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Abstract

In dynamic positron emission tomography (PET) an artery sampling is needed
for assessment and validation of parameters in kinetic models. The sampling
can be uncomfortable and painful for the patient and technically demanding for
the personnel performing the sampling. Noninvasive estimation of the artery
time activity curve (TAC) is thus very useful, since the sampling then can be
avoided.

Methods are tested on simulated data which is an approximation to PET data.
The results from the simulated data are used to quantify how well the different
methods perform and to illustrate their limitations. The methods are then used
on real PET data, and the estimated TACs are compared to the sampled artery
TAC.

Non-negative matrix factorization (NMF) and independent component analy-
sis (ICA) show the best results with correlations around 0.95 with the artery
sampled TAC. However, the scaling of the resulting components is lost in the
deconvolution so a rescaling scheme is used to get the correct scale in the re-
sults. A factor is calculated to solve this scaling problem. The peaks found
in the NMF and ICA components are higher than the ones found by the other
methods.

The ICA and the NMF results are very similar when applied to real PET data.
Therefore, the NMF is chosen as the most appropriate method as it is more
stable and not as complicated as the ICA.



ii



Resumé

I dynamisk positron emission tomografi (PET) er det nødvendigt med en arterie
blodmåling for at estimere og validere parametre til kinetiske modeller. En
blodmåling i arterien kan være ubehagelig og smertefuld for patienten. Samtidig
er det teknisk besværligt for personalet der skal foretage målingen. Metoder til
estimering af denne blodkurve er derfor meget brugbare, da en måling i arterien
derved kan undlades.

Forskellige metoder bliver testet p̊a simuleret data. Disse resultater bliver brugt
til at kvantificere hvor godt metoderne klarer sig og hvilke begrænsninger de har.
Derefter bliver metoderne kørt p̊a rigtige PET data, og de estimerede blodkurver
bliver sammenlignet med de målte blodkurver.

Metoderne Non-negative matrix factorization (NMF) og independent compo-
nent analysis (ICA) viser de bedste resultater med korrelations koefficienter
med de målte blodkurver p̊a omkring 0.95. Metoderne estimerer kurver der
har en væsentlig højere top end de andre metoder. Skalering af de estimerede
løsninger er ikke kendt, da den forsvinder i estimeringen. Derfor er en måde
hvorved de estimerede kurver kan reskaleres nødvendig. Dette bliver løst ved at
udregne en faktor der ganges p̊a de estimerede blodkurver.

ICA løsningerne er ikke væsenligt bedre end NMF løsningerne p̊a rigtige PET
data. NMF bliver valgt til den mest passende metode, fordi den er mere stabil
og ikke liges̊a kompleks som ICA metoden.
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Chapter 1

Introduction

When studying some diseases or conditions the positron emission tomography
(PET) imaging technique is a useful tool. The crucial advantage of PET com-
pared with other imaging modalities is that it can detect metabolic changes
before structural changes in tissues.

PET scans are commonly used in connection with the following diseases:

• Cancer

• Coronary Artery Disease

• Parkinson’s Disease

• Epilepsy

• Huntington’s Disease

• Alzheimer’s Disease and other dementias



2 Introduction

This thesis is limited to human brain PET scans. In order to make a scan of
a human brain, the human subject must be injected with a radioactive tracer
in a vein in the arm. From the vein the tracer is distributed via the blood to
the rest of body including the brain. In order to use the information obtained
scanning the brain optimally, the input to the brain via the artery has to be
known. This is often done by continually taking blood samples during the scan,
but this is associated with discomfort and is technically very demanding. In this
thesis different methods for estimating the input to the brain to avoid taking
continually blood samples are tested.

Because PET scans are very expensive and technically demanding the studies
often suffer from the fact of having few subjects conversely the human anatomy
and physiology vary a lot between subjects. This makes it hard to generalize
the obtained results.

1.1 PET scanning

Positron emission tomography (PET) is a nuclear imaging technique and the
basic principle is simple. As described by [23] the image is constructed by
injecting a short-lived radioactive tracer isotope into a living subject. This
tracer decays by emitting a positron which annihilates with an electron within
a short distance and produces a pair of annihilation photons moving in opposite
directions. These emission photons pairs are observed by a ring of scintillator
crystals in the scanner by observing the produced light created when the photons
energy is absorbed by the crystals. When two events are detected simultaneously
by different crystals (within a few nanoseconds) they are recorded as coincidence
events, hence the annihilation occurred somewhere on the line between the two
crystals. These lines of responses (LOR) can then be used to map the density
of the isotope in the subject. Some of the recorded events are coming from
unrelated coincidences. This can happen if a photon is absorbed or missing the
field of view. These erroneously events are called randoms and their rate can
be measured. The procedure for PET scanning is illustrated in figure 1.1.

From the coincidence events information is obtained on how many annihilations
occurred on any LOR between two crystals. This information is stored in raw
data sinograms, that are constructed by projecting the number of counts (an-
nihilations) for a given r and θ as illustrated in figure 1.2. Each row in the
sinogram are all the parallel projections, Projection(r, θ), for a given θ. From
these projections stored in the sinograms the underlying distribution can be
calculated. Several algorithms have been designed to solve this problem. Here
the so called filtered back-projection algorithm is applied because it is fast and
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Figure 1.1: PET scan setup.[24]

robust. However, it suffers from artifacts around discontinuities of the tracer dis-
tribution. The result of the reconstructed PET data is an image with transaxial
slices that represents the concentration for the investigated tracer.

The great benefit of PET is that simple biological molecules can be labeled with
positron-emitting isotopes, and the distribution of these molecules can then be
imaged. Labeling involves making molecules that have an unstable isotope of an
element replacing the usual stable isotope of that same element, so the molecules
behave in the same way chemically. The location of these labeled molecules in
the body can be identified because a small fraction of them decay each second.
The four commonly used isotopes are listed in table 1.1.

Fluorine-18, [18F] is the most commonly used PET isotope even though it is
not present naturally in the body at all. But fluorine can easily be incorporated
into certain important biological molecules, such as glucose, without changing
the way that the molecule behaves in the body. In this thesis the studied
biological molecule is altanserin. Altanserin is a substance that binds to certain
neuroreceptors in the brain.
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Figure 1.2: Geometry for obtaining PET raw data [23].

1.2 The brain anatomy

In this section a short introduction to brain anatomy is given to describe some
of the concepts used in this thesis. As described in [10] the brain, also called
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Name Half life Tracer example

Carbon-11 [11C] 20 minutes Methionine
Nitrogen-13 [13N] 10 minutes Ammonia
Oxygen-15 [15O] 2 minutes Water
Fluorine-18 [18F] 110 minutes Altanserin

Table 1.1: Commonly used isotopes.

cerebral, consists of many different materials and is often divided into regions
which have different characteristics. The main focus in this thesis is the vascular
part of the brain. The vascular part is the body’s system of blood vessels that
supplies the body, or a body part, with sufficient blood to allow normal body
or organ function. The vascular system of the brain is seen on figure 1.3. It
is divided into arteries and veins. The arteries are the vessels where the blood
flows from the heart to the brain and the veins are the vessels where the blood
returns. The vascular part of the brain covers approximately 5% of the total
brain volume, and the main part of this is vein. The biggest vein, called sagittal
sinus, is seen in figure 1.3, it starts at the forehead and runs all the way on the
top of the head near the skull to the back of the head. Here it divides into two
veins that run in each side of the brain. Most of the brains arteries are thin and
the thickest are found in the center of the lower part of the brain.

(a) Vascular. Blue is vein,
red is arterie

(b) White matter (c) Grey matter

Figure 1.3: Some anatomy of the brain[4].

Apart from the vascular system the brain consists of some other materials where
the two largest are white matter and grey matter. These are actual general
terms referring to large nerve fibres in the brain and to tissue of the central
nervous system (CNS). respectively. Grey matter is the areas where the actual
”processing” is done whereas the white matter provides the communication
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between different grey matter areas and between the grey matter and the rest
of the body. White matter and grey matter are seen in figure 1.3. Approximately
60% of the total brain volume is white matter and approximately 40% is grey
matter. Moreover, the brain consists of some cerebrospinal fluid (CSF). CSF is
a fluid within the brain that cushions the brain inside the skull. CSF normally
consists of glucose, salts, enzymes and a few white blood cells.

1.3 Kinetic modelling

Kinetic modelling of the data from the PET study is often involved when quanti-
fying the brains uptake and binding of the tracer isotope. Tracer kinetic models
are used to estimate the bindings or binding potentials (BP) which reflect the
densities of neurotransporters or receptors in a brain region of interest (ROI).
BP is influenced by a number of factors eg. the blood flow. Therefore, a com-
partmental system which includes the blood is used as model. As described
by [8] two systems are set up, a one-tissue compartment configuration and a
two-tissue compartment configuration. The one-tissue compartment model is
used in the brain regions that do not have high-affinity receptors for the tracer
isotope and models the blood brain barrier (BBB). These regions are called ref-
erence regions. The two-tissue compartment model is used in the brain regions
that contain high-affinity receptors. The extra compartment models the binding
of the substance by the neuroreceptors. These models can be seen in figure 1.4.

The tracer isotope is given intravenously in the arm and is then delivered by
the artery by passing through the heart to the brain. From the artery the
tracer passes through the blood-brain barrier (BBB) into the first compartment.
Anatomically this compartment consists of several regions but it is approximated
as a single compartment. The second compartment is the region of specific bind-
ing that contains high-affinity receptors. The one-tissue compartment system is
as mentioned used to model the brain reference regions. The reference regions
have no specific binding and therefore no second tissue compartment. There
is also a nonspecific-binding compartment that exchanges with the first tissue
compartment in both systems, but because of rapid equilibrium between these
compartments they are treated as a single compartment.

In figure 1.4 the two compartment systems are shown. K1, K2, K3 and K4 are
first order rate constants describing the potential directional exchanges between
compartments. Physiologically, Cf represents [18F] fluoride ion in an extravas-
cular space unbound to tissue, while Cb refers to the ion bound to tissue.

The different models based on this compartment system for estimating the BP
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Figure 1.4: The one- and two-tissue compartment models, the broken line rep-
resents the blood brain barrier (BBB).

can be classified on the basis on whether arterial (invasive) or reference (noninva-
sive) information is needed. In general invasive models have fewer assumptions
than noninvasive models but the disadvantages of invasive models are among
other that arterial sampling is associated with discomfort, and is technically
demanding.

With the noninvasive models such as reference tissue models there can be a
possible loss in accuracy and increased bias. It depends on the assumption that
nonspecific binding differences in the subjects are negligible.

Another possibility is to obtain the input function from the PET data itself by
extracting a brain artery time activity curve (TAC). Apart from the obvious
benefit of no artery cannulation, there are several other advantages, including
the removal of issues regarding cross-calibration (between the PET data and
that obtained from the blood samples), delay, dispersion and noise issues. To
extract a relevant vascular TAC from the dynamic PET data, different methods
are examined. We will look into methods for estimating vascular time activity
curves from PET data. If possible it will reduce patient discomfort and improve
accuracy.
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1.4 Literature review

The main objective is to find the artery TAC using dynamic PET images instead
of arterial sampling. The subject of non-invasive estimation has been tried
before by using either MRI or PET images.

The PET data in this thesis has been used by [15] to estimate the artery TAC
by the use of the K-means clustering algorithm. The results are used to compare
different methods. In [11] and [9] the non-negative matrix factorization (NMF)
method is used to extract the artery TAC from PET images. Here they use
regions of interest (ROI) and only the initial 90 seconds of the scan. This
method requires the user to define the region and the resulting TAC is only 90
seconds, hence leaving out information from remaining time of the scan.

An independent component analysis (ICA) method is implemented and used on
PET images by [18] and [17]. The implemented method has no non-negative
constraint. The method is tested on the PET data set used in this thesis giving
estimates on artery TACs. Some of the curves have negative values making
them unnatural and impossible to scale to the correct activity level. The results
can be seen in Appendix E. Another use of ICA with no non-negative constraint
on PET images is found in [2]. Here only a small part of the image and the
initial 2 minutes are used. As with the NMF making it easier to estimate the
peak but ignoring the end level. Choosing a small part of the image increases
the uncertainty. The ICA method is also used on MRI images by [5].

The ICA methods documented have the weaknesses of no non-negative con-
straint. It is also important to note that none of the papers using deconvolution
methods clarify the issues on the scaling of the estimated TACs.

1.5 Problem definition

The aim of this thesis is to estimate the artery TAC using clustering and decon-
volution methods on PET data. This is needed so that arterial sampling during
the scan can be omitted. Reasons for avoiding this sampling are among other
the discomfort for the patient, risks for the patient, and the extra work involved
for the personnel working with the sampling.

