
Numerical Solution of Differential Algebraic Equations and

Applications.

ed. Per Grove Thomsen

November 21, 2005

Contents

1 Preface 4

2 Introduction 5
2.1 Definitions . 5

2.1.1 Semi explicit DAE’s . 6
2.1.2 Index . 6
2.1.3 Singular Perturbations. 8

2.2 The Van der Pol equation . 9

3 The Plane Double Pendulum 10
3.1 Introduction . 10
3.2 Formulation and reduction of the DAE . 11
3.3 Consistent initial conditions . 15
3.4 The n-mass pendulum . 16
3.5 Implementation . 18
3.6 Numerical results . 21
3.7 Conclusion . 24

4 Different approaches to ODE systems with invariants. 25
4.1 Introduction . 25
4.2 The model . 26
4.3 The approaches . 27

4.3.1 Plain ODE system . 28
4.3.2 DAE formulation . 29
4.3.3 Postprocessing . 30
4.3.4 Hamiltonian reformulation . 31

4.4 Results . 32

5 Wheel–Rail Contact Model 36
5.1 Introduction . 36

1

5.2 Multibody System . 36
5.3 Equations of Motion . 38
5.4 Wheel–Rail Constraints . 39
5.5 DAE Formulation . 39
5.6 Forces . 42
5.7 Numerical Integration . 44
5.8 Matlab . 45
5.9 Results . 46

6 Bicycle model. 48
6.1 Introduction . 48
6.2 Mechanical Model . 49
6.3 Mathematical Model . 50
6.4 Constraints and reduced set of equations . 52
6.5 Numerical Solution . 56

6.5.1 Stability . 57
6.5.2 Response with initial conditions . 58

6.6 Extending the equations . 60
6.7 Conclusion . 61
6.8 Appendix . 62

6.8.1 Parameters for the numerical simulation 62
6.8.2 Algorithm for deriving the equations of motion 62

7 Parameter estimation in Differential Algebraic Equations 65
7.1 Theory . 65
7.2 Example . 68
7.3 Conclusion . 74

8 Trajectory Prescribed Path Control - TPPC 75
8.1 Introduction . 75
8.2 Theoretical model . 76

8.2.1 Constraints . 79
8.2.2 Lift and drag coefficients . 80

8.3 Implementation . 82
8.3.1 Parameters . 82
8.3.2 Solving by The Use of AE’s . 84
8.3.3 Solving by Index Reduction . 84
8.3.4 Finding The Control Parameters α and β 84
8.3.5 Numerical implementation . 86

8.4 Results . 88
8.4.1 Error analysis . 88

2

8.5 Discussion . 91
8.6 Conclusion . 92

3

Chapter 1

Preface

These lecture notes have been written as part of a special course on the numerical solution
of Differential Algebraic Equations and applications . The course was held at IMM in the
spring of 2005. The authors of the different chapters have all taken part in the course and
the chapters are written as part of their contribution to the course.
It is hoped that coming courses in the Numerical Solution of DAE’s will benefit from these
lecture notes.
The students participating in the course and contributing with their chapters are the
following:

• Marie Bro

• Michaël Gineste

• Mark Hoffmann

• Rasmus Frank Kristensen

• Kristina Hoffmann Larsen

• Peter Larsen

• Carsten Vølcker

4

Chapter 2

Introduction

The theory of numerical solution of ordinary differential equations (ODE’s) has been de-
veloped since the early part of this century beginning with Adams and Runge and Kutta.
At the present time the theory is well understood and the development of software has
reached a state where robust methods are available for a large variety of problems. The
theory for Differential Algebraic Equations (DAE’s) has not been stydied to the same ex-
tent , early attempts have been made by Gear and Petzold in the early 1970’es. Not only
are the problems harder to solve but the theory is also harder to understand.
The problems that lead to DAE’s are found in many applications of which some are men-
tioned in later chapters of these lecture notes. The choice of sources for problems has been
selected by the students following the course. It is the intention to illustrate the application
of DAE-theory in practical environments spanning a wide range of engineering fields rather
than covering a specific field more densely.
For a detailed study of the methods that may be applied to solve the different example
problems we refer to the references [1, 18, 20]

2.1 Definitions

The problems considered are in the most general form a fully implicit equation of the form

F (y′, y) = 0 (2.1.1)

F and y are of dimension n and F is assumed to be sufficiently smooth. This is the au-
tonomous form , a non-autonomous case is defined by

F (y′, y, x) = 0 (2.1.2)

5

Since the non-autonomous equation may be made autonomous by adding the equation
x′ = 1 we need not consider the non-autonomous form seperately. (this may be subject to
debate since the non-autonomous case can have special features)
A special case arises when we can solve for the y′-variable since we can make the equation
explicit and obtain a system of ODE’s, the condition for this is that ∂F

∂y′ is nonsingular.
The case when this process does not work is the case we wish to consider in these notes it
is the case when ∂F

∂y′ is singular. We talk about systems of Differential Algebraic Equations
or DAE’s for short.

2.1.1 Semi explicit DAE’s

The simplest form of problem is the one where we can write the system in the form

y′ = f(y, z)
0 = g(y, z)

and gz has a bounded inverse in a neighbourhood of the solution.
Assuming we have a set of consistent initial values (yo, zo) it may be shown that in this case
z can be found as a function of y. This implies local existence, uniqueness and regularity
of the solution.

2.1.2 Index

Numerous examples exist where the conditions above do not hold. These cases have general
interest and below we give a couple of examples from applications.

• Example 1.1: Singular algebraic constraint.
We consider the problem defined by the system of three equations

y′1 = y3 (2.1.3)

0 = y2(1 − y2) (2.1.4)

0 = y1y2 + y3(1 − y2) − t (2.1.5)

The second equation has two solutions y2 = 0andy2 = 1 and we may get different
situations depending on the initial conditions. t is a parameter of our choice. case 1:
if y2 = 0 we get y3 = t from the last equation and we can solve the first equation for
y.
case 2: Setting y2 = 1 we get y1 = t from the last equation and y3 = 1 comes out of
the first one.

6

• Example 1.2: implicit algebraic variable.

y′ = f(y, z) (2.1.6)

0 = g(y) (2.1.7)

In this case we have that gz = 0 and the condition of boundedness of the inverse does
not hold. however if the condition that gyfz has a bounded inverse holds we can do
the trick of differentiating the second equation leading to

0 = gy(y)f(y, z) (2.1.8)

and this will then be like the semi explicit case where the conditions are satisfied.
We now introduce the definition of Index

• definition: Differential index. For general DAE-systems we define the index along
the solution path as the minimum number of differentiations of the systems that is
required to reduce the system to a set of ODE’s for the variable y.

• description The concept of index has been introduced in order to qualify the level of
difficulty that is involved in the solution of the DAE. This must be understood in the
way that methods that converge for one index may not be useful for higher index.
Index is a concept that indicates the degree of difficulty.

• definition: Perturbation index. The perturbation index is defined as beeing comple-
mentary to the differential index [18] Problem (1) has perturbation index m along a
solution y if m is the smallest integer such that , for all functions ŷ having a defect

f(y′, y) = δ(x) (2.1.9)

there exists an estimate

‖ ŷ(x) − y(x) ‖≤ C(‖ ŷ(0) − y(0) ‖ +max ‖ δ(ξ) ‖ + . . . +max ‖ δ(m−1)(ξ) ‖)
(2.1.10)

whenever the expression on the right hand side is sufficiently small. C is a constant
that depends only on the function f and the length of the interval. If we consider
the ODE-case (1.1), the lemma by Gronwall (see ref HWN1 p. 62) gives the bound

‖ ŷ(x) − y(x) ‖≤ C(‖ ŷ(0) − y(0) ‖ + max
0≤ξ≤x

‖
∫ ξ

0
δ(t)dt ‖). (2.1.11)

If we interpret this in order to find the perturbation index it is obviously zero.

7

• Index reduction A process called index reduction may be applied to a system for
lowering the index from an initially high value down to f.ex. index one. This reduction
is performed by successive differentiation and is often used in theoretical contexts. It
is illustrated by an example.

• example 2.1 We look at example 1.2, (8),(9) and differentiate equation (9) two times
whereby we obtain

0 = gyfx + gyyf
2 + gyfzz

′ (2.1.12)

z′ =
gyfx + gyyf

2

gyfz
(2.1.13)

The two differentiations have reduced the system to one of index zero and we can
solve the resulting ODE-system using well known methods.

If we want to find the perturbation index we may look at the equations for the
perturbed system

ŷ′ = f(ŷ, ẑ) + δ(x) (2.1.14)

0 = g(ŷ) + θ(x) (2.1.15)

Using differentiation on the second equation leads to

0 = gy(ŷ)f(ŷ, ẑ) + gy(ŷ)δ(x) + θ′(x) (2.1.16)

¿From the estimates and using Gronwalls lemma 2.1.11 like we did above we can now
obtain

‖ ŷ(x) − y(x) ‖≤ C(‖ ŷ(0) − y(0) ‖ +
∫ x

0
(‖ δ(ξ) ‖ + ‖ θ′(ξ) ‖)dξ (2.1.17)

‖ ẑ(x) − z(x) ‖≤ C(‖ ŷ(0) − y(0) ‖ +max ‖ δ(ξ) ‖ +max ‖ θ′(ξ) ‖) (2.1.18)

All the max- values are to be taken over 0 ≤ ξ ≤ x.

2.1.3 Singular Perturbations.

One important source for DAE-problems comes from using singular perturbations [17] Here
we look at systems of the form

y′ = f(y, z) (2.1.19)

εz′ = g(y, z), 0 < ε� 1 (2.1.20)

Letting ε go to zero (ε → 0) and differentiating the second equation we obtain an index
one problem in semi-explicit form. This system may be proven to have an ε - expansion
where the expansion coefficients are solution to the system of DAE-s that we get in the
limit (20,21). We will not here go into more detail around singular perturbations but refer
to later examples.

8

2.2 The Van der Pol equation

A very famous test problem for systems of ODE’s is the Van der Pol equation defined by
the second order differential equation

y” = µ(1 − y2)y′ − y

This equation may be treated in different ways, the most straigtforward is to split the
equation into two by introducing a new variable for the derivative

y1 = y, y2 = y′

y1
′ = y2, y2

′ = µ(1 − y1
2)y2 − y1

The system of two ODE’s may be solved by any standard library solver but the outcome
will depend on the solver and on the parameter µ. If we divide the second of the equations
by µ we get an equation that has the character of a singular perturbation problem. Letting
µ→ ∞ we see that this corresponds to ε→ 0 in equation (21).
Several other approaches may show other aspects of the nature of this problem for example
[1] introduces the transformation t = x/µ after a scaling of y2 by µ we get

y′1 = y2

y′2 = µ2((1 − y1
2)y2 − y1)

The introduction of ε = 1/µ2 finally results in a problem in singular perturbation form

y′1 = y2

εy′2 = (1 − y1
2)y2 − y1

As explained previously this problem will approach a DAE if ε → 0 Using terminology
from ODE’s the stiffness of the problem increases as ε gets smaller giving rise to stability
problems for numerical ODE-solvers that are explicit while we expect methods that are A-
or L-stable to perform better. Although the Van der Pol equation is not really a singular
perturbation problem by nature it shares the characteristics of one as ε→ 0 .

9

Chapter 3

The Plane Double Pendulum

by : Marie Bro

3.1 Introduction

This chapter deals with the plane double pendulum and the problems that arise when
treating it as a DAE-system. The double pendulum is interesting because it exhibits
interesting and very complicated behaviour and when generalized to a pendulum consisting
of n joints it can be used to model the motions of a rope or a long chain hanging from a
fixed point.

The plane double pendulum consists of two masses m1 and m2 moving in the plane R
2

connected by a bar of length �2 with no mass. The mass m1 is connected to a fixed point
by a bar without mass of length �1. The coordinate system is chosen so that the fixed point
is at the origin (see figure 3.1). The only external force on the system is the gravitational
force, since is ignored.

It should be quite obvious that this system can be formulated as a DAE-system. The two
masses move in the plane, but they are confined to move on certain manifolds. It is clear
that m1 will move on a circle with radius �1, and that m2 is confined to the annulus with
inner radius �2− �1 and outer radius �2 + �1. However it is possible to formulate the double
pendulum as an ODE-system. If it is formulated in polar coordinates it is a system with
two degrees of freedom described by four ODE’s, whereas in cartesian coordinates it will
be a system with 4 space coordinates desribed by 8 ODE’s with two algebraic constraints
making it a system with 2 degrees of freedom i.e. it is a DAE system.(sections 3.2 and
3.4)

10

O

θ1

θ2

m1

x

y

m2

�1

�2

Figure 3.1: The plane double pendulum

It is not very clear why it should be interesting to treat this problem in cartesian coordinates
since the dimension of the system is doubled doubled compared to polar coordinates and
on top of that a DAE-formulation is harder to deal with than an ODE-formulation. It
turns out however that the equations in cartesian coordinates seems much simpler, and it
is easier to add more masses. In section 3.4 it is shown that when formulated in cartesian
coordinates analytically it is no harder to append the n’th mass than it is to append the
second mass i.e. turning the simple plane pendulum into a double pendulum.

However the cartesian formulation cause some problems since it gives rise to singularities
which has nothing to with the physics of the problem. They related to the choice of
coordinates. The main goal of this chapter will be to deal with these singularities and to
investigate whether they make the formulation in cartesian coordinates too hard to handle
numerically. Even though if is possible to handle the singularities for the simple pendulum
and for the double pendulum, it might not be possible to handle the singularities for a
pendulum with a large number of joints in practice, since the system has a singularity for
each joint.

3.2 Formulation and reduction of the DAE

The double pendulum can be formulated in the Hamiltonian formalism [13]. The kinetic
energy, T , of the system is given by:

11

T =
m1

2
(
ẋ2

1 + ẏ2
1

)
+
m2

2
(
ẋ2

2 + ẏ2
2

)
(3.2.1)

the potentiental energy, V , is given by:

V = m1gy1 +m2gy2 (3.2.2)

this gives us the Hamiltonian, H:

H =
px1

2 + py1
2

m1
+
px2

2 + py2
2

m2
+m1gy1 +m2gy2

from which we obtain the dynamical equations:

ẋ1 =
px1

m1
ṗx1 = 0 (3.2.3a)

ẏ1 =
py1
m1

ṗy1 = m1g (3.2.3b)

ẋ2 =
px2

m2
ṗx2 = 0 (3.2.3c)

ẏ1 =
py2
m2

ṗy2 = m2g (3.2.3d)

These differential equations is just a description of two independent masses in a gravi-
tational force field. To describe the double pendulum they must be combined with the
algebraic constraints

x1
2 + x2

2 − �1
2 = 0 (3.2.4a)

(x2 − x1)
2 + (y2 − y1)

2 − �2
2 = 0 (3.2.4b)

which, as we will see shortly introduce horizontal forces in the system.

The approach to solve the DAE is index reduction i.e. we diffrentiate the constraints with
respect to time in order to obtain differential equations instead of numerical equations.
Differentiation of the first constaint (equation (3.2.4a)) gives:

12

2x1ẋ1 + 2y1ẏ1 = 0 ⇔
2
m1

x1px1 +
2
m1

y1py1 = 0 ⇔
x1px1 + y1py1 = 0

This means that the position vector and the momentum vector of m1 are orthogonal which
is equivalent to �1 being fixed. However this constraint does not reveal the length of
the bar only that it is constant. The actual length of the bar will come from the initial
conditions.

It is still an algebraic constraint so we differentiate once more:

ẋ1px1 + x1ṗx1 + ẏ1py1 + x1ṗy1 = 0 ⇔
px1

2

m1
+ x1ṗx1 +

py1
2

m1
+m1gy1 = 0 ⇔

x1ṗx1 = −px1
2

m1
− py1

2

m1
−m1gy1

Differentiating the second constraint (equation (3.2.4b)) gives:

(x2 − x1)
(
px2

m2
− px1

m1

)
+ (y2 − y1)

(
py2
m2

− py1
m1

)
= 0

Just like above we get a new algebraic constraint, and again it expresses orthogonality
between a position vector of a point and its velocity vector. This time it is the position
and the velocity of m2 in a coordinate system centered at m1. Like the case for �1 this
implies that �2 is fixed but the length of the bar is no longer given by the equations. It
will be supplied by the initial conditions. The second differentiation gives:

(ẋ2 − ẋ1)
(
px2

m2
− px1

m1

)
+ (x2 − x1)

(
ṗx2

m2
− ṗx1

m1

)

+ (ẏ2 − ẏ1)
(
py2
m2

− py1
m1

)
+ (y2 − y1)

(
ṗy2
m2

− ṗy1
m1

)
= 0

Using equations (3.2.3) we can substitute the time derivatives of the posistion coordinates
with the momenta:

13

(
px2

m2
− px1

m1

)2

+ (x2 − x1)
(
ṗx2

m2
− ṗx1

m1

)
+
(
py2
m2

− py1
m1

)2

+ (y2 − y1)
(
m2g

m2
− m1g

m1

)
= 0

From this we obtain:

(x2 − x1)
(
ṗx2

m2
− ṗx1

m1

)
= −

(
px2

m2
− px1

m1

)2

−
(
py2
m2

− py1
m1

)2

The system can now be written as:

M

ẋ1

ẏ1

ẋ2

ẏ2

ṗx1

ṗy1
ṗx2

ṗy2

=

px1

py1
px2

py2
−px1

2 − py1
2 −m1

2gy1

g

−
(
px2
m2

− px1
m1

)2 −
(
py2
m2

− py1
m1

)2

g

where M is the mass matrix:

M =

m1 0 0 0 0 0 0 0
0 m1 0 0 0 0 0 0
0 0 m2 0 0 0 0 0
0 0 0 m2 0 0 0 0
0 0 0 0 m1x1 0 0 0
0 0 0 0 0 1

m1
0 0

0 0 0 0 x1−x2
m1

0 x2−x1
m2

0
0 0 0 0 0 0 0 1

m2

The system apparently have index 2, but there are two singularities in the reduced system.
The mass matrix is singular for x1 = 0 for x1 = x2, i.e. when either one of the bars is in
a vertical position the system has a singularity. This means that it will occur all the time
and therefore it has to be dealt with. It cannot be deleted by altering the orientation of
the coordinate system. This will only make another direction singular which it not solving
our problem since we want to be able to model all kinds of trajectories for the double
pendulum.

