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Abstract

We consider the problem of locating a circle with respect to existing
facilities on the plane, such that the largest weighted distance between the
circle and the facilities is minimized. The problem properties are analyzed,
and a solution procedure proposed.

1 Introduction

In this paper, we examine the problem of locating a circle on the plane in order
to minimize the maximum distance between the circle and a set of fixed points.
We consider two cases:
Model 1: The radius of the circle is given. The problem requires finding the
optimal center of the circle.
Model 2: The radius of the circle is allowed to vary. The problem requires finding
the optimal center and radius of the circle.

The second model was treated by Drezner et al. [4], who suggested the use of this
model to determine the out-of-roundness of a machined part. The fixed points
would represent actual measurements along the circumference of the part. The
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authors also provide an approximate solution method assuming that the part is
only slightly out-of-round.

Model 1, on the other hand, appears to be new. However, examining further the
machining context suggests an important application. The diameter of the part is
specified by a nominal value and an acceptable tolerance on this value. Verifying
that the part has been machined to this specification is normally done separately
by measuring the diameter at various spots around the circumference using, for
example, high-precision vernier calipers. This procedure does not guarantee that
the diameter passes through a common center point each time. By using model 1,
with radius equal to the corresponding nominal value for the part, we are able to
take the earlier circumferential measurements for out-of-roundness to determine
simultaneously (and more accurately) if the part meets the design specification
on its diameter.

In this paper, we also generalize models 1 and 2 to the case of weighted distances,
which may apply when the fixed points are considered not to be of equal impor-
tance. For example, if the fixed points represent population centers and the circle
a ring road connecting them, the weights could reflect the different populations.
Circular routes are examined in Pearce [8] and Suzuki [11].

The problem of locating a circle with variable radius, minimizing the maximal
distance to a set of existing facilities has a nice geometric interpretation: We
are looking for an annulus with minimal width covering all given points. This
problem has been studied in computational geometry.

Rivlin [9] showed that the minimium width annulus of n points is either the width
of the convex hull of the n points or must have two points on the inner circle and
two points on the outer circle of the annulus. The same result was obtained by
Drezner et al. [4]. In the former case the radius of the circle is infinite such that
the circle becomes a line, in the latter case it is a circle with finite radius.

Consequently, the center of a minimax circle is either a vertex of the (nearest
neighbour) Voronoi diagram or of the farthest neighbour Voronoi diagram or lies
at an intersection point of both diagrams. Ebara et al. [6] use this result to give
an algorithm. Agarwal and Sharir [2] present a randomized algorithm solving the

minimax circle problem in O(n
3
2
+ε) expected time for ε > 0. Special cases have

been considered in de Berg et al. [3] and in Duncan et al. [5].

There also exist approximation approaches for the minimax circle problem. As
noted above, Drezner et al. [4] propose an approximate solution method for the
slightly out-of-round case. Agarwal et al. [1] present an O(n log n) approach with
approximation factor 2. They also have an algorithm with approximation factor
1 + ε but running time O(n log n + n

ε2
).
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2 Notation

We use the following notation.

The number of existing facilities is n, and facility j is located at Aj = (aj, bj) with
associated positive weight wj, for j = 1, . . . , n. The existing facility locations are
called the fixed points.

The circle to be located, C, is determined by its center, X = (x, y), and its radius,
r. We use the shortcut C = (X, r).

The Euclidean distance between the center and facility j is denoted by d(X, Aj),
for j = 1, . . . , n. The shortest Euclidean distance between the circle and facility
j, dj(C), is r − d(X, Aj), if the facility is inside the circle, and d(X, Aj)− r, if it
is outside. (If the facility is on the circle, the distance is 0, and both expressions
apply). So we have dj(C) = |d(X, Aj)− r| in general, for j = 1, . . . , n.

For any two fixed points, Ai, Aj, let the straight line segment between them be
denoted by [Ai, Aj]. The bisector of this segment (i.e., the locus of points with
equal distance to Ai and Aj) is called Bij.

3 Circle of fixed radius

In this section we consider the case where the radius of the circle has a fixed
value, r = r0.

In the out-of-roundness problem, each point measured on the circumference of a
given part has the same importance. This is referred to as the unweighted case;
each fixed point is assigned a unit weight. In a more general context, such as the
location of a circular road or irrigation pipe, the fixed points may be assigned
different weights reflecting their relative importance. This weighted case will also
be investigated.