The analysis is carried out on a simulated data set and a data set consisting
of 5 dynamic PET scans performed on healthy volunteers. Emphasis is put on
extracting the vascular TACs with a minimum of human interaction, with the
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aim of suggesting a method to estimate the vascular TAC for this kind of data
set, using the [18F] Altanserin tracer.

No region of interest (ROI) is defined on beforehand since human interaction is
intended to be minimized, and all frames are used to estimated the entire TAC,
and not just the first part. Since the TACs can not be negative, emphasis is put
on non-negative constraints in the estimated TACs.

1.5.1 Approach

Five different methods are applied to the problem of extracting TACs, two
clustering methods and three deconvolution methods. The five methods are
K-means, Fussy C-means, principal component analysis (PCA), non-negative
matrix factorization (NMF), and mean field independent component analysis
(ICA). Each model is applied to simulated data and PET scans and the results
are illustrated and analyzed. All results from PET scans are validated using the
sampled artery TAC. The results are then compared and discussed, finally the
most appropriate method is found.

1.5.2 Limitations

The optimization of each method is a study by itself, and strength is not put
into optimization of implementations. Therefore, various toolboxes and algo-
rithms, already implemented are used for each method. All implementations
are executed in Matlab.

The effect on the parameter estimation in the metabolite analysis, by using the
estimated vascular TAC is not tested. This would be an interesting subject to
look into, but it is not done due to limitations in the scope of the thesis.

No ROI is used when applying methods to the PET data. This can be seen as
both a strength and a weakness. The strength being that nothing is removed
from a large data set thereby giving more significant results. The weakness is
that it might be easier using only a part of the brain to perform the analysis.
By choosing regions with known arterial or venous components, the result could
be improved since a smaller number of insignificant components need to be
estimated by the methods.
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1.6 Thesis overview

The thesis consists of four main parts besides the introductory part:

• Theory, Chapters 3 to 6. In these Chapters the theory of the different
methods used in the thesis are explained.

• Results, Chapters 7 to 11. All results are first tried on simulated data,
and then on real PET data.

• Discussion and conclusion, Chapters 12 and 13. The results from the
preceding chapters are discussed and then finally concluded upon.

• Appendix, In this part results can be seen for the PET data. Each
chapter shows results from one method.



Chapter 2

Data

Two types of data are used in this thesis. A simple simulated PET data set
and a real PET data set, provided by Neurobiology Research Unit (NRU), at
Copenhagen University Hospital.

2.1 PET data

The main study was carried out on five subjects, two females and three males
with an age ranging from 22 to 74 years. The data set is the same as used in [15].
The five subjects are named Pilot 2, Pilot 3, Pilot 4, Pilot 5 and Pilot 6. All
subjects were healthy, meaning that they had a neurological examination and
a cerebral MRI scan performed with normal results. They did not suffer from
current physical illness or use medication with central nervous system (CNS)
effects and had no history of alcohol or drug abuse. Furthermore their first and
second-degree relatives had no history of psychiatric or neurological illness.

The scanner used was an 18-ring GE-Advance scanner, producing an image
containing 35 slices with a distance of 4.25 mm in between. The approximate
in-plane resolution has a lower bound of 5 mm and between-plane resolution of
6 mm.
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800 MBq of [18F]-altanserin was produced for each study. Four subjects received
an intravenous bolus injection of [18F] Altanserin diluted in ethanol over a 30
seconds period. The first subject (Pilot 2) was given a more rapid injection
(less than 5 s). After the injection the dynamic PET data was recorded for 120
min (7200 sec). The scanning of the four subjects consists of 40 sequential scan
frames in the following order: 6 x 5 s; 3 x 10 s; 3 x 20 s; 5 x 30 s; 5 x 1 min; 5 x
2 min; 4 x 5 min; 8 x 10 min. Pilot 2’s scanning consists of 39 sequential scan
frames in the order: 6 x 10 s; 3 x 20 s; 6 x 30 s; 5 x 1 min; 5 x 2 min; 8 x 5 min;
6 x 10 min.

While scanning a continuous measurement of the artery was carried out. The
measuring was made by an automatic blood sampler, sampling from a radial
artery. Blood samples were also taken in veins. Images were reconstructed as a
sequence of 128 x 128 x 35 voxel matrices where each voxel measures 2.0 x 2.0
x 4.25 mm.

For each subject there exists 4 files: an .img-, .hdr-, .sif- and .tim-file. The
.img-file consist of the dynamic PET image with the 128 x 128 x 35 voxel and
39 or 40 time frames for each voxel. The value in each voxel is simply the
radioactivity in the time frame. The .hdr-file (header-file) is an information file
which has the structure seen in table 2.1.

Variable Description

name: Name of image file
path: Path of file
pre: Precision for voxels in bit

1 - 1 single bit
8 - 8 bit voxels
16 - 16 bit integer
32 - 32 bit floats
32i - 32 bit complex numbers (64 bit pr. voxel)
64 - 64 bit floats

dim: x,y,z,t, no. of pixels in each direction, [4x1 double]
siz: Voxel size in mm, [3x1 double]
lim: max and min limits for pixel values, [2x1 double]

scale: Scaling of pixel values, [1 double]
offset: Offset in pixel values, [1 double]
origin: Origin for AC-PC plane (SPM notation), [3x1 double]
descr: Description

endian: Number format used ’ieee-be’ or ’ieee-le’

Table 2.1: The information included in the header file.
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The absolute value of each voxel can be calculated from the information con-
tained in the header file. This is done the following way:

abs pix val = (pix val− offset) · scale (2.1)

All frames have been decay corrected to scanner start time. Slices from a typical
PET scan can be seen in figure 2.1.

The .sif-file contains information about start and end time from the scanner
start in seconds of each time frame. It also contains information on the total
number of counts and the number of estimated randoms in each time frame.
The .tim-file contains information calculated from the .sif-file, namely the frame
mid-time again from the scanner start in seconds and the duration of each frame
in seconds.
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Figure 2.1: 6 mean slices from Pilot 6.

Before the transaxial PET slices are used by the different methods a threshold
is made to remove the background from the images. After removing the back-
ground the images are reshaped into a matrix so each time depending voxel is
a row as illustrated in the following matrix:
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X =




x1(1) x1(2) · · · x1(d)
x2(1) x2(2) · · · x2(d)

...
...

. . .
...

xn(1) xn(2) · · · xn(d)




where n is the number of voxels and d is the dimension or the number of frames.
The typical size of the matrix is 90000× 40 = 3600000. When using the non-
negative constrained methods the negative values in the data are set to zero.

2.2 Sampled time activity curves

For each PET scan arterial and venous blood samples are taken. The vein
samples are taken manually at different time points. The arterial samples are
taken automatically and validated using manual samples. The manual arterial
and venous samples are used for metabolite analysis. The manual arterial sample
is also used for validation of the automatic sampler. An example of an arterial
time activity curve (TAC) can be seen in figure 2.2. The autosampled curve
has some periods where the activity is zero this is because the auto sampler is
turned off when taking the manual samples.

The arterial TACs are manually resampled to the fit the 39 or 40 frame lengths
for the 5 PET scans. This is done to be able to do comparisons between esti-
mated TACs and the sampled TACs by using correlation. The resampled curve
is also seen in figure 2.2.

2.3 Region of interest curves

The PET scans can be segmented into different regions which have different
binding properties. For these regions the mean TACs are retrieved from the
PET data. These TACs are used as references in this thesis when validating the
clustering by the different methods. The comparison of the region of interest
curves and the estimated curves from the methods, can give an indication of
whether or not the method is able to segment the PET data into real regions.
An example of ROI curves can be seen in figure 2.3. Since these curves are mean
curves from the PET data and from the same subject, they can be compared
directly to the estimated curves.

The ROI curves behave quite differently. There are regions that have high-
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Figure 2.2: Automatically and manually sampled arterial TAC and the resam-
pled curve, for Pilot 3.
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Figure 2.3: TACs from regions of interest for Pilot 6.
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affinity receptors for the tracer isotope e.g. frontal cortex, and regions that do
not have high-affinity receptors for the tracer isotope e.g. cerebellum.

2.4 Simulated data

A simulated data set is made to compare the methods and to evaluate the
characteristics of the results from the methods. The data set has 4 signals
shown in figure 2.4. From these signals a data set with 100000 observations is
made, 10000 for each of the 10 time points. This is done by creating a mixing
matrix M, as seen in (2.2).
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Figure 2.4: Simulated time activity curves.

X = MS + ε (2.2)

where M is the 10000×4 mixing matrix, S is the 4×10 time signal matrix. The
resulting X, 10000 × 10, matrix is the simulated data set. M is made so that
the parts of the different time signals are not equally represented in X. How
much of the different signals there is in X can be seen in figure 2.4. Each row in
M sums to 1, so for each observation in X 4 coefficients in M linearly combine
the sources of S. The coefficients in M are independent. Noise is added to the
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data by ε, which are independent and identically distributed random variables,
with mean 0 and standard variation 0.1 times the standard variation of MS.

The four signals are created so that they approximate the PET data. The
simulated data has a signal with a high peak that is less represented in the data
like the arteries, a signal that has a lower peak than the artery but with the same
end-level as the veins, a signal that has high end level and is well represented in
the data like the binding regions, and finally a signal that looks like the regions
with non-binding. Because the simulated artery signal is only representing 1%
of the data the highest percentage in a observation is only 33%. The highest
percentage for the simulated vein signal is only 50%, and the last two signals
have observations with 100% of the two signals.

The peak from the artery like signal is not fully there in the resulting data X.
This is because of the linear combination of the coefficients and signals, and the
fact that the artery signal is only 1% of the data. The maximum value in X is
5.3 and not 10 as in the original signal. Moreover because of the fact the the
vein and artery signals are not represented 100% in any observation the lowest
end level in X is 1.6 and not 1.2 as in the two original signals.

The different methods used can then be applied to the simulated data to see if
they are able extract the original sources in S even though the data does not
contain the peak from the artery signal and the end level of the artery and vein
signals.
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Theory





Chapter 3

Clustering

In this thesis two different clustering algorithms are used. The two algorithms
are the K-means and the Fuzzy C-means clustering. The main difference be-
tween them is that the K-means algorithm cluster the samples so each sample
belongs to only one cluster, and the Fuzzy C-means algorithm cluster the sam-
ples so each sample belongs to all clusters but with different share in each cluster.
The theory behind the two algorithms is described in this chapter.

3.1 K-means clustering

The data is represented by the n×d matrix X.

X =




x1(t)
x2(t)

...
xn(t)


 (3.1)

with n observation and d variables.
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The K-means clustering [16] algorithm divides the data into k clusters. The
aim is to make each cluster as homogenous as possible and at the same time
making the differences between clusters as great as possible. Each observation is
classified as one and only one type, the data point is therefore thought of as one
type and not a mixture of different components. The algorithm is an iterative
process and the cost function or the error measure is normally the sum of all
the variances, or the within variances. This can be described as:

ErrorK−means =

n∑

i=1

k∑

j=1

uij‖xi(t)− cj‖2 (3.2)

where uij is 1 if observation i belongs to cluster j, else it is 0. cj is the center
of the j’th cluster, xi(t) is the i’th observation, n is the total number of obser-
vations in X, and k is number of clusters. ‖xi(t) − cj‖ is the distance between
xi(t) and cj . The error measure indicates the overall spread of data points about
their centers. The within variance measure should be as small as possible to
obtain a representative clustering.

The first step in the algorithm is selecting k points, these can be selected by
supervision or simply by choosing k random observations from the data-set. The
initial points serve as cluster centers in the first iteration of the algorithm. Each
observation is set to the nearest cluster center by a chosen metric, e.g. Euclidian
distance. Now the cluster centers are updated by setting the center to the mean
of all its cluster members. The iteration now starts over and measures the
distance from all observations to all cluster centers and so on. This process
continues until the cluster centers converge.

If the distance measure is Euclidean, then K-means converges monotonically
to a local minimum of within-class squared distortion. Hence, the algorithm
is bound to converge to a solution but the solution might not be the optimal.
Therefore a number of runs with different starting points can be performed to
secure that the cost function does not end up in a local minima.

The algorithm can be described with the following steps:

• Initialize k clusters i = 1..k with centres ci. The cluster centre must be
represented in the same space as the data.

• Assign each data point xij(t) to the cluster with the closest centre ci
according to the distance metric used (i.e. Euclidian distance).
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• Recalculate each cluster centre ci so that it is now the average of all its
members.

• Repeat steps 2 and 3 until the centroids stabilizes. This produces a sepa-
ration of the objects into groups from which the metric to be minimized
can be calculated.

As seen in the algorithm the number of clusters must be defined in advance.
The correct number of clusters is not really defined, it depends on the data, the
a priori information and the final application of the clustering result. Choosing
the right number of clusters for the given data-set is important, because using
the incorrect number of clusters can lead to meaningless results. One approach
to validate the number of clusters is to plot the within variance. The within
variance will of course decrease with increasing number of clusters. But hope-
fully there is a significant change in the decrease of the within variance when
using more and more clusters. The point where this change occur is chosen as
the optimal number of clusters.