14

At the singularities the system is actually still a DAE i.e. the system does not have the
same index in all points. These singularities has nothing to do with the properties of the
pendulum it stems from the choice of coordinates.

3.3 Consistent initial conditions

As indicated in the introduction not all inital conditions are consistent with the system.
First of all the position vectors must be right: The mass m1 must be positioned on a circle
centered at the origin with radius �1 and m2 must be positioned a distance �2 from m1.
Next not all momenta are allowed: m1 must stay on its circle and m2 must stay at the
exact distance �2 from m1.

An easy way to obtain consistent initial condition in cartesian coordinates is to give the
initial conditions in polar coordinates, and then calculate the corresponding cartesian co-
ordinates.
The position in cartesian coordinates is given by (see figure 3.1):

x1 = �1 sin(θ1) (3.3.1a)

y1 = −�1 cos(θ1) (3.3.1b)

x2 = �1 sin(θ1) + �2 sin(θ2) (3.3.1c)

y2 = −�1 cos(θ1) − �2 cos(θ2) (3.3.1d)

The corresponding momenta are obtained by differentiating the position with respect to
time:

px1 = mẋ1 = m1θ̇1�1 cos(θ1) (3.3.2a)

py1 = mẏ1 = m1θ̇1�1 sin(θ1) (3.3.2b)

px2 = mẋ2 = m1θ̇1�1 cos(θ1) +m2θ̇2�2 cos(θ2) (3.3.2c)

py2 = mẏ2 = m1θ̇1�1 sin(θ1) +m2θ̇2�2 sin(θ2) (3.3.2d)

Thus we can obtain the sought initial, (x1,0, y1,0, px1,0 , py1,0) and (x2,0, y2,0, px2,0 , py2,0), by
giving the corresponding polar initial conditions (θ1,0, θ̇1,0) and (θ2,0, θ̇2,0). In polar coor-
dinates all initial conditions are consistent, since all angles and all angular velocisties are
allowed.

15

3.4 The n-mass pendulum

In this section we extend the system to have as many joints as we want it to have. We
start by adding a third joint consisting of a mass m3 connected to m2 by a massless bar
of length �3. This will add four differential equations and an algebraic constraint to our
system. The ODE’s are the equations for m3 in a gravitational force field:

ẋ3 =
px3

m3
ṗx3 = 0

ẏ3 =
py3
m3

ṗy3 = m3g

and the algebraic constraint is that m3 has the constant distance of �3 to m2:

(x3 − x2)
2 + (y3 − y2)

2 − �3
2 = 0

Apart from the indices, the equations for m3 are identical to the equations for m2. Thus
it is no different to add the third joint than it is to add the second joint. From this
we can conclude, that if we can model the double pendulum in cartesian coordinates we
can in principle model a pendulum with any number of joints without further conceptual
difficulties. The size of the system might though give numerical problems.

The n’th (n ∈ N) joint will add the following equations to the reduced system

ẋn =
pxn

mn
(3.4.1a)

ẏn =
pyn

mn
(3.4.1b)

(xn − xn−1)
(
ṗxn

mn
− ṗxn−1

mn−1

)
= −

(
pxn

mn
− pxn−1

mn−1

)2

−
(
pyn

mn
− pyn−1

mn−1

)2

(3.4.1c)

ṗyn = mng (3.4.1d)

This shows us two things: The first one is that for each joint another singularity is added.
Whenever a bar passes a vertical position there is a singularity. The second one is that the
only direct influence on a particular mass in the system comes from the two neighbouring
masses and is supplied by the vertical forces given by equation (3.4.1c). As a consequence of
that the already obtained equations are not altered by the addition of another joint.

Now we will look into the polar formulation of the pendulum and try to add more joints.
We will mainly look at the energy of the system, since it provides the dynamic equations
and they are very complicated

The energy for the double pendulum expressed in polar coordinates can be obtained by
substituting the coordinate and momentum transformations from cartesian to polar co-
ordinates (equations (3.3.1) and (3.3.2)) into the expressions for the energy (3.2.1) and
(3.2.2):

16

T =
1
2
(m1 +m2)�12θ̇2

1 +
1
2
m2�2

2θ̇2
2 +m2�1�2θ̇1θ̇2 cos (θ2 − θ1) (3.4.2)

V = −m1g�1 cos(θ1) −m2g (�1 cos(θ1) + �2 cos(θ2)) (3.4.3)

The equations for the time derivatives of the angles, θi, (i.e. the angular velocities) comes
from the terms in the energy functions that depend on θ̇i. The equations for the time
derivatives of the angular momenta, pi, (i.e. the forces) comes from the terms that depend
on θi. The reader is refered to the [13] for a derivation of the Hamiltonian formalism and
the procedure when formulating a Hamiltonian system.

O

θ2

x

y

m3

�2

m2

�3

θ3

θn

mn−1

�1

θ1

m1

�4

m4

�n

mn

θ4

Figure 3.2: A pendulum with n joints

The kinetic energy, equation (3.4.2), has a term where both θ̇1 and θ̇2 appears. It means

17

that the time evolution of the two angles are coupled to each other through the equations
for the angular velocities. The same term also depends on both θ1 and θ2, so the time
evolution is also coupled through the force equations.

The potential energy, equation (3.4.2), does not contain any terms dependent on more than
one dynamic variable so it does not provide much coupling allthough it does introduce m2

into the equation of θ̇1, as does the first term of the kinetic energy.

Now we look at the kinetic energy of the the 3-joint pendulum (the potential does not
contain any interesting extra terms):

T =
1
2
(m1 +m2 +m3)�12θ̇2

1 +
1
2
(m2 +m3)�22θ̇2

2 +
1
2
m3�3

2θ̇2
3

+ (m2 +m3)�1�2θ̇1θ̇2 cos (θ2 − θ1) +m3�1�3θ̇1θ̇3 cos (θ3 − θ1)

+m3�1�3θ̇2θ̇3 cos (θ3 − θ2)

It is obtained from the kinetic energy in cartesian coordinates the same way as for the
double pendulum. In stead of just one term dependent of four dynamical variables it has
three. The time evolution of each of the angles is coupled directly to each of the other angles
and not just to the neigbouring ones. This means that when working in polar coordinates
the pendulum with three joints is not obtained by just adding to new equations to the
system of the double pendulum. All the equations are new and that makes it more difficult
to extend the system. However it does not make the numerical calculations that much
harder. The three joint pendulum only consist of two more equations than the double
pendulum, and no singularities are added.

The kinetic energy of the 4-joint pendulum is even worse. This is due the fact the the extra
terms stems from squaring a quantity of four terms. In the n-joint pendulum the extra
terms stem from squaring a quantity of n terms.

3.5 Implementation

The strategy is to start out by implementing the simple plane pendulum and find out how
to handle the singularity. Then the rest of the joints can be appended one at a time.
For each joint a new singularity has to be handled by the solver. Hopefully it will be
the first two joints that gives the most dificulties. Once the singularities of the double
pendulum are handled it should not be a problem writing the code for handling the rest of
the singularities. Numerical problems might arise though, as the number of singularities is
raised.

18

The simple pendulum, in reduced form, is given by:

ẋ
ẏ
ṗx
ṗy

 =

px

m
py

m

−1
x

(
px

2+py
2

m +mgy
)

mg

Note that it is not formulated as a system with a mass matrix. The standard ODE-solvers
of MatLab can all be applied to systems formulated with a mass matrix, but none of
them are applicable to this problem because the mass matrix is singular. Some of them
can handle an ODE-system with a singular mass matrix (i.e. a DAE) but it has to be index
one and apperently the index of this system is greater than one at the singularity. It is not
possible to use MatLabs event detection in handling the singularity since it cannot detect
events where the mass matrix is singular. Therefore it is nescesarry to write a method that
can handle the singularity.

A first approach is to use a simple method with constant stepsize. This will make the risk of
hitting the singularity smaller than when the stepsize is variable, in which case the stepsize
will be controlled by the size of the error. When the solution approaches the singularity
the error grows and the stepsize is reduced and thus it almost certain that the singularity
is hit. With constant stepsize it should be possible to step over the singularity.

We try with the trapezoidal rule:

yn+1 = yn +
h

2
(fn + fn+1) (3.5.1)

where the ODE is given by y′ = f(y) and fn = f(yn). The method is implicit so we have to
use iterations to take a step along the solution curve. It turns out that fixed point iterations
are very fast, when the mass is not too close to the singularity. When |x| > 0.15 and the
stepsize is h = 10−3 it takes only iterations to obtain an accuracy of size 10−6. When
|x| < 0.15 the stepsize has to be smaller other wise the fixed point iteration diverge quite
fast. In fact to avoid divergence of the fixed point iteration when close to the singularity
one has to keep decreasing the stepsize, and this will make it impossible to step over the
singularity.

Newton iterations might then be interesting. When solving the nonlinear equation

y = φ(y)

using Newtons method the iteration scheme is given by [?]:

19

yv+1 = yv −
[
I − ∂φ

∂y
(yv)
]−1

[yv − φ(yv)]

where ∂φ
∂y (yv) is the differential (i.e. the Jacobi-matrix) of φ with respect to y at yv. In

our case φ is the righthand side of equation (3.5.1) and we are solving for yn+1. Therefore
the scheme is:

yv+1
n+1 = yvn+1 −

[
I − ∂φ

∂yn+1
(yvn+1)

]−1

[yvn+1 − (yn +
h

2
(fn + f(yvn+1)))]

= yvn+1 −
[
I − h

2
∂f

∂y
(yvn+1)

]−1

[yvn+1 −
(
yn +

h

2
(
fn + f(yvn+1)

))
]

Thus it is not a problem that the Jacobi matrix is singular because it is subtracted from
the unit matrix before inversion.

After stepping over the singularity we use the continuous extension [14] of trapezoidal rule
to determine the exact time passing the singularity. In this manner we can avoid drifting.
The solution obtained when stepping over the singularity is probaly not very accurate, and
by going back a step and calculating the time of crossing using a continuous version of
the trapezoidal rule it should be possible to get a more accurate value of the dynamical
variables right after the crossing.

The continuous extension is given by:

y(tn + θh) = yn + h

(
k1θ

(
1 − θ

2

)
+ k2θ

)

where yn+1 = y(tn + h) and θ ∈ [0; 1] is parameter. The quantities k1 and k2 stems from
viewing the trapezoidal rule as a two-stage Runge-Kutta method. They are thus given
by:

k1 = fn

k2 = fn+1

Note that we have already made the step so therefore k2 is known. We know that the
singularity occurs when x = 0 therefore we can obtain the parameter value θ by solving
the scalar equation:

x(tn + θh) = 0 ⇔

yn(1) + h

(
fn(1)θ

(
1 − θ

2

)
+ fn+1(1)θ

)
= 0

20

where the number 1 in parentheses refers to the first element of the vector. The solution,
θ∗ to this equation reveals the time for the occurence of the singularity. By setting yn+1 =
y(tn + (θ∗ + ε)h) we get a starting point after the singularity which is very close to the
singularity and this should give us a better solution curve.

A last comment in this section is concerneing the stepsize. Allthough stated in the begin-
ning it is not nescesarry to keep stepsize completely constant. When crossing the singularity
it is important to have quite small stepsize, but away from the singularity there is no reason
for this. As long as there is a lower bound for the stepsize there is no problem in using
differentstepsizes in different domains. In this implementation the stepsize is not deter-
mined by the error but by the size of the x-coordinate. We operate with three different
stepsizes.

3.6 Numerical results

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x
0
 =0.71, y

0
 =−0.70, px

0
 =3.54, py

0
 =3.54

x

y

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x
0
 =0.87, y

0
 =−0.50, px

0
 =2.50, py

0
 =4.33

x

y

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x
0
 =1.00, y

0
 =0.00, px

0
 =0.00, py

0
 =2.00

x

y

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x
0
 =0.71, y

0
 =0.71, px

0
 =−3.54, py

0
 =3.54

x

y

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x
0
 =0.78, y

0
 =0.62, px

0
 =0.62, py

0
 =−0.78

x

y

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x
0
 =0.34, y

0
 =0.94, px

0
 =0.94, py

0
 =−0.34

x

y

Figure 3.3: The trajectories for the pendulum with different initial conditions without at-
temps to step over singularity. Thus the stepsize is not changed as the singularity is ap-
proached and the fixed point iterartions fail at some point. Before this happens the mass
stay on a circular trajectory. The small circle marks the starting point.

The numerical results are not very extensive. The singularity in the simple pendulum has
been passed but there has been made no continuous extension. The double pendulum has
not been implemented.

There are good news though. When the solution curve is not close to the singularity it
displays the kind of dynamics we expect. It follows a circular path and it is affected by

21

gravity, so it looses speed and in some cases changes direction when going upwards (see
figures 3.3 og 3.4). The figures have been obtained by solving the system without making
any attempts to overcome the singularity. Just to see how far the fixed point iteration gets
us. Of course it might happen that changing the stepsize will get us past the singularity,
but figure 3.5 shows that this is not the case. It is not posssible to pass the singularity
using the trapezoidal rule and fixed point iterations. This is due to the fact that the fixed
point iteration diverge sufficiently close to the singularity. Figure 3.6 is the graphs of the
length of the pendulum as a function of time.The graphs give a hint that the accuracy
of this method, as expected, is increased as the stepsize is reduced. Especially the graph
for h = 10−5 is impressive, but it is not really possible to use this stepsize, since the
computations take too long. It seems optimal to use the stepsize h = 10−3 away from the
singularity, reducing it to h = 10−4 for a while close to the singularity and then switch to
Newton iterations. This method have not yet really had succes. Although the singularity

0 0.2 0.4 0.6 0.8 1
0.9975

0.998

0.9985

0.999

0.9995

1

1.0005

x
0
 =0.71, y

0
 =−0.70, px

0
 =3.54, py

0
 =3.54

t

le
ng

th

0 0.2 0.4 0.6 0.8 1
0.9984

0.9986

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1

1.0002

x
0
 =0.87, y

0
 =−0.50, px

0
 =2.50, py

0
 =4.33

t

le
ng

th

0 0.2 0.4 0.6 0.8
0.9992

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1

1.0001

x
0
 =1.00, y

0
 =0.00, px

0
 =0.00, py

0
 =2.00

t

le
ng

th

0 0.2 0.4 0.6 0.8 1
0.9996

0.9996

0.9997

0.9997

0.9998

0.9998

0.9999

0.9999

1

1

x
0
 =0.71, y

0
 =0.71, px

0
 =−3.54, py

0
 =3.54

t

le
ng

th

0 0.2 0.4 0.6 0.8 1
0.9992

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1

x
0
 =0.78, y

0
 =0.62, px

0
 =0.62, py

0
 =−0.78

t

le
ng

th

0 0.2 0.4 0.6 0.8
0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1

x
0
 =0.34, y

0
 =0.94, px

0
 =0.94, py

0
 =−0.34

t

le
ng

th

Figure 3.4: These graphs shows the length of the bar as a function of time. It is seen to be
as good as constant until the singularity is approached.

has been passed the timestep needed in order to make the Newton iterations converge is
very small and therefore the computation time is very large, in fact so large that unless it
can somehow be decreased appreciably it is not realistic to use this model to simulate the
double pendulum. The long computation time is probably also related to the fact that the
matrix that is inverted when using the Newton method is very close to singular.

