields
arithmetic operations is a matter of great practical concern. The important operations
involved in finite fields GF(2™) are addition, multiplication, and division. Addition is
very simple circuit if the field elements are presented in a polynomial form. However,
the other operations are all much more complex. Therefore, coprocessors for ECC are
most frequently designed to accelerate the field multiplication and division.

Numerous architectures for the arithmetic operations in GF'(2™) have been re-
ported in previous literature [ 1-7]. The conventional approaches for computing division
in GF(2™) include the table lookup method, Euclid’s algorithm, and Fermat’s theorem
based method. First, table lookup method is good for small values of m, but its high
area complexity makes it difficult for VLSI implementation when m becomes large.
Second, the Euclid’s algorithm finds the greatest common divisor (GCD) of two poly-
nomials. Although this algorithm can be easily implemented using software, it would
be too slow for time critical applications. Finally, Fermat’s theorem based method is
using successive squaring and multiplication such as A/B = AB~! = AB*" 2 =
A(B(B(B---B(B(B)?)?---)?)?)2. This method requires squaring and multiplication
of (m — 1) times, respectively. Therefore, the division and inversion operation can be
performed by the iterative application of AB? multiplication.

A systolic arrays for performing the AB? multiplication using standard basis repre-
sentation in GF'(2™) have been proposed [3, 5-7]. Note that the systolic designs in [3]



144 W. H. Lee and K. Y. Yoo

and [5] have the bi-directional data flow, while the circuits in [6] and [7] have the uni-
directional data flow. In this paper, we focus on the digit-serial systolic implementation
of AB? multiplication and division in GF(2™) with the standard basis representation.

2 AB? Multiplication Algorithm in GF (2™)

Let A(z) and B(z) be elements in GF'(2™) with a primitive polynomial G(z) of degree
m, where

A@) = X7 airt = amo1 3™ amoa™ 2 4z +ag (21
B(z) = X0 bitt = bpy12™ A by o™ 2 4k bz + by (2.2)
G(z) =z™+ Z;":BI gixt = 2™ 4 g_12™ L+ -+ g1 + go. (2.3)

The coefficients a;, b;, and g; are the binary digits 0 and 1. As you know, the elements
in GF(2™) can be represented by bit string of length m. For example, A(x) can be

represented by bit string A = (G—1, @m—2,*** ,01,00)-
Define
P(z) = A(2)B?(z) mod G(z) = pm_12™ L + -- -+ p12 + po. 2.4)

Since B2(z) = bp_122™ V) 4 by 02?2 4 ... 4 b2 + by = B(2?), we can
derive

P(z) =

P

(z)B(z*) mod G(x)

3

A(z)b;z** mod G(x)

I
(]

-1

L

A(a:)bia:%] mod G(z) + A(z)bg

s
I

I
™

3

™

A(x)bixz(il)] z* mod G(z) + A(z)bo
1
—1

1
5

= [ - [[A(@)bm-1]2* mod G(z) + A(x)bm—_2]z* mod G(z) +
-oo + A(2)b1]2* mod G(z) + A(x)by. (2.5)

3

A(az)biw2(i_1)] + A(x)bl] z? mod G(z) + A(z)bo

8Ny

3

A(m)biw2(i2)] 2> mod G(z) + A(m)bl] 7> mod G(z) + A(x)bo

=2
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Further expanding the last summations over ¢ in (5), we obtain the following recursion
for P(x):

Ti(z) = T;_1(z)z® mod G(z) + A(2)bm_i, (2<i<m). (2.6)
where Ty (z) = A(x)by,—1, P(z) = T (z), and
Ti(%) = tim 1™ " + tim 2™ 2+ -+ LT+ tig. 2.7

Substituting (7) into (6) yields
Tz(u’(}) = ti_lvm_lmm—kl mod G(.’L‘) + ti_17m_2$m mod G(.’L‘)
R ti—1,1373 + tz'—l,oﬂf2 + A(2)bm—s, 2<

+
i<m). (2.8)
It is also easy to check that

2™ mod G(z) = 12" + gm 2™ + -+ 17 + go (2.9)
2™ mod G(2) = gm_12™ + gm_ox™ 1+ - + g12% + gox
= (gm-19m-1 + gm—2)z™ "
4 (gm-191 + 90)% + gm—19o0- (2.10)
Let 2™ mod G(z) = g(x) and ™! mod G(x) = ¢'(x). Then with (9) and (10),
we can rewrite the recursion given in (8) as follows:
Ti(z) = ti—1,m—19' (%) + ti—1,m—29(x) +
st b2+t 02 + A()bm—i, (2<i<m). (2.11)
Based on (11), the AB? multiplication can be represented to the bit-wise recurrence
equation as following algorithm:
Bit Level AB? Multiplication Algorithm
Input: A(z), B(x), G(x)
Output: P(z) = Tyy(z) = A(z)B?(z) mod G(z)

Initial: (g,,_1," ", 90) = (9m-19m—1 ® gm-3,""* , gm—-190)
l.for: =1tomdo
2. forj=1tomdo

if i = 1 then
tim—j = Qm—jbm—_s;
else

if ) = m — 1 or m then
tim—j = (@m—j!""bm ) ®(ti-1,m 1179, )®ti—1,m—2!7gm—5);
else
tim—j = ti—1,m—j—2 D (am_j!‘?bm_i)
O(ti-1,m—1!7gp— ;) )B(ti-1,m—2!7gm—;);

XN bW

3 Digit-Serial Systolic Array Implementation

The dependence graph (DG) in GF(2™), obtained from the recurrence equation of
above bit level AB? multiplication algorithm is shown in Fig. 1, where m x m basic
nodes are used (m = 4). The cell structures of DG are shown in Fig. 2. In DG, the node
means the point at which the computation occurs and the edge means the flow of data.
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Fig.3.1. The DG in GF(2™), where m = 4.
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3.1 Digit-Serial Systolic A B2 Multiplier

If we combine L adjacent basic cells in the horizontal direction to form a new cell, the
DG can be modified as shown in Fig. 3, where L is the digit size (2 < L <m —1).In
other words, each row of the DG is partitioned into N = [m/ L] regions by combining
only L basic cells in a horizontal direction together, and thus, a new modified DG
consists of m x N digit cells.

4385 8,0, 85 8, a8’y 8 4,8% &

(1,3)& (1, 4)

vy

YyYvYyYvy

3, 1)&@3,2)

L» YYvvyyy
4 1)&4,2)

by—»|

(3,3)& (3, 4) J

¥ A4

A4 A4

“4,3)& 4,4)

/w YYVYVYY

<
43 ()1, () ALY

Fig. 3.3. A modified DG shown in Fig. 1, where L = 2.

By projecting the DG consists of m x N digit cells in an east direction following
the projection procedure and cut-set systolization [8, 9], a new systolic AB? multiplier
can be easily derived. Fig. 4 shows the digit-serial systolic array for A B? multiplication
in GF(2™), where m = 4 and L = 2. It consists of m processing elements (PEs). The
PE structures of Fig. 4 are shown in Fig. 5. The black square on the data flow means the
buffer for one time step delay. As shown in Fig. 3, since the values (b;, ti,m—1, ti,m—2)
broadcasting to all the cells in each row exist, 2-to-1 multiplexers (MUX) and one-bit
latches are added for this. These extra circuitry operations are controlled by a control
signal (ctl). The sequence of control signal is 1! and 0~ —1, which means one bit of 1
and (N — 1) bits of 0. The loading operation of the values occurs when the ctl is in
logic 1.
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Fig. 3.4. The digit-serial systolic A B2 multiplier in GF(2%).
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Hamiltonian Mechanics 149

3.2 Digit-Serial Systolic Divider

Assume that A, B, and D are three elements in GF(2™), division is performed using
multiplication and multiplicative inverse, that is, D = A/B = AB 1 Inverse can be
regarded as a special case of exponentiation because
B! = B2"~2 = (B(B(B--- B(B(B)?)?---)?)2)?
Therefore, division can be computed as following algorithm:
Division Algorithm

Input: A, B
Output: D = A/B = AB~!
Initial: D = B
l.fori =1tom — 2 do
2. D = BD?;
3.D = AD?;

Here the result D = A/B and the AB? multiplication can be used to compute step
2 and 3 operations. When A = 1, the algorithm realizes the inversion operation B~1.

The above division algorithm can be implemented using digit-serial systolic AB?
multiplier of Fig. 4, as shown in Fig. 6. This divider consists of (m—1) AB? multipliers
for GF(2™) and some delay elements, where m = 4 and L = 2.

[ ] [ ] ™ dy d,
H = P-d, d,
8y &> TP PP
81 83— Digit-Serial "[*[—|Digit-Serial [|*|—*|Digit-Serial
88— Systolic ] > Systolic [] »  Systolic
8185 AB* > AB> [T AB?
Multiplier (-pp— Multiplier —» Multiplier
(L=2) (e (L=2) (L=2)
L

Fig. 3.6. The digit-serial systolic divider in GF'(2™), where m = 4 and L = 2.

3.3 Analysis

The proposed systolic arrays were described in VHDL with ALTERA MAX PLUS-II
tool, and then were simulated using FLEX 10k devices of the ALTERA family for its
computation time and correctness.

Comparisons with the characteristics of the systolic architectures described by Wang
et al. [6] and Lee et al. [7] in GF'(2™) are listed in Table 1. In reality, the architecture
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of [6] has an I/O format with a bit-parallel-input bit-parallel-output. Whereas, the pro-
posed systolic array and the architecture of [7] have an I/O format with a digit-serial-
input digit-serial-output.

Table 1. The comparison of three systolic arrays for AB? multiplication in GF(2™)

Items Wang et al. [6] Leeetal. [7] Proposed (Fig. 4)
I/0O format Bit-parallel Digit-serial Digit-serial
Num. of input pin ™ 5L +1 4L+ 1
Area complexity
2-input AND 3m? 3mL (3m —2)L
4-input XOR m? mL (m—1)L
1-bit Latch 8.5m’ 4mL+8m+ N  9mL +4m —6L —3
2-to-1 MUX 0 3m 3m —2
Latency 2m +m/2 (L+2)N 2m+ N -1
Critical path Tanp2 + Txora + Tr L(Tanp2 + Txor4) Tanp2 + Txora + TL
+Tmux2 +TL
Control signals 0 1 1

In order to compare the performance of the proposed systolic array with existing
architectures, the following assumptions in [10] are made: 1) 4-input gate was con-
structed using three 2-input XOR gates. 2) T'xogrs = 4.2, Axorz = 14, Tanp2 = 2.4,
AAND2 = 6, TMUX2 = 38, AMUX2 = ].4, TL = ]..4, AL = 8, where TGATE2 and
AgaTE2 are the time and area requirements of a 2-input gate, 71, and Ay, are the de-
lay and area of 1-bit latch and, respectively. It show the cost of each gate in terms of
the number of transistors it would require when constructed with CMOS technology
and the normalized delay(nanosecond; ns) of signal propagation through that particular
gate. The area (A), the computation time (7"), and the area-time (AT') complexity of
the proposed systolic array for GF(2™) are as follows:

A= (132mL — 102L + 74m — 52), T = 12.2(2m + N — 1)
AT = (132mL — 102L + 74m — 52)(24.4m + 122N —12.2).  (3.12)

On the other hand, the A, T', and AT complexity of the systolic arrays of references [6]
and [7] are as follows:

A= (18 4+ 424 68)m? = 128m?, T = 12.2(2m + m/2) = 30.5m

AT = (128m?)(30.5m) = 3904m? (3.13)
A = (92L* + 106L + 8)N, T = (10.8L + 5.2)(L + 2)N

AT = (993.6m>L? + 3610.4m>L + 3884m? + 1316.8mN + 83.2N?). (3.14)
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For example, when m = 160 and L = 2, the AT complexity of the proposed digit-serial
systolic multiplier can be reduced approximately by 98.35% and 34.56% than those of
Wang et al. [6] and Lee et al. [7], respectively.

Table 2 gives some comparisons of the proposed digit-serial systolic divider with
the related systolic dividers described in [5] and [6]. As shown in Table 2, the proposed
systolic divider has less AT complexity than the existing systolic arrays for division in
GF(2™), although it has one control signal.

Table 2. The comparison of three systolic arrays for division in GF'(2™)

Items Wei [5] Wang et al. [6] Proposed (Fig. 6)
I/0 format Bit-parallel Bit-parallel Digit-serial
Data flow Bi-directional Unidirectional Unidirectional

Area complexity

2-input AND 3m> — 3m? 3m? — 3m? (3m?* —5m +2)L

2-input XOR m® —m? 0 0

3-input XOR m® —m? 0 0

4-input XOR 0 m3 —m? (m? —2m +1)L

2-to-1 MUX 0 0 3m(m — 1)

1-bit Latch 16m?® — 20m> 10.5m® — 6m? — 3.5m (11m?> — 20m + 8)L

+4m? —6m +1

Latency 2m? —m 2m? — 1.5m 2m? —3m+ N +1
Critical path  Tanp2 + Txor3s +Tr Tanp2 + Txora +To Tanp2 + Txora + T
AT complexity o(m®) o(m®) o(m*)
Control signal 0 0 1

4 Conclusion

This paper proposed efficient digit-serial systolic arrays for AB? multiplication and di-
vision in GF(2™) with the standard basis representation. The proposed systolic arrays
have a significant improvement in reducing the AT complexity compared with previous
architecture, although they have one control signal. They have regularity, modularity,
and unidirectional data flow, and thus are well suited to VLSI implementation. Accord-
ingly, the proposed arrays could be used in cryptographic hardware and IC cards.
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Abstract. A VLSI implementation of a parallel co-processor for ultra-fast line
drawing is presented. The specific designed architecture computes a parallel line
drawing algorithm optimized for its hardware implementation. It allows writing
simultaneously in just one clock cycle all the pixels that approximate a given
straight segment. This co-processor also provides read/write random accesses
and raster outputs in order to display the data serially in a graphic device. A
256x256 eight-bit pixel processor array has been implemented using 0.35pm
standard cells. An exhaustive test and simulation results upon this design have
demonstrated that a rate of 50M segments per second can be drawn, indepen-
dently of their length and orientation.

1 Introduction

The problem of line drawing is how to select those pixels that provide the best ap-
proximation to the segment. Depending on the type of drawing, the best approximation
is not always that which has the most rectilinear appearance. When drawing polygonal
shapes the endpoints of the segments are more important to form closed figures. In other
cases the desired property is constant density, regardless of the length and the angle. In
interactive applications, speed is basic for drawing segments.

Some problems have been amply studied such as the closeness pixel measurements
for a subjective assumption, the single and multiple-pixel thickness or the differences
between edges and lines [1]. Today we have at our disposal a series of algorithms known
generically as line-drawing algorithms. The standard use the incremental techniques
[2], which involve iterative computation, obtaining the coordinates of each point that
approximates the straight-line segment from beginning to end.

Two of the most widely known of these algorithms are the Digital Differential An-
alyzer (DDA) [2] and the Bresenham algorithm [3]. The former works incrementing
simultaneously = and y coordinates by small steps proportionally to the slope of de
segment and it generates addressable points. The latter increments at each iteration the
coordinate of most variation of the line and decides, on the basis of the accumulated
error between the pixel and the real segment, whether to also increment the coordi-
nate of least variation. The computational cost is therefore proportional to the number
of pixels in each segment. The problem appears in interactive applications where the
number of segments to be dealt with is very large, as is the case in most related pro-
cesses in graphics and computer vision. Some authors have proposed speeding up this
process by N-step Incremental Straight-line Algorithms that select more than one pixel
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per iteration [4],[5]. Other authors have used massively parallel machines in two ways:.
Distributing different vectors on different processors ( object approach) that has the
problem that the processors must share the memory [6] or using N processors to draw
simultaneously M points of the same vector ( image approach) [7][8]. In this last case
new parallel algorithms are required and each processor selects its points in sequential
mode. More recently it has been suggested to use the length and direction statistical
distribution the lines to speed up the process [9].

From another point of view some authors have proposed to implement logic en-
hanced memories to accelerate graphics rasteritzation. Efficient special purpose graph-
ics system architecture known as “Pixel-planes” has been proposed [10]. This architec-
ture processes simultaneously, for all pixel, linear expressions of the form

F(x,y)=Ax+By+C
in a binary tree multiplier, and each pixel consists of an array of memory elements and
a small processor that performs sequentially local operations to the pixel. A great va-
riety of graphics algorithms can be implemented for this architecture describing pixel
operations in terms of linear expressions [11]. This method yields a considerable im-
provement of frame buffer bandwidth. [12].

Obviously this architecture is able to draw straight lines. Nevertheless, pixel iden-
tification for the A, B, C coefficients is sequential because the pixel local processor is
one bit processor.

In an attempt to provide an improvement in line drawing speed, we propose to
accelerate the process of obtaining the pixels to be drawn and to shorten the display
memory write time. In order to achieve these goals we aim to:

1. Design, test and simulate an implementable ASIC co-processor capable of calcu-
lating and memorizing in parallel the pixels that approximate the straight-line seg-
ments.

