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Abstract— A distance field is a representation where at each agreement that distance fields provide the most suitable ant

point within the field we know the distance from that point to
the closest point on any object within the domain. In additio to
distance, other properties may be derived from the distancéeld,
such as the direction to the surface, and when the distance Fikis
signed, we may also determine if the point is internal or exteal to
objects within the domain. The distance field has been foundtbe
a useful construction within the areas of Computer Vision, Piysics
and Computer Graphics. This paper serves as a timely exposin
of methods for the production of distance fields, and a reviewof al-
ternative representations and applications of distance fids. In the
course of this paper we present various methods from all thre of
the above areas, and we answer pertinent questions such Eew
accurate are these methods compared to each other?, How simple
are they to implement? and What is the complexity and run-time of
such methods?

Index Terms— distance field, volume, voxel, fast marching
method, level-set method, medial axis, cut locus, skelet@ation,
voxelization, volume data, visualization, distance tranferm.

I. INTRODUCTION

aliased representation of geometric objects for the pepos
Volume Graphics The termVolume Graphicsvas first intro-
duced by Kaufman, Cohen and Yagel in 1993 [KCY93], where
they present the advantages of using volumetric models. Al-
though they were working with binary representations which
suffered from aliasing, many of the methods they proposéd an
discussed have adapted well to distance fields. Volume Graph
ics is now a subject area in its own right, demonstrated by a
biannual “WVolume Graphics” conference series which sthate
Swansea in 1999 [CKY00]. However, distance fields have re-
cently found many applications unrelated to traditiondlvee
graphics. For instance, they can be used for collision tietec
correcting the topology of meshes or to test whether a simpli
fied mesh is within a given distance threshold of the original

A distance field representation of an object can be particu-
larly useful in situations where algorithms provide for fhst
processing of three dimensional objects, and so this péyadir s
concentrate on the methods by which distance fields are pro-
duced, and the applications that can use these distancetield

Perhaps the earliest appearance of distance fields in theagcelerate modelling, manipulation and rendering tearesq

erature is the 1966 image processing paper by Rosenfeld &qé@rt from a survey of the literature in those areas, the main
Pfaltz [RP66] where they present the application of a chamfeontributions of this paper are a summary of some of the very
distance transform to an image, and also create a skeletch whatest results in the production and use of distance fieldsya
is a minimal representation of the original structure. 8itien, simplified version of the Fast Marching Method (FMM) and the
many authors have improved the accuracy of chamfer distariggt thorough comparison of FMM and its variants, Chamfer
transforms, and have introduced alternative algorithrshss Distance Transforms (CDTs) and Vector Distance Transforms
vector distance transforms, fast marching methods and le(¥¢DTs) on both error and speed.
sets. Most of the earlier work concentrated on two dimeraion The remainder of this paper is organised as follows. In Sec-
image processing, but as three dimensional data sets giew intion 1l, we present some properties of the continuous distan
portance, latterly much research has been targeted atgsinge field. Section Ill acquaints the reader with the main appneac
this and higher dimensional data. The literature seemsdbroato calculating discrete distance fields. Aspects such as com
split between the Computer Vision community (for image prgputing the distance field directly from the data, and conti
cessing), Physics community (for wavefront, Eikonal egumt the sign for a signed distance field are accounted in Sedtion |
solving schemes) and Computer Graphics community (for oA: Using a shell boundary condition as a basis it is possible
ject representation and processing). This paper will d@w tto create distance fields using the vector and chamfer amsf
gether the literature from these communities and will, fa t methods and the fast marching methods of Section IlI-B. Sec-
first time, independently and thoroughly compare the variotion IlI-F provides the first in-depth comparison of all tarap-
main algorithms and approaches. proaches — vector, chamfer and fast marching methods on a va-
For the purposes of this paper, we are most interestedriety of data sets. A thorough analysis of both time and d@sror
the application of algorithms using distance fields for ttmdm given. Section IV examines alternative representatioeises
elling, manipulation and visualisation of objects for Cargy for distance fields including Adaptive Distance Fields (ApF
Graphics, and so we shall emphasise methods that enable doshkless compression schemes, wavelets, and the Comjete D
processes. Recently, it seems that there is general wiglgbpritance Field Representation (CDFR). The main applicatieasir



using distance fields are briefly examined in Section V. Bmal C. Continuity and Differentiability

we conclude this paper with a discussion in Section VI. The signed and unsigned distance functions of a given sur-
face are continuous everywhere. This follows from the trian
) ) ] ] gle inequality. However, neither is everywhere differabte.
A. The Continuous Signed Distance Function This raises the question of where the signed distance famcti
Assuming that we have a sEt we first define theinsigned is differentiable which is a question a number of authors have
distance functioms the function that yields the distance from gonsidered.
pointp to the closest point ik: In [KP81] it is demonstrated that for@" surface ¢ > 1),
1) the signed distance function is alé% in some neighbourhood
of the surface. In his technical report [Wol93], Wolter prets

Frequently, we are mainly interested in thigned distance Varioustheorems regardingthe cutlocus. The cutlocuswf-as
function associated with a sol&l The signed distance functionface is the set of points equally distant from at least twafsoi
returns the distance to the bounda§, and the sign is used to ONn the surface. Hence, the cut locus is the same as the union of
denote whether we are inside or outsigle Here, we use the the interior and exterior medial surfaces. Theorem 2 in mel
convention that the sign is negative inside. This leadsdddh ~Pertains directly to the differentiability of the distarfemction.
lowing formula for the signed distance function correspingd SPecifically, it is shown that thensigneddistance function is

II. CONTINUOUS DISTANCE FIELDS

dist — inf [[x—p| .
ists (p) igxllx pll

to a solidS differentiable, and its gradient Lipschitz continuous atnps
) which neither belong to the surface nor to its cut locus. How-
ds(p) = sgn(p) Jnf I — pl] (2)  ever, the signed distance is differentiable also on theasarf
(except at points where the cut locus touches the surfacd), a
where " . . : e .
1 ifpesS the critical point$ of the signed distance coincide with the cut
sen(p) = 1  otherwise locus.
N . In the remainder of this paper, we are mostly concerned with
When no ambiguity is possible, we drop the subscsitom

d discrete distance fields. Such distance fields may be oldtaine
S by sampling a continuous distance function, and in that tase
B. Derivatives of the Distance Function may be important to k_now whether two_ gri_d points straddle the

cut locus. If they do, it means that their distance valuesecor
spond to surface points that may be very far apart. This @ah le
to poor reconstruction of the continuous field, its grademd
IVl =1 (3) other characteristics, since they are typically estimataug fi-
almost everywhere, the exception being points without guai nite reconstruction kernels which use a stencil of grid fin
closest point (e.g. the centre of a sphere, see also Seb@)n | |n [Bzer014] it is shown that if we can touch all points (inside
In this case, the gradient is not defined. Othel’\Nise, thei'gragnd Out) of the SUrfaC@,S, by ro”ing a ball with a given radius
ent at a given poinp is orthogonal to the isosurface passingz, on the inside and the outside of the surface, then the cut lo-
throughp. An isosurface is a setp|d(p) = 7} wherer is the cys, and hence the critical points, does not come closereto th

isovalue. o o _ surface thariz;.
The second order derivatives contain information about theTpis property becomes important in modelling and visual-

curvature of isosurfaces of the distance function [Har®3r  jzation of objects represented by discrete DFs. In this,dtise
general functionsf : R® — R, we can also obtain curvaturepecessary to reconstruct the continuous field, and, if sigai
information from the second order derivatives, but the éqna required, also its gradient in the vicinity of the objectfage.
become particularly simple for distance functions. _ Itis, therefore, required that the aforementioned distaRg
The Hessian/1, of d is the matrix of second order partialpetween the cut locus and the surface be larger than theoshara
derivatives teristic radius of the reconstruction filter. This conditsowill

An important property of the signed distance functibiis
that

I gm 3“1 3“ @) be further on referred as thBF representability criteriorand
dyw dyy dyz ) an object which fulfils it &DF representable solid\ote that the
zw TRy Nz _ _actual size ofR, depends on the grid resolution and for com-
The mean curvature of the isosurface passing through a giyRBn reconstruction kernels it has values between 1 and 3 voxe
point is simply the trace off at that point divided by two: units [éKgg]_
1
M =5 (s + dyy +d-2). ©) [1l. COMPUTING DISTANCE FIELDS

The Gaussian curvature is A brute-force algorithm for computation of a shortest dis-
dyz  day dpr  dus dyy dys ©) tance to a set of object_s over a 3D discrete_ g/ri'ri;_very sim-
dyz  dyy dye  das dyy  das ple: for each voxel oV its distance to all objects is computed

o . and the smallest one is stored. In spite of its simplicitig &p-
and the principal curvatures are the two non-zero eigepgal

. . . Lf)roach is impractical since it leads to prohibitively lonone
c_)f H. The last e|ge_nvalu_e IS 0 reflecting the fact _t“'a’hanges putational times. Therefore, techniques were developadhwh
linearly in the gradient direction. Monga et al. give a goad e

planation of how the Hessian is related to curvature [MBEF92] li.e. where the distance function is not differentiable

RGg =




2) Hierarchical Organisation: Since the brute force method
requiresN - M steps, wheréV is the number of voxels, andl
is the number of triangles, it is sensible to use hierardhiata
structures to allov® (log M) access to the triangles.