Another approach to overcoming singularities in DAE’s can be found in [16]. This article
describes a method for transforming the singular ODE into a nonsingular ODE by making
a transformation in the independent variable. However it will take some work to make this

22

operational since the approach in the article is rather abstract an no concrete examples are
given.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

 h = 10−2

x

y

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

 h = 10−3

x

y

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

 h = 10−4

x

y

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

 h = 10−5

x

y

Figure 3.5: The trajectory for the initial conditions (x1,0, y1,0, px1,0, py1,0) =
(0.34, 0.94, 0.94,−0.34) with different stepsizes. Obviously the smaller the stepsize the closer
to the singularity we can get, but does not seem possible to pass the singularity.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

1.001
h = 10−2

t

le
ng

th

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1
h = 10−3

t

le
ng

th

0 0.2 0.4 0.6 0.8 1
0.9999

0.9999

0.9999

1

1

1

1

1
h = 10−4

t

le
ng

th

0 0.2 0.4 0.6 0.8 1
1

1

1

1

1

1

1

1

1

1

h = 10−5

t

le
ng

th

Figure 3.6: The graphs of the length as a function of time for different stepsizes for the
initial condition (x1,0, y1,0, px1,0 , py1,0) = (0.34, 0.94, 0.94,−0.34)

23

3.7 Conclusion

The double pendulum has been formulated in cartesian coordinates which is justified by the
fact, that the equations are easier to survey than the polar formulation. However it gives
rise to numerical difficulties, because the equations contains singularities which are due to
the choice of coordinates. The strategy for overcoming these singularities has been to use
a simple method with censtant stepsize and then simply just ’step over’ the singularity. It
has not had great succes because the computation time is too long.

24

Chapter 4

Different approaches to ODE
systems with invariants.

by : Michaël Gineste

4.1 Introduction

This report will focus on a system of ordinary differential equations with an invariant
belonging to it. This invariant is a property of the system, some instance which (usually)
is constant over time.
The dynamical system in regard is the restricted three body problem which has an energy
conservation property.

Many ODE or DAE systems has one or more invariants along with the model of the system,
some being just extra information on the solution, others an important quantity preferably
conserved.

This report will investigate how this invariant can be used to improve the numerical solution
of the system. This report is somehow an implementation of the methods presented in [29],
and an attempt to evaluate their performence. The approaches differ in fundamental idea,
so a detailed description of arguments and theory behind each approach is not presented,
but should easily be found in the litterature.

25

4.2 The model

The restricted three body problem is used as test problem, which expresses a particle with
neglible mass in the gravitational field of two much larger masses, in this case a satellite
moving in the Earth-Moon system. In figure 4.1 the reference system of the dynamics is
shown, the position of earth is (−µ, 0) and the moon is positioned in (1− µ, 0), where µ is
the mass ratio between moon and earth. Here origo is in the center of gravity.

x

R2

y

R1

−µ 1 − µ

Figure 4.1: Model of restricted three body problem

Newtonian formulation

The differential equations describing the satellite dynamics are

x′′ = x+ 2y′ − β
x+ µ

R3
1

− µ
x− β

R3
2

(4.2.1a)

y′′ = y − 2x′ − β
y

R3
1

− µ
y

R3
2

(4.2.1b)

where β = 1 − µ, and the distances

R1 =
(
(x+ µ)2 + y2

)1
2 , R2 =

(
(x− β)2 + y2

)1
2 .

Formulated as an first order ODE system with y = (x, y, x′, y′)T the system (4.2.1) can be
written as a autonomous system

y′ = f(y) =

y3

y4

y1 + 2y4 − β y1+µ
R3

1
− µy1−β

R3
2

y2 − 2y3 − β y2
R3

1
− µ y2

R3
2

 (4.2.2)

26

The system (4.2.1) has a known first integral invariant, know as the Jacobi Integral

I = 1
2

(
x′2 + y′2 − x2 − y2

)− β

R1
− µ

R2
(4.2.3)

which describes the conservation of energy of the moving satellite.

This invariant should be constant over time, so this requirement can be regarded as a
’constraint’ on the ODE system, i.e. the solution to (4.2.2) should be on the manifold

M =
{
y ∈ R

4 | g(y) = I(y(t)) − I(y(0)) = 0
}

.

4.3 The approaches

The overall goal with this report is to investigate how different formulation of the numerical
solution can affect the solution, especially with long-time integration.

Different formulation is meant in a broader meaning, the physical problem is still the same,
but the numerical method is changed.

The cases for evaluation are:
1. Plain ODE system.

2. Formulation as DAE problem by inclusion of invariant.

3. Postprocessing of solution to ODE system (4.2.1) by use of invariant (4.2.3).

4. Reformulation of model as Hamiltonian system, applied with symplectic integrator.

The numerical methods used to integrate the solution will be of an explicit and implicit
kind with fixed stepsizes, the Improved Euler method and the implicit midpoint rule (IMR).
These methods are of order two, and are used to better recognize the effects of the different
approaches. Each of the initiatives is applied to calculations with both the explicit and the
implicit method.

One could argue that such low order methods should not be used for long integration of
this dynamical system (and especially not with fixed stepsize), but in test with use of the
Matlab solver ode45, the numerical method was simply too good to see the effects of the
initiatives.

The Butcher tableau of the two methods are presented in figure 4.2, since these methods
are computed as such (i.e. as RK methods).

27

0 0
1 1 0

1
2

1
2

(a) Improved Euler

1
2

1
2

1

(b) Implicit Midpoint Rule

Figure 4.2: Used numerical schemes

The implicit midpoint rule is a symplectic method (since it is a one stage Gauss-Legendre
method) and hence useful to evaluate the reformulation of the system (4.2.2) into a Hamil-
tonian system, see section 4.3.4.

4.3.1 Plain ODE system

In this case, nothing is done to the system (4.2.2). Instead the circumstances under which
the tests are performed are elaborated.

Evaluation of the numerical solution somehow requires a periodic solution which doesn’t
pass too close to the singular points (x, y) = (1 − µ, 0) or (−µ, 0), since a fixed stepsize is
used in this report. A more or less classic periodic solution is used, which has the initial
conditions:

x(0) = 1.2 x′(0) = 0
y(0) = 0 y′(0) = −1.04935750983031990726

along with the ratio µ and period T

µ = 1/82.45 T = 6.19216933131963970674 .

The solution to this IVP can be seen in figure 4.3.

The error of the numerical solution is chosen to be the drift in position in one dimension
i.e. when the periodic solution crosses the line y = 0, the error is as

error(k) = |x(0) − xn(kT)| (4.3.1)

where xn(kT) is the solution found (interpolated) at y = 0 for the k’th period. The
numerical solution isn’t always near the axis at a multiplum of the period, so its the period
number that counts.

This error is used to evaluate the numerical method over ’long-time’ integration (10 times
a period).

28

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

Figure 4.3: Orbit

4.3.2 DAE formulation

A way of including the invariant-’constraint’ into the ODE system, turning it into a DAE
system, is by use of Lagrange multipliers. The multiplier λ is introduced in (4.2.2) as

y′ = f(y) − G(y)λ
0 = g(y)

(4.3.2)

where g(y) = I(y) − I(y0) and the function G(y) is chosen to be (∂g/∂y)T , which gives
an orthogonal projection of the solution onto the constraint manifold M.

Performing index reduction on the constraint would give λ in terms of y

λ =
gyf

gyG

giving an index-1 DAE system, for which an appropriate solver could be applied, for ex-
ample the Matlab solver ode15s or ode23t.

Unfortunately, a property of the definition of a first integral to the system (4.2.2), is
that

∂I

∂y
f = 0

and since ∂I/∂y = gy, the introduction of the multiplier into the ODE system gives
nothing.

29

4.3.3 Postprocessing

By postprocessing we will mean taking a time-step in the solution of the ODE system
with some method, and then ’pulling back’ or projecting this estimate onto the constraint
manifold. Different ways of doing this are present in the litterature, an approach in [29]
is: having solution value yn−1, advancing one step with an ODE method φh giving an
estimate ỹ and then solving

‖ỹ − yn‖2 = min
yn

g(yn) = 0

which constitutes a nonlinear constrained least squares problem.

This approach was implemented by use of the Matlab built-in function fmincon which
”finds a constrained minimum of a function of several variables” (from fmincon help) by
the setup

fmincon(‖ỹ − yn‖, ỹ, [], [], [], [], [], [], g(yn))

where g(y) is as in (4.3.2).

Note: The use of this function is quite evaluation expensive, implementation of an efficient
algorithm set up for this specific problem could probably make this solution form more at-
tractive.

Another way of doing postprocessing is to introduce a stabilizing term in the system such
that the ODE system becomes

y′ = f(y) − γF (y) (I(y) − I0) (4.3.3)

where the term F is
F = ET

(
EET

)−1
, E(y) =

∂I

∂y

such that for the system (4.2.2) the stabilization function F becomes

F (y) =

(
−y1 + β y1+µ

R3
1

+ µy1−β
R3

2

)
/D(y)(

y2

(−1 + β
R3

1
+ µ

R3
2

))
/D(y)

y3/D(y)
y4/D(y)

 (4.3.4)

D(y) =
(
y2
2

(
−1 +

β

R3
1

+
µ

R3
2

)2
+
(
−y1 + β

y1 + µ

R3
1

+ µ
y1 − β

R3
2

)2
+ y2

3 + y2
4

)
Note that this stabilization term vanishes on the constraint manifold.

30

This stabilization is applied after each advancement by the ODE method φh, such that the
scheme becomes

ỹn+1 = φh(yn)
yn+1 = ỹn+1 − γF (ỹn+1)(I(ỹn+1) − I0)

The constant γ = 1 is chosen, which should be an optimal value, according to [28] which
also holds more information on this stabilization technique.

Since the stabilization term is a vector function, its inclusion doesn’t increase the compu-
tational load significantly.

4.3.4 Hamiltonian reformulation

Reformulating the system (4.2.2) into a Hamiltonian form, and applying a symplectic solver
to this, could improve the solution with regard to drift in position, since the symplectic
method tends to mimic the flow of the Hamiltonian1 system.

A Hamiltonian system is defined as

q′ =
∂H

∂p
, p′ = −∂H

∂q

or equivalently, with y =
(
q,p
)T

y′ = J∇H , J =
(

0 I
−I 0

)

where H is the Hamiltonian (scalar) function.

The state variables in the Hamiltonian form of the ODE system (4.2.2) are

q =
(
x
y

)
, p =

(
x′ − y
y′ + x

)
so that the system is given by

q′ =
(
p1 + q2
p2 − q1

)
(4.3.5a)

p′ =

(
p2 − β q1+µ

R3
1

− µ q1−β
R3

2

−p1 − βq2
R3

1
− µq2

R3
2

)
(4.3.5b)

1A Hamiltonian system is symplectic by nature

31

with the Hamiltonian function

H(q,p) = 1
2

(
p2
1 + p2

2

)
+ q2p1 − q1p2 − β

R1
− µ

R2
, (4.3.6)

with Ri(q) as in (4.2.1).

The Hamiltonian system is very close to the Newtonian considered before, the invariant H
is actually the same as the Jacobi Integral I, and the ODE system (4.3.5) differs only with
the factor 2 on the derivatives x′, y′ in p′. So it can be expected that these two systems
behaves much alike.

4.4 Results

This problem appeared less useful for the evaluation of the different approaches than first
expected, since the different methods performed more or less equally well in terms of error-
estimate over the periods, in reference to the specific integration method.
However there are some remarks to be made.

Instead of examine the error over each period, tests on convergence order for the methods
is applied. The convergence measure is taken to be the mean of error-estimates over the
integration interval, i.e. ten times an orbit-period.

The explicit method with no additional initiatives diverges, or else very small stepsizes
are needed. The stepsizes used for testing (5e-4 ≤ h ≤ 2e-3) was too large to obtain
convergence for the explicit method, but in this case, solving the least squares problem or
stabilizing the solution ensures convergence. The use of the mentioned function fmincon
can not be recommended in terms of calculation time, the improvement obtained is small
compared to poststabilizing. In figure 4.4, the mean error is shown for different stepsizes
(h = 2e-3), where the least squares method only is included for h/2, the results for the
stabilization techique is marked with crosses (×).

The implicit midpoint rule performs very well though, it is not clear in figure 4.4, but the
mean error of this method is similar when applied to the Newtonian and the Hamiltonian
version of the problem. The solution to the Hamiltonian system is named gls in figure
4.4, in order to emphasize the symplecticity.
The close resemblance of the Newtonian and Hamiltonian formulation is probably the rea-
son why the IMR method does so well in both cases. The Newtonian formulation is not

32

10
−3

10
−4

10
−3

10
−2

10
−1

10
0

imr
fmin−ex
fmin−im
stabil−ex
stabil−im
gls−stabil
gls

hh/2h/4

lo
g
(m

ea
n
(e

rr
o
r)

)

Figure 4.4: Convergence of different computations

an symplectic transformation, but not very far from the symplectic, Hamiltonian system
(4.3.5).
It should be mentioned that in terms of overall position, the Hamiltonian formulation be-
haves exactly like the Newtonian with the same stepsize, the orbits are identical.

An odd behavior with regards to the value of the invariant during the integration was
observed, which were common to all the used numerical methods. The Jacobi Integral
drops immediately to a lower level (about 5 % lower than the initial value), where its
stays the majority of the integration time. Except for passages near the planets, where
dips occur because of the reciprocal distances. The phenomenon can be seen in figure 4.5.
This behavior and the magnitude of deviation is the same whether it is the Newtonian or
the Hamiltonian system, which isn’t a big surprise since the invariants are the same, but
it was anticipated that the symplectic property of the Hamiltonian system along with a
symplectic solver, would improve the invariant conservation.

Since the solution to the Hamiltonian formulation has the same deviation, magnitude and
pattern, in regards to its invariant, as the different other methods applied to the Newtonian
formulation has, one might think that it was possible to improve the invariant conservation
by stabilizing the system the same way as in (4.3.3). So a term equivalent to (4.3.3) was
introduced in (4.3.5). And this improves conservation of the Hamiltonian significantly – see
figure 4.6(a) compared to figure 4.5, and yes, the scales are the same – but introducing this
stabilization, the solution orbit deteriorates. It doesn’t diverge within the used integration

33

0 5 10 15 20 25 30
0

5

10

15

20

25

t

d
e
v
i
a
t
i
o
n

p
e
r
c
e
n
t
a
g
e

Figure 4.5: Deviation of Jacobi Integral (4.2.3) in percent from initial value.

time (ten periods), but it doesn’t look as good. The drift in x-coordinate i.e. the error-
estimate (4.3.1) is worse, this is shown in figure 4.4 as gls-stabil.

The solution orbit computed with the midpoint rule and with the stabilization function
applied to it can be seen in figure 4.6(b). And what is even more strange is that the
passages where the invariant deviation goes to zero, the orbit deviates the most, which is
in contrast to the influence of the stabilizing term which should vanish on the constraint
manifold.

The reason for this deterioration in position-solution remains an unanswered question at
the end of this project.

Concluding remarks

For this specific problem, none of the initiatives seems worthwhile if it is invariant conser-
vation that is sougt. For the ODE solution, the best option seems either to do nothing
or to reformulate it into a Hamiltonian system and use this model along with an sym-
plectic solver. In this report, an implicit solver was used which gave good results, but if
one wants to avoid solving the nonlinear system, it could be an idea to use an explicit,
symplectic, possibly of higher order method and apply the stabilization technique, which
seems a reasonable price for obtaining a better converging solution.

34

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

t

d
e
v
i
a
t
i
o
n

p
e
r
c
e
n
t
a
g
e

(a) Percentage deviation from initial invariant
value H0.

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

y

(b) Solution orbit over 10 periods, full line IMR,
dotted line IMR with stabilization.

Figure 4.6: Effect of stabilization of Hamiltonian system.

35

Chapter 5

Wheel–Rail Contact Model

by : Mark Hoffmann

5.1 Introduction

In this project a single wheelset with conical profiles is simulated on a straight and level
track. The wheel–rail contact is considered to be a rigid constraint, which eventually
yields a differential–algebraic equation system (DAE) describing the motion of the wheelset.
The model is implemented in Matlab and a detailed description of the solution process is
given.

5.2 Multibody System

V

x

y

z

Left rail

Right rail

Track system 1435 mm

(a) Top view

V

y

z

x

Track system

Contact system

Body system

Right rail Left rail

(b) Front view

Figure 5.1: Wheelset on a straight track

36

The German BA004 [2] wheelset is simulated. The mass is 1032 kg and the moments of
inertia are Ixx = Izz = 529.8 kg m2 and Iyy = 89.9 kg m2. The nominal rolling radius is
r0 = 0.46 m. The lateral distance from the center of mass to the circular wheel section
having radius r0 is 0.75 m. The track gauge is 1435 mm, which is measured 14 mm below
the top of the rails.

The multibody system is illustrated in Figure 5.1. Three bodies are considered : 1)
Wheelset 2) Left rail 3) Right rail. The motion of the wheelset is defined relative to
the track system, which moves with the constant speed V along the track. Furthermore, a
body system is defined for the wheelset. The origin is in the center of mass and the axes
are aligned with the principal axes of the wheelset. The body system is obtained from
the track system by two successive rotations : 1) ψ (yaw) around the vertical axis 2) φ
(roll) around the longitudinal axis. For the computation of the tangential contact forces it
is convenient to define a contact coordinate system for each contact point (see Figure 5.1
(b)). The origin is in the contact point and the axes are obtained by rotating the body
system around its longitudinal axis into the contact plane. All defined coordinate systems
are right hand systems.

For simplicity and in order to avoid multiple contacts on a single wheel it is assumed
that the wheel profiles are conical and the rail profiles are circular (see Figure 5.1). The
contact is also assumed to be two dimensional and hence the yaw angle is neglected in the
computation of the normal contact forces. The conicity of the wheel is δ and the radius of
the circular rails is R = 0.21 m.