The K-means algorithm is implemented as a standard function in Matlab (ver-
sion 7.1), and this K-means version is used in this thesis.

3.2 Fussy C-means clustering

First developed by [6] and expanded by [3]. A model that can fit data points
that have partial volume effects, could be the fussy C-means method. This
method allows each data point to be described by several clusters, and not just
one as in the K-means algorithm.

The fussy C-means algorithm clustering algorithm does not cluster the data as
hard as the K-means. In fussy C-means each data point can belong to several
cluster centers. The objective function to be minimized in this algorithm is:

ErrorC−means =
n∑

i=1

C∑

j=1

um
ij ‖xi(t)− cj‖2,m = 1 < inf (3.3)

where m is the fuzziness parameter, uij describes how much the point i belongs
to cluster j. The distance measure ‖xi(t)−cj‖2, could be the Euclidian distance.
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The fuzziness parameter m describes how much one data point belongs to one
cluster or more clusters. If m goes to 1 uij will be sparse for all data points i
and the higher m is uij will become the same across j. This can be seen from
the update of uij in (3.4).

The updated uij and cj are calculated as:

uij =
1

∑C
k=1

(
‖xi(t)−cj‖
‖xi(t)−ck‖

) 2

m−1

(3.4)

cj =

∑n
i=1 u

m
ij · xi(t)∑n

i=1 u
m
ij

(3.5)

Otherwise the algorithm is similar to the K-means. First the uij matrix is
initialized and then the cluster centers cj are calculated, and the uij matrix is
updated. This is repeated a certain number of times or until the change in uij

is small enough.

The fussy C-means method is included as a function in Matlab (version 7.1),
and this implementation is used.
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Principal component analysis

Principal component analysis (PCA) described in [1], can be used to reduce the
dimensionality of a large data set, such as a PET scan. The PCA can also be
used as a tool to analyze the most important components in the data, found as
the principal components that explain the most of the total variation. In [14]
the components of facial images are extracted and the differences in components
found using PCA and non-negative matrix factorization are shown.

A PET data set is very large and to extract the most important components
a PCA is performed on the data. The PCA is commonly used for dimension
reduction of large data set such as images, and the dimension can often be
reduced greatly without loss of significant information if there is a high redun-
dancy, which is the case with PET data. No specific assumptions are made on
the probability density of the data set. Only first and second order statistics
have to be calculated to perform the PCA.

The data is represented by the n×d matrix X.

X =




x1(t)
x2(t)

...
xn(t)


 , X̂ = X− E{X} (4.1)
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with n observations and d variables. The data is centered in each frame and
represented as X̂.

The principal component is the linear combination:

s1 =

d∑

i=1

wT
1 X̂.,d = wT

1 X̂ (4.2)

where w1 is an n-dimensional weight vector. s1 is the first principal component
if the variance of the component is as large as possible. The first principal
component is therefore found by using the w1 that maximizes the variation of
s1. The criterion to maximize is:

E{s2
1} = E{(wT

1
X̂)2} = wT

1 E{(X̂T X̂)2}w1 = wT
1 CXw1 (4.3)

under the constraint that the norm is equal to 1, ‖w1‖ = 1, where the norm is
the Euclidian:

‖w1‖ = (wT
1 w1)

1/2 = (

n∑

i=1

w2
i1)

1/2 (4.4)

The d×d covariance matrix CX is estimated as E{X̂T X̂}.

The solution to (4.3) is given by the unit-length eigenvectors of the covariance
matrix CX.

wi = ei (4.5)

where i=1,2...d. The eigenvectors, ei, are sorted in the order of decreasing
eigenvalues, λi, which gives λ1 ≥ λ2 ≥ ... ≥ λd

Therefore, by calculating the eigenvectors and eigenvalues of the estimated co-
variance matrix, the i’th principal components can be expressed as:

si = eT
i X̂ (4.6)
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A reduction of the data set can be achieved by using the j first principal com-
ponents:

X̂ ≈
j∑

i=1

eisi (4.7)

To decide how many principal components to include, the error of the principal
component truncation can be evaluated. The error is defined as the sum of
eigenvalues for the eigenvectors that are not included in the model.

errorpca =
d∑

m=j+1

λm (4.8)

Thereby if there is a lot of redundancy in the data set, the last λ’s can be very
small, and thereby explaining little variation in the data. These small λ’s can
therefore be discarded in the truncated PCA model.
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Chapter 5

Non-negative matrix

factorization

The non-negative matrix factorization method (NMF), proposed by [14], per-
forms a deconvolution of some observed data matrix. The data is represented
as a linear combination of two factors, W and H. The factors can be positively
combined only, no subtraction is allowed. All elements in the data matrix and
in the factors are positively constrained. This data structure is ideal for many
observed signals in nature and in real life applications, since the data matrix can
be a combination of different unknown signals that are mixed with each other
in an unknown manner. The positive constraint is very useful when working
with images, speech and many other applications where the original sources are
sure to be added together in an observed signal. No statistical properties are
assumed of the data.

The NMF performs a factorization of the data matrix, V, into two matrices
with non-negative elements,W and H.

V ≈WH (5.1)

where V has the dimension n×d, n samples with each of size d. W is n×K,
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and H is K×d. If the problem is viewed as a blind separation problem, V is the
observed signal, W is the mixing matrix and H contains the K original sources.

The number of sources to be estimated in the NMF method must be known
in advance, since this parameter is given to the algorithm. The NMF does
not give a qualitative measure of the factorization. The least squares measure
will certainly decrease with the number of sources used. But the sources might
not be ”correct” in any sense, but just be noise or original sources split into
non-existing signals.

Different cost functions can be used in the NMF algorithm. Using the squared
Euclidian distance as shown in [13], the algorithm can be used as implemented
in the Brede Toolbox, by [22].

‖V,WH‖2 =
∑

ij

(Vij − (WH)ij)
2 (5.2)

The update rules given by [13] have been proved to make the cost function
(5.2) converge to a local minimum. The advantage of this algorithm is that it
is straightforward and easy to implement. The update rules are multiplicative
factors applied to W and H. The indices on the matrices indicate that the
operations are element-wise.

Hsj ← Hsj
(WT V)sj

(WT WH)sj
(5.3)

Wis ←Wis
(VHT )is

(WHHT )is
(5.4)

The convergence criterions can either be the number of iterations or the change
in Euclidian distance. The iterative improvement of the cost function from
equation (5.2) can be evaluated as the algorithm is progressing, and the iterative
process can be stopped if the slope of the cost function seems to flatten. Since
this would be an indication of a minimum.

Two random matrices can be used to initialize the algorithm, or a prior can be
put into W or H.
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The sources found by the NMF algorithm cannot be compared directly to the
sampled blood curve, since the scale of the sources is unknown. This is because
of the decomposition of the original matrix V into two matrices and it cannot
be distinguished whether or not a factor is changed in W or H. Additional
information about the original sources has to be used if W and H need to be
scaled correctly.

5.1 Weighted non-negative matrix factorization

The NMF method can be adjusted to take weights into account if a weighting of
the data is known or estimated, when performing a deconvolution of the data.

To perform a weighted NMF the update rules have to be revised. The cost
function is still based on the squared Euclidian distance:

‖V,WH‖2 =
∑

ij

((VQ)ij − (WHQ)ij)
2 (5.5)

where

Q =




w1 0 0
...

0 w2 0
...

0 0
. . .

...
. . . . . . . . . wd




and wj is the weight of the j’th column of the data matrix V. This weighted
cost function results in the following update rules:

Hsj ← Hsj
(WT (VQ))sj

(WT (WHQ))sj
(5.6)

Wis ←Wis
((VQ)HT )is

((WHQ)HT )is
(5.7)
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The weighted update rules are implemented in Matlab as an expansion to the
Brede Toolbox.

5.2 Scaling of W and H

As mentioned the sources are not scaled correctly, therefore a method is pro-
posed to calculate a factor α that will rescale W and H to the original scale.
The factor is elementwise multiplied with each row of W, and the reciprocal
transposed factor is elementwise multiplied with each column of H. Thereby
the cost function will not change with this rescaling.

H
′

.i = H.i · (αT )−1 (5.8)

W
′

j. = Wj. · α (5.9)

W
′

H
′

= WH (5.10)

where α = [α1 ... αK ]T

Since W can be interpreted as the mixing matrix or as spatial images of the
sources, a lemma can be defined for W. In the mixing matrix each row must
sum to 1. W is set to describe the mix of each source in each observation
or pixel, and these mixing coefficients must sum to 1. This means that if W

consists of images of the estimated sources, then the summed image must equal
1 in each pixel.

To return to the original scale of the signals in H, the following lemma for W

is defined.

Wj.α = 1⇐⇒
∑

j

(1−Wj.α)2 = 0⇐⇒

Wj1 · α1 + Wj2 · α2 + ...+ WjK · αK = 1 (5.11)

To acquire the correct scaling factor α, the following is derived from (5.11).
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δ

δα

∑

j

(1−Wj.α)2 = 0⇐⇒
∑

j

((1 −Wj.α)WT
j.) = 0⇐⇒

∑

j

(WT
j. −WT

j.Wj.α) = 0⇐⇒
∑

j

WT
j. −

∑

j

WT
j.Wj.α = 0⇐⇒

∑

j

WT
j. =

∑

j

WT
j.Wj.α⇐⇒

∑

j

WT
j. = α

∑

j

WT
j.Wj. ⇐⇒

α = (
∑

j

WT
j.Wj.)

−1
∑

j

WT
j. ⇐⇒

α = (WTW)−1
∑

j

WT
j. (5.12)

5.3 Number of sources in NMF

The problem of deciding the number of sources to use in the deconvolution in the
NMF is not straight forward, since no qualitative measures of the model is given.
An analysis of the factorization can be done by inspection of the matrices W

and H. If values in the columns in the mixing matrix W are very small and/or
the source matrix H has sources which do not seem natural or simply has very
small values. This could be an indication of overfitting, yielding that too many
sources are estimated in the NMF method.
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Chapter 6

Independent Component

Analysis

When looking for a better deconvolution model which hopefully describes the
data better the choice naturally falls on independent component analysis (ICA).
Compared with the NMF which simply factorizes the observed signals into two
matrices the ICA also estimates the noise in the data. As described by [1] the
definition of independent component analysis is




x1(t)
x2(t)

...
xN (t)


 = A




s1(t)
s2(t)

...
sM (t)


+ n (6.1)

where xi(t) is the time dependent observed signals, A is the unknown mixing
matrix, sj(t) is the unknown time dependent sources, while n is a matrix of
noise signals. N and M are the number of samples and the number of sources
respectively.

ICA distinguishes itself from other methods by looking for components that are
both statistically independent and nongaussian. In practice it is often impossi-
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ble to find really independent components, but instead finding as independent
components as possible. When applying the method to neuroimaging the data
is analyzed for independent spatial patterns finding temporal signals that are
as independent as possible.

6.1 Probabilistic ICA

There is a broad variety of ICA methods that have different approaches and
different characteristics. For this application the non-negative constraint is very
important. This constraint can be fulfilled with the probabilistic ICA namely
the Mean Field ICA described and implemented by [25], [21], [20], [19] and [12].
Here the following formulation is used

X = AS + n (6.2)

where the noise n is assumed zero-mean gaussian with covariance Σ, the ob-
served signals are stacked into one matric X and the same goes for the unknown
sources S. The Likelihood L is then defined by L = p(X|A,S,Σ). The source
prior p(S|φ) which in detail will be described in section 6.1.2 has some parame-
ters which in shorthand are called φ. By defining the hyper-parameter ψ which
is a shorthand of the models parameter ψ = {A,Σ, φ} the posterior probability
is given by

p(S|X, ψ) =
p(X|A,S,Σ)p(S|φ)

p(X |ψ)
(6.3)

In this probabilistic approach version of ICA the unknown sources are integrated
out, leaving the parameters ψ to be determined by maximizing the Likelihood
L(ψ) = p(X|ψ). Unfortunately, the Likelihood is too complicated in this ap-
proach and instead a lower bound B for the Likelihood is used as objective
function. The lower bound is defined by

L(ψ) = ln p(X|ψ) = ln

∫
q(S|φ)

p(X,S|ψ)

q(S|φ)
dS (6.4)

≥
∫
q(S|φ) ln

p(X,S|ψ)

q(S|φ)
dS = B(ψ|φ) (6.5)
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The property of the bound holds for any choice of variational distribution q(S|φ)
and the misfit between B and L can be measured with Kullback-Leibler (KL)
by measuring the divergence between them L(ψ) = B(ψ|φ) −KL(q, p), where
KL(q, p) ≥ 0 stand for divergence between the sources posterior and the varia-
tional distribution. Hence, if the bound is equal to the log likelihood KL equals
zero.