3.1 Unweighted case

We consider the following problem:
minimize g(C) = maxj=1,...,n{dj(C)},
or equivalently,
Problem FU: minimize g(X) = maxj=1,...,n{|d(X, Aj)− r0|}.
It is useful to note the two limiting cases contained in this model; namely, the
location of a point facility, for which r0 = 0, and a linear facility where r0 →∞.
These two cases have been studied extensively in the facility location literature,
e.g., see Love et al. [7]. The problem studied by us provides a link or bridge
between them.
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In general, the objective function g is neither convex nor concave in X, and may
contain several local minima. If Aj is outside the circle, dj(C) is locally convex;
if it is inside, dj(C) is locally concave. Thus g(X) becomes the maximum of a
set of convex and concave functions. The subset of points inside (or outside) the
circle also changes with X, resulting in nondifferentiable frontiers of the objective
function. This may further complicate the solution process. In one limiting case,
r0 → ∞, g(X) is also not convex. By contrast, the other limiting case, r0 = 0,
supports a convex function g(X) = maxj{d(X, Aj)}, and the solution to this
problem is readily obtained.

Let Xp denote the solution of the associated minimax problem with r0 = 0. It
is well known that in the optimal solution there are at least two critical points
that are at the same distance, rmax, furthest from Xp. Let rmin then denote the
distance to the closest Aj from Xp. We obtain the following initial result.

Property 1
If r0 ∈ [0, rm], where rm = (rmin + rmax)/2, then Xp is the optimal solution of
Problem FU.

Proof:
For any X 6= Xp, it is clear that maxj{d(X, Aj)} > maxj{d(Xp, Aj)} = rmax, and
thus g(X) > rmax − r0. But g(Xp) = rmax − r0, because rmax − r0 ≥ r0 − rmin, so
Xp must be the unique optimal solution. �
On the other hand, if r0 > rm, Xp will generally not be the optimal solution, and
further analysis will be required.

Let dij = d(Ai, Aj) for all pairs (i, j), and dmax = maxi<j{dij}. Also let C∗ =
(X∗, r0) denote an optimal solution of Problem FU, with objective value g∗ =
g(X∗), and Xm be the mid-point of the line segment between Ar and As, where
(r, s) is any pair such that dmax = drs. Analogous to the minimax point facility
problem, there are two possibilities to consider, as shown in the following two
results.

Property 2
If g(Xm) = dmax/2− r0, then Xm = X∗ and g(Xm) = g∗.

Proof:
Consider any X 6= Xm. We have
g(X) ≥ max{d(X, Ar), d(X, As)} − r0 > drs/2− r0 = dmax/2− r0.
It follows that Xm is the unique optimal solution in this case. �

Property 3
If g(Xm) > dmax/2− r0, then at least three extreme points, Ai, Aj , Ak exist such
that di(C

∗) = dj(C
∗) = dk(C

∗) = g∗; that is, the subset of points at the maximum
distance from an optimal circle must have cardinality of at least three.
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Proof:
Suppose there is only one extreme point Ai. Then move the center X a small
distance from X∗ along the straight line through Ai and X∗ in the direction away
from Ai, if this point is inside the circle, or towards Ai, if it is outside, to obtain
an immediate contradiction on the optimality of X∗.

Next suppose there are exactly two extreme points, Ai and Aj . If both of these
points are outside the circle, they cannot be colinear with X∗, since this would
imply g∗ ≤ dmax/2− r0. Then move from X∗ along the bisector of [Ai, Aj ] in the
direction towards [Ai, Aj ] to obtain a contradiction once again. If both points
are inside the circle, do the same, except we move away from [Ai, Aj], to arrive
at an identical conclusion.

Finally, if Ai is outside the circle and Aj is inside, consider three possible scenar-
ios:

(i) Ai, Aj and X∗ are noncolinear.
Then draw a ray from Aj through X∗, and select the image A′

j on the ray that is
outside and equidistant to the circle. Move along the bisector of [Ai, A

′
j ] towards

Ai, A
′
j .

(ii) Ai, Aj and X∗ are colinear, and X∗ is between Ai and Aj.
Move along the segment [Ai, Aj] towards Ai.

(iii) Ai, Aj and X∗ are colinear, and Aj is between Ai and X∗.
In this case, draw a circle of radius r0 with center at the intersection of [Ai, X

∗]
and C∗. Then move from X∗ in either direction along this new circle.

In all three cases, the new center X gives a better solution than X∗, and hence,
a contradiction.

We conclude that an optimal circle must have at least three extreme points. �

In view of Property 3, we examine the following question: Given an arbitrary
triplet (Ai, Aj , Ak), find all the points X, such that C = (X, r0) and di(C) =
dj(C) = dk(C). Denote the set of points thus obtained by Sijk. We consider two
possibilities:

(i) The three points are all located on the same side of the circle.
This case is straightforward, since it requires finding the unique intersection point
of the bisectors of [Ai, Aj] and [Aj , Ak], given, respectively, by Bij and Bjk. The
details are left to the reader. Note that this case is not possible if Ai, Aj , Ak are
colinear.

