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1 Introduction
Speaker recognition has been an interesting research �eld for the last decades,
which still yields a number of unsolved problems.

Speaker recognition is basically divided into speaker identi�cation and
speaker veri�cation. Veri�cation is the task of automatically determining
if a person really is the person he or she claims to be. This technology
can be used as a biometric feature for verifying the identity of a person in
applications like banking by telephone and voice mail. The focus of this
project is speaker identi�cation, which consists of mapping a speech signal
from an unknown speaker to a database of known speakers, i.e. the system
has been trained with a number of speakers which the system can recognize.
The systems can be subdivided into text-dependent and text-independent
methods. Text-dependent systems require the speaker to utter a speci�c
phrase (pin-code, password etc.), while a text-independent method should
catch the characteristics of the speech irrespective of the text spoken.

Speaker identi�cation has been done successfully using Vector Quanti-
zation (VQ). This technique consists of extracting a small number of repre-
sentative feature vectors as an e�cient means of characterizing the speaker-
speci�c features. Using training data these features are clustered to form a
speaker-speci�c codebook. In the recognition stage, the test data is compared
to the codebook of each reference speaker and a measure of the di�erence is
used to make the recognition decision. The process is depicted in �gure 1.

Figure 1: Conceptual presentation of speaker identi�cation. Figure from [3]

The VQ in this project is done utilizing Mel Frequency Cepstral Coef-
�cients and Linear Prediction Cepstral Coe�cients and a simple clustering
scheme using the k-means algorithm, based on the ideas presented in [3] and
[7].
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2 Speech Feature Extraction
Feature extraction in a classi�cation problem is about reducing the dimen-
sionality of the input-vector while maintaining the discriminating power of
the signal. We know from 'the curse of the dimensionality' that the number
of training/test-vectors needed for a classi�cation problem grows exponential
with the dimension of the given input-vector, so clearly feature extraction is
needed.

When dealing with speech signals there are some criteria that the ex-
tracted features should meet. Some of them are listed below [6]:

• discriminate between speakers while being tolerant of intra-speaker
variabilities,

• easy to measure,

• stable over time,

• occur naturally and frequently in speech,

• change little from one speaking environment to another,

• not be susceptible to mimicry.

For speech signals it is known that the best features is based on spectral
analysis. The reason for that is, that the speech signal can be estimated with
a linear superposition of sine-waves with di�erent amplitudes and phases. In
our project we have been using Linear Prediction Cepstral Coe�cients and
Mel Frequency Cepstral Coe�cients as features for the classi�cation problem.
These methods are described below.

2.1 Framing and Windowing
The speech signal is slowly varying over time (quasi-stationary), that is when
the signal is examined over a short period of time (5-100msec), the signal is
fairly stationary. Therefore speech signals are often analyzed in short time
segments, which is referred to as short-time spectral analysis.

This practically means that the signal is blocked in frames of typically
20-30 msec. Adjacent frames typically overlap each other with 30-50%, this
is done in order not to lose any information due to the windowing.

After the signal has been framed, each frame is multiplied with a window
function w(n) with length N , where N is the length of the frame. Typically
the Hamming window is used:

w(n) = 0.54− 0.46 cos
( 2πn
N − 1

)
, 0 ≤ n ≤ N − 1

The windowing is done to avoid problems due to truncation of the signal.
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2.2 Cepstrum
As described in [2] the speech signal is composed of a quickly varying part
e(n)(excitation sequence) convolved with a slowly varying part θ(n) (vocal
system impulse response):

s(n) = e(n) ∗ θ(n)

The convolution makes it di�cult to separate the two parts, therefore the
cepstrum is introduced. The cepstrum is de�ned in the following way:

cs(n) = F−1
{
log
∣∣F{s(n)}∣∣

}

F is the DTFT and F−1 is the IDTFT. By moving the signal to the frequency-
domain, the convolution becomes a multiplication:

S(ω) = E(ω)Θ(ω)

Further, by taking the logarithm of the spectral magnitude the multiplication
becomes an addition:

log|S(ω)| = log|E(ω)Θ(ω)| = log|E(ω)|+ log|Θ(ω)| = Ce(ω) + Cθ(ω)

The Inverse Fourier Transform is linear and therefore work individually on
the two components:

cs(n) = F−1
{
Ce(ω) +Cθ(ω)

}
= F−1

{
Ce(ω)

}
+ F−1

{
Cθ(ω)

}
= ce(n) + cθ(n)

The domain of the signal cs(n) is called the quefrency-domain. Figure 2
shows the speech signal transformation process.

