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Summary

The present work give a presentation of the theory of quantile regression and
splines. Quantile regression and splines are combined to model the prediction
error from Tunø Knob wind power plant. This data set is used as the basis for
a discussion of performance parameters for quantiles.

An adaptive method for quantile regression is developed, this proves to give
convincing results compared to the static model. The implementation of this
also proves to be fast.

A method for restricted quantile regression for non crossings is implemented and
analyzed. Further different approaches for solving the non crossing constraint
problem is discussed.
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Resumé

Fraktil regression er en metode til at modellere fraktiler i den betingede fordeling
direkte. Ved linear fraktilregression forst̊aes en linear model med en absolut og
asymmetrisk tabs funktion.

Fraktil regression beskives og der gives specielt en simplex formulering af det
tilknyttede linæere programmerings problem. Fraktilregression benyttes sam-
men med splines til at modellere fraktiler i forudsigelsesfejlene fra Tuno Knob
vindmøllepark. I forbindelse med denne analyse diskuteres metoder til at beskrive
kvaliteten af fraktilforudsigelser.

P̊a basis af simplex formuleringen af fraktilregressions problemet, udvikles en
adaptiv metode til fraktil regression, som er effektiv og relativt hurtig. Rap-
porten slutter af med at diskutere forskellige former for restriktioner p̊a fraktil-
regression.
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Notation

General Notation

R : The set of real numbers.
Z : The set of all integers {...,−2,−1, 0, 1, 2, ...}.
R+ : The set of positive real numbers.
R0 : The set of non-negative real numbers.
R

n : The n-dimensional real vectorspace.
R

n×m : The set of m× n real matrices.
Pn : The space of polynumials of degree n, ie. pn ∈ Pn ⇒ pn(x) =

∑n

j=0 ajx
j aj ∈ R.

CDF : Continuous Distribution Function
p.d.f : Probability Density Funftion
idd : Independent Identically Distributed
IQR : Inter Quartile Range, i.e. the difference of the 75% quantile and

the 25% quantile.

Vectors and Matrices

I : The identity matrix. The dimension will usually be clear form the
context, otherwise it will be denoted Ik, k being the dimension.

e,ek : A vector consisting of ones, if the length is not cleare from the
context then k will refer to this.

ek : A vector consisting of zeros except for the k’th element which is
one.

0 : A vector or matrix consisting of zeros. If the dimension is not
clear it will be denoted 0k (0k×l).
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x = [xi] : Bold face lower case letter is used for vectors. A vector in this
presentation is always a colum vector. x, will be used for inde-
pendent or explanatory variable. y will be used for dependent or
respons variable. Constant vectors will be denoted a,b, c etc.

A,X : Bold face upper case letters is used for matrices. X will be used
for the design matrix.

A:,s : The s’th column of the matrix, s can be a set of indexes A.
A(h) : The h’th row or rows of the matrix, h can be a set of indexes. A.
x ⊙ y : [xiyi] Elementwise multiplication.
diag(A) : A vector with the diagonal elements of the matrix A.
diag(a) : A matrix with the diagonal elements equal to a and all other

elements equal to zero.
y(h),yB : Vector containing the elements of index set h or B.

Functions and Operators

A variable x in a function f(x) such that f : R → R that is replaced with a
vector x will be equivalent to

f(x) = [f(xi)]

Such that f(x) is a vector of the function vaules of each element in x.

x ≤ y : xi ≤ yi∀i
I(exp) : Indicator function ie. it is one if the logical expression exp is true

and zero otherwise.
f+(x) : f+(x) = I(x ≥ 0)f(x).
f−(x) : f−(x) = I(x < 0)f(x).
x+ = x+ : x+ = I(xi ≥ 0)x.
x− = x− : x− = I(xi < 0)x.
δ(k) : Kronekers delta-sequence δ(0) = 1 and δ(k) = 0 for k 6= 0 and

k ∈ Z.
sign(x) : sign(x) = −I(x < 0) + I(x > 0), i.e. sign(0) = 0.
⌈x⌉ : largest integer s.t. ⌈x⌉ ≤ x (also called ceil in e.g. matlab and R).
⌊x⌋ : smallest integer s.t. ⌊x⌋ ≥ x (also called floor in e.g. matlab and

R)
x(i) : The order statistics of x, i.e. x(1) ≤ x(2) ≤ .. ≤ x(N).
∧ : logic “and” s.t. exp1 ∧ exp2 = I(exp1)I(exp2)

h : If h is a set then h is the complement of h.
x : If x is a vector then x is the average of x.
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Reserved Characters

i : The counter i is reserved for counting observations.
N : N is reserved for sample size.
r : The residuals of a model.
h : The index set which charactirize the solution of to the quantile

regression problem, see Theorem 2.1.
ρ(r) : The loss functiuon of r, see Section 2.1
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The Environments in the Text

Through the text there will be different environments. The purpose is to make
the text more readable, and to highlight important passages of the text.

The environments are

Definition 0.1 The Definition environment is used for basic definition of the
theory.

Theorem 0.1 The theorems provide the theoretical foundation of the practical
use of the theory. There have not been made any attempt to distinguish between,
lemmas, theorems, proportions, etc. These all have the common label Theorem.

Practical Summary 0.1 Practical summary’s are used for important compu-
tational recipes. These are not very deep in a theoretical sense.

Example 0.1 The example environment provide simple example of use of the
theory, the purpose of the example is to illustrate the theory, rather than to use
the theory in the same way as it is done later on in the text.

Proof. The proof environment is use for proofs of theorems, when the proof is
given in connection with the theorem. �
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Chapter 1

Introduction

As the share of the total energy production produced by wind power increase,
so will the need for precise forecasts of the power production. This presentation
discuss one approach to get better forecasts.

A good forecast will often be thought of as the mean value and efforts of fore-
casting will be concentrated on improving mean velum forecast by minimizing
the variance of the prediction errors. If this is the right strategy really depend
on the penalty for making a wrong forecast. If this penalty is not symmetric
then the mean value might not be very important.

Energy is traded on a market called NordPool (see www.nordpool.com), the
power suppliers put up energy for sales once a day and then decide how to act
on this market. I.e. develop the optimal strategy for buying or selling energy.
In such a market the penalty for making a wrong bet is not symmetric.

Therefore the mean value is not to develop an optimal market strategy enough,
and a good or precise forecast will mean more information than we can get from
the mean value.

In a more general setting if we know that the penalty p for choosing the strategy
s in situation y, i.e. p(s, y) is a known function of strategy and outcome, but y
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is a random variable, then we would like to solve something like

min
s

∫

p(s, y)dF (y) (1.1)

where F is the distribution function for y. To solve something like (1.1) we need
the distribution F , if we want to know the distribution F of y then it is not
enough to have estimates of the the mean value and e.g possible the variance.

This presentation give a treatment of a possibly way to find this distribution
function F . In the case of wind power production such a distribution will de-
pend on the weather conditions or the meteorological forecasts. Thus what we
need is an estimate of the distribution of power production given some meteoro-
logical forecasts. This is the conditional distribution of power production given
a meteorological forecast.

Chapter 2 deal with this problem for the case, where we believe that the power
production is a linear function of the weather forecast, this will be done in a
general setting. Chapter 2 will enable us to model levels of the distribution
of power production as a linear function of different meteorological forecasts
x1 + ...xp. I.e. we can model quantiles of the power production y at level τ
given our meteorological data by

F̂−1(τ ;x1, ..., xp) = Q̂(x1, ...xp|τ) = α+
∑

j

xjβj (1.2)

Power production from a wind power plant is not a linear function of, e.g. the
wind speed, and not surprisingly this is not the case for quantile levels in the
distributions either. Therefore a combination of quantile regression and splines
is used to model the the conditional distribution.

The spline function is the subject of Chapter 3, these will be treated in their
own right, to give an over view of the properties of splines.

With the tools in place the presentation combine the two methods and uses
quantile regression with splines to develop models for quantiles of prediction
errors in wind energy production. The problem of evaluating the quality of a
quantile forecast is not easy and many measures have been proposed the most
common of these are discussed on the basis of a data set from a wind power
plant located at Tunø Knob.

Adaptive models have proven to be effective for mean value prediction of wind
power production. It is therefore obvious to attempt to do this for the quan-
tile regression presented here as well. Such a procedure is set up in the last
part of the presentation, and it have proven to be both fast and lead large to
improvement of performance all the evaluated performance parameters.
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Quantile estimation can give very unphysical estimates, especially a the setting
where rare events need to be modeled, this is what we do here. Both high
power production and high wind speeds are rare events. The estimates of the
75% quantile can e.g. in some situations be less than the 25% quantile, behavior
like this is discussed in the last part of the presentation and some suggestions
for solutions are proposed and discussed.

The report is divided in two parts, the first part cover the theory of quantile re-
gression and splines, this is presented in its own right, with no special reference
to wind power production. The second part of the report analyze a data set
from Tunø Knob wind power plant. This analysis us used to motivate the de-
velopment of the adaptive procedure and non crossing constraint. This dataset
is further used for a discussion of performance parameters and their properties
in general.
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Part I

Theory: Quantile
Regression and Splines





Chapter 2

Quantile Regression

2.1 Introduction

The most common statistic of datasets is the mean. The mean is found by
minimizing a quadratic loss function. What is usually meant by linear regression
is a linear model, with a quadratic loss function. Here linear regression will refer
to a linear model with some loss function ρ(r) from R → R0 with the following
properties

ρ(0) = 0 (2.1)

ρ(r1) < ρ(r2) for |r1| < |r2|, r1 · r2 ≥ 0 (2.2)

The second condition ensure that the inequality only have to apply if r1 and r2
lie on the same half axis ((−∞, 0] or [0,∞)). The aim in a linear regression is
now to minimize the sum of the loss function, under the linear model.

The assumption in a linear model is that future observations of a response
variable yt can be written as a linear combination of observed (or forecasted)
explanatory variables xt, where xt ∈ R

K is known, plus an error rt. The model
is

yt = xtβ̂ + rt = ŷt + rt (2.3)
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given past observations of y = [yi] and X = [xT
i ] with i = 1, ...N , we can set up

the observation equations

y = Xβ̂ + r = ŷ + r (2.4)

The matrix X is called the design matrix, the aim is now to estimate β s.t. the
sum of loss functions ρ(ri) is minimized. The best estimate of β, with respect
to this loss function is

β̂ = argmin
β

N
∑

i=1

ρ(ri) = argmin
β
S(r) (2.5)

If we use a quadratic loss function, then we have

S(r) =
N
∑

i=1

r2i = rT r (2.6)

this leads to the conditional mean.

With the quadratic loss function we can write the best estimate of β as

β̂ = (XTX)−1XTy (2.7)

this is a nice and closed form for the estimates. The mean is often not the
only statistic we would like to have on a set of random variables, since this
does not really tell anything about randomness. We could now continue by
estimating higher order moment of the distribution. If all moments are known,
then the distribution is completely characterized. If we assume that data is
normal distributed, then the mean and variance characterizes the distribution.
If a distribution is completely characterized then we can calculate all quantiles.

Another approach is to find quantiles directly. If we know all the quantiles then
the distribution is also completely characterized. This chapter deals with the
idea of quantile regression. The main article of the subject seems to be Koenker
and Basset’s 1978 paper [2]. The idea is to replace the quadratic loss function
with a piecewise linear, and asymmetric loss function, depending on the quantile
we wish to estimate.

The idea of an using absolute loss function to find the sample median have been
known before, but in this article the idea is generalized to other quantiles than
the median.

For the mean estimator we could write down the parameters in a closed form,
this is not the case when we go to the piecewise linear loss function. For this
linear programming techniques are needed to find the best estimator.
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This chapter give some of the fundamental definitions of quantile regression,
and an introduction to linear programming in the quantile regression context.
The linear programming formulation is useful from a implementation point of
view, but it also gives the proof of some of the fundamental theorems of quantile
regression.

2.2 Basic Definitions

The idea of quantile regression is to model the quantiles of a distribution directly,
i.e. a regression of known variables. This offers an alternative to estimating con-
ditional expectations and higher order moments. The focus is linear regression,
which is the general linear model with an absolute loss function, but techniques
for non-linear quantile regression have been develop (see e.g. [18]).

A regression quantile as presented in [2], is a linear regression with K explana-
tory variables

Q̂(τ ;xt) = β̂1(τ)x1,t + ...+ β̂K(τ)xK,t

= xT
t β̂(τ) (2.8)

where Q̂(τ) is the τ -quantile, x1,t would normally be constant equal to one s.t
β1 is an intercept. By introducing the loss

ρτ (r) =

{

τr , r ≥ 0
(τ − 1)r , r < 0

(2.9)

where r is the residual i.e. ri = yi − Q̂(τ ;xi). The estimation of β is done by
minimizing

∑

i ρ(ri) w.r.t. β, hereby we get the estimates

β̂(τ) = argmin
β

N
∑

i=1

ρτ (ri) = argmin
β
S(β; τ, r) (2.10)

with the loss function S(β)

S(β) = τ
∑

ri≥0

ri + (τ − 1)
∑

ri<0

ri = S1(β) + S2(β) (2.11)

This is a linear optimization problem (LO), and gives the conditional τ -quantile.
The proof of this fact is given through the linear programming formulations of
the problem given in later sections.
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Figure 2.1: The figure show the asymmetric loss, when τ = 0.75 and the loss
function for 8 and 9 uniformly distributed numbers. Note that the optimum is
not unique for N = 8, while we have a unique optimum for for N = 9, see also
Example 2.2 for a treatment of the of the uniqueness property.

The definitions given so far are enough to show that (2.10) procedure a τ -
quantile of a random sample, this is the subject of the next example.

Example 2.1 In (2.8) set X = e this is the unconditional sample quantile, the

parameter estimate is denoted β̂ = β̂0. We know that a sample quantile (it does

not have to be unique) is β̂0 = y(⌈τN⌉), with y(i) being the order statistics, the

loss function of (2.10) with β̂0 is

S(β̂0; τ) = τ
∑

yi≥β̂0

ri + (τ − 1)
∑

yi<β̂0

ri

= τ

N
∑

i=⌈τN⌉
(y(i) − y(⌈τN⌉)) + (τ − 1)

⌈τN⌉−1
∑

i=1

(y(i) − y(⌈τN⌉))

= τ

N
∑

i=1

(y(i) − y(⌈τN⌉)) −
⌈τN⌉−1
∑

i=1

(y(i) − y(⌈τN⌉))

= τ

N
∑

i=1

y(i) −
⌈τN⌉−1
∑

i=1

y(i) + (⌈τN⌉ − 1 − τN)y(⌈τN⌉)

S(β̂; τ) is a convex function, see also Figure 2.1 and 2.2, therefore in order to

show that β̂0 = y(⌈τN⌉) is the optimal solution, it is enough to show that there

exist two points β1 < β̂0 and β2 > β̂0 with S(β̂1; τ) ≥ S(β̂0; τ) ≤ S(β̂2; τ). To

show this choose β̂1 = y(⌈τN⌉−1) and β̂1 = y(⌈τN⌉+1). In the same way as above



2.2 Basic Definitions 11

we get

S(β̂1; τ) = τ

N
∑

i=1

y(i) −
⌈τN⌉−2
∑

i=1

y(i) + (⌈τN⌉ − 2 − τN)y(⌈τN⌉)

S(β̂2; τ) = τ

N
∑

i=1

y(i) −
⌈τN⌉
∑

i=1

y(i) + (⌈τN⌉ − τN)y(⌈τN⌉)

Now look at the differences

S(β̂1; τ) − S(β̂0; τ) = y(⌈τN⌉−1) + (⌈τN⌉ − τN − 2)y(⌈τN⌉−1)

−(⌈τN⌉ − τN − 1)y(⌈τN⌉)
= (⌈τN⌉ − τN − 1)(y(⌈τN⌉−1) − y(⌈τN⌉))

≥ 0

and

S(β̂2; τ) − S(β̂0; τ) = y(⌈τN⌉) + (⌈τN⌉ − τN)y(⌈τN⌉+1)

−(⌈τN⌉ − τN − 1)y(⌈τN⌉)
= (⌈τN⌉ − τN)(y(⌈τN⌉+1) − y(⌈τN⌉))

≥ 0

This shows that the quantile regression produce the sample quantiles. �

The example shows that the quantile regression formulation produce the sample
quantile. This is of course a minimal requirement for the quantile regression.

In the more general setting, let J = {1, 2, ...N} and let H denote the K-element
subsets of J , where K is the number of columns in X , let further B∗(τ) denote
the set of solutions to the problem (2.10), finally set H = {h ∈ H|rankX(h) =
K}. Then the following theorem is due to [2]

Theorem 2.1 If X has rank K then the set of regression quantiles, B∗(τ), has
at least one element of the form,

β∗(τ) = X(h)−1y(h) (2.12)

for some h ∈ H. Moreover, B∗(τ) is the convex hull of all solutions having
this form. If further the distribution function F of Y is continuous, then with
probability one β∗ is a unique solution if and only if

(τ − 1)eT
K <

∑

t∈h̄

(
1

2
(1 − sign(yt − xtβ

∗)) − τ)xtX(h)−1 < τeT
K (2.13)

where eK is a K-vector of ones and h̄ = J \ h.
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Figure 2.2: The figure show the loss function S and the two components S1 and
S2, it is seen that they are all convex functions, the numbers used is the same
as in Figure 2.1, with N = 9 (drawn from a uniform distribution).

The proof of Theorem 2.1 relay on the linear programming formulation of prob-
lem (2.10), which will be described in the next section and thereby provide a
partial proof of the theorem. It is seen that the quantile regression interpolate
K points of the pair (X,y), this was also shown in the sample quantile case in
Example 2.1. A small example can again show the implication of the second
part of the Theorem in the sample quantile case.

Example 2.2 As in example 2.1 look at the a random sample, we want to test
if a solution to the quantile regression problem is unique. Example 2.1 shows
that β = y(⌈τN⌉) is a optimum to the problem. Set f(β) =

∑

t∈h̄(1
2 (1−sign(yt−

xtβ)) − τ)xtX(h)−1 then we get

f(y(⌈τN⌉)) =
∑

yt<y(⌈τN⌉)

(1 − τ) +
∑

yt>y(⌈τN⌉)

(−τ)

=

⌈τN⌉−1
∑

t=1

(1 − τ) +

N
∑

t=⌈τN⌉+1

(−τ)

= (1 − τ)(⌈τN⌉ − 1) − τ(N − ⌈τN⌉)
= ⌈τN⌉ − τN − (1 − τ)

now 0 ≤ ⌈τN⌉ − τN < 1 so the theorem tells us that if ⌈τN⌉ 6= τN then the
solution to the problem is unique, if ⌈τN⌉ = τN then we get f(y(⌈τN⌉)) = τ − 1
and the solution is not unique. This is also illustrated in Figure 2.1, for the
sample quantile case. �
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Now it has been establish that the quantile regression produce the sample quan-
tile of a dataset, in this sense it seems promising, that it is somehow a general-
izations of the sample quantile, i.e. that it is the conditional quantile.

2.3 Quantile Regression and Linear Program-

ming

This section will describe the general setting of linear programming and write
down the formulation for the specific case of quantile regression. As general
references should be mentioned [14] and Chapter 6 of [3].

A linear programming problem consist of an objective function (cT x) end a set
of linear constraints (Ax = b and x ≥ 0). In the so called standard form this is

(Ps) min{cT x : Ax = b,x ≥ 0} (2.14)

With A ∈ R
n×m, a point x is called feasible if the constraints in (Ps) are met,

the collection of all feasible points is called the feasible region and will be denoted
P . By reformulating (2.10) it is possible to bring the quantile regression to the
form (2.14). We can write (2.10) as

min{τeT r+ + (1 − τ)eT r− : Xβ + r+ − r− = y, (r+, r−) ∈ R
2N
0 , β ∈ R

K}

with r+i = I(ri ≥ 0)ri and r−i = −I(ri ≤ 0)ri. In a more compact notation this
is

min{cTx : Ax = y, (r+, r−) ∈ R
2N
0 , β ∈ R

K} (2.15)

with

c =





0K

τe
(1 − τ)e



 x =





β
r+

r−



 A = [X, I,−I] (2.16)

A solution to problem (2.14) must lie in a vertex, i.e. at a point where the
number of active constraints are equal to the dimension of x. Or put another
way x must be on the boundary of the feasible region.

Ax = y give us N constraints in 2N +K unknown, so at least N +K elements
in the vector [r+, r−]T must be equal to zero (β can not be on the boundary).
If r+i > 0 then r−i = 0, since otherwise we can move an amount from one to
the other without affecting the constraints, and at the same time improving the
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objective function. The vector r = r+ − r− will contain at least K zeros, let h
be the index set s.t. r(h) = 0 we can write

X(h)β = y(h) (2.17)

If rankX = K then there exist an index set h with rankX(h) = K, rankX
should be K since otherwise one of the explanatory variables can be written as
a linear combination of the other and the problem will be singular. With this
first part of Theorem 2.1 is proved.

It is of course impossible to go through all these vertex points, since there
will an extremely large number of these. In the context we use these later on,
the dimension of X will be up to 10000× 39 and the number of vertices is then
(

10000
39

)

∼ 4 ·10113. There are different ways to get faster to the optimal solution,
in this presentation we will discuss the simplex method where the solution is
iterated from vertex to vertex in the direction of a better objective function.

The simplex algorithm works because the objective function and the feasible
region are both convex, this insures that a local optimum is also a global opti-
mum. It should be mentioned that for large problems, one would normally use
an interior point methods, where a penalty function is used to iterate through
the interior of the feasible region to the optimal solution. This is also what is
used by the statistical software “R”.

Here the focus is on the simplex method because, this probably offers a more in-
tuitively understanding of the problem, and more important the simplex method
is considered superior if we have what is called a “warm start” in [14], i.e. we
have a good guess on the solution. This will be used to develop an adaptive
procedure for the quantile regression.

In [13] Koenker presents an algorithm for computing all quantiles of a distribu-
tion. This is done by first calculating the 1

N
quantile (N being the sample size)

and then step by step calculating all others quantiles, each of these requiring
one simplex pivot. For large large sample sizes the number of different quantiles
are very large a “typical” number being mentioned in the help function of the
“R”-command “rq” is the order N log(N). Even with this in mind this should
inspire to do something similar in an adaptive procedure for quantile regression.

Before going to the simplex algorithm we need some more background. In LP
problems the so called dual problem plays a very important role. In the next
section the dual problem is therefore explained and formulated for our quantile
regression model. The dual problem is only used for analysis of the problem
here.
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2.3.1 The Dual Problem

Every LP problem have an associated dual problem, for a problem in the stan-
dard form (2.14) the dual problem is

(D) max{bT z : AT z ≤ c} (2.18)

To see how we get this, look at the relaxed problem corresponding to (Ps)

(R) min{cT x + zT (b − Ax) : x ≥ 0} (2.19)

Here z is an arbitrary vector in R
m, an optimal solution to (R) will always be

less than or equal to the solution to the optimal solution to the primal problem,
since otherwise we could just choose the optimal x∗ as the solution and then
get the same value of the objective function.

The relaxed problem therefore gives us a lower bound for the primal problem,
what is then interesting is of course the maximal lower bound, so we want to
solve

max
z

{min
x

{cTx + zT (b − Ax) : x ≥ 0}} (2.20)

Now rewrite the objective function of this problem as

cT x + zT (b − Ax) = xT (c − AT z) + bT z (2.21)

If there exist any i s.t. (c − AT z)i < 0 then the minimization is easy, because
then just let (x)i → ∞ and the objective function will be −∞. To get a lower
bound that is useful we therefore demand that (c − AT z)i ≥ 0, but then the
optimal value is x = 0 and we get the dual problem (D).

Now we can write down the dual problem for the quantile regression problem.
To make the steps clear we write the primal problem explicitly in the standard
form, i.e. reformulate the variables and parameters in (2.15) as

c =





02K

τe
(1 − τ)e



 x =









β+

β−

r+

r−









A = [X,−X, I,−I] (2.22)

Then we have the standard form

(Ps) min{cTx : Ax = y,x ≥ 0} (2.23)
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This give the dual formulation

(D) max{yT z : AT z ≤ c} (2.24)

but since

AT =









XT

− XT

I
− I









(2.25)

This can immediately be rewritten as

(D) max{yT z :

[

XT

− XT

]

z ≤ 0, z ∈ [τ − 1, τ ]N} (2.26)

which is the same as

(D) max{yT z : XT z = 0, z ∈ [τ − 1, τ ]N}

The following theorem, which tells us about the existence of a solution, is due
to [14]

Theorem 2.2 For a given pair (P ) and (D) there are three alternatives

1. Both (P ) and (D) are feasible and bounded and there exist a strictly com-
plementary optimal pair (x̃ ∈ P∗, z̃ ∈ D∗) with cT x̃ = bT z̃

2. Either (P ) or (D) is unbounded and the other is infeasible.

3. Both (P ) and (D) are infeasible.

The proof of this will not be given for the general case here for this the reader
is refereed to [14]. The proof of the quantile regression case will be given later
on when the notation of the simplex method is establish.

The dual formulation (2.26) above is clearly bounded and feasible, to see that it
is feasible just set z = 0. So we are in situation one, and the optimal solution to
the dual problem have the same solution as the optimal solution to the primal
problem. So to prove Theorem 2.2 we just have to find the complementary pair.

To explain the complementary property we need to reformulate the problem
(2.18) as

(D) max{yT z : AT z + s = c, s ≥ 0} (2.27)
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the vector s is called the surplus vector and the solution is said to be strictly
complementary if it satisfy

x∗ ⊙ s∗ = 0 and x∗ + s∗ > 0 (2.28)

This gives a partition (B, C) of the index set {1, ...,K + 2N} = Ω, with (B, C)
defined by

B = {j|x∗j > 0} C = {j|s∗j > 0} (2.29)

The splitting (B, C) can be found by using the simplex algorithm, this is the
subject of the next section. If we have B then we can get the index set h and
thereby β̂ directly.

Note that h refer to rows of X while B and C refer to columns of A, the con-
nection is that if i ∧ i+N ∈ C then i−K ∈ h.

2.3.2 The Simplex Method

The idea of the simplex algorithm is to move through the vertices in an intelligent
way. I.e. always move in the direction of a vertex with a better objective
function. As stated this works because the objective function is convex and the
feasible region is also a convex set.