(ii) One point, say Ai, is on one side of the circle, while the other two points,
Aj , Ak, are on the other side.
This time X ∈ Sijk lies on the bisector Bjk, and it also satisfies the equation,
d(X, Ai) + d(X, Aj) = 2r0. By rotating and translating the coordinate system so
that the x-axis coincides with Bjk, and the origin with the mid-point of [Aj, Ak],

the equation may be written as
√

x2 + (djk/2)2 +
√

(a− x)2 + b2 = 2r0, where
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Ai = (a, b), Aj = (0, djk/2), and X = (x, 0) in the new coordinate system. In
turn this simplifies to a quadratic equation,
4(a2 − 4r2

0)x
2 + 4a(d2

jk/4− s2 + 4r2
0)x + (s2 − 4r2

0)
2

+ (d2
jk − 8s2 − 32r2

0)d
2
jk/16 = 0, where s =

√
a2 + b2.

The quadratic equation is easily solved, yielding two real roots, one, or none,
depending on whether minX∈Bjk

{d(X, Ai) + d(X, Aj)} is less than, equal to, or
greater than 2r0, respectively.

We need to consider separately the possibility that the single point on one side
of the circle is Ai, Aj, or Ak. Combining cases (i) and (ii), it follows that the
number of points in Sijk is at most 1 + 2 · 3 = 7. We see that determining Sijk is
easily done in constant time.

A straightforward approach to solving Problem FU, based on the insight from
Property 3, would be to enumerate all triplets Ai, Aj , Ak, determining the set
Sijk for each one, and retaining the best candidate point from all these sets.
That is, given that Property 3 applies, X∗ ∈ ⋃n−2

i=1

⋃n−1
j=i+1

⋃n
k=j+1 Sijk. To verify

the objective value of a candidate requires O(n) operations, and there are O(n3)
candidates. Thus, the overall complexity based on total enumeration would be
O(n4).

The following solution procedure uses an implicit enumeration scheme. The ba-
sic assumption is that most of the fixed points can be eliminated implicitly as
candidate extreme points in the final solution. The goal then is to identify in a se-
quence those Aj that will most likely produce an optimal solution. We believe this
procedure will be effective, for example, in solving exactly the out-of-roundness
problem investigated by Drezner et al. [4].

Algorithm 1 (exact solution of Problem FU):

Step 1.
Determine the center Xp of the associated point facility minimax problem (r0 =
0). If maxj{d(Xp, Aj)} − r0 = g(Xp), stop (X∗ = Xp). Otherwise, initialize
the subset of fixed points that are candidate extreme points, S = S0, where
S0 contains the points at maximum distance from Xp, and the current solution,
Xc = Xp.

Step 2.
Determine the subset of extreme points, Sc, associated with the current solution
Xc. Update S ← S

⋃
Sc.

Step 3.
Use total enumeration to solve Problem FU for the reduced set S. (Note that
triplets (Ai, Aj , Ak) that have been evaluated in a previous iteration should not
be evaluated again. Only new triplets are considered in each iteration.) Let Xc

denote the new solution. (Retain all ties for verification in the next step.)

Step 4.
If the objective value at Xc for the original (full) problem is the same as for the

6



reduced problem, stop (X∗ = Xc). Otherwise, return to step 2. �

3.2 Weighted case

We now consider the generalized version of model 1 with weighted distances.

Problem FW: minimize g(X) = maxj=1,...,n{wj|d(X, Aj)− r0|},
where the weights wj > 0, j = 1, . . . , n.

When all the weights are equal to unity, we observe in Property 1 that the solution
of the minimax point facility problem is optimal over a range of values for r0.
Interestingly, this result does not extend to the weighted case. For example,
suppose A1 and A2 are extreme points and Xp the solution of the associated
problem with r0 = 0. By increasing the radius a small amount (r0 = δ), we obtain
w1(d(Xp, A1)− δ) and w2(d(Xp, A2)− δ) as the respective weighted distances to
the circle of A1 and A2. But these distances are no longer necessarily equal, so
that, in general, there is only one extreme point left, and the solution Xp for the
perturbed problem cannot be optimal.