2. Straight-line Rasterization.

2 Line-drawing modeling

Consider a segment with positive slope 0 < m < 1, where the coordinate of most
variation is the z coordinate, as shown in Figure 1.
It can be written as :

Ay =m * (z; — 1) 2.1

Where m is the slope, (z; — 1) and Ayare the increments, from the starting point
to any point (z;,y;) in the segment on the z and y coordinates respectively

In the discrete plane, in order to find the pixels that approximate the segment we
can use equation (1), modified as follows:

AYseqg = Round (m * (z; — 21)) (2.2)

Where now (z; — 1) is the increment in the axis of z coordinates with x;, z1
integers. Consequently, Ay, is the increment in the axis of y coordinates from the
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starting point to any point (2;,y;) in the segment. Note that this increment Ay, can
estimate the real increment Ay with an absolute maximum error of half-pixel as shown
in Fig.1.

On an other hand for any column of pixels in the discrete plane only one pixel
(x;,y;) satisfies the expression:

Ayseg =Y — N (2.3)

If the slope is negative and falls within—1 < m < 0, the coordinate of most varia-
tion continues to be the z coordinate and the expressions remains unchanged.

(x2,12)

N

b |ay=meox)

™

S---q--1-----}F-

Fig. 2.1. Discretization error

In contrast, for slopes of —co < m < —land 1 < m < oo, the coordinate of most
variation becomes the y coordinate. This introduces a symmetrical case:

Azgeq = Round ((y; — y1)/m) (2.4)
Where Az, is the increment in the axis of 2 coordinates from the starting point to any

point (z;,y;) in the segment and for any row of pixels in the discrete plane only one
pixel (z;,y;) satisfies the expression:

ALgeg = ; — 21 (2.5)
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3 A parallel line-drawing algorithm

This expression (3) and (5) enables a test to be implemented that determines whether
any pixel (z;,y;)belongs to the set of pixels that approximate the segment. Clearly, this
test is very efficient if we dispose multiprocessor architecture with pixel processors. Be-
low we present the above idea formalized into an algorithm in pseudocode that includes
all the cases that may occur in line drawing.

The independence between the pixel tasks allows the simultaneous activation of all
pixels that approximate the segment.

Proc Non_inc_ld (x1,y1, T2, Y2,:integer)
var
CincIN1, Rinc[M], 4,7 : integer;
m: double;
begin
m = (y2 — —y1)/(x2 — —x1) ; // Slope
if (-1 <m < I ) then begin
for all Column iin [0... N]/Column tasks
Cinelil= Round ( m*(i - x1)); (6)
for all Row j in [0... M)/ Row tasks
Rineljl=j —y1; (7)
end
else begin
for all Column iin [0... N}/ Column tasks
Cinclil=1 — 15 (8)
for all Row j in [0... M)/ Row tasks
Rinclj1=Round(( j - y1)/m); 9)
end
Wait tasks(); // Waiting end of Column/Row tasks
for all Pixels(i,j) in [O... N][O. .. M] //Pixels task
if Cinelt]=Rinc[7] then begin
SetPixel (i, j);
end
end

4 Parallel architecture design

In the above section we saw that if we have the increments of row R;,c.and column
Cine, we can determine whether any pixel belongs to the set of pixels that approximate a
segment, by means of a simple comparison. We can therefore design a matrix of NV x M
pixel processor cells, which will use these data to simultaneously determine this set of
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pixels. This procedure will only be justifiable if the architecture of each processor cell
is small enough to be replicated N x M times, and this depends on the resolution of
the image.

4.1 Row and column calculation units

In order to implement the hardware design of the algorithm we need the units that
compute the expressions (6),(7),(8),(9)that appear in the presented parallel line-drawing
algorithm. The evaluation of the expressions (7) and (8) can be obtained with a simple
substractor and the optimum way to obtaining (6) and (9) is by means of a lookup table
(LUT). It can be note that we can take advantage of the fact that the row jor column ¢
are known values for each unit (Fig. 2b). Also note that, according to the algorithm, we
have two symmetrical cases depending on the slope of the segment to be drawn. The
calculation units can select the appropriate operations by means of a 2:1 multiplexer
that discriminate between these two cases. Nevertheless we have to keep in mind that
the capacity of the LUT’s may compromise the design, since they may be replicated
N + M times.

The first problem is that the number of slopes m in the discrete plane is very large
O(N?) [13]. In order to made a feasible implementation we discretize the possible
segment angle o, where o= tg~'m. Based on a perceptual assumption we limit the
angle error resolution to Aa=0.1°, that means we need 11 bits to code a.

Another problem is the large number of input bits in the LUT’s. We can obtain a
input reduction by using the following equations, where er is the approximation error.

Cine [i] = Round(m * (i — 21)) = Round(tga * i) + Round(tga * x1) + er

Rinc[j ] = Round ((j — y1)/tga) = Round (j/ga) + Round (y1/tga) + er

Note that erp,q,=1 Or erp.;=-1 according to the definition of Round function. This
means that the algorithm will decide to increment the coordinate of least variation one
pixel before or after it would have done using the calculation without the above decom-
position.

As the error is not accumulative this can only change the approximation of certain
specific lines, and both types of calculation yield valid approximations because they
respect the slope.

Thus, it can be observed that the products 7g a*x1 and y; /g « are independent of
the column and row, and consequently could be calculated for all the columns and row
in a common units, out of the calculation units.

Thus, Fig. 2(a) shows the common calculation unit for all the columns (CC), and
Fig. 2(b) the dedicated calculation units of each column (DC).

It can be appreciated that the LUT of de DCi unit has been simplified by reducing
the inputs to only the aslope a. The discretitation of « to 11bits makes feasible the
design and implementation of the processor we are proposing. The same calculations
and reasoning can be applied to obtain the common calculation unit for all the rows
(CR) and the dedicated calculation units of each row (DRi)
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Fig. 4.2. Decomposed calculation unit (a) Common column calculation.(CC) (b) Dedi-
cated Column calculation.(DC)

4.2 Pixel -processor design

As the figure 3 shows, the basic cell consists of a comparator that verifies equality
between the row and column increments and a register for storing the color word. Such
simple pixel processing makes a hardware implementation feasible.

R. () C. (i) /Wr Mode /Rd N|n| =
nc n 2 O_ &
v g =i
Yy - _| =
oK - A EIRe)
|2
Comparator — S| c
S8
L) g
P. wx__/
] ‘
Clk E IN Fw
Register  out
Reset R
Raster Row J ‘
Row j

Fig. 4.3. Pixel cell with the access logic

The architecture of the pixel processor we have considered up to now performs
writing operations automatically as a result of the processing of straight-line segments,
on reception of the signal ok from the pixel cell comparator. To avoid limiting the per-
formance of this design we have also provided it with the possibility of read or write
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accesses in random positions, thus allowing values resulting from other graphic pro-
cesses to be written or read. We have also given it an output that is oriented toward
dumping over a raster-type device, requiring a dual port design in which the display
output signals of a selected row cells are serialized in a shift register synchronized by
the video signals (Fig. 4).

Thus, in order to differentiate between the read/write random access operations and
the segment processing operations we have incorporated the signal Mode in addition to
the usual signals Rd and Wr .

Internal buses. In order to distribute the results of the calculation units we have to
provide the design with Nhorizontal buses of width loga(N) and M vertical buses of
width logs (M) with an additional bit of sign

The dual port design of the pixel cell imposes the need to have two types of tri-state
data buses: input/output and display output. These two types of buses, of width equal to
the size of the color word, descend each column. The difference between them lies in
the fact that the input/output buses are bi-directional and come together to form a single
I/O bus (color_in/out), whereas the raster bus is exclusively for output and serves to
load the shift register that serializes the data toward the output (raster_out).

Note that the number of lines crossing the matrix vertically and horizontally is large
and directly proportional to the resolution of the image (NxM) and the color depth. The
limitations of the VLSI technologies will determine these parameters. In the Section on
VLSI design, we will discuss possible solutions to these problems.

x2
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Fig. 4.4. Overall architecture: Pixel selection, calculation units, length delimiters, raster
output

Pixel selection. To allow access to the matrix we have introduced the row and col-
umn decoders (Fig.4) that provide the lines Row j, Column i as shown in Fig. 3. The
selected cell will connect the input and output of its register to the tri-state input/output
bus ( color_in/out, Fig.3), thus making it possible to write or read the color word, ac-
cording to whether we perform a random write or read operation.
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In order to be able to dump the contents into a raster device, it was necessary to
design a sequential logic providing new row selection lines. This logic also uses the
video synchronization signals, as the shift register. Fig. 3 shows a block diagram with
these new elements.

4.3 Length of segment

With regard to the processing of straight-line segments, we still fall short of the initial
specifications, since the design as it now stands fails to delimit the segment defined by
its endpoints; rather, it draws the line that passes through them. In order to delimit the
length of the segment, we introduce some new units which we will refer to as delim-
iters. For ease of design we have prepared one delimiter unit for rows and another for
columns. Given the beginning and end coordinates of the segment to be drawn, they
implement, for each row or column, a combinatorial function which will disable those
pixel cells that do not feature among the columns and rows of the endpoints, thus pre-
venting their registers from loading the color word.

As random access operations and straight-line segment processing are exclusive in
time, we will use the row and column selection lines for this function. Consequently,
the delimiting and decoding units will share these lines multiplied in time as shown in
Fig 4.

5 Visi design

As we said before the objective of this work is to evaluate a new processor architecture
to be implemented in a custom VLSI that would be able to write in parallel all the pixels
that approximate a given straight segment. This will be done by, first designing the
architecture, and then simulating and testing, all the signals and technologic constrains,
using the Integrate Circuits development environment, which was donated by Cadence
to the Europractice Group.

If a single ASIC with 24 bit true color was not feasible because our technological
resources would not allows this architecture implementation, this need not be an im-
pediment since the proposed design is color depth scalable. This means that three ASIC
will be needed to form true color if the register cell is eight-bit.

The VLSI design of our processor used a standard cell of 0.35 yum with three metal
layers. This allowed us to obtain an evaluation of processor performances in relation
to the drawing speed rate, the area required, the random accesses transfer rate and the
serial output data.

5.1 Experimental results

For this experimental design, we sought to estimate the size of an implementable pro-
cessor. We opted for an 8-bit color word as a compromise between the maximum color
word size and the scalability required to achieve it.(three devices to achieve true color).

We have used a bottom-up design that improves the placement and the routing pro-
cesses in order to obtain optimized layout. Technological limitations have made it nec-
essary to place the LUT’s in independent blocks.
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In order to improve the resolution of the images that the architecture can process, we
may increase the pixel matrix dimensions. Thus, within the same technology, the unique
solution is to reduce the size of the color word, which involves an increase in the number
of devices when scaling. Alternative solutions would be to migrate to a technology with
more integration scale. The large replication of the pixel cell (quadratic) guarantees a
severe area reduction if we obtain a full custom design of this unit.

On the other hand the simulation has showed that the “critical path time” of the
processor design with this technology is about 20ns and yields a rate of 50M seg-
ment/second. This means, in the case that all the segments would be the longest, would
have to write up to 12G pixel/second

6 Conclusions

This work has studied the problem of the line drawing speed rate necessary in graphic
interactive applications. To speed up this process we have developed a parallel line
drawing algorithm that easily allows a hardware implementation.

Based on this algorithm, we have designed a parallel line drawing processor that
allows us to process and write the pixels value of the current segment in a single cycle,
independently of their length and orientation. Thus, the speed drawing rate depends
only on the timing constrains imposed by the VLSI design and technology.

Taking into account the large replication of the pixel cell, a standard cell imple-
mentation is not a good solution because it cannot provide an optimum use of area.
Consequently, the timing performance we can obtain still falls short of reaching an op-
timized implementation. A real useful implementation can only be obtained using full
custom design techniques that will provide improved performances.
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Abstract. The globalization of IT Infrastructure has brought about a great in-
crease in the volume of network users and data, and also has increased the possi-
bility of internal and external intrusions into important assets of an organization.
These kinds of changes have shown the limitations of NIDS, which detects abnor-
mal activities through network packet. The increase in network bandwidth causes
load of NIDS packet collection and analysis, which leads to packet loss. This
means NIDS is unable to get necessary data to detect abnormal activities. And,
the increase and changes of network service continuously reveal new vulnerabil-
ity, through which the unknown new attacks will be increased by multiple. NIDS
which detects abnormal activities by developing detection pattern to each attack
reaches its performance limitation of increased processing load due to continu-
ously increasing detection patterns. Therefore, this paper presents design princi-
ples considered in developing NIDS to overcome its performance limitations, and
proves the effectiveness of these suggested design principles through test models.

1 Overviews

We have deduced three factors that determine NIDS performance based on NIDS ref-
erence model developed by ISO/IEC and IETF, and through simulation test. The first
factor, event collection mechanism, collects necessary packet to detect abnormal ac-
tivities, and determines NIDS performance according to network bandwidth, protocol
and packet size distribution. The second factor, data handling mechanism, distributes
and transfers collected data appropriately with analyzer which judges abnormal activi-
ties. The third factor, pattern matching mechanism, compares the detection pattern list
of known attacks with collected packets, and NIDS performance depends on the num-
ber of detection pattern list and comparing mechanism. On this basis, this paper sug-
gests four design principles - efficient event filtering, high-speed data communication,
clone-based data distribution, and multi-pattern matching algorithm - according to three
factors above. Finally, the effectiveness of design principles suggested in this paper to
improve NIDS’s performance are proved by performance test of three models, that is,
one process model, role-based model, and clone-based model.
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2 NIDS reference models

IETF (Internet Engineering Task Force) and ISO/IEC (International Organization for
Standardization/International Electrotechnical Commission) define the components of
NIDS and data flow among them as the Fig. 2.1.
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Fig. 2.1. NIDS reference model[2][3]

The above two NIDS Reference Models are consist of the common five compo-
nents described in the Table. 1 and each component is conceptual design unit for NIDS
development.

— Event collecting component: The process that collects data from the data source.
The frequency of data collection will vary across network bandwidth, packet size
and protocol distribution.

— Data handling component: The process that distributes and transfers data from
event collecting component to pattern matching component for high-speed com-
munication.

— Pattern matching component: The process that analyzes the data collected for signs
of unauthorized or undesired activity or for events that might be of interest to the
NIDS. The frequency of pattern matching will vary across attack signatures.
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NIDS component |IETF reference model |ISO/IEC reference model
Event Collecting Sensor Event Detection
Data Handling Event Event
Pattern Matching Analyzer Analysis
Pre/Post Managing Manager Response
Event Source Source Source

Table 1. NIDS components

— Pre/post managing component: The process that manages the various processes
of the NIDS. Management functions typically include configuration, notification,
response, and reporting.

— Event source component: The raw information that an NIDS uses to detect unau-
thorized or undesired activity. Data source of NIDS is raw network packet.

3 NIDS performance-decision factors

The five components induced by NIDS Reference Model are implemented as shown
in the Fig. 3.2, and generally classified into Manager, Event Collector, Analyzer, post-
Processor, Queues according to their function.

— Manager: provides the manager with information like set-up configuration and etc.
for successful NIDS performance. Generally, this kind of management event is very
rare and implemented in asynchronous way, hardly affecting NIDS performance.

— Event collector: collects packets from network device to recognize abnormal events
and generally realized in independent process or thread form. It directly affects
NIDS capacity according to occurrence frequency of collected packets which is
determined by network bandwidth, protocol distribution and packet size distribu-
tion. So, effective designing of Event Collecting Mechanism must be considered
for NIDS performance.

— Analyzer: judges the abnormal events by comparing packet information collected
from network device with NIDS-held attack patterns and generally implemented in
the multiple number of process or thread form for parallel treatment. This directly
affects NIDS capacity with the proportion of occurrence frequency of collected
packet and the number of NIDS-held attack patterns. The endless increase of at-
tack patterns lowers NIDS capacity. So, effective designing of Pattern Matching
Mechanism must be considered for NIDS performance.

— Post-processor: deals with counteract to abnormal events and audit log. This kind
of event is very rare and realized in asynchronous way, hardly affecting its perfor-
mance.

— Queues: manages data flow between Event Collector and Analyzer and generally
implemented by IPC mechanism. This directly affects NIDS capacity with the pro-
portion of occurrence frequency of transferred packets, transferring mechanism and
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Fig. 3.2. NIDS high-level implementation model

transferred data size. So, effective Data Handling Mechanism must be considered
for NIDS performance.

Among these five NIDS components, the factors affecting the performance are as
the Table. 2.

4 Design principles of high-speed NIDS

In this chapter, we suggest five principles for efficient designing of NIDS performance-
defining components related with event collecting mechanism, data handling Mecha-
nism, and pattern matching mechanism induced in chapter 3.

