
1

3D Distance Fields: A Survey of Techniques and
Applications

Mark Jones
University of Wales

Swansea, UK

Email: m.w.jones@swan.ac.uk

J. Andreas Bærentzen
Technical University of Denmark

Copenhagen, Denmark

Email: jab@imm.dtu.dk

Miloš Šrámek
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Abstract— A distance field is a representation where at each
point within the field we know the distance from that point to
the closest point on any object within the domain. In addition to
distance, other properties may be derived from the distancefield,
such as the direction to the surface, and when the distance field is
signed, we may also determine if the point is internal or external to
objects within the domain. The distance field has been found to be
a useful construction within the areas of Computer Vision, Physics
and Computer Graphics. This paper serves as a timely exposition
of methods for the production of distance fields, and a reviewof al-
ternative representations and applications of distance fields. In the
course of this paper we present various methods from all three of
the above areas, and we answer pertinent questions such asHow
accurate are these methods compared to each other?, How simple
are they to implement? and What is the complexity and run-time of
such methods?

Index Terms— distance field, volume, voxel, fast marching
method, level-set method, medial axis, cut locus, skeletonization,
voxelization, volume data, visualization, distance transform.

I. I NTRODUCTION

Perhaps the earliest appearance of distance fields in the lit-
erature is the 1966 image processing paper by Rosenfeld and
Pfaltz [RP66] where they present the application of a chamfer
distance transform to an image, and also create a skeleton which
is a minimal representation of the original structure. Since then,
many authors have improved the accuracy of chamfer distance
transforms, and have introduced alternative algorithms such as
vector distance transforms, fast marching methods and level
sets. Most of the earlier work concentrated on two dimensional
image processing, but as three dimensional data sets grew inim-
portance, latterly much research has been targeted at processing
this and higher dimensional data. The literature seems broadly
split between the Computer Vision community (for image pro-
cessing), Physics community (for wavefront, Eikonal equation
solving schemes) and Computer Graphics community (for ob-
ject representation and processing). This paper will draw to-
gether the literature from these communities and will, for the
first time, independently and thoroughly compare the various
main algorithms and approaches.

For the purposes of this paper, we are most interested in
the application of algorithms using distance fields for the mod-
elling, manipulation and visualisation of objects for Computer
Graphics, and so we shall emphasise methods that enable such
processes. Recently, it seems that there is general widespread

agreement that distance fields provide the most suitable anti-
aliased representation of geometric objects for the purposes of
Volume Graphics. The termVolume Graphicswas first intro-
duced by Kaufman, Cohen and Yagel in 1993 [KCY93], where
they present the advantages of using volumetric models. Al-
though they were working with binary representations which
suffered from aliasing, many of the methods they proposed and
discussed have adapted well to distance fields. Volume Graph-
ics is now a subject area in its own right, demonstrated by a
biannual “Volume Graphics” conference series which started at
Swansea in 1999 [CKY00]. However, distance fields have re-
cently found many applications unrelated to traditional volume
graphics. For instance, they can be used for collision detection,
correcting the topology of meshes or to test whether a simpli-
fied mesh is within a given distance threshold of the original.

A distance field representation of an object can be particu-
larly useful in situations where algorithms provide for thefast
processing of three dimensional objects, and so this paper shall
concentrate on the methods by which distance fields are pro-
duced, and the applications that can use these distance fields to
accelerate modelling, manipulation and rendering techniques.
Apart from a survey of the literature in those areas, the main
contributions of this paper are a summary of some of the very
latest results in the production and use of distance fields, anew
simplified version of the Fast Marching Method (FMM) and the
first thorough comparison of FMM and its variants, Chamfer
Distance Transforms (CDTs) and Vector Distance Transforms
(VDTs) on both error and speed.

The remainder of this paper is organised as follows. In Sec-
tion II, we present some properties of the continuous distance
field. Section III acquaints the reader with the main approaches
to calculating discrete distance fields. Aspects such as com-
puting the distance field directly from the data, and computing
the sign for a signed distance field are accounted in Section III-
A. Using a shell boundary condition as a basis it is possible
to create distance fields using the vector and chamfer transform
methods and the fast marching methods of Section III-B. Sec-
tion III-F provides the first in-depth comparison of all three ap-
proaches — vector, chamfer and fast marching methods on a va-
riety of data sets. A thorough analysis of both time and erroris
given. Section IV examines alternative representation schemes
for distance fields including Adaptive Distance Fields (ADFs),
lossless compression schemes, wavelets, and the Complete Dis-
tance Field Representation (CDFR). The main application areas



2

using distance fields are briefly examined in Section V. Finally,
we conclude this paper with a discussion in Section VI.

II. CONTINUOUS DISTANCE FIELDS

A. The Continuous Signed Distance Function

Assuming that we have a setΣ, we first define theunsigned
distance functionas the function that yields the distance from a
pointp to the closest point inΣ:

distΣ(p) = inf
x∈Σ

‖x− p‖ . (1)

Frequently, we are mainly interested in thesigned distance
function associated with a solidS. The signed distance function
returns the distance to the boundary,∂S, and the sign is used to
denote whether we are inside or outsideS. Here, we use the
convention that the sign is negative inside. This leads to the fol-
lowing formula for the signed distance function corresponding
to a solidS

dS(p) = sgn(p) inf
x∈∂S

‖x− p‖ (2)

where

sgn(p) =

{

−1 if p ∈ S
1 otherwise

.

When no ambiguity is possible, we drop the subscriptS from
dS .

B. Derivatives of the Distance Function

An important property of the signed distance functiond is
that

‖∇d‖ = 1 (3)

almost everywhere, the exception being points without a unique
closest point (e.g. the centre of a sphere, see also Section II-C).
In this case, the gradient is not defined. Otherwise, the gradi-
ent at a given pointp is orthogonal to the isosurface passing
throughp. An isosurface is a set{p|d(p) = τ} whereτ is the
isovalue.

The second order derivatives contain information about the
curvature of isosurfaces of the distance function [Har99].For
general functions,f : R

3 → R, we can also obtain curvature
information from the second order derivatives, but the equations
become particularly simple for distance functions.