2.3 Linear Prediction Cepstral Coe�cients
One way to extract features is to use the Linear Prediction Analysis and con-
vert it to Cepstral Coe�cients (called LPCC). The idea behind this method
is that a given speech sample can be approximated with a linear combination
of the past p speech samples[5]:

ŝn = −
p∑

k=1

aksn−k

The coe�cients ak are called the LP coe�cients and are found using the
Levinson-Durbin recursion[2]. p is the so called prediction order. The p LP-
coe�cients are then converted to Q cepstral coe�cients using the following
equations:
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Figure 2: Motivation for using cepstrum. Figure taken from [2]

c1 = a1 (1)

cn =
n−1∑

k=1

(1− k/n)akcn−k + an, 1 < n ≤ p (2)

cn =
n−1∑

k=1

(1− k/n)akcn−k, n > p (3)

The cepstral sequence is weighted by a window function ωc(i) of the form:

ω(i) = 1 +
Q

2
sin
(πi
Q

)
, i = 1, 2, ..., Q (4)

2.4 Mel-frequency Cepstral Coe�cients
The cepstral coe�cients described above have been used with success in
speech recognition applications. A further improvement to this method can
be obtained by using the `mel-based cepstrum` or mel-cepstrum for short.
The mel-cepstrum is calculated in the same way as the real cepstrum except
that the frequency scale is warped to correspond to the mel scale.

December 14, 2005 02455 4



Lasse L Mølgaard, s001514 Kasper W Jørgensen, s001498

The mel scale is based on an empirical study of the human perceived
pitch or frequency. The scale is divided into the units �mel�s. The test
persons in the study started out hearing a frequency of 1000 Hz, which was
labeled 1000 mels for reference. The persons were then asked to change the
frequency until they perceived the frequency to be twice the reference. This
frequency was then labeled 2000 mels. The test was then repeated with half
the frequency, 1

10 , 10 and so on, labeling these frequencies 500 mels, 100 mels,
and 10000 mels. Based on these results a mapping of the normal frequency
scale to the mel scale was possible.

The mel scale is generally speaking a linear mapping below 1000 Hz
and logarithmically spaced above. The mapping is usually done using an
approximation (where fmel is the perceived frequency in mels), taken from
[4]:

fmel = 2595 ∗ log10(1 +
f

700
)

Figure 3: MFCC calculation

The calculation of the mel cepstral coe�cients is illustrated in �gure 3.
The mel frequency warping is most conveniently done by utilizing a �lter
bank with �lters centered according to mel frequencies, as seen in �gure 4.
The width of the triangular �lters vary according to the mel scale, so that the
log total energy in a critical band around the center frequency is included.

All in all the result after warping is a number of coe�cients Y(k):

Y (k) =
N/2∑

j=1

S(j)Hk(j) (5)

The last step of the cepstral coe�cient calculation is to transform the
log of the quefrency domain coe�cients to the frequency domain. For this
we utilize the IDFT, where N' is the length of the DFT used previously:

c(n) =
1
N ′

N ′−1∑

k=0

Y (k)ej
k2π
N′ n (6)
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Figure 4: Mel spaced �lter bank w. 29 �lters

Which can be simpli�ed, because Y(k) is real and symmetric about N ′/2,
by replacing the exponential by a cosine:

c(n) =
1
N ′

N ′−1∑

k=0

Y (k) cos(
k2π
N ′

n) (7)

2.5 Delta Cepstrum
To catch the changes between the di�erent frames the di�erenced or delta
cepstrum is used. It is simply de�ned as:

∆cs(n;m) =
1
2

(cs(n;m+ 1)− cs(n;m− 1)), i = 1, 2, ..., Q (8)

3 Vector Quantization
Speaker recognition is the task of comparing an unknown speaker with a set
of known speakers in a database and �nd the best matching speaker.

3.1 Speaker Database
The �rst step is to build a speaker-database Cdatabase = {C1, C2, ..., CN}
consisting of N codebooks, one for each speaker in the database. This is done
by �rst converting the raw input signal into a sequence of feature vectorsX =

December 14, 2005 02455 6
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{x1, ...,xT }. These feature vectors are clustered into a set of M codewords
C = {c1, ..., cM}. The set of codewords is called a codebook. The clustering
is done by a clustering-algorithm, in this project we are using the K-means
algorithm which is described below.

3.2 K-means
The K-means algorithm partitions the T feature vectors into M centroids.
The algorithm �rst chooses M cluster-centroids among the T feature vec-
tors. Then each feature vector is assigned to the nearest centroid, and the
new centroids are calculated. This procedure is continued until a stopping
criterion is met, that is the mean square error between the feature vectors
and the cluster-centroids is below a certain threshold or there is no more
change in the cluster-center assignment.

3.3 Speaker Matching
In the recognition phase an unknown speaker, represented by a sequence of
feature vectors {x1, ...,xT }, is compared with the codebooks in the database.
For each codebook a distortion measure is computed, and the speaker with
the lowest distortion is chosen,

Cbest = argmin
1≤i≤N{s(X,Ci)}

One way to de�ne the distortion measure is to use the average of the Eu-
clidean distances:

s(X,Ci) =
1
T

T∑

t=1

d(xt, c
i,t
min),

where ci,tmin denotes the nearest codeword xt in the codebook Ci and d(.)
is the Euclidean distance. Thus, each feature vector in the sequence X is
compared with all the codebooks, and the codebook with the minimized
average distance is chosen to be the best.

