
Textmining and Organization in
Large Corpus

Wei Ning

Kongens Lyngby 2005

2

Abstract

Nowadays a common size of document corpus might have more than 5000 doc-
uments. It is almost impossible for a reader to read thought all documents
within the corpus and find out relative information in a couple of minutes. In
this master thesis project we propose text clustering as a potential solution to
organizing large document corpus.

As a sub-field of data mining, text mining is to discover useful information from
written resources. Text clustering is one of topics in text mining, which is to
find out the groups information from the text documents and cluster these doc-
uments into the most relevant groups automatically. Representing document
corpus as a term-document matrix is the prevalent preprocessing in text clus-
tering. If each unique term is taken as a dimension, a common size of corpus may
contain more than ten-thousands of unique term, which results in extremely high
dimensionality. Finding good dimensionality deduction algorithms and suitable
clustering methods are the main concerns of this thesis project.

We mainly compare two dimensionality deduction methods: Singular Vector De-
composition (SVD) and Random Projection (RP), and three selected clustering
algorithms: K-means, Non-negative Matrix Factorization (NMF) and Frequent
Itemset. These selected methods and algorithms are compared based on their
performance and time consumption.

This thesis project shows K-means and Frequent Itemset can be applied in large
corpus. NMF might need more research on speeding up its convergence speed.

ii

Preface

This thesis is submitted to fulfill the requirements of the Master of Science in
Computer System Engineering. The project was done by Wei Ning during the
period July 2005 to December 2005 at the department of Informatics and Math-
ematical Modelling (IMM), Technical University of Denmark (DTU). The work
was supervised by Professor Jan Larsen.

Acknowledgments

I would like to thank my supervisor Jan Larsen for his assistance throughout
the thesis. He assisted me on all the stages of my thesis and always gave me
good idea and helpful instruction. Meanwhile, I would like to thank Professor
Lars Kai Hansen for his giving me ideas on clustering algorithms. And thank
Ph.D. students Rasmus Elsborg Madsen, Anders Meng, Morten Mrup, Ling
Feng, Finn arup Nielsen for their help during my research.

Special thanks to my parents and my friends for their support.

Lyngby, December 2005

Wei Ning

iv

Contents

Abstract i

Preface iii

1 Introduction 1

1.1 Problem Definition . 2

1.2 Project Scope . 2

1.3 Large Document Corpus Characteristics 2

1.4 Report Structure . 3

2 Text Clustering Background 7

2.1 Text Mining, Clustering and Classification 7

2.2 Document Representation Model 8

2.3 Similarity Measurement . 12

2.4 Document Clustering Categories 13

vi CONTENTS

2.5 Text Clustering Process . 20

2.6 Clustering Algorithm Introduction 22

3 Preprocessing 25

3.1 Stop-words Removing . 25

3.2 Stemming . 27

3.3 Term Weighting . 29

4 Key Feature Extraction and Matrix Dimensionality Deduction 33

4.1 Singular Value Decomposition (SVD) 34

4.2 Random Projection . 37

4.3 SVD or RP? . 39

4.4 Other Dimensionality Deduction Approaches 39

5 Clustering Algorithm 41

5.1 K-Means . 41

5.2 Non-negative Matrix Factorization 46

5.3 Frequent Itemset . 52

6 Validation and Evaluation 61

6.1 Validation Measure . 62

6.2 Evaluation Measures . 63

7 Experiment Data and Result 67

7.1 Experiment Data . 67

CONTENTS vii

7.2 Experiment Result . 69

8 Summary and Future Work 79

8.1 Main Findings . 79

8.2 Future Work . 81

A Glossary 83

B Experiment Result 89

viii CONTENTS

Chapter 1

Introduction

This thesis represents the written part of the Master’s Thesis project: Textming
and Organization in Large Corpus. This project concerns the problems of orga-
nizing large document corpus and outline the feasibility to apply text clustering
in large document corpus.

The major contributions of this project are:

• the feasibility of applying Random Projection on dimensionality deduction
of text data

• the feasibility of applying Non-negative Matrix Factorization as text clus-
tering techniques on large document collection

• the feasibility of applying Frequent Item Set as text clustering techniques
on large document corpus

2 Introduction

1.1 Problem Definition

Large document corpus may afford a lot of useful information to people. But
it is also a challenge to find out the useful information from huge number of
documents. Especially with the explode of knowledge around the cyber-world,
corporates and organizations demand efficient and effective ways to organize the
large document corpus and make later navigating and browsing become more
easy, friendly and efficient.

An obvious characteristic of large document corpus is the huge volumes of doc-
uments. It is almost impossible for a man to read through all the documents
and find out the relative for a specific topic. How to organize large document
corpus is the problem we concern.

1.2 Project Scope

This master thesis project is to evaluate the feasibility to apply text clustering
algorithms in organizing large document corpus.

The aim of this project was initiated to investigate the possibility of clustering
huge numbers of documents into groups. Hereby we mainly concern the most
challenging issue of large document corpus: huge number of documents. And
we compare and find feasible clustering algorithms which may achieve good
performance with highly efficiency when dealing with thousands of documents.

1.3 Large Document Corpus Characteristics

Before we start discussing text clustering, we should define the characteristics
of large document corpus. Large document corpus may have the following char-
acteristics [4]:

• huge number of documents: as we consider of applying text mining on
large corpus, we expect a corpus has at least 5000 documents.

1.4 Report Structure 3

• high dimensionality: if a unique term is considered as one dimension,
5000 documents may contain more than 100000 unique terms, therefore
the term-document matrix for this documents corpus will be a 100000 ×
5000 matrix. The high dimensionality matrix bring memory and time
complexity challenges to later clustering algorithms.

• ambiguity: synonyms and words with multiple meaning are very common
in documents. Documents content can be very close though words they
use are quite different because those words are synonyms. Meanwhile even
some documents use the same words but their content are quite different.
Therefore determining document similarity only based on words they use
is not sufficient.

• noisy data: spelling mistakes, abbreviations and acronyms are unavoidable
in large document collections. All these kinds of issue may introduce noise
into the corpus.

Considering the characteristics of the large document corpus, this thesis project
is to compare dimensionality deduction methods and clustering algorithms that
might deal with the high dimensionality issue. And we summarize the feasible
approaches that can be applied to large document corpus with efficiency and
effectiveness.

1.4 Report Structure

In Chapter 2: Background we give an introduction to the background of text
mining and organization in large data corpus. First we introduce the basic
concept of text mining and document clustering. And then we outline the
background knowledge of text clustering including the document representation
model, taxonomy of clustering methods and clustering processes. In the end we
give a short description about the current prevalent text clustering methods.

In Chapter 3 Preprocessing we outline the preprocessing steps applied on doc-
uments before they are clustered.

Removing stop-words and stemming are two very important preprocessing steps.
Basically stop-words are not useful for further clustering algorithm. By remov-
ing stop-words unnecessary features are removed and noise is deduced. Stem-

4 Introduction

ming serves for the similar purpose meanwhile it might help the clustering al-
gorithms discover the similarity between documents.

Term weighting is another important preprocessing step. In a feature-document
matrix each unique term is a feature. Important meaningful terms might be
more valuable than less meaningful terms. Thereby it is necessary to have a
term weighting method to give different term with different weighting.

In Chapter 4 Feature Extraction and Matrix Dimensionality Reduction
We discuss two methods to extract the key features from the corpus and reduce
the dimensionality: Singular Vector Decomposition and Random Projection.

Singular Vector Decomposition (SVD) is a very popular feature extraction ap-
proach with strict mathematical computations. And it has been proved that it
is able to extract the latent features and reduce the dimensionality.

Random Project is another approach to reduce the dimensionality. Compared
with SVD, random project is computationally simple but its result might be un-
stable because of it projects the original data matrix into a low-dimensionality
subspace by random.

In Chapter 5 Clustering Algorithm: We give an introduction to three selected
clustering algorithms, including their principle, algorithm details, complexity,
advantages and weakness. These three clustering algorithms are K-Means, Non-
negative Matrix Factorization and Frequent Itemset.

K-Means is considered as one of the standard clustering algorithms because of
its effectiveness and simpleness. Each sample is considered as a data point in the
feature space. K-means algorithm groups the data points based on the distance
between each other. Though straightforward and powerful K-means does not
organize the cluster hierarchy.

Non-negative Matrix Factorization (NMF) is a matrix factorization algorithm
to find out the positive factorization of a given positive matrix. Like SVD, NMF
might be able to discover the hidden patterns from the feature matrix. NMF
might surpass SVD in that the clusters are determined from the factorization
result of NMF.

1.4 Report Structure 5

Frequent Itemset mining is an approach to find frequent itemsets in a transac-
tional database. It helps to find out the relevant product items in a supermarket
from the supermarket transactions. When applied on text cluster, each docu-
ment is considered as a transaction and each term is taken as an item. Frequent
itemset is a promising clustering technique for text clustering.

In Chapter 6 Validation and Evaluation: we introduce one ways to calcu-
late the relative merits of clustering structures and three measures, Entropy,
F-Measure and Overall Similarity, to evaluate the performance of the chosen
clustering algorithms.

Entropy and F-Measure are both external measures which require the document
label information as input to evaluate the performance of the clustering algo-
rithms. Overall similarity is an internal measure and it can be used to compare
the cluster cohesiveness in the absence of document label information.

In Chapter 7 Experiment Data and Result we introduce the document cor-
pus on which we apply the selected cluster algorithms. There are two documents
corpus used in this thesis project: 20 Newsgroup and Reuters. We assess the
performance and the time consumption of the key feature extraction approaches
and the clustering algorithms.

In Chapter 8 Summary and Future Work we summarize our findings and
contributions in thesis project. Meanwhile we outline the directions for further
research.

6 Introduction

Chapter 2

Text Clustering Background

Clustering and classifying are important ways for people to get to know new
things and organize the existing knowledge. Grouping the similar objects to-
gether can make them easy to locate and filter. With the help of computers, the
grouping process could be done automatically with highly efficiency and effect.
In this chapter we introduce to the overview of text mining and text clustering.

2.1 Text Mining, Clustering and Classification

“Text Mining is the discovery by computer of new, previously unknown informa-
tion, by automatically extracting information from different written resources.
” [2] Text mining techniques are the fundamental and enabling tools for efficient
organization, navigation, retrieval and summarization of large document corpus
[18]. With more and more text information are spreading around on Internet,
text mining is increasing in importance. Text clustering and text classification
are two fundamental tasks in text mining.

Text Clustering is to find out the groups information from the text docu-
ments and cluster these documents into the most relevant groups. Text cluster-

8 Text Clustering Background

ing groups the document in an unsupervised way and there is not label or class
information. Clustering methods have to discover the connections between the
document and then based on these connections the documents are clustered.
Given a huge volumes of documents, a good document clustering method may
organize those huge numbers of documents into meaningful groups, which enable
further browsing and navigation of this corpus be much easier [18]. A basic idea
of text clustering is to find out which documents have many words in common
and place these documents with the most words in common into same group.

Text Classification is to organize documents into predefined categories with
meaningful labels. As text classification needs the information about those pre-
defined categories, it is applied in a supervised way.

In this thesis project we suppose there is no category information before hand.
So we concentrate on text clustering approaches.

2.2 Document Representation Model

Clustering is to discover the similarity between samples based on their charac-
teristics. Before clustered, the samples have be represented with characteristics
in some measurements which can be understood by computers. And then the
most relevant characteristics are picked out and the similarities are calculated
based on these characteristics.

2.2.1 Document Sample

Sample Type In general one sample could be described by features. Accord-
ing to the properties of the features, there are different ways to process different
features[42]:

• Numeric measurement: uses some real numbers to present the values of
the features.

• Ordinal measurement: uses some discrete values to present the values
of the features. These discrete values are not real values but present

2.2 Document Representation Model 9

the order. One example could be that the level of the grade includes:
Excellent, Good, Normal, Pass and Fail.

• Naming measurement: uses some discrete values, which does not present
real values nor the order. For example the gender of human being includes
male and female.

The Definition of Document Sample The most suitable measurement for
document is the numeric measurement. A very straightforward way is that each
document may be represented by a term vector in which each unique term is an
independent feature. Each element in this vector stands for the occurrence of
the corresponding term.

2.2.2 Boolean Model

Long before the Internet, information retrieval has already existed. And the
boolean retrieval model is the most simple of these retrieval methods and relies
on the use of Boolean operators [3]. Within the Boolean Model, a document is
represented as a set of boolean values each of which repents whether a specific
term presents in the document: normally a 1 means present and a 0 means not
present.

With the Boolean Model, the criteria for searching a document is specified by a
query within which the terms are linked with AND, OR and NOT these kinds
of boolean operators. Because of the nature of boolean algorithms, the Boolean
Model has the following advantages:

• The searching is fast and the implementation is simple and straight-
forward.

• Boolean Algebra can be applied to the Boolean Model.

Boolean model has its inherent weakness. One major issue is that an incorrect
query may make the relevant documents non relevant [3]. Because a boolean
value is used to identified a term present in a document or not, this results in
that whether a document is relevant to the query is a binary decision. A wrong
word in the query could rank a relevant document non relevant [3]. Meanwhile,
because boolean model can only tell if a term presents in the documents or

10 Text Clustering Background

not, it does not include further information about how importance of present-
ing words in the document. Therefore partial matching and ranking become
very difficult.

2.2.3 Vector Space Model

In vector space model a document is represented by a vector which contains the
term weighting information for the document. And then a collection of docu-
ments can be represented by a vector space [40].

In the simplest form each document can be represented by a term frequency
(TF) vector:

dtf = (tf1, tf2, tf3, ..., tfn)

where Dtf is the document vector and tfi is the frequency of the ith term in
this document.

Then a document collection can be represented by a TF matrix:

D = (dT
1 , dT

2 , dT
3 , ..., dT

m)

where the ij entry indicates the frequency of the ith term in the j document
and each dj denotes a document vector.

Besides considering the term frequency within one document, it is useful to
take into account the term frequency within the whole document corpus. In one
document, a frequent presenting term probably is not as important as another
less frequent one because this term is too frequent within the whole document
corpus, which makes it contribute less to differentiate the document from the
rest. So in the vector space model we consider the term weighting instead of
only the term frequency.