The Hessian,H , of d is the matrix of second order partial
derivatives

H =





dxx dxy dxz

dyx dyy dyz

dzx dzy dzz



 . (4)

The mean curvature of the isosurface passing through a given
point is simply the trace ofH at that point divided by two:

κM =
1

2
(dxx + dyy + dzz). (5)

The Gaussian curvature is
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(6)

and the principal curvatures are the two non-zero eigenvalues
of H . The last eigenvalue is 0 reflecting the fact thatd changes
linearly in the gradient direction. Monga et al. give a good ex-
planation of how the Hessian is related to curvature [MBF92].

C. Continuity and Differentiability

The signed and unsigned distance functions of a given sur-
face are continuous everywhere. This follows from the trian-
gle inequality. However, neither is everywhere differentiable.
This raises the question of where the signed distance function
is differentiable which is a question a number of authors have
considered.

In [KP81] it is demonstrated that for aCk surface (k ≥ 1),
the signed distance function is alsoCk in some neighbourhood
of the surface. In his technical report [Wol93], Wolter presents
various theorems regarding the cut locus. The cut locus of a sur-
face is the set of points equally distant from at least two points
on the surface. Hence, the cut locus is the same as the union of
the interior and exterior medial surfaces. Theorem 2 in [Wol93]
pertains directly to the differentiability of the distancefunction.
Specifically, it is shown that theunsigneddistance function is
differentiable, and its gradient Lipschitz continuous at points
which neither belong to the surface nor to its cut locus. How-
ever, the signed distance is differentiable also on the surface
(except at points where the cut locus touches the surface), and
the critical points1 of the signed distance coincide with the cut
locus.

In the remainder of this paper, we are mostly concerned with
discrete distance fields. Such distance fields may be obtained
by sampling a continuous distance function, and in that caseit
may be important to know whether two grid points straddle the
cut locus. If they do, it means that their distance values corre-
spond to surface points that may be very far apart. This can lead
to poor reconstruction of the continuous field, its gradientand
other characteristics, since they are typically estimatedusing fi-
nite reconstruction kernels which use a stencil of grid points.
In [Bær01a] it is shown that if we can touch all points (inside
and out) of the surface,∂S, by rolling a ball with a given radius
Rs on the inside and the outside of the surface, then the cut lo-
cus, and hence the critical points, does not come closer to the
surface thanRs.

This property becomes important in modelling and visual-
ization of objects represented by discrete DFs. In this case, it is
necessary to reconstruct the continuous field, and, if shading is
required, also its gradient in the vicinity of the object surface.
It is, therefore, required that the aforementioned distance Rs

between the cut locus and the surface be larger than the charac-
teristic radius of the reconstruction filter. This conditions will
be further on referred as theDF representability criterionand
an object which fulfils it aDF representable solid. Note that the
actual size ofRs depends on the grid resolution and for com-
mon reconstruction kernels it has values between 1 and 3 voxel
units [ŠK99].

III. C OMPUTING DISTANCE FIELDS

A brute-force algorithm for computation of a shortest dis-
tance to a set of objects over a 3D discrete gridV is very sim-
ple: for each voxel ofV its distance to all objects is computed
and the smallest one is stored. In spite of its simplicity, this ap-
proach is impractical since it leads to prohibitively long com-
putational times. Therefore, techniques were developed which

1i.e. where the distance function is not differentiable
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Fig. 1. Calculating distance to a triangle: Ifp projects ontoR1 it is closest to
the plane,R2 − R4 edge,R5 − R7 vertex.

(i) keeping the basic scheme discard most of the objects by ex-
ploitation of their spatial coherency (computing distances from
primitives, Section III-A.1) and (ii) methods, which in an ini-
tialization step evaluate the distances in certain regionsin a triv-
ial way (inside the objects or in a thin layer around the surface)
and subsequently propagate them through the whole volume
(distance transforms, Section III-B). Since some of these accel-
erated techniques are only approximate, the role of the compu-
tationally demanding but precise brute-force techniques is still
unavoidable in algorithm evaluation.

A. Distance Computation for Common Surface Representa-
tions

1) Triangle Meshes: The triangle mesh representation is
probably the most frequently used representation for 3D geom-
etry. Therefore, it is particularly important that we are able to
convert triangle meshes to signed distance fields. We can only
generate distance fields from a certain class of triangle meshes,
namely meshes that are closed, orientable 2-manifolds. In prac-
tice, we can impose the manifold condition by requiring that
[Hof89]

• The mesh does not contain any self intersections: Trian-
gles may share only edges and vertices and must be other-
wise disjoint.

• Every edge must be adjacent to exactly two triangles.
• Triangles incident on a vertex must form a single cycle

around that vertex.
If the mesh fulfils these conditions, we know that it partitions
space into a well-defined interior, exterior, and the mesh itself.

We will discuss first the basic methods for computing un-
signed distance fields and then discuss techniques for generat-
ing the sign.

The distance to a triangle is easily computed using a simple
case analysis. When a pointp is projected onto the plane con-
taining the triangle, the projected pointp′ lies in one of the 7
regions shown in Figure 1. Ifp′ is projected ontoR1 then the
distance from the point to the triangle is equal to the distance
from the point to the plane containing the triangle. Ifp′ lies in
R2, R3 or R4 a distance to the corresponding line should be
calculated. Lastly, with regionsR5, R6 or R7 a distance to the
corresponding vertex should be calculated.

2) Hierarchical Organisation:Since the brute force method
requiresN ·M steps, whereN is the number of voxels, andM
is the number of triangles, it is sensible to use hierarchical data
structures to allowO(log M) access to the triangles.

Payne and Toga have described the basic approach of cal-
culating distance to triangles [PT92]. They also proposed some
optimizations. For instance, one can compute squared distances
and then take the square root only when the shortest distanceis
found. Further, in a more comprehensive algorithm, they utilize
the data coherency by storing the triangles in a tree of bounding
boxes. From a given point, we can compute the smallest and
greatest possible distance to anything inside the box. Thiscan
be used to prune branches as we move down the tree.