The profiles are described in parametric form by ūik, where i and k are body and contact
numbers, respectively. This numbering is given in Table 5.1. For each profile, the vector
ūik refers to a local system, i.e. the wheel profiles are defined in the body system and the
rail profiles are defined in the track system. This yields the simplest (and most natural)
representation of the profiles. The wheel profile parameter measures the lateral distance
w.r.t. to a reference point at r0, and the rail profile parameter measures the angle with
vertical (see Figure 5.2). Using this strategy the profiles are found to be

ū11 =

»
y11
0 + s11

−r0 + s11 tan δ

–
ū12 =

»
y12
0 + s12

−r0 − s12 tan δ

–

ū21 =

»
y21
0 −R sin s21

R(cos s21 − 1)

–
ū32 =

»
y32
0 −R sin s32

R(cos s32 − 1)

–

where
y11
0 = 0.75 m y12

0 = −0.75 m y21
0 = 0.79 m y32

0 = −0.79 m

37

1 2 3
i (body index) Wheelset Left rail Right rail

k (contact index) Left contact point Right contact point –

Table 5.1: Body and contact numbering

s 21

Left rail

r
0

s
11

δ

0

Left wheel

Figure 5.2: Profile parameters (front view)

5.3 Equations of Motion

The motion of any multibody system can be found using Newton–Euler equations [5, 6, 7].
For a single wheelset with fixed speed on a straight track the equations of motion are

Mq̈ = Q(q, q̇)
β̇ = h(q, q̇)

(5.3.1)

Q(q, q̇) =

Fy
Fz

Iyyψ̇V/r0 +Mx

−Iyyφ̇V/r0 +Mz

h(q, q̇) = My/Iyy

The position and orientation of the wheelset is defined by q = [y, z, φ, ψ]T . The x–
coordinate is fixed relative to the track system, hence the wheelset is constrained to move
with the speed V along the track. This yields an energy input and is a simple way to provide
a steady motion of the wheelset. β is called the spin perturbation and defines the difference

38

between the actual spin and the nominal value of V/r0. It is seen that the wheelset has 5 de-
grees of freedom. The mass matrix is M = diag(m,m, Ixx, Izz) and the external forces and
moments affecting the wheelset are Fext = [Fx, Fy, Fz]T and Mext = [Mx,My,Mz]T .

5.4 Wheel–Rail Constraints

By imposing two rail constraints the number of degrees of freedom is reduced. The position
of the wheelset is still defined by q = [y, z, φ, ψ]T , however, these coordinates are only de-
scriptor variables and not the degrees of freedom because y, z and φ are connected through
the wheel–rail constraints. Two conditions are imposed for each wheel–rail contact

1. The contact point on the wheel and rail should be identical in space (contact point
constraint)

2. The normal vectors to the wheel and rail profiles are aligned (orientation constraint)

These two conditions are written in the contact constraint equation

C(q, s) =

R1 + A1ū11 − ū21

R1 + A1ū12 − ū32

n̄21TA1t̄11

n̄32TA1t̄12

 = 06×1 (5.4.1)

where
t̄ik = (ūik)′ n̄ik = ˆ̄tik = (ˆ̄uik)′

and

q =

 y
z
φ

 R1 =

[
y

r0 + z

]
A1 =

[
cosφ − sinφ
sinφ cosφ

]

The profiles are described by the four parameters s = [s11, s21, s12, s32]T . These parame-
ters are determined through the contact constraint equation (5.4.1). Since there are four
unknown parameters and six constraint equations the number of degrees of freedom are
reduced by two, that is z(y) and φ(y).

5.5 DAE Formulation

The normal contact forces are taken into account by imposing Lagrange multipliers to the
equations of motion [3, 4, 5, 7]

Mq̈ + CT
qλ = Q(q, q̇, s, ṡ,λ) (5.5.1)

39

where λ is the vector of Lagrange multipliers. The equations of motion given in equation
(5.5.1) together with the contact constraint equation (5.4.1) is a DAE system of differential
index 3 [29] and not directly solvable. To come around this problem a reformulation is
presented using the augmented Lagrangian form [4]. The contact constraint equation is
differentiated twice w.r.t. time (index reduction)

C(q, s) = 0 (5.5.2)
Cqq̇ + Csṡ = 0 (5.5.3)
Cqq̈ + Css̈ = −(Cqq̇)qq̇− (Cqq̇)sṡ− (Csṡ)qq̇− (Csṡ)sṡ =: Qd (5.5.4)

Since the normal contact forces are defined to be acting normal to the constraint manifold
it is required that [4]

CT
s λ = 0 (5.5.5)

Combining equation (5.5.1), (5.5.4) and (5.5.5) it is found that
2
664

M 0 CT
q

0 0 CT
s

Cq Cs 0

3
775

2
4 q̈

s̈
λ

3
5 =

2
4 Q(q, q̇, s, ṡ,λ)

0
Qd(q, q̇, s, ṡ)

3
5 ,

M = diag(m,m, Ixx)

q = [y, z, φ]T

s = [s11, s21, s12, s32]T

(5.5.6)

This equation can be solved in order to determine the accelerations and the Lagrange
multipliers. Note that the right hand side is dependent on the Lagrange multipliers because
the tangential contact forces depends nonlinearly on the normal load. Thus equation (5.5.6)
is nonlinear in λ.

In order to solve equation (5.5.6) it is necessary to know Cq, Cs and Qd. It is seen that
A1
φv = A1v̂ where v̂ = [−v2, v1]T . Utilizing this information it is found that

Cq =

2
664

I2×2 A1 ˆ̄u11

I2×2 A1 ˆ̄u12

01×2 n̄21T A1n̄11

01×2 n̄32T A1n̄12

3
775

Cs =

2
664

A1t̄11 −t̄21 02×1 02×1

02×1 02×1 A1t̄12 −t̄32

n̄21T A1(t̄11)′ t̄11T A1T (n̄21)′ 0 0
0 0 n̄32T A1(t̄12)′ t̄12T A1T (n̄32)′

3
775

(Cqq̇)qq̇ =

2
664

−A1ū11φ̇2

−A1ū12φ̇2

−n̄21T A1t̄11φ̇2

−n̄32T A1t̄12φ̇2

3
775

40

(Cqq̇)sṡ = (Csṡ)qq̇ =

2
664

A1n̄11φ̇ṡ11

A1n̄12φ̇ṡ12

n̄21T A1(n̄11)′φ̇ṡ11 + n̄11T A1T (n̄21)′φ̇ṡ21

n̄32T A1(n̄12)′φ̇ṡ12 + n̄12T A1T (n̄32)′φ̇ṡ32

3
775

(Csṡ)sṡ =

2
664

A1(t̄11)′(ṡ11)2 − (t̄21)′(ṡ21)2

A1(t̄12)′(ṡ12)2 − (t̄32)′(ṡ32)2

n̄21T A1(t̄11)′′(ṡ11)2 + 2(n̄21T)′A1(t̄11)′ṡ11ṡ21 + t̄11T A1T (n̄21)′′(ṡ21)2

n̄32T A1(t̄12)′′(ṡ12)2 + 2(n̄32T)′A1(t̄12)′ṡ12ṡ32 + t̄12T A1T (n̄32)′′(ṡ32)2

3
775

For conical wheel profiles the following is valid

(t̄11)′ = (t̄12)′ = (t̄11)′′ = (t̄12)′′ = (n̄11)′ = (n̄12)′ = (n̄11)′′ = (n̄12)′′ = 0 (5.5.7)

By inserting t̄ik = (ūik)′, n̄ik = ˆ̄tik = (ˆ̄uik)′ and equation (5.5.7) it is found

C(q, s) =

2
664

R1 + A1ū11 − ū21

R1 + A1ū12 − ū32

(ˆ̄u21T)′A1(ū11)′

(ˆ̄u32T)′A1(ū12)′

3
775

Cq =

2
664

I2×2 A1 ˆ̄u11

I2×2 A1 ˆ̄u12

01×2 (ˆ̄u21T)′A1(ˆ̄u11)′

01×2 (ˆ̄u32T)′A1(ˆ̄u12)′

3
775

Cs =

2
664

A1(ū11)′ −(ū21)′ 02×1 02×1

02×1 02×1 A1(ū12)′ −(ū32)′

0 (ū11T)′A1T (ˆ̄u21)′′ 0 0

0 0 0 (ū12T)′A1T (ˆ̄u32)′′

3
775

(Cqq̇)qq̇ =

2
664

−A1ū11φ̇2

−A1ū12φ̇2

−(ˆ̄u21T)′A1(ū11)′φ̇2

−(ˆ̄u32T)′A1(ū12)′φ̇2

3
775

(Cqq̇)sṡ = (Csṡ)qq̇ =

2
664

A1(ˆ̄u11)′φ̇ṡ11

A1(ˆ̄u12)′φ̇ṡ12

(ˆ̄u11T)′A1T (ˆ̄u21)′′φ̇ṡ21

(ˆ̄u12T)′A1T (ˆ̄u32)′′φ̇ṡ32

3
775

(Csṡ)sṡ =

2
664

−(ū21)′′(ṡ21)2

−(ū32)′′(ṡ32)2

(ū11T)′A1T (ˆ̄u21)′′′(ṡ21)2

(ū12T)′A1T (ˆ̄u32)′′′(ṡ32)2

3
775

41

5.6 Forces

The external forces and moments are given by
 Fx
Fy
Fz

 = Fg + Fs + TAb(Ffl + Ffr) + TAclFcl + TAcrFcr

 Mx

My

Mz

 = Rcl × (bAclFcl + Ffl) + Rcr × (bAcrFcr + Ffr)

Fg is the gravitational force, Fs is a lateral suspension force, Ffl, Ffr are flange forces,
TAb, TAcl, TAcr, bAcl, bAcr are rotation matrices and Rcl, Rcr are position vectors from
the center of mass of the wheelset to the contact points. The gravitational force is

Fg =

2
4 0

0
−mg

3
5

The primary suspension is modelled by

Fs =

2
4 0

−ksy
0

3
5

The flange is modelled by a stiff spring with a dead band

Ffl =

[0,−kf (y − yf), 0]T y > yf

0 y ≤ yf
Ffr =

[0,−kf (y + yf), 0]T y < −yf

0 y ≥ −yf

ks = 1.823 MN/m, kf = 14.60 MN/m and yf = 0.0091 m. These value are from Cooper-
rider’s bogie [10, 11]. The rotation matrices are

T Ab =

2
4 cosψ − sinψ cosφ sinψ sinφ

sinψ cosψ cosφ − cosψ sinφ
0 sinφ cosφ

3
5

T Acl =

2
4 cosψ − sinψ cos(φ+ δ) sinψ sin(φ+ δ)

sinψ cosψ cos(φ+ δ) − cosψ sin(φ+ δ)
0 sin(φ+ δ) cos(φ+ δ)

3
5

T Acr =

2
4 cosψ − sinψ cos(φ− δ) sinψ sin(φ− δ)

sinψ cosψ cos(φ− δ) − cosψ sin(φ− δ)
0 sin(φ− δ) cos(φ− δ)

3
5

bAcl =

2
4 1 0 0

0 cos(δ) − sin(δ)
0 sin(δ) cos(δ)

3
5

bAcl =

2
4 1 0 0

0 cos(δ) sin(δ)
0 − sin(δ) cos(δ)

3
5

42

The position of the contact point are found using the profile parameters

Rcl =

2
4 0

y11
0 + s11

−r0 + s11 tan δ

3
5

Rcr =

2
4 0

y12
0 + s12

−r0 − s12 tan δ

3
5

The normal forces are found using the Lagrange multipliers

Nl =
√
λ2

1 + λ2
2 Nr =

√
λ2

3 + λ2
4

The tangential contact forces (creep forces) depends on the relative velocity between the
wheel and rail (creep). The creep is computed using the following approximations.

ξx,cl ≈ 1 + ((V/r0 + β)ū11
2 − ψ̇ū11

1)/V

ξx,cr ≈ 1 + ((V/r0 + β)ū12
2 − ψ̇ū12

1)/V

ξy,cl ≈ (−ψV + ẏ − φ̇ū11
2)/(V cos δ)

ξy,cr ≈ (−ψV + ẏ − φ̇ū12
2)/(V cos δ)

ξs,cl ≈ (ψ̇ cos δ − (V/r0 + β) sin δ)/V

ξs,cr ≈ (ψ̇ cos δ + (V/r0 + β) sin δ)/V

The creep forces Tx and Ty are calculated using the nonlinear model proposed by Shen–
Hedrick–Elkins [9]

Tx = εF̃x

Ty = εF̃y

where
a = a0(N/N0)1/3 b = b0(N/N0)1/3

F̃x = −abGC11ξx

F̃y = −abG
(
C22ξy +

√
abC23ξs

)

|F̃| =
√
F̃ 2
x + F̃ 2

y

|F| =
{
µN
(
u− 1

3u
2 + 1

27u
3
)

u < 3
µN u ≥ 3

, u =
|F̃|
µN

ε = |F|/|F̃|

43

and

a0 = 2.8134 mm

b0 = 1.6745 mm

N0 = 5073 N

C11 = 4.8530

C22 = 4.5548

C23 = 2.2666

G = 8.27 · 1010 N/m2

ν = 0.27

µ = 0.30

where C11, C22, C23 are Kalker’s creepage coefficients [12]. The contact forces are

Fcl = [Tx,cl, Ty,cl, Nl]T Fcr = [Tx,cr, Ty,cr, Nr]T

It should be noted that the term Q in equation (5.5.6) only includes the tangential con-
tact forces because the normal forces are taken into account using the Lagrange multipli-
ers.

5.7 Numerical Integration

1. Initial condition : The coordinates y0, ψ0, ẏ0, ψ̇0, β0 are specified. The dependent
coordinates qd,0 = [z0, φ0]T , q̇d,0 = [ż0, φ̇0]T , s and ṡ are determined by solving
equation (5.5.2) and (5.5.3). Equation (5.5.2) is solved using Newton–Raphson’s
method (see e.g. [8]). From a simple geometric consideration the following initial
value is found appropriate

2
6666664

z
φ
s11

s21

s12

s32

3
7777775

=

2
6666664

0
0

(y21
0 − y11

0) −R sin δ
δ

(y32
0 − y12

0) +R sin δ
−δ

3
7777775

and the Jacobi matrix is

J = [Cqd
,Cs] , qd = [z, φ]T

Equation (5.5.3) is solved by exploiting the linearity, i.e.

[Cqd
,Cs]

[
q̇d
ṡ

]
= −Cqiq̇i ,

qi = y
qd = [z, φ]T

44

2. Equation (5.5.6) is solved using fixed–point iteration. This gives the current value of
q̈ and λ. The static load is used as a first initial guess, however, during simulation
the previous value gives a better estimate. From the static load it is found

λ0 =
[mg

2
tan δ,−mg

2
,−mg

2
tan δ,−mg

2
, 0, 0

]T
3. The independent accelerations are integrated one step forward in time

4. The new value of the dependent coordinates are found through solving equation
(5.5.2) and (5.5.3)

5. Repeat step 2. to 4. until the end of the simulation is reached

5.8 Matlab

In order to integrate the DAE system in Matlab the following formulation of the system is
presented

y = [y, ψ, ẏ, ψ̇, β, z, φ, s11, s21, s12, s32]T

Mẏ =

y3

y4

ÿ (known from equation (5.5.6))
(−Iyyφ̇V/r0 +Mz)/Izz
My/Iyy
C(q, s)

where
q = [y1, y6, y7]T s = [y8, y9, y10, y11]T

and M is the singular mass matrix providing zeros on the left hand side in the 6 last
equations. The dependencies of the right hand side function are important for an efficient
computation of the Jacobi matrix, which is needed when using an implicit numerical inte-
grator. The dependencies are given in Jpattern. The system is integrated using the Matlab
solver ode15s.

M =

2
666666666666666664

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

3
777777777777777775

Jpattern =

2
666666666666666664

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 1 1 1 0 0

0 0 0 0 0 1 1 1 1 0 0

1 0 0 0 0 0 1 0 0 1 1

0 0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 1 0 0 0 1

3
777777777777777775

45

5.9 Results

0 1 2 3 4 5 6 7 8 9 10
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

Time [s]

y
[m

]

V = 20 m/s

(a) y(t)

0 1 2 3 4 5 6 7 8 9 10
−1.739

−1.738

−1.737

−1.736

−1.735

−1.734

−1.733

−1.732

−1.731
x 10

−3

Time [s]

z
[m

]

V = 20 m/s

(b) z(t)

0 1 2 3 4 5 6 7 8 9 10
−8

−6

−4

−2

0

2

4

6

8
x 10

−4

Time [s]

φ
[m

]

V = 20 m/s

(c) φ(t)

0 1 2 3 4 5 6 7 8 9 10
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

s11

s21

s12

s32

Time [s]

S
ur

fa
ce

 p
ar

am
et

er
s

V = 20 m/s

(d) sij(t)

Figure 5.3: Simulation results at V = 20 m/s. The wheelset is not suspended. The conicity
is δ = 0.05. The center track solution is unstable, however, the amplitude of the oscillations
are limited by the flange

46

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−3

Time [s]

y
[m

]

V = 100 m/s

(a) y(t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

s11

s21

s12

s32

Time [s]

S
ur

fa
ce

 p
ar

am
et

er
s

V = 100 m/s

(b) sij(t)

Figure 5.4: Simulation results at V = 100 m/s. The wheelset is suspended, ks = 1.823
MN/m. The conicity is δ = 0.05. The center track solution is stable. Note that δ +
φ = s21 ≈ 0.05 because the wheel profile is conical and the rails are circular. Similarly,
δ − φ = −s32 ≈ 0.05

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

−3

Time [s]

y
[m

]

V = 100 m/s

(a) y(t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

s11

s21

s12

s32

Time [s]

S
ur

fa
ce

 p
ar

am
et

er
s

V = 100 m/s

(b) sij(t)

Figure 5.5: Simulation results at V = 100 m/s. The wheelset is suspended, ks = 1.823
MN/m. The conicity is δ = 0.08. The center track solution is unstable. Again, δ + φ =
s21 ≈ 0.08 and δ − φ = −s32 ≈ 0.08. Figure 5.4 and Figure 5.5 illustrates that high speed
trains need a low conicity to ensure stability

47

Chapter 6

Bicycle model.

by : Rasmus Frank Kristensen

6.1 Introduction

This paper deals with the stability of an uncontrolled bicycle. By uncontrolled means the
stability is analyzed without any rider-gained input. In a real life situation this analysis
corresponds to riding a bicycle with no hands. The dynamic system of a bicycle is inter-
esting since a bicycle is unstable at low speeds, but stable at high speeds. The system
corresponds to an inverted pendulum in the static state, which is highly unstable, but due
to moments of inertia and angular momentums the system gets stable when the forward
speed reaches a certain value.