For the optimization the derivatives of the lower bound are needed. This can
easily be derived and the results are

∂B(ψ, φ)

∂A
= Σ−1(X〈S〉Tq −A〈SST 〉q) (6.6)

∂B(ψ, φ)

∂Σ
(6.7)

=
N

2
Σ−1 − 1

2
Σ−1〈(X−AS)(X−AS)T 〉qΣ−1

=
N

2
Σ−1 − 1

2
Σ−1(XXT −X〈S〉Tq AT −A〈S〉qXT + A〈SST 〉qAT )Σ−1

∂B(ψ, φ)

∂φj
= 〈∂ ln p(S|φ)

∂φj
〉q =

∂ ln δ[S>0]

∂φj
+
N

φj
−
∑

t

〈S〉qjt
(6.8)

where 〈·〉 denotes the source posterior average, that depends on Σ. 〈S〉 and
〈SST 〉 can be seen as respectively the first and second moments. Equation (6.8)
is calculated based on the specified source prior found in equation (6.12) in
section 6.1.2.

6.1.1 Optimization of Parameters

The lower bound of the log Likelihood has to be optimized. This is done with the
Expectation-Maximization (EM) Algorithm that in shorthand can be described
by the following:

E-step: Maximize B(ψ|φ) with respect to φ keeping ψ fixed.

M-step: Maximize B(ψ|φ) with respect to ψ keeping φ fixed.
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In the M-step the lower bound is maximized with respect to the model hyper-
parameters ψ by setting the derivatives (6.6), (6.7) and (6.8) equal to zero. The
EM update obtained for the mixing matrix and the noise covariance is then

A = X〈S〉Tq 〈SS〉−1
q (6.9)

Σ =
1

N
(XXT −X〈S〉Tq AT −A〈S〉qXT + A〈SST 〉qAT ) (6.10)

The E- and M-step is repeated back and forth updating the values of the para-
meters and continuously increasing the lower bound of the Likelihood. Unfor-
tunately, this approach is very slow especially in the case where the system is
very over complete hence the number of samples is much bigger than the num-
ber of sources which exactly is the case with images. Therefore an overrelaxed
adaptive EM approach is used to speed up the algorithm. The modification is
made to increase the step size in the M-step by taking larger and larger steps
in the direction proposed by EM.

ψn+1 = ψn + γ(ψEM − ψn) (6.11)

where γ ≥ 1. If γ = 1 the original EM algorithm is obtained. For each time a
successful step is taken γ is increased, but if the Likelihood bound is decreased
in a step γ is set to one again and the step is undone. This speeds up the process
significantly, if multiple useful steps are found after each other.

6.1.2 Source prior and constrained mixing matrix

When choosing the source prior one must look for a distribution p(S) which
is sensible from an analytical point of view and with respect to the particular
application at hand. For the application of images the non-negative constraint
is naturally and the obvious choice falls on the exponential distribution. The
density is

p(S) =

(∏

i

φN
i

)
exp

[
−
∑

it

φiSit

]
Θ(S) (6.12)
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where Θ(S) = 1 for S > 0 and zero otherwise. The density is normalizable
only if the parameters φi are all positive.

The mixing matrix is constrained to be positive which is natural for these images.
This is done by a reparameterization of the mixing matrix A. The positive
constraint is obtained by using the exponential function (A)ij = exp(α)ij making
the parameter A an underlying parameter α in the hyperparameter ψ. With
this underlying parameter the derivative of lower bound is

dB
d[α]ij

=
∂A

∂[α]ij

∂B
∂A

= [A]ij

[
∂B
∂A

]

ij

(6.13)

By setting this equal to zero the solution is given by a simple iterative formula

[A]ij := [A]ij
[Σ−1X〈S〉Tq ]ij

[Σ−1A〈SST 〉q]ij
(6.14)

6.2 Scaling of S and A

As with NMF A can be interpreted as the mixing matrix or as spatial images
of the sources and a lemma can be defined for A. In the mixing matrix each
row must sum to 1. A is set to describe how the sources are mixed in each
observation or voxel. This means that if A are several images of the original
sources, then the summed image must equal 1 in each pixel. When finding the
independent component of the X matrix the scale of A and S is unknown. To
return to the original scale of the signals in S a similar lemma as defined in
section 5.2 is defined for A.

The correct scaling factor α is acquired the same way as in equation (5.12),
which gives the following α formular.

α = (ATA)−1
∑

j

AT
j. (6.15)
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6.3 Information Criteria for model selection

Selecting the right number of sources hence the right model is crucial for all
methods proposed. Therefore a good and robust measure is needed. With the
ICA method the log likelihood (L) is computed from the covariance matrix.
This can be used in calculating different criteria for the selection of numbers of
sources. Bayes Information Criterion BIC turns (L) and the number of sources
into a measure of the statistical optimal model.

BIC = −2 · L+ q · log(N) (6.16)

where q is the numbers of parameters in the model and N is the number of
samples. The criterion assumes that theN samples are statistically independent.
Unfortunately, this is not the case in PET imaging, because of the point spread
function neighboring voxels correlate. Hence, the criterion has to be adjusted to
cope with the true number of independent samples. This is done by multiplying
the total L with the fraction of true number of samples N̂ over the number of
samples N and substituting the number of samples N with the true number of
samples N̂ . This gives the following modified Bayes information criteria

B̂IC = −2 · L · N̂
N

+ q · log(N̂) (6.17)

which then can be calculated for different number of sources to find the number
to use. B̂IC is minimized to find the optimal model.
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Results





Chapter 7

Clustering results

In this and the following Chapter the results obtained using the different meth-
ods will be presented. In this Chapter the results from the K-means and the
fussy C-means algorithm are shown. The methods are first tested on simulated
data and then on PET data.

7.1 K-means results

In this section results from performing the K-means clustering method to extract
vascular TAC from PET data are presented. The results are partly reproduced
from [15]. However, the weighting is not performed here, since the weighting
is high in the last frames and the arterial information is mainly in the first
ones. These results are going to be compared with more advanced deconvolution
methods later in the thesis.

7.1.1 K-means on simulated data

The characteristic of the K-means method is first tested by using the method on
simulated data. The data is described in section 2.4. The K-means algorithm
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requires the number of cluster K to be defined in advanced. Therefore, a com-
parison across K is needed. This is not straightforward, as the cost function will
decrease towards zero with increased numbers of clusters. It can not be used
directly to compare across different values of K. However, a simple method is
to look for large changes in the cost function as the value of K increases. This
indicates a possible significant change in the partitioning, hence a good choice
of K. For the simulated data the within variance (cost function) is plotted for
different K values in figure 7.1. Here it is clearly seen that the optimal choice
for K is 4.
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Figure 7.1: Within variance for different values of K.

As mentioned in the theory in section 3.1 a number of runs can be performed to
secure that the cost function does not end up in a local minimum. The run with
the lowest cost is chosen as the optimal solution across the different random
initializations. In figure 7.2 the result of K-means clustering with 3 clusters and
2 different initial starting points is seen. It shows a big difference between the
clusters depending on the initial cluster centers, hence the cost function ends up
in different local minima. In this case a good choice of clusters is 4 which the
robust results in figure 7.3 shows. Here both initial starting points end up in
nearly the same result and with the same percentage of samples in each cluster.
That was not the case with 3 clusters.

Because the process converges in a finite number of steps and because of the
relatively fast convergence the K-means is an excellent initial choice for clus-
tering. As indicated the K-means clustering has some disadvantages. But with
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Figure 7.2: K-means with 3 and different initial starting points.
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Figure 7.3: K-means with 4 and different initial starting points.
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some safeguards, such as repeating the clustering several times for each choice
of K, choosing the initializations in each case as a random subset of the data
points, and varying the value of K over a range of relevance, the method shows
very stable and fast performance.

Two of the main problems when using K-means on the simulated data are that
each sample is clustered as one type, and that each cluster center is calculated
as a mean of the samples belonging to the cluster. The first problem is that
the method assumes that each sample consist of only one type, but in this case
each sample has some fractions of the different types. Therefore, the method
assumption is too crude. The second problem is that the method can not have
clusters which have higher or lower values than the values found in data. This
is seen in figure 7.4, where the vascular like cluster is plotted together with
the underlying arterial like source. Because the highest value in the simulated
data is around 5 the cluster centers can never reach the peak of the underlying
arterial like source.
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Figure 7.4: K-means cluster vs simulated artery.

The results from simulated data shows, that the K-means method has some
limitations when working with data that has partial volume effects.
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7.1.2 K-means on PET data

The K-means method is used to cluster the PET images into K clusters. In an
optimal solution each cluster should contain only one component e.g. venous
blood, arterial blood, white matter, grey matter or cerebrospinal fluid (CSF).
This would be a straightforward and elegant way to segment the PET image
and thereby identifying the vascular regions. In real life however this is not
quite feasible with PET images. The resolution is not high enough to show the
smaller details of the brain such as the arteries. This being the case the signals
that are to be estimated can be expected to be noisy and a mixture of several
components, as not many voxel will consist of blood alone. Not meaning that
the voxels containing blood can not be found in the PET image, because if a
voxel is 50% blood and 50% other components the TAC of that particular voxel
is most likely to be different from those voxel containing 0% or almost no blood.

The PET image and the arterial sampled TAC are compared before the K-
means algorithm is used to cluster the PET image. The maximum value in
the sampled blood curve is 0.067 MBq for Pilot 6, and the maximum value in
the PET image is 0.047 MBq. Therefore, it can be concluded in advance that
the K-means method will not be able to extract the peak in the blood curve.
However, the method is still going to be applied to the PET data, to see how
the method performs and to compare the results to more advanced methods.

Choosing the number of clusters, K

An important issue when working with the K-means algorithm is to choose
the right number of clusters, K. The correct number being the K where the
features of the TACs become clear, and not necessarily the anatomical number
of components in the brain.

To get an indication of the number of clusters to use, the cost function, the
sum of squared distances between cluster centers and its members is shown for
different K values in figure 7.5. It can be seen that for K larger than 3 or 4 the
distance does not change very much. This reveals that K=3 or K=4, might be
a good number of clusters to use. To use the same number of clusters for all
Pilots, K=4 is chosen.
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Figure 7.5: The summed distances for all 5 Pilots.

Results

The cluster centers for the clustering with K=4 are shown for Pilot 6 in figure
7.6. The blue cluster center resembles a vascular TAC and 4.51% of the voxels
belong to that cluster for Pilot 6, which is not far from the true 5% vascular
volume of the brain.

To examine where the clusters are located in the brain, a spatial image can be
made where each voxel is assigned to one cluster. Figure 7.7 shows 6 transversal
slices of the brain where each cluster is illustrated by a color, the same colors
are used in figure 7.6. The blue cluster is the vascular component and is located
where the veins are in the brain. In slice 10-12 the vein goes from the sides
of the brain and to the back where they join and continue to the top of the
brain. In slice 29-31 the cluster is in the middle, where there is a large vein in
the brain. Thus it can be be concluded that the vascular looking TAC found, is
indeed from the venous regions of the brain.

The vascular cluster found has some percentage of other tissues because of
partial volume effect. Therefore, a second clustering is performed on the vascular
cluster from the first clustering. This is to get the purest vascular source. Again
the within variance is plotted to find the optimal number of clusters. When
using K=4 in the first clustering, the sum of squared distances for the second
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Figure 7.6: TACs for K=4, Pilot 6
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Figure 7.7: Spatial image for K=4, Pilot 6
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clustering are calculated and shown in figure 7.8. Here it can be seen that the
slope of the curves does not change much after K=4. Therefore, K is set to 4
in the second clustering for all Pilots.
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Figure 7.8: The summed distances in 2nd clustering, for all 5 Pilots.

For the 2nd clustering the vascular voxels comprise 0.36% of the total number
of voxels, this means that the vascular cluster is trimmed to only include the
most vascular ones, and therefore the TAC from this cluster should be the one
that is closest to the sampled arterial TAC.

Validation

To validate different methods it is necessary to have a PET image which is
segmented into vascular regions or to use the TAC from an arterial sampling,
either way comparing the estimated result to the true solution.

The sampled arterial TAC is compared to the vascular cluster found by the
K-means method. As seen in figure 7.9 the peak is very low in the clustered
TAC compared to the sampled TAC and the level of the cluster after the peak
is a little high. This is as expected since the maximum value in the PET image
is lower than the maximum of the arterial sampled TAC. This is also consistent
with the results found using simulated data.
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Figure 7.9: Sampled and hierarchical clustered vascular TACs for Pilot 6.

All the results shown are from Pilot 6. The other Pilots have similar results,
which can be seen in Appendix A.

Weighting of frames

The weighting scheme used in [15] emphasizes the latter part of the TACs,
therefore the end level in the resulting TACs is very close to the level in the
sampled arterial TAC. Since no statistical reason for this weighting is given, this
weighting scheme is not used when clustering with the K-means method.