There are two main steps to construct the vector space model [3]:

1. Document Indexing: not all the words within the document describe the
content, and some very common words like a, an, the should be removed;

2.2 Document Representation Model 11

several words describe the similar content but with different formats, and
this similar content bearing words should be formed into the same spell.
Those two processes are called stop-word removal and stemming.

2. Term Weighting: based on the term statistics within the document and
the whole document collection, a term weight is given to a weighting which
denotes how important the term contributes to differentiate the document
from others.

Compared with boolean model, vector space model does provide more informa-
tion about the documents. But as in [5] Garcia outlined that there are following
limitations with vector space model:

• calculation intensive: from the computational standpoint it is very slow,
requiring a lot of processing time.

• not optimal for update: each time a new term is into the term space, all
vectors have to been recalculated again. Thereby algorithms based vector
space model might have the issue of online update.

• high dimensionality: vector space model takes each unique term as one
dimension. This leads to extremely high dimensionality and complex cal-
culations.

Meanwhile vector space model is a “bag of words” method which dose take the
words sequence into account though words sequence is very important in rep-
resent the content of a document. It might lose some important connections
between documents.

To overcome the weakness of vector space, the potential solutions could be to

• use some keyword-sets to represent the document: this can lead to much
lower dimensionality.

• use n-grams: an n-gram is an n-word sub-phrase often occurring in natural
language [21]. N-grams to some extent are words sequence and could
provide more meaning information about documents than single words.

12 Text Clustering Background

2.3 Similarity Measurement

In essence, document clustering is to group documents based on how relative
they are. To cluster documents correctly, it is very important to measure how
much a document is relative to another. And the extent of relativeness should
be some real numbers and can be compared.

There are two prevalent ways to measure how one document is close to another
[42]:

• Similarity: similarity measures to how much extent a document is similar
to another.

• Distance: distance measures how much a document is away from another
one. If a document is more close to anther than any others, it is considered
that these two documents are similar to each other than any others.

Similarity Measurement The most common way to compute the similar-
ity between documents is the cosine measure. If considering x and y are two
document vectors, the cosine measure is defined as [13]:

cosine(x, y) =
(x • y)
‖x‖ ‖y‖

(2.1)

where • indicates the vector dot product and ‖x‖ is the length of vector x.

Distance Measurement In [42] distance measurement is defined as:

Given S is a collection of samples, if measurement D : S × S → R is a distance
measurement if it satisfies the following requirements:

1. D(X, Y) ≥ 0

2. D(X, X) = 0

3. D(X, Y) = D(Y,X)

4. D(X, Y) + D(Y,Z) ≥ D(X, Z)

2.4 Document Clustering Categories 13

Minkowski distance is a widely used distance measurement clustering analysis
[42]:

D(x, y) = (
∑

i

|xi − yi|q)
1
q

where x and y represent two document vectors and xi and yi are the corre-
sponding elements in them.

When q = 1, it is absolute value distance.
when q = 2, it is Euclid distance.
when q →∞, it is Chebyshev distance.

Euclidean distance is widely used in clustering algorithm because of its simple-
ness and straightforwardness. It has an advantage that the distance is preserved
when conducted orthogonal transformation [42], which might be useful when ap-
plying transformation on matrix.

Cluster Centroid Given a set S of the documents and their corresponding
vector representations:

S = (dT
1 , dT

2 , dT
3 , ..., dT

m)

the centroid vector c is defined as

c =
∑m

d=1 d

|S|

which is obtained by averaging the weights of all terms in documents of S.

2.4 Document Clustering Categories

Based on the their characteristics text clustering can be classified into different
categories.

The most common classifications are hierarchical clustering and flat clustering.
Depending on when to perform clustering or how to update the result when
new documents are inserted there are online clustering and offline clustering.
And according to if overlap is allowed or not there are soft clustering and hard
clustering. Based on the features that are used, clustering algorithms can be
grouped to document-based clustering and keywords-based clustering.

14 Text Clustering Background

2.4.1 Hierarchical and Flat Clustering

Hierarchical and flat clustering methods are two major categories of clustering
algorithms.

Just like departments in a company may be organized in a hierarchical style or
a flat one, clusters of a document corpus may be organized in a hierarchical tree
structure or in a pretty flat style.

2.4.1.1 Hierarchical Clustering

Hierarchical clustering techniques produce a nested sequence of partitions, with
a single, all inclusive cluster at the top and singleton clusters of individual points
at the bottom [13]. The hierarchical clustering result can be viewed as an up-
side-down tree: the root of the tree is the highest level of clusters, the leaves
of the tree are the lowest level clusters which are the individual documents,
and the branches of the tree are the intermediate level in the clustering result.
Seeing from different level might get different overview of clusters. For instance
in figure 2.1:

• If seeing from level value 1, all documents are clustered into only one
group;

• If from level value 0.8, documents are clustered into two group G1 and
G2. Where G1 includes documents D1, D2, D3 and D4; G2 includes D5
and D6.

• If from level value 0.6, G1 can be divided into two sub-clusters G11 and
G12. And then documents are clustered into three groups G11, G12 and
G2 which respectively contain D1 and D2, D3 and D4, D5 and D6.

• When from a lower level (value 0.4), each document denotes one cluster.

Basically there are two approaches to generate such a hierarchical clustering
[13]:

• Agglomerative: Start from and leaves, and consider each document as an
individual cluster at the beginning. Merge a pair of most similar clusters
until only one single cluster is left.

2.4 Document Clustering Categories 15

Figure 2.1: Hierarchical Clustering

• Divisive: Start from the root, and consider the whole document set as
a single cluster. At each step divide a cluster into two (or several) sub-
clusters until each cluster contains exactly one document or until the re-
quired number of clusters is archived.

Agglomerative techniques are relatively more common: it is quite straightfor-
ward and most common distance calculation and similarity measurement tech-
niques can be applied. Traditional agglomerative hierarchical clustering steps
can be summarized as the following [13]:

Given a collection of documents D = d1, d2, ..., dn

1. Consider each document as an individual cluster. Compute the distance
between all pairs of clusters and construct the n×n distance matrix D in
which dij denotes the distance between cluster i and cluster j.

2. Merge the closest two clusters into a new cluster

3. Update the distance matrix: calculate the distance between the new gen-
erated cluster and the rest clusters.

4. Repeat step 2 and 3 until only one single cluster remains, which is the
root cluster of the hierarchy

To generate a flat partition of clusters, a cut is made at the specific level of the
hierarchical cluster tree, and on that level each branch represents a cluster and

16 Text Clustering Background

all the leaves (documents) under the same branch belong to one cluster.

Agglomerative techniques need to consider which inter-cluster similarity mea-
sures to use 1:

• single-link measure: join the two clusters containing the two closest doc-
uments.

• complete-link measure: join the two clusters with the minimum “most-
distant” pair of documents.

• group average: join the two clusters with the minimum average document
distance.

2.4.1.2 Flat Clustering

Different from hierarchical clustering, flat clustering creates a one-level (un-
nested) partitions [13] of documents instead of generating a well organized hier-
archical cluster tree. Normally flat clustering techniques demand the expected
number of clusters K as an input parameter, start with a random partitioning
and then keep refining until algorithms converge. The convergence state is the
final state that all clusters are stable and no more documents are switched be-
tween clusters.

Similarly flat clustering techniques may also create hierarchical cluster tree. By
repeating the flat clustering techniques from the top level (root) of the tree to
the lowest level (the leaves), a hierarchical cluster tree can be generated.

Hierarchical and flat clustering have their own advantages and weaknesses: Hi-
erarchical clustering provides more detail about the whole document corpus, in
which clusters are well organized in a tree structure. The price is the relatively
higher complexity. On the contrary flat clustering techniques are normally sim-
ple and easy to implement. They could be applied with more efficiency when
comparing with hierarchical clustering techniques.

When dealing with large document corpus, efficiency is the major issue we con-
cern. In this thesis project we mainly consider flat clustering techniques. We

1adapted from [21]

2.4 Document Clustering Categories 17

also evaluate a hierarchical clustering algorithm in this thesis project because
hierarchical clustering might give more help in knowing the structure and rela-
tion in a large document corpus than flat clustering.

2.4.2 Online and Offline Clustering

According to when clustering is performed, clustering algorithms can be divided
into online clustering algorithms and offline clustering algorithms [21].

Online clustering algorithms perform document clustering when receiving the
request and return the request within a limited period. It is obvious that online
clustering demands very fast operations (low complexity) and make the clus-
tering result up-to-date. Normally online clustering algorithms are applied on
small or medium corpus.

Offline clustering, on the contrary, processes the documents and groups them
into relevant clusters before receiving the request. When a request is received,
offline clustering algorithms perform a few simple operations and then repre-
sent the clustering result. Compared with online clustering, offline clustering
performs most of the operations before receiving the requests, it is relatively
complex (high complexity) and can be applied on large document corpus. The
major disadvantage of offline clustering is that the clustering result is not up-
to-date. Sometimes it cannot reflect the fact that if a single document or a few
documents are added into the corpus before most operations are applied in a
long period of time.

Online clustering and offline clustering have their different applications: the for-
mer is normally applied to group the search results and the latter is to organize
the document corpus.

A clustering algorithm is also classified as online clustering if it only updates the
necessary documents in the corpus instead of re-clustering all documents when
new documents are added into the document corpus. Given an existing docu-
ment corpus and the clustering result, when new documents are added into the
document collection, online clustering algorithms only apply clustering calcula-
tion on the new inserted documents and a small part of the original document
collection. This relatively less calculation complexity results in fast clustering

18 Text Clustering Background

speed when new documents are inserted into the document corpus occasionally
and makes possible that the cluster result is up-to-date .

As we are considering dealing with large document corpus instead of clustering
search results, we mainly concern offline clustering in this thesis project.

2.4.3 Hard and Soft Clustering

Depending on whether overlapping is allowed in the clustering result, clustering
methods may generate hard clustering results or soft ones.

It is very common for one document has multiple topics, it might be tagged
with multiple labels and be grouped into more than one clusters. In this sce-
nario overlapping is allowed. For instance, for a document which describes how
scientists discovered the way bats use to “hear” flies and catch them, how this
biological technique was applied to create modern radar technique and how the
radar benefited to martial engineering, it is quite reasonable to say that this
document can be classified into “biology”, “radar”, “martial engineering” and
some other relevant classes if there are any others. So, soft clustering includes
this kind of clustering algorithms which may cluster documents into different
clusters and each document may belong to several clusters and keep the bound-
aries of the clusters “soft”. In summary with soft clustering each document is
probabilistically assigned to clusters [6], just as shown in Figure2.2.

Figure 2.2: Soft Clustering

However there are some situations that demand one document should only be
organized to the most relevant category. This kind of clustering is called hard

2.4 Document Clustering Categories 19

clustering because each document belongs to exactly one cluster. It is very im-
portant for the hard clustering algorithms to decide which cluster is the most
matched one. Given the document above, a very reasonable way is to group it
into the ”radar” because it is mainly about the invention and the applications
of radar. The idea of hard clustering can be illustrated in Figure2.3.

Figure 2.3: Hard Clustering

In this thesis project we would like to find a way to organize the document like a
library in which one document can belong to one single category. So we mainly
concern hard clustering.

2.4.4 Documents-based and Keyword-based Clustering

Keyword-based and document-based clustering are different in the features base
on which the documents are grouped.

Document-based clustering algorithms are mainly applied on document vector
space model in which every entry presents the term-weighting of term in the cor-
responding document. Thereby a document is mapped as a data point within a
extremely high-dimensional space where each term is a axis. In this space the
distance between points can be calculated and compared. Close data points can
be merged and clustered into the same group; distant points are isolated into
different groups. Thereby the corresponding documents are grouped or sepa-
rated. As document-based clustering is based on the “document distance”, it is
every important to map the documents into the right space and apply appro-
priate distance calculation methods.

Keyword-based clustering algorithms only choose specific document features
and based on these relatively limit number of features the clusters are gener-

20 Text Clustering Background

ated. Those specific features are chosen because they are considered as the core
features between the documents and they are shared by the similar documents
and are sparse in unlike documents. Thereby how to pick up the most core
feature is a very important step in keyword-based clustering.

2.5 Text Clustering Process

A common text clustering includes the steps in figure 2.4:

Figure 2.4: Text Clustering Steps

Feature Extraction The first step is feature extraction. It takes the original
documents as input, processes these raw documents, analyzes them and picks
out the relevant characteristics that might describe these documents. The out-
put of feature extraction normally is a matrix in which each column stands for

2.5 Text Clustering Process 21

a document and each row denotes a characteristic.

The quality of feature extraction has a great effect to further clustering al-
gorithms. The feature extraction method should make similar documents are
close to each other in the feature space and dissimilar documents are far away
from each other. If useful features are drop out and irrelevant features are in-
cluded, the distance between documents are messed up. No matter how good
the clustering algorithms are, they cannot group the documents on the distorted
distance.

Feature Extraction includes the following sub-steps:

• Stop-words removing

• Stemming

• Term Weighing

• Key Feature Extraction and Matrix Deduction

Document Clustering The second step is to apply clustering algorithms and
get a clusters map. This clusters map not only can indicate which cluster a doc-
ument belongs to but also may outline the relation between clusters. The input
of this step is the feature-document matrix. With that matrix, a document is
mapped as a data point in a high dimensionality space.

Normally clustering step is based on statistical or mathematical calculations
without professional knowledge. Each feature loses its special meaning and it
only represents a dimension in the space.

Post Processing For different applications there are different ways to do post
processing. One common post processing is to select a suitable threshold to gen-
erate the final cluster result. After document clustering we get a basic cluster
map in which the clusters are organized like a tree or in a flat way. Thereby
some post processing algorithms may be applied to find out the correct clusters
relation.

22 Text Clustering Background

2.6 Clustering Algorithm Introduction

Agglomerative hierarchical clustering is one of the most straightforward cluster-
ing algorithm. It merges the most similar pair of clusters at each steps until only
one cluster left. Divisive hierarchical clustering algorithms process in a contrary
way: starting from one cluster including all documents and split a cluster into
two at each step. Principal Direction Divisive Partitioning (PDDP) algorithm
is a recently proposed technique [15] which is a non-iterative techniques based
on the Singular Vector Decomposition (SVD) to split the clusters.