Payne and Toga have described the basic approach of cal-
R2 Ri culating distance to triangles [PT92]. They also proposedes
optimizations. For instance, one can compute squarechdista
and then take the square root only when the shortest disteince
found. Further, in a more comprehensive algorithm, thdigzati
the data coherency by storing the triangles in a tree of bimgnd
boxes. From a given point, we can compute the smallest and
greatest possible distance to anything inside the box. ddns
_ o _ _ N be used to prune branches as we move down the tree.
fh'g'plléng;'g‘J_'a%lge‘g;g‘%%e_tol%a;(;:ﬂgf:ﬂfprole"ts ontait1 itis closest to _ Quaditrees were used by Strain [Str99] to speed up computa-

tion of distance to an interface in 2D (redistancing, see.24D

thus creating a® (N log N) algorithm (whereV is the size of
(i) keeping the basic scheme discard most of the objects by &e interface).
ploitation of their spatial coherency (computing distasfrem Another hierarchical approach is the recent Meshsweeper al
primitives, Section I1l-A.1) and (ii) methods, which in ani4i gorithm proposed by Guéziec [Gué01]. The Meshsweeper al-
tialization step evaluate the distances in certain regioagriv-  gorithm is based on a hierarchical representation of thenmes
ial way (inside the objects or in a thin layer around the stefa At each level, a bounding volume is associated with every tri
and subsequently propagate them through the whole voluamgle. The bounding volume of a given triangle encloses all
(distance transforms, Section 111-B). Since some of thesela child-triangles at more detailed levels. A distance irdiig
erated techniques are only approximate, the role of the temgomputed for each bounding volume. This distance interval
tationally demanding but precise brute-force technigeestill gives the shortest and greatest possible distance to amy tri
unavoidable in algorithm evaluation. gle inside the bounding volume. The lower bound is finally

used as an index to a priority queue. A salient point is that we
A. Distance Computation for Common Surface Represen Ah remove a bounding box from the queue if its lower _bound
tions IS greater than the greater bound_ of some other bou_ndlng. box

thus removing a branch of the hierarchy from consideration.

1) Triangle Meshes: The triangle mesh representation issueziec compares his method to an octree based method and to
probably the most frequently used representation for 3Drgeog hrute force approach.
etry. Therefore, it is particularly important that we ardeald  3) Characteristic Methods: Hierarchies are not always
convert triangle meshes to signed distance fields. We can ofkeded. If the actual value is only required up to a certain di
generate distance fields from a certain class of trianglde®s tance from the surface, then the influence of a triangle besom
namely meshes that are closed, orientable 2-manifoldsalty p |ocal. If only distances up to, say, five units are required, w
tice, we can impose the manifold condition by requiring thaan use a bounding volume around each triangle to ensure that
[Hof89] distances are only computed for grid points that are patiyti

« The mesh does not contain any self intersections: Triagloser than five units. The smaller this max distance, thélema

gles may share only edges and vertices and must be othae need for a hierarchical structure.
wise disjoint. For each triangle, we simply compute the distance to that tri
« Every edge must be adjacent to exactly two triangles. angle for all grid points inside the corresponding boundiolg
« Triangles incident on a vertex must form a single cyclgme. In [DK00], Dachille et al. propose such a method where
around that vertex. the volume is a simple axis aligned bounding box. Their con-
If the mesh fulfils these conditions, we know that it partio tribution is to perform the case analysis (Fig. 1) using aligy
space into a well-defined interior, exterior, and the mesg#lfit tance to plane computations. The advantage is that onlyene a

We will discuss first the basic methods for computing urdition is needed for each voxelto compute its distance toai
signed distance fields and then discuss techniques for glengplane—using an incremental approach—making the technique
ing the sign. suitable for hardware acceleration.

The distance to a triangle is easily computed using a simpleMany other methods that generate distance fields with dis-
case analysis. When a poiptis projected onto the plane con-tances only up to some maximum value are based on the notion
taining the triangle, the projected poipt lies in one of the 7 of a characteristic which was introduced by Mauch [Mau00],
regions shown in Figure 1. ¢’ is projected ontd?1 then the [Mau03]. Each feature in the triangle mesh is converted to
distance from the point to the triangle is equal to the distana polyhedron—the characteristic—which contains the goint
from the point to the plane containing the triangleplflies in  closest to that feature. For instance, an edge becomes a&wedg
R2, R3 or R4 a distance to the corresponding line should beface becomes a prism and a vertex becomes a cone with polyg-
calculated. Lastly, with regionB5, R6 or R7 a distance to the onal base. These characteristics contain all points tleatlas-
corresponding vertex should be calculated. est to their respective feature and within a certain distaofc

R6

R5



the mesh. Thus, the characteristics can be seen as truncated p
Voronoi regions. However, in general, they are made to over-
lap slightly to avoid missing grid points. The charactécsare

then scan converted and for each voxel within the charatieri

the distance to the generating feature is computed.

A recent improvement of this method was proposed by Sigg
et al [SPGO03]. They use graphics hardware to scan convert
the characteristics. First the characteristic is slicedi #hen
the slices are sent to graphics hardware and rasterizecin th
usual way. The distances are computed in a fragment program
[SAO4]. However, sI.|C|ng I.S done on the CPU Q_nd this ma.'y beF?g. 2. The mesh feature closestpds a vertex, but the dot produatk- n;
bottleneck. To alleviate this problem, only a single Ch®8S8-  andqd - n, do not have the same sign.
tic is computed for each triangle. This reduces both the arhou
of work to be performed by the CPU and the amount of band- N
width required in order to send the slices to the graphicd.car
The per-triangle characteristics are dengiedms Details on T n;

prism computation are provided in [PS03].

Another work that involves hardware acceleration is due to
Sud et al. [SOMO04] who also use observations regarding spa-
tial coherence to limit the number of primitives considefed
each slice. Sud et al. claim to be two orders of magnitude
faster than a plain software implementation of charadtesis
scan conversion.

One may construe the characteristics as very tight bounding
boxes around the triangles, and herein lies their advantdge
methods are linear in both the number of triangles and voxels
[Mau00]. On the other hand the characteristics must be@tleakig. 3. The angle weighted norml = %
and scan converted. Itis simpler to bound each triangle loxa b T
aligned with the voxel grid. This can be made more effective
by culling voxels that are farther from the plane of the tglen that the sign problems do not occur in principle, since we can
than a given distance. compute the sign for that characteristic. However, it isasec

4) Computing The SignThe most obvious method for com-sary to dilate the characteristics slightly to ensure tluatels
puting the sign when generating a signed distance field is¢o wlo not “fall between” characteristics. Unfortunatelystloiver-
the surface normals. If we have(d8 smooth surface, the signlap means that there are cases where characteristics of oppo
of the distance can be found by evaluating the dot productsife sign overlap in areas where the numerical distanceeis th
the normaln and a direction vectod from the closest pointto same, and this can lead to erroneously classified voxels.[ED]
the pointp where the sign is desired. will always point either Of course, this problem will be far worse if one simply uses a
in the same direction as (if we are outside) or the opposite (ifbounding box around each triangle.
we are inside). A plausible approach would be to approximate a normal at

The problem with triangle meshes is that they are @t each vertex and edge, but it is far from obvious how to do this.
The normal is not defined on edges and vertices. As a simplerecent method by Aanaes and Baerentzen [AB03], [BA05]
solution, one could use the normal of the incident triangkne solves this problem usingseudo normalassigned to edges
when the closest feature is an edge or a vertex. Unfortynatelnd vertices. The challenge is to define a pseudo normal which
this does not work, because in many cases we have the sasnguaranteed to have a positive dot product with the divacti
distance to two or more triangles but different sign [PT98]. vector whenever the point is outside and negative whenkeer t
particular, this occurs if the closest feature is a vertex tne point is inside. Aanaes and Baerentzen use the angle weighted
corresponding situation in 2D is shown in Figure 2. normal [TW98] as their choice of pseudo normal. To compute

Most authors propose to use scan conversion to generatettiee angle weighted normal at a vertex, one sums the normals
sign [Jon96], [PT92], [Str99], [MauO00]. Typically, this #ne of the incident faces, weighting each normal with the angle b
in the following way: For each z-level plane in the grid, weween the two legs that are incident to the vertex. This isill
compute the intersection of the mesh and the plane. This ptaated in Figure 3.
duces a 2D contour that we can scan convert [PT92]. An everAs shown in [ABO3], [BAO5], the dot product of a direc-
simpler approach would be to cast rays along rows of voxdls. #lon vectord from a mesh point to a pointp and the an-
voxel locations where the ray has crossed the mesh an unegknweighted normaN at c is always positive ifp is outside
number of times, we know we are inside. and negative otherwise. This leads to a method for computing

The characteristics methods [Mau00], [SPGO03], [PS03] asegned distance fields that is simply an extension of the ateth
a bit different. A voxel belongs to precisely one charasteri for unsigned distance fields [AB03]. Details on a practical a
associated with the closest edge, vertex, or face. This sneeaifficient method for signed distance computation and a discu

n;




sion of numerical robustness are provided in [BAOS]. Po on the surface is found. The estimate is then iteratively re-

Another advantage of angle weighted normals is that théped until the surface normal pointsjo
are independent of tessellation [TW98]. In other wordspag!  Certain implicit solids can contain sharp surface details,
as the geometry is unchanged, we can change the triangwhere the aforementioned methods, which assume sufficient
tion of the mesh without affecting the vertex normals. The nemoothness of the implicit function, fail to produce meahirh
tion of angle weighted normals is easily extended to edghs—distance values. To cope with this, a technique was proposed
normals of the two faces adjacent to the edge are simply bdih Novotny et al. [NvO5], where such areas are identified and
weighted byr. the solid is locally modified in order to comply with the DF

5) Triangle Soups: Unfortunately, triangle meshes do notepresentability criterion (Section I1).
always form closed two-manifold surfaces, and then the meth There are several possibilities for computing distances to
ods above do not work, since only closed two-manifold s@$acparametric surfaces. In a few cases (sphere, double caseXt!
divide space into a well defined interior, exterior, and kabany. form solutions are available. In some other ones (supprelli
However, in many cases we have just a slight self-intersegcti soids [Bar81], supershapes [Gie03]), it is possible to eonv
or a small hole in the surface. In these cases, we might stileir parametric representation to an implicit one [LG95¢ a
want to compute an estimated distance field. to use the technigues mentioned above. However, in getiteral,

It has been shown that a binary volume can be generated frnmecessary to minimize for each grid pointhe expression
a triangle mesh by projecting the mesh from many directions B
[NTO3]. From each direction, one generates what can be seen d(u, v) =[[S(u,v) — pl| 8)
as a run-length coded binary volume representing the @aliginvhereS(u,v) is the surface’s parametric representation. For
triangle mesh. If the mesh contains holes or other degeneggample, gradient descent minimization was used by Breen et
cies these will be reflected by holes in the scan conversici. [BMW98]. In general, minimization of (8) may lead to nu-
However, a plausible volume can be reconstructed by votingerical problems and trapping in local minima.
amongst the scan conversions for each voxel.