7.2 Fussy C-means results

The K-means has the limitation that each data point can only belong to one
cluster and because of partial volume effect this is not a good model for PET
data. This problem might be solved with the Fuzzy C-means where each data
point has a membership degree to each cluster. To test this property the C-
means algorithm is used to cluster the simulated data set.
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7.2.1 C-means on simulated data

To find the number of clusters to use on the simulated data set the within
variance is calculated for different number of clusters. This is done several
times with different fuzziness, m, all given the similar result as seen in figure
7.10. The curve indicates that 4 clusters should be used.
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Figure 7.10: Fussy C-means cluster for different no. of clusters, m = 2.

The fussy C-means algorithm is then used to cluster the simulated data into
4 clusters with different fuzziness. In figure 7.11 and 7.12 the 4 centers of
respectively m = 2 and m = 3 is seen. When using low fuzziness the centers are
very close to the centers from the K-means method as expected. This is because
each sample is given close to only one cluster membership. Using very high
fuzziness the cluster membership is close to equal shared between the clusters.
Here the method has difficulties estimating the small parts in the data as seen
in figure 7.12 where the peak is not found as clearly.

The method has difficulties separating the small distributions because the dif-
ferent clusters have tendency to be equal sized as m increases. As seen in figure
7.12 the percentage of the vascular like curve is 10% that is double the real
percentage.

The fussy C-means method is not used to cluster the PET data, since the method
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Figure 7.11: Fussy C-means cluster, C = 4 and m = 2.
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Figure 7.12: Fussy C-means cluster, C = 4 and m = 3.
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can not give clusters that are very small compared with the other clusters.
Furthermore, the method does not solve the problem, that cluster centers can
not have values higher than the ones in the data. Hence, the C-means does not
solve the problems from the K-means method.

7.3 Concluding on clustering

The biggest disadvantage when using the clustering methods is that the clusters
can not have values lower or higher than the ones in the given data. The K-
means method performs well taking into consideration the low resolution of the
PET image, and since the maximum in the PET image is much lower than the
peak in the sampled blood curve.

Segmentations of the brain is possible, and the venous regions are found. The
arterial regions can not be distinguished from the venous, and this is probably
because of the small diameter of the arteries. Hence, the maximum resolution in
the PET image is to small. Since most of the voxels in the vascular cluster are
from veins, and not arteries, the peak in the TAC is much lower in the cluster
TAC than in the sampled TAC. If arterial information is to be extracted the
K-means algorithm is probably inefficient since it does only cluster a voxel to
one cluster. Therefore, if the arterial part of a voxel is never large, then no
arterial cluster is extracted. The partial volume effects in the PET data makes
the extraction of arterial TAC hard, since these regions are small.

For clustering the K-means method is the most appropriate, as the C-means
does not perform any better on the PET data. C-means also has an extra
parameter that needs to be tuned. However, using the K-means is not able to
extract arterial clusters. This is shown for both simulated and real PET data.



Chapter 8

Scaling deconvolution results

The limitations found using clustering can be solved by different deconvolution
methods. The deconvolution methods have the consequence that the scale of the
results is unknown because, a factor can be applied to the coefficients and the
sources without a change in the cost function. This scaling problem is looked
into in this Chapter.

In the α factor scaling method explained in section 5.2 on page 32, the model
at hand must explain data well enough on average, to assume that the spatial
images voxel-wise sum to one. This method can only be used if there is a non-
negative constraint on the results. Therefore, the α factor method can not be
used on the PCA results. Since the purpose of this project is to avoid arterial
sampling while doing the PET scan, the information from the arterial sampling
can not be used. The vein sampling done during scanning is necessary since
analysis of blood for metabolites is required. Therefore the vein information
can be used to scale the results.

The vein blood curve has the same activity level as the arterial blood curve in
steady state. Therefore the last arterial and vein samples can be assumed to
be identical. This can be used to scale the vascular dynamic source back to the
original activity(MBq) scale.

To evaluate this statement on the [18F]Altanserin PET scans, the artery and
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vein TACs are compared. In figure 8.1 the artery and vein sampled TACs are
shown, it can be seen that the vein and artery curves follow each other nicely
in the last frames.
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Figure 8.1: Sampled blood curves for one subject.

The end level of the vein curve can then be used to scale the estimated artery
TAC into the correct scale. However, this will only hold if the estimated TAC
is estimated correctly as an artery or vein TAC, and that the end level of the
estimated is TAC is stable.
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PCA results

A principal components analysis (PCA) is performed on the simulated data and
then on the PET data. This is a method that runs very fast so if relevant
information can be extracted using first and second order statistics, the PCA is
an appropriate tool to use.

The resulting principal components are analyzed and compared to the arterial
TAC. For the PET data the solution can also be validated using the spatial
information, given by the coefficients for the principal components.

9.1 PCA on simulated data

The PCA is performed on the simulated data set and the 1st and the 2nd prin-
cipal component can be seen in figure 9.1. These two components describe 94%
of the total variation in the data set. The 2nd principal component looks like
the negative vascular time signal. As mentioned one of the challenges with the
PCA is that there is no non-negative constraint on the components and on the
combination of these components, and this complicates the analysis of the so-
lution. Furthermore, the scaling of the components is a problem since the end
level of component can be negative.
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Figure 9.1: 1st and 2nd principal component.

The last 8 components are hard to analyze, and like the 1st component they do
not have any resemblance to a specific signal in the simulated data.

The PCA is very good at reducing the dimension of the data set, as 94% of
the variation is explained by only 2 components. Since the aim is to extract
natural time signals from the data, this method does not seem to be a good
choice. A method that extracts more natural properties and easily interpreted
components is therefore desired.

9.2 PCA on PET data

PCA is used to extract features from the PET data. Both spatial and dynamic
results are given from the PCA. It is analyzed what spatial regions are explained
by the different components and how the dynamic TACs for these components
behave, to see if the principal components can be interpreted as true sources of
some kind from the original data. All results in this chapter have been generated
with Pilot 6 as data, results from the other data sets are illustrated in Appendix
B.
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Figure 9.2 shows the explained part of the total variation in the original data,
as a function of the number of principal components. It is clearly seen that by
excluding some of the variation in the PET data the size of the data set can be
reduces a great deal. E.g. 5 principal components explain 70.7% of the total
variation, this reduces the size of the data set to 12.5% of the original size.
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Figure 9.2: Part of total variation explained in PCA.

The two first principal components are shown in figure 9.3. The first component
seems to describe a binding of some kind, since it increases with time at first
and then decreases slowly. The second component resembles a vascular signal
because of the peak in the beginning and then a very low activity level.

To see where the 2nd principal component is located, the spatial image of that
component is illustrated in figure 9.4. It is clearly seen that the location of the
2nd principal component, matches the vascular region of the brain. The latter
38 components, do not have a well defined spatial location. The last 38 principal
components are hard to identify with any natural signal of the brain. This is
probably because of the cancelation effect of the components thereby, making
analysis of the components very difficult.
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Figure 9.3: Two first principal components.
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Figure 9.4: Spatial location of 2nd principal component.
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9.2.1 Validation

The 2nd principal component is scaled to match the end level of the arterial and
venous sampled TACs, all three curves can be seen in figure 9.5. Comparing
the vascular principal component to the arterial sampled TAC, there is a great
difference between the peaks of the two curves, but the levels fit very well to
each other. However, the component is not far from the vein TAC. This is
a clear indication of that the 2nd principal component is venous, and that no
components extract pure arterial information.
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Figure 9.5: Comparison of arterial- and venous sampled TACs and scaled 2nd

principal component.

9.3 Concluding on PCA results

The PCA is able to estimate the venous regions of the brain by the 2nd principal
component, and no arterial information is extracted from the data. Therefore,
the PCA can not be used to estimate the arterial TACs.

When comparing the 2nd principal component with the sample arterial curve,
it shows that the peak of the estimated TAC is much too low. This is probably
because of the fact that so little of the brain is arterial, and therefore it is not
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extracted as a clear component in PCA. And since the components can cancel
each other out and be linearly combined in any way, the interpretation of the
principal components becomes very hard. The factors that explain the most of
the variation, binding and venous regions, are extracted as the first two principal
components, but all the 38 other principal components are hard to analyze.

The reason the PCA is unable to estimate the arterial TAC could be because
of the way the PCA represent the components. The components found are not
individual and sparse, but more like a mixture of different artifacts, and to
combine them to one factor, say arteries, then maybe all principal components
need to be linearly combined. Also, as shown in [14], the PCA does not extract
natural components from the data. To achieve this a non-negative constraint
might be a good idea. The first and second order statistics of the PCA method
is not enough to extract arterial TACs. This is shown for simulated and real
PET data.



Chapter 10

NMF Results

In [11] the NMF is used to extract vascular curves, where they use a ROI and
only perform the NMF on the initial 90 seconds. In this chapter the NMF is
used on the whole PET data set, so no region needs to be defined and all frames
are used to get the entire time activity curve (TAC) and not just the peak.

In this chapter the NMF method is used to deconvolute the simulated and the
[18F]Altanserin PET data set. The results are validated using the sampled
artery TACs, to find the most appropriate method to extract TACs from the
PET images.

Deciding the number of sources to use in the NMF method is a non-trivial task,
and no exact method of doing this is available. No statistical information, like
the log likelihood function (L), is given when using this model. However, the
error of the model can be investigated for different number of sources.

There are two ways to evaluate the results from the PET data, since the method
gives both spatial and dynamic information. The dynamics of the solution are
the TACs that should resemble the TACs of different regions of the brain. One
or more of these being the vascular part of the brain, namely the venous and
arterial regions. The sampled and the estimated TACs can be compared with
each other, by visual inspection and by correlation. The spatial information of
the results of the NMF method are images of the origin of the different sources
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found. Therefore, these images should, if the method gives a good solution,
segment the brain into different regions, each with different bindings towards
the tracer. This is not possible with the simulated data, since the data is
randomly distributed, thereby making the spatial image uninteresting.

10.1 NMF on simulated data

A deconvolution of the simulated data is performed using the NMF. The cost
function is shown in figure 10.1, this is to show how well the NMF describes the
data for different number of sources. This clearly indicates that 2 sources is a
good choice, since the slope does not change much after this point.
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Figure 10.1: Cost function for different number of sources.

Using 2 sources in NMF, the resulting TACs is a vascular curve and a binding
curve, they can be seen in figure 10.2. The estimated TACs are rescaled by
the α factor, see equation (5.12) on page 33. The two TACs have the correct
level except for the latter part, where both curves are too high. The scaling can
naturally never be correct, when estimating the wrong number of sources using
the NMF. This explains the incorrect scaling using the α factor. An interesting
observation is that the estimated binding TAC is zero at Time=2, where the
vascular signals peak.
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Figure 10.2: NMF estimated α scaled sources, 2 sources.
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Figure 10.3: NMF estimated α scaled sources, 3 sources.
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To see if the NMF method is able to extract more than 2 sources, the NMF is
performed using 3 sources, the results is shown in figure 10.3. Again the sources
are rescaled using the α factor. The shape of the 3 estimated curves looks fairly
good, and the peak in the vascular curve is higher than before. But there is
a problem at Time=2, where both the binding and the non-binding estimated
TACs are zero. This indicates that there is a tendency that other curves are
underestimated where a curve has a peak. The peak in the estimated vascular
curve somehow explains the data well enough in point Time=2, so that the
other curves are set to zero.

The maximum value in the vascular NMF source is 5.7 and the maximum value
in the simulated data set i 5.3. This shows that the NMF has potential to
extract sources that are not available directly in the data, but only partially in
some observations.

The red NMF estimated source is not scaled correctly. It is too high with
a maximum level of 10. This failure in the α scaling method also has the
consequence that the coefficients will be erroneous. To compensate for the high
level of the estimated binding signal, the coefficients for this source become very
small. Thereby distorting the parts from the other sources. Since the binding
source is much larger than the other sources, it can influence the other parts in
the rescaled solution.

The simulated data set has 4 sources, but since the two vascular signals are
similar and very small (1% and 4%) these signals might be described as one by
the NMF, this seems to be the case with 2 and 3 sources.

It can be concluded that the NMF works fairly well when estimating two sources,
which is also what the cost function indicates. Here the sources found are
rescaled correctly and the vein and binding TACs are found. There is a problem
with the end level of the estimated curves, this is probably because of the fact
that the cost function is not sensitive enough to the curve level, and also because
there are two signals that are not estimated, which will give some error.

The NMF shows promising results on the simulated data, but the number of
sources is underestimated and the α scaling is only correct when using 2 sources.