K-Means is one of most celebrated and widely used clustering algorithms [15]
[13]. It is the best representative of flat clustering algorithms. Although K-
Means is often consider not as “good” as agglomerative [14], Michael Steinbach,
George Karypis and Vipin Kumar [13] illustrated that “a simple and efficient
variant of K-Means, bisecting K-Means can produce document clusters that are
better than those produced by regular K-Means and as good as those produced
by agglomerative hierarchical clustering techniques” [13].

In [18] We Xu, Xin Liu and Yihong Gong proposed a novel document par-
titioning method based on Non-negative Matrix Factorization (NMF) of the
feature-document matrix. In theory NMF can derive the latent semantic space
from the original data matrix. Thereby the cluster membership of each docu-
ment can be determined from this latent semantic space.

Frequent Itemset is an association rule mining issue in data mining. Many al-
gorithms have been developed for this issue, and one of popular algorithms is
Apriori [25]. In [26] Ling Zhuang and Honghua Da introduced a new approach
to apply Frequent Itemset method to find out the optimal initial centroid of the
document collection for K-Means. In some document corpus this novel approach
resulted a better performance than regular K-Means. Benjamin C.M. Fung, Ke
Wang and Martin Ester [24] used frequent itemsets to construct cluster and to
organize these clusters into a topic hierarchy.

A suffix tree for a string S of n characters is a Patricia trie containing all n
suffixes of S [44]. Suffix tree is widely applied on data compression, computa-
tional biology and string searching and so on. Oren Zamir and Oren Etzioni
[45] presented a feasible solution to apply suffix tree into document clustering.
Compared with clustering algorithms based vector space model, suffix tree treat
a document as a string instead of a set of words [45]. It makes use of the words

2.6 Clustering Algorithm Introduction 23

sequences when clustering documents.

24 Text Clustering Background

Chapter 3

Preprocessing

In this chapter, we introduce the techniques which are applied to documents
before they are clustered.

3.1 Stop-words Removing

Stop-words are words that from non-linguistic view do not carry information
[1]. Stop-words removing is to remove this non-information bearing words from
the documents and reduce noise.

One major property of stop-words is that they are extremely common words.
The explanation of the sentences still held after these stop-words are removed.
Most existent search engines do not record stop-words in order to reduce the
space and speed up the searches. To organize large corpus, removing the stop-
words affords the similar advantages. Firstly it could save huge amount of space.
Secondly it helps to deduce the noises and keep the core words, and it will make
later processing more effective and efficient.

Stop-words are dependent on natural language. Different languages have their

26 Preprocessing

own stop-words list. For example:

• English: a, an, the, this, that, I, you, she, he, again, almost, before, after

• Danish: en, et, det, jeg, du, hun, han, igen, senere

Basically there are three types of stops words: generic stop-words, mis-spelling
stop-words and domain stop-words. Generic stop-words can be picked up when
reading the documents; the latter two have to wait till all documents in the
corpus have been read through and statistical calculations have been applied.

Generic Stop-words Generic stop-words are in general non-information-
bearing words within a specific language and they can be removed without
considering any domain knowledge. For English, the extremely common words
could be ”a”, ”an” and ”the” and so on.

One way to pick up and remove these generic stop-words is to create a stop-
list which lists all generic stop-words within a specific language. When reading
through a document, once a term found in the document presents in the stop-
list, then it can be removed instead of putting into further processing.

Mis-spelling Stop-words Mis-spelling stop-words are not real words but
mis-spelling words. Inevitably people may by mistake input some words that
are not in the dictionaries, like spelling “world” as “wrold”. Of course within a
context a human being may find out this is a spell error and still be able to get
the correct meaning from it. But it would be difficult for a computer to ensure
the correct spell, although some search engines may find out the mis-spelling
words and give a list of possible corrections. One way to deal with these spelling
errors is to take them as stop-words and remove them from the further process-
ing.

A good criterion to identify a mis-spelling stop-word is the term frequencies
within the whole document collection. In a large documents corpus with more
than 10000 documents, those terms only occurring once or twice are quite pos-
sible mis-spelling stop-words.

3.2 Stemming 27

Some terms occurring once or twice within the whole document set are not
mis-spelling stop-words. Still these terms can be removed because these too
infrequent words give little help to later clustering.

In this thesis project we take terms occurring less than three times as mis-
spelling stop-words. Thereby we remove all these infrequent words.

Domain Stop-words Domain stop-words in general are not extremely com-
mon words but they turn into stop-words only under specific domain knowledge
or contents. For example, in a document corpus containing documents from
categories animal, automobile, geography, economy, politics and computer, the
word ”computer” is not a stop-word because it is not common in all other
categories and it helps to differentiate the computer-relative documents from
other documents such as animal-relative or geography-relative ones. But when
considering a corpus within which all documents are discussing about different
aspects of computers such as software, hardware and computer applications,
words “computer” will be too common to be included in the latter processing.

In a large document corpus where all the words in the stop-list and all infre-
quent words are removed, words occurring in more than 80% of the documents
are very possible domain stop-words and they should be removed. These highly
frequent words are removed because they are too common in the corpus, includ-
ing them will not provide help to distinguish individual docuemnt.

3.2 Stemming

Stemming is the process to transform a word into its stem.

In most languages there exist different syntactic forms [21] of a word describe
the same concept. In English, nouns have singular and plural forms; verbs have
present, past and past participle tenses. These different forms of the same word
could be a problem for text data analysis [1] because they have different spellings
but share the similar meaning. To English, The different spelling for verb learn
could be learns (present tense), learning (presenting tense) and learned (past
tense). And the singular and plural forms of noun dog are dog and dogs. Taking
these different forms of a same word into account may cost too much space and

28 Preprocessing

lose the connection between these words. And as a result it introduces noise
and make the later processing more difficult. Stemming is necessary before the
documents are clustered.

Though stemming process may be helpful to the clustering algorithms, it may
also negative affect them if over-stemming occurs. Over-stemming means that
words are unsuccessfully stemmed together because they are sufficient different
in meaning and they should not be grouped together [33]. Over-stemming in-
troduces noise into the processing and results in poor clustering performance.

A good stemmer should be able to convert different syntactic forms of a word
into its normalized form, reduce the number of index terms, save memory and
storage and may increase the performance of clustering algorithms to some ex-
tent; meanwhile it should try to avoid over-stemming.

Conflation approach is to match different variants of the same words. Currently
available conflation methods can be classified as [31]:

Figure 3.1: Classification of Conflation Methods

Table Lookup is a common way to stem the terms. Given a table contain-
ing all the stems and their possible syntactic varieties, it could be implemented
efficiently to stem the words in documents. And the problem of table look up
approach is that it is difficult to maintain such a table or a number of tables
which contain all different varieties for the stems. Thereby table lookup method
is impractical when applied on large document corpus.

3.3 Term Weighting 29

Successor Variety is based on structural linguistic studies of words and mor-
pheme boundaries [31]. It is applied to large collection of documents and get the
statistical information of the successor varieties of prefixes. And then by apply-
ing the segmentation method to determine the stem, all the successor varieties
of the stem are discovered and removed. The risk of successor variety method
is that improper segmentation method is inclinable to over-stem the documents.

Affix Removal is to remove the suffix and prefix of words and keep the stems.
It is based on linguistic concepts namely roots (stems) and affixes (suffixes and
prefixes in English)[31]. Within affix removal there are mainly two types of
methods [31]:

• Porter Algorithm: relies on complex rules such as condition/action
rules, stem condition, suffix pattern and replacement to remove the affix.

• Lovins Method: uses a longer suffix list and apply longest match ap-
proach, iterative longest match, partial match and recording to keep the
stem.

Porter Stemmer is a widely applied method to stem documents. It is com-
pact, simple and relatively accurate. It does not require to create a suffix list
before applyed. In this thesis project we apply Porter Stemmer in our pre-
processing. Please refer to [32] for the detail algorithm descriptions.

3.3 Term Weighting

Term weighting is to formalize the following statements [7]:

• content-enduring words that occur several times in a document are prob-
ably more meaningful (and more important) than those occur just once.

• in a document collection infrequently used words are likely to be more
interesting than common and frequent-appearing words

30 Preprocessing

• each document should be treated as fair as possible.

there are three term factors corresponding to these three statements:

• Local term factor,

• Global term factor,

• Normalization factor

And then the term weighting schema may be written as:

TW = L(tf) ∗G(df) ∗N(tl)

where tf denotes the unique term frequency within a document; df is the number
of the documents in which the term occurs in the whole document corpus and tl
is the number of the unique terms within the document. Function L, G and N
separately take care of local term factor, global term factor and normalization.
Here we use ∗ to connect these factors together instead of simply multiplying
them.

3.3.0.1 Local Term Factor

Local term factor is to weight a term based on its frequency within the document

A Document is represented by terms which present with orders. So terms within
the document contains the basic descriptive information about the document [3],
which is important in the later clustering processing. Basically within a docu-
ment, the more frequent a content-enduring word occurs, the more important
is it in that document.

Moreover, to increase or decrease the effect of the term frequency to the term
weighting, we could apply mathematic algorithms on term frequency. The com-
mon used local term factor functions could be [1]:

L(tf) =

tf
log(1 + tf)
1− 1

1+tf

3.3 Term Weighting 31

where tf is the number of a term occurring in a document.

Although term order is very important in representing documents, in this thesis
project we do not take it into account. But in further researches order should
be taken into account.

3.3.0.2 Global Term Factor

Global term factor is to evaluate the term/document frequency within the whole
document corpus. A term may not only be weighted within a document but
also in the document corpus. Under some conditions although a term occurs
quite frequent in a document it might be not weight as much as another one
which is less frequent.

One of the common global term factors is Inverse Document Frequency (IDF).

IDF = log(N/ni)

where N is the total number of document in the corpus and ni denotes the
number of the documents in which the specific term occurs.

The basic assuming behind IDF is that the importance of a term is proportional
with the number of document the term appears in [3]. The more documents the
term appears in, the less important it is to differentiate the documents.

Another global term factor is Relevance Frequency. Though it is not considered
in this thesis project it deserves further research.

3.3.0.3 Normalization Factor

Normalization Factor is to take care of the effect of document length.

Since long documents contain more words than short documents, they normally
have a much larger term set than short ones. The large term set could make

32 Preprocessing

a long document seem more relevant to a specific topic than the short one al-
though the fact is opposite. So we assume that a term that occurs the same
number of times in a long document and in a short one should be more valuable
in the latter[3]. Normalization is to implement that assumption and make each
document have the same significance.

In this thesis project within the normalization step we normalize the document
vector to unit Euclidean length. Given a document vector X = [x1, x2, ...xn]T ,
each element is normalized as:

xi ←
xi√∑

x2
i

When new documents are added into the corpus, even if there is no new unique
term inserted, the global term factor is affected, so is the normalization factor.
Thereby if taking global term factor into account term weighting is not practical
for online update.

In this thesis project we use normalized TF × IDF as the term weighting
method.

Chapter 4

Key Feature Extraction and
Matrix Dimensionality

Deduction

Dimensionality reduction has been always one of the hot topics in text mining
and information retrieval researches in that it helps to reduce the dimensionality
and keeps or discovers core features.

When conducting text clustering, the high dimensionality of the feature-document
matrix will lead to burdensome computation and large amount of memory. Be-
sides introducing irrelevant and noisy features which may mislead the clustering
algorithms, high dimensionality data may be too sparse for the clustering algo-
rithms to find out useful structure in the data [36].

Different methods for reducing the dimensionality of the feature matrix thereby
reducing the noise and the complexity of the document data and speedup further
clustering algorithms have been investigated. The idea behind these methods is
to extract the key/hidden features from the original feature-document matrix
and to apply clustering algorithms only on these key features. One method is
to keep only N most important terms from each document (as judged by the

34 Key Feature Extraction and Matrix Dimensionality Deduction

chosen term weighting scheme),where N is much smaller than document size
[39]. Another feasible way of dimensionality reduction is to project the data
onto a lower-dimensional orthogonal subspace that capture as much of variation
of data as possible [36].

We will focus on two popular contemporary dimension reduction techniques:
Single Value D (SVD) and Random Projection (PR).

4.1 Singular Value Decomposition (SVD)

4.1.1 Description

SVD is more like a key feature extraction approach than a matrix dimensional-
ity deduction method. It is a mathematical technique to create a new abstract
vector space that is the best representation of the original document collection
in the least-squares sense [39]. Comparing wit simple continuity frequencies or
co-occurrence counts, SVD depends on a powerful mathematical analysis which
may correctly infer much deeper relations between features and documents [41].

SVD can be used to decompose a rectangular matrix as a production of three
other matrices - a matrix of left singular vectors, a diagonal matrix of singular
values, and a matrix of right singular vectors. Given a M×N matrix A, applying
SVD on it to make

A = USV T (4.1)

The left singular matrix U describes the original row entities as vectors of derived
orthogonal factor values, the right one V describes the original column entities
in the same way, and the diagonal matrix S contains the singular values[41] ap-
pearing in order of decreasing magnitude. One of the most important theorems
of SVD states that a matrix formed from the first k singular triplets of the SVD
(left vector, singular value, right vector combination) is the best approximation
to the original matrix that uses k degrees of freedom. In another words, the
leading singular triplets capture the strongest, most meaningful, regularities in
data [41].

If the matrix A is a term-document data matrix in which each row stands for
a unique term and each column stands for a document, it is quite obvious that
the left matrix U provides the mapping from the original term space to a newly

4.1 Singular Value Decomposition (SVD) 35

generated space, and the left matrix V provides the mapping from the original
document space to new space. To reduce the dimensionality of the original data
matrix, we could delete the smallest singular values in S until only the k leading
singular values left where k is the specific number of dimensionality we would
like to reduce to:

A ≈ A′ = US′V T (4.2)

where S′ only keeps the leading k singular values.

