
'

&

$

%

X-Flow

- A Secure Workflow System

'

&

$

%
December 31st, 2005

Martin Strandbygaard Jensen (s001522)

Abstract

This masters thesis describes a model and prototype implementation for a secure workflow sys-
tem, that facilitates creation of documents according to a workflow description, where the result
of each activity is digitally signed.

The requirements of a document workflow is analyzed in the context of a workflow with 10-100
participants, and the security aspects of document creation as part of a workflow are investigated.

The practical barriers and opportunities of using digital signatures as a replacement of hand-
written signatures, thereby allowing workflow support of processes with formal requirements for
documentation, are also analyzed.

Based on the security and workflow requirements of such a system a supporting data model is
developed. The model is implemented as an XML Schema specification and makes use of the
XML Schema language to allow model checking to be performed in an XML parser.

Finally, a prototype application supporting this data model is implemented according to the spec-
ified model requirements.

X-Flow I

Sammenfatning

Dette speciale beskriver analyse, design og implementering af et sikkert workflow system der kan
anvendes til at udarbejde og godkende dokumenter, der skal dannes efter en bestemt proces, og
som kræver formel godkendelse med bindende underskrift.

Baseret på en analyse af sikkerheden i et elektronisk workflow system, og en sammenligning med
et manuelt workflow, opstilles en kravspecifikation for et system der er sikkert påde identificerede
områder hvor et manuelt system ikke tilbyder nogen sikkerhed. Endvidere er systemet designet
til at være lige så sikkert på øvrige områder.

Ud fra denne kravspecifikation udarbejdes et XML schema der definerer datamodellen for en
(XML) baseret filcontainer, der kan bruges som “token” i et workflow. Containeren understøtter
vilkårlige filformater og versionering af ændringer.

System omdeler automatisk en dokumentcontaineren mellem hver deltager i workflowet, ud fra
en fast beskrivelse af workflowet gemt i containeren, Design og prototype understøtter alle sim-
ple transitioner defineret i [1] samt multi choice, og designet understøtter automatisk multi merge.

Rapporten omfatter også design og implementering af en prototype på et system der anvender
den beskrevne datamodel.

Systemet er designet som en client-server arkitektur (begge dele programmeret i Java), med et
tilhørende webinterface til udvalgte funktioner.

X-Flow II

Preface

This thesis was prepared at Department of Informatics and Mathematical Modelling, the Tech-
nical University of Denmark in partial fulfillment of the requirements for acquiring a Master of
Science degree in engineering.

The work of this thesis was carried out over a period of 6 months, from July 1st, 2005 to Decem-
ber 31st, 2005, and was supervised by Robin Sharp from IMM, DTU.

Acknowledgments

I would like to thank my supervisor Robin Sharp for taking an interest in this project and for our
many and long discussions and certificates and digital signatures.

Also a great appreciation for the work my parents put into proof reading this report.

Finally, I would like thank my girlfriend, Karin, for her patience and support the past six months.

Lyngby, December 31st, 2005

X-Flow III

Table of Contents

Abstract I

Sammenfatning II

Preface III

1 Introduction 6
1.1 Problem Definition . 7
1.2 Setting the Stage . 8
1.3 Thesis Overview . 8

1.3.1 Chapter Organization . 9

2 Domain Description 10

3 Taxonomy of Current Systems 13
3.1 Workflow Systems . 13
3.2 Competitive Analysis . 15

3.2.1 Platform Requirements . 17
3.2.2 Workflow Capabilities . 18
3.2.3 Security . 18
3.2.4 Price . 18
3.2.5 Summary . 19

4 Workflow Systems 20
4.1 Defining a Workflow . 20
4.2 Transition Patterns . 21

4.2.1 Simple Transition Patterns . 22
4.2.2 Complex Patterns . 24

4.3 Graphical Representation of Workflows . 26
4.3.1 Petri Nets . 27
4.3.2 Unified Modelling Language (UML) . 27
4.3.3 Extending the Models . 28

4.4 Document Workflow Support . 28
4.4.1 Optimizing Workflow Specifications . 29
4.4.2 Document Aging . 29
4.4.3 Document Versioning . 30

5 Security Analysis 31
5.1 Preconditions . 31
5.2 Threat Agents . 32

5.2.1 Organizational Process and Colluding Users . 33
5.2.2 Platform Security . 33

5.3 Threat Macros . 34
5.3.1 Classification of Macros . 35

5.4 Security Objectives . 36
5.5 Comparison to Manual Workflows . 38

6 Identification of Role 39
6.1 Applied Cryptography . 40

6.1.1 Symmetric Encryption . 40
6.1.2 Asymmetric Encryption . 41
6.1.3 Public-Key Authentication . 41
6.1.4 Digital Certificates . 42

6.2 Legal Framework . 43
6.2.1 Current Legislation and Market Adoption . 44

6.3 Current PKI Models . 45
6.3.1 Trusting a Certification Authority . 45

TABLE OF CONTENTS TABLE OF CONTENTS

6.4 Summary . 46

7 Requirements Capture 47
7.1 Use Case Analysis . 47
7.2 Workflow . 48

7.2.1 Workflow Activities . 48
7.2.2 Process Support . 49
7.2.3 Signature Scope and Ordering . 50
7.2.4 Error handling . 50
7.2.5 Workflow Specification . 51
7.2.6 Workflow Administration . 52

7.3 Security . 53
7.3.1 Trust Model . 53
7.3.2 User Identification (Authentication and Signature) 53
7.3.3 Access Control (Authorization) . 54
7.3.4 System Availability . 54
7.3.5 Document Confidentiality . 55
7.3.6 System Auditing . 55
7.3.7 Version Control . 56

7.4 System Architecture . 56
7.4.1 Document Support . 56
7.4.2 Platform Support . 57

8 Container Specification 59
8.1 Container Format . 59

8.1.1 Versioning Model . 60
8.2 Specification Format . 60
8.3 Data Model Design . 61

8.3.1 Workflow Support . 61
8.3.2 Verification Protocol . 61
8.3.3 XML Signature . 61

8.4 XML Schema Design . 62
8.4.1 General Structure . 62
8.4.2 Common Schema Elements . 63
8.4.3 Server Endpoint (<info>) . 64
8.4.4 Workflow Specification (<workflow>) . 65
8.4.5 Document Versions (<document>) . 68
8.4.6 Signature Protocol (<transactionlog>) . 69
8.4.7 Controlling Attribute and Element Values . 71
8.4.8 Schema Namespaces . 71
8.4.9 Sealing the Container Structure . 71

8.5 Creating a Container Instance . 72
8.5.1 Creating a Workflow Specification . 73
8.5.2 Adding the Initial <receipt> Element . 73
8.5.3 Adding a Subsequent <receipt> Element . 74

9 Secure Workflow Model 75
9.1 System Architecture . 75

9.1.1 Client Interface . 75
9.1.2 Client-Server Communication . 76
9.1.3 Application Server . 76
9.1.4 Database . 77

9.2 XML Programming Model . 77
9.3 User Interface . 77

10 Model Implementation 78
10.1 Accessing the Container . 78

10.1.1 Parser Configuration . 78
10.1.2 Loading A Container (Client) . 79

10.2 Workflow Engine . 79
10.2.1 Selecting the Current Step (Client) . 79
10.2.2 Verifying the Current Step (Server) . 80
10.2.3 Multi choice and -merge Container (Server) . 80

10.3 Certificate Access . 80

X-Flow 2

TABLE OF CONTENTS TABLE OF CONTENTS

10.3.1 Certificate Device Plugin Architecture . 81
10.4 Signing and Verification . 82

10.4.1 Signing an Element . 82
10.4.2 Verifying a Signature . 82

10.5 Client-Server Communication . 83
10.6 Audit Trail . 83
10.7 Web Interface . 84

11 Model Analysis 85
11.1 Workflow Support . 85

11.1.1 Supported Transitions . 85
11.1.2 Container Template Instance . 86

11.2 Model Checking using XML Schema Language . 86
11.2.1 Parsing Time . 86
11.2.2 Memory Usage . 87

11.3 Security Analysis . 87
11.3.1 User Authentication . 88
11.3.2 Enforcing Authorization . 88

11.4 System Test . 88

12 Conclusion 89

Bibliography 90

A Contents on CD-ROM 92

B Comparison of Security in Manual and Electronic Workflow Systems 93

C Use Case Diagrams 95

D The Client User Interface 96
D.1 Overview . 96
D.2 Screen Elements . 96

D.2.1 Common Objects . 96
D.2.2 Info Tab . 98
D.2.3 Reviewing Tab . 98
D.2.4 Authoring Tab . 99

E The Web Interface 100
E.1 Overview . 100

E.1.1 Standards Compliance . 100
E.1.2 Security . 101
E.1.3 External Configuration . 102

E.2 User Interface . 103
E.2.1 /login.php . 104
E.2.2 /changepassword.php . 104
E.2.3 /logout.php . 104
E.2.4 /list.php . 104

E.3 Administrator Interface . 105
E.3.1 Managing Users . 105
E.3.2 Managing Roles . 107
E.3.3 Managing Workflows . 109

F Admin Tool 111

G System Test 112
G.1 Test Data . 112

G.1.1 Sequential Process . 112
G.1.2 Unit Testing . 113

G.2 Test Results . 114
G.2.1 Unit Test . 114
G.2.2 Functional Test . 114

H Source Code 117

Index 118

X-Flow 3

List of Figures

1.3.1Structure of this thesis . 9

2.0.1Simplified use case for document modification . 11

4.1.1Components comprising a generic workflow model . 21
4.2.1Sequence Pattern . 23
4.2.2Parallel Split Pattern . 23
4.2.3Synchronization Pattern . 23
4.2.4Exclusive Choice Pattern . 24
4.2.5Simple Merge Pattern . 24
4.2.6Simplification using Complex Transition Patterns . 26
4.3.1Sequence Pattern as a Petri Net . 27
4.3.2Simple transition patterns as Petri Nets . 27
4.3.3Sequence Pattern as a UML state chart . 27
4.3.4Simple transition patterns as UML state charts . 28

8.4.1Definition of metaDataType . 63
8.4.2Definition of the Info Element . 64
8.4.3High Level Model of a Workflow . 65
8.4.4Definition of nextStepGroup Element . 66
8.4.5Definition of a step Element . 67
8.4.6Definition of nextStepGroup Element . 67
8.4.7Definition of a Document Element . 69
8.4.8Definition of the Transactionlog Element . 69
8.4.9Definition of a Receipt Element . 70

10.1.1Sequence Diagram - Client Loading Container . 79
10.3.1UML class model of client certificate support . 81
10.3.2Selecting a certificate device . 82

C.0.1Complete Use Case for Retrieving a Document . 95
C.0.2Complate Use Case for Submitting a Document . 95

D.2.1GUI - Common Fields . 97
D.2.2GUI - Container Information . 98
D.2.3GUI - Reviewing a Document . 99
D.2.4GUI - Modifying a Document . 99

E.2.1Sitemap - Users Access . 103
E.3.1Sitemap - Managing Users . 105
E.3.2Sitemap - Managing Roles . 107
E.3.3Sitemap - Managing Workflows . 109

G.1.1UML diagram of sequential process . 113
G.1.2System internal model of workflow in G.1.1 . 113

List of Tables

3.1.1Common Specific Workflow Applications . 15
3.2.2Summary of Capabilities . 19

4.2.1Complex Transition Patterns . 25

5.2.1Threat Agents . 33
5.3.1Threat Macros . 35
5.3.2Classification of Threat Macros . 36
5.4.1Security Objectives . 37

11.1.1Feature Matrix . 85
11.2.1Parsing Time . 86
11.3.1Security Level . 88

B.0.1Security in Manual Workflow System . 94

G.2.1Test Results . 116

1
Introduction

Current business applications offer extensive support for automated processing of many types of
transactions involving formally specified and structured content according to established business
processes in organizations employing those systems. Specifically, processing of most financial
transactions, such as purchase orders and invoices, is very well supported by a multitude of fi-
nancial systems and enterprise resource planning systems (ERP).

In organizations employing ERP or similar systems, no human interaction is necessary except
specification and approval, and this has led to great improvements in the efficiency of business
administration.

In contrast to this strong support for controlled and automated processing of formally specified
and structured content, few organizations employ automated systems for processing informal
and unstructured content. This type of content includes all manners of electronic documents,
e.g. business strategies and sales forecasts, that are created and communicated within an organi-
zation.

Many documents are created according to a predefined process, and regulatory, industry, or or-
ganizational requirements often mandate documentation of process execution. Generally, this is
achieved by maintaining a paper trail of signatures that denote intermediate process decisions.
However, this approach is quickly becoming an obstacle to efficient process execution, as well as
limiting the usability of the process documentation. Furthermore, numerous corporate scandals
of late, have increased the necessity of documenting process execution and formally establishing
responsibility within the process. One example being the Sarbanes Oxley act [2], passed in re-
sponse to the Enron- and World-Com scandals, affecting all companies, or subsidiaries thereof,
registered with the Securities and Exchange Commission (SEC) in the US.

The Sarbanes Oxley act, among other things, requires companies to implement internal controls
addressing key processes, and the execution of these controls must be documented.

Until recently there was no legal or technological replacement for the manual processes involved
in signing documents. However, within the past 5 years several countries (including Denmark
[3]) have passed legislation that makes certain types of electronic signatures legally binding. In
March 2003 the first OCES certificates where issued in Denmark, and in 2005 it’s position as
an electronic equivalent to the handwritten signature was confirmed in a report by The Danish
Ministry of Justice [4].

The increasing amounts of information and more stringent formal process requirements has cre-
ated a need for systems, that automate aspects of document creation and approval. This thesis
investigates the problem of automated processing of content, utilizing digital certificates to create
irrefutable and legally binding documentation of process execution.

http://www.signatursekretariatet.dk

CHAPTER 1. INTRODUCTION 1.1 Problem Definition

A note on terminology

Before the introduction of electronic storage, a strong bond existed between information and the
storage medium on which this information was captured, e.g. news was printed in the newspa-
per. Thus a document was a well defined entity, as was the relationship between a document
and information; a document contained information or data.

With the advent of electronic storage, meta data, and structured formats (e.g. XML), this relation-
ship became gradually blurred, and one might argue that it no longer exists; certainly modern
development paradigms have shown separation of content and presentation, to be a superior
strategy in development of WEB applications.

In this thesis the following terminology is employed

1. Content can be anything that can be communicated electronically. Thus no characteristics
can be inferred about the content.

2. Meta data describes content.

3. Content and describing meta data is information.

4. A document is a visual representation of information. Thus a document may be an instance
of content and meta data, in which the meta data also describes presentation.

This definition lends itself to XML terminology, however, the special definition of a document
is necessary, to properly express those situations in which a document may not be separated in
content and describing meta data.

It should be noted, that the definition is directional in that a document is always content, whereas
content not necessarily is a document.

The system described in this thesis assumes documents, hence in the following this term will
generally be used.

1.1 Problem Definition

The aim of this thesis is to develop a prototype for a software system, that supports secure doc-
ument handling for a wide variety of document formats in the context of a workflow system.
Specifically, the system should be useful as a secure workflow system for processing electronic
documents.

The system will enable easy handling by multiple participants of electronic documents that must

1. Be created according to a formal process (workflow)

2. Ensure irrefutable commitment of all participating roles (signatures)

(a) with legal significance (assuming the external requirements are available)

3. Provide traceability in the document creation process

4. Facilitate easy documentation of the above properties

In so doing, the system must

• be easy to use

• allow specification of flexible workflows

• allow distribution of arbitrary document formats

• function on many different platforms

• use digital certificates for authentication of participants

• distribute documents between participants

X-Flow 7

CHAPTER 1. INTRODUCTION 1.2 Setting the Stage

1.2 Setting the Stage

This thesis presents the specification, design, implementation, and evaluation of the X-flow Se-
cure Document Workflow System; a collaboration system in which users create, modify, and
review documents. Documents are created according to a formal process specification, all mod-
ifications are digitally signed, and a document contains complete traceability of versions, user
activities, and signatures, and it enforces access control.

Several systems or applications address the problem of coordinating document collaboration in
a workflow, and they can be divided into several different categories according to their approach
to solving this problem. Some systems focus not only on document collaboration but on coordi-
nating tasks of any kind (e.g. an XML broker in a middle-ware application), while other systems
in turn address the problem of processing very specific kinds of documents (e.g. controlling the
source code files of a computer program).

The X-flow system focuses on processing documents that must be formally approved and signed
by any subset of the involved users, and where the approval process must satisfy legal require-
ments and be able to replace existing manual processes.

The X-flow system takes a document centric approach in which everything the system knows
about a document at a given point in time, is represented by the corresponding state of the doc-
ument. Specifically, the formal security properties the X-flow system ensures, must not depend
on the system or on any data stored within, rather the formal properties must be proven by the
document itself.

1.3 Thesis Overview

The remainder of this report is structured in the following way.

• Chapter 1 presents an introduction to the topic of this thesis and the scope of the problem
that is addressed.

• Chapter 2 presents a domain description of the intended workflow system. The domain
description covers the process mechanism of the system, a description of how the system
is used by a user and an administrator, and a description of the intended environment in
which the system will operate.

• Chapter 3 is a taxonomy of current systems and how they compare to the domain descrip-
tion in chapter 2. The chapter describes different types of document workflow systems
currently being used and analyzes a number of representative systems based on selected
characteristics.

• Chapter 4 gives an introduction to workflow modelling, including simple and complex
elements that can be used to describe a workflow. This chapter also states the general
workflow objectives required by a document workflow system, in which a document is
created according to a predefined process (see section 1.1-1).

• Chapter 5 analyzes the detailed security requirements of a document workflow system, and
based on this analysis a number of security objectives are expressed, which are required to
ensure security of a document as defined in the security analysis. (see section 1.1-2.*)

• Chapter 6 gives a general introduction to electronic identification and signatures based
on cryptography (e.g. digital signatures) and gives an overview of how current legislation
allows digital signatures to be used as replacements for traditional handwritten signatures.
Finally, this chapter presents an overview of current standards governing digital signatures
and their market adoption.

• Chapter 7 summarizes the objectives stated in chapter 4 and 5 and restates them as spe-
cific system requirements. These system requirements are combined with use case derived
system requirements.

X-Flow 8

http://www.x-flow.dk
http://www.x-flow.dk
http://www.x-flow.dk

CHAPTER 1. INTRODUCTION 1.3 Thesis Overview

• Chapter 8 outlines the design for a prototype system that implements the system require-
ments described in chapter 7.

• Chapter 9 describes the data model used by the prototype system.

• Chapter 10 describes how each part in the system is implemented including key algorithms
for signing, validation, and workflow processing.

• Chapter 11 analyses the implemented prototype, in terms of (1) the requirements actually
implemented by the prototype, and (2) of how major design choices affects the overall per-
formance of the prototype (both in terms of system requirements and actual performance).

• Chapter 12 concludes the work of this thesis and summarizes the designed model, the
prototype, and the performance of the chosen design.

1.3.1 Chapter Organization

The final system design and prototype model are developed through a series of steps, each step
using input from previous steps, as illustrated in figure 1.3.1.

Chapter 9 -
Secure

Workflow
Model

High-level
Properties

System
Requirements

System
Design

Chapter 3 -
Domain

Description

Chapter 4 -
Workflow
Systems

Chapter 7 -
Requirements

Capture

Chapter 5 -
Security
Analysis

Chapter 6 -
Identification

Chapter 2.
Taxonomy

Chapter 8 -
Container

Specification

Chapter 10 -
Model

Implementation

System
Implementation

Figure 1.3.1 The figure shows how the individual chapters relate in terms of what is covered in each
chapter, and how they combine in the overall design process.

X-Flow 9

2
Domain Description

This chapter is an extended description of the X-flow system described in section 1.2, and pro-
vides an informal description of the use and purpose of the intended workflow system.

The description defines the functional boundaries of the system, and identifies the (functional)
sub-components. This includes a detailed description of the intended functionality, relevant
deliberations, and specific choices that impacts the final system implementation. Based on this
description it is possible to identify high level use case scenarios for the system, and major classes
of the final design. Detailed use case scenarios are discussed in section 7.1, and its class model
in chapter 10.

X-flow is at the same time a document specification, a workflow specification, and a client-server
system. Users access the X-flow system, from which they can retrieve documents they must edit.
When a user is done editing the document, the user uploads the document to the server that in
turn distributes the document to the next recipient according to a predefined workflow specifi-
cation.

A user commits to the changes by digitally signing the document, and the X-flow system enforces
that the document is signed, and that the changes the user has made correspond to those in the
workflow specification.

The Process

The system is used to control the creation of a single document (production data) through a
workflow process, which means that a single document is created through input from multiple
participants (roles).

A workflow process is an existing business process, through which a single document is created
and approved. To express a workflow process, a business process must be identified and mapped,
both in terms of order of activities and participating roles. This mapping is not facilitated by the
system and should be prepared before using the system.

The system need not support very complex workflows. The system need only support typically
occurring business processes that are actually documented, and very detailed and complex pro-
cesses are extremely difficult to model correctly, hence relatively simple workflows will normally
be the order of the day. Specifically, the system will only support one active editor regardless of
whether the document editing system of choice supports multiple editors1.

The system is intended to enable processes that are bound by formal requirements (regulatory
etc.) in which the execution of each activity must be formally approved and have a legal signif-

1Several text editors such SubEthaEdit use the Zeroconf protocol for concurrent editing

http://www.x-flow.dk
http://www.x-flow.dk
http://www.x-flow.dk
http://www.x-flow.dk
http://www.codingmonkeys.de/subethaedit/
http://www.zeroconf.org/

CHAPTER 2. DOMAIN DESCRIPTION

icance. Since the system is executing (and enforcing) the process, the system, must also be able
to handle process exceptions caused by external factors such as human errors.

The System

The system allows the roles to contribute in arbitrary order (workflow process), but the workflow
process is specified prior to starting the creation of a document, thus when the document cre-
ation is started, the possible paths of the process are known. The participants themselves cannot
specify the workflow process in which participants contribute to the document, but the partici-
pant starting the creation of a document, may choose from a number of established processes.

The document creation order, specifies both the actual order (workflow process), but also what
actions (activities) each role may take on the document.

The system controls the process of document creation, which means that the system itself isn’t
used to actually create the document. Rather the system provides a container for an arbitrary
document, and this container is used for document distribution within the workflow.

This abstraction ensures that the system doesn’t mandate that documents be created in a specific
way, and that the domain of document creation is separated from the domain of the creation
process. This also means that workflow components should be accessible to any application that
implements the correct interface (API) to the workflow component.

Documents are edited in an external application, thus the system must allow roles to add and
extract documents stored within the distributed container, while at the same time ensuring that a
role only performs activities they are authorized to perform. This is done by

1. only continuing the workflow process if the activity taken by a role was authorized

2. only promoting the (container) submitted by a role as the current master if the container is
valid

This means that the system must verify that (1) holds for all activities of all previous roles.

A workflow has ended when the chosen process requires no more activities.

Using the System

A role only needs limited interaction with the system. A role

User

System

Get document

Return
document

Figure 2.0.1 Simplified use case for
document modification

interacts with the system, when the role retrieves a container
in order to perform an activity, and when the role returns
the container to the system after having completed the des-
ignated activities. This high-level use case scenario is illus-
trated in figure 2.0.1.

When a role access the system in order to add or retrieve a
container, the role must log in to the system by authenticat-
ing as a role known to the system.

Any role using the system will have some form of organiza-
tional capacity, hence the system identifies a role by search-
ing in directories of known organizational capacities (com-
pany address book, centralized user directory etc.). Thus
the system itself will not facilitate user management, but will
provide an interface to access external user identities.

A role may have more than one document waiting, and when a role isn’t editing a document, the
documents are held on a central server. The role accesses the system through a single window

X-Flow 11

CHAPTER 2. DOMAIN DESCRIPTION

(web page) from which the role has access to status information about all waiting documents.
From this window, a role can perform all relevant activities pertaining to the awaiting docu-
ments. However, actual document editing is performed locally (not on the server).

To edit a document, a role first retrieves the container in which the document is stored and then
proceeds2 to extract the document from the container for local editing. This step is necessary
and important, because a role must be able to validate a document locally and not have to rely
on information presented by the system.

Creating a Document

Not all roles can create all documents. A workflow process corresponds to a business process,
hence only the originator in the business process can create a document. A role can create a
new document from any of the container templates available to that role, and only templates in
which a given role is originator, is available to that role.

When starting a workflow, a role simply creates a document and adds this to a new container
instance intended for the type of workflow the role is initiating. Consecutive roles then proceed
to retrieve the container, edit the document, and return the container containing the edited doc-
ument.

A workflow not only comprises sequential activities, but it can also involve simultaneous activi-
ties, and the workflow process definition may be dependent on the activities of some roles.

As a role edits a document outside the document container, the system needs to be available on
the platform on which the role edits the document.

Administrating the System

The system does not require any on-going administration3 once it has been configured. Users
can initialize workflows, and the users themselves are responsible for completing the workflows.

The system itself does not provide any means of defining a new workflow, but provides a speci-
fication from which workflows can be built.

The System’s Environment

The system is intended to be used by a limited number of roles (10-100), since very few business
processes incorporate large number of roles.

2The extraction process is easily wrapped so a user doesn’t have to start multiple programs to actually retrieve the docu-
ment.

3 This does not address normal administrative duties such as backup, dba, patching software etc.

X-Flow 12

3
Taxonomy of Current Systems

This section provides an overview of a number of existing workflow systems. It gives an intro-
duction to the different types of systems that are normally used for workflow processing and
compares the capabilities of a number of representative systems.

The systems are compared in terms of

• Price

• Workflow capabilities

• Security measures

• Platform requirements

These are the major features that should be considered when selecting a workflow system, and
they are all relevant parameters to consider when answering the questions of (1) whether the
intended system (already) exists, and (2) what barriers of implementation exists.

3.1 Workflow Systems

Workflow systems can broadly be divided into two groups

• developed as generalized workflow systems

• designed for a specific application domain

This categorization is relevant as many workflow systems are in fact varying types of content
management systems extended with workflow support.

Specific workflow systems are generally self contained applications that require little or no cus-
tomization1, whereas generalized workflow systems typically need to be extended through cus-
tomization.

1Though they often require plenty of configuration to fit organizational models.

CHAPTER 3. TAXONOMY OF CURRENT SYSTEMS 3.1 Workflow Systems

General Workflow Systems

Generalized workflow systems can further be divided into

• workflow engines

• self-contained applications

Workflow engines are system building blocks (programming libraries) used as drop-in function-
ality that can be used when developing new systems. A workflow engine in itself cannot actually
be used to process any documents, rather it facilitates easy creation of such systems. Work-
flow engines generally relate to the problem of generic process automation, but all document
workflow systems normally include some form of workflow engine as this architecture generally
makes a system more extensible. Some workflow engines comprise an entire subsystem includ-
ing e.g. user management and access control, while others only provide a workflow mechanism.
As workflow engines are only used in conjunction with a development project, they will not be
discussed any further.

Self-contained applications are normally referred to as middle-ware applications, because they
route messages in between other systems. They have evolved from the application domain of
transaction processing systems such as Microsoft BizTalk and IBM MQ Series into more gener-
alized systems, that focus on processing the business process itself and make fewer assumptions
about the environment in which they’re used.

Specialized Workflow Applications

The most common types of systems include [5]

Version Control Is well known from the problem of source code management, where version
control systems are used to manage different versions or releases of a program. A version
control system is mainly used to capture different versions of a specific document (e.g.
source code file) and will normally include some form of access control system.

Content Management System (CMS) First became known as a platform from which a website is
published. As websites have evolved so have content management systems, and by now
they’re commonly used for controlling collaborative workflows that takes place across a
website (e.g. a registration process). A content management system normally includes
user management and access control mechanism, either by implementing its own security
subsystem or by using that of the host system.

Document Management System Is often implemented as version control for office documents,
and indeed many software developers also use their version control systems for this pur-
pose. A document management system generally implements a simple sequence workflow,
which ensures that only one current version can exist. It is also often used by public offices
that must journal all correspondence. A document management system normally imple-
ments access control through the host system.

E-mail Is not a document workflow system per se, given that it has no means for enforcing
document flow. However, from a practical standpoint e-mail systems cannot be ignored,
given that e-mail is probably the single most used system for document collaboration. The
original e-mail doesn’t implement any access control mechanism, but can be extended
with S/MIME that implements security through X.509 certificates.

Groupware Systems Generally extends point-to-point e-mail to better suit communication within
a group, typically through bulletin boards and calendars.

X-Flow 14

http://www.microsoft.com/
http://www.ibm.com

CHAPTER 3. TAXONOMY OF CURRENT SYSTEMS 3.2 Competitive Analysis

Table 3.1.1 is a list of common systems from each of the five categories

Table 3.1.1: Common Specific Workflow Applications
Version Control BitKeeper

Concurrent Versions System (CVS) [6]

Subversion (SVN) [7]

Visual Source Safe (VSS)

Content Management (CMS) Apache Lenya

Sitecore

Zope

Document Management Adobe Document Services [8]

cBrain [9]

EMC Documentum [10]

Fælles Elektronisk Sags- og Dokumenthåndtering (FESDH)

Microsoft Sharepoint [11]

Scan·Jour [12]
Groupware Lotus Notes [13]

Microsoft Outlook [11]

phpCollab

Table 3.1.1 The table lists a selection of common workflow applications, grouped by type.

3.2 Competitive Analysis

The X-flow system must have a competitive advantage compared to existing systems. If several
other systems already can do what X-flow is intended to do, and do it at a lower price, there
seems to be little reason for creating X-flow.