Quadtrees were used by Strain [Str99] to speed up computa-
tion of distance to an interface in 2D (redistancing, see V-D.2)
thus creating anO(N log N) algorithm (whereN is the size of
the interface).

Another hierarchical approach is the recent Meshsweeper al-
gorithm proposed by Guéziec [Gué01]. The Meshsweeper al-
gorithm is based on a hierarchical representation of the mesh.
At each level, a bounding volume is associated with every tri-
angle. The bounding volume of a given triangle encloses all
child-triangles at more detailed levels. A distance interval is
computed for each bounding volume. This distance interval
gives the shortest and greatest possible distance to any trian-
gle inside the bounding volume. The lower bound is finally
used as an index to a priority queue. A salient point is that we
can remove a bounding box from the queue if its lower bound
is greater than the greater bound of some other bounding box
thus removing a branch of the hierarchy from consideration.
Guéziec compares his method to an octree based method and to
a brute force approach.

3) Characteristic Methods: Hierarchies are not always
needed. If the actual value is only required up to a certain dis-
tance from the surface, then the influence of a triangle becomes
local. If only distances up to, say, five units are required, we
can use a bounding volume around each triangle to ensure that
distances are only computed for grid points that are potentially
closer than five units. The smaller this max distance, the smaller
the need for a hierarchical structure.

For each triangle, we simply compute the distance to that tri-
angle for all grid points inside the corresponding boundingvol-
ume. In [DK00], Dachille et al. propose such a method where
the volume is a simple axis aligned bounding box. Their con-
tribution is to perform the case analysis (Fig. 1) using onlydis-
tance to plane computations. The advantage is that only one ad-
dition is needed for each voxel to compute its distance to a given
plane—using an incremental approach—making the technique
suitable for hardware acceleration.

Many other methods that generate distance fields with dis-
tances only up to some maximum value are based on the notion
of a characteristic which was introduced by Mauch [Mau00],
[Mau03]. Each feature in the triangle mesh is converted to
a polyhedron—the characteristic—which contains the points
closest to that feature. For instance, an edge becomes a wedge,
a face becomes a prism and a vertex becomes a cone with polyg-
onal base. These characteristics contain all points that are clos-
est to their respective feature and within a certain distance of
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the mesh. Thus, the characteristics can be seen as truncated
Voronoi regions. However, in general, they are made to over-
lap slightly to avoid missing grid points. The characteristics are
then scan converted and for each voxel within the characteristic,
the distance to the generating feature is computed.

A recent improvement of this method was proposed by Sigg
et al [SPG03]. They use graphics hardware to scan convert
the characteristics. First the characteristic is sliced, and then
the slices are sent to graphics hardware and rasterized in the
usual way. The distances are computed in a fragment program
[SA04]. However, slicing is done on the CPU and this may be a
bottleneck. To alleviate this problem, only a single characteris-
tic is computed for each triangle. This reduces both the amount
of work to be performed by the CPU and the amount of band-
width required in order to send the slices to the graphics card.
The per-triangle characteristics are denotedprisms. Details on
prism computation are provided in [PS03].

Another work that involves hardware acceleration is due to
Sud et al. [SOM04] who also use observations regarding spa-
tial coherence to limit the number of primitives consideredfor
each slice. Sud et al. claim to be two orders of magnitude
faster than a plain software implementation of characteristics
scan conversion.

One may construe the characteristics as very tight bounding
boxes around the triangles, and herein lies their advantage. The
methods are linear in both the number of triangles and voxels
[Mau00]. On the other hand the characteristics must be created
and scan converted. It is simpler to bound each triangle by a box
aligned with the voxel grid. This can be made more effective
by culling voxels that are farther from the plane of the triangle
than a given distance.

4) Computing The Sign:The most obvious method for com-
puting the sign when generating a signed distance field is to use
the surface normals. If we have aC1 smooth surface, the sign
of the distance can be found by evaluating the dot product of
the normal,n and a direction vector,d from the closest point to
the pointp where the sign is desired.d will always point either
in the same direction asn (if we are outside) or the opposite (if
we are inside).

The problem with triangle meshes is that they are notC1:
The normal is not defined on edges and vertices. As a simple
solution, one could use the normal of the incident triangle even
when the closest feature is an edge or a vertex. Unfortunately,
this does not work, because in many cases we have the same
distance to two or more triangles but different sign [PT92].In
particular, this occurs if the closest feature is a vertex, and the
corresponding situation in 2D is shown in Figure 2.

Most authors propose to use scan conversion to generate the
sign [Jon96], [PT92], [Str99], [Mau00]. Typically, this isdone
in the following way: For each z-level plane in the grid, we
compute the intersection of the mesh and the plane. This pro-
duces a 2D contour that we can scan convert [PT92]. An even
simpler approach would be to cast rays along rows of voxels. At
voxel locations where the ray has crossed the mesh an uneven
number of times, we know we are inside.

The characteristics methods [Mau00], [SPG03], [PS03] are
a bit different. A voxel belongs to precisely one characteristic
associated with the closest edge, vertex, or face. This means

d

n1

n1

p

Fig. 2. The mesh feature closest top is a vertex, but the dot productsd · n1

andd · n2 do not have the same sign.

N

n1

n2

n3

α1

α2

α3

Fig. 3. The angle weighted normalN =

P

i
niαi

‖
P

i
niαi‖

that the sign problems do not occur in principle, since we can
compute the sign for that characteristic. However, it is neces-
sary to dilate the characteristics slightly to ensure that voxels
do not “fall between” characteristics. Unfortunately, this over-
lap means that there are cases where characteristics of oppo-
site sign overlap in areas where the numerical distance is the
same, and this can lead to erroneously classified voxels [ED].
Of course, this problem will be far worse if one simply uses a
bounding box around each triangle.