Anybody who has ridden a bicycle can reconize these behaviours - for instance at a certain
speed it is possible to ride the bike with no hands and yet keep the bicycle relatively easy
stabilized. The opposite situation, when trying to stabilize a bicycle at very low speed
requires a great amount of rider-gained input.

The theoretical basis for this model is found in a series of articles by Papadopoulos and
Hand. The original basis for this paper was found in two models for a motorcycle by Sharp
[26]. These models are rather complicated and are found using the numerical software
AutoSim to obtain the equations of motion. The model presented here is the model
derived by Hand in his MSc Thesis [25] and later simplified by Papadopoulos [24]. This
model is found using the paper-pencil approach, but is later validated numerically by
comparison with equations of motion found using sotfware by Papadopoulos et. al. in
[23]. So though not as advanced as Sharps very real-life alike model this model displays

48

some of the qualitative behaviours for bicycle dynamics despite the simplified equations of
motion.

6.2 Mechanical Model

Figure 6.1 shows the mechanical model of the bicycle. The model consists of four rigid
bodies, front frame ff , front wheel fw, rear frame rw and rear wheel rw. Each part
consists of an applied mass, which are shown as filled circles in figure 6.1.

Two additional parameters are used. The pependicular distance f between the front fork
and the front wheel contact point pf determined by the angle of the steering axis. The
position (lt, ht) of the total mass mt in the y and z direction respectively. The total
mass is the sum of all the applied masses and the position is calculated with respect to
the individual parts contribution to the total mass. The method is explained in appendix
6.8.2.

The distance f is called the mechanical trail of the bicycle. This parameter plays an
important role in the stability of the model. A great deal of Hands thesis analyzes this
parameter. The reason for the importance of the mechanical trail is that it determines how
the bicycle is leaning when it is steered. A bicycle can never be stable if the mechanical
trail is negative. This means the front fork must have a certain forward angle. Negative
mechanical trail corresponds to the front fork is angled backwards.

The reference coordinate system is taken with the origin at the rear wheel contact point
pr. This point is later refered to as O though not appering in figure 6.1.

The wheel base w is the distance between the two contact points for the front and rear
wheel, pf and pr respectively. The front frame has the angle α between the baseline.

Neglecting the vetical movements i the z-direction and setting the movement in the y-
direction as a forward speed parameter the system consists of four degrees of freedom. A
translation in the x-direction, which determines the sidewards movement. The yaw, which
is the rotation about the z-axis at the rear contact point. The lean, which is the rotation
about the y-axis. The last variable ψ is the applied steering and correspond to the rotation
of the front frame about the steering axis.

The wheels are modeled as knife-egde wheels, which mean they act as rigid discs and the
wheel-road contact is applied in the two points pr and pf only. The wheel-road contact
modelling is assumed to with no slip in any direction. This enables the number of variables
to be reduced to two. The reduced set of equations is derived in section 6.4. A discussion
about these assumptions can be found in section 6.6.

49

pr

mrw mfw

pf

mff

mrf

χ

t
θ

α

baseline

w

ψ

d

x y

z

λ

Figure 6.1: Bicycle model.

6.3 Mathematical Model

The equations of motion is derived in the following sections by the use of Lagrange’s
equation

∂

∂t

(
∂Ekin
∂qi

)
−
(
∂Ekin
∂qi

)
+
(
∂Epot
∂qi

)
= Fi , i = 1, 2, · · · , n (6.3.1)

where the index notation corresponds to the particular degree of freedom. The right hand
side in (6.3.1) corresponds to the external forces applied to the system. Integrating and
evaluating the energy terms in (6.3.1) yields a set n (coupled) second order differential
equations. The lagrangian formulation for the bicycle problem is derived in [25], but
since a complete nonlinear formulation is cumbersome, and the model was intented to be
analysed analytically, various linearization has been made.

The derivation of the equations of motion will not be perfomed here, so the equations
presented here has the origin in Hand’s Thesis. These equations are later simplified by
Papadopoulos and these simplified equations are used in this paper. Though it might
sound as a simple derivation of the equation of motion both authors refer this system as
’the border for the paper-pencil approach’. In the following presentation of the equations

50

of motion the angles lean χ and steering ψ are assumed to be small.

Starting out by taking the sum of the forces action in the x-direction on the bike in figure
6.1 yields

mtẍ+mthtχ̈−mtltθ̈ −mfdψ̈ = Fxr + Fxf

where mt is the total mass, mt = mff +mfw +mrf +mrw.

The contributions are displacements x, steering ψ, yaw θ and lean χ. To obtain equilibrium
two unknown forces Fxr and Fxf are applied at the contact points pf and pr for the front
and rear wheel respectively. These forces will be treated in section 6.4.

The second equation corresponds to the total lean moment χ for all the applied masses.

mthtẍ+ Tyyχ̈+ Tyz θ̈ + F ′
λuψ̈ −Htθ̇ −Hf cosλψ̇ = gmthtχ− gνψ

where ν is defined as:
ν = mfd+mt

lt
wf (6.3.2)

lt and ht are the position of the total mass measured from the rear contact point pr with
respect to the y and z direction respectively.

The contributions are the χ moment to accelerate total mass mt, angular rotations about
the rear contact point pr, Tyy and Tyz, angular acceleration about the steering axis, F ′

λu,
gyroscopic contributions from the spinning wheels, Ht and Hf . The right hand side con-
sists of the moment of gravity, moments of vertical front contact force due to offset from
steering.

The total yaw moment θ is given by:

−mtltẍ+ Tzyψ̈ + Tzzθ̈ + F ′′
λzψ̈ +Htχ̇−Hf sinλψ̇ = −wFxf

The contributions are nearly the same as for the lean χ, angular rotations and gyroscopic
moments, but about a different axis. The righthand side is the moment about the rear
contact point pr from the yet unknown contact force Fxf at the front wheel contact point
pf .

The last equation of motion is the contributions from steering the bicycle. The moment
about the steering axis ψ.

−mfdẍ+ F ′
λyχ̈+ F ′′

λz θ̈ + F ′
λλψ̈ +Hf

(
χ̇ cos λ+ θ̇ sinλ

)
= Mψ + fFxf − gνχ+ g(sin λ)νψ

The left hand side consists acceleration of the front frame, moments about the steering axis
for angular acceleration. The right hand side consists of a applied steering moment Mpsi,
tyre-ground force on the front wheel contact point pf and moment contributions from the
actual steering of the bicycle. These terms will be adressed in section 6.4.

51

Setting up the four equations of motion yields:

mtẍ+mthtχ̈−mtltθ̈ −mfdψ̈ = Fxr + Fxf (6.3.3a)
mthtẍ+ Tyyχ̈+ Tyz θ̈ + F ′

λuψ̈ −Htθ̇ −Hf cos λψ̇ = gmthtχ− gνψ (6.3.3b)
−mtltẍ+ Tzyψ̈ + Tzzθ̈ + F ′′

λzψ̈ +Htχ̇−Hf sinλψ̇ = −wFxf (6.3.3c)

−mfdẍ+ F ′
λyχ̈+ F ′′

λz θ̈ + F ′
λλψ̈ +Hf

(
χ̇ cos λ+ θ̇ sinλ

)
= Mψ + fFxf (6.3.3d)

−gνχ+ g(sin λ)νψ

where ν is defined in (6.3.2).

The wheel-road forces Fxr and Fxf are unknown. These magnitude are determined by the
relation (6.3.3a), which assumes equilibrium. The rest of the parameters can be found
using the geometry of the bike. Parameters are found for the modeled bike in [23] and are
shown in table 6.8.1 in appendix 6.8.1.

6.4 Constraints and reduced set of equations

The mathematical model presented in section 6.3 only describes the motion regarding the
origin of the reference coordinate system at pr. The system actually has got nine variables,
but only four presented in equation (6.3.3), since the motion of the front wheel contact
point pf is assumed to match the motion of the rear contact point pf . This is actually not
needed so the system can be completely described by the variables xr xf ,yr, yf , θr, θf , χr,
χf and the steering angle ψ. These variables for the front contact point will however be
eliminated as constraints are introduced.

The approach for solving multibody dynamical systems is to derive the energy expres-
sions for the n set of bodies and thereby obtaining the equations of motion. When the
contributions for the bodies are derived the system is constrained to match the desired
physical conditions. Constraints to a multibody system can be generalized to two types of
constraints. An unconstrained multibody system has n degress of freedom characterized
by the general coordinates qr(r = 1, 2, · · · , n). The system can be physically restricted
by positions or geometric constraints. These constraints are named holonomic constraints.
They occur in the form:

gi(qr, t) = 0 , i = 1, 2, · · · ,m r = 1, 2, · · · , n (6.4.1)

where t is the time, m the number of constraints and n the total number of degrees of
freedom. If a system is fully constrainted m = n there are no degrees of freedom. The
avaliable degrees of freedom can be written as n−m. An example of a holonomic system
can be two bodies interacting through a frictionless joint.

52

Alternative the motion can be restricted physically by kinematic constraints. These con-
straints are called non-holonomic constraints and has the form:

gi(qr, q̇r, q̈r, · · · , t) = 0 , i = 1, 2, · · · ,m r = 1, 2, · · · , n (6.4.2)

The constraints in this paper is primary nonholonomic constraints. To analyse the con-
straints for the system we start out by examining the front wheel position with respect to
the yawing motion. This can be seen in figure 6.2.

w

x

x

θ

xf

pf

y

pr

(a) Position of front wheel with respect to
yaw.

x

y

x xf

pr

pffψ

w

(b) Position of front wheel with respect to
the steering angle.

Figure 6.2: Postion of front wheel determined by yaw and steering.

Figure 6.2(a) shows the postion of the front wheel contact point pf with no steering ψ = 0.
Assuming small angles the relation between the rear position x and the front position xf for
the two contact points pr and pf respectively the relation can be written as (6.4.3).

xf = x− w · sin(θ) , assuming small rotations sin(θ) � θ ⇒
xf � x− w · θ (6.4.3)

The opposite situation is shown in figure 6.2(b). The position xf with no yaw, θ = 0 , and
an applied steering angle ψ can be written as:

xf � x+ f · ψ (6.4.4)

Again small angle approximations has been made. Combining the two expressions for the
front wheel position yields

xf � x− w · θ + f · ψ (6.4.5)

The yaw of the front wheel, θf combined with steering ψ is shown in figure 6.3.

Following [24] the expression for this case yields the relation in (6.4.6)

θf � θ + ψ · cos(λ) (6.4.6)

53

x

y

pr pf

θ + ψ cos(λ)
θ

ψ cos(λ)

Figure 6.3: Combined yaw of front wheel and steering.

The coordinates for the front wheel can now be described by four relations:

xf − x = −wθ + f · ψ (6.4.7a)
yf − y = w (6.4.7b)
θf − θ = ψ cos λ (6.4.7c)
χf − χ = −ψ sinλ (6.4.7d)

The last relation (6.4.7d) is derived analogous to (6.4.7c), but is not needed for further
analysis. The relation in (6.4.7b) assumes the wheels each rotate with the same velocity.
The assumption is fairly reasonble since the wheels on a bicycle each nearly rotates at a
constant rate. The cases where this assumption is invalid is however way beyond the scope
of this model.

There is now two expressions for the position of the front wheel. The forward velocity for
the front and rear wheel is shown in figure 6.4.

x

y

θ

vx

y

Figure 6.4: Velocity parameters.

54

The wheels are assumed to be thin knife-edge wheels with no slip in any direction. Again
assuming small rotations the position with zero slip can be written as:

∆x
∆y

= − tan(θ) , assuming small rotations tan(θ) � θ ⇒
ẋ � −v · θ (6.4.8)

The increment in the y-direction ∆y is taken as the forward speed v, and the corresponding
increment in the x-direction is taken as the velocity of x. The increments can thereby be
written as ∆y = v and ∆x = ẋ. A similar approach can be used to determine the front
wheel velocity. Analogous to (6.4.8) the velocity for the front wheel is written as:

ẋf = −v · θf (6.4.9)

This analogy is true since the forward speed must be equal for both parts since w must be
constant as seen in (6.4.7b). Differentiating (6.4.7a) yields:

ẋf − ẋ = −wθ̇ + fψ̇ (6.4.10)

The two expressions for the wheel-road contact can be inserted into (6.4.10).

−vθ − (−vθf) = −wθ̇ + fψ̇ (6.4.11)

The yaw θ for the front wheel is found in (6.4.7c). Substituting this into (6.4.11) gives:

v(−θ + (θ + ψ cos λ) = −wθ̇ + fψ̇ ⇒
θ̇ = f

w ψ̇ + v cos λ
w ψ (6.4.12)

Differentiating (6.4.12) once more

θ̈ = f
w ψ̈ + V cosλ

w ψ̇ (6.4.13)

By using the relations in (6.4.7) the yaw θ is now completely determined by (6.4.7c),
(6.4.12) and (6.4.13). This means the variables in the equations of motion now can be
described by three variables. The variable x can easily be eliminated by differentation of
rear constraint in (6.4.8):

ẍ = −vθ̇ = −v fw ψ̇ − v2 cosλ
w ψ (6.4.14)

This reduces the variables to two. The last term in (6.4.14) is found by substituting θ with
the relation in (6.4.12). The system can now be completely described by the steering angle
ψ and the lean χ. The equations of motion are now:

Mχχχ̈+Kχχχ+Mχψψ̈ + Cχψψ̇ +Kχψψ = 0 lean (6.4.15a)
Mψχχ̈+Cψχχ̇+Kχψχ+Mψψψ̈ + Cψψψ̇ +Kψψψ = Mψ steer (6.4.15b)

55

Since the expressions for the equations of motion are rather complicated the equations of
motion are shown in the general form in (6.4.15). The terms can be found using the algo-
rithmic approach in [23]. The algorithmic approach is written in appendix 6.8.2. The two
equations of motion will be refered as the lean equation, (6.4.15a) and the steer equation,
(6.4.15b). The applied moment Mψ is the rider gained input to the system. This term is
however ignored for the further analysis.

6.5 Numerical Solution

The reduced set of equations of motion in (6.4.15) are written as a matrix formula-
tion.[

Mχχ Mχψ

Mψχ Mψψ

]
︸ ︷︷ ︸

M

[
χ̈

ψ̈

]
+
[

0 Cχψ
Cψχ Cψψ

]
︸ ︷︷ ︸

C

[
χ̇

ψ̇

]
+
[
Kψψ Kχψ

Kψχ Kψψ

]
︸ ︷︷ ︸

K̃

[
χ
ψ

]
=
[

0
Mψ

]
︸ ︷︷ ︸

F̃

(6.5.1)

The coefficients in (6.5.1) are determined by the algorithmic approach shown in appendix
6.8.2. Introducing the vector q as:

q =
[
χ̇ ψ̇ χ ψ

]T
, q̇ =

[
χ̈ ψ̈ χ̇ ψ̇

]T
The ’damping matrix’ C is velocity dependent, see appendix 6.8.2, so C is multiplied with
the forward velocity. The ’stiffness matrix’ K̃ consists of terms with no velocity and terms
which are dependent with the squared forward speed. The K̃ is split into two matrices
according to [23]. The two terms are:

C̃ = C · v
K̃ = K1 + K2 · v2

Expressions for the entries in these two matrices are found as well in appendix 6.8.2. The
C matrix is named the ’damping’ matrix, since it takes the same form as the damping
parameter in ordinary dynamical analysis. This matrix however does not dissipate energy,
and the ’damping’ naming convention is therefore not entirely correct. Instead of dissipat-
ing the energy is transfers the energy from one plane to a different plane in the system,
but the transfer of energy displays the same phenomenae as, for instance viscous damp-
ing (dq̇), with a exponential decay of amplitudes, but the energy remains in the system.
Explanations about gyroscopic and inertia effects in this form is found in [27].