The scan conversions can also be used to generate a clBudistance Transforms
of points with normal information. From this point cloud we The principle behind the use of the distance transform (DT)
can estimate distances as discussed in [Baer05]. The pdlhts ¥ that a boundary condition close to the surface boundary ca
be missing in areas where the original mesh contains halés, e generated (using any of the direct methods of Section IlI-
using a diffusion scheme it is possible to fill in the missing-d A) from which the remaining distances may be evaluated. The
tance values. boundary condition is discussed in Section IlI-B.1.

6) Implicit and Parametric SurfacesThe simplest objects  |n the second phase, distances are propagated to the rest of
to voxelize are implicit surfaces. An implicit surface islg  the volume using a DT. As distances away from the boundary
just a functionf : R — R which serves as the embedding of &ondition are not calculated using the exact methods of Sec-
surfaceB which is a level-set or iso-surface ¢fi.e. tion 11I-A), some errors may be introduced. This sectionl wil

B = {p| f(p) = 7} 7 examine the errors produced b)_/ many of the popL_JI_ar distance

transform techniques. DT algorithms can be classified ascor

wherer is the iso-value. In practicg should be constrained soing to how weestimatethe distance value of a given voxel from
that the value of is alwaysf > r on the inside angf < 7 on the known quantities of its neighbors and howpvepagatehe
the outside or vice versa. Often, we require tRigt £ 0 for distances through the volume. The first classification rGoite
any pointp € B since this means thatis a regular value and leads us to
hence thaB is a manifold [VGFO02]. For an in-depth discussion ¢ chamfer DTs, where the new distance of a voxel is com-
of implicit surfaces, see [VGF02], [Blo97]. puted from the distances of its neighbors by adding values

The analytic definitions of a 3D sphefép) = ||p — po|| or from adistance templatéFigure 4),
hyperplanef(p) = (p — po) - n are good examples of implicit « vector DTswhere each processed voxel stores a vector to
surfaces, and these two are particular because the valfie of  its nearest surface point and the vector at an unprocessed
is also the signed distance to the sphere or hyperplanesgesp  Vvoxel is computed from the vectors at its neighbors by
tively. Hence, we can voxelize a sphere or hyperplane simply means of avector templatéFigure 6), and
samplingf. In general, more work is required. If we can accept » Eikonal solverswhere the distance of a voxel is computed
some error, it is frequently possible to voxelize the imipkar- by a first or second order estimator from the distances of
face by sampling an approximation of the signed distange, ty  its neighbors.
ically (f —7)/|[V f]|. This method is used in the VXT class li-According to the second criterion, the distances can begsrop
brary of DF-based voxelization techniquesnamek §K00b].  gated through the volume in a
A more precise but also more costly method is to find the foote sweeping schemewhen the propagation starts in one cor-

point numerically: Given a poinp find the closest poinp:,.t ner of the volume and proceeds in a voxel-by-voxel, row-
so thatf (pot) = 7. The distance is thejip — psoot|| and the by-row fashion to the opposite corner, typically requiring
sign is trivially computed. Hartmann has designed such & foo  several passes in different directions, or in a

point algorithm [Har99] which accepts a poiptin the vicin- « wavefront scheme when the distances are propagating

ity of an implicitly defined surface and produces a foot point  from the initial surface in the order of increasing distamce
The basic idea is to move in the gradient direction until anpoi until all voxels are processed.



If required, it is possible to stop the computations in a vitre Forward pass

scheme as soon as the desired distance iso-level is rea@hed. f f fleldlelf
can take advantage of this property in numerous applicgtion fleldlelf elcliblcle
as, for example, in morphological operations, surfaceettifsy d d dlblalbld
and level-set methods. fleldlel fllelcliblcle
1) Initialization: Most distance transformations are re- f f fleldlelf
ported as operating on discrete binary classified datehich 7=2 7=1
has been obtained by scan-conversion of analytically dgfine d d
solids or by segmenting volumetric data (e.g., by threshghd dblalbld
to extract the feature points of a surface: a0
0 pisexterior
Flp) = { oo pisinterior ’ (9)
z=0
where voxelp € I? andF: I? — R. This classification when Backward pass
operated on by a distance transformation will produce a dis- fTeldlelt
tance field internal (or external, when reversed) to theatbje el clblcle
To produce an unsigned distance field of the type in (1) the fol 0l a dblalbld
lowing classification could be used: dTp T albld sl clblcle
0 pison the surface d d flejdje|f
Fp) = { co elsewhere (10) z=0 z=1
f f
Here, the numerous voxelization techniques can be used to fleldlelf
identify the O-value voxels [Kau87]. d d
It is recommended that for higher accuracy, a so called grey- fleldlelt
level classification should be used in a shell around theasarf f f
[Jon9e]: 75
SR R N .
Fig. 4. A distance template. In the forward pass, distana€$ dre added to

.. . . . . voxels in the current, z-1 and z-2 slices. In the backward pdistances are
The boundary condition is said to be minimal if it only conzgged to voxels in the current, z+1 and z+2 slices. pds

sists of inside voxels that are 26-connected to voxels d@tsi

(and vice versa) and all voxels that are on the surface. Bhisr

quires that grey-level voxels known to be close to the serfae is used as the basis with Table | giving the appropriate tatapl
calculated using a short cut. Surface mesh data could be seahies for each chamfer method. Note that some values are
converted to the voxel grid using many of the triangle basé&inpty in order to ensure that calculations that yield thatidel
techniques mentioned in Section IlI-A.1, whereas parametresult are not repeated (if they are filled we havé £omplete
surfaces and curves can be voxelized by splat@i@P]. Inthe Euclidean DT). The distance transformation is appliedgitie

case of implicit solids or scalar fields, when the surfacesis dpseudo-code in Figure 5 wheigj, k € {-2,-1,0,1,2} fora
fined by the iso-value, the distance should be explicitly com-5 x 5 x 5 transform,fp andbp are the sets of transform posi-
puted for all voxels which have a 6-neighbor on the other sidi@ns used in the forward and backward passes respectindly a
of the iso-value using the aforementioned linear approtiona checks are made to ensuyfg andbp only contain valid voxels

(f —7)/|IV£]|- In vector DTs, techniques for estimation of theat the edges of the data set. Svensson and Borgefors [SB02]
nearest iso-surface point listed in Section I1I-A.6 can becs  present an analysis of chamfer distance transforms and give

After classification the distance transformation is agpli@ numerous examples of distance templates. Cuisenaire $Cui9
simpler chamfer distance transformation gives poorerltesualso gives a good review of distance transforms (both Chamfe
than the vector distance transformation. and Vector).

2) Chamfer Distance Transformin chamfer distance trans-  In wavefront techniques voxels are processed in the order
forms (CDTSs) [RP66], [Rh092], [ZKV92], [Bor96], [ABM98], of their increasing distance [ZKV92], [CMO00]. To ensure the
the distance template (Figure 4) is centred over each vardl, correct order, the processed voxels are inserted into aitgrio
the distance at the central voxel is computed as the mininfumgueue. In a loop, the voxel from the top of the queue is re-
all of its neighbours’ distances with the appropriate comgrd  moved, and distances of its not yet processed voxels are com-
added. Both sweeping (two pass) and wavefront schemes weuted according to the distance template and subsequently i
formulated. serted into the queue. The process continues as long as there

In a sweeping scheme the distance template is split in tape any voxels in the queue.
parts: one is used in a forward pass and the other in a backwardsymptotic complexity of the wavefront approaches
pass. The forward pass calculates the distances moving fr@@{N log N), N being total number of processed voxels)
the surface towards the bottom of the dataset, and is folldwye is worse than of the sweeping approachég X)) due to
the backward pass calculating the remaining distancesr&# the priority queue management. However, in special se-



Transform a b c d e f
City Block (Manhattan) 1
Chessboard 1 1
Quasi-Euclideas x 3 x 3 1 V2
Complete EuclideaB x 3 x 3 1 V2 V3
< a,b,c>op 3% 3 x3[SB02] | 0.92644 1.34065 1.65849
Quasi-Euclideah x 5 x 5 1 V2 V3 V5 V6 3
TABLE |

VALUES USED TO PRODUCE EACH CHAMFER TYPE

tups, the wavefront approaches were reported to be “canalm [Rag93] classifies them separableandnon-separable
siderably faster” [ZKV92]. Here, in an algorithm adoptedn the former, the passes are mutually independent and can be
from [VVDB89], Zuiderveld et al. take advantage of an obsegpplied in any order. Thus, they are suitable for parallglléan
vation that the direction of the shortest distance propagas mentation, while the latter are more appropriate for setjalen
kept. In other words, knowing a position of the voxel the digmplementations. Further, in [Rag93] a separable 4 pass alg
tance of which was used to compute the distance of the ctithm with 26-neighbourhood vector template is proposed.
rent voxel, it can be predicted, which of its neighbours $thou Breen et al. [BMW98], [BMWOO0] implement a wavefront
be processed. The speed up is thus obtained, in regard toutBesion of a VDT technique by passing closest point informa-
sweeping schemes, by eliminating computations of dis&ncgon (trivially equivalent to passing vector informatidrgtween
which would later be overwritten by lower values. voxels at a moving wavefront from CSG objects. Breen et al.
[BMWOO0] also demonstrate the passing of color informatimn t
create colored offset surfaces.

