Model and analysis of Role-Based
Access Control in SELinux using
Description Logic

Alan Ashton Dickerson

Kongens Lyngby 2006
IMM-MASTER-2006-20

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk

www.imm.dtu.dk

IMM-MASTER: ISSN 0909-3192

Abstract

Security-Enhanced Linux (SELinux) is a version of Linux which, amongst other
things, supports Role-Based Access Control (RBAC). The use of the access con-
trols in SELinux have proven to be difficult to use and to perform maintenance
upon, especially as the system evolves it may be difficult for the system admin-
istrators to comprehend the effects of the changes on the access control policy.
Development of an analysis tool for RBAC in SELinux is therefore an important
goal.

[] discuss how elements of RBAC can be modeled using
the Description Logic ALLQ, and demonstrate how a reasoner for ALCQ can
be used for analysis.

The thesis presents a definition of the access controls of SELinux and shows how
to formalize these in ALCQ. It introduces rules for use of an automated imple-
mentation of a tool that will model most SELinux configurations. It sketches
out ways that the reasoner for an SELinux representation in ALCQ can be used
for analysis by invoking queries.

Keywords: Role-Based Access Control, Description Logic, Security-Enhanced
Linux, Formal models

Resumé

Security-Enhanced Linux (SELinux) er en afart af Linux, der understgtter Role-
Based Access Control (RBAC). Brugen af adgangskontroller i SELinux har vist
sig at vaere sveer at benytte og vedligeholde. Specielt som systemet udvikler sig,
kan det veere sveert for system administratorer at forsta de fglger, sendringer af
adgangskontrolpolitikken kan have. Udvikling af et analyse veerktgj af RBAC i
SELinux er derfor et vigtigt mal.

[] diskuterer, hvordan elementer af RBAC kan mod-
ellers ved hjelp af logikken Description Logic ALCQ og viser, hvordan et de-
duktionsprogram kan benyttes til analyse.

Denne athandling praesenterer en definition af adgangskontrollerne fra SELinux
og viser, hvordan disse kan formaliseres i ALCQ. Der introduceres regler til brug
af et automatiseret vaerktgj, der vil modellere de fleste SELinux konfigurationer.
Der skitsers forskellige mader at deduktionsprogrammet kan benyttes til analyse
af en ALCQ model af SELinux ved brug af forespgrgselser.

Nggleord: Role-Based Access Control, Description Logic, Security-Enhanced
Linux, Formal models(Formelle modeller)

Preface

This thesis was prepared at Informatics Mathematical Modelling at the Techni-
cal University of Denmark in partial fulfillment of the requirements for acquiring
a Master of Science in Engineering.

The dissertation deals with different aspects of computer security and formal
modeling of the security controls found in Security-Enhanced Linux.

The project was completed in the period of 15¢ of September 2005 through to the
28t of February 2006 under the supervision of Michael R. Hansen and Robin
Sharp.

Alan Ashton Dickerson

Kongens Lyngby, February 2006

Acknowledgements

I thank my supervisors, Michael R. Hansen and Robin Sharp for their support
and guidance. Your advice and motivation through the period of time this thesis
has taken form has been highly appreciated.

I would also like to thank my lovely wife for her undying support especially
through the last period of many hours at school and few at home.

Contents

Abstract i
Resumé iii
Preface v
Acknowledgements vii

1 Introduction

1.1 Motivation 1
1.2 Objective e 4
1.3 Casestudy 5
1.4 Thesis Overview e 6
2 SELinux 9
2.1 General concepts oL 10
2.1.1 Flask 10
2.1.2 Type enforcement model 11
2.1.3 Role-based Access Control 12
2.1.4 Users v i e 12

2.2 Policy e 13
2.3 SELinux syntaxo 13
2.3.1 TEdeclarations. 13
2.3.2 RBAC declaration 17
2.3.3 Users e e e e 19

2.3.4 Security context L. 20

CONTENTS

2.3.5 Macros 21
2.3.6 Conditionals, 22
2.3.7 Special keywords Lo 23
2.4 Software team e 24
2.4.1 Assumptions Lo 24
2.4.2 Producecode 25
2.4.3 Executecode 28
2.4.4 Read documentation 28
2.45 RBAC 29
246 Users e 29
2.5 Summary 30
Description Logic 31
3.1 Imtroduction 31
3.2 Syntax 32
3.3 Semantics 33
3.4 Reasoner - RACER 34
3.5 Software team 35
3.6 Summary 36
SELinux to Description Logic 37
4.1 Model formulation 37
4.2 Translationrules 42
4.2.1 TE declarations, 42
4.2.2 RBAC declaration 46
4.2.3 Users e e e e e e e 47
4.3 Software team 48
4.4 Alternative model formulations 49
4.5 SUMIMATY . . . o v v e et e e e e e e 50
Implementation 51
5.1 Designo 51
5.2 Lexical analysis oo 52
5.3 Abstract data model oL 52
54 Parsing 53
5.5 Translation 54
5.6 Testing strategy Lo 58
5.7 Summary ... oL .. e e 59
Verification 61

6.1 Verification Strategy oL 61

CONTENTS xi
6.2 Verification 62
6.3 Queries 65
6.4 Software team 68

6.4.1 Miscellaneous queries 70
6.5 Summary e 71

7 Discussion 73
7.1 Status 73
7.2 Problems 74
7.3 Related works 74

7.3.1 Models 75
7.3.2 Tools 75
T4 Summary e e 76

8 Conclusion 79

A SELinux grammar 83
Al Flask e 83
A2 TE . . . e 84
A3 RBAC 85
Ad USers. . . o oo e 86
A5 Constraints L 86
A6 Security Contexts 86
A7 Conditionals L 88

B Source code 89
B.1 Abstract.sml 89
B.2 Lexerlex. 91
B3 Gram.grmo 93
B.4 makeparser.bat L Lo 98
B.5 parsesml oo 99
B.6 auxiliary.smlo 100
B.7 testFunctions.sml L L 102
B.8 stringFunctions.smlo o000 103
B9 mainsml. 109

C Case study implementation in SELinux 123
C.1 RBAC 123
C.2 USerS. . v v v o e e e e e e e e e 123
C3 mnedit e 124

C.3.1 nedit.te e 124

xii CONTENTS

C.3.1.1 Reduced version 125

C.3.2 neditfec 125

C4 mosml e 126
C.4.1 mosmlte 126
C.4.1.1 Reduced version 126

C4.2 mosmlfc. 127

Ch more e e 128
C.5.1 morete 128
C.5.1.1 Reduced version 128

C.5.2 morefc 129

List of Tables

1.1

3.1
3.2
3.3

4.1
4.2
4.3

5.1
5.2
5.3

6.1
6.2
6.3
6.4

6.5

Incident and vulnerability report 2
Syntax for ACCODL 32
Interpretation of DL o o 34
Concrete syntax for RACER 35
Ignored declarations L. 38
Policy snippet L 48
Policy snippet translated to DL 48
Grammar snippeto 54
The declarations matched on the first traversal of the parsetree . 56

The declarations matched on the second traversal of the parsetree 57

Verification of concept axioms involving roles 67
Query example of determining the domain permissions for mosml_t 68
Query example of the types authorized for role testerr 68
Query example of determining whether a user can execute a pro-

BIaIll .« . o v v e e e e e e e e e e e e e e 69
Question 5 answered for case study user Tom and type nedit t . 70

xiv LIST OF TABLES

List of Figures

1.1

4.1

6.1
6.2
6.3

7.1

Role hierarchy of a software team 5

The Semantic Graph representing the policy of Listing 4.1 on

page 39 . .o 40
The role assertion graph of the example policy 64
The concept assertion graph of the example policy 65
The concept assertion graph of the example policy 66

Screenshot from Apol L oL oL 7

Xvi LIST OF FIGURES

CHAPTER 1

Introduction

In this chapter a motivation for Model and analysis of Role-Based Access Control
in SELinux using Description Logicwill be given and a general case study will
be introduced. The chapter will be concluded by an overview of the structure
of the thesis.

1.1 Motivation

In the world of the Internet, computers are exposed to constant attacks from
malicious users. Attacks are performed on both personal computers and servers
that provide some service related to the Internet. The Computer Emergency
Response Team Coordination Center (CERT/CC) who, among other things,
coordinates responses to security compromises, identifies trends in intruder ac-
tivity and analyzes product vulnerabilities, reports that the number of attacks
are rising, as well as the number of reported vulnerabilities, see Table 1.1 on the
next page!.

There are several reasons that these numbers are increasing. Software complexity
is an obvious culprit when it comes to introducing vulnerabilities in software.

IFrom http://www.cert.org/stats/cert_stats.html

http://www.cert.org/stats/cert_stats.html

2 Introduction

Year \ Incidents Vulnerabilities ‘

2000 | 21,756 1,090
2001 | 52,658 2,437
2002 | 82,094 4,129
2003 | 137,529 3,784
2004 | N/A 3,780
2005 | N/A 5,990

Table 1.1: Incident and vulnerability report. Note that CERT/CC stopped
publishing the number of incidents as of 2004 due to the widespread use of
automated attack tools.

Software is both complex to program with a high level of security, but configuring
programs to run securely can also pose problems. The fact that computers are
gaining more and more connectivity mainly through the Internet is also a reason
that incidents are on the rise. Also, Mobile code embedded in objects such as
Adobe PDF documents, Microsoft Word documents, Java Applets and the like,
pose a security risk.

The most common behavior to minimize risks regarding computer security is to
limit access to computers, through filtering firewalls for instance, and to keep
programs up to date by installing various security patches.

The problem with security patches is the patch cycle. Creating a security patch
takes several steps before the patch closes the security issue. Specifically, the
issue must be discovered, acknowledged, fixed, released, tested and installed.
Such a process can take a long time depending on several factors such as the
owner of the program, the severity of the issue or the complexity of fixing the
issue.

Having a system with all the latest security patches does not imply that the
system is secured from successful malicious attacks because the attackers could
know of some security vulnerabilities for which no patch has been released. Such
a vulnerability is also known as an Zero-day vulnerability because attacks can
exploit it prior to or on the same day that the vulnerability has been acknowl-
edged. Moreover, even though a patch has been released which deals with a
known vulnerability, many successful attacks are being conducted on systems
which have not been patched yet because the system administrator did not
install the patch.

The above scenario is the motivation for Security-Enhanced Linuz (SELinux)
which isolates running processes on systems into small program domains (or
sandboxes) with limited permissions. By such separation SELinux seeks to deal

1.1 Motivation 3

with Zero-day vulnerabilities such that if one program is compromised it can
not "break out of its sandbox”.

A properly configured SELinux system with the latest security patches will be
able to run with a higher level of security than that of a system running with
only the latest security patches. The disadvantage with SELinux is that the
complexity of designing the different program domains and configuring the sys-
tem is very high. The configuration of SELinux is very detailed so very specific
statements can be made regarding the program domains and their permissions.
The system administrator can, for instance, configure some files to only be
accessed by one type of program and no others, regardless of who the user oper-
ating the program is. The typical operations that a system administrator is in
charge of, e.g. installing a new program, adding new users, changing file permis-
sions and verification that the operations were successful, can become very time
consuming and difficult due to the complexity of the nature of SELinux’s con-
figuration. Furthermore, configuring the system, after installing a new program
for instance, have no systematic practise since different programs have different
permission requirements. This means that the system administrator typically
has to go through a trial and error procedure, setting the program’s permission
and testing, before the program can run without causing access denied errors.
Configuration of the system is done by manipulating SELinux’s configuration
files, collectively called SELinux’s security policy. Definition of the parts of the
policy typically involves using predefined text replacing macros that enables the
system administrator to create hundreds of rules with a single line in the policy
file. The downside of the different macros is that it makes it difficult for the
system administrator to keep a clear view on exactly which permissions have
been set for which domains and files, especially when some program domain
definitions can contain 40,000 rules or even more.

The massive size of the collective policy file is one motivator for a formalization
of a model which can be used to query different aspects of the policy. Such
a model should enable the system administrator to gain an overview of the
different roles, programs, permissions etc. in the system. But he should also be
able to lookup how these different concepts are allowed to interact with each
other, such that he will be able to query the behavior of the system to see if
it is set up as he expected. The model will only act as a tool for verifying (or
rejecting) the believed system behavior as it is still necessary for the system
administrator to configure the different programs in a trial and error procedure
as a model of the policy can never express notions regarding the behavior of
unknown programs.

The background for this thesis has its roots in the article |
which models Role-Based Access Control (RBAC) using Description Logic. The
article shows how to utilize Description Logic to model a role hierarchy and the

4 Introduction

permissions and sessions associated with it. The article does not cover the other
types of security controls found in SELinux, but defines a structure for modeling
RBAC and shows how to make queries regarding the model. This thesis seeks
to apply this structure when modeling SELinux.

1.2 Objective

The hypotheses of the thesis is to see if a formal language, Description Logic,
can be used to model the security policy found in SELinux and to extract useful
data that a system administrator can use to alleviate the difficulties he faces
when configuring and maintaining an SELinux system. The main objective is
to model the security policy of SELinux, which defines the permissions that
the various programs have when they interact with each other and with differ-
ent files. Furthermore, a set of queries about the model should be created to
show the usefulness of the system and to present the structure of representing
an abstract question about the policy into queries that is understood by the
Description Language.

Some conditions and assumptions are defined:

The security policy of SELinux is usually based on an example policy that comes
with the Linux distribution. For that reason, a condition is set that the policy
must be based on the example policy.

To have a better overview of the different domains SELinux divides the policy
definition into several files. SELinux’s checkpolicy program collects all the
necessary parts of the system and combines it into one complete file referred in
this thesis only as the policy (or the policy file). The program performs syntax
check and other integrity checks. Besides outputting the combined policy file in
clear text, the checkpolicy program also outputs the policy as a binary data
file for faster use by SELinux, but that file is irrelevant for the purpose set up
in this thesis. The policy file must have been created with the checkpolicy
parser to ensure that the policy is complete and no syntax errors exists.

To restrict the size of this project it has been chosen to focus on ordinary
programs and their permissions. This means that daemon programs (i.e. back-
ground processes) and policy statements regarding these will not be considered.
Also, SELinux offers audit logs of denied permissions, but this thesis focuses on
the permissions needed rather than which events will be audited.

The approach to solve the objective is strongly rooted in a case study in which

1.3 Case study 5

the thesis follows and comments throughout the process of creating a policy,
creating the corresponding Description Logic model and verifying the contents
of that model.

1.3 Case study

This section introduces the case study that will be used throughout the thesis.
The case study seeks to be a small but complete example of a system to be
implemented in SELinux. The concepts introduced in this section will be further
defined in the subsequent chapters.

As an example of a role hierarchy the software team found in |
can be used. By defining the roles appropriately the example will be well-suited
for use as case study in this thesis.

The software team consists of four roles, Supervisor, Programmer, Tester and
Member. These roles each have different permission sets, where the supervisor
inherits all of the permissions. The programmer and tester roles share the mem-
ber roles permissions along with their own unique permissions. See Figure 1.1.

e Supervisor: Manages the team,
can read documentation, edit,
view and run code.

e Programmer: Produces and
compiles code. Reads documen-
tation. Cannot run the code.

Programmer

e Tester: Tests the code and reads
documentation.

e Member: Can read documenta-

. Figure 1.1: Role hierarchy of a software
tion.

team

The member is the role with smallest permission set. Users assigned to this
roles can read documentation and do nothing else. The tester role is in charge
of running the code and verifying the programs written by the programmers.
The programmer produces code but does not have permission to run it. Both
testers and programmers inherit the permissions given to members, meaning
that both these roles are able to read documentation. The supervisor role has
no permissions by itself, but inherits all the permissions of the subordinate roles.

6 Introduction

This means that the supervisor is able to edit, compile and run code and also
has authorization to read the documentation.

To instantiate the system, a number of users must be mapped to the roles. The
case study will feature one user per role.

e Tom is a Supervisor
e Alice is a Tester
e Bob is a Programmer

John is a Member

The above syntax implies that the user Tom is a supervisor and so on. The
system defines the structure of a software team. It may seem far fetched, that
the programmer can not test the produced programs, or that the documentation
must already be in place since no one can create it. It is, however, good to show
a simple example of the setup and one of the benefits will be to show that such
a system can be implemented. Furthermore, it is not hard to expand upon the
system to grant more permissions.

1.4 Thesis Overview

The structure of the thesis is as follows:

Chapter 2, SELinuz, introduces SELinux and the concepts that it uses. The con-
cepts defined there will be used throughout the thesis. The syntax and meaning
of SELinux’s security policy is detailed and the case study is implemented using
those declarations.

Chapter 3, Description Logic, brings an overview of the notions of Description
Logic forward by going through the syntax and semantics. It also goes through
examples to illustrate the syntax of the language and goes through notions of
reasoning. The case study is investigated with regard to Description Logic.

Chapter 4, SELinuz to Description Logic,, takes the two preceding chapters
and tries to model the declarations of SELinux in Description Logic. That
is done by defining translation rules for every declaration that is necessary in
accordance with the thesis objective. It is shown how to use the translation

1.4 Thesis Overview 7

rules using a small subset of the case study. Alternative model formulations are
also discussed.

Chapter 5, Implementation, focuses on the implementation of an automated
tool that inputs any SELinux policy that conforms with the conditions set by
the objective and uses the translation rules defined in Chapter 4 to produce a
Description Logic model.

Chapter 6, Verification, deals with checking if the translated declarations models
the actual declarations. Furthermore, a catalog of queries are introduced to
answer some questions that a system administrator might have about the policy.
Finally, some of the queries are used on the case study’s model.

Chapter 7, Discussion, discusses the issues that have been found in the transla-
tion of the security policy and also refers to other related works.

Chapter 8, Conclusion, summarizes the project in a conclusion and makes status
upon the objective and looks ahead to suggest items of relevance that could be
looked into regarding modeling the SELinux security policy in Description Logic.

Introduction

CHAPTER 2

SELinux

This chapter introduces Security-Enhanced Linux (SELinux) and the concepts
used regarding it. The concepts and sets introduced are used throughout the
thesis. The security policy that defines how SELinux works is detailed and the
syntax is informally explained. Furthermore, a security policy addition that
implements the case study is defined.

Since SELinux builds on a number of computer security technologies and con-
cepts, a brief overview is given about these but only in relation to SELinux. A
good deal of literature about SELinux exists. This thesis have primarily used
the book |] and the technical report [] regarding
the security policy syntax and configuration of the policy. It should be noted
though, that it was necessary to look up the source code for SELinux’s own
security policy parser|] since the grammar detailed in |]
did not entirely conform with that of the actual parser.

10 SELinux

2.1 General concepts

SELinux is an attempt by NSA! to create an addition to the traditional Linux
kernel that will enable a higher level of security. SELinux has been designed to
prevent a wide range of threats on a system:

Unauthorized access and modification of files and folders

e Unauthorized access to programs
e Circumventing security mechanisms

e Tampering with other processes

Privilege escalation

Information security breaches

SELinux accomplishes these goals by extending the existing Linux security
model and by introducing a security server embedded into the Linux kernel.
The security server monitors all actions in the system and checks that they are
allowed against a security policy. The default security mode in Linux is based
on Discretionary Access Control (DAC). This kind of security mechanism re-
lies on the active user’s identity. It specifies that programs run by a certain
user runs with that users’ access rights. Such access control scheme becomes
an issue if breaches are made on programs running within a privileged users’
access space (typically root). Security-Enhanced Linux implements Mandatory
Access Control (MAC) using an architecture called Flask in the Linux ker-

nel []. Flask enables the administrator to configure
the system in a much more detailed manner. SELinux builds upon a modi-
fied form of Type Enforcement (TE) | | and Role Based

Access Control (RBAC) |]

2.1.1 Flask

Flask security architecture in SELinux requires that every subject (process)
and object in the system (file, folder, socket, etc.) is associated with a security
context. The security context is a collection of security attributes that enables
the security server to make decisions regarding collaboration typically between
a subject and an object. Internally, the security server uses a Security Identifier

INational Security Agency in USA

2.1 General concepts 11

(SID) to identify the security context for flexibility and performance. The SID
is an local and nonpersistent integer that is mapped to a security context at
runtime. Since it is possible to map an SID to a security context, it is more
beneficial to discuss security contexts rather than SIDs. There are two kinds
of decisions that the security server has to make: Labeling decisions and access
decisions.

The labeling decision is also known as a transition decision and occurs whenever
a process creates a new file or a process starts another process. The security
server will need to know what kind of security context the new file or process
will have. The transition must be allowed and this is determined by an access
decision.

An access decision is based on the concept that every program runs within a
domain, or sandbor, which has a set of permissions regarding which files and
programs the domain has access to. An access decision will either allow or deny
an action based on the permissions (or operations) that are related to the pair
of interacting security contexts. Such decisions occur whenever a subject and
an object interacts, such as a process wants to read a file or a process wishes to
Spawn a new process.

The permissions are divided into security classes where the classes can be viewed
as a name wherein a set of permissions lie, e.g. a create permission associated
with a file class can be differentiated from a create permissions associated with
a directory class.

2.1.2 Type enforcement model

SELinux’s TE model binds a security attribute called a type to every subject
(process) and object (files and the like). The type can therefore either represent
a domain in which subjects reside or objects. The TE model treats all subjects
in the same domain identically as it does with objects of the same type. Access
and transition decisions in SELinux are based on a type pair and the security
class from the Flask architecture. This enables SELinux to differentiate between
objects with the same type but different security classes.

Transition decisions are handled by the TE model to fit the Flask architecture.
This means that a transition decision for a process is based on the current
domain of the process and the type of the program it wants to execute. The
transition rule for an object specifies the new type based on the domain type,
the type of the related object and its security class. If no explicit transition
rules exist, SELinux uses default rules in accordance to the security class. For a

12 SELinux

process this means that it retains the domain upon execution. For objects the
type of the related object is used for the new object, e.g. files receives the type
of the parent folder.

An access rule specifies an allowance based on the type pair and the security
class. If no rules matches the pair of types in the security class access is denied.
For use of tuning the security policy and performing forensic investigation, an
access log is kept consisting of denied access attempts. It is also possible to use
access rules to specify auditing rules, i.e. to audit when access is granted or not
to audit access denials.

Note that this section did not discus the differences between the traditional TE
model and the one used in SELinux, consult | | for those details.

2.1.3 Role-based Access Control

Traditional RBAC is a useful division between users and permissions. RBAC
introduces roles, permissions limited to that role and authorization of users to
the roles. A role in SELinux is a group that have been authorized to a set
of TE domains. SELinux binds roles and types together instead of roles and
permissions as the traditional role based access controls does, as a result of the
TE model.

The role based access controls of SELinux consist of methods for creating roles
and authorizing sets of types to these roles. It is also possible to set up a
hierarchy of roles and wherein type authorization is inherited.

2.1.4 Users

SELinux’s user model uses a separate user identity to make the MAC of SELinux
independent of the existing Linux access control (DAC). This means that the
users have to be declared separately. This is done by declaring the user and the
roles which the user is authorized for.

2.2 Policy 13

2.2 Policy

The SELinux policy consists of a number of declarations that defines the overall
security policy of the system. SELinux comes with an example policy that in
most cases is used as a starting point for system administrators who customize
this policy to fit their needs. Policy creation is, or rather should, be based on
principle of least privilege. Since SELinux denies access unless an explicit access
rule exists it is a good platform to implement the principle of least privilege.

2.3 SELinux syntax

The policy is expressed in a language with a context-free grammar and the
complete set of production rules can be found in Appendix A on page 83. A
simple syntax is presented here for the noteworthy declarations to illustrate the
typical syntax along with examples of their uses.

The following sets are identified for use throughout the remainder of the thesis:
AsELinux 18 the set of attributes of the system, Tsgrinux represents all the types
in the system, and Dsgrinux iS the subset of types that are domains. Rsgrinux 18
the set of all roles in the system and Usgrinux represents all the users defined by
SELinux’s policy. PsgLinux 1S the permissions in the system and Csgrinux is the
security classes. In SELinux a permission is related to a pair (permission,class),
e.g (entrypoint,file) is the permission that a new domain can be entered with
a file (program) or (write,directory) which is the permission to write upon
directories. It is worth to note that not all pairs of permissions and classes makes
sense, e.g. (entrypoint,directory) makes no sense since a directory cannot
enter a domain. Therefore the set of all (sensible) permissions is PCSgLinux
where PCsELinux C PsELinux X CSELinux-

The full syntax is not explored here as well as some declarations are omitted.
Relating the examples is not a priority as much as it is to emphasize the syntax,
so a connected example is not shown, look for this in Section 2.4 on page 24. The
simple syntax features keywords in verbatim and identifiers appears in italic.

2.3.1 TE declarations

The type enforcement declarations are the main components of the policy and
deal with declaring the types of the system and the way the types interact.

14 SELinux

Attributes

An attribute is a name that identify a set of types with a similar property.
Attributes can be used when declaring a type and can be associated to any
number of types. The attributes can be used when specifying type allowances,
see Section 2.3.1 on the next page, but not to represent part of a security context,
see Section 2.3.4 on page 20.

attribute Attributename;

Examples:

attribute domain;
attribute file_type;
attribute privuser;

The above example represents declarations of three attributes that can be used
to denote a set of domain types, filetype types and privileged user types.

Type declaration

A type in SELinux represents the last part of the security context and can
be associated with the domain attribute which means that a process can run
within that domain. Types can be declared with any number of attributes and
afterwards used to specify the permission set and action when one type interacts
with another.

When declaring a type, a type name is needed and if the type shares a similar
property with other types, these can be linked together by assigning a number of
attributes that describes this property. It is also possible to specify name aliases
for a type using this declaration. Furthermore, two keywords exists that adds
aliases and attributes to already existing types: typealias and typeattribute,
consult Appendix A on page 83 for details about these.

Let Attributes C AsELinux 1IN

type Typename, Attributes

Examples:

2.3 SELinux syntax 15

type esales_t, domain;
type esales_exec_t, file_type, exec_type;
type new_order_t, file_type;

The first type declaration specify a type domain, esales_t, in which an e-
commerce program will run. The second type will be used for the actual pro-
gram, since it is a file type and it is an executable. Assuming that the program
produces files with each order, the last type declaration specifies a type that
will be used for these files.