The coupling from second order for a set of first order differential equations are done using

56

a state-space formulation. The state-space formulation can be seen in (6.5.3).[
M C̃
0 M

]
q̇ +

[
0 K̃

−M 0

]
q = F̃ (6.5.2)

A · q̇ + B · q = F̃ (6.5.3)

(6.5.3) can be solved by applying a suited ode solver to the problem. The problem stated
in (6.5.3) does not contribute to any numerical problem regarding the numerical time
integration. The following results are produced with Matlab´s ode45.

6.5.1 Stability

To study the stability of the bicycle with no rider gained control the state space formulation
is analysed regarding the systems eigenvalues for a range of forward velocities.

Following the terminology for bicycle/motorcycle stability there is two modes1. The first
mode is named ’capsize’. This mode corresponds to the bicycle falls over due to lean. The
capsize motion is however non-oscillatory. It just falls over. The second mode is named
’weave’, which are oscillations about the headed direction. These two modes corresponds
to the reduced set of variables derived in section 6.4, the lean χ and steering ψ. the
eigenvalues for these modes are shown in figure 6.5(a).

0 1 2 3 4 5 6 7 8 9 10
−25

−20

−15

−10

−5

0

5

10

15

Velocity [m/s]

A
m

pl
itu

de

Weave

capsize

(a) Real and complex eigenvalues for different for-
ward velocities. The + marks the real eigenvalues
and the o marks the imaginary eigenvalues.

−25 −20 −15 −10 −5 0 5 10
−15

−10

−5

0

5

10

15

Real

Im
ag

(b) Real and complex eigenvalues shown in the
complex plane.

Figure 6.5: Root Locus plot for the eigenvalues.

The weave motion is the most interesting in figure 6.5(a). For the inteval 0 to around 0.6
m/s the weave motion is highly unstable. The primary physical interpretation correponds

1there is actually three - the last mode ’wobble’ is not present in this model.

57

to an inverted pendulum. Around v = 0.6 m/s the weave motion starts oscillating. The
real eigenvalues becomes identical for the weave motion and forms a complex conjugated
pair. The complex conjugated pairs corresponds to the oscillatory mode. Still one real
eigenvalue remains positive so the mode is yet unstable.

At v = 4.3 m/s the real part of the weave motion becomes negative and remains negative
until infinity. At this point the weave motion becomes stable. The capsize motion shown in
figure 6.5(a) corresponds to the real eigenvalue, which starts out by being negative. Around
v = 6 m/s this eigenvalue crosses the real axis and becomes mildly unstable. However the
real part approaches 0 as velocity is increased. This means the bicycle is completely stable
in the interval between these two velocities. Since the capsize motion is mildly unstable it
is reasonable to assume in practice that the bicycle remains stable as soon as the weave
motion becomes stable around v = 4.3 m/s. This corresponds to approx. 16 km/h.

6.5.2 Response with initial conditions

The response is limited to the range of χ ∈ [− π
2 , π

2]. This is not directly imple-
mented in the numerical scheme, but the interpretation of the results are only valid in this
region.

However the region can be extended. This corresponds to some extremely bold rider, who
chooses to ride the bike with a reasonable high forward velocity, on a thin wire, with no
hands, and furthermore choose to apply a sideways moment so the bike undergoes a 2 · pi
sideways spin around the wire. This kind of modelling is way beyond the scope of this
paper. Anyway, if this modelling is used some serious questions regarding the linearization
of the equations of motion should be adressed here.

The first simulation is made with an applied lean angle χ = π
10 an an initial condition.

The forward velocity is set to v = 5.6 m/s. This velocity is in the stable range for both
the capsize and weave motion. The figures in 6.6 shows the steering angle ψ and the lean
χ as function of the forward speed.

The figures in 6.6 clearly displays the self-stabilizing of the bicycle. Minor oscillations
about the equilibrium position occurs in the first two seconds. Afterwards is graduately
decays towards equilibium. After around t = 40 s the system is back to the straight forward
motion. Figure 6.6(b) shows the state-space response for the forward speed range. The
dotted line corresponds to the steering angle ψ and the solid line is the lean angle χ. The
oscillations are quite visible in the figure and it can be seen that the derivatives χ̇ and ψ̇
show the same oscillation. However the displacement between derivatives is not as large as
for the angles χ and ψ. The lean angle has larger amplitudes than the steering angle.

The next simulation is made with an applied steering angle ψ = π
10 as an initial condition.

The results are shown in figure 6.7.

58

0 2 4 6 8 10
0

0.2

0.4

time − [s]

χ
, ψ

Sideways lean − χ
Steering angle − ψ

(a) Steering and lean as function of the
forward speed.

0
2

4
6

8
10

0
0.2

0.4
0.6

0.8
1

−0.5

−0.1

0.3

0.7

time − [s]
χ , ψ

dχ
 /

dt
 ,

 d
ψ

 /
dt

Sideways lean − χ

Steering angle − ψ

(b) Angles and derivatives as function of the forward speed.

Figure 6.6: Results for the bicycle with an applied lean.

0 2 4 6 8 10
−0.5

−0.25

0

0.25

0.5

time − [s]

χ
, ψ

Sideways lean − χ
Steering angle − ψ

(a) Steering and lean as function of the
forward speed.

0
2

4
6

8
10

−0.5

0

0.5

1
−2

−1

0

1

time − [s]
χ , ψ

dχ
 /

dt
 ,

 d
ψ

 /
dt

Sideways lean − χ

Steering angle − ψ

(b) Angles and derivatives as function of the forward speed.

Figure 6.7: Results for the bicycle with an applied lean.

The self-stabilization is clearly seen in this case, and the bicycle returns faster to the

59

original forward state with no lean than the simulation with an applied lean as an initial
condition.

6.6 Extending the equations

Various different constraints has been applied to the model for the purpose of actually meet
the subject of this course. Unfortunalely none of the experiments provided any reasonable
results. The use of extra constraints makes the system overdeterminated, and in many cases
gives singularities in the matrices in the state-space formulation. Advanced numerical time
integrators has to be used, but the problem can be solved.

The primary reason for this is the reduction of the equations of motion represented in
(6.4.15) in section 6.4. The reduced set of equations is derived using geometric relations
to reduce the system variables to two instead of nine. This reduction is based on Hand
work in [25]. The new set of equations enables the two unknown wheel-road forces to be
eliminated.

The first test was to include the equation of motion in the x-direction, refered as equation
(6.3.2) in section 6.3. Though it is not needed to describe the stability issues of the
uncontrolled bike it could be used for a more advanced model of the wheel-road modelling.
The goal was to enable some sort of possibility for a sideways slip to occur when the lean
angle combined with the steering was a certain amount.

The first equation (6.3.2) can be used to find the unknown road-wheel force acting at the
rear contact point pr and a friction modelling using Coulomb friction was applied, but for
all cases the results turned out false for the problem. In most cases the the bicycle reached
a higher sideways speed than the forward speed - most likely due to pooly modelling.

A different constraint was implemented to restrict the sideways rotation, yaw, of the total
mass (or the rider mass) to the corresponding inverted pendulum state. This constraint
was implemented because the physics could be applied to the reduced set of equations, but
yet again the constraint seemed meaningless.

Since the reduced set of equations only variables is lean χ and steering ψ the restriction
of the movement rider as the inverted pendulum becomes obsolete simply because it was
restricted to follow the path given by x̃2 + ỹ2 − h2

t = 0, where x̃ and ỹ are introduced
coordinate transforms from the lean χ polar representation into some arbitrary (x̃, ỹ) plane.
But since the transformation from the polar χ to the cartesian (x̃, ỹ) can be written as
(x̃, ỹ) = (cos(χ), sin(χ)) and using the constrainst described above the problem is always
true because of the identity cos(χ)2 + sin(χ)2 = 1. The is quite a meaningless constraint
to introduce in the system.

60

The motion described by the yaw angle θ is also geometrical restricted. This follows the
same restriction as the inverted pendulum x̃2 + ỹ2 − h2

t = 0, but again the problem arises
with the elimination of the sideways contact forces Fxr and Fxf .

The conclusion of the experiments with the extra constraints is the reduced set of equations
limits the extension of the model. Advanced models for the wheel-road interaction is found
in [26] but these models are described by many the degress of freedom. To actually extend
the equations of motion presented in this paper requires a complete non-linear model and
more degress of freedom. Alternatively a more simple model of the bicycle combined with
a fully cartesian (x, y, z) space formulation of the motion could be extended to include
algebraic constrains.

6.7 Conclusion

The model presented here is simple, relatively easy for a numerical implementation and
it provides reasonable results regaring the stability analysis of an uncontrolled bicycle.
The variables are reduced to two which means the model can be completely described by
two coupled second order differential equations. The model represents the behaviours of a
real-life bicycle well.

However the implementation of additional constraints has not been succesfull. The flip-
side for the simplicity of the model is the lack of possiblities for extensions. The point
being is this particular model and stability analysis is relatively simple and easy to solve,
but due to the restrictions provided by the analysis of the non-holonomic constrains addi-
tional (reasonable) constraints are not introduced easily. For a more differential algebraic
approach a more simple geometry could be analysed combined with a cartesian represen-
tation. Furthermore the stability issues could be neglected and more emphasis put on the
control of the bicycle, since the stability of the bicycle is closely related to the geometry
and parameters regarding the bicycle model, which in this case limits the possibility of
extending the equations of motion.

61

6.8 Appendix

6.8.1 Parameters for the numerical simulation

Parameter Symbol Value
Wheel base [m] w 1.02
Trail [m] t 0.08
Head Angle α arctan(3)
Gravity [N/kg] g 9.81
Rear wheel Symbol Value
Radius [m] Rrw 0.3
Mass [kg] mrw 2
Mass Moments of inertia - [kgm2] (Ayy, Axx, Azz) (0.12, 0.06, 0.06)
Rear frame Symbol Value
Postion centre of mass [m] xrf , (yrf , zrf) (0, 0.3, 0.9)
Mass [kg] mrf 85

Mass Moments of inertia [kgm2]

 Bxx 0 0

Byy Byz
Bxx

 11 0 0

9.2 2.4
2.8

Front frame Symbol Value
Postion centre of mass [m] xrf , (yrf , zrf) (0, 0.9, 0.7)
Mass [kg] mrf 4

Mass Moments of inertia [kgm2]

 Cxx 0 0

Cyy Cyz
Cxx

 0.06 0 0

0.0546 −0.0162
0.0114

Front wheel Symbol Value
Radius [m] Rfw 0.35
Mass [kg] mfw 3
Mass Moments of inertia - [kgm2] (Dyy,Dxx,Dzz) (0.28, 0.14, 0.14)

Table 6.1: Parameters for the numerical simulation.

6.8.2 Algorithm for deriving the equations of motion

Algorithmic approach to derive the equation og motion.

62

Calculate the total mass and the center of mass with respect to the origin O.

mt = mrw +mrf +mfw +mff

yt = (yrf ·mrf + yff ·mff + w ·mfw) /mt

zt = (−Rrw ·mrw + zrf ·mrf + zff ·mff −Rfw ·mfw) /mt

Calculate the relevant mass moments and products of inertia at the origin O along the
global axes:

Tyy = Ayy +Byy + Cyy +Dyy +mrwR
2
rw +mrfz

2
rf +mffz

2
ff +mfwR

2
fw

Tyz = Byz + Cyz −mrfyrfzrf −mffyffzff +mfwwRfw

Tzz = Azz +Bzz + Czz +Dzz +mrfy
2
rf +mffy

2
ff +mfww

2

The same properties for the front part are calculated:

mf = mff +mfw

yf = (yffmff + wmfw) /mf

zf = (zffmff +Rfwmfw) /mf

Mass moments and products of inertia for the front part.

Fyy = Cyy +Dyy +mff (zff − zf)2 +mfw(Rfw + zf)2

Fyz = Cyz −mff (yff − yf) · (zff − zf) +mfw(w − xf) · (Rfw+zf
)

Fzz = Czz +Dzz +mff (yff − yf)2 +mfw(w − yf)2

The angle of the steering axis and the z-axis are defined as:

λ = π
2 − α

λ = [sin(λ), 0, cos(λ)]T

Calculate the penpendicular distance d for the center of mass of the front assembly is ahead
of the steering axis

d = (yf − w − t) cos(λ) − zf sin(λ)

The relevant mass moments and products of inertia along the stering axis are calculated
as:

Fλλ = mfd
2 + Fyy sin(λ)2 + 2Fyz sin(λ) cos λ+ Fzz cos λ2

Fλy = −mfdzf + Fyy sin(λ)Fyz cosλ
Fλz = mfdyf + Fyz sin(λ)Fzz cos λ

63

The mechanical trail, which is the pependicular distance between the front wheel contact
point and and the steering axis, are calculated as:

f =
t · cos(λ)

w

The angular momentum along the x axis for the rear and front wheels are:

Sr =
Axx
Rrw

Sf =
Dxx

Rfw
St = Sf + Sr

A static moment is defined as follows

Sd = mf · d+ f ·mt · yt
Using all the relations calculated the equations of motion can be found. The degrees of
freedom are q = [χ ψ]T .

Mq̈ + (C · v) q̇ +
(
K1 + K2 · v2

)
q = F (6.8.1)

The entries in the matrices in (6.8.1) are:

M(1, 1) = Tyy

M(1, 2) = M(2, 1) = Fλy + fTyz (6.8.2)
M(2, 2) = Fλλ + 2fFλz + f2Tzz

K1(1, 1) = gmtzt

K1(1, 2) = K1(2, 1) = − gSd (6.8.3)
K1(2, 2) = −gSd sin(λ)

K2(1, 1) = K2(2, 1) = 0
K2(1, 2) = (St −mtzt) cos(λ)/w (6.8.4)
K2(2, 2) = (Sd + Sf sin(λ)) cos(λ)/w

C(1, 1) = 0
C(1, 2) = fSt + Sf cos(λ)Tyz cos(λ)/w − fmtzt (6.8.5)
C(2, 1) = −(fSt + Sf cos(λ))
C(2, 2) = Fλz cos(λ)/w + f(Su + Tzz cos(λ)/w)

64

Chapter 7

Parameter estimation in
Differential Algebraic Equations

by : Kristina Hoffmann

7.1 Theory

This chapter is about estimating parameters in DAE-models, where there is some measured
data y(t). The DAE-model is described by

d

dt
x(t) = f(x(t), u(t), θ) (7.1.1)

ŷ(t|θ) = h(x(t), u(t), θ) , (7.1.2)

where θ is the unknown parameters, to be estimated and ŷ(t|θ) is predicted values of y(t)
from the model.

The θ’s is found by minimizing the difference between the measured data y(t) and the
predicted values. The difference is

ε(t, θ) = y(t) − ŷ(t|θ) , (7.1.3)

and the function to minimize is

65

VN (θ) =
1
N

N∑
t=1

ε2(t, θ) (7.1.4)

=
1
N

N∑
k=1

‖y(tk) − ŷ(tk|θ)‖2 (7.1.5)

=
1
N

N∑
k=1

1
2

(y(tk) − ŷ(tk|θ))2 . (7.1.6)

Here the 2-norm is used, but other norms can also be used. Then the θ’s which minimizes
VN (θ) has to be found

θ̂N = arg(min(VN (θ))) . (7.1.7)

Newton-Raphsons method is used to find the minimum

d

dθ
VN (θ) = 0 ⇒ (7.1.8)

θ̂(i+1) = θ̂(i) − µ(i)
[
V ′′
N (θ̂(i))

]−1
V ′
N (θ̂(i)) , (7.1.9)

where V ′
N (θ) is the gradient of VN (θ) and V ′′

N (θ) is the hessian of VN (θ). The step-length
µ(i) is found by making sure that

VN (θ̂(i+1)) < VN (θ̂(i)) . (7.1.10)

This is done by assuming that VN (θ) is a quadratic polynomial

VN (θ) = α0 + α1θ + α2θ
2 , (7.1.11)

and then inserting 3 values for θ in VN (θ) to find α0, α1 and α2. When this is done the
θ-value which minimizes VN (θ) can be found from

66

θmin =
−α1

2α2
, (7.1.12)

and then µ(i) is found as

µ(i) =
(
θ(i) − θmin

)
∆θ . (7.1.13)

When the norm in equation (7.1.6) is used, it is found that the derivatives of VN (θ) is

V ′
N (θ) =

1
N

N∑
k=1

−
(
d

dθ
ŷ(tk|θ)

)
(y(tk) − ŷ(tk|θ)) (7.1.14)

and

V ′′
N (θ) =

1
N

N∑
k=1

(
d

dθ
ŷ(tk|θ)

)(
d

dθ
ŷ(tk|θ)

)T
(7.1.15)

+
1
N

N∑
k=1

(
d2

dθ2
ŷ(tk|θ)

)
(y(tk) − ŷ(tk|θ)) . (7.1.16)

The second sum in the second derivative is often eliminated, because when you are close
to the solution, d2

dθ2
ŷ(t|θ) is close to zero and then it is not necessary to find d2

dθ2
ŷ(t|θ),

which can be very difficult. Then the only thing missing is to find d
dθ ŷ(t|θ) from equation

(7.1.2).