/* Forward Pass */
FOR(z = 0; z < f; z++)

FOR(y = 0; y < fy; y++) .
FOR(x = 0 x <yfw; ) C. The Fast Marching Method
_ Flx,y,z] = o The fast marching method(FMM) [Tsi95], [Set99a],
infvi,j ke sp (Flx+i,y+], z+k]+mli, j, k1) [Set99b], [HPCDI96] is a technique for computing the arrival
/% Backward Pass */ time _of a front (which we can think of as e.g. a b_alloon) ex-
FOR(z = f.-1; z > 0; z--) panding in the normal direction at a set of grid points. This i
FOR(y = fy,-1; y > 0; y—-) done by solving the Eikonal equation from a given boundary
Yy
FOR(x = fs-1; x > 0; x—-) condition. The Eikonal equation is
Flx,y,z] =
infv; j kepp (Flx+i,y+j,z+k]+m[i, j,k]1) 1
VTl = %, (12)
Fig. 5. Pseudo code for chamfer distance transform apjalicat whereF" > 0 is the speed of the front, aridis the arrival time

of the front. Given a poinp, the arrival timeT'(p) is the time

3) Vector Distance Transform:CDTs suffer from poor ac- at which the skin of the balloon passpdThe Eikonal equation
curacy as the distance from the surface increases (Settion s$tates the obvious inverse relationship between the sgekd o
F). This problem is overcome by using Vector (or Euclidearfijont and the gradient of the arrival time. SinEeloes not have
Distance Transforms (VDTs or EDTs) [Dan80], [Mul92]io be unitor even constant, the FMM is not solely a method for
[SJ01b] which use a boundary condition of voxels contairsingcomputing distance fields.
vector to the closest point on the surface, and propagdtosgt  However, if ' = 1, the front moves at unit speed, and the
vectors according to a pattern (vector template) such asrthe arrival time atp is simply the distance fromp to the closest
given in Figure 6 (the Vector-City Vector Distance Trangfior point on the front at time 0. Hence, the FMM can be and is
VCVDT, [SJ01b]). Figure 7 shows the pseudo-code for orfeequently used to compute distance fields. The FMM is de-
pass of a vector distance transform (F1 of the VCVDT), whefmed on both 2D and 3D grids [SMP99] and also on surfaces
vec is a voxel grid containing actual or estimated vectors tepresented as triangle meshes [KS98], [Set99b]. The FMM
the surfac®S anddir = {(0,0,-1),(0,-1,0),(—1,0,0)}. was independently proposed first by Tsitsiklis [Tsi95] ameit
Pass F2 would be a loop with increasing y and decreasing x wikthian [Set96] and Helmsen et al. [HPCD96].
dir = {(1,0,0),(0,—1,0)}. All forward passes are carried The FMM is in principle a wavefront scheme which com-
out within one single outer loop with increasing z. Backwargdutes the values of" from a set of boundary values, and
passes are implemented similarly. the structure of the algorithm is almost identical to Dijk&

The VCVDT technique requires 8 passes through the vdingle-source shortest path algorithm [CLR90]. We say #hat
ume, and in each pass just 6-neighbors of the actual voxel gr& point with a known arrival time is frozen. In the first gte
visited. Of course, different schemes are also possiblgn&a the distances of all grid points adjacent to a frozen grichpoi



Pass F1 JassF
X
z z
(0,0,-1 S
-
(-1,0,0) (0,0,0)
(1,0,0)
(0,1,0)
7 Pass F3
z z

Forward Passes

z Z

Pass B3

(-1,0,0

(1,0,0)

(0,1,0)

(0,0,1) "

X Pass B1
Backward Passes

Pass BXZ

Fig. 6. Vector templates for one pass of the VCVDT technique.

FOR(z = 0; z < f,; z++)
/* Forward Pass Fi1x/
FOR(y = 0; y < fy; y++)
FOR(x = 0; x < fg; x++)

p=(x,y,2);
pos=argmin; ||vec[p + dir;]+dir;||
vec[pl=vec[p + dirpos]+dirpes
Fx,y,2)=|veclp] |

Fig. 7. Pseudo code for pass F1 of a vector distance transform

Fig. 8.  This figure illustrates the structure of the FMM. Thstahces are
initially known at the boundary condition (blue squares éft figure). The
distance is then computed at all adjacent grid points (redrss) and the grid
point with the smallest of these distances is frozen (theheat blue square on
the right). Then the distance is recomputed at its (hatcbegrreighbours. The
red arrows indicate which neighbours are used to recompditgtance.

In order to compute the distance at a new grid point, a dis-
cretized version of (12) is solved. The discretization isdzhon
a first order accurate finite difference approximation togree
dient which only uses the frozen grid points in the neighbour
hood of the current grid point. To solve this discretized-ver
sion of the Eikonal equation, we simply need to find the larges
root of a second order polynomial. Unfortunately, the stadd
FMM is not very precise. This has motivated another version
(FMMHA) of the method which is more precise by virtue of
the fact that second order finite difference approximatimns
the partial derivatives are used [Set99a]. Hence, it is ses0g
to know the distance two grid points away from the grid point
where a new distance is computed. In practice, though, it is
possible to fall back to the standard FMM if this condition is
not met.

For more details on how to implement the FMM and
FMMHA, the reader is referred to [BeerO1b]. In the form de-
scribed above, the FMM is aBi( N log N) algorithm whereV
is the number of grid points. The reason why the FMM is not
linear is the fact that at each step we need to find the smallest
distance thatis not yet frozen. Typically, the distanceigalare
stored in a heap, and it is a constant time operation to piek th
smallest. However, we also need to keep the heap sorted which
is a logarithmic operation.

D. Variations of the FMM

A problem in the implementation of the FMM is that voxels
in the priority queue may be recomputed. If they are recom-
puted they should be moved in the priority queue which estail

the boundary condition are computed. Then we pick the sméitat we need to store handles to priority queue elementsein th

est of these distance values and freeze the correspondihg ypxels. However, two observations can be used to motivate a
point. Next, we recompute the distance at all its adjaceidt gsimplified FMM which does not require these handles:

points (except at those that are already frozen, see Figure 8.« It is our experience that errors increase if one allows the

Finally, we loop back and freeze the grid point tinatv con-
tains the smallest distance value. In this way, the set @k&ino

values of priority queue voxels to increase as a result of a
recomputation. This means that we do not need handles

grid points keeps expanding, and around the frozen set ihere

a layer of grid points where the distance is computed but ebt y
frozen. A priority queue implemented as a binary heap is-typi
cally used to store these distance values. Whenever, andésta

is computed or recomputed, we have to be able to update the
heap to reflect this change. This requires that each grid poine
holds a pointer to its corresponding heap element.

into the priority queue, instead we accept to have multiple
values in the priority queue for a single voxel. The smallest
value will emerge first, and then we freeze the voxel. If a

second value for a given voxel is popped from the priority

gueue it is simply disregarded.

Errors also increase if non-frozen voxels are used in the
computation of priority queue voxels. Hence, it is not nec-



essary to assign distance values to voxels before they &ast sweeping method for more general hamiltonians based on

frozen. This, in turn, means that we know a voxel has be&ax-Friederichs rather than Godunov’s scheme [KOQO04].

frozen simply because it has been assigned a value. Hysing and Turek [SRHO5] compare and evaluate the FMM
The advantage of this scheme is that it is simpler, and we caethod with various methods including the methods of Tsai an
use a standard priority queue. The following pseudocods-ill Zhao.

trates the simplified FMM loop: Yatziv etal. [YBSO05] create a@(/N') implementation by re-
Extract voxel with smallest value. pIaC|r_lg the_ heap with an array of linked I|sts_. The arrlymes
If voxel is not frozen, are discretized and placed at the end of their approprisitedi
freeze voxel list (O(1) insertion). By keeping track of which array repre-
compute unfrozen neighbours sents the least time, the head of the list is used as the niext gr
and insert them in priority queue point to compute@(1) removal). As the lists are not sorted, er-
We will refer to this simplified fast marching method agors are introduced, but these were found to be acceptalda wh
SEMMHA. compared to the time saving.

Tsai [Tsa02] proposes a hybrid algorithm. For each voxel
with three known neighbours, the distance is calculateti¢o tg  Reinitialization of Distance Fields
closest of two points which are the intersection of spheees ¢ The goal of reinitialization is to convert an arbitrary sual
tred on each neighbouring voxel with radius equal to the diP_ 9 3 inftiatization 1 conv lrary
; : . field, @ : R° — R, whose O-level isosurface (or O-level set)
tance at that neighbouring voxel. I only one neighbour Irse resents some interface, to a distance field in such a aay th
known a fixed amount is added to the distance of that neigh: P ' y

bour. If the intersection of the spheres is ambiguous, then tthe O-levelisosurface is unchanged. Reinitializatiorfierore-

distance is calculated using the Godunov Hamiltonian. Addi quired as a part of thlevel set metho{L.SM) [0S88], [Set99b],

the fixed amount is the same as using a Chamfer Distani_?OFOZ] (c.f. Section V-D.2), and most work on reinitialiicat

Transform, withh set to be an appropriate value from Tabl as been.carrle_d outin the. context pf.t-h € LS.M'
I. The sphere intersection part of the algorithm produces atThere IS a S|mplg solution t.o re|n|t|a!|zat|on based on the
best the same result as a Vector Transform (although reties ethqu dl_scus_sed In _the previous sections. If we "’.‘SS““‘e tha
less storage, but requires more complex calculation taesbly E:OGn gl': clz)orlrr:(ft I(;Ti]sTaend(:lgtsel}lél\jﬁ)la:ae:tbteoJQee dot-(!erveeblulﬁ doatmheﬂf dis
intersection of the spheres). The Godunov Hamiltonianuzalc . ’ -

ce field up to the required value. Unfortunately, thisdion

lates the distance from a wave front propagating through tﬁ@ . .
data. The algorithm combines all threpe rr?et?lodsg(FMM,gCD n may be violated, which was addressed by Chopp [Cho01].