The simplex algorithm assumes that we are at a vertex, so we have to get some
method for getting to a vertex before starting the simplex algorithm, here we
assume that we have such a solution. It is not important for the proofs how we
get this and when we use the simplex method to develop an adaptive quantile
regression method this solution is found with an interior point method algorithm
in “R”.

Following [14] we define B = A:B and C = A:,C to easy notation. With such a
splitting we can write down the constraints as

Ax = BxB + CxC = y (2.30)

It have already been shown that, at a vertex x(k) there exist a splitting (B, C)
of the index set s.t.

rank(AB) = m (2.31)

x
(k)
C = 0 (2.32)

x
(k)
B = A−1

B y ≥ 0 (2.33)
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In the following it is assumed that B and C is ordered s.t. B(1) < B(2) < ... <
B(N) and C(1) < C(2) < ... < C(N +K).

The objective function can now be written as

cTx(k) = cT
Bx

(k)
B + cT

C x
(k)
C (2.34)

= cT
B(x

(k)
B − B−1Cx

(k)
C ) + cT

C x
(k)
C (2.35)

= cT
Bx

(k)
B + (cT

C − cT
BB−1C)x

(k)
C (2.36)

= cT
Bx

(k)
B + (cT

C − (CT (B−T cB)T )T )x
(k)
C (2.37)

= cT
Bx(k) + dT x

(k)
C (2.38)

Since xC ≥ 0 we can not decrease the objective function if d ≥ 0 and x(k) is
therefore the optimal solution. From (2.37) we see that d is given by

d = cC − CTg ; g = B−T cB (2.39)

If x(k) is not optimal then choose a negative element ds in d, and change one el-
ement (xC)s, while keeping the other elements of xC at zero. The basic variables
are changed in direction h = B−1C:,s, xB is changed in this direction until we
meet a new vertex. This amount is given by α = min{σ1, ..., σm} with

σj =

{

(x
(k)
B )j/hj if hj > 0
∞ if hj ≤ 0

(2.40)

if α = ∞ then the problem is unbounded, this can as stated in the Theorem 2.2
and the discussion thereafter not happen in our case. α can be zero and then
the objective function is not improved, the step should be taken anyway since
we could move to a position with a decent direction and an α > 0. xB is now
changed in two steps

x
(k+1)
B = x

(k)
B − αh (2.41)

(x
(k+1)
B )q = α (2.42)

where q = argminj σj . Further the q’th element of B is swapped with the sth
of C and the algorithm starts over again. If α is zero, then it can happen that
we move back and forth between two vertices with equal objective functions, so
we should keep track where we have been and then be sure not to go back.

The expensive part of the simplex algorithm is to calculate the inverse of B (this
should be done by a solve algorithm). However in the special case of quantile
regression it is possible to write B−1 as products of known matrices and the
inverse of X(h). To see this write down B as

B =

[

X(h) 0
X(h̄) P

]

(2.43)
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This is possible because we know that X(h)β̂ = y(h) when we are at a vertex
and therefore r(h) = 0, r+i > 0 ⇒ r−i = 0; r−i > 0 ⇒ r+i = 0. Further we have

BxB = Xβ̂ + sign(r(h̄)) ⊙ |r| so in summary we have

X(h)β̂ = y(h); X(h̄)β̂ + sign(r(h̄)) ⊙ |r(h̄)| = y(h̄) (2.44)

We can therefore get (2.43) by interchanging rows in B. P is a diagonal matrix
with the diagonal elements sign(ri) + I(ri = 0), i ∈ h̄ implying P = P−1. Now
write B−1 as

B−1 =

[

B−1
11 B−1

12

B−1
21 B−1

22

]

(2.45)

with B−1
11 ∈ R

K×K , B−1
21 ∈ R

(N−K)×K , B−1
12 ∈ R

K×(N−K) and B−1
11 ∈ R

(N−K)×(N−K).
To find B−1, we have to solve the equations

X(h)B−1
11 + 0B−1

21 = I (2.46)

X(h)B−1
12 + 0B−1

22 = 0 (2.47)

X(h̄)B−1
11 + PB−1

21 = 0 (2.48)

X(h̄)B−1
12 + PB−1

22 = I (2.49)

Which immediately give

B−1
11 = X(h)−1 (2.50)

B−1
12 = 0 (2.51)

B−1
21 = −PX(h̄)X(h)−1 (2.52)

B−1
22 = P (2.53)

This is is very important, because in this context the matrix B is quite large,
with several thousand elements in each direction. The formulation above make
it possible to calculate the inverse of B by calculating the inverse of X(h) and
then using matrix multiplication and element wise multiplication with the vector
p = diag(P). In this presentation the number of elements in h will always be
less than 40, so even if (and we would have to do so) we use the fact that B is
sparse there are very large improvements w.r.t. calculation time and numerical
stability compared with a standard sparse function. Further the implementation
does not require sparse functions and does therefore not require sparse functions
in the software.

The algorithm described in Practical Summary 2.1 is the same as the one de-
scribed in [14], but the specialties w.r.t. quantile regression is used. The algo-
rithm assumes that we are at a vertex i.e. we have xB = B−1y and xC = 0. An
overview of the algorithm is given first and then we go through each step below.
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Practical Summary 2.1 The simplex algorithm

1. Compute d if d ≥ 0 stop x is optimal.
Otherwise choose s s.t. ds < 0

2. Compute h = B−1A:,C(s) if h ≤ 0, stop the problem is unbounded.

3. Compute α and choose q such that σq = α

4. Swap B(q) and C(s) and set xB := xB − αh; (xB)q := α

Step one

The number of directions to calculate is equal to the number of elements in C,
this number is N +K, but the only directions which can be decent directions
in the case of quantile regression is elements corresponding to h. It is therefore
sufficient to examine 2K directions, corresponding to moving elements of r(h)
in a positive or negative direction.

d is given by d = cC −CTg with g = B−T cB. If we have ordered C in the same
way as B then the structure will be

C =

[

IK −IK 0
0 0 −P

]

=

[

PC 0
0 −P

]

(2.54)

Therefore we only need the first K elements of g, these are

g(h) = B−T
1:KcC (2.55)

= [X(h)−T − (PX(h̄)X(h)−1)T ]cB (2.56)

= −X(h)−TX(h̄)TPρτ (sign(r(h̄))) (2.57)

this gives

d =

[

τeK − g(h)
(1 − τ)eK + g(h)

]

(2.58)

This gives us at most K decent directions, since dK+1:2K = eK − d1:K so if
d1 < 0 then dK+1 > 1, and in the optimal solution we have 0 ≤ d ≤ 1. This is
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actually the proof of the second part of Theorem 2.1, to see this rewrite g

gT (h) = −Pρτ (r(h̄))T X(h̄)X(h)−1

= −p⊙ ρτ (r(h̄))TX(h̄)X(h)−1

= sign
(

r(h̄)
)

⊙
(

1

2

(

e− sign(r
(

h̄)
)

)

+ τsign
(

r(h̄)
)

)T

X(h̄)X(h)−1

=
1

2

(

− sign
(

r(h̄) + e
)

− τe
)T

X(h̄)X(h)−1

=
∑

t∈h̄

(

1

2

(

1 − sign(rt)
)

− τ

)

xtX(h)−1

The demand 0 ≤ d ≤ e give the result from Theorem 2.1.

There are different ways to choose s one approach is to choose s as the steepest
direction. Since h and therefore α depends on the direction we go in, this does
not guarantee that we get the greatest improvement in the objective function.

Another approach is to compute h for all the decent directions, this is possible
here because we can only have a very limited number of decent directions. This
is the approach chosen here, we compute the improvements (αsds) in all the
decent direction and then choose the best direction.

Step one is completed by choosing s̃ = {s|ds < 0} and Ps = PC,:,s̃.

Step two

Compute h according to the strategy in step one, i.e. h will be a matrix with
each column being equal to one of the first K columns in B−1 times the sign of
the residual produced by going in this direction. Set

s̃i =

{

s̃i if s̃i ≤ K
s̃i −K if s̃i > K

(2.59)

and h = B−1
:,s̃ Ps.

Step three

The choice of α is done to prevent any of the variables to pass to the infeasible
region, in our case this means that a residual can not change sign without passing
through the index set h.
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It should however be noted that an algorithm allowing residuals to change signs
without passing through h could be implemented. We should just keep track of
which of the residuals change sign, and the stop criterium should then be choose
α s.t. the improvements in the objective function is maximized.

The improvements can in this case not be calculated directly from αds any more,
since we have to take into account that the vector cB will now change every time
we let a residual pass through zero.

To see how this would work define c̃B = ρ(−r(h̄)), so c̃B is the loss when
residuals is moved through zero. The decent direction was h, the gain in the
loss function is equal to −αhcB + cC(s) = αds when α = σ(1). Let q be a index
set s.t. σq is the order statistics of σ. Setting α equal to σ(2) correspond to
moving one residual through zero, or equivalent to change cB(q1) to −c̃B(q1)

(the minus is due to the fact that the direction of the gain in the loss function
is reversed here), this change is equivalent to subtracting one from cB(q1). If we
denote the gain in the loss function by moving in the direction h an amount σj

by Lgj, then we get the following recursive formula for the gain

Lg1 = σ(1)(hcB + cC(s)) (2.60)

= σ(1)ds (2.61)

Lg2 = Lg1 + (σ(2) − σ(1))(hcB + h(q1) + cC(s)) (2.62)

= Lg1 + (σ(2) − σ(1))(ds + h(q1)) (2.63)

Lg3 = Lg2 + (σ(3) − σ(2))(hcB + h(q1) + h(q2) + cC(s)) (2.64)

= Lg3 + (σ(2) − σ(1))(ds + h(q1) + h(q2)) (2.65)

...

Lgj = Lgj−1 + (σ(j) − σ(j−1))(ds +

j−1
∑

l=1

h(ql)); j > 1 (2.66)

so the gain in the loss function will be better and better as long as −ds >
∑j−1

l=1 h(ql). In this way we can skip some simplex steps and this can be done
just by summing up a vector, which is of course much cheaper than inverting
the matrices. As stated above this is not implemented, therefore how much this
would save in calculation time is not examined. �

This conclude the simplex steps and we are ready to go back to step one. The
next example illustrate the technique of the simplex method applied to quantile
regression, again in the sample quantile case.

Example 2.3 Assume that we want to find the sample median of y = [1, 2, 3, 4, 5, 6]T ,
we have the design matrix X = e6 and cB = 1

2 [0, eT
5 ]T , cB is constant in this
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case since the loss function for the median regression is symmetric around zero.
If we set out with h = 1 then h̄ = {1, ..., 6} \ 1 = {2, 3, 4, 5, 6} we have

X(h) = 1 ; X(h̄) = e5

y(h) = 1 ; y(h̄) = [2, 3, 4, 5, 6]T
(2.67)

This gives β̂ = X(h)−1y(h) = 1−11 = 1, this gives

r(h̄) = y(h̄) − eβ = [2, 3, 4, 5, 6]T − e5 = [1, 2, 3, 4, 5]T (2.68)

and so p = diag(P) = sign(r(h̄)) = eT
5 , xB = [1, 1, 2, 3, 4, 5]T , the objective

function is 1
2

∑5
i=1 i = 7.5 and

B−1 =

[

X(h)−1 0
−PX(h̄)X(h)−1 P

]

=

[

1 0
−e5 I

]

(2.69)

Now we can find g = −X(h)−TX(h̄)T PcB(h̄) = −1 · eT
5

1
2e5 = − 1

2 · 5 and

d =

[

τ − g
1 − τ + g

]

=

[

0.5 + 2.5
0.5 − 2.5

]

=

[

3
−2

]

(2.70)

This conclude step one.

The next step is now to find h = B−1C:,2 = B−1[−1,0T
5 ]T = −B−1

:,1 =

[−1, eT
5 ]T .

With this we get σ = [∞, 1, 2, 3, 4, 5] and α = 1

Therefore we have q = 2 and we set h = 2, xB = [2, 1, 1, 2, 3, 4]T the final step
is to change p1 from 1 to −1 (because the decent direction was d2). We are
now ready to begin the next iteration, this is completely similar and will not be
done here. The objective function was decreased to 5.5, in the first step.

If we use equation (2.66) then we get

Lg1 = σ(1)ds

= −2

Lg2 = Lg1 + (σ(2) − σ(1))(ds + h(q1))

= −2 + (2 − 1)(−2 + 1)

= −3

Lg3 = Lg2 + (σ(3) − σ(2))(ds + h(q1) + h(q2))

= −3 + (3 − 2)(−2 + 1 + 1)

= −3

Lg4 = Lg4 + (σ(3) − σ(2))(ds + h(q1) + h(q2) + h(q3))

= −3 + (3 − 2)(−2 + 1 + 1 + 1)

= −2
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which tells us to choose α = σ(3) or α = σ(4) corresponding to h = 3 or 4. So
in this case the procedure takes us directly to the sample median in one step,
with the loss function for the optimal solution being 7.5 − 3 = 4.5. �

With the constructional description of the the quantile regression in place we
go and study properties of the quantile regression.

2.4 Properties of Quantile Regression

The previous sections showed how to get the regression quantiles. It have been
shown that in the case of the sample quantiles, the regression method introduced
produce the sample quantile. We have not seen that this technique actually
produce a quantile in the sense that the proportion of observations below the
hyper plane produced by the regression is close to τN . That it does so should
of course be the case, fortunately this is also the case. The next theorem state
this and the condition needed to ensure this, the theorem is due to [3]

Theorem 2.3 Let Pq, Nq and Zq denote the proportion of positive, negative
and zero elements of the residual vector r = y − Xβ(τ). If X contains an

intercept, that is, if there exist α ∈ R
K s.t. Xα = eN , then for any β̂(τ),

solving (2.10) we have

Nq ≤ Nτ ≤ Nq + Zq and Pq ≤ N(1 − τ) ≤ Pq + Zq (2.71)

The loss function defined in by (2.10) is not differentiable, at the points where
one or more of the residuals ri is zero. Therefore the directional derivative in
direction w, have to be defined before we can go on to the the proof of the
theorem. The directional derivatives is defined by

∇S(β,w) =
d

dt
S(β + tw)

∣

∣

t=0

=
d

dt

N
∑

i=1

(yi − xT
i β − xT

i tw)[τ − I(yi − xT
i β − xT

i tw)]
∣

∣

t=0

= −
N
∑

i=1

ψ∗
τ (yi − xT

i β,−xT
i w)xT

i w (2.72)

with

ψ∗
τ (u, v) =

{

τ − I(u < 0) if u 6= 0
τ − I(v < 0) if u = 0

(2.73)
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With this we are ready for the proof of Theorem 2.3

Proof. The condition for optimality is that ∇S(β,w) ≥ 0 for all w ∈ R
K ,

therefore we can also choose w = α and get

∇S(β, α) = −
N
∑

i=1

ψ∗
τ (yi − xT

i β,−1) (2.74)

= −τPq + (1 − τ)Nq + (1 − τ)Zq ≥ 0 (2.75)

and with w = −α we get

∇S(β,−α) =

N
∑

i=1

ψ∗
τ (yi − xT

i β, 1) (2.76)

= τPq − (1 − τ)Nq + τZq ≥ 0 (2.77)

with Pq = N −Nq − Zq and Nq = N − Pq − Zq these inequalities give the two
conditions in the theorem and the proof is completed. �

A remark here is that by a re-parameterization of w s.t. w = X(h)−1v and
checking the directions ±ej j = 1, ...K, where ej is a vector of zeros except
the k’th which is one, the demand on the directional derivatives will give the
demands on the simplex vector d (see section 2.3.2) and thereby a proof of
Theorem 2.1.

2.4.1 Quantile Crossings

We have now seen how to construct the regression quantiles and that these
divide the data space in a manner that should be required by a quantile. The
regression quantiles have however a quite serious problem, this is the problem of
quantile crossings. These can occur because we model the quantiles individually.
Koenker note in [3] that if our explanatory variables are assumed to take values
in R then the only way to avoid these is to let all regression lines be parallel
and only move the intercept, but this is quite restrictive and not really what we
would expect here.

The hope is now that quantile crossings will only appear at remote areas of the
data space, in [3] Koenker note that a significant number of crossings can be
taken as evidence of misspecification of the covariate effects. So if we have many
crossings we should probably examen our model. In [3] Koenker show that the
sample path Q̂Y (τ |x), where x is the mean of x, is a nondecreasing function
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of τ . This says that for the ”typical” value of x we do not have crossings, but
we can not be sure not to have crossings at other values of x and it does not
guarantee give us any area where there is no crossings.

In the context where we use quantile regression the variables can not take values
in R but on in a subset of R, this is probably also the case in most applications,
when this is the case crossings can be avoided. In Section 6 some solutions to
the crossing problem will be discussed.

2.4.2 Asymptotic Properties of Quantile Regression

Here we will not go deep into the asymptotic theory of quantile regression, but
just give a few fundamental properties. A reference on the subject is Chapter 4 of
[3]. A minimal asymptotic requirement on β̂ is that it is consistent, the necessary
and sufficient conditions for consistency is stated for τ ∈ (0, 1) in [3] and are
proved in [4] for the case τ = 1

2 . These conditions are on the distribution of the
errors and on the design matrix, the requirement on the distribution of the errors
is that the distribution functions are strictly increasing in some neighborhood of
the τ , in [3] Koenker note that the estimator can not be consistent if this is not
the case since any estimator in this neighborhood would then be an estimator
for the τ -quantile.

The conditions on the design matrix ensure that the explanatory variables is not
concentrated in a subspace of R

K and that the rate of growth is not too large,
this requirement will e.g. be satisfied if under the condition that N−1

∑

XTX
converge to a positive definite matrix, but the conditions for convergence is
weaker than this.

The conditions mentioned above only state that the quantile estimate will con-
verge, not the rate of convergence or the distribution of the estimate. To say
something about this the conditions must be strengthen, these conditions are
also given in [3], these are mentioned here since they should be considered when
we design the model, that is used later on. Further these give some indications
of test procedures, which is the subject of the next chapter.

The condition on the conditional distribution of Y |x will be denoted F , i.e. we
have

QYi
(τ |xi) = F−1

Yi
(τ |xi) = ξi(τ) (2.78)

The distribution functions FYi
(y|xi) will be denoted Fi and the corresponding

density function will be denoted fi, note here that there is no assumption on
identical distributions.
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Conditions on F : The distribution functions {Fi} are absolutely continuous,
with continuous densities fi(ξ) uniformly bounded away from 0 and ∞ at the
point ξi(τ), i = 1, 2, ...

As long as we consider continuous random variables this is not a strong re-
quirement on the distribution functions. Even if it can be assumed that these
conditions hold, then we will have difficulties if we want to use the estimates of
Q̂, since these does not necessarily fulfill these conditions, we can have crossings
in which case Q̂ is not on-to-one, and if the response variable is restricted to some
interval then Q̂ can also make forecast outside this interval, but here we know
that f is zero. These complications make hypothesis testing very complicated
(see e.g. [11]).

Conditions on X: There exist positive definite matrices D0 and D1(τ) s.t.

limn→∞ N−1
∑

i

xix
T
i = D0 (2.79)

limn→∞ N−1
∑

i

fi(ξi(τ))xix
T
i = D1(τ) (2.80)

maxi N− 1
2 ||xi|| → 0 (2.81)

These conditions seems quite weak as well. The problem is more the complexity
of these conditions, to estimate D1 is not easy under general fi. The next the-
orem state that under the above conditions the quantile regression is consistent
and efficient.

Theorem 2.4 Under the above conditions

√
N(β̂(τ) − β(τ)) N (0, τ(1 − τ)D−1

1 D0D
−1
1 ) (2.82)

In the iid error model this reduces to

√
N(β̂(τ) − β(τ)) N (0, ω2D−1

0 ) (2.83)

with ω2 = τ(1 − τ)/f2
i (ξi(τ)).

The conditions does not seem very strong and the conditions on the design
matrix is somewhat similar to the conditions in the general linear model.

As a small example we can look at the sample quantile case. If we have a real-
ization of a stochastic variable from a distribution F then the observation x(k)

with k = ⌈τn⌉ will be asymptotically normally distributed with mean F−1(τ)
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and variance

ω2(τ) =
τ(1 − τ)

Nf2(F−1(τ))
(2.84)

see [10]. We see that this is what we get from using 2.84 on the sample quantile
case.

The results here give hope for some kind of hypothesis testing procedure, and
these have also been developed under quite general conditions, the main problem
is as we will see in the next section that these become very complicated if there
is not very strong assumptions on the residuals. Even with complicated tests
there are strong requirements on the residuals.

2.5 Hypothesis Tests

When having described the model above one of course want to perform some
kind of test to be able to compare models, to do this we make partition of the
model

Qyi
(τ ;x) = x′

iβ(τ) = xT
1iβ1(τ) + xT

2iβ2(τ) (2.85)

where β1 ∈ R
K and β2 ∈ R

p in this we want to test H0 : β2 = 0 against the
alternative. Now set Ŝ = minβ S and S̃ = minβ1 S

The most simple case is if ri is iid from the asymmetric Laplacean density, this
is described by

f(u) = τ(1 − τ)e−ρτ (u) (2.86)

The maximum likelihood estimate under the assumption that ri come from this
distribution yields the estimates described in (2.10). If ri follow this distribution
we can make the log likelihood ratio as Ln = 2(S̃(τ) − Ŝ(τ)), this will be
χ2 distributed under the assumption that ri follow the asymmetric Laplacean
described above. Now it seems to be quite implausible that the residuals should
follow this distribution so to make a test useful it should be more general.

If ri is iid but follow some other distribution (with f(F−1(τ)) > 0) then the
likelihood ratio is

LN(τ) =
2(S̃(τ) − Ŝ(τ))

τ(1 − τ)s(τ)
(2.87)

with s(τ) = 1/f(F−1(τ). LN will converge weakly χ2
η(τ)(q), where the non cen-

trality parameter η(τ) depend on the inverse of D0, the estimates and ω2(τ),
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further under the null hypothesis supτ∈TLn(τ) converges to the central χ2
q dis-

tribution, where T = [ǫ, 1 − ǫ] for some ǫ ∈ (0, 1
2 ). Already here we see the

difficulties in the test procedure, since the test statistic involve the p.d.f. of the
residuals, so to calculate this we have to estimate f(F−1(τ)) and we have to
take the supremum over an interval of τ ’s.

[11] give tests in more general situations, the most general setting is that

yi = xT
i β + σiui (2.88)

with σi = xT
i γ and ui iid from a distribution F . Even though this might seem a

general condition we still have to assume (or prove) independence of some sort.

The test statistics also becomes very complicated and besides the p.d.f of ri
we have to estimate γ or at least matrices depending on γ. The estimates of
these parameters are themselves quite complicated. So we see that as soon as
we leave the assumption that ri is iid from the asymmetric Laplacean, then this
gets quite complicated. [11] go through these kind of tests.

As we will discuss in Chapter 4 we can not assume that our residuals are inde-
pendent. Even though the structure in equation (2.88) is quite general it still
require independence of the ui’s and therefore that σiui is uncorrelated. In the
context of wind power forecast we will a priori assume correlation between the
errors, further it is not clear how to determine if we can assume (2.88).

Hypothesis will be considered briefly in Chapter 4, for the data set used in the
presentation. This chapter will also discuss other ways to measure performance
of quantile regression models.
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Chapter 3

About splines

The purpose of this chapter is to describe B-splines basis functions, which will
be used in later chapters. First a formal definition of splines and motivations
for using the special class of splines called B-splines is given. Then some fun-
damental properties of B-splines basis functions are given.

Section 3.4 concentrate on cubic B-splines basis functions and how to impose
special boundary conditions for the cubic B-splines basis functions. This section
and the Practical Summary’s therein give a constructive guide to spline with
special boundary conditions.

At the end of the chapter the hat-matrix, which takes the space of observations
to the space of predictions, and thereby give a basis for comparison between
different smoothers or kernels, is considered.

3.1 Introduction

The following definition of splines is taken from [8]. It is given to motivate the
construction of the B-splines basis functions and the discussion of splines in
more general.
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Definition 3.1 A spline function s of degree m (s(x) ∈ Sm(t1, ..., tn)) is a poly-
nomial of degree at most m on each of the intervals defined by the knot sequence
{tj}n

i=1 and the intervals (−∞, t1), (tn,∞), with the first m − 1 derivatives
varying continuously over the knots.

Before going on with the construction of B-splines, we take a brief discussion of
splines in general and what is so appealing about B-splines. In this context we
are going to use the basis functions of Sm(t1, ..., tn)), to estimate or approximate
unknown functions f , so if {sj}K

j=1 is a basis for Sm(t1, ..., tn)), then we estimate
f by

f̂(x) =

K
∑

j=1

α̂jsj(x) (3.1)

w.r.t. some loss function, e.g. the loss function as discussed in Chapter 2. Hence
we have f̂ ∈ Sm(t1, ..., tn)), so we can put some prior assumption on how many

times f is differentiable into f̂ , by choosing the right m. By controlling the
location of the knot sequence we can to some extend control how much local
variation f̂ can handle.

These arguments may not be very convincing especial not since we would prop-
erly normally assume that f ∈ C∞, and we can of course not choose m = ∞
and we can not search for functions in C∞.

Traditionally m = 3 is chosen, one explanation for this is probably, as noted in
[9] p. 22, that we are not able to see (from a graph), whether a function is C2

or C∞. So by choosing m = 3, the spline appears to be a C∞ function.

The number of basis functions is n + m + 1, to see this simply count degrees
of freedom, this is done explicitly below. This shows that there is a trade off
between the number of basis functions and differentiability. Further when choos-
ing B-splines the number of intervals where the basis functions have support is
proportional to m. Other properties of the B-splines will be stated in the next
sections of this chapter.