3.4 Weighting Method
Franti and Kinnunen [7] propose a weighting method that takes the correla-
tion between the known speakers in the database into account. The idea is
that larger weights should be assigned to vectors that has higher discrimi-
nating power. If vectors from more codebooks are very close in feature space
it is not so obvious which one of the vectors that a given unknown vector
belongs to. On the other hand if a vector is far from the other vectors of the
other codebooks, then it is more clear which codebook the given unknown
vector belongs to.

Thus, the following algorithm are proposed to assign weights to all code-
words in the database:
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PROCEDURE ComputeWeights(S: SET OF CODEBOOKS) RETURN WEIGHTS
FOR EACH C_i IN S DO % Loop over all codebooks

FOR EACH c_j IN C_i DO % Loop over all codebooks
sum := 0
FOR EACH C_k, k!=i, IN S DO % Find nearest code vector_

d_min := DistanceToNearest(c_j, C_k); % _ from all other codebooks
sum := sum + 1/d_min;

ENDFOR;
w(c_ij) := 1/sum;

ENDFOR;
ENDFOR;

Instead of using a distortion measure, a similarity measure that should be
maximized are considered:

sw(X,Ci) =
1
T

T∑

t=1

1

d(xt, c
i,t
min)

w(ci,tmin)

The experimental results from [7] shows better recognition rate when
using weights.

4 Data
The methods presented above have been tested using the ELSDSR (English
Language Speech Database for Speaker Recognition), which is thoroughly
described in [4]. The database consists of 22 speakers, whereof 10 are female
and 12 are male, and the ages span from 24 to 63 years. 20 of the speakers
are Danish natives, 1 Icelandic and 1 Canadian.

The data is divided into two parts, i.e. a training part, with sentences
made to attempt to capture all the possible pronunciation of English lan-
guage, which includes the vowels, consonants and diphthongs, and a test set
of random sentences. The training set consists of seven paragraphs, which
include 11 sentences; and forty-four sentences for test. Shortly there are 154
(7*22) utterances in the training set; and for the test set, 44 (2*22) utter-
ances are provided. On average, the duration for reading the training data
is: 78.6s for male; 88.3s for female; 83s for all. And the duration for reading
test data, on average, is: 16.1s (male); 19.6s (female); 17.6s (for all). The
duration of the training shots vary from 66.2s to 102.9s; and from 9.3s to
25.1.

The training of the models was done using all seven paragraphs for each
speaker, while each test utilized one paragraph from the test set providing
44 tests.
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5 Results
The di�erent methods described have been quite extensively explored using
the data described above. The aspects evaluated are:

• Sweep of parameters in feature extraction

• Evaluation of MFCC and LPCC on di�erent test shot lengths

• Addition of delta cepstrum coe�cients

• E�ect of additive noise on test set

The tests have been done according to the description above. The tests
were done using the functions implemented in the voicebox matlab package
[1].

5.1 Parameters of the MFCC
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Figure 5: Performance evaluation with 12 MFCC as function of number of
�lter-banks with 12 MFCC. The codebook size is 8.

Calculation of the MFCC's has a number parameters that can be varied.
The �rst aspect to be investigated is how many �lters to use in the �lter
bank. To keep the calculation times manageable we have chosen to use
12 coe�cients. With this constraint, the main parameter to change is the
number of �lters in the �lter bank. Figure 5 shows the performance using a
codebook size of 8.

The �gure does not show anything conclusive about the how to choose
the number of �lters, one of the factors is namely that the training relies
on the random procedure k-means which might produce di�ering results on
di�erent runs.
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5.2 MFCC vs. LPCC
To evaluate the two features, the performance on di�erent test shot lengths
were conducted. Using all test persons, three tests were made;

• Using the full test shots

• A 2s shot, starting at t=2s

• A 0.2s shot, starting at t=2s

The shorter shots start after 2s to avoid silent periods in the beginning
of the recordings. Of course, the shots might not contain any speech data
anyway, but this has not been investigated further. The LPCC calculation
showed some numerical problems, when the signals contained long segments
of zeros. To counteract this, some gaussian noise with a standard deviation
of 0.0001 was added.

The test uses 12 MFCC with 29 �lters, and 12 LPCC's using 12th order
LP-analysis. The test run varies the size of the codebook (i.e. the number
of codewords assigned to each speaker). The codebook size increments are
powers of 2 to reproduce the results presented in [7].

The �gures 6, 7 and 8 show that the purely euclidian distance measure
clearly outperforms the weighting scheme in all cases. Using the whole test
shot shows that both MFCC and LPCC perform perfect identi�cation using
16 and 4 codewords for each speaker, respectively. The 2s test shot shows
almost the same performance. The short 0.2s test shot shows that the MFCC
features give a 73% identi�cation rate while the LPCCs only shows 60%.

5.3 Delta coe�cients
The above test was repeated with the addition of the delta coe�cients pre-
sented in section 2.5. The test runs were limited to with a codebook size of
2 to 128 to save computation time.