Type access rules

The type access rules is what lies behind most access decisions that SELinux
must make. This kind of declaration tells which kinds of permissions are allowed
when two sets of types interacts upon a set of classes. The declaration specifies:

e allow: Allows access.

e auditallow: The action is authorized but will be audited in the access
log whenever it occurs.

e dontaudit: Denied access attempts are not audited. Useful if it is ac-
knowledged that a domain attempts to gain access to objects, so those
attempts should not appear in the access log.

Forward reference to types is allowed, i.e. types do not have to be defined before
they are used. Note that Types C DsgLinux While Typer C TsELinux. 1Lhis is
due to the fact the only domains are allowed to interact with other types.

Let) C Types C DsgLinux (T'ypes is a non-empty set of types),
@ C TypeT - TSELinuxa

0 C Classes C CsgLinux and

0 C Perms C PCspLinux i

allow|auditallow|dontaudit Typeg Types : Classes Perms;

Examples:

allow esales_t esales_sock_t:tcp_socket

{ioctl read getattr write setattr append bind connect
getopt setopt shutdown listen accept};

allow esales_t new_order_t:file {create write};

allow acct_rcv_t new_order_t:file read;

16 SELinux

The first declaration defines to the security server that when the esales_t
interacts with the esales_sock_t type (presumably an Internet socket the e-
commerce program uses) it should allow the operations: ioctl, read, getattr
etc. when these operations are tried on the tcp_socket. The second declaration
specifies that the program operating within the esales_t domain can create and
put data into files of the type new_order_t. The final declaration tells the se-
curity server that a program running in the acct_rcv_t domain (an accounting
program) can read the new orders.

Type transition

A type transition sets the result of a labeling decision by specifying a new
domain for a spawned process or the new type for an object. For processes, the
source type is a process and the target type is the type of the executable. If
the transition is regarding objects, the source type is the domain of the creating
process and the target type the is type of the object. If there exists no type
transition rule between source and target types the security server will label the
new files and process according to their parents. For files this means that they
will receive the parent folder’s type. For new processes it means they will run
within the same domain as the creating process.

Let O C Sourcetypes C TsELinuxs

0 C Targettypes C TSELinux;

() C Classes C CsgLinux and

Newtype € TsgLinux since Newtype has to be defined somewhere:

type_transition Sourcetypes Targettypes:Classes Newtype;

Examples:

type_transition httpd_t var_log_t:file httpd_log_t;

type_transition httpd_t tmp_t:{file 1lnk_file sock_file fifo_file
chr_file blk_file} httpd_tmp_t;

type_transition initrc_t sshd_exec_t:process sshd_t;

The first rule states that when the webserver domain httpd_t creates a file in
the var_log_t dir, the file will get the new type httpd_log_t. The second rule
tells that the classes of files mentioned (file, 1lnk_file, etc.) in the tempo-
rary directory created by the webserver domain, will get a specific webserver
temporary file type, httpd_tmp_t. The final rule shows that when the ssh dae-

2.3 SELinux syntax 17

mon executable is started at boot time by the initrc_t domain, it gets its own
domain sshd_t type.

Type change

Type change is supported by the policy but not used by the security server.
A type change can occur when a security-aware program explicitly requests a
type change. The type change declaration then comes into play. This typically
happens when system daemons relabel terminal devices in user sessions. The
syntax is the same as with type transitions except for the type_change keyword.

Examples:

type_change user_t tty_device_t:chr_file user_tty_device_t;
type_change sysadm_t sshd_devpts_t:chr_file sysadm_devpts_t;

The first declaration is used by the login program and specifies a terminal
device for the user instead of the normal terminal device. The last declaration
creates a pseudo-terminal device for the system administrator from the device
that originally was allocated to the sshd daemon.

2.3.2 RBAC declaration

To feature RBAC in SELinux, roles are supported by declaring these with a
set of types that they are authorized for. Definition of a role hierarchy is also
supported.

Role declaration

The role declaration authorizes a role to a set of types. The types have to be
domains in order to influence the system. In other words, it makes no sense to
authorize a role to a file type for instance.

Let @ C Types C DsgLinux 10

role Rolename types Types;

Examples:

18 SELinux

role system_r types {kernel_t initrc_t getty_t klog_t};
role user_r types {user_t user_firefox_t};
role sysadm_r types sysadm_t ;

The above declarations are examples of role declarations and type authoriza-
tions. The system_r is used for programs run by the system itself and must be
authorized to the domains that are run exclusively by the system. The user_r
role is associated to regular (unprivileged) users and must be authorized for the
unprivileged domains. Lastly, the system administrator can access his domain.

Role allowance

A role allowance indicates that a role transition is allowed. Such transitions
happens when an external action requests a role transition. This is different
from domain transitions which can be specified using the TE policy.

Let) € Currentroles C RsgLinux and
0 C Newroles C Rsgrinux then

allow Currentroles Newroles;

Examples:

allow system_r {user_r sysadm_r };
allow user_r sysadm_r;

The above allowances shows that the system_r role is authorized to transition
to the user and system administrator role and that the user role can transition
to the administrator role.

Role dominance

Role dominance is SELinux’s way of defining a role hierarchy. By using role
dominance the head role inherits the authorizations to the domains granted the
dominated roles. The head role need not be defined previously, as a dominance
declaration is enough to declare a role also. Note that the Dominatedroles can
be empty. In such case, the declaration simply creates a role with no inheritances
and no type authorizations.

Let Dominatedroles C RsgLinux then

2.3 SELinux syntax 19

dominance {role Headrole {role Dominatedroles}}

Examples:

dominance {role supervisor_r {role programmer_r; }}

The example shows that the supervisor inherits the types associated to the
programmer role.

Role transition

Role transition is a way of changing the active role based on interaction with
certain types. A role transition declaration specifies the new role of a process
based on the current role and the type of the executable. Role transition is
allowed but is not a preferred way to change permissions as the default behavior
of executing an executable is to remain in the same role. The preferred method
is to define another domain and transition into it. It is however, useful for
automatic role transition when restarting daemons. Otherwise role changes
should only occur by explicit request by the user.

Let 0 C Currentroles C RegLinux and
w C Types g TSELinux in

role_transition Currentroles Types Newrole;

Examples:

role_transition sysadm_r crond_exec_t system_r;
role_transition sysadm_r ftpd_exec_t system_r;

The examples states that if the system administrator runs crond or the ftp
daemon the role will change to the system_r role from the sysadm_r role.

2.3.3 Users

The user attribute of a security context is unchanged by default when a tran-
sition occurs. This can be overridden by SELinux-aware applications. Such
ability is controlled by a constraint configuration in the policy. The users de-
clared in SELinux’s policy are independent with the normal user concept of

20 SELinux

Linux (i.e. those users found in /etc/passwds). In many cases it is desirable
to map regular users to a single SELinux user. So if the regular Linux users are
not found in the user declarations of SELinux, they will be mapped by default
to an unprivileged user, user_u.

User declaration

Users are assigned their roles in the system by a user declaration. The user
declared is often a real person, but a user entity controlled by the system
(system_u) is also declared by this declaration.

Let @ C Roles C RsgLinux i
user UserID roles Roles;

Examples:

user system_u roles system_r;
user root roles { staff_r sysadm_r };
user johndoe roles user_r;

The user identity system_u is designed for system processes and object and is
assigned the corresponding role system_r. The root user can either inhabit the
staff or the system administrator role. The staff role is less privileged than the
system administrator. Finally, johndoe is assigned the user_r role as is any
other Linux users that are not mentioned in the SELinux policy. The difference
between the johndoe and the user_u user is that any files johndoe creates will
have the security context with his user name appended, any other user will have
the anonymous user user_u attribute in the security context.

2.3.4 Security context

Every object in SELinux is associated with a security context. Whether it is
a file, a directory a socket file etc. In order to add new programs the security
administrator initially specifies which objects must have which contexts.

File context

Regex Filetype Context

2.3 SELinux syntax 21

The regular expression matches the filesystem and the filetype is an optional
field that tells if security context should only be applied for the specified filetype,
e.g. only directories, only files, only socket files etc. The context is the security
context consisting of a user identity, a role and a type. The role is only applicable
for processes. For files and the like, the system_u, ”system user”, is the user
and the generic object_r is used as role.

Examples:

/usr/bin/nmap —— system_u:object_r:nmap_exec_t
/usr/share/nmap.* system_u:object_r:nmap_t

The first rule specifies that the nmap executable should be associated with the
default system user and object role but have the type nmap_exec_t. The --
indicates that the filetype is a regular file. The second rule tells the system that
all files and directories will be mapped with the default system user and object
role, but with the nmap_t type.

2.3.5 Macros

Since many of the declarations are going to be very similar, the designers of
SELinux made it possible to use a macro language(a m4 style macro language,
[Kernighan and Ritchie, 1977]). A macro can either be used as an alias for a set
of classes, permissions etc.(text replacement) or as a string generating function
that takes a number of variables.

Macros are used extensively throughout the sample policy to ensure that certain
declarations are not left out and to ease the creation of program domains.

The following examples are taken used from the above examples to show how
the text replacing macros can enhance the readability of the declarations. First
the syntax of the declaration including the macro, thereafter the resulting dec-
laration.

Examples:

type_transition httpd_t tmp_t:file_class_set httpd_tmp_t;

—>

type_transition httpd_t tmp_t:{file 1nk_file sock_file fifo_file
chr_file blk_file} httpd_tmp_t;

allow esales_t esales_sock_t:tcp_socket { rw_socket_perms listen
accept };

—>

allow esales_t esales_sock_t:tcp_socket

22 SELinux

{{ioctl read getattr write setattr append bind connect getopt setopt shutdown}
listen accept};

domain_auto_trans(initrc_t, sshd_exec_t, sshd_t)
-

type_transition initrc_t sshd_exec_t:process sshd_t;

The above shows examples based on previous declarations. The first two exam-
ples uses text replacement, namely with file_class_set and rw_socket_perms.
Since the rw_socket_perms does not contain the listen and accept permis-
sion, it is needed to add these.

The final macro operates as a string generation function that takes the ar-
guments and generates declarations according to the function definition. The
macro grants the permissions to the initrc_t domain to type transition into
the sshd_t domain when executing the sshd_exec_t type. It also allows other
permissions, such as granting the initrc_t access to read and execute the ssh
executable file. The macro generates 12 declarations in total and can be seen
on Listing 2.1.

2.3.6 Conditionals

The security policy can define a number of booleans that will specify if certain
allowances should be granted. The booleans are named expressively and used
in conjunction with an if-then-else construction that specifies the allowances
in case the boolean is false and in the case it is true. Note that it is allowed
that the else block is left out. The blocks can only consist of type transition
declarations or type allowance declarations, see Appendix A.7 on page 88.

bool Booleanname true | false;
if (condition) { block } else { block }

Examples:

bool allowaccounting false;
if (allowaccounting)

{allow acct_rcv_t new_order_t:file read;}
else

{dontaudit acct_rcv_t new_order_t:file read;}

=W N =

o Ot

10

12
13
14
15
16
17

19

20
21
22
23
24

2.3 SELinux syntax 23

Listing 2.1: Macro expansion of domain_auto_trans

Make executing sshd_exec_t enter the sshd_t domain

Allow the process to transition to the new domain.

allow initrc_t sshd_t:process transition;

Do not audit when glibc secure mode is enabled upon the
transition .

dontaudit initrc_t sshd_t:process noatsecure;

Do not audit when signal—related state is cleared upon the
transition .

dontaudit initrc_t sshd_t:process siginh;

Do not audit when resource limits are reset upon the transition.

dontaudit initrc_t sshd_t:process rlimitinh;

Allow the process to execute the program.

allow initrc_t sshd_exec_t:file { read { getattr execute } };

Allow the process to reap the new domain.

allow sshd_t initrc_t:process sigchld;

Allow the new domain to inherit and use file

descriptions from the creating process and vice versa.

allow sshd_t initrc_t:fd use;

allow initrc_t sshd_t:fd use;

Allow the new domain to write back to the old domain via a pipe.

allow sshd_t initrc_t:fifo_file { ioctl read getattr lock write
append };

Allow the new domain to read and execute the program.

allow sshd_t sshd_exec_t:file { read getattr lock execute ioctl };

Allow the new domain to be entered via the program.

allow sshd_t sshd_exec_t:file entrypoint;

type_transition initrc_t sshd_exec_t:process sshd_t;

The example defines a boolean that tells whether the system administrator
wants to allow the use of an accounting program. The construction below will
evaluate the condition and use the second block in the security policy meaning
that attempts to use the accounting program to read new orders will not cause
audit information to be recorded.

2.3.7 Special keywords

All sets used in a policy declaration (except the attribute set of the attribute
declaration) can contain special keywords. The first special keyword used is
self. That keyword indicates that source type is authorized with the succeeding
permissions upon itself. If there are more types than one and the self keyword
appears, the rule is applied between each source type and itself. Due to the
nature of this keyword it only makes sense when the type it represents is a
target type. There also exists some special characters that can be used in
sets, these are the asterisk character (*), the tilde character (~) and the minus

24 SELinux

character (=) which are used to denote the set’s universe, set complement and
set substraction.

allow sshd_t self:x ~{ execute write};
allow sshd_t file_type — var_log_t:file read;

The first example states that the sshd_t domain when interacting with itself on
all security classes, have all permissions except execute and write. The second
example states that the sshd_t domain can write to all files (file_type is an
attribute representing the set of types that are files) except files in the \var\log
directory.

2.4 Software team

To continue the ongoing example, the time has come to implement the case study
in SELinux. First of all, some assumptions must be made since the permissions
and domains must be set with regards to actual programs and files. The chosen
programs and file structure is based on a simple case study with regard to
required permissions. A program like Java, for instance, will need many more
permissions than Moscow ML since having a virtual machine demands more
permissions.

2.4.1 Assumptions

Code directory: /var/code/
Documentation directory: /var/code/doc/
The editor to produce code: nedit

Moscow ML to execute code: mosml

To view documentation the text viewer: more

The fictive users specified in Chapter 1.3 on page 5 will also be incorporated
into the policy.

Creating a domain for a new program is an iterative process, where some steps
are taken a couple of times to ensure that the domain and the programs resid-
ing in it functions as intended. In an attempt to systematize the process, the
following procedure was created.

1. Determine the intended behavior of the domain

2.4 Software team 25

2. Create the types to be used by the domain

3. Create matching file context for initial file mapping
4. Create rules to match the intended behavior

5. Create required rules for the program to run

6. Verify behavior by running programs in domain

7. If needed, modify rules to match the required allowances

Typically, most time will be spent on the last three items. Since the intended be-
havior is set, the challenge is usually determining which permissions are needed
for the program to run. Even though the procedure describes the steps neces-
sary to create a program domain, the process is based on trial and error, making
it difficult to systematize.

2.4.2 Produce code

To produce code, the editor nedit was chosen. The program will run in the
nedit_t domain and must have permission to create files in the code directory.
As stated in Chapter 1.3 on page 5, the programmer is the only role that has
access to this domain. The below declarations ensures that such policy will be
in effect.

Create the necessary types.

type nedit_t, domain;
type nedit_exec_t, exec_type, file_type;
type code_t, file_type;

Define the file security contexts. The relationship between the executable type
in the domain declaration and the file context declaration is apparent.

nedit program is marked as the nedit_exec_-t type
/usr/local/bin/nedit system_u:object_r:nedit_exec_t

code dir is labeled

/var/code system_u:object_r:code_t

code files will be labled with code_t (excluding dirs)
/var/code.* — system_u:object_r:code_t

Define the role and set type authorization to the nedit domain.

role programmer_r types { nedit_t };

26 SELinux

Use macro to make the role a full user. The macro full_user_role generates
an immense number of declarations in order to allow the intended behavior,
namely that the programmer is a full user, i.e. can login can have a home
directory etc. The macro takes care of creating new types to accommodate this
property, but it uses many declarations to do so since there are many conditions
to take into account, such as the many different programs that saves their user
settings into a user’s home directory.

full_user_role(programmer);

Transition to the nedit domain when executing the program executable. The
macro invoked ensures that the user domain are authorized to access and execute
the nedit executable. It also takes care of issuing a type transition declaration
so the security server knows to enter the nedit domain nedit_t upon execution
of the program.

domain_auto_trans (userdomain, nedit_exec_t, nedit_t);

Allow that users can log in to the programmer role. Only authorized users will
be able to do so, see Section 2.4.6 on page 29.

role_tty_type_change (user, programmer);

Set the authorizations of the domain to fit the wanted behavior.

nedit can read and create files in the code_-t dir
allow nedit_t code_t:file create_file_perms;
allow nedit_t code_t:dir create_dir_perms;

mnedit recursively looks up the code dir, so it must also
be authorized to to the /var dir
allow nedit_t var_t:dir search;

The above declarations shows what has been determined as the intended behav-
ior. Listing 2.2 on the facing page shows what is needed in order to be able to
run the program. Those declarations have no real correlation to the intended
behavior. It can be seen as a predetermined set of permissions that the system
administrator must incorporate into the policy to ensure that the program runs.

It can be noted that the bulk of the policy deals with permissions pertaining
getting nedit to run, i.e. setting the default permissions that enables it to run.
Line 4 and 5 enables the nedit_t domain to read and write to the default_t dir
and files which is where nedit has its base configuration files. Line 10 invokes
a macro that enables the nedit_t domain to access common shared libraries.
Lines 30-37 enables nedit to get attributes about various programs in the user’s
home directory, typically to check whether they are installed or not.

N OO W

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

2.4 Software team 27

Listing 2.2: Required allowances for nedit

The below declarations define rules that allow nedit to run

#nedit can read its settings files
allow nedit_t default_t:dir rw_dir_perms;
allow nedit_t default_t:file rw_file_perms;

allow nedit_t programmer_devpts_t:chr_file { getattr read write
ioctl };

nedit uses the shared libraries
uses_shlib(nedit_t);

allow nedit_t bin_t:dir { getattr read };

allow nedit_t default_t:dir { getattr read search };

allow nedit_t default_t:file { getattr read };

allow nedit_t etc_runtime_t:file { getattr read };

allow nedit_t lib_t:file { getattr read };

allow nedit_t locale_t:dir search;

allow nedit_t locale_t:file { getattr read };

allow nedit_t self:unix_stream_socket { connect create getattr read
write };

allow nedit_t proc_t:dir search;

allow nedit_t proc_t:file { getattr read };

allow nedit_t sbin_t:dir { getattr read };

allow nedit_t tmp_t:dir search;

allow nedit_t usr_t:file { getattr read };

allow nedit_t xdm_tmp_t:dir search;

allow nedit_t xdm_tmp_t:sock_file write;

allow nedit_t xdm_xserver_t:unix_stream_socket connectto;

allow nedit_t default_t:1lnk_file read;

allow nedit_t user_evolution_home_t:dir getattr;
allow nedit_t user_fonts_t:dir getattr;

allow nedit_t user_gnome_secret_t:dir getattr;
allow nedit_t user_gnome_settings_t:dir getattr;
allow nedit_t user_home_t:dir getattr;

allow nedit_t user_mozilla_home_t:dir getattr;
allow nedit_t user_mplayer_home_t:dir getattr;
allow nedit_t user_thunderbird_home_t:dir getattr;

i Bnd of nedit

For the two remaining domains only the declarations regarding the intended
behavior are shown, the rest can be found in the Appendix C on page 123.

28 SELinux

2.4.3 Execute code

To execute code, the mosml program was chosen. The program will reside in
the code directory and must be able to read code files. The program should be
available to the testers.

Create the necessary types.

type mosml_t, domain;
type mosml_exec_t, exec_type, file_type;

Define the file security context.

mosml binary
/var/code/mosml — system_u:object_r:mosml_exec_t

Define the role and use macro to transition into the new domain.

role tester_r types { mosml_t };

full_user_role(tester);
domain_auto_trans(userdomain, mosml_exec_t , mosml_t);

role_tty_type_change(user, tester);

Set the wanted behavior. The mosml will receive read permissions on the code
directory and files.

allow mosml_t code_t:file r_file_perms;
allow mosml_t code_t:dir r_dir_perms;

2.4.4 Read documentation

The last domain to be defined is the one of the more program. more is used
to read documentation and should only be available for user authorized for the
member role.

Create the necessary types.

type more_t, domain;
type more_exec_t, exec_type, file_type;
type documentation_t, file_type;

Define the file security contexts.

2.4 Software team 29

/bin/more — system_u:object_r:more_exec_t
/var/code/doc.* system_u:object_r:documentation_t

Define the role and use macro to transition into the new domain.

role member_r types { documentation_t more_t };
full_user_role(member);
domain_auto_trans(userdomain7 more_exec_t , more_t);

role_tty_type_change(user, member);

Set the wanted behavior. more is allowed to read the documentation_t type for
files and directories. Furthermore, more searches the code directory so it needs
to be allowed to do so.

allow more_t documentation_t:file r_file_perms;
allow more_t documentation_t:dir r_dir_perms;

more can lookup in the code dir
allow more_t code_t:dir search;

2.4.5 RBAC

The convention when declaring policies in SELinux states that the role decla-
rations should be found near the types which they are authorized for. But if a
role hierarchy is to be defined, it is done separate from the domain definitions.
The case study’s roles and hierarchy are defined by the following dominance
and allow declarations.

dominance { role supervisor_r {role programmer_r; } };
dominance role supervisor_r {role tester_r; } };

{
dominance { role tester_r { role member_r; } };
dominance { role programmer_r { role member_r; } };

allow supervisor_r { tester_r programmer_r member_r };

allow programmer_r { member_r };
allow tester_r { member_r };

2.4.6 Users

Since the used programs, domains, files and roles have been specified in the
policy, what remains to be defined is how users are authorized for the different

30 SELinux

roles.

user Tom roles { supervisor_r };
user Alice roles { tester_r };
user Bob roles { programmer_r };
user John roles { member_r };

2.5 Summary

The chapter defined the SELinux and the concepts used. A walk through of
the syntax used and the meaning of the different declarations was specified. A
procedure was developed in an attempt to systemize the steps needed to create
a program domain. It was found that such a procedure can not be explicitly
defined since the method of creating the policy is an ad hoc method which differs
depending on the program. This observation supports the motivation for this
thesis, namely that a model that will help a system administrator to verify the
properties of the system.

The declarations of SELinux enables the case study to be verified, this was done
in Section 2.4 on page 24. The next step is to introduce the concepts used in
Description Logic and to create a system that can model the case study, and in
general model SELinux.

CHAPTER 3

Description Logic

This chapter presents Description Logic (DL), its syntax and semantics. Rea-
soning services are presented and a specific reasoner and its syntax is introduced.
The sections couples the theory with examples and the chapter concludes with
a brief view of the role hierarchy in the case study modeled in DL.

DL is a relative new formal language derived from the need of knowledge repre-
sentation. The literature used comes mostly from the Description Logic Hand-
book, | |, but also from the article that modeled RBAC in
DL, |]

3.1 Introduction

DL is a formal language that is used for knowledge representation and to model
knowledge bases. DL consists of concepts, roles and individuals denoted by
unary predicates, binary predicates and objects of the domain respectively. The
interpretation of a concept is a set of items that share a similar property denoted
by the concept’s name. Note that the use of the term roles in DL has a different
meaning than that of RBAC as defined in Section 2.1.3 on page 12 where it is
used to denote a group of users. Here it is used to denote a binding of concepts.

32 Description Logic

An individual is an instantiation of one of the items residing in a concept.
Concept names and role names are written in Sans whereas individuals appear
in stalic when used specifically, i.e. not in the general terms of Table 3.1 for
instance, but in the context of specific assertions, like Equation 3.1 on the next

page.

The DL used in this application is the ALCQ language. It is the basis DL
language AL extended by negation (complement, hence C) and qualified number
restriction (denoted by Q).

3.2 Syntax

The language’s concept descriptions has the syntax rules showed on Table 3.1.

c,D — A| (atomic concept)
T | (universal concept)
1] (bottom concept)
-C' | (concept negation)
CnND| (intersection)
VR.C' | (value restriction)
JR.C'| (existential quantification)
(>nR.C)| (qualified number restriction)

Table 3.1: Syntax for ALCQ DL

A knowledge base has two components, a TBox and an ABox. A terminology
of concepts and roles are defined which specifies the TBox. It defines concepts
and roles through terminological axioms, namely inclusions and equalities. An
ABox is the instantiation of the TBox so to speak, meaning that the ABox is
assertions regarding individuals in the terminology defined by the TBox.

Concept axioms which builds the TBox have the form:

ccbh C=D

C C D defines an inheritance relationship between the two concepts, also known
as an IS-A relationship, where C' is a specialization of D.

3.3 Semantics 33

Some examples of the axioms:

AmphibiousVehicle = GroundVehicle 1 WaterVehicle
Woman Person
Mother = Woman M 3hasChild.Person

M

The examples states that an amphibious vehicle is defined as the conjunction
set of ground vehicles and water vehicles. The second axiom states that Woman
is a specialization of Person. The last equality axiom states that a mothers are
woman that also has the hasChild relation in the Person concept.

c is a filler of the role R for individual b, that has children who are in the Person
set.

Individuals are defined by giving them names and asserting properties regarding
them using assertions. There are two kinds of assertions that creates the ABox.

Ca) R(b,c) (3.1)

Concept assertions state that the individual a belongs to concept C. A role
assertion states that individual ¢ is a filler of the role R for individual b, see
Equation 3.1

Some examples of assertions:

Woman(Mary) hasChild(Mary, Paul)

The example states that the individual name Mary is a Woman, and that (the
individual) Paul is the child of Mary.

3.3 Semantics

The formal semantics has an interpretation Z which consists of the domain
of interpretation (AI) and an interpretation function -Z. The interpretation
function maps every atomic concept A to the set AT C AT and every atomic
role R to a binary relation RZ C AT x AZ.

The interpretation of of the concepts are given on Table 3.2 on the following
page.