and VDT). It seems to produce accurate results from poitat,da ere, in each cell (grpup of elghF grid Po"?ts) intersectedrie
3eve| set of®, a cubic polynomial which interpolates the val-

and from piecewise linear objects when they are oriented ues at the corners is constructed. The value of each corider gr
their normals are integer multiples of 4 (the combined use of "~ ™ : ) 9
oint is, subsequently, replaced by the distance to thevél-le

the CDT and Godunov Hamiltonian makes that restriction f&) t of thi | ial
accurate results). For arbitrary data as we test here, thei¥D SeV\;)h'I 'fhpoFy,\:f\’/lm'a | ft loved f initializati h
superior in accuracy, speed and simplicity of implemeatati e the IS ofien employed for reinitialization, other

Kim [Kim00] proposed the group marching method (GMM istance transforms could also be used, and, in fact, teexe i
where a group of voxels on the wavefront is used to calculat8tre class of methods based on the reinitialization eopat
the distances for their neighbouring voxels. The group isrde

) 2 S ) Do) (|IVP] —1)=0 13
mined as those voxels that are within a certain distanceeof th ¢+ 5(Do) (VO ) ’ (13)

wavefront and are chosen so that they do not affect the tray@|ich was introduced by Sussman et al. [SSO94] extending
time calculation to each other. Due to the fact that theighei \york by Rouy and Tourin [RT92]. In (13} is a function that
bouring voxels could be affected by several members withigypically almost but not quite a distance functief®, ) is the

the group, iterations in two different directions are Gulrout. - sjgn of the original function which must be known for all grid
GMM is tested on simple artificial problems for which S'm'larpoints in advance. Most authors use a “smeared” sign func-

errors are generated (to FMM). Although GMMGAX ) ithas  tion which is very small near the interface to avoid instapil
a high overhead in the form of keeping track of the group, ar§l,ssman et al. proposed

determining which members of the group are to be updated.
Zhao [Zha04] uses a sweeping method to solve the Eikonal %)

e.quat_|on. T_he_ volume is swept in forward and backward direc- \/m ’

tions in a similar manner to Chamfer and Vector Transforms.

At each voxel, the Godunov discretization of the Eikonalaquwherec is a constant often chosen to be about the size of a cell

tion is calculated, rather than the chamfer matrix multigion in the grid [PMO"99]. A different sign function more adapted

of the Chamfer Transform, or the vector additions of the Vete steep gradients was proposed in [PVMED)]. || V®|| must be

tor Transforms. This results in an @ method which pro- computed in an upwind fashion, i.e. the derivatives shoeld b

duces a similar result to the FMM at a similar speed t&v{p( one sided which means that for a given grid point they should

Chamfer and Vector Transforms. He also proves convergetaek in the direction to the O-level set [OF02].

for sweeping methods using the Godunov Hamiltonian to solveEvolving (13) forward in time will cause the value éfto it-

the Eikonal equation. Going a bit further, Kao et al. propbse eratively increase or decrease in order to attain a gralgiegth

5(®g) = (14)
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of unity. When a steady state has been reacfrad,a distance

« VDTs are the only methods where the error diminishes as

function. Thus, methods based on (13) can be used as distance a function of distance (Table IlI).

transforms provided the sign is given for each grid pointwHo
ever, this is not efficient since many time steps are needed.

Most authors use a small, constant number of steps (e.g. one

or two) to correct a field that is already close to a distandd.fie
In this scenario, the schemes &@¢N) where N is the total
number of grid points while FMM i€ (N log N). However,

in practice FMM might be faster. We surmise that (13) is best
if small frequent corrections are needed while FMM could be «

better for infrequent, large corrections. Itis also easstop the

FMM when all distance up to a given maximum have been com-«

puted. However, when evolving (13), the distance infororati
flows outward from the interface just like in the fast marchin

method. This indicates that a similar wavefront scheme Ishou

be feasible as mentioned in [RS00].

A concern with the methods based on (13) is that the O-level,
set may move slightly. As a countermeasure Sussman et al.
[SFSO98] proposed a volumetric constraint, and Russo et al,
[RS00] an upwind method which does not accidentally look be-

yond the O-level set. Finally, it should be noted that (13) ba
discretized in a variety of ways both with regard to time @i
tives and spatial derivatives. In [OF02] the interestedleea
will find an overview with more details on this.

F. Comparison

Each distance transformation was executed on several test
data sets, and the results are presented in Table Il. Thé Poin

data set is a single point in2562 voxel grid, the RotCube data
set is a voxelized cube rotated B§° on both ther- andy-axes
(again2563). Hyd is a distance field to th&* AVS Hydrogen
data set (measured to= 127.2) and CT is a distance field to
the bone £ = 400) of the UNC CThead256 x256x113, Fig-

« Larger CDT kernels give more directional possibilities for

the source of the shortest distance, and are therefore more

accurate, but they increase computational time.

e The< a,b,c >,, method is the best® CDT as it has
been optimally designed to limit the distance error [SB02].

« The max error of the CDTSs rise significantly as a function

of distance (compared to FMM and VDTS).

The FMMHA is significantly more accurate than the orig-

inal FMM.

If the original analytic representation (in addition to the

boundary data) is available, the result of a VDT can be

used to measure distances to the original data to improve

accuracy further [BMW98], [SJ01a].

2) Speed:

CDTs and VDTs are(/N) methods, whereas FFMs are

O(N log N). This is reflected in the computational times.

FMMs should be faster when requesting an offset surface

to level 7, although in practise this may be for only for

smallr. In informal tests (we tried = 3), the SFMMHA

is faster in all cases, but only narrowly in the case of the

CT Head.

3) Ease of implementation:

« Arguably, VDTs and CDTs are easier to implement than

FMMs. However, the simplified FMM is easier to imple-

ment than the method proposed by Sethian [Set99b]

o« FMM, being an Eikonal solver is more general and can

also compute arrival times for non unit-speed fronts.

IV. REPRESENTATION OFDISTANCE FIELDS
Discrete distance fields are usually stored in voxel grids du

to the great simplicity of this representation. Howeveeré

ure 9) In the latter two cases the distance field was meaﬁmreqre some disadvantages to regu|ar voxel grids_ In Orderp:g ca

the triangles created by the tiling tetrahedra algorithm9#

ture tiny details, a high resolution grid must be used, bigda

using a threshold of. The boundary condition consists of in-grids are extremely memory consuming. Hence, there is 4 grea

ternal voxels with an external 26-neighbour, and exteragéis

incentive to develop more parsimonious representationshwh

with an internal 26-neighbour. The vector transform reegiir adapt better.
the vector to the closest point whereas the other transfﬁm;ns A very Simp|e’ effective improvement over a regu]ar gnd is
require the distance to the surface. Each method is compaggqise either a hierarchical or run-length encoded grid.hBot
toa grOUnd truth distance field that has been Computed USingfq.hese representa’[ions are useful in cases where thachsta
direct method. Note that5i‘ Complete Euclidean exists WhiChare C|amped beyond a maximum Va|ue' as, for examp|e' in ob-
creates an equivalent result to #ieQuasi Euclidean (Table 1), ject modelling (Section V-D.1) or in LSM methods (Section V-
and so it is not reported here. The following conclusions may.2). However, even for other applications this needs nbeto
be drawn: a limitation, since the the clamped distances can be extende
1) Precision: to a full distance field easily (Section 1lI-B). A hierarchic
« The VDTs (represented here by the VCVDT) are thgrid is simply a grid of cells where each cell contains a small
fastest to execute and have the lowest error. voxel grid (e.g. 16x 16 x 16 voxels). In this case, we often
« VDTs produce accurate results for cases where distantese large homogeneous regions that can be represented with
are measured to point data sets. The FMM is accuratedrsingle value for the entire cell. In the run-length apphpac
the case of planar surfaces. voxels of each data row are classified either as inside, dwritsi
« The greater precision of the VDT reflects, to some exand transitional [Nov03]. A row of voxels is then represeinte
tent, that more information from the boundary conditioas a linked list of spans of voxels of the same category. The
is used: VDT requires that a vector to the closest point isansitional spans are represented fully, while only largjthe
stored in each boundary condition voxel. other spans is stored. In both cases, reading and writingffare
« VDTs produce the least error for an offset surfacéor cient, and if there are large homogeneous regions in thesgata
anyn (Table III). (which is often the case), the memory efficiency is very good,
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Transform Point (1) RotCube (386755) Hyd (11056) CT (507240)
avg. max secs | avg. max secs | avg. max secy avg. max  Secs
VCVDT 0 0 6.39 | 0.0034 0.089 8.10( 0.01 0.13 0.1 001 0.19 3.35
City Block 67.96 159.76 10.7| 15,51 91.28 8.74 | 445 20.28 0.14/ 9.04 74.16 3.78
Chessboard 18.53 52.19 11.99| 9.44 31.76 9.81| 218 8.77 0.16| 463 2694 4.18
3% Q-Euclidean | 17.29  49.21 11.99| 450 2696 9.80| 1.13 531 0.15 2.67 18.64 4.18
3% C-Euclidean | 9.57 18.54 14.80| 249 14.96 12.45| 0.74 2.84 0.19 2.01 13.88 5.39
3% < a,b,c Sopt | 3.39 9.27 14.59| 1.00 7.82 1251} 0.31 154 0.2| 0.76  6.97 5.29
5% Q-Euclidean | 2.40 6.55 37.04| 0.50 3.40 34.95| 0.22 098 0.54| 0.60 4.46 15.30

FMM 1.76 2.78 167.72 0.23 207 18367 031 1.00 1.41 040 184 77.93
FMMHA 0.40 0.62 170.43 0.03 0.27 184.15 0.04 0.33 145 0.06 0.95 78.42
SFMMHA 0.40 0.62 118.99 0.03 0.27 11517 0.04 033 0.74/ 0.06 0.95 46.77

TABLE Il

EACH DISTANCE TRANSFORMATION METHOD WAS TESTED WITH EACH DAR SET. THE AVERAGE ERROR MAXIMUM ERROR, AND RUN-TIME ARE GIVEN
FOR EACH(2.6GHZz P4). THE NUMBER IN BRACKETS INDICATES THE AMOUNT OF VOXELS IN THE BNDARY CONDITION