10.2 NMF on PET data

Now the NMF is performed on PET data and the number of sources to use is
investigated. In figure 10.4 the sum of squared error (SSE) is shown for 1 to
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6 sources for all 5 Pilots. The SSE is naturally decreasing with the number
of sources used, but any large change in the slope of the curves might be an
indication of how many sources to use. For all Pilots the largest change in the
SSE is between 1 and 2 sources, and from 2 to 5 sources the slope seems to be
stable. This is an indication that 2 sources could be a reasonable number of
sources to use in the NMF model, this however is investigated further in this
section.
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Figure 10.4: Sum of squared error, as a function of number of sources.

Using the NMF algorithm to deconvolute the observed PET image into two
sources gives the TACs shown in figure 10.5. One of the TACs has a clear
vascular shape and the other TAC looks like a curve describing binding. The
vascular curve has a peak and then a low level in the end of the curve. As the
SSE plot indicates, 2 sources seems to be a good choice, but to see if this is the
optimal number of sources, TACs using more sources are generated.

Figure 10.6 shows the TACs based on 3 sources. There is one vascular like
curve and two other curves, which look like binding and non-binding TACs.
This result looks very promising, since using 3 instead of 2 sources actually
yield good results, as the TACs look natural and not like noise or overfitted
sources. One of the differences in the vascular curve when using 3 instead of
two sources is that the end level of the curve is lower for 3 sources.

To validate the results of the NMF the spatial images of the sources are illus-
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Figure 10.5: TAC found by NMF, for K=2 in Pilot 6.
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Figure 10.6: TAC found by NMF, for K=3 in Pilot 6.
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trated. In figure 10.16, 10.17, and 10.18 the spatial location of the 3 sources are
shown on page 80. The three spatial images consist with the dynamic curves
shown in figure 10.6, as the sources seem to describe binding, non-binding and
vascular regions.

Using 4 sources in the NMF gives inconsistent results and unnatural TACs,
which is a indication of overfitting. The optimal number of sources to use is
therefore chosen to be 3 sources, since the sources found are natural looking and
there are no signs of overfitting.

The results shown in this section are for Pilot 6, results for all Pilots can be
seen in Appendix C.

Correlations

The correlations between the arterial TAC and the vascular TACs are shown in
table 10.1 to estimate the quality of the found TACs. For K=2 and K=3 the
correlations are high, all above 0.94. For K=4 the correlations are lower for all
Pilots. K=3 can therefore not be rejected as a good number of sources to use
in the NMF. However, the correlation is higher for 2 sources in Pilot 2, 3, and
4. This might be because of the low end level of the curves, with 3 sources.
Intuitively using 2 sources in the NMF algorithm might seem to few, since the
method should extract vascular information in one source and then all the rest
in the last source. The tradeoff between 2 and 3 sources is the peak height, and
end level height in the vascular curve. Using 2 sources, the peak is not very
high, and with 3 the peak is high and the end level is very low.

Subject Pilot 2 Pilot 3 Pilot 4 Pilot 5 Pilot 6
K = 2 0.9872 0.9784 0.9854 0.9490 0.9559
K = 3 0.9679 0.9684 0.9697 0.9667 0.9688
K = 4 0.9091 0.7453 0.8297 0.7997 0.9229

Table 10.1: Correlations between estimated and arterial sampled blood curves.

To evaluate the two non-vascular components found by using 3 sources in the
NMF, they can be correlated to the ROI curves shown in section 2.3. There are
ROI with and without binding. These are compared with the estimated TACs
in table 10.2 and 10.3. This is only done for K=3, since in that case there seems
to be an estimated binding and a non-binding TAC. The binding ROI is the
frontal cortex region, and the non-binding ROI is the cerebellum region. When
evaluating the correlation coefficients for binding and non-binding regions of
the brain, shown in table 10.2 and 10.3, one must look at the estimated curves
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represented in the H matrix to see if any artifacts are present. Sometimes one
of the curves goes to zero as the other curves have peaks. If one of the values
in the TAC is suddenly zero as seen with the simulated data. This will greatly
effect the correlation coefficient, although the curves might be very alike for all
but one time point. This can explain some of the lower values in table 10.2 and
10.3. Otherwise the binding TACs have high correlations, while the non-binding
TACs are generally lower. This also consists with the fact that the non-binding
TAC is estimated as the 3rd component, therefore being the least significant of
the three sources.

Subject Pilot 2 Pilot 3 Pilot 4 Pilot 5 Pilot 6
K = 3 0.7808 0.9520 0.8309 0.8680 0.9575

Table 10.2: Correlations between binding TAC and frontal cortex ROI curve.

Subject Pilot 2 Pilot 3 Pilot 4 Pilot 5 Pilot 6
K = 3 0.8083 0.6569 0.7935 0.7720 0.7171

Table 10.3: Correlations between non-binding TAC and cerebellum ROI curve.

Scaling

The α scaling method is used to re-scale the TACs found using the NMF. All
three TACs can be evaluated using this re-scaling scheme. Figure 10.7 shows
the ROI TACs and the NMF TACs. It can be seen that the NMF estimated
non-binding TAC fits the ROI TAC well. The binding TAC does not fit as well,
it is higher than the ROI TAC.

The α factor seems to re-scale the NMF solution into the approximately correct
activity scale (MBq). Therefore, this method is used to scale the NMF TACs
back to the correct scale.

Although the correlations between the estimated TACs and the artery TACs are
very high, the vein scaling methods mentioned in Chapter 8 can not be used.
This is because of the low end level in the estimated artery TACs, this level
seems unstable and often too low.
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Figure 10.7: Re-scaled TACs, ROI TACs shown as circles.

Parts of total brain volume

After rescaling the results, the parts of binding, non-binding and vascular regions
of the total brain volume can be calculated. The parts for the NMF results are
shown in table 10.4. It can be seen that for the binding component the part is
between 0.57 and 0.66, the non-binding part is between 0.24 and 0.30, and the
vascular part of the brain is between 0.09 and 0.14. The vascular like component
part is clearly too large since only approximately 5% of the brain is vascular.
Otherwise the other parts match the white- and gray-matter parts of the brain
a little better. They are approximately 65% and 35% respectively. This also
indicates that the scaling is correct, as the binding is mostly in the white matter,
and white matter is approximately 60% of the total brain volume.

Subject Pilot 2 Pilot 3 Pilot 4 Pilot 5 Pilot 6
Binding 0.6597 0.5729 0.6139 0.6641 0.5995

Non-binding 0.2492 0.2852 0.2966 0.2352 0.2691
Vascular 0.0911 0.1419 0.0895 0.1007 0.1314

Table 10.4: The parts of the brain volume for each Pilot, with K=3.
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10.2.1 NMF error

The residuals of the NMF solution are easily extracted.

residuals = V −WH (10.1)

The residual term can be display as an image, since it is the error for each voxel
in PET scan. The residual images are inspected to see if the model describes the
PET fairly, in that case the residuals should be normal and uniformly distributed
around zero. And the residuals should be randomly distributed in the residual
image, and not mainly being present in a certain region of the brain.
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Figure 10.8: Histogram of the residuals for Pilot 6 using 3 sources.

The histogram in figure 10.8 shows the residuals for the NMF method for one
subject. It can be seen that the residuals are centered around zero and look
normally distributed. This error evaluation is still valid when α scaling the
NMF solution, since the term WH will be the same after the α factor scaling
process. A spatial image of the residuals can be seen in figure 10.9. From this
image the residuals look randomly distributed in the brain, and no region with
high residuals is seen.
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Figure 10.9: Mean over time residuals for Pilot 6, using 3 components.

10.2.2 Weighted NMF

Statistically weighted NMF

The level of the end of the vascular TACs found with the NMF method, seems
to be very low. The uncertainty in the last time points therefore seems to be
high. This contradicts with the fact that the last frames are long and have
many counts compared to the first frames. In fact the first frames do not have
the required 500000 counts to perform the reconstruction. Since the peak of
the arterial TAC is in the first few frames, these frames can not be discarded.
One way of solving this problem is to weight the frames as shown in [7]. The
weighting used is:

weightf =
durationf√

countsf
(10.2)

where f is the frame number. This weighting assumes the number of counts to
be poisson distributed, and therefore it can be rewritten to:
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weightf = durationf
1

σf
(10.3)

where σf is the standard deviation of the frame f . This results in the weighting
function that can be seen in figure 10.10, for this PET data set. To choose the
number of sources to use in WNMF the sum of squared errors are evaluated. In
figure 10.11 the SSE is shown, and it can be seen that for most of the Pilots the
curve flattens after 3 sources. This is a strong indication that 3 is a reasonable
number of sources to use, which is the same as in the un-weighted NMF.
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Figure 10.10: Weighting applied to frames.

This weighting scheme is applied to the [18F]Altanserin PET data. A compar-
ison of the estimated α scaled vascular TAC and the arterial TAC can be seen
in figure 10.12.

Weighting the data using equation (10.2), the last frames are weighted the most,
and very little emphasis is put on the frames 5-15 where the peak in the TAC
appears. This is consistent with the results seen in figure 10.12 where the end of
the vascular TAC is close the level of the sampled artery TAC, but the peak of
the vascular like TAC found by the WNMF is much lower than the artery TAC.
The peak in the resulting blood TAC is also lower than the peak estimated by
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Figure 10.11: Sum of squared error, as a function of number of sources.
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Figure 10.12: Comparison of sampled and estimated arterial TAC, for Pilot 6.
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the K-means method. The weighting of the frames is therefore not useful when
estimating artery TACs from PET data.

Alternatively weighted NMF

The peak is underestimated using the statistically weighted NMF. An alternative
weighting scheme is considered. Although the first frames in the PET scans are
the most noisy ones, these frames contain the information where arterial blood
TACs are significantly different from the tissue TACs.

A weighting is proposed where the frames containing the peak are weighted the
most, and the other frames are less important. The last few frames are weighted
high to get a good segmentation of the PET scan. This weighting can be seen
in figure 10.13. The peak in the arterial blood curve is between the 5th and the
15th frame.
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Figure 10.13: Alternative weights of frames.

The dangers of this alternative weighting is that the weight function might be
a way of overfitting the data at hand. The error in the estimated TACs is now
after the peak, where the data points are weighted the least. The TACs found
are more vascular, since the emphasis on the peak focuses on vascular tendencies
in the dynamic part of the data set. When evaluating the spatial images of this
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alternative weighting, several vascular components occur and only one other
component. Therefore this solution does not describe the data as a whole but
it mainly extracts vascular information. Furthermore, the alternative weighting
function can not be statistically supported.

10.2.3 NMF stability

To test the stability of the NMF algorithm used 15 runs are made on the same
data, and the results are compared to each other. In figure 10.14 the two TACs
are shown with ± three standard deviations.
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Figure 10.14: TACs shown with ± 3 standard deviation.

The results of the NMF algorithm seem to be very stable, so there is no need
to do several runs to find the optimal solution.

10.2.4 Comparison with K-means

To illustrate the differences in the estimated vascular TACs from the K-means
and the NMF method, the two TACs and the sampled arterial TAC are shown
in figure 10.15.
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Figure 10.15: Comparison of K-means, NMF and arterial sampled TAC, for
Pilot 2.

Is is clearly seen that the peak in the NMF TAC is higher than the K-means
peak. There is also a great difference in the end level of the two curves. The
K-means follows the arterial sampled TAC well, but the NMF TAC is very close
to 0, and well below the K-means TAC.

10.3 Concluding on NMF

The results from the simulated data shows, that the NMF method can be used
to extract two sources, the vein- and the binding-signal. These signals are scaled
correctly using the α factor. However, the NMF is unable to extract more than
two sources. For larger number of sources the method scales erroneously.

The NMF methods generates stable results, and there does not seem to be a
need for several runs to find the optimum solution of the iterative algorithm.
Using the α re-scaling method the mixing and TACs from the NMF can be used
directly in modeling and can be compared to sampled or ROI TACs.

The vascular TACs estimated by the NMF are better than the ones found by
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the K-means clustering and by PCA. The weighted NMF does not perform very
well, since the arterial information is in the first frames where the noise is the
highest.

An interesting thing about the NMF results is the spatial images of the sources.
This clearly indicates that the method is able to perform a deconvolution of
the PET scan into meaningful components. It is also obvious that estimating
the true underlying sources using only 3 components, gives a very crude solu-
tion, as the approximately 90000×40 voxels are described by a positive linear
combination of 3 sources, a total of 3×40 points.

With both simulated and PET data the NMF method is able to extract reason-
able vascular TACs that have higher peaks, than available in data. The method
is not able to distinguish between arterial and venous signals, this is probably
because the arteries are to small compared to the resolution of the data. To get
really good arterial TACs the method will most likely need to have a larger part
of arteries in some samples.