4.1.2 Complexity

Given a term-document matrix XN×M where N is the number of terms and
M is the number of documents, the computation complexity of SVD is O(N ×
M ×min(M,N)) [38]. If to keep the first k leading singular triplets of S, the
complexity can be O(N ×M × k).

4.1.3 Advantage

SVD is considered as a key feature extraction method instead of a simple dimen-
sionality deduction. Depending on a powerful mathematical analysis, SVD is
capable of discovering deep relations (“Latent Semantic” or “Latent Pattern”)
between words and documents [41]. These deep relations allow later clustering
algorithms to closely approximate human judgments of meaning between words
and documents and improve the performance of clustering algorithms. Mean-
while, SVD is independent from any linguistic information. The processing of
SVD approach can be done automatically without input from language experts
[3].

We can use SVD to extract the major associative patterns from the document
space and ignore the small patterns [3]. As the consequence the dimensionality
is highly deduced and clustering algorithms might need fewer computations.

36 Key Feature Extraction and Matrix Dimensionality Deduction

4.1.4 Disadvantage and Improvement

When applied in text clustering, SVD has its limitations.

Firstly SVD is based on Vector Space Model which makes no use of words order.
Although it may extract some correct reflection of word meanings without the
aid of words order [41], SVD still may result incompleteness or error on some
occasions.

Secondly in SVD, the combination of a document may include some negative
entries which do not make sense in text domain [18]. In the SVD space the
k leading singular vectors describe a k-dimensional subspace of the abstract
LSA vector space. The right singular matrix project documents onto the k-
dimensional subspace and can have positive and negative entries. These entries
stand for the latent components. For a document the positive components tend
to appear and negative components tend not to appear. Though it makes sense
from a mathematical point of view but not in text domain.

Thirdly, the computation of applying SVD on large document corpus is ex-
tremely complex because SVD decomposes the original matrix into two orthog-
onal matrices and one singular value matrix [36] and orthogonal operation is
time-expensive. One way to speedup the calculation is to only apply SVD on a
sub set of documents to get the subspace and then project all documents onto
the subspace.

Because A = USV T ⇒ UT A = UT USV T = SV T

Given a data matrix A and As is a random subset of A.

As = UsSsV
T
s

Then we can get the new generated sub matrix

D ≈ UT
s A = SV T

And then clustering algorithms can be applied on D which is a latent feature-
document matrix.

If matrix A is not square, for instance the row number is much more than the
column number, another way to speed up SVD is:

4.2 Random Projection 37

Because:
AAT = SV T V ST UT = USST UT

applying SVD on AAT we get:

SV D(AAT) = QΛQT

There by:
U = Q

S = Λ
1
2

From XT = V ST UT we get:

V ≈ XT US−1

where V is the latent feature-document matrix.

4.2 Random Projection

Random Projection (PR) is recently considered as a powerful and efficient
method for dimensionality reduction. Basically as specified in [36], the key
idea of RP arises from the Johnson-Lindenstrauss lemma [34]: if data points in
a vector space are projected onto a randomly selected subspace of suitable high
dimension, then the distance between data points are approximately preserved.

In random project, the original n-dimensional data is projected to a k-dimensional
(k << n) subspace through the origin using a random k× n matrix R in which
columns have unit lengths.

Given the origin data matrix as Xn×m, a random k × n matrix R, then

Xk×m
RP = Rk×nXn×m

is the projection of the origin data into the lower k-dimensional subspace.

To choose the appropriate random matrix R is the key point. Although it is
suggested [36] that the elements rij of R are often Gaussian distributed, in [37]
Achlioptas showed that the Gaussian distribution could be replaced by a distri-
bution such as:

38 Key Feature Extraction and Matrix Dimensionality Deduction

rij =
√

3×

 +1 with probability 1
6

0 with probability 2
3

−1 with probability 1
6

(4.3)

Ella Bingham and Heikki Mannila in their paper [36] have shown that ran-
dom matrix suggested by Achlioptas has practical significance. It preserves the
distance between data points quite nicely and saves computations. The recom-
mended value of k is 600 [36].

4.2.1 Complexity

Comparing with SVD, random projection is computationally very simple: as
specified in [36] the complexity of generating the random matrix R and project-
ing the n×m data matrix X into k dimensions is O(k×n×m). Considering that
the text data matrix is very sparse with about c nonzero entries per column,
the complexity is O(c× k ×m).

In our experiment random projection is much faster than SVD.

4.2.2 Advantages

The main advantages of applying random projection in dimensionality deduc-
tion processing is its computation is relatively simple but still preserves the
distance between documents [36]. Thereby applying random project in text
clustering might largely reduce the dimensionality and is still expecteds to get
a good clustering performance.

4.2.3 Disadvantages

Although random projection might perform quite well to reduce the dimension,
it is highly unstable [36]. As the high dimensions data is randomly projected to

4.3 SVD or RP? 39

a lower-dimension space, different random projects may project original data to
different lower-dimension spaces. And these spaces differentiate from each other
in the capability to preserve the distances, which is the key important factor in
clustering algorithms. So different random projects may lead to different cluster-
ing results, and sometime the differences between results could be very dramatic.

4.3 SVD or RP?

Suggested in [36], the criteria of comparing different dimensionality deduction
methods are the amount of distortion caused by the method and its computa-
tional complexity. In this thesis project we shall apply both SVD and Random
Project in our dimensionality deduction process. In the experiment part we
shall compare the performance of K-means on the data matrices generated by
SVD and Random Project and their respective time consumptions.

4.4 Other Dimensionality Deduction Approaches

Frequent Itemset is a method for discovering interesting relationships in large
databases. It might be to applied on document corpus to find out the frequent
terms between documents. And using those frequent terms instead of the whole
term space will greatly deduce the dimensionality.

Though in this thesis project we do not make research on the feasibility of ap-
plying frequent itemset to deduce the dimensionality of term-document matrix,
we consider it a potentially promising solution.

40 Key Feature Extraction and Matrix Dimensionality Deduction

Chapter 5

Clustering Algorithm

In this chapter we give detail descriptions to three selected clustering algorithms
on their theory principle, time complexity, advantages and weaknesses.

5.1 K-Means

K-Means is probably the most celebrated and widely used clustering technique
[12]. And it is the classical of the iterative centroid-based divisive clustering
algorithm. It is different from hierarchical clustering in that it requires the
number of clusters, K, be determined beforehand.

5.1.1 Algorithm Description

K-Means is an algorithm for partition (or cluster) N data points into K disjoint
subsets Sj containing Nj data points so as to minimize the sum-of-squares cri-
terion:

42 Clustering Algorithm

J =
K∑

j=1

∑
n∈Sj

|Xn − µj |2

where Xn is a vector representing the nth data point and µj is the geometric
centroid of the data points in Sj [9].

The procedure of K-Means is:

1. Randomly make any partition and clustering the data points into K clus-
ters.

2. Compute the centroid of each cluster based on all the data points within
that cluster.

3. If a data point is not in the cluster with the closest centroid, switch that
data point to that cluster.

4. Repeat step 2 and 3 until convergence is achieved. By then each cluster
is stable and no switch of data point arises.

It can be imagined that if the number of clusters is bigger than the number of
data points, each data point will be a centroid. If the number of the cluster is
less than the number of data points, for each data point, the distances to all
centroids will be computed and compared and the data point will be assigned
to the cluster that has the minimum distance. Because the locations of the
centroids are unsure, they have to be computed and adjusted based on the
last update data. And then all the data are assigned to the new centroids.
This algorithm repeats until no data point is switching to another cluster. The
convergence will occur if 1:

• Each switch in step 3 will decrease the sum distance J .

• There are only finitely numbers of data points into K clusters.

Mathematically these two conditions are satisfied in K-Means. So with K-Means
algorithm the data will always converge.

1adapted from [10]

5.1 K-Means 43

5.1.2 Time and Memory Complexity

The complexity to compute the distance between K centroids and N data points
is O(N ×K). This computation will repeat I iterations. In sum, to cluster N
data point into K clusters with I iterations, the time complexity is O(N×K×I)

The memory requirement of K-Means is linear. To run the K-Means algorithm,
the system only needs to store the data points with their features, the centroids
of K clusters and the membership of data points to the clusters.

5.1.3 Disadvantage and Improvement

K-Means algorithm has its inherent weaknesses.

5.1.3.1 Initial K wanted

The first and probably “serious” weakness is that the number of clusters K
must be determined beforehand. K-Means by itself cannot figure out the op-
timal number of clusters in the corpus. This would result in that the number
of clusters is a pending issue. If the number of clusters is much fewer than
the optimal one, irrelevant data points are clustered into the same cluster and
this might confused the user. If the number of clusters is much more than the
optimal one, really-related data point might be separated into different clusters.

To find the optimal K value, a validation algorithm is required to determin if
the generated result: the clusters and their relevant documents, is the optimal
one.

5.1.3.2 Flat Clustering Result

K-Means algorithm generates a flat cluster structure which cannot provide any
hierarchy information. All clusters are at the same level. So K-Means share the
same disadvantages that non-hierarchical algorithms may have when comparing

44 Clustering Algorithm

with hierarchical algorithm.

Although K-Means itself cannot generate hierarchical clusters, it could be done
by making K-Mean generate two clusters every time, which in another words
is to make K-Means bisecting. Bisecting K-Means separates documents into
two clusters every time instead of K clusters. The basic steps to run Bisecting
K-Means are 2:

1. In the initialization, select a data point as the centroid the left part called
cL; compute the centroid of the whole data set iM , and then compute the
right centroid as iR = cM − (iL − cM);

2. Separate the rest data point into two clusters. If a data point is more close
to the left centroid point iL, it is clustered to the left cluster. Otherwise
it is put to the right one.

3. Compute the centroid of the left and right clusters, cL and cR

4. If iL = cL and iR = cR, then stop. Otherwise let iL = cL and iR = cR.
Go to step 2.

At the beginning the whole documents into two clusters by the above steps. And
then these steps are applied to the largest cluster, which is separated into two
clusters as well. And then again the next largest one is selected and Bisecting
K-Means is applied. This process repeated again and again until the specified
numbers of clusters are found (if the number of clusters is given) or every cluster
only contains one document.

5.1.3.3 Not Unique and Not Optimal

From different initial partitions K-means algorithm may result in different clus-
tering results. And even when K-Means algorithm converges, it cannot promise
to find the optima and the result does not has the minimum distortion. If the
randomly the initial centroid points are the blue points as shown in figure 5.1,
the clustering result is very possible not to be optimal.

To avoid the issue that convergence occurs but the distortion is not minimized,

2adapted from [12]

5.1 K-Means 45

Figure 5.1: Non optimal initial centroids

one solution is to be very careful to start the initial partition [10].

The first step in K-Means is to make random partitions, which is to compute
the initial centroids and then start the iterations. If from the beginning the
centroids are put as far as possible from each other [10], K-Means may converge
better and faster. For Instance, at first randomly pick up a data point as the
first centroid. And then select another one from the rest data points as the next
centroid which is as far as possible from the first centroid. Select the the third
one as the third centroid which is the furthest from the first two. This selection
continues until the Kth centroid is selected from the rest of data points, which
is the furthest one from all the first K − 1 centroids. With these selected K
centroids, the common K-Means iteration starts. This careful selected initial
partition may have a better chance than the common K-Means to reach the
optimal convergence. And it could make the algorithm converge with more ef-
ficiency.

Another solution could be applying K-Means clustering several times. Every
time the initial partitions are selected randomly. At last all these results are
compared and computed. A summary solution is calculated out which has more
chances to find the optima than a single run K-Means.

5.1.3.4 Not work well with non-global clusters

As mentinoed in [10], based on the distance measurement, the result of K-Means
is circular cluster shape. When dealing with non-global clusters especially chain-
like clusters 5.2, K-Means does not work well.

46 Clustering Algorithm

Figure 5.2: Chain-like clusters

One solution to this issue is K-Medoids algorithm. K-Medoids differentiates
from K-Means in that: in K-medoids, each cluster is represented by one the
data point in the cluster which is closest to the center of the cluster; while in K-
Means each cluster is represented by the center of the cluster. Still K-Medoids
is not good at solving the chain-like clusters.

Though K-Medoids has a theoretical better performance than K-Means, It is
not recommended to be applied on large document corpus. In K-Medoids the
complexity of each iteration is O(k × (n − k)2) [11] where n is the number of
documents and k is the number of clusters. Taking the iterations into account
the total complexity of K-Medoids is O(i× k × (n− k)2). Thereby K-Medoids
is not considered in this thesis project.

5.2 Non-negative Matrix Factorization

Non-negative Matrix Factorization (NMF) is a matrix factorization algorithm
to find out the positive factorization of a given positive matrix [18]. It is a useful
decomposition for multivariate data [16].

5.2.1 Description

NMF is designed to solve the following problems:
Given a non-negative matrix V , find out two non-negative matrix factors W
and H such that [16]:

V ≈WH

5.2 Non-negative Matrix Factorization 47

Considering a set of multivariate data matrix Vn×m in which n is the dimension
of one data sample and m is the number of samples. With NMF, this matrix
is factorized into a n × k matrix W and a r × m matrix H and WH is very
approximate to the original matrix V . If the value of k is chosen to be much
smaller than n and m, W and H will be much smaller than V , which results in
a compressed version of original data matrix [16].

V ≈ WH can be rewritten column by column and then it turns into v ≈ Wh
where v and h are the corresponding columns of V and H. We can see that
every data vector v is approximated by a linear combination of the columns of
W , weighted by the components of h [16]. In another words, every sample is
represented approximately by a block matrix W and the weight vector v. W
provides the necessary data to reconstruct the v and h tells how to use the data
in W .

Working in a similar way as SVD, NMF could find out the hidden pattern be-
hind the term-document matrix V . Matrix W indicates how much the terms
independently contribute to the clusters. Every element wij tells to which ex-
tent the term i belongs to cluster j. The larger the wij is, the more the ith term
contributes to the jcluster. Similarly matrix H shows the relation between clus-
ters (the rows) and documents (the columns). If hji is the maximum value in
the ith columns, it indicates that the ith document is very likely to belong to
the jth cluster.