A plausible approach would be to approximate a normal at
each vertex and edge, but it is far from obvious how to do this.
A recent method by Aanæs and Bærentzen [AB03], [BA05]
solves this problem usingpseudo normalsassigned to edges
and vertices. The challenge is to define a pseudo normal which
is guaranteed to have a positive dot product with the direction
vector whenever the point is outside and negative whenever the
point is inside. Aanæs and Bærentzen use the angle weighted
normal [TW98] as their choice of pseudo normal. To compute
the angle weighted normal at a vertex, one sums the normals
of the incident faces, weighting each normal with the angle be-
tween the two legs that are incident to the vertex. This is illus-
trated in Figure 3.

As shown in [AB03], [BA05], the dot product of a direc-
tion vectord from a mesh pointc to a pointp and the an-
gle weighted normalN at c is always positive ifp is outside
and negative otherwise. This leads to a method for computing
signed distance fields that is simply an extension of the method
for unsigned distance fields [AB03]. Details on a practical and
efficient method for signed distance computation and a discus-
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sion of numerical robustness are provided in [BA05].
Another advantage of angle weighted normals is that they

are independent of tessellation [TW98]. In other words, as long
as the geometry is unchanged, we can change the triangula-
tion of the mesh without affecting the vertex normals. The no-
tion of angle weighted normals is easily extended to edges—the
normals of the two faces adjacent to the edge are simply both
weighted byπ.

5) Triangle Soups: Unfortunately, triangle meshes do not
always form closed two-manifold surfaces, and then the meth-
ods above do not work, since only closed two-manifold surfaces
divide space into a well defined interior, exterior, and boundary.
However, in many cases we have just a slight self-intersection,
or a small hole in the surface. In these cases, we might still
want to compute an estimated distance field.

It has been shown that a binary volume can be generated from
a triangle mesh by projecting the mesh from many directions
[NT03]. From each direction, one generates what can be seen
as a run-length coded binary volume representing the original
triangle mesh. If the mesh contains holes or other degenera-
cies these will be reflected by holes in the scan conversion.
However, a plausible volume can be reconstructed by voting
amongst the scan conversions for each voxel.

The scan conversions can also be used to generate a cloud
of points with normal information. From this point cloud we
can estimate distances as discussed in [Bær05]. The points will
be missing in areas where the original mesh contains holes, but
using a diffusion scheme it is possible to fill in the missing dis-
tance values.

6) Implicit and Parametric Surfaces:The simplest objects
to voxelize are implicit surfaces. An implicit surface is really
just a functionf : R

3 → R which serves as the embedding of a
surfaceB which is a level-set or iso-surface off , i.e.

B = {p| f(p) = τ} (7)

whereτ is the iso-value. In practicef should be constrained so
that the value off is alwaysf > τ on the inside andf < τ on
the outside or vice versa. Often, we require that∇f 6= 0 for
any pointp ∈ B since this means thatτ is a regular value and
hence thatB is a manifold [VGF02]. For an in-depth discussion
of implicit surfaces, see [VGF02], [Blo97].

The analytic definitions of a 3D spheref(p) = ||p− p0|| or
hyperplanef(p) = (p− p0) · n are good examples of implicit
surfaces, and these two are particular because the value off
is also the signed distance to the sphere or hyperplane, respec-
tively. Hence, we can voxelize a sphere or hyperplane simplyby
samplingf . In general, more work is required. If we can accept
some error, it is frequently possible to voxelize the implicit sur-
face by sampling an approximation of the signed distance, typ-
ically (f − τ)/||∇f ||. This method is used in the VXT class li-
brary of DF-based voxelization techniques byŠrámek [̌SK00b].
A more precise but also more costly method is to find the foot
point numerically: Given a pointp find the closest pointpfoot

so thatf(pfoot) = τ . The distance is then||p− pfoot|| and the
sign is trivially computed. Hartmann has designed such a foot
point algorithm [Har99] which accepts a pointp in the vicin-
ity of an implicitly defined surface and produces a foot point.
The basic idea is to move in the gradient direction until a point

p0 on the surface is found. The estimate is then iteratively re-
fined until the surface normal points top.

Certain implicit solids can contain sharp surface details,
where the aforementioned methods, which assume sufficient
smoothness of the implicit function, fail to produce meaningful
distance values. To cope with this, a technique was proposed
by Novotný et al. [Nv05], where such areas are identified and
the solid is locally modified in order to comply with the DF
representability criterion (Section II).

There are several possibilities for computing distances to
parametric surfaces. In a few cases (sphere, double cone) closed
form solutions are available. In some other ones (superellip-
soids [Bar81], supershapes [Gie03]), it is possible to convert
their parametric representation to an implicit one [LG95] and
to use the techniques mentioned above. However, in general,it
is necessary to minimize for each grid pointp the expression

d(u, v) = ||S(u, v) − p||, (8)

whereS(u, v) is the surface’s parametric representation. For
example, gradient descent minimization was used by Breen et
al. [BMW98]. In general, minimization of (8) may lead to nu-
merical problems and trapping in local minima.

B. Distance Transforms

The principle behind the use of the distance transform (DT)
is that a boundary condition close to the surface boundary can
be generated (using any of the direct methods of Section III-
A) from which the remaining distances may be evaluated. The
boundary condition is discussed in Section III-B.1.

In the second phase, distances are propagated to the rest of
the volume using a DT. As distances away from the boundary
condition are not calculated using the exact methods of Sec-
tion III-A), some errors may be introduced. This section will
examine the errors produced by many of the popular distance
transform techniques. DT algorithms can be classified accord-
ing to how weestimatethe distance value of a given voxel from
the known quantities of its neighbors and how wepropagatethe
distances through the volume. The first classification criterion
leads us to

• chamfer DTs, where the new distance of a voxel is com-
puted from the distances of its neighbors by adding values
from adistance template(Figure 4),

• vector DTs where each processed voxel stores a vector to
its nearest surface point and the vector at an unprocessed
voxel is computed from the vectors at its neighbors by
means of avector template(Figure 6), and

• Eikonal solverswhere the distance of a voxel is computed
by a first or second order estimator from the distances of
its neighbors.