In both simulated and PET data, values of zero appear where the vascular signal
peaks, and there is a problem with the end level of the curves, which seems hard
to estimate using the NMF. This indicates that the NMF has the tendency to
underestimate the number of sources, or viewed from another angle, the sources
need to be more dissimilar than those in the data in this thesis, to be able to
deconvolute into more sources.
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Figure 10.16: Spatial part of vascular component, K=3 for Pilot 6.
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Figure 10.17: Spatial part of non-binding component, K=3 for Pilot 6.
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Figure 10.18: Spatial part of binding component, K=3 for Pilot 6.
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Chapter 11

Results from independent

component analysis

The mean field independent component analysis (ICA) method is used to decon-
volute the data into spatial and dynamic sources, as with the NMF. When using
this method the negative values are truncated to zero and each time dependent
sample is divided by the global maximum to transform data in to the domain
from 0 to 1. Again the number of sources has to be known in advance, but as
mentioned in chapter 6 the L is calculated. With this at hand it is possible to
estimate the statistically optimal number of sources.

11.1 ICA on simulated data

The ICA is performed on the simulated data described in section 2.4 to find
the characteristics of the method. All results are rescaled with the α factor,
described in equation (5.12). Initially the log likelihood, L, is calculated for
different number of sources. Doing this the first characteristics of the method are
found. Running the mean field ICA with positive constraints is slow compared
to the NMF, moreover sometimes the method ends up in a local maximum when
using more than 4 sources and therefore the model has to be recalculated, and
after a few runs for different number of sources the maximum log likelihood is
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found. With this at hand Bayes information criterion (BIC) can be calculated
according to equation (6.16) in section 6.3. The result is seen in figure 11.1.
The statistical optimal number of sources is 2, but for 3 and 4 sources the BIC
term is very close to the minimum.
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Figure 11.1: BIC for different no. of sources.

When using 2 sources on the data the resulting sources are seen in figure 11.2.
The sources are multiplied with the global maximum and scaled according to
the equation (6.15) in section 6.2. The TACs are plotted together with the
underlying signals from the simulated data. The 2 sources are very similar to
the simulated binding curve and to the simulated vein curve. With only 2 ICA
sources it is possible to extract a vein like curve even though it only represents
4% of the data. The source resembling a vein is too high in the last time points,
and the binding like source is a little low in the last 6 frames. In the binding
source the activity is not zero in at Time=2, as in the NMF results, although
the value is a little too low.

With 3 ICA sources the same plot is made in figure 11.3. Now the first source
looks like the simulated binding but with an end level too high, the second
source matches the simulated non-binding completely, and the third source is
vascular like where the end level is too high, as with 2 sources. It is clearly seen
that the levels in the latter parts of the sources are more erroneous than when
using 2 sources. The peak in the vascular source is higher than before, and the
values in the other sources at Time=2 are still not zero, as in the NMF results.

When using 4 sources to describe the data, the 4th source describes a signal
that is not present in the original signal. The method overfits the data. It
can therefore be concluded that the ICA can not extract all 4 sources of the
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Figure 11.2: ICA with 2 sources and the simulated curves.
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Figure 11.3: ICA with 3 sources and the simulated curves.
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original data. Only the vein signal of the two vascular sources can be described
by an ICA source. The best results are found using 2 sources, here the vein
and the binding source are extracted and fit the original signal very well, after
being rescaled with the α factor. This indicates that the ICA underestimated
the number of original sources. Moreover, when extracting the vascular signal
the best fit is found when using 2 sources, although the peak is lower when
using 2 instead of 3 sources. It can be concluded that only the vein signal can
be extracted as a source. The arterial signal has to be represented in more
observations or the parts has to be larger in the observations, to be extracted.

11.2 ICA on PET data

Although the extraction of the arterial signal in the simulated data was not
possible, the ICA method is used to deconvolute the PET data in order to see
how it performs, and to compare the results to the NMF solution.

11.2.1 Loglikelihood function L and no. of sources

The number of components in the ICA is estimated by evaluating the log like-
lihood as a function L(K) of number of sources, K.

The L shown in figure 11.4 shows as expected that the log likelihood increases
with increasing number of sources. It also shows that the slope decreases with
number of sources. A great increase is seen from 1 to 2, after that the slope
becomes lower. Therefore, it is hard to argue directly from L(K) that a specified
number of sources should be used, except for K=2 maybe.

Bayes information criterion

Bayes information criterion (BIC) can be used to choose the right number of
sources in a statistical model where L(K) can be estimated. However, when
estimating BIC for all Pilots the minimum that should indicate the statistical
right number of sources does not appear. In this case though the voxels are
not independent and therefore the number of independent samples must be
estimated, as described in section 6.3 on page 40. The estimated number of
independent samples are found by evaluating the reconstruction performed when
making the PET scan. The point spread function is 6mm×6mm×8.5mm wide,
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Figure 11.4: Log likelihood function for all Pilots for different no. of sources.

and since the resolution in the PET scan is 2mm×2mm×4.25mm, this gives
that the number of samples must be divided by 3×3×2 = 18.

The BIC is then calculated for a different number of sources with this correction,
to see if this criterion can be used to find a reasonable number of sources to
use in the ICA model. It is seen in figure 11.5 that although the number of
independent samples are corrected in the BIC calculation the criterion is not
able to give information about how many sources to use. An explanation for
this could be that the model is trying to describe data that has approximately
80000 samples that are very noisy and therefore it statistically needs more than
10 sources. But when using e.g. 8 sources they already look very noisy and
unnatural as seen in figure 11.6 and when looking at the spatial information of
these sources in the mixing matrix they are randomly distributed. This indicates
that the number of sources should be smaller. With all these indications at hand
the number of sources must be found by visual inspection of the dynamic sources
and their respective spatial distribution.
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Figure 11.5: Corrected BIC for all Pilots
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Figure 11.6: ICA with 8 sources for Pilot 3.
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11.2.2 Visual inspection of no. of sources

When doing a visual inspection to determine the optimal number of sources one
must look for dynamic sources that are as smooth and natural as possible. The
spatial distribution found in the mixing matrix must be different for different
sources, since the sources should describe different regions. By using this tech-
nique the optimal number of sources for data can be found. In figure 11.7 the
dynamic sources using 2 sources are shown. The 2 sources represent the binding
TAC and the vascular TAC. Using the same method with 3 sources, the TACs
are as shown in figure 11.8. The 3 sources seem to be binding, non-binding and
vascular TACs.

A vascular TAC is extracted with 2 and 3 sources. The difference between them
is mainly the height of the peak and the level of the curve after the peak. The
peak is higher using 3 sources, however the level in the latter part of the curve
is very close to zero.

Using 4 sources in the ICA, the vascular part is divided into 2 sources. The
spatial image of the two vascular sources is generated where the sources are
located. The spatial images in figure 11.9 confirm that the 2 vascular sources
are 1 true source that has been subdivided, and not a artery or vein source.
This shows that the ICA is able to extract 3 independent sources from the PET
data.

This is the case for all Pilots except for Pilot 6. When using 4 sources on Pilot
6 the method does not subdivide the vascular source in 2, instead it finds two
2 sources with different binding levels as seen in figure 11.10. When looking
at the spatial information the 2 sources are distributed differently in the brain
indicating that the sources come from different regions with different binding
potentials.

From this analysis the optimal number of sources is found. It is 3 sources for
Pilots 2, 3, 4, and 5. For Pilot 6 the optimal number of sources is 4. All the
ICA estimated TACs can be found in Appendix D.
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Figure 11.7: TACs from Pilot 2, ICA with 2 sources.
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Figure 11.8: TACs from Pilot 2 with zoom, ICA with 3 sources.
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Figure 11.9: The 2 sources subdivided from the true vascular.
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Figure 11.10: TACs from Pilot 6 with, ICA with 4 sources.

11.2.3 Correlation of the TAC curves

To measure how well the sources describe the true region TACs and the sampled
arterial TACs the correlations are calculated. In table 11.1 the correlations
between the sampled arterial TACs and the ICA vascular TACs are shown.
All values are very high, the lowest being 0.9299. The different Pilots have
the highest correlation using either 2 or 3 sources. This is probably a tradeoff
between the peak height and the end level of the vascular source.

Subject Pilot 2 Pilot 3 Pilot 4 Pilot 5 Pilot 6
K = 2 0.9858 0.9754 0.9855 0.9469 0.9563
K = 3 0.9941 0.9592 0.9620 0.9517 0.9554
K = 4 0.9519 0.9559 0.9585 0.9299 0.9519

Table 11.1: Correlations between estimated and arterial sampled blood curves.

However, the non-vascular TACs need validation too. This is done by correlating
the binding and non-binding sources with different ROI curves, seen in figure
2.3 on page 14. The correlations between binding ROI and the binding TAC
from the ICA solution are displayed in table 11.2, and correlations between the
non-binding ROI and the non-binding TACs are displayed in figure 11.3. The
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correlations for 2 sources is not calculated for binding and non-binding since
there are no specified sources for these, using only 2 sources.

Subject Pilot 2 Pilot 3 Pilot 4 Pilot 5 Pilot 6
K = 3 0.7832 0.9001 0.8130 0.8697 0.9677
K = 4 0.8214 0.8891 0.8321 0.8146 0.9519

Table 11.2: Correlations between binding TAC and frontal cortex ROI curve.

Subject Pilot 2 Pilot 3 Pilot 4 Pilot 5 Pilot 6
K = 3 0.8719 0.8301 0.8166 0.7595 0.6320
K = 4 0.8883 0.8067 0.7831 0.8542 0.9461

Table 11.3: Correlations between non-binding TAC and cerebellum ROI curve.

It seems to be a good compromise to use 3 sources in the ICA method, thereby
getting a fair segmentation of components that look like true sources of vas-
cular, binding and non-binding components. However, as the visual inspection
indicated Pilot 6 is different, this is also seen in table 11.3 where the absolut
lowest correlation is seen namely for Pilot 6 with 3 sources. Here the corre-
lation is 0.6320 again indicating that 4 sources gives better results. However,
the vascular component is the most critical, since it is this TAC that should be
estimated for use in parameter estimations in analysis of binding potentials.

The vascular TAC extracted from the PET scans have high correlations with
the sampled arterial TACs, but there is one crucial issue; the level of the TAC at
the end of the curves. In the estimated TACs the end level is very close to zero,
which makes it hard to do re-scaling of the TACs into the original activity scale.
This is necessary because the scale of the PET scans are lost when performing
a deconvolution of the data, as mentioned in Chapter 8. Since the end levels
are so close to zero, a re-scaling using the information from the vein sample
becomes impossible.

11.2.4 Parts of total brain volume

To analyze the part of the components of the total volume of the brain the parts
in table 11.4 are shown.

It can be seen that the binding is close to 60% for some Pilots, which is the part
of the brain that is white matter. The Non-binding is between 27% and 39%
and that is not too far from the 35% of grey matter in the brain. The vascular
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Subject Pilot 2 Pilot 3 Pilot 4 Pilot 5 Pilot 6
Binding 0.5588 0.4887 0.6278 0.4761 0.6063

Non-binding 0.3382 0.3530 0.2763 0.3997 0.2779
Vascular 0.1030 0.1583 0.0959 0.1242 0.1158

Table 11.4: The parts of the brain volume for each Pilot, with K=3, except for
Pilot 6, K=4.

part however is much too high, between 10% and 16%, and only 5% of the brain
is vascular.

11.2.5 Validation of scaling

To see if the α factor scales the TACs correctly, the ROI TAC are compared
with the sources from the ICA. In figure 11.11 the ICA binding and non-binding
TACs are shown with the ROI TACs which they should resemble. It is clearly
seen that the non-binding TAC is not scaled according to the non-binding ROI.
The binding TAC however is close to the level of the binding ROI TAC.

0 1000 2000 3000 4000 5000 6000 7000
0

1

2

3

4

5

6

7

8
x 10

−3

Time (secs)

A
ct

iv
ity

 (
M

B
q)

Pilot 2

 

 
Binding
Non−binding
Cerebellum
Occipital Cortex

Figure 11.11: ROI curves compared with ICA alpha scaled TACs.

In figure 11.12 the vascular TAC for Pilot 2 from the ICA is shown. The peak
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of the curve is not quite high enough and the level after the peak is much too
low.
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Figure 11.12: Arterial samples compared with ICA alpha scaled TAC.

In general there is a problem with the exact level of the components, as the
vascular TAC is too low and the non-binding TAC is too low. The α scaling
can therefore be working correctly, but since the ICA solution is not exact and
the levels are a bit off the true levels, the re-scaled TACs have some errors due
to the uncertainty of the ICA solution.

11.3 Concluding on ICA

The log likelihood is calculated when using the independent component analysis.
With the log likelihood it is possible to do a statistical comparison on different
models, which should give a measure on how many sources to use. However,
when using the statistical measure on the PET data the statistical optimal
number of sources is not found. This is due to the high number of samples that
are correlated. By using visual inspection the optimal number of sources was
found to be 3 for Pilot 2-5, and 4 for Pilot 6. The vascular sources have very
high correlations with the arterial TAC, the lowest being 0.95 when using the
optimal number of sources. The sources are scaled to be used as arterial TAC
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estimations by using the α scaling method. Because of the low end level of the
vascular sources a scaling using the vein TAC is not possible.