In reality, few systems offer the exact same feature set making a direct comparison impossible,
and the extensive impact of features such as platform support means, that even seemingly minor
differences in feature set may justify a large difference in price.

If a company already uses SAP, implementing the SAP workflow component may be cheaper
than implementing Domino Workflow, which also requires client licenses. In this scenario the
added complexity of introducing another system [Lotus] is a hard to quantify factor that would
probably impact work efficiency, hence also justifying the higher price tag of SAP.

Selecting Comparative Systems

The systems listed in table 3.1.1 are widely used, but as they are very domain specific, not all
come close to the application domain of X-flow. The general workflow support of X-flow means
that comparative applications should be selected from systems offering generic workflow sup-
port. The selection should also comprise systems that enjoy widespread adoption among the
potential users (and offers a workflow component) as companies prefer to limit the number of
applications in their portfolio.

Table 3.2.1 is a comparison of several common workflow systems.

X-Flow 15

http://www.bitkeeper.com
http://www.nongnu.org/cvs/
http://www.nongnu.org/cvs/
http://subversion.tigris.org
http://subversion.tigris.org
http://www.microsoft.com
http://lenya.apache.org
http://www.sitecore.dk/
http://www.zope.org
http://www.adobe.com
http://www.cbrain.dk
http://www.emc.com
http://www.documentum.com
http://www.microsoft.com/
http://www.scanjour.dk
http://www.ibm.com/
http://www.microsoft.com/
http://www.phpcollab.com/
http://www.x-flow.dk
http://www.x-flow.dk
http://www.x-flow.dk
http://www.x-flow.dk
http://www.x-flow.dk

CHAPTER 3. TAXONOMY OF CURRENT SYSTEMS 3.2 Competitive Analysis

Ta
bl
e
3.
2.
1:

C
om

pa
ri
so
n
of

C
om

m
on

B
PM

-
an

d
D
oc

um
en

t
M
an

ag
em

en
t
Sy
st
em

s
Ve

nd
or

/
A
pp

lic
a-

ti
on

Pr
ic
e

Pl
at
fo
rm

W
or
kfl

ow
Ex

pr
es
s-

ab
ili
ty

A
ut
he

nt
ic
at
io
n

M
ec
ha

ni
sm

A
ut
ho

ri
za

ti
on

M
od

el
Lo

gg
in
g
/
A
ud

it
in
g

D
oc

um
en

t
Fo

rm
at

Su
pp

or
t

A
do

be
D
oc

um
en

t
Se

rv
ic
es

$$
$$

Li
nu

x,
M
ac

,
So

la
ri
s,

W
in
do

w
s

Si
ng

le
st
ep

SE
Q

an
d

ru
le
s
pr
oc

es
si
ng

.
(C
an

be
ex

te
nd

ed
pr
og

ra
m
at
ic
al
ly

to
su
pp

or
ta

ll
si
m
pl
e

tr
an

si
tio

n
pa

tte
rn
s.

W
in
do

w
s
A
ut
he

nt
ic
a-

tio
n,

X
.5
09

R
BA

C
,A

C
L

C
on

ta
in
er

si
gn

at
ur
e,

lo
g
fil
e

Si
ng

le
fil
e
(a
rb
itr
ar
y

fo
rm

at
)i
n
PD

F-
ba

se
d

co
nt
ai
ne

r

C
os
a
B
PM

[1
4]

-
U
ni
x,

W
in
do

w
s

A
ll
si
m
pl
e
tr
an

si
tio

n
pa

tte
rn
s

-
-

Lo
g
fil
e

D
om

in
o

W
or
kfl

ow
$$

$
M
ac

,
U
ni
x,

W
in
do

w
s

A
ll
si
m
pl
e
tr
an

si
tio

n
pa

tte
rn
s

LD
A
P,

N
ot
es

ID
fil
e,

W
in
do

w
s
A
ut
he

nt
ic
a-

tio
n

R
BA

C
,A

C
L

C
on

ta
in
er

si
gn

at
ur
e,

lo
g
fil
e

A
rb
itr
ar
y

EM
C

D
oc

um
en

tu
m

$$
$$

W
in
do

w
s

-
Si
m
pl
e,

W
in
do

w
s

A
ut
he

nt
ic
at
io
n

R
BA

C
,A

C
L,

W
in
-

do
w
s

Lo
g
fil
e

A
rb
itr
ar
y

M
ic
ro
so
ft

Sh
ar
ep

oi
nt

$$
W
in
do

w
s

Si
ng

le
st
ep

SE
Q
.(
C
an

be
ex

te
nd

ed
pr
og

ra
-

m
at
ic
al
ly

to
su
pp

or
t

al
ls
im

pl
e
tr
an

si
tio

n
pa

tte
rn
s.

W
in
do

w
s

R
BA

C
,A

C
L,

W
in
-

do
w
s

(D
oc

um
en

ts
ig
na

-
tu
re
),
lo
g
fil
e

A
rb
itr
ar
y
(fu

ll
fe
at
ur
e

se
ti
s
on

ly
av
ai
la
bl
e

w
ith

M
S
O
ffi
ce

fo
r-

m
at
s,
an

d
ar
bi
tr
ar
y

da
ta

in
cl
ud

ed
as

ob
-

je
ct
s)
.

Pa
lla

s
A
th
en

a
FL

O
W
er

[1
5]

-
W
in
do

w
s

A
ll
si
m
pl
e
tr
an

si
tio

n
pa

tte
rn
s

N
/A

N
/A

Lo
g
fil
e

A
rb
itr
ar
y

SA
P
R
/3

W
or
k-

flo
w

[1
6]

$$
$$

$
U
ni
x,

W
in
do

w
s

A
ll
si
m
pl
e
tr
an

si
tio

n
pa

tte
rn
s

Si
m
pl
e,

W
in
do

w
s

A
ut
he

nt
ic
at
io
n,

X
.5
09

R
BA

C
,A

C
L

Lo
g
fil
e

A
rb
itr
ar
y

Ti
bc

o
St
af
fw

ar
e

[1
7]

$$
$$

W
in
do

w
s

A
ll
si
m
pl
e
tr
an

si
tio

n
pa

tte
rn
s

N
/A

N
/A

Lo
g
fil
e

A
rb
itr
ar
y

Fi
le
N
et

V
is
ua

l
W
or
kF

lo
[1
8]

-
W
in
do

w
s

A
ll
si
m
pl
e
tr
an

si
tio

n
pa

tte
rn
s

Si
m
pl
e,

W
in
do

w
s

A
ut
he

nt
ic
at
io
n,

X
.5
09

R
BA

C
,A

C
L

Lo
g
fil
e

A
rb
itr
ar
y

X-Flow 16

http://www.adobe.com
http://www.adobe.com
http://www.emc.com
http://www.documentum.com
http://www.tibco.com
http://www.tibco.com
http://www.filenet.com/

CHAPTER 3. TAXONOMY OF CURRENT SYSTEMS 3.2 Competitive Analysis

Comparing the systems is done as follows

1. No company is about to throw out major investments in systems and applications, as well
as accumulated experience, just to adopt a system with a limited number of users, and a
very specific use. Hence, the first criteria is that a system offers acceptable platform support.
This means that the impact to existing infrastructure should be limited, and preferably not
require additional investments in supporting applications (and user education).

2. When an acceptable subset has been selected in terms of platform requirements, a com-
pany will evaluate whether the system supports the internal process it is intended to au-
tomate; a corollary to this is that no manager is going to select a system that is going
to (negatively) influence his position (which a reorganization may cause). Regardless, it
should be possible to customize the system to the organization, not the other way around.

3. The security requirements of the system will only be considered when platform require-
ments and workflow support has been satisfied. If those requirements cannot be met, the
system is going to be too expensive to implement anyway, and the company may as well
stay with the current manual processes.

4. The price is both the first and the last parameter to be considered, and essentially the price
is considered in each of the three previous steps. The system is measured against the gain
of implementing the system, which is another way of saying that the system is implemented
if it is worthwhile.

3.2.1 Platform Requirements

The platform requirements comprise

• platforms on which the system can run

• document formats supported by the system

Generally platform requirements are a compromise between support for existing systems, while
not limiting future evolution of infrastructure.

Operating Platform

The platform referred to in table 3.2.1 is the client platform; all companies can be expected to
be able to operate servers running commonly available operating systems2, however the client
platform cannot be as readily changed.

Given the current widespread adoption of Windows, it should be assumed (and probably re-
quired), that a client is available for this platform, and indeed all systems offer this support.

Half of the systems offer clients for other platforms than Windows. If only Linux is supported,
this is stated specifically, and if support spans all common Unix variants, support is referred to as
Unix.

None of the systems use clients based on byte code languages such as Java or .Net, which could
potentially provide more generic platform support, though rich clients implemented in a platform
independent byte code language tend to be platform dependent anyway (e.g. [19]).

Document Formats

From a short term real life perspective, for most companies this is a matter of whether support
for documents other than Microsoft Office formats is required. However, the use of PDF as the
industry standard read only document format means that most companies would require support
for this format as well. Realistically, few companies can do without at least limited support for

2Disregarding systems such as OS/400 and zOS that wouldn’t be considered primary targets for such a system anyway.

X-Flow 17

http://www.microsoft.com/

CHAPTER 3. TAXONOMY OF CURRENT SYSTEMS 3.2 Competitive Analysis

arbitrary document formats.

All systems offer full support for arbitrary document formats. Some systems are based on a
container format (Adobe and Microsoft), and this seems to be a desirable approach as it offers
perceptive equality between signature and content being signed (e.g. users do not have to under-
stand that one signature covers multiple files).

3.2.2 Workflow Capabilities

Realistically, few companies will require very detailed workflow expressability. To actually en-
able some form of workflow, a system must both support other transition patterns than the se-
quence pattern, and it must support many consecutive steps.

The systems fall into two categories: Those with almost no workflow support, and those with very
detailed support. Those with limited support all implement a workflow model intended towards
the perhaps most common workflow: The manager that must approve something written by a
subordinate. However, this expressability is insufficient to support many frequently occurring
business processes. The rest of the systems offer workflow support far more detailed than what
will generally be required.

Most (large) companies will also require some way of integrating the workflow system with other
systems, e.g. to facilitate automatic storage in an archive, once the document has been processed.
All systems expose API’s that can be used to integrate the systems with other systems.

3.2.3 Security

Currently, most companies will accept a new system that

1. only allows authentication using username and password

2. doesn’t integrate with existing security infrastructures (LDAP, AD etc.)

Also, most companies view greater than normal security features as a sure way of generating
work for the it-support function. However, to meet the requirement of legally valid signatures,
systems need to support X.509 certificates.

Companies will mostly be concerned withth support for integrating authentication and autho-
rization with Windows, as just about all companies use this on clients (and certainly above the
level of first line manager).

In terms of security model, authentication, and authorization all systems offer very good support.
They all support RBAC and ACL with users being defined in a number of different directories,
most support user authentication using X.509, and all systems integrate with Windows security.

While the systems do support X.509 for authentication, few support X.509 for signing documents,
and those that do, only implement a very simple signature model without integrating signature
with the workflow execution.

3.2.4 Price

As previously stated, the price is a factor that is considered in each step of the selection process,
and a system will always be chosen to fit the bill.

Ideally, the system will be chosen based on a cost-benefit analysis of the gains in terms of op-
timization, however, these gains are hard to quantify and are affected by other factors such as
existing infrastructure.

Regardless, workflow support at the document level is a relatively new technology, and doesn’t
enjoy widespread adoption. This makes it a relatively expensive technology to implement.

X-Flow 18

http://www.adobe.com
http://www.microsoft.com/

CHAPTER 3. TAXONOMY OF CURRENT SYSTEMS 3.2 Competitive Analysis

3.2.5 Summary

Table 3.2.2 summarizes the comparison of the capabilities of existing systems.

Table 3.2.2: Summary of Capabilities
Platform Requirements Acceptable support for multiple operating platforms. All sys-

tems support arbitrary document formats.

Workflow Capabilities Either very limited (Adobe, EMC, Microsoft) or very extensive
(the rest) support.

Security Good support for access control using X.509 certificates,
mainly because Windows support this natively and most ap-
plications can use Windows security. Limited support (Adobe
and Microsoft) for signing documents. No support for inte-
grating signature into the workflow, and no properties can be
assigned to a signature.

Price Regardless of relative pricing, all systems are very expensive.
This is fairly new technology enjoying limited market adop-
tion, hence the extra premium.

Table 3.2.2 The table summarizes the capabilities of existing workflow systems.

Generally, no single system addresses the problem that X-flow is intended to solve. Several
systems offer extensive workflow support, and the Adobe solution offers limited signature ca-
pabilities. However, none of the systems integrate document signing into the decision process
inherent in the workflow, and none of the systems provide a systematic framework for attaching
properties to a signature.

X-Flow 19

http://www.adobe.com
http://www.emc.com
http://www.microsoft.com/
http://www.adobe.com
http://www.microsoft.com/
http://www.x-flow.dk
http://www.adobe.com

4
Workflow Systems

To build a system that facilitates managed document flow, or workflows, it is necessary to de-
velop a formal model of the classes of workflows the system will support. This chapters gives
a general introduction to workflow systems. It defines a workflow, and provides a taxonomy of
elements that can be used to express very complex workflows.

Section 4.4 states the requirements of a document workflow system that constitutes a fair com-
promise between expressability and complexity of implementation, and which the developed
system should support. Chapter 7 expand on these requirements, and in chapter 3 the selected
subset is compared to the (workflow) capabilities of current workflow system.

4.1 Defining a Workflow

A workflow is a model expressing the work that must be performed in a given business process,
or simply a process. The creation of a document from a functional (or business) point of view,
is normally referred to as a process or business process. Designing a system that automates this
process can be likened to capturing this process as a model and implementing this model, and
the implementation will then express the flow of work that constitutes the captured process.

In the following, the terms and description of a workflow stated in [1] (and [20]) will be used to
describe a workflow. In [1] an arbitrary workflow is decomposed into the following components:

Workflow Process Definition expresses the activities that must be performed, in what order they
should be performed, and whether they all need to be performed (e.g. through branch
transitions). A workflow process definition is generic, and is said to be instantiated in
a specific case (e.g. when referring to the processing of a specific document). In the
following, a workflow process definition will be referred to as a workflow.

Routing/Control Flow refers to the order in which the activities comprising a workflow must be
performed

Thread Of Execution Control is relevant when parallel activities may occur.

Control Data is meta data used to describe the workflow and the routing within (e.g. condition-
als on branch statements).

Activity is an atomic unit of work that must be performed as part of the workflow (any activity
that needn’t be atomic is itself a new workflow).

Transition defines how to move between activities. The types of transitions that are allowed
determines the complexity of workflow that may be expressed, and the ease with which
complex workflows may be expressed. Many complex transitions may be modelled from
simpler transitions.

CHAPTER 4. WORKFLOW SYSTEMS 4.2 Transition Patterns

Role is the person performing an activity as part of the workflow process definition. The word
role is used to express that this need not be a specific person (e.g. it may be an organiza-
tional function).

Application is used by the role to perform the activity

Production Data are the modifications to the document that are performed as part of the work-
flow.

Figure 4.1.1 shows a graphical representation of a simple workflow and illustrates the different
components of a workflow.

A

B

C

D

TransitionsActivity

Workflow Process Definition

Role

Application
Production

Data

Routing
Start End

Figure 4.1.1 Components comprising a generic workflow model

The workflow starts with a sequence transition from the start state into an activity, and the break-
out shows the elements comprising a generic activity. It is common to indicate start- and end-
states using labeled circles as is shown here. From activity A, the workflow branches into two
threads of execution through parallel split, visiting activities B and C respectively, and finally
the execution threads are merged using through a simple merge pattern visiting activity D and
completing execution in the end-state.

The description illustrates a generic transition, hence this description has no impact on the com-
plexity of the workflows that can be described, meaning that arbitrary workflows can be de-
scribed.

4.2 Transition Patterns

As noted in the definition of transitions in workflows, a transition is simply a rule governing
how to move between two or more activities, and as such a large number of transitions can be
described. However, most transitions may be expressed from a limited and well defined set of
transition patterns. This is also a requirement for formally specifying the workflows that a system
should support.

X-Flow 21

CHAPTER 4. WORKFLOW SYSTEMS 4.2 Transition Patterns

Transition patterns can relate to many different application domains, e.g. ([21], [22], [23])

• Business Process

• Flow control

• Resource allocation

• Case handling

• Exception handling

• Transaction management

The scope of this thesis is limited to transition patterns that address flow control.

Much effort has gone into cataloguing transition patterns within each application domain, and
e.g. the search criteria business workflow pattern yields 57 results on Amazon.com . In
[1] 21 transition patterns for flow control are identified, and this definition is used as basis for the
model developed in this thesis1. The patterns are divided into

• Simple Patterns

• Complex Patterns

Simple patterns are entities that cannot be expressed by means of other (simple) patterns, while
complex patterns in most cases may be expressed by simple patterns [1]. However, using the
notation of complex transition patterns will greatly simplify the expression of many workflows,
and allow easier analysis, than would have been possible using only transition patterns.

4.2.1 Simple Transition Patterns

This section provides an overview of the five simple transition patterns defined in [1].

• Sequence

• Parallel Split

• Synchronization

• Exclusive Choice (XOR)

• Simple Merge

The transition patterns also correspond to the basic control flow constructs defined by the Work-
flow Management Coalition (WfMC) [24].

Each pattern is illustrated with a small figure showing (possible) pre- and post activities. The
illustrations use the same notation as figure 4.1.1. Each illustration is accompanied with a short
description of the pattern’s function, and an example of how this pattern may relate to a docu-
ment workflow system. Section 4.3 introduces other graphical notations for workflows.

4.2.1.1 Sequence

The sequence pattern is the simplest of all transition patterns, and occurs in most workflows. The
pattern expresses a transition from one activity to another, in which just one pre- and post activity
exists, and where the transition is bound by no conditional.

Connecting two activities by a sequence transition as is shown in figure 4.2.1 means that activity
B is enabled in a workflow, as soon as the work in activity A is completed.

1This work currently appears to be the authoritative voice on the topic. A search on workflow pattern on Citeseer
show that Will M.P. van der Aalst (author of [1] is either the author of, or cited by 45 out of 57 results

X-Flow 22

http://www.amazon.com
http://www.wfmc.org
http://www.wfmc.org
http://citeseer.ist.psu.edu/

CHAPTER 4. WORKFLOW SYSTEMS 4.2 Transition Patterns

This transition pattern is used to model a situation where a document is moved from one person
to another, e.g. where one person has written a report, and another person has to confirm the
calculations.

Any workflow that involves exactly

A B

Figure 4.2.1 Sequence Pattern

• one input

• one output

• one concurrent document editor2

• one concurrent activity

may be modelled using just this one transition pattern [24]. However, processing in a workflow
based on only the sequence transition scales linearly with number of activities in the workflow,
which is not very inefficient.

E.g. if a proposal for a new standard must be approved by each member of a large committee,
the entire process stops if just one member is unable to perform his assigned activity.

4.2.1.2 Parallel Split (AND-split)

The parallel split pattern introduces concurrency in a work-

A

B

C

Figure 4.2.2 Parallel Split Pattern

flow by introducing an AND-split. In figure 4.2.2 this means
that both B and C will be enabled when A completes.

In a parallel split the current thread of execution will split
in two or more concurrent threads of execution. No condi-
tionals apply to the transition. A parallel split is assumed to
result in at most two threads, and when a parallel split is en-
countered it will always split in two. Without this restriction
the meaning of a parallel split may be ambiguous.

If a parallel split was allowed in the example from 4.2.1.1 it would solve the problem of the
process halting on just one member. If a parallel split was allowed (and probably some com-
plementary merge pattern), then even if one member of the committee failed to approve the
proposal, the rest would still be able to do so, and the person in charge of the process could
concentrate on getting the last approval.

4.2.1.3 Synchronization (AND-join)

Synchronization only makes sense, if a parallel split is al-

C

A

B

Figure 4.2.3 Synchronization Pat-
tern

lowed. The synchronization pattern is used as barrier syn-
chronization of two concurrent threads of execution (that are
merged into one thread during the transition).

In figure 4.2.3 this means that if A completes before B, the
thread executing A cannot progress until B has also com-
pleted.

Building upon the example of 4.2.1.2, a synchronization
transition would be the obvious way to rejoin the multiple
threads of execution. If the proposal required the approval of each member of the committee
before further processing, the synchronization pattern could be used to enforce this.

2defined as a person editing the actual document

X-Flow 23

CHAPTER 4. WORKFLOW SYSTEMS 4.2 Transition Patterns

4.2.1.4 Exclusive Choice (XOR-split)

The exclusive choice transition pattern implements an XOR-

A

B

C

Figure 4.2.4 Exclusive Choice Pat-
tern

split. Conditionals must be attached to each transition out of
the preactivity, and

B 6= C

must always hold.

When A completes (figure 4.2.4), a conditional, c, must be
specified that decides if B or C should be enabled. The condi-
tional must always evaluate to a single activity, and if c ≡ B it
follows that C can never be enabled (given the simple work-
flow in the figure).

An exclusive choice would be the expected transition out of the committee’s deliberation on the
proposed standard. Either the proposal is accepted, and the standard is adopted, or it is rejected.

4.2.1.5 Simple Merge (OR-join)

The simple merge transition pattern is used to join one or

C

A

B

Figure 4.2.5 Simple Merge Pattern

more alternative branches in a workflow, meaning that if this
pattern is employed it is assumed that the two branches be-
ing merged, are never executed in parallel. In figure 4.2.5
this means that in a workflow execution where A is enabled,
it is assumed, that B will not be enabled during the same ex-
ecution.

The other case is the complex transition patternsmulti merge
described in section 4.2.2, where the two branches are exe-
cuted in parallel, and A and B complete in t1 6= t2,.

A simple merge transition would be the final transition of the proposal from the previous ex-
ample. Regardless of the result from the exclusive choice from section 4.2.1.4, the committee
would in the end be expected to finish the processing of the proposal through some form of
official statement coupled to the proposal.

4.2.2 Complex Patterns

This section provides an overview of more advanced branching and synchronization patterns,
which are referred to as complex transition patterns. State based patterns are not treated.

Complex transition patterns express commonly occurring patterns that can only be expressed
using a number of combined simple transition patterns, and replacing such a construct with a
single pattern reduces the overall complexity of a workflow diagram. The complex transition pat-
terns are, however, as the name implies more complex to implement, and even most commercial
workflow systems only select a small subset of the patterns [1].

Table 4.2.1 lists the complex transition patterns described in [1] and provides a brief description
of each, and the section concludes with a combined example using a number of complex transi-
tion patterns to show the power of their expressability.

X-Flow 24

CHAPTER 4. WORKFLOW SYSTEMS 4.2 Transition Patterns

Table 4.2.1: Complex Transition Patterns [1]
Pattern Description

Multi-choice Based on a decision a number of branches are chosen (OR-
split)

Synchronizing Merge Multiple paths converge, and one or more are synchronized

Multi-merge Same as above but without synchronization, hence following
activities are activated once for every branch that is merged.

Discriminator Merges several branches, but only activates following ac-
tivities once, for the first incoming branch. Later incoming
branches are ignored.

Arbitrary Cycles A point where an activity may be performed an arbitrary
number of times.

Implicit Termination Simply terminates subprocesses when no more activities re-
main.

Multiple Instances Without Syn-
chronization

For one process and activity is enabled multiple times.

Multiple Instances With A Priori
Design Time Knowledge

An activity is enabled multiple times, and the number of times
is known at design time.

Multiple Instances With A Priori
Run-Time Knowledge

An activity is enabled multiple times, and the number of times
is known at some point during run-time.

Multiple Instances Without A
Priori Run-Time Knowledge

An activity is enabled multiple times, and the number of times
is neither known during design- or run-time.

Deferred Choice A point where one of several branches is chosen, but the de-
cision is not based on data or decision, rather a number of
choices is presented, and once one is chosen, the others are
implicitly withdrawn.

Interleaved Parallel Routing A number of activities are executed in an arbitrary order, the
order being decided at run-time, and only one activity is ac-
tive at a given moment.

Milestone An activity is enabled if a given state of the workflow has
been reached.

Cancel Activity An enabled activity is disabled.

Cancel Case Removes an entire workflow instance.
Table 4.2.1 Complex transition patterns described in [1]. The list only includes patterns for branching and
synchronization.

The expressability of complex transition patterns can be shown using a simple example. Suppose
a document has been created and reviewed using a sequence pattern, and that the document
must now be reviewed by a larger audience, e.g. 16 members of a technical committee. Ex-
pressing that using simple transition patterns (for the moment assuming that all members actually
complete their review), this would require 7 AND-splits just to branch 16 times. However,
branching using AND-splits we must also join using (7) AND-joins, which in turn requires
that all committee members have completed their review, before the workflow execution can
proceed. That is 14 transitions just to branch and join synchronously, with even more if the case
where not all committee members complete their review must be handled.

However, the same scenario can be expressed using just one multi choice to branch, and
one synchronizing merge to join the branches. Figure 4.2.6 shows this reduction with 8
branches

X-Flow 25

CHAPTER 4. WORKFLOW SYSTEMS 4.3 Graphical Representation of Workflows

Figure 4.2.6 The figure shows how a multi choice and synchronizing merge can be used to
simplify workflow specification.

4.3 Graphical Representation of Workflows

This section describes how Petri Net and Unified Modelling Language (UML) activity diagrams
may be used to model the simple transition patterns defined in section 4.2.1.

The informal graphical notation used to introduce transition patterns in section 4.2 was intended
to convey the relationship between the graphical construction and the functional purpose of
each pattern. However, a formalized notation (process modelling technique) is necessary to en-
able systematic analysis of workflow models.

Numerous formal and informal graphical modelling techniques (graphical modelling languages)
have been developed since the sixties [20], each offering different advantages in certain contexts.
Some techniques are intended for generalized modelling of systems, whereas other techniques
are developed to model specific classes of systems.

The diversity of graphical modelling languages has been further expanded by the fact that few
application implementations are alike. When creating a computer application that implements
a given graphical modelling language, compromises are made that yield a system supporting a
subset of the original language, and often also supporting constructs that the original language
did not. This being a common problem when implementing a standard of any kind.

Both Petri Nets and UML activity diagrams have a limited vocabulary making it easy to provide
a correct implementation, and both languages can be used to formally analyze a model.

X-Flow 26

CHAPTER 4. WORKFLOW SYSTEMS 4.3 Graphical Representation of Workflows

4.3.1 Petri Nets

Petri Nets are used extensively as a modelling tool both in scientific research, and in planning
and optimizing commercial processes.

The transition patterns described in section 4.2.1

A B

Transition

Activity

Figure 4.3.1 A sequence pattern represented as a
Petri Net diagram

may be expressed as Petri Nets, allowing for-
mal analysis of workflow semantics. This sec-
tion provides a Petri Net model corresponding
to each of the 5 transition patterns described in
section 4.2.1. The Petri Nets in this section uses
named transitions.

Figure 4.3.2 shows a Petri Net representation of
each of the simple transition patterns. The more
verbose notation results in more complex figures than those used in section 4.2.1.

A

B

C

Parallel Split (AND-split)

A

C

B

Synchronization (AND-join)

A

B

C

Exclusive Choice (XOR-split)

A

C

B

Simple Merge (OR-join)

Figure 4.3.2 Petri Net representation of simple transition patterns

4.3.2 Unified Modelling Language (UML)

The UnifiedModelling Language standard is controlled by the Object Management Group (OMG),
and as of version 2 comprises 13 different graphical models (diagrams) [25], of which state dia-
grams and activity diagrams are commonly used for workflow modelling.

The use of state diagrams for modelling workflows stems from UML version 1, in which activity
diagrams was viewed as a special case of state diagrams. In UML version 2 the notation of ac-
tivity diagrams has been formalized and in the following only activity diagrams will be described.

Figure 4.3.3 shows a sequence transition pat-

A B

Transition

Activity

Figure 4.3.3 A sequence pattern represented as a
UML state chart

tern with labelled activity and transition ele-
ments. The notation of activity diagrams is very
similar to that used in section 4.2.1, but UML
activity diagrams also introduce other elements
(most notably the object element not shown
here).

Figure 4.3.4 shows the UML representation of
each of the remaining 4 simple transition pat-
terns.

X-Flow 27

CHAPTER 4. WORKFLOW SYSTEMS 4.4 Document Workflow Support

A

B

Parallel Split (AND-split)

C

C

A

Synchronization (AND-join)

B

A

B
Exclusive Choice (XOR-split)

C

Simple Merge (OR-join)

A

B

C

Figure 4.3.4 UML representation of simple transition patterns

UML activity diagrams may be used as model checker by [26][27]

• verifying properties of the activity diagram itself, and

• verifying other (UML) models (diagrams) against an activity diagram

Several UML based CASE (computer aided software engineering) tools incorporate some form
of model checking (e.g. IBM Rational Software Development Platform [28], Enterprise Architect
[29], and others [30][31]), as well as offering both forward- and reverse engineering between
code and UML model.

In the rest of this thesis, UML activity diagrams will be used to express workflow models.

4.3.3 Extending the Models

Both Petri Nets and UML activity diagrams can express simple transition patterns, but several
other elements of a workflow, as defined in section 4.1 are not readily apparent. Specifically
neither notation denote role to the activities and flow of production data.

In UML, object constraint language (OCL) [32] may be used to condition transitions, and by ex-
tension may be used to express role. This addition is necessary in formal analysis of models, but
is ill-suited for more informal visual model analysis.

The common approach to graphically representing roles is to partition the model in "swim-lanes",
where each lane represents a distinct role [20], and this notation will also be used here.

Production data may be expressed by the object element that is defined for UML activity dia-
grams.