By contrast, Properties 2 and 3 are readily extended to the weighted case. Con-
sider any pair (Ai, Aj) with dij = d(Ai, Aj) > 2r0, and let Xij be the (weighted
mid-) point on the segment [Ai, Aj] such that C(Xij, r0) is equidistant (in the
weighted sense) to Ai and Aj. We obtain Xij = Ai + tij(Aj − Ai), where
tij = (r0wi + (dij − r0)wj)/(dij(wi + wj)).

Let gij = wi(d(Xij, Ai)− r0) = wj(d(Xij, Aj)− r0),
gL = max{gij; ∀ i, j 3 dij > 2r0}, and Xm be the weighted mid-point of the line
segment between Ar and As, where (r, s) is any pair such that grs = gL.

Property 2 (generalized to weighted case)
If g(Xm) = gL, then Xm = X∗ and g(Xm) = g∗.

Proof:
Consider any X 6= Xm. We obtain
g(X) ≥ max{wr(d(X, Ar)− r0), ws(d(X, As)− r0)} > gL = g(Xm). �

Property 3 (generalized to weighted case)
If g(Xm) > gL, then at least three extreme points, Ai, Aj, Ak, exist such that
widi(C

∗) = wjdj(C
∗) = wkdk(C

∗) = g∗; that is, the subset of points at the
maximum weighted distance from an optimal circle must have cardinality of at
least three.

Proof:
Analogous to the unweighted case. However, when examining extreme points Ai
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and Aj on the same side of the circle, select them such that wi ≥ wj (di(C
∗) ≤

dj(C
∗)). If Ai and Aj are both outside the circle, draw a ray from X∗ through

Ai, locate the point A′
i on this ray that is equidistant to the circle as Aj and use

the bisector of [A′
i, Aj ]. Similarly, if Ai and Aj are both inside, use the bisector

of [Ai, A
′
j], where A′

j is on the ray from X∗ through Aj and equidistant to the
circle as Ai. When examining Ai on the outside, Aj on the inside, and Ai, Aj, X

∗

noncolinear, select the image A′
j at the same distance to the circle as Ai. �

The preceding results imply that a similar solution approach may be used as in the
unweighted case. However, the subproblem for an arbitrary triplet (Ai, Aj , Ak)
unfortunately does not appear to have a closed-form solution as before. When
solving for the subset S of candidate extreme points, we therefore propose a
mathematical programming approach based on a reformulation of the problem
as follows:

minimize K
subject to K ≥ w2

i (r0 − d(X, Ai))
2, ∀ i ∈ S.

The current solution may be used as the starting point in each iteration for
the updated subset S. However, since the feasible region is nonconvex, only a
total enumeration, such as branch-and-bound, can guarantee convergence to an
optimal solution.

4 Circle of variable radius

In this version of the problem, the radius of the circle is unknown. Drezner et al.
[4] examine the unweighted case in the context of the out-of-roundness problem.
They show that an optimal solution must have at least two extreme points on
each side of the circle. Assuming that the part is only slightly out-of-round, they
then develop an approximate method for solving the problem. In this section, we
examine both the unweighted and weighted cases, and outline an exact solution
method applicable to any set of fixed points.

4.1 Unweighted case

Consider Problem VU:
minimize g(X, r) = maxj=1,2,...,n{|d(X, Aj)− r|}.
We now use the results obtained for the fixed radius case to derive an alternate
proof of the main result in Drezner et al. [4]. Whereas their proof relies on some
elementary calculus, ours is based on a more intuitive geometric approach.

Property 4
Let C∗ = (X∗, r∗) denote an optimal solution to Problem VU, and S be the

8



associated set of extreme points. Then at least two extreme points are located
on each side of C∗, and hence, |S| ≥ 4.

Proof:
Suppose there are exactly two extreme points. Then C∗ cannot be the limiting
case of a straight line (r →∞), since it is known for this case that |S| ≥ 3 (see,
e.g., Schöbel [10]). By properties 2 and 3, both extreme points must be located
outside the circle and on the same line through X∗. Then hold X = X∗, and
increase r a small amount, to arrive at an obvious contradiction. We conclude
that |S| ≥ 3.

Clearly, not all the extreme points can be on the same side of C∗. Suppose exactly
one of them, say Ai, is on one side, and all the others are on the other side. For
the limiting case, r →∞, draw a ray from Ai perpendicular to the straight line,
and let P denote the intersection of the two lines. We can always find a circle
of finite radius, r = d(X, P ), with the following properties: the center X is a
point on the perpendicular, there are at most two extreme points, one being Ai,
and the objective value is unchanged. But this new solution cannot be optimal
(see properties 2 and 3), and hence, the original straight line cannot be optimal
either.