34 Description Logic

TF = A
=0
(O)F = AT\CT
(cnbDy¥ = ctnD*
(VR.C)' = {ac AT |Vb(a,b) € R —beC"}
(BR.C)YF = {aeA?|3b.(a,b) € RFAbeCT}
(>nRC) = {acA||{bcA?|(a,b) € RF AbeCT}| <n}

Table 3.2: Interpretation of DL

C and D are concepts and an interpretation Z is said to satisfy an inclusion
CC Dif CT C DT and an equality C' = D if CT = DZ. T satisfies the TBox 7
iff 7 satisfies every element of 7. If so it is said that Z is a model of 7.

The ABox is the assertions regarding the individuals in the knowledge base.
The interpretation function -Z is expanded to map each individual name a to
an element aZ € AZ. It is therefore important for the function to respect the
unique name assumption (UNA). This means that if a and b are distinct names
in the ABox then a” # b?

Some examples of the semantics can be given if Mother and Woman are concepts
and hasChild is an atomic role: JhasChild.Woman is the concept of people who
have female children. VhasChild.Woman is the concept of people whose children
are all women. The concept MotherMVhasChild.Woman would cover the Mothers
who only have daughters. Finally the concept Motherm > 3hasChild. T covers
the concept of Mothers who has at least 3 children. T could be exchanged with
Woman if the concept should cover mothers who has at least 3 female children.

3.4 Reasoner - RACER

DL offers reasoning services about explicit as well as implicit knowledge through
inference. The basic inferences in DL are satisfiability and subsumption. A
concept is satisfiable with respect to the TBox 7 if there exist a model Z such
that CZ is non-empty. A concept C is said to be subsumed by D if C* C D?
for the model 7 of 7.

RACER |] is a reasoner that can understand a wide

3.5 Software team 35

range of DL of languages. It implements a number of optimization techniques
that enables it to reason about TBox’s and ABox’s. RACER is a server pro-
gram so it is used in conjunction with RICE (A RACER interactive client
environment)|] which enables navigation through a tree of
concepts, view the ABox individuals and to make queries into the knowledge
base.

RACER uses a Lisp-like concrete syntax known as Knowledge Representation
System Specification (KRSS) for specifying axioms, defining assertions and for
queries into the knowledge base. See Table 3.3 for the syntax used in this project

syntax. See |] for the complete syntax.
Name Abstract syntax Concrete syntax
Concept inclusion C C D (implies C D)
axiom
Concept assertion C(a) (instance a C)
Role assertion R(a,b) (related a b R)
Existensial quant. dR.C (some R C)
Concept instances C (concept-instances C)
Role fillers JR.I (individual-fillers I R)

Individual query Checks if individual (individual-instances? I C)
| is in the concept C

Table 3.3: Concrete syntax for RACER

Examples of the RACER syntax are:

(implies Woman Person)

(instance Mary Woman)

(related Mary Paul hasChild)
(individual-fillers Mary hasChild)

The examples creates a small knowledge base and requests the reasoner to query
the knowledge base to find the children of Mary, to which it replies: Paul.

3.5 Software team

To model the software team in DL an TBox and ABox must be defined. The
TBox and ABox will be modeled by the definition of the case study given in
Chapter 2.4 on page 24. This also requires that SELinux is modeled in DL,

36 Description Logic

but this will be done in Section 4.1 on the next page so this section seeks to
identify notions from the case study that can be modeled without knowledge of
the SELinux formulation of the case study.

One notion that is apparent to model in DL is the role hierarchy which can be
built up using inclusion axioms:

Supervisor C Programmer
Supervisor LT Tester
Tester T Member
Programmer C Member

Other than that, further analysis must be made on the SELinux policy to further
the construction of an DL knowledge base.

3.6 Summary

The chapter has introduced the concepts of DL and how a terminology can build
the TBox and a how a set of assertions can specify the ABox. The case study
was analyzed and the role hierarchy of it was modeled in DL. This was due to
the fact that no other obvious concepts were identified and since the case study
was already implemented in SELinux’s security policy priority was focused on
modeling that instead of coming up with a new way to represent the case study.
The next chapter will show how the SELinux policy can be translated into DL.

CHAPTER 4

SELinux to Description Logic

This chapter provides a model formulation which can be used to model the rele-
vant SELinux declarations as defined by the thesis objective. The model formu-
lation is firstly explained whereafter translation rules for the different SELinux
declarations are made to enable automatic translation of any SELinux policy.
Finally, the procedure of translating the case study from SELinux to a DL
knowledge base is explained.

The model formulation was inspired by the RBAC formulation in DL from

[J

4.1 Model formulation

An analysis of the different SELinux declarations must be made in order to
specify the translation rules. Not all declarations are relevant in accordance
to the objective of the thesis so some can be omitted. The audit declarations
for instance are of little interest since the tool does not seek to model the run-
ning system. The declarations in Table 4.1 on the following page will not be
translated. Note that not all declarations have been mentioned in Chapter 2
on page 9 for the same reason, their grammar can be found in Appendix A on
page 83.

SELinux to Description Logic

’ Declaration

\ Rationale

|

neverallow

The neverallow statements are used by
SELinux’s own policy parser checkpolicy
[] as assertions which must never be
compromised by the policy. If an assertion fails,
checkpolicy exists with an error and does not
output the concatenated policy. Since it is a
condition that the checkpolicy program exists
with no errors, the neverallow assertion must
be fulfilled and thus can be ignored.

type_change

Type change is used by SELinux-aware pro-
grams. Since the objective of this thesis is to
model programs in the user domain (ordinary
programs) type_change will be ignored.

dontaudit

Information about when not to audit interaction
between two types is ignored, since the objective
is not to model a running system.

role_transition

Role transition is typically used when restarting
daemons. Daemon programs are not modeled
are not the objective for this iteration of the
tool.

constrain

Constrain declarations are used to restrict per-
missions further. The example policy specifies
a few constraints which are there to restrict the
ability to transition to different roles or to re-
strict users from certain domains.

Security contexts:
sid
fs_use_xattr
fs_use_task
fs_use_trans
genfscon
portcon
netifcon

nodecon

The SIDs found in the policy are used by
SELinux for system initialization and predefined
objects. The remainder of security context dec-
larations are concerned with the labeling deci-
sions of the security server. Since it is not the
objective to model the file system, these decla-
rations are ignored.

Table 4.1: Ignored declarations

The remainder of the statements are to be modeled. To model SELinux as a
knowledge base, it is clear that some general concepts are needed as well as
atomic concepts. Furthermore, roles must also be defined which will be used to
set up the wanted behavior of SELinux. Once general concepts and roles are
defined, specific concepts and individuals will be added to model the case study.

© 00O Uk W

13
14
15

16
17
18

20
21
22
23
24

4.1 Model formulation 39

There are some special cares that should be noted: The type allowance dec-
laration builds a unique binding that defines the permissions when these two
types interact. If the types interact with other types, the permission set could
be different. The same applies to the permission and security class of the type
allowance. This pair represents a unique permission on certain classes, that are
different when the same class is paired up with another permission or vice versa.

To find out how to model the general declarations of the policy, basis was taken
in a small example with connection to the case study, See Listing 4.1. The
example is unique because it covers all the declarations that have been deemed
useful in fulfilling the objective. And that it contains the macro expansion of the
domain_auto_trans function Listing 2.1 on page 23 to ensure that the needed
allow declarations are present to enable domain transition (type transition).

Listing 4.1: A simplified case study policy

attribute domain;

attribute file_type;

type code_t, file_type;

type tester_t, userdomain;

type mosml_t, domain;

type mosml_exec_t, file_type;

allow mosml_t code_t:file read;

allow userdomain mosml_t:process transition;

allow userdomain mosml_exec_t:file { read { getattr execute } };
allow userdomain mosml_t:fd use;

allow mosml_t userdomain:fifo_file { ioctl read getattr lock write
append };

allow mosml_t userdomain:process sigchld;

allow mosml_t userdomain:fd use;

allow mosml_t mosml_exec_t:file { read getattr lock execute ioctl

s

allow mosml_t mosml_exec_t:file entrypoint;
type_transition userdomain mosml_exec_t:process mosml_t;

role tester_r types tester_t;

dominance{role supervisor_r {role tester_r;}}
allow supervisor_r tester_r;

user Tom roles supervisor_r;

user Alice roles tester_r;

It has been found useful to sketch concept-role relationships on a semantic graph,
Figure 4.1 on the next page. This graph represents the way concepts and roles
from the example are to be related. The oval objects indicates a role association
while the boxes are square.

Note that Line 12 to Line 15 do not appear on the figure, to ease the readability.

SELinux to Description Logic

40

Ay

é

@

1 oaxa |LSow

aliuodAg

@m@

A

UDISSILLIBLSEL

1 D8XE WSOWYIAN |LUSOL

1 BPCOYIAN] LUSOL -

UOISSILLISSEL

Blypes)

=ye

SSBQUOIPSLE | S8y

TS0 -

adf | asegsey

1 0ExE [WSCLUYPANUIBLLORUSST

alld

UOISSILUBISEY {minosxe‘ el pes}

A

@

anglulysey

sseaaxd

WELLIOR

adf | sabiey

U[ELUDpUaSN

@ 1 WSOWRIA\UIELUDpISSN

é

UDISSILLIBSSEY

LD|SS|UESEL

P48sM

1 18)58)

e SESI0IJUONISUR |

ubisse

I issa)

sQ|Ee

BIOHOPUED Jinswadns ‘lel‘

Figure 4.1: The Semantic Graph representing the policy of Listing 4.1 on the

previous page

4.1 Model formulation 41

These lines would be incorporated into the graph in the same way the other type
access nodes appear.

As it shall be seen in Chapter 6 on page 61 the semantic graph sketched here,
has a similar counterpart in the actual model of the example.

Since an abstract view of what is to be modeled is in place, the time has come
to define the alphabet of knowledge base K. Notice that the sets referred to in
this section were defined in Section 2.3 on page 13.

- User concept where all users reside.

- CRole concept of RBAC roles.

- Permission. All permissions are subsumed by this concept.

- Type is the types of the system.

- Class is the classes of permissions.

- Attribute is the concept of which all attributes are subsumed.

- for each role 7 € RsgLinux, type t € TspLinux, class ¢ € CsgLinux and
attribute @ € Asgrinux one atomic concept R, T, C, A respectively.

- for each permission p € PCsgLinux one P. Note that this is a permission
paired with a security class.

- role assign binds a user to a role.

- role candoType binds a role to an allowed type.

- role targetsType binds two types together according to the allow statement.
- role hasPermission binds a type to a permission.

- role hasAttribute binds a type to an attribute.

- role hasBaseType binds a composite type with its base component.

- role transitionTo binds two types together for use with the type transition
declaration.

- role hasTransitionClass binds a type and class together, to identify the class
of the transition.

- role candoRole binds two roles to indicate the role allow rule.

The above alphabet enables the creation of a knowledge base where the case
study can be modeled.

42 SELinux to Description Logic

4.2 Translation rules

To use the above concepts and roles, some rules regarding the translation be-
tween the SELinux policy and DL must be defined.

The structure in the following sections resembles the structure from Section 2.3
on page 13 as they deal with the same syntax. The rules for defining the
ABox are using a ” Tell and Ask” |] interface, to put knowledge
into the knowledge base. When adding knowledge into a concept an individual
is needed for every concept. Since almost every concept in this model has a
unique meaning it is only necessary to put one individual into the concept.
The concepts in this model can be seen as singletons, the exception is the User
concept which holds all the users of the system. The individuals in singletons
are denoted by the subscript ;. This means, for instance, that the concept
readfile holds one individual {readfile; }, whereas the concept User can hold users
{Tom, Alice, Bob, John}.

The rules are not coupled with examples, except for the first two types of decla-
rations since these cover the procedure of translating the SELinux declarations.

4.2.1 TE declarations
Attributes

attribute Attributename;

The attribute declaration must be put into its super concept, and an individual
of the attribute name is declared in the ABox.

TBox:
Attributename T Attribute

ABox:
TELL{Attributename(Attributenamer)}

Example:
attribute domain;
=

4.2 Translation rules 43

TBox:
domain C Attribute

ABox:
TELL{domain(domain;)}

Type declaration

Let Attributes C AsgLinux then the translation of

type Typename, Attributes;

gives the following translation rules

TBox:
Typename C Type
For each A € Attributes: Typename C JhasAttribute. A

ABox:
TELL{ Typename(Typenamer) }
For each A € Attributes: TELL{hasAttribute(Typenamer,Ar)}

Example:
type esales_t, domain;
=

TBox:
esales_t C Type
esales_t C JhasAttribute.domain

ABox:
TELL{esales_t(esales_t1)}
TELL{hasAttribute(esales_t;,domainy) }

44 SELinux to Description Logic

Type attribute declaration

Let @ C Attributes C AsgLinux (Attributes is a non-empty set of attributes)
and
Typename € TspLinux since Typename has to be defined somewhere else.

Then

typeattribute Typename Attributes

becomes

TBox:
For each A € Attributes: Typename C JhasAttribute. A

ABox:
For each A € Attributes : TELL{hasAttribute(Typenamey,A;)}

The type attribute declaration adds more attributes to an already defined type.
Since the type already have been put into the knowledge base, as have the
attribute, the only thing that needs to be taken care of is adding the inclusion
and assertion for the hasAttribute relation to both the TBox and ABox for each
attribute.

Type access rules

Let 0 C Types € DsgLinux;

0 C Typer C TseLinux

() C Classes C CsgLinux and

0 C Perms C PCsgLinux then the syntax

allowlauditallow Typeg Typer : Classes Perms;

can be translated into the axioms:

TBox:
For each Ts € Types,Tr € Typer:
TsWithTy C Type

4.2 Translation rules 45

Tg C JtargetsType. TgWithTp
TsWithTr C JhasBaseType. T
For each PermissionClass € Perms TgWithT C JhasPermission.PermissionClass

ABox:

For each Ts € Types, TT € Typer:

TELL{TsWithTr(Ts WithTrr)}

TeLL{targets Type(Ts1, Ts WithTr1)}

TEeLL{hasBaseType(Ts WithTr1,Tr1)}

For each PermissionClass € Perms: TgWithTr C JhasPermission.PermissionClass

The allow and auditallow keywords can be treated alike for the same reason
that dontaudit can be ignored, namely that audit information is not interesting
for the purpose of this thesis. Note the differences of Types and T'yper, namely
that the former is a subset of domains, while the latter is a subset of types. Also
note that the unique binding between source and target types are denoted by
concatenating ” With” between the two type names. This is similar to the unique
permission and class binding, except the permission name and class name are
concatenated without using a string in between the names.

Type transition

Let () C Sourcetypes C TsELinuxs

() C Targettypes C TSELinuxs

() € Classes C CsgLinux and

Newtype € TsgLinux Since Newtype has to be defined somewhere:
The translation rule for

type_transition Sourcetypes Targettypes:Classes Newtype;

becomes

TBox:

For each Ts € Sourcetypes, Tr € Targettypes, C € Classes,
TsWithTy C Type

TsWithTy C JhasBaseType.tp

Newtype C JhasTransitionClass.C

TsWithTp C FtransitionTo.Newtype

46 SELinux to Description Logic

ABox:

For each Ts € Sourcetypes, Tr € Targettypes, C € Classes,
TELL{TsWithT(Ts WithTrr1)}

TELL{hasBaseType(T's WithTr1,Tr1)}
TELL{hasTransitionClass(Newtyper,Cr) }

TELL{transitionTo(Ts WithTr1,Newtyper) }

Type transition is fairly complicated since for every cartesian product of the
types mentioned it must define the needed rules. The unique binding between
source types and target types is defined as a new concept and included into the
Type concept. The base type of the target type is related using the hasBaseType
role and the actual transition is set by using the roles hasTransitionClass and
transitionTo

4.2.2 RBAC declaration
Role declaration
Let @ C Types C DsELinux in
role Rolename types Types;

translates into

TBox:
Rolename C CRole
For each T' € Types: Rolename C dcandoType. T

ABox:
TEeLL{Rolename(Rolenamer)}
For each T' € Types: TELL{candoType(Rolenamer,T1)}

Role allowance

Let § C Currentroles C RsgLinux and
c Newroles C RsgiLinux then becomes

4.2 Translation rules 47

TBox:
For each Rc € Currentroles and for each Ry € Newroles:
R¢ E dcandoRole. Ry

ABox:
For each Rc € Currentroles and for each Ry € Newroles:
TELL{candoRole(Rc1,Rn1)}

Role dominance

Let Dominatedroles C Rsglinux then

dominance {role Headrole {role; Dominatedroles}}

translates to

TBox:
Headrole C CRole
For every dominated role Rp € Currentroles: Dominatedroles C Headrole

ABox:
TELL{Headrole(Headroler) }

4.2.3 Users
User declaration
Let ® C Roles C RsELinux i
user UserlD roles Roles;

becomes ABox:

TEeLL{User(UserID)}
For every role R € Roles : TELL{assign(UserID,R;)}

48 SELinux to Description Logic

4.3 Software team

This section will highlight a simplified version of the software team definition.
It will also provide motivation for the automatic generated DL knowledge base.

To showcase the translation rules a few declarations were taken out from the
software team’s policy from Chapter 2, Section 2.4 on page 24. The selected
policy snippet can be seen on Table 4.2. The selected policy declarations feature
the objective of getting the user Bob authorized for the tester role and autho-
rizing that role to for the mosml_ domain and granting read access to code_t
files.

1. user Bob roles tester_r;
2. role tester_r types mosml_t;

3. allow mosml_t code_t:file read;

Table 4.2: Policy snippet

Currently, the following axioms are declared when processing the above three
declarations. The ABox definition follows the same pattern and will be omitted
here for declaration #2 and #3.

1. TeLL{User(Bob)}

1. TELL{assign(Bob,tester_rr)}

2. tester_r C CRole

2. tester_r C dcandoType.mosml_t
mosml_tWithcode_t C Type

mosml_t C dtargetsType.mosml_tWithcode_t

mosml_tWithcode_t C JhasBaseType.code_t

mosml_tWithcode_t T JhasPermission.readfile

Table 4.3: Policy snippet translated to DL

4.4 Alternative model formulations 49

4.4 Alternative model formulations

Alternative model formulations were considered. The SELinux declaration that
raises the most issues is the type access declaration. The declaration can be
seen as a chain of knowledge that must be modeled in the knowledge base, see
Figure 4.1 on page 40. An option is to have more implicit knowledge attributed
to the concept name than currently (i.e. aWithb concept names for types a and
b and the permission concepts which is a concatenation of permission and class).
This would imply fewer concepts but more roles.

Below are the resulting axioms when applying the alternative model formulation
for translating the policy from Table 4.2 on the facing page. Note that ABoxes
are still only shown for the user declaration, as they are analogues to the TBox
axioms.

1. TELL{User(Bob)}
1. TELL{associatedTo(Bob,tester_r_mosml_t_code_t_file_ready)}

2 and 3. tester_r_mosml_t_code_t_file_read = ComplexType

The alternative model formulation was not used since such a high degree of
implicit knowledge attributed to the concept names is unwanted. Furthermore,
(DL) roles would be needed to support a role hierarchy, specify the permission
class, source and target types etc.

The option to have a bit less knowledge to the concept names could form yet
another alternative model formulation, which can be seen used below:

1. TELL{User(Bob)}
1. TELL{assign(Bob,tester_r;)}
2. and 3. tester_r C Jassociated To.mosml_t_code_t_file_read

2. and 3. mosml_t_code_t_file_read = ComplexType

Such a formulation has less implicit knowledge associated to the concept names.
The process of identifying a chain of knowledge as mentioned above and decom-
posing it into smaller pieces can be continued until the used model formulation
from Section 4.1 on page 37 is (re)found. That model also have some implicit
knowledge in the concept names (i.e. aWithb for types a and b and permission

50 SELinux to Description Logic

pc for permission p and class c), but such concepts are necessary in order to
keep the unique binding between the types or permissions and classes.

The reason that these simpler alternate model formulations are unwanted is that
they add a large amount of constraints to the syntax of the concept names. The
concept names would have to follow a recognizable pattern, if any automated
queries regarding the model are to be created, see Section 6.3 on page 65.

4.5 Summary

This chapter presented a model formulation that enabled the SELinux policy
to be modeled in DL. After the formulation was in place, translation rules for
modeling the various declarations of SELinux’s security policy was presented.
The translation rules does not cover all of the declarations of SELinux, but
it covers a range such that the objective of the thesis has been fulfilled. The
translation rules were applied to a small set of the case study to showcase the
rules and alternative formulations were discussed.

The chapter shows that the security policy systematically can be translated
which leads to a wish for an automated process that does exactly that. An
implementation of the translation rules is particulary useful since the security
policy is very large. Even for small examples the translation rules specifies
many DL axioms, which further motivates an automated process. The following
chapter illustrates how such implementation can be achieved.

CHAPTER 5

Implementation

This section presents the implementation design and an overview of the structure
of an automated tool that translates an SELinux policy into a DL representation
of it. The chapter shows the design goals and the steps needed in order to
complete these goals. The chapter is concluded by sketching a test strategy for
the automated tool.

5.1 Design

The design of the tool is based on solving two goals.

e Inputting the SELinux policy into the tool.

e Using the translation rules found in Section 4.2 on page 42 to output a
DL knowledge base.

The first objective is to build a Scanner/Parser that can translate the SELinux’s
policy into an abstract data structure which can be used to solve the next goal.
When that is done, the tool can process the data structure and automatically
generate the knowledge base.

52 Implementation

Standard ML was chosen as the implementation language, specifically Moscow
ML | | which is a lightweight implementation of Standard
ML. ML is a functional language with type checking and type inference which is
beneficial for data modeling. Moreover, ML in conjunction with Lex|]
and Yacc|] has excellent abilities to define rules for scanning and
producing the parsing capabilities needed to input the SELinux policy file.

The structure of the parsing files (parse.sml, Lexer.lex and Gram.grm) are
based on inspiration from the Moscow ML distribution examples.

5.2 Lexical analysis

To use Lex it is required to identify the keywords for use of the lexical translation
of keywords to tokens. A small section of the process will be presented here.
All the different keywords can be found in the grammar in the appendix and
the final Lex specification can be found in Appendix B.2 on page 91.

Analyzing the grammar, tokens are found and defined for Lex. The tokens are:

e Keywords such as "allow", "role", "nodecon", "not", "if" etc.
e Symbols such as "*", "-" t==0_ 1w, etc.

e Numbers

e Paths

IPv6 addresses

Before specifying the grammar of the SELinux policy for Yacc, it is necessary
to define an abstract data model that Yacc will use for the resulting parse tree.

5.3 Abstract data model

The abstract data model can be found in Appendix B.1 on page 89. It is clear
that the abstract data model is based on those declarations that have been
chosen for translation in the Translation rule section. The abstract data model
shares much of the structure from SELinux’s grammar. It differs from SELinux’s
grammar to facilitate a simpler design of the parse tree.

5.4 Parsing 53

datatype Decl =
Common_perms_def of string * string list

| Class_def of string
| Class_def_perms of string * string list
| Class_def_inherit of string * string
| Class_def_inherit_perms of string * string * string list
| Attrib_decl of string
| Type_decl of string * string list * string list
| Typealias_decl of string * string list
| Typeattribute_decl of string * string list
| Type_transition_rule of Set * Set * Set * string
| AllowDecl of Set * Set * Set * Set
| AuditAllowDecl of Set * Set * Set * Set
| Role_decl of string * Set
| Role_dominance of Roles
| Role_allow_rule of Set * Set

| Role_transition of Set * Set * string

| User_decl of string * Set

| If of Cond_expr * Block * Block

| Bool_def of string * Bool_val
| SKIP

withtype Block = Decl list;

The abstract data model follows the same concrete syntax structure as specified

in Section 2.3 on page 13 such that the when the concrete syntax of type access,

for instance, is allow Ts Tt:C P; the abstract data model’s data constructor
AllowDecl of Set * Set * Set * SetisAllowDecl(Ts, Tt, C, P).Thisholds
for the other types of declarations also.

The policy is modeled as a list of declarations. The main datatype is the Decl
datatype which holds the type of declarations that can be found in the policy.
The Decl datatype uses a few other datatypes to model the declarations. Most
noteworthy are the Set datatype and the Roles datatype which also uses other
datatypes. The datatypes are the result of analysis of the grammar. One spe-
cial constructer in the Decl datatype is the SKIP constructor. SKIP is the no
operation constructor of the interpreter. It is used whenever the parser meets a
declaration that is eligible to be ignored c.f. Table 4.1 on page 38.

5.4 Parsing

After the abstract data model has been defined, the time has come to define the
grammar for use of Yacc. The grammar used by Yacc is also based on SELinux’s
grammar from the Appendix. The datatypes from the abstract data model are
used in relation with the grammar to specify the nodes in the resulting parse
tree.

© 00 O Ut WN -

= e e
Tk W N~ O

54 Implementation

Decl

| ALLOW Set Set COLON Set Set SEMI { AllowDecl($2,$3,%5,%6) }
| ROLE IDENTIFIER TYPES Set SEMI { Role_decl (%2, $4) }

| ROLE_-TRANSITION Set Set IDENTIFIER SEMI { SKIP }
| SID IDENTIFIER { SKIP }

Table 5.1: Grammar snippet

A snippet of the grammar specification can be seen on Table 5.1. It shows
the relation with the abstract data model and the grammar. The grammar
shows how the Allow declaration (line 5) is built up(left side), and how the
parser should create the parse tree in accordance with the abstract data model,
which was AllowDecl of Set * Set * Set * Set (right side). Note that even
though declarations are to be ignored the grammar must still be defined and
correctly formed in order for the parser to accept the complete policy file. The
policy file is required to be well-formed (c.f. the conditions set in Section 1.2 on
page 4) but the parser will perform (a superfluous) syntax check to see if the
condition still holds.

Using Lex and Yacc generates the parser that will scan the SELinux policy in
accordance to the grammar. Running the parser completes the first goal, namely
converting the "raw” policy file into an abstract data model.