The results seen in �gures 9, 10 and 11 show that perfect identi�cation
is achieved with full test shots, even though at a larger codebook size than
above, at least for MFCCs. The same tendency is apparent at shorter test
shots, but still the results are comparable to those achieved without delta
coe�cients.

5.4 Noise standard deviation
An important property of the features is the ability to cope with noise.
In general we can apply a white noise signal to the speech signal and still
recognise the speaker anyway. To test the ability of features against noise
The test setup was:

• 12 MFCCs using 29 �lters and 12 LPCCs using 12th order LP analysis
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Figure 6: Performance for varying codebook sizes for full test shots using (a)
12 MFCCs and (b) 12 LPCCs
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Figure 7: Performance for varying codebook sizes for 2s test shots using (a)
12 MFCCs and (b) 12 LPCCs
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Figure 8: Performance for varying codebook sizes for 0.2s test shots using
(a) 12 MFCCs and (b) 12 LPCCs
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Figure 9: Performance for varying codebook sizes for full test shots using (a)
12 MFCCs and 12 delta coe�cients (b) 12 LPCCs and 12 delta coe�cients
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Figure 10: Performance for varying codebook sizes for 2s test shots using (a)
12 MFCCs and 12 delta coe�cients (b) 12 LPCCs and 12 delta coe�cients
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Figure 11: Performance for varying codebook sizes for 0.2s test shots using
(a) 12 MFCCs and 12 delta coe�cients (b) 12 LPCCs and 12 delta coe�cients
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• Codebook size of 8 and 16

• Additive gaussian noise X ∼ (0, σ2) with σ ∈ [0.001; 0.009]

The �gure 12 and 13 show that the noise clearly in�uences on the perfor-
mance of the system, making the classi�cation almost useless at high noise
levels. It seems that the LPCCs are most resistant to low noise levels, while
the MFCCs have a little better performance at larger noise levels, using a
codebook size of 16. Increasing the code book size from 8 to 16 shows a
de�nite improvement, especially at the higher noise levels.
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(a) LPCC
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Figure 12: Performance of coe�cients to noise. The tests use (a) 12 LPCCs
and (b) 12 MFCCs and a codebook size of 8. The noise std dev. is changed
over the range [0.001;0.009]

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009
0 %

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Noise standard deviation

Id
en

tif
ic

at
io

n 
ra

te

unweighted
weighted

(a) LPCC
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Figure 13: Performance of coe�cients to noise. The tests use (a) 12 LPCCs
and (b) 12 MFCCs and a codebook size of 16. The noise std dev. is changed
over the range [0.001;0.009]
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5.5 Decision Certainty
To see how con�dent our decisions are we have made some plots of the dis-
tortion measure as a function of codebook size. In the plots the correct
speaker's distortion measure is marked with a thick line, the other lines rep-
resent the distortion measures for the 9 speakers with the lowest measure.
The plots are made with both 12 Mel Frequency Cepstral Coe�cients cal-
culated using 29 �lter-banks and 12 Linear Prediction Cepstral Coe�cients
calculated using 12th order LP analysis.

In �gure 14 the distortion measures for the test speech sample FEAB_Sr5.wav
are shown. This particular speech sample has shown, during our di�erent
tests, to be the most di�cult to recognize correct. The MFCC distortion
measure from the correct speaker are very close to another speaker (FAML).
The distortion measures from these two speakers are well separated from the
other speakers. When using LPCC the right speaker are better separated
from the runner up.

In �gure 15 a randomly chosen test speaker (FUAN_Sr39.wav) are shown
for reference. This �gure also show a slightly better separation when using
LPCC.

Another thing to see from these �gures are that the di�erence in distor-
tion measure between the correct speaker and the runner up is almost the
same when varying the codebook size.
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Figure 14: Distortion measure for test speech sample FEAB_Sr5.wav as func-
tion of codebook size. Thick line is distortion for correct speaker, rest are
the 9 speakers with lowest distortion.
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Figure 15: Distortion measure for test speech sample FUAN_Sr39.wav as
function of codebook size. Thick line is distortion for correct speaker, rest
are the 9 speakers with lowest distortion.

6 Conclusion
The goal of this project was to implement a text-independent speaker recog-
nition system. Further, the aim was to investigate di�erent feature extraction
methods and their impact on the recognition rate.

The feature extraction is done using Mel Frequency Cepstral Coe�cients
(MFCC) and Linear Prediction Cepstral Coe�cients (LPCC). The speakers
was modeled using Vector Quantization (VQ). Using the extracted features
a codebook from each speaker was build by clustering the feature vectors.
The clustering was done using the K-means algorithm. Codebooks from all
the speakers was collected in a speaker database. Two di�erent distortion
measures was used when matching an unknown speaker with the speaker
database. The �rst method is based on minimizing the Euclidean distance.
The second method was suggested by [7]. This method is based on maxi-
mizing the inverse Euclidean distance combined with a weight measure.