Now suppose the circle has finite radius and Ai is the only extreme point on
the inside. If we displace the center X∗ a small distance δ in the diametrically
opposite direction of Ai, and increase the radius by δ, (r = r∗ + δ), a similar
contradiction is arrived at. (If Ai is outside the circle, reverse the direction, and
decrease the radius by δ.)

It follows that an optimal solution must have at least two extreme points on each
side of the circle, and |S| ≥ 4. �

The following two corollaries are directly obtained from property 4, and provide
an interesting link between the minimax line and the minimax circle.

Corollary 1
Suppose a minimax line is found with exactly three extreme points (one on one
side, two on the other). Then the minimax circle must have a finite radius, and
g(X∗, r∗) is smaller than the objective value of the minimax line.

Corollary 2
If all foursomes Ai, Aj, Ak, A` have intersecting bisector pairs (Bij , Bk`), (Bik, Bj`)
and (Bi`, Bjk), the optimal solution to Problem VU cannot be a straight line; i.e.,
r∗ must be finite.

We now present an exact procedure for solving Problem VU. We use the same
basic idea as in the fixed radius case, that is, candidate points are identified and
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examined in a sequence that is expected to restrict the search to a small subset
of the fixed points. Again, we believe this approach may prove effective for the
slightly out-of-round problem investigated by Drezner et al. [4]. The conditions
in Corollary 2 are assumed to hold, so that the possibility of a straight line is
avoided. (A small modification is otherwise required).

Algorithm 2 (exact solution of Problem VU):

Step 1 (Initialization).
Determine the center Xp of the associated point facility minimax problem (r = 0).
Initialize the subset of fixed points that are candidate extreme points, S = ∅, the
current center, Xc = Xp, and the current objective value, gc =∞.

Step 2.
Set rmax = maxj{d(Xc, Aj)}, rmin = minj{d(Xc, Aj)}, and rc = (rmax + rmin)/2.
Form the subset of extreme points, Sc, associated with the current solution
(Xc, rc), and update S ← S

⋃
Sc.

Step 3.
Repeat for each new pair of bisectors (Bij , Bk`):
determine the unique intersection point, Xijk`;
set rijk` = (d(Ai, Xijk`) + d(Ak, Xijk`))/2;
if g(Xijk`, rijk`) < g(Xc, rc) update (Xc, rc)← (Xijk`, rijk`);
if maxj{dj(Xijk`, rijk`)} = |rijk`−d(Ai, Xijk`)|, retain C(Xijk`, rijk`) as a candidate
solution.

Step 4 (Optimality test).
If there are no candidate solutions from step 3, return to step 2;
otherwise, choose the best candidate solution as the final solution. �

4.2 Weighted case

Consider the general form of model 2 with weighted distances.
Problem VW: minimize g(X, r) = maxj=1,2,...,n{wj|d(X, Aj)− r|},
where, once again, the weights wj > 0, j = 1, 2, . . . , n.

The problem with all weights equal to unity has received considerable attention
in the literature, as noted in the Introduction; however, the more general Problem
VW appears to be new. This may be due to the limited applications perceived
for the weighted case. Also, this version is more difficult to solve.

Fortunately, the main result readily extends to the weighted case:

Property 4 (generalized to weighted case)
Let C∗ = (X∗, r∗) denote an optimal solution to Problem VW, and S be the
associated set of extreme points with maximum weighted distance to C∗. Then,
|S| ≥ 4, with at least two extreme points located on each side of C∗.
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Proof:
Direct extension of the unweighted case. �

Corollary 1 also extends directly to the weighted problem, but not so for Corollary
2. Consider any pair Ai, Aj and let Lij denote the line passing through this pair of
points. Using the law of similar triangles, we may argue that all lines equidistant
to Ai and Aj (in the weighted sense) must pass through the same vertex Vij on
Lij , where Vij is readily obtained. (If wi = wj, then Vij moves out to infinity
along Lij). This observation leads directly to an extended version of Corollary 2.

Corollary 2 (generalized to weighted case)
If, for all foursomes, Ai, Aj, Ak, A`, the line passing through Vij and Vk`, or Vik

and Vj`, or Vi` and Vjk, is not equidistant (in the weighted sense) to all four
points, the optimal solution to Problem VW cannot be a straight line; i.e., r∗

must be finite.

Property 4 implies that a similar procedure may be used as in Algorithm 2 to
solve Problem VW. However, once again, the subproblems in the weighted case
do not appear to have a closed-form solution. We therefore recommend that
a mathematical programming approach be used in each iteration based on the
following reformulation:

minimize K
subject to K ≥ w2

i (r − d(X, Ai))
2, ∀ i ∈ S.

Again, a global optimization approach would be required to guarantee conver-
gence to an optimal solution.
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