4.4 Document Workflow Support

The possible ways a document can be distributed between recipients are determined by the sup-
ported transition patterns, hence the X-flow system need only support transition patterns typically
required by a document workflow. The X-flow system should

• allow specification of workflow (4.4-1)
• automate the workflow process (4.4-2)
• support simple transition patterns (4.4-3)
• have a well defined decision process (4.4-4)

X-Flow 28

http://www.x-flow.dk
http://www.x-flow.dk

CHAPTER 4. WORKFLOW SYSTEMS 4.4 Document Workflow Support

Specifying a workflow is a complex task that most companies have designated employees per-
form, and the inflexibility, that a user cannot specify a workflow at will, means that specifications
must be relatively static, hence a workflow must be

• well understood

• well defined

• static

By correlation, in most situations complex transition patterns are not necessary because

• users don’t understand the process

• business processes that would require them are too difficult to describe

– and such complex processes would change frequently, as things become done differ-
ently

• workflows incorporating them become too error prone

Complex or large workflow specifications are more prone to changes due to external factors (re-
organizations, doing things differently, etc.) making them less usable. If a user needs to create
a document, and the workflow system is unavailable due to lack of workflow specification, the
user will simply resort to other means, e.g. e-mail.

Disregarding scalability most workflows can be realized using the sequence pattern. AND-
patterns improve scalability by allowing concurrent processing, and OR-patterns by reducing
the number of steps in the workflow.

4.4.1 Optimizing Workflow Specifications

One pattern that occurs frequently when many people collaborate to create a document, is the
case where one person has authored a document thatmust be approved by m > 2,m∩n number
of people, before the author can continue working on the document. This pattern can be realized
using nested AND-split, but assuming that transitions cannot be cascaded, this construction will
introduce a number of redundant activities.

A better approach would be to introduce a pattern that allows the current thread to branch into
t > 2 threads, of which 0 < x ≤ t must be executed. This would only require one transition
to model the scenario, and would not halt the workflow, if a number of the branches were not
visited. Likewise, a pattern is required that will merge this type of branch.

Summarizing, the X-flow system should support:

• Multi-choice transition pattern (4.4-5)
• Synchronizing merge transition pattern (4.4-6)

4.4.2 Document Aging

In a document workflow system, multiple different versions of the original document is created
during the course of workflow execution which necessitates that a rank of the document versions
is established.

In a workflow comprising only sequence transitions ranking documents is not a problem, as a
newer versions directly precede their ancestors, but in a workflow with branches several different
versions of a document may exist at any given time.

In the X-flow system, document aging should be performed according to the following rules:

X-Flow 29

http://www.x-flow.dk
http://www.x-flow.dk

CHAPTER 4. WORKFLOW SYSTEMS 4.4 Document Workflow Support

• concurrent modification of a document is not possible (4.4-7)
• a modification activity creates a new version of a document (4.4-8)
• a new version precedes all current and previous modifications and reviews (4.4-9)
• at any given time only one version of a document is valid (4.4-10)

The workflow models covered in this chapter assume one start point and one end point, and
the result of a workflow that results in multiple versions in the end point is ambiguous, hence
multiple concurrent versions are disallowed.

The aging scheme does not prevent splits in a workflow, but it does prevent splits where modi-
fication occurs in one or more of the branches. A split, where modification only takes place in
one branch, does not create multiple versions, as only a modification creates a new version, and
is disallowed because of rule 4.4-9. As this case does not create multiple versions, it could be
allowed without creating undefined states in the workflow, but negative impact on implementa-
tion and data model outweighs the advantages that this branch optimization might carry.

Using the above mentioned rules ensures that when a modification activity is entered, there will
be no review in a part of the workflow graph, that this modification activity does not precede or is
ancestor of, which means that the backing data model does not have to support several branches.
On the other hand, allowing reviews to take place on different part of the workflow graph, would
in some cases provide a nice optimization, where work can continue on a document, while
formal approval is obtained e.g. for a project milestone draft.

4.4.3 Document Versioning

Content creation that takes place over a number of activities can be created by:

• Modify and delete

• Create and Append

In the first scheme, modifications are directly applied to the result of a previous activity, while in
the second, the result is appended to the result of the previous activity. The latter is the principle
of version control systems, as it maintains a copy of every version that has existed.

The intended workflow system should be self documenting, hence

• the workflow system should provide document versioning (4.4-11)

Keeping a copy of all versions that have been created, ensures a complete transaction log of the
workflow execution, which is also a required security objective of the system3

3Keeping a copy of all versions is also necessary in order to be able to verify a signature applied to a specific document
version.

X-Flow 30

5
Security Analysis

System security should be based on an analysis of the threats the system will face. A system may
have many weaknesses but if no corresponding threats exist, they have no impact on the overall
system security.

This chapter presents a security analysis of a secure workflow system. It introduces the threats
the X-flow system will likely face, and based on this, relevant security objectives of the system
are defined. Chapter 7 decomposes these objectives into specific system security requirements.

Objectives that ensure that the workflow is executed correctly are not covered in this chapter,
although they may be described using properties of security objectives. Workflow objectives are
described in section 7.2, where the security objectives are modified and extended to comprise
workflow objectives.

The security analysis is organized as follows:

1. Section 5.1 states the preconditions that apply to the X-flow system. A system cannot just
be secure, and defining necessary prerequisites and external requirements is fundamental
to expressing what security objectives the system should ensure.

2. Threats may be directed towards a system from many directions, and section 5.2 defines
what agents may represent threats towards the system. The section also describes the threat
agents’ relations to the system, and the reason why certain threat agents are irrelevant as
stated in section 5.1.

3. Based on the defined threat agents, section 5.3 states the possible threat macros that relate
to the system. A threat macro constitutes a threat agent, the targeted security metric, and a
description of the applicable scenario. The section also provides a qualitative description
of reason for the identified threat macros.

4. Finally section 5.4 states the required security objectives of the system, in terms of the
defined threat macros and system security policy.

5.1 Preconditions

The X-flow will not be designed to counter any conceivable threat, hence a number of assump-
tions about the system operating environment and implementation details are required.

In this analysis, as well as the rest of this thesis, physical security and operating system platform
security will not be treated, nor will their impact on system security. Thus, if an attacker gains
one of the following

• physical access to the hardware on which the system is running (5.1-1)

http://www.x-flow.dk
http://www.x-flow.dk
http://www.x-flow.dk

CHAPTER 5. SECURITY ANALYSIS 5.2 Threat Agents

• privileged access to the operating system platform on which the system is running (5.1-2)

it will be assumed that system security is compromised. Conversely,

• physical security and operating system security are assumed (5.1-3)

Any system that is used by users, requires a degree of user administration, or identity management
(IdM), either by providing its own administration interface or by accessing an existing directory
of users. Assigning a set of user credentials to the correct person is fundamental to maintaining
system security, and it will be assumed that

• A process for assigning a set of user credentials to the correct person is in place, and (5.1-4)
• This process is always effective (5.1-5)

Generally, systems are designed to be more resilient towards external threats, than the threat from
an authenticated user with malicious intent. It will be assumed that

• Any single user may have malicious intent (5.1-6)
• Two users will not conspire to subvert system security (5.1-7)

Hence employing the system in an organization with adequate separation of duty will prevent
users from misusing the system, and the final system should be adequately robust, so that

• one person (internal or external) acting alone, cannot compromise system security (5.1-8)

This also means that system security should not rely on security controls external to the system1,
e.g. network access controls (packet filters, authenticating proxies, etc.).

Even though operating system security is ensured, other code executed on the same platform may
render the system insecure, hence it is assumed that

• All executed code works correctly (5.1-9)
• No malicious code is executed on the platform, that hosts any part of the workflow

system
(5.1-10)

5.2 Threat Agents

A threat agent constitute an entity representing one or more threats towards a target system, and
comprise the direction and type of threat in terms of the analyzed system. The direction of a
threat may either be internal (I) or external (E) in relation to a system, where a system is defined
as

• Governing organizational processes

• Involved people (users, system administrators, etc.)

• Code that is executed as part of running the system

Internal threats are those posed by any part of the system (using the above definition), whereas
external threats are directed from the surrounding environment towards the system. Type of threat
denotes which part of the system or its surroundings that pose the threat.

Using direction and type as properties of a threat agent, the X-flow system faces the following
threat agents2

1Physical- and operating system security being exceptions
2Threat types that are italicized are excluded from the analysis according to section 5.1

X-Flow 32

http://www.x-flow.dk

CHAPTER 5. SECURITY ANALYSIS 5.2 Threat Agents

Table 5.2.1: Threat Agents
Label Direction Type System State
5.2-1 Internal Workflow decision process

5.2-2 User administration process

5.2-3 System administration process

5.2-4 Normal user Authenticated Authorized

5.2-5 Unauthorized

5.2-6 Privileged user Authorized

5.2-7 Unauthorized

5.2-8 Company employee Unauthenticated

5.2-9 System administrator

5.2-10 Executed code

5.2-11 External

5.2-12 Provider of infrastructure

5.2-13 Competitor

5.2-14 Process stakeholder

Table 5.2.1 The table lists identified threat agensts

From the table it should be apparent, that a simple classification of direction based on organiza-
tional relationship isn’t possible. A workflow system will be employed in an organization, but it
isn’t given that all users will belong to that organization, however, all users are viewed as part of
the system.

Consequently, external agents largely comprise agents, that have no affiliation with the system,
but may still pose a threat, such as malicious code that is targeted at an entirely different system,
but still affects the system. E.g. when a virus inhibits network access, the target system becomes
the network, but a workflow system would also be affected.

There are actually more possible venues of attack directed from within the system itself, than are
posed externally, suggesting that very verbose and explicit security controls addressed towards
internal threats are necessary.

5.2.1 Organizational Process and Colluding Users

Given the preconditions of section 5.1 possible threat agents represented by processes for system
support (5.2-2) and maintenance (5.2-3) are not addressed in the resulting security objectives,
and neither are threats relating to a collusion of users. While some systems do offer robustness
against possible threats from such agents, e.g. using secure hardware, they’re extremely costly,
and most still require supporting organizational processes to maintain a given security level.

Compared to other systems with special or above average security requirements, this scope is in
line with adopted best practice. Systems for processing electronic medical records (EPJ) being
implemented in most hospitals are not required to be robust against failures of internal proce-
dures, and no explicit requirements for secure hardware apply to EPJ systems [33].

5.2.2 Platform Security

Disregarding systems used by militaries, few systems are required to be, nor are they designed to
be

• resilient towards (security) failures by subcomponents, such as errors in software (5.2.2-1)
• robust from a breakdown in surrounding security controls (5.2.2-2)

X-Flow 33

CHAPTER 5. SECURITY ANALYSIS 5.3 Threat Macros

Consequently, the stated security objectives of this analysis will not consider the effects of agents
relating to (5.2.2-1) and (5.2.2-2) identified by (5.2-9) and (5.2-10/11), as stated in (5.1-9) and
(5.1-9).

Software development is starting to be able to provide an avenue for mitigating the impact of
(5.2.2-1)3, as is new processor features such as (hardware) memory protection through XOR’ing
the write and execution bits4. Despite these advances, few applications can guarantee security
if the underlying platform security is circumvented through malicious code (e.g. a virus or trojan
horse). Likewise, if the security of system dependancies (network, data interfaces, etc.) are com-
promised, the level of security will at least experience a serious degradation.

Agents representing malicious code generally target client systems, as the less controlled op-
erating environment of client systems make them more susceptible to e.g. viruses of trojans.
Especially online banking systems targeted towards private persons face the problem of main-
taining system security with a user base of disparate clients, but the generic problem of malicious
code in all organizations, shows that the client susceptibility should be considered a universal
problem.

While few systems are completely resilient towards the impact from malicious code, many sys-
tems are designed to guard subcomponents, especially storage of authentication credentials.
Many payroll systems require users to authenticate using FIPS 140-3 compliant hardware tokens,
Danske Bank provide web banking access using an ActiveCard one-time-password generator
(OTP), and several VPN systems also use OTPs, e.g. RSA SecureID.

Hence, security objectives shouldn’t completely disregard the effect of malicious code, rather se-
curity objectives should only address the impact of malicious code with respect to authentication
data.

5.3 Threat Macros

The X-flow system is intended to be used as described in section 2 in a typical business or public
organization. No risk analysis can accurately express the environment of all secure workflow
systems, as threat agents are dependent on the specific system, hence this analysis expresses an
average threat level. Organizations that face specially resourceful adversaries, operate in a differ-
ent environment than the one assumed here.

Each threat is expressed as a threat macro comprising the threat agent, and a description of the
scenario. In the scenario descriptions it is assumed, that Alice, Bob , and Carol are the partici-
pating roles in a workflow, and Mallory is not part of the workflow 5, and each macro is linked
to a corresponding threat agent from table 5.2.1.

Security threats are normally expressed in terms of one or more of the following metrics [36],
and these will be used for grouping the macros:

1. Authentication

2. Authorization

3. Availability

4. Confidentiality

5. Integrity

Of the metrics, 3 - 5 are the ones most commonly used in a security analysis from a business
perspective, e.g. an internal audit of IT-security, and several [business oriented] standards are

3E.g. OpenBSD implements a number of technologies to prevent buffer overflows[34], and process separation in OpenBSD
(chroot) or FreeBSD (jail) prevents global system access of rogue processes, and virtualization in Sun Solaris (containers)
[35], VmWare, or Xen takes this concept even further.

4A feature that has gained mainstream adoption through Windows XP on supporting processors
5As is the accepted way of informally expressing security threats

X-Flow 34

http://www.danskebank.dk
http://www.rsalabs.com/
http://www.x-flow.dk
http://www.openbsd.org
http://www.openbsd.org
http://www.freebsd.org
http://www.sun.com/software/solaris/
http://www.vmware.com
http://www.xensource.com/

CHAPTER 5. SECURITY ANALYSIS 5.3 Threat Macros

structured in terms of these three metrics ([37][38]), though more theoretical work in IT-security
also takes this approach [39].

The following table lists the threat macros stated in terms of all five metrics.

Table 5.3.1: Threat Macros
Label Metric Agent Scenario

5.3-1 Authentication 5.2-8 - 5.2-11,
5.2-13 - 5.2-14

Mallory tries to access the system as Alice

5.3-2 5.2-4 - 5.2-7 Alice tries to access the system as Bob

5.3-3 5.2-8 - 5.2-11,
5.2-13 - 5.2-14

Mallory submits a document as Alice

5.3-4 5.2-4 - 5.2-7 Alice submits a document as Bob

5.3-5 Authorization 5.2-8 - 5.2-11,
5.2-13 - 5.2-14

Mallory obtains a document from the system

5.3-6 5.2-4 - 5.2-7 Alice obtains a document intended for Bob

5.3-7 Alice sends a document to Carol for which Bob was the in-
tended recipient

5.3-8 5.2-8 - 5.2-11,
5.2-13 - 5.2-14

Mallory submits a document that Alice has previously submit-
ted

5.3-9 5.2-4 - 5.2-7 Alice submits a document that she has previously submitted

5.3-10 Bob submits a document that Alice has already submitted

5.3-11 Availability 5.2-3, 5.2-8 -
5.2-14

Mallory makes the system unavailable to Alice

5.3-12 5.2-4 - 5.2-7 Alice makes the system unavailable to only Bob

5.3-13 5.2-3, 5.2-8 -
5.2-14

Mallory makes the system unavailable to Alice, Bob , and
Carol

5.3-14 5.2-4 - 5.2-7 Alice makes the system unavailable to Bob and Carol

5.3-15 Confidentiality 5.2-2 - 5.2-3,
5.2-8 - 5.2-9,
5.2-12 - 5.2-14

Mallory reads a document from the system

5.3-16 5.2-4 - 5.2-7 Alice reads a document intended for Bob

5.3-17 Alice reads a document previously intended for Bob

5.3-18 Alice learns what documents are waiting for Bob

5.3-19 5.2-2 - 5.2-3,
5.2-8 - 5.2-9,
5.2-12 - 5.2-14

Mallory obtains information about the execution of a work-
flow in the system

5.3-20 Integrity 5.2-8 - 5.2-14 Mallory changes a document waiting for Alice

5.3-21 5.2-4 - 5.2-7 Alice changes a document outside the scope of a workflow
activity assigned to her

5.3-22 5.2-8 - 5.2-14 Mallory changes a document Alice has previously changed

5.3-23 5.2-4 - 5.2-7 Alice changes a document Bob has previously changed

Table 5.3.1 The table lists the compiled threat macros for the system

Normally, threat macros would be created in terms of an established classification of information
security, e.g. it is assumed, that Mallory is disallowed to read a document, but in many cases
this need not be the case. As it is, the threat macros are based on a default deny policy.

5.3.1 Classification of Macros

The macros presented in table 5.3.1 correspond to known classes of attacks on information secu-
rity. Using the attack classification adopted byW. Stallings [40] and C. Pfleeger [39] the following
grouping of macros is obtained

X-Flow 35

CHAPTER 5. SECURITY ANALYSIS 5.4 Security Objectives

Table 5.3.2: Classification of Threat Macros
Type Attack Class Threat Metric Description Corresponding

Threat Macros

Passive Interception Confidentiality Access information sent between
two communicating parties

5.3-15 - 5.3-19

Active Impersonation Authentication,
Authorization

Pretend to be another valid user 5.3-1 - 5.3-4

Interruption Availability Prevent two parties from com-
municating with each other

5.3-11 - 5.3-14

Fabrication Authentication,
Authorization

Create information and send it
to one or more communicating
parties

5.3-3 - 5.3-4

Modification Integrity Modify information in transit
between two communicating
parties. This attack is often re-
ferred to as man-in-the-middle
(MITM)

5.3-20 - 5.3-23

Replay Authentication,
Authorization

Resend intercepted information
to the system

5.3-7 - 5.3-10

Table 5.3.2 The table groups the threat macros according to the security metric to which they relate.

This grouping implies that most attacks are directed towards mechanisms that enforce authentica-
tion and authorization, and correspondingly these security metrics will be given more attention
in stating the security objectives of the system.

5.4 Security Objectives

The security objectives state how the system counters the security threats described in section
5.3, thus ensuring that the formal properties required of a workflow cannot be compromised.

In principle, the security objectives can be expressed as the inversion of the identified security
threats, however this approach is not optimal as it

• may be ambiguous

• does not address accepted risks

• does not address unknown security threats6

The first two points are apparent when considering the security objective complementary to threat
macros 5.3-11-14, which would state that the system must be available. This objective is am-
biguous as available isn’t defined, and certainly most all organizations accept some degree of
unavailability.

The following security objectives are defined in terms of a default deny policy, and address the
security threats of table 5.3.1. The security objectives counter the listed threat macros, and are
expanded to clarify possible ambiguities (the expansions are italicized).

In terms of all five metrics, the system should satisfy the following security objectives:

6It is only possible to state known threat macros, but security objectives may be employed to eliminate the impact of new
threat macros.

X-Flow 36

CHAPTER 5. SECURITY ANALYSIS 5.4 Security Objectives

Table 5.4.1: Security Objectives
Label Metric Objective Relating Threat

5.4-2 Authentication A role must be authenticated to access the system 5.3-1 - 5.3-2,

5.4-3 A role must be authenticated to perform an activity 5.3-3 - 5.3-4

5.4-3a A role need not be authenticated to modify a document

5.4-3b A role must be authenticated to commit the result of an activity

5.4-4 A role must be authenticated to access production data 5.3-1 - 5.3-2

5.4-5 A role must be authenticated to access control data

5.4-6 Authorization When a role must be authenticated, a role must also be autho-
rized

5.3-7 - 5.3-10

5.4-6a A role must be authorized to commit the result of an activity

5.4-7 A role must be authorized to access production data 5.3-5 - 5.3-6

5.4-7a A role must be separately authorized to access production data
of separate activities

5.4-8 A role must be authorized to access control data

5.4-8a A role must be separately authorized to access control data of
separate activities

5.4-9 Availability The system must not limit a role’s organizational capacity 5.3-11 - 5.3-14

5.4-10 Confidentiality Production data must only be accessible to authenticated and
authorized roles

5.3-15 - 5.3-19

5.4-11 Control data must only be accessible to authenticated and au-
thorized roles

5.4-12 Integrity An activity must not be refutable 5.3-21

5.4-13 Only an activity can change control data 5.3-20, 5.3-22 -
5.3-23

5.4-14 Only an activity can change production data

Table 5.4.1 The table lists the stated security objectives for the system

The objectives state that all access and interaction with the system requires explicit authentication
and authorization and so does access to both production- and control data. Objective 5.4-2a
simply states that authentication is not implemented in terms of the document, which means
that if someone were to obtain a document, they may be able to modify it. As this has little
significance as long as the document cannot be submitted into a workflow, this relaxation makes
for a much simpler implementation.

X-Flow 37

CHAPTER 5. SECURITY ANALYSIS 5.5 Comparison to Manual Workflows

5.5 Comparison to Manual Workflows

This section compares a manual workflow process with a system that satisfies the stated objec-
tives. A new system should provide at least the same level of security (where relevant), as the old
system, be it manual or automated, it is replacing.

The comparison is based on the threat macros listed in table 5.3.1, and the following table
summarizes the relative security using either a paper based or an electronic document workflow
system7. Each system is graded in terms of its resilience, where green is very resilient, and red
is least resilient.

Table 5.5.1: Comparison
5.3.1-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Manual

Automated

An electronic system doesn’t appear to rate much better than a manual system (electronic:manual
- 1:2 , 3:2). However, labels 11 - 14 all address system availability and disregarding these the
ratios improve (1:6 , 1:1). Thus, an electronic system can be at least as secure as a manual
system, and disregarding availability, an electronic system can be much more secure in terms of
number of macros to which the system is not resilient.

7Appendix B provides a detailed comparison of the resilience of each system towards each threat macro.

X-Flow 38

6
Identification of Role

In this chapter the problem of correctly identifying and authenticating a role is analyzed, as well
as how the system can support digital signatures.

In chapter 4 a role was defined as a person participating in a process, and this role/person was
assumed ideal in the sense that the role would implicitly perform its capacity correctly. Section
7.3.1 established a trust model for a workflow, in which an activity performed by an identified
and authenticated role is valid. Hence authentication and identification of roles becomes the
foundation of the security within such a workflow system.

Authentication and identification are commonly treated synonymously as it is e.g. assumed that
a certain user account on a system identifies a specific person who owns this account, but when
the size (typically monetary) of transactions based on the trust of the identification increases, so
does the requirements for the guarantees that the identification process offers. In short, we need
to be really sure.

On the other hand authentication between two communicating parties is quite easy to establish
even if their identities are completely unknown to each other, and several handshake protocols
exist that will accomplish this.

Authentication and Signatures

The common approach to authentication is using a signature scheme. In the physical domain, a
(physical) signature is the universal way of authenticating a person, and all official documents of
certification (passport, drivers license) are provided with the signature of the holder of the docu-
ment.

In principle, a signature is an identification of a specific person, that cannot be duplicated by any
other person. Hence a signature uniquely identifies a person, and by extension guarantees that
the person is whom the person purports to be.

Regardless of practical issues such as forgery, variations in reproduction of handwritten signa-
tures, etc., this is the accepted property that is denoted a handwritten physical signature. How-
ever, it seems unlikely that a new signature scheme will be accepted, if it cannot offer any higher
degree of assurance of identification than current physical signatures.

The (digital) signature scheme that is adopted for the system described here, must be able to
guarantee the principle of a signature, and it must be possible to formally verify this guarantee.

CHAPTER 6. IDENTIFICATION OF ROLE 6.1 Applied Cryptography

6.1 Applied Cryptography

This section introduces the principles of using cryptography to provide confidentiality and au-
thentication in IT-systems, and includes a description on how this is used to create a system of
digital signatures.

6.1.1 Symmetric Encryption

Confidentiality is ensured through the process of encrypting data. Data is encrypted using a key,
and depending on the chosen encryption algorithm, the same key will either decrypt the data, or
it may require a different key. If the same key is used to encrypt and decrypt data, the process
is called symmetric encryption, or secret key encryption. If M be a message to be encrypted, K
the key to use, and Ekey(message) and Dkey(message) encryption and decryption respectively,
for symmetric encryption we have [41]:

M ≡ DK(EK(M)) (6.1.1)

Some encryption algorithms use two keys, where the knowledge of one is enough to determine
the other, and these algorithms are also referred to as symmetric algorithms.
The security of a symmetric encryption algorithm is generally determined by the length of the
chosen key (assuming no faults exist in the protocol), as the key length determines how long it
will take to decrypt a cipher text, by trying every single key, until a match is found. This tech-
nique is also known as brute force .

Symmetric algorithms have the advantage that even short key lengths are secure from brute force
attacks. A 56 bit key is no longer considered to be adequate (if security is a real concern), but an
128 bit cipher has not yet been guessed.

The most common symmetric encryption protocol has long been DES which was introduced by
the National Security Agency (NSA) in 1976 and uses a key length of 56 bit. The use of this al-
gorithm has not been recommended for some time, and in 2001 the AES algorithm was adopted
by NIST as FIPS-197. Known as Rijndael until its adoption as a standard, this algorithm supports
key sizes of 128, 192, and 256bit [36].

Because of the shared key design, two problems may arise when using symmetric encryption
[39]:

• Key Management

• Key distribution

If a group of n need to communicate with each other, each member in the group would require
n − 1 keys, or a total of n·(n−1)

2 keys [36] (only half the total number because the keys come in
pairs), which can quickly become unmanageable.

Key distribution becomes a problem because both communicating parties require the same key,
which means that the key must be distributed through some secure channel.

6.1.1.1 Symmetric Encryption in Workflow Systems

In a workflow with n roles, symmetric encryption can provide confidentiality of the message
exchange between

• m = n roles and external entities

• m ∩ n, m < n roles, and any other entity.

If confidentiality only exclude external entities any role may access any message in a workflow,
and if the confidentiality applies to a message exchange between two roles, no other role in the
workflow can access this message.

X-Flow 40

CHAPTER 6. IDENTIFICATION OF ROLE 6.1 Applied Cryptography

In the first case, only one key is required, which is not unmanageable. The disadvantage to this
approach is, that if that key is compromised so are all past and present messages in the workflow,
as well as the security itself.

If m = 1 in the second case, it requires any role to posses n·(n−1)
2 keys, because the role cannot

know in advance with whom a message will be exchanged, and as the size m of grouped roles
increases, so does the consequence of key compromise.

Hence, symmetric encryption can be used to ensure message confidentiality in a workflow, but
it involves either complex key management and -distribution, or a very fragile security model.

6.1.2 Asymmetric Encryption

In asymmetric encryption algorithms, different keys are used to encrypt a message and decrypt
cipher text. Given the definitions used in 6.1.1, and encryption key K1 and decryption key K2,
for an asymmetric encryption algorithm we have [41]:

M ≡ DK2(EK1(M)) (6.1.2)

It follows that while KPUB and KPRIV belong together, knowledge of one cannot lead to knowl-
edge of the other (otherwise it would be a symmetric algorithm given the definition in 6.1.1).

The most commonly used asymmetric encryption algorithm is RSA developed by Rivest, Shamir,
and Adelman, and released in 1978, and is based on the problem of factoring large numbers [41].

Encryption using asymmetric algorithm is also called public-key encryption, because one key in
the pair can be publicly known. Given an asymmetric algorithm that satisfies (KPUB = K1 and
KPRIV = K2):

M ≡ DKP RIV
(EKP UB

(M))
M ≡ DKP UB

(EKP RIV
(M))

Making one of the keys (KPUB) publicly known, will allow:

• others to encrypt a message that can only be decrypted by KPRIV

• the holder of KPRIV to encrypt a message all other will know was encrypted by the holder
of KPRIV

This scheme reduces the problem of key management by an order of magnitude, as the total
number of keys in a workflow with n roles is reduced to n keys1, and the compromise of one key
only compromises message confidentiality of messages sent to the owner of that key 2.

Using asymmetric encryption also mitigates the key distribution problem, because the key that is
distributed can be publicly known.

6.1.3 Public-Key Authentication

Asymmetric encryption, or public-key encryption, can also be used to provide sender authenti-
cation and message integrity, by enabling the receiver of a message to verify that it was sent by
the holder of a specific key, and that it hasn’t been modified during transport. This is frequently
used in communications protocols for client authentication (e.g. SSH) or message exchange (e.g.
S/MIME), and are required properties in a secure workflow system.

Public-key authentication works by generating a cryptographic hash, H(M), of the message to
be sent, and this hash is then encrypted using the private key of the sender, which generates the

1Using symmetric encryption with different keys for each direction of communication between two roles, would require
n · (n − 1) keys.

2This resilience would also be achieved using n · (n − 1) keys using a symmetric algorithm[36]

X-Flow 41

http://www.rsalabs.com/

CHAPTER 6. IDENTIFICATION OF ROLE 6.1 Applied Cryptography

cipher text [41]:

C = EKP RIV
(H(M))

This cipher text is sent with the original message to the recipient, who performs verification by:

H(M) = DKP UB
(C)

Because a hash value is generated on the message before it is sent, this also ensures message
integrity as the this value is verified as part of the signature verification.

This allows a given role in a workflow to verify that:

• the correct key has been used

• the message has not been tampered with

6.1.4 Digital Certificates

Public-key encryption and its applications solves the key distribution problem, but it does not
address the issue of whom the owner is. A recipient may know what key was used to sign or
encrypt a message, but this doesn’t provide any information about who the holder of the key is3.

In a workflow system, a role may be able to verify, that a specific key was used in the previous
step, but since the role cannot verify the identity of the owner of the key, the role cannot be sure
that the previous activity was carried out by the correct role.

