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ABSTRACT 2. SYSTEM MODEL

A general Variational Bayesian framework for iterativealat
and parameter estimation for coherent detection is intedu
as a generalization of the EM-algorithm. Explicit soluton y; = Hx; + n; )
are given for MIMO channel estimation with Gaussian prior ! v
and noise covariance estimation with inverse-Wishartrprio whereH € C"*" is the channel matrix and; € QV*!
Simulation of a GSM-like system provides empirical proofis the vector of transmitted symbols at time indgxeach
that the VBEM-algorithm is able to provide better perfor- belonging to the complex-valued alphaléet The received
mance than the EM-algorithm. However, if the posterior disSignal vectory; € C"*! holds the observations at time
tribution is highly peaked, the VBEM-algorithm approachesand the additive noise; € C**! is assumed to be circu-
the EM-algorithm and the gain disappears. The potential gailar zero-mean Gaussian with covariaige= £ [nn/’| and
is therefore greatest in systems with a small amount of obE [n;n]| = 0. The generalization of the estimation frame-
servations compared to the number of parameters to be estrk to Gauss-Markov noise is straightforward [4].
mated. The frequency-selective channelis assumed to have a tem-
poral length ofZ. symbols. LetV; and NV,. denote the num-
ber of transmitters and receivers respectively leadiny te
1. INTRODUCTION LN; andM = N,. For channel estimation, it is desirable to

The focus of this paper is on improved iterative data and-pard @it the channel matrix into a vector notation as

meter estimation for coherent detection in block-fadiregyr yi = X;h + n, )
uency-selective MIMO channels. Much work has been done

within this field and many variants of the EM-algorithm havewith h £ vec (H) wherevec (-) is the column stacking oper-
been applied to communication systems, see for example [&for. Thek’th row of the symbol matrixX; € CN-*LNeNr g

2, 3]. However, previous estimators have all provided pointfound by upsampling? by N,. and shifting it right byk — 1
estimates of the parameters, not distributions as offey¢ddds  positions producing a Toeplitz structure. The two represen

full Bayesian approach. On the other hand, Bayesian estimaions are equivalent and we can use the best suited depending
tors average over the distribution of the unknown variable®n conditions.

or parameters to provide improved inference about the sys- Assuming data is sent in frames &% symbols per trans-
tem. Previously, a so-called Bayesian EM (BEM)-algorithmmitter, the collection of all transmitted symbols and obaer

was introduced for communication systems [2, 3]. Howevertions is given by

the BEM-algorithm provides a Maximum A Posteriori (MAP)

point-estimate and is therefore not a true Bayesian estimat X ={x1, X0, XN, b Y = {y1,y2, 0 yn ) (3)

_ The cont_ribution of this paper _is to introduce the Varia'whereNe = Ny + L — 1 due to the convolutive multipath
tional Bayesian EM (VBEM)-algorithm, already used exten-.p4nnel.

sively in the machine-learning community, to the communi-
cations society. Explicitly, the contribution is to fornaté an
iterative data, channel and noise covariance estimatadbas

on the VBEM-algorithm. By ;lmylatlons Itis shown, that In this section, a quick outline of Maximum Likelihood (ML)
the performance of a communication system can be improved

; o stimation using the EM-algorithm is presented as the VBEM-
over tha_t ba_sed on the EM-aIgor,thm when there is Slgnlflcan:f\llgorithm is a generalization of the EM-algorithm. The feam
uncertainty in the parameter estimates.

work is in a general form and is carried over to the formulatio
The first author would like to thank Nokia Denmark for funding of the VBEM-algorithm. For further details, see [5, 6].

We will consider the uncoded linedd x N MIMO system

3. MAXIMUM LIKELIHOOD ESTIMATION




The idea behind the EM-algorithm is to consider the ob-complicated expressions. Instead, we lower-bound the mar-
servationgy being incomplete data as the underlying hiddenginal log-likelihood by Jensen’s inequality as
variablesx are unknown. This problem is overcome by con-

sidering the hidden variables as being random variables and I .y / o)L (v, %, 0)d 40
averaging over their distribution. By this philosophy weca nlp(y)]=in 1(x,6) q(x,0) x 7
write the complete-data log-likelihood of the paramet¢ifse p(y,x,0) )
> /q(x, 0)ln [7(’ 0 ] dxdo
q\X,