4.1 Need-to-Know Target Profile

NIDS must collect only necessary packet to judge abnormal activities. For this, net-
work packet must be filtered by efficient filtering mechanism considering target range,
host and network context. Also, the performance of filtering mechanism is decided by
implementation layer and semantic characteristic of filtering rules. Filtering rules must
not affect the result of NIDS attack detection and must be designed in such way that it
can minimize the number of NIDS-collected events. For this end, this paper suggests
two-leveled filtering mechanism using target profile as in the Fig. 4.3.
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Factor Causes

Event Collecting Mechanism [Network bandwidth
Protocol distribution
Packet size distribution

Data Handling Mechanism |Communication method
Transferred data size

Pattern Matching Mechanism |Increased attack pattern

Pattern matching algorithm

Table 2. NIDS components
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Fig. 4.3. Target Profile structures
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Target profile defines Host context class to distinguish specific host, and Network
context class to distinguish Network in NIDS detection target. Host context class con-
sists of vendor and address attributes, and aggregated classes of OS, Services. Address
attribute is used as filtering condition for NIDS to select a specific system of event col-
lection and form the one-level filtering layer, generally being implemented in the lower
level (hardware or operating system’s kernel). OS class consists of type and version
attributes. The two attributes are used as filtering condition of distinguishing attack-
performing environments which bring about abnormal events and generally form the
two-level filtering layer, being implemented in the upper level (application). Services
class consists of type, port attributes and aggregated class of Vulnerabilities. The two
attributes are used as the filtering condition of distinguishing attack target which bring
about abnormal events, and generally form the two-level filtering layer, being imple-
mented in the upper level (application). Vulnerabilities class consists of name and refer-
ence attributes. These two attributes are used as filtering condition for distinguishing the
status of attack target which causes abnormal events and generally form the two-level
filtering layer, being implemented in the upper level (application). Network context
class consists of network ID and network mask attributes. The two attributes are used
as filtering condition for deciding network range for NIDS to collect events, and gener-
ally form one-level filtering layer, being implemented in the lower level (hardware, or
operating system’s kernel).

4.2 High-speed data transmission

NIDS must make use of efficient communication mechanism to transmit reduction data
of collected packet to analyzer. For this, memory communication which minimizes data
share shows the most effective performance. To transmit generally collected events to
analyzers, we suggest memory communication technique in NIDS parallel structure. As
shown in the Fig. 4.4, memory communication technique is divided into Pool Memory
Queue Model (event transmission by shared memory pool (a)) and Individual memory
queue model (b). The speed of NIDS event collection and abnormal event detection
determines the performance of two models. In (a) model, collected events are operated
in direct push to memory pool but, must be loaded in the critical region till the analyzer
reads event information. On the contrary, in (b) model, the collected events simply go
through queue select and need not to be loaded in the critical region when the analyzer
reads event information, thus guaranteeing more successful performance.

4.3 Clone-based data distribution

NIDS must not rely on specific features in distributing collected packets. If so, analyzer
will operate according to specific role-base, which causes bottle-neck. To prevent this,
this paper suggests clone-base structure. This will enable load balancing, distribution
to multiple analyzers without switching [4]. Most NIDS implementations have parallel
distribution model as in the Fig. 4.5-(a) model to detect abnormal events. However, each
plays a designated role according to types of detection patterns which show abnormal
events. For this reason, in the process of analyzing characteristics of the collected data
and transmitting them to the appropriate analyzer, stagnation and data loss can arise. On
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the contrary, in in the Fig. 4.5-(b) model, the role each analyzer plays are the same, thus
enabling loads balancing [5] and getting rid of load problem in analyzing characteristics
of collected events. So, in the process of data handling, stagnation and data loss can be
minimized.

4.4 Multi-pattern matching algorithm

NIDS adapts efficient pattern matching algorithm to compare detection pattern with col-
lected packet. But these algorithms result in different performance according to data’s
characteristics. So, the extension of detection pattern according to analysis of data’s
characteristics enables to adapt multi-pattern matching algorithm [6]. NIDS, to de-
tect abnormal events, signatures the characteristics of attack type and compare them
with compressed information of collected events. Generally most NIDS selects pattern
matching algorithm which is known as the fastest one. But this misses the fact that
signature shows different performance level according to its literary characteristics [7].
This characteristics give validity to the below detection pattern model of the Fig. 4.6
which is suggested to support MPM(Multi-Pattern Matching). In this model, algorithm
is added to general detection pattern structure. For this, in developing detection pattern,
the process of linking effective algorithm after finding out literary characteristics of
signature is necessary.

5 Performance Tests

To prove the effectiveness of designing principles suggested in this paper, we consider
three test models explained in the in the Table. 3. Model 1 uses Snort 1.8.0, public
software to go through a series of processes from event collection to abnormal event
detection. Model 2 modifies Snort 2.0 to get parallel handing structure and data trans-
mission through Memory Queue and Model 3 adds clone-based characteristics to Model

(81191
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Model 1| Model 2 Model 3

# of threads 1 n n

Data transmission model| N/A |memory queue memory queue
Data distribution model | N/A Role-based | Clone-based

Detection model Misuse Misuse Misuse

Table 3. Test models
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Test context was 180Mbps of background traffics with the aid of SmartBits-6000,

and 590 attack events were arised by Blade’s IDS Informer. Model 1, 2, 3 all holds 968
detection patterns. The Table. 4 shows each model’s detection rates. We can confirm
that model with all NIDS designing principles show the most successful performance.

6

Model 1|Model 2{Model 3
278 389 442
299 399 420
281 402 412

4] 293 393 439

WIN| =

Table 4. Test results - detection rates

Conclusions

With an age of high-speed in information network and incessant advent of new attack
patterns like Warhol worm or flash worm, NIDS performance to secure enterprise’s as-
sets from abnormal events has come to the fore [10]. This paper induced factors causing
NIDS stagnation to improve NIDS performance and presented designing principles for
each factor. Each designing principle minimizes loss of data which are basis of detecting
abnormal events. Also in chapter 5, we proved the validity of these designing principles
with the test result of three test models.
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Abstract. Detecting unaffected race conditions is important to debugging message-
passing programs effectively, because such a message race can affect other races
to occur or not. The previous techniques to detect efficiently message races do not
guarantee that all of the detected races are unaffected. In this paper, we present

a new technique that traces affect-relations of the locally-first races to occur in
all the monitored processes, and then visualizes the affect-relations with scalable
graphs for programmers to discriminate unaffected races effectively.

1 Introduction

In asynchronous message-passing programs, a message race [4,7,12] occurs in a re-
ceive event, if two or more messages are sent over communication channels on which
the receive listens and they are simultaneously in transit without guaranteeing the or-
der of their arrivals. Message races should be detected for debugging a large class of
message-passing programs [1, 5, 14] effectively, because nondeterministic order of ar-
rivals of the racing messages causes unintended nondeterminism of programs [7,9-11].
Especially, it is important to detect efficiently unaffected races before which no other
races causally happened, because such races may make other affected races appear or
be hidden.

The only efficient technique [11] to detect unaffected races in its second monitored
execution detects their messages by halting at the receive event of the locally-first race
to occur in each process. However, if a process halts at the racing receive, the process
cannot send messages thereafter to notify other processes of their being affected and
then does hide some chains of affect-relations among those races. This previous tech-
nique therefore does not guarantee that all of the detected races are unaffected.

To detect only unaffected races, our previous work [13] traces the states of the
locally-first race to occur in every process, and then visualizes the affect-relations of
all the locally-first races with event graphs to report unaffected races. However, this
technique sequentially analyze all trace files of processes for determining just affected

* This work was supported in part by Grant No. R05-2003-000-12345-0 from the Basic Research
Program of the Korea Science and Engineering Foundation.
** Corresponding author. Also involved in Research Institute of Computer and Information Com-
munication (RICIC), Gyeongsang National University.
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messages among all the processes, and visualizes the messages in too complex a fashion
for programmers to discriminate affect-relations between every two locally-first races.

In this paper, we present a new visualization technique that traces affect-relations
of the locally-first races to occur in all the monitored processes, and then visualizes
the affect-relations with scalable graphs. To trace the affect-relations, we improve the
second-pass algorithm of the previous technique [11] to complete the second monitored
execution. In the monitored execution, we examine if each message is affected or not,
and trace the affect-relations of the locally-first races. After the execution, we visualize
the affect-relations with scalable graphs for programmers to discriminate unaffected
races effectively.

We tested our technique in MPI [14], an industry-standard model of message-passing
parallel program, using MPICH implementation [6] on a cluster system. We imple-
mented our tracing algorithm as a C-library using MPI Profiling Interface to make it
transparent to user programs, and our visualization algorithm using Java language and
the Soot API [16].

In the following section, we introduce some notions of message races and then, in
Section 3, we explain the problem of the previous techniques to detect unaffected races
for debugging message-passing programs. In Section 4, we present our scalable tech-
nique to trace and visualize the affect-relations of the locally-first races to occur in all
the monitored processes. In Section 5, we support our technique with some experimen-
tation details. Finally, we conclude it with some future work in Section 6.

2 Message Races

We model asynchronous message-passing [1, 5, 14, 15] between processes as occurring
over logical channels [11], and assume that each send or receive event specifies a set
of logical channels over which it operates to send copies of one message or to receive
one message from the channels. If more than one channel have a message available,
the receive event nondeterministically chooses a channel among them to receive one
message. We assume that any message sent over a channel is received by exactly one
receive event, and all messages sent during program execution are eventually received
at the corresponding receive events. This model with logical channel is general, because
most message-passing schemes can be represented.

An execution of message-passing program is represented as a finite set of events and
the happen-before relation [8] defined over those events. If an event a always occurs
before another event b in all executions of the program, it satisfies that a happens before
b, denoted a — b. For example, if there exist two events {a, b} executed in the same
process, a = b V b — a is satisfied. If there exist a send event s and the corresponding
receive event r between a pair of processes, s — r is satisfied. This binary relation —
is defined over its irreflexive transitive closure; if there are three events {a, b, ¢} that
satisfy a — b A b — ¢, it also satisfies a — ¢.

Messages may arrive at a process in a nondeterministic order by various causes in
the execution environment, such as variations in process scheduling and network laten-
cies. In a large class of programs [1, 5, 14] that are intended to be deterministic, nonde-
terministic order of message arrivals causes unintended nondeterministic executions of
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a program so that such race conditions of messages should be detected for debugging
[7,9-11]. A message race [4,7,12] occurs in a receive event, if two or more messages
are sent over communication channels on which the receive listens and they are simul-
taneously in transit without guaranteeing the order of their arrivals. A message race is
represented as (r, M), where r is a receive event and M is a set of racing messages
toward r. Thus, r receives the message delivered first in M, and the send event s which
sent a message in M does not satisfy r — s. We denote a message sent by a send event
sasmsg(s).

Figure 2.1 shows a partial order of events that occurred during an execution of
message-passing program. A vertical arc in the figure represents an event stream exe-
cuted by a process along with time; and a slanting arc between any two vertexes that
are optionally labelled with their identifiers represents a delivery of message between a
pair of send and receive operations. For instance, two processes, P» and Py, send two
messages, msg(z1) and msg(z2), to P3 respectively, and two send events, x1 and Z2,
do not satisfy x — x1 Az — x2 where x is a receive event occurred in Ps. This implies
that these two messages race each other toward x. This message race occurred at x in P
therefore can be represented as (x, X), because it consists of a set of racing messages
X = {msg(x1),msg(z2)} and the first event z to receive one of the racing messages.

Suppose that there exist only two message races {{m, M), {(n, N)} in an execution
of a program, and they satisfy m — s V m — n where msg(s) € N. Then msg(s)
is an affected message by {m, M) because m — s; and (n, N) is an affected race by
{m, M). And we say that (m, M) is an unaffected race, if there does not exist any mes-
sagemsg(t) € M that satisfies n — ¢ and there exists no such {n, N) that satisfies n —
m. For example, figure 2.1 shows three races {(w, W), (z,X), (y,Y)} where W =
{msg(w1), msg(w2)}, X = {msg(z1), msg(z2)},andY = {msg(y1), msg(y2), msg(ys)}.
The two races {{w, W), (y,Y)} in the figure are affected by (z, X), because (w, W)
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satisfiesx = a A a = b A b — w followed by z — w and msg(y2) € Y satisfies
Z — yo. These affected races may occur depending on the occurrence of (x, X), and
may disappear when {z, X) is eliminated.

A locally-first race is the first race to occur in a process. Although a locally-first
race is obviously not affected by any other races occurred in the local process, the race
is not guaranteed to be unaffected by another race occurred in the other processes. For
example, figure 2.1 shows that all of the races appeared in the figure are locally-first
races, but two locally-first races {{w, W), (y,Y)} are affected by another locally-first
race (x, X) occurred in the other process.

3 Related Work

Previous methods to detect message races can be classified into two classes: one set
of techniques [2, 12] fo verify the existence of races, and the other set of techniques
[3,4,7,11] to detect unaffected races. The techniques to verify the existence of races
detect them at each receive event by determining if the corresponding send event and
the previous receive event in the local process are mutually concurrent. However these
techniques are not effective for debugging message-passing programs, because they
detect only a small set of races that might be affected by other races. The techniques to
detect unaffected races check if a race occurs at each receive and then if it is the first
races to occur in the process. These techniques are effective to debugging, because they
guarantee that the detected races are not affected by any other races occurred in the
same process.

With respect to the degree of monitoring parallelism, those techniques to detect
unaffected races can be classified into two classes: One-thread-at-One-time (OtOt) [3,
4], and Multi-threads-at-One-time (MtOt) [7, 11]. The OtOt technique requires the pro-
gram to be executed repetitively as many as the number of processes, because it detects
one locally-first race by monitoring only one process in each execution. However, the
MtOt technique detects all of the locally-first races by monitoring all processes in one
execution, and is classified into two classes with respect to the number of monitored
executions: one-pass [7] and two-pass [11] techniques. The one-pass technique shows
impractical space complexity which is dependent on the number of messages, because
it checks all of the previous receive events at each receive event to detect all of the
races that are related to every previous receive event. On the other hand, the two-pass
technique finds some information in the first execution to detect a locally-first race of
each process, and then tries to detect unaffected races by halting each process at every
first racing receive in the second execution. This technique is more efficient than the
one-pass technique, because it consumes space and time which are independent of the
number of messages.

The two-pass technique [11] tries but does not guarantee to detect unaffected races.
If a process halts at the racing receive, the process cannot send messages thereafter to
notify other processes of their being affected and then does hide some chains of affect-
relations among those races. This technique therefore does not guarantee that all of
the detected races are unaffected, because other processes which did not receive such
affected messages may report their affected races as unaffected erroneously.
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For example, consider this two-pass technique for the same execution instances
shown in figure 2.1. In the first execution, each process writes some information into
a trace file locating its locally-first race at w € Py, x € P3, or y € Py. In the sec-
ond execution, it tries to halt the three processes at the locations {w, z, y}, and then
eventually receives the racing messages into their receive buffers except P» which stops
at non-racing receive b waiting for unsent message by Ps. This results in the three re-
ceive buffers of (P, P, Py) to contain three sets of messages (), X, ) respectively,
where X = {msg(z1), msg(z2)} and @ = {msg(y1), msg(ys)} C Y. Consequently,
this two-pass technique reports two races {{z, X ), {(y,Y)} as unaffected, but actually
{y,Y) is affected by {x, X) as shown in Figure 2.1. This kind of erroneous reports is
resulted from halting at z of Ps, and then not having delivered msg(y2) € Y at P;.

To detect only unaffected races, our previous work [13] traces the states of the
locally-first race to occur in every process, and then visualizes the affect-relations of
all the locally-first races with event graphs to report unaffected races. In the first execu-
tion it monitors the program execution to determine if each receive event is involved in
arace and if the race occurs first in the process. During the second execution, it changes
its state whenever each process receives messages, and traces the states and events ap-
peared in each process into trace files. After the execution, it analyzes trace files, and
visualizes the locally-first races with the affect-relations among those races. However,
this technique sequentially analyze all trace files of processes for determining just af-
fected messages among all the processes, and visualizes the messages in too complex a
fashion for programmers to discriminate affect-relations between every two locally-first
races.

4 Scalable Race Visualization

To capture the affect-relations of the locally-first races in all processes, we replace the
second-pass algorithm of the previous technique [11]. Figure 4.2 shows our own pass-2
algorithm to check each receive associated locally with a sequence number recv with a
delivered message Msg sent by a process send.

Line 1-2 uses {cutoff, firstChan}, where cutoff reported by the pass-1 represents
an approximate location of the locally-first race occurred in the current process and
firstChan represents a channel over which the locally-first race occurred. It checks if
cutoff happened before recv, examine if firstChan is included in Channels which
is a set of logical channels associated with recv, and check if the receive has been
affecting. The current receive recv must be the first racing receive firstRecv to occur
in the process, if recv associated with firstChan is unaffected and occurred after
cutoff.

To produce the affect-relation information that will be attached to each message to
notify other processes of their being affected, line 8 updates the information affecting
to a disjunction of the current affecting and Msg[affecting] which is attached to the
received message. It is because messages to be sent hereafter may influence other pro-
cesses, if either a race occurred in the current process or affected messages have been
received from other processes. The line 9 checks if Msg[affecting] is true. In that case,
it updates a global boolean array Affecter which indicates such processes that influence
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15 GenerateAffecters(send, recv, Msg)
16 for all 7 in Channels do
17 if (cutoff — recv) A (firstChan =1)

18 A — affecting) then
19 firstRecv := recv;
20 affecting := true;
21 endif

22 endfor

23 affecting := affecting V Msglaffecting];
24 if (Msglaffecting] = true)

25 Affecter|send] = true;

26 endif

Fig.4.2. The Tracing Algorithm

the current process. The number of entries of Affecter is as many as the number of pro-
cesses monitored in an execution, and the i-th entry of Affecter indicates if a process P;
influence the current process.