When applying NMF to text clustering, the original matrix V is defined as:

V = [V1, V2, ...Vm]

Vi = [vi1, vi2, ...vim]T

where Vi denotes a document sample, and vij represents the term weighting of
words tj in the document Vi.

Our goal is to factorize non-negative term-document matrix V into non-negative
n × k matrix W and k × m matrix H and minimize the following objective
function:

E(W,H) = ‖V −WH‖2

where ‖∗‖ denotes the Euclidean distance between two matrix.

Daniel D. Lee and H.Sebastian Seung [16] prove that ‖V −WH‖2 is non-

48 Clustering Algorithm

increasing under the update rules:

Hir ← Hir
(WT V)ir

(WT WH)ir

Wrj ←Wrj
(V HT)rj

(WHHT)rj

And the objective function is invariant under these if and only if W and H are
at a stationary point of the distance.

The steps to apply NMF in clustering are [18]:

1. Given a large document corpus, construct the term-document n×m matrix
V in which n is the number of terms and m is the number of documents.
vij denotes the ith weighted term-frequency in the jth document. The
weighted term-frequency is based on TFIDF and is normalized on column.

2. Perform the NMF algorithm on matrix V and get the two matrices W and
H

3. Based on the matrix H we could determine the clusters and the corre-
sponding documents. For instance, the document j are assigned to the
cluster c if hcj is the maximum value for the document vector j.

5.2.2 Non-Negative Sparse Coding

Partik O. Hoyer [20] propose to combine sparse coding and NMF into non-
negative sparse coding (NNSC). Similarly NNSC is to find out the hidden com-
ponents. Moreover NNSC is trying to find a decomposition in which the hidden
components are sparse. This makes each input document can be well repre-
sented by only a few significant non-zero hidden patterns[20].

NNSC is to factorize non-negative term-document matrix V into non-negative
n × k matrix W and k × m matrix H and minimize the following objective
function:

E(W,H) =
1
2
‖V −WH‖2 + λ

∑
ij

f(Hij)

The algorithm for NNSC is 3:
3adapted from [20]

5.2 Non-negative Matrix Factorization 49

1. Initialize W 0 and H0 to random positive matrices with appropriate di-
mensions.

2. set W ′ = W − µ(WH − V)HT

3. set any negative values in W ′ to zero

4. normalize W ′, here we get the new W = W ′

5. set Wnew
ij = Wij × (W T X)ij

(W T WHT+λ)ij

6. repeat step 2 to 5 until convergence.

where µ is the step size and λ is the parameter to control the tradeoff between
sparseness and accurate reconstruction.

In our test we found out sometimes the algorithm might step so far that it
increase the value of objective function instead of minimize it. Thereby we have
to insert a validation step before step 6 to make sure the new W and H decrease
the value of objective function. Otherwise rolling back arises.

5.2.3 Complexity

The complexity of NMF in updating and normalizing the W and H is O(K×M)
where K is the number of clusters and M is the number of documents. Depend-
ing on how many iterations the factorization performs, the total complexity of
NMF algorithm is O(I × K ×M) in which I is the number of iterations. So
dose NNSC.

Compared with NMF, NNSC makes two result matrices sparse. Theoretically
calculation on sparse matrix is simpler than on common matrix. Thereby NNSC
might have the complexity advantage than NMF when applied in large document
corups.

5.2.4 Advantage

Like many other factorization algorithms, NMF is try to find numerical linear
representation of original matrix V . Non-negative.

50 Clustering Algorithm

In [18], Wei Xu, Xin Liu, Yihong Gong have illustrated that NMF surpasses
SVD in the following:

• With NMF, the input document matrix is non-negative and the two output
matrix are non-negative as well. This makes that each document is an
additive combination of latent semantics. In SVD the matrix may contain
negative entries, which should not exist in text domain. So NMF makes
more sense than SVD when applying in text clustering.

• In the NMF space similar documents are spread along to the same axis,
which represents a cluster. From the result of NMF we can determine the
clusters and their relative documents by grouping the document to the
axis (cluster) in which it has the largest project value. But with SVD, the
document-cluster information could not be figured out directly from the
result of SVD. This requires further clustering algorithms such as K-Means
to apply on the SVD space to find out the final clustering result.

5.2.5 Disadvantage and Improvement

5.2.5.1 Initial K wanted

NMF by itself cannot determine the number of clusters. It requires the number
of clusters k as one of input parameters. Neither can it organize the clusters
in a hierarchical tree unless it is applied in a similar way as Bisecting K-Means
algorithm.

5.2.5.2 Result Not Unique

NMF is try to find the most approximate factorization for the original matrix
V so that:

V ≈WH

For a given data matrix NMF might find out different combinations of W and
H which satisfy the objective function. For instance, give a data like:

NMF might find two different solutions like in 5.4.

When does NMF give unique solution? David Donoho and Victoria Stodden
[17] illustrated that situations where the data does not obey strict positivity are

5.2 Non-negative Matrix Factorization 51

Figure 5.3: Data Space

Figure 5.4: Solutions found by NMF

the boundaries of uniqueness. Therefore algorithms must look for the situations
where the data does not obey strict positivity to make the solution unique:

Figure 5.5: Solution 1 found by NNSC

52 Clustering Algorithm

Suggested by PatriK O. Hoyer [20], NNSC makes the factorization result sparse
and hit the boundaries of uniqueness. In his experiment [20] NNSC surpassed
NMF in finding out the hidden component (axis). In our pre-experiments we
found out, NNSC is more time-consuming than NMF. Thereby in this thesis
project we only apply NMF. But we still consider NNSC is an important variant
of NMF and should be made on further research.

5.2.5.3 Low Converge Speed

Comparing with SVD, NMF does not require further clustering algorithm to
group the document, but comparing with other clustering algorithms like K-
means its convergence speed is relatively low, especially when dealing with large
numbers of documents.

As discussed above, the complexity of NMF is O(I × K × M) in which I is
the number of interations, K is the number of clusters and M is the number of
documents. With fixed K and M , the efficiency of NMF depends on how fast it
could make the factorization converge. The less iteration to reach convergence,
the more effective NMF is. One possible solution to speed up the convergence
is to make each iteration step further. Thus Ruslan Salakhutdinov and Sam
Roweis [19] put forward the Adaptive Overrelaxed NMF(ANMF) algorithm to
improve the convergence speed. And they have specified that ANMF only cost
one-fourth of iterations in NMF and got the similar clustering result. Further
ANMF algorithm details may be found in[19].

5.3 Frequent Itemset

Frequent Itemset clustering algorithm is a keyword-based algorithm which picks
up the core words with specific criteria and groups the documents based on these
keywords.

5.3.1 Background

Frequent Itemset problem is a popular and well researched issue. The purpose is
to discover interesting relationship in large databases. A well-known application

5.3 Frequent Itemset 53

is applying frequent itemset method to analyze and find out useful patterns of
customers’ purchase behaviors from customers’ buying transactions.

In [27] Frequent Itemset mining problem is defined as:

“A transactional database consists of sequence of transaction: T = 〈t1, . . . , tn〉.
A transaction is a set of items (ti ∈ I). Transactions are often called baskets,
referring to the primary application domain (i.e. market-basket analysis). A set
of items is often called itemset by the data mining community. The (absolute)
support or the occurrence of X (denoted by supp(X)) is the number of transac-
tions that are supersets of X (i.e. that contain X). The realtive support is the
absolute support divided by the number of transactions (i.e. n). An itemset is
frequent if its support is greater or equal than a threshold value.”

There are several ways to apply frequent time set on text clustering. In [24] a
very interesting approach called Frequent Itemset-based Hierarchical Clustering
(FIHC) is introduced and it is declared of efficiency and effectiveness. Thereby
we apply FIHC in this thesis project to see how good it is when applying on
large document corpus. In this section we give a introduction to the algorithm.
Please refer to [24] in which Benjamin C.M. Fung, Ke Wang, Martin Ester gave
detail description about applying FIHC on document clustering 4.

5.3.2 Algorithm Description

Applying FIHC to cluster documents and generate hierarchy tree includes three
steps: [24]:

• Picking out all frequent itemsets that might satisfy the frequent itemset
criteria.

• Constructing Clusters: this step is to generate the initial clusters and
make them disjoint.

• Building Cluster Tree: this step constructs the hierarchical cluster tree
and prunes it.

We define the following definitions:

4The following sub-sections are adopted from [24]

54 Clustering Algorithm

• A global frequent itemset is a set of items (terms) that appear together in
more than a minimum fraction of the whole document collection

• minimum global support is the minimum required-percent of all documents
for a itemset to be a global frequent itemset.

• A global frequent item refers to a term that belongs to some global frequent
itemset.

• A global frequent k-itemset is a global frequent itemset containing k items.

• A global frequent item is cluster frequent in a cluster if the item is con-
tained in some minimum fraction of documents in that cluster.

• Cluster support of an item in a cluster is the percentage of the documents
in that cluster that contain the item.

• Minimum cluster support is the minimum required percentage of the doc-
uments in a clusters for a global frequent item to be cluster frequent in
that cluster.

5.3.2.1 Picking out all frequent itemsets

Frequent Itemset problem has been widely investigated and many solutions have
been put forward. Apriori algorithm is a widely used algorithm find out frequent
itemsets. The idea behind Apriori is that all subsets of a frequent itemset are
also frequent [21]. Thereby frequent k-itemsets can generated from frequent
k − 1-itemsets. Defining Lk is the set of frequent k-itemsets and Ck is the set
of candidate k-itemsets, the basic Apriori algorithm can be described as 5:

1. k = 1

2. find frequent itemset, Lk from Ck

3. form Ck+1 from Lk

4. k = k + 1;

5. repeat 2-4 until Ck is empty

Algorithm detail can be found from [30].

5adapted from [28]

5.3 Frequent Itemset 55

5.3.2.2 Constructing Clusters

Constructing clusters includes two sub steps: constructing initial clusters and
disjointing clusters.

Constructing Initial Clusters For each global frequent itemset an initial
cluster is constructed to include all the documents that contain this itemset.
Thereby the global frequent itemset is the cluster label for the corresponding
cluster and it identifies that cluster. Some documents may belong to multiple
initial clusters because they may include more than one global frequent itemset.
And some documents are unclustered documents for that they do not contain
any global frequent itemset.

Disjointing Clusters For each multiple-cluster document, operations are ap-
plied to identify the best initial cluster for a document and keep it only in the
best initial cluster. The idea to identify the best initial cluster for a document
is that:
“A cluster is “good” for a document if there many global frequent items in the
document that appear in “many” documents in that cluster”[24]

Starting from this idea, a score measurement is used to identify the best initial
cluster for multiple-cluster documents:

Score(Ci ← dj) = (
∑

t

w(t)×cluster−support(t))−(
∑
t′

w(t′)×global−support(t′))

(5.1)

where Ci is the ith cluster; dj is the jth document; t denotes a global frequent
item in dj and also is cluster frequent within cluster Ci; t′ represents a global
frequent item in dj but is not cluster frequent in cluster Ci; w(t) and w(t′) are
the global frequent item term weighting within document dj . Here term weight-
ing TF×IDF is applied.

By using the score measurement above, a multiple-cluster document is only kept
in the cluster which gets the maximum score for that document. If there more
than one clusters maximize the score measurement for a document, the docu-

56 Clustering Algorithm

ment is kept in the cluster that has the most number of items as its cluster label.

5.3.2.3 Building Cluster Tree

After the last step we get a set of disjoint clusters. In this step we use these
disjoint clusters to build a cluster tree and the relationships between parents
and children are created based on their similarity. After a cluster tree is con-
structed, we might merge the similar children under the same parents and merge
the similar parent and children.

Constructing Tree The cluster tree is constructed based on three common
rules:

• Each cluster has exactly one parent

• The topic of a parent cluster is more general than the topics of children

• The topic of a parent cluster and the topics of its children clusters are
similar to some extent.

The cluster tree is created from the top (the root) to the bottom (the leaves).
The root cluster is on level 0. All unclustered documents are put under the
root at level 1 and put into one cluster. Depending on the number of items in
their cluster labels, clusters are at the corresponding levels: all the clusters that
use global frequent 1-itemset as cluster labels are put to level 1 under the root
cluster; all the clusters using global frequent k-itemset as cluster labels belong
to level k under the k − 1 clusters.

When a k-itemset cluster Cj is put into the tree, it must be linked to a parent
cluster at k − 1 level. For a cluster, potential parents are those (k-1)-itemset
clusters that their cluster labels are the subsets of the k-itemset cluster label.
We can see there are at most k potential parents for a k-itemset cluster and
at least one. Among all potential parents for one cluster, the “best” parents is
chosen based on the score measurement. In 5.1 the dj represents a conceptual
document that is created by merging all documents in Cj . The cluster score
is calculated between this conceptual document dj and all its potential parent
clusters. And the one who gets the highest score is chosen as the parent of Cj

5.3 Frequent Itemset 57

Pruning Tree Pruning tree is to merge the very similar clusters and then to
make the cluster hierarchy more meaningful.

In [24] an cluster similarity measurement is defined as:

Sim(Ci ← Cj) =
Score(Ci ← d(Cj))∑

t w(t) +
∑

t′ w(t′))
+ 1 (5.2)

where Ci and Cj are two clusters; d(Cj) means to combine all the document
in Cj into one conceptual document; t is a global frequent item in d(Cj) and
is cluster frequent in Ci; t′ is a global frequent item in d(Ci) but is not cluster
frequent in Ci; w(t) is the term weighting of the global frequent item t in d(Cj).
This cluster measurement is to measure the similarity from Cj to Ci. To measure
the inter-cluster similarity between Cj and Ci, [24] suggested to use:

Inter − Sim(Ci ↔ Cj) = (Sim(Ci ← Cj)× Sim(Ci ← Cj))2 (5.3)

Cj and Ci represent two clusters including their descendant clusters.

As the global support and cluster support are always between 0 and 1. Thereby
the maximum value of Score(Ci ← d(Cj)) is +1 and the minimum value
is -1. After divided by the normalization factor

∑
t w(t) +

∑
t′ w(t′)) and

added with term +1, the value of [?] is within [0,2]. And then the range of
Inter − Sim(Ci ↔ Cj) is [0,2] as well. From the equations 5.2 and 5.3 that an
Inter−Sim value over 1 implies that the weight of similarity exceeds the weight
of dissimilarity, and vice versa if the value below 1. So the similarity between
two clusters is high if their Inter − Sim value is over 1. And we should merge
these very similar clusters to prune the tree.