According to the second criterion, the distances can be propa-
gated through the volume in a

• sweeping scheme, when the propagation starts in one cor-
ner of the volume and proceeds in a voxel-by-voxel, row-
by-row fashion to the opposite corner, typically requiring
several passes in different directions, or in a

• wavefront scheme, when the distances are propagating
from the initial surface in the order of increasing distances
until all voxels are processed.
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If required, it is possible to stop the computations in a wavefront
scheme as soon as the desired distance iso-level is reached.One
can take advantage of this property in numerous applications,
as, for example, in morphological operations, surface offsetting
and level-set methods.

1) Initialization: Most distance transformations are re-
ported as operating on discrete binary classified dataF which
has been obtained by scan-conversion of analytically defined
solids or by segmenting volumetric data (e.g., by thresholding)
to extract the feature points of a surface:

F (p) =

{

0 p is exterior
∞ p is interior

, (9)

where voxelp ∈ I
3 andF : I

3 → R. This classification when
operated on by a distance transformation will produce a dis-
tance field internal (or external, when reversed) to the object.
To produce an unsigned distance field of the type in (1) the fol-
lowing classification could be used:

F (p) =

{

0 p is on the surface
∞ elsewhere

. (10)

Here, the numerous voxelization techniques can be used to
identify the 0-value voxels [Kau87].

It is recommended that for higher accuracy, a so called grey-
level classification should be used in a shell around the surface
[Jon96]:

F (p) =

{

dS(p) in the shell
∞ elsewhere

(11)

The boundary condition is said to be minimal if it only con-
sists of inside voxels that are 26-connected to voxels outside
(and vice versa) and all voxels that are on the surface. This re-
quires that grey-level voxels known to be close to the surface be
calculated using a short cut. Surface mesh data could be scan
converted to the voxel grid using many of the triangle based
techniques mentioned in Section III-A.1, whereas parametric
surfaces and curves can be voxelized by splatting [ŠK99]. In the
case of implicit solids or scalar fields, when the surface is de-
fined by the iso-valueτ , the distance should be explicitly com-
puted for all voxels which have a 6-neighbor on the other side
of the iso-value using the aforementioned linear approximation
(f − τ)/||∇f ||. In vector DTs, techniques for estimation of the
nearest iso-surface point listed in Section III-A.6 can be used.

After classification the distance transformation is applied. A
simpler chamfer distance transformation gives poorer results
than the vector distance transformation.

2) Chamfer Distance Transform:In chamfer distance trans-
forms (CDTs) [RP66], [Rho92], [ZKV92], [Bor96], [ABM98],
the distance template (Figure 4) is centred over each voxel,and
the distance at the central voxel is computed as the minimum of
all of its neighbours’ distances with the appropriate component
added. Both sweeping (two pass) and wavefront schemes were
formulated.

In a sweeping scheme the distance template is split in two
parts: one is used in a forward pass and the other in a backward
pass. The forward pass calculates the distances moving from
the surface towards the bottom of the dataset, and is followed by
the backward pass calculating the remaining distances. Figure 4

Forward pass

f f
f e d e f

d d
f e d e f

f f
z=-2

f e d e f
e c b c e
d b a b d
e c b c e
f e d e f

z=-1

d d
d b a b d

a 0

z=0

Backward pass

0 a
d b a b d

d d
z=0

f e d e f
e c b c e
d b a b d
e c b c e
f e d e f

z=1

f f
f e d e f

d d
f e d e f

f f
z=2

Fig. 4. A distance template. In the forward pass, distances (a-f) are added to
voxels in the current, z-1 and z-2 slices. In the backward pass, distances are
added to voxels in the current, z+1 and z+2 slices.

is used as the basis with Table I giving the appropriate template
values for each chamfer method. Note that some values are
empty in order to ensure that calculations that yield the identical
result are not repeated (if they are filled we have a53 Complete
Euclidean DT). The distance transformation is applied using the
pseudo-code in Figure 5 wherei, j, k ∈ {−2,−1, 0, 1, 2} for a
5 × 5 × 5 transform,fp andbp are the sets of transform posi-
tions used in the forward and backward passes respectively and
checks are made to ensurefp andbp only contain valid voxels
at the edges of the data set. Svensson and Borgefors [SB02]
present an analysis of chamfer distance transforms and give
numerous examples of distance templates. Cuisenaire [Cui99]
also gives a good review of distance transforms (both Chamfer
and Vector).

In wavefront techniques voxels are processed in the order
of their increasing distance [ZKV92], [CM00]. To ensure the
correct order, the processed voxels are inserted into a priority
queue. In a loop, the voxel from the top of the queue is re-
moved, and distances of its not yet processed voxels are com-
puted according to the distance template and subsequently in-
serted into the queue. The process continues as long as there
are any voxels in the queue.

Asymptotic complexity of the wavefront approaches
(O(N log N), N being total number of processed voxels)
is worse than of the sweeping approaches (O(N)) due to
the priority queue management. However, in special se-
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Transform a b c d e f
City Block (Manhattan) 1

Chessboard 1 1
Quasi-Euclidean3 × 3 × 3 1

√
2

Complete Euclidean3 × 3 × 3 1
√

2
√

3
< a, b, c >opt 3 × 3 × 3[SB02] 0.92644 1.34065 1.65849

Quasi-Euclidean5 × 5 × 5 1
√

2
√

3
√

5
√

6 3

TABLE I
VALUES USED TO PRODUCE EACH CHAMFER TYPE.

tups, the wavefront approaches were reported to be “con-
siderably faster” [ZKV92]. Here, in an algorithm adopted
from [VVD89], Zuiderveld et al. take advantage of an obser-
vation that the direction of the shortest distance propagation is
kept. In other words, knowing a position of the voxel the dis-
tance of which was used to compute the distance of the cur-
rent voxel, it can be predicted, which of its neighbours should
be processed. The speed up is thus obtained, in regard to the
sweeping schemes, by eliminating computations of distances,
which would later be overwritten by lower values.