Figure 4.3.a shows the Affecter of each process generated by the algorithm which
is applied to the execution shown in Figure 2.1. In the Figure 4.3.a, the locally-first
races occur at three receive events {w, z, y}, and affected messages are represented
with dotted arcs. >From these Affecters, we find that P; receives one affected message
sent by P, which received three affected messages from P; and Ps.

An Affecter can be represented with a directed graph, called race graph, in which
each vertex represents a process and each arc between two vertexes represents an affect-
relation. In other words, we regard an Affecter as an inverse adjacency list which is used
to represent a directed graph. In this race graph, the vertex for a process having a locally-
first race is displayed by a filled circle, and the other type of vertex as an empty circle.
Figure 4.3.b shows the race graphs which represent the Affecters shown in Figure 4.3.a.
In the figure, we see that P, P3, and P4 have locally-first races; P, and Pj are affecting
each other; and P; is affected by Ps. The relationship of P» and P; which are affecting
each other can be visually abstracted with a rectangle as shown in Figure 4.3.b.

S Experimentation

We tested our technique in MPI [14], an industry-standard model of message-passing
parallel program, using MPICH implementation [6] on a cluster system. We installed
Linux in the cluster system which consists of four Compaq-Alpha processor nodes.
We implemented the on-the-fly algorithms as a C-library using MPI Profiling Interface
to make it transparent to user programs, and our visualization algorithm using Java
language and the Soor API [16].

We implemented our on-the-fly algorithms in every related function in MPICH. In
addition to the tracing algorithm introduced in Section 4, we implemented three nec-
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Fig.4.3. The Affecters and Race Graphs

essary functions to support the algorithm: a function to produce a vector timestamp in
each send or receive event, a function to determine and write down {cutoff, firstChan}
to a trace file in pass-1 [11], and a function to read cutoff and firstChan from the trace
file for our pass-2 tracing algorithm. Among them, those functions related to the trace
files are called only at the start or end of an execution of program, and the others are
called at every send or receive event.

We implemented these functions using MPI Profiling Interface to make it transpar-
ent to user programs, so that users apply the library to their programs without modifying
them. MPI Profiling Interface included in MPI specification allows anyone to intercept
every call to the MPI library and perform an additional action. For this, the MPI specifi-
cation states that every MPI routine is callable by an alternative name; every routine of
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the form MPI_xxx is also callable by the name of the form PMPI_xxx, allowing users to
implement and experiment their own MPI_xxx. We wrapped a subset of the MPI_xxx
which are related to point-to-point communication with the calls to our library func-
tions. When a user program calls our wrapped MPI_xxx, this routine performs its own
function and additionally executes something related to detect unaffected races.

We wrapped five MPI functions:

MPI_Init(), MPI_Comm_size(), MPI_Send(), MPI_Recv(), and MPI_Finalize().
We implemented two different sets of wrapped functions for the two passes of moni-
tored executions. Consider the pass-1 functions. MPI_Init() and MPI_Comm_size() ini-
tialize all data structures for detecting the cufoff's, and generating the vector timestamps.
MPI_Send() updates the current vector timestamp, and attaches it to the message to be
sent to other processes. MPI_Recv() updates the current vector timestamp considering
the sender’s timestamp received, and determines {cutoff, firstChan}. MPI_Finalize()
stores {cutoff, firstChan} to a trace file.

Consider the pass-2 functions. MPI_Init() and MPI_Comm_size() initialize all data
structures for generating an Affecter and read {cutoff, firstChan} from the trace file.
MPI_Send() updates the current vector timestamp as in the pass-1, and attaches it to
the message together with the boolean value of affecting to be sent to other processes.
MPI_Recv() updates the current vector timestamp considering the sender’s timestamp
received, determines if current receive is the first racing receive event, and updates the
Affecter with affecting attached in the message. MPI_Finalize() traces out the content
of the Affecter for the next step of race visualization.

For scalable race visualization, we implemented some Java classes for reading trace
files, drawing a race graph, drawing an abstract race graph, and generating a user inter-
face. Figure 5.4.a shows a race graph generated from the execution instance shown in
Figure 2.1. In this figure, we find three processes { P2, P, Py} in which races occurred,
and the other two processes with no races. We see with ease that the race occurred in Py
is affected by another race occurred in P53, which we may find with difficulties in Fig-
ure 2.1. Py and P; affect each other constructing a strongly connected graph for which
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we display a bi-directional edge using a solid line. For scalability, each bi-directional
edge connecting two vertexes can be visually abstracted to a rectangle as shown in
Figure 5.4.b and vice versa.

6 Conclusion

We presented a new visualization technique that traces affect-relations of the locally-
first races to occur in all the monitored processes, and then visualizes the affect-relations
with scalable race graphs. To trace such affect-relations, we developed a new two-pass
algorithm, by which we examine if each message is affected or not, and trace the affect-
relations of the locally-first races. After the execution, we visualize the affect-relations
with scalable race graphs. Our technique is effective to detect the unaffected races,
because it helps users to discriminate a set of message races which includes at least one
unaffected race. We have been trying to improve our visualization technique using the
information associated with the source code of debugged program.
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Abstract. Adaptive mesh refinement (AMR) is a popular computational simula-
tion technique used in various scientific and engineering fields. Although AMR
data has a hierarchical multi-resolution structure implicitly, traditional direct vol-
ume rendering algorithms cannot handle the form without converting it to a so-
phisticated data structure. In this paper, we present hierarchical structures based
on both modified k-d trees and octrees for multi-resolution display of time-varying
AMR data. The proposed data structures are suitable for implementing an inter-
active AMR data visualization system on a general purpose PC. Experimental
results show that the structures allow users to analyze the change of AMR data in
process of time with properly selected level of detail.

1 Introduction

Adaptive mesh refinement (AMR) is a computational technique for improving the ef-
ficiency of numerical simulations of systems of partial differential equations. After
Berger and Oliger [2] developed AMR in 1980s to simulate gas dynamics, it has be-
come a popular computational simulation technique in various scientific computing
fields. The basic idea of AMR is to refine, both in space and in time, regions of the
computational domain where high resolution is needed to resolve developing features,
while leaving the less interesting parts of the domain at lower resolutions. AMR tech-
niques have been shown to be very successful in reducing the computational and stor-
age requirements for solving many partial differential equations and used in various
engineering applications where there are regions of greater interest such as global at-
mospheric modeling and numerical cosmology. For example, Bryan [3] shows how a
hybrid approach of AMR can be applied to cosmological research.

Although AMR data has a hierarchical multi-resolution structure implicitly, it is
impossible for traditional visualization techniques developed for simple mesh data to
handle AMR data without any modification. Furthermore, interactive rendering of time-
varying volume datasets is one of the major challenges in computer graphics. Rela-
tively few results have been presented on visualization of AMR data. Norman et al. [6]
present problems and solutions in storing, handling, visualizing, virtually navigating,
and remote-serving data produced by large-scale AMR simulations. Weber et al. [8] in-
troduce crack-free isosurface extraction methods from AMR data. They also present a
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hardware-accelerated rendering interface for previewing and cell-projection based pro-
gressive refinement rendering scheme in [7]. In another paper [9], they render AMR
data using the progressive cell-projection approach and level-dependent transfer func-
tion. Even though their method can produce high quality images, it takes about 23~115
seconds to render just one image from an AMR data with a 80 x 32 x 32 root-grid
resolution and a three-level hierarchy.

In this paper, we describe hierarchical data structures for interactive multi-resolution
display of time-varying AMR data, which is designed to work efficiently when the data
of interest is distributed sparsely through volume. A simple preprocessing step identi-
fies the voxels representing features of interest. Frequently the set of voxels, arbitrarily
distributed in three demensional space, is a small fraction of the original voxel grid. An
adaptive space partitioning scheme, combined with octrees to prune void spaces in the
resulting search structure, is used to store the voxels of interest in a k-d tree. The tree
is then efficiently splatted to render the multi-resolution voxel data. Since the structure
is view independent, it can be used for animation sequences involving changes in po-
sitions of the viewer. We have applied this hierarchical structure to render volume data
from time-varying AMR simulations. Experimental results obtained on a PC equipped
with an NVIDIA GeForce3 graphics card demonstrate interactive rendering speed (over
20 frames per second).

The rest of this paper is organized as follows. Section 2 presents the design details
of our hierarchical data structures. And Section 3 describes interactive multi-resolution
display of time-varying AMR data. Experimental results are shown to analyze the per-
formance of our hierarchical structures in Section 4. Finally this paper is concluded in
Section 5.

2 Design of Hierarchical Structures for High Performance
Computing

2.1 K-d trees

An AMR simulation algorithm generates a grid hierarchy data structure (like a multi-
resolution tree with arbitrary gird and level). Every node and leaf of the tree is associated
with a multi-resolution 3D grid. Fig. 2.1 (a) shows a simple example of raw AMR data
in 2D, and (b) illustrates an implicit hierarchical representation of the data. Since an
AMR data could have various shapes, sizes, and spatial resolutions, we need to convert
this form to a sophisticated data structure for effective visualization.

The binary space partitioning (BSP) tree alorithm is an efficent method for calcu-
lating the visibility relationships among a static group of 3D polygons as seen from an
arbitrary viewpoint. Each non-terminal node in the BSP tree represents a single parti-
tioning plane that divides occupied space into two. A terminal node represents a region
that is not further subdivided and would contain pointers to data structure represen-
tations of the objects intersecting that region. Also, the BSP structure is used as an
aid to sorting planes in a scene into a back-to-front or front-to-back ordering consis-
tent with a given viewpoint. In volume rendering, a straightforward hierarchical data
structure called axis-aligned BSP trees or k-d trees is used for space subdivision. Each
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Fig. 2.1. Multi-resolution in a raw AMR data (in 2D)

non-terminal node in the k-d tree is associated with an axis aligned plane that cuts a
given volume space into two, and it has a child for each subvolume. Given a k-d tree of
the voxels, it is possible to find the resulting voxels in O(sqrt(n) + k) time where n is
the number of voxels in the search space and k is the number of voxels in the result.

To build such a herarchical structure in our scheme, a modified k-d tree generation
algorithm is applied to a given time-varying AMR data in preprocessing steps. The
first step is to determine the minimum bounding boxes surrounding each group in the
AMR data space. The voxels included in a group are connected in spatial resolution of
the current level and each group may include several levels of AMR data. In the next
step, our scheme splits the bounding boxes into a set of bricks. We start from the root
node which presents the entire volume, and bisect recursively the nodes through their
largest axis, so that a nearly equal number of voxels lie in each brick. This bisection
is accomplished using a modified median finding algorithm, which is an O(n) average
time operation per level of the tree, making the tree building process an O(nlogs(n))
operation. The generated bricks have pointers to actual function value sets in each level.
Fig. 2.2 (a) to (d) illustrate the modified k-d tree building algorithm applied to the simple
AMR data from Fig. 2.1 (a) in 2D. And Fig. 2.2 (e) shows the generated final k-d tree.
To exploit spatial coherence, our scheme constructs an octree structure for relatively
large bricks.

2.2 Octrees

In our algorithm, the rendering of a selected range of isovalues, together with a transfer
function is performed through splatting. While the hierarchical data structure provides
an accelerated search algorithm for bricks, we further optimize our algorithm through
the use of octrees at each node of the k-d tree. Each brick is represented as an octree of
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Fig. 2.2. A set of bricks and a hierachical structure generated from the modified k-d tree
building algorithm in a preprocessing step

voxels. Each voxel is then projected by transforming its position from world coordinates
to screen coordinates.

In each brick and octree, we store an isovalue code to ensure that only relevant
volumes are considered for the search algorithm. This isovalue code is implemented as
a 32-bit number, each bit representing the presence or absence of a range of isovalues.
As a preprocessing step, we compute and store the binary code. It is computed for each
level of the octree. We traverse through all voxels contained in a leaf and determine the
bits in the code to be turned on to indicate the presence of at least one voxel in that
range. If there are n bits for the code, and we have a range of r for the voxels in the
whole volume, then each bit covers a range of % Once we have obtained the code for
each leaf, we recursively obtain the code for a node as the boolean OR of the codes of
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its children. The code of an octree’s root is assigned to the brick containing the octree.
We do not perform weighting for this code. For example, we do not assign fewer bits
to non-interesting regions, hence assuming the entire range to be of equal interest to
user. An OR operator is used to build a search code when the user changes the range
of important isovalues. A simple AN D operator is sufficient to eliminate those sub-
volumes whose codes do not fall under the currently selected range of isovalues. This
is implemented at both the brick level and the octree level. Within an octree, each child
that is not NU LL contains such a code to help its traversal. We found this method to be
considerably faster than storing min-max values. A second useful feature of the octree
is the fast and natural ordering of voxels that it provides to obtain high quality images
quickly. We sort bricks for each view from the k-d tree.

3 Interactive Multi-Resolution Display

3.1 Hardware Accelerated Splatting

Splatting is an object space direct volume rendering algorithm that generates high qual-
ity images [10]. A voxel’s contribution is mapped directly onto the image plane, elimi-
nating the need for interpolation. Since only interesting voxels (weighted by the discrete
voxel values) are required to be represented by a 3D kernel, splatting is known as a faster
volume rendering technique than ray-casting. Splatting has been used in the past to han-
dle hierarchical error and higher dimension rendering [5, 1]. This techniques allow us to
render different level data sets using footprints of various sizes. There could be regions
that lack high-level data sets and can be rendered using the lower resolution, thus we
need to keep a table of different footprints to render the images. The footprints them-
selves are discrete Gaussian footprints, which are widely used as a good approximation
to the contribution of a voxel to the projection operator. By projecting the footprint to a
polygon, we can exploit OpenGL 2D texture mapping hardware. Crawfis et al. propose
to render each splat using texture mapping hardware [4]. This technique alleviates the
CPU from the computational complexity incurred in resampling the footprint tables and
compositing each splat into a frame buffer.

3.2 Rendering Algorithm

Fig. 3.3 shows our splatting algorithm of AMR data. Since creating k-d trees and octrees
of the given AMR data (line 2) can be done at the preprocessing stage, they don’t affect
the actual run-time rendering speed. Once a k-d tree has been generated, a modified
in-order traversal will yield front-to-back ordering of the bricks, the blick list BL, with
respect to an arbitrary viewpoint (line 4). Fig. 3.4 illustrates the process of the front-
to-back traversal algorithm using the k-d tree. In Fig. 3.4 (a), the numbers labeled on
the bricks mean the expected traversing order for the given view vector. Fig. 3.4 (b)
includes two kinds of numbers assigned to nodes in the tree. The numbers beside the
circles surrounding the terminal nodes show the rendering order, and they are the same
as the order in (a). Also, the other numbers written in italic font represent k-d tree
traverse sequence. When the blick list BL is constructed, the bricks that don’t contain
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1 Load AMR data

2 Create k—-d tree and octree data structure

3 Set current transfer function and viewing / rendering
parameters

4 Determine brick list BL according to viewing direction

5 For (Bi in BL) {

9 Splatting(Bi, lod);

7 Composite the current partial image;

8 }

9 Display final image;

Fig. 3.3. K-d tree based splatting algorithm

any interesting voxels are not included in the list. Because boolean encoded words are
already stored in both the bricks and the octrees, a single bitwise AN D operation is
needed for checking whether the brick will be rendered or not. Splatting is then applied
to each brick B; in the sorted list of relevant bricks and the generated partial images are
composited to form a final image (lines 6 and 7). Since the nodes in the brick list have
pointers to function values corresponding to several levels, the rendering level of detail
lod should be chosen, and a proper transfer function and footprint size should be used
according to the lod. As we mentioned, it is possible to accelerate the performance of
the lines 6 and 7 by texture mapping hardware.

4 Experimental Results

Our algorithm was implemented on a PC, equipped with a 800 MHz Intel Pentium
III Processor, 256MB main memory, and a graphics card with an NVIDIA GeForce3
processor and 64MB of memory.

Time-varying AMR data is represented by | J{ fi,1,,(¢, , k) } where ¢ is the timestep,
[ is the refinement level, and v is the index of function values. Our test data is the result
from a simulation of a radiative jet colliding with a dense cloud. The simulation result
is stored in time-varying AMR format with a 64 x 64 x 128 finest-grid resolution and
a four-level hierarchy (0 < I < 3). Fifteen function values are given at the nodes of
the mesh in floating point format (0 < v < 14). We scaled the values to range from
0 to 4095. Interesting values include energy density (v = 0), mass density (v = 4),
electron density (v = 5), and so on. The AMR data set consists of voxels sampled at
different levels. While higher resolution data gives us better quality images, the lower
resolution and sparsely sampled data gives faster rendering times. The image sequences
in Fig. 4.5 were generated from electron density function values of the test time-varying
AMR data using our technique.