If it is not possible to find d
dθ ŷ(t|θ) analytically, the following steps can be used to find some

coupled differential equations which gives d
dθ ŷ(t|θ) as a solution. From equation (7.1.2) it

is found that

d

dθ
ŷ(t|θ) =

d

dθ
(h(x(t, θ), u(t), θ) (7.1.17)

= H1 (x(t, θ), u(t), θ) z(t, θ) +H2 (x(t, θ), u(t), θ) , (7.1.18)

where

67

H1(x, u, θ) =
d

dx
h(x, u, θ) (7.1.19)

z(t, θ) =
d

dθ
x(t, θ) (7.1.20)

H2(x, u, θ) =
d

dθ
h(x, u, θ) . (7.1.21)

From equation (7.1.1) and equation (7.1.20) it is found that

d

dt
z(t, θ) =

d

dt

d

dθ
x(t, θ) (7.1.22)

=
d

dθ

d

dt
x(t, θ) If x(t, θ) is two times continous differentiable. (7.1.23)

= F1 (x(t, θ), u(t), θ) z(t, θ) + F2 (x(t, θ), u(t), θ) , (7.1.24)

where

F1(x, u, θ) =
d

dx
f(x, u, θ) (7.1.25)

F2(x, u, θ) =
d

dθ
f(x, u, θ) . (7.1.26)

7.2 Example

The use of this theory is shown on the following example, a water tank with free outlet.
The cross section area of the tank is A measured in (m2) and the area of the outlet hole is
a also in (m2). The water level in the tank is h measured in (m). The flow into the tank
is u measured in (m

3

s) and the flow out of the tank is q also in (m
3

s).

The law of Bernoulli describe the outlet velocity v measured in (ms) as a function of the
water level h in the tank

v(t) =
√

2gh(t) , (7.2.1)

where g is the gravitational acceleration. The connection between the flow out of the tank
q and the outlet velocity v is per definition

68

q

h

u

Figure 7.1: Model of the tank used in this example.

q(t) = a · v(t) . (7.2.2)

The volume of the water in the tank by the time t is

V (t) = A · h(t) , (7.2.3)

measured in (m3). The volume changes in connection with the difference between the flow
into and out of the tank

d

dt
Ah(t) = u(t) − q(t) . (7.2.4)

The three equations (7.2.1), (7.2.2) and (7.2.4) describe a model for the tank on figure
7.1. Equation (7.2.1) and equation (7.2.2) is inserted in equation (7.2.4) to get an explicit
equation for the water level in the tank.

d

dt
h(t) = −a

√
2g
A

√
h(t) +

1
A
u(t) . (7.2.5)

69

From this equation it is possible to determine h(t) because the flow into the tank u(t)
is known. Now the flow out of the tank q(t) can be determined from equation (7.2.2),
equation (7.2.1) and the solution to equation (7.2.5) as

q(t) = a
√

2g
√
h(t) . (7.2.6)

To make the model a little simpler the parameter A is chosen to 1 and a = θ is used as the
unknown parameter. This gives the model

˙h(t) = −θ
√

2g
√
h(t) + u(t) (7.2.7)

q̂(t|θ) = θ
√

2g
√
h(t) . (7.2.8)

When the model from equation (7.2.7) and (7.2.8) is inserted in equation (7.1.6) VN (θ)
becomes

VN (θ) =
1
N

N∑
k=1

1
2

(q(tk) − q̂(tk|θ))2 , (7.2.9)

where q̂(tk|θ) is the predicted values of the flow out of the tank from the model and q(tk)
is the measured values of the flow out of the tank for the experiment, se figure 7.2.

Because this model is simple the derivative can be found analytically from equation (7.1.14)
and equation (7.1.16) as

d

dθ
q̂(t|θ) =

√
2g
√
h(t) , (7.2.10)

and

d2

dθ2
q̂(t|θ) = 0 . (7.2.11)

So here it is not only an assumption that the second sum in the second derivative is close
to zero.

70

10 15 20 25 30 35 40 45 50
0.2

0.4

0.6

0.8

1

1.2

t

q(
t)

The measured values of the flow out of the tank q(t)

Figure 7.2: The measured values of the flow out of the tank q(tk) for the experiment.

Because it is so easy to find the derivative analytically it is not necessary to use the
equations (7.1.17)-(7.1.26) to find d

dθ q̂(t|θ).
In this experiment the area of the outlet hole is a = 1√

2g
≈ 0.226. The flow into the tank

u(t) for the experiment can be seen on figure 7.3.

VN (θ) is plotted as a function of θ and is shown on figure 7.4.

71

10 15 20 25 30 35 40 45 50
0.2

0.4

0.6

0.8

1

1.2

t

u(
t)

The flow into the tank u(t)

Figure 7.3: The flow into the tank u(t) for the experiment.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

θ

V
N

(θ
)

V
N

(θ) as function of θ

Figure 7.4: VN (θ) from equation (7.2.9) as a function of θ.

As it can be seen VN (θ) has the minimum value for a ≈ 0.225. This is very close to the
actual value which is a ≈ 0.226.

To use the theory for finding the parameters in the experiment the model as described

72

above is used, but instead of using the measured values of the flow out of the tank, q(t)
is made by using the solution from solving ḣ(t) to find q̂(t|θ) with the right θ-value in the
model and then add a random error. The predefined function in Matlab called randn.m
is used, this function find a random number chosen from a normal distribution with mean
zero, variance one and standard deviation one. In this way it is possible to control the size
of the error and thereby examine the implementation of the theory.

At first the implementation is run without any error. In this way it is possible to se in
which level of tolerance of VN (θ) the parameter can be found in and how many iterations
it takes.

If the tolerance is set to 10−4, the implementation finds that θ = 0.2401 in 40 iterations.
If the tolerance is set to 10−5, θ is found to 0.2303 in 51 iterations. When the tolerance is
set to 10−6 the implementation can not converge so there is no solution. This means that
the implementation is expected to converge for a tolerance around 10−4 − 10−5. The error
is squared in VN (θ) in equation (7.2.9) so for tol = 10−4 the error can be around 0.01 and
for tol = 10−5 the error can be around 0.003.

Then the error is set to be 0.0001 times the random numbers. The absolute maximum of
these errors is then around 0.0003, so this should not give any problems. The results is
shown in table 7.1.

error = 0.0001 ∗ randn
tol = 10−4 tol = 10−5

θ iterations θ iterations

0.2406 40 0.2303 54
0.2409 41 0.2308 49
0.2407 41 0.2301 43
0.2406 40 0.2301 48
0.2401 42 0.2303 44

Table 7.1: Results for error = 0.0001 ∗ randn.

As it can be seen the results is approximately the same as when there is no error. Then
the error is made 5 times larger, error = 0.0005 ∗ randn. The absolute maximum of these
errors is then around 0.001. This gives the results in table 7.2.

With this error the results is also approximately the same as when there is no error. The
error is now set to error = 0.001∗randn which gives the absolute maximum of these errors
around 0.003 and this gives the results in table 7.3.

Again it can be seen that the results is approximately the same as when there is no error.
The error is now at the limit for what the implementation is expected to handle. If the
error is set to error = 0.01 ∗ randn, which gives a absolute maximum error around 0.03,

73

error = 0.0005 ∗ randn
tol = 10−4 tol = 10−5

θ iterations θ iterations

0.2406 39 0.2302 51
0.2409 42 0.2297 56
0.2407 42 0.2305 48
0.2407 42 0.2302 58
0.2399 46 0.2302 55

Table 7.2: Results for error = 0.0005 ∗ randn.

error = 0.001 ∗ randn
tol = 10−4 tol = 10−5

θ iterations θ iterations

0.2401 40 0.2303 51
0.2410 39 0.2298 50
0.2337 41 0.2303 55
0.2407 40 0.2301 52
0.2407 41 0.2302 55

Table 7.3: Results for error = 0.001 ∗ randn.

this is above the error-limit for tol = 10−5 and on the limit for tol = 10−4. This is also
what the implementation gives as results. For tol = 10−5 there is no convergence and for
tol = 10−4 the result is almost the same as if there was no error.

7.3 Conclusion

The implementation of the theory for finding parameters in Differential Algebraic Equation
models is very good. If the tolerance, which gives convergence for the model without any
error, is used and the error is smaller than what this tolerance can handle as error, the
implementation finds the same parameters for the model with error as if there was no
error. So as long as the tolerance and the error is adjusted to the model without error, the
implementation finds the correct parameters.

74

Chapter 8

Trajectory Prescribed Path
Control - TPPC

by : Carsten Vølcker and Peter Larsen

8.1 Introduction

In this report we consider a Trajectory Prescribed Path Control - TPPC problem. Imagine
a space shuttle that returning from its mission has to reenter the atmosphere. This is a
very critical point of any mission in space, and there are many parameters to be taken into
account. When reaching the atmosphere the vehicle has high velocity, since the vacuum of
outer space does not allow it to decellerate. We will focus our analysis on a specific model
taken from Brenan et al. [20] which describes a trajectory to be followed by the vehicle
during reentry. Two control parameters roll and pitch can be modified to stabilize the
vehicle and keep it on the prescribed path. We do not consider heating of the shuttle nor
the specific control system and devices.

First of all we present the theoretical model and explain some of the aerodynamic parame-
ters involved. We then move on to the implementation in Matlab, which is followed by the
main results of the simulation. The last two sections are discussion and conclusion.

75

8.2 Theoretical model

The point of departure for the theoretical model is quite basic - it is Newton’s second law
of motion. The following three forces affect the propulsion free vehicle:

• Gravitational pull mg

• Aerodynamic lift force L

• Aerodynamic drag force D

Let r denote the position vector and m the mass, then it adds up to

mr′′ = mg + L+D, (8.2.1)

or equivalently by introducing the velocity vector v

r′ = v

v′ = g +
1
m

(L+D), (8.2.2)

where the prime denotes the derivative with respect to time. The magnitude of the drag
force is given by

D =
1
2
ρV 2

RSCD, (8.2.3)

and its direction is opposite the velocity of the vehicle. Here ρ is the density of air (which
is a function of altitude), S is the cross sectional reference area of the vehicle, VR is the
magnitude of the velocity relative to the rotation of the earth. The lift force is similarly
given by

L =
1
2
ρV 2

RSCL, (8.2.4)

but with lift coefficient CL. It is perpendicular to D. The coefficients CD and CL will be
discussed in section 8.2.2.

The dynamical model will be described in three different coordinate systems. The first one
is spherical with origin at the center of the earth, and it rotates at the angular velocity
of the earth Ω. In this coordinate system the variables that represent the position of the
center of mass of the vehicle are measured; the altitude above earth surface H, the azimuth
angle ε, and the zenith angle λ. This is seen in figure 8.1.

The second system is for measuring the velocity variables. It is measured in a local spher-
ical system with origin at the position of the lift center of the vehicle. This system is also
shown in figure 8.1. The x-axis is always towards the north, the y-axis towards the east,

76

Figure 8.1: Figure 6.3.1 from Brenan et al. [20].

and the z-axis points towards the center of the earth. This system is locally horizontal
with respect to gravity, since the z-axis points to the center of the earth. The first system
is relative to the rotating earth and hence the velocity is referred to as the relative velocity.
The magnitude of the velocity vector in this system is VR, the azimuth angle is A, and the
zenith angle is denoted γ.

The third and last system is for describing the orientation of the vehicle relative to the
velocity vector from the lift center of the vehicle - see figure 8.2. Let’s place the vehicle
with the nose and tail along the x-axis, the y-axis is from side to side, and the z-axis from
top to bottom. The three angles of rotation are called pitch or α about the y-axis, roll or
β about the x-axis, and yaw about the z-axis. In this context yaw is not considered. The
variables in this last system are called the control parameters (CP), since they are the ones
that enable us to steer the vehicle.

77

Figure 8.2: Figure 6.3.2 from Brenan et al. [20].

With the three coordinate systems we can describe the dynamics of the vehicle with a 6
dimensional system of first order differential equations:

H ′ = VR sin(γ) (8.2.5)

ε′ =
VR cos(γ) sin(A)

r cos(λ)
(8.2.6)

λ′ =
VR
r

cos(γ) cos(A) (8.2.7)

V ′
R = −D

m
− g sin(γ)

− Ω2r cos(λ)
(

sin(λ) cos(A) cos(γ) − cos(λ) sin(γ)
)

(8.2.8)

γ′ =
L cos(β)
mVR

+
cos(γ)
VR

(
V 2
R

r
− g

)
+ 2Ω cos(λ) sin(A)

+
Ω2r cos(λ)

VR

(
sin(λ) cos(A) sin(γ) − cos(λ) cos(γ)

)
(8.2.9)

A′ =
L sin(β)

mVR cos(γ)
+
VR
r

cos(γ) sin(A) tan(λ)

− 2Ω
(

cos(λ) cos(A) tan(γ) − sin(λ)
)

+
Ω2r cos(λ) sin(λ) sin(A)

VR cos(γ)
. (8.2.10)

78

Equations (8.2.5) through (8.2.10) contain a lot of trigonometric functions which are due
to projections in the two interlinked spherical coordinate systems. All terms proportional
to g express the gravitational pull. Whenever the factor Ω2 is present it is a centrifu-
gal force term, and similarly for the factor Ω it is a coriolis force term. The L terms
in (8.2.9) and (8.2.10) have a trigonometric dependence on β. If β is zero we have maxi-
mum lift and maximum influence on the zenith angle γ and zero influence on the azimuth
angle A in the local coordinate system. The azimuth angle A has to be symmetrical about
β = 0 which explains the above choice of trigonometric dependencies - cos(β) in (8.2.9)
and sin(β) in (8.2.10). In (8.2.8) D always has the opposite direction of the velocity, hence
the minus sign. The leftover force terms are due to coordinate transformations.

As mentioned earlier m is the mass of the vehicle. The angular velocity of the earth is Ω.
H is the altitude above the surface of the earth, and r is the distance from the center of
the earth, so they are related by r = H+ae where ae is the earth radius. The gravitational
acceleration g is given by g = µ/r2, where µ is the gravitational constant. The density of
atmospheric air ρ which has an influence on lift and drag depends on H. Lift and drag
coefficients CL and CD depend on the pitch angle α and also on the velocity VR and the
altitude H.

8.2.1 Constraints

In Brenan et al. [20] the constraints for the trajectory to be followed by the vehicle are
given only in terms of γ and A

γ + 1 + 9
(t

300

)2
, (8.2.11)

A− 45 − 90
(t

300

)2
. (8.2.12)

Put into words, γ varies from −1 to −10 degrees in a parabolic fashion from 0 to 300 sec-
onds. A varies from 45 to 135 degrees in the same way. Where equations (8.2.5) through (8.2.10)
make up the differential part of the DAE problem, these constraints are the algebraic part.
With (8.2.11) and (8.2.12) the whole problem has differential index two. This can be argued
in the following way. If you differentiate once with respect to time you end with γ′ and A′

which are given by equations (8.2.9) and (8.2.10). These two equations have trigonometric
terms in α and β. This means that differentiating a second time will yield time derivatives
of α and β which corresponds to an 8 dimensional ordinary differential equations system
or an order zero DAE-system.

The constraints might seem rather strange, since they include neither altitude nor velocity.
Equation (8.2.11) describes the angular difference from a locally horizontal plane. The

79

CL

Angle of attack α

Figure 8.3: Liftcoefficient CL as a function of the angle of attack α.

increasing negative angle means that the steepness of the descent will increase. Equa-
tion (8.2.12) describes the orientation on the compass with 0 degrees being north. So
starting from north-east at 45 degrees, the vehicle ends up flying south-east at 135 de-
grees.

8.2.2 Lift and drag coefficients

The two aerodynamic forces lift and drag are given by equations (8.2.3) and (8.2.4). In each
equation either the lift coefficient or the drag coefficient intervenes along with some other
parameters. As mentioned earlier CD and CL are functions of angle of attack α and the
Mach number. The Mach number is the ratio of VR and the speed of sound. If we consider
the atmosphere to be a ideal gas, the speed of sound will only depend on temperature.
For a specific aircraft CL and CD should be determined experimentally. However a the
dependance on α and M always has the same qualitative behavior.

For constant M CL is linear in α with a small constant term which is positive for most M .
This is seen in figure 8.3. For the larger α the linear behavior stops and we get to what is
called stall, where a further increase will create no more lift. For larger M the slope has a
tendency to become smaller.

80

CL

CD

CD0

Figure 8.4: A socalled polar plot of the dragcoefficient CD as a function of the liftcoefficient
CL.

The standard way of plotting the dragcoefficient is in a so called polar plot as a function
of CL. In general this yields a parabolic shape with a strictly positive minimum as seen in
figure 8.4. The dragcoefficient can never become negative since this would the drag force
would accelerate the aircraft.

The dependance on M is not as ”nice” as on α. There a different regimes that have
distinctively different behaviors. These are the subsonic (M < 1), supersonic (M > 1),
and hypersonic (M � 1) regimes. The hypersonic regime is not as clearly defined as
sub- and supersonic, but it must be considered when treating reentry problems, since the
velocity of the reentering shuttle is of the order ten times the speed of sound.

81

−2
−1

0
1

2

2

4

6

8

10

12

−6

−4

−2

0

2

4

6

Angle of attack αMach number

Li
ft

co
ef

fic
ie

nt
 C

L

Figure 8.5: Lift coefficient CL from Scott and Olds [21] as a function of the angle of attack
α and the Mach number.