Digital certificates is the common way of linking an identity and an asymmetric key pair. As the
name implies, a digital certificate is a digital certification that the owner of this key is whom the
owner purports to be [40]. Self-certification does not provide any confidence for the recipient so
that an external party performs this action by signing the owner’s public key.

If certificates exist that link all roles with their respective keys, and if all roles have access to
all certificates, using digital certificates as identification would allow any role in a workflow to
determine if an activity has been executed by the correct role.

6.1.4.1 Digital Signatures

Digital signatures4 and public-key authentication are closely related topics, and some works
([40], [39]) treat digital signatures as part of public-key authentication while others ([36], [41])
treat the topics separately.

A digital signature is intended to be a digital replacement for the traditional handwritten signature,
and it should satisfy the following properties (among others):

1. Unique. No other combination of message and key may result in the signature S′ =
S(M,KPRIV)5

2. Unforgeable. Only the holder of KPRIV , can create the signature S′.

3. Unalterable. Once the signature has been created it must not be possible to modify it

4. Irrefutable. When a signature has been created, the signer must not be able to refute the
action.

3It is necessary to distinguish between owner and holder, as the key may be delegated to another entity
4This thesis only addresses digital signatures which is the application of public-key cryptography to the problem of digitally
signing a message, and should not be confused with electronic signatures which address any means of creating an
electronic signature.

5This also demonstrates one of the most common misconceptions about digital signatures. In the media a digital signature
has become synonymous with a digital certificate issued by TDC. However, no two digital signatures can be identical,
and it is the corresponding to the public key that was signed by TDC, that is used to generate a digital signature specific
to what is being signed.

X-Flow 42

CHAPTER 6. IDENTIFICATION OF ROLE 6.2 Legal Framework

5. Not reusable. A previously signed message cannot be reused.

6. Fully Dependent. Changing any part of the message being signed, must result in the signa-
ture becoming invalid.

7. Verifiable. The receiver should be able to verify the validity of the signature

A digital signature scheme consists of an algorithm S to create a signature, and an algorithm V to
verify the signature, and can be implemented with a public-key encryption algorithm combined
with a collusion-free hash algorithm, as described in section 6.1.3. This scheme doesn’t satisfy
the stated properties of a digital signature, because the identity of the owner of the key isn’t
known, which means the signature is reputable. This identity can be established if the owner is
issued a certificate that attests the identity6.

The algorithms used to create digital signatures are not necessarily public-key encryption algo-
rithms. The Digital Signature Algorithm (DSA) and the Elliptic Curve Digital Signature Algorithm
(ECDSA), both standardized by NIST, are digital signature algorithms that are not used for en-
cryption.

In a workflow, the properties that apply to a digital signature should also apply to the modifica-
tions performed in activity A and used as input in activity B. If these properties don’t hold for data
passed between activities, or if they cannot be proven (during activity execution, as well as later
on), little trust can be placed in the transactions the workflow enable.

A simple example is the processing of an insurance claims form where the insurer will send the
form to the insured, who fills out the form and returns it to the insurer. The insurer must be able
to document that the insured filled out the form, and the insured must solemnly declare the truth
of the information provided in the claims form, and to do so, the insurer will require the insured
to send a signed physical copy.

Similarly, the transaction size (or trust) that can be supported by a given workflow system, is
bounded by the trust that can be placed on the work performed in each activity (and the execution
of the workflow process itself).

6.2 Legal Framework

The same properties that apply to a digital signature should also apply to the result of an activity
performed by a role, hence

• the result of an activity should be signed by the role upon completion (6.2-1)

Organizations are to some extent free to accept risks that apply to internal processes, e.g. by ac-
cepting weak authentication controls in an internal workflow system. However, regulation ([2],
[42]) is gradually increasing the requirements for companies to be able to document effective
internal control procedures (e.g. that strong authentication is being used), and when transactions
cross organizational borders, most organizations require a more formal framework for manag-
ing risks inherent in transactions. The traditional approach is based on paper letters and physical
signatures, and it is desirable to extend the advantages of this system, to a digital workflow system.

The rest of this section provides and overview of the possibilities, that current legislation allows
for use of digital signatures as a replacement for physical signatures.

6As a side note, this is the difference between public-keys used by SSH, and e.g. X.509 certificates

X-Flow 43

CHAPTER 6. IDENTIFICATION OF ROLE 6.2 Legal Framework

6.2.1 Current Legislation and Market Adoption

In Denmark, two documents address the legal force of electronic signatures, and these docu-
ments also address digital signatures:

Law on Electronic Signatures (L417) This law [3] was the first Danish law that addressed elec-
tronic signatures, and despite its name, the law only applies to signatures generated with
qualified digital certificates (§2). The law implements the directive 1999/93/EF from the
European Parliament, and besides regulating operation of certification authorities (CA), the
law also acknowledges (qualified) certificates issued from foreign CA’s (§23). The law was
passed in 2000, and does not apply to OCES certificates, as they are not qualified.

Report no. 1456, The Force of Law of Electronic Signatures (B1456) This report was issued by
the Danish Justice Department in 2005 [4], and addresses the legal force of several dif-
ferent electronic signature schemes including digital signatures. The report was the first
clarification of the legal force of signatures created using an OCES certificate, and estab-
lishes the legal force as the same as a physical signature, but also precludes their use in
some cases (e.g. trading real estate).

OCES certificates are not qualified7 certificates but are issued by a certification authority that
must adhere to the requirements stated in the certification policies (CP) controlled by the Na-
tional IT and Telecom Agency 8.

To summarize, using digital signatures with legal force is possible with:

• OCES certificates

• Qualified certificates

As law 417 recognizes certificates issued by a foreign CA, using qualified certificates has a num-
ber of advantages in terms of crossing borders, because foreign certificates can readily be ac-
cepted, and the directive on which it is based has been adopted by a number of European
countries.

However, currently the only (Danish) certificate authority issuing certificates is TDC Certificer-
ingscenter, and TDC stopped issuing qualified certificates in 2005, meaning that only OCES
certificates are readily available in Denmark.

If a workflow system is deployed in a company with subsidiaries in other countries, the choice of
“certificate” may present a problem, as it can determine in which countries the process execution
(transaction) is binding. If the transactions are only relevant in the country of the mother com-
pany, the chosen certificate only needs to be recognized in its residing country, which reduces
the problem to choosing “certificates” in the subsidiaries. Otherwise, a common denominator
must be found10.

Given the market adoption of OCES certificates, the best approach to facilitating transactions in
a workflow system that have legal force appears to be to use OCES certificates in Denmark, and
in subsidiaries to select certificates issued by a CA whose disclosed certificate policy (CP) and
certificate practice statement (CPS) are along the lines of L417.

In any case, systems enabling transactions signed with digital signatures with legal force is a
new area, given that there have been no court rulings directly addressing the topic of the legal
force of digital signatures [44]. There have, however, been several court cases addressing the

7A qualified certificate refers to a certificate, that is only issued upon personal appearance.
8In March 2003 the Danish government afforded TDC a $7 mill. tender to establish a national PKI infrastructure dubbed
OCES. The intention of this tender is that all Danish citizens should be issued a digital certificate signed by a CA that
is in compliance with a relevant OCES CP [43]. The tender does not mandate, that TDC be the only CA issuing OCES
certificates, and indeed EuroTrust, and not TDC, was the first Danish CA to be approved for issuing certificates according
to an OCES CP 9. OCES certificates are issued according to three OCES CP’s, that are controlled by the National IT and
Telecom Agency through “Signatursekretariatet”.

10assuming that both countries have passed the necessary laws, to enable digital signatures.

X-Flow 44

http://www.signatursekretariatet.dk
http://www.signatursekretariatet.dk
http://www.signatursekretariatet.dk
http://www.signatursekretariatet.dk
http://www.signatursekretariatet.dk
http://www.signatursekretariatet.dk
http://www.tdc.dk
http://www.signatursekretariatet.dk
http://www.signatursekretariatet.dk
http://www.tdc.dk
http://www.signatursekretariatet.dk
http://www.eurotrust.dk
http://www.tdc.dk
http://www.signatursekretariatet.dk
http://www.signatursekretariatet.dk
http://www.signatursekretariatet.dk
http://www.itst.dk
http://www.itst.dk
http://www.signatursekretariatet.dk

CHAPTER 6. IDENTIFICATION OF ROLE 6.3 Current PKI Models

legal force of transactions, in which the trust in the IT-systems has been established through a
systems analysis, and any disputes involving digital signatures will likely also be resolved using
this approach [45].

6.3 Current PKI Models

Public-key encryption solves the problem of maintaining key secrecy in key distribution, but it
does not solve the problem of actually distributing or managing the (n) keys, and to use public-
key encryption for digital signatures introduces the requirement, that (public) keys must be signed
by a certification authority. The solution to the key distribution problem is determined by the key
certification system that is employed, because the certifying authority also is responsible for dis-
tributing a certificate to the requester.

Public-keys are commonly distributed through a public-key infrastructure . The two most com-
mon public-key infrastructures, are PGP and X.509 11. In PGP there is no central certification
authority and instead all principles can sign keys. Trust12 in a specific key is then resolved by
looking at the signatures attached to this key. X.509 works the opposite way, by basing all deci-
sions of trust relationship on a single certification authority.

PGP is widely used to secure e-mail communications, but all [47] technology specific legislative
work concerning digital signatures is currently focused on X.509 certificates, hence the system
should ensure that

• the result of an activity must be signed with an X.509 certificate (6.3-2)

6.3.1 Trusting a Certification Authority

Using X.509 certificates, the decision to trust the identity purported by the holder of a key is
reduced to deciding if the signing certification authority can be trusted to correctly identify the
role. As the recipient has no way of directly determining this, existing CA’s establish their own
trustworthiness, by

• promising monetary compensation for any loses related to trusting an erroneously identified
role

• submitting to external audit by an independent party (whose professional insurance indi-
rectly covers any claims)

All major national and international CA’s (VeriSign, GlobalSign, TDC Certificeringscenter) do
both. In Denmark CA’s issuing OCES certificates are required to comply the OCES certificate
policies, and this compliance must be audited by an external independent auditor.

The binary trust model between the signer and the signed X.509 certificate means, that all cer-
tificates issued by a trusted signer will be trusted. As many operating systems and applications
come “preconfigured” with a large number of certification authorities, it means that most base
system installations (e.g. Windows, Mac, Linux, or Java) will trust a large number of certificates
without any “opt-in” on the part of the user.

In a workflow using X.509 for identification of roles, the assignee of an activity is determined
both by a role’s certificate, and simply trusting the certificate will not have any adverse affect on
this. However, from a principle of least privileges, a secure workflow system should require

• specification of all trusted certificate signing authorities (6.3-3)

11X.509 and related standards, e.g. certificate revocation lists (CRL), are developed by the PKIX Working Group [46] under
the Internet Engineering Task Force (IETF).

12The trust establishment that is referred to, is the degree to which it is possible to trust that a given key represents a given
identity

X-Flow 45

http://www.verisign.com
http://www.globalsign.com
http://www.signatursekretariatet.dk
http://www.signatursekretariatet.dk

CHAPTER 6. IDENTIFICATION OF ROLE 6.4 Summary

6.3.1.1 Hierarchical Certificate Authorities

The problem of resolving trust in an X.509 is further exacerbated, if deep certificate hierarchies
are used. In the standard model one CA signs all certificates which creates a two level key hier-
archy, that is a completely flat model. However, additional levels could be introduced to reduce
the width of the hierarchy and remove work from the single signing CA 13 .

If all adjacent levels in a hierarchy cross certify each other, tree traversal will enable trust resolu-
tion [40] albeit few existing systems offer this functionality.

Supporting trust resolution in deep certificate hierarchies is not a significant requirement of a
workflow system that uses certificates. Given the intended application domain it is unlikely that
hierarchies will be required, and the OCES PKI is currently limited to a two-level hierarchy, as an
OCES CA must be the root in its hierarchy [43].

6.4 Summary

Public-key encryption and the related digital signatures can guarantee a number of desirable
properties about activity execution in a workflow, and current legislation makes it possible to use
digital signatures that have the legal force of a handwritten signature. The Danish legislation also
opens the possibility, that certificates signed by foreign CA’s can be used with the same legal force
in Denmark, which is import in the case of organizations with subsidiaries in other countries. In
Denmark OCES certificates provides a common PKI based on X.509 certificates.

13This is a common tactic employed by commercial CA’s, as it provides a cheap way of being adopted in root certificate
stores shipped with e.g. operating systems. A certification authority creates a new CA solely for the purpose of signing
other CA’s, and because this super root only needs to signing a handful of certificates, very stringent operational proce-
dures can be put in place around this super root, making it fast and cheap to have assessed by and independent auditor.
Being adopted in e.g. Microsoft’s root certificate store is possible if e.g. the audit resulted in the certification authority
being issued a seal according to an official attestation standard (e.g. AICPA WebTrust, or SAS 70), and typically if a CA
is in compliance with on of the aforementioned standards, all CA’s signed under by the compliant CA will be adopted as
well.

X-Flow 46

http://www.signatursekretariatet.dk
http://www.signatursekretariatet.dk
http://www.signatursekretariatet.dk
http://www.aicpa.org
http://www.webtrust.org

7
Requirements Capture

In this chapter requirements for the system are analyzed. Section 7.1 analyses use case driven
system requirements, and section 7.2 and 7.3 expand these to include external requirements.

Chapter 2 referred to the file that a user exchanges with the system, as a container that contains
the document the user modifies, and these definitions will be used from this point forward.

7.1 Use Case Analysis

Figure 2.0.1 in chapter 2 showed the two core use cases for the system, from the point of view of
a user. This section expands on these, and adds use cases for other roles of the system. Use case
diagrams corresponding to the identified use cases are provided in appendix C.

This use case analysis looks at the interaction between an end user and the system, and does not
address the interaction between a system administrator and the system. However, requirements
for system management are specified in section 7.2.
The user interaction can be summarized as getting a container, and submitting a container, and
these cases can be decomposed into user-system interactions.

The following table shows the step that must be completed for a user to get a container from the
system:

Get Container
Actor Action System Response
1. Login to the system 2. Display list of waiting containers
3. Select container 4. Send container to user
5. Verify document signature
5. View information about con-

tainer
6. Read document in container

The corresponding use case diagram is figure C.0.1, appendix C.

CHAPTER 7. REQUIREMENTS CAPTURE 7.2 Workflow

The following table shows the step that must be completed for a user to submit a container from
the system:

Submit Container
Actor Action System Response
1. Process a document in a con-

tainer
2. Sign document
3. Login to the system
4. Upload modified container 5. Acknowledge submission

The corresponding use case diagram is figure C.0.2, appendix C.

Processing a document in a container means, that a user is required to perform one of the fol-
lowing three actions on the document:

• Modify a document in a container (7.1-1)
• Review a document in a container (7.1-2)
• Finalize a document in a container (7.1-3)

Creating and modifying a document is taken to be the same action as it is assumed, that if a
user can modify a document, the user can also replace all content in this document, effectively
making it a new document.

Summarizing the user-system interactions, the user must be able to perform the following actions:

• Login to the system (7.1-4)
• Logout of the system (7.1-5)
• Sign document in container (7.1-6)
• Verify signature (7.1-7)
• Download a waiting container (7.1-8)
• Upload modified container (7.1-9)
• List waiting containers (7.1-10)
• Process a document in a container (see actions

above)
• View information about a container (7.1-11)
• Read a document in a container (7.1-12)

7.2 Workflow

This section analysis the necessary functionality required to support workflows that meet the
objectives of section 4.4.

7.2.1 Workflow Activities

In section 7.1 the possible activities were identified as modify, review, and finalize, and these
are the activities that should be supported.

Of these activities only modify involves changing the actual document, whereas the other two
only changes information about the document; review will attach a status to the document, and
finalize will end the workflow. An activity should capture all changes and additions including:

X-Flow 48

CHAPTER 7. REQUIREMENTS CAPTURE 7.2 Workflow

• Document modifications (7.2-1)
• Review categorization (7.2-2)
• Document status (7.2-3)

In chapter 6 it was shown, that it is necessary that a role signs the work completed in an activity.
A signature represents an act of commitment, however what is committed to must also be ex-
pressed, and this also applies in a workflow system. The aforementioned properties capture the
commitment of the signing role in an activity.

Execution of an activity will also generate information about the execution, or the user may wish
to supply data about execution, hence an activity should also capture the following as part of the
activity execution:

• Automatically generated, structured meta data about the activity (7.2-4)
• Unstructured meta data about the activity supplied by the user (e.g. comments or

keywords)
(7.2-5)

Finally,

• all properties must be included in the signature scope (7.2-6)

If all properties that are used as part of the workflow execution are not signed, the trust that can
be assigned to each property will vary, and defies the intended level of trust.

7.2.2 Process Support

Process support determines how complex workflows are allowed to be, as well as the ease with
which complex workflows can be expressed. Support for certain complex transition patterns may
make expressing certain workflows much easier, and more importantly requiring fewer steps to
complete1 [20].

7.2.2.1 Transition Patterns

The objective of the system is to support the simple transition patterns, and the system should
support the following transition patterns listed in decreasing order of importance:

Objective Pattern
1. 4.4-3 Sequence (7.2-7)
2. Parallel Split (AND-split) (7.2-8)
3. Synchronization (AND-join) (7.2-9)
4. Exclusive Choice (XOR-split) (7.2-10)
5. Simple Merge (OR-join) (7.2-11)
6. 4.4-5 Multi-choice transition pattern (7.2-12)
7. 4.4-6 Synchronizing merge transition pattern (7.2-13)

Patterns 2+3 and 4+5 are mutually inclusive, and patterns 6+7 renders 4+5 superfluous.

1Simple transition patterns can express most classes of workflows, but the expression may be very verbose.

X-Flow 49

CHAPTER 7. REQUIREMENTS CAPTURE 7.2 Workflow

7.2.3 Signature Scope and Ordering

In a workflow multiple roles will sign different versions of documents within a container2, mak-
ing it necessary to define:

• The scope of a signature by a role

• The ordering of signatures if parallel processes occur

To support the notion of a workflow, a role must always commit to the current state (before review
or modification), thus acknowledging the roles assignment. The scope of a signature must:

• Include the signature of the previous activity (7.2-14)
• Include the work of the current activity (7.2-15)

By definition, to include an activity (A1) in the scope of a signature on another (A2), that activity
must complete at time t1 < t2. Consequently, the scope of a signature can never include a
concurrent activity, because only synchronized parallel activities are supported, which means
that by definition two activities always enable the next activity at t1 = t2.

7.2.4 Error handling

Error handling in a workflow system determines the system’s response to an unexpected (applica-
tion logic) state, and by extension how gracefully errors are handled. An error state is defined as
the current application state at time t2, at which time it is discovered that data accepted at time
t1, t1 < t2 is invalid for the current state.

Not all invalid data creates an error; when a user is not logged in, the system should just remain
in this state, until valid credentials have been presented, which also implies, that an error state
can only occur when a user has been authenticated. If a user submits a container with an invalid
signature this creates an error state, because this state isn’t possible, as the system should prevent
creating invalid signatures.

The systems response to an error state must always be:

• Stop workflow processing (7.2-16)
• Log the error (7.2-17)
• Notify the system administrator (7.2-18)

An error state is either an error or an intentional act, and in either case it should require an active
decision to dismiss the error.

As a significant amount of time and resources may be invested in the (partial) product in a work-
flow system, when an error state occurs, it is important to prevent loss of data, and limit the cost
of re-performance, hence:

• The result of a completed activity must never be lost due to an error state (7.2-19)
• An error state must only require re-performance of the affected activity (7.2-20)

As all workflow products should be versioned (section 4.4.3), these requirements are implicit
properties of the data model3.

2As defined in the workflow objectives, a workflow only includes one container.
3The implementation will obviously affect these requirements

X-Flow 50

CHAPTER 7. REQUIREMENTS CAPTURE 7.2 Workflow

7.2.4.1 Signature Error States

The following combinations of certificates and signature validity are possible:

Valid Sig-
nature

Invalid
Signature

Correct certificate Ok Error
Incorrect certificate Error Error

A correct certificate is the certificate identifying the role an activity is assigned to.

An incorrect or invalid signature generally always cause an error state. Choosing an incorrect
certificate or producing an invalid signature is easily detected by the signing application, and
processing should not be allowed to proceed past this detection point, hence, either occurrence
is itself an error that must be investigated as they likely represent application errors or intentional
actions.

7.2.5 Workflow Specification

A workflow specification controls a workflow process and should explicitly specify all aspects of
the process, that must be controlled. How a system allows the workflow specification to be cre-
ated and reused between workflow executions determines how the workflow system can be used.

The graphical workflow description languages described in chapter 4 are not necessarily the best
approach to specifying a workflow process that can be translated into an application state, as
neither Petri Nets nor UML activity diagrams makes it easy to specify properties such as access
control.

Requirements related to workflow specification can be divided into requirements related to the
expressability of the specification, and how a specification is used by the system.

Limitations

A workflow specification tool is outside the scope of this project given the size and complexity
of such a tool (see [48] or [49] for examples of graphical workflow specification tools), and
requirements for such a tool will not be addressed.

Terminology

A workflow process is executed according to a workflow specification. This specification is
created once for each workflow process, and once a specification is created, a new workflow
can be instantiated from the specification.

7.2.5.1 Creating a Specification

As described in [20] accurately capturing and specifying a workflow process is a complex task
that requires careful analysis of the involved work, and is generally delegated to specialized
personnel. A process that is carried out infrequently or in very different ways is not a suitable
candidate for (this type of) workflow automation, rather the process execution path of the process
should be predictable and well defined, and the process description should not change very
often.

Syntax

A workflow specification must be expressed in terms of a syntax, and this must be structured
so as to allow automated processing, as well as conversion into another workflow specification
language (e.g. a graphical notation language, or a different workflow specification language such

X-Flow 51

CHAPTER 7. REQUIREMENTS CAPTURE 7.2 Workflow

as BPEL).

The specification language itself must be able to:

• Express all activities stated in 7.2.1 (7.2-21)
• Express all transition patterns stated in 7.2.2 (7.2-22)
• Contain all relevant production- and control data (7.2-23)

As requirements for a workflow system will eventually evolve, the specification language should
also:

• be extensible to allow new features to be added at a later stage (7.2-24)

7.2.5.2 Using a Specification

A workflow is often applied to regularly occurring processes, hence

• The system must allow reuse of a workflow specification (7.2-25)
• Given proper authorization, a user should be able to instantiate a workflow from an

existing specification
(7.2-26)

Before a workflow can be instantiated it must be specified, and once a workflow is specified, this
specification can be used to instantiate any number of identical workflows.

7.2.6 Workflow Administration

This section details the basic administrative features required by a workflow system implement-
ing the specified system requirements, and is not a full analysis of the requirements for system
administration.

A workflow system can be designed to allow or disallow modifications to the workflow process
while the workflow is executing. Allowing modifications at run-time makes it easier to resolve
halted processes, but also makes it possible to circumvent the checks, that the system is designed
to enforce. Because the product of the workflow system should be self documenting and all
signatures should remain valid, disallowing changes also simplifies the implementation, hence:

• Changing the workflow specification of a workflow instance must not be possible (7.2-27)

Exceptions to process execution may arise, that requires immediate intervention action, which
means the system should allow an authorized role to:

• View all containers (7.2-28)
• Delete an active container (7.2-29)

It is important to note, that while an administrator should be able to delete all active containers,
an administrator should not be able to delete containers that are the result of a completed work-
flow.

Finally, it must be possible to manage all roles (users) that are part of a workflow, hence an
administrator must be able to:

• View all users (7.2-30)
• Create a user (7.2-31)
• Modify a user (7.2-32)
• Delete a user (7.2-33)

X-Flow 52

CHAPTER 7. REQUIREMENTS CAPTURE 7.3 Security

7.3 Security

This section analysis the necessary functionality required to support workflows that meet the ob-
jectives of section 5.4.

The trust model of the system is defined, and the security requirements are analyzed in terms of
the five common security metrics [40].

7.3.1 Trust Model

The basis of all security properties ensured by the system is the underlying trust model. This
system will be based on:

• A binary trust model in which any user that is authenticated is trusted. (7.3-1)

Currently most systems employ a binary trust model, in which a resource is either trusted or not,
however much research is focused on:

• Incremental trust models in which a resource is gradually trusted [50]

• Decision making systems in which decisions of trust are evaluated at run-time (e.g. KeyNote
[51] and PolicyMaker [52])

Both approaches offer advantages that cannot be achieved using a binary trust model. In the
OpenBSD operating system IPsec is implemented using the KeyNote decision making system,
thus enabling variable network trust without any user interaction of system configuration [53].

However, the coordination of user activity is by definition structured and predictable, and the
IT-system will operate in a controlled and monitored logical environment, as can be expected of
a modern IT-infrastructure. Finally, availability is not a primary requirement (see 7.3.4).

This means that neither the system nor its operating environment have many of the characteristics
of a setup where an incremental trust model would be desirable, and a binary trust model seems
to offer a better compromise between system security and complexity of implementation.

7.3.2 User Identification (Authentication and Signature)

Expressed informally, anyone accessing the workflow system or any related data should be au-
thenticated. Authentication must be done using a signature scheme (see chapter 6), and is the
process of presenting a valid signature.

The detailed requirements for authentication and signature is summarized by the following

• All participating roles must be registered with the system (7.3-2)
• A role is identified by the DN of that role’s certificate (7.3-3)
• To login a role must provide a signature using a valid signature scheme (7.3-4)
• A role must re-authenticate to gain access to control and production data that is

newer than the current authentication
(7.3-5)

• An activity by a role must be digitally signed using a valid signature scheme (7.3-6)
• When an activity has been committed by signature, neither activity nor signature

may be revoked
(7.3-7)

• Any role must be able to authenticate the activities of all previous roles (7.3-8)

The stated properties assume correct authorization.

Property 7.3.2-3 simply expresses that once a role has been granted access to data, it is to be as-

X-Flow 53

http://www.openbsd.org

CHAPTER 7. REQUIREMENTS CAPTURE 7.3 Security

sumed that that role will always have access to that data (e.g. through a copy), and is a necessary
restriction to ensure valid authentication to current data.

Because roles are required to include the result of the previous activity as part of their own
signature, it is important that a user is able to verify the state of the workflow execution which
property 7.3.2-7 ensures.

7.3.2.1 Signature Scheme

A primary requirement of the workflow system is that activities have legal significance, hence the
chosen signature scheme must be encompassed by [3] and by extension [4].

This imposes the following requirements on the system implementation:

• It must be possible to use X.509 (7.3-9)

Because of the difficulty in graphically reproducing content the same way across different sys-
tems, this is cannot be required of the supported system, hence:

• The system need not support what-you-see-is-what-you-sign (7.3-10)

7.3.3 Access Control (Authorization)

Access control can be divided into controls that can be enforced only when the container is
stored in a physical machine to which a role does not have access, and those that can be en-
forced even if the role has physical access to the machine.

It is not possible to prevent4 a role from changing a container when the role has control over the
container, even if the access controls specify that the role is not allowed to do so. However, it is
possible to prevent a role from reading a document in a container by encrypting it.

Requirements for authorization is summarized by the following

• Any role must be able to confirm the authorization of all previous roles (7.3-11)
• A role must not be able to effect any loss of data other than the data that role has cre-

ated during the current activity
(7.3-12)

• A role must not be able to effect loss of data that role has created during a previous
activity

(7.3-13)

• A role must be authorized to perform an activity (signature) (7.3-14)

7.3.4 System Availability

It stands to reason, that availability requirements for a given system depend solely on the purpose
of that system, and the requirements for system availability should be evaluated in terms of the
effect, that an unavailable system has on the organization employing this system.

Requirements for availability is summarized by the following

• System unavailability has negligible impact on the surrounding organization (7.3-15)
• Complementary security technologies can thwart attacks by unauthenticated users (7.3-16)
• Implementation should allow transparent redundancy or fail-over (7.3-17)
• Implementation may allow limited operation without infrastructure (7.3-18)

4The problem of enforcing access control on digital content in the (complete) control of a user, can be likened to the
problem of enforcing DRM on other digital content such as music and films, which so far has proven futile. The system
design will assume that a user is able to perform any action on digital content in the user’s control, but the user will not
be able to read encrypted content, the user is not nor has been allowed to read.

X-Flow 54

CHAPTER 7. REQUIREMENTS CAPTURE 7.3 Security

7.3.4.1 Impact of Unavailability

A document workflow system in which each role is a person, and where the work implied in
each activity takes much longer to complete than the role-system interaction of that activity itself,
does not carry any special requirements for system availability (assuming the domain description
of 2).

If each activity involve work that takes one or more people an average of several hours to com-
plete, a system unavailability of a few hours will be insignificant compared to unexpected delays
that execution of a given activity may involve. One activity in a workflow may e.g. involve reg-
istration of results of a lab experiment, however this experiment may fail thus delaying the entire
workflow for the duration of this experiment.

It may further be assumed, that the system will be operated in the context of a modern IT-
infrastructure, employing operational procedures and monitoring intended to register system er-
rors and alert system operators.

This means, that system resilience to attacks aimed at system resources and system availability is
not a primary requirement as

• system availability doesn’t have any noticeable effect on the surrounding organization

• compensating controls in the general IT-infrastructure will detect this

7.3.5 Document Confidentiality

Document confidentiality controls who can read the versions of a document a workflow exe-
cution accumulates. Most companies use e-mail for communicating confidential information,
but very few actually use encrypted e-mail, hence using that as a baseline for requirements for
confidentiality, would indicate that requirements are limited.