Using the k-d tree data structure, we are able to effectively limit the search space. As
described before, the bricks have a code representing the range of isovalues contained
in the brick. This helps us to achieve considerable performance. The octree structure
at each brick of the k-d tree helps to further limit the search space. It was observed
that a maximum octree width of 8 was quite efficient when the number of voxels was
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Fig. 3.4. Determining brick list BL for a given viewopint by k-d tree traversal

greater than 40,000 to 50,000. Less dense volumes performed well with an octree size
of 4. We show the results comparing the performance due to addition of the octrees
and also compare the performance using 4, 8, and 16 as the maximum octree width.
Fig. 4.6 (a) and (b) shows the average ratios of searched voxels and the average ren-
dering speed resulted from rendering of our test time-varying data with about 1.26M
voxels respectively.

Nearly interactive frame rates were achieved using our implementation. Although
considerable gains in limiting the search space was achieved with smaller octree width
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Fig. 4.6. Experimental results from interactive rendering in the finest level

values, the search time became a bottleneck. We give both the gain in the search space
limitation and the speed of rendering as comparison with different octree widths. Fig. 4.6
(c) and (d) shows the resulting average search and rendering gains from generating some
test images respectively. We define search gain and rendering gain as follows: search
gain = MwithoutZNwith ' yopdering gain = Twitheut=Tuwith where Nyithout AN Nyien are

Nwithout Twithout
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the number of voxels searched without and with octree, respectively, similarly, 7y ithout
and Ty, are the rendering speeds without and with octree, respectively.

The data structure combination of k-d trees and octrees result in interactive render-
ing of AMR data sets as large as 64 x 64 x 128 with highest resolutions. While we get
very fast selection of regions in space where relevant voxels exist with our k-d trees,
the octrees further improve search time and give a natural ordering of voxels for any
view direction. Although the relevant bricks of the k-d tree are sorted for every view-
ing change, it does not prove to be a bottleneck due to the limited number of selected
bricks. This is particularly true of volumetric data, where the region of interest is usu-
ally not dense throughout the object space. Hence we have partially solved the problem
of quickly obtaining an ordering on the rendering primitives. This gives us significantly
faster rendering speeds.

5 Concluding Remarks

We presented a hierarchical multi-resolution display scheme to render AMR data in-
teractively. Our technique constructs k-d trees and octrees from AMR data during pre-
processing. The data structures are used effectively for rendering and storing the data.
The technique takes advantage of hardware accelerated 2D texture mapping to enhance
rendering speed.

An important challenge is to apply our scheme to parallel rendering of AMR data.
Our k-d tree based splatting scheme has a good structure to be extended to parallel
rendering. The view dependent brick list can be considered as a task pool. Assume
that there is a master processor and several slave processors for this parallel scheme.
The master processor assigns a task to a proper slave processor and composites partial
images from slave processors according to a sorted brick order. Each slave processor
loads the assigned bricks, creates partial images using splatting, and then sends them to
the master processor. Another challenge is to implement an encoding method exploit-
ing temporal coherence for time-varying AMR data. If we develop lossless or lossy
compression techniques, the data can be stored in compact forms and thus rendering
speed to produce videos for analyzing time-varying data can be enhanced. Finally, we
have designed high order normal estimation and dynamic lighting based on graphics
hardware acclerated techniques to create much more interesting images.
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Abstract. Libraries provide the application developer with convenient high-level
user-defined abstractions for a specific application domain. We will describe ROSE,
an object-oriented infrastructure for source-to-source translation, that provides
an interface for programmers to write their own specialized translators for op-
timizing such abstractions. ROSE 1is a part of current research on telescoping
languages, which provides optimizations within the use of libraries in scientific
applications. This talk will describe approaches within ROSE to extend optimiza-
tion techniques that are common in well defined languages, to the optimization of
scientific applications using well defined libraries. We will present how high-level
grammars, customized to a specific library, can be automatically generated and
used to both recognize high-level abstractions within applications and also trigger
the optimization of their use. The idea of higher level languages driving the gen-
eration of lower level C++ code was originally discussed by Stroustrup in 1994.
The techniques presented in this talk are a special case of compiler support for
high-level abstractions such as those found in object-oriented numerical libraries.
Specifically in this work we utilize the semantics of the high-level abstractions
and generate low-level C++ code.
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Abstract. A probabilistic method is presented to derive the cache performance
of irregular applications on machines with direct mapped caches from inspection
of the source code. The method has been applied to analyze both, a program to
multiply a sparse matrix with a dense matrix and a program for the Cholesky-
factorization of a sparse matrix. The resulting predictions are compared with
measurements of the respective programs.

1 Introduction

With modern architectures, efficient use of caches is growing more and more impor-
tant for performant execution of applications. Thus, given a specific architecture and a
set of alternative source codes for a specific problem, it is interesting to compare the
alternatives for their cache performance on the architecture under consideration.

1.1 Objectives

A method is presented which can be applied to the source code of a program to de-
rive a set of calculations that can be evaluated in constant time and yields a proba-
bilistic estimation of the number of cache misses to be expected when executing the
program on a specific architecture. The method is applicable to architectures with one-
level, direct-mapped caches. The resulting set of calculations depends on configurable
parameters of the architecture like cache size, line size and the sizes of data types. Ad-
ditional parameters describing the input of the application are allowed, as long as they
are known beforehand or can be derived from the input in constant time. The analy-
sis is carried out manually, although the method is designed for future automation and
incorporation into a compiler. Furthermore, the method has been applied to analyze
both, a program to multiply a sparse matrix with a dense matrix and a program for the
Cholesky-factorization of a sparse matrix. The resulting predictions of the numbers of
cache misses are compared with measurements of the respective programs.
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1.2 Cache

The method presented and applied in the following considers one level of a direct
mapped data cache. The memory interface is modeled as follows: The cache is sub-
divided into cache lines, which represent the minimal amount of data transferable be-
tween cache and main memory. The main memory is subdivided into memory lines of
the same size, which are mapped round-robin to the cache lines.

As an example, a closer look is taken at the properties of an Intel Pentium 4 proces-
sor, clocked at 1.5 GHz and connected to the main memory over a system bus clocked
at 100MHz. Its cache lines consist of 64 Bytes. Accesses to the 64 KByte, 4-way first
level cache take between 2 and 9 CPU cycles. Accesses to the 256 / 512 KByte, 8-way
second level cache take 7 CPU cycles. Fetching data from the main memory takes be-
tween 102 and 192 cycles, assuming there is no concurring activity on the system bus
[13], [14], [15].

An access, which can be satisfied directly from the cache, is called a (cache) hir.
If the cache does not contain a copy of the memory line to be accessed, the access is
called a (cache) miss. In this case the memory line concerned is fetched from the main
memory and copied to the respective cache line. An access to a memory line, that has
been accessed before, is called a reuse. The last access to the reused memory line before
the reuse is called the source access of the reuse. The time between source access and
reuse is called the reuse distance of the reuse. The set of accesses occurring within the
reuse distance of a reuse, thus potentially replacing the memory line to be reused, is
called interference of the reuse.

1.3 Related work

According to the AEOS paradigm, for a specific problem domain, alternative implemen-
tations of a small kernel are collected. The most suitable implementation for a given
architecture is found empirically. Projects, applying this paradigm are, for example,
ATLAS [19] (BLAS library), PHiPAC [2] and FFTW [8-10]. The LAWRA project is
concerned with improving the cache performance by converting fundamental numeric
algorithms to recursive form [1]. M. Wolfe [20] employs a theoretical estimation of the
amount of locality to guide the arrangement of nested loops in order to improve the
cache performance. The examinations concentrate on minimizing the reuse distances
of array accesses with affine index expressions. In [12], sets of linear diophantic equa-
tions (cache miss equations) are used to describe and minimize the number of misses
occuring through array accesses with affine index expressions in nested loops. As pa-
rameters, the starting addresses of the arrays must be known, as well as the boundaries
of the nested loops. An automatic generation of cache miss equations for suitable loops
has been implemented as an extension to the SUIF compiler.In [18], the multiplication
of a sparse matrix with a dense vector is examined for its cache performance, by repeat-
edly decomposing the algorithm into smaller subproblems. Recombining the reuslts
allows to guide optimizations such as renumbering and blocking. In [7], an automatic
prediction of misses in n-fold associative caches for array accesses with affine index
expressions in perfectly nested loops has been achieved by means of area vectors. In
[6], area vectors are used to predict the numbers of misses in an associative cache dur-
ing a multiplication of a sparse matrix with a dense vector and during a transposition
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of a sparse matrix. In [3], the misses in a direct mapped cache have been predicted for
different versions of the multiplication of a sparse matrix with a dense matrix. The dif-
ferent versions are compared with each other examining the influence of rearranging
the nested loops.

2 Method

2.1 Basic Assumption

The method presented in this work is based on the following assumption [3]: The miss
probability of a reuse equals the relative proportion of the cache, that has been accessed
within the reuse distance.

Figure 2.1 visualizes this assumption. Depicted is a cache consisting of 10 cache
lines. During the progress of the program different cache lines are accessed. Each ac-
cess is marked by an arrow from the progress of the program to the cache. The reuse
considered in this example and its source access are displayed as arrows with continu-
ous lines. The dashed arrows represent interfering accesses. Within the reuse distance,
3 of the 10 cache lines are affected. Thus, according to the basic assumption, the prob-
ability for this reuse to be a miss is estimated as 3/10 = 0.3. (Although, in this specific
example, the memory line to be reused is not replaced.)

2.2 Algorithm

The algorithm in figure 2.2 outlines the method used to estimate the total number of
misses.

First, all references (places in the program, through which memory accesses are
carried out) are determined and collected in the set R. The misses are estimated indi-
vidually for each reference and finally added up to the total number of misses.

For each reference r € R, all important reuse types are determined. A reuse type
of a reference r is identified by a set of accesses through the reference r containing all
accesses, that have occured before a typical distance. Since an access may belong to
more than one reuse type, this distance is not necessarily the reuse distance. In order to
determine the reuse distance for each access, the accesses are classified, according to
their reuse types. A class is characterized by a specific set of reuse types, accounting for
a reuse distance typical for all accesses in the class. Thus, the accesses of a class can be
treated collectively.
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R = set of all references;
for_all referencesr € R {
determination of reuse types of r;
classification of the accesses throughr; C = set of classes of r;
for_all classesce C {
nle] = |el;
d[¢] = common reuse distance in ¢;
I = set of interference sets for distance d[c];
for_all interferencesetsi € I {
pe[i] = affected proportion of the cache(i, d[c]);
}
prlc] = U peli];

il

}
flrl= 3 pele] - nlc];
ceC

}
estimation of total number of misses = > f[r];
reR
Fig. 2.2. method

For each class ¢, its size n[c] and a reuse distance d[c] common for all accesses
contained in the class are estimated. A miss probability p,[c] corresponding to the reuse
distance d[c] can then be used to estimate the number of misses caused by the accesses
in the class ¢ as p;[c] - n[c]. Adding up these numbers for all classes of the reference r
yields the estimation of the total number f[r] of misses occuring through 7.

The probabilities p,[c] are estimated by means of interference sets. The interference
of a reuse is the set of accesses occurring within the reuse distance. In order to de-
rive the corresponding miss probability, first, those references are determined, through
which accesses are carried out within the reuse distance. Generally, it is assumed, that
the memory areas accessed through the different references are independent from each
other. References, for which this is not the case, are grouped together to interference
sets. As an example, the referencesry andrp inx = ry[i] + ra[i + 1] forman
interference set. For consistency reasons, a single independent reference is also inter-
preted as a special, one element case of an interference set.

The proportion of the cache affected by accesses through the references of an inter-
ference set 4 is interpreted as the interference probability p.[i]. Since the interference
sets are designed to access independent memory areas, it is assumed that the inter-
ference probabilities are also independent from each other. Thus, the cumulative ef-
fect pe[i] U pe[j] of two interference sets ¢ and j can be calculated as p.[i] U p.[j] =
Peli]+peli]—peli]-pelj]- Since the cumulation is associative, the cumulation of n inter-
ference probabilities py, . . ., p, can be written abbreviatorily as Ui":1 pi; = p1U...Up,.
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With T as the set of all interference sets for a specific reuse distance d[c], the total effect
pr[c] of the corresponding interference on the cache can be calculated as |J;c ; peli].
According to the basic assumption this is interpreted as the miss probability for a reuse
with the considered reuse distance.

The interference probability of an interference set can be derived with the aid of
interference patterns [3]. One such pattern is the sequential interference. This pattern
is characterized by the access of a contiguous area of memory. Figure 2.3 depicts this
situation, with /s denoting the size of a cache line and cs the size of the cache. The
gray area represents a contiguously accessed array of n bytes. As the hatched areas
indicate, more than n bytes of the cache may be affected, since an access to a specific
memory address affects the entire cache line. At both ends of the accessed area between
0 and /s — 1 additional bytes may be concerned. Assuming that each case occurs with
the same probability, this averages to =1 additional bytes on each side, totalling to
s — 1 additional bytes. The relative proportion A,(n) of the cache affected by such
an access can therefore be estimated as A;(n) = min {1, 2=} The result has an
upper bound of 1 for the case when n is larger than the cache size.

Many other and more complex reuse patterns exist, supporting the estimation of the
corresponding miss probabilities.

3 Test environment

In the following sections, the results of analyzing a matrix multiplication and a Cholesky
factorization according to the method presented in section 2 are discussed. Details of
the analysis can be found in [17]. The analysis yields a program which calculates an
estimated number of misses. Estimations can be calculated for one level of a direct
mapped cache, where the sizes of the cache, the cache line and the data types can be
parameterized.

These analytically determined numbers of misses are compared with measurements.
Two methods are applied to determine the number of misses empirically. This study
made use of the Wisconsin Architecture Research Tool Set (WARTS) developed at the
University of Wisconsin-Madison [16]. By means of the tool gpt2 memory traces
were generated which were simulated by dineroIV [5], yielding the total number of
misses. For a more detailed analysis, the source code of the program to be analyzed was
enhanced to produce a richer memory trace, which was processed by a specific cache
simulator (refsim), yielding the numbers of misses for each reference separately.

The results of both methods differ slightly, since the compilation and instrumenta-
tion of the investigated source code can change the memory accesses carried out by the
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executed program. In order to minimize such effects, the programs to be analyzed are
compiled with no optimization. As compiler gcc 2.8.1 was used under Solaris 8.0 on a
SUN Ultra-60 with 2 Ultra SPARC II processors.

4 Matrix multiplication

The cache performance of sparse matrix multiplications has been studied before. Es-
pecially in [3], three versions have been examined for their cache performance. One of
these (jik) is the same as the version considered here in more detail.

4.1 Algorithm

The algorithm investigated here, is the multiplication of a sparse matrix A with a dense
matrix B resulting in a dense matrix D. The sparsity of the matrix A is parameterized
by the sparsity factor o, which is defined as the number of nonzeros divided by the
number of elements in the matrix A. The dense matrices B and D are stored column
wise. The sparse matrix A is stored in a compressed row storage scheme (CRS).

4.2 Experiments

The analytical estimation of misses depends on the size of the matrices and the sparsity
factor v of the matrix A.

The figure 4.4 compares measured and analytically determined numbers of misses
for a matrix size of 1000 elements. The sparsity factor a of the matrix A is 0.05. The
x-axis shows the size of the cache and the y-axis shows the corresponding number of
misses. Four graphs are displayed. The graph labeled “analysis” represents the analyti-
cally determined numbers of misses. The graph labeled “object - dinerolV” represents
the numbers of misses measured by using WARTS to generate an address trace which is
then evaluated by dineroIV. The graph labeled “source - refsim” represents the num-
bers of misses measured by enhancing the source code with additional trace output and
simulating the resulting trace with refsim. The graph labeled “source - dineroIV”
represents the numbers of misses measured by enhancing the source code with addi-
tional trace output and simulating the resulting trace with dineroIV. This graph is
included to demonstrate, that refsim and dineroIV deliver the same miss counts,
when given the same trace.

The figure shows, that the analytically determined numbers of misses match the
measured values very well. Only for larger caches there are significant differences.
These can be attributed to the basic assumption. They occur, when the cache size is
large enough to hold the entire data in the cache. At this point, there is virtually no
more contention for cache lines and the measured numbers of misses display a sharp
drop. On the other hand, according to the basic assumption, there is still a probability
for a replacement miss, leading to a slower decay of the estimated number of misses.
For even larger caches the graphs converge again to the number of compulsory misses.
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5 Cholesky factorization

In this section an implementation of a column based, right-looking Cholesky factoriza-
tion of a sparse, positive definite, symmetric matrix is investigated.

5.1 Algorithm

The Cholesky factorization of a positive definite, symmetric matrix A determines a
lower left triangular matrix L, such that A = L - LT, The investigated algorithm pro-
ceeds from left to right through the columns i of the matrix A, transforming it into the
matrix L. The column ¢ is first completed and then used to modify the columns right of
itself. A complete operation consists of one run through the elements of the column.
A modi fy operation consists of a simultaneous run through both columns concerned.

The sparsity of the matrix is exploited in several ways: The column based operations
complete and modify can confine themselves to access only nonzero elements. The
modification of a column j with a column ¢ only has an effect on the modified column,
if the element [;; is a nonzero. Thus, many modifications can be skipped. Only nonzero
elements have to be stored, lowering memory requirements.