5.5 Translation

The next goal is to traverse the parse tree and translate the declarations into a
DL knowledge base. As mentioned in Section 2.3.1 on page 15, forward refer-
ence to type names is allowed, so this must be handled. Furthermore, the Set
constructor supports the * (asterisk) symbol, which means whenever the aster-
isk symbol appears in a set, the set is represented by the universe of whatever
the set represents. As specified in the grammar and noted in Section 2.3.7 on
page 23 the Set constructor can be used by represent, types, classes, permissions
and roles in the system.

5.5 Translation 55

Finally, the conditional declaration found in the SELinux policy also allow for-
ward references to the booleans used. So the tool needs to collect the booleans
the first, and then use them to evaluate the condition.

The above indicates that the parser must traverse the parse tree two times.
Upon the first traversal the data declared by declarations found on Table 5.2

on the following page will be collected.

The used types are modeled as follows:

type StringSet = string Binaryset.set;

type CommonMap = (string, StringSet) hash_table;
type BoolMap = (string, bool) hash_table;

type AttributeMap = (string, StringSet) hash_table;
type AliasMap = (string, StringSet) hash_table;
type PermissionMap = (string, StringSet) hash_table;
type RoleMap = (string, string list) hash_table;
type ClassSet = StringSet;

type AttributeSet = StringSet;

type TypeSet = StringSet;

type RoleSet StringSet;

type UserSet= StringSet;

From the type model, it shows that there are two basic kinds of complex types,
namely the string set, denoted by the suffix Set and some kind of table, denoted
by the suffix Map.

Once the types have been modeled, the function which performs the first pass
can be modeled as follows:

PT1: parsetree * ClassSet * PermissionMap * BoolMap * CommonMap *
AttributeSet * TypeSet * AliasMap, AttributeMap *
RoleSet * UserSet

ClassSet * PermissionMap * BoolMap * CommonMap *
AttributeSet * TypeSet * AliasMap * AttributeMap *
RoleSet * UserSet

The input types are initially empty. The function recursively traverses through
the parsetree collecting data and putting it into the appropriate data structures

56 Implementation

according to the type of declaration. Upon termination, the output types now
contain data representing the data found in the parsetree.

The function is defined by pattern matching and will match the following decla-
rations which are related to data declaration and ignore (skip) everything else.

e Common_perms_def (name,list)

e Class_def name

e Class_def_perms (name,list)

e Class_def_inherit (name,inherit)

e Class_def_inherit_perms (name, inherit,list)

e Attrib_decl name

e Type_decl(name, aliases, attributeNames)

e Typeattribute_decl (name, attributeNames)

e Typealias_decl (name, aliases)

e Role_decl (name, _)

e User_decl(name, _)

e Bool_def (name, b)

Table 5.2: The declarations matched on the first traversal of the parsetree

After the first pass though the parsetree, all the data needed to process the
policy’s fundamental access declarations has been gathered. The next pass can
process the remainder of the declarations and use the translation rules to create
the necessary DL declarations that defines the knowledge base.

The function that runs through the parse tree the second time has a similar
signature to the first one.

PT2: parsetree * ClassSet * TypeSet * AliasMap * RoleSet *
PermissionMap * AttributeMap * BoolMap * "KB written"
->
ClassSet * TypeSet * AliasMap * RoleSet *
PermissionMap * AttributeMap * BoolMap * WithSet

5.5 Translation 57

PT2 differs in signature from PT1 with CommonMap, UserSet and WithSet. PT2
does not need information regarding users or the common constructor, as they do
not appear in a Set construction. The function outputs a new set, WithSet which
is the result of the translation rules regarding type access and type transition.
It is necessary to create this new set and not add it to the existing TypeSet
since WithSet is not in the universe of types regarding the Set constructor in
the grammar.

The PT2 function is also a pattern matching function. The matched declara-
tions are seen on Table 5.3. The second traversal deals with the definition of the
knowledge base according the translation rules. The function uses the transla-
tion rules as specified in Section 4.2 on page 42 to write to a file for every
declaration it meets, except the If declaration.

e If(expr, bl, b2)

e Attrib_decl name

e Type_decl(name, aliases , attr)

e Typeattribute_decl(name, attr)

e AllowDecl(Ts, Tt, C, P)

e AuditAllowDecl(Ts, Tt, C, P)

e Type_transition_rule(Ts, Tt, C, name)
e Role_decl (name, AllowedTypeSet)

e Role_dominance roles

e Role_allow_rule (Rs, Rt)

e User_decl(name, roles)

Table 5.3: The declarations matched on the second traversal of the parsetree

The If declaration does not have a translation rule. This constructor is used by
the SELinux’s policy to condition some statements. The PT2 function evaluates
the conditional expression by looking up the booleans used and then selecting
the block which evaluates to true. Note that the conditional declaration only
allows type allowance and type transition declarations, but the grammar speci-
fies that a block is a Decl list. Strictly, this is wrong as it allows for all kinds
of declarations to appear in a block, and thus requiring another pass of the
parsetree, but since the conditions of the thesis state that the policy conforms
to a format of which SELinux’s own parser accepts, it must be assumed that

58 Implementation

only the allowed declarations appear within a block.

After traversing through the tree, two function calls are necessary: The first
is finalizeKB: ClassSet * PermMap -> "KB written" which produces the
concept inclusions and assertions of for every pc € PCsgLinux and ¢ € CSELinux-
This step is done at this point to optimize the performance since if it was
done whenever a type allowance declaration was met, would introduce many
redundant concepts. The function does not output anything but appends to the
files which PT2 started on.

Running PT1, PT2 and finalizeKB specifies the TBox and ABox, but RACER
needs to know the set up of the knowledge base so the second function which
needs to be run after the parse tree has been traversed is createSignature
which is modeled as

type sigName = string

createSignature: string * ClassSet * TypeSet * RoleSet * PermMap
* AttSet * UserSet * WithSet)

-> "Signature written"

The function manipulates a file that specifies for RACER the different classes,
types, (SELinux) roles, permissions, attributes and users as well as the (DL)
roles individuals and concepts there exists in the knowledge base.

5.6 Testing strategy

The testing strategy is also divided according to the implementation goals. First,
testing should be done on the Scanner and Parser. Second, testing the transla-
tion functions must also be done.

Testing the Scanner/Parser must also be done in accordance to the overall ob-
jective, namely that the tool should be able to successfully parse the example
policy that SELinux’s checkpolicy program has created. This means that if
the Scanner/Parser can produce a parsetree based on the policy file and the
parsetree corresponds to the policy file’s constructors, the Scanner/Parser has
fulfilled its goal. Moreover, introducing syntax errors in the policy file must stop
the Scanner/Parser.

To test the translation, the different kinds of declarations should be matched up
with the translation rules and checked to see that they correspond. Care should

5.7 Summary 59

be taken to verify that the abstract data model’s constructors are followed such
that the resulting DL specification is complete with regard to the translation
rules.

5.7 Summary

An implementation design for automated generation of a knowledge base was
presented and executed in Moscow ML using Lex and Yacc as lexer and parser
generators. The implementation followed the translation rules as specified in
Section 4.2 on page 42. A testing strategy was created but was not systemati-
cally followed due to lack of time. During the implementation the testing strat-
egy was informally followed, i.e. the various functions were informally tested
after each component finished implementation. The structure of the parsetree
was analyzed to verify the structure matched that of the policy file. The func-
tions and types found in Appendix B.7 on page 102 were used to for the informal
tests.

The following chapter sets out to investigate whether the translated policy cor-
responds to the declarations from the policy. Furthermore, queries are written
to illustrate how to use the reasoner.

60

Implementation

CHAPTER 6

Verification

This chapter takes the model formulation from Chapter 4 on page 37 into use,
but it also attempts to determine if the knowledge base created is useful to such
a degree that the knowledge base can be said to model the policy defined in
SELinux’s security policy. After the verification has taken place, a catalog of
queries are created to showcase some of the useful queries that can be made
regarding the model of SELinux. Finally, queries are made regarding a small
scale of the case study.

6.1 Verification Strategy

To verify that the modeled knowledge base models the SELinux’s policy, some
goals of verification is needed. The method of verification is discussed and a set
of general queries are defined and the RACER queries that extracts the wanted
information is described.

The method of verification is to test the different atomic concepts and roles to
see if they yield the expected information. This means that the different axioms
are verified on a small scale and will then be scaled up to the complete knowledge
base. This strategy is feasible since every axiom adds to the knowledge base
such that the knowledge base is complete at every given time. An intermediate

0~ Uk WN

62 Verification

knowledge base does not model the SELinux policy of course, but models a
subset of it until the final axiom regarding it has been added to the knowledge
base.

6.2 Verification

The main focus of the verification is to test the axioms where roles are used
such as Typename C JhasAttribute.A. Simple axioms such as Typename C Type
are only verified for one example and is then assumed to behave similarly with
others axioms.

The simplest way to verify the model is to set up a small example and verify
that the different axioms behave as expected. It is important that the example
invokes all the different DL roles, but not necessarily all the different SELinux
syntaxes since this is a verification of the model and not of the translation
rules. The example policy from Listing 6.1 accomplishes the desired goal and is
supposed to represent a small subset of the case study.

Listing 6.1: A very small SELinux example policy

attribute domain;

type code_t;

type tester_t, domain;

type mosml_t, domain;

type mosml_exec_t;

allow mosml_t code_t:file read;

type_transition tester_t mosml_exec_t:process mosml_t;
allow tester_t mosml_exec_t:file {read getattr execute};
allow mosml_t mosml_exec_t:file entrypoint;

role tester_r types tester_t;

dominance{role supervisor_r {role tester_r;}}
allow supervisor_r tester_r;

user Tom roles supervisor_r;

user Alice roles tester_r;

The verification can in part occur visually using RICE’s ability to list individu-
als in the concepts, but also due to the fact that RICE can create a graph of the
(DL)role assertions made by the ABox. The role assertion graph can be seen on
Figure 6.1 on page 64. TESTER_-TWITHMOSML_EXEC_T__I has two hasbase-
Type role assertions to MOSML_EXEC_T__I. This is because of the translation
rules (see Section 4.2.1 on page 42) of Line 7 and Line 8. It introduces no
conflict in the DL model because of the UNA (unique name assumption), the
model sees it as one assertion.

6.2 Verification 63

Note the resemblance with Figure 6.1 on the next page and Figure 4.1 on page 40.
The difference is that Figure 4.1 has a few more permissions due to the policy
upon it was based on and that it contains a userdomain concept. The userdomain
concept, appears because the figure was based on an unprocessed policy file. A
processed policy file would have substituted the userdomain attribute with all
the types which it described, in this case the tester_r. This means that the role
associating the userdomain with the tester_t type would disappear and the role
associations from the userdomain would be substituted with the tester_t type
instead, exactly as seen on Figure 6.1 on the next page. This does not verify
the model, but it shows a good resemblance from what the translation rules
initially set out to model and the actual model. To verify the model formally,
it should be proved that the knowledge base models what is in the SELinux
policy and nothing else, meaning that it has to be shown that the declaration
interpretation appears in the model, but also that the model does not expand
upon what can be found in the policy.

RICE is also able to create a graph of the TBox. Since the TBox is a very flat
structure, only a part of the graph can be seen on Figure 6.2 on page 65. Note
the role hierarchy and that domain is below Attributes.

With the Figure 6.3 on page 66 the simple concept axioms and the ABox have
been verified. The concept axioms are shown as a hierarchical structure on
Figure 6.2 on page 65. The ABox’s role assertions are shown on Figure 6.1
on the next page and as can be seen on Figure 6.3 on page 66, RICE can be
used to verify the contents of the concepts which is what the concept assertions
handle. The concept content is listed to the right of the figure below ABoxes
and Instances.

What is left to be verified are the concept axioms using role fillers. There are 9 in
total: assign, candoType, targetsType, hasPermision, hasAttribute, hasBaseType,
transitionTo, hasTransitionClass and candoRole. The procedure for testing each
role is the same, use the RACER query (concept-instances (some R C)) to
test role R with regard to some concept C where a known relation should exist.
So, for the assign role, the query to determine that Line 11 from Listing 6.1 on
the preceding page has been successfully modeled is:

(concept-instances (some assign tester_r))

Which replies: (TOM ALICE). This means that Tom and Alice are bound to
the tester_r concept. The reason that they both appear is because of the role
hierarchy specified by Line 12, also from Listing 6.1 on the facing page (The
remaining line references in this section all refer to Listing 6.1 on the preceding
page). For the other roles, there are no implicit knowledge, so for

Verification

64

I 1 3aod I Fdavay T J1I4INIOdAYLINT

adAjsseqsey
I NIVWOaQ E I 1 3dOJHLIML TWSOW
2Inqunesey adAysyebuey, =dAysisbie
I 1L TWSOW
2Inglpesey
I L yals3L
adAjopue
I Y yalsal
ubisse

adAjsseqsey

I 1 23X3 TWSOWHLIML TWSOW

ojuopisuely

I 1 23X3 TWSOoW

adAjeseqgsey

I 371431n03x3

adAleseqgsey

I I4YLLvLIaD

I 1 D3X3 TWSOWHLIML ¥31S3L

=2dAysy=bue

401V I ¥ YOSIAYIdNS

Figure 6.1: The role assertion graph of the example policy

6.3 Queries 65

Figure 6.2: The concept assertion graph of the example policy

(concept-instances (some hasAttribute domain)) the reply is
(MOSML_T__I TESTER_T__I)
which is specified explicitly by Line 3 and Line 4.

This procedure can be repeated for the remaining seven roles with similar results.
The complete listing can be seen in Table 6.1 on page 67.

Having done that, it is assumed that the knowledge base models the SELinux
example defined by Listing 6.1 on page 62 and moreover it is assumed that any
knowledge base translated by the rules set forth in Chapter 4 on page 37 models
the SELinux policy under the conditions defined by the objective in Section 1.2
on page 4.

6.3 Queries

A knowledge base in itself is not that interesting. To make the knowledge base
useful, a catalog of queries have been developed to extract knowledge from the

66 Verification

£ RACER Interactive CLIENT Environment (RICE) =113
File Edit Tools Help
Concepts: IType,l’SeIect a Concept Mame to show {exact matching only) | ABoxes:
- DEFAULT SOFTTESTA... W
=4 SOFTTEST Instances: (al_J
(=4 ATTRIBUTE SUPERWISOR_R_ I
. TESTER_R_I
#- | CLASS
;B---_\JCROLE
=R} TESTER R
‘4 SUPERVISOR_R.
[] PERMISSION
#- | TYPE
L. USER
Statements andfor concept definitions:
[TBON-Graph | [apox-araph | [Predla..
RACER Replies:
| 0:00

Figure 6.3: The concept assertion graph of the example policy

model. The queries are first defined as general questions and are afterwards
specified as a set of queries that aims to answer the following questions. The
questions are relevant in the sense that it is interesting to formulate a high level
question and then get told which queries to run. Such an behavior could be
automated. Note that some queries uses individuals, while other use concepts.
The a human user is able to utilize the fact that the concepts are singletons and
the individual residing in it is the same name with __I appended. An auto-
mated process would benefit from having no such assumption, so note that the
query (individual-direct-types In) can be used to specify the individual
In concept and the query (concept-instances C) can be used to specify the
individuals residing in concept C.

1. Recall that an attribute represents a set of types. Which types are asso-
ciated with the attribute A7

Who is assigned to role R?
Which permissions does program P have?

What permissions does role R have?

A I S

Is user U allowed to run program P?

6.3 Queries 67

RACER query RACER reply

(concept-instances (ALICE TOM)
(some assign tester_r))

(concept-instances (SUPERVISOR_R__I TESTER_R__I)
(some candoType tester_t))

(concept-instances (MOSML_T__TI)
(some targetsType mosml_tWithcode_t))

(concept-instances (TESTER_TWITHMOSML_EXEC_T__I)
(some hasPermission executefile))

(concept-instances (MOSML_T__I TESTER_T__I)
(some hasAttribute domain))

(concept-instances (MOSML_TWITHCODE_T__I)
(some hasBaseType code_t))

(concept-instances (TESTER_TWITHMOSML_EXEC_T__I)
(some transitionTo mosml_t))

(concept-instances (MOSML_T__I)
(some hasTransitionClass process))

(concept-instances (SUPERVISOR_R__I)

(some candoRole tester_r))

Table 6.1: Verification of concept axioms involving roles

This set of queries can easily be expanded so it should not be seen as the set of in-
teresting queries but merely a subset which showcases the usability of having the
policy modeled in DL. Some questions have already been answered in the veri-
fication phase, e.g. the (concept-instances (some hasAttribute domain))
query answers Question 1 on the facing page with regard to the domain attribute
and

(concept-instances (some assign Programmer_r)) answers the Question 2
with regard to programmers. Question 3, 4 and 5 involves more queries than
one, so they will be showed by using queries upon the example from Listing 6.1
on page 62.

Question 3 is nice to answer first since the queries formulated can be used in
relation to the other questions. First, though, it is needed to specify the question
further since programs in SELinux can have different permissions depending on
the user (and role) that started it. So it is beneficial to revise the question
to: Which permissions does domain P have? Often only one domain is defined
per program, but the distinction is needed in case a type transition specifies a
different domain upon executing the same file. So, for the question regarding
the program domain of mosml the concept mosml_t is considered. The queries
can be found on Table 6.2 on the following page.

68 Verification

RACER query RACER reply

(individual-fillers (MOSML_TWITHCODE_T__I
mosml_t__i targetsType) MOSML_TWITHMOSML_EXEC_T__I)

(individual-fillers (READFILE__I)
MOSML_TWITHCODE_T__I hasPermission)

(individual-fillers (ENTRYPOINTFILE__I)

MOSML_TWITHMOSML_EXEC_T__I hasPermission)

Table 6.2: Query example of determining the domain permissions for mosml_t

Question 4 can be answered by first determining what types (domains) the
role are authorized to and then finding out what the permissions are for those
domains. The queries used to find the authorized types can be found on Table 6.3
and the result can be used with the queries that answers Question 3 to determine
which permissions are attributed to that domain.

RACER query RACER reply

(individual-fillers (TESTER_T__I)
tester_r__i candoType)

Table 6.3: Query example of the types authorized for role tester_r

Answering Question 5 is fairly complex. It involves a few ”jumps” back and
forth in the (DL) role assertion graph. First of all, the question is rephrased to
ask if the user U is allowed to enter the program domain P. The question will
be answered by an example. The question is Tom allowed to enter the mosml_t
domain. The queries used are found on Table 6.4 on the facing page

6.4 Software team

The case study was implemented into an SELinux policy as defined in Section 2.4
on page 24. If the translation rules were run on this example it would generate
so many axioms that the reasoner was not able to answer any queries regarding
the system. Because of the explosion of axioms, it was decided to focus on
the intended behavior and not use the macro full_user_role. Furthermore,
any declarations with no relation to the case study were removed. Even so
this reduced policy consisted of roughly 1,500 declarations which was translated
into approximately 19,000 axioms to represent the knowledge base (The raw
data for the TBox and ABox files were approximately 1MB in size). As a
comparison, the full_user_role macro applied to the policy in which the case

6.4 Software team 69

RACER query RACER reply

First of all it must be determined if the domain in question can be accessed at
all, if not, the answer is no and the query is answerd.

(individuals-related? T
mosml_t__i process__i hasTransitionClass)

If yes ("T") find out which type bindings has access to the domain, see Table 6.1
on page 67 regarding the transitionTo query.

(concept-instances (TESTER_TWITHMOSML_EXEC_T__I)
(some transitionTo mosml_t))

To find out if Tom has been granted access to the found type, it is needed to
invistigate his role.

(individual-fillers tom assign) (SUPERVISOR_R__I)

Using the queries for Question 4 it is found out that a supervisor has no types
authorized. It is then needed to investigate if that role dominates any other
roles

(concept-parents supervisor_r) ((TESTER_R))

It is then needed to determine which types the role is authorized for.
(individual-fillers tester_r__i candoType)
(TESTER_T__I)

The next query tests to find out if there is a link between the type that has

access to the mosml_t domain and the user Tom

(individual-fillers tester_t__i targetsType)
(TESTER_TWITHMOSML_EXEC_T__I)

It has been found that Tom is authorized to a role, which has access to a type,
that can interact with another type, which can transition to the mosml_t domain.
It is still needed to check if such a transition is allowed.

(individual-instance? T
TESTER_TWITHMOSML_EXEC_T__I
(some hasPermission executefile))

Table 6.4: Query example of determining whether a user can execute a program

70 Verification

study was implemented creates around 20,000 SELinux declarations and the
complete knowledge base when modeling this was 700MB in size.

Question 5 on page 66 is sought answered in the software team for user and
for the nedit_t domain. The result can be seen in Table 6.5. Note that the
”straight line” approach has been taken, i.e. the queries that are using the result
of previous queries always takes the result needed. In principal, an automated
tool would have to query every result it got back.

RACER query RACER reply
(individuals-related? nedit_t__i T

process__i hasTransitionClass)
(concept-instances (PROGRAMMER_TWITHNEDIT_EXEC_T__I
(some transitionTo nedit_t)) STAFF_TWITHNEDIT_EXEC_T__I

SECADM_TWITHNEDIT_EXEC_T__I
SYSADM_TWITHNEDIT_EXEC_T__I)

(individual-fillers tom assign) (SUPERVISOR_R__I)

(concept-parents supervisor_r) ((TESTER_R) (PROGRAMMER_R))

(individual-fillers (NEDIT_T__I PROGRAMMER_T__I)
programmer_r__i candoType)

(individual-fillers (PROGRAMMER_TWITHNEDIT_EXEC_T__I

programmer_t__i candoType) PROGRAMMER _TWITHMORE_EXEC_T__I

PROGRAMMER _TWITHMOSML_T__I
PROGRAMMER _TWITHMOSML_EXEC_T__I
PROGRAMMER _TWITHNEDIT_T__I
PROGRAMMER_TWITHMORE_T__I)
(individual-instance? T
PROGRAMMER _TWITHNEDIT_EXEC_T__I

(some hasPermission executefile))

Table 6.5: Question 5 answered for case study user Tom and type nedit_t
It can be seen that Tom via his role as supervisor, which dominates the program-

mer role, has permission to execute the executable of nedit which transitions
into the nedit domain.

6.4.1 Miscellaneous queries

Various queries are put to the reasoner to show how the system responds.

Who has any access to documentation files?
(concept-instances (some hasbasetype documentation_t))

6.5 Summary 71

(MORE_TWITHDOCUMENTATION_T__I)

Is Tom a supervisor?
(individual-instance? Tom (some assign Supervisor_r))
T

Is Alice a supervisor?
(individual-instance? Alice (some assign Supervisor_r))
NIL

Who are programmers
(concept-instances (some assign Programmer_r))
(BOB TOM)

Who are authorized for the nedit_t type?

(concept-instances (some candotype nedit_t))

(SUPERVISOR_R__I PROGRAMMER_R__TI)

Which domains interact with the code_t type?

(concept-instances (some hasBasetype code_t))
(NEDIT_TWITHCODE_T__I MOSML_TWITHCODE_T__I MORE_TWITHCODE_T__I)

It might surprise that the more program can interact with the code_t type, so
it is interesting to see exactly which permissions the more_t domain have when
interacting with the code_t type?

(individual-fillers MOSML_TWITHCODE_T__I haspermission)
(SEARCHDIR__I)

6.5 Summary

The chapter motivated the need for a verification of the knowledge base to
check if security policies declarations were modeling appropriately in DL. The
verification was done by informally rationale which concluded that the model
presumably are able to model any SELinux policy under the conditions set
by the thesis, since the verification did not find any faults after checking the
different types of declarations. A catalog of queries were created to show the
application of the DL model. Lastly, it was presented that the declarations of

72 Verification

the security policy translates into many more axioms in the DL model, making
it impossible to use the reasoner for queries regarding the full SELinux policy.
A smaller subset of declarations was subtracted from the case study, and was
used to extract some information regarding the case study.

The following chapter summarizes the project and discusses the encountered
problems and gives resumes of some related work.

CHAPTER 7

Discussion

This chapter summarizes the status of the project and discusses other models
and tools that have been found relevant to this thesis. Specifically it details the
problems that have been experienced due to the size of the resulting knowledge
base and tries to reason about the validity of the translation rules, modeled
knowledge base and the queries regarding it.

7.1 Status

The case study has been transformed into a DL knowledge base by using the
translation rules created by this thesis. The resulting knowledge base was com-
pared to the policy to see if it modeled the case study. Furthermore, a catalog
of queries was constructed for illustrating applications of the DL model and to
verify the model.

As presented in Chapter 1 on page 1, creating a program domain in SELinux
usually goes through a trial and error process wherein the system administrator
configures the permissions for the program. There exist a PERL based tool,
Audit2allow that collects all denied audit entries and creates appropriate type
access declarations. Such a tool is useful to run after installing and running
a new program, to help create the permissions needed by the program. The

74 Discussion

problem with Audit2allow is that it may create declarations that grant access
to resources that the program should not be able to access. Using the model of
the SELinux security policy the system administrator is able to execute queries
that will help him comprehend the effects of the newly added permissions.

7.2 Problems

It became apparent that the model of the system was going to be quite large
at a point when creating the translation rules. Looking at the translation rule
for type allowance, for instance, it is clear that one declaration from SELinux
can expand into an immense number of axioms in the knowledge base speci-
fication. Even though SELinux’s domain definitions appear quite well-defined
at a glance, this is mostly because of well named macros. Moreover, macros
often use other macros, so a domain definition consisting of few declarations in
the policy can very well expand up to many declarations ”behind the scene”,
i.e. after SELinux’s checkpolicy program has processed and created the com-
bined policy file. This fact, along with the fact that one declaration expands to
many axioms becomes an issue since the reasoner becomes sluggish even with a
relative small knowledge base, the one used in Section 6.4 on page 68.

This brings forth the question of whether or not the model is sound. Since the
knowledge base has been verified to model a (small) SELinux policy (Section 6.2
on page 62), with a complete set of declarations, the problem should not lie with
the model, but the scalability of the system.

It should be noted that the reasoner used is that of version 1.7.23, it was later
observed that a newer version had been released, but it was not within the
time-limit to retest on that release.