The arguments above is somewhat esthetic, a more formal argument for choosing
m = 3 is to look at the minimization problem (3.2) below (see [9] p. 27). The
use of N instead of n is to emphasize that we now look at every observation,
and n is used for a knot sequence which does not necessarily have anything to
do with the location of observations. It should also be emphasized that the
minimization is to be done w.r.t. functions.

argmin
f

(

N
∑

i=1

(yi − f(xi))
2 + λ

∫

f ′′(t)2dt

)

(3.2)
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where λ is a fixed constant. The solution to this problem is a natural cubic spline
(natural meaning f ′′(x1) = f ′′(xN ) = 0), with the knots sequence {x(i)}N

i=1.
Even though this is not what we do here it gives some support to the choice of
m = 3. A remark here is that even though N is large the efficient degrees of
freedom is far less than N . It is clear that there are many ways to make spline
basis functions, one quit intuitively way is to use the truncated power series

s(x) = θ−m + θ−m+1x+ · · · + θ0x
m +

n
∑

j=1

θj(x− tj)
m
+ , x ∈ R

=

n
∑

j=−m

θjsj(x) (3.3)

this is clearly a spline of degreem. If there is no knots this is just a polynomial of
degreem. It is also seen that there are n+m+1 degrees of freedom. In Definition
3.1 there are n + 1 intervals and the polynomials on each interval have m + 1
parameters, and there are m restrictions per knot. With (n+1)(m+1)−mn =
n+m+ 1 and since the sj ’s are linearly independent, we actually have a basis
for Sm(t1, ..., tn).

Each of the basis functions in (3.3) have support on a infinite interval and are
strictly increasing as a function of the distance from tj , so they grow fast. There-
fore each of the basis functions can become very large, and as a consequence
this can course numerical problems.

These problems are solved with the B-spline basis functions, which only have
support in the interval [tj , tj+m+1], so we don’t have the problem of the basis
functions going to ∞. Further the B-spline basis functions does not have values
outside the interval [0, 1].

The rest of this chapter will concentrate on the properties of B-spline basis
functions. To be able to derive the basis functions and their properties in a
quite simple notational setting, it is convenient to introduce divided differences.
This presentation of divided differences follows [6], but only the results needed
for the description of B-splines basis functions are stated, and some of the results
are stated and proved in a less general setting than in [6].

3.2 Divided Differences and B-splines

When we are not interested in the actual construction of the B-spline basis
functions, but merely in the properties of these, divided differences as defined
below give a convenient way of introducing B-spline basis functions.
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This sections starts by the definition of divided differences and a little on how
to calculate these in order to get a feeling of what they are and how to work
with them.

Definition 3.2 The k-th divided difference of a function g at the points tj , ..., tj+k

is the leading coefficient (i.e. the coefficient of xk) of the polynomial of degree
k which agrees with g at tj , ..., tj+k. It is denoted

[tj , ..., tj+k]g (3.4)

It is maybe not very clear from the definition what this object is. By establishing
the existence and uniqueness of this, we can get some feeling of what it is,
especially the existence give a direct interpretation of this. The uniqueness and
existence of this is of course important in its own right, because it ensures the
existence and uniqueness of divided differences.

In order to do this define Pn as the space of all polynomials of degree n, i.e.
pn(x) ∈ Pn ⇒ pn(x) =

∑n
j=0 ajx

j . For a given sequence of distinct points

t = {t}n+1
j=1 and a function g, there is exactly one polynomial pn(x) ∈ Pn for

which pn(tj) = g(tj) for j ∈ 1, 2..., n+1. In order to see the uniqueness consider
another polynomial qn(x) ∈ Pn, with qn(tj) = g(tj) j = 1, ..., n + 1, then
pn(x) − qn(x) is a polynomial of degree n with n+ 1 roots, which must be the
zero function.

To realize the existence of such a polynomial, define the set of integers between
1 and n + 1 both included and take away the number j from this set, or more
formal Jj = {1, ..., j − 1, j + 1, .., n+ 1} and look at the polynomial, which is
called the Lagrange form

pn(x) =

n+1
∑

j=1

g(tj)
∏

l∈Jj

(x− tl)

tj − tl
(3.5)

This polynomial is clearly of degree n and pn(tj) = g(tj) for j = 1, 2..., n+ 1.

Now that we have established the existence and uniqueness of divided differ-
ences, we can actually write down the divide difference of a function g as

[t1, ..., tn+1]g = [t1, ..., tn+1]pn =

n+1
∑

j=1

g(tj)
∏

l∈Jj
(tj − tl)

(3.6)

So from the Lagrange form we can get the divided difference directly without
calculating the entire polynomial.
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In Definition 3.2 it is not required that the points tj , ..., tj+k are distinct. If
there are multiple points, then the term agrees means: if there is m points that
coincide at t then p and g agree m-fold at t i.e.

p(j−1)(t) = g(j−1)(t) for j = 1, ...,m

This property is used when working with the boundary conditions later on.

The next example gives complete calculation of the divided differences for a
specific function and a knot sequence, and also offers a more complete derivation
of (3.6).

Example 3.1 (Divided difference of sin(x)) Look at the function g(x) = sin(x)

and the knot sequence t = {0, π
4 ,

π
2 ,

3π
4 , 1}, this give {g(ti)}5

i=1 = {0,
√

2
2 , 1,

√
2

2 , 0}.
From the Lagrange form (3.5) we immediately get that the interpolating poly-
nomial of degree 4 which agrees or interpolate g(x) at the points in t, can be
written as (O(x3) means terms of degree 3 or less)

p5(x) =

5
∑

j=1

g(tj)
∏

l∈Jj

(x− tl)

tj − tl

=

5
∑

j=1

g(tj)x
4

∏

l∈Jj
(tj − tl)

+ O(x3) (3.7)

=
x4

π
4 (−π

4 )(−π
2 )(− 3π

4 )

√
2

2
+

x4

π
2

π
4 (−π

2 )(− 3π
4 )

+
x4

3π
4

π
2

π
4 (−π

4 )

√
2

2
+ O(x3)

=

(

−
√

2

3
+ 1 −

√
2

3

)

43x4

π4
+ O(x3)

=
43(3 − 2

√
2)

3π4
x4 + O(x3) (3.8)

the divided difference is now given directly from (3.8) as [0, π
4 ,

π
2 ,

3π
4 , 1] sin(x) =

43(3−2
√

2)
3π4 . This example illustrates how to get (3.6). �

The definition of the B-spline is given in terms of divided differences, the defi-
nition can be given in other ways. Theorem 3.1 below gives an alternative but
equivalent definition.
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Figure 3.1: The figure illustrates how the B-spline basis functions behave
when influenced by knots of different multiplicity. The knot sequence is
t = {0, 0, 0, 0, 5, 7, 9, 10}. So B1 see a knot with multiplicity 4, B2 see a knot
with multiplicity 3, B3 see a knot with multiplicity 2 and B4 see only isolated
knots. So this should illustrate the influence of knots with multiplicity greater
than one. It should be noted that this is only the first 4 basis functions for the
interval [0,10]. In order to span the space of all spline functions in this interval
we would need 3 more basis functions, but only the 4 first have been plotted to
make the properties of the single basis functions more clear.

Definition 3.3 The j-th normalized B-spline of degree k+1 for a nondecreasing
knot sequence t is defined as

Bj,k,t(x) = (tj+k − tj)[tj , ..., tj+k](· − x)k−1
+ ∀x ∈ R (3.9)

The “·” means that the divided difference is to be taken w.r.t. the “·”, which is
a place holder for the considered function , while x is considered as a constant.
The function (x)k−1

+ should be read ((x)+)k−1 is defined by

(x)+ =

{

x for x ≥ 0
0 otherwise

(3.10)

Normalized here refers to the fact that
∑

i Bi,k,t = 1 for x ∈ [tj1+k, tjn−k].
This fact will not be proved here, but it is quit straight forward by use of the
same technique as used to calculate the value of the integral over one spline (see
Section 3.3), or look at p. 110 in [6].

Since it will normally be clear from the context what k and t are, the B-splines
basis functions will often just be denoted Bj . The normalized B-splines basis
functions are often, see e.g. [8], denoted Nj.

Figure 3.1 shows the cubic (k = 4) B-spline basis functions for a knot sequence
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as indicated on the x-axis. Note that these do not span the space of all spline
functions in the interval, since we would need 3 more basis functions to span
this space or equivalent 3 knots greater than or equal to 10.

The knot at x = 0 have multiplicity 4, so the figure should illustrate how multiple
knots influence the B-spline basis functions. It is seen that e.g. B1 is not even
continuous at x = 0.

Figure 3.2 goes into some more details about this point. It is seen that the basis
functions are all less than one. They are zero outside the interval [0, 10], and we
therefore do not have the problems that was outlined for the truncated power
series.

To prove that the B-spline is actually a spline, some properties of divided dif-
ferences is needed. Some of these properties will also be used when deriving the
derivative and integral of the B-spline. These properties can also be used to
make a more constructive definition of B-splines, and hence this is done in the
next theorem.

Consider pj ∈ Pj (for the definition of Pj see the discussion right after Defi-

nition 3.2) the interpolating polynomial for the pair (tj , g), tj = {tl}j
l=1. One

representation of an interpolating polynomial of g on n point is

pn(x) = p0(x) + (p1(x) − p0(x)) + · · · + (pn(x) − pn−1(x))

= [t1]g + (x− t1)[t1, t2]g + · · ·
+(x− t1) · · · (x− tn−1)[t1, ..., tn]g (3.11)

where the second equality follows directly from the definition of divided dif-
ferences, or it can be found by writing down (3.5) and (3.6) explicitly, as an
illustration this is done for p1(x) − p0(x) we get

p1(x) − p0(x) = g(t1)
x− t2
t1 − t2

+ g(t2)
x− t1
t2 − t1

− g(t1)

= x

(

g(t1)

t1 − t2
+

g(t2)

t2 − t1

)

− t1

(

g(t1)

t1 − t2
+

g(t2)

t2 − t1

)

= (x− t1)[t1, t2]g

(3.11) is also called the Newton form. This representation will be independent
of the order in which we take the points tj , so pn could also be written as

pn(x) = [tn]g + (x− tn)[tn, t1]g + · · ·
+(x− tn)(x − t1) · · · (x− tn−2)[t1, ..., tn]g (3.12)
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by equating coefficients of xn−2 in (3.11) and (3.12) we get

[t1, ..., tn−1]g − (tn−2 + tn−1)[t1, ..., tn]g = [tn, t1, ..., tn−2]g

−(tn + tn−2)[t1, ..., tn]g

Since n was arbitrary, this gives the formula for distinct points

[t1, ..., tn]g =
[t1, ..., tj−1, tj+1, ..., tn]g − [t1, ..., tl−1, tl+1, ..., tn]g

tl − tj
(3.13)

if tj = tj+1 = · · · = tj+r then the corresponding formula is [tj , ...tj+1]g =
g(r)(tj). This follows from taking limits in (3.13) and by using the fact that
[tj ]g = g(tj). For g differentiable at t1, this give

lim
t1→t2

[t1, t2]g = lim
t1→t2

g(t2) − g(t1)

t2 − t1
= g′(t1)

From (3.13) it follows immediately that B-splines can be written as

Bj,k,t(x) = [tj+1, ...tj+k](· − x)k−1
+ − [tj , ...tj+k−1](· − x)k−1

+ (3.14)

Now by using (3.13), it is clear that the divided differences can be written as

[t1, ..., tn]g =

n
∑

j=1

cjg(tj) (3.15)

where cj depends on {t}n
j=1 but not on g. This is useful to show properties of

the B-spline basis functions and its derivatives without having to calculate the
actual values of divided differences, which can be quite involved.

The presentation given so far, is rather abstract and does not really offer an
intuitive feeling of the construction of B-spline basis functions. It is however
convenient if we want to prove properties of the B-spline basis functions. The-
orem 3.1 below gives, by the use of formula (3.6) and (3.14) a direct recursive
formula for calculations of B-spline basis functions. As a remark this shows the
correspondence between the introduction of the B-splines in [6] and [8].

Theorem 3.1 is not really used in this presentation, since the focus here is the-
oretical properties of B-splines and construction of splines with special bound-
ary conditions from B-spline basis functions and, not the direct construction
of B-splines. However the theorem perhaps offers a more direct and intuitive
definition of B-spline.

Theorem 3.1 Define Mj,k =
Bj,k

tj+k−tj
, then the following recursive formula
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holds

Mj,1(x) =
I[tj≤x<tj+1](x)

tj − tj+1

Mj,k(x) =
(tj+k − x)Mj+1,k−1(x) − (tj − x)Mj,k−1(x)

tj+k − tj
k > 1

and Bj,k = (ti+k − ti)Mi,k.

The proof of this is rather long, and is therefore placed in appendix A.1, but
the idea is to use (3.6), (3.14) and the definition of divided differences.

With the tools developed above, we can prove the following theorem, which
shows that B-spline basis functions (under some constraint) are actually splines.
The theorem will be used to prove thatB-spline basis functions are actually basis
functions.

Theorem 3.2 If t is a (strictly) increasing sequence of knots, then Bj,k,t is a
spline of degree k − 1.

Proof. Using the properties of divided differences derived above it is easy to
write down the derivatives of Bj

Bj(x) =

k
∑

l=1

cj+l(tj+l − x)k−1
+

B′
j(x) = −(k − 1)

k
∑

l=1

cj+l(tj+1 − x)k−2
+

...

B
(k−1)
j (x) = (−1)k−1(k − 1)!

k
∑

l=1

cj+lI[x≤tj+l](x)

Since (tl − t+j )h
+ = (tl − t−j )h

+ for h > 0, it follow directly that the first k − 2
derivatives are continuous, and that Bj are polynomials of degree at most k− 1
on each interval defined by the knot sequence and the intervals (−∞, t1] and
[tn,∞). �

Theorem 3.2 tells us that the B-spline basis functions are really splines, under
the condition that the knot sequence is strictly increasing. It does not, however
prove that the B-spline basis functions form a basis of the space of all spline
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Figure 3.2: Bj,3,t for t = {0, 0, 0, 0, 5, 7, 9, 10}. Each plot contains one of the
basis functions from Figure 3.1 and its 2 first derivative, and illustrate in greater
detail than figure 3.1 how the knot with multiplicity 4 at x = 0 effects the
smoothness of the splines.

functions. This is the subject of the next theorem, but first a brief discussion
of some of the consequences of the properties developed above is given.

Actually the B-spline basis functions does not span the space of all spline func-
tions when just calculated from the knot sequence defined in Theorem 3.2. This
can be seen from the fact that all the B-spline basis functions are zero outside
the interval [t1, tn]. The trick is now to add some extra knots outside the inter-
val (t1, tn), which will be referred to as outer knots. Exactly how this should
be done will be discussed later, but an important point is that we allow knots
of multiplicity greater than one for these outer knots.

The consequence of knots with multiplicity higher than one, is that the B-spline
basis function is actually not a spline over this knot. This have already been
seen in Figure 3.1. This is also the reason why we do not, calculate the B-splines
outside the interval [t1, tn] (and e.g “R” do not support values here). Figure 3.2,
where the B-spline basis functions from Figure 3.1 and their first two derivative
is plotted, goes into more details on this point.

To fully appreciate Figure 3.2 it should be noted that Bj and all its derivative
is zero outside the interval [tj , tj+k]. This follows directly from the definition of
divided differences and the fact that (tj − x)k−1

+ is a polynomial of degree k− 1
in the interval (−∞, tj ] and zero in the interval [tj+k,∞).

With this in mind the figure shows how many of the derivatives are continuous
for each of the basis functions. It is seen that B1 is not continuous, B′

2 is not

continuous and B′′
3 is not continuous, while B

(p)
4 is continuous for p = 0, 1, 2.
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So B1, B2, B3 are not spline functions over the knot at x = 0.

Hence the figure illustrate the effect of multiple knots, and that we can not
allow multiple knots for a spline basis function over R. Therefore we only define
the B-spline basis function in the interval [t1, tn] and then add outer knots, the
B-spline basis functions will span the space of all spline functions in the interval
[t1, tn].

This is stated more precisely in the following theorem, which is a modification
of Theorem IX.1 in [6].

Theorem 3.3 If t1 = {tj}n
j=1 is a strictly increasing sequence and t− = {tj}0

j=1−k+1

and t+ = {tj}n−1+k
j=n+1 are two nondecreasing sequences with t0 ≤ t1 and tn+1 ≥

tn, then the sequence {Bj,k,t}n−1
j=2−k, with t = {t−, t1, t+}, of B-splines span the

restriction of Ŝk−1(t) to x ∈ [t1, tn]

The restriction here means that the conditions in Definition 3.1 hold for x ∈
(t1, tn). In the following t1 will be referred to as the defining knot sequence,
{t+, t−} will be referred to as outer knot sequences, {tj}n−1

j=2 the interior knots,
and {t1, tn} the boundary knots. Now the proof of Theorem 3.3 is given

Proof. That {Bj,k,t}n−1
j=2−k belongs to the restriction of Ŝk−1(t) to x ∈ [x1, xn]

follows from Theorem 3.2. The spline functions in each of the intervals defined
by t1 can be written as

∑k
l=1 al([tj , tj+1])x

l−1 (i.e. al([tj , tj+1]), j = 1, ...n− 1,
is to be seen as a function of the interval), this gives k(n − 1), (n − 1 = the
number of intervals) parameters. There are k − 1 restrictions per interior knot
and n− 2 interior knot, this gives k(n− 1)− (k− 1)(n− 2) = n+ k− 2 degrees
of freedom, and the number of B-splines is n− 1− (2− k)+ 1 = n+ k− 2. So if
the B-splines are linearly independent, then the theorem is proved. To see this,
take Bj and look at x in the interval [tj , tj+1], j > 0, the only other nonzero
B-splines in that interval is Bj−k+1, ..., Bj−1, i.e. k − 1 of them.

Now it follows from (3.15) that Bj can be written as Bj(x) =
∑k

l=1 blx
l−1 for

some bl, this gives k bl’s. So we are short of one free parameter. If we should be
able to write Bj as a linear combination of Bj−k+1, ..., Bj−1 then we would have
to impose some restriction on each of the bl’s, but since these depend on different
parts of the knot sequence, this would be the same as putting restrictions on
the knot sequence, the conditions have to be true for all knot sequences. The
theorem is hereby proved. �

Theorem 3.3 shows that the B-spline basis functions span the space Ŝk when
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restricted to the interval defined by t1. Theorem 3.3 therefore provides the
justification for using B-splines instead of e.g. the truncated power series. This
justify the use of the term basis functions.

The advantage of the B-spline basis functions over the truncated power series
have been implied through out the text. These are taken here again as a conclu-
sion of why the B-spline are superior, at least from a numerical point of view.
B-spline basis function have small support (over k+1 knots) while the basis
function from the truncated power series have support over all knots to the
right of the defining knot. |Bj(x)| ≤ 1 for all x and j, while the basis function
for the truncated power series can be very large (e.g. one of the basis functions
is xk−1).

The next part of this section looks at differentiations and integration of B-spline
basis functions. It will be assumed that the knot sequence t is as in the Theorem
3.3, and that x ∈ [t1, tn].

3.3 Differentiation and Integration of B-Splines

The next theorem provides rules for integration and differentiation of B-spline
basis functions

Theorem 3.4 The differential of Bj,k is given by

B′
j,k(x) = (k − 1)

(

Bj,k−1(x)

tj+k−1 − tj
− Bj+1,k−1(x)

tj+k − tj+1

)

(3.16)

The integral of Bj over the interval [a, b] ⊆ [tj , tj+k] is given by

∫ b

a

Bj,k(x)dx =
tj+k − tj

k

k+1
∑

l=0

(Bj+l,k+1(b) −Bj+l,k+1(a))

Giving the special case

∫ ∞

−∞
Bj,k(x)dx =

∫ tj+k

tj

Bj,k(x)dx =
tj+k − ti

k
(3.17)

for j = −k + 2,−k + 3, ..., n− 1

The theorem state that we can write the differential and the integral of B-
spline basis functions as a linear combination of lower and higher order B-spline
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basis functions, respectively. Especially (3.17) will be used later on, to restrict
the B-spline basis functions. The proof again illustrates some techniques for
manipulations with divided differences and hence B-spline basis functions.

Proof. To calculate the differential of Bj(x) use the same fact as used in the
proof of Theorem 3.2 and then use (3.13), to get

B′
j,k(x) = −(k − 1)

j+k
∑

l=j

cj(tl − x)k−2
+

= −(k − 1)(tj+k − tj)[tj , ...tj+k](· − x)k−2
+

= −(k − 1)(tj+k − tj)
[tj+1, ...tj+k](· − x)k−2

+ − [tj , ...tj+k−1](· − x)k−2
+

tj+k − tj

= (k − 1)

(

Bj,k−1(x)

tj+k−1 − tj
− Bj+1,k−1(x)

tj+k − tj+1

)

This can of course also be used for calculating the integral of a B-spline. For
this we represent Bj,k by Bj,k+1 for some j using 3.16 recursively and keeping
in mind that Bj,k(x) = 0 for x /∈ [tj , tj+k], this gives

Bj,k(x) =
tj+k − tj

k
DxBj,k+1 +

tj+k − tj
tj+k+1 − tj+1

Bj+1,k

=
tj+k − tj

k
DxBj,k+1 +

tj+k − ti
tj+k+1 − tj+1

(

tj+k+1 − tj+1

k
DxBj+1,k+1 +

tj+k+1 − tj+1

tj+k+2 − tj+2
Bj+2,k

)

...

=
tj+k − tj

k

(

k+1
∑

l=0

DxBj+l,k+1 +
1

tj+2k+2 − tj+k+2
Bj+k+1,k

)

=
tj+k − tj

k

k+1
∑

l=0

DxBj+l,k+1(x) x ∈ [tj , tj+k]

With this it is clear that we can calculate the integral of a spline basis as

∫ b

a

Bj,k(x)dx =
tj+k − tj

k

k+1
∑

l=0

(Bj+l,k+1(b) −Bj+l,k+1(a))
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for tj ≤ a ≤ b ≤ tj+k. Since
∫∞
−∞Bj,k(x)dx =

∫ tj+k

tj
Bj,k(x)dx, we start by

calculating the following sums

k+1
∑

l=0

Bj+l,k+1(tj) = Bj,k+1(tj)

= [tj+1, ..., tj+k+1](· − tj)
k
+ − [tj , ..., tj+k](· − tj)

k
+

= [tj+1, ..., tj+k+1](· − tj)
k − [tj , ..., tj+k](· − tj)

k

= 1 − 1 = 0

and

k+1
∑

l=0

Bj+l,k+1(tj+k) =
k+1
∑

l=0

[tj+l+1, ..., tj+l+k+1](· − tj+k)k
+

−
k+1
∑

l=0

[tj+l, ..., tj+l+k](· − tj+k)k
+

= [tj+k+2, ..., tj+2k+2](· − tj+k)k
+ − [tj , ..., tj+k](· − tj+k)k

+

= [tj+k+2, ..., tj+2k+2](· − tj+k)k − [tj , ..., tj+k]0

= 1

This immediately gives

∫ ∞

−∞
Bj,k(x)dx =

∫ tj+k

tj

Bj,k(x)dx =
tj+k − tj

k

for j = −k+2,−k+3, ..., n−1. � Now the fundamental properties of B-spline

basis functions are proved, most important that they are really a basis for Ŝk,
and we known how to differentiate and integrate these basis functions. The next
section will show how to construct splines with different boundary conditions.

3.4 Construction of Special Splines

This section will treat two types of boundary conditions, namely natural bound-
ary conditions and periodic boundary conditions, which are called Natural splines
and Periodic splines. Further more the attention will be restricted to cubic
splines, i.e. k = 4. These are constructed by controlling the outer knot se-
quence. The section will also treat the question of how to fix the level of a
spline function.
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The construction of these assumes that we have access to B-splines, either from
some software or from, e.g. an implementation of Theorem 3.1.

3.4.1 Knots and Boundary Conditions

From an interpolating point of view one normally have some values of a function
at points tj , j = 1, ..., n, i.e. f(tj). Now choosing the knot sequence as in
Theorem 3.3, with t1 = {tj}n

j=1 and t− and t+ arbitrary, the number of B-
spline basis functions are n+ k− 2, so for k > 2 (k = 2 correspond to piecewise
linear functions) there is fewer conditions than basis function. Therefore some
extra conditions are needed if we want to interpolate the functions f(tj) with a
unique spline.

Now the spline basis functions in this presentation is used for approximation
not interpolating, but from some assumptions on the functions it can of course
be reasonable to give some boundary conditions, or indeed unreasonable not to
do so.

Boundary conditions can be controlled by the two outer knot sequences t− and
t+. The choice of knots in t1 and the boundary conditions will then determine
these sequences, or at least put some restrictions on these. As it will become
clear later there can be some degree of choice involved in making these sequences.

3.4.2 Natural Splines

The following definition of natural splines is taken from [8]

Definition 3.4 The function s(x) ∈ Sm(t1, ..., tn) belongs to the set of natural
splines of degree m, SN

m (t1, ..., tn), over the knots t1, ..., tn, if m = 2j− 1, j ∈ N

and s is a polynomial of degree at most j − 1 for x /∈ [t1, tn].

This is the same as demanding that s(p)(t1) = s(p)(tn) = 0 for p ≥ j, j +
1, ..., 2j − 2. With t as in Theorem 3.3 and k = 4 (m = 3) this is the same as
B′′

j,4(t1) = B′′
j,4(tn) = 0 for j = −3, ..., n− 1. Even though these are now label

led Bj,4 these will technically not be B-spline basis functions. This is of course
also the case for the periodic spline basis functions.

The term natural comes from the fact that if one takes a flexible rod and fix it
along a number of point (the knots) then the resulting shape is described by a
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Figure 3.3: Natural B-spline basis functions and their 2 first derivative on the
same interval as the B-spline of figure 3.1 and 3.2. The knot sequence is t =
{−5,−3,−1, 0, 5, 7, 9, 10} and BN

−1 = (2B−2 + B−1)/3, BN
0 = (B0 + 2B−1)/3

and BN
1 = B1, by this a natural condition have been imposed at x = 0.

natural cubic spline. It was noted in the introduction that the solution to the
minimization problem

argmin
f

(

N
∑

i=1

(yi − f(xi))
2 + λ

∫

f (q)(t)2dt

)

(3.18)

with q = 2, is a natural cubic spline. In general for q ∈ N the solution to (3.18)
will be a natural spline of degree m = 2q − 1, see [6] p. 235.

Figure 3.3 shows natural splines and their first and second derivatives con-
structed from the B-spline basis function shown in Figure 3.1 and 3.2.

It is seen that there is only 3 basis functions. This is due to the fact that
the first two natural splines is a linear combination of the first three B-splines
basis functions. This is also quit natural since there have been made an extra
constraint on the three first B-spline basis functions, by requiring that their
second derivative is zero. How these are constructed is shown in details below.