E: Q (0,9<J71>) & (Inlp (v, | )]} (xy00-v) @
wheregq (x, ) is a free distribution used to approximate the
whereg~Y is the parameter set from the previous iterationposteriorp (y, x, #). Maximizing the lower-bound w.r.t. the
and (-),, indicates averaging w.r.t. the distribution in the free distribution (x, ) yields the exact posterior, which was
subscript. Carrying out the above averaging is often terme@hat we started out with, and is therefore of no interest.-Con
the E-step. Next, in the so-called M-step we maximize w.r.tstraining the free distribution to factorize between theden
0,ie. variables and the parameters by requiring

Mi 09 2argmax Q (0, 00’—1)) (5) q(x,0) = qx (x) qo (6) (8)

We now have an iterative algorithm, which can be showrProvides the intriguing solution that we can optimize theefr
to converge to a local maximum in(y, 8). However, the Q|§tr|butlons individually anq |Ferate between them t(_) max
fact that the algorithm "only” converges to a local maximum!Mize the lower-bound. This is done by the alternating be-
makes initialization of the algorithm crucial, as it mayeth Ween the VBE-step and the VBM-step given by
wise converge to an incorrect maximum.

In terms of the system model from Section 2, the obser- VBE: ¢V (x)xe
vations are the received sampjesthe hidden variables cor- ) (Inlp(y,x|0)]) () ®
respond to the transmitted symbaisand the parameter set VBM: qg°(0) xp(8)e i

is @ = {h,X}. Inthe E-step, the posterior distribution of . . o

. & 50 is found by th wherep (0) is a parameter prior. Due to the factorization,
the transmitted symbo}s(x |y, h'?, ) Is found by the  410pa| convergence can not be guaranteed, but it can be shown
well-known BCJR algorithm using forward-backward recur-to converge to a local maximum in(y). From (9) we see
sions, see e.g. [4]. The M-step finds the joint ML channethat the VBEM-algorithm is similar to the EM-algorithm, but
and covariance estimate, but this produces non-linear syshe distinction between hidden variables and unknown para-
tems of equations that in the general case appear to have ffeters has vanished as the VBE- and VBM-steps are both
closed-form solution. A solution is to find the individual ML averaging over posterior distributions. For more details o
estimates and possibly iterate between them in the M-steayesian estimation and the VBEM-algorithm, see [6, 7].

The individual solutions are easily found to be the Weighted Returning to the system model of Section 2 we now have
Least-Squares estimator and the sample covariance for the

channel and covariance estimate respectively, both asdrag q(x,h,3) = gx (%) ¢gn (h) g () (10)

over the posterior of the symbols. This common result is

not reproduced here, but is given hy, ., in (13) andS(@?  where the free distribution is further assumed to factdsize

in (14) by replacing the parameter distribution with a delta tween the channel and noise covariance posterior. This ap-

function in the ML point estimate, i.ep (0) = 6 (0 — 8,,,)  Proachis equivalent to the individual maximization desed

andx;! = 0. in Section 3 for the M-step. The above facorization can be
seen to yield the updates

<ln[p(y7><\9)]>qéj71) ©

4. BAYESIAN ESTIMATION Anlpy B2 110 1)

¢ (x) e

)
In a truly Bayesian framework, all unknown variables and pa- )

rameters are treated as random variables with some distribu 4~ (h) < p(h)e
i i i inal likeli ; (In[p(y,x|h,Z)]) i
tion tha}t can be integrated oyt The marg|nal I|keI|hood@ft q(zj) (%) x p (D) e p(y o) 0l ()
model is therefore found by integrating out the uncertaasty

<ln[P(Y7x‘h72)]>q)((j)(x)q():j—l)():) (11)

To simplify the updates, the parameter priors should be con-
p(y) = /p (v,%,0) dxd6 (6)  jugate meaning that the posterior is of the same type as the
prior. For the channel estimate, the conjugate pridi is-
However, for interesting models the integrationis likayt CA (hy, X;) and for the covariance, it is the inverse-Wishart
be intractable as it involves multi-dimensional integraer  distribution [8].



For the channel estimate, using (2)-(3) and the fact that (y; | X;, 8) are therefore of the form
the noise and prior is Gaussian, we get
—In[y(yi | X:,0)] + Z3
. H -1
o) )] + 2= 1) B () = (s = Xeb) (B70) o ) (3 = Xa)
H —1
= Zy = 2Re {yF (Z71) 0 () Xi (W) 0 }

+ tr {<hhH>q}(]jfl)(h) Xf] <E_1>qg71)(2) Xz}
(16)

(h)

Ne
+ ; <(YZ - Xih)H <E*1>qg,1)(2) (Yi — Xth)>

) (%)