7.3 Related works

This section tries to give a small overview of papers and tools that have relevance
to the topic of this thesis. The overview does not contain a high level of detail,
but is meant as an appetizer for subjects that might be meaningful to lookup if
interest has been aroused by this thesis.

7.3 Related works 75

7.3.1 Models

The article |] defines a model in linear temporal logic that
sets out to model the SELinux policy as a labeled transition system in order to
verify certain information flows in some states of the transition system by use
of model checking.

Efforts are made in |] where the authors seek to create a
formalism to define an SELinux policy. They analyze the syntax of SELinux and
presents a formal modal, SELAC (SELinux Access Control), that can be used
for analysis. They create an accessibility algorithm based on their model that
can determine whether a program has been given access to a specific permission
on a specific object with a specific class, such a question is similar to Question 3
on page 66.

7.3.2 Tools

A tool named Apol shares some similarities with the tool developed through
this thesis. It was developed by Tresys Technology, a company involved with
the development of SELinux after it was released by NSA. The tool is also de-
pendent on getting the policy file after the checkpolicy program has produced
the complete policy in one file. The tool features an interface where the user can
search through the policy looking up the different types, attributes etc. It also
offers some analysis’ upon the policy, such as domain transition analysis, file
relabel analysis, type relationship summary and information flow analysis. See
Figure 7.1 on page 77 for a screenshot displaying Apol in analysis mode. Apol
distinguishes between direct information flow and indirect (transitive) informa-
tion flow to feature two kinds of analysis. As the screenshot suggests, analysis
upon the policy is time-consuming and they offer a way of time-limit the search
for information flows.

Tresys has developed several tools for SELinux and collectively released them as
SETools. Apol though, is the tool whose feature-set resembles that of this thesis
the most. Other tools include SeDiff - policy semantic diff tool for SELinux,
SeAudit - searches, sorts and views audit messages from SELinux etc. !.

1Can be found at http://tresys.com/selinux/selinux_policy_tools.shtml

http://tresys.com/selinux/selinux_policy_tools.shtml

76 Discussion

7.4 Summary

The discussion chapter found that by using the translation rules as set forward
by this thesis creates a knowledge base that is too large for the reasoner employed
by this project. It also found that the problem does not lie with the knowledge
base itself but with the size of the model, or perhaps an outdated reasoner,
because the knowledge base has been validated to model the policy.

An overview of a number of related works were presented and as it will be
seen in the next and final chapter, inspiration are found in these works, namely
inspiration to expand the query catalog.

77

7.4 Summary

{annos) o)A

435N GIS9l0M 807G AN 31 H2sUMY Sepisaddl 2B) suWad b5 isasse

e 95013

T —

_ (205 _ puiy

DN_ EAOY L0 JaCWINU asau) Ag

{spunaag _um_ {ghanuny _u_ {&unoH _u_ W AL

if pEad J33E3sB } 8114 1 3TMOPEYS YINe MOTIE [EFTE]
Ay
¥ padyyaT wpeshis 03 § mopeys woay 1| dayg

“(sjdays £ sannhas g mop4

if puadde a31am HoOT J33835E pEAL [300T 3 STI4T04T4 I 3742Sh 3TpeddyoTaash MOTIE [SEOTT]

a0
¥ Aasn 03§ padyyaaasn woay 7 dayg

if pEad J33E3sB } 8114 1 3TMOPEYS YINe MOTIE [EFTE]
a
¥ padyyaTaasn 03 § mopeys woay c| dayg

“(spdays 7 saanhas | mopq

£1 :shol nolp Ul J0 Jaquiny hussojjoy ay) punoy jody

P aIouw pur{> 1 Jash 011 MOpeys Wolj s/mo]) UoleuLiou|

T amaapT A Aesl

e TEREL Bgeg inogs vouruuopy sapuswer — || nop vopEuoN) anysIRL
T AOpELE TBN0g _ | synsay 92l Ajcwg
spnsay siskpeuy —
xg|= SMO|} 2JOW pulq e
_ z
£ £
wod mo ml 0} ol
m LD M0l
*4TASSR 09 JTMOPEYS WO SMOTH SATFTSURL
Sl
bl ~ = [« :.BEou_
4 peIURAY sancyaiye Buisn Joaes 0] seddy Builaels Jayd ml
_ Ca Afeuiung diysuopey sadd]
Ve | | = ﬂ;%m%_ [acfeiaY sl 128410
_ ajepdn) . ~adf1 Bunse A0 UDITRULIOIU] SAIELRI]
uoisgadcka renfad Buisn sadd) pua pud ml } Buels 0L LD 13340
] SN J0E3E PRUOde 7 d panbay | [IE4 VORELEAL WELIOG
suondp sisdpeuy— || 2k} sasdpeuy —
_ Juoy faod _ sisdeUy SRHEIU0D 314 _ zapny Aanod _ sjuauodwoy Aaog
disg peauesp? Alanl yaesT A
o= Juod-Adijodfoz T-Ad1jod oz T-Ad1jod/s3101j0dT)s3)/|ed0) /1sn/ - sisA[euy Adljod xnull 3s ~

Figure 7.1: Screenshot from Apol

78

Discussion

CHAPTER 8

Conclusion

The motivation for this project was strongly linked with that of Security—En-
hanced Linuz (SELinux), namely that the use of SELinux comes at a price in the
complexity of configuration and maintenance of such a system. The hypotheses
of this thesis was to test if a language such as Description Logic (DL) was
able to model the security controls found in SELinux. The inspiration for the
project (]]) modeled Role-Based Access Control in DL
but since RBAC plays a relative small part in the security controls of SELinux
it was interesting to see if a complete model of SELinux could be created. An
analysis of the concepts found in SELinux showed that Type-Enforcement (TE)
played the main role of the actual security policy of SELinux and that each
declaration found in the policy could be assigned a translation rule to create the
necessary DL statements that would model each declaration.

Throughout the thesis a recurring example has been brought forward to show
the different phases of the modeling. The case study exemplified a small hierar-
chy of user groups (roles) that together formed a software team (Chapter 1.3 on
page 5). The case study was first implemented into a running SELinux distribu-
tion in order to determine exactly which declarations were needed in the policy
to have the case study running on a SELinux system (Section 2.4 on page 24).
The resulting policy was analyzed and a model that covered SELinux’s policy
was developed. Every SELinux declaration were given a translation rule into
DL. The procedure for using the translation rules on the case study were given

80 Conclusion

(Section 4.3 on page 48) and queries regarding the case study were made to
extract information that showcased the usefulness of the model (Section 6.4 on
page 68).

It has been found that the objective of the thesis has been solved such that it
has been shown that DL can model the security controls found in SELinux and
useful queries can be made regarding it. The problem with the current status
is that the size of the resulting knowledge base is on of such magnitude that
the reasoning tool, RACER, cannot handle the model. It has been concluded
that the model is reasonable and that the issue lies with the size or possibly the
reasoner. There exists a risk that the model is flawed but the verification done
in Section 6.2 on page 62 suggests otherwise. Nevertheless, there are points
where further investigation would be useful.

The first item to investigate would be to run the knowledge base upon a new
release of the reasoner to see if such efforts would be beneficial. Another strategy
could be to further investigate alternative model formulations other than those
explored in Section 4.4 on page 49 to see if any gains could be archived on that
account.

It is clear that the query catalog could be expanded. It was not the main
emphasis of this project to develop an all encompassing query catalog as that
subject is quite large and complex as sketched up in the overview of related
works Section 7.3 on page 74. Since the model of SELinux’s security policy is
complete with regard to ordinary programs (non-daemon programs) it is possible
to develop information flow queries as discussed in the previous chapter, or other
similar analysis’ as defined in Apol.

One further formulation has been noticed that could be made to the model: Cur-
rently the permission concept is modeled as the concatenation of a permission
and its security class. It is not possible to determine which class the permission
concept has as base class without knowledge that the name has been created by
concatenation. The formulation that would derive such information is similar to
the hasBaseType role but is called hasBaseClass. It would function in the same
way except that it would link a permission concept with its base security class.

Improvements upon the implementation might be available, e.g. optimizing the
data structures used or optimizing the execution time, but in relation to the
basis of the implementation, namely the SELinux’s policy and the rules that
translates them, such improvements are insignificant.

It would be good if a formal model check could be made in order to verify the
validity of the translation rules. This project did not have time to go beyond
informally inferring that the model was sound.

81

Lastly, as mentioned the query catalog can be expanded, but moreover functions
that are able to create a set of queries that answers a general question, as seen
in Section 6.3 on page 65, could be implemented. This would function similar as
the macros seen in the SELinux policy, e.g. a function that answers Question 3
on page 66, could have the syntax getDomainPermissions (domainName) which
would produce the needed RACER queries that could be entered into RICE.

The established rules for translating the SELinux policy models a knowledge
base that has many possibilities for queries. The queries shown in this thesis is
only the tip of the iceberg, and it is a separate discipline to create a set of queries
that supports the many types of analysis as seen in Section 7.3 on page 74. The
outlook of using the model of this thesis to support many forms of analysis is
good, since the knowledge base models SELinux’s declarations.

82

Conclusion

APPENDIX A

SELinux grammar

This appendix lists the grammar of SELinux’s example policy. The grammar

comes mostly from |], but not all production rules are stated there
and some are outdated, so some declarations were found in the source of the
SELinux parser, checkpolicy |]. The grammar has been modified to

only state what can be found in the example policy, since this thesis uses that
policy as basis.

The grammar has been used in creation of the SML tool with few modifications.
The policy’s top-level production is as follows

policy -> flask te_rbac users opt_contraints contexts

A.1 Flask

flask -> class_def | classes class_def

class_def -> CLASS identifier

initial_sids -> initial_sid_def | initial_sids initial_sid_def;
initial_sid_def -> SID identifier

84 SELinux grammar

access_vectors —-> opt_common_perms av_perms;
opt_common_perms -> common_perms | empty
common_perms -> common_perms_def | common_perms common_perms_def;
common_perms_def -> COMMON identifier ’{’ identifier_list ’}’
av_perms ->av_perms_def | av_perms av_perms_def
av_perms_def ->
CLASS identifier ’{’ identifier_list ’}’

| CLASS identifier INHERITS identifier

| CLASS identifier INHERITS identifier ’{’ identifier_list ’}’
identifier_list -> identifier | identifier_list identifier

A2 TE

te_rbac -> te_rbac_statement | te_rbac te_rbac_statement
te_rbac_statement -> te_statement | rbac_statement
te_statement -> attrib_decl |
type_decl |
type_transition_rule |
type_change_rule |
te_av_rule |
te_assertion
rbac_statement -> role_decl |
role_dominance |
role_allow_rule

attrib_decl -> ATTRIBUTE identifier ’;°’

type_decl -> TYPE identifier opt_alias_def opt_attr_list ’;’
opt_alias_def -> ALIAS aliases | empty

aliases -> identifier | ’{’ identifier_list ’}’
opt_attr_list -> ’,’ attr_list | empty
attr_list -> identifier | attr_list ’,’ identifier

identifier_list -> identifier | identifier_list identifier
typealias_decl -> TYPEALIAS identifier ALIAS aliases ’;’
typeattribute_decl -> TYPEATTRIBUTE identifier attr_list ’;’

type_transition_rule -> TYPE_TRANSITION source_types target_types ’
source_types -> set

target_types -> set

classes —> set

:? classes new_tyj

A.3 RBAC 85

new_type -> identifier

type_change_rule -> TYPE_CHANGE set set ’:’ set identifier ’;’
set —-> 7%

| identifier

| nested_id_set

| >~ identifier

| >7’ nested_id_set

| identifier ’-’ identifier

nested_id_set -> ’{’ nested_id_list ’}’
nested_id_list -> nested_id_element | nested_id_list nested_id_element
nested_id_element -> identifier | ’-’ identifier | nested_id_set

te_av_rule -> av_kind source_types target_types ’:’ classes permissions ’;’
av_kind -> ALLOW | AUDITALLOW | DONTAUDIT

source_types -> set

target_types —> set

classes -> set

permissions —> set

A.3 RBAC

role_decl -> ROLE identifier TYPES types ’;’
types -> set

role_dominance -> DOMINANCE ’{’ roles ’}’
roles -> role_def | roles role_def
role_def -> ROLE identifier ’;’ | ROLE identifier ’{’ roles ’}’

role_allow_rule -> ALLOW current_roles new_roles ’;’
current_roles -> set
new_roles -> set

role_transition_rule -> ROLE_TRANSITION current_roles types new_role ’;’
current_roles -> set

types —> set

new_role -> identifier

86 SELinux grammar

A.4 Users

users -> user_decl | users user_decl
user_decl -> USER identifier ROLES set ’;’

A.5 Constraints

opt_constraints -> constraints | empty
constraints -> constraint_def | constraints constraint_def
constraint_def -> CONSTRAIN classes permissions cexpr ’;’
classes -> set
permissions -> set
cexpr -> ’(° cexpr ’)’ | not cexpr | expr and expr | expr or expr |
Ul op U2 | Ul op user_set | U2 op user_set |
R1 role_op R2 | Rl op role_set | R2 op role_set
T1 op T2 | T1 op type_set | T2 op type_set

not -> ’!’ | NOT
and -> ’&&’ | AND
or => ||’ | OR

op -> == | y1=2

role_op -> op | DOM | DOMBY | INCOMP
user_set -> set
role_set -> set
type_set -> set

A.6 Security Contexts

contexts -> initial_sid_contexts fs_uses opt_genfs_contexts net_contexts

file_context_spec -> pathname_regexp opt_security_context |

pathname_regexp ’-’ file_type opt_security_context
flle_type ->)b) |)C) I ,d) I 7P) |)1) | 7S) | PR
opt_security_context -> <<none>> | user ’:’ role ’:’ type

user —> identifier
role -> identifier
type -> identifier

A.6 Security Contexts 87

initial_sid_contexts -> initial_sid_context_def |
initial_sid_contexts initial_sid_context_def

initial_sid_context_def -> SID identifier security_context

security_context -> user ’:’ role ’:’ type

user -> identifier

role -> identifier

type -> identifier

fs_uses -> fs_use_def | fs_uses fs_use_def

fs_use_def -> FS_USE_XATTR fstype security_context ’;’
FS_USE_TASK fstype security_context ’;’
FS_USE_TRANS fstype security_context ’;’

opt_genfs_contexts -> genfs_contexts | empty
genfs_contexts -> genfs_context_def | genfs_contexts genfs_context_def

genfs_context_def -> GENFSCON fstype pathprefix ’-’ file_type security_context |
GENFSCON fstype pathprefix security_context
file_type -> ’b’> | ’c’> | °d’ | ’p> | 1’ | ’s’ | =’

net_contexts -> opt_port_contexts opt_netif_contexts opt_node_contexts
opt_port_contexts -> port_contexts | empty
port_contexts -> port_context_def | port_contexts port_context_def
port_context_def -> PORTCON protocol port security_context |

PORTCON protocol portrange security_context

protocol -> ’tcp’ | ’udp’
port -> integer
portrange -> port ’-’ port

opt_netif_contexts -> netif_contexts | empty

netif_contexts -> netif_context_def | netif_contexts netif_context_def
netif_context_def -> NETIFCON interface device_context packet_context
device_context -> security_context

packet_context -> security_context

opt_node_contexts -> node_contexts | empty

node_contexts -> node_context_def | node_contexts node_context_def

node_context_def -> NODECON ipv4_addr_def ipv4_addr_def security_context
| NODECON ipv6_addr ipv6_addr security_context

ipv4_addr_def -> number ’.’ number ’.’ number ’.’ number

ipv6_addr -> IPV6_ADDR

88 SELinux grammar

A.7 Conditionals

bool_def -> BOOL identifier bool_val ’;’

bool_val -> CTRUE | CFALSE

cond_stmt_def -> IF cond_expr ’{’ cond_pol_list ’}’ cond_else
cond_else : ELSE ’{’ cond_pol_list ’}’ | empty

cond_expr -> ’(’ cond_expr ’)’
| NOT cond_expr
| cond_expr AND cond_expr
| cond_expr OR cond_expr
| cond_expr XOR cond_expr
| cond_expr EQUALS cond_expr
| cond_expr NOTEQUAL cond_expr
| cond_expr_prim

cond_expr_prim -> identifier
cond_pol_list -> cond_pol_list cond_rule_def | empty

cond_rule_def -> cond_transition_def | cond_te_avtab_def

cond_transition_def -> TYPE_TRANSITION set set ’:’ set identifier ’;’
| TYPE_CHANGE set set ’:’ set identifier ’;°
cond_te_avtab_def -> cond_allow_def

| cond_auditallow_def
| cond_auditdeny_def
| cond_dontaudit_def

cond_allow_def -> ALLOW set set ’:’ set set ’;’
cond_auditallow_def -> AUDITALLOW set set ’:’ set set ’;’
cond_auditdeny_def -> AUDITDENY set set ’:’ set set ’;’

cond_dontaudit_def -> DONTAUDIT set set ’:’ set set ’;’

OO0 O Uk W

APPENDIX B

Source code

B.1 Abstract.sml

(o sk sk sk sk sk ok sk ok sk sk ok sk ok sk sk ok sk K ok sk oK sk K ok sk K sk R ok sk K sk R ok sk R sk R ok sk R sk R ok sk R sk koK sk R sk koK sk R sk kK sk K oKk K
(****************** SE Linux to Desciption TLogic ssksks ok sk ok ok ok ok skok sk ok
(ks ok s sk sk sk sk ok ok sk sk sk sk sk sk ok sk ok K sk ok sk ok sk ok R sk ok sk ok sk sk s ok ok sk ok Sk sk R sk ok sk ok Sk ok R sk ok sk ok sk sk ok ok Sk oKk ok K ok ok ok
(************************ Abstract SY ML AX ko ok sk ok ok sk ok sk ok ok ok ok ok ok ok Ok ok ok ok ROk K ok
(o sk skt sk ok ok sk sk sk ok ok sk sk sk sk ok sk sk ok ok K sk sk ok sk K sk sk ok ok K sk sk ok sk K sk ok ok ok K sk ok ok sk K sk ok ok sk K sk ok ok Sk K sk ok K Sk K oK ok K
(o woskokoskokorokok kR kR ok ok sk ok okokx Alan Dickerson SO9T 173 sooskok skok skok ook ok sk ok sk ok ook ok ok %
(ks ok s sk sk sk sk sk ok sk sk sk sk sk sk ok sk ok K sk oK sk ok sk ok K sk ok sk ok sk sk sk ok K sk ok sk ok R sk ok sk ok sk ok K sk ok sk ok sk sk sk ok ok sk ok ok ok K ok ok ok

datatype Nested_id_list =
Id_element of Nested_id_element
| Id_listwithElement of Nested_id_list * Nested_id_element
and Nested_id_set =
Id_list of Nested_id_list
and Nested_id_element =
Id_nested of string
| MinusId of string
| Id_set_nested of Nested_id_set

datatype Set =
Asterisk
| Id of string
| Id_set of Nested_id_set
| TildeId of string
| TildeSet of Nested_id_set
| IdMinusId of string % string

datatype Role_def =
Role of string

* X K X X X X

NN NN NN

90 Source code

| CompRole of string * Roles
and Roles =
Def of Role_def
| Comp of Roles % Role_def

3

datatype Cond_expr =

Id_con of string

| Cond_NOT of Cond_expr

| Cond_AND of Cond_expr * Cond_expr
| Cond_OR of Cond_expr * Cond_expr
| Cond_XOR of Cond_expr * Cond_expr
| Cond_EQ of Cond_expr * Cond_expr
| Cond_NEQ of Cond_expr * Cond_expr

3

datatype Bool_val=
TRUE
| FALSE

)

datatype Decl =

Common_perms_def of string x string list
Class_def of string

Class_def_perms of string * string list
Class_def_inherit of string * string
Class_def_inherit_perms of string * string * string list
Attrib_decl of string

Type_decl of string * string list * string list
Typealias_decl of string * string list
Typeattribute_decl of string * string list
Type_transition_rule of Set % Set % Set * string
AllowDecl of Set % Set * Set * Set
AuditAllowDecl of Set * Set * Set * Set
Role_decl of string * Set

Role_dominance of Roles

Role_allow_rule of Set * Set

Role_transition of Set * Set * string

User_decl of string x* Set

If of Cond_expr = Block =* Block

Bool_def of string * Bool_val

SKIP

withtype Block = Decl 1list;

)

type Policy = Decl list;

© 00O Uk WN -

B.2 Lexer.lex 91

B.2 Lexer.lex

(ks ok s sk sk sk sk sk ok sk ok sk sk ok sk ok sk ok K sk K sk ok sk ok s sk ok sk ok sk sk sk ok K sk ok sk ok R sk R sk ok sk ok K sk ok sk ok sk sk s ok K sk ok sk ok K ok ok sk ok ok %)
(******************* SE Linux to Desciption Logic *******************)
(5 sk ok sk sk s sk ok ok ok sk ok sk ok ok sk ok ok R sk K sk ok Sk ok R ok K oK ok sk ok sk ok K sk K K oK R K R KoK Sk oK 3 ok K oK oK sk ok s ok ok ok K K oK K oK o K K K K)
(o skoskokoskokok ok ok sk ok sk ok ook ok kokokokk ok ok LexXIng Specification sk ko sk sk k sk ok sk ok ok ok ok ok ok ok ok %)
(ks ok s sk sk sk sk sk ok sk sk sk sk sk sk ok sk ok s sk ok sk ok sk ok sk sk sk sk ok sk sk sk sk R sk ok sk ok S sk R sk ok sk ok S sk ok sk ok sk sk s ok ok sk ok sk ok K sk K sk ok Sk %)
(********************** Alan Dickerson s991173 **********************)
(5t sk ok sk sk s sk ok ok ok sk sk sk ok ok sk ok sk ok sk ok sk ok sk ok s sk ok sk ok sk sk R ok K sk ok Sk ok R sk R sk ok Sk ok s sk ok sk ok sk ok s ok ok ok oK K ok K ok ok ok ok K K)

{

open Lexing Gram;

(* (message, locl, loc2)x)
exception LexicalError of string * int * int
fun lexerError lexbuf s = raise LexicalError

(s,

(* Scan keywords as
(# distinguish them.
fun keyword s =

getLexemeStart lexbuf,

identifiers and use this

getLexemeEnd lexbuf);

function to *)

case s of
” common” => COMMON
”class” => CLASS
”inherits” => INHERITS
7attribute” => ATTRIBUTE
7allow” => ALLOW
7type” => TYPE
"typeattribute” => TYPEATTRIBUTE
”alias” => ALIAS
?type-transition” => TYPE_TRANSITION
”type-change” => TYPE_CHANGE
”auditallow” => AUDITALLOW
”dontaudit” => DONTAUDIT
"neverallow” => NEVERALLOW
?role” => ROLE
7types” => TYPES
”dominance” => DOMINANCE
”role_transition” => ROLE_TRANSITION
”user” => USER
”roles” => ROLES
”constrain” => CONSTRAIN
7sid” => SID
7fs_use_xattr” => FS_USE_XATTR
”fs_use_task” => FS_USE_TASK
”"fs_use_trans” => FS_USE_TRANS
”genfscon” => GENFSCON
”portcon” => PORTCON
"netifcon” => NETIFCON
”nodecon” => NODECON
”not” => NOT
”and” => AND
”or” => 0R
”xor” => XOR
7ul” = U1
Tu2” = U2
Trl” => R1
7r2” => R2
7t1” = T1
7t2” = T2
”dom” => DOM
” domby” => DOMBY
”incomp” => INCOMP

92

Source code

lexbuf) }

CQ gt Lo

internal_error”

L

Token lexbuf }

| "bool” => BOOL
| 77if17 — IF
| 7else” => ELSE
| ”true” => CTRUE
| 7 false” => CFALSE
| 7typealias” => TYPEALIAS
| => IDENTIFIER s;
}
rule Token = parse
[« ¢« A\t ‘\n¢ ‘\r‘] { Token lexbuf } (* skip x*)
| [‘0¢=“9¢]+ { case Int.fromString
(getLexeme lexbuf)
NONE => lexerError lexbuf ”
| SOME i => INT i
| [‘a‘—‘z“A‘—‘Z‘][‘a‘—‘z"A‘—‘Z“O‘—‘Q“_ﬂ*
{ keyword (getLexeme
| L I Y ¢ S < IR 4]* { PATH }
|[‘0‘7‘9”3‘7‘fﬂ*‘1ﬂ‘0‘7‘9“&‘7‘fﬂ*‘1ﬂ‘0‘7
IPV6_ADDR }
7 { SkipToEndLine lexbuf;
Cx { ASTERISK }
e~ { TILDE }
C_¢ { mInus }
L { comma }
fre { corLon }
0 { SEMI }
ofc { LBRACK }
e { RBRACK }
o { LPAR }
4) ¢ { RPAR }
» = { EQUALS }
"= { NOTEQUAL }
77868577 { AND }
?)ll” { OR }
» A { XO0rR }
JE { wot }
(o { potT }
eof { EOF
_ { lexerError lexbuf ”Illegal_symbol_in_input” }
and SkipToEndLine = parse
[\mt \r {0}
| (eof | \"z4) {0
| { SkipToEndLine lexbuf }