The experiments conducted showed that it was possible to obtain 100%
identi�cation rates for both MFCC and LPCC based features. The perfect
identi�cation was done using the full training set of the ELSDSR ddatabase
and full test shots. Reducing the test shot lengths reduced the recognition
rate giving a maximal rate of 97% for 2s shots and 73% for 0.2s shots,
with MFCCs giving slightly better results. Adding delta coe�cients to the
feature set did not show any improvements. The systems were tested in a
setting with noise added to the test signals, demonstrating the susceptibility
to noise. This showed a slight advantage for the LPCCs. A inspection of the
distortion measures showed that the di�erence between the correct speaker
and the runner up did not vary with higher codebook size.

The two di�erent distortion measures were used in the tests, which
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showed that the purely Euclidean measure outperformed the weighting scheme
in all cases.

All in all the project has shown that VQ using cepstral features is an
simple and e�cient way to do speaker identi�cation. The results did not
show any conclusive evidence of whether to use LPCC or MFCC features.
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A Matlab code
A.1 testnoise_cc.m� �

clear ;

voiceboxpath='~/pep/ voicebox ' ;
addpath ( voiceboxpath ) ;

5
[ t r a i n . data t e s t . data ] = load_data ;
t r a i n . mfcc = c e l l ( s ize ( t e s t . data , 1 ) , 1 ) ;
t r a i n . kmeans . x = c e l l ( s ize ( t e s t . data , 1 ) , 1 ) ;
t r a i n . kmeans . e s q l = c e l l ( s ize ( t e s t . data , 1 ) , 1 ) ;

10 t r a i n . kmeans . j = c e l l ( s ize ( t e s t . data , 1 ) , 1 ) ;

f s = 16000;
C = 16 ; % number o f c l u s t e r cen te r s in K−means
persons = 22;

15
disp ( ' Ca l cu l a t ing CCs f o r t r a i n i n g s e t . . . ' )
for i =1: s ize ( t r a i n . data , 1 )

i
temp = [ ] ;

20 for s=1: size ( t r a i n . data , 2 )
temp = [ temp ; t r a i n . data{ i , s } ] ;

end
no i s e = rand ( length ( temp) ,1 ) ∗0 . 0001 ;
c e p s t r a l = cc ( temp+noise , 256 ,128 ,12 ,12 ) ; % f ind the c e p s t r a l

c o e f f i c i e n t s
25 t r a i n . mfcc{ i } = cep s t r a l ' ;

end

disp ( ' Performing K−means . . . ' )
for i =1: s ize ( t r a i n . data , 1 )

30 i
[ t r a i n . kmeans . j { i } t r a i n . kmeans . x{ i } ] = kmeans ( t r a i n . mfcc{ i } ( : , 1 : 1 2 ) ,C) ;

end

disp ( ' compute weights ' )
35 w = computeweights ( t r a i n . kmeans . x ) ;

weighted=zeros ( 9 , 1 ) ;
unweighted=zeros ( 9 , 1 ) ;

40 for i t e = 1 :9
c o r r e c t =0;
co r r e c twe i gh t =0;

disp ( ' Ca l cu l a t ing CCs f o r t e s t s e t . . . ' )
45 for i =1: size ( t e s t . data , 1 )

i
for s=1: s ize ( t e s t . data , 2 )

no i s e = randn( length ( t e s t . data{ i , s }) , 1 ) ∗0.001∗ i t e ;
c e p s t r a l = cc ( t e s t . data{ i , s}+noise , 256 ,128 ,12 , 12 ) ; % f ind the

c e p s t r a l c o e f f i c i e n t s
50 t e s t . mfcc{ i , s } = cep s t r a l ' ;

end
end

for i = 1 : persons
55 for s=1:2
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mins = i n f ;
minsweight = 0 ;

for x=1: persons % Run for a l l codebooks
60 d i s t eu = d i s t eu sq ( t r a i n . kmeans . x{x } , t e s t . mfcc{ i , s } ( : , 1 : 1 2 ) ,

' x ' ) ;
s d i s t ( i , s , x ) = sum(min( d i s t eu ) ) / s ize ( d i s teu , 2 ) ; % ca l c

d i s t o r t i o n wi thout we igh t s

[ cmin cminindex ] = min( d i s t eu ) ;
s d i s twe i gh t ( i , s , x ) = sum(w(x , cminindex ) . / cmin ) / size ( d i s teu

, 2 ) ; %ca l c d i s t o r t i o n with we igh t s
65

% f ind b e s t match wihtout we igh t s
i f s d i s t ( i , s , x ) < mins

mins = s d i s t ( i , s , x ) ;
index = x ;

70 end
% f ind b e s t match with we igh t s
i f sd i s twe i gh t ( i , s , x ) > minsweight

minsweight = sd i s twe i gh t ( i , s , x ) ;
indexweight = x ;

75 end
end
[ i index ]
i f i == index

c o r r e c t = co r r e c t +1;
80 end

i f i == indexweight
co r r e c twe i gh t = co r r e c twe i gh t + 1 ;

end

85 unweightedgem ( i , s ) = index ;
weightedgem ( i , s ) = indexweight ;

end
end

90 unweighted ( i t e )=co r r e c t /( persons ∗2)
weighted ( i t e )=co r r e c twe i gh t /( persons ∗2)

end� �
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A.2 testnoise_mfcc.m� �
clear ;

voiceboxpath=' . . \ pep\pep\ voicebox \ ' ;