Pruning Child is to shorten a tree by merging the child clusters and their
parents. The pruning is applied from bottom to top and only to level 2 and
below. For each cluster and it children the Inter−Sim is calculated. The child
cluster is pruned if it is similar to its parents cluster. If a cluster is pruned, all
its child clusters turn into the children of their grand-parent.

Pruning Sibling is applied on level 1 of the tree. The Inter − Sim for each
pair is calculated. And most similar clusters (with the highest Inter − Sim
value) are merge into one and their children turn into the children of the merged
cluster. The pruning continues until:

58 Clustering Algorithm

• the number of clusters on level 1 equals to the expected number of clusters,
or

• all the very similar clusters are merged. There is no a pair of clusters with
the Inter − Sim value over 1.

By then a cluster tree is generated with the user-specific number of clusters.

5.3.3 Complexity

FIHC algorithm mainly includes three steps:

• finding out all global frequent itemsets

• initiating and pruning clusters

• building and pruning tree

The first step of finding out all global frequent itemsets is a widely studied min-
ing issue. Rakesh Agrawal, Ramakrishnan SrikantHere [30] have shown a fast
algorithm of mining all these frequent itemsets and got good performance when
applying on large database.

Initiating clusters is relatively simple. Pruning clusters need to score relevant
clusters for each document and assign it to the most relevant clusters. It costs
more time than initiating clusters. In [24] discussed that time consumption of
pruning clusters is no more than finding global frequent itemsets. After pruning
Building and pruning tree conduct similar score and assignment work, as the
number clusters are highly less than the number of documents, the time con-
sumption is usually much less than finding global frequent itemsets.

In our experiment, we found out that when clustering Reuters corpus, the time
consumption of initiating and pruning clusters can be more than picking out all
frequent itemsets.

5.3 Frequent Itemset 59

5.3.4 Advantage

5.3.4.1 Highly Reduced Dimensionality

Frequent Item Set approach differentiates from K-Means and Non-Negative Ma-
trix factorization in that the latter two are documents-based algorithms but the
former is a keyword-based clustering algorithm.

As mentioned in [25] the idea of Frequent Item Set approach is to cluster on the
low-dimensional keyword sets instead of on the high-dimensional vector space.
This dramatically reduce the large dimensionality of the document vector space.
Although FIHC algorithm does not cluster on vector space, we believe some
other keyword-based algorithm may benefit from this low dimensionality fea-
ture space.

5.3.4.2 Meaningful Cluster Label

Basically in Frequent Item Set documents are grouped together for they share
the same keywords between each other. So each cluster may be tagged with the
frequent term set as the labels. These labels can give the browser meaningful
indication that what documents within the cluster are about.

5.3.4.3 Hierarchical tree structure without number of clusters as the
input parameter

Unlike K-Means, NMF or many other clustering algorithms, in FIHC, the de-
sired number of the clusters is not required as an input parameters. By ap-
plying FIHC the clusters are hierarchized and documents are organized in a
well-organized way and user could have more details information about the
whole structure of the corpus.

60 Clustering Algorithm

5.3.5 Disadvantage

The running time of FIHC is dramatically affected by the minimum global sup-
port. One of important step of applying FIHC is picking out all global frequent
k-itemset that might satisfy the minimum global support. It is obvious that
a low minimum global support may result in large number of global frequent
itemsets and as the consequence the complexity increases dramatically.

The performance of clustering result is dramatically affected by the minimum
global support and minimum cluster support. Some useful information is left
out if these information is share only within a few documents and the terms
shared by them do not satisfy the minimum global support.

Chapter 6

Validation and Evaluation

Basically there are two measures to evaluate how good a clustering algorithm
is. One is Precision rate and the other is Recall rate.

Precision is to measure how much percent of the returned documents satisfy the
query. Recall rate is defined to measure how much percent of relative documents
is returned by the query.

For given Dl number of documents belong to class l, Di of them are grouped
correctly into cluster c which has Dc number of documents:

Recall =
Di

Dl

Precision =
Di

Dc

Recall and precision are two fundamental measures in text clustering. Most
other evaluation measures are constructed based on them.

62 Validation and Evaluation

6.1 Validation Measure

Validation measure is to calculate the relative merits of clustering structures in
a quantitive manner [23]. The merit here is referred to that if the documents are
groups in the optimal number of clusters. Here we use this validation measure
to find out the optimal number of clusters.

6.1.1 Index I Validation Measure

In [22] Ujjwal Maulik and Sanghamitra Bandyopadhyay put forward a simple
but efficient way to validate the clustering result. Sameh A.Salem and Asoke
K.Nandi applied this Index evaluation measure on their experiment [?]index2).
Here we give an introduction on how to apply Index validation measure. For
further details please refer to [22]. Index I is defined as:

I(K) = (
1
K
× E1

EK ×DK
)P

in which

EK =
K∑

k=1

m∑
j=1

ukj ‖xj − ck‖

E1 = Ek=1

DK = maxK
i,j=1 ‖ci − cj‖

where K is the number of cluster, ck is the center of the kth cluster and xj is
the feature vector of the jth document. And we use the power P to control the
contrast between the different clustering configuration. We can see the when
these three factor 1

K , E1
EK

and DK put the following constrains on I:

• 1
K is very straightforward to decrease I when K is increased.

• E1
EK

is to increase I when K is increased. For a given term-document
matrix, E1 is a constant. EK will decrease when K is increased. Especially
when K equals to the number of documents, EK will be 0.

• DK is to increase I when K is increased. But the maximum value of DK

is the distance between the two pair of furthest documents.

6.2 Evaluation Measures 63

Ujjwal Maulik and Sanghamitra Bandyopadhyay [22] proved that when K is
the optimal number of clusters, I will get the maximum values. Thereby we use
this I index measure to validate that documents are grouped into the optimal
number of clusters.

6.2 Evaluation Measures

To compare the “goodness” between different clustering techniques, we need
measures to evaluate the clustering performance. One very obvious solution
is to compare the output the automatic clustering results and the artificial
labeled classes. When there is no artificial classes knowledge, there is another
solution which is to compare the clustering results between different clustering
algorithms. So basically there are two types of measures to compare different
sets of clusters [13]:

1. Internal Quality Measure: to compare different clusters without ref-
erence to external knowledge. one important external knowledge is class
labels which provide the information about the classes information about
documents. Without the external knowledge, the internal quality measure
normally measures the similarity between clusters. Overall Similarity
is one of the internal quality measures.

2. External Quality Measure: to compare cluster results by comparing
the groups produced by the clustering techniques to known classes [13].
Entropy and F-Measure are two major external quality measures.

Considering F-measure is a widely measure applied to evaluate the performance
of clustering algorithms, we use F-measure as the major measure in this thesis
project.

6.2.1 Entropy

Entropy is an external measure which provides the measure of “goodness” for
un-nested clusters or for the clusters at one level of a hierarchical clustering 1.

1this section adapted from [13]

64 Validation and Evaluation

Given a cluster, its entropy can be calculated out by:

Ej = −
∑

i

pij log(pij)

where pij represent that the possibility of a document in the jth cluster belongs
to the ith class.

And the total entropy for a clustering result is:

E =
m∑

j=1

nj × Ej

n

where m is the number of the clusters; nj is the number of documents in the j
cluster; n is the total number of documents.

6.2.2 F-Measure

F-Measure combines the precision and recall ideas from information retrieval2.
According to Jason D. M. Rennie [47], F-Measure was first introduced by C. J.
van Rijsbergen [46].

Given a matrix Cn×m in which n is the clusters and m is the class. Entry cij

represents the number of class j in cluster i. ci is the number of documents in
cluster i and cj is the number of documents in class j. We could get the recall
and precision value as:

Precision(i, j) =
cij

ci

Recall(i, j) =
cij

cj

And then the F-measure value of cluster i and class j can be calculated by

F (i, j) =
2× Precision(i, j)×Recall(i, j)

Precision(i, j) + Recall(i, j)

By doing the above calculation we could get a F-Measure matrix Fn×m where
n is the number of clusters and m is the number of labels. Every column in this

2this section adapted from [13]

6.2 Evaluation Measures 65

matrix corresponds to a class. The maximum value in a column indicates the
best mapped cluster for this class. So overall F-Measure value for matrix Cn×m

is:

F =

∑
j(cj × Fmax(i, j))

N

where max is taken overall clusters at all level, and N is the number of docu-
ments in the corpus.

We can see that F-Measure value will be always no larger than 1. If and only if
all the same-class documents are grouped into the same cluster, the F-Measure
value reaches its maximum value 1.

6.2.3 Overall Similarity

When there is no any external information available, we could use the overall
similarity as a measure of the clustering performance.

In the feature space, documents are grouped based on the distance between
them. Thereby a good clustering algorithm should group documents into clus-
ters that are distant from each other as possible as they could. Overall similarity
is to compute the distance of clusters and then to measure the performance of
clustering algorithms.

Michael Steinbach, George Karypis, Vipin Kumar [13] suggest a method of
computing the cluster cohesiveness to weight the similarity of the internal cluster
similarity. In our implementation we use overall Euclid distance between cluster
centroids as the overall similarity measure. It can be expected that the more a
overall similarity is, the better is the clustering performance.

66 Validation and Evaluation

Chapter 7

Experiment Data and Result

In this chapter we describe the document corpus used for the performance eval-
uations, and compare the document clustering results on these document cor-
puses.

7.1 Experiment Data

In this thesis project we conduct experiment on Reuters and 20 Newsgroups
corpus. These two document corpus have been among the ideal test document
collections because these documents within them have been manually clustered
based on their topics or their originations.

The 20 newsgroups corpus contains 19997 documents taken from the Usenet
newsgroups collection. Each article is grouped into one or more semantic groups
and the number of groups is 20. Most of these documents belong to only one
group and about 4.5 percent of documents have multiple labels. All documents
are partitioned evenly to 20 different topics. Some topics are very closely related
to another while some are highly different from others:

68 Experiment Data and Result

Table 7.1: 20 newsgroup document topic
Document Topic Related document number
comp.graphics 973

comp.os.ms-windows.misc 985
comp.sys.ibm.pc.hardware 982
comp.sys.mac.hardware 961

comp.windows.x 980
rec.autos 990

rec.motorcycles 994
rec.sport.baseball 994
rec.sport.hockey 999

sci.crypt 991
sci.electronics 981

sci.med 990
sci.space 987

misc.forsale 972
talk.politics.misc 775
talk.politics.guns 910

talk.politics.mideast 940
talk.religion.misc 628

alt.atheism 799
soc.religion.christian 997

The 20 newsgroups dataset can be downloaded from [43]. In our experiment
we discard documents having multiple labels. This leads to a document corpus
that contains 18828 documents. After removal of stops words and stemming,
the number of unique terms is 42678.

The documents in Reuters are assigned one or more labels indicating which
topics (classes) they respectively belong to. Compared with 20 newsgroups, the
documents in Reuters are even more difficult to cluster because most documents
are multi-topic relative and documents in each classes have a quite broad variety
of content. The size of classes is dramatically different from one class to another
class. Small size of classes may contain less than 5 documents, meanwhile some
large size of classes contain even more than 1000 documents. In this thesis
project experiment, we pick out the one-topic relative documents and exclude
the classes which contain less than 3 documents.

7.2 Experiment Result 69

7.2 Experiment Result

In this section we compare three different clustering algorithms based on two
document collections by their performance and time consumptions. Meanwhile
we compare two dimensionality deduction approaches and evaluate how much
they affect (positive or negative) clustering results. Moreover we try to evaluate
the effect of steps in preprocessing on clustering performance.

7.2.1 K-means, NMF Vs. FIHC

This experiment is compare the performances and time complexities of K-means,
NMF and Frequent Itemset (FIHC). We apply these clustering algorithms on
a Reuters corpus (9919 documents with unique terms) to generate results with
different numbers of clusters (from 2 to 50) and the 20newsgroup corpus (18828
documents with 42678 unique terms) to generate 7 and 20 clusters.

The F-measure results of applying K-means, NMF and FIHC on Reuters doc-
uments are shown in figure 7.1. Generally K-means stands the best, although
Frequent Itemset (FIHC) is often not much worse. NMF shows a good per-
formance when the number of clusters is less than 10, but turns into worse
than K-means and Frequent Itemset when the number of clusters is more than
20. When the numbers of clusters increases, the performances of these three
clustering algorithms decrease to some extent. But they have a relatively high
F-measure value when the number of clusters is between 2 and 10.

Time consumption of K-means is linear to the number of clusters. So is the
time consumption of NMF, which increases even with a fast speed than K-
means when the number of clusters increases. The time complexity of FIHC is
almost the same and the change of clusters number does not really affect it.

In our experiments, the time complexities of K-means and FIHC are almost
linear to the number of documents. Meanwhile the change of global minimum
support for FIHC has a great effect on the running-time. NMF has a relative
slow convergence speed; we could not succeed in applying it in a corpus which
has more than 30000 documents in 12 hours.

The F-measure value for In 20 newsgroup corpus is shown in table 7.2. When

70 Experiment Data and Result

Figure 7.1: F Measure: K-means, NMF and Frequent Item Set(FIHC) in
Reusters

applied on 20 newsgroups, NMF surpasses K-means and FIHC.

Table 7.2: F-measure: K-means, NMF and FIHC in 20 newsgroups
Number of clusters K-means NMF FIHC

7 0.34018 0.37096 0.361634
20 0.44626 0.51688 0.364221

7.2.2 SVD Vs. RP

This experiment is to compare the performance and time complexity of SVD and
Random Projection. We apply these two dimensionality deduction approaches
on the data matrix of Reuters corpus; and then we apply K-means on two de-
duced matrices.

7.2 Experiment Result 71

From figure 7.2 we can see that in Reuters corpus SVD achieves better perfor-
mance than random project. It makes sense because SVD does stricter matrix
projection than random project. From table 7.3 it is quite straightforward that
in 20 newsgroups corpus the performance of K-means after SVD surpass the one
after random project. Although the time consumption of SVD is much more
than random project, when it comes to applying K-means part, the time con-
sumption of K-means after SVD is much less than after random project.