© 00O Uk W -

B.3 Gram.grm 93

B.3 Gram.grm

%{

(5t sk ok sk sk s sk sk sk ok sk sk sk ok ok sk ok sk ok sk ok sk ok sk ok ok ok ok ok sk sk sk ok K sk ok sk ok R sk R sk ok Sk ok R ok ok sk ok sk sk s ok ok ok oKk ok K ok ok sk ok K K)
(******************* SE Linux to Desciption Logic sk soksskk sk ok skoskkok % %)
(*** *)
(********************** Grammar sSpecification ks sk sk kok ook ok sk ok okok ok ok ok k)
(ks ok sk sk sk sk sk sk ok sk sk sk sk ok sk ok sk ok s sk ok sk ok sk ok s ok ok sk ok sk sk sk ok K sk ok sk ok R sk R sk ok sk ok K sk sk sk ok sk sk s ok ok sk ok sk ok K ok ok sk ok ok %)
(5 sk koot oskorskok ok skokskokokkokokokok ok Alan Dickerson SOOT 173 skorskoskok skok sk skok skook sk ok ok sk ok ok ok ok ok %)
(* Sk sk 3k sk sk ok >k 3k 3k ok Sk sk Sk sk sk sk ok ok 3k 3k 3k sk sk sk sk sk sk >k ok 3k K 3k Sk Sk sk sk sk >k ok ok 3k 3k 3k Sk sk sk sk sk ok ok 3k 3k ok Sk sk Sk sk 3k 3k ok ok ok K K 3k sk *)

open Abstract;
%}

%token <int> INT

Y%token <string> IDENTIFIER

%token ATTRIBUTE TYPE ALIAS TYPE_TRANSITION TYPE_CHANGE TYPEATTRIBUTE
%token ALLOW AUDITALLOW DONTAUDIT NEVERALLOW

%token ROLE TYPES DOMINANCE ROLE_TRANSITION COMMON CLASS INHERITS
%token USER ROLES

%token CONSTRAIN BLOCK IF ELSE CTRUE CFALSE NOT AND OR XOR PATH
%token SID

%token FS_USE_XATTR FS_USE_TASK FS_USE_TRANS

%token GENFSCON PORTCON NETIFCON NODECON IPV6_ADDR

%token ASTERISK TILDE MINUS COMMA COLON SEMI LBRACK RBRACK DOT
%token EOF

%token NOT AND OR EQUALS NOTEQUAL
%token U1l U2 R1 R2 T1 T2 TYPEALIAS
%token DOM DOMBY INCOMP BOOL
%token LPAR RPAR

%left OR /+ lowest precedence x*/

%left XOR

%left AND

%right NOT

%left EQUALS NOTEQUAL /x highest precedence x/

Y%start Policy

%type <Abstract.Decl> Decl

%type <Abstract.Decl list> Block Decls opt_else
%type <Abstract.Policy> Policy

%type <Abstract.Set> Set

%type <Abstract.Nested_id_list> Nested_id_list
%type <Abstract.Nested_id_set> Nested_id_set
%type <Abstract.Nested_id_element> Nested_id_element
%type <Abstract .Role_def> Role_def

%type <Abstract.Roles> Roles

%type <Abstract.Cond_expr> Cond_expr

%type <Abstract .Bool_val> Bool_val

%type <string list> opt_alias_def aliases identifier_list opt_attr_list
attr_list

/+* Dummy types, they are skipped x*/
%type <Abstract.Decl> Cexpr Op Role_op Security_context Portrange Ipv4
6%

Policy:
/* empty */
| Decl Policy EOF

-
©»—
g
-
N

—~

62
63
64

65
66

67

68
69

70

71

72

73

74

75

76

7

78

79

80

81

82

94

Source code

Decl

COMMON IDENTIFIER LBRACK
Common_perms_def ($2,

CLASS IDENTIFIER

CLASS IDENTIFIER LBRACK
(s2,84))

CLASS IDENTIFIER INHERITS IDENTIFIER
Class_def_inherit ($2,$4)}

CLASS IDENTIFIER INHERITS IDENTIFIER LBRACK

$4)}

identifier_list RBRACK

ATTRIBUTE IDENTIFIER SEMI

TYPEATTRIBUTE IDENTIFIER attr_list SEMI
Typeattribute_decl ($2, $3) }

TYPE IDENTIFIER opt_alias_def
4)

TYPEALIAS IDENTIFIER ALIAS aliases
$2, $4)}

SEMI

TYPE_TRANSITION Set Set COLON Set IDENTIFIER SEMI

Type_transition_rule($2,$3,$5,$6) }
ALLOW Set Set COLON Set Set SEMI
,$5,%6) }
AUDITALLOW Set Set COLON Set Set SEMI
$2,8$3,$5,%86) }
ROLE IDENTIFIER TYPES Set SEMI
$4)
DOMINANCE LBRACK Roles RBRACK
$3}
ALLOW Set Set SEMI
(%2, $3)
USER IDENTIFIER ROLES Set SEMI
s2))

IF Cond_expr Block opt_else

BOOL IDENTIFIER Bool_val SEMI

)

SEMI

TYPE_CHANGE Set Set COLON Set IDENTIFIER SEMI
DONTAUDIT Set Set COLON Set Set SEMI
NEVERALLOW Set Set COLON Set Set SEMI
ROLE_TRANSITION Set Set IDENTIFIER SEMI
CONSTRAIN Set Set Cexpr SEMI

SID IDENTIFIER

SID IDENTIFIER Security_context

FS_USE_XATTR IDENTIFIER Security_context SEMI
FS_USE_TASK IDENTIFIER Security_context SEMI
FS_USE_TRANS IDENTIFIER Security_context SEMI

identifier_list RBRACK

opt_attr_list SEMI

{
{
{
{

e T T s T e N e N e s T e

A A A A A A o A o A

Class_def $2}
Class_def_perms

identifier_list RBRACK

Attrib_decl $2

Type_decl($2,$3

Typealias_decl(

AllowDecl ($2,$3
AuditAllowDecl (
Role_decl($2,
Role_dominance
Role_allow_rule
User_decl($2,

If($2, $3, $4)

Bool_def ($2,$3

SKIP
SKIP
SKIP
SKIP
SKIP
SKIP
SKIP
SKIP
SKIP
SKIP
SKIP

M et e e o g ol g o g el

GENFSCON IDENTIFIER PATH MINUS IDENTIFIER Security_context

97

98

100
101

138
139
140
141
142
143
144

145
146

147
148

B.3 Gram.grm 95
| GENFSCON IDENTIFIER PATH Security_context
{ sk1p }
| PORTCON IDENTIFIER INT Security_context { SKIP }
| PORTCON IDENTIFIER Portrange Security_context { SKIP }
| NETIFCON IDENTIFIER Security_context Security_context
| NODECON Ipv4 Ipv4 Security_context { SKkIP
| NODECON IPV6_ADDR IPV6_ADDR Security_context { SKIP }
)
opt_alias_def:
/% empty x/ {013
| ALIAS aliases { $2 }
H
aliases:
IDENTIFIER { [s1]}
| LBRACK identifier_list RBRACK { %2 }
H
identifier_list:
IDENTIFIER { [s1]}
| identifier_list IDENTIFIER { $2::81 }
H
opt_attr_list:
/* empty =/ {013
| COMMA attr_list { $2 }
5
attr_list:
IDENTIFIER { [1] }
| attr_list COMMA IDENTIFIER { $3::81 }
H
Set:
ASTERISK { Asterisk }
| IDENTIFIER { Id $1 }
| Nested_id_set { Id_set $1 }
| TILDE IDENTIFIER { TildeId $2 }
| TILDE Nested_id_set { TildeSet $2 }
| IDENTIFIER MINUS IDENTIFIER { IdMinusId($1,
$3)}
H
Nested_id_set:
LBRACK Nested_id_list RBRACK { Id_list $2 }
>
Nested_id_list:
Nested_id_element { Id_element $1
| Nested_id_list Nested_id_element {

Id_listwithElement ($1,$2) }

3

Nested_id_element :

166

167

199

201
202
203

204
205

96

Source code

IDENTIFIER

| MINUS IDENTIFIER
| Nested_id_set
$1

)

Roles:
Role_def
| Roles Role_def

5
Role_def :
ROLE IDENTIFIER SEMI
| ROLE IDENTIFIER LBRACK Roles

)}

RBRACK
H

Bool_val:
CTRUE
{ TRUE }
| CFALSE
{ FALSE }

3

Block:

LBRACK Decls RBRACK

)

opt_else:
/* empty */ {
| ELSE Block {

)

Decls:
Decl
| Decl Decls

Cond_expr:
IDENTIFIER
| LPAR Cond_expr RPAR $2
| NOT Cond_expr
| Cond_expr AND Cond_expr
| Cond_expr OR Cond_expr
| Cond_expr XOR Cond_expr
| Cond_expr EQUALS Cond_expr
| Cond_expr NOTEQUAL Cond_expr

A A e o A e A

)

expr:
LPAR Cexpr RPAR
| NOT Cexpr

}
| Cexpr AND Cexpr
OR Cexpr
Ul 0p U2
Set
Set

R1 Role_op R2
{ skip }
| R1 Op Set
| R2 Op Set

{s2}

e e

e

Id_con $1 }

Cond_NOT $2
Cond_AND($1,
Cond_DR($1,
Cond_XOR($1,
Cond_EQ($1,
Cond _NEQ($1,$3) }

$3) }
$3)}
$3) }
$3)}

Id_nested $1

MinusId $2 }
Id_set_mnested

Def $1}
Comp ($1,

$2)}

Role $2 }
CompRole ($2, $4

{ skIp }
{ SKIP

{ sKkIP

SKIP }
SKIP
SKIP
SKIP

P]
e

SKIP }
SKIP

-

223
224
225
226

227
228
229

231

B.3 Gram.grm

97

| T1 0p T2
| T1 Op Set
| T2 0Op Set
5
Op : EQUALS
| NOTEQUAL { SKIP }
5
Role_op : Op
{ sKIP }
| DoM
| DOMBY
| INCOMP
5

Security_context:
IDENTIFIER COLON IDENTIFIER COLON IDENTIFIER

3

Portrange:
INT MINUS INT
{ skip }

3

Ipvéd :
INT DOT INT DOT INT DOT INT

3

{

{
{

SKIP }

SKIP }
SKIP }

{ sk1p }

{ SkIP }

{ SskIP }
{ skIP

{ SkIp }

N O U W

98

Source code

B.4 makeparser.bat

rem Creation of Scanner/Parser
mosmlc —c Abstract.sml

mosmllex Lexer.lex

mosmlyac —v Gram.grm

mosmlc —c —liberal Gram.sig Gram.sml
mosmlc —c Lexer.sml

mosml parse.sml

OO0 Uk W -

B.5 parse.sml 99

B.5 parse.sml

(5t sk ok sk sk s sk ok sk ok sk sk sk ok ok sk ok sk ok K sk ok sk ok sk ok s ok ok ok ok sk ok sk ok K sk ok Sk ok R ok R sk ok Sk ok R sk ok sk ok sk ok s ok ok koK K ok K ok ok sk ok K K)
(******************* SE Linux to Desciption Logic sk sk sk k sk ok skook ok % %)
(* Sk sk 3k sk sk ok >k sk 3k sk sk Sk Sk sk sk sk >k sk 3k sk 3k sk Sk sk sk sk >k sk sk 3k sk 3k Sk Sk sk 3k sk sk sk sk 3k 3k sk Sk Sk sk sk sk sk sk sk 3k ok 3k Sk Sk sk sk sk ok ok ok ok ok 3k sk *)
(5 sk sk sk skt ok sk ok skok ok okokskokok ok PaTsSing specification sk skon s skok skok s ok ok skok sk sk ok ok %)
(5t sk ok sk sk sk sk sk ok sk sk sk sk ok sk ok sk ok s sk ok sk ok sk ok s ok ok sk ok sk sk sk ok K sk ok sk ok K sk R sk ok sk ok K sk ok sk ok sk sk s ok K Sk ok sk ok R ok K sk ok ok K)
(********************** Alan Dickerson S991173 sk skok sk skook ok sk ok skook ok ok ok ok ok skook %)
(* Sk 3k sk sk 3k >k >k 3k 3k 3k sk Sk Sk sk sk 3k >k >k 3k 3k ok sk sk sk sk sk 3k 3k ok 3k 3k 3k Sk sk sk sk sk sk sk sk 3k ok ok sk sk sk sk sk sk sk sk 3k ok ok sk sk sk sk sk sk sk ok ok ok ok sk *)

app load [”Location”, ”Nonstdio”, ”Gram”, ”Lexer”];
open Abstract;

(* Fancy parsing from a file; show the offending program piecex*)
(* on error *)
fun parseExprReport file stream lexbuf =
let val expr =
Gram.Policy Lexer.Token lexbuf

handle
Parsing.ParseError f =>
let val posl = Lexing.getLexemeStart lexbuf
val pos2 = Lexing.getLexemeEnd lexbuf
in
Location.errMsg (file, stream, lexbuf)

(Location.Loc(posl, pos2))
”Syntax_error.”
end
| Lexer.LexicalError(msg, posl, pos2) =>
if posl >= 0 andalso pos2 >= 0 then
Location.errMsg (file, stream, lexbuf)
ocation.Loc(posl, pos
L i L posi pos2
(? Lexical_error:.” " msg)
else
(Location.errPrompt (”Lexical_error:.”
msg "~ "\n\n”);
raise Fail ”Lexical_error”);

in
Parsing.clearParser ();
expr
end
handle exn => (Parsing.clearParser(); raise exn);

(# Create lexer from instream =)

fun createlLexerStream (is : BasicIO.instream) =
Lexing.createlLexer (fn buff => fn n
=

Nonstdio.buff_input is buff 0 n)
(* Parse a program from a file , with error reporting x)
fun parsef file =
let val is = Nonstdio.open_in_bin file
val expr= parseExprReport file is (createlexerStream is)
handle exn => (BasicIO.close_in is; raise exn)
in
BasicIO.close_in 1is;
expr

end ;

© 00Uk WN -

100 Source code

B.6 auxiliary.sml

(5t sk sk s sk sk sk ok sk ok sk sk sk sk ok sk ok sk sk ok sk ok sk ok s ok sk sk ok sk ok s ok R sk ok sk ok R sk K sk ok sk ok K sk K sk ok sk sk s ok K sk ok sk ok R sk K Sk ok Sk ok K ok)
(******************* SE Linux to Desciption Logic *******************)
(5 sk sk sk skt sk ok sk ok sk ok ok sk ok sk ok ok K sk ok sk ok s ok K ok oKk ok ok K KK K oK K ok R KoK Sk ok ok K ok oK Sk ok s ok K K KK oK K K K KoK K oK K k)
(s sokokskokskokox ok ok kokkokkokkkokxokx Auxiliary functions ************************)
(ot s sk sk sk sk sk ok sk sk sk sk sk sk ok sk ok s sk ok sk ok sk ok s sk sk sk ok sk sk sk sk R sk ok sk ok S sk R sk ok sk ok K sk K sk ok sk sk sk sk K sk ok sk ok S sk F sk ok Sk ok R ok)
(********************** Alan Dickerson s991173 **********************)
(3t sk sk s sk sk ok sk sk sk sk ok sk ok sk ok s sk ok sk ok sk ok s ok sk ok ok sk sk s ok K sk ok Sk ok K sk K sk ok sk ok s ok K ok ok sk sk sk ok ok sk oK K sk K ok o Sk ok K ok K ok)

(*+ Takes a list and empties it over into the set
* addToSet: a’ list x set —> (b list * set)
*)
fun addToSet ([], set) = ([], set)
| addToSet (x::xs, set) =
let val set= Binaryset.add(set, x)
in addToSet (xs, set)

end;
fun insertIntoSetMap (attMap, _, []) = attMap
| insertIntoSetMap(attMap, data, k::keys) =
let
val _ = case peek attMap k of
SOME result =>
let val attSet = Binaryset.add(result, data)
in insert attMap (k, attSet)
end
| NONE => let
val attSet = Binaryset.empty String.compare;
val attSet = Binaryset.add(attSet, data)
in
insert attMap (k, attSet)
end
in insertIntoSetMap(attMap, data, keys)
end

3

fun lookupAlias(key, aliasMap) =

let
val items = case peek aliasMap key of
SOME result => Binaryset.listItems result
(+ It was not an alias, then it is what it is x)
| NONE => [key]
in
items
end

(* Lookup the typename in the attribute table to determine if it is a

set *)
fun lookupAttribute (key, attMap, aliasMap) =
let
val items = case peek attMap key of
SOME result => Binaryset.listItems result
(* It was not an atribute identifier , was it an alias?x)
| NONE => lookupAlias(key, aliasMap)
in
items
end

(* Determine all permissions in the system x)

B.6 auxiliary.sml

101

fun

fun

fun

3

(=

fun
|
|

let
val
in

createCart (c,perms) ::

end

string

getAllPerms ([]) = []

getAllPerms ((_,set)::ms) = (Binaryset.listItems set)QgetAllPerms (ms)
lookupClassPerms ([],_,_) = []
lookupClassPerms(c::cs,map,permSet) =
let
val set = case peek map c of
SOME result => result
| NONE => Binaryset.empty String.compare;
in
Binaryset.intersection(permSet, set)::lookupClassPerms(cs,map,
permSet)
end

createCart (_7
createCart (

) =

str, x::x

list * string set
createClassPerms (_,
createClassPerms ([], _
createClassPerms (c::cs

perms = Binaryset.listItems p

concat (x::

[str]) ::createCart (str, xs)

createClassPerms (cs,ps)

102 Source code

B.7 testFunctions.sml

s 3k ok ok ok R ok oK sk ok Sk oK K oK K oK oK sk ok s ok K koK K K K oK R KK Sk ok R oK K sk ok Sk ok s ok K ok oK sk ok K ok K koK K ok K oK K sk ok K ok K ok ok ok oK k)
sokskok ok kR ok kkxxkxxkkk SE Linux to Desciption Logic *******************)
sk sk ok sk ok K sk ok sk ok sk ok K ok ok sk ok sk sk sk ok ok sk ok sk sk S sk R sk ok sk ok K sk ok sk ok sk sk sk ok ok sk ok sk sk s sk R sk ok sk sk K sk ok sk ok sk sk K ok ok ok oK 3k)
s sk ok o sk ok koK Rk kR kR sk ok kot ok ko T esting FUunCtIONS sk skor sk okok skok sk ok sk skok sk sk ok skok sk ok ok ok ok ok)
st sk ok sk ok R sk ok sk ok Sk ok K ok ok sk ok sk ok s ok ok sk oK Sk ok R oKk sk ok Sk ok K sk ok sk ok sk ok s ok ok sk ok sk ok ok ok sk ok Sk ok K sk ok sk ok Sk ok K ok ok ok oK 3k)
sk kokkkokkkokkxokkkkxkkxk Alan Dickerson s991173 **********************)

© 000U W -

e T T NN
¥ ¥ ¥ ¥ ¥ ¥ ¥

val Ts — [naw’ hr C”];
val Tt = [7d”, "e”];
val testBools = [(”a”,true), (”b”,false) ,(”c¢c”,true)];
val testSet =Binaryset.empty String.compare;
fun printNamedSet [] = []
| printNamedSet ((name, theSet)::xs) = (name, Binaryset.listItems
theSet)::printNamedSet xs;
fun printTable table = printNamedSet (listItems table);
fun printSetlist [] = []

printSetlist (r::

Binaryset.listItems (r)::printSetlist(rs);

***)

©O00 O Uk W -

B.8 stringFunctions.sml 103

B.8 stringFunctions.sml

(5t sk ok sk sk s sk sk sk ok sk sk sk ok ok sk ok sk ok sk ok sk ok sk ok ok ok ok ok sk sk sk ok K sk ok sk ok R sk R sk ok Sk ok R ok ok sk ok sk sk s ok ok ok oKk ok K ok ok sk ok K K)
(******************* SE Linux to Desciption Logic sk soksskk sk ok skoskkok % %)
(5 sk ok oo sk sk ook ook ok K ok oK oK K oK R KoK S oK K oK R KK sk oK R oK R KK K K KR KK K oK K oK K KK Sk oK oK K K K K K K K K K K K)
(ke sk s sk sk sk sk sk ok skok skok ok ok skokokokok ok SETING FUMICETOMIS shok skok ook sk sk sk ok sk ok sk sk sk ok ok ok sk ok sk ok ok ok)
(ks ok sk sk sk sk sk sk ok sk sk sk sk ok sk ok sk ok s sk ok sk ok sk ok s ok ok sk ok sk sk sk ok K sk ok sk ok R sk R sk ok sk ok K sk sk sk ok sk sk s ok ok sk ok sk ok K ok ok sk ok ok %)
(5 sk koot oskorskok ok skokskokokkokokokok ok Alan Dickerson SOOT 173 skorskoskok skok sk skok skook sk ok ok sk ok ok ok ok ok %)
(5 sk ok sk sk s sk ok ok ok sk ok sk ok ok sk ok ok ok K Kok Sk oK K sk R oK oK sk ok s ok K K K K oK K K R KK K oK ok ok ok ok Sk ok s ok K K K K oK K oK K K K K)

val addSpace = fn x => concat[x,”.\n”];
val addComma = fn x => concat[x,”,.”];
val addILine = fn x => concat[x,” __I\n"];
val addI = fn x => concat[x,” __1"];

(*+ TBOX functions)

(# inclString: Concept * Concept * Role —> string
* the strings have the form as:
* (implies File_type Attribute)
* (implies CProgrammer (some candoType Java_exec_-t))
*)
fun inclString(cl,c2, 77) = concat ([”(implies.”, c1, 7.7, c2, 7)” 7\n”
D)
| inclString(cl,c2, role) =
(* self identifier is sometimes used to denote when a type has a
% permission upon itself. It is always used in conjunction with a

role
% since the Self concept does not exist.
*
concat ([” (implies.”, c1, 7_(some.”, role, ".7, c2, 7))”,”"\n”])

>

(* incl: conceptList * conceptList % Role —> string list

*)

(* Provides a one to many mapping between first and second list *)
fun dncl(_,[], -) = []

[incl([],-, -) =[]

| incl(cl::cls, c2::¢2s, ””) = inclString(cl,c2,””)::incl([cl],c2s,””)
| incl(cl;:cls, c2::c2s, role) = inclString(cl,c2,role)::incl ([cl],c2s
,role

>
exception ListsLengthError;

(* Provides a one to one mapping between first and second list)
fun incl2(_,[], _) =
| inc12 (11,20) = I
| incl2(cl::cls, c2::c2s, role) =
if length (cl::cls) <> length (c2::c2s) then raise ListsLengthError
else
inclString(cl,c2,role)::incl2(cls,c2s,role)

fun withString(_,[]) = []
| withstring ([],.) = []
| withString(tl::tls, t2::t2s) =
let
val t2mod = if t2 = ”self” then tl else t2
in

108
109
110
111
112
113
114

104 Source code

concat ([t1,”With” ,t2mod]) :: withString ([t1],t2s)Q@withString(tls,t2::

t2s)
end
;
fun targetsDecl (_, [])=][]
| targetsDecl ([], _)= []
| targetsDecl (tl::ts, targetTypes)=
let val withStrings = withString([tl], targetTypes)
in
incl ([tl1], withStrings, "targetsType”)QtargetsDecl(ts,targetTypes)
end
;
fun replaceSelf (_, []) = []
| replaceSelf (t1, t2::ts) =
let
val typeMod = if t2 = ”self” then tl else t2
in
typeMod :: replaceSelf (tl,ts)
end

)

fun hasBaseTypeDecl (_, [])= []
| hasBaseTypeDecl ([], = []
| hasBaseTypeDecl (tl::ts, t2::t2s)=
let
val targetTypes = replaceSelf (tl, t2::t2s)
val withStrings = withString ([tl],targetTypes)
in
incl2(withStrings, targetTypes , ”"hasBaseType”)Q@hasBaseTypeDecl(ts,
t2::t2s)
end
5
(=
mosml {more, self}
mosmlWithmore
mosmlwithmosml

(implies mosml_exec_.tWithmore_exec_t (some hasBaseType more_exec_t))
(implies mosml_exec_tWithmosml_exec_t (some hasBaseType self))

*)

fun hasPermissionDecl (_,[])= []
| hasPermissionDecl ([],_)= []
| hasPermissionDecl (withStrings, pc::pcs)=
let fun createPerms ([],perms) = []
| createPerms (wl::ws,perms) = incl([wl], perms, "hasPermission”)
QcreatePerms (ws, perms)
in
createPerms (withStrings, pc)@hasPermissionDecl(withStrings ,pcs)
end
;
fun transitionToDecl ([],_)= []
| transitionToDecl (wl::ws, name)=

incl ([wl], [name], ”transitionTo”)0@transitionToDecl (ws,name)

120
121
122
123

165
166
167
168
169
170
171

172
173

175
176
177

B.8 stringFunctions.sml 105

fun candoRoleDecl ([],_)= []
| candoRoleDecl (rl::rs, targetRoles)=
incl ([r1], targetRoles, ”"candoRole”)@candoRoleDecl (rs,targetRoles

fun roleDominanceDecl ([]) = []
| roleDominanceDecl(rl::rs) =

let
val (name, roles) = ril
in
incl ([name], roles,””)@roleDominanceDecl (rs)
end
;
fun conceptInclusion ([],_) = []
| conceptInclusion(p::ps, Concept) = incl ([p], [Concept], ””)

@conceptInclusion(ps, Concept)

(kwkwknkxk ABOX functions sosksosksskssk x)

(* (instance name Concept) x)
fun cAssertString(name, concept) = concat ([”(instance.’