The structure of L can efficiently be precomputed by symbolic factorization [11].
After initializing this structure with the lower left of the matrix A, it can be transformed
in place into the matrix L. A compressed column storage scheme is used. Due to the
nature of the Cholesky factorization, neighboring columns frequently share the same
column structure. If this is the case, the structures are reused, further compressing the
data structure.
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5.2 [Experiments

The memory accesses generated by the Cholesky factorization depend heavily on the
nonzero structure of the matrix. Thus, apart from the size of the matrix, two additional
parameters, o and (3, are used, when estimating the number of misses analytically. The
sparsity of the matrix is expressed by a. The value 8 describes the additional compres-
sion achieved by reusing the structures of neighboring columns.

Figure 5.5 shows a detailed examination of the Cholesky factorization of the matrix
bcsstkl4 from the Harwell — Boeing matrix collection [4]. Measured and analyti-
cally determined numbers of misses are compared for the most important references
separately as well as for the totals.

As with the matrix multiplication, the totals (analysis and measurement) re-
veal the shortcoming of the basic assumption, which leads to overestimations of the
numbers of misses for larger cache sizes. Additionally, with the Cholesky factorization,
large deviations can be observed over the whole range of cache sizes. The reference
ns accounts for the main part of the deviations. Through this reference, the elements
of the columns to be modified are read. Reuse distances for these accesses show a
large variance and their estimation depends heavily on the parameter . In the anal-
ysis, the parameter « is interpreted as the probability for any subdiagonal element to
be a nonzero. Further investigations indicate that this assumption does not model the
Cholesky factorization very well.

6 Conclusions and outlook

A method has been developed, that yields, based on an inspection of the source code,
a set of calculations, that can be evaluated in constant time and delivers an estimation
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of the number of misses to be expected. The method has been applied with very good
results to the multiplication of a sparse matrix with a dense matrix. An application of
the method to a sparse Cholesky factorization yields good approximations for most
references, but a few references are not modeled very well.

Interesting future work includes a more detailed modeling of the Cholesky factor-
ization, especially concerning the nonzero distribution. Furthermore, the automation of
some aspects of the method can be investigated with the intention of an integration into
a compiler. Also, the method shall be extended to model more complex cache architec-
tures than a direct mapped data cache.
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Abstract. Interfacing functors or member functions with C libraries proves to
be difficult as library routines can only accept a pointer-to-function as a callback
argument. Usually this limitation is addressed by constructing an ad hoc wrap-
per, but this approach has several drawbacks such as the impossibility of reuse
and limited support for concurrent adaptation of multiple object instances. We
propose a more flexible and generic solution to the problem of mapping functor
or object-member function pairs to plain C functions using recursive template
programming techniques. A performance analysis of our solution is presented
in order to evaluate our solution’s usefulness in a high-performance computing
context.

1 Introduction

In object-oriented C++ programming object-and-member-function pairs and functors
occur as callable entities, besides C-style functions and function pointers [1]. Func-
tors are simply classes that define the call operator, i.e. operator (), as a member
function. In this contribution, we will use a class Particle with members position and
velocity to illustrate our ideas.

class Particle { public:
double position(double time);
double velocity (double time);
}i

When two software components are developed independently, e.g. one’s own code
and a numerical library from a third party, they are often tied together through the
callback mechanism. Consider for instance the computation of a particle’s acceleration
using the library’s derivative procedure on the particle’s velocity. When the library pro-
cedure, referred to as caller, executes, it invokes the function whose derivative must be
computed. This function is the callee, and it is passed to the caller by way of the callback
function argument. Thus the design of the caller also prescribes the type of the callee
that it accepts. There are several approaches for the design of C++ callback libraries [2]
[3] which support flexible callback constructs. They are however only applicable when
both caller and callee are designed in an object-oriented fashion.

We want to look at the situation that arises when the caller is part of legacy C code.
In a high-performance computing context, this scenario is commonplace as a prominent
part of libraries in the HPC field only provide mechanisms to interface with C-style
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functions. Relevant areas in this regard include those of quadrature and differential

equation solving.

The question thus arises as to how C++ functors and member functions can be
hooked into C-style callbacks. When the caller is a C procedure, as illustrated below,
the callee is necessarily a pointer to function, with a type determined by its signature
(argument types and the return type).

double derivative (double step, double x, double (*f) (double));

On the face of it, the member function in Particle: : velocity has the appro-
priate signature, suggesting that its address can be used as callback function argument.
However, a member function needs to be bound to an object instance at runtime in or-
der to make sense, an implicit "this" pointer in its argument list points to that object.
As a consequence, the member function signature is not compatible with the pointer-
to-function accepted by a C-style callback.

In this contribution we want to develop a mechanism that enables object-oriented
code to interface with C libraries when the connection must be made via the C-style
callback. Our approach extends previous work on this mechanism for functors [4]. In
the following sections we first consider the most commonly used approach, that of the
ad hoc wrapper, and its limits and drawbacks. These are addressed in our approach of
an adapter, which we generate through recursive template instantiation techniques. We
will also present a performance analysis of our solution.

2 The ad hoc wrapper approach

This solution uses a static member function to bind the callee to the caller. An invocation
of a static member function does not require a "this" pointer to provide a calling context.
Pointers to such static member functions are therefore convertible to C-style function
pointers that host the same method signature.

class ParticleWrapper { public:
static double velocityGlue (double time)
{ return fObj->velocity (time); }
static void setObj(Particle& obj) { fObj = &obij; }
private:
static Particle* fObj;
}i

// Bind the wrapper to particle p and call procedure
ParticleWrapper: :setObj(p); double res =
derivative (0.001,2.0, &ParticleWrapper::velocityGlue);

A static data member holds the reference to the callee object that will receive the
adapted call. Static functions need to be defined in the wrapper for every member func-
tion that is to be adapted.

This approach is the most common way of dealing with the problem of binding
member functions to C-style callbacks [5]. However, it suffers from a number of lim-
itations. Firstly, one needs to manually define the necessary wrappers for every class
and for every member function that requires adaptation. Secondly, one can only adapt
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a member function for a single callee instance at a time because there’s only one static
data member to hold the instance’s address. Indeed, when a second object is adapted,
one overwrites the previous object’s address. If callers have stored the function pointer
for continued use, then calling that pointer now invokes the member function on the
second object instead of on the first.

3 The adapter approach

This section presents the design of a generic adapter class that is able to bind member
functions to C-style function pointers for a number of callee objects. The number of
callee objects that can be adapted will need to be specified at compile-time. The core
of the approach is again to use static functions to glue the member function implemen-
tations to a calling interface that is convertible to C-style function pointers. However,
the adapter will support objects and member functions of arbitrary type and signature,
alleviating the first limitation of the ad hoc approach. Furthermore, our solution will be
able to support the adaptation of multiple callee objects of the same type, at the same
time, thereby addressing the ad hoc wrapper’s second limitation.

In order to support the adaptation of multiple callee instances, we introduce a map-
ping structure that maps pairs of object/member function addresses to associated glue
functions.

template <class KeyType, class MappedType, int mapCapacity> class
IndexedMap : public vector<pair<KeyType, MappedType> >

When a member function is adapted for the first time, a key-value pair is added
to the map. The addresses of the callee object and its member function serve as the
key, with the address of an available glue function as its associated value. The map
is wrapped inside Loki’s SingletonHolder (cfr. [6] for the Loki library) which
creates and holds a unique instance of the type defined by its template parameter.

The glue functions retrieve a callee object’s address at a fixed position in the map
and invoke the appropriate member function. A glue function is wrapped inside a tem-
plate class to support arbitrary callee types and member function signatures. A spe-
cialization [7] for a wrapper class that supports member functions accepting a single
argument is shown below.

template <class CTraits, int mapMax, int i> class Wrapper {};

//Specialization of the Wrapper template for member functions
//accepting one argument
template<class ObjectType, class R, class P1l, int MapMax, int i>
class Wrapper<MemberFunctionTraits<ObjectType, R, TYPELIST_1(P1l)>,
MapMax, 1>

{ public:

//The C-Style function pointer type

typedef R (*FP) (P1);

//The KeyType for indexing the map

typedef pair< ObjectType*
MemberFunctionTraits<ObjectType, R, TYPELIST_1(P1)
>::MemberFunctionPointerType > MemFuncKeyType;

//The IndexedMap singleton
typedef SingletonHolder< IndexedMap<MemFuncKeyType, FP, MapMax>,
CreateStatic, NoDestroy > A2FMap;
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//The forwarding function
static R forwardCall (Pl parml)

{
MemFuncKeyType key = (A2FMap::Instance()) [1].first;
return (key.first->*key.second) (parml);

We use the traits [8] technique to combine all information concerning the member
function’s type in the MemberFunctionTraits class. Encapsulation of type infor-
mation within a traits class increases the modularity and resulting extensibility of the
template structure. The function’s argument types are passed to the traits class through
a TYPELIST construct provided by the Loki library. A TYPELIST is a container for
types. Loki provides operations in the form of template classes to manipulate the list at
compile-time.

In order to support the adaptation of the same member function for n instances of the
callee class, we need to generate n static glue functions. We add an extra int template
parameter to the wrapper class that hosts the static glue function for this purpose. The
integer parameter will denote the index of the object/member function pair that will
be adapted by the glue function. Every time the compiler instantiates the Wrapper
class with a new value for i, a static glue function will be generated. To perform the
instantiation process, we use the recursive template algorithm shown below.
template<class CT, template<class,int,int> class Glue,

int mapMax, int i>
class GlueList { public:

//The typelist of the previous GluelList instantiation
typedef GluelList<CT, Glue, mapMax, i-1>::typelist pList;

//RAppend a new wrapper class instantiation to the typelist

typedef Glue<CT, mapMax, i> newGlue;

typedef typename Append<plList, newGlue>::Result typelList;
bi

//Specialization representing the base case for the recursion
template<class CT, template<class,int,int> class Glue, int mapMax>
class GlueList<CT, Glue, mapMax, 0> { public:

typedef Glue<CT, mapMax, 0> newGlue;

typedef TYPELIST_1 (newGlue) typelList;
bi

The ¢ parameter specifies the number of Glue class instantiations that need to be
made. The GlueList class defines a publicly available t ypeList type. At the end
of the recursion, this typelist will contain all the Glue instantiations. In every step of
the algorithm we take the list of the s — 1’th GlueList and append a new instantiation
of G1lue to it. The compiler continues the recursive instantiation process until ¢ reaches
0. At this point, the specialization of the GlueList template for ¢ = 0 is instantiated
and the recursion ends.

The glue function addresses of these wrapper classes are inserted into the IndexedMap
singleton by means of a type-iterative algorithm based on recursive template instan-
tiation (no code shown). The algorithm iterates over the typelist constructed by the
GlueList template. In every step of the recursion, the address of the glue function
belonging to the wrapper class at the head of the list is inserted into the map. Recursion
continues until the tail of the typelist equals Nul 1 Type, indicating the end of the list.

The code fragment below demonstrates the use of our final solution by adapting the
member function velocity of the Particle class defined in the introductory sec-
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tion. The adapted member function is then passed on as a pointer-to-function argument
of the derivative function contained in a C library.

//Define a 10-slot adapter and get the instance
typedef Adapter<Particle,double, TYPELIST_1 (double), 10> PAdapter;
PAdapter* ad = &PAdapter::Instance();

//Adapt a particle p’s velocity function
PAdapter: :FunctionPointerType fp=ad->adapt (p,
&Particle::velocity); double res = derivative(0.001, 2, fp);

4 Performance Evaluation

Our adapter provides a more generic and flexible solution to the member function adap-
tation problem. This section will determine the associated cost of this flexibility by
comparing the performance of C callbacks using the adhoc wrapper approach versus
callbacks using our adapter.

Measurements were obtained on a 2.4 GHz Pentium IV processor with 512 Kb L2
cache and 512 Mb of RAM. The adapter has been compiled and tested on the following
platforms; gcc 3.2.2 and 3.3 on Solaris and SuSE Linux, Comeau 4.3 with a SunONE
CC 5.1 backend on Solaris, Intel C++ 7.1 on Windows XP and SuSe Linux, Microsoft
Visual 2003 C++ 7.1 and Metrowerks C++ 8.3 on Windows XP. All tests ran under a
thread with critical priority. In this section, we present timings for the Visual 7.1, Intel
7.1 and gec 3.3 compilers.

Our test setup consists of a C library function that calls back to a member function
which returns the sum of two integers. We will measure the time it takes for the library
function to return, i.e member function execution time is included in the measurements.
In order to prevent cross-source compiler optimizations, we compiled the library source
separately using the highest optimization level. We enabled automatic inlining for all
compilers and optimization levels.

Intel’s RDTSC [9] instruction was used to measure the execution time of the li-
brary function. The RDTSC assembly instruction returns the current 64 bit value of the
Pentium’s TSC (Time Stamp Counter). The TSC is reset on boot and increments every
clockcycle. RDTSC reads the low-order 32 bits of the TSC into the accumulator. The
RDTSC instruction does not qualify as a serializing instruction. Therefore, it may be
executed out of order with respect to instructions preceding or following it. To prevent
this, we issued a CPUID instruction before every call to RDTSC. CPUID returns infor-
mation about the CPU and is the only serializing instruction callable from user mode.
The overhead for issuing the RDTSC/CPUID instruction pair was subtracted from the
measured result. The library function was called ten times. The first call includes all
main memory transfer times and cache miss overhead, it serves as a warmup. We took
the minimum of the other nine calls to denote the minimal execution time of the library
function.

Table 1 shows the values of these measurements for different compilers, platforms
and optimization levels. Optimization level OO0 instructs the compiler to perform no op-
timizations, full compiler optimizations are performed at level O2 for the Visual com-
piler and at level O3 for the other compilers. The optimization flags included in the
intermediate levels differ from compiler to compiler. We refer to the respective com-
piler manuals for a full overview.
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For the Visual compiler, the extra cost of using our adapter is 12 cycles on the
highest optimization level. Object code produced by the gcc compiler shows slightly
higher execution times for both ad hoc and adapted cases. The extra overhead incurred
by our adapter results from accessing the map structure, but more importantly, from the
fact that the code for the forwarded member function did not get inlined in the glue
function body, in contrast to the ad hoc case. This was determined by inspecting the
generated assembly code. The table also shows that the impact of the extra statements
in the adapter’s wrapper function is heavily reduced by the compiler’s optimizations.
The OS has a small impact on the code’s performance as shown by the measurements
for the Intel compiler on SuSe versus those on Windows XP.

Table 1. Time per callback in clock cycles for the ad hoc case and adapted case on
different compilers, platforms and optimization levels.

VC 7.1 XP| Intel 7.1 XP |Intel 7.1 SuSe | gcc 3.3 SuSe
Optimization|02|01|00{03]|02|01|00 |03]|02(01{00|03|02|01|00
Adapted |2832]|72(32|32{92|184|36|36(36(100{40 |48|64|164
Adhoc |16]16]16[16]16(16|32|16|16]|16|40{20{20|20|40
Overhead |12|16(56|16|16|76(152|20|20(20( 60 |20 |28 |44 (124

Previous work [4] using the same test setup, showed a smaller overhead of 10%
for the Visual compiler when adapting a functor’s call operator. In the functor case,
the operator call was hard coded into the wrapper’s glue function, which enabled the
compiler to inline its code.

5 Conclusion

A flexible solution was presented to tackle the problem of adapting member functions
to C-style function pointers. This is important in order to use legacy high-performance
computing libraries with object-oriented C++ code. In contrast to the ad hoc wrapper
solution, our solution allows for the adaptation of multiple object and member function
types. The number of object/member function pairs that can be adapted is tunable at
compile time on a type to type basis. Performance analysis has quantified the overhead
of our solution compared to the ad hoc approach, and has shown the effect of compiler
optimizations in this regard.
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Abstract. We have proposed a novel chip multiprocessor (CMP) that supports
the speculative multithreading mode and the wide-superscalar execution mode.
The former mode behaves like a conventional CMP, while the latter mode inte-
grates all the processing elements into a single-logic superscalar processor. Fur-
thermore, we extend this innovative microarchitecture to support a third execution
mode, whereby the processor keeps switching between the first and second modes
when executing an application, according to the characteristics of subsequent in-
structions. Since the speculative multithreading outperforms the wide superscalar
when the former mode can exploit more parallelism from different tasks, loop
optimization techniques have been proposed in this paper to exploit better loop-
level parallelism. Through the assistance of our proposed compilation techniques,
the system performance of the novel CMP architecture can be further improved.
According to the simulation results, the best speedup is about four .

1 Introduction

Recent studies have shown that a conventional chip multiprocessor (CMP) cannot out-
perform a superscalar processor when executing integer operation-intensive applica-
tions [1]. Therefore, we have proposed a novel microprocessor that supports the specu-
lative multithreading mode and the wide-superscalar execution mode [2]. Both execu-
tion modes provide a peak issue rate of sixteen instructions per cycle. The former mode
behaves like a conventional CMP, while the latter mode integrates all the processing
elements into a single-logic superscalar processor. Furthermore, we extend this innova-
tive microarchitecture to support a third execution mode, whereby the processor keeps
switching between the first and second modes when executing an application, accord-
ing to the characteristics of subsequent instructions. As a result, this third mode can use
both the advantages of a CMP and of a superscalar to execute an application. According
to the performance analysis, our processor can provide an optimum system performance
for all benchmark programs, regardless of workload characteristics. Furthermore, our
CMP outperforms a conventional CMP, exhibiting a speedup of up to 1.32.