Figure 7.2: F-measure: K-means on SVD Vs. Random Projection in Reuters

Table 7.3: F-measure: K-means on SVD Vs. RP in 20 newsgroups
Number of clusters SVD RP

7 0.34018 0.3012
20 0.44626 0.39264

7.2.3 TFIDF Vs. normalize TFIDF

This experiment is to evaluate how much normalization affects the performance
of K-means. We apply K-means on the Reuters corpus and the 20newsgroup

72 Experiment Data and Result

corpus.

The F-measure results of applying K-means on Reuters term-document matrix
before and after normalized are shown in figure 7.3. The F-measure values on
normalized matrix are more stable and better than those on not normalized
one. When applied in 20 newsgroup corpus, applying K-means on normalized
TFIDF matrix has a much better performance than applying K-means on not
normalized TFIDF matrix 7.4. In these two experiments, the time consumption
of both are almost the same.

Figure 7.3: F-measure: TFIDF Vs. Normalized TFIDF in Reuters

Table 7.4: F-measure: K-means on normalized TFIDF Vs. TFIDF in 20 news-
groups

Number of clusters Normalized TFIDF TFIDF
7 0.36614 0.09615
20 0.52181 0.10075

7.2 Experiment Result 73

7.2.4 Individual F-measure for each group in 20 news-
groups

We dig into the individual F-measure for clustering 20 newsgroups documents
into 7 clusters (individual F-measure of NMF is shown in table 7.5, and the
individual F-measure of K-means is shown in table 7.6. In these two tables the
column stands for clusters and row denotes classes), and we find out:

• class 1, 8 and 12 are in the same cluster

• class 2, 13 and 16 are in the same cluster

• class 3 and 20 are in the same cluster

• class 5, 18 and 19 are in the same cluster

• class 6 and 7 are in the same cluster

• class 9, 10 and 11 are in the same cluster

• class 14, 15 and 17 in the same cluster

• class 4 is in one cluster by itself

NMF groups class 6, 7 and class 9, 10, 11 into the same cluster, but K-means
puts class 6 and 7 in the same cluster with class 5, 18, and 19.

By comparing table 7.5 and table 7.6, we can find out the individual F-measure
matrix for K-means is sparser than the one for NMF. This might be explained as
K-means can group the documents from the same class into a few clusters and
NMF spreads documents from the same class into all clusters. We can expect
that NNSC(Non Negative Sparse Coding algorithm) might achieve the similar
result as K-means.

From figure 7.4 we can see that the average of maximum individual F-measure
for each class from NMF is more than the one from K-means. It can be explained
that in this case NMF are better than K-means in discover the most relative
clusters for documents from the same classes. Because the sizes of groups in
20 newsgroups are quite even, the higher average F-measure gives the high
summary F-measure in the end. Thereby the summary F-measure of NMF is
more than the one of K-means.

74 Experiment Data and Result

Table 7.5: Individual F-measure: NMF in 20 newsgroups to generate 7 clusters
a 1 2 3 4 5 6 7
1 0.0084 0.0675 0.0029 0.0048 0.3907 0.0364 0
2 0.0258 0.0208 0.318 0.0078 0.0036 0.0153 0.0203
3 0.0034 0.0031 0.002 0.626 0.0014 0.0016 0
4 0.6863 0.0315 0.0255 0.0006 0.0007 0.0089 0.0018
5 0.078 0.0633 0.101 0.0207 0.0044 0.1598 0.0793
6 0.006 0.2618 0.0192 0.0045 0.0109 0.042 0
7 0.0068 0.2779 0.0216 0.0071 0.0044 0.011 0.0026
8 0.0026 0.0264 0.0063 0.0039 0.6012 0.0283 0.0017
9 0.1706 0.2017 0.0028 0.0073 0.0112 0.0273 0
10 0.007 0.2873 0.0032 0.002 0.0089 0.0016 0
11 0.0414 0.2231 0.0041 0.0028 0.0118 0.0089 0.001
12 0.0374 0.0447 0.0051 0.0044 0.2734 0.0637 0.001
13 0.0077 0.0047 0.3499 0.0045 0.0015 0.0058 0.044
14 0.0146 0.0044 0.1532 0.0065 0.0022 0.0279 0.4359
15 0.0277 0.0139 0.133 0.0071 0.0015 0.0872 0.3289
16 0.0129 0.0079 0.3601 0.0026 0.0007 0.0063 0.0062
17 0.0198 0.0306 0.0827 0.0557 0.0029 0.1813 0.184
18 0.0068 0.0179 0.0098 0.0019 0.0007 0.4668 0.0053
19 0.006 0.1041 0.0071 0.0051 0.0013 0.306 0.0245
20 0.0034 0.0132 0.0086 0.5865 0.0007 0.0052 0.0026

7.2 Experiment Result 75

Table 7.6: Individual F-measure: K-means in 20 newsgroup to generate 7 clus-
ters

a 1 2 3 4 5 6 7
1 0 0.2185 0 0 0.0725 0.116 0.0015
2 0 0.0011 0.1926 0 0.1089 0 0
3 0.7045 0.001 0 0 0.0329 0 0
4 0 0 0.0151 0 0.066 0.0445 0.6574
5 0.0009 0 0.0514 0.0071 0.1473 0.0006 0.0054
6 0 0.0042 0.0018 0 0.1623 0.0042 0
7 0 0 0.0048 0 0.1585 0.0156 0
8 0 0.5476 0.0006 0 0.071 0.0276 0
9 0.0009 0 0 0 0.0439 0.3977 0.0014
10 0.0009 0.0054 0 0 0.0326 0.4507 0
11 0.001 0.0036 0 0 0.0518 0.2974 0.0031
12 0 0.2401 0.0007 0 0.0533 0.0883 0
13 0 0 0.4056 0.0256 0.0487 0 0.0027
14 0.0018 0 0.2398 0.3317 0.0579 0 0.0027
15 0 0 0.2043 0.1402 0.0877 0 0.0027
16 0 0 0.2007 0 0.1072 0 0.0054
17 0.0062 0.0011 0.0903 0.0975 0.1242 0 0.0013
18 0 0 0.0012 0.0014 0.1611 0.0108 0
19 0.0018 0.0031 0 0.0014 0.1636 0.0024 0
20 0.4034 0 0 0 0.0889 0.0012 0

76 Experiment Data and Result

Figure 7.4: Individual F-measure: K-means Vs. NMF in 20 newsgroups

Chapter 8

Summary and Future Work

8.1 Main Findings

From our experiment, preprocessing does play an important role. In term
weighting, normalization factor is to take care of the effect of document length
and make each document have the same significance. In both Reuters and 20
newsgroups corps, there are improvement on the performance of clustering re-
sult if applying with normalization in the preprocessing. As the time complexity
is rather simple, normalization is highly recommended in preprocessing.

Random projection is promising in that it may approximately preserve the orig-
inal distance between data points (in our case data points are documents which
are mapped to the high dimensionality matrix) with relatively simple calcula-
tion. But in our experiments the clustering performance and time consump-
tion of applying random project to deduce the dimensionality is not satisfying.
Firstly the clustering performance of random projection is worse than that of
SVD. Secondly though applying random projection on dimensionality deduc-
tion is relative simple, applying K-Means on the result of random projection
cost much more time than on the result of SVD. Although the summary time
consumption of random project and K-Means is less than the summary time
consumption of SVD and corresponding K-Means, we hesitate to suggest apply-

78 Summary and Future Work

ing random projection to deduce the dimension in text clustering.

In [18] Non-negative Matrix Factorization was introduced as a very promising
document clustering technique. In our experiment when the required number
of clusters is relatively small, NMF has a good performance in the Reuters
corpus and the time consumption is acceptable. When trying to clustering doc-
uments into a relatively more number of clusters (normally more than 10), the
performance of NMF turns into relatively low. While in 20 newsgroups, NMF
surpasses K-means and FIHC. Further research may be needed to investigate
the reason behind it. Considering its relatively slow convergence speed, we hes-
itate to suggest applying original NMF as an effective text clustering algorithm
in large corpus.

The Frequent Itemset-based Hierarchical Clustering (FIHC) suggested by Ben-
jamin C.M. Fung, Ke Wangy and Martin Ester achieves good performance
within acceptable time consumption in our thesis project experiments although
the time consumption and performance of FIHC approach are affected by the
global support value. In [24] Benjamin C.M. Fung, Ke Wangy and Martin Ester
supposed that the complexity of assigning documents to clusters is not more
than that of mining frequent itemsets. In our experiments, in 20 newsgroups
document corpus their analysis holds but not in the Reuters corpus. Further
research might be necessary to investigate what factor causes the difference.
Meanwhile FIHC generates a hierarchical clustering result for the document
corpus which offering more information about the relation between documents
than flat clustering such as K-Means. Basically we consider FIHC a possible
solution to cluster and organize large document corpus.

Despite its weaknesses, K-Mean is generally good within three selected cluster-
ing algorithms in our experiment. Even direct applying K-Means on normalized
term-document matrix can achieve good result without the help of SVD, some-
times even better. Surprisingly in the 20 newsgroups document corpus applying
K-Means on normalized term-document matrix get a better performance than
on the latent feature-document matrix generated by SVD. We consider K-Means
is an effective and efficient approach for document clustering. In some document
corpus K-Means might even achieve a better performance with the help of SVD
although including SVD into the clustering processing might result in more time
consumption. Thereby we suggest K-Means a good candidate on text mining
and organization of large document corpus.

8.2 Future Work 79

8.2 Future Work

Suffix tree clustering algorithm may deserve further research. In [45] a novel
text clustering algorithm is introduced, which uses suffix tree to connect doc-
uments by the words and do clustering on this tree. This suffix tree approach
provides another ways to represent the document corpus beside Vector Space
Model and it takes term order into account. Oren Zamir and Oren Etzioni [45]
mentions the advantages of suffix tree approach includes fast clustering speed,
overlapping allowing, taking term orders and browsable results.

Further research might be made on the feasibility of combining Frequent Item-
set and K-Means. One disadvantages of the vector space model is the high
dimensionality. A potential solution is to use some keywords to represent the
documents instead of all terms within the documents corpus. Frequent Itemset
is a ways to find out the frequent terms among documents, and these frequent
terms might be a good candidate as keywords. Especially when documents are
evenly spread into each class, using frequent terms to present documents might
be promising.

Term order might be a possible factor to improve the clustering performance. In
this thesis project N-gram is not included in vector space model and stemming.
N-gram approach to some extent uses the term orders, which provides more
content information than vector space model only on unique terms. Including
n-gram into vector space model might help to get a better performance.

NMF still might be promising and it has been successfully applied in some fields
such as sound mining and image mining. Further research should be made on
how to speed up NMF for instance considering the help of ANMF [19] or taking
sparseness into account.

80 Summary and Future Work

Appendix A

Glossary

Affix is a morpheme that is attached to a base morpheme such as a root or
to a stem, to form a word. Affixes may be derivational, like English -ness and
pre-, or inflectional, like English plural -s and past tense -ed [wikipeida].

Agglomerative clustering starts from and leaves, and considers each docu-
ment as an individual cluster at the beginning. It merges a pair of most similar
clusters until only one single cluster is left.

Apriori is a wildly studied and used algorithm to find association rules/hyperedges
in large database.

Bisecting K-means is the divisive version of K-means. Bisecting K-Means
separates documents into two clusters every time instead of into K clusters.

Boolean model is the most simple of these retrieval methods and relies on the
use of Boolean operators. Within the Boolean Model, a document is represented
as a set of boolean values each of which repents whether a specific term presents
in the document: normally a 1 means present and a 0 means not present.

82 Glossary

Characteristic is a property of an object. It might help to distinguish the
object from others.

Cluster centroid is the centroid of all documents within the cluster. Nor-
mally it is obtained by averaging the weights of all terms in documents within
the cluster.

Cluster frequent A global frequent item is cluster frequent in a cluster if the
item is contained in some minimum fraction of documents in that cluster.

Conflation is the process to combine syntactic variations of words. It is a
approach to stem words.

Divisive clustering starts from the root, and consider the whole document
set as a single cluster. At each step divide a cluster into two (or several) sub-
clusters until each cluster contains exactly one document or until the required
number of clusters is archived.

Entropy in information engineering refers to how much information is carried
by signal. It is to describe how much randomness in a signal or random event.
[21]

Euclidean distance in mathematics is the “ordinary” distance between the
two points that one would measure with a ruler. [Wikipedia]

Feature is a term or other information which contributes to constructing the
content of a document.

Flat clustering is a clustering process to group all document into clusters in
the same level without any hierarchy.

Frequent itemset is a set of items which occur in a adequate number of
transactions in a large database.

83

Global frequent item refers to a term that belongs to some global frequent
itemset.

Global frequent itemset is a set of items (terms) that appear together in
more than a minimum fraction of the whole document collection.

Minimum cluster support is the minimum required percentage of the doc-
uments in a clusters for a global frequent item to be cluster frequent in that
cluster.

Minimum global support is the minimum required-percent of all documents
for a itemset to be a global frequent itemset.

Hard clustering is a process results in that each document in the corpus is
put into exactly one clusters. There is no overlapping between clusters.

Hierarchical clustering is a process to a nested sequence of partitions, with
a single, all inclusive cluster at the top and singleton clusters of individual points
at the bottom.

Information retrieval is an subfield of information science concerning rep-
resentation, storage, access and retrieval of information. Specifically it is the
art and science of searching for information in documents, searching for docu-
ments themselves, searching for metadata which describe documents, or search-
ing within databases, whether relational stand alone databases or hypertext
networked databases such as the Internet or intranets, for text, sound, images
or data [Wikipedia].

Keywords refers to a core term within a document. Keywords capture the
main content/topic/theme of the document.

K-means is an algorithm to cluster objects based on attributes into k parti-
tions.

84 Glossary

Noise in this thesis project refers to irrelevant terms or information which
might compromise the discovery of relations between documents.