’ay)w 777\nay]) ;

3 »

,name ,” .” ,concept

(x (related cl c2 role) =x)

fun rAssertString(cl, c2, role) = concat ([”(related.” ,cl,”.” ,c2,”.7",
role ’7’))7 ’”\n”]) ;
fun roleAssertDecl(name, [],_) = []
| roleAssertDecl (name, r::rs,role) = rAssertString(name,r,role)::

roleAssertDecl (name, rs, role)

(* Provides a one to one mapping between first and second list *)
fun roleAssertDecl2(_,[], _) = []
| roleAssertDecl2 ([],_, _) = []
| roleAssertDecl2(cl::cls, c2::c2s, role) =
if length (cl::cls) <> length (c2::c2s) then raise ListsLengthError
else
rAssertString(cl,c2,role):: roleAssertDecl2(cls,c2s,role)

fun conceptInstances ([]) = []
| conceptInstances(c::cs) = cAssertString(addl c, c)::conceptInstances
(cs)
fun targetsDeclAbox (_, [])= []
| targetsDeclAbox ([], _)= []

| targetsDeclAbox (tl::ts, targetTypes)=
let val withStrings = withString ([t1], targetTypes)

211
212
213
214
215
216
217
218
219

106 Source code

in
roleAssertDecl (addI t1, List.map addI (withStrings), “targetsType”
)etargetsDeclAbox (ts,targetTypes)
end
;

fun hasBaseTypeDeclAbox (_, [])= []
| hasBaseTypeDeclAbox ([], =]
| hasBaseTypeDeclAbox (tl::ts, t2::t2s)=

let

val targetTypes = replaceSelf (tl, t2::t2s)

val withStrings = withString ([t1],targetTypes);
in

roleAssertDecl2(List.map addI (withStrings), List.map addI (
targetTypes), "hasBaseType”)@hasBaseTypeDeclAbox (ts,t2::t2s)

end
;
fun hasPermissionDeclAbox (_,[])= []
| hasPermissionDeclAbox ([],_)= []
| hasPermissionDeclAbox (withStrings, pc::pcs)=
let fun createPerms ([],perms) = []
| createPerms (wl::ws,perms) = roleAssertDecl(addI wl, List.map
addI (perms), "hasPermission”)@createPerms (ws, perms)
in
createPerms (withStrings , pc)QhasPermissionDeclAbox(withStrings ,pcs
)
end
;
fun transitionToDeclAbox ([],_)= []
| transitionToDeclAbox (wl::ws, name)=
rAssertString (addl wl, addl name, ”transitionTo”)::

transitionToDeclAbox (ws,name)
H

fun roleDominanceDeclAbox ([]) = []
| roleDominanceDeclAbox(rl::rs) =

let
val (name, roles) = ri
in
roleAssertDecl (addl name, List.map addI(roles), ”candoType”)
QroleDominanceDeclAbox (rs)
end
H
fun candoRoleDeclAbox ([],_)= []

| candoRoleDeclAbox (rl::rs, targetRoles)=
roleAssertDecl (addl ri, List.map addI(targetRoles), ”candoRole”)
@candoRoleDeclAbox (rs,targetRoles)

5
(wskkxsknkskk File functions sk x)

fun makeFileOut (fileName) = TextIO.openOut(fileName) ;

fun write(out, []) = ()
| write(out, s::ss) = let val _ = TextIO.output (out,s);

B.8 stringFunctions.sml 107

236 in

237 write (out ,ss)

238 end

239

240

241

242 fun appendToFile(fileName, s) =

243 let

244 val out = TextIO.openAppend (fileName)

245 in

246 write (out,s);

247 TextIO.closeOut (out)

248 end;

249

250

251 (* fun writeToFile(out, s) = TextIO . output (out,s); =)
252 fun writeToSig(s) = appendToFile(”signature.krss” s);
253 fun writeToTbox(s) = appendToFile(”tbox.krss” ,s);
254 fun writeToAbox(s) = appendToFile(”abox.krss” ,s);
255

256

257

258 fun saveFile(out) = TextIO.closeOut (out);

259

260 fun makeFile(filename,s) =

261 let

262 val out = TextIO.openOut(filename)

263 in

264 TextIO.output(out,s);

265 TextIO.closeOut (out)

266 end;

267

268

269 (s skorokskoroksknx Signature sk sk k)
270 fun createAllPermsClass(ClassSet, PermMap) =

271 let

272 val PermList = getAllPerms (listItems PermMap)

273 val AllPermSet = Binaryset.empty String.compare

274 val AllPermSet = Binaryset.addList(AllPermSet, PermList)

275

276 val Classes = Binaryset.listItems ClassSet;

277 val lookupList = lookupClassPerms(Classes, PermMap,
AllPermSet)

278 val PermClass = createClassPerms(Classes,lookuplList)

279 in

280 List.concat PermClass

281 end

282

283

284

285 fun writeWithString _ 1 =1l

286 | writeWithString f (w::ws) =

287 let

288 val _ = writeToSig ([f w])

289 in

290 writeWithString f ws

291 end

292

293

294

295 fun createSignature(name, ClassSet, TypeSet, RoleSet, PermMap, AttSet,
UserSet, WithSet) =

296 let

297 val kb = [”(in—knowledge—base_” ,name ,”_” ,name,” Abox” ,”)\n\n"]

298 val _ = writeToSig(kb)

322
323
324
325

340

341
342
343
344
345

347

108

Source code

in

end

val classes = Binaryset.listItems(ClassSet)

val types = Binaryset.listItems(TypeSet)

val withStrings = Binaryset.listItems (WithSet)

val roles = Binaryset.listItems(RoleSet)

val users = Binaryset.listItems(UserSet)

val attributes = Binaryset.listItems(AttSet)

val permClass = createAllPermsClass(ClassSet, PermMap)

val sigStart = [”(signature”]

val _ = writeToSig(sigStart)

(* Concepts x)

val _ = writeToSig ([”\t:atomic—concepts_(Class_Type_Permission.
CRole User_Attribute\n”])

val = wrlteT081g([”;,_Classes\n”]@Llst map addSpace (classes))

val _ = writeToSig([”;;-Types\n”]0@List.map addSpace (types))

val _ = writeToSig ([”;;-\t\tWithTypes\n”])

val _ = writeToSig(List.map addSpace (withStrings))

val _ = writeToSig([”;;-Roles\n”]@List.map addSpace (roles))

val = writeToSig ([”;;-Attributes\n”]0@List.map addSpace (
attrlbutes))

val _ = writeToSig ([”;;_-Combined_PermissionClasses\n”]@List .map
addSpace (permClass))

val _ = writeToSig([”)”])

(* Roles)

val _ = writeToSig ([”\t\t:roles_(\n\t\t\t(candoType___:range._
Type)\n\t\t\t(targetsType._:parent_candoType)\n\t\t\t(
hasPermission._:range_Permission)\n\t\t\t(hasAttribute_:range
Attribute)\n\t\t\t(hasTransitionClass:range_Class)\n\t\t\t
(hasBaseType.:range_-Type)\n\t\t\t(candoRole.:range_.CRole)\n\
t\t\t(transitionTo._:range_Type)\n\t\t\t(assign_:range_CRole)

\n\t\t\t)"])

(* Individuals =)

val _ = writeToSig ([”\n\t\t:individuals_-(\n”])

val _ = writeToSig([”;;-Classes\n”]@List.map addILine (classes))

val _ = writeToSig([”;;-Types\n”]@List.map addILine (types))

val _ = writeToSig ([”;; \t\tWithTypes\n”])

val _ = writeToSig(List.map addILine (withStrings))

val _ = writeToSig([”;;_-Roles\n”]|@List.map addILine (roles))

(* Note that users are an instance and only a space is added =)

val _ = writeToSig([”;;-Users\n”]0@List.map addSpace (users))

val _ = writeToSig ([”;;_Attributes\n”]@List.map addILine (
attributes))

val _ = writeToSig([”;;_-Combined_PermissionClasses\n”]0@List .map

addILine (permClass)Q[”)”])

val sigEnd = [”)”7]

writeToSig(sigEnd)

© 00O Uk W

B.9 main.sml 109

B.9 main.sml

(ks ok s sk sk sk sk sk ok sk ok sk sk ok sk ok sk ok K sk K sk ok sk ok s sk ok sk ok sk sk sk ok K sk ok sk ok R sk R sk ok sk ok K sk ok sk ok sk sk s ok K sk ok sk ok K ok ok sk ok ok %)
(******************* SE Linux to Desciption Logic *******************)
(**)
(*************************** Interpreter ****************************)
(ks ok s sk sk sk sk sk ok sk sk sk sk sk sk ok sk ok s sk ok sk ok sk ok sk sk sk sk ok sk sk sk sk R sk ok sk ok S sk R sk ok sk ok S sk ok sk ok sk sk s ok ok sk ok sk ok K sk K sk ok Sk %)
(********************** Alan Dickerson s991173 **********************)
(5t sk ok sk sk s sk ok ok ok sk sk sk ok ok sk ok sk ok sk ok sk ok sk ok s sk ok sk ok sk sk R ok K sk ok Sk ok R sk R sk ok Sk ok s sk ok sk ok sk ok s ok ok ok oK K ok K ok ok ok ok K K)
load ” Binaryset”;

load ”Polyhash”;

load ”Date”; load ”Time”;

val startTime = Date.toString (Date.fromTimeLocal (Time.now ())) ;
open Polyhash;

exception ElementNotFoundInList;

exception UnkownError;

use ”parse.sml”;

use ”auxiliary .sml”
use ”"testFunctions.sml”;

use ”stringFunctions.sml”;

(* Clear running outputfiles x)

makeFile (”signature.krss” ,concat [”

;5 —Output_started_on.” ,startTime ,” \n”

;
makeFile ("tbox.krss” ,””);
makeFile ("abox.krss” ,””);

(kxkxkxkxk Data moddeling sk x)

type StringSet = string Binaryset.set;

type RoleMap = (string, string list) hash_table;
type ClassSet = StringSet;

type AttributeSet = StringSet;

type TypeSet = StringSet;

type RoleSet = StringSet;

type UserSet= StringSet;

type CommonMap = (string, StringSet) hash_table;
type BoolMap = (string, bool) hash_table;

type AttributeMap = (string, StringSet) hash_table;
type AliasMap = (string, StringSet) hash_tablej;

type PermissionMap = (string, StringSet) hash_table;
val parsetree = parsef ”mini.conf”;

val INITIALHASHSIZE = 5000;

val ClassSet = Binaryset.empty String.compare;
val AttributeSet = Binaryset.empty String.compare;
val TypeSet Binaryset.empty String.compare;
val WithSet Binaryset.empty String.compare;
val RoleSet Binaryset.empty String.compare;

85

87

88
89

90
91

98
99

100
101
102
103
104

105
106

107

110 Source code

val
val
val

val

val

val

fun

UserSet — Binaryset.empty String.compare;
Abox = Binaryset.empty String.compare;
Bools =

mkPolyTable (INITIALHASHSIZE , ElementNotFoundInList) : BoolMap;
AttMap =
mkPolyTable (INITIALHASHSIZE, ElementNotFoundInList)
AttributeMap;

AliasMap =
mkPolyTable (INITIALHASHSIZE , ElementNotFoundInList) : AliasMap;

CommonMap =
mkPolyTable (INITIALHASHSIZE, ElementNotFoundInList) : CommonMap;
PermissionMap =
mkPolyTable (INITIALHASHSIZE, ElementNotFoundInList)
PermissionMap;

PTih (Common_perms_def (name,list),classSet, permissionList, bools,
commonList attributeSet , typeSet, aliasMap, attMap, roleSet
userSet) =

))

let
val commonSet = Binaryset.empty String.compare;
val (_,commonSet) = addToSet (list,commonSet)
val _ = insert commonList (name, commonSet)

in (classSet, permissionlList , bools, commonlList,
attributeSet , typeSet, aliasMap, attMap, roleSet,
userSet)

end

PTih (Class_def name,classSet, permissionList, bools,commonList,
attributeSet , typeSet, aliasMap, attMap, roleSet, userSet) =
let val classSet= Binaryset.add(classSet, name)
in (classSet, permissionlList, bools, commonList,
attributeSet , typeSet, aliasMap, attMap, roleSet,
userSet)
end
PTih (Class_def_perms (name,list),classSet, permissionList, bools,
commonList , attributeSet , typeSet, aliasMap, attMap, roleSet
userSet) =

3

let
val classSet= Binaryset.add(classSet, name)
val permSet — Binaryset.empty String.compare
val (_,permSet) = addToSet(list ,permSet)
val _ = insert permissionList (name, permSet)

in (classSet, permissionlList , bools, commonList,
attributeSet , typeSet, aliasMap, attMap, roleSet,
userSet)
end
PT1h (Class_def_inherit (name,inherit),classSet, permissionList,
bools, commonList, attributeSet, typeSet, aliasMap, attMap, roleSet
, userSet) =

let
val classSet= Binaryset.add(classSet, name)
val foundSet = valOf (peek commonList inherit)
val _ = insert permissionList (name, foundSet)

in (classSet, permissionlList , bools, commonList,
attributeSet , typeSet, aliasMap, attMap, roleSet,
userSet)

end

PTih (Class_def_inherit_perms (name, inherit,list) ,classSet,
permissionList , bools, commonList, attributeSet, typeSet, aliasMap,
attMap, roleSet, userSet) =
let

B.9 main.sml 111

108 val classSet= Binaryset.add(classSet, name)

109 val permSet = Binaryset.empty String.compare;
110 (* Find the inheritances x)

111 val foundSet = valOf (peek commonList inherit)
112 (* Make the other permissionset =x)

113 val (_,permSet) = addToSet (list,permSet)

114 (* Make the union x)

115 val permSet = Binaryset.union(foundSet ,permSet)
116 val _ = insert permissionList (name, permSet)
117 in (classSet, permissionlList, bools, commonList,

attributeSet
userSet)

, typeSet, aliasMap, attMap, roleSet,

118 end

119

120 | PTih (Attrib_decl name, classSet, permissionlList, bools, commonList,

attributeSet , typeSet, aliasMap, attMap, roleSet, userSet) =

121 let val attributeSet= Binaryset.add(attributeSet , name)

122 in (classSet, permissionList, bools, commonList,
attributeSet , typeSet, aliasMap, attMap, roleSet,
userSet)

123 end

124 | PTith (Type_decl(name, aliases, attributeNames),bclassSet,

permissionlList , bools, commonList, attributeSet , typeSet, aliasMap,
attMap, roleSet, userSet) =

125 let

126 val typeSet= Binaryset.add(typeSet, name)

127 val aliasMap =

128 if List.length aliases <> 0

129 then insertIntoSetMap(aliasMap, name, aliases)

130 else aliasMap

131 val attMap = insertIntoSetMap(attMap, name,

attributeNames)

132 in (classSet, permissionList, bools, commonList ,attributeSet
, typeSet, aliasMap, attMap, roleSet, userSet)

133 end

134 | PTith (Typeattribute_decl (name, attributeNames),classSet,

permissionList , bools, commonList, attributeSet , typeSet, aliasMap,
attMap, roleSet, userSet) =

135 let
136 val attMap = insertIntoSetMap(attMap, name,
attributeNames)
137 in (classSet, permissionList, bools, commonList ,attributeSet
, typeSet, aliasMap, attMap, roleSet, userSet)
138 end
139 | PTih (Typealias_decl (name, aliases),classSet, permissionList, bools

, commonList
userSet) =

, attributeSet , typeSet, aliasMap, attMap, roleSet,

140 let

141 val aliasMap = insertIntoSetMap(aliasMap, name, aliases)

142 in (classSet, permissionList, bools, commonList ,attributeSet
, typeSet, aliasMap, attMap, roleSet, userSet)

143 end

144 | PTih (Role_decl (name, _),classSet, permissionList, bools, commonList

, attributeSet, typeSet, aliasMap, attMap, roleSet, userSet) =
145 let

146 val roleSet= Binaryset.add(roleSet, name)

147 in (classSet, permissionList, bools, commonList ,attributeSet
, typeSet, aliasMap, attMap, roleSet, userSet)

148 end

149 | PTih (User_decl(name, _),classSet, permissionlList, bools, commonList,

attributeSet , typeSet, aliasMap, attMap, roleSet, userSet) =
150 let
151 val userSet= Binaryset.add(userSet, name)
152 in (classSet, permissionList, bools, commonList ,attributeSet
, typeSet, aliasMap, attMap, roleSet, userSet)

163
164

165

166

168

169

170

171
172

173

174
175
176
177
178
179
180
181

182
183
184

185

187
188
189
190
191
192
193
194
195

196

197
198

112 Source code

end

| PTith (Bool_def(name, b) ,classSet, permissionList, bools, commonList
attributeSet , typeSet, aliasMap, attMap, roleSet, userSet) =
let

)

val theBool = if b = TRUE then true else false
val _ = insert bools (name, theBool)
in (classSet, permissionlList, bools, commonList,
attributeSet , typeSet, aliasMap, attMap, roleSet,
userSet)
end
| PTith (_ ,classSet, permissionlList, bools, commonList, attributeSet,
typeSet , aliasMap, attMap, roleSet, userSet) =
(classSet, permissionList , bools, commonList, attributeSet,
typeSet , aliasMap, attMap, roleSet, userSet)

3

(* PT1: parsetree = Classes % Permissions % Bools * Common x
AttributeMap —> Classes * Permissions % Bools % Common x*
AttributeMap)

fun PT1 ([],classSet, permissionlList, bools, commonList, attributeSet,
typeSet, aliasMap, attMap, roleSet, userSet) = (classSet,
permissionlList , bools,commonList, attributeSet , typeSet, aliasMap,
attMap, roleSet, userSet)

| PT1 (decl::parsetree ,classSet , permissionList, bools,commonlList,
attributeSet , typeSet, aliasMap, attMap, roleSet, userSet) =
let
val (ClassSet, Perms, Bools, Common, AttSet, TypeSet, AliasMap,
AttMap, roleSet, userSet) = PTih(decl, classSet,
permissionList , bools,commonlList, attributeSet, typeSet,
aliasMap, attMap, roleSet, userSet)
in PT1(parsetree,ClassSet, Perms, Bools, Common, AttSet, TypeSet,
AliasMap, AttMap, roleSet, userSet)
end

fun evaluateIf(Id_con name,bools) =

let
val result = case peek bools name of
SOME theBool => theBool
(* To accomedate a flawed policy, set all unread bools to
false =)
| NONE =
let
val _ = TextIO.print(name””_was.
undefined ,_setting._to_false\n”)
in
false
end
in
result
end
| evaluateIf (Cond_NOT expr, bools) =
let val bool = evaluateIf (expr, bools)
in not bool
end
| evaluateIf (Cond_AND (el,e2), bools) = evaluateIf(el, bools) andalso

evaluateIf (e2, bools)
| evaluateIf(Cond_OR (el,e2), bools) = evaluateIf(el, bools) orelse
evaluateIf(e2, bools)
| evaluateIf(Cond_XOR (el,e2), bools) =
let

199

201
202

204
205
206
207
208

209
210

219
220
221

222
223

224

226
227

228
230
231

232

233

234

235
236

237

B.9 main.sml 113

val bl = evaluateIf (el, bools)
val b2 = evaluateIf (e2, bools)
in
(b1 orelse b2) andalso not (bl andalso b2)
end
| evaluateIf(Cond_EQ (el,e2), bools) = evaluatelIf (el, bools) =
evaluateIf (e2, bools)
| evaluateIf(Cond_NEQ (el,e2), bools) = (evaluateIf(el, bools) <>
evaluateIf (e2, bools))

fun handleNestedSet (Id_list name,universeSet, map, aMap, workSet) =

let
fun handleIDElement(Id_nested name ,universeSet ,map,aMap,
workSet) =
(* Add the name(s) to the working set x)
let
val names = lookupAttribute (name, map , aMap)
val workingSet = Binaryset.addList(workSet ,names)
in
workingSet
end
| handleIDElement (MinusId name ,universeSet ,map, aMap,workSet
) =
let
val excludelist = lookupAttribute (name, map,
aMap)
val excludeSet = Binaryset.empty String.compare
val excludeSet = Binaryset.addList(excludeSet,
excludeList)
val workSet = if Binaryset.isEmpty workSet
then universeSet
else workSet
val workSet = Binaryset.difference(workSet,
excludeSet)
in
workSet
end
| handleIDElement(Id_set_nested name,universeSet, map, aMap,
workSet) = handleNestedSet(name,universeSet , map,aMap,
workSet)
fun handleIDList(Id_element name,universeSet, map, aMap,
workSet) = handleIDElement (name ,universeSet , map, aMap,
workSet)
| handleIDList(Id_listwithElement (list, element),universeSet,
map , aMap ,workSet) =
let
val setl = handleIDList (list,universeSet, map, aMap,
workSet)
val set2 = handleIDElement(element,universeSet, map ,
aMap, setl)
in
set2
end
in
handleIDList(name,universeSet, map , aMap,workSet)
end

256
257
258
259
260
261

262

263

264
265

266
267
268
269

270

278

279

280

281

282

283
284

285
286
287
288
289

291

292
293
294
295

114 Source code

fun evaluateTypeSet (Asterisk, TypeSet, AliasMap, AttMap) = Binaryset.
listItems TypeSet
| evaluateTypeSet (Id name, TypeSet, AliasMap, AttMap) =
lookupAttribute (name, AttMap, AliasMap)

| evaluateTypeSet(Id_set name, TypeSet, AliasMap, AttMap) =

let
val emptySet = Binaryset.empty String.compare
val set = handleNestedSet (name ,TypeSet, AttMap,AliasMap,
emptySet)
in
Binaryset.listItems set
end
evaluateTypeSet (TildeId name, TypeSet, AliasMap, AttMap) =
let
val excludelist = lookupAttribute (name,
AttMap, AliasMap)
val excludeSet = Binaryset.empty String.
compare
val excludeSet = Binaryset.addList (
excludeSet , excludeList)
in
Binaryset.listItems (Binaryset.difference(
TypeSet, excludeSet))
end
evaluateTypeSet (TildeSet name, TypeSet, AliasMap, AttMap) =
let
val emptySet = Binaryset.empty String.
compare
val excludeSet = handleNestedSet (name,
TypeSet, AttMap, AliasMap, emptySet)
in
Binaryset.listItems (Binaryset.difference(
TypeSet , excludeSet))
end
evaluateTypeSet (IdMinusId (n1, n2), TypeSet, AliasMap, AttMap) =
let
val keeplList = lookupAttribute(nl, AttMap
, AliasMap)
val excludelList = lookupAttribute(n2, AttMap
, AliasMap)
val keepSet = Binaryset.empty String.
compare
val excludeSet = Binaryset.empty String.
compare
val keepSet = Binaryset.addList (keepSet,
keepList)
val excludeSet = Binaryset.addList(
excludeSet ,excludelList)
in

Binaryset.listItems (Binaryset.difference(
keepSet , excludeSet))
end

)

(* A function to handle allow and auditallow
* These two declarations have the same impact in the DL system
*)
fun handleAllow(allowType ,Ts, Tt, C, P, ClassSet, TypeSet, AliasMap,
RoleSet , PermMap, AttMap, Bools, WithSet) =
let
val SourceTypes = evaluateTypeSet(Ts, TypeSet, AliasMap, AttMap)
val TargetTypes = evaluateTypeSet(Tt, TypeSet, AliasMap, AttMap)

B.9 main.sml 115

in

end

val Classes = evaluateTypeSet(C, ClassSet, AliasMap, AttMap)
(* Determine all permissions in the system =x)

val PermSet = Binaryset.empty String.compare

val PermList = getAllPerms(listItems PermMap)

val PermSet = Binaryset.addList (PermSet , PermList)

(* Get the items referenced in the set Px)

val Perms = evaluateTypeSet (P, PermSet, AliasMap, AttMap)
val usedPermSet = Binaryset.empty String.compare

val usedPermSet = Binaryset.addList (usedPermSet , Perms)

* Lookup classes perms from Classes then take intersection for
p p
each element with Perms x)

val lookupList = lookupClassPerms(Classes, PermMap, usedPermSet)
(#+ Classes is the same length as the lookup list x)

val Perms = createClassPerms (Classes,lookupList);

val withStrings = withString(SourceTypes ,TargetTypes);

(* Debug info =x)

val debug = [”;;.”,allowType, ".7]0

["{”]eList .map addComma (SourceTypes)@[”}."]@

["{”]eList .map addComma (TargetTypes)@[”}:”]@

[”{”]eList .map addComma (Classes)@[”}._”]@

[”{?”]eList .map addComma (evaluateTypeSet (P, PermSet, AliasMap,

AttMap))e[”}\n”]
val = writeToTbox (debug)

val = writeToAbox (debug)

(* The permissions and withstrings will be added at a later time
%« to increase performance

*)
(* Update the used types with the created ”With” typesx)
val WithSet = Binaryset.addList(WithSet, withStrings)
val Tbox =
conceptInclusion(withStrings , ”Type”)0
targetsDecl (SourceTypes ,TargetTypes)Q
hasBaseTypeDecl (SourceTypes, TargetTypes) @
hasPermissionDecl (withStrings , Perms);

val _= writeToTbox (Tbox)

val Abox =
conceptInstances (withStrings)@
targetsDeclAbox (SourceTypes ,TargetTypes)Q
hasBaseTypeDeclAbox (SourceTypes, TargetTypes)Q
hasPermissionDeclAbox (withStrings , Perms);

val _= writeToAbox (Abox)

(ClassSet, TypeSet , AliasMap, RoleSet, PermMap, AttMap, Bools,
WithSet)

(* evaluateRoles: Roles —> (string ,string list) hash_tablex)
fun evaluateRoles(roles, roleMap) =

let
fun

evaluateRoleDef (Role name, _) = [name]
evaluateRoleDef (CompRole (name,roles), roleMap) =

let

val rolelList = evaluateRoles(roles, roleMap)

363

364
365
366
367
368
369
370

371

372
373
375
376
377
378
379
380
381
382
383
384
385

386
387

399
400
401
402

404

116 Source code

val _ = insert roleMap (name,rolelList)
in
rolelList
end
fun determineRoleType (Def(name), roleMap) = evaluateRoleDef (name,
roleMap)

| determineRoleType (Comp(roles, def), roleMap) = evaluateRoles (
roles, roleMap)@evaluateRoleDef (def, roleMap)
in
determineRoleType (roles, roleMap)
end

)

(x+ PT2: parsetree x Attributes % Types * Bools—> Attributes % Types =x

Bools x)
fun PT2 ([], ClassSet, TypeSet, AliasMap, RoleSet, PermMap, AttMap,
Bools, WithSet) = (ClassSet, TypeSet, AliasMap, RoleSet, PermMap,

AttMap, Bools, WithSet)
| PT2 (decl::parsetree, ClassSet, TypeSet, AliasMap, RoleSet, PermMap,