A more realistic baseline requirement is:

• An unauthenticated or unauthorized role must not be able to access any workflow
data

(7.3-19)

Document confidentiality can also be extended to implement reader access authorization, in
which case the following apply

• A role may only access production data for explicitly defined activities (7.3-20)
• A role may only access control data for explicitly defined activities (7.3-21)
• A role may only know the identity of explicitly defined roles (7.3-22)

If document confidentiality is ensured by encrypting each unit of content, regardless of who gains
access to a container, they would still require the proper key(s) to access the content.

7.3.6 System Auditing

The main requirement for system auditing is:

• Workflow execution must be self documenting (7.3-23)

System auditing facilitates debugging, and ensures a complete audit- and transaction log5 which
is a requirement.

The following properties apply to system auditing:

5Maintaining complete audit- and transaction log is required by law for systems that process data that affects a company’s
financial statement.

X-Flow 55

CHAPTER 7. REQUIREMENTS CAPTURE 7.4 System Architecture

• Workflow execution should be audited (7.3-24)
• All signatures should be present in a document (7.3-25)
• The system should audit relevant system actions to facilitate fault finding (7.3-26)
• The system should use an industry standard log facility (7.3-27)
• (Optional) the server should sign all log lines (7.3-28)

Using a standard log facility is important because it allows the system logs to be collected,
correlated with other log material, and analyzed centrally.

7.3.7 Version Control

The system must version control all role submissions to make it faster to recover from an error,
and to make it possible to verify signatures from previous activities. The version control must
ensure:

• An error does not set the process further back, than the last completed activity (7.3-29)
• A complete copy of all versions is always stored in a way accessible only to a system

administrator
(7.3-30)

The current container in a workflow is defined as the last container that was successfully submit-
ted, before a new one is submitted.

7.4 System Architecture

This section analyzes requirements of the system architecture of a system that implements the
intended secure workflow system. Existing requirements for workflow and security indirectly also
imply requirements in terms of system architecture (e.g. OCES certificates should be supported,
hence the system must support X.509 digital certificates), but it is also necessary to define the
target platform on which it should be possible to use the system, as well as the scope of document
types with which the system can be used.

7.4.1 Document Support

Whether a document workflow system should be part of the actual content modification process
is a basic choice of functionality. A financial system is an example of a system that includes a
facility for creating and approving an invoice according to a specified process, whereas commu-
nicating a Word document by e-mail between author and reviewer is an example of separation
between the two domains.

The system is intended as a generic document workflow system, and should support different
application domains, hence

• Content modification should not to be integrated in the system (7.4-1)
• The system should support all document formats

• A document must not depend on external references

• A document must be storable as a single, machine independent file6

(7.4-2)

• Document storage must be formally specified (7.4-3)
• Document storage specification must be system independent7 (7.4-4)

Requirement 7.4-2 enables the workflow system to support any number and types of files that
can be combined in an archive format such as TAR, ZIP, or RAR.

6Byte order or similar properties must not limit the use of a file to a specific machine hardware architecture
7For practical reasons the specification will (obviously) not be character set independent

X-Flow 56

http://www.signatursekretariatet.dk

CHAPTER 7. REQUIREMENTS CAPTURE 7.4 System Architecture

The product of a workflow execution must be accessible for the duration of time in which the
product is used, including decisions that are directly based on the (content) of the workflow
product. The run-time may extend beyond the lifetime of the system, in which case it should
be possible to recreate the result of a workflow. Depending on the application domain, this
may also become a legal requirement (the new Enterprise Technical Reference Model recently
adopted by the state of Massachusetts [54], and the Valoris report commissioned by the European
Commission [55][56] being recent examples).

7.4.2 Platform Support

The system can be divided into a part used by a user (the client)8, and a part used by an admin-
istrator (the server), both of which have different requirements for platform support.

It is assumed that the server is run (is used) in a typical server infrastructure, which means the
server should:

• Be possible to run on a typical server operating system (7.4-5)
• Not require any special hardware (7.4-6)
• Require limited administration (7.4-7)
• Be easy to integrate in the existing infrastructure (7.4-8)

The client must be usable on the operating systems commonly used by the intended users, which
includes support for:

• Linux (7.4-9)
• Apple Mac OS X (7.4-10)
• Microsoft Windows (7.4-11)

It will be assumed that no malicious code is executed on either the client or the server, hence
the implications of malicious code on the system are not treated. The architecture of current
operating systems provide limited protection from malicious code, if the code is executed by the
user or with system privileges by exploiting a flaw in part of the system.

Finally, is is assumed that the server can always be trusted from the point of view of a client.

7.4.2.1 Resource Constrained Devices

A resource constrained device is defined as a device that has significantly lower computational
power than typical desktop computer (in 2005), which includes e.g. cell phones, and PDAs.

The factors determine platform support is relevant

1. Does the users require support on such a device

2. Does the resource constraint incur an unacceptable additional processing time

3. Are all program libraries used in development available on the target platform

Given the increasing popularity of PDAs and similar devices, it should be expected that users
will request support from these platforms (1), and given adequate demand (3) is simply solved by
implementing the missing functionality (or rewriting the program to work without).

(2) is interdependent with the implementation, as the implementation can be optimized for a
resource constrained device. However, requirements 7.3-18 - 7.3-21 implies encryption of all

8This definition only states the intended user, and does not assume anything about where the actual program execution
takes place. As such a client can be a program that is executed locally, or it can be a terminal emulator.

X-Flow 57

CHAPTER 7. REQUIREMENTS CAPTURE 7.4 System Architecture

content, and currently PDAs (not to mention less more constrained devices) do not have the com-
putational power to encrypt and decrypt several megabytes of data fast enough to be useful.

A Palm Pilot (Tungsten T) equipped with a Texas Instruments ARM 925 processor (432 MIPS ac-
cording to the published specifications) can encrypt a 389 kb PDF in approx. 53 seconds using a
Blowfish-128 symmetric encryption algorithm. The performance scales linearly, and encrypting
2533 kb takes 6 minutes 4 seconds.

Dumb terminals (VNC, RDP, etc.) should not be supported, as the current terminal protocols only
offer limited access to local certificates. Using RDP it is possible to access a PKCS11 device9,
but this will only work on Windows clients, and PKCS11 devices are not commonly used.

9An interface specification for accessing cryptographic hardware devices, such as a Javacard smart-card.

X-Flow 58

8
Container Specification

The overall design goal of the system that the final product of the workflow should be self doc-
umenting (section 1.2) mandates that information about the workflow execution (control data)
should be transmitted together with the actual production data, and that the two must be insep-
arable.

The previous chapter referred to the information being transmitted as a container, in which the
actual document was stored. A container must store all versions of relevant control and pro-
duction data, and this chapter describes a specification of a data model, that supports a self
documenting workflow execution that satisfies the requirements stated in the previous chapter.

Terminology

This chapter describes a specification of a format for a container. From this specification a
container instance can be instantiated, which can be used in a workflow execution.

8.1 Container Format

A container instance must be stored in a well defined format (the file format), that is open1 and
machine independent.

• the content of a container will be stored as text (UTF-8) based XML 2 (8.1-1)

The fact that XML is text based can also be a disadvantage to the format, as it makes it less space
efficient than e.g. a binary file format, and e.g. ASN.1 (Abstract Syntax Notation) could have
provided the structure of XML combined with the efficiency of a binary file format.

The penalty in terms of space for using XML instead of a binary format is approximately a 30%
increase in file size3, but the ease of working with XML compared to e.g. ASN.1 more than offsets
this.

Using XML also incurs a processing overhead, as parsing an XML file is slower4 than just reading
bytes from a stream, but because the content is structured it is possible to use the XML parser to
(1) validate that the content is well formed and (2) validate the content to the extent allowed by
the chosen XML specification language.

1The file format specification itself should also be open, to satisfy requirement 7.4-3
2Binary variants of XML have also been standardized, but in the following an XML file is assumed to be text based.
3base64 encoding a binary file produce a (UTF-8) text file that is approximately 30 % larger, than the original binary file.
4Using Java and Xerces, parsing a 24 kb byte array stored in memory into a DOM takes approx. 200ms

CHAPTER 8. CONTAINER SPECIFICATION 8.2 Specification Format

8.1.1 Versioning Model

A container instance must contain all previous document versions, and the container is text based
- and combination that may result in impractical container file sizes. Common version control
systems (e.g. SVN or CVS) limit this problem by only storing the difference between the current
and the previous document, but most version control systems cannot version binary files (which
is the most probable content for this workflow system), and supporting incremental binary ver-
sioning requires a more complicated binary patching algorithm.

If the X-flow system is assumed to be used primarily with commonly used office5 file formats, the
average file size is 400kb6, the ratio of modifications to reviews is 1 : 3, and a digital signature is
4kb, the storage requirements specified in terms of the number n of steps in the workflow is:

filesize = 1
3 · n · (400kb + (4kb + 4kb)) + 2

3 · n · (4kb + 4kb)
= 1

3 · n · (400kb) + n · 8kb

≈ n · 141.3kb

In a workflow in which 20 activities are executed, that would result in a container file that is ≈
3Mb, and parsing such a file is not a problem.

8.2 Specification Format

If an XML format is specified using a formal specification language7 (an XML schema) that is
supported by an XML parser, it can be used to validate the properties of the XML file that can be
expressed using the chosen language.

• The syntax of the container file format will be specified using the XML Schema Lan-
guage

(8.2-1)

There are currently 4 XML schema languages supported by commonly available XML parsers:

• Document Type Definition (DTD)

• XML Schema Language

• Relax NG

• Schematron

DTD is the oldest of the 4, and is borrowed from SGML. It lacks many of the features of the others,
and is not relevant. Schematron offers great flexibility in testing documents, because any test that
can be expressed as a binary XPath query can be tested, however the language is not modular
in its design making it difficult to work with large schemas [57]. Relax NG adds modularity,
but does not have the expressive tests offered by Schematron, and also does not allow default
attribute values, which is desirable to prevent undefined values from appearing. XML Schema
Language is W3C standard, and while it does not offer the extensive tests8 of Schematron, it
provides default attribute values, and is the best compromise between the feature set of the three.

The specification (XML schema) of a container (XML instance) is the data model of the system,
and in the rest of this chapter, data model and container schema will be used interchangeably.

5Not referring to the Microsoft Office product, but rather files that are used by a typical office worker, which precludes
e.g. large image files

6This number was found as an average of more than 3.000 files produced from 2000-2005 (courtesy of PwC)
7An XML format could also simply be specified using an informal textual specification.
8XML Schema Language also offers XPath based tests, but their working scope is limited to subtree of the parent node of a
given element definition.

X-Flow 60

http://subversion.tigris.org
http://www.nongnu.org/cvs/
http://www.x-flow.dk
http://www.pwc.com

CHAPTER 8. CONTAINER SPECIFICATION 8.3 Data Model Design

8.3 Data Model Design

Designing a data model represents a compromise between which system features that are con-
trolled by the data model specification, and which features are (only) controlled by the system
design.

The container schema is designed to explicitly define (thus control) the operation of required
features of the system (e.g. when a document is required to be signed). This allows using an XML
parser as model checker to verify that a container represents a correctly executed workflow 9.

8.3.1 Workflow Support

Workflow support can be enabled by using an existing workflow engine and its syntax, or the
system can use its own workflow engine, with a suitable syntax:

• The X-flow system will use its own workflow engine and specification syntax (8.2-1)

Using an existing workflow engine has the obvious advantage that it is already implemented (the
engine), which means less code to develop and maintain. However, using an external engine
means relatively more complex integration compared to using an engine that is designed to be
part of the system, and if the syntax does not encompass all elements of the application domain,
a new syntax, and a translation mechanism, must be developed to bridge between the syntax of
the chosen workflow engine, and the syntax requirements of the X-flow system.

8.3.2 Verification Protocol

The data model must support a verification protocol that can be used to verify the process exe-
cution at any given step in the workflow. Verification should include all formal requirements of
the workflow, including:

• Execution order

• Role authentication and authorization

The verification protocol should also limit the amount of work required to perform the verification
(preferably, execution time should always be O(1) bound).

8.3.3 XML Signature

Support for digital signatures is done using XML Signature. XML Signature is a standard adopted
by W3C and is used to express a digital signature as XML. Using XML Signature it is possible to
express a signature in three ways:

• Enveloping. In which the signed content is included within the the XML Signature element.

• Enveloped. In which the XML Signature element is a child of the signed element

• Detached. In which neither the XML Signature element nor the signed element is a descen-
dant of each other. The signed content may all be an external reference.

An XML Signature references the content (XML or not) to be signed by an URI, and several refer-
ences can be included as part of a signature.

The container schema only uses enveloped and detached signatures. When detached signatures
are used, it is only because the referenced element is located in a different part of the tree, and
external (to the XML instance document) content is never signed10.

9With regards to the features whose behavior can be expressed in terms of the XML Schema Language.
10This also means that a signed URI is always on the form #<element xml:id>

X-Flow 61

http://www.x-flow.dk
http://www.x-flow.dk

CHAPTER 8. CONTAINER SPECIFICATION 8.4 XML Schema Design

XML Signature requires quite a lot of code to create, parse, and load XML structures, and because
it is a newer standard11 most programming languages (e.g. Java) don’t support the XML Signature
specification in their native libraries. On the other hand signing and encryption operations using
algorithms such RSA and DSA are readily supported by most common programming languages,
and implementing signature support using such operations would result in a more widely sup-
ported system.

However, the Apache Foundation provides free libraries for C++ and Java supporting XML Signa-
ture, and native support is being worked upon, e.g. also for Java, and the standard provides the
core security of SOAP hence support in other languages can be expected.

8.4 XML Schema Design

This section contains a detailed description of the design of the container schema. The full
schema specification (container.xsd) is included on the CD-ROM in the directory:

$CDROM/source-code/resources/schema/.

8.4.1 General Structure

The following listing shows the generalized XML structure of a container instance (the listing is
not schema valid).

<container>
<info/>
<workflow/>
<documents/>
<transactionlog/>

</container>

<container> Is always the root element of a container instance. This element must always
include the definitions stated in section 8.4.8

<info> Specifies the server endpoint that clients should use in a workflow. This element (and
children) includes network information needed by a client to contact a server, as well as
identification information about the entity that assigned this <info> element, which is
not necessarily the server endpoint. It is not a requirement that the same server endpoint
be used for the duration of a workflow execution, and this element may be updated as
needed. The xml:id of this element is always info, which is enforced using a final
value of the xml:id attribute. The element must always be signed with an XML signature
that is an immediate child of the <info> element, and which [the signature] only includes
a reference to the <info> element id.

<workflow> Contains a complete specification of the workflow process in which this con-
tainer is used, including a description of the task (modify, review, and finalize) in each
activity, and role authorization. Once a workflow is started, it is not allowed, to change
this element and this will invalidate the entire workflow execution.

<documents> Contains all document versions that have been created during the workflow
execution. A document is non-static which means that storing outside the hierarchy of the
workflow specification is preferred. Each new document version, or each review that is
added to the container, is added as a <document> element as a direct descendant of this
element.

<transactionlog> Is an audit trail of the workflow execution, and is used by clients as a
server side verification protocol.

11It was adopted by W3C in 2002

X-Flow 62

CHAPTER 8. CONTAINER SPECIFICATION 8.4 XML Schema Design

8.4.2 Common Schema Elements

An advantage of the XML Schema Language is its modular design, which allows an element spec-
ification to be reused in other element specifications (in the same or in another schema).

The container schema includes two type12 definitions, that are used in almost all element defini-
tions in the schema:

• roleType

• metadataType

The roleType is used to create elements that represent an identity, and the metaDataType is
used to create a descriptor (an element describing another element).

8.4.2.1 roleType

The primary function of the roleType is to wrap an X.509 certificate or a DN that represents an
identity. The X.509 is wrapped in a <X509Certificate> element, that is type defined to be
base64 text encoded binary data. The roleType also contains a <person> element containing
name and e-mail address of the identity.

Specifying just a DN is adequate identification, but assumes that the recipient has another way
of obtaining the corresponding certificate.

8.4.2.2 metaDataType

Meta data enables automated content processing, and this type is used to create elements that de-
scribe other elements or part of a tree. The container schema allows an element of metaDataType
to appear as descendant of any element specification in the XML Schema13.
The metaDataType consists of three parts

• A free text element

• An enumerated type, that can be used as an application domain specific controlled vocab-
ulary

• A hook to the Dublin Core namespace

The following shows the definition of the metaDataType using a graphical notation14:

Figure 8.4.1 Definition of metaDataType

Each part represent a different level of structure, and all parts would normally not be required
for all occurrences of an element of this type (metaDataType). A “free text” element to allow

12In an XML Schema, an element may be specified directly, or it may be instantiated from an existing type specification
13That is, all elements that are directly specified also includes a meta data element with a multiplicity of (0 . . . 1)
14All graphical schema elements have been created using xs3p from http://titanium.dstc.edu.au/xml/xs3p/. The full schema
documentation generated based on the documentation in the schema itself, is included on the CD-ROM

X-Flow 63

http://titanium.dstc.edu.au/xml/xs3p/

CHAPTER 8. CONTAINER SPECIFICATION 8.4 XML Schema Design

user provided feedback, a controlled vocabulary15 provides e.g. consistent categorization, and
the Dublin Core allows automated processing.

The meta data type is mostly included as part of a generalized commentType, which is a union
of the meta data type, and a <commentFile> element, which allows a file to be specified as a
comment.

8.4.3 Server Endpoint (<info>)

The info element defines the server that should be used as part of the workflow exchange at a
given point in time. The full specification is shown in the following figure:

Figure 8.4.2 Definition of the info element

Note that the server is identified by its fully qualified domain name (FQDN), and despite being
of httpURItype, it should not be prepended with http:// (the value pattern restriction will
also prevent this). Some URL data types will assume communication to be on port 80 (and to be
HTTP), if the value is prepended with http://, but the schema should neither require HTTP 16

nor that communication be on port 80.

The container is self-describing, and the server should not store any state, meaning that any im-
plementation that is able to distribute the container to the next recipient, is able to process the
container. Allowing a new server to be assigned uses this fact to provide the ability to use differ-
ent servers at different points in the workflow.

The above concept could have been further extended to allow specification of multiple servers,
as well as a prioritization, which would enable the client itself to handle fail over, if a server
becomes unavailable. However, this feature has not been included in the schema.

To prevent a man-in-the-middle attack, the client must validate the signature on the <info>
element, before this data can be used.

15The concept of a controlled vocabulary is implemented as an enumerated type and the schema must define the required
words.

16Though HTTP will be chosen for communication as described in chapter 9

X-Flow 64

CHAPTER 8. CONTAINER SPECIFICATION 8.4 XML Schema Design

8.4.4 Workflow Specification (<workflow>)

The <workflow> element contains the actual workflow specification. A workflow comprises a
number of activities that will be referred to as steps from this point forward. The schema workflow
specification is based on a high level model that contains a number of <stepGroup> elements,
with one or more step elements in each. The workflow specification creates the workflow
graph by connecting a step with a <stepGroup> 17. The following figure shows this for a
simple workflow comprising only sequence transition patterns.

SG1 SG2 SG4SG3

S1 S2 S3 S4

Figure 8.4.3 A high level model of a workflow

A <stepGroup> element can contain one or more step elements, and when execution reaches
a <stepGroup> with n > 1 elements, all enabled activities will be executed, which enables the
multi choice transition pattern. The synchronizing merge transition pattern is implemented by
having the last step of each branch point to the same <stepGroup> . This design places the
following requirements on the workflow specification tool:

• It must ensure that all (synchronously executed) branches contain the same number
of steps

(8.4-1)

• It must ensure that the final step of each branch point to the same <stepGroup> (8.4-2)

8.4.4.1 <stepGroup> Element Definition

A <stepGroup> specifies an organizational owner (orgRole), steps, outbound transition type
(group type), and optionally the next and previous <stepGroup> . The definition is shown in
the following figure:

17Not the other way around

X-Flow 65

CHAPTER 8. CONTAINER SPECIFICATION 8.4 XML Schema Design

Figure 8.4.4 Definition of nextStepGroup Element

The orgRole is a roleType, representing an organizational owner of all contained steps, that
should always have read access. The implementation can use this as a default encrypt to identity
with <stepGroup> scope18.

If the next or the previous <stepGroup> can be determined before run-time they should be
specified (using the attributes prevGroup and nextGroup) to make it easier to validate the
workflow execution.

8.4.4.2 step Element Definition

A step must define the task (assignment and task), the assigned roles, and any other authoriza-
tions on this step. The schema assumes that only one assigned role will perform the step, and
that only read authorizations are given. Finally a step must define the next <stepGroup> .
The definition of the step element is shown in the following figure:

18Currently the schema doesn’t include any alternative <enc:EncryptedData> elements for elements it should be pos-
sible to encrypt.

X-Flow 66

CHAPTER 8. CONTAINER SPECIFICATION 8.4 XML Schema Design

Figure 8.4.5 Definition of a step element

The docID attribute is described in 8.4.9.

8.4.4.3 Selecting the Next <stepGroup> Element

The nextStepGroup element that is a child of a the step element contains a specification of
which <stepGroup> should be chosen next. The element implements two selectors for choos-
ing a <stepGroup> xml:id . The following figure shows the element specification:

Figure 8.4.6 Definition of nextStepGroup Element

X-Flow 67

CHAPTER 8. CONTAINER SPECIFICATION 8.4 XML Schema Design

A <stepGroup> can be selected by direct reference which is done using an IS element, on
which the <stepGroup> xml:id is specified as an attribute. This implements a sequence tran-
sition pattern.

The other option is to specify a number of tests, to be evaluated with the container node as root
element. A test is specified as two XPath queries, and additionally the return value (string, int,
and boolean) of each query can be specified, and how they should be compared (greater than,
smaller than, equals). Return values and comparison is defined as an enumerated type. Finally it
is possible to specify a default value, in case no test evaluates to true.

The schema design assumes that zero or one test will evaluate to true. If zero evaluate to true,
the last default value seen should be used.

This mechanism for choosing a <stepGroup> implements an XOR-split, and an XOR-join is
inherent in the specification.

The mechanism has two severe limitations.

• it lacks boolean operators to combine tests

• it requires detailed knowledge about the data to be tested, as well as its occurrence during
run time

However, using XPath provides great expressive power, and is “free” because the XML parser or
an external library provides this feature.

8.4.5 Document Versions (<document>)

Storing a document version requires storing the document, additional meta data, and the roles
signature on the document. If a document was reviewed, the review categorization must be
stored instead of the document. The following figure shows the definition of a document ele-
ment:

X-Flow 68

CHAPTER 8. CONTAINER SPECIFICATION 8.4 XML Schema Design

Figure 8.4.7 Definition of the info element

It allows either a document to be stored as base64 encoded data (the doc element), a review
categorization which is stored as a docRef element that contains a reference (xml:id) to the
reviewed document element, and the categorization is stored as a controlledVocabulary
keyword in the metadata element.

The enveloped signature element could be made mandatory, but that would prevent the container
from being distributed with a precreated structure of document elements.

8.4.6 Signature Protocol (<transactionlog>)

The <transactionlog> is a subtree to store <receipt> elements, which is shown below:

Figure 8.4.8 Definition of the transactionlog element

A <receipt> element is created by a server, when it has received a container from a role, and
after it has successfully verified the container. The definition is shown below:

X-Flow 69

CHAPTER 8. CONTAINER SPECIFICATION 8.4 XML Schema Design

Figure 8.4.9 Definition of a receipt element

When the server validates a container, the xml:id’s of the next <stepGroup> and of the
<document> become known to the server as part of the process. These values are included
in the <receipt> to simplify the logic required by a client implementation.

A <receipt> element represents, that the container up until this point has been processed ac-
cording to specification, and all signatures are valid (both parts must be verified by the server).
Hence, when a client has validated the newest <receipt> element, the client knows that the
current container is valid (provided it has been distributed to the client in a secure fashion).

The client can use this property of a <receipt> element as an incremental trust protocol,
documenting that when the client has validated the current <receipt> the client has implicitly
validated all previous versions. This means that to verify the client needs only verify the newest
receipt element.

8.4.6.1 Element Signature Scope

Before any documents are added to a schema instance, an initial <receipt> element must be
generated, and signed, which simplifies the verification algorithm because an initial state must
not be handled.

The initial <receipt> element cannot be used to verify the same properties as subsequent
<receipt> elements, because server verification includes verification of document signature,
but no document versions have been added at this point. Thus, the signature on the initial
<receipt> element must include a reference to the <receipt> element and the <workflow>
element. It should not include a reference to the <info> element as this may change during
the workflow execution, which would invalidate any referencing <ds:Signature> elements.

All subsequent <receipt> elements should include a reference to the newest document, in
addition to the <workflow> and <receipt> element references.

X-Flow 70

CHAPTER 8. CONTAINER SPECIFICATION 8.4 XML Schema Design

8.4.6.2 Verification Protocol

The <receipt> elements in the <transactionlog> can be used to perform the following
verifications on a container:

• Has the workflow specification been changed

• Has the current document been changed

• Has the workflow been executed correctly

By verifying the newest <receipt> element these properties are implicitly verified for all pre-
vious steps in the workflow, because a <receipt> element is dependent on the previous
<receipt> element.

8.4.7 Controlling Attribute and Element Values

The XML Schema Language provides a number of ways for controlling the values that are assigned
to an attribute or an element, including:

• Limited type system

• Regular expression

• Limited XPath queries

• Enumerated list

The container schema uses all controls except XPath queries to control element and attribute
values. An xs:restriction based on an XPath query cannot look outside the scope of the
subtree bounded by its (nearest) ancestor, and for XPath queries to be effective they must be able
to “look” between the <workflow> and <documents> elements.

Because element xml:id values are used extensively, most xml:id attribute definitions are
bounded by an xs:restriction that limits the allowed namespace to make it predictable,
and to prevent namespace clashes.

8.4.8 Schema Namespaces

The schema is designed using the W3C namespace specification. All elements defined in the
schema are named in the namespace http://strandbygaard.net/xml/container. The
schema also incorporates elements from the following namespaces, and these must be declared
in the root element of a schema instance.

• xmlns:dc="http://purl.org/dc/elements/1.1/"

• xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

• xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

To prevent namespace clashes, all elements must be prefixed using prefixes assigned to the rele-
vant namespace, and all elements defined in the X-flow namespace will be prefixed with xf. In
the following, if no prefix is specified, it will be assumed that the element belongs to the X-flow
namespace unless otherwise specified.

8.4.9 Sealing the Container Structure

A step element must contain an attribute with the same properties as an xml:idref (but with-
out the existence requirement on the referred xml:id value), to properly seal and enforce the
container structure.

The subtrees <info/>, <workflow/>, <document/>, and <receipt/> are sealed by direct
signature reference, but the link between the workflow specification and the added document

X-Flow 71

http://www.x-flow.dk
http://www.x-flow.dk

CHAPTER 8. CONTAINER SPECIFICATION 8.5 Creating a Container Instance

elements does not mean that any number of document elements can be added, and that an XML
parser will still accept the container. This is undesirable, as it makes it possible to inject large
quantities of data into the server with adverse impact on system resources.

The solution to this is to specify a docID attribute on a step that specifies which xml:id should
be assigned to the corresponding document element. That makes it possible to perform a vali-
dation using a SAX based parser, that does not parse an XML instance into memory.

8.5 Creating a Container Instance

Creating an instance from the container schema involves the following steps:

• Setting the content of the info element

• Specifying the workflow as a production of <stepGroup> elements

• Producing an enveloped signature on the info and workflow elements respectively

• Creating the first <receipt> element

• Producing an enveloped signature on the <receipt> element, that also includes a refer-
ence to the workflow element

This section describes how a workflow specification is created, and how <receipt> elements
are added. The examples are based on a workflow with two steps and a sequence transition in
between. This section uses a number of code listings to demonstrate e.g. scope and signature
references, and because XML tends to become rather verbose, the listings have been reduced to
just the relevant elements and attributes, hence none of the code listings are schema valid.

The schema itself contains documentation of each element or attribute and its usage, but the
schema specification also requires that a number of elements reference each other correctly.
These references cannot be checked by the XML parser because they are either not known at
a given point in time, or because no query can reach between a reference and the referenced
xml:id . The following sections shows the basis for validating these dependencies.

X-Flow 72

CHAPTER 8. CONTAINER SPECIFICATION 8.5 Creating a Container Instance

8.5.1 Creating a Workflow Specification

The following listing shows how a work-

Workflow Specification

<xf:container>
<xf:info id="info"/>
<xf:workflow id="workflow">

<xf:stepGroup id="SG1">
<xf:step id="S1" docID="D1" action="modify">

<xf:assignment/>
<xf:assignee>

<xf:DN/>
</xf:assignee>
<xf:nextStepGroup>

<xf:IS stepGroupRef="SG2"/>
</xf:nextStepGroup>

</xf:step>
</xf:stepGroup>
<xf:stepGroup id="SG2">

<xf:step id="S2" docID="D1" action="finalize">
<xf:assignment/>
<xf:assignee>

<xf:DN/>
</xf:assignee>
<xf:nextStepGroup>

<xf:IS stepGroupRef="SG2"/>
</xf:nextStepGroup>

</xf:step>
</xf:stepGroup>
......

</xf:workflow>
<xf:documents/>
<xf:transactionlog/>

</xf:container>

flow specification is constructed from
<stepGroup> elements using xml:id
and xml:id types.

The specification snippet contains two
activities (steps) with a sequence tran-
sition connecting them. Mapping this
to the high level model shown in figure
8.4.3, this results in a container with two
<stepGroup> elements (SG1, SG2) each
containing one <step> element (S1, S2).

A step must reference the next <stepGroup>
element in the <nextStepGroup> ele-
ment, and if a step is the final step (as
shown in the listing) of a workflow, that
step must reference its parent <stepGroup>
element.