To improve an application’s performance executing on this new microprocessor,
compiler techniques can be applied to judge which parts of the application should be
executed by which execution mode. The speculative multithreading outperforms the
wide superscalar only when the former mode can exploit more parallelism from dif-
ferent tasks. If complicated data and control dependencies exist between tasks, data
dependence violations may occur frequently in the speculative executions. As a result,
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the speculative executions of these tasks have to be terminated and restarted, which
will degrade the system performance dramatically. Therefore, in this paper we have
developed a compilation technique to reduce or even eliminate the occurrences of de-
pendence violations.

A lot of research have been focusing on how to parallelize application programs to
achieve better speedups [?]. To parallelize programs, they rely on various dependence
test approaches to help the analysis of data dependence [3, ?]. Since the unique fea-
ture of the speculative multithreading mode is that, at most, four tasks are executed
in parallel at any time, loops with dependence distance equal to or larger than four
will not incur dependence violations. Consequently, compilers may only be concerned
with loops with dependence distances less than four. The goal of our optimization is
to lengthen the dependence distance to be larger than three. The method is to extract
several independent loop iterations from another task and then to insert these iterations
into a task that is with dependence distance less than four. Of course, we have to make
sure that after the above transformation, the execution result remains the same as the
original program. Through the assistance of compilers, the system performance of the
novel CMP architecture can be further improved. According to our simulation study,
the best speedup of the compilation optimization approach is four.

The remainder of this paper is organized as follows. Section 2 introduces the main
idea of the proposed compilation techniques to improve the system performance of our
CMP architecture. Section 3 describes the detailed techniques for handling different de-
pendence distances. Section 4 presents a preliminary performance analysis, and finally,
Section 5 provides some concluding remarks.

2 The main Idea

First, we review the features of the speculative multithreading mode. In the speculative
multithreading mode, each of the four PEs will execute one loop iteration, respectively.
When encountering a loop, the first four consecutive iterations will be allocated to the
four PEs in order. The first iteration executed on P Ey is called nonspeculative iteration
because it has no preceding iterations. The other three iterations are called speculative
iterations because their executions may depend on the results produced by the their
preceding iteration(s). When a speculative iteration requires an operand value to exe-
cute an instruction and the value has not been produced by its preceding iteration, the
speculative iteration will predict a value for the operand to accelerate its execution. If
the predicted value is not the same as the real value produced afterward, a dependence
violations will occur and the speculative iteration has to be flushed and restarted. Af-
ter the first iteration is completed, the fifth iteration will be executed on PEj. At this
time, the second iteration becomes a nonspeculative one and the fifth iteration is a spec-
ulative iteration. In summary, all loop iterations will be allocated to the four PEs in
a round-robin fashion. Moreover, at any time, at most four consecutive iterations will
be executed in the speculative multithreading mode. Consequently, loops with depen-
dence distances larger than three will not incur any dependence violations when being
executed in the speculative multithreading mode. On the other hand, loops with depen-
dence distances less than four may encounter dependence violations when the CMP
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executes these loops in the speculative multithreading mode, which will degrade the
system performance severely.

For the loops with dependence distances less than four, we propose the following
compilation technique to avoid the occurrences of dependence violations in the specu-
lative multithreading mode. The main idea is that for a loop with a dependence distance
less than four, we can extract several iterations from another loop and insert them be-
tween two dependent iterations of the loop. By this way, the dependence distance may
be lengthened to be larger than four. As a result, the loop can be executed in parallel
without dependence violations in the CMP. We illustrate the idea by the following ex-
ample. Assume that there are three consecutive iterations, said i, i+/ and i+2, in the
loop L 4 as shown in Fig. 2.1. For the three iterations, only iteration i+2 need to wait
for the results produced by iteration i. Consequently, these three iterations cannot be
executed in parallel without dependence violations in our proposed CMP. To allow the
three iterations to be executed in parallel in our CMP without dependence violations, we
can extract two independent loop iterations, said j and j+/, from another loop Lp and
insert them between the iterations i+/ and i+2. Consequently, the original loop L 4 has
two more iterations, we call the augmented loop L';. Of course, the indexes and array
subscripts of the loops L4 and Lg have to be remapped accordingly. By the insertion
of two more iterations into the loop L 4, the dependent distance between iterations i
and i+2 is lengthened from two to four. Consequently, the four consecutive iterations i,
i+1,i+2 and i+3 as well as the four consecutive iterations i+/, i+2, i+3 and i+4 are all
independent, respectively. In summary, we can lengthen the dependence distance for a
loop by inserting additional independent iterations from another independent loop.

La Lp

i i+l i+2

i
 e0e | | [

I
=

oo e

i '+1 +2 P+3 1’+4

Ls

Fig.2.1. The insertion of two independent iterations to lengthen the dependence dis-
tance. Iteration i+2 depends on iteration i in the loop L 4, i.e. the dependence distance
is equal to two. After inserting two independent iterations j and j+1, belonging to the
loop Lp, between iterations i+/ and i+2 in the loop L 4, the dependence distance is
lengthened to be four.
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To provide enough additional iterations to lengthen dependence distances, we can
first apply conventional compilation techniques to transform loops into parallel loops,
e.g., loop distribution, loop fusion, loop alignment, etc [3]. Moreover, since a loop with
a dependence distance of four or larger will not suffer from dependence violations in
the speculative multithreading mode, the parallel loops in our CMP can be redefined
to be the loops whose cross-iteration dependence distances are larger than three. In
the next subsection, we will explain more detailed designs for lengthening dependence
distances.

3 Implementation

First, we consider the case that a loop is with a minimum dependence distance equal
to three in this subsection. In other words, there are no dependence distances less than
three. Although the loop may have dependence distance larger than three, we do not
care about these dependencies because they will not be violated when being executed
in our CMP. Obviously, when executing the loop with dependence distance of three
in the speculative multithreading mode, we may encounter dependence violations. To
avoid dependence violations, we require to extract independent iterations from other
loops and then to insert these iterations into the loop. The iteration insertion policy is
that one extracted iteration is inserted after every three consecutive iterations. We il-
lustrate the idea by an example shown in Fig. 3.2. In the original loop as shown in
Fig. 3.2(a), the iteration 3 depends on the results produced by the iteration 0, indicated
by an arrow. According to the insertion policy, an independent iteration has to be in-
serted between iterations 2 and 3. Similarly, another independent iteration has to be
inserted between iterations 5 and 6. The augmented loop with two inserted iterations is
shown in Fig. 3.2(b). The inserted iterations are differentiated by two rectangles. The
augmented loop indexes have to be rearranged. The two inserted iterations are with
the new indexes of three and seven, respectively. After the insertion, the dependence
distance is lengthened from three to four. Consequently, the augmented loop can be
executed in the speculative multithreading mode without suffering from dependence
violations.

It is important how to provide additional and enough independent iterations to
lengthen the dependence distance to four or larger. If there are N iterations in a loop
L 4, with the minimum dependence distance of three, we need to extract % additional
iterations from other loops. A loop Lg that can provide iterations should meet the fol-
lowing requirements. (1) The loop is preceding or following the loop L 4. (2) Remove
the candidate iterations from the loop Lp will not influence the original dependencies
in the loop L g. (3) Move the candidate iterations to the loop L 4 cannot alter the depen-
dencies in the loop L 4. (4) Move the candidate iterations to the loop L 4 cannot change
the execution result. (5) The dependence distance of L g can be any value because any
two consecutive iterations will be inserted into L 4 and separated by three L 4 iterations.
Of course, after extracting some iterations from L g, we have to reassign the indexes of
the remaining iterations for Lp.

We give a simple example to detail the proposed compilation technique as shown
in Fig. 3.3. There are two for loops. The first one has a cross-iteration dependence with
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Fig. 3.2. Lengthen the dependence distance from three to four. (a) A loop with a de-
pendence distance of three. The arrows indicate dependence relations. For example,
iteration 3 depends on the results produced by iteration 0. (b) Insert one independent
iteration, extracted from another loop and depicted by a rectangle, after every three
consecutive iterations. The resulting dependence distance is four.

distance equal to three and the second one has no cross-iteration dependence as shown
in Fig. 3.3(a). Because there are no dependencies between these two loops, we can
extract % iterations from the second loop. Consequently, the first loop has to execute
(N + &) iterations and the second one has only (M — &) iterations left. The indexes
of the two loops are modified accordingly as shown in Fig. 3.3(b). Furthermore, in the
first loop, we use an if-else statement to execute the original statement and the inserted
statement interleaving. The array subscripts of the two assignment statements in the

first loop are also modified as shown in Fig. 3.3(b) to enforce the original semantics.

for(i=0; i<N+N/3; i++){
if(i%4 '=3){
k= (i/4)*3 + 1%4;

for(.i=0; i<‘N; i++) ) Alk]=A[k-3]+ B[k];
Ali] = A[i-3] + B[il; }
|:||> else
for(j=0; j<M; j++) C[(i-3)/4] = 2*((i-3)/4);
Clil1=2%j; }
for(j=N/3; j<M; j++)
Clil=2%j;
(a) (b)

Fig. 3.3. An example of code transformation for enlarging the dependence distance. (a)
The original first loop is with a dependence distance of three. (b) The transformed first
loop has a dependence distance of four.
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SUBROUTINE BUBBLE( TEN, J1,J2, 13, M, IND )
REAL*S TEN( M, 0:1
INTEGER M, IND, JI(M, 0:1), J2( M, 0:1), J3( M, 0:1 )
REAL*8 DIR, TEMP
INTEGER 1, IXTEMP
IF(IND EQ. 1 )THEN
DIR = +1.0D0

SUBROUTINE BUBBLE( TEN, J1, J2, J3, M. IND )
REAL*S TEN( M, 0:1 )
INTEGER M, IND, JI( M, 0:1), J2( M, 0:1), J3( M, 0:1 )
INTEGER FLAG(M )
REAL*8 DIR, TEMP
INTEGER 1, I1, I2, I3, 14, IXTEMP

SUBROUTINE BUBBLE( TEN, J1, J2, J3, M, IND )
REAL*S TEN( M, 0:1)
INTEGER M, IND, |1(v| 0:1),12( M, 0:1), J3(M, 0:1)
INTEGER FLAG( M
REAL*S DIR, EMp
INTEGER 1, JXTEMP

IF(IND .EQ. 1 )THEN IF(IND EQ. | )THEN

ELSE DIR = +1,050 DR =
DIR = -1.0D0 EL EL:
ENDIF Dk = -1.0D0 DIR =-1.000
DO 100 1=1,M-1 ENDIF ENDIF
IF( DIR*TEN(LIND) .GT. DIR*TEN(I+1,IND) )THEN DO 100 1=1,M-1 DO 100 I=1, 3*(M-1)
TEMP = TEN(I+1, IND ) IF( DIR*TEN(LIND) .GT. DIR*TEN(1+1.IND) JTHEN IF(MOD(L 3) EQ 1) THEN
TEN(I+1, IND) = TEN( 1, IND ) FLAG(I] = = (1/4)+MoD(, 3)
TEN(IL IND ) = TEMP. TEMP u—r\(w IND ) |r(|>|k~n—N(|N|))( T. DIR*TEN(I+1,IND) ) THEN
IXTEMP = JI(F+1,IND) TEN( 1, IND) = TEN( 1, IND ) FLAG(I1] = 1
JI(I#1,IND) =JI(1.  IND) TEN(L IND)) = TEMP TEMP = TEN(11+1,IND )
JI(L_ IND) = JXTEMP ELSE TEN(I1+1,IND ) = TEN(I1, IND )
IXTEMP = J2(1+1,IND ) FLAG[T] = 0 TEN(H, IND) = TEMP
(11, IND) — (1 IND) ENDIF EL
J2(1INE 100 CONTINUE L AGLIT] =0
IXTEMP = J3( |+1 wm ENDIF
J3(1+1,IND) =J3(1. IND) DO 200 I=1,M-} ELSE IF (MOD(I, 3) . EQZ)TIIEI\
B3(L  IND)=JXTEMP IF(FLAGIT).EQ. | 'THEN 2= (1/4)+ MOD(L
ELSE EMP = JI(1+1,IND ) xr( FLAGI12] EQ |)THI‘N
RETURN mw IND)=JI(I, IND) —J1(12+1,IND )
ENDIF JI(L,  IND)=JXTEMP Jl(IZH.lND) J(12,  IND)
100 CONTINUE NDIF JI(I2,  IND)=JXTEMP
RETURN 200  CONTINUE 2
END ELSE IF (MOD(I, 3) [Ql ) THEN
DO 300 I-1.M-1 13 = (1/4) + MOD(1, 3
IF( FLAG[I] .EQ. 1 JTHEN IF( FLAG[13] .EQ |)IHI»N
IXTEMP = J2(1+1,IND) JXTEMP  =12(I3+1,IND )
J2(1+1,IND) =J2(1.  IND) J2(13+1,IND) = J2(13, IND)
J2(1,  IND)=JXTEMP J2(13,  IND) = IXTEMP
3 ENDIF
300 CONTINUE ELSE IF (MOD(I, 3) .[EQ 0 ) THEN
14 = (1/4) + MOD(, 3)
DO 400 1=1,M-1 IFCFLAGII4] EQ. 1 THEN
IF( FLAG[I] .EQ. 1 JTHEN 3 = J3(14+1,IND )
= J3(F1,IND) 131 14+1,IND) = J3(14, IND)
J3(I1,IND)=J3(1, IND) m 4, IND) = IXTEMP
J(L - IND) = IXTEMP
EL RETuRN
RETURN ENDIF
NDIF
400  CONTINUE 100 CONTINUE
RETURN RETURN
END END
(a) (b) ©

Fig.3.4. A code transformation for enlarging the loop dependence distance of a bubble
sort subroutine. (a) The original loop is with a dependence distance of one. (b) After we
apply the extended loop distribution transformation to the original loop, there are four
loops and each is with dependence distance of one. (c) After applying our proposed
method, we have the transformed loop with a dependence distance of four.

If a loop is with a minimum dependence distance of two, we have to insert two
additional independent iterations after every two consecutive iterations of the loop. In
addition, to allow four consecutive iterations in the augmented loop to be executed
in parallel without incurring dependence violations in the speculative multithreading
mode, a candidate loop for providing additional iterations must have a dependence dis-
tance larger than one.

Finally, if a loop is with a minimum dependence distance of one, we have to in-
sert three additional independent iterations between every two consecutive iterations of
the loop. Moreover, a candidate loop for providing additional iterations must have a
dependence distance larger than two.

Furthermore, in the below we will present how to transform a more complicated
real application code to enlarge its cross-iteration dependence distance. The example is
a bubble sort subroutine extracted from the mgrid application in the SPEC CPU2000
benchmark suite. The bubble sort subroutine as shown in Fig. 3.4(a) consists of only one
loop and there is an if-else statement inside it. Because our proposed approach works
only when there are multiple loops, we apply the extended loop distribution method to
the original code as shown in Fig. 3.4(b). The conventional loop distribution method
transforms a loop into two parts: one has no cross-iteration dependence and the other
does [3, ?]. However, in our case we will split a loop into several small loops partitioned
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by dependence graphs. It is not necessary that one of the small loops has to be with no
cross-iteration dependence. In the example case as shown in Fig. 3.4(b), each one of
the four new small loop has a dependence distance of one. Furthermore, the if-else
statement in the original loop body is converted according to the mechanism proposed
in the Reference [13]. Finally, we can merge all the four new small loops into a single
one loop and let the four new loop be executed in turn in the merged loop as shown in
Fig. 3.4(c). As a result, the dependence distance of the merged loop is four, which will
avoid any dependence violations in the speculative multithreading mode. Of course, to
preserve the correctness of the whole application program, both the loop index and the
related array subscripts have to be modified.

4 Performance Analysis

We have constructed a simulator in C language to analyze the performance gain of
our proposed compilation techniques. The simulation model is as follows. There are
four PEs in the CMP architecture. A loop is comprised of four loop iterations, each
iteration consists of fifty million instructions. If no cross-iteration dependence exists or
the dependence distance is larger than four, fifty million cycles are required to finish
the execution of the loop. This is the idea case after applying our method. On the other
hand, for a dependence distance of one, PFE,, PE, and PE3 depend on PEy, PE;
and PE, respectively. For a dependence distance of two, PFEy and PFE3 depend on
PEy and PE; respectively. Finally, for a dependence distance of three, PFE3 depends
on PEj. A simulation parameter called dependence_probability defines the probability
that whether or not an instruction executed on a PE depends on the results produced by
another PE. Moreover, the dependence_probability is varied according to the following
formula during the execution of a program:

(%PE. + (1 — %PE,))
2

In the above formula, the variable %D represents a simulation parameter called
probability_rate that remains constant when executing a program. % P E. represents the
percentage of the remaining instruction count in the PE where the instruction resides.
%PE, represents the percentage of the remaining instruction count in the PE where
the dependent result will be produced. According to the formula, the instruction at the
beginning of an iteration has the highest possibility that it depends on an instruction
on another PE. Furthermore, it has higher possibility that the dependent result will be
produced by an instruction that is more close to the end of an iteration. The distribution
of instruction dependencies modelled by the above formula is happened frequently in a
real program.