The end level of the estimated vascular TAC is too low for all Pilots, and the
peak is not high enough. The results are very similar to those found using NMF,
however the peak in the vascular TACs in the NMF is higher than for ICA.

The ICA performs better on the simulated data than the NMF, but on real
PET data the two result are very similar. This is probably because the samples
in the simulated data are independent of each other, which the ICA assumes.
This is not the case with the real PET data, here the voxels are dependent on
each other.
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Discussion and conclusion





Chapter 12

Discussion

In this chapter the results from the various methods applied to simulated and
real PET data sets are compared and discussed.

12.1 Comparison of results

Simulated data

The results from the simulated data show that the clustering methods have some
limitations because of the partial volume effect, and the PCA is not able to give
better results. The most appropriate methods are NMF and ICA. The NMF
extracts two of the four original sources and the ICA extracts three sources in
the simulated data. This is evaluated by scaling with the α factor and comparing
the results with the original TACs. In the NMF the scaling was wrong if more
than two sources were estimated. The ICA shows better results, as the values
for the non-vascular components are not zero during the peak of the arterial
signal, as in the NMF results. However, the ICA is unstable compared to the
NMF method, and needs several repetitions to find the optimal solution. For
both ICA and NMF the α scaling becomes incorrect when overfitting using too
many sources.
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PET data

Four methods have been applied to the PET data set to extract arterial infor-
mation. The most simple one, the K-means method, was able to extract venous
information. But since the maximum intensity in the PET data is much lower
than the peak of the arterial curve, the K-means method will never be successful
at extracting the peak of the artery TAC. Although this clustering method is
not able to find arterial regions, because of the partial volume effect, the method
can be used to extract features for larger regions in the brain. E.g the venous
region is extracted very nicely, and the spatial image of the cluster looks good,
since the regions of the clusters are well defined, and match the true underlying
characteristics of the regions of the brain. The fussy C-means method is not
able to solve the limitations in the K-means method, since the values in the
clusters can never be higher than values in the data. The fussy C-means has
the disadvantage that the cluster sizes becomes equally sized the more fussy the
algorithm clusters, and was therefore not applied to the PET data.

The PCA is able to extract venous information as a principal component, but
not arterial information. Binding and venous components are extracted as the
most important components. The evaluation of the principal components is
difficult, since coefficients and components can be negative. The scaling of the
components is also a problem, as the α factor can not be applied to this method.
Instead the vein end-level can be used to scale the vascular principal component.
The result from this is not better than the K-means result. The PCA is therefore
not a good choice for extracting arterial information from PET data. It can be
concluded that the 1st and 2nd order statistics are not enough to extract arterial
TACs.

The ICA and NMF solutions from the PET data are not very different from
each other, but the main differences of the methods are the complexity and the
stability of algorithms. The optimal solution using ICA is not found by using
the same number of sources for all Pilots, as with the NMF. A characteristic
both models have is that there is no constraint on the shape of the sources, to
make the TACs smoother and more natural. Especially in the beginning of the
TACs during the peak in the arterial blood curve, the non-vascular components
behave strangely by having either peaks, or by going to zero. This is an artifact
because the ICA and the NMF do not make the exact factorization or simply
because of the high amount of noise in the initial frames. Both methods have
difficulties extracting the correct level of the TACs, this is probably because the
slope of all the curves is close to zero in the latter part. Or because of overfitting,
simply estimating too many sources. Overfitting will make the scaling incorrect,
which is shown in the analysis of the simulated data.
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The NMF and ICA methods, are able to extract sources despite of no obser-
vations where the whole source is present. Therefore, they could be able to
estimate the arterial regions although they are very small compared to the reso-
lution of the PET data. The correlation between the arterial sampled TAC and
the estimated TAC is very high for the NMF and ICA results, approximately
0.95. Since the correlations are very close to one, the extracted TAC have the
same characteristics as the sampled artery TAC. When evaluating these corre-
lations the NMF and ICA perform equally well.

12.2 Scaling challenges

When performing a deconvolution another challenge appears since the scale of
the spatial and dynamic factors is lost. Although the correlations are very high,
which indicates that the estimated TACs are good, the estimated arterial TAC
must be scaled to fit the scale of the sampled TAC.

The α factor is used to solve this problem, thereby the dynamic components
can be compared directly to the arterial sampled TAC. The α factor scaling will
only make sense if the model describes the data well. And if there is not any
region in the brain that is very badly explained by the model, since this would
influence the scaling parameter for the sources. A way to avoid the influence
from the other sources could be to only scale the estimated vascular TAC. This
can be done by using the end level of the sampled vein TAC. Since the level of
the vein and the artery are very close to each other in the last frames. However,
there is a problem with the results since the estimated TACs have very low
end levels. Therefore, the scaling becomes very unstable, since a value close to
zero has to be multiplied by a high number to reach the correct level. This will
influence the whole curve and can make the peak in the beginning much too
high. This makes the vein scaling very unreliable to use on these results.

12.3 Choice of method

The vascular TACs found by the K-means and the PCA have the correct levels
in the latter part of the frames, but these methods are not able to extract the
peak. The NMF and the ICA extract the peak better, but the end level of the
TACs are close too zero.

The deconvolution methods, are clearly better at extracting peaky TACs be-
cause of the partial volume effect. Making these methods the best choice when
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estimating artery TACs since these regions are small. The NMF is chosen over
the ICA method, because of the complexity of the ICA and since the results
in the PET data from the ICA are not better than those from the NMF. Also
the implementation of the NMF is much simpler, more stable, and requires no
parameter tuning.

The results from the NMF are very promising, this is stated by the correlations
between the estimated and the sampled TACs.
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Conclusion

The problem of estimating the artery TAC from dynamic PET data has been
investigated using several different methods.

For estimating the end level of the arterial TAC, which is approximately the
same as the level of the venous TAC, the K-means can be used. The PCA also
finds the level very nicely, but there are issues with the evaluation and scaling of
the principal components which makes this method more complicated to work
with. However, these methods are not able to estimate the peak of the artery
TAC.

The scaling issue with the deconvolution methods is solved by using the α factor
to scale the estimated TACs, and the methods can be used on the entire PET
data without defining regions of interest or removing some of the last frames.

The most appropriate method to extract the arterial TAC is the NMF. The
NMF is chosen because of its simplicity compared to the ICA. The results from
this method show that the peak is extracted for both simulated and real data.
The correlation coefficients between the estimated artery TACs and the sampled
TACs are around 0.95 for all Pilots. This is a very high correlation considering
that they are obtained with medical data. These coefficients confirm that the
results are valid.
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Appendix A

K-means results

A.1 K-means clusters
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Figure A.1: Pilot 2, K=4.
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Figure A.2: Pilot 3, K=4.
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Figure A.3: Pilot 4, K=4.
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Figure A.4: Pilot 5, K=4.
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Figure A.5: Pilot 6, K=4.
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A.2 Comparison of TACs
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Figure A.6: Pilot 2, K=4 and K2=4.
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Figure A.7: Pilot 3, K=4 and K2=4.
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Figure A.8: Pilot 4, K=4 and K2=4.
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Figure A.9: Pilot 5, K=4 and K2=4.
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Figure A.10: Pilot 6, K=4 and K2=4.
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PCA results

B.1 Principal components
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Figure B.1: Pilot 2, first two principal components.
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Figure B.2: Pilot 3, first two principal components.
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Figure B.3: Pilot 4, first two principal components.



B.1 Principal components 115

0 1000 2000 3000 4000 5000 6000 7000
−10

−5

0

5
x 10

−5

Time (secs)

Pilot 5

 

 
1st principal component
2nd principal component

Figure B.4: Pilot 5, first two principal components.
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Figure B.5: Pilot 6, first two principal components.
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B.2 Comparison of TACs
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Figure B.6: Pilot 2, comparison of scaled principal component and artery TAC.
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Figure B.7: Pilot 3, comparison of scaled principal component and artery TAC.
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Figure B.8: Pilot 4, comparison of scaled principal component and artery TAC.



118 PCA results

0 1000 2000 3000 4000 5000 6000 7000
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time (secs)

A
ct

iv
ity

 (
M

B
q)

Pilot 5

 

 
Arterial sample
Venous sample
1st principal component (scaled)

Figure B.9: Pilot 5, comparison of scaled principal component and artery TAC.
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Figure B.10: Pilot 6, comparison of scaled principal component and artery TAC.
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NMF results

C.1 NMF sources
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Figure C.1: Pilot 2, K=3.
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Figure C.2: Pilot 3, K=3.
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Figure C.3: Pilot 4, K=3.
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Figure C.4: Pilot 5, K=3.
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Figure C.5: Pilot 6, K=3.
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C.2 Comparison of TACs
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Figure C.6: Comparison of TACs, Pilot 2.
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Figure C.7: Comparison of TACs, Pilot 3.
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Figure C.8: Comparison of TACs, Pilot 4.
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Figure C.9: Comparison of TACs, Pilot 5.
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Figure C.10: Comparison of TACs, Pilot 6.
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D.1 ICA sources
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Figure D.1: Pilot 2, K=3.
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Figure D.2: Pilot 3, K=3.
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Figure D.3: Pilot 4, K=3.
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Figure D.4: Pilot 5, K=3.
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Figure D.5: Pilot 6, K=4.
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D.2 Comparison of TACs
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Figure D.6: Comparison of TACs Pilot 2.
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Figure D.7: Comparison of TACs Pilot 3.
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Figure D.8: Comparison of TACs Pilot 4.
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Figure D.9: Comparison of TACs Pilot 5.
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Figure D.10: Comparison of TACs Pilot 6.
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EPICA results

E.1 Comparison of TACs
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Figure E.1: EPICA - Scaled to peak - Pilot 2, K=2.
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Figure E.2: EPICA - Scaled to peak - Pilot 3, K=2.
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Figure E.3: EPICA - Scaled to peak - Pilot 4, K=2.
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Figure E.4: EPICA - Scaled to peak - Pilot 5, K=2.
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Figure E.5: EPICA - Scaled to peak - Pilot 6, K=2.
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Extraction of time activity curves from positron

emission tomography: K-means clustering or

Non-negative matrix factorization.

Bjarni Bödvarsson1, Martin Mørkebjerg1, Lars Kai Hansen1, Gitte Moos
Knudsen2, Claus Svarer2

1Intelligent Signal Processing, IMM, Technical University of Denmark, Kgs.
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Objective

Measurement of the cerebral input function in terms of the arterial plasma in-
put time activity curve (TAC) is required for assessment and validation of the
quantification of receptor binding parameters on the basis of dynamic positron
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emission tomography (PET) images and kinetic models [1]. Alternative non-
invasive methods for estimation of the input function have been described based
on cluster analysis [1], based on linear decomposition methods such as indepen-
dent component analysis (ICA) [2, 3], and by non-negative matrix factorization
(NMF) of the signals in a region of interest [4]. The linear decomposition meth-
ods are preferred because they do not assume that voxels are dominated by
the vascular signal, where the NMF method is attractive because of the relative
straightforward estimation procedure. Furthermore, the NMF method is attrac-
tive because it - in contrast to the ICA methods - does not assume a specific
form of the spatial distribution.

In this study the NMF method is used to extract the input function without
the use of a set of predefined regions of interest (ROI) and the results are
subsequently compared to the results from K-means clustering used in [1].

Methods

Five healthy subjects were investigated with dynamic PET-scanning after rapid
intravenous 18F-altanserin bolus injection. Arterial and venous blood samples
were withdrawn automatically and manually and counted in an external coinci-
dence counter.

The non-negative matrix factorization describes the matrix V, as a linear com-
bination of the factors W and H. All elements in V, W and H are non-negative.

V=WH

This can be applied to the problem at hand of extracting TACs; V being the
dynamic PET image, W is the mixing matrix, and H contains the basis TACs.

Results

Figure F.1 shows the outcome of the NMF approach in comparison to the mea-
sured arterial blood samples. It is clearly seen that the peak in the blood curve
as identified by NMF is higher than the one found by clustering. In addition, it
matches well with the sampled blood TAC.

The reason for the reduced amplitude of the clustering TAC is that it represents
the average of voxel TACs some of which are only partly vascular, while the
enhanced signal in the NMF TAC is due to the deconvolution of the signal from
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each voxel into different components.

To visualize and validate the results the spatial information from the vascular
source is used to generate a 3D image (figure F.2) by thresholding the column
of the vascular component of the H matrix. Figure F.2 demonstrates that the
vascular TAC found by the NMF is spatially located corresponding to the larger
cerebral veins.

Conclusion

For these data, NMF is excellent for extraction of TACs in PET data without
using a predefined ROI for the analysis. For this particular set of data the NMF
method is superior to the K-means clustering approach.
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