When calculating natural spline basis functions, there is as stated above some
degree of choice involved, implying that the way this is done below is mainly
to be seen as an example of how this could be done. It should illustrate a
technique of how boundary conditions can be imposed, and the technique for
imposing other boundary condition.
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As can be seen from (3.13) and the proof of Theorem 3.2 in the previous section,
we have

B′′
j,4(x) = 6(tj+4 − tj)[tj , ..., tj+4](· − x)+

= 6([tj+1, ..., tj+4](· − x)+ − [tj , ..., tj+3](· − x)+)

at t1 the onlyB-spline basis functions with nonzero second derivative isB−2,4, B−1,4

and B0,4, and these will be

B′′
−2,4(t1) = 6([t−1, ..., t2](· − t1)+ − [t−2, ..., t1](· − t1)+)

= 6[t−1, ..., t2](· − t1)+

B′′
−1,4(t1) = 6([t0, ..., t3](· − t1)+ − [t−1, ..., t2](· − t1)+)

B′′
0,4(t1) = 6([t1, ..., t4](· − t1)+ − [t0, ..., t3](· − t1)+)

= −6[t0, ..., t3](· − t1)+

in generally [tj , ..., tj+3](· − tl)+ can be written as

[tj , ..., tj+3](· − tl)+ =
1

tj+3 − tj

(

δ(l − j + 2)

tj+3 − tj+1
− δ(l − j + 1)

tj+2 − tj

)

(3.19)

the proof of this is found in Appendix A.2, by the above we have

B′′
−2,4(t1) =

6

(t2 − t−1)(t2 − t0)

B′′
−1,4(x) =

−6

(t2 − t0)

(

1

t3 − t0
+

1

t2 − t−1

)

B′′
0,4(x) =

6

(t3 − t0)(t2 − t0)

Now forming two new functions BN
−1,4, B

N
0,4 as linear combinations of B−2,4,

B−1,4 and B0,4 it is possible to create a basis for natural splines. This gives two
equations in 6 unknown namely

BN
−1,4 = a1B−2,4 + b1B−1,4 + c1B0,4

BN
0,4 = a2B−2,4 + b2B−1,4 + c2B0,4

since there are more free parameters than equations we have to make some
choices here, these could e.g. be c1 = a2 = 0, a1 + b1 = 1, and b2 + c2 = 1,
solving these gives

Practical Summary 3.1 (Natural B-splines) From a sequence of B-spline
basis functions {Bj,4}n−1

j=−2}, a set of spline basis functions {BN
−1,4, B

N
0,4, {Bj,4}n−1

j=1

which are natural at t1 can be constructed as

BN
−1,4 =

t2 − t−1 + t3 − t0
t2 − t−1 + 2(t3 − t0)

B−2,4 +
t3 − t0

t2 − t−1 + 2(t3 − t0)
B−1,4

BN
0,4 =

t2 − t−1

t3 − t0 + 2(t2 − t−1)
B−1,4 +

t3 − t0 + t2 − t−1

t3 − t0 + 2(t2 − t−1)
B0,4
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Figure 3.4: The left panel shows natural splines on the interval from [0, 10] con-
structed from the recipe in the text, i.e. t = {−5,−3,−1, 0, 5, 7, 9, 10, 11, 13, 15},
the right panel show natural splines as constructed from the build in function
in “R”. This illustrate that these natural splines are not unique.

something completely similar can be done at tn.

For the special choice t3 − t0 = t2 − t−1, this becomes a1 = c2 = 2
3 and

b1 = b2 = 1
3 . This is what is shown in Figure 3.3.

This illustrates how natural splines basis functions can be constructed from B-
spline basis functions and it is also clear that some choices have to be made as
these are constructed.

Figure 3.4 illustrates this by showing a natural spline basis constructed from
Practical Summary 3.1 and the natural spline basis functions constructed di-
rectly by “R”. An advantaged of the one used in this presentation is that the
basis functions in the opposite end of where the natural condition is imposed
is not influenced, so in a similar way some other boundary condition could be
impose at the opposite end.

3.4.3 Periodic Splines

In [8] it is stated that if the outer knots are chosen s.t.

t1 − t0 = tn − tn−1, t0 − t−1 = tn−1 − tn−2

t2 − t1 = tn+1 − tn, t3 − t2 = tn+2 − tn+1
(3.20)

Then the B-spline basis functions will be periodic. To see this it is actually
enough to realize that these conditions imply that t1+i − t1+j = tn+i − tn+j for
(i, j) ∈ {−2, ..., 2} × {−2, ..., 2}, and then use (3.13) to see that [tj , ..., tj+3](· −
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Figure 3.5: A periodic spline basis in the interval [0, 10], constructed from
the same inner knots as used in Figure 3.1 and 3.2, the knots sequence for the
B-splines used to construct this is t = {−5,−3,−1, 0, 5, 7, 9, 10, 15, 17, 19}. The
two first derivative is also plotted in order to show that this is really a periodic
spline basis.

t1)
k
+ = [tn−1+j , ..., tn−1+j+3](· − tn)k

+, j = −1, 0, k ∈ Z. This leading to the

conclusion B
(p)
1−l,4(t1) = B

(p)
n−l,4(tn), l = 1, 2, 3 and p = 0, 1, 2.

Practical Summary 3.2 (Periodic splines) Given a sequence of knots t1

and choosing the outer knots sequences t− and t+ s.t. (3.20) is fulfilled. Then a
set of periodic spline basis functions {{BP

1−l,4}3
l=1, {Bj,4}n−4

j=1 } can be constructed
as

BP
1−l(x) = B1−l,4(x) +Bn−l,4(x), l = 1, 2, 3 (3.21)

this will give a periodic spline basis for the interval [t1, tn].

Figure 3.5 shows a periodic spline basis constructed in this way, and for the
same inner knots as in Figure 3.1 and 3.2 , the actual knot sequence is given
in the figure text. The figure also shows the 2 first derivative of the basis basis
functions.

As have been mentioned, the first and the last knot do not have any influence on
the values inside the interval. This is true for both the natural and the periodic
spline. These are necessary in the definition of the B-splines basis functions.

In conclusion we can control the B-splines by controlling the outer knots and
then making a new basis as a linear combination of the resulting B-spline basis
functions.
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3.4.4 Fixing the Level

The purpose of the splines in this presentation is, as stated previously approxi-
mation, which is done through regression. The model for the quantile regression
presented in Chapter 2, was

Q̂(τ ;xt) = xtβ̂(τ) (3.22)

Now this should, as mentioned in the beginning of this chapter, correspond to
an additive model of the type

Q̂(τ ;xt) =

p
∑

j=1

f̂j(xj,t) (3.23)

where xj,t is the explanatory variable j at time t. The functions f̂j(xj) have
been approximated by splines as developed in the previous sections. The sum
of functions in (3.23) is not unique unless some restrictions are put on f̂j(x).
One demand could be to force every function to go through zero or rather split
the function f̂j(x) into the two components α̂j and ĝj(x), where the function

ĝj(x) is now fixed to some level. Now write down the sum of the f̂j

p
∑

j=1

f̂j(xj,t) =

p
∑

j=1

α̂j +

p
∑

j=1

ĝj(xj,t) = α̂+

p
∑

j=1

ĝj(xj,t) (3.24)

The last term will be unique.

The spline functions developed so far span the space of all spline functions of
that type (natural, periodic or all spline functions), and for each function fi we
write

fj(xj,t) =
K
∑

l=1

bj,l(xj,t) (3.25)

where K is the number of degrees of freedom. As was seen in the case of the
truncated power series this is of the same type as the functions in (3.24). So we
have the same uniqueness problem.

To get around this, we can force the linear combination of spline functions to
go through some specified value. If we choose this value to be zero, the demand
becomes quit simple.

The following practical summary give a recipe for doing this in the case of
natural spline basis functions, in this case it is very simple.
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Figure 3.6: A periodic spline basis, and a periodic spline basis with integral
zero in the interval [0, 10], constructed from the same inner knots as used in
figure 3.1 and 3.2, the knots sequence for the B-splines used to construct these
is t = {−5,−3,−1, 0, 5, 7, 9, 10, 15, 17, 19}. The spline basis with integral zero is
constructed by subtracting ciB

P
0 from each of the other periodic spline functions.

Practical Summary 3.3 (Fixed Natural Spline:) By setting all the knots
in the knot sequence t− equal to t1 and constructing a sequence of natural spline
basis functions as described in Practical Summary 3.1, the sequence {BN

0,4, {Bj,4}n−1
j=1 }

will be a basis for all spline s(x) functions with s(t1) = 0 and a natural condition
at t1.

This is however not that simple for the periodic splines. Hence we use another
approach, namely to demand that the integral over the period is zero, which
is of course achieved with

∫

BP
i = 0, ∀i. Since the spline basis functions are

continuous, this also means that any linear combination of them is zero for some
x0. This x0 will depend on the coefficients of the splines. This approach is also
taken in [1].

By setting each of the basis functions equal to a linear combination of the
original basis function and one of the other original basis function, this can be
achieved. Again referring to the previous section, this is here done by choosing
a new basis B∗

j = Bj + ckBk, j 6= k, by (3.17) the integral of B∗
j is

∫

B∗
j =

tj+4 − tj + cj(tk+4 − tk)

4
(3.26)

Now this we can give the recipe for constructing a periodic spline basis with
integral zero.

Practical Summary 3.4 (Periodic splines with integral zero) From a se-
quence of periodic spline basis functions {BP

j }K
j=1, a sequence of periodic spline
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basis functions with integral zero {B∗
j }j 6=k can be constructed as

B∗
j = Bj −

tj+4 − tj
tk+4 − tk

Bk (3.27)

where k is a fixed number.

The proof follows directly from the previous discussion.

Figure 3.6 shows a periodic spline basis and the corresponding periodic spline
basis with integral zero.

3.5 Smoothing

A smoother is a function which takes the pair of output or dependent variables
and explanatory variables to the space of predictions. Such a function should
be less variable than the output itself. For linear regression and least squares
the smoother matrix is called the hat matrix.

The best LS estimate for the parameters in the general linear model

ŷ = Xβ̂ (3.28)

is

β̂ = (XTX)−1XTy (3.29)

where XTX must have full rank for the expression to make sense, assuming this
is the case we can write

ŷ = Xβ̂ = X(XT X)−1XTy = Sy (3.30)

and in this case S is called the hat matrix, see [7].

In more general S is called the smoother matrix, when S does not depend on
y it is called a linear smoother, this is the case for the hat matrix presented
above.

The i’th row in S can be viewed as weights assigned to each of the observations
when estimating ŷi. If two estimators have the same smoother matrix they are
called equivalent kernels, see [9].

The matrix S is a function of the design matrix, and hence in the spline case
a function of the spline basis function and the optimization criteria. For least
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Figure 3.7: The figure shows two rows in the smoother matrix for least square
estimation and the example used in the previous sections with natural boundary
conditions. The triangle indicate the value of x in the row corresponding to the
pair (xi, yi). The figure illustrates the quite slow decay in the values of the
smoother matrix.

squares (LS) and linear regression, S is a linear smoother. This is however not
the case for the quantile regression models presented in Chapter 2.

This section presents some properties of the LS estimator of the spline model,
but not in details since this is not what is used in subsequent chapters. The LS
smoother matrix is merely presented for comparing with the quantile regression
model.

In this context the columns in the design matrix X will consist of the B-spline
basis functions. The first column will be a vector of ones, due to the reasons
discussed in Section 3.4.4.

As was pointed out in Section 3.2 the support of the cubic B-splines is small in
the sense that it is zero outside an interval of 5 knots. So there will be many
elements in the design matrix which are zero. This does not mean that the
weights in the smoother matrix are zero. They will however be small far away
from what could be the central point xc, i.e. for ŷi the central point is xc = xi.
It makes good sense that the weight of yi when constructing ŷi should be the
largest.

The analysis will be done with only one explanatory variable xj,i = xi, since
otherwise we are not able to visualize S.

First we take a short look at the design matrix in some more details, denote
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bj,i = Bj(xi). The the design matrix will be

X =







1 b1,1 . . . bk,1

...
...

...
1 b1,N . . . bk,N






(3.31)

So we can write down XTX directly as

XTX =













N
∑N

i=1 b1,i

∑N

i=1 b2,i . . .
∑N

i=1 bk,i
∑N

i=1 b1,i

∑N

i=1 b
2
1,i

∑N

i=1 b1,ib2,i . . .
∑N

i=1 b1,ibk,i

...
...

...
...

∑N

i=1 bk,i

∑N

i=1 b1,ibk,i

∑N

i=1 b2,ibk,i . . .
∑N

i=1 b
2
k,i













This implies that the first row, the first column and all diagonal elements of
XT X will be different from zero. Therefore all elements in the inverse of this
will (in general) be different from zero, this again leading to all elements in S
being different from zero. However elements far away from xC will be small,
this can not be seen from XXT , but can be seen if one calculate the rows in S.

Figure 3.7 shows two different rows of the smoother matrix, the triangle is the
xi used to calculate the i’th row (i.e. xi = xc), in the sense that the i’th row of
S is calculated from

Si,· = [1, b1,i, . . . , bk,i](XXT )−1XT (3.32)

The smoothers in Figure 3.7 are made from the build in “R” natural spline
function. These and the ones developed in previous sections of this chapter are
very close, the absolute point wise difference being less than 3 × 10−17, this
difference can be explained by numerics so they are equivalent kernels as they
should be.

The figure also illustrates the point that S is not zero far away from xc. To
illustrate this it would may be have been appropriate to give a plot with more
knots. This is done in Figure 3.8 and 3.10 where an example from a real dataset
is used to illustrate the implications of the quantile estimator producing a non-
linear smoother. Even though the data have not been explained yet it should
be clear what the effect of more knots is.

As was stated in Chapter 2 we can write the estimates of the parameters in the
quantile regression model as

β̂ = X−1(h)y(h) (3.33)
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Figure 3.8: The Least square and quantile smoother matrix for the wind data,
the least square smoother is plotted for reference. In most of the plots we see,
that the LS smoother behave qualitatively like the LS. At least in the sense
that weights close to xc is large compared to weights far away. But for the 25%
quantile and xc = 20, there is a quite different picture, with weight far away
being much larger than those close to.
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Figure 3.9: The distribution of wind speeds before and after the simulation of
extra data points.

where h is some index set of length K = no. elements in β̂. This means that we
can create a smoother matrix, somewhat like the one above, by filling in vectors
of zeros. In matrix form we can write this as

ŷ = XX−1(h)y(h) = XX−1(h)HTy (3.34)

where the elements in H is given by Hi,j = δ(i − hj), i = 1, 2, ..., N and j =
1, 2, ...,K. I.e. we can write down the smoother matrix as

Sq = XX−1(h)HT (3.35)

Sq is now a function of y, since otherwise the parameter estimates are not a
function of all of the y values and this is of course not the case. A simple
implication of this formulation is that Shj ,hj

= 1 and Si,l = 0 for j /∈ h.

This clearly illustrates that, there are some differences between the two smoother
matrices. The hope could now be, that even though there are few weights
compared to the number of observations, they would behave somehow as in the
LS case in, e.g. that the largest weight were the one closest to xc. This is
however not the case in general.

Figure 3.8 shows the S matrix for the least squares fit and three different quan-
tiles. Most of the quantile plots behave qualitatively similar to the LS case, but
in the bottom panel for the 25% quantile we see a quit different behavior, where
the largest weights are quite far away from xc.
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Now it is not very clear how to study the behavior of a nonlinear smoother. This
is mainly because we are not able to control the index set h. If we increase the
number of parameters to look at some kind of limit behavior, we will from time
to time be very close to or indeed hit the points which produce the estimate and
therefore generate one weight with value one and all other weights zero. To see
this look at Sq(h), i.e. the rows of Sq defined by the index set h, this is

Sq(h) = X(h)X−1(h)HT = IHT = HT (3.36)

This shows that if xc = xhj
for some j ∈ {1, 2, ...K} then the weights in that

case will consist of a vector with one element being one and all other being zero.
This will of course happen if we increase the number of parameters far enough.

Therefore what is done here for studying Sq should be interpreted with some
care and conclusions are not really made.

The data used for Figure 3.8, will be explained in greater details in subsequent
chapters. For now it is enough to know that the input is wind speed and the
output is an estimation error from a model to estimate wind power production.
The number of observations is about 10000. In the data there are very few
observation for large wind speeds, this could be one reason that this 25% quantile
with xc = 20m/s looks so strange.

To study the effect of putting in more points at the height end of the wind scale
new points are simulated according to the following scheme

xn+1 =
1

2
(x(i) + x(i+1)) + ǫ

yn+1 =
1

2
(y(i) + y(i+1)) + ξ

x(i) refer to the order statistic and ǫ and ξ are normal random variables with
small variances and mean zero. There are no physical meaning behind this
simulation, but it permits us to put extra points in the position we want. In
this way data points are filled in at the high end of the wind scale. Figure
3.9 shows histograms of the distribution of wind speeds before and after the
simulation. So what has been done is to fill in data on the high end of the wind
speed values.

What we would like is of course for Sq to behave somehow like the least squares
smoother matrix. One approach is to let the number of observations go to
infinity. Another approach is to impose a very large number of knots and hope
that this will then look somehow the same as for the least square case.

Figure 3.10 shows rows in S and Sq for the simulated data, and different knots
sequences. The upper left panel show the same knot sequence as Figure 3.8. It
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Figure 3.10: The figure show the smoother matrix for different knot placements
for the simulated dataset, it is seen that the qualitative behavior is somehow
like the one for the LS (the line), but the weight closest to xc is not necessary
the biggest.
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is seen that we get quite good assembles with the LS. The 3 other panels show
the same but for longer knot sequences. It is seen that we the location property
is preserved, i.e. none of the smoothers “see” through a large number of knots.
On the other hand we can not conclude that the largest weight are the one close
to xc.

A final remark on Figure 3.10 is that different simulations with the same scheme
gave quite different results as to where the weight was located and how big they
were.
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Part II

Quantiles of Prediction
Errors from Tunø Knob

Wind Power Plant





Chapter 4

Quantile Models

4.1 Introduction

This chapter will use the theory of Chapter 2 and 3 to set up models for pre-
diction of quantiles of the errors in predictions of wind power production from
a wind power plant placed at Tunø Knob. The wind power is predicted with a
program called WPPT (Wind Power Prediction Tool), see [19] for a description
of WPPT. Figure 4.1 show the location of the Tunø knob wind power plant,
along with the grid points where meteorological forecasts are available.

The aim is to get good information of the short term predictions. The most
interesting horizons are those of 12-36 hours, since these are the horizons needed
on the Nordic energy market called Nordpool. To obtain an optimal market
strategy, it is not enough to know the mean and variance of prediction. Quantile
regression is an approach to obtain additional information on the predictions.

We will use meteorological forecasts in the area around Tunø Knob to model
these quantiles. It is not reasonable to assume that the conditional quantiles
are linear functions of the meteorological forecast, hence to use the setting from
Chapter 2, the quantile regression is done with respect to spline basis functions
of the meteorological forecasts.
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The first part of this chapter will define the general setting of the quantile re-
gression with splines. Then some performance parameter for quantile regression
are presented. In the last part of the chapter performance parameters are used
to analyze some quantile regression models for the Tonø Knob data set. The aim
of this analysis is twofold; on one hand to develop a good model for prediction
of the quantiles, on the other hand to discuss the performance parameters in
their own right.

4.2 The General Setting

The set up here follows the set up used in [1], where the same data set was
analyzed. The most general quantile model Q : R

p → R we can think of is

Q(x; τ) = g(x; τ) (4.1)

where g is any function of the vector x ∈ R
p. If we do not have a very clear idea

of the behavior of the function g, then the space of all these functions is too large
to search in. Therefore, some restrictions or approximations have to be made.
The first approximation is to restrict the search to the space of additive models,
i.e. the function g is replaced with a sum of functions fj : R → R, j = 1, ..., p.
With this we get the model

Q(x; τ) = α(τ) +

p
∑

j=1

fj(xj ; τ) (4.2)

Models like this are described in [9], where a very thorough treatment of additive
models is presented. Additive models can be any partition of the directions in
R

p, therefore strictly speaking the set up used here is only a subset of additive
models.

The constant α, is a common intercept of the function. This is necessary because
(as was discussed in Section 3.4.4), the functions fj have to be fixed somehow to
ensure uniqueness of the model. In [9] Hastie propose to force the average over
observations to be zero. In the present presentation we approximate the func-
tions fj with natural and periodic spline functions and fix the level as described
in Section 3.4.4.

The price to pay for these approximations is that mixed effects are ignored. So
e.g. the effect of the wind speed is independent of the wind direction. This
might or might not be reasonable, but some simplifications have to be done.
The hope is just that the mixed effects are small compared to the isolated effect
of the variables.
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The location of Tunø Knob wind power plant

Figure 4.1: The grid points where meteorological forecasts are available. The
Tunø Knob wind power plant is marked with the red x.
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The aim here is to get a linear regression model as discussed in Chapter 2.
The final step is to approximate the functions fj with the spline basis functions
described in Chapter 3. Hence we write

fj(xj) =

nk
∑

k=1

bjk(xj)βjk (4.3)

where bjk is the k’th basis function of variable xj and βj,k is the parameter to
estimate (α = b0β0 will denote the intercept and b0 is therefore constant equal
to one). The matrix formulation of the problem is now

Q̂(x; τ) = [b(xi)
T ] = Xβ̂(τ) (4.4)

where b(xi) is a vector and consists of known spline basis functions of the mete-
orological forecast. With this we are in the setting of linear quantile regression.
In the rest of this presentation Q̂(x, τ) will refer to this model.

To make sure that the solutions are unique the constraint fj(min(xj)) = 0 is
imposed for non-periodic functions, and for periodic functions the constraint
is
∫

P
bjk(xj) = 0, where P is the period. The first column of the matrix

X will as mentioned above, be a vector of ones. β will be given by β =
[β0, β1,1, ..., β1,nk

, β2,1, ..., βp,np
].

When visualizing the quantiles it is important to note that, one look at cuts in
p-dimensional hyper planes in a p + 1 dimensional space and crossings of the
estimated quantile hyper planes can (and will) occur. So if we want to visualize
the quantiles we have to make a choice of where to look. In this presentation the
choice is “typical” values. Thus to see the effect of xj choose xk = x0

k, and then
plot Q(xj , x

0
1, ..., x

0
j−1, x

0
j+1, ..., x

0
k; τ). Here the choice for non periodic variables

is x0
k = E(xk) for k 6= j

Crossings should only occur in remote areas of the data set, and therefore these
should not occur with the above choice of x0

k. We saw in Chapter 2 that there
will be no crossings at the mean value of the explanatory variables. This result
will strictly speaking not apply here since the result apply to the average over
the spline functions not the spline of the average.

When looking at plots of the quantile curves we should be careful when drawing
conclusions. The focus should mainly be on the variation of the curves - not the
level. The variation of the curve gives an indication of the explanatory power
of that variable, while the level can be due to other parameters.

When quantiles have been modeled, some methods to measure performance
should be available. The subject of such performance parameters is studied in
the next section.
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4.3 The Performance of Quantiles

When we model the quantiles it is of course important to have some perfor-
mance parameters as a basis for model selection. This section will discuss some
performance parameters from the literature on quantile regression. The main
part of the literature used for this section comes from quantile regression in the
context of wind power prediction.

The performance parameters presented here assumes that the data set has been
divided into a test set and a training set, the training set is used for estimating
the model parameters and the test is used to give some values of performance.

The loss function on the training set is also an option. This is also what is used
in e.g. [11] to develop statistical tests for quantile regression. If performance
parameters are calculated on the training, then we have to take the number of
explanatory variables into account, because most performance parameter will
get better on the training set, as we add more explanatory variables.

Here we will focus on the performance on the test set, the loss function is of
course also a parameter we could look at. Since we know that the true quantile
minimizes the loss function, a better loss function should tell us that we are in
some sense closer to the true solution.

The meaning of the loss function is however not that clear and other perfor-
mance parameters are therefore often used. This presentation will discuss the
commonly used performance parameters for quantile regression and in the case of
reliability a local measure is also suggested. A general problem for the measures
is that we do not have a clear answer to the question of when is a performance
parameter good enough or when two performance parameters are equal in some
statistical sense.

4.3.1 Reliability

We know that minimizing the loss function described in Chapter 2, give the
required quantile on the training set. Therefore it is of course more interesting
what the performance is on a test set. We want the model to be able to predict
the true quantile on the test set, a natural performance parameter is therefore
the quantile that the model actually produce on the test set. Therefore a per-
formance parameter is the fraction of responses below the model. This will be
refereed to as reliability or overall reliability of the model and this should of
course be close to the required quantile (τ). At times the difference or absolute
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difference to the required quantile will also be used.

Even if we see a good reliability for a model, this does not imply that this
feature also holds locally. Therefore we should have some kind of local measure
of reliability. The problem here is that with many explanatory variables the
notion of local is problematic. If we want some local measure in all directions
then there will be very few observations in each cell, thus a local measure in all
directions is not really meaningful unless the number of observations is extremely
large. To solve this we look at the reliability in one direction at a time, i.e. the
residuals are grouped by some variable and the reliability is calculated as a
function of this variable. A more formal definition is given in Definition 4.1
below. This definition also gives the precise recipe for calculating the local
reliability.

Definition 4.1 For a set of variables z corresponding to the observations in y
let A be a perturbation of the index set 1, 2, ...N , s.t. zA1 ≤ zA2 ≤ ... ≤ zAN

i.e.
zA is the order statistics of z. For a given value of z let

p(z) =

{

1 if zA(1)
> z

argmaxi{zA(i)
≤ z} otherwise

(4.5)

and set N1 = max{1, p(z) − ⌈wN⌉}, N2 = min{N, p(z) + ⌈wN⌉}, where 0 ≤
w ≤ 1. The local reliability q(z) is then defined as

q(z;w, τ) =
1

N2 −N1 + 1

N2
∑

i=N1

I(yAi
≤ Q̂(τ |xAi

) (4.6)

The parameter w is something like a bandwidth for the local reliability. If w = 0
then q(z;w, τ) is the indicator function I(rAi

≤ 0) and with w = 1 it is constant
equal to the overall reliability. So w indicates how local the local reliability curve
is, if w is chosen too small then we can’t see any trends because of variation in q
and if w is to large these trends disappear. Definition 4.1 ensure, that we know
how many elements q is based on. The price we pay for this is that the interval
length in the direction z that q is based on will be a function of the z. In the
following w = 0.1 is used.