/* Forward Pass */
FOR(z = 0; z < fz; z++)

FOR(y = 0; y < fy; y++)
FOR(x = 0; x < fx; x++)

F[x,y,z] =
inf∀i,j,k∈fp(F[x+i,y+j,z+k]+m[i,j,k])

/* Backward Pass */
FOR(z = fz-1; z ≥ 0; z--)

FOR(y = fy-1; y ≥ 0; y--)
FOR(x = fx-1; x ≥ 0; x--)

F[x,y,z] =
inf∀i,j,k∈bp(F[x+i,y+j,z+k]+m[i,j,k])

Fig. 5. Pseudo code for chamfer distance transform application.

3) Vector Distance Transform:CDTs suffer from poor ac-
curacy as the distance from the surface increases (Section III-
F). This problem is overcome by using Vector (or Euclidean)
Distance Transforms (VDTs or EDTs) [Dan80], [Mul92],
[SJ01b] which use a boundary condition of voxels containinga
vector to the closest point on the surface, and propagating those
vectors according to a pattern (vector template) such as theone
given in Figure 6 (the Vector-City Vector Distance Transform,
VCVDT, [SJ01b]). Figure 7 shows the pseudo-code for one
pass of a vector distance transform (F1 of the VCVDT), where
vec is a voxel grid containing actual or estimated vectors to
the surface∂S anddir = {(0,0,−1), (0,−1,0), (−1,0,0)}.
Pass F2 would be a loop with increasing y and decreasing x with
dir = {(1,0,0), (0,−1,0)}. All forward passes are carried
out within one single outer loop with increasing z. Backward
passes are implemented similarly.

The VCVDT technique requires 8 passes through the vol-
ume, and in each pass just 6-neighbors of the actual voxel are
visited. Of course, different schemes are also possible. Ragne-

malm [Rag93] classifies them inseparableandnon-separable.
In the former, the passes are mutually independent and can be
applied in any order. Thus, they are suitable for parallel imple-
mentation, while the latter are more appropriate for sequential
implementations. Further, in [Rag93] a separable 4 pass algo-
rithm with 26-neighbourhood vector template is proposed.

Breen et al. [BMW98], [BMW00] implement a wavefront
version of a VDT technique by passing closest point informa-
tion (trivially equivalent to passing vector information)between
voxels at a moving wavefront from CSG objects. Breen et al.
[BMW00] also demonstrate the passing of color information to
create colored offset surfaces.

C. The Fast Marching Method

The fast marching method(FMM) [Tsi95], [Set99a],
[Set99b], [HPCD96] is a technique for computing the arrival
time of a front (which we can think of as e.g. a balloon) ex-
panding in the normal direction at a set of grid points. This is
done by solving the Eikonal equation from a given boundary
condition. The Eikonal equation is

‖∇T ‖ =
1

F
, (12)

whereF ≥ 0 is the speed of the front, andT is the arrival time
of the front. Given a pointp, the arrival timeT (p) is the time
at which the skin of the balloon passedp. The Eikonal equation
states the obvious inverse relationship between the speed of the
front and the gradient of the arrival time. SinceF does not have
to be unit or even constant, the FMM is not solely a method for
computing distance fields.

However, ifF = 1, the front moves at unit speed, and the
arrival time atp is simply the distance fromp to the closest
point on the front at time 0. Hence, the FMM can be and is
frequently used to compute distance fields. The FMM is de-
fined on both 2D and 3D grids [SMP99] and also on surfaces
represented as triangle meshes [KS98], [Set99b]. The FMM
was independently proposed first by Tsitsiklis [Tsi95] and then
Sethian [Set96] and Helmsen et al. [HPCD96].

The FMM is in principle a wavefront scheme which com-
putes the values ofT from a set of boundary values, and
the structure of the algorithm is almost identical to Dijkstra’s
single-source shortest path algorithm [CLR90]. We say thata
grid point with a known arrival time is frozen. In the first step,
the distances of all grid points adjacent to a frozen grid point of
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Fig. 6. Vector templates for one pass of the VCVDT technique.

FOR(z = 0; z < fz; z++)
/* Forward Pass F1*/
FOR(y = 0; y < fy; y++)
FOR(x = 0; x < fx; x++)

p=(x,y,z);
pos=argmini ‖vec[p + diri]+diri‖
vec[p]=vec[p + dirpos]+dirpos

F(x,y,z)=‖vec[p]‖

Fig. 7. Pseudo code for pass F1 of a vector distance transform.

the boundary condition are computed. Then we pick the small-
est of these distance values and freeze the corresponding grid
point. Next, we recompute the distance at all its adjacent grid
points (except at those that are already frozen, see Figure 8).
Finally, we loop back and freeze the grid point thatnow con-
tains the smallest distance value. In this way, the set of frozen
grid points keeps expanding, and around the frozen set thereis
a layer of grid points where the distance is computed but not yet
frozen. A priority queue implemented as a binary heap is typi-
cally used to store these distance values. Whenever, a distance
is computed or recomputed, we have to be able to update the
heap to reflect this change. This requires that each grid point
holds a pointer to its corresponding heap element.

Fig. 8. This figure illustrates the structure of the FMM. The distances are
initially known at the boundary condition (blue squares in left figure). The
distance is then computed at all adjacent grid points (red squares) and the grid
point with the smallest of these distances is frozen (the hatched blue square on
the right). Then the distance is recomputed at its (hatched red) neighbours. The
red arrows indicate which neighbours are used to recompute adistance.

In order to compute the distance at a new grid point, a dis-
cretized version of (12) is solved. The discretization is based on
a first order accurate finite difference approximation to thegra-
dient which only uses the frozen grid points in the neighbour-
hood of the current grid point. To solve this discretized ver-
sion of the Eikonal equation, we simply need to find the largest
root of a second order polynomial. Unfortunately, the standard
FMM is not very precise. This has motivated another version
(FMMHA) of the method which is more precise by virtue of
the fact that second order finite difference approximationsto
the partial derivatives are used [Set99a]. Hence, it is necessary
to know the distance two grid points away from the grid point
where a new distance is computed. In practice, though, it is
possible to fall back to the standard FMM if this condition is
not met.