8.5.2 Adding the Initial <receipt> Element

Before the initial <receipt> element can be <xf:container>
<xf:info id="info">

.....
<ds:signature>

<Reference URI="#info"/>
</ds:signature>

</xf:info>
<xf:workflow id="workflow">

..id="SG1"..
<ds:signature>

<Reference URI="#workflow"/>
</ds:signature>

</xf:workflow>
<xf:documents/>
<xf:transactionlog>

<xf:receipt nextStepGroup="SG1" id="R1">
<ds:signature>

<Reference URI="#R1"/>
<Reference URI="#workflow"/>

</ds:signature>
</xf:receipt>

</xf:transactionlog>
</xf:container>

Initializing receipt

added, the <info> and <workflow> elements
must be signed, by adding an enveloped signa-
ture to each element.

The <receipt> element must include a ref-
erence to the next <stepGroup> (in the list-
ing that is SG1), and the enveloped signature
must contain references to the <info> and
<workflow> elements.

X-Flow 73

CHAPTER 8. CONTAINER SPECIFICATION 8.5 Creating a Container Instance

8.5.3 Adding a Subsequent <receipt> Element

The first <receipt> element that is not the ini- <xf:container>
<xf:info id="info"/>
<xf:workflow id="workflow">

<xf:stepGroup id="SG1">
<xf:step id="S1" docID="D1">

.....
</xf:stepGroup>
<xf:stepGroup id="SG2">

<xf:step id="S2" docID="D1">
.....

</xf:stepGroup>
</xf:workflow>
<xf:documents>

<xf:document id="D1">
....

</xf:document>
</xf:documents>
<xf:transactionlog id="transactionlog">

<xf:receipt nextStepGroup="SG1" id="R1">
....

<xf:receipt nextStepGroup="SG2" id="R2">
<ds:Signature>

<ds:Reference URI="#R1"/>
<ds:Reference URI="#workflow"/>
<ds:Reference URI="#D1"/>

</ds:Signature>
</xf:receipt>

</xf:transactionlog>
</xf:container>

Subsequent Signature

tial, is added the first time a role submits a con-
tainer, and to separate the individual actions,
the listing differentiates using three colors, rep-
resenting three different points in time. Blue
represents the initial <receipt> element, green
represents the additions made by a role, and
red represents a subsequent <receipt> ele-
ment.

The initial <receipt> element points to the
first <stepGroup> element (SG1), and the user
adds a document with xml:id (D1).

The signature in the subsequent <receipt>
includes a reference to the <workflow> ele-
ment (#workflow), the previous <receipt>
element (#R1), and the new <document> ele-
ment (#D1).

X-Flow 74

9
Secure Workflow Model

This chapter describes the design of a prototype client-server application, that satisfies the re-
quirements stated in chapter 7 and is based on the data model described in chapter 8.

9.1 System Architecture

The system is designed as a 4-tier application with the following tiers:

Client Application Is used by a user to work with a container. This application must be executed
on the user’s computer

Web Interface Is used by users to retrieve waiting containers, and by a system administrator to
control the system

Application Server Is the server endpoint specified in a container

Database Server Is back end data storage for the application- and web-server.

From a user’s point of view the client application and web interface is simply the client interface.

9.1.1 Client Interface

The entire client interface is designed to be fully distributable through most standards compliant
browsers1 that support XHTML and CSS.

A user is required to sign a document which requires access to the user’s private key, and at least
using OCES certificates, that requires that the private (signing) key is only available to the user2,
meaning that the signing operation must be performed by an application that is run on the users
computer.

The client application that is run on the users computer is implemented in Java, and can be
executed either as an applet or as a standalone program. This application is also used to submit
a container to the server, once it has been signed.

9.1.1.1 Certificate Access

The scope of this thesis is not to provide a method for achieving secure access to a private key
from a user account on an operating system. The problem with secure access to a private key,

1Most browsers support their own plugin-in model for extending the browsers functionality (Mozilla supports XUL exten-
sions, and Internet Explorer supports ActiveX). In the following, when referring to browser functionality it will be assumed
that this functionality is available in at least Firefox, Internet Explorer, and Konqueror.

2This is a requirement both of the OCES certificate policy, and TDCs terms of use

http://www.signatursekretariatet.dk
http://www.signatursekretariatet.dk

CHAPTER 9. SECURE WORKFLOW MODEL 9.1 System Architecture

e.g. in the form of a ASN.1 structure (a PKCS12 file), is that the existing OS security controls are
deemed insufficient to protect the private key, as it requires extra security measures.

As a security failure concerning a private key may potentially have extensive effects, it can be
argued that the key requires a higher level of security, than does many other parts of the system.

Most solutions tend to provide more of a protective measure against the user, than against real
external threats, or at most another layer of complexity separating an attacker. A security compo-
nent may enforce a password protection of a private key, but an attacker can just as easily modify
the actual security component, thus completely circumventing the protection of the certificate;
this attack would require circumventing OS access control, which is no different than reading a
certificate protected by OS access control mechanism.

Hence the actual problem of secure access to a certificate arises because most operating systems,
or indeed most hardware platforms do not offer a managed security architecture.

The X-flow system is designed to allow access to standardized certificate devices, which in-
cludes PKCS12 files, and a simple extension mechanism for adding support for other devices
(e.g. PKCS11 interfaces).

Other solutions such as directly3 supporting TDCs cryptographic component, or the OCES CD-
Card, are not supported.

9.1.2 Client-Server Communication

The client application communicates with the server using the HTTP or HTTPS protocols (de-
pends on webserver configuration).

Choosing a client-server protocol that either communicates on an “uncommon” port, or that uses
a port typically assigned to another protocol, will prevent the client-server protocol from travers-
ing firewalls that use a default deny policy, or firewalls that incorporate application protocol level
proxies.

Even though other protocols are more efficient than HTTP, it is the “ubiquitous Internet protocol”,
and will typically always be open.

9.1.3 Application Server

The application is designed as a standalone Java program. Several frameworks for creating Java
server applications exist (e.g. servlet, EJB, or JSP), but the system does not require most of the
(mostly web application related) functionality offered by these frameworks, so there is no point
in using them.

This means that the application server uses a fairly light webserver that is not intended for large
numbers of transactions, but given that the application must also parse XML files that are poten-
tially > 1Mb, the webserver will not be the component that cannot scale. Should the internal
webserver become a problem, the design is easy to implement as a servlet.

Any number of programming languages can be used to implement the application server, but Java
has the advantage that it combines a number of properties, that are hard to find all in another
programming language. These properties include:

• Freely available library supporting the XML Signature standard (Apache XML Security)

• Robust XML parser with good support for XML Schema (Apache Xerces)

• Executed in a virtual machine (JVM)
3The cryptographic component distributed by TDC is both accessible through Microsoft CAPI, and through its own API.

X-Flow 76

http://www.x-flow.dk
http://www.signatursekretariatet.dk
http://xml.apache.org/security/
http://xerces.apache.org/
http://www.microsoft.com/

CHAPTER 9. SECURE WORKFLOW MODEL 9.2 XML Programming Model

Both Apache projects are also available for C, but C is not executed in a VM and is inherently
prone to e.g. buffer overflows which cannot occur in a Java application.

9.1.4 Database

As database back end for the application server, the system uses the MySQL database. The sys-
tem is designed to use version 4, but version 5 can be used without any modifications.

The database schema comprises 5 tables:

Containers Stores all containers known to the system. When a user is presented with a list of
waiting containers, that is simply a filtered listing of this table.

Users All users known to the system.

Roles All roles created in the system

Permissions All permissions assigned to roles

RoleAssignment Contains an entry for each user that is assigned one or more roles. Currently, a
user can only be assigned 5 roles, but this can easily be extended by extending the database
schema

In this case the database is simply a location to put containers while waiting for user interaction,
and two other alternatives could have been either storing it as a file on the OS file system, or
using an embedded engine such as Berkeley DB.

Storing the containers on the OS file system is not an option because that only allows searching
file names, and searching by role is required to retrieve a container assigned to a role 4.

Using the Berkeley DB API generally requires less administration, but prototyping using a rela-
tional SQL database is faster, so MySQL was chosen.

9.2 XML Programming Model

The X-flow system uses the Document Object Model (DOM) API for working with XML files (in-
cluding containers), and this API is used both by the client application, and the application server.

This choice is largely made because, that it makes working with XML signatures much easier, as
the chosen library also uses DOM. This means that DOM objects can be passed between XML
Signature implementation, and the client application or application server.

The main disadvantage of using DOM is that it loads the entire XML file into an object in mem-
ory, which means that working with large (> 2Mb) requires a lot of memory. It also means, that
this design will not work well on most mobile devices, as they don’t have the necessary memory.

Other (user interactive) applications working with large XML documents (e.g. OpenOffice or
Microsoft Office) only parse fragments of the DOM and use a combination of DOM and SAX to
achieve the best properties of the two, however X-flow won’t integrate these optimizations.

9.3 User Interface

The client interface (client application and web interface) together implement all identified use
cases. Screen shots of all screen are included in appendix D (client application) and E (web
interface).

4The file name could be used to store e.g. the role’s name and other data that would then be searchable, but this kind of
(mis)use of namespaces should be avoided.

X-Flow 77

http://www.mysql.com/
http://www.mysql.com/
http://www.x-flow.dk
http://www.microsoft.com/
http://www.x-flow.dk

10
Model Implementation

This chapter describes how major subsystems have been implemented, and it is organized to
match the steps a container passes as part of processing.

This chapter does not include a description of each class in the implementation, rather the source
file of each class provides a description (in Javadoc) of the functionality of that class. This docu-
mentation is included in $CDROM/javadoc.

10.1 Accessing the Container

Accessing the container is done differently in the client and in the server.

A user only performs a limited number of interactions with the client application as part of sub-
mitting a container to the server, hence the client application uses a file oriented approach in
which the container is kept in memory a little as possible. The client application will flush the
DOM back to disk as soon as possible when a change has occurred.

The server on the other hand only works with the container as a DOM in memory, until the DOM
has been serialized and stored as a BLOB in the database.

10.1.1 Parser Configuration

Both the client and server application use the Apache Xerces XML parser. The client wraps the
parser in the class net.strandbygaard.xflow.container.XmlParserFactory, that im-
plements the XmlParser interface in the same package.
This factory class ensures that a parser object is correctly configured, which includes:

• Namespace support

• URIs of all namespaces that will be used

• Schema validation

The schema is part of the model specification, but it is not always necessary to load a container
instance using a validating parser. When a client receives a container the <receipt> has to be
verified to ensure that the container is valid, hence no (parser) validation is required.

The client should validate the container before signing a document to ensure that the user has
not added any invalid data, but since a user can circumvent this check, it is not strictly required.

The server must validate the container before further processing, but once a container has been
validated it need not be validated again unless it has been outside the control of the server.

CHAPTER 10. MODEL IMPLEMENTATION 10.2 Workflow Engine

The server configures instances of XmlParserFactory to be validating and contains another
implementation (XmlQuickParser) of the XmlParser interface, that creates a non-validating
parser.

Using a validating parser to verify the XML container is a an easy approach to validating an XML
file, because it is implemented by the parser, but parsing an XML file with validation is generally
much slower than just ensuring that the file is well formed.

10.1.2 Loading A Container (Client)

ClientController ClientContainer Container ClientWorkflow

ClientWorkflow(Container)

ClientContainer(URL)
Container(URL)

super(Container)

update()

getCurrentStep()

getCurrentStep()

Step

Step

update GUI

set container

Figure 10.1.1 Simplified process of loading a container in the
client

The server works with the DOM as a pri-
mary object, but in the client it is neces-
sary to maintain a session state in order to
quickly present the user with information
from the container (instead of having to re-
trieve much of the same information several
times).

To do this the client is implemented as a two
level object hierarchy, that must be popu-
lated (container object must know about
the container, workflow object about the
workflow and so forth) when a container is
loaded.

Figure 10.1.1 shows the lower part of this hi-
erarchy. This part can be treated as the call
path or routing layer, which the invocations
also suggest. The upper hierarchy (not shown) comprises a super class to each of the classes, and
in this layer most of the actual processing (e.g. extracting data from the DOM or creating helper
objects) is performed.

10.2 Workflow Engine

10.2.1 Selecting the Current Step (Client)

<xf:container>
<xf:workflow id="workflow">

....
<xf:stepGroup id="SG2">

<xf:step id="S2" docID="D1">
<xf:DN/>
....

</xf:stepGroup>
....

</xf:workflow>
<xf:documents>

....
<xf:document id="D1">

....
</xf:documents>
<xf:transactionlog id="transactionlog">

....
<xf:receipt nextStepGroup="SG2" timestamp="999">
....

</xf:transactionlog>
</xf:container>

2

3

1

4

In order to select the current step (to find
the xml:id of the new <document> to
be added) the client must find the cur-
rent <stepGroup> , and the xml:id
of this is included in the newest re-
ceipt, which is found by iterating over
the <transactionlog> , and select-
ing the <receipt> with the newest time
stamp.

When the current <stepGroup> is found,
it is possible to iterate over the DN of the
assignee in each step in the <stepGroup>
and select the one, that matches the cur-
rent user. This implies, that two steps in
a <stepGroup> cannot be assigned to the
same user.

The code listing shows how this algorithm
works on a container instance. All direct

X-Flow 79

CHAPTER 10. MODEL IMPLEMENTATION 10.3 Certificate Access

descendants of the <container> always1

have an xml:id and this can be used to quickly select each of the elements in the DOM using ei-
ther an XPath query (such as //*[id=’workflow’]) or the getElementByAttributeID()
from the org.w3c.dom API.

10.2.2 Verifying the Current Step (Server)

The server must perform the same process as the client in order to verify a container that has
been submitted, however the server must perform 2 additional steps:

• Verify the signature on the added <document>

• Verify that the assignee specified in the current step is the signer

10.2.3 Multi choice and -merge Container (Server)

The multi choice pattern has not been fully implemented due to lack of time. The implementation
does includes a full framework to support multi choice pattern, and only one class
(net.strandbygaard.xflow.server.Selector) needs to be implemented.

The multi choice transition is implemented using the concept of selectors described in section
8.4.4.3, and the class that needs to be implemented, is a class that takes an expression as argu-
ment and evaluates this on the container DOM.

The multi merge has not been implemented due to lack of time nor does the code base include
a skeleton framework, the following, however, describes the implementation principle.

To merge the branches of execution, the added <document> and <receipt> elements of each
branch must be included in the last submitted container, which is done by parsing each container
and copying the org.w3c.dom.Node objects into the newest container. Doing this will not
break the signatures because the entire subtrees referenced by <document> and <receipt>
element signatures are copied.

Finally, a new <receipt> is generated in the container to which all the other elements were
copied. The signature on this receipt must include all added elements in its scope.

10.3 Certificate Access

Both client- and server applications and support tools only support X.509 certificates, that are
stored in a PKCS12 file or which can be loaded from the container document.

While an X.509 is a platform independent standard, many certificate storage devices (Aladdin
eToken, Java Keystore, Microsoft CAPI) are typically dependent on both platform and implemen-
tation. A PKCS12 file is a platform independent storage container for X.509 certificates repre-
senting the broadest common denominator, and as the time available for this project didn’t allow
implementing support for several certificate devices, this device was chosen.

This device is the standard way of supporting certificates in a server application (e.g. BEA We-
bLogic, or IBM WebSphere), where either PKCS12 files are used or DER/PEM encoded key and
certificate files2.

However, in a client application, this will frequently be inadequate. Generally, a client applica-
tion will be required to support PKCS12 files (if only to facilitate testing), as well as a more use
case specific method (e.g. Microsoft CAPI), and section 10.3.1 describes the client application’s
support for OCES certificates and certificate devices in general.

1The value is declared final in the container schema
2That may easily be converted to a PKCS12 file using e.g. OpenSSL

X-Flow 80

http://www.aladdin.com
http://www.aladdin.com
http://www.microsoft.com/
http://www.bea.com
http://www.bea.com
http://www.ibm.com
http://www.microsoft.com/
http://www.signatursekretariatet.dk
http://www.opessl.org

CHAPTER 10. MODEL IMPLEMENTATION 10.3 Certificate Access

10.3.1 Certificate Device Plugin Architecture

Certificate support has been implemented using a plugin architecture that allows extending de-
vice support to new devices. The primary intention of this architecture is to make it easy to add
a class implementation, that uses the Java Native Interface (JNI) to access a platform dependent
PKCS11 compliant drive, e.g. CAPI or the driver for a cryptographic token.

As such the device plugin architecture isn’t implemented with support for loading and unload-
ing device implementations at run-time or choosing a device implementation at run-time. This
means that a client built from the current code base only can be build with support for one type
of certificate device.

The OpenSign applet from the OpenOCES project [58] is an application comparable to the X-flow
client, given that it is implemented in Java and uses X.509 certificates to create XML Signature.
This applet includes a plugin architecture for dynamically loading certificate device implemen-
tations.

10.3.1.1 System Implementation

PKCS12File

PrivateKeyX509Certifciate

1 1

+ init()
+ getKey()
+getX509Certificate
+getCertificateInfo
+ status()
+ toString

<<interface>>
CertificateDevice

+ getInstance
+ init
+ addDevice
+ getImplementation

CertificateManager

ClientCertificate

1

net.strandbygaard.xflow.security

net.strandbygaard.xflow.client

CertificateDevice
11

*

Figure 10.3.1 UML class model of client certificate support

In the client, the certificate device plugin
architecture is implemented using a simple
Factory pattern 3, to separate client code im-
plementation from the device implementa-
tions. This relationship is shown in figure
10.3.1.

3The implementation is combination of the Factory- and Abstract Factory patterns defined in [59].

X-Flow 81

http://www.openoces.org/opensign
http://www.openoces.org
http://www.x-flow.dk

CHAPTER 10. MODEL IMPLEMENTATION 10.4 Signing and Verification

10.3.1.2 Extension Points

The client code base is provided with a limited number of extension points, that can be used to
add support for new certificate devices. Currently the code base contains two levels of hooks:

1. Support for statically binding to a class that implements the interface CertificateDevice

2. GUI support (including state) for choosing a certificate device at run-time (only applies to
the client)

Obviously, (1) should be re-implemented using a class loader to load an implementation at run-
time.

Figure 10.3.2 Selecting a certificate device

The client is built on the Model View Controller (MVC)
pattern, and dynamic certificate selection has been fully
implemented in the View part and partially in the con-
troller. The menu item Settings -> Certificate
is used to choose the certificate device, and has
been populated with three example choices (see figure
10.3.2).

The actual choices should be added, as handlers for the certifi-
cate devices are registered, but this has not been implemented
yet. Instead, the example certificate devices have been added.

10.4 Signing and Verification

Signing or verifying an XML Signature requires that the XML parser is able to resolve all required
URIs, including:

• Element references

• Signature properties (e.g signature- and canonicalization algorithms)

Only document local element references are used (of the form #<reference>), and they can
always be resolved. The implementation assumes that either (1) HTTP is available to resolve other
URIs or (2) a catalog for resolving references has been configured.

10.4.1 Signing an Element

A signature is generated as an enveloped XML Signature on an element URI, and the class
net.strandbygaard.xflow.security.XmlSigUtils implements an API, that is used by
the client application to this signature.

To make the client application more robust to errors (e.g. the user unexpectedly shuts down the
computer), the implementation serializes the container DOM to disk before and after the sign-
ing operation using a safe overwrite method (XmlUtils.saveDomAsFile()) ensuring that the
original container file is not overwritten before the new one has been successfully written to a
temp file (and the temp file is not removed before the old file has successfully been overwritten
by the new).

The implementation does not check the basic usage specified in the supplied certificate, so any
certificate can be used. The client should check basic usage and adhere to criticality, but a
recipient must do so, hence this has not been implemented.

10.4.2 Verifying a Signature

The class net.strandbygaard.xflow.security.XflowTrustAPI implements an API that
is used by the client application to verify an XML Signature. This approach removes dependen-
cies in the rest of the code to the Apache XML Security library, and it provides a unified API for

X-Flow 82

CHAPTER 10. MODEL IMPLEMENTATION 10.5 Client-Server Communication

resolving certificate trust (the method XflowTrustAPI.verifyCertificate()). The server
implementation has an analog implementation4 in
net.strandbygaard.xflow.server.ServerSigUtils.

In the implementation, a user certificate is trusted if the issuing CA is trusted and no CRL check
is performed on a user certificate.

10.5 Client-Server Communication

The client application communicates with the server using XML-RPC over HTTP 5. This protocol
has two benefits:

• Compared to other message protocols (e.g. SOAP) it is very simple

• It provides a programming paradigm that is very similar to that of Java

• It allows late binding of the session

An XML-RPC endpoint is invoked with a single method, and it provides support for most standard
data types (including String, int, and byte[]). As the container file must be parsed by the
server, sending the container to the server as byte[] is the best way to transfer the file.

Late session binding is important to prevent denial of service attacks based on resource starvation.
If the server allocates many system resources by creating session objects etc. before authenticat-
ing a user, this opens the server to DoS attacks.

Using XML-RPC over HTTPS it is possible to authenticate a user through the SSL connection by
requiring a client side certificate when performing the SSL handshake6, which also makes au-
thentication “transparent” to the user.

However, using XML-RPC and SSL does limit how the systems can be deployed, because the
protocol messages cannot be routed and a direct (point-to-point) connection to the X-flow ap-
plication server is required (e.g. proxying the SSL will not work). Lack of message routing is
currently less of a problem, but with the advent of the much touted services oriented architecture
(SOA), this will become a hindrance.

Lack of SSL proxying support will not affect client deployment, as few upstream connections
employ such proxies7, but it affects how the server is deployed because it is common to proxy
incoming SSL connections early on, so the content is exposed to existing intrusion detection sys-
tems (IDS) and similar systems.

Using SOAP and the Web Services security standard (WS-security) would overcome both limita-
tions because it wraps the security in the SOAP message, and message routing is addressed with
WS-routing [60].

10.6 Audit Trail

The code base net.strandbygaard.xflow.* is instrumented with logging using the Apache
Commons Logging project (org.apache.commons.logging), and the system has been tested
with the log facility, log4J, though any facility that implements the interface should work.

4The client and server methods must behave slightly different, and will have different parameter requirements, but it was
speedier to just duplicate the 30 or so line of code.

5XML-RPC can be used over just about any communications protocol that allows sending and receiving plain text messages
(e.g. FTP and SMTP

6Websites can typically not require a client side certificate in the handshake, because the user cannot be expected to have
a certificate, or because the website doesn’t have a registration between the user and the certificate. However, in the
X-flow system a user will always have a certificate, and the server will always have a registration matching the user and
the DN in the certificate

7They obviously “break” the security of the SSL connection from the clients point of view.

X-Flow 83

http://www.x-flow.dk
http://logging.apache.org/log4j/docs/index.html
http://www.x-flow.dk

CHAPTER 10. MODEL IMPLEMENTATION 10.7 Web Interface

The audit trail (log statements) is generated in 3 levels (debug, info, and error) and each level can
be selectively enabled or disabled on a class-by-class basis8.

Only the info and error levels contain information relevant to the audit trail. The info level is
used to log check points in transaction processing, as well as the result of relevant operations.
The error level is used to log all application states, that results in the current execution being
halted (e.g. that a signature is invalid).

Log4J allows different methods for capturing log lines. The current project logs all messages
generated by the client and server to the console. This is practical during development, but in a
production setup logging should at least be done to a file, and preferably to a different computer
(e.g. a central syslog facility). This is easily changed in the log4J configuration file.

10.7 Web Interface

System administration and download of containers is provided through a web interface that is
written in PHP and runs on an Apache webserver.

The web interface provides a number of form based views that can be used by the administrator
to add, update, or by a user to download waiting containers.

Before a user can access the web interface, the user must login. In a production environment,
only login using a client certificate should be allowed, but in order to make testing easier, provi-
sion for a username/password based login mechanism has also been included9.

When a user logs in using a certificate (or username and password), the user is authenticated by
looking up the presented DN in the users table in the database, which includes field storing the
users DN.

The web interface is designed with two different user profiles: User and administrator, that deter-
mines if a user has access to the administrative part of the interface.

8The supplied log4J configuration file in $CDROM/source-code/resources/log4j.conf demonstrates this.
9Most browsers cache SSL session cookies until the program is closed, which means that to switch user on the site (during
testing) it would be necessary to close and reopen the browser.

X-Flow 84

http://logging.apache.org/log4j/docs/index.html
http://logging.apache.org/log4j/docs/index.html

11
Model Analysis

This chapter provides an analysis of how well the system design and the implemented prototype
satisfy the requirements stated in chapter 7.

11.1 Workflow Support

11.1.1 Supported Transitions

The following tables shows support each of the required transition patterns in both the design,
and the implemented prototype.

Table 11.1.1: Feature Matrix
Requirements Analysis Feature Support

Label Property Data Model Implementation

7.2-7 Sequence

7.2-8 AND-split See (7.2-12)
7.2-10 XOR-split

7.2-9 AND-join See (7.2-13)
7.2-11 OR-join

7.2-12 Multi Choice

7.2-13 Multi Merge

Table 11.1.1 The table lists support for transition patterns in the design and implementation.

The design is based on multi choice and multi merge instead of the simple transition pattern
variants XOR-split and AND-join, and because support for these patterns are incomplete in the
prototype the system cannot process workflow specifications that contain branches.

In the current design, as implementation of multi merge can possibly become quite resource
intensive, as each the received container for each branch must be retrieve from the database
and parsed (non-validating) in order to determine if all submissions, or an adequate subset, have
been received. This design could be improved significantly if the application server maintained
a separate state table for each ongoing branch for which it has received at least one submission.

Extracting the necessary information from the container while it has already been parsed, and
aggregating this in a state table, would means that the server would not have to re-process all
received containers for each submission in a branch.

CHAPTER 11. MODEL ANALYSIS 11.2 Model Checking using XML Schema Language

11.1.2 Container Template Instance

The container schema specifies a specific DN for the assignee of each step, which means that a
container instance is bound to the specified roles. Even using multiple assignees per step this ap-
proach is not adequately flexible if a single container template instance is to support a frequently
occurring workflow process (e.g. one involving the customers of a company).

The web interface includes an authorization model that can be used to drive a template instance
system in which theDN of an assignee is specified as a authorization role (the entries in the
Roles table). When an actual workflow is to be started this template can be populated by
selecting entries from the RoleAssignment table.

11.2 Model Checking using XML Schema Language

The X-flow system is designed to use a validating parser to verify the structure and contents the
XML container, and this caries an overhead in terms of run time as validation is much slower.

The following table has been compiled with measurements from the client application (the client
application also logs the parsing time).

Table 11.2.1: Parsing Time
No. of Ele-
ments

Non-
validating

Validating File size Java heap size

143 elements 32ms 3809ms 20kb -

173 elements 32ms 3540ms 20kb -

275 elements 32ms 3700ms 24kb -

613 elements 32ms 3937ms 68kb -

208 elements 834ms 4060ms 5.8Mb min. 68Mb
Table 11.2.1 The table lists how parsing time and Java heap space is affected by number of elements and
file size.

11.2.1 Parsing Time

As the table shows, neither element count nor file size has an impact no parsing time, with the
only exception being the run time of the non-validating parser using a large file. For small file
sizes the relative difference in run time is constant, and the gap decreases when parsing the large
file.

Although there is a significant different in parsing time (non-validating parsing is approximately
100 times faster for small file sizes) it should be noted, that validating parsing is barely affected
by file size and that the parsing time is not prohibitive, so as to be unusable.

The server currently spawns a separate thread for each container submissions, and having the
thread block for 4 seconds waiting for the parser is not an optimal design. However, the server’s
XML-RPC request handler is changed to place all submitted containers on a “loading queue”
from which the parser parses containers, and passes them to the current server threads.

Assuming that the usage pattern doesn’t inhibit very large peaks, the additional processing would
be acceptable1, and due to the initial SSL handshake with mandatory client side certificate, it is
not possible to use this application response (the long processing time) to perform a denial-of-
service attack.

1Many applications employ timers of a minute or more, waiting for subsystems to complete.

X-Flow 86

http://www.x-flow.dk

CHAPTER 11. MODEL ANALYSIS 11.3 Security Analysis

11.2.2 Memory Usage

The system is implemented using the DOM API and as this API loads an entire XML file into
memory, it can use a lot of memory.

The small XML files could be loaded regardless of the amount of memory the JVM was started
with. However, it was not possible to load the large XML file without allocating at least 68 Mb
memory to the JVM. The test program used to perform the measurement performed not other
operations.

This memory requirement will likely not pose a problem when using the client application on a
modern computer (Java requires at least 64Mb to start, anyway), but it also compounds the fact
that the server will not be likely to achieve multiple per second transaction numbers2.

11.3 Security Analysis

The design and implementation presented in this report was intended to satisfy the security ob-
jectives stated in section 5.4, and the following table summarizes how well this was achieved.

Table 11.3.1: Security Level
Label Objective Design/Implementation

5.4-2 A role must be authenticated to
access the system

A role cannot access any part of the system without au-
thenticating. To access the web interface or submit a con-
tainer a user must present a certificate representing a user
account.

5.4-3 A role must be authenticated to
perform an activity

A container includes authentication data representing a
user, in the form of a digital signature in the submitted
container

5.4-3a A role need not be authenticated to
modify a document

-

5.4-3b A role must be authenticated to
commit the result of an activity

A user must authenticate (SSL handshake with client side
certificate) to submit a container. The will also authenti-
cate the digital signature before a container is processed.