Average (UNC CThead)
2 3 4 5 10 20 50
FMM 0.065| 0.075| 0.085| 0.096| 0.141| 0.219| 0.364
FMMHA 0.037| 0.039| 0.041| 0.042| 0.047| 0.054| 0.062
SFMMHA 0.037| 0.039| 0.041| 0.042| 0.047| 0.054| 0.062
VCVDT 0.025| 0.024| 0.022| 0.020| 0.017| 0.014| 0.012

3% < a,b,c >,y | 0.046] 0.056] 0.067 | 0.078| 0.130| 0.248| 0.544
5% Q-Euclidean | 0.062| 0.060| 0.063| 0.073| 0.115| 0.202| 0.425

Max (UNC CThead)

2 3 4 5 10 20 50
FMM 1.187| 1.187| 1.187| 1.187| 1.333| 1.517| 1.760
FMMHA 0.475| 0.475| 0.560| 0.679| 0.799| 0.851| 0.891
SFMMHA 0.475| 0.475| 0.560| 0.679| 0.799| 0.851| 0.891
VCVDT 0.168| 0.191| 0.191| 0.191| 0.191| 0.191| 0.191

3% < a,b,c>op | 0.229] 0.336| 0.359| 0.409| 0.702| 1.398 | 3.612
53 Q-Euclidean | 0.302| 0.313] 0.326| 0.368| 0.598| 1.065| 2.508

TABLE IlI
THE AVERAGE AND MAXIMUM ERROR FOR THEUNC CTHEAD USING SEVERAL METHODS FOR EACH METHOD, THE COLUMN n INDICATES THE
ERRORS FOR ALL VOXELS UP TO DISTANCE FROM THE SURFACE(THAT ARE NOT IN THE BOUNDARY CONDITION).

reaching compression values at the level of a few per centliden extended further to adaptive grids where precise edge i
the full volume representation. However, if the distancklfietersections and normals are known. Finally, a new, fadter ti
contains features at very diverse scales,Allaptive Distance based generation of ADFs is proposed.
Fieldstechnique, first proposed by Frisken et al. [GPRJ0O0] is aAn ADF scheme was also proposed by Baerentzen [Beer01a].
better choice for its representation, at the cost of moregdexn The data structure and the CSG operations resemble the work
storage and retrieval. The basic idea is to subdivide spsing u by Frisken and Perry. However, Baerentzen proposes a simple
an octree data structure [Sam90]. The distance values ia-e sdecoupling of the space subdivision and the representafion
pled from a continuous distance field at the vertices of eatth cdistances at cell corners. An octree is used to represent the
in the octree, and a cell is split recursively until the ip@ated space subdivision whereas a 3D hash table is used to represen
distance field within closely matches the continuous field.  points. This decoupling is important because cells share co
ADFs are useful for compactly representing complex disters. Thus (without a separate point data structure) edth ce
tance fields. Frisken et al. also demonstrate how their ADRaust have either separate copies of the distance values at it
can be manipulated using CSG operations. In more receotrners or pointers to these values. With a 3D hash table, the
work, Perry and Frisken [PFO1] improve on some of their re&sorner position is simply used to look up distance values.
sults. Especially techniques for fast rendering using tsaand In [HLCT01] a representation called @omplete Distance
techniques for triangulation are proposed. The triangaias Field RepresentatioQCDFR) is proposed. A CDFR is a reg-
an extension of surface nets [Gib98] from regular to adaptiular subdivision of space into a 3D grid of cells where each
grids. In recent work by Ju et al. [JLSWO02], the method ha=ll contains a set of triangles. These are the trianglestwhi
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might affect the distance field within the cell. To build thigta the interface "out of the box” — the interface is not resgitto
structure, triangles are initially stored in the cells thgrsect. a finite grid as is the case in the other representations. gikey
Subsequently, the triangles are pushed to neighbouritgy éel an example simulation where their method requires just 64MB
neighbouring cell tests whether the triangle might inflleeite compared to a hierarchical method which would require 5GB
distance field and stores the triangle if this is the case. Whef grid storage, and offers better time performance. Tha @at
no cells contain triangles that influence neighbouringscétie represented by 1D columns which are runs of connected data.
process stops. From the triangles stored in each cell, we dedditional structures store (or imply) the coordinates ofels
compute the exact shortest distance from a point in the @ellwithin the run, and store the voxel values. Algorithms axeqgi
the surface. for accessing the grid randomly, via neighbouring voxelhan
Another approach which was recently proposed by Wu et abordinate direction and within a stencil.
is to construct a BSP tree from a triangle mesh [WKO03]. Within Jones [Jon04] gives a study into compressing distance fields
each cell, the distance field is approximated by a simplalineHe derives a predictor for calculating distance based upen t
function (plane distance). The triangle model is passed tovactor transform (Section I11-B.3). If the predictor is sessful
function that recursively splits the model into smallergais. in one of 13 previously visited directions a direction vaine
For each piece of the model, a distance field approximationdiating the direction can be stored. Otherwise the fulkdise
generated and the approximation error is estimated. Ifittoe e value is stored. This is followed by entropy encoding on the d
is above a given tolerance the model is split again. Mediisl axections, and bit-plane encoding followed by entropy eirogd
information is used to split the model approximately aloighh on the distance values. He shows that this lossless VeaosTr
curvature ridges. The method leads to a very compact rapres®rm predictor gives a compression similar to the lossy eive
tation. It is not everC?, but the authors argue that this is lestransform where around 75% of the coefficients have been set
important as long as the maximum approximation error can lezero (i.e. files sizes are 25% of the original). Jones [4bn0
controlled. As an example of an application, the methodéslusgives further analysis.
to guarantee a bound on the error during mesh decimation.
The techniques proposed by Kobbelt et al. [KBSS01] and
Qu et al. [QZS04] are aimed at representation and subse- ) ) ) _
guent reconstruction of surfaces with sharp edges by wiand®: Object Skeletons, Centerlines and Medial Axis
lation techniques. This is, referring to the sampling tiygear ~ An object skeleton (medial axis, centerline [Blu64]) in a
task which is in general not possible to accomplish by meapkne is a locus of points having equal distance to at least tw
of a regular sampled field. Therefore, additional informati distinct points on the object boundary. In 3D space thisdead
should be provided. In the first case, tiehanced DF repre- to the notion of a medial surface and, in order to obtain a 1D
sentatiofKBSSO01], for each voxel its directed distances alongenterline, the condition must be strengthened to at lbasét
thex, y andz axes to the surface are stored. Thus, more precigiesest surface points. Unfortunately, such a set of poantse
information about the surface shape is provided. In thedatidiscontinuous and subsequent processing ensuring cayiisu
technique, theffset DF(ODF) [QZSt04], the distance field necessary.
is sampled in a semi-regular pattern, which iterativelypisla  Skeletons are a highly compact representation of objects,
itself to the actual geometry. Further on, the authors pgepaoserving for their description, recognition, collision detion,
aunified DF (UDF), which combines the aforementioned offnavigation, animation etc. This multitude of purposes $etad
set DF with representations proposed in [KBSS01], [HIOQ], different requirements on the precision, with which a skele
[JLSWO2], together with the plain DF storing just the minimashould describe the given object. For further analysis ard-e
distances. Their motivation is that none of these techrsigae tual recreation [Dan80], [CM0O], they should representdhe
itself successfully capture all the possible variationsuwiface ject with high fidelity, keeping all its topological propiers. At
details and therefore the most suitable one should alwaysthe other extreme, when used as navigation paths, just tee mo
chosen. important features should be kept [ZT99], [BKSO01]. Therefo
These representations have very different properties:RGDFa large variety of specialized skeletonization and ceinede-
ODF, UDF and Wu’s BSP tree representation can be construedtion approaches exist, many of which depend on DF analy-
as static data structures for accelerating distance catipns sis [Mon68] and detection of its'@liscontinuities—ridges. For
(almost like Meshsweeper [Gué01]). Hierarchical and ruexample, Blum [Blu64] defined the skeleton as a locus of those
length encoded grids and ADFs on the other hand allow fBF points, where it is not possible to define a tangent plane.
modifications of the distance field, the latter being the moit Gagvani and Silver detect skeletal points taking advantdge
able in situations where very small features in the distéiet® an observation that distance of a ridge point is larger than-a
are of interest. age of its neighbors [GS99]. This, by specifying a threstuodld
Nielsen and Museth [NMO05] proposBynamic Tubular this difference, enables them to control the skeleton cerapl
Grids (DT-grids) as a data structure for representing the evolity. For a similar purpose, in order to enable the level-efail
ing interface during PDE simulation. DT-grids are a very eontrepresentation and also to decrease skeleton sensitivisyiie
pact data structure just representing the interface, anthare- face noise, Malandain and Fernandez-Vidal [MFV98] use the
fore dependent upon the size of the interface rather thasizbe fact that in vector DTs the position of the closest surfac@atpo
of the domain of the simulation (as grid methods such as AD#ssregistered and that two mutually close points, whichdstla
are). The advantages of this scheme include being abledo tréhe medial axis, have their corresponding closest surfairgp

V. APPLICATIONS



13

far apart (Section 1I-C). Observing that magnitude of thglan The mathematical morphological operation of ero-

defined by these surface points and the medial axis location sion [GW93] will remove external parts of an object (de-

flects importance of the given voxel as a skeletal one, they ppending upon the structuring element). Dilation will addtpa

pose adjustable parameters for their classification. Th&sk to the boundary of the object. Opening will enlarge cracks an

ton detection approach proposed by Siddigi et al. [SBTZ984vities, and closing will remove cavities and smooth spike

arises from the conservation of energy principle, whichiis v Given a structuring eleme, erosion of an objecX is de-

olated at the ridge (shock) locations of a vector field. Fist fined as:

Euclidean distance field to a continuous approximation ef th X oB={z|B, C X} (15)

object surface is computed. In a second step its gradietdivec " )

field is obtained, followed by local computation of the fiesld’and dilation as:

net outward flux. The flux field is zero everywhere, except for X @®B={z|B,NX #0} (16)

the shock (skeleton) points, where it is negative due tolloca

energy loss. Thus, the skeletal points are obtained byhhre€losing is a dilation followed by an erosion:

olding of the flux field. This algorithm can lead to a skeleton

topology which is different with respect to the topology bét XeB=(X®B)oB (7)

original object. Therefore, in a sequel [BS00], the techeiq N . oo

was extended to preserve topology by introduction of a hom%':]d opening is an erosion followed by a dilation:

topy preserving thinning technique. XoB=(XcB)&B (18)
In navigation, a centerline, i.e. a central path throughothe

ten elongated and winding object is required [ZT99], [BKEO1If B is defined as a ball of radius

[WDKO1]. Itis usually a simple path connecting the start and

end points. If the goal is navigation in a tree structure, the B = {bld(b, (0,0)) <} (19)

path can be represented by a tree structure of simple segmen

In this sense the centerline should be connected and Sh0§1 red is the distance between two points, then erosion can be

not contain segments, which represent unimportant wirglin efined as:
bulgeslor even noisy artifacts. Since neither of thgse .requi X © B = {a|sgn(z) - dist(z) < —r} (20)
ments is ensured by the general purpose skeletonization alg
rithms, special ones were developed. and dilation as:
Typically, two distance fields are employed. One, which sim-
ilarly as in the aforementioned skeletonization approacre X @ B = {z|sgn(z) - dist(z) <r} (21)

sures centering of the path within the object and is computed . | . ) i i

with respect to the object boundary, and one which is com- 1S gives us a practical algorithm for closing volumetie o
puted with respect to the path starting point and provides tfcts [Joneca)l]. First the_dlstan(_:e f|ekﬂ,|§ calculated (2): 'I_'he
necessary topological and connectivity information. Zhod surfgce,S o rgpresentmg a dilation with a ball3 of radiuss
Toga [ZT99] use a 3-4-5 distance metrics for the first field arfgfiuivalenttaS® = {q: d(q) = r} whereq € R". To@calcu-

a simpler 1-2-3 metrics for the second one. Areas with consta®€ the erosion with a ball of radiusfor this surface5™:, we
values (codes) of the second field are denoted clusterse sin&alculgte anew distance field,based upon distances from sur-
cluster is approximately planar and perpendicular to theatb face S®r using the techniques described earlier (measuring to

axis, it usually contains a single voxel with a maximum valug‘e |sosurface). The su_rfa&r which has been closed with a
of the first field. Thus, sequentially inspecting clustersha b_all of radiusr using a dilation of degre/efollowed by an ero-
order of their increasing code, centerline voxels are etecy SiOn Of degree is given byS®r = {q : d'(¢) = —r}. Opening
with ensured connectivity and centering. is defined in a similar manner.

The penalized volumetric skeleton algorithm proposed l%Morphological operators have been carried outon.binary.seg
Bitter [BSB+00], [BKSO01] builds upon Dijkstra’s minimum ented data by Hohne [HH92]. The use of three-dimensional

cost path algorithm [CLR90]. Here, the cost is given as a suphosions and dilations was reported as a useful applicédion

; ; - traction of homogenous regions in body scans. They hav
of the piecewise Euclidean lengths of path segments (sagméﬁe ex .
are on the voxel level, so the possible distances ay@ ind also been used by Museth et al. [MBWBO2] as editing op-

v/3) and voxel penalties, which increase with decreasing digrators for Ieyel Sets. Q|stance f'EId.S qllow the mjnumvevw
tance to the object boundary. Thus, the centerline is thpleimOf morphological operations that a dilation or erosion offsm
gpould be an offset surface 5mm outside or inside the object.

ath of maximum length among all lowest cost paths. Further, — . .
P g g P Figure 9 demonstrates accurate 3D closing operations of 20,

object skeletons may be built as the tree of maximum leng
lowest cost paths found in the object. i%ae(\jnd 5 voxels on the eye socket and cheek of the UNC CT-

B. Morphology C. Visualization

Distance fields have been found useful for morphological op-1) Accelerated Ray-Tracing of Volumetric Datdn volume
erations [Ser82] of erosion (upon which the medial axis alggraphics [KCY93] objects are represented by 3D grids of dens
rithms are usually based) and dilation. ties, distances or other attributes. TWaedume of InteresfvOl)
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was proposed by Cohen and Sheffer [CS94]. It differs from
RADC in that it takes the shape of the free zone—the proxim-
ity cloud—around a background voxel into account: therefor
the step size depends not only on the distance value, buvalso
the type of distance and ray direction.

The Chessboard Distance (CD) voxel traversal algo-
rithm [éKOOa] takes advantage of the simple cubic geometry
of macro-regions defined by the chessboard distance which en
ables the accelerated traversal of cubic, regular and edh r
linear voxel grids. The algorithm defines a ray as a hon-umifo
sequence of samples, which are positioned exactly at voxel
faces. This property enables rapid ray-surface intersecttm-
putation by gradient based root finding techniques. Furtner
variant of the CD algorithm was proposed 800a] for traver-
sal of anisotropic macroregions. Its motivation residethat
distance to already passed objects is often the limitingpfac
of the traversal speed. Therefore, each background vozslis
signed to 8 macroregions, each registering directed disttn
the nearest object in the direction of the main body axis ef th
volume. A similar technique was proposed in by Semwal and
Kvanrstrom [SK97], which needs only 6 distance volumes but
Fig. 9. True 3D distance closure of 20, 10 and 5 voxels of UNG& data F€Quires more complex distance computation.
set (bottom right) In [HS93], [SK00a], the CD distance field was used to

speed up the template-based voxel traversal [YK92] with 26-

connected ray templates. If such a template is implemersted a
usually only occupies part of the complete grid and the pran array of voxel positions, a known CD valdeof a given
portion of time spent on processing the irrelevant areaseanvoxel enables a jump ef voxels in this array template.
significant. One possibility to minimise the time spent @& 2) Distance acceleration in endoscopy:Using distance
ing these areas is to identify the empty background voxels bgsed acceleration for endoscopy often leads to low values,
segmentation and to gather them into macro regions which aahich reflect distances to structures which are out of the/vie
be ignored during rendering. In ray-tracing this increabes ing frustum. Therefore, in addition to the standard distanc
mean step length, and results in the speed up of single rey trbased acceleration [WKB99], [WSKO02], techniques have been
ing in comparison with fixed length algorithms. developed which attempt to find a better acceleration than th

In distance-based acceleration, empty cuboid, octahedrabbtained by the basic distance transform. Shargi and Rick-
(at least approximately) spherical macro regions are défiore etts [SR01] assigned most of the voxels inside the colortyavi
each background voxel with a radius equal to its distancledo tto non-overlapping spheres, which the ray can safely skig T
nearest surface point. This idea was introduced by Zuid@rvepheres are constructed by means of the 3-4-5 chamfer clistan
et al. [ZKV92], [ZKV94] in the Ray Acceleration by Distancetransform (Section 111-B.2) and identification of its locak-
Coding (RADC) scheme, which works in two phases. Firstrema. Spheres are obviously not the optimal shape to approx
a chamfer approximation of the Euclidean distance (usingna@ate tubular structures. The technique proposed by Vilaebv
5 x 5 x 5 kernel according to [VVD89], Section IlI-B.2) is al. [VKGO0O] therefore uses cylinders for their approxiroati
computed for each background voxel and stored in a volumearid consequently they obtain a higher speed up than the afore
the same dimension as the data grid. The distance informatimentioned plain distance and sphere techniques. Distaimes
permits skipping of an appropriate number of samples in tlaetwofold role, they are used both in the cylinder constarcti
background, while in the foreground the ray is traversedh wiand rendering.
unit step length. 3) Distance Field Visualization:Distance fields may be vi-

The IsoRegion Leaping technique [FH98] extends the RAD§ualized like any other implicit representation, but thésoa
in that also homogeneous foreground regions are identifidd zhave one big advantage: Except for points belonging to the cu
filled by distances to their boundary. Once a voxel with celocus, we know that a point can be projected onto the surface
tain density and step length is reached, color and opacity @ing a simple formula
the whole segment is accumulated and the appropriate length
is skipped. A similar Skip Field technique [LFS97] enables pr=p— Vds(p)ds(p) , (22)
higher acceleration rates by trading quality for speed. Jriae
dient base error metrics [DH92] are used to identify the homwherep; € 0 is sometimes denoted tfi@ot pointof p. The
geneous regions. If no error is tolerated, the inside digtanfoot point can the be drawn directly as a point primitive [SAO0
information is ignored, otherwise the homogeneous inside This method was used in [BC02a], and in [PF01] Perry and
gions are skipped rapidly. Frisken implement a similar method in the context of adaptiv

The Proximity Clouds (PC) technique, similar to RADCdistance fields.
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D. Modelling

1) CSG operations:In standard CSG, the basic operation
union, intersection and difference on solids are definechby t
regularized Boolean set operations [FD82]. This concepst w|
extended also to solids represented by scalar fields [Bre9
[WK94], [CTO00], with the Boolean operations replaced b
fuzzy set operations, and later even to distance fields [BIEW9
[SKOOb]. Unfortunately, such an implementation often lead
to sharp details, where the resulting values do not reptes
distance to the boundary of the solid anymore (Figure 10
left). While this situation occurs mainly in the vicinity ob-
ject edges, it is not a problem in many applications (for exam
ple, in visualization, unless it causes visible recongtomcar- Fi9: 10- A cut through a tetrahedron defined by intersectibhatfspaces.