Offline clustering generates clusters in database beforehand and only per-
form simple operations to display the cluster results when a query is received.
When new documents are added, offline clustering might need large amount of
running time otherwise the clustering result might be not up-to-date.

Online clustering applies clustering algorithm on-the-fly when a query is
received. Normally its clustering result is up-to-date.

Overstemming means words are unsuccessfully stemmed together because
they are sufficient different in meaning and they should not be grouped together.

PDDP stands for Principal Direction Division Partitioning, is a hierarchical
divisive clustering algorithm.

Polysemy is a word or phrase with multiple, related meanings [Wikipedia].

Porter stemming is a widely used algorithm to implement stemming.

Precision in information retrieval refers to the number of relevant documents
in the result compared to the total number of returned documents [21].

Prefix is a type of affix that precedes the morphemes to which it can at-
tach. Prefixes are bound morphemes (they cannot occur as independent words)
[Wikipedia].

Recall in information retrieval refers to the number of relevant documents in
the return result compared to the total number of relevant documents in the
corpus.

85

Soft clustering is the process to generate clusters between each overlapping
is allowed. Within soft clustering documents might be put to more than one
relative clusters.

Stemming is to determine a stem form of a given inflected words.

Stop-list is a list of stop-words.

Stop-words are words that from non-linguistic view do not carry information
and thus are irrelevant for information retrieval.

Suffix in linguistics is an affix that follows the morphemes to which it can
attach [Wikipedia].

Suffix tree for a string S of n characters is a Patricia trie containing all n
suffixes of S. Hence it is a substring index.

SVD stands for Singular Value Decompostion, is a mathematical matrix de-
composition techniques.

Synonymy refers to the existence of more than one name for one taxon
[Wikipedia].

Term is a word unit or string of characters in a document.

Term indexing is to build indexes of term-document relations.

Term weighting is to determine the weights for terms within documents.

Text classification is to assign documents into predefined groups. It is a
supervised text mining approach.

86 Glossary

Text clustering is an automatic discovery of document clusters in a docu-
ment corpus and group documents into relative clusters. It is an unsupervised
text mining apporach.

Trie is a tree structure that stores strings in such a way that there is no node
for every common prefix [21].

Vector space model use numeric term-document weights as weights mod-
elling the relation between terms and documents [21].

Wikipedia is a multilingual Web-based free-content encyclopedia.

Appendix B

Experiment Result

Figure B.1: Terms after stemming

88 Experiment Result

Figure B.2: Groups after stemming

Figure B.3: Random Projection: Running time

89

Figure B.4: FIHC global minimum support: Running time

Figure B.5: K-means on TFIDF: Running time

90 Experiment Result

Figure B.6: K-means on normalized TFIDF: Running time

Figure B.7: K-means on SVD: Running time

91

Figure B.8: K-means on random projection: Running time

Figure B.9: NMF: Running time

92 Experiment Result

Figure B.10: K-means, NMF and FIHC: Overall similarity

Figure B.11: K-means, NMF and FIHC: Entropy

93

Figure B.12: Kmeans on SVD Vs. Random Projection: Overall similarity

Figure B.13: Kmeans on SVD Vs. Random Projection: Entropy

94 Experiment Result

Figure B.14: K-means on Normalized TFIDF Vs. TFIDF: Overall similarity

Figure B.15: K-means on Normalized TFIDF Vs. TFIDF: Entropy

Bibliography

[1] Marko Grobelnik, Dunja Mladenic and J. Stefan. Institute, Slovenia
Text-Mining Tutorial

[2] Marti Hearst. Untangling Text Data Mining. ACL’99. 1999
http://www.sims.berkeley.edu/hearst/text-mining.html

[3] MOLE - Text Analysis Group.
http://eivind.imm.dtu.dk/thor/projects/multimedia/textmining/

[4] Loretta Auvil, Duane Searsmith. Using Text Mining for Spam Filtering.
Supercomputing. 2003.

[5] E. Garcia, The Classic Vector Space Model. Article 3 of Term Vector Theory
and Keyword Weights. 2005.
http://www.miislita.com/term-vector/term-vector-3.html

[6] Inderjit S. Dhillon, University of Texas, Austin Information Theoretic Clus-
tering, Co-clustering and Matrix Approximations. MA Workshop on Data
Analysis and Optimization. 2003.

[7] Clara Yu, John Cuadrado, Maciej Ceglowski, J. Scott Payne. Patterns in
Unstructured Data: Discovery, Aggregation, and Visualization

[8] Andrew Moore, K-means and Hierarchical Clustering - Tutorial Slides.
2001.
http://www-2.cs.cmu.edu/∼awm/tutorials/kmeans.html

[9] Eric W. Weisstein, K-Means Clustering Algorithm. From MathWorld.
http://mathworld.wolfram.com/K-MeansClusteringAlgorithm.html

96 BIBLIOGRAPHY

[10] Teknomo Kardi, Weakness of K-Mean Clustering. From K-Means Cluster-
ing Tutorials.
http://people.revoledu.com/kardi/tutorial/kMean/Weakness.htm

[11] Bing Liu. Data Mining: Process and Techniques. From CS583 - Data Mining
and Text Mining
http://www.cs.uic.edu/∼liub/teach/cs583-spring-05/CS583-clustering.ppt

[12] Sergio M. Savaresi and Daniel L. Boley. On the performance of bisecting K-
means and PDDP. In 1st SIAM Conference on DATA MINING, Chicago,
IL, USA. paper n.5, pp.1-14. 2001.
http://www.siam.org/meetings/sdm01/pdf/sdm01 05.pdf

[13] Michael Steinbach, George Karypis, Vipin Kumar. A Comparison of
Document Clustering Techniques. KDD. Workshop on Text Mining, 2000.
http://www-users.cs.umn.edu/∼karypis/publications/Papers/PDF/doccluster.pdf

[14] Richard C. Dubes and Anil K.Jain. Algorithms for Clustering Data, Pren-
tice Hall, 1988.

[15] Sergio M. Savaresi, Daniel L. Boley, Sergio Bittanti and Giovanna Gaz-
zaniga. Cluster selection in divisive clustering algorithms. H.3.3 . Informa-
tion Search and Retrieval. 62-07 Data Analysis. 2002.

[16] Daniel D.Lee, H. Sebastian Seung. Algorithm for Non-negative Matrix
Factorization. In Todd K. Leen, Thomas G. Dietterich, and Volker
Tresp, editors, Advances in Neural Information Processing Systems 13,
pp.556-562. MIT Press, 2001.

[17] David Donoho and Victoria Stodden. When Does Non-Negative Matrix Fac-
torization Give a Correct Decomposition into Parts? In Sebastian Thrun,
Lawrence Saul, and Bernhard Scholkopf, editors, Advances in Neural In-
formation Processing System 16. MIT Press, Cambridge, MA, 2004.

[18] Wei Xu, Xin Liu, Yihong Gong. Document Clustering Based On Non-
negative Matrix Factorization. In ACM. SIGIR, Toronto, Canada, 2003.

[19] Ruslan Salakhutdinov, Sam Roweis. Adaptive Overrelaxed Bound Optimiza-
tion Methods. In Proceedings of ICML, 2003

[20] Patrik O. Hoyer. Non-Negative Sparse Coding. In Neural Networks for Sig-
nal Processing XII, Martigny, Switzerland, 2002
http://www.cs.helsinki.fi/u/phoyer/papers/pdf/nnsc.pdf

[21] Kenneth Lolk Vester, Moses Claus Martiny. Information retrieval In Docu-
ment Spaces Using Clustering. in Informatics and Mathematical Modelling,
Technical University of Denmark, DTU. 2005

BIBLIOGRAPHY 97

[22] Ujjwal Maulik, Sanghamitra Bandyopadhyay. Performance Evaluation of
Some Clustering Algorithms and Validity Indices. In PAMI(24), No. 12, pp.
1650-1654. December 2002

[23] Sameh A.Salem, Asoke K.Nandi. New Assessment Criteria for Clustering
Algorithms. in Statistical Classification 2. IEEE, pp 285-290. 2005.

[24] Benjamin C.M. Fung, Ke Wang, Martin Ester. Hierarchical Document Clus-
tering Using Frequent Itemsets. In SIAM International Conference on Data
Mining, 2003.
http://www.cs.sfu.ca/∼ester/papers/FWE03Camera.pdf

[25] Florian Beil, Martin Ester, Xiaowei Xu. Frequent Term-Based Text Clus-
tering. In Proc. 8th Int. Conf. on Knowledge Discovery and Data Mining
(KDD)2002, Edmonton Alberta, Canada, pp.436-442. 2002.
http://ifsc.ualr.edu/xwxu/publications/KDD02.pdf

[26] Ling Zhuang, Honghua Dai. A Maximal Frequent Itemset Approach For
Web Document. From Computer and Information Technology, 2004. CIT
’04. The Fourth International Conference. pp.970-977. 2004.

[27] An efficient implemenation of APRIORI algorithm. in doxygen 1.3.9.1
http://www.cs.bme.hu/∼bodon/en/apriori/Documentation/html/

[28] Huan Liu, Association Rules. Chapter 6 in Introduction to Data Mining.
2003.
http://www.eas.asu.edu/∼mining03/chap5/chap5 list.html

[29] Michael Hahsler,Bettina Grun, Kurt Hornik. arules - A Computational
Environment For Mining Association Rules and Frequent Item Sets. in
Research Report Series / Department of Statistics and Mathematics, Nr.
15, April 2005.
http://www.jstatsoft.org/counter.php?id=140&url=v14/i15/v14i15.pdf&ct=1

[30] Rakesh Agrawal, Ramakrishnan Srikant. Fast Algorithms for Mining As-
sociation Rules. In Proceedings of the Twentieth International Conference
on Very Large Data Bases (VLDB’94), pp. 487-499. San Francisco, CA:
Morgan Kaufmann Publishers, 1994.

[31] Dr. Edward A. Fox, CS5604 - Information Storage and Retrieval (F2001)
http://ei.cs.vt.edu/∼cs5604/

[32] The Porter Stemming Algorithm. http://www.tartarus.org/∼martin/PorterStemmer/

[33] Chris O’Neill, Chris Paice. The Lancaster Paice/Husk Stemming Algo-
rithm. 2001.
http://www.lancs.ac.uk/ug/oneillc1/stemmer/general/stemmingerrors.htm

98 BIBLIOGRAPHY

[34] W.B. Johnson, J.Lindenstrauss. Extensions of Lipshitz mapping into Hilbert
space. In Conference in modern analysis and probability, volume 26 of Con-
temporary Mathematics, pp. 189-206. 1982.

[35] P. Frankl, H.Maehara. The Johnson-Lindenstrauss lemma and the spheric-
ity of some graphs. in J. of Combinatorial Theory B, 44. pp.355-362, 1988.

[36] Ella Bingham, Heikki Mannila. Random projection in dimensionality reduc-
tion: Application to image and text data. In Proceedings of the 7th ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (KDD-2001), San Francisco, CA, USA, pp. 245-250. August 26-29, 2001.

[37] Dimitris Acholioptas. Database-friendly Random Projections. In Proc.
ACM Symp. on the Principles of Database. Systems, pp.274-281, 2000.

[38] Mehmet Koyuturk, Ananth Grama, and Naren Ramakrishnan. Compres-
sion, Clustering and Pattern Discovery in Very High Dimensional Discrete-
Attribute Datasets. IEEE Transactions on Knowledge and Data Engineer-
ing, vol. 17, no. 4, pp. 447-461, April, 2005.

[39] Kristina Lerman. Document Clustering in Reduced Dimension Vector
Space.
http://www.isi.edu/∼lerman/papers/Lerman99.pdf

[40] Ian Soboroff. IR Models: The Vector Space Model. In Information Retrieval
Lecture 7.
http://www.csee.umbc.edu/∼ian/irF02/lectures/07Models-VSM.pdf

[41] Thomas K Landauer, Peter W. Foltz, Darrell Laham. An Introduction to
Latent Semantic Analysis. Discourse Processes , 25, pp. 259-284. 2002.
http://lsa.colorado.edu/papers/dp1.LSAintro.pdf

[42] Dongpo Bo. Research of Clustering and its Applications in Text Mining.
From the Chinese Academy of Sciences. PhD thesis. 2000.

[43] 20 Newsgroups
http://people.csail.mit.edu/jrennie/20Newsgroups/

[44] Suffix Tree. From Wikipedia.
http://en.wikipedia.org/wiki/Suffix tree

[45] Oren Zamir and Oren Etzioni, Web Document Clustering: A Feasibility
Demonstration. In Proc. Acm Sigir’98. pp. 46–54. 1998.
http://www.cs.washington.edu/homes/etzioni/papers/sigir98.pdf

[46] C. J. van Rijsbergen. Information Retireval. Butterworths, London, 1979.

[47] Jason D. M. Rennie. Derivation of the F-Measure. 2004.
http://people.csail.mit.edu/jrennie/writing/fmeasure.pdf

Bibliography

	Abstract
	Preface
	1 Introduction
	1.1 Problem Definition
	1.2 Project Scope
	1.3 Large Document Corpus Characteristics
	1.4 Report Structure

	2 Text Clustering Background
	2.1 Text Mining, Clustering and Classification
	2.2 Document Representation Model
	2.3 Similarity Measurement
	2.4 Document Clustering Categories
	2.5 Text Clustering Process
	2.6 Clustering Algorithm Introduction

	3 Preprocessing
	3.1 Stop-words Removing
	3.2 Stemming
	3.3 Term Weighting

	4 Key Feature Extraction and Matrix Dimensionality Deduction
	4.1 Singular Value Decomposition (SVD)
	4.2 Random Projection
	4.3 SVD or RP?
	4.4 Other Dimensionality Deduction Approaches

	5 Clustering Algorithm
	5.1 K-Means
	5.2 Non-negative Matrix Factorization
	5.3 Frequent Itemset

	6 Validation and Evaluation
	6.1 Validation Measure
	6.2 Evaluation Measures

	7 Experiment Data and Result
	7.1 Experiment Data
	7.2 Experiment Result

	8 Summary and Future Work
	8.1 Main Findings
	8.2 Future Work

	A Glossary
	B Experiment Result