From Definition 4.1 the local reliability is defined for all z ∈ R, but it is constant
outside the interval [z(1), z(N)] and it is constant between observations. The
performance parameter q(z) can now be plotted as a function of the explanatory
variable z. This can as we will see later on reveal quite serious problems of the
quantile estimator even though the overall reliability is good. Since the local
reliability is a set of numbers it can be quite hard to compare local reliability
for different quantile curves, therefore the squared distance over observations
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between q(z;w, τ) and τ(z) = τ will also be used as a performance parameter,
this is denoted d(q(z; τ))2 and calculated by

d(q(z; τ))2 =
1

N

∑

i

(q(zi;w, τ) − τ)2 (4.7)

This will be refereed to as “reliability distance”. This measure punish both
variability and bias. Therefore it might be a little misleading, since the bias will
punish in every direction. An alternative would be to look at the variance and
the overall bias. It is however not obvious how the variance in each direction
should be weighted, if we want to sum the variation for more directions. Even
if it is not clear exactly how to interpret these distances, it is clear that if a
model has better reliability distances in all directions then we should prefer this
model.

To see the bias variance issue for the local reliability distance look at

d(q(z; τ))2 =
1

N

∑

i

(q(zi;w, τ) − τ)2

=
1

N

∑

i

(qi − E(q) + E(q) − τ)2

=
1

N

∑

i

((qi − E(q))2 + (E(q) − τ)2 + 2(qi − E(q))(E(q) − τ))

= V (q) + (E(q) − τ)2 + 2(E(q) − τ)
1

N

∑

i

(qi − E(q))

= V (q) + (E(q) − τ)2. (4.8)

With this we see that d(q(z, τ))2 consists of the variance of q plus the squared
distance from E(q) to τ . This is what was referred to as bias. One argument
for choosing V (q) and (overall reliability−τ)2 could be that these variances
and the squared bias could be added, and then give one reliability number.
This would however mean that a model with high bias and low variance of the
local reliability would perform better and better as we a add more and more
directions.

Definition 4.1 have the effect that we know how many points each local reliability
is based on, but we do not know how wide the interval is when measured as a
function of the variable zj. Therefore it can happen that local properties is not
detected this procedure.

Before going on with defining other performance measures it should be noted
that these measures may not be meaning full unless we have a good reliability.
So in this sense reliability is the most important measure of performance.
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4.3.2 Sharpness

Sharpness is a measure for how far symmetric (around 0.5) quantiles are sep-
arated. Given a good reliability we want these intervals to be as narrow as
possible. Here the Inter Quartile Range (IQR), i.e. the difference between the
75% and 25% quantiles is used. This is the same as is used by Nielsen in [1]
and [15]. This quantity should be minimized, since we would like to have small
predicted intervals. Two different measures can be used here, namely the mean
of IQR and the median of IQR. They do however seem to be quite close so it
probably doesn’t matter so much which one is used.

4.3.3 Resolution

Resolution is a measure of how well a model distinguish between different sit-
uations. The measure used for this is either the standard deviation of IQR or
the MAD (Mean Absolute Deviation). In [15] both of these are used, they don’t
seem to differ very much, therefore we only consider the standard deviation here.
In [1] the 5% and 95% quantiles of IQR is used as such a measure as well, i.e.
we should look at the difference between these.

To maximize a standard deviation is problematic since random variation will
be awarded with such a measure. I.e. if we have the true quantile and then
add white noise then the model will perform better without affecting reliability.
This stress the point that the measures should not be considered alone.

4.3.4 Spread / Skill Relationship

Spread / skill relationship refers to the relationship between some point value
given by the forecasting system and some observed values. In [15] the absolute
error from WPPT (Wind Power Prediction Tool, see [19]) is plotted as a function
of the forecasted IQR. The mean or quantiles of the absolute error should now
be an increasing function of IQR. This approach only say that this statistics
(quantiles or mean) should be an increasing function of IQR. There is nothing
about the optimal relationship in this procedure.

Here a different method is used. The residuals is grouped by the forecasted
IQR, and the 50% sample quantile of observed errors in this group is plotted
as a function of the 50% quantile of IQR in this group. With this definition of
the spread / skill relationship the curve should be close to a straight line with
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a slope of 45◦.

4.3.5 Skill Score

A skill score is one numerical value that gives a summary of the performance
of the forecast. Such a value should collect the analysis from the above in one
number, and award the best forecast or the forecast closest to the true model.

In [17] Gneiting defines the expected score under the probability P and the
forecasted quantiles q̂1, ..., q̂k as

S(q̂1, ..., q̂k;P ) =

∫

S(q̂1, ..., q̂k; y)dP (y) (4.9)

i.e. we use qi as the forecast of P . A scoring rule S is (again following [17]) said
to be proper if

S(q1, ..., qk;P ) ≥
∫

S(q̂1, ..., q̂k; y)dP (y) (4.10)

where q1, ..., qk denote the true quantiles and q̂1, ..., q̂k are any real numbers.
Gneiting show that any rule of the form

S(q̂1, ..., q̂k; y) =
k
∑

i=1

(τisi(q̂i) + (si(y) − si(q̂i))I(y ≤ q̂i)) + h(y) (4.11)

where τi is the prediction levels (τi ∈ (0, 1)), si are non decreasing functions and
h is any function, is proper for the quantiles τi. As is noted in [16] this scoring
rule is a generalization of the loss function for the quantile regression. To see
this set s(x) = x and h(x) = −τx, then the scoring rule becomes

S(q̂, y) = τ q̂ + (y − q̂)I(y ≤ q̂) − τy (4.12)

= τxT β̂ + (y − xT β̂)I(y ≤ xT β̂) − τy (4.13)

= −τr + rI(r ≤ 0) (4.14)

= r(I(r ≤ 0) − τ) = −ρτ (r) (4.15)

where ρτ is the loss function introduced in the beginning of Chapter 2. By (4.15)
it we see that maximizing the skill score defined here correspond to minimizing
the loss function defined in Chapter 2. Therefore the loss function is used as a
skill score throughout this presentation. We should just keep in mind that we
want to minimize this not maximize it.

In [17] Gneiting uses (4.11) to derive an interval score for a central (1−α)×100%
prediction interval. This is defined by calculating the score for the forecasts of
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q̂1 and q̂2, with τ1 = α
2 , τ2 = 1 − α

2 , s1(x) = s2(x) = 4x and h(x) = −2x. This
gives the interval score

Sα(q̂1, q̂2, y) =







−2α(q̂2 − q̂1) − 4(q̂1 − y) if y ≤ q̂1
−2α(q̂2 − q̂1) if q̂1 ≤ y ≤ q̂2
−2α(q̂2 − q̂1) − 4(y − q̂2) if y ≥ q̂2

(4.16)

This is an intuitively appealing form, but to write it like this ignores the fact
that there can be crossings, since if q̂1 > q̂2 (4.16) is not unique. This is however
not something that stems from the scoring rule, but only from writing it in the
form (4.16). Thus a note for (4.16) is that the assumption q̂1 ≤ q̂2 should be
added. If q̂1 > q̂2 then q̂1 and q̂2 swap places in (4.16). Of course there is
nothing intuitively appealing any more, but quantile crossings are by nature
not intuitively appealing anyway. The final remark on the interval score is that
by rewriting it in a similar way as in equation (4.15) we get

Sα(q̂1, q̂2, y) = −4(ρτ1(y − q̂1) + ρτ2(y − q̂2)) (4.17)

again this shows that we can use the sum of the loss function as well as the
scoring rule, and again note that we minimize this.

As we saw in Chapter 2 crossings can (and will) occur, so this will also be
considered a performance parameter and something we aim to avoid.

Now that we have some ways of evaluating the performance of quantile models
and the tools to understand the quantile regression with splines, we go on by
using a data set from Tunø Knob to analyze some quantile regression models.

As should be clear by now it is not simple to quantify the performance of a
quantile or a set of quantiles. There are many different parameters to look at.
We will discuss these performance parameters on the basis of the Tunø data
set and the models developed in the rest of this chapter and the next chapter.
Before doing so the data is presented.

4.4 The Tunø Data Set

The data set consists of prediction error (pow.pe) from WPPT (Wind Power
Prediction Tool), and meteorological data from DMI’s (Danish Meteorological
Institute) meteorological forecasting system DMI-HIRLAM. The data set is the
same as is used in [1] but with some extra meteorological data. These extra
data are only avaiable from archive, this essentially means that they are not
given as often as the rest.
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The installed power at Tunø Knob is 5000kW and the prediction from WPPT is
in the range from 0 to 5000kW so this is also the range of (absolute) prediction
errors.

The aim is to model conditional quantiles of pow.pe conditioning on the ex-
planatory variables, which are

pow.fc: Forecasted power from WPPT (kW ).

horizon: The prediction horizon (hours).

ad: Forecasted air density from DMI-HIRLAM (g/m3).

fv: Forecasted friction velocity (m/s).

wd10m (wd30m): Forecasted wind direction 10 (30) meter above ground level
from DMI-HIRLAM in degrees.

ws10m (ws30m): Forecasted wind speed at 10 (30) meter above ground level
(m/s).

wdL··: Forecasted wind direction in model level ··, the levels in the data set are
31, 38, 39 and 40 (degrees), data from archive.

wsL··: Forecasted wind speed in model level ··, the levels in the data set are 31,
38, 39 and 40, data from archive.

tkeL··: Forecasted turbulent kinetic energy in model level··, the levels in the
data set are 38, 39 and 40, data from archive.

r··: Meteorological risk index of data .., these are given for the explanatory
variables ad, wd10m, wd30m ws10m, wd30m and fv.

The model levels are different levels of the atmosphere, the higher the level
number the closer to the ground level. The risk index is the same as was used
in [1] which is based on the definition in [12].

The forecasted power is given every 15th minute, the meteorological data which
have a risk index is given every hour. The rest of the meteorological data is only
accessible every 3rd hour (the data from archive). The meteorological data from
DMI is given in a number of grid points throughout Denmark. The grid points
around Tunø is seen in Figure 4.1. To get the forecast at the location of Tunø
Knob, a bilinear interpolation between the four points around the location is
performed. To get the forecast every 15th minute a linear interpolation between
time points is performed.
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The forecasted power is based on meteorological forecast at the time point 06,
and meteorological forecasts made at this point. The meteorological data from
archive is only given at the times 12 or 00. In the present context the ones from
00 is used, which imply that horizon only apply for forecasted power and some
of the meteorological data. The meteorological risk index is presented in [12].
This requires at least two forecasted values and since all meteorological values
are given with 48 hours horizon this is only given for the meteorological forecast
which are given at 06.

The data is divided into a train and a test set. The train set is the period
from January 1th to June 1th 2003, the test set is the period from June 1th
to October 31th 2003. The training set consists of 10658 data points and the
test set consists of 11095 data points. At September 2rd DMI introduced a
model change in DMI-HIRLAM (the forecast system), which was expected to
have large influence on wd10m. The test set is therefore further divided into
two parts, before and after September 2. These sets have 6861 and 4234 data
points respectively.

Figure 4.2 shows the pairwise scatter plot of some of the explanatory variables.
The plot shows that forecasted power and wind speed is very correlated, and that
in this sense friction velocity can be thought of as a wind speed. Thus we have to
choose either the forecasted power or a wind speed as explanatory variable. The
plot does not show the scatter plot between meteorological data from different
levels. These are however as could be imagined also very correlated.

The aim is to predict quantiles of a horizons between 12 and 36 hours, with the
combination of splines and quantile regression described previously. However
the available data from WPPT has only horizons between 18 and 36 hours,
these are therefore the horizons studied in this presentation.

Figure 4.3 shows histograms of some of the explanatory variables. The rest of
the variables is showed in Appendix B. It is seen that there are areas in all the
data with very few observations. Especially the turbulent kinetic energy have
very few observations with high values. To deal with this Turbulent kinetic
energy is log transformed, the histogram for this is also shown in Figure 4.3.

4.4.1 The Three Periods

As was mentioned earlier, DMI introduced a change in the prediction model
on September 2nd 2003. This change was expected to have a large impact on
ws10m. The data is therefore divided into the two test periods and a training
period. Figure 4.4 shows histogram plots of wind speed, predicted and observed
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Scatter plot of explanatory variables
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Figure 4.2: Pairwise scatter plot of meteorological data and the forecasted power
curve from WPPT for the training data.



76 Quantile Models

Histograms of explanatory variables
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Figure 4.3: Histogram of some of the explanatory variables. In appendix B
histograms of all explanatory variables are displayed.

Key numbers for the three periods
Data E(ws10m) E(pow.fc) E(pow.obs)
Train 6.37 1408.54 1519.88
Test 6.37 1290.32 1153.37
Test 1 6.00 1146.24 1000.23
Test 2 6.98 1530.44 1408.57

Table 4.1: Mean of wind speed and forecasted and observed power for the three
periods in the dataset.

power, and the prediction error from WPPT for the three periods.

The figure shows some differences especially as was expected in predicted wind
speed. Table 4.1 gives some key numbers for the data presented in the figure.
The table essentially tells us the same as the figure, namely that there are
differences in the wind speed and predicted and observed power. The figure and
the table give some support to the point of analyzing each of the test period
separately. As will be seen there are differences in the performance of the two
periods when we use pow.fc as input. It is however not clear that the variation
could not be explained as annual variation in the data.

With the data presented we will go on and present the model.
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Histogram plots for the three different periods in the model
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Figure 4.4: Histogram plot for the 3 different periods in the data.
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4.5 Quantile Regression Models for the Tunø
Knob Data Set

The combined quantile regression and spline models are now used on the Tunø
data set. In this chapter we only consider the 25% and 75% quantiles. These
are the same as considered in [1] and the model in Figure 4.5 is also considered
in this article. The visualizations in [1] is a little different than the one chosen
here.

In [1] the components of the additive model is plotted one by one. This is
the same as choosing cuts (see Section 4.2) as points where each of the other
functions in the additive model is zero. In the natural spline case this is at the
leftmost knot and for the periodic splines this depend on the parameters.

The method used here is to choose ”typical” values of the other parameters,
these typical values are the mean of each of the explanatory variables except for
the wind direction, where the mean does not really make sense. Here the choice
is 250 degrees, which is taken on basis of the histograms in Figure 4.3.

An overview of the construction of the models shown in Figure 4.5-4.8 is given
below.

Model 1: The knots are placed as 10% quantiles of the explanatory variables
in the training set, except in the wind direction where 8 knots have been
placed with equal distances. This model is the only model with air density
as input. The number of parameters to estimate is 39.

Model 2: Air density has been taken out of Model 1 and fewer knots have
been placed. These knots have been placed manually to capture the overall
variation in Model 1. This model leave out some of the very local variation
in Model 1. The number of parameters to estimate is 16.

Model 3: The forecasted power has been replaced with the wind speed in level
40 as input. Wind direction is also from this level. In addition turbulent
kinetic energy and the risk index of friction velocity have been taken into
account. The model only has 14 parameters and is in this respect the most
simple model considered here. The knots have been placed manually, by
trial and error.

Model 4: As Model 3 but with some more knots. The number of parameters
to estimate is 24.
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4.5.1 Remarks on Figure 4.5-4.8

Figure 4.5-4.8 show the quartile curves for Model 1-4, along with the local
reliability in the direction of each of the explanatory variables for the training
and the test period. In the case of Model 1 also for the periods Test 1 and Test
2. Since these seem to be alike the local reliability for Test 1 and 2 has been
left out in the three other plots.

The IQR as a function of forecasted power would be expected to be large for
moderate wind speeds and small at the endpoints of the interval. The reason
for this is that the power curve, i.e. the forecasted power as a function of wind
speed, is steep for moderate wind speeds and becomes more constant close to
the endpoints. Thus in the middle of the forecast interval small changes in the
wind speed will course large changes in the wind power production.

This is also the qualitative behavior of Model 1 and 2, which uses the wind
power as an explanatory variable. There is however not a clear explanation for
the shoulder at around 700kW for Model 1. This shoulder is also seen in the
local reliability on the test period, so it seems that the model might be over
fitted here. This behavior can be controlled by the knots, and it seems that we
have to many knots for low forecasted power in Model 1. Some of these knots
have been taken out in Model 2 and it is seen from the two figures that Model
2 perform a little better on the test set.

It is seen that there is some variation of the local reliability. For Model 2 this is
even seen for the training period, because the model is not able to describe the
local behavior in the training set any more. In Model 2 the shoulder have moved
from the 75% quantile curve to the local reliability for the training period. The
general picture of the reliability on the training period is that there is some
variation. It is of course much smaller that for test period. We saw earlier that
quantile regression split response variable in two sets according to the required
probability. This is seen not to be a strict local property.

The horizon does not seem to explain much variation of the curves in any of the
models.

The wind direction seems to explain much more variation in Model 1 and 2 than
in Model 3 and 4. The two different set up also uses different wind directions,
which could be the explanation for this. The wind direction have a greater
explanatory power for the 75% quantile than for the 25% quantile, but there is
a large variation in the local reliability.

It seems that there is not really a good physical explanation for the estimated
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quantile curve for the air density. Another point which is illustrated by Figure
4.5 (see the reliability for the different periods) is that there is a large annual
variation in the air density. This means that the data in the training set does
not span the range of data in the test set. When something like this happens
linear regression models will have difficulties, and the spline models probably
make things worse.

Model 3 and 4 use wind speed instead of forecasted power. The local reliability
of this is also quite bad on the test set. The surprising behavior at high wind
speeds, can be explained by the fact that there are no observations in this area
for in the training set.

The curve for the turbulent kinetic energy varies a lot and at the same time
the local reliability on the test set is fairly constant. This is actually a property
that we are looking for.

The risk index of the meteorological data is not taken into account in Model
1 and 2. In [1] the dependence of the risk index for Model 1 was found to be
small. This has also been checked here for these models and the same result
was found.

Models with different knot placement have been tried out, but it does not affect
the models greatly. For Model 3 and 4 the risk index shows a behavior which
we would expect, but this also seems to have quite large annual variation, and
the local reliability plot shows large variations.

Appendix B go through the model with different explanatory variables in a
more systematic way. The models in Appendix B is with wind speed instead of
forecasted power.

4.5.2 Hypothesis Test

The question that have to be answered if we want to make hypothesis tests is:
can we assume that the requirements for using the hypothesis test presented in
Section 2.5 is fulfilled? The answer to this question is no. To argue for this
conclusion look at Figure 4.9, where a one lag correlation plot of the residuals
from Model 4 is presented. The conclusion from this is clearly that we can not
assume that these are iid. The assumption should then be that the residuals
can be modeled by

ri = xT
i γei (4.18)
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Residuals of Model 4
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Figure 4.9: Correlation plot for Model 4.

With ei iid, we do not really have any reason to assume this. In fact the prior
assumption would be that the ei’s are correlated. The reason for this prior
assumption is that, given the meteorological forecast is wrong at time i then it
would also be expected to be wrong (in the same way) at time i+ 1. Therefore
we would expect that the ei’s are positively correlated. Therefore to do any
hypothesis testing we should prove that the assumption in 4.18 is true or likely.
Since it is not clear how to prove something like this, hypothesis testing will not
be considered further in this presentation.

Plots like Figure 4.9 have been considered for the other models and the result
is approximately the same.

4.5.3 Reliability

Table 4.2 gives the overall reliability for Model 1-4. From the perspective of
Table 4.2 the obvious choice would be Model 3 or 4. Model 3 is very close to the
required reliability for the 25% quantile, but we already saw that the local reli-
ability as a function of the explanatory variables is not very convincing. Figure
4.10 shows the local reliability for the four models plotted together as functions
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Reliability for the quantile models in Figure 4.5-4.8
Period Model 1 2 3 4
Test Below 75% 88.6% 84.2% 78.0% 78.3%
Test Below 25% 29.7% 28.7% 25.3% 25.3%
Test 1 Below 75% 91.3% 83.7% 76.5% 77.4%
Test 1 Below 25% 27.7% 27.9% 25.4% 25.6%
Test 2 Below 75% 84.2% 85.0% 80.5% 79.6%
Test 2 Below 25% 33.0% 30.0% 25.1% 24.8%

Table 4.2: The table contains the overall reliability for the models shown in
Figure 4.5- 4.8 The best parameter in each row is marked with bold face letters.

of forecasted power, horizon and time. The plot also shows the reliability of the
center 50% interval. We see that the very nice results in the overall reliability
is not a local property, and from these plots it is not obvious that, e.g. Model
3 is better than Model 2. The two models are simply wrong in different ways.

Table 4.3 gives the reliability distance in the direction of pow.fc, horizon and
time. The table gives the reliability distance for the first and third quartile and
for the distance of the two quartiles, i.e. how close to 50% of the observations
fall between the two quartiles. This number does not punish translations of the
interval, i.e. a true interval of 0 to 50% quantile would give the same number
as the true interval of the 25% to 75% interval. From the perspective of this
table we should choose Model 4. The row with total reliability is d2

total(x) =
(d(q(x, 0.25))2 + d(q(x, 0.75))2 + dbe(x)

2)/3 with dbe(x)
2 being the reliability

distance for the IQR.

As can be seen from Figure 4.10 none of the models have a very convincing
performance of local reliability. Here we will try to solve this with an adaptive
model. Before we go on with this, a discussion of the other performance param-
eters will be given, even though we should have in mind that the reliability (at
least locally) is quite bad.

4.5.4 Skill Score and Crossings

Table 4.4 gives the average loss function and the number of crossings for the
four models. From the skill score point of view the conclusion is clearly that we
should choose Model 2 for the 25% quantile and Model 4 for the 75% quantile.
The interval score (the sum of the loss functions) tells us to choose Model 2.
This is a different conclusion than what we got from the reliability discussion,
where the conclusion was to use Model 3 or 4.
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Numbers related to the reliability for the models shown in Figure
4.5-4.7

Model 1 2 3 4
d(q(pow.fc, 0.25)) 0.102 0.110 0.142 0.145
d(q(pow.fc, 0.75) 0.144 0.114 0.119 0.102
d(q,pow.fc, 0.5)) 0.107 0.090 0.081 0.085
dqtotal(pow.fc) 0.119 0.105 0.117 0.113
d(q(hor, 0.25)) 0.050 0.052 0.043 0.041
d(q(hor, 0.75)) 0.137 0.095 0.042 0.040
d(q(hor, 0.50)) 0.089 0.073 0.034 0.039
dqtotal(hor) 0.098 0.076 0.040 0.040
d(q(time, 0.25)) 0.080 0.055 0.047 0.046
d(q(time, 0.75)) 0.143 0.096 0.054 0.050
d(q(time, 0.5)) 0.127 0.068 0.046 0.040
dqtotal(time) 0.120 0.075 0.049 0.046

Table 4.3: Reliability distance in the direction of some explanatory variables.
These all refer to the test set. The best parameter in each row is marked with
bold face letters.

Skill score and crossings for the quantile models in Figure 4.5-4.7
Period Model 1 2 3 4
Test ρ0.75(r) 297.3 270.7 254.4 253.2
Test ρ0.25(r) 219.7 217.6 241.0 243.5
Test ρ0.75(r) + ρ0.25(r) 517.0 488.3 495.4 496.7
Test 1 ρ0.75(r) 301.2 262.8 245.5 243.9
Test 1 ρ0.25(r) 206.3 204.8 241.0 236.8
Test 1 ρ0.75(r) + ρ0.25(r) 507.5 467.6 486.5 480.4
Test 2 ρ0.75(r) 291.1 284.0 269.3 268.7
Test 2 ρ0.25(r) 241.1 238.9 254.9 254.7
Test 2 ρ0.75(r) + ρ0.25(r) 532.2 522.9 524.2 523.4
Train Crossings 119 138 0 0
Test Crossings 76 188 0 0
Test 1 Crossings 13 128 0 0
Test 2 Crossings 63 60 0 0

Table 4.4: The table contains some key numbers for the models shown in Figure
4.5-4.7. The best number in each row is printed in bold face.
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Numbers related to the Inter Quartile Range for the quantile
models in Figure 4.5-4.7

Model 1 2 3 4
E(IQR) 1274.7 1086.0 1069.3 1041.9
sd(IQR) 668.6 655.5 592.7 526.2
Q(IQR); 0.5) 1305.9 1026.7 1068.4 1051.1
Q(IQR); 0.05) 247.3 143.8 226.7 262.0
Q(IQR); 0.95) 2313.5 2222.4 1961.6 1848.6

Table 4.5: Numbers related to IQR for the models in figure 4.5-4.7, the numbers
is for the test period. Best performer in each row is marked with bold face letter.

A very nice property of Model 3 and 4 is that they does not have any crossings,
so this again points in the direction of Model 4 rather than Model 2.

4.5.5 Sharpness and Resolution

Table 4.5 and Figure 4.11 deals with sharpness and resolution of the four models
described above. The table gives the overall numbers while the figure gives
sharpness and resolution as a function of horizon and forecasted power. From
the point of the reliability distance and loss function it was not clear if we should
choose Model 2 or 4. From the table we see that Model 4 have the best sharpness
if the mean of IQR is used as measure and Model 2 has the best sharpness if
the median of IQR is used as measure, while Model 1 has the best resolution
and Model 2 has a better resolution than Model 4.

We disregard Model 1 since it gives bad results in the analysis made so far.
When grouped by horizon the sharpness of the three models remaining perform
quite similar, while the resolution is much better for Model 2 than for Model 3
and 4.

When mean and standard deviation of IQR are grouped by forecasted power, we
see a quite large difference in sharpness and the resolution has switched place,
so Model 3 and 4 perform better than Model 2. This is because Model 2 use the
forecasted power as input and the standard deviation therefore becomes small
as a function of forecasted power, so the local performance actually gets worse
when grouping by the explanatory variable. So we should be careful with these
kind of plots, since they can be quite misleading. Actually we could look at the
sharpness plot as a form of resolutions, since tells something about the model
ability to distinguish between different situations, i.e. different forecasted power
in this case.
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Sharpness and resolution for the models from Figure 4.5-4.7
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Figure 4.11: The mean and standard deviation of IQR for the test and training
periods as functions of horizon and forecasted power. In the horizon case vari-
ables is grouped by the same horizon. In the forecasted power direction IQR
is grouped by 10 intervals in forecasted power, with each interval having the
length of 500kW.
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Spread / skill relationship for the models in Figure 4.5-4.7
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Figure 4.12: Prediction error is grouped by forecasted quantiles and in each
group the realized quantile is plotted against the median of the forecasted quan-
tile. All plots are for the test set. The groups are 20% quantile of forecasted
quantiles.