5 addpath ( voiceboxpath ) ;

[ t r a i n . data t e s t . data ] = load_data ;
t r a i n . mfcc = c e l l ( s ize ( t e s t . data , 1 ) , 1 ) ;
t r a i n . kmeans . x = c e l l ( s ize ( t e s t . data , 1 ) , 1 ) ;

10 t r a i n . kmeans . e s q l = c e l l ( s ize ( t e s t . data , 1 ) , 1 ) ;
t r a i n . kmeans . j = c e l l ( s ize ( t e s t . data , 1 ) , 1 ) ;

f s = 16000;
C = 8; % codebook s i z e

15 persons = 22;

disp ( ' Ca l cu l a t ing MFCCs f o r t r a i n i n g s e t . . . ' )
for i =1: s ize ( t r a i n . data , 1 )

i
20 temp = [ ] ;

for s=1: size ( t r a i n . data , 2 )
temp = [ temp ; t r a i n . data{ i , s } ] ;

end
mels = melcepst ( temp , f s , ' x ' ) ; % f ind the c e p s t r a l c o e f f i c i e n t s

25 t r a i n . mfcc{ i } = mels ;
end

disp ( ' Performing K−means . . . ' )
for i =1: s ize ( t r a i n . data , 1 )

30 i
[ t r a i n . kmeans . j { i } t r a i n . kmeans . x{ i } ] = kmeans ( t r a i n . mfcc{ i } ,C) ; % use

matlab ' s own kmeans
end

disp ( ' compute weights ' )
35 w = computeweights ( t r a i n . kmeans . x ) ;

weighted=zeros ( 9 , 1 ) ;
unweighted=zeros ( 9 , 1 ) ;

40 for i t e = 1 :9
c o r r e c t =0;
co r r e c twe i gh t =0;

disp ( ' Ca l cu l a t ing MFCCs f o r t e s t s e t . . . ' )
45 for i =1: size ( t e s t . data , 1 )

i
for s=1: s ize ( t e s t . data , 2 )

no i s e = randn( length ( t e s t . data{ i , s }) , 1 ) ∗0.001∗ i t e ; % add noise
to s i g n a l

mels = melcepst ( t e s t . data{ i , s}+noise , f s , ' x ' ) ;
50 t e s t . mfcc{ i , s } = mels ;

end
end

55 for i = 1 : persons
for s=1:2

mins = i n f ;
minsweight = 0 ;
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60 for x=1: persons % Run for a l l codebooks
d i s t eu = d i s t eu sq ( t r a i n . kmeans . x{x } , t e s t . mfcc{ i , s } , ' x ' ) ;
s d i s t ( i t e , i , s , x ) = sum(min( d i s t eu ) ) / s ize ( d i s teu , 2 ) ; %

ca l c d i s t o r t i o n wi thout we igh t s

[ cmin cminindex ] = min( d i s t eu ) ;
65 sd i s twe i gh t ( i t e , i , s , x ) = sum(w(x , cminindex ) . / cmin ) / s ize (

d i s teu , 2 ) ; % ca l c d i s t o r t i o n with we igh t s

%f ind b e s t match wihtout we igh t s
i f s d i s t ( i t e , i , s , x ) < mins

mins = s d i s t ( i t e , i , s , x ) ;
70 index = x ;

end
%f ind b e s t match with we igh t s
i f sd i s twe i gh t ( i t e , i , s , x ) > minsweight

minsweight = sd i s twe i gh t ( i t e , i , s , x ) ;
75 indexweight = x ;

end
end
[ i index ]
i f i == index

80 c o r r e c t = co r r e c t +1;
end
i f i == indexweight

co r r e c twe i gh t = co r r e c twe i gh t + 1 ;
end

85
unweightedgem ( i , s , i t e ) = index ;
weightedgem ( i , s , i t e ) = indexweight ;

end
end

90 unweighted ( i t e ) = co r r e c t /( persons ∗2)
weighted ( i t e ) =co r r e c twe i gh t /( persons ∗2)

end� �
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A.3 load_data.m� �
function [ t ra in , t e s t ] = load_data

t r a i n d i r = ' . . / pep/madam_skrald/ e l s d s r / t r a i n / ' ;
t e s t d i r = ' . . / pep/madam_skrald/ e l s d s r / t e s t / ' ;

5

i n i t i a l = [ 'FAML' ; 'FDHH' ; 'FEAB' ; 'FHRO' ; 'FJAZ ' ; 'FMEL' ; 'FMEV' ; . . .
'FSLJ ' ; 'FTEJ ' ; 'FUAN' ; 'MASM' ; 'MCBR' ; 'MFKC' ; 'MKBP' ; . . .
'MLKH' ; 'MMLP' ; 'MMNA' ; 'MNHP' ; 'MOEW' ; 'MPRA' ; 'MREM' ; 'MTLS' ] ;