For more details on how to implement the FMM and
FMMHA, the reader is referred to [Bær01b]. In the form de-
scribed above, the FMM is anO(N log N) algorithm whereN
is the number of grid points. The reason why the FMM is not
linear is the fact that at each step we need to find the smallest
distance that is not yet frozen. Typically, the distance values are
stored in a heap, and it is a constant time operation to pick the
smallest. However, we also need to keep the heap sorted which
is a logarithmic operation.

D. Variations of the FMM

A problem in the implementation of the FMM is that voxels
in the priority queue may be recomputed. If they are recom-
puted they should be moved in the priority queue which entails
that we need to store handles to priority queue elements in the
voxels. However, two observations can be used to motivate a
simplified FMM which does not require these handles:

• It is our experience that errors increase if one allows the
values of priority queue voxels to increase as a result of a
recomputation. This means that we do not need handles
into the priority queue, instead we accept to have multiple
values in the priority queue for a single voxel. The smallest
value will emerge first, and then we freeze the voxel. If a
second value for a given voxel is popped from the priority
queue it is simply disregarded.

• Errors also increase if non-frozen voxels are used in the
computation of priority queue voxels. Hence, it is not nec-



9

essary to assign distance values to voxels before they are
frozen. This, in turn, means that we know a voxel has been
frozen simply because it has been assigned a value.

The advantage of this scheme is that it is simpler, and we can
use a standard priority queue. The following pseudocode illus-
trates the simplified FMM loop:

Extract voxel with smallest value.
If voxel is not frozen,

freeze voxel
compute unfrozen neighbours
and insert them in priority queue

We will refer to this simplified fast marching method as
SFMMHA.

Tsai [Tsa02] proposes a hybrid algorithm. For each voxel
with three known neighbours, the distance is calculated to the
closest of two points which are the intersection of spheres cen-
tred on each neighbouring voxel with radius equal to the dis-
tance at that neighbouring voxel. If only one neighbour is
known a fixed amounth is added to the distance of that neigh-
bour. If the intersection of the spheres is ambiguous, then the
distance is calculated using the Godunov Hamiltonian. Adding
the fixed amounth is the same as using a Chamfer Distance
Transform, withh set to be an appropriate value from Table
I. The sphere intersection part of the algorithm produces at
best the same result as a Vector Transform (although relies on
less storage, but requires more complex calculation to solve the
intersection of the spheres). The Godunov Hamiltonian calcu-
lates the distance from a wave front propagating through the
data. The algorithm combines all three methods (FMM, CDT
and VDT). It seems to produce accurate results from point data,
and from piecewise linear objects when they are oriented so
their normals are integer multiples ofπ/4 (the combined use of
the CDT and Godunov Hamiltonian makes that restriction for
accurate results). For arbitrary data as we test here, the VDT is
superior in accuracy, speed and simplicity of implementation.

Kim [Kim00] proposed the group marching method (GMM)
where a group of voxels on the wavefront is used to calculate
the distances for their neighbouring voxels. The group is deter-
mined as those voxels that are within a certain distance of the
wavefront and are chosen so that they do not affect the travel
time calculation to each other. Due to the fact that their neigh-
bouring voxels could be affected by several members within
the group, iterations in two different directions are carried out.
GMM is tested on simple artificial problems for which similar
errors are generated (to FMM). Although GMM isO(N) it has
a high overhead in the form of keeping track of the group, and
determining which members of the group are to be updated.

Zhao [Zha04] uses a sweeping method to solve the Eikonal
equation. The volume is swept in forward and backward direc-
tions in a similar manner to Chamfer and Vector Transforms.
At each voxel, the Godunov discretization of the Eikonal equa-
tion is calculated, rather than the chamfer matrix multiplication
of the Chamfer Transform, or the vector additions of the Vec-
tor Transforms. This results in an O(N ) method which pro-
duces a similar result to the FMM at a similar speed to O(N )
Chamfer and Vector Transforms. He also proves convergence
for sweeping methods using the Godunov Hamiltonian to solve
the Eikonal equation. Going a bit further, Kao et al. proposed a

fast sweeping method for more general hamiltonians based on
Lax-Friederichs rather than Godunov’s scheme [KOQ04].

Hysing and Turek [SRH05] compare and evaluate the FMM
method with various methods including the methods of Tsai and
Zhao.

Yatziv et al. [YBS05] create anO(N) implementation by re-
placing the heap with an array of linked lists. The arrival times
are discretized and placed at the end of their appropriate linked
list (O(1) insertion). By keeping track of which array repre-
sents the least time, the head of the list is used as the next grid
point to compute (O(1) removal). As the lists are not sorted, er-
rors are introduced, but these were found to be acceptable when
compared to the time saving.

E. Reinitialization of Distance Fields

The goal of reinitialization is to convert an arbitrary scalar
field, Φ : R

3 → R, whose 0-level isosurface (or 0-level set)
represents some interface, to a distance field in such a way that
the 0-level isosurface is unchanged. Reinitialization is often re-
quired as a part of thelevel set method(LSM) [OS88], [Set99b],
[OF02] (c.f. Section V-D.2), and most work on reinitialization
has been carried out in the context of the LSM.

There is a simple solution to reinitialization based on the
methods discussed in the previous sections. If we assume that
the grid points immediately adjacent to the 0-level isosurface
contain correct distances, FMM can be used to rebuild the dis-
tance field up to the required value. Unfortunately, this condi-
tion may be violated, which was addressed by Chopp [Cho01].
Here, in each cell (group of eight grid points) intersected by the
0-level set ofΦ, a cubic polynomial which interpolates the val-
ues at the corners is constructed. The value of each corner grid
point is, subsequently, replaced by the distance to the 0-level
set of this polynomial.

While the FMM is often employed for reinitialization, other
distance transforms could also be used, and, in fact, there is an
entire class of methods based on the reinitialization equation,

Φt + s(Φ0)(‖∇Φ‖ − 1) = 0 , (13)

which was introduced by Sussman et al. [SSO94] extending
work by Rouy and Tourin [RT92]. In (13),Φ is a function that
is typically almost but not quite a distance function.s(Φ0) is the
sign of the original function which must be known for all grid
points in advance. Most authors use a “smeared” sign func-
tion which is very small near the interface to avoid instability.
Sussman et al. proposed

s(Φ0) =
Φ0

√

Φ0
2 + ǫ2

, (14)

whereǫ is a constant often chosen to be about the size of a cell
in the grid [PMO+99]. A different sign function more adapted
to steep gradients was proposed in [PMO+99]. ‖∇Φ‖ must be
computed in an upwind fashion, i.e. the derivatives should be
one sided which means that for a given grid point they should
look in the direction to the 0-level set [OF02].