4.5.6 Spread / Skill Relationship

Figure 4.12 shows observed quantiles and IQR as a function of predicted quan-
tiles and IQR. The plot shows that all models seem to overestimate the 75%
quantile, while the 25% quantile fits quite well. IQR is underestimated for low
estimations and overestimated for high estimations of IQR. So this plot suggest
that we should concentrate improvement on the 75% quantile.

4.6 Discussion/ Conclusion

This chapter have given an analysis of four different quantile regression models.
None of these gave satisfactory results. The analysis does however also give a
discussion of how we can use the performance parameter presented in the first
part of the chapter. From this discussion it is clear that reliability and possible
skill score should be considered the most important performance parameters,
which should be good before we go on and consider other performance param-
eter.

An important conclusion w.r.t reliability is that a good overall reliability does
not imply good local reliability. In fact we saw that Model 3, had an overall
reliability of 25.3% on the test set, when the 25% quantile was required. This
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must be considered very good, however the local reliability given a forecasted
power of 0kW was 0% (see Figure 4.10), which must be considered very bad.

As stated above the models does not really show satisfactory results, this might
be due to the fact that the data set is too small. We actually require a model
trained in a period of winter and spring to perform well in summer and autumn.
It can very well be that the models would improve if the available data set
covered e.g. two years.

If we follow the assumption, that there are big annual variation in the data,
then the natural conclusion would be to follow an adaptive approach. This is
the subject for the next chapter.



Chapter 5

Adaptive Quantile Regression

5.1 Introduction

This chapter will describe an adaptive procedure for quantile regression. This
will be used to analyze data from the Tunø Knob wind power plant. Adaptive
versions of the models in Chapter 4 will be analyzed as well as simpler models.

In adaptive least square estimation, the estimates at time t+ 1 can be written
as a function of the estimate at time t and the residual at time t + 1. In this
case the only knowledge of the past we need is what parameter estimates in the
model was at time t. This is unfortunately not the case for quantile regression.

We would however expect that the solution to the quantile regression problem
at time t+ 1 is close to the solution to the quantile regression problem at time
t. The idea is to use the simplex algorithm described in Section 2.3.2 to get the
solution at time t+ 1, given that we know the solution at time t.

What is meant by close is that the differences of the estimates are small or
possibly that the difference over the quantile hyper planes are small in the two
solutions. To use the simplex algorithm we need solutions to be close, in the
sense that only few simplex steps are needed to get from the solution at time t
to the solution at time t+1. The hope is now that this first sense of close imply
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Figure 5.1: The figure show the number of elements shifted in each iteration for
a simple model with only 6 parameters and for the 1th and 3th quartile.

the other.

In Chapter 2 we saw that the solution to the quantile regression problem could
be written as β̂ = X(h)−1y(h), we now introduce time and write

β̂t = Xt(ht)
−1yt(ht) (5.1)

The procedures that will be examined here, is that [Xt yt] and [Xt+1 yt+1] are
the same except for one row. This is a sort of a gliding window where past
observations either have the weight one or zero.

To answer the question of how close these solutions are in the simplex sense,
a very simple model with only forecasted power as input and 5 knots is con-
structed. The number of elements in h which was replaced in each iteration is
then counted. If the number of elements replaced in h is small it is taken as
evidence of the solutions being close in the simplex sense.

This is not done with an adaptive procedure. The model is simply re-estimated
at time t + 1 without using the knowledge of the solution at time t. In this
analysis a simple gliding window was used, i.e. the oldest element in Xt and yt

was simply replaced with the observation at time t+ 1.
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This analysis is carried out for the 25% of 75% quantiles. The number of ele-
ments in each of the data sets was 10000. The result of this analysis is shown
in Figure 5.1. In 40-50% of the steps, there are no replacements in h. In these
cases the number of simplex steps will be zero. The mean number of replace-
ments were 1.30 and 0.88 for the two quartiles respectively. So it seems that
there should be some possibilities in an adaptive procedure.

Figure 5.1 was constructed by comparing the location of residuals of size 0. This
means that the numbers can be a little off, but it is still clear that the solutions
are close and that information of the model at time t can be used to get the
solution at time t+ 1.

The next section presents the algorithm for the adaptive quantile regression
method. The notation is as in Section 2.3.2.

5.2 The Algorithm

As has been seen the number of elements in h to be replaced when we take one
step forward is small. It does therefore seem reasonable to use the information
about the solution to the quantile regression problem at time t as a guess of the
solution of the quantile problem at time t + 1. The updating procedure in the
preliminary analysis in the previous section used the simple procedure to take
out the oldest observation each time a new observation become available. The
problem of this is the structure of the data set from Tunø, namely that there
are very few observations in some areas of the sample space. E.g. there are very
few observations of high wind speed or high forecasted power. Therefore as we
move our window, the number of observations in these areas of the sample space
will at times be very small. This may lead to bad estimations and in extreme
cases that the problem become singular i.e. rankX < K.

The algorithm can therefore be divided into two parts, namely the updating
procedure and the simplex steps from the updated solution. The second part
have already been described in Section 2.3.2, therefore this will not be described
here.

As we saw in Chapter 2 the solution to the quantile regression problem is char-
acterized by an index set h and a vector p of diagonal elements of P. Or rather
these are what we need to perform the next simplex steps. In the following we
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write the design matrix X as

X =











b(x1)T

...

b(xN)
T











(5.2)

where b(x) is the spline basis functions of x, so the set up is like in Section
4.2. Note that b(x) 6= b. b is the restrictions in the LO problem presented in
Section 2.3.2.

Practical summary 5.1 gives an overview of the adaptive procedure. The indi-
vidual steps is then described below

Practical Summary 5.1 The adaptive procedure for quantile regression con-
sist of the following steps:

1. Decide which b(xl) that have to leave the design matrix.

2. If l ∈ ht take one simplex step s.t. l /∈ ht.

3. Update X, P, h and cB

4. Perform the simplex steps needed to get to the optimal solution character-
ized by ht+1.

The steps of the algorithm is described in details below.

Step 1

In this presentation two different updating procedures are considered, the gliding
window and an approach where the data set is divided into a number of bins in
the direction of one of the explanatory variables. The first approach correspond
to one bin.

Check what bin the new observation belongs to, and then let the oldest obser-
vation in that bin leave the design matrix. In this presentation these bins will
be in the direction of wind speed or forecasted power.

The bins will be denoted Ij , and should be a partition of the sample space of
this direction. Assume that the vector x is ordered s.t. x1 is the direction of this
partition and x ∈ R

p then xt+1 ∈ Ik×R
p−1 = Ik. For each Ij a maximal number
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of elements nj is decided before hand. If the number of elements in Ik is less
than nk, then set l = ∅ and go to step three, otherwise choose l = min(i|xi ∈ Ik)
and proceed to step two.

Step 2

If the leaving variable is in h, then we can not remove it, since the solution
depend on the inverse of X(h). Therefore if l ∈ h we perform one simplex step
with a new objective function, where the loss on rl is set equal to zero. In the
terminology of Chapter 2 this corresponds to setting c{l,l+N} = 0. This result
is a change of two elements in the simplex vector d (see section 2.3.2). The
elements we have to change is the elements corresponding to l. Denote these
dl, we then have

dl =

[

−g(l)
g(l)

]

(5.3)

Therefore we only have to calculate the two elements of dl corresponding to
l. This determines the decent direction and gives us s (see section 2.3.2). If
g(l) = 0 then this will not be a decent direction. We can however take one
simplex step anyway, the direction is then not important. With this we can
find h and thereby σ and q, which was the variable that had to enter h. Having
swapped l and q we are ready to update the design matrix and the other matrices
needed for the simplex algorithm.

Step 3

If we let Ω = {1, 2, ..., N} and rt+1 = yt+1 − b(xt+1)
T β̂t then the updated

versions of the simplex variables will be

X(t+1) =

[

X
(t)
Ω\l

b(x)t+1

]

(5.4)

P(t+1) =

[

P
(t)
Ω\l

sign(rt+1)

]

(5.5)

c
(t+1)
B =

[

c
(t)
B;Ω\l

ρτ (sign(rt+1))

]

(5.6)

For j = 1...K, we update the index set h as

ht+1
j =

{

ht
j if hj < l
ht

j − 1 if hj > l
(5.7)



98 Adaptive Quantile Regression

With the elements needed for the simplex algorithm in place, we go on to Step
4.

Step 4

Two changes or modifications of the simplex algorithm described in Section 2.3.2
are implemented. The first change is that a maximum of simplex steps is set.
This is set to 24. This number is quite arbitrary, but for the models that are
stable there are very few iteration where the number of simplex steps is equal
to 24.

The second change is that in each step the condition number of the matrix
X(h(t+1)) is calculated and the simplex step will only be taken if this number
is less than a specified value. It is not obvious what such a value should be,
but as long as we just have some value, the algorithm will not terminate. It
will however not update the solution in this step either. Here the maximum
condition number is set to 106.

The simplex algorithm will sum up small numerical errors in each step. It is
therefore necessary to fix this once in a while. [14] give an algorithm for doing

this. In the quantile regression setting we just recalculate β̂ from X(h) after
each time step and find r, P etc. from this solution.

5.2.1 Remarks on the Algorithm

For a real on-line implementation of this algorithm, the point of why X(h)
becomes singular should probably be investigated further. The point is here
that based on the theory on the simplex method it should not be possible to
go to such a solution. One practical problem is to determine when a number is
zero and when it is a small number different from zero. This problem is clear
in Step 3 of the simplex algorithm, where we divide with elements of h, and
some of the elements in h will be zero. In this step a decision of when hi is zero
should be made, i.e. a tolerance have to be set. What the size of this tolerance
should be is not clear. If it is set too large then the algorithm can terminate
early (because we know that the problem is bounded the algorithm terminates
if α = ∞), and if it is too small we can get very large gain in the objective
function in directions where it should have been zero.
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5.3 The Performance of Adaptive Models

The performance parameters for the adaptive models will be the performance
parameters described and discussed in Chapter 4. But in addition the maximum
and mean of crossings will also be considered. For an adaptive procedure, the
timing is also something that should be considered and this will also be discussed
here. The performance parameter are considered on test sets as defined below.

5.3.1 The Test Set for Adaptive Models

The adaptive models are updated each time a new observation becomes avail-
able. This means that we would have a new model every quarter of an hour
if the model was running online. The data set available only has 18-36 hour
forecast based on the meteorological data from time 06 and the corresponding
observations.

The performance data is based on the adaptive model at a forecast horizon of
24 hours. I.e. when the observations of the 24 hour forecast becomes available,
the model is used to forecast the next 18-36 hour ahead and the residuals from
this is used to calculate the performance parameters.

The test set is still the last part of the data set. The first 10000 points are
the “training” set and the rest of the data set is the test set. So performance
parameters can be compared with numbers from Chapter 4 even though the test
sets are not identical.

5.4 Four Simple Models

To study the effect of the adaptive procedure and the effect of different updating
strategies a simple model, which only uses forecasted power as input and with
knots placed at 20% quantiles of forecasted power, is constructed. This model
is studied with different updating strategies.

The models in this basic analysis will be referred to as Basic 1-4. The updating
procedure in the models are described below

Reference: A static model based on the first 10000 data points, and used to
forecast on the rest of the data points.
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Basic 1: An adaptive model with a gliding window with 10000 data points.

Basic 2: An adaptive model with a gliding window with 5000 data points.

Basic 3: An adaptive model with bins placed at the knots, i.e. the sequence
of borders is {−∞, 308, 789, 1465.5, 2701, ∞}. The number of elements
allowed in each bin is 1200.

Basic 4: An adaptive model with the borders of the bins placed at {−∞, 800,
1600, 2400, 3600,∞}. The number of elements allowed in each bin is 1000.

These models are now examined for the 25% and 75% quantile.

Figure 5.2 shows time plots of the two quartiles of Basic 4. The plot shows the
quartile curves at each time step. It illustrate how the quartile curves varies
with time. The top row of the figure shows the 75% quantile. In the left end
of the plot we see that the quartile curve have a shoulder like the one we saw
in Model 1 of Chapter 4. We see that this slowly disappears and after about
40 days it is gone. In the bottom row we see the 25% quantile. At around 100
days the forecasted quartile at high values of pow.fc drops very rapidly down
to about −1500kW . This behavior can probably be explained by cut off effects,
i.e. the wind power plant shots down to avoid damage on the plant due to
very high wind speeds. If this happens there is a great possibility of forecasting
5000kW , when actual production becomes 0kW . It could be argued that, since
we use an updating strategy with several bins a few cut offs should not affect
the quantile curves so dramatically. The problem is however that the forecasted
power within the bins is not equally distributed. So it can very well be that at
this point there were no forecasted power close to 5000kW .

5.4.1 Reliability

Figure 5.3 shows local reliability as a function of forecasted power, horizon,
and time. The plots clearly shows that we get a very large improvement for
this simple model when we make it adaptive. The adaptive models are clearly
better in all plots, except for the horizon for the 25% quantile, where all models
seems to perform equal. Table 5.1 gives the overall and local reliability for the
same variables as used in Figure 5.3.

In the reliability sense these simple adaptive models perform better than the
more advanced, but static, model analyzed in Chapter 4. The reliability distance
of the model Basic 4 in the direction of forecasted power is less than 1/3 of the
best reliability distances in the static models.
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Figure 5.2: Quartile curves for model Basic 4, as a function of time, for the test
set. The figure illustrate how the quantile curve changes at each time step. The
top panel is the 75% quantile and bottom panel is the 25% quantile.
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Local reliability for the Basic Adaptive Models
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Figure 5.3: Local reliability for the four Basic adaptive models in the direction
of pow.fc, horizon and time.
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Local reliability measure
Model Reference Basic 1 Basic 2 Basic 3 Basic4
Below 75% (test) 83.9% 78.6% 77.2% 77.6% 77.2%
Below 25% (test) 22.6% 22.9% 25.7% 25.1% 25.0%
d(q(pow.fc, 0.25)) 0.165 0.095 0.046 0.053 0.033
d(q(pow.fc, 0.5)) 0.172 0.094 0.040 0.047 0.037
d(q(pow.fc, 0.75)) 0.100 0.048 0.034 0.036 0.033
dqtatal(pow.fc) 0.149 0.082 0.040 0.046 0.034
d(q(hor, 0.25)) 0.043 0.049 0.056 0.050 0.050
d(q(hor, 0.5)) 0.125 0.080 0.056 0.061 0.062
d(q(hor, 0.75)) 0.112 0.086 0.083 0.081 0.081
dqtotal(hor) 0.100 0.073 0.066 0.065 0.066
d(q(time, 0.25)) 0.048 0.045 0.036 0.039 0.037
d(q(time, 0.5)) 0.118 0.079 0.048 0.054 0.049
d(q(time, 0.75)) 0.093 0.044 0.041 0.042 0.040
dqtotal(time) 0.091 0.058 0.042 0.045 0.042

Table 5.1: Reliability distance in the direction of pow.fc, horizon and time for
the four basic adaptive models.

The static models perform better than the adaptive model in direction of hori-
zon, and for the adaptive model we also see a systematic deviation from the
required reliability in the direction of horizon. Especially for the 75% quantile.
This could indicate that we need to have horizon in the models. In the direction
of horizon we see that the reference model actually performs better than the
adaptive models.

In the direction of time the adaptive models perform better than the static
model, but there is actually not much difference between them.

Looking at the reliability performance of the adaptive model the oblivious choice
would be the model Basic 4. This is based on 5000 points while Basic 3 is based
on 6000 points. The question of how many points we should base our model on
is addressed in Section 5.7.

5.4.2 Skill Score and Crossings

Table 5.2 gives the loss functions for the Basic models and the Reference model,
from the skill score point of view we should choose Basic 1 for the 75% quantile
and Basic 4 for the 25% quantile. We see a large improvement in the skill
score if we compare with the reference model, and all adaptive models perform
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Skill Score and Crossings for Basic 1-4
Model Reference Basic 1 Basic 2 Basic 3 Basic 4
ρ0.75(r) 260.3 251.3 251.8 251.8 251.4
ρ0.25(r) 209.6 201.3 199.5 199.6 198.0
ρ0.75(r) + ρ0.25(r) 469.9 452.6 451.3 451.4 449.4
Crossings 113 84 147 123 180
min(IQR) -346.8 -415.4 -454.9 -454.0 -253.2
E(IQR < 0) -176.6 -254.5 -160.1 -191.0 -73.0

Table 5.2: Numbers related to skill score and crossing for the Basic models and
for the test period

better than the static model in this sense and are quite close. Actually even the
Reference model perform better than the static models from Chapter 4 in the
sense of Skill score for the 25% quantile.

With respect to crossings we see that Basic 1 have the fewest number of cross-
ings, but on the other hand the maximum size of the crossings is much larger
than from Basic 4. The mean size of crossings are also smaller for Basic 4 than
for the other model.

The top row of Figure 5.5 shows realized IQR as a function of forecasted power.
From this plot we see that all large crossings are realized at forecasted power
close to 5000kW . The bottom row shows a picture of possible IQR. These plots
are constructed by calculating the possible outcomes at each time point, and
then taking quantiles of these values, something like a projection of Figure 5.2.
From this plot it is seen that Basic 4 actually at some points have been able to
produce very large crossings. These are just not realized as is seen from table
5.2 and the top row in the same figure.

5.4.3 Sharpness and Resolution

Figure 5.5 shows realized and possible IQR for the four basic models. We see
both realized and possible IQR is quite different from the reference model.

Figure 5.5 and Table 5.3 deals with sharpness and resolution of the Basic adap-
tive models. The table indicate that we should choose Basic 2, and that all
models have improved in this aspect when we go to an adaptive approach. It
also shows large difference between the 50% quantile and the mean, and that
using the two different measures would lead to different conclusions.
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Realized and possible IQR as for the basic adaptive models
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Figure 5.4: IQR plots. The first row shows realized IQR for the four models.
The blue line is the reference model. Second row shows quantile curves, i.e. for
each time step. The quantile curve is calculated and then 0 to 100% (in steps
of 5%) quantiles is calculated for each value of forecasted power. This gives an
idea of possible outcomes

The local sharpness and resolution is plotted in figure 5.5. The main conclusion
is that there is a large difference between the static and adaptive models, but
that the adaptive models behave alike.

5.4.4 Spread / Skill Relationship

Figure 5.6 shows observed quantiles as a function of predicted quantiles. The
plot is constructed in the same way as Figure 4.12. For the 75% quantile we see
that the adaptive models perform better than the Reference model, but for the
25% quantile and IQR we see that the curves are very close. In the IQR case
the Reference model perform better than the adaptive models. This probably
have to do with the way the data is grouped.
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Sharpness and resolution for the Basic Adaptive Models
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Figure 5.5: The mean value and standard deviation of IQR for the four basic
adaptive models and the reference model as a function of horizon and forecasted
power.

Sharpness and Resolution for the four Basic models
Model Reference Basic 1 Basic 2 Basic 3 Basic 4
E(IQR) 1015.4 998.7 968.6 977.9 975.7
sd(IQR) 648.6 693.2 716.2 706.3 706.9
Q(IQR; 0.5) 1090.4 1177.0 1099.9 1120.9 1100.7
Q(IQR; 0.05) 85.1 39.7 19.1 25.9 25.9
Q(IQR; 0.95) 1850.1 1951.7 1981.0 1939.4 1979.8

Table 5.3: Numbers related to IQR and the over all performance for the four
basic model used to illustrate the adaptive approach



5.5 Performance of the Adaptive Versions of Model 1-4 107

Spread / skill relationship for the basic adaptive models
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Figure 5.6: Observed quantiles and IQR as a function of predicted quantiles and
IQR.

5.5 Performance of the Adaptive Versions of Model
1-4

Adaptive versions of the models in Chapter 4 are examined in this section. These
will be referred to as Model A1-A4. The updating procedure is in all cases that
the knots in the direction of wind speed or pow.fc defines the bins. For Model
A1 1100 points in each bin are allowed, so the estimates will be based on 11000
points for this model. It is necessary to have this number of points in each bin
for the adaptive procedure to be stable. This is probably because of the large
annual variation in the air density as discussed in Chapter 4 and we will see
that the model performance is still very poor. The other models allow between
800 and 1300 points in each bin. This means that the estimates are based in
approximately 5000 point for all other models.

5.5.1 Reliability

Table 5.4 and Figure 5.7 deal with reliability Model A1-A4. Both the plot and
the table clearly show very large improvements in reliability. The strength of
the adaptive procedure is again stressed, but the reliability of these models is
actually not better than for the Basic models analyzed in the previous section.
So the reliability alone can not lead to choosing one of the more advanced
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Local reliability measure
Model A1 A2 A3 4
Below 75% (test) 77.8% 77.7% 76.5% 75.7%
Below 25% (test) 27.7% 27.5 25.5% 26.2%
d(q(pow.fc, 0.25)) 0.045 0.032 0.092 0.101
d(q(pow.fc, 0.5)) 0.026 0.033 0.064 0.081
d(q(pow.fc, 0.75)) 0.045 0.042 0.050 0.040
dqtotal(pow.fc) 0.040 0.036 0.071 0.078
d(q(hor, 0.25)) 0.036 0.072 0.027 0.036
d(q(hor, 0.5)) 0.033 0.068 0.032 0.036
d(q(hor, 0.75)) 0.039 0.042 0.035 0.032
dqtotal(hor) 0.036 0.062 0.032 0.035
d(q(time, 0.25)) 0.057 0.053 0.032 0.039
d(q(time, 0.5)) 50% 0.027 0.028 0.042 0.039
d(q(time, 0.75)) 75% 0.063 0.056 0.049 0.042
dtotalq(time) total 0.051 0.045 0.042 0.040

Table 5.4: Overall reliability and reliability distance in the direction of pow.fc,
horizon and time for the adaptive models.

models. Table 5.4 suggest that we should choose Model A3 or A4 if we should
choose one of these adaptive models.

5.5.2 Skill Score and Crossings

Table 5.5 shows the skill score and the number of crossings. From a skill score
perspective we should choose Model A3 for the 75% quantile and Model A2 for
the 25% quantile. If the interval score is considered we should choose Model
A2. Model A3 and A4 have a better skill score for the 75% quantile than the
Basic models from the previous section. This supports the conclusion that the
Basic models seemed too simple to model the 75% quantile.

Table 5.5 shows that Model A1 have 378 crossings. That is far more than the
other adaptive models. A more serious problem is that it produces crossings
of the magnitude of 21000kW . This should be compared with the fact that
absolute value of the maximum error from WPPT is 5000kW. The problem is
probably, as was also discussed in Section 4.5, the very large annual variation
in air density. Which results in few observations to support estimates in some
areas of the data.

A point in connections with this is that this was not really punished in the
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Local reliability for the adaptive versions Model 1-4
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Skill Score and Crossing of Model A1-4
Model A1 A2 A3 A4
ρ0.75(r) 295.9 254.2 243.1 244.8
ρ0.25(r) 226.7 216.9 231.8 234.1
ρ0.75(r) + ρ0.25(r) 522.3 471.1 474.9 478.9
Crossings (test) 378 114 7 39
min(IQR) -21252.0 -307.5 -24.0 -112.6
E(IQR < 0) -1139.2 -67.3 -15.1 -53.1

Table 5.5: Numbers related to IQR for Model A1-A4

Sharpness and resolution for Model A1-A4
Model A1 A2 A3 A4
E(IQR) 1013.3 966.0 967.9 926.5
sd(IQR) 1100.2 609.4 548.8 552.1
Q(IQR, 0.5) 1044.8 896.9 947.4 851.9
Q(IQR, 0.05) 63.7 147.2 206.8 188.0
Q(IQR, 0.95) 2091.4 1993.3 1849.3 1840.0

Table 5.6: Numbers related to IQR for Model A1-A4

reliability measures. This mean that we can not let reliability stand alone as a
measure. This behavior is however punished in the loss function.

From a crossing perspective we should prefer Model A3.

5.5.3 Sharpness and Resolution

Table 5.3 gives numbers related to resolution and sharpness. Note that the
resolution Model A1 is very good compared to the rest of the model. This is
however due to the extreme crossings so in this case the measure award a very
undesirable behavior of the model. We also see that the extreme crossings of
Model A1 is not punished much by sharpness.

Figure 5.8 shows sharpness and resolution for Model A2-A4. the behavior of
sharpness as a function of horizon is surprising since we would expect IQR to
be an increasing function of prediction horizon. We see that it drops down at
the largest prediction horizon. A possible explanation for this is that what we
see is actually daily variation. We have however no way of checking this with
the available data.



5.5 Performance of the Adaptive Versions of Model 1-4 111

Sharpness and resolution for Model A2-A4
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Figure 5.9: Observed quantiles and IQR as functions of predicted quantiles and
IQR for Model A1-A4.

5.5.4 Spread / Skill Relationship

Figure 5.9 shows observed IQR as a function of forecasted IQR. This plot is
constructed in a different way than the plot for the Basic models. In these plots
we group in bins of forecasted IQR with a constant length. It is seen that all
the models follow the perfect line quite well, except for extreme values. This
can be explained with the fact that there are few observations here and that the
medians therefore not really are well defined.

The plots are also difficult to interpret because there will not be equally many
observations in each bin for the different models.
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Mean time used per iteration and mean number of simplex steps for
the adaptive model

Model B1 B2 B3 B4 A1 A2 A3 A4
E(Time) 25% 0.15 0.09 0.06 0.07 3.06 0.23 0.16 0.48
E(Time) 75% 0.08 0.06 0.06 0.05 2.79 0.24 0.17 0.46
E(n) 25% 3.15 2.93 1.44 1.78 11.77 4.51 3.87 6.45
E(n) 75% 1.36 1.75 1.24 1.17 10.41 4.63 3.95 6.86

Table 5.7: Mean time used per iteration and mean number of simplex steps (n)
for the adaptive model, B1-B4 refer to the Basic adaptive models, while A1-A4
refer to the adaptive versions of Model 1-4

5.6 Time Consumption the Adaptive Models

If an adaptive procedure should produce online estimation, then the time it
uses would also be a performance parameter. The algorithms presented have
been implemented in Matlab and the focus in the implementation has been
stability rather than optimizing with respect to time. Therefore it will probably
be possible to reduce the timings presented here.