5.4-4 A role must be authenticated to
access production data

See 5.4-2

5.4-5 A role must be authenticated to
access control data

See 5.4-2

5.4-6 When a role must be authenticated,
a role must also be authorized

This is not a specific feature but inherent in the design.
When a user has the ability to authenticate, the user will
access the system with a profile that is authorized.

5.4-6a A role must be authorized to com-
mit the result of an activity

See 5.4-6

5.4-7 A role must be authorized to access
production data

See 5.4-6

5.4-7a A role must be separately autho-
rized to access production data of
separate activities

A user can only access (download) containers for work-
flows in which the user is listed as a current assignee.

5.4-8 A role must be authorized to access
control data

See 5.4-6

5.4-8a A role must be separately autho-
rized to access control data of sepa-
rate activities

See 5.4-7a

5.4-9 The system must not limit a role’s
organizational capacity

-

2The memory requirement itself is not a problem but combined with the run time of a transaction, it does become
prohibitive.

X-Flow 87

CHAPTER 11. MODEL ANALYSIS 11.4 System Test

5.4-10 Production data must only be
accessible to authenticated and au-
thorized roles

This is enforced as long as the container is in the control of
the container, but once the container leaves the server, this
is not longer enforced

5.4-11 Control data must only be acces-
sible to authenticated and autho-
rized roles

See 5.4-10

5.4-12 An activity must not be refutable All activities are digitally signed

5.4-13 Only an activity can change con-
trol data

If an action is performed that is not according to the work-
flow specification, the container will be rejected by the
server

5.4-14 Only an activity can change pro-
duction data

See 5.4-13

Table 11.3.1 The table lists how the system design and implementation compares to the stated security
objectives.

11.3.1 User Authentication

It is only possible to implement user authentication, when a trusteed entity is able to verify
the presented credentials, otherwise a malicious user may be able to influence the verification
process. Hence when the provides a certificate and corresponding password to use the client
application this does not constitute authentication, and it is not treated as such by the client ap-
plication.

The client application is not usable without specifying a valid certificate and password3, but this
is only to prevent unintended misuse by a user.

User authentication is performed only when a user logs on to the website and when a client
application performs an XML-RPC request. This behavior also mimics the intended security
objectives, as it is infeasible (or at least a separate project) to ensure that malicious activity
cannot modify a container while it is outside the server’s control. This means, that a (stand alone)
authentication mechanism implemented in the client application cannot be trusted.

11.3.2 Enforcing Authorization

The security objectives for authorization state that a role must be authorized to access data. This
definition is slightly ambiguous, as it can be interpreted as always or only when system controls
are in place. In the current implementation, authorization4 and confidentiality are only enforced
when a container is in the servers control.

This enforcement could be extended by using element level encryption in the container. Instead
of storing the XML file in clear text the XML Encryption standard could be used to selectively
encrypt elements, which basically means extending the schema so that for each element, it also
allows an <EncryptedData> element.

11.4 System Test

The system test that has been performed is described in appendix G. The test covers unit testing of
important classes, as well as a functional test of the overall system. The functional test has been
limited to sequence transitions given that multi choice and multi merge are not fully functioning.

The system test has been structured to resemble the stated system requirements, hence the results
of the test closely resemble the results described in the previous sections.

3Currently, the client application will also accept any valid X.509 and its password
4Authorization includes reader access to documents in the container, and as the container is not encrypted, anyone with
access to the container can read its contents.

X-Flow 88

12
Conclusion

In this thesis I have successfully designed and implemented a prototype for a secure workflow
system, that can be used to automate processes in which each decision requires formal approval
by binding signature. Based on an analysis of a manual workflow, the system is designed to be
resilient to threats a manual workflow system is not resilient to, and be comparable on all other
identified areas.

The system automatically distributes a document container between each role in the workflow,
given an immutable workflow definition stored in the container itself. The design and prototype
support the simple transition patterns defined in [1] and a flexible multi choice pattern, though
the complex pattern is not fully implemented in the prototype. In addition, the XML schema spec-
ification of the workflow data model, also includes inherent support for the synchronizing merge.

The container uses a versioning data model, that makes every document version available after
the workflow has finished, and it is shown that this approach does not result in unmanageable
file sizes. The versioning also includes a complete transaction log of how the workflow was exe-
cuted, and the formal approval of each activity.

Signatures are created according to the XML Signature standard, and it is enforced that the result
of an activity is always signed by the executing role, and the roles certificate identifies the role in
all aspects towards the system.

The system employes an incremental trust protocol, that significantly speeds up verification of
workflow execution compared to verifying workflow execution from the start node. The verifi-
cation protocol also simplifies the complexity of the client, because several processing steps can
be performed by the server instead.

This trust protocol also ensures that a container always contains a complete audit trail of all for-
mal approvals given by the roles in the workflow. As the workflow definition also stored in the
container, using the system effectively creates a self documenting process.

Using an XML schema to specify (parts of) the workflow model abstracts the model checking
from the implementation to the XML parser, and the constraint language supported by the XML
Schema Language is more suitable for this task. A validating XML parser does incur a significant
increase in parser execution time, but as shown the increase is not prohibitive for actual use,
even with large file sizes.

Bibliography

[1] Will M.P. van der Aalst, Arthur H. M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow
Patterns. Distributed and Parallel Databases, 2002. (document), 4.1, 4.2, 4.2.1, 1, 4.2.2, 4.2.1, 12

[2] Sarbanes-Oxley. Sarbanes-Oxley Act of 2002, Public Law 107-204. http://www.sarbanes-oxley.com/.
1, 6.2

[3] Justitsministeriet. Lov om elektronisk signaturer. Retsinfo, May 2000. 1, 6.2.1, 7.3.2.1

[4] Justitsministeriet. Betænkning nr. 1456, e-signaturs retsvirkning. www.jm.dk, 2005. 1, 6.2.1, 7.3.2.1

[5] Dale Long. The Lazy Person’s Guide to Workflow II. CHIPS magazine, October 2000. 3.1

[6] Open Source. Current Version Control. http://www.cvshome.org. 3.1.1

[7] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. Version Control with Subversion.
O’Reilly, June 2004. 3.1.1

[8] Adobe Inc. Adobe Document Services. http://www.adobe.com, September 2005. 3.1.1

[9] cBrain. cBrain. http://www.cbrain.dk, September 2005. 3.1.1

[10] EMC. EMC Documentum. http://www.documentum.com, 2005. 3.1.1

[11] Microsoft Corporation. Microsoft Corporation. http://www.microsoft.com, September 2005. 3.1.1

[12] ScanJour. Scan Jour. http://www.scanjour.dk, September 2005. 3.1.1

[13] IBM. IBM Lotus Workflow. http://www.lotus.com/workflow, September 2005. 3.1.1

[14] COSA. COSA BPM. http://eng.cosa.de/index.php, 2005. 3.2.1

[15] Pallas Athena. Pallas Athena FLOWer. http://www.pallas-athena.com, September 2005. 3.2.1

[16] SAP. SAP R/3 Workflow. http://www.sap.de/, September 2005. 3.2.1

[17] Tibco. Tibco Staffware. http://www.tibco.com/, September 2005. 3.2.1

[18] FileNet. FileNet Staffware. http://www.filenet.com/, September 2005. 3.2.1

[19] Eclipse. Eclipse Platform. http://www.eclipse.org, November 2005. 3.2.1

[20] Will M.P. van der Aalst and Kees van Hee. Workflow Management : Models, Methods, and Systems.
The MIT Press, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, first edition,
2004. 4.1, 4.3, 4.3.3, 7.2.2, 7.2.5.1

[21] Will M.P. van der Aalst, Arthur H. M. ter Hofstede, A. P. Barros, and B. Kiepuszewski. Advanced Work-
flow Patterns. Technical report, Component System Architecture for an Open Distributed Enterprise
Management System with Configurable Workflow Support, 2000. 4.2

[22] Nick Russell, Will M.P. van der Aalst, Arthur H. M. ter Hofstede, and David Edmond. Workflow
Resource Patterns: Identification, Representation and Tool Support. Technical report, Expressiveness
Comparison and Interchange Facilitation between Business Process Execution Language, 2005. 4.2

[23] Stephen A. White. Process Modeling Notations and Workflow Patterns. Technical report, IBM Corpo-
ration, 2003. 4.2

[24] B. Kiepuszewski, Arthur H. M. ter Hofstede, andWill M.P. van der Aalst. Fundamentals of Control Flow
in Workflows. Technical report, Component System Architecture for an Open Distributed Enterprise
Management System with Configurable Workflow Support, 2002. 4.2.1, 4.2.1.1

[25] Martin Fowler. UML Dstilled. Pearson Education Inc., 75 Arlington Street, Suite 300 Boston, MA
02116, USA, 3 edition, 2004. 4.3.2

[26] R. Eshuis and R. J. Wieringa. Verification Support for Workflow Design with UML Activity Graphs. In
24th Int. Conf. on Software Engineering (ICSE), pages 166–176, Orlando, Florida, 2002. ACM Press,
New York. 4.3.2

[27] Alexander Knapp and Stephan Merz. Model Checking and Code Generation for UML State Machines
and Collaborations. May 2002. 4.3.2

[28] IBM. IBM Rational Software Development Platform. http://www-306.ibm.com/software/awdtools/,
2005. 4.3.2

[29] Sparx Systems. Enterprise Architect. http://www.sparxsystems.com, 2005. 4.3.2

BIBLIOGRAPHY BIBLIOGRAPHY

[30] Popkin Software. System Architect. http://www.popkin.com/, 2005. 4.3.2

[31] Institute for Software Integrated Systems. The Generic Modeling Environment.
http://www.isis.vanderbilt.edu/Projects/gme/, 2005. 4.3.2

[32] OMG. OCL 2.0 Specification. Technical report, Object Management Group, 2003. 4.3.3

[33] Sundhedsstyrelsen. G-EPJ. Technical Report v2.2-20050812, Sundhedsstyrelsen, August 2005. 5.2.1

[34] Steven Alexander. Avoiding Buffer Overflows and Related Problems. ;login: The USENIX Magazine,
29(1), 2004. 3

[35] Peter Baer Galvin. Solaris 10 Containers. ;Login: The USENIX Magazine, 30(5), 2005. 3

[36] Josef Pieprzyk, Thomas Hardjono, and Jennifer Seberry. Fundamentals of Computer Security. Springer-
Verlag Berlin Heidelberg, Heidelberger Platz 3, 14197 Berlin, Germany, 1 edition, 2003. 5.3, 6.1.1,
2, 6.1.4.1

[37] Revisionsteknisk Udvalg. RS314. http://www.fsr.dk, December 2004. 5.3

[38] Revisionsteknisk Udvalg. RS315. http://www.fsr.dk, December 2004. 5.3

[39] Charles P. Pfleeger. Security In Computing. Prentice-Hall Inc., Upper Saddle River, New Jersey 07458,
2nd edition, February 2000. ISBN 0-13-337486-6. 5.3, 5.3.1, 6.1.1, 6.1.4.1

[40] William Stallings. Cryptography and Network Security: principles and practices. The William Stallings
Books on Computers and Data Communications Technology. Prentice-Hall, Inc., Upper Saddle River,
New Jersey 07458, 2nd edition, 1999. 5.3.1, 6.1.4, 6.1.4.1, 6.3.1.1, 7.3

[41] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1 edition, 1996. 6.1.1, 6.1.2, 6.1.2, 6.1.3, 6.1.4.1

[42] Health Insurance Portability and Accountability Act of 1996. Library of Congress, August 1996. (Public
Law 104-191 104th Congress). 6.2

[43] IT- og Telestyrelsen. OCES Certificate Policies. www.signatursekretariatet.dk. 8, 6.3.1.1

[44] Mads Bryde Andersen. IT-retten. http://www.itretten.dk/, September 2005. 6.2.1

[45] IT-Sikkerhedsrådet. Digitale dokumenters bevisværdi. Technical report, IT-Sikkerhedsrådet, December
1998. 6.2.1

[46] Stephen Kent and Tim Polk. PKIX Working Group. http://www.ietf.org/html.charters/pkix-charter.html.
11

[47] B. P. Aalberts and S. van der Hof. Digital Signature Blindness - Analysis of legislative approaches
toward electronic authentication. November 1999. 6.3

[48] ObjectWeb. Enhydra JaWE: Java Workflow Editor. http://jawe.objectweb.org/, September 2005. 7.2.5

[49] Gocept. Grafical Workflow Editor for AlphaFlo. http://www.gocept.com/. 7.2.5

[50] Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. The Role of Trust Management in Distributed
Systems Security. In Secure Internet Programming, pages 185–210, 1999. 7.3.1

[51] Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. KeyNote: Trust Management for Public-Key
Infrastructures (Position Paper). Lecture Notes in Computer Science, 1550:59–63, 1999. 7.3.1

[52] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized Trust Management. Proceedings IEEE
Conference on Security and Privacy, (96-17):10, May 1996. 7.3.1

[53] Brandon Palmer and Jose Nazario. Secure Architectures with OpenBSD. Addison-Wesley, 75 Arlington
Street, Suite 3000, Boston, MA 02116, 1 edition, 2004. 7.3.1

[54] Massachusetts Government - Information Technology Division. Enterprise Technical Reference Model
- Version 3.5. http://www.mass.gov/, December 2005. 7.4.1

[55] Valoris. Comparative Assessment of Open Documents Formats Market Overview. Technical report,
European Commission, December 2003. 7.4.1

[56] Telematics between Administrations Committee. TAC approval on conclusions and recommendations
on open document formats. http://europa.eu.int/idabc/en/document/2592/5588, May 2004. 7.4.1

[57] Erik T. Ray. Learning XML. O’Reilly, 1005 Gravenstein HIghway North, Sebastopol, CA, 2 edition,
2003. 8.2

[58] OpenOCES. www.openoces.org, December 2005. 10.3.1

[59] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of reusable
object-oriented software. Addison-Wesley, Pearson Education Corporation Sales Division 201 W.
103rd Street Indianapolis, IN 46290, 2004. 3

[60] Jothy Rosenberg and David Remy. Securing Web Services with WS-Security. Sams Publishing, Sams
Publishing, 800 East 96th Street, Indianapolis, Indiana 46240, 2004. 10.5

X-Flow 91

A
Contents on CD-ROM

The supplied CD-ROM contains the following.

source_code

The source-code directory contains all sources used to develop the prototype. The prototype
has been developed using the Eclipse development tool, and the directory is simply a container
for the corresponding Eclipse project.

Apart from the net.strandbygaard.xflow.* source tree the project also contains a source
tree with the sources of Apache XML Security library (that is used to perform all XML signature
and encryption operations), and the project has been compiled against this source tree.

The source tree was included to make it easier to debug the XML signing code.

documentation

The documentation directory contains three sub directories. The javadoc directory holds the
Javadoc documentation generated using the SUN Javadoc tool. The doxygen directory holds
documentation created using Doxygen, and the schema_documentation contains documen-
tation generated from the inline documentation in the actual schema file. The schema documen-
tation includes diagrams of all major constructs in the schema.

The SUN version of the Javadoc is more suited as a reference during development, whereas the
Doxygen version makes it easier to obtain an understanding of how the system works.

www

The www directory holds all files comprising the web page, that users access to download con-
tainer files.

report

The report directory contains this report in PS and PDF formats. For online viewing, the PDF
version is recommended, as all links, cross references, and index can be used to navigate the
document.

B
Comparison of Security in Manual
and Electronic Workflow Systems

This appendix contains an evaluation of a “manual” or “paper based” workflow system. The
evaluation assumes a typical office environment, in which internal (paper) mail is distributed us-
ing the ubiquitous brown “internal mail” envelope, which is send by placing it in the “outgoing”
pigeon hole, and received by being delivered to one’s own pigeon hole.

Table B.0.1: Security in Manual Workflow System
Threat Macro Description

5.3-1 Very resilient. Mallory is an external threat, and it must be assumed that
physical security is not a problem

5.3-2 Not resilient. In a typical office environment, paper is left on desks or in
unlocked drawers, hence getting access to other people’s papers is not a
problem

5.3-3 Very resilient. As in 5.3-1 Mallory is external hence she cannot send any
documents internally, because she cannot get inside.

5.3-4 Depends on internal procedures. If a document is submitted simply by
putting it in an “internal mail” envelope and having sent it to a different
department, then it is not a problem, but if the document must be signed,
it becomes more difficult.

5.3-5 Very resilient. See 5.3-1

5.3-6 Not resilient. See 5.3-2

5.3-7 Not resilient. Alice can easily intercept Bob’s internal mail, and resend it
to Carol

5.3-8 Very resilient. See 5.3-1

5.3-9 That depends on what is being sent. If it is a printout, then creating a
duplicate is not a problem, but if it is an original invoice, creating a du-
plicate is not straight forward.

5.3-10 Depends. See 5.3-9

5.3-11 Very resilient. A manual workflow system does not become unavailable,
except if the mail clerk is out sick, and even then a substitute can easily
be found.

5.3-12 Very resilient. See 5.3-11

5.3-13 Very resilient. See 5.3-11

5.3-14 Very resilient. See 5.3-11

5.3-15 Very resilient. See 5.3-11

5.3-16 Not resilient. See 5.3-2

APPENDIX B. COMPARISON OF SECURITY IN MANUAL AND ELECTRONIC WORKFLOW SYSTEMS

5.3-17 Not resilient. See 5.3-2

5.3-18 Not resilient. See 5.3-2

5.3-19 Very resilient. See 5.3-1

5.3-20 Very resilient. See 5.3-1

5.3-21 Depends. See 5.3-9

5.3-22 Very resilient. See 5.3-1

5.3-23 Depends. See 5.3-9

Table B.0.1 The table lists how secure a manual system is in terms of the stated threat macros.

X-Flow 94

C
Use Case Diagrams

User - Get Container

User

System

Get
document

Login

<uses>

List
documents

<uses>

Connect to
engine<uses>

Download file<uses>

Access data
store

<uses>

<extends> <extends>

Figure C.0.1 The complete use case for retrieving a document from the system.

User - Submit Container

User

System

Read keyReturn
document

Login

<uses>

Sign document

<uses> <uses>

Access
Certificate

<extends>

List
documents Connect to

engine
<uses>

Access data
store

Upload
file

<uses>

<extends>

<uses>

<extends>

<uses>

<uses>

Figure C.0.2 The complete use case for submitting a document from the system.

D
The Client User Interface

This appendix describes the user interface of the client application, and gives a detailed walk-
through of what the individual components are used for.

As such this chapter also serves as a “user guide” for the client application. The first section
introduces the widget toolkit used in the GUI, and the following sections describes the individual
GUI components.

D.1 Overview

The user interface is implemented using the freely available widget toolkit Thinlet (www.thinlet.com),
that has a number of advantages compared to the standard Java Swing library. Besides being very
light weight (jar file is 40kb), its main advantage is that it allows the entire GUI to be described
as an XML document, that is parsed at run-time and used to render the application window.

Specifying a GUI as an external entity instead of writing code to generate it, makes for a much
cleaner implementation of the Viewer part of an MCV model, but it does have the disadvantage,
that all callback handlers on GUI components must be implemented in the same class (only true
for statically typed GUI objects). This means that a GUI callback handler class can grow very
large, but with the limited complexity of the current client, this is not a problem.

D.2 Screen Elements

The GUI is divided into two parts: The upper part does not change and contains functionality that
is always required to use the client, e.g. specifying a certificate. The lower part of the application
window is a tabbed area, in which each tab represents an isolated area of functionality. The
GUI is designed to enable and disable GUI components automatically, as the application state
changes, e.g. a user will be unable to submit a container before it has been signed.

D.2.1 Common Objects

The upper 30% of the application window contains the static or common GUI objects that do
not change, and which are always required. This part is shown in the following figure:

http://www.thinlet.com
http://www.thinlet.com

APPENDIX D. THE CLIENT USER INTERFACE D.2 Screen Elements

Figure D.2.1 Common fields in the GUI

D.2.1.1 Certificate Section

The certificate path is used to point to the certificate identifying the current user and must
currently be in the form of a PKCS12 file. The password field is used to enter the password
protecting the private key stored in the PKCS12.

Before the certificate is available to the client program, it must be loaded, which is done by
pressing load, upon which an initial program state is created. To the left of these fields, an infor-
mation area will print out key information about the specified certificate, after it has been loaded.

When a certificate is loaded, the Certificate and Password fields will be disabled, and the
Load button will be changed to an Unload button, which will do just that, and re-enable the
fields.

D.2.1.2 Container Section

When a certificate is loaded, the fields Container File and Document Path will be en-
abled. The former is used specify a path to the container file, that should be loaded, and the
latter should specify a folder, where the document in the container should be stored. The client
program will automatically store the newest version of a document to the specified path, once
the container is loaded (overwriting any existing version!). When both have been specified, the
container is loaded using Load.

Similar to the certificate section, the container section will also be disabled when a container is
loaded, and the Load button will be changed into an Unload button.

D.2.1.3 Menu Bar

Currently, the menu bar can only perform a few options, but including it in the design makes it
easier to extend the GUI specification at a later stage. In the file section it is possible to open
a container and exit the program, and in the settings section is shown a number of example
certificate devices.

D.2.1.4 Status Bar

The lower part of the GUI is a status bar, that is used to print status messages to the user. The status
bar is linked to the internal event model of the program as well as the enabled log levels, meaning
that the status bar will print different messages depending on the log level that is enabled.

X-Flow 97

APPENDIX D. THE CLIENT USER INTERFACE D.2 Screen Elements

D.2.2 Info Tab

The info tab is used to view state information about the currently open container, including infor-
mation about the server that is being used as broker in the workflow, and the certificate presented
by this server. This tab also includes information about the current step, and the user that signed
the document in the previous step (currently this does not handle parallel step).

Figure D.2.2 Tab to access to information about the loaded container. Here the tab is shown together with
the top part of the GUI.

The client program bases its trust model on the receipt in a received container, however, if for
some reason, a user wish to independently verify the validity of a container, this can be done
using the verify button.

Finally, a user may extract a list of all comments in the container. The client does not implement
any element encryption which means that any user will be able to view all comments.

D.2.3 Reviewing Tab

The reviewing tab is used, when a user should review a container. The container specification
includes a number of extended reviewing facilities, which have not been implemented. The
reviewing tab includes the basic functionality required to review a document, which includes
assigning it one of 3 fundamental states (approve, reject, finalize), and optionally providing a
comment (and comment file).

X-Flow 98

APPENDIX D. THE CLIENT USER INTERFACE D.2 Screen Elements

Figure D.2.3 Tab used when reviewing a document

The radio buttons in the top part control which review action, or status, should be assigned the
document in the container, and the lower part allows the reviewer to enter a comment, and
attach a file to the container.

D.2.4 Authoring Tab

The final tab is used when the document stored in the container should be modified and updated
to a new version.

Figure D.2.4 Tab used when modifying a document

The author tab is almost identical to the review tab except the review actions have been replaced
with a field in which to enter the path to the modified document, that should be added to the
container. Besides the modified document, an author also has the option of attaching a comment
and a comment file.

X-Flow 99

E
The Web Interface

This appendix describes the implementation and organization of the supporting website, and the
functionality that is available to the user and the administrator. A picture of each page, that is part
of the user interface is shown along with a brief description of the functionality available through
that page.

The first section describes the design and implementation of the website, the second section
describes common pages and user pages, and section three describes the pages used by the
administrator.

E.1 Overview

The website provides download access to currently waiting containers, and an administrator can
create and delete users and containers.

The website is implemented in PHP v4 as a separate tier between the SQL database in which
the server stores containers awaiting user action, and the client. The website was developed and
tested using the Apache (v1.3) webserver with PHP module, but should work with any webserver
that supports PHP v4.

The client-server system is backed by an SQL database, and the database schema is extended
with fields used by the web page. Specifically, the client-server system only uses X.509 certifi-
cates, and to support clients that don’t support authentication with live connect and HTTPS an
additional username/password authentication option has been added to the website. This only
has limited affect on the overall security model, as the container itself is responsible for enforcing
access control.

It should be noted that the username/password authentication method implemented here is solely
for accessing the website, and is not used anywhere else in the system.

E.1.1 Standards Compliance

The website design uses XHTML and CSS as client side presentation technology, and all code
sent to a client will validate according to the relevant W3C standards.

Given the current state of web technologies, and their market adoption, designing the presenta-
tion layer of a website is always a compromise between:

1. Functionality

2. Ease of implementation

3. Client support

APPENDIX E. THE WEB INTERFACE E.1 Overview

A web design that uses only valid XHTML and CSS will not be rendered correctly by most browser
implementations, as all common browsers have known bugs in their support of these two tech-
nologies. However, these are the core standards promoted by W3C, and consequently the ones
that should be used.

The website has been tested successfully in Internet Explorer v6, Mozilla Firefox, and Apple
Safari, all of which were able to show the pages correctly, and given the simple design of the site
most all browsers that support XHTML and CSS should be able to view the site.

E.1.2 Security

Creating a secure website that is used for much of anything else than serving public static con-
tent, is a project in itself, and has not been the focus of this thesis. Avoiding typical security
problems in website design takes a great deal of planning, and a great deal of code to handle
parameter validation, content transformation and more.

This website is intended to demonstrate the features that are required from the system, and as
pointed out in the report many functions are best handled in other systems, especially user- and
role administration. Consequently, the design of this site is vulnerable to a number of common
security problems in web applications, specifically:

• SQL injection

• Client side scripting

• HTML input validation

• HTTP parameter validation

A user will be able to execute arbitrary SQL code with the same permissions as the PHP user
accessing the database, because input from a user is used, non-validated, in SQL queries. If a
user enters e.g. ’; DELETE FROM users where username=*’ as username in the login
box, that would delete all users in the database1.

Because PHP is not a strongly typed language solving the problem using e.g. prepared statements
as is done in Java is not possible, however, the data can be checked using e.g. a regular expres-
sion to see if it contains disallowed patterns.

An administrator will be able to have a script executed in the browser of a connecting user, by
inserting a (Javascript) script into a text field that is shown to the user, and if the website is ex-
tended to allow users to enter comments, a user will be able to do this as well.

The two common approaches to solving this problem is using a character blacklist and HTML
encoding all data sent to a client. HTML encoding data sent to a client solves the problem on the
client side (e.g. no script will be executed, if it is HTML encoded), but the user can also send a
script, that will be stored in the database, and storing data HTML encoded is not a good solution
(as it links content and presentation). A blacklist solves this problem by disallowing characters
that are generally used in scripts, while at the same time rarely used in regular text (e.g. <, >,
#, $ and others).

HTTP parameter validation is an issue, because not all parameters passed as HTTP parameters
are validated, meaning it is not ensured that a user is authorized to access data that is requested.
The most obvious example is probably when a user downloads a container, where the container
to download is determined by the id passed to the page download.php. If it is not verified that
the user actually has access to the requested container, an authenticated user will then be able
to download any container in the system.

1Dropping all tables is usually not a good approach as the current database normally doesn’t have those permissions.
However, users can be deleted from the administrative interface, so the database user must have those permissions.

X-Flow 101

APPENDIX E. THE WEB INTERFACE E.1 Overview

This is one of the most common errors in website design and typically the cause, when it is
publicized that all users can see all other user profiles in website XYZ. It is validated that a
user is authorized to retrieve a certain container, by appending the active users DN (stored in the
user’s session), as a conditional on the SQL query that returns the container2. However, similar
validation is not performed on all admin pages, where it is only tested that the current user is
an administrator, hence HTTP parameter validation may be an issue for the administrative inter-
face, if the administrator user/role model is expanded to include different levels of administrators.

The impact of these issues can be mitigated if users are only allowed to login using X.509 cer-
tificates, and if id values passed to download.php are validated to ensure they only contain
numbers, as that would remove the possibility of SQL injection, which is the most problematic
of the 4 issues.

E.1.3 External Configuration

The security of the website depends on the configuration of the webserver on which it is deployed
and HTTPS is configured on the webserver itself. The webserver should be configured, so that
HTTPS is required for all pages except index.php, and login.php should attempt to request
a client certificate.

Ideally the webserver should require client certificate to establish an HTTPS connection, but
obviously this will stop username based authentication.

2By extension of the discussion concerning SQL injection, a user will also be able to perform SQL injection here.

X-Flow 102

APPENDIX E. THE WEB INTERFACE E.2 User Interface

E.2 User Interface

/l
og

ou
t.
ph

p

/c
ha

ng
ep

as
sw

or
d.
ph

p

Lo
go

ut
Lo

gi
n

C
ha

ng
e

Pa
ss
w
or
d

Lo
go

ut

Lo
gi
n

D
ow

nl
oa

d
C
on

ta
in
er

/l
og

in
.p
hp

/l
is
t.
ph

p

C
ha

ng
e

Pa
ss
w
or
d

Figure E.2.1 The figure shows the sitemap, and page interaction of the pages that are used by a normal
user of the system. A user has the option of logging in, logging out, changing password, and viewing/down-
loading containers.

X-Flow 103

APPENDIX E. THE WEB INTERFACE E.2 User Interface

The website contains three pages that are common to a regular user and an administrator: login,
logout, and change password.

E.2.1 /login.php

It is possible to login from the main page, using the username/password dialog in the left side of
the screen, or using the certificate option below. Before a user (or an administrator) can login, a
corresponding user account must be created in the users table.

A user is logged in using username and password by comparing the password supplied by the
user, to that stored in the database (of the specified user). If a user logs in using a certificate, the
webserver forces an SSL context, and the client DN in this context is then looked up in the user
table. In either case, if a match is found, the user is logged in (by creating a PHP session, and
setting a variable in this session).

The login dialog is presented by index.php, and the actual login is performed by login.php

E.2.2 /changepassword.php

The change password dialog allows the user to change the current password to a new one. The
dialog does require the user to type the new password twice, and the two entries must match, but
the system does not enforce any complexity requirements, and even the empty password may be
chosen.