10
sentence = [ ' a ' 'b ' ' c ' ' d ' ' e ' ' f ' ' g ' ] ;

f i l ename = c e l l ( 44 , 1 ) ;
f i l ename = { 'FAML_Sr3 . wav ' 'FAML_Sr4 . wav ' 'FDHH_Sr25 . wav ' 'FDHH_Sr26 . wav ' '

FEAB_Sr5 . wav ' 'FEAB_Sr6 . wav ' . . .
15 'FHRO_Sr31 . wav ' 'FHRO_Sr32 . wav ' 'FJAZ_Sr35 . wav ' 'FJAZ_Sr36 . wav ' 'FMEL_Sr21 .

wav ' 'FMEL_Sr22 . wav ' . . .
'FMEV_Sr10 . wav ' 'FMEV_Sr9. wav ' 'FSLJ_Sr33 . wav ' 'FSLJ_Sr34 . wav ' 'FTEJ_Sr13 .

wav ' 'FTEJ_Sr14 . wav ' . . .
'FUAN_Sr39 . wav ' 'FUAN_Sr40 . wav ' 'MASM_Sr11. wav ' 'MASM_Sr12. wav ' 'MCBR_Sr23 .

wav ' 'MCBR_Sr24 . wav ' . . .
'MFKC_Sr43 . wav ' 'MFKC_Sr44 . wav ' 'MKBP_Sr19 . wav ' 'MKBP_Sr20 . wav ' 'MLKH_Sr37 .

wav ' 'MLKH_Sr38 . wav ' . . .
'MMLP_Sr27. wav ' 'MMLP_Sr28. wav ' 'MMNA_Sr15. wav ' 'MMNA_Sr16. wav ' 'MNHP_Sr1.

wav ' 'MNHP_Sr2. wav ' . . .
20 'MOEW_Sr41. wav ' 'MOEW_Sr42. wav ' 'MPRA_Sr29 . wav ' 'MPRA_Sr30 . wav ' 'MREM_Sr7.

wav ' 'MREM_Sr8. wav ' . . .
'MTLS_Sr17 . wav ' 'MTLS_Sr18 . wav ' } ;

t r a i n = c e l l ( length ( i n i t i a l ) , length ( sentence ) ) ;
25

for i =1: length ( i n i t i a l )
for s=1: length ( sentence )

temp = [ t r a i n d i r i n i t i a l ( i , : ) '_S ' sentence ( s ) ' . wav ' ] ;
tempwav = wavread( temp) ;

30 t r a i n { i , s } = tempwav ;
end

end

t e s t = c e l l ( length ( i n i t i a l ) , 2 ) ;
35

for i =1: length ( i n i t i a l )
for s=1:2

temp = [ t e s t d i r f i l ename {( i −1)∗2+s } ] ;
tempwav = wavread( temp) ;

40 t e s t { i , s } = tempwav ;
end

end� �
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A.4 computeweights.m� �
function w=computeweights ( codebooks )

for i =1: length ( codebooks ) % loop over a l l codebooks
for j =1: size ( codebooks {1} ,1) % loop over a l l codevec tor s

5
s=0;
for k=1: length ( codebooks ) % f ind neares t codevec tor from a l l o ther

codebooks
i f k~=i % codebooks must be d i f f e r e n t

dmin = min( d i s t eu sq ( codebooks { i }( j , : ) , codebooks {k } , ' x ' ) ) ;
10 s = s + 1/dmin ;

end
end
w( i , j ) = 1/ s ;

15 end
end� �
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A.5 cc.m� �
function y = hmmfeatures ( s ,N, deltaN ,M,Q)
% hmmfeatures −−> Feature e x t r a c t i on fo r HMM recogn i z e r .
%
% <Synopsis>

5 % y = hmmfeatures ( s ,N, deltaN ,M,Q)
%
% <Descr ipt ion>
% A frame based ana l y s i s o f the speech s i gna l , s , i s performed to
% g i v e ob se rva t i on vec t o r s ( columns o f y ) , which can be used to t r a in

10 % HMMs for speech recogn i t i on .
%
% The speech s i g n a l i s b l ocked in to frames o f N samples , and
% consecu t i ve frames are spaced del taN samples apart . Each frame i s
% mu l t i p l i e d by an N−sample Hamming window , and Mth−order LP ana l y s i s

15 % i s performed . The LPC c o e f f i c i e n t s are then converted to Q c e p s t r a l
% c o e f f i c i e n t s , which are weighted by a ra i s ed s ine window . The r e s u l t
% i s the f i r s t h a l f o f an obse rva t i on vector , the second h a l f i s the
% d i f f e r en c e d c e p s t r a l c o e f f i c i e n t s used to add dynamic informat ion .
% Thus , the returned argument y i s an 2Q−by−T matrix , where T i s the

20 % number o f frames .
%
% <See Also>
% hmmcodebook −−> Codebook genera t ion fo r HMM recogn i z e r .