The timing only measures the simplex steps, so there will be some additional
effort to calculate the splines basis functions from the forecasted meteorological
data as they become available.

As a reference the model Basic 1 was also calculated with the ”rq” method in the
statistical software“R”, i.e. this was not really an adaptive model. The whole
model was just re-estimated on new training set. The adaptive approach should
be faster than this, at least when they the adaptive procedure is optimized. The
run i “R” used in average 0.83 and 0.41 seconds per iteration for the 25% and
75% quantiles respectively.

Table 5.7 gives the average time consumption per iteration and the mean number
of simplex steps used in each time step for the models considered so far. It is
seen that all models except for model A1 uses less than the timing in “R”. As
was stated above A1 is also badly conditioned, and inverting X(h) is a time
consuming task.
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5.7 How Adaptive?

The previous sections treated adaptive models. This section will address the
question of how adaptive a models should be. To study this three different
model are examined. These are characterized with the same knot placement as
the Basic models in Section 5.4, but with three different updating procedures.
These models are now examined with different sizes of the bins. The models are
referred to as

Bin1: One gliding window

Bin2: Bins defined by the knots.

Bin3: Bins defined by the knots and in the midpoint between each knot.

These models are now studied with respect to the performance parameter that
we can visualize. These are reliability distance, skill score, crossings, sharpness,
and resolution. The performance parameters can however only by visualized as
the overall measure. Such measures are visualized as a function of the number
of elements in the design matrix at the end of the test period. The number of
elements in the design matrix will not be constant over the test period if many
observations are allowed in the bins. This is due to the size of the available data
set.

Figure 5.10 shows local reliability distance for the three updating procedures.
There is not a very big difference between these. This figure indicate that we
should have quite few element in the design matrix, about 2000. This correspond
to about one month in the gliding window case. In the other cases it the will
be different from each of the bins.

The reason why the updating procedures looks so similar in the reliability dis-
tance, is that the different updating strategies take care of rare events and rare
events will not affect reliability distance. Model A1 was an extreme example of
this.

The effect of choosing different updating strategies is illustrated in Figure 5.11,
where the number of crossings, the size of extreme crossings and the mean size of
the crossings are plotted. This figure clearly shows unacceptable behavior when
the design matrix is small. With few elements in the design matrix the absolute
size the crossings are of the same size as the possible interval of forecast. It is
seen that the mean size of crossings and the size of extreme crossings stabilizes
earlier for Bin 2 and 3, so if we want few elements in the design matrix then an
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Local reliability distance for 3 updating procedures
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Figure 5.10: Local reliability distance as a function of the number of elements
in the design matrix X, for the 3 different updating procedures
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Performance related to crossings for 3 updating procedures
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Figure 5.11: Number of crossings, the most extreme crossing in the test set and
the average size of the observed crossing as a function of the number of rows in
the design matrix.

updating procedure with bins should be chosen. It is also noted that both the
mean size of crossings and the size of extreme crossing display random behavior
for small design matrices. This means that we could be mislead by a good
performance in this sense simply by chance.

Figure 5.11 suggests that we should choose the number of elements in the bins
such that the number of elements in the design matrix is about 5000. For
Bin 3 this could be chosen a somewhat smaller maybe around 2500-3000. So
comparing with the reliability plot we should choose Bin 3 and with the number
of elements in each bin such that the size of the design matrix become about
3000.

Figure 5.12 shows the skill score for each of the quantiles. The interval score
is not shown here, but this is just the sum of the quantile scores. The figure
suggest to choose Bin 2 with about 4000 elements in the design matrix. This is
also where the crossings begin to stabilize for this model, but the conclusion is
quite different from the reliability plot in Figure 5.10. The skill score is higher
for Bin 3 which has better performance with respect to crossings and reliability
combined. I.e. we can choose a smaller design matrix and still avoid extreme
crossings.

Figure 5.13 shows sharpness and resolution for the three updating procedures.
For small design matrices we can not relay on the sharpness measure since the
large number, and extreme size, of the crossings give an unrealistic picture of the
size of sharpness. Therefore we should disregard sharpness for design matrices
with few elements. The only information we really get from sharpness is that
we should choose Bin 2 or 3 and with as few elements as the crossing analysis
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Loss function for 3 updating procedures
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Figure 5.12: Average loss on the test set for the 3 different updating procedures
as a function of the number of rows in the design matrix.

allow. Resolution also reward extreme behavior of the crossings, but we see an
extrema of this at around 4000 elements for Bin 2 and 3. So this conclusion is
similar to the conclusion from the skill score, and the behavior of the crossing
is not extreme any more.

Figure 5.14 shows the average cpu time per time step and the mean number of
simplex steps per time step average is also taken over the two quartiles. The
timing is quite close to a linear function and it is fast enough for a real time
implementation, for all sizes of the design matrix. For both timing and number
of simplex steps we see that Bin 2 and 3 perform better than Bin 1. Figure 5.15
shows standard deviation for the number of simplex steps and the cpu timing.
The standard deviation of time displays the same behavior as the mean time,
while the standard deviations of the number of simplex steps becomes smaller
as we get more elements in the design matrix X.

5.8 The Prediction Interval for Tunø

In the analysis of the models we have presented so far, the number of quantile
crossings has been used as a performance parameter. We want to avoid these
because we can not give any physical interpretation of phenomena like this.



5.8 The Prediction Interval for Tunø 117

Sharpness and resolution for 3 updating procedures
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Figure 5.13: The mean and standard deviation of IQR as a function of the
number of row in the design matrix X.
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Standard deviation of time consumption and used simplex steps for
3 updating procedures

0 5000 10000

0.02

0.04

0.06

0.08

0.1

SD(time/step)

Elements in X

 

 
Bin1
Bin2
Bin3

0 5000 10000

1

1.2

1.4

1.6

1.8

SD(n)

Elements in X

Figure 5.15: The standard deviation of the cpu time used per time step and
the standard deviation of the number of simplex iterations per time step as
functions of the number of elements in the design matrix X.

A similar problem is that the models can produce forecast outside the interval of
prediction. The installed power at the Tunø Knob wind power plant is 5000kW ,
so predictions of the quantiles of prediction error plus the predicted power above
this value is also undesirable. This sum is also bounded below, but not by zero
as one should think. The observed power can actually be negative.

The smallest observed power in the data set is −72kW and the largest is
4726kW . To analyze the performance of the models in this aspect we count
the number of observation outside the interval [−100; 5000]. The choice of the
lower boundary is quite arbitrary, but since we do not have any observations
outside this interval, neither the 25% or the 75% quantile should produce pre-
dictions outside this interval.

None of the Basic models produces such forecasts. Table 5.8 gives the number of
forecasts outside this interval for Model A1-A4. As can be seen from this table
Model A3 and A4 have bad performance in this aspect, so the property that
these had few crossings should be weighted against the point that they produce
more forecasts outside the interval of definition.

As mentioned above the basic model does not produce forecasts outside the
interval of definition. This is because these do not add up effects of different
explanatory variables. The problem is in the additive model, where effects of
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Number of forecast outside the interval [−100; 5000]
Model A1 A2 A3 A4
Q(x; 0.25)+pow.fc< −100 978 1281 3189 2974
Q(x; 0.25)+pow.fc> 5000 13 0 87 48
Q(x; 0.75)+pow.fc< −100 371 191 1023 128
Q(x; 0.75)+pow.fc> 5000 87 23 0 243

Table 5.8: The number of elements outside the interval [−100; 5000]. The prob-
ability of getting observations outside this interval is zero.

different components are added and mixed effects are ignored.

A possible solution is to model a transformation of the power. This transfor-
mation should be a monotone transformation of the interval of definition into R

and then model the transformed power. With such a set up we can not predict
anything outside the interval of definition.

Another possibility is to set up the restrictions in the linear programming prob-
lem. How this could be done will be shown in the next chapter where a similar
solution to the problem of quantile crossing are also suggested.

5.9 Discussion and Conclusion

The main conclusion of this chapter is that the adaptive procedure introduced
in the beginning of the chapter works, and that it performs very convincing
compared to equivalent static models. In general all performance parameters
were improved, with this procedure. Table 5.9 gives a summary of the models
considered so far. For every performance parameter the models are ordered and
the 3 best performing models are given their number in the table. This table
is primarily given to argue for the adaptive approach. We see from this table
that the adaptive models perform better than the static model in nearly all
parameters.

The simple adaptive models with only forecasted power as input perform very
well compared to the more complicated model. A point here is that models of
different complexity should be checked. In this presentation the models that
have been analyzed are either very simple or very complex.

For the simple models the conclusion is that the estimates should be based on
about 4000 data points. This is equivalent to a little less than two month.
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Unfortunately the horizons we can model with the available data is only 18-36
hours, while the required horizons are 12-36 hours. So this should of course also
be checked.

The timing for the adaptive procedure is good enough for an online implemen-
tation. A possible problem for this procedure is that it require past observations
to be stored, since these are needed for the simplex algorithm. A Basic model as
mentioned above require access to a matrix with 4000 · 6 elements. The bright
side is that we only need one matrix to model all the quantiles we are interested
in. When we have the matrix we only need the index set h to characterize each
quantile model. This index set is a small vector, and with the Basic model this
have the length 6.

In this chapter we saw that the performance parameters should be combined. It
is not enough to look at one of these and then conclude on the basis of that one.
The extreme behavior of Model A1 was only detected when we really looked
for large crossings or at the Skill score. The extreme crossings were not really
punished in sharpness, and it was awarded in resolution. A possibility could be
to use the absolute value of IQR to construct sharpness. Then negative value
in IQR would be punished by sharpness. By using absolute of negative IQR we
would not award resolution either as is the case without taking absolute value
first.
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Summary of performance parameters
Model 1 2 3 4 B1 B2 B3 B4 A1 A2 A3 A4
Below 25% 3 3 2 1
Below 75% 3 3 2 1
d(q(pow.fc, 0.25)) 2 3 1
d(q(pow.fc, 0.5)) 3 1 2
d(q(pow.fc, 0.75)) 2 3 1
dqtotal(pow.fc) 3 1 3 2
d(q(hor, 0.25)) 3 2 1 2
d(q(hor, 0.5)) 2 1 3
d(q(hor, 0.75)) 2 3 1
dqtotal(hor) 3 1 2
d(q(time, 0.25)) 2 3 1
d(q(time, 0.5)) 1 2 3
d(q(time, 0.75)) 2 3 1 3 3
dqtotal(time) 2 2 2 1
ρ0.25(r) 2 3 1
ρ0.75(r) 1 1 2
ρ0.75(r) + ρ0.75(r) 2 3 1
E(IQR) 2 3 1
Q(IQR; 50) 2 3 1
sd(IQR) 2 3 1
Crossings 1 1 2 3
min(IQR) 1 1 2 3
E(IQR < 0) 1 1 2 3

Table 5.9: The table gives a summary of the performance parameters discussed
in this chapter. The table marks the three best performing models in each
parameter and these are given their number in the table (1 is the best performer).
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Chapter 6

Solutions to the Crossing
Problem

6.1 Introduction

As we saw in Chapter 4 and 5 crossings even between quantiles far away from
each other such as, the 25% and 75% quantile can occur. Such crossings are of
course not desirable either from a theoretical point of view and from a forecaster
point of view. In [2] and [3] Koenker notes that in linear quantile regression
crossings will always occur in some areas of the sample space. The underlying
assumption in such a statement is that the independent variables can take values
in all R. If this is the case then all quantile hyper planes have to be parallel
if there should be no quantile crossings. In the setting of the data we have
analyzed, such a statement is clearly not reasonable.

In this chapter we will propose and analyze some solutions to this problem.
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6.2 A Simple Approach

We use quantile regression on cubic splines and therefore our regression is not on
variables with a sample space equal to R

K , but a subset R
K . We can therefore

in principle demand that there is no crossings in the samples pace.

If we estimate the quantiles at two levels τ1 and τ2 with τ1 6= τ2, then the
demand of no crossing is that for every x ∈ P , where P ⊂ R

p with p being
the number of explanatory variables and P the sample space of explanatory
variables, then following have to hold true

b(x)T sign(τ1 − τ2)(β̂(τ1) − β̂(τ2)) ≥ 0 ∀x ∈ P (6.1)

as soon as we choose a point x this is a linear constraint and we can incorporate
this in the simplex algorithm presented in Chapter 2.

As described in Section 4.2, the basic assumption in our model is that we can
write the quantile model as

Q(x; τ) = α(τ) +

p
∑

j=1

fj(xj ; τ) (6.2)

with the assumption that the variables xj take values independently of each
other the non crossing demand becomes (with τ2 > τ1)

min
x

(Q(x; τ2) −Q(x; τ1)) = min
x

(

α(τ2) − α(τ1) +

p
∑

j=1

(

fj(xj ; τ2) − fj(xj ; τ1)
)

)

= α(τ2) − α(τ1) +

p
∑

j=1

min
xj

(

(

fj(xj ; τ2) − fj(xj ; τ1)
)

)

= α(τ2) − α(τ1) +

p
∑

j=1

min
xj

(

(

fj(xj ; τ2) − fj(xj ; τ1)
)

)

≥ 0 (6.3)

Since the functions fj was approximated with splines, the minimums described
above are 3th degrees polynomials of xj between knots with coefficients that are
linear combinations of elements from β. Therefore solutions to then minimum
could be found as functions of β, these would however be nonlinear in β and it
is therefore not possible to introduce in the LO problem.

The procedure examined here is to choose a number of points from P and then
use the demand (6.1) in these points, the hope is now that these demands result
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in non crossing quantiles on the test set. In [21] Takeuchi propose to avoid
crossings in the training set, and then hope that this will imply no crossing
in the test set. We will use a different approach, namely to avoid crossings in
a discrete subset (independent of the training set) of the sample space. This
results in fewer constraints, than no crossings in the observations would, at least
when we have only one explanatory variable.

Assuming we have chosen a number of points from P , these points are then
collected in a matrix Xnc the rows of Xnc are the spline basis functions of the
points chosen from P . With this the constraints are

Xncsign(τ2 − τ1)(β(τ2) − β(τ1)) ≥ 0 (6.4)

this can be put directly into our LO problem, as a first approach we will use the
estimate of one quantile to calculate the next. I.e. we keep β(τ1) constant and
calculate β(τ2) s.t. the will be no crossings between the two quantile curves.
With the notation of Chapter 2 we get

A =

[

X I −I 0
Xnc 0 0 sign(τ2 − τ1)I

]

(6.5)

y is expanded with ync = Xncβ(τ1), x is expanded with Nnc extra rows, which
dependt on the start guess and c is expanded with 0Nnc

. h(τ1) is used as a start
guess for h(τ2) and the objective function in c is simply changed according to
τ2.

The principles in solving this problem is exactly the same as what was presented
in Chapter 2. The only difference is that now we have to deal with infeasible
points, an infeasible point is a point where xi < 0, until now this have just been
the same r+ < 0 or r− < 0. This can be fixed by multiplying one entry of P by
-1 and changing one element in cB.

In the setting with Xnc we have to deal with infeasible points in some other
way, infeasible points will occur as we iterate through the solutions, this is due
to small errors which are summed up in each iteration. Such problems can be
solved in different ways, the one used here is essentially the simplex algorithm,
but with a objective function that punish infeasible points, this is described in
[14] p. 75-76. This procedure does not seem to be well suited if we get many
crossings and we get many crossings in the first simplex steps in this set up.

A possible improvement for this is to use a dual simplex algorithm to solve for
infeasible points, Appendix C discuss the set up for dual simplex in the context
of non crossing quantile regression.

The first approach we use is to find the optimal solution at level τ1 as a start
guess for the optimal solution of τ2, the solution at τ2 is now used to iterate
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to the next solution at level τ3 etc.. The point is simply that the solution
τi−1 is used as starting point for the algorithm with a new objective function
corresponding to τi, with the non crossing constraint fulfilled at all times during
the iterations.

If we only have one explanatory variable, i.e. P ⊂ R, then it is not a problem
to choose Xnc, since in this case we can just choose a series of numbers in P .
E.g. if we use only pow.fc as input then we can let xnc = {0, 10, ..., 5000} and
Xnc = [b(xnc)]. If we do not have crossings at xnc then the chance of having
crossings between these points will also be small. If we use more explanatory
variables it becomes difficult to choose the non crossing constraints, since the
number of constraints is the product of constraints in each direction.

We use the simple model set up used earlier, with pow.fc as explanatory vari-
able, 5 knots at 20% sample quantiles of pow.fc, 104 data points in the training
set and xnc = {0, 10, ..., 5000}

Figure 6.1 show conditional CDF as a function of all values of forecasted power,
calculated from τ0 = 0.5 in each direction (of τ) demanding no crossings in each
step. Even though it is not easy to see if there is crossings in a plot like this,
things seems to be in the right order. This is confirmed by Table 6.1 where
statistics related to IQR is listed for different choices of ∆τ , Reference refer to
xnc = ∅. What is seen here is that we still have 52 crossings in the test set for
∆τ = 0.05 and ∆τ = 0.01 but that the size of these crossings have been reduced
to the order of 10−12. Which in this context must be considered to be equal
zero.

The table also gives the timing of the models. We see that it is a very time con-
suming task to calculate many non crossing quantiles in this way. We should
however consider that this can not be compared to the adaptive model or some-
thing like that. We can not expect to be close to the solution, with the start
guess we use here. If we made an adaptive implementation for this procedure
and used the solutions as a start guess then we could expect to see much better
performance with respect to timing.

That the model does not change much is also seen in Figure 6.2, where the loss
function is plotted as a function of τ for the Reference model (left column). The
relative difference to the non crossing models is plotted in the right column. It
is seen that these does not differ much, the non crossing quantiles have larger
loss functions on the training set (as they must have), but this is not necessarily
the case on the test period. The loss functions are close in all cases.

The shape of these loss functions might be a little surprising, it is seen that
the loss functions goes to zero and are not symmetric around τ = 0.5. To
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Figure 6.1: Conditional CDF as a function of pow.fc, for the basic model of the
foregoing section and based on the non crossing algorithm. The calculations is
done in steps of 0.01 in τ .

Key numbers for the models
Model Reference ∆τ = 0.05 ∆τ = 0.01 ∆τ = 0.005 ∆τ = 0.001
E(IQR) 1020.3 1021.4 1021.3 1020.0 1020.1
sd(IQR) 648.8 641.2 641.2 639.4 639.3
Q(IQR; 0.5) 1100.5 1085.9 1084.7 1085.9 1086.0
Q(IQR; 0.05) 86.3 100.5 100.6 100.5 100.7
Q(IQR; 0.95) 1850.7 1872.7 1873.9 1867.2 1867.1
Crossings 113 52 52 0 0
min(IQR) -346.8 −0.9 · 10−12 −3 · 10−12 2.3 · 10−3 17.6 · 10−3

E(IQR < 0) -176.6 −0.9 · 10−12 −3 · 10−12 - -
Time (minutes) 14.95 34.46 51.53 159.49

Table 6.1: Numbers related to IQR for the reference model and the non crossing
model, the timing is the accumulated time to calculated the whole distribution.
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The loss function as a function of τ
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Figure 6.2: The first column show the Loss function based on the reference
model, i.e. there are no constraints and the quantiles can cross. The second
column show the difference from the reference model to the models calculated
with the non-crossing algorithm.
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understand this we analyze the sample quantile case and look at the expected
loss as a function of τ given that we know the true quantile, i.e. Q̂(τ) = F−1(τ)
and y have the p.d.f. f . Let (a, b) be the support of f (it is not important if this
interval is closed or open and a and b can be equal to −∞ or ∞ respectively),
with this we have

E(ρτ (y)|F (y)) = τ

∫ b

F−1(τ)

(y − F−1)f(y)dy + (1 − τ)

∫ F−1(τ)

a

(F−1 − y)f(y)dy

= τ

(

∫ b

a

yf(y)dy − F−1(τ)

∫ b

a

f(y)dy

)

(6.6)

+F−1(τ)

∫ F−1(τ)

a

f(y)dy −
∫ F−1(τ)

a

yf(y)dy (6.7)

= τ(E(y) − F−1(τ)) + F−1(τ)τ −
∫ F−1(τ)

a

yf(y)dy (6.8)

= τE(y) −
∫ F−1(τ)

a

yf(y)dy (6.9)

since F−1(τ → 0) = a and F−1(τ → 1) = b, we can write down the value of
E(ρτ |F (y)) as τ approaches the endpoints

lim
τ→1

E(Loss|τ) = E(y) − E(y) = 0 (6.10)

lim
τ→0

E(Loss|τ) = 0E(y) −
∫ a

a

yf(y)dy = 0 (6.11)

technically the arguments above require that the distribution f to have a ex-
pectation, and quantile regression does not require that. This is however a very
special case so it is fair to conclude that the loss function have to go to zero at
τ = 0 and τ = 1. This could also be realized by looking at the loss function of
τ .

We can also write down the conditions for symmetry of the loss function. To de-
mand symmetry is the same as demanding that ∆E(ρ0.5+ǫ(y)−ρ0.5−ǫ(y)|F (y)) =
E(ρ0.5+ǫ(y)|F (y)) − E(ρ0.5−ǫ(y)|0.5 − ǫ) = 0 for all ǫ ∈ [0, 0.5), using (6.9) we
get

∆E(ρ0.5+ǫ(y) − ρ0.5−ǫ(y)|ǫ) = 2ǫE(y) −
∫ F−1(0.5+ǫ)

F−1(0.5−ǫ)

yf(y)dy (6.12)

so if the loss function should be symmetric around τ = 0.5 then

2ǫE(y) =

∫ F−1(0.5+ǫ)

F−1(0.5−ǫ)

yf(y)dy (6.13)
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we see that if we have symmetry then the integral on the right hand side should
be a linear function of the expectation of y, so the differential of this integral
should be constant equal to 2E(y). To differentiate such an integral we need
Leibniz integration rule, this is

∂

∂z

∫ b(z)

a(z)

f(x, z)dx =

∫ b(z)

a(z)

∂f

∂z
dx+ f(b(z), z)

∂b

∂z
− f(a(z), z)

∂a

∂z
(6.14)

with f(x, z) = f(x) this reduce to

∂

∂z

∫ b(z)

a(z)

f(x)dx = f(b(z))
∂b

∂z
− f(a(z))

∂a

∂z
(6.15)

we can therefore write

2E(x) =
∂

∂ǫ

∫ F−1(0.5+ǫ)

F−1(0.5−ǫ)

yf(y)dy

= F−1(0.5 + ǫ)f(F−1(0.5 + ǫ)
dF−1(0.5 + ǫ)

dǫ

−F−1(0.5 − ǫ)f(F−1(0.5 − ǫ)
dF−1(0.5 − ǫ)

dǫ

= F−1(0.5 + ǫ)
dF (F−1(0.5 + ǫ))

dǫ
− F−1(0.5 − ǫ)

dF (F−1(0.5 − ǫ))

dǫ

= F−1(0.5 + ǫ)
d(0.5 + ǫ)

dǫ
− F−1(0.5 − ǫ)

d(0.5 − ǫ)

dǫ

= F−1(0.5 + ǫ) + F−1(0.5 − ǫ) (6.16)

by setting ǫ = 0 we get F−1(0.5) = E(Y ) so a first requirement a symmetric
loss function is that the mean the expectation is equal to the median. With this
we get the requirement that

F−1(0.5) =
1

2

(

F−1(0.5 + ǫ) + F−1(0.5 − ǫ)
)

∀ǫ ∈ [0, 0.5) (6.17)

This is the same as complete symmetry aruond the median which was equal
to the expectation. These arguments show that we can only expect the loss
as a function of τ to be symmetric around τ = 0.5 in very special situations.
Therefore the picture in Figure 6.2 should be expected.

With the construction of non crossing quantiles as above, the assumption in the
Theorems of Chapter 2 does not necessarily hold true any more. E.g. Theorem
2.3 tells us that the quantile curve split the data set in two parts and that the
number of elements in these part are close to τN and (1 − τ)N . The central
argument in the proof of Theorem 2.3 was that the directional derivative should
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Reliability as a function of τ
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Figure 6.3: The overall reliability for the reference model and the different non
crossing models, first column is the training set and the second column is the
test set.

be zero in all directions, this can not be assumed any more, since there can now
be decent direction out of the feasible region.

Figure 6.3 show the reliability as a function of τ . We see that the Reference
model split the data space as it should on the training set, while it seems like
the other quantiles are pushed out by the non-crossing constraints.

From a theoretical point of view something like Figure 6.3 is problematic, if
this also holds asymptotically then the non-crossing quantile estimator is not
consistent, which would normally be a minimum requirement for an estimator.
From a practically point of view Figure 6.3 is not so problematic, since the
performance in the reliability sense is very close for the reference model and the
other models on the test set. We can of course not draw asymptotic conclusions
from Figure 6.3. We can however say that Theorem 2.3 does not hold under
these conditions.

In [20] Zhao analyze 2 different restricted regression quantiles (RRQ), in this
paper a RRQ is a modified version of the quantile regression, where restrictions
that guarantees no crossings in some points or areas of the sample space are
imposed. The restrictions are imposed in two different ways. The first model is a
linear model where parallel quantile plans are obtained, and thereby guarantees
no crossing in the sample space. The second model is a linear hesteroscedastic
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model

y = xTβ + (xT γ)ǫ (6.18)

with a three step procedure that guarantee no crossings in at the training set.

In this paper Zhao show that that both the models are consistent and with pa-
rameter estimates asymptoticly normal (with a very complicated variance struc-
ture). The restrictions in the hesteroscedatic model is build into the estimation
procedure, where every quantile is estimated separately but with restrictions
that make ensure they do not cross at the training points. In both cases Zhao
assumes iid errors and this seems to be important for the consistency results.
As was discussed in Section 4.5.2, we can not assume something like that in our
data.

Even though we can not use these results directly, they give indications that the
behavior of Figure 6.3 is somewhat strange and that the result probably does
not apply asymptoticly.

6.3 Simultaneous Estimation of Several Quan-
tiles

In the set up for non crossing quantiles in the previous section, the silent as-
sumption was that the 50% quantile estimate is correct or at least more correct
than other quantile estimates. This assumption is used when we choose the 50%
quantile as the restriction curve for the other estimates.

There are good reasons to have better confidence in central quantiles, one thing
is that the estimates of the central quantiles does not depend on tails in the
conditional distributions, events. While the quantiles near zero or one depend
on the tails in the conditional distributions.