(12)

with Z indicating a normalization constant. Due to the choiceAs the posterior distribution of the channel estimate isss&n,
of a conjugate prior, the posterior is Gaussian and given bye have

ql(f) (h) ~CN (hg\J}AP, Eg)) with covariance and mean h NG
< >ql(1i)(h) — HymapP

0) & (ppt () @ VL e D
N. -1 %, = (hh >q}<j>(h) =hjrap (hMAP) + Xy
= = (XK= e Xi) S
b <i_1 B g e ! Inserting this into (16), we get
hg\]}AP = —In[y(yi| X;,0)] + Zs — Z4
Ne i
() H - 1 = 2Re{yF (=71 4 o X;h( Y
Ehj < - <XL >q,((1'>(x) <2 1>qg*1)(2) Yi + 21 hl) {?, <) >q§: 1)(2) IVIAP} (18)
i= J=D)~H /s—1\ )
(13) +tr {EGTIXI (S o gy X |
The exchange of soft-information between the data and para-
The distribution of the noise covariance is meter estimators is now complete with the complexity being

similar to that of the equivalent EM-algorithm per iteratio

5. NUMERICAL EXAMPLE AND DISCUSSION

=2 <(Yi - X" (yi - Xih)>q§(j>(x)qu>(h) In order to indicate the advantage of the VBEM-algorithm
1 " and keep things as simple as possible, a single-antenre nois
R H limited GSM-like system is considered. The GSM system
=try® <(yi — Xih) (yi — Xih) >qi“(X>ql(f)(h> has a burst structure withi; = 142 + 6 transmitted sym-
! bols, including the 6 so-called tailbits, and hs. = 26
= tr {E*IS(”} known training symbols placed in the middle. The noise is as-
(14) sumed to be Additive White Gaussian Noise (AWGN) and the
noise covariance estimation therefore reduces to a scalar v
ance estimation. The used channel model is the GSM Typical
whereSU) is the sample covariance averaged over the postadrban (TU) multipath channel profile [9] with a speed of 0
riors. It can be shown [8], that for the inverse-Wishart prio km/h and using ideal frequency hopping. This ensures that

T~ CW T (v, B2), we get the channel stays constant over a burst and that a new channel
is drawn from the distribution for every burst, i.e. making i
_ -1 block-fading. The overall length of the transmission pulse
(ED 0w =N tv) (S(J) + 22) (15)  shaping and channel modeliis= 7. To make a fair compar-

ison with the EM-algorithm and not go into a discussion on

) ) ) i 1 , ) the correctness of various choices of priors, only nonimfor
which for the noninformative pric ~ CW™" (0, 0) isequiv- e priors are used for the VBEM-algorithm, i.&; ! = 0
alentto the ML covariance estimate. The conjugate prians cagnqs: ~ )1 0,0)

therefore be interpreted as inserting virtual observatiato
the estimation.

A difference between the considered system and a GSM
system is, that the considered modulation is linearized-n o

The VBE-step is similar to the traditional BCJR algo- der to eliminate the non-linearities introduced by the GMSK
rithm, only now we average over the posterior distributionmodulation used in GSM. The resulting linear modulation is
of the parameters. The required state transition proliasili simply a BPSK modulation with a rotation of 2 per symbol.
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Fig. 1. Simulation of a GSM-like system using a TUOIFH channel peofv, = N, =1, L = 7.

Onthe left of Fig. 1, the Bit Error Rate (BER) of the above
mentioned system is plotted. The results termed "Known”

and "Training” are respectively the BER using the correet pa
rameters and using only the training symbols for estimation

[2]

It can be seen that the BER of the EM and VBEM estimators
are pretty much the same, although the VBEM estimator is
actually better. The reason for this result is, that the nermb

of observations is large compared to the number of paramg3]
ters to be estimated. This makes the posterior distribution
highly peaked around the ML solution effectively making the
VBEM-algorithm fall back to the EM-algorithm.

However, changing the ratio between the number of esti 4
mated parameters and the number of observations affects tLé
posterior distribution. On the right of Fig. 1, the lengthtioé

GSM burst has been reduced to half its original size leading
to a less peaked posterior. The resultis that the EM-alguorit
now performs worse than the VBEM-algorithm, as the lat-[5]
ter incorporates knowledge about the uncertainty in the pa-
rameters. The VBEM-algorithm is therefore beneficial when
"few” observations are present or when "a lot” of parameter%]
have to be estimated. This little example illustrates the ad
vantage of the VBEM-algorithm for systems employing short
packet structures and/or MIMO systems with many paramel7]
ters to be estimated from a limited number of observations.
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