25 % <References>
% [ 1 ] J .R Del l er , J .G. Proakis and F.H.L . Hansen , " Discrete−Time
% Process ing o f Speech S i gna l s " , IEEE Press , chapter 12 , (2000) .
%
% <Revision>

30 % Peter S .K. Hansen , IMM, Technica l Un ive r s i t y o f Denmark
%
% Last r e v i s e d : September 30 , 2000
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

35 Ns = length ( s ) ; % Signa l l en g t h .
T = 1 + f ix ( (Ns−N)/deltaN ) ; % No . o f frames .

a = zeros (Q, 1 ) ;
gamma = zeros (Q, 1 ) ;

40 gamma_w = zeros (Q,T) ;

win_gamma = 1 + (Q/2)∗ sin (pi/Q∗ ( 1 :Q) ' ) ; % Ceps t ra l window func t ion .

for ( t = 1 :T) % Loop frames .
45 % Block in to frames .

idx = ( deltaN ∗( t−1)+1) : ( deltaN ∗( t−1)+N) ;

% Window frame .
sw = s ( idx ) .∗hamming(N) ;

50
% Short−term au to co r r e l a t i on .
[ rs , e ta ] = xcor r ( sw ,M, ' b ia sed ' ) ;

% LP ana l y s i s based on Levinson−Durbin recurs ion .
55 [ a ( 1 :M) , xi , kappa ] = durbin ( r s (M+1:2∗M+1) ,M) ;

% Ceps t ra l c o e f f i c i e n t s .
gamma(1 ) = a (1) ;
for ( i = 2 :Q)

60 gamma( i ) = a ( i ) + (1 : i −1)∗(gamma( 1 : i −1) .∗ a ( i −1:−1:1) ) / i ;
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end

% Weighted c e p s t r a l sequence fo r frame t .
gamma_w( : , t ) = gamma.∗win_gamma ;

65 end

% Time d i f f e r en c e d weighted c e p s t r a l sequence .
delta_gamma_w = gradient (gamma_w) ;

70 % Observat ion vec t o r s .
y = [gamma_w; delta_gamma_w ] ;

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% End of func t i on hmmfeatures

75 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−� �
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A.6 durbin.m� �
function [ a , xi , kappa ] = durbin ( r ,M)
% durbin −−> Levinson−Durbin Recursion .
%
% <Synopsis>

5 % [ a , xi , kappa ] = durbin ( r ,M)
%
% <Descr ipt ion>
% The func t ion s o l v e s the Toep l i t z system of equa t ions
%

10 % [ r (1) r (2) . . . r (M) ] [ a (1) ] = [ r (2) ]
% [ r (2) r (1) . . . r (M−1) ] [ a (2) ] = [ r (3) ]
% [ . . . ] [ . ] = [ . ]
% [ r (M−1) r (M−2) . . . r (2) ] [ a (M−1) ] = [ r (M) ]
% [ r (M) r (M−1) . . . r (1) ] [ a (M) ] = [ r (M+1) ]

15 %
% ( a l so known as the Yule−Walker AR equat ions ) us ing the Levinson−
% Durbin recurs ion . Input r i s a vec to r o f au t o co r r e l a t i on
% c o e f f i c i e n t s with l a g 0 as the f i r s t e lement . M i s the order o f
% the recurs ion .

20 %
% The output arguments are the M est imated LP parameters in the
% column vec tor a , i . e . , the AR c o e f f i c i e n t s are g iven by [1 ; − a ] .
% The p r ed i c t i on error energ i e s f o r the 0 th−order to the Mth−order
% so l u t i on are returned in the vec to r xi , and the M est imated

25 % r e f l e c t i o n c o e f f i c i e n t s in the vec tor kappa .
%
% Since kappa i s computed i n t e r n a l l y wh i l e computing the AR co e f f i c i e n t s ,
% then re turn ing kappa s imu l taneous l y i s more e f f i c i e n t than conver t ing
% vec tor a to kappa a f t e rwards .

30 %
% <See Also>
% r f 2 l p c −−> Convert r e f l e c t i o n c o e f f i c i e n t s to p r ed i c t i on polynomial .
% l p c 2 r f −−> Convert p r ed i c t i on polynomial to r e f l e c t i o n c o e f f i c i e n t s .
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45 % I n i t i a l i z a t i o n .
kappa = zeros (M, 1 ) ;
a = zeros (M, 1 ) ;
x i = [ r (1 ) ; zeros (M, 1 ) ] ;

50 % Recursion .
for ( j =1:M)

kappa ( j ) = ( r ( j +1) − a ( 1 : j−1) '∗ r ( j :−1:2) ) / x i ( j ) ;
a ( j ) = kappa ( j ) ;
a ( 1 : j−1) = a ( 1 : j−1) − kappa ( j ) ∗a ( j −1:−1:1) ;

55 x i ( j +1) = x i ( j ) ∗(1 − kappa ( j ) ^2) ;
end
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% End of func t i on durbin
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−� �
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