This can also be realized from the asymptotic theory of quantile regression.
We saw in Chapter 2 that the asymptotic distribution of the estimates was
normal with mean zero and in the idd case a variance that depended on τ(1 −
τ)/f2(F−1). In the general setting the variance was much more complicated.
To understand how this variance function depend on τ and the distribution we
study the iid case in Example 6.1.

Example 6.1 We look at the sample quantile case from an iid sample. The
variance of

√
Nx(k) with k = ⌈τN⌉ as an estimation of

√
NF−1(τ) (see Section
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2.4.2) is

ω2(τ) =
τ(1 − τ)

f2(F−1(τ))
(6.19)

if xi come from a standard normal distribution then this variance is

ω2(τ) = 2πτ(1 − τ)e(Φ
−1(τ))2 (6.20)

this variance is shown in Figure 6.4, the figure also shows the variance for a non
central student t distribution and an Exponential distribution, these are shown
to study the dependence between the variance and the distribution.

Figure 6.4 show theoretical asymptotic variance of estimates of the sample quan-
tiles taken from these distributions, what is seen is that these variances depend
on the sample distribution. We see that heavy tails give large variance, and that
asymmetries in the distribution also give asymmetries in the variance. For the
exponential distribution we see that the variance go to zero as τ goes to zero.

Having noted this it is of course difficult to take this into account when we
choose the first quantile to estimate in the non crossing algorithm. �

If we had knowledge like what is needed to construct plots like Figure 6.4, we
would not really have to estimate quantiles. Therefore the choice of starting
with τ = 0.5 is simple and for distributions with some symmetry we should not
be that far from the best choice. Another approach could be to estimate the
unconditional distribution of the respons variable and then use that to make
a variance plot like in Figure 6.4 and from this choose the first quantile to
estimate.

A better approach might be to estimate several quantiles simultaneous under
the non crossing constraints. Here we will set up the problem and do some
analysis of the structure that we might be able to exploit in a practical set up.

Consider t = [τ1, τ2, ..., τl] with t being the quantiles we want to estimate,
assume that t is ordered s.t. 0 < τ1 < τ2 < ... < τl < 1. The model is now

Q̂(t,x) = xT Θ̂(t) (6.21)

where Θ is a matrix given by

Θ = [β(τ1) β(τ2) ... β(τl)] (6.22)
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Figure 6.4: Theoretical asymptotic variance for quantile estimators of 3 different
p.d.f’s as a function of the quantile τ to estimate

so with the point x we get a vector of quantiles estimates. The estimate of Θ̂ is
the solution to the problem

Θ̂ = arg min
Θ

l
∑

j=1

N
∑

i=1

ρtj
(yi − xT

i Θ:,j) (6.23)

= arg min
Θ

l
∑

j=1

N
∑

i=1

ρτj
(yi − xT

i βj) (6.24)

= arg min
Θ

l
∑

j=1

S(βj ; τj , rj) (6.25)

subject to some constraints, in the case of no crossings these are

Xnc(βj+1 − βj) ≥ 0; j = 1, 2..., l (6.26)

compared to the previous section we now let both βj and βj+1 vary to get a
better solution.

6.3.1 A Weight Function

If the variance of each β̂j was constant we would like the expected loss to be
constant as a function of τ as well. Now we know that neither the expected loss
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function or the variance of β̂ are constant as functions of τ .

To argue for a weight function for ρτ we look at the least square estimation in
the linear model

yi = xT
i β + ri (6.27)

if ri is assumed to be iid then the loss function is

Sls =

N
∑

i=1

r2i =

N
∑

i=1

ρls(ri) (6.28)

if the ri’s are independently distributed with V (ri) = σ2
i (σ not constant) then

we should use the weighted least square, now the loss function becomes

Swls =

N
∑

i=1

r2i
σ2

i

=

N
∑

i=1

ρwls(ri) (6.29)

Now look at the loss function for the median, this is

S(β; 0.5, r) = 0.5
N
∑

i=1

|ri| = 0.5
N
∑

i=1

√

ρls(ri) (6.30)

if we replace ρls with ρwls we get

Sw(β; 0.5, r) = 0.5

N
∑

i=1

|ri|
σi

(6.31)

this can, with the above argumentation, be consider as a weighted median loss
function. We now propose to minimize the following sum of loss functions

l
∑

j=1

w(τj)S(βj ; τj , rj) (6.32)

with

w(τi) =
1

σβ(τi)E(ρ(τi(y)|F )
(6.33)

with this the quantiles are weighted acording to the variance, since both σβ(τi)
and E(ρ(τi(y)|F ) depend on the distribution function, we can not really find
the weights unless we make some assumptions on the distribution F . To do
something simple we calculate w(τi) under the assumption that we have drawn
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yi from a standard normal distribution and wish to estimate sample quantiles,
under this assumption and using (6.9)we get

E(ρτ (y)|F ) = τE(y) −
∫ F−1(τ)

−∞
yf(y)dy (6.34)

= −
∫ 1

2F−1(τ)2

∞
f(y)d

y2

2
(6.35)

= − 1√
2π

∫ 1
2F−1(τ)2

∞
e−tdt (6.36)

=
1√
2π
e−

1
2F−1(τ)2 (6.37)

(6.38)

and

σβ(τ) =

√

τ(1 − τ)

f(F−1(τ))
(6.39)

=

√

τ(1 − τ)√
2π

e
1
2 (F−1(τ))2 (6.40)

with the assumptions above we get

w(τi) =
1

√

2πτi(1 − τi)
(6.41)

The proposed weight is therefore

ρ̃i(r) =
ρi(r)

2π
√

τi(1 − τi)
(6.42)

This loss function should now be used in the estimation for Θ̂.

6.3.2 The Simplex Formulation

As long as we do not add any constraints the solution to this problem is exactly
the same as if that quantiles would be estimated one by one. Following the
formulation in Section 2.3.2 we write down the LO problem in the standard
form

(P ) min{cTx : Ax = b, (r+
1 , r

−
1 , ...r

+
l , r

−
l ) ∈ R

2lN
0 ,

(β(τ1), ..., β(τl)) ∈ R
lK} (6.43)
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with

c =



























0lK
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(6.44)

and

A =













X 0 · · · 0

0 X 0
...

...
...

. . .
...

0 0 0 X

[I,−I] 0 · · · 0

0 [I,−I] · · ·
...

...
...

. . .
...

0 0 0 [I,−I]













= [Xl,L] (6.45)

with the same notational setting and argumentation as in, Section 2.3.2, we can
write

B =

[

Xl(h) 0
Xl(h̄) P

]

(6.46)

in Section 2.3.2 we saw that the expensive part of the simplex steps was to
calculate Xl(h)

−1, this is still true. Xl(h) will be a (lK) × (lK) matrix, the
only elements that will be different from zero are l, (K ×K) blocks along the
diagonal. These blocks are as in characterized by index sets hj , j = 1...l,
there will be no coupling terms, so Xl(h)

−1 will also be a matrix with only l
(K ×K) blocks along the diagonal being different from zero and they are equal
to X(hj)

−1, with the index sets hj referring to X in the same way as in Section
2.3.2.

The case discussed above could the called an uncoupled situation, in this case
the matrices Xl(h), Xl(h)

−1 and Xl(h) are all sparse if l is large. The relative
number of non zero elements in both Xl(h) and Xl(h)

−1 is less than or equal to

K2l

(lK)2
=

1

l
(6.47)

and the inverse of B can be calculated as we did in Section 2.3.2, but this relay
on the fact that we have not imposed the coupling terms, this will be done
below.
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With this setting in place we can impose the non crossing constraints, at the
points Xnc, we require

Xnc(βj+1 − βj) ≥ 0; j = 1, ..., l − 1 (6.48)

We saw in Section 5.8 that the quantile estimator could make forecasts outside
the interval of definition, we can avoid this in the same way. Let [ymax, ymin]
be the interval of definition, then we use the constraints

Xncβ1 ≥ ymine (6.49)

−Xncβl ≥ −ymaxe (6.50)

Now we can set up the restricted quantile problem by adding rows and columns
to A and rows to c, x and b, the LO formulation of the problem is

(P ) min{cT
ncxnc : Ancxnc = bnc} (6.51)

subject to
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r−1
...

r+
l

r−l
s



















∈ R
2lN+(l+1)Nnc

0 ;







β(τ1)
...

β(τl))






∈ R

lK (6.52)

with

cnc =

[

c
0

]

xnc =

[

x
s

]

bnc =



















b
yminenc
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−ymaxenc
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]
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(6.53)
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In principle we have the matrix formulation of the basic solution as was con-
structed above, but the matrix XNC give rise to off diagonal elements that
course all elements (worse case) of the inverse of X(h) to be different from zero.
With

X̃ =

[

Xl

XNC

]

(6.54)

we can write B as

B =

[

X̃(h) 0

X̃(h̄) P

]

(6.55)

The dimension of X̃ is l(N+Nnc)×(l ·K). In the sitting of Section 6.2 with non
crossing quantiles calculated from the median, we had N = 104, Nnc = 500 and
K = 6. If we want to estimate the quantiles in steps of 5% then the dimension
of X̃ in this setting is 19 · 10500 × 19 · 5 or about 2 · 105 × 95, the problem is
not this matrix since this is sparse and the non zero blocks are X or Xnc so we
just have to keep track of the placement of these. The problem is that X̃(h)−1

is not sparse and that X̃(h̄)X̃(h)−1 is therefore not sparse either, and this have
the same dimension as X̃. There is really not any chance of working with such
a matrix, even with relatively few quantiles to estimate.

We could hope that it is possible to exploit the structure of X̃(h) to make some
recursive formula for elements in X̃(h̄)X̃(h)−1. The point is that we know the
structure of X̃(h), and we do not necessarily need the full matrix X̃(h̄)X̃(h)−1,
but only the vector d and h. Unfortunately there is not time enough to study
this further, so this will stand as a suggestion for future work in this field.

6.4 Discussion and Suggestions

This Chapter have discussed an implementation of a non crosssing procedure,
the analysis shows that this works in the sense that it produces curves that do
not cross. The discussion and analysis raises the question if this is actually a
quantile, since it does not split the training set in a proper way. The curves
does however perform similar to a Reference quantile on the test set, i.e. a set
of quantile curves estimated without the non crossing constraints. The perfor-
mance analysis had a very narrow focus on Skill Score and overall reliability.
Focus have been on the understanding of the results rather than comparing
models.

The last part of the Chapter set up the demands and formulate the LO problem
for estimation of several quantile simultaneously, even though we are able to
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give the formulation an implementations for many quantile seems unrealistic,
since the set up requires us to work with very large matrices.

In the discussion on the result of the reliability it was mentioned that Zhao in [20]
have shown that parallel quantiles are actually consistent. In such a regression
the slope is constant over all quantiles and the only difference of these quantiles
are their intercept.

In this presentation we have used spline basis functions, and we would not expect
that moving only the intercept could lead to anything usefull. The plots we have
seen throughout the presentation also support this. We can not bring the 75%
quantile curve of prediction error to the 25% quantile curve of prediction error,
just by moving the intercept.

The natural spline basis functions that we use throughout this presentations
is the ones given by “R”’s spline function, these can take both positive and
negative values. Had we used the definition of natural splines given in Section
3.4 the the natural splines would have been functions from R into a subset
of the interval [0, 1], with linear regression on such a set of functions then the
requirement βj(τ1) < βj(τ2) < ... < βj(τl), j = 1, 2, ...,K, would lead to global
noncrossing estimate. Of course we should then show that such restrictions still
give us the flexibility we get from the spline functions. Such a set would solve
the problem of choosing the non crossing restrictions, since there would be only
K of these, i.e. equal to the number of basis functions. A set up like that does
however not solve the problem with off diagonal elements in X(h), and this
would still not be sparse. It might however be simpler to analyze since the off
diagonal rows from the K ×K identity matrix.



Chapter 7

Conclusion

This presentation have treated quantile regression with splines. The set up for
an implementation of the simplex algorithm in the quantile regression case, was
developed in Chapter 2. In the case of quantile regression the simplex set up
becomes very simple, because of the structure of the linear constraints. This
formulation does not relay on the spline set up.

Quantile regression and splines have been used to model the prediction error
from WPPT at the Tunø Knob wind power plant. The data set seems too
small to model the phenomena we are interested in, so static models performed
very poorly on the test set. The performance parameters of quantiles have
been discussed through out the presentation. From the discussion of these it is
clear that none of the performance parameters discussed are able to give a clear
picture of what model to choose and most of these were not able to punish all
undecidable behavior. To illustrate this point, we saw that an adaptive model
with very large quantile crossings performing very well in most of the other
performance parameters. Reliability is often thought of as the key performance
parameter, it is of course important for a model to have good reliability, but it
does not punish e.g. crossings.

This point makes it difficult to distinguish between different models, simply
because they will be good and bad in different ways. The skill score seems
to be able to punish extreme behavior such as very large crossings at least to
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some extend. A good example of this is the analysis of three different adaptive
model in Section 5.7 reliability suggested models with very large crossing, while
the skill score punished these models. The skill score did however not react
to increase in reliability distance. The combined discussions of this kind makes
model selections very hard, what might be clear is that looking at sharpness and
resolution before other parameters are considered will lead to wrong conclusions.
Selecting a quantile model require us to look at numbers and curves, this is in
itself a problem since it make it hard to compare models, these will simply be
wrong in different ways.

With this in mind, the analysis of the adaptive models in Chapter 5 showed
clear and superior performance compared to the static models. Further it is
by far fast enough for an online implementation, with a time use of less than
0.5 second per time step for all models, with the exception of Model A1, which
broke down due to the structure of the data.

The data analyzed here cover about one 10 month of time in 2003, this seems
to be insufficient for the static model. Even though we performance for the
static model an analysis of larger dataset would be a good idea. Especially
since the different updating procedure are not studied to a full extend, more
data is simply needed.

Non crossing constraints for quantile regression were analyzed in the Chapter 6,
in this analysis an implementation for the non crossing constraints was analyzed.
This implementation was slow, a central point in this connection is however
that we would not expect solution to quantiles at different levels to be close in a
simplex sense or any other sense for that matter. With the implementation we
would however expect to be close to the set of non crossing quantile at the next
time step, therefore an adaptive version of these would be expected to have far
better timing.

The implementation of the non crossing quantile, uses the median to calculate
the rest of the quantiles with respect to the non crossing constraint. The set up
for simultaneous estimation of several quantiles was analyzed, unfortunately this
does not seems to be possible even for a moderate number of quantiles since the
matrix structure of the problem makes the problem extremely computational
expensive.



Appendix A

Proofs

A.1 Proof of Theorem 3.1

The inspiration for the substitutions in the following can be found in theorem
2.1 of [8]. First we define the basis functions Mj,k =

Bj,k

tj+k−tj
, and then calculate

(tj+k − x)Mj+1,k−1, with Jl,j = j, j + 1, ..., l− 1, l+ 1, ..., k − 1 and using (3.6)
we get

(tj+k − x)Mj+1,k−1(x) = (tj+k − x)[tj+1, ..., tj+k](· − x)k−2
+

= (tj+k − x)

j+k
∑

l=j+1

(tl − x)k−2
+

∏

m∈Jl,j+1
(tl − tm)

=

j+k
∑

l=j+1

(tl − x)k−2
+ (tj+k + tl − tl − x)

∏

m∈Jl,j+1
(tl − tm)

=

j+k
∑

l=j+1

(tl − x)k−1
+ + (tl − x)k−2

+ (tj+k − tl)
∏

m∈Jl,j+1
(tl − tm)

= [tj+1, ..., tj+k](· − x)k−1
+

+

j+k
∑

l=j+1

(tl − x)k−2
+ (tj+k − tl)

∏

m∈Jl,j+1
(tl − tm)

(A.1)
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defining J ∗
l,j = j+1, ..., l−1, l+1, ..., j+k−1, the second term can be rewritten

as

j+k
∑

l=j+1

(tl − x)k−2
+ (tj+k − tl)

∏

m∈Jl,j+1
(tl − tm)

=

j+k−1
∑

l=j+1

(tl − x)k−2
+ (tj+k − tl)

∏

m∈Jl,j+1
(tl − tm)

=

j+k
∑

l=j+1

(tl − x)k−2
+ (tj+k − tl)

(tl − tj+1) · · · (tl − tl−1)(tl − tl+1) · · · (tl − tj+k)

= −
j+k
∑

l=i+1

(tl − x)k−2
+

(tl − tj+1) · · · (tl − tl−1)(tl − tl+1) · · · (tl − tj+k−1)

= −
j+k−1
∑

l=j+1

(tl − x)k−2
+

∏

m∈J ∗
l,j

(tl − tm)

in the exact same way we find

(tj − x)Mj,k−1(x) = (tj − x)[tj , ..., tj+k−1](· − x)k−2
+

= (tj − x)

j+k−1
∑

l=j

(tl − x)k−2
+

∏

m∈Jl,j
(tl − tm)

=

j+k−1
∑

l=j

(tl − x)k−2
+ (tj + tl − tl − x)

∏

m∈Jl,j
(tl − tm)

=

j+k−1
∑

l=j

(tl − x)k−1
+ + (tl − x)k−2

+ (ti − tl)
∏

m∈Jl,j
(tl − tm)

= [tj , ..., tj+k−1](· − x)k−1
+

+

j+k−1
∑

l=j

(tl − x)k−2
+ (tj − tl)

∏

m∈Jl,j
(tl − tm)

= [tj+1, ..., tj+k](· − x)k−1
+ −

j+k−1
∑

l=j+1

(tl − x)k−2
+

∏

m∈J ∗
l,j

(tl − tm)
(A.2)

now combining (A.1) and (A.2) and using (3.15) we can write

Mj,k =
Bj,k

tj+k − tj

= [tj+1, ..., ti+k](· − x)k−1
+ − [tj , ..., tj+k−1](· − x)k−1

+

=
(tj+k − x)Mj+1,k−1 − (tj − x)Mj,k−1

tj+k − tj
(A.3)
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now we just need Mj,1, but this is very easy to calculate as

Mj,1(x) =
Bj,1

tj+1 − tj
=

[tj+1](· − x)0+ − [tj ](· − x)0+
tj+1 − tj

=
I[tj≤x<tj+1](x)

tj+1 − tj
(A.4)

(A.3) and (A.4) together give the recursive formula in Theorem 3.1 and the
theorem is thereby proved.

A.2 Proof of equation (3.19)

[tj , ..., tj+3](· − tl)+ =
1

tj+3 − tl
([tj+1, tj+2, tj+3](· − tl)+ − [tj , tj+1, tj+2](· − tl)+)

=
1

tj+3 − tj

[

[tj+2, tj+3](· − tl)+ − [tj+1, tj+2](· − tl)+
tj+3 − tj+1

− [tj+2, tj+1](· − tl)+ − [tj , tj+1](· − tl)+
tl+2 − tj

]

=
1

tj+3 − tj

[

1

tj+3 − tj+1

(

(tj+3 − tl)+ − (tj+2 − tl)+
tj+3 − tj+2

− (tj+2 − tl)+ − (tj+1 − tl)+
tj+2 − tj+1

)

− 1

tj+2 − tj

(

(tj+2 − tl)+ − (tj+1 − tl)+
tj+2 − tj+1

− (tj+1 − tl)+ − (tj − tl)+
tj+1 − tj

)

=
1

tj+3 − tj

(

I[x≤j+2](l) − I[x≤j+1](l)

tj+3 − tj+1

−I[x≤j+1](l) − I[x≤j](l)

tj+2 − tj

)

=
1

tj+3 − tj

(

δ(l − j − 2)

tj+3 − tj+1
− δ(l − j − 1)

tj+2 − tj

)
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Appendix B

Analasis of Data From Tunø

B.1 Histograms of DMI-HIRLAM Data

Figure B.1-B.4 give histogram plots of available explanatory variables. It is seen
that wind speed and forecasted power even though very correlated, diplay a very
different density function.

The plots of winddirection display very similar behaivor. For turbolunt kinetic
energi only the log transformed is displayed, and we see similar behavior in all
levels. The risk indices show quite different behavior, and all of them have areas
with very few obeservations.
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Figure B.1: Histograms of windsspeeds predicted from DMI Hirlam and the
power curve predicted by WPPT.
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Figure B.2: Histograms of winddirections predicted from DMI Hirlam.
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Figure B.3: Histograms of turbulent kinetic energy predicted from DMI Hirlam.
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Figure B.4: Histograms of risk indicies calculated from the predictions from
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Key numbers for the models of the 25% and 75% quantile
Model pow.fc Ws10m Ws30 Fv fv.avg WsL31 WsL38 WsL39 WsL40
Df 6 6 6 6 6 6 6 6 6
below 25% 23.9% 29.9% 33.2% 28.7% 31.1% 32.5% 29.5% 29.9% 29.8%
below 75% 83.6% 83.0% 82.7% 83.7% 84.9% 81.8% 81.7% 82.1% 82.5%
Loss25 215.8 232.3 241.1 234.4 251.0 250.1 244.0 244.0 244,3
Loss75 266.4 269.1 269.4 270.5 275.7 263.0 254.3 252.5 253.0
cross 95 40 0 46 41 1 12 0 0

Table B.1: The table contains some key numbers for models only contaning wind
speed of some sort, the knots are in all cases placed as 20% sample quantiles of
the traning data.

Key numbers for the models of the 25% and 75% quantiles
Model Wd10m Wd30 WdL31 WdL38 WdL39 WdL40
DF 11 11 11 11 11 11
below 25% 33.3% 33.0% 31.8% 33.2% 33.0% 33.0%
below 75% 83.1% 83.8% 83,3% 82.2% 82.0% 81.8%
Loss25 248.5 247.3 246.7 249.8 249.4 249.3
Loss75 261.5 262.3 259.5 258.9 258.9 258.9
cross 22 0 0 0 0 0

Table B.2: The table contains some key numbers for models contaning WSL40
and different wind direction, the knots are in all cases placed as 20% sample
quantiles of the traning data.

B.2 Model Construction - An Example

Table B.1 to B.4 give an example of an model building, where one new variable
is added at the time. In this analysis overall reliability, the loss function and
crossings are considered the key performance parameters. Even with this few
parameters it is not clear which model to choose in each step.

It is seen from the figure tables performance does not really improve dramaticly
as we add more variables, and at times it even gets worse. The example indicate
that the availiable data may be insufficient for the models. I.e. we would need
more data to give a conviencing model.

It should be noted that procedures like this can very well lead to wrong con-
clussions.
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Key numbers for the models of the 25% and 75% quantiles
Model log(tkeL40) log(tkeL39) log(tkeL38)
DF 16 16 16
Below 25% 26.9% 28.4% 29.3%
Below 75% 78.6% 79.6% 81.5%
Loss25 249.8 249.2 249.7
Loss75 256.1 257.9 258.6
cross 0 9 8

Table B.3: The table contains some key numbers for models contaning WSL40,
wdL40 and turbulent kinetic energy in different lags, the knots are in all cases
placed as 20% sample quantiles of the traning data.

Key numbers for the models of the 25% and 75% quantiles
Model r.ad r.fv r.wd10m r.wd30 r.ws10m r.ws30
DF 17 17 17 17 17 17
%below 26.8% 26.0% 27.6% 27.0% 26.2% 26.8%
%below 78.2% 78.4% 79.2% 78.6% 78.5% 78.1%
Loss25 249.9 245.6 249.6 249.8 246.6 247.9
Loss75 256.7 257.0 254.3 255.1 256.6 255.8
cross 0 0 0 0 0 0

Table B.4: The table contains some key numbers for models contaning WSL40,
wdL40, log(tkeL40) and the risk indices added one by one the knots are in all
cases placed as 20% sample quantiles of the traning data
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Appendix C

Dual Simplex For Non
Crossing Constraints

We already saw in Chapter 2 that the strictly complementary property means
that we have a splitting of the index set s.t.

B = {j|x∗j > 0} C = {j|s∗j > 0} (C.1)

and sj ⊙ xj = 0, with this we can write down the solution to the dual problem
as z∗ = B−T cB, with this we can write down the solution to the dual problem
as

z(h̄) = PcB(h̄) (C.2)

z(h) = −PX(h)−TXT (h̄)cB(h̄) (C.3)

so from the solution to the original problem we can write down the solution to
the dual problem directly. When we add the non crossing constraint, there are
two possibilities, either the problem is still feasible, and then we are done. The
other possibility is that the primal problem becomes infeasible, but then the
dual problem is feasible and we just have to find the solution to this to find the
solution to the original problem.
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The non crossing constraints can be introduced directly into the B matrix, with
the solution to the original problem for τ2 just expand B and y in the following
way

B̃ =





X(h) 0 0
X(h̄) P 0
Xnc 0 sign(τ2 − τ1)I



 ỹ =





y(h)
y(h̄)

Xncβ(τ1)



 (C.4)

now our xB is expanded to

x̃ =





β(τ2)
|r(h̄)|

Xnc(β(τ1) − β(τ2)



 (C.5)

if x̃ ≥ 0 then the solution is optimal and we are done, if there exist an element
in x̃ that is less than zero, then the point we are in is infeasible, but this
corresponding point in the dual problem is feasible. So we just have to set up
the dual problem and find the optimal solution for this then we have the optimal
solution for the primal problem.

The cost vector is expanded with a vector of zeros with the same number of
elements as Xnc and we therefore have

B̃T z̃ =





X(h)T X(h̄)T XT
nc

0 P 0
0 0 sign(τ2 − τ1)I



 z̃ =

[

cB
0

]

(C.6)

from this we can immediately get a starting point for z̃ as z̃ = [z 0]T . Now
we have a starting point for the dual simplex algorithm, which will be expained
now.

If we do not have the optimal solution then there is at least one element in
x̃B which is less than zero, choose such an element (x̃B)q and change the dual

solution in this direction, i.e. change z̃k+1 = z̃k − νB̃−Teq, if ν > 0 this
will increase the dual objective. The amount we can change the objective is
determined by the surplus vector, since we must have s ≥ 0. Since we have
s̃B = c̃B − B̃T z̃ and s̃C = c̃C − C̃T z̃ then the amount we can change s is
determined by α = minj{σj} with

σj =

{

−(s
(k)
C )/hj if hj < 0
+∞ otherwise

(C.7)

with h = C̃T B−Teq, the updating of B and C is now as described in section
2.3.2. When we have the optimal solution to this problem then we have the
optimal solution to the primal problem.
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