. - . . . eft—Intersection by the fuzzy intersection operatorhtig-DF representable
tifacts [NSDO4]). However, in volumetric shape modeling angersection. Green lines: inner surface, black: medit, dtue: surface of the
sculpting this becomes a major problem [BCO2b]. DF representable intersection

Assuming that the operands of a CSG operation are DFs of
representable solids (Section 1I-C), in order to obtain & co ) ) ) » ) )
rect result (i.e., a distance field of a representable satidg @nd in the interest of numerical stability this property ssially
necessary to incorporate the DF representability critef&ec- malntamed using some method for re|n|t|al|z_at|on (c.f.cSe
tion 11-C) also in the distance field CSG operators. Suchf@n IlI-E). It has been observed that the distance property
scheme based on morphology was developed by Baerentzen &l 0¢ maintained to some degree of accuracy if the speed

Christensen [BCO2b] for the purpose of volumetric scuuptinfun‘:tion is constant along a line perpendicular to the fatsr

and implements volumetric CSG operations between a discrf CMO96], [CMOS97], [AS99]. Alternatively, Gomes and
distance field and an unsampled continuous distance field dr&-geras [GF99] propose a reformulation of the LSM which
sculpting tool. preserves Fhe .d|stance field property appa_rently withoet ne

Another scheme proposed by Novotny et alS[pD4] pro- for reinitialization. Yet another approach is the sparséd fie
cesses two sampled distance fields. They assume that the Fi€Zhod proposed by [Whi9g] where a simplified reinitializa-
of input objects are truncated (Section IV) at a distanceabqdiOn IS @n integral part of the method which keeps explisisli

to the radiusR,, as it is defined in the DF representability criOf l2yers (ordered by distance) of adjacent grid points.

terion. Thus, each obje@ partitions the space in three areas: 3) Animation: Gagvani and Silver [GS99] [GS01] use dis-

a transition ared, with —R, < d < R,, inner arealp with tance fields to create a skeletonized model of a volumetti da
d = —R, and outer are@o with d = R,. The boundary be- Sét. The di§tance field mo_del is thinned (or peeled) to create
tween the inner (outer) and transition area is called inmetef) & 1 voxe_l thick representation of the_ vqumg model. The user
surface (Figure 10). In CSG intersection (extension toraipe  then defines those voxels about which motion can take place,
erations is straightforward), the fuzzy operators can leelfisr @nd then this inverse kinematic (IK) skeleton is loaded antd

both inner and outer areas, and even for most voxels which &@nipulated using standard animation software to create mo
in the transition area of just one solid. Such areas are in F{fn- Finally the volumetric data set is reconstructed acbine

ure 10 delineated by the yellow lines. However, in the edd‘ganipulated IK skeletons for each frame of the animation. Re
vicinity, its is necessary to ensure that the correspondieg construction is carried out by scan filling known spheresuabo.
dial surface at most touches the inner surface of the rasult,the skeleton where the size of the sphere corresponds tsathe i

order to keep the representability criterion fulfilled. Téfere, Surface data.

P 3

itis necessary to detect the intersection line of the ombwein- ~ 4) Collision Detection: For collision detection distance
ner surfaces and to store the distance to this intersectithrei fields have been used both in the context of rigid [GBFO3],
edge area voxels. [Erl04] and deformable [HFS03], [BMF03] body simulations.

Schroeder et al. [SLL94] use distance fields to create swept simple approach in the case of rigid bodies is to use a dual
surfaces and volumes. The object to be swept is voxelisedrépresentation. A set of sample points on the object surface
create a distance field. For each segment along the swept d&tg. the vertices) is one representation and a distanckidiel
voxels within the domain are inverse transformed back to titee other. When two objects collide, the points of one object
distance field, and the distance field is trilinearly samplgite  can be tested against the distance field of the other. If & [in
result is that the level 0 isosurface of the produced DF repiéetected to be inside the other object (according to thamitst
sents the swept volume. field sign) it counts as a contact point, and the gradient ef th

2) Level Set Method:The level set method (LSM) [0S88], distance field can be used as contact normal [Erl04]. Alterna
[Set99b], [OF02] is a technique for tracking deforming iate tively, one might trace a ray in the direction of the gradint
faces with a great number of applications [Set99b], [OP03J{nd the exact contact point and the true surface normal &t tha
The interface is defined as the 0O-level set of a function point [GBFO3].

R3? — R, and it is deformed indirectly by changidgaccording 5) Dynamic Simulation:Fujishiro and Aoki [FAO1] approx-
to the speed of the interfade. imated thawing ice by using erosion and dilation operations
Almost invariably,® is initialized to a signed distance field,(Section V-B) on binary voxelized data (each of their voxsls
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two-state—inside or outside). Their method provides aaiert field of the target. They demonstrate that this method cseate
amount of realism (irregular melting) by using differentexi convincing morphs between objects.
structuring elements (in their case different radii spheie ar- 7) Hypertexture: Perlin and Hoffert [PH89] proposed hy-
eas where the object surface can see more of the heat soyseetexture as a way of adding texture detail or noise (sufiiras
Their model is not physically based as there is no calculatismoke and fire) to objects. The method relies upon being able
of heat energy and by using a distance field the process is jisspecify a soft regio(p) around the object, such that each
visually improved. pointp can be classified as inside the object, in the soft region
Jones [Jon03] introduces a model that accurately modets bvhere the hypertexture effect is applied), or completely o
thermal flow and latent heat in rigid solids with complex suiside the influence of the object and its texture. This is et
faces. By using the phase mixture formulation based upon tteaightforward for implicitly defined object§(z,y, z) = r,
distance field, the method allows a fast (volume preservinglich as spheres and torii, where the soft region can be estab-
physically based animation that allows effective contifalhe lished for all pointsp wherer; < f(p) < r, for some inner
melting process by using well defined parameters derived fraadiusr; and outer radius,,.
the physical properties of the material undergoing the @has Objects defined using triangular mesh data do not readily
transition. One major advantage of employing a distancd fidhave such a property, but Satherley and Jones [SJ02] demon-
on a voxel grid is that it provides a structure that allowsftst strated that a space-filled distance fidldould be used, and a

computation of heating due to radiative transfer. soft regionD(p) could be defined about the object:
By replacing the partial derivatives with finite differesce

Jones [Jon03] shows that it is relatively straightforwarddlve 1 if d(p)* <r?

the Enthalpy formulation of the Heat Equation using a digcre D(p) =140 if d(p)? > rg

voxel grid giving results like that of Figure 11. rf;d£p2)2 otherwise

where, (23)

r; = inner radius,
r, = outer radius
andp € R?

D(p) is used in the hypertexture gain, bias, noise and turbu-
lence functions of Perlin and Hoffert [PH89]. Using voxaliz
tion, this approach allows hypertexture to be applied tcegain
objects. Figure 12 shows hypertexture on a voxelized tadk an
the UNC CThead data set, and also demonstrates combining hy-
pertexture and clipping hypertexture. Miller and Jones(&]J
demonstrate the implementation of hypertexture on a GPU to
enable real-time rendering of animated fire texture amongst
other effects on complex objects.

After 92s After 1932s

After 3680s After 17020s

Fig. 11. 24cm high wax legomank = 0.18 W/(mPC), p = 1000kgm—3,
¢ = 2000 J/keC, h = 0.001m, L = 105kJ, with radiation from a00°C
heat source at the top left. Fig. 12. (a) Bozo and melting texture on tank. (b) Clipped baiskull.

6) Morphing: Cohen-Or etal. [COSL98] implement mor- 8) Mesh Processing: Distance fields are potentially very
phing by warping the source and target distance fields tasvargseful in mesh manipulation algorithms. In [BBVKO04] Botsch
each other. Interpolation between the distance fields is thet al. argue that when multiple manipulations are applied to
used to create the in-between object. Breen and Whitakeesh, it is difficult to precisely compute the cumulativeoerr
[BWO1] use level sets and distance fields to create a morphAn effective solution to this problem is to construct a dis-
between solid models. First the source and target objeets t@ance field around the original surface. The manipulated sur
converted into signed distance fields. The two objects aye réace can then be checked against this distance field. Inipeact
istered in order to create a warp between the objects. A leBatsch et al. propose to render the manipulated mesh using th
set is fitted to the zero level of the source object, and ugirg tdistance field of the original as a 3D texture. Thus, we can ren
warp a corresponding point in the distance field of the tasget der the manipulated mesh with the distance to the originahme
ject is found. Each point then moves along a trajectory nbrmaapped on as a color using 3D texture mapping. Pixels are then
to the surface and proportional to the distance in the distarculled if the mapped distance values are below some toleranc



Consequently, pixels are only drawn if they are above the to'
erance. Thus, a simple occlusion query [SA04] can be used
check whether the manipulated mesh is within a given digtanc

of the original.

9) Mesh Generation: For many applications, such as soft
body simulations, simplicial meshes (i.e. triangle mesh&®
or tetrahedral meshes in 3D) are required. These meshes
typically generated from some known geometry. Distancddiel
can be a useful representation of this geometry, since &rg v
easy to detect whether a mesh vertex is inside the shape, and
the vertex is easily projected onto the boundary. See Bniéso
al. [RBFO05] and the Ph.D. thesis of Per-Olof Persson [Per05]

VI. DISCUSSION

Building upon the properties of continuous distance fielcgéB
(Section Il), this paper has presented a survey of the maim te
niques for the production of three-dimensional discreséaatic
fields (Section Il1). In particular, we gave detailed diient for
creating correctly signed distance fields of triangularimiggta [BA05]
(Section IlI-A). To reduce voxelization time, we have shown
that it is possible to clamp the distance field to a shell adoun
the object, and make use of distance transform methods (s(Rshar01a]
as chamfer, vector and FMM) to enumerate the remainder of the
discrete space (Section IlI-B). As these methods are approgeroib
mating, it becomes natural to ask the questions we gave in the
abstract —How accurate are these methods compared to eag;em]
other?, How simple are they to implement&nd What is the
complexity and run-time of such method&#ction IlI-F gave
a thorough analysis to provide answers to those questions.
summary it appears that for best accuracy we should ensgire th
the initial surface shell (Section 111-B.1) contains vestto the
surface rather than just distances, and then use a vecater tra
form. Where just distances are available, then it appeats tfscoz2a
using the new SFMMHA method will give the most accurate
results, in the least time, and is easier to implement than ﬁlécozb]
previously published FMMs. After giving a thorough review
on the production of distance fields, we documented altenat
representations (Section 1V), and their application taouws

situations (Section V).

ization.

active shape manipulation and visualization.
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