AttMap , Bools, WithSet) =

let
(¥ Since IF statements consists of blocks of declarations, the

#* helping function the helping function PT2h is defined here

*)

fun PT2h (If (expr, bl, b2), ClassSet, TypeSet, AliasMap,

RoleSet , PermMap, AttMap, Bools, WithSet) =

let
val bool = evaluateIf (expr,Bools)
val (ClassSet, TypeSet, AliasMap, RoleSet,
PermMap, AttMap, Bools, WithSet) =
if bool
then PT2(b1, ClassSet , TypeSet, AliasMap,
RoleSet , PermMap, AttMap, Bools, WithSet
else PT2(b2, ClassSet, TypeSet, AliasMap,
RoleSet , PermMap, AttMap, Bools, WithSet
‘)
in
(ClassSet, TypeSet, AliasMap, RoleSet, PermMap,
AttMap, Bools, WithSet)
end

| PT2h (Attrib_decl name, ClassSet, TypeSet, AliasMap,
RoleSet , PermMap, AttMap, Bools, WithSet) =

let
(x Debug info x)
val _ = writeToTbox ([”;;_-attribute.” ,name ,”\n”])
val _ = writeToAbox ([”;;-attribute.” ,name,”\n”])
val Tbox = incl ([name], [”Attribute”], 77)
val _= writeToTbox (Tbox)
val Abox = [cAssertString(addl name, name)]
val _ = writeToAbox (Abox)
in

(ClassSet, TypeSet, AliasMap, RoleSet, PermMap,
AttMap , Bools, WithSet)
end

| PT2h (Type_decl (name, aliases , attr), ClassSet, TypeSet,
AliasMap, RoleSet, PermMap, AttMap, Bools, WithSet) =
let
(* Debug info =x)
val aliasStringList = if List.length aliases<> 0
then [”alias.”]@List.map addComma aliases else

(]

417
418
419
420

421
422

423
424
425

426

436
437

438
439

444
445

446
447
448
449
450

451

B.9 main.sml 117

5 »

val _ = writeToTbox ([”;;_type.” ,name,
QaliasStringlList@List.map addComma attr@[”\n”])
val _ = writeToAbox ([”;;_type.” ,name, ”,”

QaliasStringlList@List.map addComma attr@[”\n”])

val Tbox =

incl ([name], [”"Type”], ”7)@

incl ([name], attr, ”“hasAttribute”)
val _= writeToTbox (Tbox)
val Abox =

[cAssertString (addI name, name)]Q@
roleAssertDecl(addI name ,List.map addI attr,
hasAttribute”)

9

val _ = writeToAbox (Abox)
in
(ClassSet, TypeSet , AliasMap, RoleSet, PermMap,
AttMap , Bools, WithSet)
end
| PT2h (Typeattribute_decl (name, attr), ClassSet , TypeSet,
AliasMap, RoleSet, PermMap, AttMap, Bools, WithSet) =
let
(* Debug info =)
val _ = writeToTbox ([”;;_typeattribute.” ,name,”,”]
@List.map addComma attr@[”\n”])
val _ = writeToAbox ([”;;_typeattribute.” ,name,”,”]
@List .map addComma attr@[”\n”])
val Tbox =
incl ([name], attr, ”“hasAttribute”)
val _= writeToTbox (Tbox)
val Abox = roleAssertDecl(addI name,List.map addI
attr, "hasAttribute”)
val _= writeToAbox (Abox)
in
(ClassSet, TypeSet, AliasMap, RoleSet, PermMap,
AttMap , Bools, WithSet)
end

| PT2h (AllowDecl(Ts, Tt, C, P), ClassSet, TypeSet, AliasMap
, RoleSet, PermMap, AttMap, Bools, WithSet) =

let
val result = handleAllow(”allow”,Ts, Tt, C, P,
ClassSet , TypeSet, AliasMap, RoleSet, PermMap,
AttMap , Bools, WithSet)
in
result
end

| PT2h (AuditAllowDecl(Ts, Tt, C, P), ClassSet, TypeSet,
AliasMap, RoleSet, PermMap, AttMap, Bools, WithSet) =

let
val result = handleAllow(”auditallow” ,Ts, Tt, C, P,
ClassSet , TypeSet, AliasMap, RoleSet, PermMap,
AttMap , Bools, WithSet)
in
result
end

| PT2h (Type_transition_rule(Ts, Tt, C, name), ClassSet,
TypeSet , AliasMap, RoleSet, PermMap, AttMap, Bools,
WithSet) =
let

452

453

454

455
456

469

471
472
473
474
475
476
477
478

487
488

489
490

118

Source code

in

end

val SourceTypes = evaluateTypeSet(Ts, TypeSet,
AliasMap, AttMap)

val TargetTypes = evaluateTypeSet (Tt, TypeSet,
AliasMap, AttMap)

val Classes = evaluateTypeSet(C, ClassSet, AliasMap,
AttMap)

val withString = withString(SourceTypes ,TargetTypes)

(* Update the used types with the created ”With”
types k)

val WithSet = Binaryset.addList(WithSet, withString)

(x Debug info x)

val debug = [”;;._type-transition.”]@
?{”]@List.map addComma (SourceTypes)Q@[”}_”]@
[”{”]@eList .map addComma (TargetTypes)Q@[”}:”]@
[”{”]@eList .map addComma (Classes)@[”}."]@

3

[7’ _.’7 , name 7”_.\“7’]
val _ = writeToTbox (debug)
val _ = writeToAbox (debug)

(* Withstrings will be be added later to improve
performance x)

val Tbox =

conceptInclusion(withString, ”"Type”)@
hasBaseTypeDecl (SourceTypes , TargetTypes) @
incl ([name], Classes, ”hasTransitionClass”)@

transitionToDecl (withString ,name)

val Abox =

conceptInstances (withString)@

hasBaseTypeDeclAbox (SourceTypes , TargetTypes) @

roleAssertDecl (addI name ,List.map addI Classes,
hasTransitionClass”)@

transitionToDeclAbox (withString ,name)

”»

val _= writeToTbox (Tbox)
val _= writeToAbox (Abox)

(ClassSet , TypeSet, AliasMap, RoleSet
AttMap , Bools, WithSet)

, PermMap,

PT2h (Role_decl (name, AllowedTypeSet), ClassSet, TypeSet,
AliasMap, RoleSet, PermMap, AttMap, Bools, WithSet) =

let

val AllowedTypes = evaluateTypeSet(AllowedTypeSet,
TypeSet , AliasMap, AttMap)

(* Debug info =)

val debug = [”;;.role.”, name, ”.7]0Q
[”{”]eList .map addComma (AllowedTypes)@[”}\n”]
val _ = writeToTbox (debug)
val _ = writeToAbox (debug)
val Tbox =
incl ([name], [”"CRole”], "”)e

incl ([name], AllowedTypes, “candoType”)

val Abox =
[cAssertString(addl name, name)]Q
roleAssertDecl (addI name,List.map addI
AllowedTypes , ”candoType”)

514
515
516

517

518
519

537
538

539

550
551
552
553
554

555

557

558
559

560

B.9 main.sml

119

| PT2h (Role_dominance roles,
, PermMap, AttMap, Bools, WithSet) =

let

val _= writeToTbox (Tbox)
val _= writeToAbox (Abox)

in

(ClassSet, TypeSet, AliasMap,
Bools , WithSet)

end

RoleSet

val RoleMap =

mkPolyTable (50,
string list)

ClassSet ,

RoleSet , PermMap, AttMap,

TypeSet , AliasMap,

ElementNotFoundInList) : (string,
hash_table;

val _ = evaluateRoles(roles,RoleMap)
listItems RoleMap

val rolelList

val (superName,

_) = hd(rol

eList)

(* Add the super role to the set of roles=x)
val RoleSet= Binaryset.add(RoleSet, superName)
val Tbox =
incl ([superName], [”CRole”], ”7)e
roleDominanceDecl (roleList)
val Abox = [cAssertString(addIl superName, superName)]
val _= writeToTbox (Tbox)
val _= writeToAbox (Abox)
in
(ClassSet, TypeSet, AliasMap, RoleSet, PermMap, AttMap,
Bools, WithSet)
end

| PT2h (Role_allow_rule (Rs, Rt

), ClassSet, TypeSet,

AliasMap, RoleSet, PermMap, AttMap, Bools, WithSet) =
let
val SourceRoles = evaluateTypeSet (Rs, RoleSet,
AliasMap, AttMap)
val TargetRoles = evaluateTypeSet (Rt, RoleSet,

AliasMap, AttMap)
(* Debug info)

val debug

[

]
»

is-(role)allow.”]@

;
?{”]eList.map addComma (SourceRoles)@[”}.”"]@
[”{”]@List .map addComma (TargetRoles)@[”}\n”]

val _ writeToTbox (debug)

val _ = writeToAbox (debug)

val Tbox = candoRoleDecl(SourceRoles, TargetRoles)
val Abox = candoRoleDeclAbox(SourceRoles,

TargetRoles)

val _= writeToTbox (Tbox)
val _= writeToAbox (Abox)

in

(ClassSet, TypeSet, AliasMap,
Bools, WithSet)

end

| PT2h (User_decl(name, roles),
RoleSet , PermMap, AttMap,

let

)

RoleSet , PermMap, AttMap,

ClassSet , TypeSet , AliasMap

Bools ,

WithSet) =

val roleStrings = evaluateTypeSet(roles, RoleSet,

AliasMap,

AttMap)

572
573
574
575
576

577

578

579
580
581
582
583

584
585
586
587
589
590

591
592

593

594

596
597

599
600
601
602
603

120

Source code

)

in

end

(

end

| P

(* Debug info =)
val _ = writeToAbox ([”;;_user.”, name,”_roles.”]@

[”{”]eList .map addComma (roleStrings)@[”}\n”])

B

val Abox = roleAssertDecl(name,List.map addI roleStrings
7 assign”)@
[cAssertString (name, " User”)]
val _ = writeToAbox (Abox)

ClassSet , TypeSet, AliasMap, RoleSet, PermMap, AttMap,
Bools , WithSet)

T2h (_ , ClassSet , TypeSet, AliasMap, RoleSet, PermMap,
AttMap , Bools, WithSet) = (ClassSet, TypeSet, AliasMap,
RoleSet , PermMap, AttMap, Bools, WithSet)

val (ClassSet, TypeSet, AliasMap, RoleSet, PermMap, AttMap,

Boo
Rol

1s, WithSet) = PT2h(decl, ClassSet , TypeSet, AliasMap,
eSet , PermMap, AttMap, Bools, WithSet)

PT2(parsetree , ClassSet, TypeSet, AliasMap, RoleSet, PermMap,
AttMap ,

Bools, WithSet)

(x*Parse first timesx)
val (ClassSet,
RoleSet ,UserSet) =

PT1(parsetree, ClassSet, PermissionMap, Bools, CommonMap ,AttributeSet
,TypeSet , AliasMap, AttMap, RoleSet, UserSet) ;

Perms , Bools, Common, AttSet, TypeSet, AliasMap, AttMap,

(x*Parse second timesx)
val (ClassSet,

val

val

fun

WithSet)

TypeSet , AliasMap, RoleSet, PermMap, AttMap, Bools,

PT2 (parsetree ,ClassSet , TypeSet, AliasMap, RoleSet, Perms, AttMap,

Bools

writeToTbox ([” ;;

)

WithSet);

_Policy_travered_successfully ,_write_the_Classes

35
cand_Permissions” |)

writeToAbox ([”;;_Policy_travered_successfully ,_write_the_Classes
—and_Permissions” |)

finalizeKB(ClassSet, PermMap) =

let

in

val
val
val

val
val

val

val
val
val
val

Typ
Cla

es = Binaryset.listItems(TypeSet)
sses = Binaryset.listItems ClassSet

permList = createAllPermsClass (ClassSet, PermMap)

writeToTbox ([”;;_-Classes:” |)
writeToTbox (conceptInclusion(Classes, ”Class”))
val _ = writeToAbox ([”;;_Permissions:”

writeToTbox (conceptInclusion(permList, ”"Permission”))

writeToAbox ([”;;-Classes:” |])
writeToAbox (conceptInstances (Classes))
writeToAbox ([”;; -Permissions:”])
writeToAbox (conceptInstances (permList))

B.9 main.sml 121

O

(#* Add the permissions and classes to the T— and Abox x*)
val _ = finalizeKB(ClassSet ,PermMap);

(* Done creating the Abox and Tbox x*)

(* Collect used concepts and Abox individuals and create RACER signature
*)

(* Create the signature x)

val _ = createSignature(”softtest”, ClassSet, TypeSet, RoleSet, PermMap,
AttSet , UserSet, WithSet);

(* Get the time x)

val now = Date.toString (Date.fromTimeLocal (Time.now ())) ;

writeToSig ([”\n;; -Output_finished :.” ,now,”\n\n”]);

122 Source code

© 00U W

=W N

APPENDIX C

Case study implementation in
SELinux

The case study additions to the regular SELinux example policy is found in this
Appendix.

C.1 RBAC

dominance role supervisor_r {role programmer_r;

=L,
role supervisor_r {role tester_r; } };

} b

dominance

{

{
dominance { role tester_r { role member_r; } };
dominance { role programmer_r { role member_r; } };

allow supervisor_r { tester_r programmer_r member_r };
allow programmer_r { member_r };
allow tester_r { member_r };

C.2 Users

user Tom roles { supervisor_r };
user Alice roles { tester_r };
user Bob roles {programmer_r };
user John roles { member_r };

0O~ Ut WN

29
30
31
32
33
34
35
36
37

38
39
40
41
42
43
44
45
46
47

124

Case study implementation in SELinux

C.3 nedit

C.3.1 nedit.te

HHHUBHHHHBHHHFHBAHAHFHHAHFHHAHFHH
#

Rule

Author:

#

s for nedit for Software team casestudy

Alan Dickerson <s991173@student.dtu.dk>

Create the necessary types

type n

edit_t,

domain;

type nedit_exec_t, exec_type, file_type;

type ¢

ode_t ,

file_type;

Define the role
role programmer_r types { nedit_t };

Make

Transition to the nedit domain when executing the program

it a full user
full_user_role(programmer);

domain_auto_trans(userdomain, nedit_exec_t, nedit_t);

Allow that any user can login to the programmer role

role_tty_type_change(user, programmer);

nedit can read and create files in the code_t dir
allow nedit_t code_t:file create_file_perms;
allow nedit_t code_t:dir create_dir_perms;

mnedi

va

t recursively looksup the code dir, so it also searches the

r dir

allow nedit_t var_t:dir search;

The below declarations define rules that allow nedit to run

#nedit can read its settings files
allow nedit_t default_t:dir rw_dir_perms;
allow nedit_t default_t:file rw_file_perms;

allow nedit_t programmer_devpts_t:chr_file {

io

ctl };

mnedit uses the shared libraries
uses_shlib(nedit_t);

allow
allow
allow
allow
allow
allow

nedit_t
nedit_t
nedit_t
nedit_t
nedit_t
nedit_t

bin_t:dir { getattr read };
default_t:dir { getattr read search };
default_t:file { getattr read };
etc_runtime_t:file { getattr read };
lib_t:file { getattr read };
locale_t:dir search;

getattr read write

48
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

O UL W N

C.3 nedit

allow
allow
w
allow
allow
allow
allow
allow
allow
allow
allow
allow

allow
allow
allow
allow
allow
allow
allow
allow

A

nedit_t locale_t:file { getattr read };

nedit_t self:unix_stream_socket { connect create getattr read

rite };

nedit_t proc_t:dir search;

nedit_t proc_t:file { getattr read };

nedit_t sbin_t:dir { getattr read };

nedit_t tmp_t:dir search;

nedit_t usr_t:file { getattr read };

nedit_t xdm_tmp_t:dir search;

nedit_t xdm_tmp_t:sock_file write;

nedit_t xdm_xserver_t:unix_stream_socket connectto;
nedit_t default_t:1nk_file read;

nedit_t user_evolution_home_t:dir getattr;
nedit_t user_fonts_t:dir getattr;

nedit_t user_gnome_secret_t:dir getattr;
nedit_t user_gnome_settings_t:dir getattr;
nedit_t user_home_t:dir getattr;

nedit_t user_mozilla_home_t:dir getattr;
nedit_t user_mplayer_home_t:dir getattr;
nedit_t user_thunderbird_home_t:dir getattr;

End of nedit

C.3.1.1 Reduced version

The full_user_role macro is substituted by type programmer_t, domain;.
The role programmer_r types { nedit_t }; is substituted with role programmer_r types

{ nedit_t programmer_t };
and the macro role_tty_type_change has been deleted.

C.3.2 nedit.fc

nedit
/usr/local/bin/nedit system_u:object_r:nedit_exec_t

code

dir is labeled

/var/code system_u:object_r:code_t

code

files will be labled with code_-t (excluding dirs)

/var/code.*x — system_u:object_r:code_t

© 00O U W+~

126 Case study implementation in SELinux

C.4 mosml

C.4.1 mosml.te

HHHHRHHHHFHHHFHHFHHFHAHFHHFFHFHFH
#

Rules for mosml for Software team casestudy
Author: Alan Dickerson <s991173@student.dtu.dk>

#

type mosml_t, domain;
type mosml_exec_t, exec_type, file_type;

role tester_r types { mosml_t };

full_user_role(tester);
domain_auto_trans (userdomain, mosml_exec_t, mosml_t);

role_tty_type_change(user, tester);

allow mosml_t code_t:file r_file_perms;
allow mosml_t code_t:dir r_dir_perms;

allow tester_t code_t:dir search;

The below declarations define rules that allow mosml to run

mosml uses the shared libraries
uses_shlib(mosml_t);

allow mosml_t var_t:dir { search };

allow mosml_t self:process execmem;

allow mosml_t user_devpts_t:chr_file { ioctl read write };

allow mosml_t default_t:dir search;

allows the user to use the console

allow tester_t user_devpts_t:chr_file { ioctl read write };
allow mosml_t tester_devpts_t:chr_file { ioctl read write };

#HHHHE End of mosml

C.4.1.1 Reduced version

The full_user_role macro is substituted by type tester_t, domain;.
The role tester_r types { mosml_t };is substituted with role tester_r types { mosml_t

tester_t };
and the macro role_tty_type_change has been deleted.

C.4 mosml 127

C.4.2 mosml.fc

1 # mosml
2 # mosml binary
3 /var/code/mosml — system_u:object_r:mosml_exec_t

© 00O Ut WN -

128

Case study implementation in SELinux

C.5 more

C.5.1 more.te

HHHHHHHHHAHHHHHHHFHHFAHHFHHA
#

Rules for more for Software team casestudy

Author:

#

type more_t,
type more_exec_t, exec_type, file_type;
type documentation_t, file_type;

Alan Dickerson <s991173@student.dtu.dk>

domain;

role member_r types { documentation_t more_t };

full_user_role(member);

Make executing more_exec_t enter the more_t domain
domain_auto_trans(userdomain, more_exec_t, more_t);

role_tty_type_change (user, member);

allow more_t documentation_t:file r_file_perms;
allow more_t documentation_t:dir r_dir_perms;

more can lookup in the var dir
allow more_t code_t:dir search;

##+H+ The below declarations define rules that allow more to run

more uses the shared libraries
uses_shlib(more_t);

allows the

allow
allow

allow
allow
allow
allow
allow

HHHA

more_t
more_t

more_t
more_t
more_t
more_t
more_t

End of

user to use the console
user_devpts_t:chr_file { read write getattr ioctl };
member_devpts_t:chr_file { read write getattr ioctl };

etc_t:file { getattr read };
lib_t:file { getattr read };
locale_t:dir search;
locale_t:file { getattr read };
var_t:dir search;

more

C.5.1.1 Reduced version

The full_user_role macro is substituted by type member_t, domain;.
The role member_r types { more_t }; is substituted with role member_r types { more_t

C.5 more 129

member_t };

and the macro role_tty_type_change has been deleted.

C.5.2 more.fc

1 # more
2 /bin/more —— system_u:object_r:more_exec_t
3 /var/code/doc.x system_u:object_r:documentation_t

130 Case study implementation in SELinux

Bibliography

[Baader et al., 2003] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D.,
and Patel-Schneider, P. F., editors (2003). The description logic handbook:
theory, implementation, and applications. Cambridge University Press, New
York, NY, USA.

[Boebert and Kain, 1985] Boebert, W. and Kain, R. (1985). A practical alter-
native to hierarchical integrity policies. Proceedings of the FEighth National
Computer Security Conference.

[Chen Zhao and Lin, 2005] Chen Zhao, Nuermaimaiti Heilili, S. L. and Lin, Z.
(2005). Representation and reasoning on rbac: A description logic approach.
In ICTAC.

[Guttman et al., 2005] Guttman, J. D., Herzog, A. L., Ramsdell, J. D., and
Skorupka, C. W. (2005). Verifying information flow goals in security-enhanced
linux. J. Comput. Secur., 13(1):115-134.

[Haarslev and Moller, 2001] Haarslev, V. and Méller, R. (2001). Racer system
description. In Goré, R., Leitsch, A., and Nipkow, T., editors, International
Joint Conference on Automated Reasoning, IJCAR’2001, June 18-23, Siena,
Ttaly, pages 701-705. Springer-Verlag.

[Johnson, 1979] Johnson, S. C. (1979). Yacc: Yet another compiler compiler. In
UNIX Programmer’s Manual, volume 2, pages 353-387. Holt, Rinehart, and
Winston, New York, NY, USA.

[Kernighan and Ritchie, 1977] Kernighan, B. W. and Ritchie, D. M. (1977).
The m4 macro processor. Technical report, Bell Laboratories, Murray Hill,
New Jersey, USA.

132 BIBLIOGRAPHY

[Lesk, 1975] Lesk, M. E. (1975). Lex - A Lexical Analyzer Generator. CSTR 39,
Bell Laboratories.

[Levesque, 1984] Levesque, H. J. (1984). Foundations of a functional approach
to knowledge representation. Artificial Intelligence, 23(2):155-212.

[Loscocco and Smalley, 2000] Loscocco, P. and Smalley, S. (Oct. 2000). Inte-
grating flexible support for security policies into the linux operating system.
Technical report, NSA and NAI Labs.

[McCarty, 2004] McCarty, B. (2004). SELINUX NSA’s Open Source Security
Enhanced Linuz. O’Reilly.

[Moller et al., 2003] Moller, R., Cornet, R., and Haarslev, V. (2003). Graphical
interfaces for racer: Querying daml+-oil and rdf documents. http://www.
dina.kvl.dk/~sestoft/mosml.html.

[Moller et al., 2004] Moller, R., Cornet, R., Haarslev, V., and Wessel, M.
(2004). Racer user’s guide and reference manual version 1.7.19. Technical
report, Concordia University and Techn. Univ. Hamburg-Harburg and Uni-
versity of Hamburg.

[NSA, 2005] NSA (2005). checkpolicy-1.28 source code. http://www.nsa.gov/
selinux/archives/checkpolicy-1.28.tgz.

[Romanenko et al., 2005] Romanenko, S., Russo, C., and Sestoft, P. (2005).
Moscow ml. http://www.dina.kvl.dk/~sestoft/mosml.html.

[Sandhu et al., 1996] Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman,
C. E. (1996). Role-based access control models. Computer, 29(2):38-47.

[Smalley, 2005] Smalley, S. (2005). Configuring the selinux policy. Technical
report, NSA.

[Zanin and Mancini, 2004] Zanin, G. and Mancini, L. V. (2004). Towards a
formal model for security policies specification and validation in the selinux
system. In SACMAT ’04: Proceedings of the ninth ACM symposium on Access
control models and technologies, pages 136-145, New York, NY, USA. ACM
Press.

http://www.dina.kvl.dk/~sestoft/mosml.html
http://www.dina.kvl.dk/~sestoft/mosml.html
http://www.nsa.gov/selinux/archives/checkpolicy-1.28.tgz
http://www.nsa.gov/selinux/archives/checkpolicy-1.28.tgz
http://www.dina.kvl.dk/~sestoft/mosml.html

BIBLIOGRAPHY 133

	Abstract
	Resumé
	Preface
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Case study
	1.4 Thesis Overview

	2 SELinux
	2.1 General concepts
	2.1.1 Flask
	2.1.2 Type enforcement model
	2.1.3 Role-based Access Control
	2.1.4 Users

	2.2 Policy
	2.3 SELinux syntax
	2.3.1 TE declarations
	2.3.2 RBAC declaration
	2.3.3 Users
	2.3.4 Security context
	2.3.5 Macros
	2.3.6 Conditionals
	2.3.7 Special keywords

	2.4 Software team
	2.4.1 Assumptions
	2.4.2 Produce code
	2.4.3 Execute code
	2.4.4 Read documentation
	2.4.5 RBAC
	2.4.6 Users

	2.5 Summary

	3 Description Logic
	3.1 Introduction
	3.2 Syntax
	3.3 Semantics
	3.4 Reasoner - RACER
	3.5 Software team
	3.6 Summary

	4 SELinux to Description Logic
	4.1 Model formulation
	4.2 Translation rules
	4.2.1 TE declarations
	4.2.2 RBAC declaration
	4.2.3 Users

	4.3 Software team
	4.4 Alternative model formulations
	4.5 Summary

	5 Implementation
	5.1 Design
	5.2 Lexical analysis
	5.3 Abstract data model
	5.4 Parsing
	5.5 Translation
	5.6 Testing strategy
	5.7 Summary

	6 Verification
	6.1 Verification Strategy
	6.2 Verification
	6.3 Queries
	6.4 Software team
	6.4.1 Miscellaneous queries

	6.5 Summary

	7 Discussion
	7.1 Status
	7.2 Problems
	7.3 Related works
	7.3.1 Models
	7.3.2 Tools

	7.4 Summary

	8 Conclusion
	A SELinux grammar
	A.1 Flask
	A.2 TE
	A.3 RBAC
	A.4 Users
	A.5 Constraints
	A.6 Security Contexts
	A.7 Conditionals

	B Source code
	B.1 Abstract.sml
	B.2 Lexer.lex
	B.3 Gram.grm
	B.4 makeparser.bat
	B.5 parse.sml
	B.6 auxiliary.sml
	B.7 testFunctions.sml
	B.8 stringFunctions.sml
	B.9 main.sml

	C Case study implementation in SELinux
	C.1 RBAC
	C.2 Users
	C.3 nedit
	C.3.1 nedit.te
	C.3.1.1 Reduced version

	C.3.2 nedit.fc

	C.4 mosml
	C.4.1 mosml.te
	C.4.1.1 Reduced version

	C.4.2 mosml.fc

	C.5 more
	C.5.1 more.te
	C.5.1.1 Reduced version

	C.5.2 more.fc