The change password dialog is presented and performed by changepassword.php.

E.2.3 /logout.php

The logout function is available as a left side menu selection in all pages of the website. When
a user logs out, all variables stored in the user’s session is unset, and the session is destroyed,
however a user may still access previously visited pages using the back-button.

The logout function is performed by logout.php

E.2.4 /list.php

From this page the user is able to download waiting containers. A container is downloaded by
clicking the appropriate link and when a user submits a modified container, the old one is re-
moved from the user’s current listing.

The list of waiting containers is presented by list.php, and a container is downloaded by
calling lib/download.php with the desired container as parameter.

X-Flow 104

APPENDIX E. THE WEB INTERFACE E.3 Administrator Interface

E.3 Administrator Interface

E.3.1 Managing Users

D
el

et
e

M
an

ag
e

U
se

rs

M
ai

n
Pa

ge

C
re

at
e

U
se

r

D
el

et
e

U
se

r

C
re

at
e

/a
dm

in
.p
hp

/u
se
ra
dm

in
.p
hp

/c
re
at
eu

se
r.p

hp

/d
el
et
eu

se
r.p

hp

Figure E.3.1 The figure shows the sitemap, and page interaction of the pages that are used by an adminis-
trator to manage users in the system. From these pages an administrator can view, create, and delete user
accounts in the system.

X-Flow 105

APPENDIX E. THE WEB INTERFACE E.3 Administrator Interface

E.3.1.1 /useradmin.php

This is the main page for all user administration. From this page, an administrator can see all
created users, and there are options to create and delete a user account.

E.3.1.2 /createuser.php

The dialog used by an administrator to create a user account. The dialog contains 5 fields, and
while it is not tested, all fields should be filled out, as they are all required by the system.

When the administrator presses create, a user account is created in the database, and useradmin.php
is shown again.

E.3.1.3 /deleteuser.php

The dialog used by an administrator to delete a user account. The administrator is presented by
a list similar to the one shown by useradmin.php, but in this list, the username field is now
a link, and clicking on a username, will delete the corresponding user in the database. Now
warning box is presented before the user is deleted.

When the user is deleted useradmin.php is shown again.

X-Flow 106

APPENDIX E. THE WEB INTERFACE E.3 Administrator Interface

E.3.2 Managing Roles

C
an

ce
l

M
od

ify
 R

ol
es

M
an

ag
e

R
ol

es

M
ai

n
Pa

ge

D
el

et
e

U
pd

at
e

D
el

et
e

D
el

et
e

/a
dm

in
.p
hp

/r
ol
ea
dm

in
.p
hp

/r
ol
ea
dm

in
.p
hp

?m
od

ify
R
ol
eA

ss
ig
nm

en
t

Figure E.3.2 The figure shows the sitemap, and page interaction of the pages that are used to manage
roles in the system. When selecting Role Management a page is presented, that shows an overview of
permissions, roles, and assignments. From this page it is possible to modify each part.

X-Flow 107

APPENDIX E. THE WEB INTERFACE E.3 Administrator Interface

E.3.2.1 /roleadmin.php

An administrator uses this page to change all aspects of roles and their assignment, including
creating and deleting roles, and changing user role assignment.

The page is implemented with two states, one representing the overview page, and the other the
modify page.

X-Flow 108

APPENDIX E. THE WEB INTERFACE E.3 Administrator Interface

E.3.3 Managing Workflows

/a
dm

in
.p
hp

D
el

et
e

D
el

et
e

M
an

ag
e

U
se

rs

M
ai

n
Pa

ge

/w
fa
dm

in
.p
hp

Figure E.3.3 The figure shows the sitemap, and page interaction of the pages used by an administrator to
manage currently active workflows. An administrator has the option of downloading all containers in the
system, and the administrator can delete active containers.

X-Flow 109

APPENDIX E. THE WEB INTERFACE E.3 Administrator Interface

E.3.3.1 /wfadmin.php

From this page, an administrator can delete active containers. Once a container has been final-
ized, it is locked in the system, and the admin can no longer delete it.

X-Flow 110

F
Admin Tool

The command line tool XfAdminTool.java can be used to perform a number of actions, that
are necessary to “bootstrap” a workflow, such as getting a container “into” the workflow. The
full usage of the command line tool is shown below:

usage: XflowClient
-certificate PFX file containing certificate and private key
-clean Clean instance data
-cleanall Clean instance data and documents
-comment Provide a comment
-container Container file
-file Modified file to be submitted
-getCommentDocument Get the specified comment file
-getComments Get a list of all comments in the container
-getDocument Get the document stored in the specified element
-init Convenience method to clean and sign (info,

workflow, 1st receipt) a template
-password Password for PFX file
-receipt Generate a new receipt
-sign Sign an element in a container (enveloped)
-submit Submit a completed container
-test Start a test server, and use this (must be

specified in the container)
-validate Validate the specified container

The tool is not very intelligent in its argument handling, hence only one function should be at-
tempted at the same time (e.g. don’t call it with both -sign and -receipt).

Invoking the tool with a function that works on a container, requires that the container path
is specified using the parameter -container, and additionally if signing must be performed
(-sign, -receipt), a certificate and password must also be specified using -certificate
and -password.

The -comment parameter, and all -get* parameters have not been implemented, but the client
program will fill in these gaps.

G
System Test

System test is divided into two parts:

• Unit testing that is used to perform structural testing, and which is developed simultane-
ously with the application code.

• Functional testing that tests the intended functionality of the application, and which is
performed on the finished system, possibly using dedicated scripts or programs

As part of completing the X-flow system, both unit- and functional testing has been performed,
and the following sections describe the scope of each test phase.

Unit testing has only been performed on parts of the Java code.

Because the XOR-split and synchronizing merge patterns have not been fully implemented, it is
not possible to test a workflow with branches.

G.1 Test Data

The system has been tested using two different workflow specifications, that are representative of
two common use cases:

• Sequential modification of a document (sequential process)

• Sequential modification with parallel review and final approval (parallel review)

G.1.1 Sequential Process

This is probably the most common of all organizational processes, and exist whenever one person
writes a document that others must either change or review. The following use case is assumed:

As part of a project an employee prepares a draft report, which he sends to the
person heading the project, for his/her view and feedback. Upon receiving this
feedback, the employee then incorporates this information into the draft docu-
ment, removes the draft status, and forwards it to the project leader for publish-
ing as part of the official project documentation.

Expressed formally as a UML state diagram, this process can be expressed as:

http://www.x-flow.dk

APPENDIX G. SYSTEM TEST G.1 Test Data

M
odify

R
eview

Finalize

M
odify

Figure G.1.1 UML diagram of sequential process

The label of each state denotes the action that takes place in this state. This process description is
then mapped to the following system model (graphical representation of the container instance):

D3 D4D2D1

ReviewModify Modify Finalize

SG1 SG2 SG4SG3

S1 S2 S3 S4

Figure G.1.2 System internal model of workflow in G.1.1

Each UML state is mapped to a <xf:stepGroup> element, with the step group type (<sequence>
or <parallel>) determining the number of possible steps (n = 1 or n > 1) in the group. In this
case, only one step occurs in each group.

The representation in G.1.1 also shows the values of the <xml:id> references pointing to each
element in each state.

G.1.2 Unit Testing

The unit testing is focused on member functions that access or update data elements, e.g. the
value of an XML element. Most class methods can be categorized as either:

1. modifying the overall class model, or

2. performing low level operations on the in-memory org.w3c.dom.Document instance of
the current container file.

The unit tests accompanying the X-flow system only focus on the methods in 2, and test of higher
level methods is primarily addressed by the functional testing.

The methods that perform high level operations are less well suited for unit testing as it becomes
much more difficult to setup a well defined test case, and because the actual unit (of code) under
test isn’t very well defined. E.g. if a high level method calls a number of other methods it is
difficult to determine which code unit is actually being tested.

To some extent functional tests will also test higher level methods, as a number of these closely
represent the intended functionality.

G.1.2.1 Test Setup

Unit testing is performed using the Junit unit testing library, and the unit tests have been developed
according to established practices for using Junit, which implies:

• There is no cross section between test- and production code

• The code is divided into separate source trees (and packages)

X-Flow 113

http://www.x-flow.dk
http://junit.org/
http://junit.org/

APPENDIX G. SYSTEM TEST G.2 Test Results

• Each unit under test is named as Test<item>, e.g. the unit test corresponding to the
source file Workflow.java becomes TestWorkflow.java, and a test -method to test
a member in Workflow.java is named TestMember

G.2 Test Results

The following sections present the result of the system case.

G.2.1 Unit Test

Unit tests have been implemented for the following classes (8 of 83 classes).

• XflowTrustAPI.java

• SimplePKCS12File.java

• PKCS12File.java

• Step.java

• Container.java

• ClientContainer.java

• ClientWorkflowEngine.java

Time did not permit implementing unit tests for all classes, hence the classes that comprise the
major part of the primary code path (of the client) was chosen.

G.2.2 Functional Test

This section presents the results of the functional test, which are summarized in table G.2.1.

The table contains a test reference, a description of each functional test case, the result of the
test, and a description of the test result, if the test failed.

The result is represented by a three-color code (green , yellow , and red), where green means

that a test completed without problems, yellow means that the test completed but only with

limited success, and red means that the test was not successful.

The reference links the test case to a labeled part of the requirements specification, design, or
implementation, covered in one of the earlier chapters of this report.

Table G.2.1: Functional Test

Test Description Comment Ok

Web Access (User)

Log in to the web site using username and pass-
word

Log in to the web site using certificate

Change current user password

Log out of the website (username/password)

Log out of the website (certificate) User must close browser before actually being
logged out. This is common to most all web
applications that use client-side certificates

View waiting containers

Download waiting container

Web Access (Administrator)

X-Flow 114

APPENDIX G. SYSTEM TEST G.2 Test Results

Log in to the web site using username and pass-
word

Log in to the web site using certificate

Change current user password

Log out of the website (username/password)

Log out of the website (certificate) User must close browser before actually being
logged out. This is common to most all web
applications that use client-side certificates.

View Site Statistics Not implemented

User Management

Create a new user

Modify an existing user Not implemented

Delete an existing user

Role Management

View assigned roles

Modify assigned roles

Add user-role assignment Not implemented

Assign new role Limited to 5 roles

View role privileges

Assign role privilege This feature is available in the back-end, but
has not been shown on the page.

Delete role privilege

View available roles

Add role Not implemented

Delete role

Workflow Management

View list of active containers in sequential steps

Download active container in sequential steps

Delete active container in sequential steps

Reassign active container in sequential step Not implemented

View list of active containers in parallel steps

Download active container in parallel steps

Delete active container in parallel steps

Reassign active container in parallel step Not implemented

View list of finalized containers

Download finalized container

View information about a container Indirectly supported, by downloading the
container and viewing it with an XML editor or
the client tool.

Client Application (XfClient)

Load certificate

Load container

View information about current receipt

View information about the previous user Is part of the implemented event model, but is
currently not extracted from the loaded
container.

View comments in container

Extract comment files from container Not implemented

Extract the current document from the container

Add a modified document

Add a comment

Add a comment document

Sign a container

X-Flow 115

APPENDIX G. SYSTEM TEST G.2 Test Results

Submit a modified container

Submit a reviewed container

Access meta data element No meta data support is implemented (dublin
core and controlled vocabulary from the
schema spec.). Regular comments and
comment files are supported.

Workflow Server (Xflowd)

Validate received container The system is unable to validate a container
that contains joined steps (multiple submissions
combined into one container). A joined step
will always validate

Select next step group in a sequence

Select next step group in after a parallel step

Select next step group in a parallel step The system is unable to join multiple
submissions in a parallel process into one
document. The system also does not know how
to determine if the parallel process has ended.

Conditionally select next step group Expression evaluation is implemented as part of
ProcessorThread.java, but
Selector.java has not been implemented,
which means that the first expression always
evaluates to true

CLI administration tool (XfAdminTool)

Sign an element in a container

Generate new initial receipt on container tem-
plate

Submit an initialized container into the work-
flow

Implementation is not very robust, and will
only handle certain cases.

Submit a container as a client

List all comments in a container

Retrieve document from container

Retrieve comment document from container Not implemented

Validate a container Will only validate signatures within the
container. No other validation is performed.

Table G.2.1 Results of the functional test.

X-Flow 116

H
Source Code

The X-flow system is developed on Unix using the Eclipse development environment (the Eclipse
project is provided on the supplied CD).

The system is specifically designed for Java version 1.5, as it makes use of type safe lists and the
updated iterator interface, both new in Java version 1.5. This also means that the system will only
compile and execute on a Java version 1.5 platform.
The source code is organized in the following namespaces:

net.strandbygaard.xflow.client(.*) Implements functionality that is only used by the client pro-
gram

net.strandbygaard.xflow.server Implements functionality that is only used by the server

net.strandbygaard.xflow.container Implementation of container specification

net.strandbygaard.xflow.security All signature and encryption functionality is implemented by
this package.

net.strandbygaard.xflow.utils Assorted functionality, including a number of XML utility classes

net.strandbygaard.xflow.engine Is a client side (mostly) implementation of an engine that pro-
cesses the container specification

http://www.x-flow.dk

Index

.Net, 17
<container>, 80
<document>, 68, 70, 74, 79, 80
<ds:Signature>, 70
<receipt>, 70–74, 78–80
<stepGroup>, 65–68, 70, 72–74, 79
<transactionlog>, 62, 69, 71, 79
<workflow>, 65, 70, 73, 74

Abstract Syntax Notation, 59
access, 37, 40
access control, 51, 76
ACL, 16, 18
ActiveCard, 34
ActiveX, 75
activity, 11, 20–23, 37, 39, 48, 88
activity diagram, 26–28, 51
AD, 18
Adobe, 18, 19
Adobe Document Services, 15, 16
AES, 40
AICPA, 46
algorithm, 40, 41, 43, 58, 60, 70

asymmetric, 41
symmetric, 41

Alice, 34, 35
Amazon.com, 22
AND, 29
AND-join, 23, 85
AND-split, 23, 29, 85
Apache, 77, 78, 92, 100
Apache Foundation, 62
Apache Lenya, 15
Apache Xerces, 76
Apache XML Security, 76, 82
API, 11, 18, 76, 77, 80, 82, 87
application domain, 13, 22, 56, 63
application server, 76, 77
application state, 51
applied cryptography, 40
arbitrary, 25
ARM, 58
ASN.1, 59, 76
attack, 76, 83
attacker, 76
audit, 34
audit log, 55
audit trail, 62, 89
auditing, 16, 55
authenticate, 39
authentication, 16, 18, 35–37, 39, 41, 53, 54,

100

author, 56
authorization, 16, 18, 35–37, 53, 54, 62
availability, 35, 53, 54
available, 36

B1456, 44
base64, 59, 63, 69
basic usage, 82
Berkeley, 77
binary, 53, 60
BitKeeper, 15
BLOB, 78
Blowfish-128, 58
Bob, 34, 35
BPEL, 52
BPM, 16
brute force, 40
buffer overflow, 77
business process, 20, 22

C++, 62
CA, 44–46, 83
canonicalization, 82
CAPI, 76, 80, 81
Carol, 34, 35
CASE, 28
case handling, 22
cataloguing, 22
cBrain, 15
CD-Card, 76
cell phone, 57
certificate, 53, 76, 82, 83, 97

authority, 44–46, 83
policy, 44
practice statement, 44
qualified, 44
revocation list, 45, 83

certification, 39
cipher, 40, 42

text, 40, 41
Citeseer, 22
class, 81
class loader, 82
client-server, 10
CMS, 14, 15
compile, 117
compromise, 41
computational power, 57
concurrency, 23
concurrent, 23
Concurrent Versions System, 15
conditional, 22

INDEX INDEX

confidentiality, 35, 40, 41, 55
container

document, 89
control data, 20, 37, 87, 88
control flow, 20
controlled vocabulary, 63
CP, 44
CPS, 44
CRL, 45, 83
cryptographic hardware, 58
cryptography, 40
CSS, 75, 100, 101
CVS, 15, 60

Danske Bank, 34
database, 77, 78

schema, 77
DB, 77
decrypt, 40, 41
decryption, 40, 41
default deny, 36, 76
denial of service, 83
DER, 80
DES, 40
desktop computer, 57
digital certificate, 42
DN, 53, 63, 79, 83, 84, 86
Document Object Model, 77
document support, 56
Document Type Definition, 60
DOM, 59, 77–80, 82, 87
Domino Workflow, 15, 16
DoS, 83
Doxygen, 92
DRM, 54
DSA, 43
DTD, 60
Dublin Core, 63, 64

e-mail, 56
ECDSA, 43
Eclipse, 92, 117
EJB, 76
electronic document, 38
electronic documents, 6, 7
element

metaDataType, 63
roleType, 63

EMC, 15, 16, 19
EMC Documentum, 15, 16
encoded, 69
encryption, 40, 41, 43

asymmetric, 41
symmetric, 40, 41, 58

endpoint, 62
EPJ, 33
ERP, 6
eToken, 80
European Commission, 57

EuroTrust, 44
exception handling, 22
exploiting, 57
external reference, 61

fabrication, 36
FESDH, 15
FileNet, 16
financial statement, 55
financial system, 56
financial transactions, 6
FIPS 140-3, 34
Firefox, 75, 101
firewall, 76

policy, 76
flow control, 22
FLOWer, 16
forgery, 39
FQDN, 64
FreeBSD, 34
FTP, 83
functional test, 114

GlobalSign, 45
graphical, 51

modelling language, 26
notation, 26

GUI, 82, 96

hardware, 76
hash, 42
hierarchy, 62
HTML, 101
HTTP, 64, 76, 82, 83, 101, 102
HTTPS, 76, 83, 100, 102

identification, 39
identify, 39
identity, 42, 45
IdM, 32
IDS, 83
IETF, 45
immutable, 89
impersonation, 36
implementation, 52
information security, 35
infrastructure, 18
integrity, 35, 42
interception, 36
interface, 11
Internet, 76
Internet Explorer, 75, 101
interruption, 36
intrusion detection

system, 83
invalidate, 62
invoice, 6, 56
irrefutable, 42
IT-infrastructure, 53, 55

X-Flow 119

INDEX INDEX

IT-security, 34, 35
iterator, 117

Java, II, 17, 59, 62, 75–77, 80, 81, 83, 86, 87,
96, 117

Java Native Interface, 81
Javacard, 58
Javadoc, 78, 92
Javascript, 101
JNI, 81
JSP, 76
Junit, 113
JVM, 76

key, 40–42, 45
distribution, 41, 42, 45
management, 41
private, 75, 76
secrecy, 45
secret, 40
signing, 75

key pair, 42
Keystore, 80
Konqueror, 75

L417, 44
LDAP, 16, 18
least privileges, 45
legal force, 44
legal framework, 43
legislation

current, 44
library, 76
Linux, 16, 17
log4J, 83, 84
logging, 16
login, 53
Lotus Notes, 15

Mac, 16
malicious code, 32, 34, 57
Mallory, 34, 35
man-in-the-middle, 36
Massachusetts, 57
MCV, 96
memory, 77
message, 40, 41

integrity, 41
meta data, 20
Microsoft, 18, 19, 60, 76, 77, 80

BizTalk, 14
Office, 17
Outlook, 15
Sharepoint, 15

model checking, 28
Model View Controller, 82
Mozilla, 75, 101
multi choice, II, 29, 65, 80, 85, 88, 89
multi merge, II, 80, 85, 88

MVC, 82
MySQL, 77

namespace, 71, 77
National IT and Telecom Agency, 44
National Security Agency, 40
NIST, 40, 43
NSA, 40

object, 77
object constraint language, 28
Object Management Group, 27
OCES, 6, 44–46, 56, 75, 76, 80
OCL, 28
Office, 77
official document, 39
OMG, 27
OpenBSD, 34, 53
OpenOCES, 81
OpenOffice, 77
OpenSign, 81
OpenSSL, 80
operating system, 75
OR, 29
OR-join, 24, 85
OS, 76, 77
OS/400, 17
OTP, 34

Pallas Athena, 16
Palm Pilot, 58
parse, 77
parser, 59–61
passport, 39
password, 18
pattern, 81

sequence, 18
PDA, 57, 58
PDF, 16, 17, 58, 92
PEM, 80
Petri Net, 26–28, 51
PGP, 45
PHP, 100, 101
phpCollab, 15
physical access, 54
physical domain, 39
physical machine, 54
PKCS11, 58, 76, 81
PKCS12, 76, 80, 97
PKI, 44–46
PKIX, 45
platform, 16, 56
platform support, 57
plugin architecture, 81
policy, 35, 36
precondition, 31
price, 16
private key, 42
process, 51

X-Flow 120

INDEX INDEX

production data, 21, 28, 37, 53, 87, 88
programming

paradigm, 83
programming language, 76
protocol, 62, 76, 83
PS, 92
public-key

authentication, 41
encryption, 43

public-key encryption, 41
public-key infrastructure, 45
purchase order, 6
PwC, 60

query, 60, 71

RAR, 56
RBAC, 16, 18
RDP, 58
regular expression, 71
Relax NG, 60
replay, 36
reproduction, 39
resource

allocation, 22
constrained device, 57
constraint, 57

resource starvation, 83
risk analysis, 34
role, 21, 39–41, 53, 54, 77, 89
routing, 20, 83
RSA, 34, 41
run-time, 52

S/MIME, 14, 41
Safari, 101
SAP, 15
SAP R/3 Workflow, 16
SAX, 72, 77
scalability, 29
scale, 76
Scan Jour, 15
schema, 60–62, 64, 71
Schematron, 60
searchable, 77
SEC, 6
secure, 7
secure hardware, 33
SecureID, 34
Securities and Exchange Commission, 6
security, 18, 39, 76, 83

model, 41
security analysis, 31
security component, 76
security level, 33
security model, 18
security objective, 31, 36
self documenting, 52
SEQ, 16

sequence, 65, 68, 72, 73, 85
server infrastructure, 57
Service-Oriented architecture, 83
servlet, 76
session binding, 83

late, 83
SGML, 60
shared key, 40
signature, 18, 19, 39, 42, 43, 53, 54, 73, 82,

89, 92
detached, 61
electronic, 44
enveloped, 61, 73
enveloping, 61
scheme, 43, 53, 54

signature scheme, 53
Signatursekretariatet, 44
Simple Object Access Protocol, 83
Sitecore, 15
smart-card, 58
SMTP, 83
SOA, 83
SOAP, 62, 83
Solaris, 16
source code, 92, 117
SQL, 77, 100–102
SSH, 41, 43
SSL, 83, 84, 86, 87
Staffware, 16
standalone, 76
state diagram, 27
Subversion, 15
SUN, 92
Sun Solaris, 34
SVN, 15, 60
swim-lane, 28
Swing, 96
synchronization, 23

barrier, 23
synchronizing merge, 29, 65, 89, 112
system architecture, 56
system test, 112

TAR, 56
TDC, 44, 76
TDC Certificeringscenter, 44
terminal

dump, 58
protocol, 58

Texas Instruments, 58
Thinlet, 96
threat

agent, 32, 34
level, 34
macro, 34, 35, 38

threat macro, 34
Tibco, 16
token, 81
transaction log, 55

X-Flow 121

INDEX INDEX

transaction management, 22
transition, 20–24
transition pattern, 18, 21–24, 26–29, 52, 65,

68
arbitrary cycles, 25
cancel activity, 25
cancel case, 25
complex, 22, 24, 25, 29, 49
deferred choice, 25
discriminator, 25
exclusive choice, 22, 24
implicit transition, 25
interleaved parallel routing, 25
milestone, 25
multi-choice, 25
multi-merge, 25
multiple instances, 25
parallel split, 22, 23
sequence, 22, 23, 27
simple, 22, 24–28, 49
simple merge, 22, 24
synchronization, 22, 23
synchronizing merge, 25

trojan horse, 34
trust, 45, 89
trust model, 39, 53

binary, 53
type safe, 117
type system, 71

UML, 26–28, 51, 112, 113
unalterable, 42
unforgeable, 42
Unified Modelling Language, 26, 27
unique, 42
unit test, 113, 114
Universal Resource Identifier, 82
Unix, 16, 17, 117
URI, 61, 78, 82
URL, 64
use case, 8, 80, 95
user account, 75
user administration, 32
user directory, 11
user management, 11
username, 18

validate, 60
Valoris, 57
verification, 42, 61, 62, 70
VeriSign, 45
version control system, 14
virtual machine, 76
virus, 34
Visual Source Safe, 15
Visual WorkFlo, 16
VM, 77
VmWare, 34
VNC, 58

VSS, 15

W3C, 60–62, 71, 100, 101
web service

security, 83
webserver, 76, 100, 102
website, 83
WebTrust, 46
Windows, 16–19, 34, 58
Word, 56
workflow, 10–15, 18–46, 48–52, 54–57, 59–

62, 64–66, 70–73, 85, 86, 88, 89, 93,
111, 112

engine, 14
expressability, 16
process definition, 20, 21
system, 7, 13–15, 20

WS-routing, 83
WS-security, 83

X-flow, 8, 10, 15, 19, 28, 29, 31, 32, 34, 60,
61, 71, 76, 77, 81, 83, 86, 112, 113,
117

X.509, 14, 16, 18, 19, 43, 45, 46, 54, 56, 63,
80, 81, 88, 100, 102

Xen, 34
Xerces, 59, 78
XHTML, 75, 100, 101
XML, II, 7, 8, 59–63, 68, 71, 72, 76–79, 82,

86–89, 92, 96, 117
DTD, 60
schema, 60–62, 64, 71
schema language, 60
Signature, 61, 62, 76, 77, 81, 82, 89

XML Schema, 76
XML Schema Language, 60
XML Signature, 61, 62, 76, 77, 81, 82, 89
XML-RPC, 83, 86, 88
xml:id, 62, 67–69, 71–74, 79, 80
XOR-join, 68
XOR-split, 24, 68, 85, 112
XPath, 60, 68, 71, 80
XUL, 75

ZIP, 56
Zope, 15
zOS, 17

X-Flow 122

	Abstract
	Sammenfatning
	Preface
	Introduction
	Problem Definition
	Setting the Stage
	Thesis Overview
	Chapter Organization

	Domain Description
	Taxonomy of Current Systems
	Workflow Systems
	Competitive Analysis
	Platform Requirements
	Workflow Capabilities
	Security
	Price
	Summary

	Workflow Systems
	Defining a Workflow
	Transition Patterns
	Simple Transition Patterns
	Complex Patterns

	Graphical Representation of Workflows
	Petri Nets
	Unified Modelling Language (UML)
	Extending the Models

	Document Workflow Support
	Optimizing Workflow Specifications
	Document Aging
	Document Versioning

	Security Analysis
	Preconditions
	Threat Agents
	Organizational Process and Colluding Users
	Platform Security

	Threat Macros
	Classification of Macros

	Security Objectives
	Comparison to Manual Workflows

	Identification of Role
	Applied Cryptography
	Symmetric Encryption
	Asymmetric Encryption
	Public-Key Authentication
	Digital Certificates

	Legal Framework
	Current Legislation and Market Adoption

	Current PKI Models
	Trusting a Certification Authority

	Summary

	Requirements Capture
	Use Case Analysis
	Workflow
	Workflow Activities
	Process Support
	Signature Scope and Ordering
	Error handling
	Workflow Specification
	Workflow Administration

	Security
	Trust Model
	User Identification (Authentication and Signature)
	Access Control (Authorization)
	System Availability
	Document Confidentiality
	System Auditing
	Version Control

	System Architecture
	Document Support
	Platform Support

	Container Specification
	Container Format
	Versioning Model

	Specification Format
	Data Model Design
	Workflow Support
	Verification Protocol
	XML Signature

	XML Schema Design
	General Structure
	Common Schema Elements
	Server Endpoint (<info>)
	Workflow Specification (<workflow>)
	Document Versions (<document>)
	Signature Protocol (<transactionlog>)
	Controlling Attribute and Element Values
	Schema Namespaces
	Sealing the Container Structure

	Creating a Container Instance
	Creating a Workflow Specification
	Adding the Initial <receipt> Element
	Adding a Subsequent <receipt> Element

	Secure Workflow Model
	System Architecture
	Client Interface
	Client-Server Communication
	Application Server
	Database

	XML Programming Model
	User Interface

	Model Implementation
	Accessing the Container
	Parser Configuration
	Loading A Container (Client)

	Workflow Engine
	Selecting the Current Step (Client)
	Verifying the Current Step (Server)
	Multi choice and -merge Container (Server)

	Certificate Access
	Certificate Device Plugin Architecture

	Signing and Verification
	Signing an Element
	Verifying a Signature

	Client-Server Communication
	Audit Trail
	Web Interface

	Model Analysis
	Workflow Support
	Supported Transitions
	Container Template Instance

	Model Checking using XML Schema Language
	Parsing Time
	Memory Usage

	Security Analysis
	User Authentication
	Enforcing Authorization

	System Test

	Conclusion
	Bibliography
	Contents on CD-ROM
	Comparison of Security in Manual and Electronic Workflow Systems
	Use Case Diagrams
	The Client User Interface
	Overview
	Screen Elements
	Common Objects
	Info Tab
	Reviewing Tab
	Authoring Tab

	The Web Interface
	Overview
	Standards Compliance
	Security
	External Configuration

	User Interface
	/login.php
	/changepassword.php
	/logout.php
	/list.php

	Administrator Interface
	Managing Users
	Managing Roles
	Managing Workflows

	Admin Tool
	System Test
	Test Data
	Sequential Process
	Unit Testing

	Test Results
	Unit Test
	Functional Test

	Source Code
	Index