Moreover, the probability that a dependent instruction will encounter a dependence
violation is defined by the following formula:

x %D. “4.1

(%PE, + %PE,)
2

In the above formula, the variable %V represents a simulation parameter called vi-
olation_rate. According to the formula, the instruction at the beginning of an iteration

x %V. 4.2)
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has the highest possibility that it will encounter a dependence violation. Furthermore,
it has lower possibility that the producer instruction on another PE will encounter a
dependence violation when the producer instruction is more close to the end of an iter-
ation.

First, we compare the performances for different violation_rates by the case that the
dependence distance is one. Regardless of the violation_rate, our approach gets better
performance when the dependence probability becomes higher as shown in Fig. 4.5(a).
The best speedup of our approach is about four for those violation_rates larger than
or equal to 0.0001. It means that if there are too many dependencies between PEs, ex-
ecuting four iterations in parallel has little performance gain. Apparently, these four
iterations are executed one by one although speculation techniques are applied. How-
ever, by adopting our approach, the dependence distance can be lengthened to four,
resulting in no dependencies between these four iterations. As a result, four iterations
can be executed in parallel and finished at the same time.

Next, we investigate the impacts of the dependence distance as shown in Fig. 4.5(b).
Obviously, the dependence distance of one imposes the largest amount of dependencies
in the original loop. Consequently, applying our approach to lengthen the dependence
distance can provide excellent performances. The best speedup of our approach is about
four that is the upper bound for the dependence distance of one. On the other hand, for
the dependence distances of two and three, the upper bound of the speedup is only two.
For the dependence distances of two, PEy and P E3 depend on PEy and PFE; respec-
tively. The worst case before applying our approach is that the speculative executions
of PE, and PFEj5 are always in vain before the completions of PEy and PE;. As a
consequence, the CMP will first finish the executions of PEy and PFE; at the same
time, and then complete the executions of the PFE, and PE3 at the same. As for the
dependence distance of three, the worse case is that the execution of PE3 will keep
restarting before the completions of PEy, PE; and PEj,. In other words, after PEy,
PEFE; and PE, all finish their executions at the same time, PFE3 can start its execution.
Therefore, the best speedup after adopting our approach are two as shown in Fig. 4.5(b)
when the dependence distance is two or three.

5 Conclusions

We have developed a novel CMP architecture that supports two execution modes: the
speculative multithreading mode and the wide superscalar mode. The advantage is that
the CMP will switch to the appropriate execution mode according to the subsequent
instructions. As a result, our CMP can provide superior performance regardless of the
types of workloads. Because the speculative multithreading mode can exploit both the
instruction- and the thread-level parallelism, it is easier to have higher degree of par-
allelism than the wide superscalar mode. The best case is that each four consecutive
threads are totally cross-thread independent. That is, the dependence distance has to be
larger than thee. Therefore, in this paper we have proposed a compilation technique to
lengthen the dependence distance to four. To lengthen the dependence distance for a
loop, we extract some iterations from other loops that are independent with the loop.
The candidate loops that can provide iterations must meet several requirements to main-
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Fig.4.5. Comparisons of the speedups of our compilation technique under different
cases. (a) The speedups for different violation rates. The dependence distance is one.)(b)
The speedups for different dependence distances. (S, L) in the legend represent the
dependence distance is S and the violation_rate is L.

tain the program correctness. According to the performance analysis, the best speedup
of our approach is four.
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Abstract. An initial value problem for the dynamic Maxwell system with zero
initial data and the point density of the electric current is considered. This prob-
lem describes the electromagnetic wave propagations in homogeneous nondisper-
sive anisotropic materials. Explicit formula for the Fourier image of the solution
of this problem is obtained by symbolic transformation methods in MATLAB.
Using this formula and the numerical inverse Fourier transform the electromag-
netic waves are simulated in different homogeneous, non-dispersive anisotropic
materials. Images of wave propagations and animated movies were stored in a
library which can be used for classification of the electromagnetic wave propaga-
tion in anisotropic materials.

1 Introduction

Mathematical modelling of anisotropic materials is an important component of scien-
tific computing. Electromagnetic fields inside materials depend on properties of these
materials. Modelling the wave propagation is based on the variety of methods and
approaches. The most developed ones are based on numerical algorithms, for exam-
ple, finite element methods. Advantages and disadvantages of these methods are well
known [1, 2]. Some special cases turn out well and there exists models with explicit for-
mulas describing the wave propagation. Usually these formulas are quite cumbersome
and it is almost impossible to calculate them by hands.

In this case accumulated methods of symbolic algebra can help us a lot. Using sym-
bolic transformations some parts of computational steps can be automated and more-
over, the formulas can be in the form suitable for numerical algorithms later on.

In the present paper we are demonstrating an approach of modelling the electromag-
netic wave propagation in crystals. Crystals are quite important class of anisotropic ma-
terials with "good" qualities: they are homogeneous and non-dispersive. For this class
of materials we suggest an approach which integrates symbolic transformations of ex-
plicit formulas and numerical calculations. This approach has quite good computational
performance and allows us to get high accuracy animations of wave propagations.

The paper is organized as follows. Section 2 contains a brief description of a math-
ematical model of the electromagnetic wave propagation, a state of a problem and steps
of its solving. Section 3 describes main steps in MATLAB that were used for symbolic
and numerical procedures of calculation. Section 4 describes how to interpret the result
of experiments. The last section contains description of the library as a web application.
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2 Mathematical Model, Problem and Scheme of its Solving

We consider the anisotropic dielectrics (crystals), which are homogeneous and non-
dispersive. The propagation of electromagnetic waves in these media is described by
Maxwell’s system in which the dielectric permittivity can be given as a 3 X 3 matrix.
Let x = (21,2, 23) be the space variable from R3, t be time variable from R, then
Maxwell’s equations are

OE . OH
(1) curl, H = CE +3, curl,E= _MW’
(2) divy(eE) = p, divy(uH) =0,

where E = (Ey, E»,E3), H = (H, H»,Hs) are electric and magnetic inten-
Sity vectors, Ek = Ek(mat)7 Hk = Hk($7t)7 k= 17273; .7 = (j17j27j3) is the
density of the electric current, j; = jx(z,t), k=1,2,3; u isthe magnetic perme-
ability, € is the dielectric permittivity, p is the density of electric charges. We assume the
conservation law of charges is given and p = 1, € = (€;5)3x3 is a symmetric positive
definite matrix with constant elements.

Differentiating the first relation of (1) with respect to ¢ and using the second equa-
tion of (1) we find

0’E  0j
(3) —curlycurl, E = €5 + a—‘z, r€ R teR.
We suppose that j = —ed(z)8(t), where e is an arbitrary unit vector; §(z) =

0(z1)0(z2)d(z3) is the Dirac delta function with the support at the point 1 = 0,22 =
0,z3 = 0; 6(t) is the Heaviside step function. The equation (3) is considered with the
data

(4) El,.o =0.

To find E(x,t) which satisfies (3), (4) is the main problem of this section.

This problem can be written in the term of the Fourier image of E(z, t) with respect
to space variable z as follows

925 ) ;
(5) EW-FS(V)EZG(S(I?), teR, veR’.
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where
vi+vi - —viv3
(7) Sw)=| -1 vitvi —wus |,
—V1lV3 —Usl3 1/12 + 1/%

E(v,t) :/ E(z,t)e™%dz, v= (vi,vm,v3), i°=—1.
R3

The solution E(V, t) of (5), (6) for t > 0 is given by formulas

(8) E(v,t) = T(w)Y (v,t),

Y (v,t) = column(Y1(v,t),Ys(v,t),Ys3(v,t)),

[TT (v)e],,(dn(v)) "2 sin(y/dn(W)t) ,dn(v) >0
Yo(v,t) = — h=1,2,3.

[TT (v)e] .t ,dn(v) =0

Here the matrix 7'(v) and its transposed matrix 77 (v) are non-singular and such
that

9) T"()el(v) = I, T"W)SW)T(w) = D(v),

where [ is the unit 3 x 3 matrix, D(v) = diag(dg(v)),k = 1,2,3 is a diagonal
matrix with non-negative elements.

Remark. We note that according to the matrix theory [3] for any symmetric positive
definite € and symmetric positive semi-definite S(v) there exists matrices T'(v), D(v)
satisfying (9).

The first part of solving the problem (3), (4) is to find by symbolic transformations
matrices T'(v), TT (v), D(v) = diag(di(v),d=(v),d3(v)) satisfying (9) if € and S(v)
are given. This part of solving contains several steps. The first step is to find €z and ez
if € is given symmetric positive definite. The given matrix € is equivalent to a diagonal
matrix of its eigenvalues, that is, there exists an orthogonal matrix P such that

PTP:MEdiag(/J/lalJ’%/JB)a Pk >05 k:1a2a37 PT:Pila
where P7T is the transposed matrlx to P and P~ is the inverse matrix to P The matrix
Mz is deﬁned by the rule Mz = diag(\/11, /12, \/13)- The matrix €2 is found by
the formulaez = PM2 PT, and €2 is the inverse matrix to €=.

The second step is to determine D(v) = diag(d; (v), d»(v), ds(v)) if €2 is known
and S(v) is given by (7). For this step we consider the matrix € 2 Se? which is symmet-
ric positive semidefinite. This matrix is congruent to a diagonal matrix of its eigenval-
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ues, that is, there exists an orthogonal matrix () such that QT (v)[e "2 S(v)e~2]|Q(v) =
diag(di(v),ds(v),ds(v)), where di(v) > 0,
k=1,2,3; QT(v) = Q '(v). We denote D(v) = diag(d,(v),ds(v), d3(v)).

In the third step we define T'(v) as T(v) = € 2Q(v) and the matrix T (v) is
transposed to T'(v).

The second part of solving (3), (4) is to determine numerically the pre-image E(x, t)
if the image E(, t) is given by (8). The magnetic field H(z, t) is found from the second
equation (1) and data H|, o = 0if E(z,t) is known.

3 Computational Steps

MATLAB R13 [4] was used as an integrated environment for symbolic transforma-
tions, numeric computation and an animation of the solution obtained in Section 2.

The computation of the explicit presentation for the matrices T'(v), TT (v), D(v)
was realized by symbolic transformation in MATLAB. Obtained formulas for these
matrices are cumbersome, they take several printed pages and it is almost impossible to
calculate them by hands. As a result we got the explicit form of the formula (8) for the
image £ (v, t) of the Fourier transform with the respect to space variables of the electric
field E(z,t).

In the next step we have to calculate 3-D inverse Fourier transform of E with respect
to v = (v1, va, v3). Because of the complexity of the explicit formulas for T'(v), TT (v),
D(v) containing three independent variables, the symbolic calculation of this inverse
Fourier transform was unsuccessful. That was the reason why the numerical calculation
of the inverse Fourier transform was realized on this step.

As the last step we generate animations for different € values and collect the results
in the library of images [5].

4 Examples of Simulations

In this section we present the images of the wave propagations in anisotropic dielectrics
belonging to different crystal structures [6]. These pictures are obtained by fixing one
of the space variables in the component E; (z,t) of the solution E(z,t) of (3), (4). For
experiments we take the current density in the form j = ed(x)6(t), where e = (1,0, 0).
This electric source is concentrated at the point (0, 0, 0) and works permanently with
the same power.

The figure 4.1 contains the visualization of the component F4 (z1,22,1,t) of the
solution E(z,t) for t = 0. Figure 4.1.a is a 3-D graph of E1 (21, z2,1,0). The vertical
axis is values of Ej, the horizontal axes are x;, x2. Figure 4.1.b is 2-D level plot of the
same surface of F;(z1,2,1,0). We note that graphs of E;(x;,x2,1,0) for different
dielectrics are equal.

The figures 5.2 - 5.5 contain four screen shots of the wave propagations in di-
electrics [7]:

— Mercurous Sulfides(HgS), € = diag(18,18,32.5),
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time =0.05 time =0.05

a) t=0.05 b) t=0.05
Fig. 4.1. Initial state E1(x1,%2,1,0)

Fig. 5.2. Propagation in Mercurous Sulfide, E (21, 22,1, 1)

— Strontium Niobate(SroNb2O7), € = diag(75,46,43),
— Magnesium Niobate(M gNb20s), € = diag(16.4,20.9,32.4),
— Barium Peroxid (BaO3), € = diag(10.7,10.7,10.7).

These figures are 2-D level plots of E (x1, %2, 1,t) for the different time.

5 Library of Wave Propagation Images and Animations

Generating images and animations of wave propagation is a time consuming operation.
That is why we collected the created images and animations in the library for the reuse.
In this library the different types of crystals were classified according to the types of
anisotropy and for each of them the sequence of images and animated movies was cre-
ated. This library can serve as a collection of patterns and samples when we analyze the
structure of anisotropic materials or evaluate the performance of the numerical methods.
To make the library accessible from anywhere, Internet technologies are used to
develop an application. The proposed structure (Figure 5.6) of the system
consists of a web, a database, a media streaming server and a media encoding service.
The web server is used to run a web application that will serve as a library. The database



226 Valery Yakhno, Tatyana Yakhno and Mustafa Kasap

t=0.7 t=0.8 t=0.9

D S S S S S S S

t=0.55 t=0.6 t=0.7
Fig. 5.4. Propagation in Magnesium Niobate, E1 (x1, x2,1,1t)

t=0.6 t=0.65 t=0.7
Fig. 5.5. Propagation in Barium Peroxid, E1 (x1, 2, 1,1)

server is used to store the information related to dielectrics. The media streaming server
is used for streaming animation files over the Internet without considering connection,
bandwidth problems. The media encoding service is used to convert animation files into
the stream server file format.

The site map of the web application can be found on
http://mkasap.cs.deu.edu.tr/3DSimand is defined on Figure 5.7. The li-
brary web application which starts with a selection page (experiments.htm) consists of
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Fig.5.7. Site map

seven well known types of crystals taking from crystallographic system [6]:
Cubic, Triclinic, Tetragonal, Trigonal, Orthorhombic, Hexagonal, Monoclinic.

When a user selects one type, he will get a list of particular crystals, for example,
Mercurous Sulfide, Cadmium Telluride etc. are listed under Hexagonal structure.

Selecting a crystal the user is coming to the page of the experiment results. On this
page there are two types of visualization. One is a Top view, another is 3-D view and
for both of them E (1, 2, 1,t) component and Hy (x,x2,1,t) component are shown
for different time values. In figure 5.8 a part of the web page is illustrated. Images for
time series from 0.1 to 0.45 can be seen.

For animations there is no time series, its a single file. Structure of the animation
window is illustrated on Figure 5.9.

To see how the propagation occurs, all images combined to form an animation file.
In other words, all the images that were generated construct the frames of the animation
file. Because the size of ordinary animation files is very large it is impossible to show
them over Internet. In this point streaming technologies are used. Generated animation
files are compressed and sent as a byte stream over the net. Compression operation
is performed by media encoding services. Then encoded files are published by media
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Fig.5.8. Experiment result page.

Fig.5.9. Animation window.
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streaming server. By this way anyone with any type of Internet connection can watch

the propagation animations without concern about connection problems.
Animation files are generated by MATLAB. The following code snipped is used to
generate the animation files.

// Open a new image window, set measurement standards
fig = figure;
set (fig, ’PaperUnits’, ’points’);

// Set the size and position of the window to 800x600
// pixel located on 0, 0 screen coordinates

rect = get(gcf, ’"Position’);

rect (1) = 0; rect(2) = 0;rect(3) = 800; rect(4) = 600;
set (gcf, ’'Position’, rect);

// Create an AVI file with "CinePak" encoder, set the
//frame per second parameter
aviobj = avifile ('ExperimentOl.avi’)),

"compression’, ’CinePak’, "fps’, 2);

//Perform following 4 lines for all images that will be
//used in the animation

A = imread(’ImageX.Jjpg’);

image (A) ;

frame = getframe (gca);

aviobj = addframe (aviobj, frame);

// Close all opened resources
aviobj = close(aviobij);
close all;

Resulting animation file is encoded to a new format which is supported by Windows
media server. Encoding operation is performed by Windows Media Encoder Service [8].
This tool converts the file into a digital media which continuously flows across the
Internet.

6 Conclusion

Electromagnetic fields arising from the point sources were simulated by explicit formu-
las for generalized solutions of the Cauchy problem for Maxwell system for anisotropic
crystals.

We note that the simulation electromagnetic fields based on explicit formulas is the
best one. But unfortunately it is impossible to find explicit formulas for inhomogeneous
anisotropic media. For this we need to construct approximate solutions by numerical
procedures and methods and then simulate electromagnetic fields. All these procedures
are time consuming and require heavy computations. That is why parallel implementa-
tion becomes one of the important issue for our future research.
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