8.3 Implementation

8.3.1 Parameters

The temperature and the density of air are both taken from tables in Databog i fysik &
kemi [19]. Polynomial fits have been used to implement them as functions in our program.

When it comes to lift and drag coefficients things are a bit more complicated, since relevant
data are not readily available for specific shuttle types. We have based our coefficients on
a theoretically calculated example taken from Scott and Olds [21]. The lift coefficient is a
linear equation of type

CL = CL0 + sα,

where CL0 and s are parametrized by second order polynomials in the Mach number M
and the aspect ratio AR of the shuttle. There are two different parametrizations for the
subsonic and super/hypersonic regimes. The lift coefficient is shown in figure 8.5 as a
function of α and M for AR = 1.86. One clearly sees for constant M we have a straight
line, and the slope decreases with increasing M . There is also a discontinuity at M = 1
because of the change from sub- to supersonic.

In the same way the drag coefficient which approximately has a parabolic shape is given

82

−2
−1

0
1

2

2

4

6

8

10

12

2

4

6

8

10

12

14

16

18

Mach number

Angle of attack α

D
ra

g
co

ef
fic

ie
nt

 C
D

Figure 8.6: Drag coefficient CD from Scott and Olds [21] as a function of the angle of attack
α and the Mach number.

by a the equation
CD = CD0 +K1CL +K2C

2
L,

where this time CD0, K1, and K2 are parametrized to second order by M and AR. In
figure 8.6 this is presented as function of α and M for AR = 1.86. Again there are different
parametrizations for sub- and supersonic. One notices the ”flat bottom” down the middle
of the graph. This is due to the fact that the coefficient actually becomes negative for small
α, and this of course we cannot have. We have fixed this problem by setting all values of
CD below 0.04 to 0.04. This of course is very far from an optimal solution, and in a more
realistic simulation this would have to be reconsidered in more detail.

When it comes to the mass m and the cross sectional reference area S, these have been
estimated from data sheets obtained from the NASA website [22]. The aspect ratio is
taken from Scott and Olds [21]. The following values have been used for the constant
parameters:

• Mass m = 200, 000 lbs,

• Cross sectional reference area S = 362.1m2,

• Aspect ratio AR = 1.86,

• Earth radius ae = 6378, 137 km,

83

• Gravitational constant µ = 3.9848 · 1014 m3/s2,

• Earth angular velocity Ω = 0.004167 degrees/s.

8.3.2 Solving by The Use of AE’s

Because γ and A are give explicitely by the AE’s (8.2.11) and (8.2.12), the DAE-system is
solved in practice by substituting the two ODE’s (8.2.9) and (8.2.10) with the AE’s.

8.3.3 Solving by Index Reduction

Theoretically, the problem can also be solved by index reduction to order zero, which
in practice means to differentiate the AE’s several times. Because our system has the
index 2, maximum two differentations are possible. The most straight forward way is to
differentate untill each dynamical variable is represented by its own ODE. To obtain the two
extra ODE’s for finding α and β we would have to first differentiate (8.2.11) and (8.2.12)
two times, and secondly we would need to differentiate (8.2.9) and (8.2.10) once, and by
merging these four equations we would finally obtain the two extra ODE’s. By the use of
this procedure we would still be able to maintain the constraints by using the AE’s to find
γ and A explicitly. However it is not a good idea to reduce the DAE-system down to index
0, because this introduces numerical drift on the solution of α and β. And furthermore
in this case it is impossible to isolate α′ and β′ because of nonlinearities in the dynamical
equations. So instead we only reduce the system to index 1 and use Newton-Raphson to
find the CP’s.

8.3.4 Finding The Control Parameters α and β

By differentiating the constraints (8.2.11) and (8.2.12) one time the system is reduced to
index 1, and the index reduced constraints become as follows:

γ′ + 18
t

3002
= 0 , (8.3.1)

A′ − 180
t

3002
= 0 . (8.3.2)

The control parameters α and β are both represented in (8.2.9) and (8.2.10), α is indirectly
represented by the liftforce L, so by substituting γ′ and A′ the CP’s can be found by the

84

−4
−3

−2
−1

0
1

2
3

4

−4
−3

−2
−1

0
1

2
3

4

−20

−15

−10

−5

0

5

10

15

20

β

Surfaces formed by α and β and minimized by Newton−Raphson

α

Figure 8.7: Minimizing (8.3.3) and (8.3.4) to find CP’s.

equations:

L cos(β)
mVR

+
cos(γ)
VR

(
V 2
R

r
− g

)
+ 2Ω cos(λ) sin(A)

+
Ω2r cos(λ)

VR

(
sin(λ) cos(A) sin(γ) − cos(λ) cos(γ)

)
+ 18

t

3002
= 0 , (8.3.3)

L sin(β)
mVR cos(γ)

+
VR
r

cos(γ) sin(A) tan(λ)

− 2Ω
(

cos(λ) cos(A) tan(γ) − sin(λ)
)

+
Ω2r cos(λ) sin(λ) sin(A)

VR cos(γ)
− 180

t

3002
= 0 . (8.3.4)

As seen in the figures 8.7 and 8.8, (8.3.3) and (8.3.4) form two surfaces from α and β. So the
CP’s are found by minimizing (8.3.3) and (8.3.4) with Newton-Raphson, and the solution
will be found where the two surfaces intersect. In the figures 8.7 and 8.8 the starting
guesses of α and β are shown with circles, and the solution found by Newton-Raphson is
shown with the diamond.

85

Figure 8.8: Close up of figure 8.7.

8.3.5 Numerical implementation

The procedure is divided into four main parts which are finding the physical parameters,
the constraints (AE’s), solving the ODE’s and finding the CP’s. A flow diagram for the
program is seen in figure 8.9. To different integrators have been used, ERK4 with fixed
time step and ESDIRK23 with variable time step. The two methods yield the very similar
solutions, which could be expected, since we assumed our system not to be stiff (this
being a reason to use a variable timestep). This assumption was made on the fact, that it
would not be physical correct to have a shuttle to make sudden changes in the dynamical
variables, and furthermore we where looking a smooth change in the variables. To use
ESDIRK23 it is necessary to know the Jacobian of the system. Because of the coupling
of the physical parameters it would be to complex to find the Jacobian analytically and
probably not as accurate as desired, since the parameters are approximated by polynomial
functions. Therefor we have implemented numerical approximation. This is however quite
time consuming, so our choice of integrator is the ERK4 which does not use the jacobian.
It must be mentioned, that all code is selfmade, so no Matlab functions are used.

86

Yes

Iterate to find CP’s

Solve constraints with AE’s

Convergence?

Set IC’s at t = 0

are solved with AE’s)

End

Yes

No

Next t

Calculate parameters

At end of tspan?

New iteration

Integrate ODE’s (γ and A

No

Figure 8.9: Flow diagram for the numerical simulation.

87

8.4 Results

In this section we will present the results from our program, and we will perform an analysis
of the dependence of the error on the time step.

For our calculations we have used the following initial conditions:

• H0 = 100, 000 feet = 30, 480m (height of the atmosphere)

• VR0 = 12, 000 feet/s = 3657.6m/s

• ε0 = 0◦ (Greenwich meridian)

• λ0 = 0◦ (Equator)

• γ0 = −1◦ (given by prescribed trajectory)

• A = 45◦ (given by prescribed trajectory)

The initial guess for α and β is taken from Brenan et al. [20]; α0 � 2.67◦ and β0 �
−0.0522096◦ . By use of Newton Raphson algorithm consistent values are found to be
α0 = 0.09001603930206◦ and β0 = −0.05221600531589◦ . With these initial conditions and
using the ERK4 with different time steps and a Newton-Raphson iteration the problem
has been solved as described in figure 8.9.

In figures 8.10 and 8.11 the altitude and the velocity are shown. The shuttle descends from
30 km to 10 km. At the same time it decelerates from 3657.6m/s or Mach 12 to 391.9m/s
which is nearly Mach 1. This shows that after all the vehicle does not reach the subsonic
regime. Though not shown here λ is clearly controlled by the the A-part of the prescribed
trajectory. When flying north-east in the beginning λ increases and begins to decrease only
when the direction becomes south east. The last dynamic variable ε increases all the time
corresponding to the vehicle flying in only eastern directions.

The results for α and β are shown in figures 8.12 and 8.13. Qualitatively the roll angle
β corresponds very well to the result obtained in Brenan et al. [20]. The pitch angle α,
however, decreases, and this is not in agreement with Brenan et al. [20]. One would expect
the shuttle to increase its pitch angle, since this would increase drag, and thereby decelerate
the shuttle altogether. This is probably due to the incoherence between different data and
parameters that we have used.

8.4.1 Error analysis

We have used a time step of h = 0.01 s to calculate reference solution for the error analysis.
We consider the system at the end of the simulation t = 300 s and calculate the absolute
(abs) and relative (rel) error from the reference solution of a solution with a larger time

88

0 50 100 150 200 250 300
1

1.5

2

2.5

3

3.5
x 10

4 Height

t [s]

H
 [m

]

Figure 8.10: Altitude H as a function of time.

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

3500

4000
Velocity

t [s]

V
R
 [m

/s
]

Figure 8.11: Velocity VR as a function of time.

89

0 50 100 150 200 250 300
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Pitch−angle

t [s]

α
 [d

eg
]

Figure 8.12: Angle of attack α as a function of time.

0 50 100 150 200 250 300
−5

0

5

10

15

20

25

30

35

40
Roll−angle

t [s]

β
[d

eg
]

Figure 8.13: Roll angle β as a function of time.

90

Relative error Absolute error
H 1.270 · 10−3 13.9m
ε 0.140 · 10−3 0.0004◦

λ 1.086 · 10−3 0.00193◦

VR 1.230 · 10−3 0.48m/s
α 0.768 · 10−3 (8.4 · 10−6)◦

β 4.207 · 10−3 0.1◦

Table 8.1: Relative and absolute error for h = 1 s.

step. In table 8.1 the results for h = 1 s are shown. The relative error is very similar for
all variables, though considerably higher for the roll angle β. This could reflect that the
roll angle being a degree of freedom that is very hard to control. The absolute errors on
especially H, VR, and β are quite higher.

8.5 Discussion

The simulations presented in the previous sections are based on the model proposed in [20].
One could question how realistic the constraints that are introduced actually are. The ones
used are of course very simplified. From an intuitive point of view it would be more logical
to introduce constraints on other variables like altitude and velocity. Another aspect is that
in a more elaborated model one would have to consider the effects of thermal heating which
mainly depend on the velocity and air density and thereby altitude. However, introducing
constraints on for example altitude would complicate the system considerably by increasing
the index to 3. This is because the altitude ODE does not directly depend on α nor β, and
only by differentiating once more would it be possible to reduce the index of the system to
the same as for the constraints that we have used.

In this problem it is convenient that the constraints are stated as functions of time. It allows
for a reduction of the dimension of the dynamical part of the system from 6 to 4. But what
happens if we do not use this advantage explicitly? This is simply done by integrating all
six ODEs and using the values of A and γ obtained from the integration instead of the ones
they are supposed to be. The results for γ is seen in figure 8.14 along with the prescribed
trajectory. It is clear that the two trajectories are not alike, but they have the same slope
in almost all points. This is due to the index reduction of the constraints. The CP’s α and
β are found using the time derivative of the original constraints, and therefore they only
fulfill that the calculated trajectory must have the same slope. A constant of integration
is lost when differentiating. By varying different parameters one can also observe that the
trajectory jumps to a different path also with the same slope. These observations indicate
that there are several stable trajectories, and this emphasizes the need for efficient and

91

0 50 100 150 200 250 300
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0
Local zenith−angle

t [s]

γ
[d

eg
]

Figure 8.14: Prescribed (dotted line) and numerically integrated local zenith angle γ as a
function of time.

reliable control in reentry problems.

8.6 Conclusion

TPPC problems very quickly become complicated. This is due to both the DAE formu-
lation and the difficulties encountered in the science of aeronautics. What concerns the
numerical approach, we have succeeded in implementing a simple and efficient method that
combines a Runge-Kutta solver for the dynamical part and a Newton-Raphson iteration
for the algebraic part. The error analysis shows that small time steps (h = 0.01 s) should
be used, since in particular altitude, velocity, and roll angle deviate quite considerably.

The physical parameters for the vehicle that we have used must be far more consistent if
the aim of the simulation is to obtain precise and realistic results. In our calculations the
control parameter α behaves in an even counterintuitive way, and this is of course far from

92

satisfactory. We suspect that the lift and drag coefficient in the hypersonic regime have
a major influence on whether the simulation is realistic or not. In order to improve the
calculations a complete dataset for a specific vehicle would be necessary.

93

Bibliography

[1] E.Hairer and G. Wanner, : Solving Ordinary Differential Equations II, Springer
-Verlag, 2.nd edition, 1996.

[2] www.rafil-gmbh.de/produkte/gueter/gueterw.htm

[3] A. A. Shabana, M. Berzeri, J. R. Sany : Numerical Procedure for the Simulation
of Wheel/Rail Contact Dynamics, ASME Vol. 123, 168–178, 2001.

[4] A. A. Shabana, J. R. Sany : An Augmented Formulation for Mechanical Sys-
tems with Non–Generalized Coordinates: Application to Rigid Body Contact
Problems, Kluwer Academic Publishers, Nonlinear Dynamics 24, 183–204, 2001.

[5] A. A. Shabana : Dynamics of Multibody Systems (second edition), Cambridge
University Press 1998.

[6] F. Pfeiffer, C. Glocker : Multibody Dynamics with Unilateral Contacts, John
Wiley & Sons, 1996.

[7] E. Eich–Soellner, C. Führer : Numerical Methods in Multibody Dynamics, B.G.
Teubner Stuttgart, 1998.

[8] L. F. Shampine et al : Fundamentals of Numerical Computing, John Wiley &
Sons, 1997.

[9] Z. Y. Shen, J. K. Hedrick, J. A. Elkins : A Comparison of Alternative Creep Force
Models for Rail Vehicle Dynamic Analysis, Proc. of 8th IAVSD Symposium, 591–
605, Cambridge, 1983.

[10] N. K. Cooperrider : The Hunting Behavior of Conventional Railway Trucks,
ASME J. Eng. Industry 94, 752–762, 1972.

[11] C. Kaas–Petersen : Chaos in a Railway Bogie, ACTA Mechanica 61, 89–108,
Springer–Verlag, 1986.

94

[12] J. J. Kalker : Three–Dimensional Elastic Bodies in Rolling Contact, Kluwer
Academic Publishers, 1990.

[13] V. I. Arnold, Mathematical methods of Classical Mechanics, Springer-Verlag, 1980

[14] Per Grove Thomsen, Solution methods for ODE’s with changes of state, IMM,
Danmarks Tekniske Universitet, marts 2005

[15] J.D.Lambert, Numerical Methods for Ordinary Differential Systems -The Initial
Value Problem, Wiley, 1991

[16] Patrick J Rabier, On the Computation of Impasse Points of Quasi-
Linear Differential-Algebraic Equations, Mathematics of Computation, vol.62
no.205,january 1994

[17] R.E. O’Malley . Introduction to Singular Perturbations. Academic Press, New
York. 1974.

[18] E.Hairer, Ch. Lubich and M.Roche . The numerical solution of differential-
algebraic systems by Runge-Kutta methods. Lecture notes in Mathematics 1409,
Springer Verlag . 1989.

[19] E. S. Andersen, P. Jespersgaard, and O. G. Østergaard. Databog fysik & kemi,
volume 2nd. F&K forlaget, 2nd edition, 1983.

[20] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial-
Value Problems in Differential-Algebraic Equations. Number 14 in Classics in
applied mathematics. Society for Industrial and Applied Mathematics - SIAM,
1996.

[21] J. M. Scott and J. R. Olds. Transforming aerodynamic datasets into parametric
equations for use in multidisciplinary design optimization. In Defense and Civil
Space Programs Conference and Exhibit. American Institute of Aeronautics and
Astronautic - AIAA, October 1998.

[22] NASA website. http://www.nasa.gov.

[23] A. Schwab, J. Meijaard, J. Papadopoulos
Benchmark Results on the Linearized Equations of Motion of an Uncontrolled
Bicycle
Proceedings of ACMD’04

[24] J. Papadopoulos
Bicycle Steering Dynamics and Self-Stability: A Summary Report on Work in
Progress
Preliminary draft - Cornell University 1987

95

[25] R.S. Hand
Comparisons and Stability Analysis of Linearized Equations of Motion for a Basic
Bicycle Model
MSc Thesis, Cornell University 1988

[26] Robin S. Sharp, David J.N. Limebeer
A Motorcycle Model for Stability and Control Analysis
Multibody System Dynamics 6-2001

[27] F.M.L. Amirouche
Computational Methods in Multibody Dynamics
Prentice-Hall 1992

[28] U.M. Ascher, H. Chin, S. Reich
Stabilization of DAEs and invariant manifolds
Numerische Mathematik 67:131-149 (1994)

[29] Editors : P.G.Thomsen, C. Bendtsen
Numerical Solution of Differential Algebraic Equations
Technical Report, 1999, IMM, DTU, IMM-REP-1999-8.

96