Evolving (13) forward in time will cause the value ofΦ to it-
eratively increase or decrease in order to attain a gradientlength
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of unity. When a steady state has been reached,Φ is a distance
function. Thus, methods based on (13) can be used as distance
transforms provided the sign is given for each grid point. How-
ever, this is not efficient since many time steps are needed.

Most authors use a small, constant number of steps (e.g. one
or two) to correct a field that is already close to a distance field.
In this scenario, the schemes areO(N) whereN is the total
number of grid points while FMM isO(N log N). However,
in practice FMM might be faster. We surmise that (13) is best
if small frequent corrections are needed while FMM could be
better for infrequent, large corrections. It is also easy tostop the
FMM when all distance up to a given maximum have been com-
puted. However, when evolving (13), the distance information
flows outward from the interface just like in the fast marching
method. This indicates that a similar wavefront scheme should
be feasible as mentioned in [RS00].

A concern with the methods based on (13) is that the 0-level
set may move slightly. As a countermeasure Sussman et al.
[SFSO98] proposed a volumetric constraint, and Russo et al.
[RS00] an upwind method which does not accidentally look be-
yond the 0-level set. Finally, it should be noted that (13) can be
discretized in a variety of ways both with regard to time deriva-
tives and spatial derivatives. In [OF02] the interested reader
will find an overview with more details on this.

F. Comparison

Each distance transformation was executed on several test
data sets, and the results are presented in Table II. The Point
data set is a single point in a2563 voxel grid, the RotCube data
set is a voxelized cube rotated by30o on both thex- andy-axes
(again2563). Hyd is a distance field to the643 AVS Hydrogen
data set (measured toτ = 127.2) and CT is a distance field to
the bone (τ = 400) of the UNC CThead (256×256×113, Fig-
ure 9). In the latter two cases the distance field was measuredto
the triangles created by the tiling tetrahedra algorithm [PT92]
using a threshold ofτ . The boundary condition consists of in-
ternal voxels with an external 26-neighbour, and external voxels
with an internal 26-neighbour. The vector transform requires
the vector to the closest point whereas the other transformsjust
require the distance to the surface. Each method is compared
to a ground truth distance field that has been computed using a
direct method. Note that a53 Complete Euclidean exists which
creates an equivalent result to the53 Quasi Euclidean (Table I),
and so it is not reported here. The following conclusions may
be drawn:

1) Precision:
• The VDTs (represented here by the VCVDT) are the

fastest to execute and have the lowest error.
• VDTs produce accurate results for cases where distances

are measured to point data sets. The FMM is accurate in
the case of planar surfaces.

• The greater precision of the VDT reflects, to some ex-
tent, that more information from the boundary condition
is used: VDT requires that a vector to the closest point is
stored in each boundary condition voxel.

• VDTs produce the least error for an offset surfacen for
anyn (Table III).

• VDTs are the only methods where the error diminishes as
a function of distance (Table III).

• Larger CDT kernels give more directional possibilities for
the source of the shortest distance, and are therefore more
accurate, but they increase computational time.

• The < a, b, c >opt method is the best33 CDT as it has
been optimally designed to limit the distance error [SB02].

• The max error of the CDTs rise significantly as a function
of distance (compared to FMM and VDTs).

• The FMMHA is significantly more accurate than the orig-
inal FMM.

• If the original analytic representation (in addition to the
boundary data) is available, the result of a VDT can be
used to measure distances to the original data to improve
accuracy further [BMW98], [SJ01a].

2) Speed:
• CDTs and VDTs areO(N) methods, whereas FFMs are

O(N log N). This is reflected in the computational times.
• FMMs should be faster when requesting an offset surface

to level τ , although in practise this may be for only for
smallτ . In informal tests (we triedτ = 3), the SFMMHA
is faster in all cases, but only narrowly in the case of the
CT Head.

3) Ease of implementation:
• Arguably, VDTs and CDTs are easier to implement than

FMMs. However, the simplified FMM is easier to imple-
ment than the method proposed by Sethian [Set99b]

• FMM, being an Eikonal solver is more general and can
also compute arrival times for non unit-speed fronts.

IV. REPRESENTATION OFDISTANCE FIELDS

Discrete distance fields are usually stored in voxel grids due
to the great simplicity of this representation. However, there
are some disadvantages to regular voxel grids. In order to cap-
ture tiny details, a high resolution grid must be used, but large
grids are extremely memory consuming. Hence, there is a great
incentive to develop more parsimonious representations which
adapt better.

A very simple, effective improvement over a regular grid is
to use either a hierarchical or run-length encoded grid. Both
of these representations are useful in cases where the distances
are clamped beyond a maximum value, as, for example, in ob-
ject modelling (Section V-D.1) or in LSM methods (Section V-
D.2). However, even for other applications this needs not tobe
a limitation, since the the clamped distances can be extended
to a full distance field easily (Section III-B). A hierarchical
grid is simply a grid of cells where each cell contains a small
voxel grid (e.g. 16× 16 × 16 voxels). In this case, we often
have large homogeneous regions that can be represented with
a single value for the entire cell. In the run-length approach,
voxels of each data row are classified either as inside, outside
and transitional [Nov03]. A row of voxels is then represented
as a linked list of spans of voxels of the same category. The
transitional spans are represented fully, while only length of the
other spans is stored. In both cases, reading and writing areeffi-
cient, and if there are large homogeneous regions in the dataset
(which is often the case), the memory efficiency is very good,
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Transform Point (1) RotCube (386755) Hyd (11056) CT (507240)
avg. max secs avg. max secs avg. max secs avg. max secs

VCVDT 0 0 6.39 0.0034 0.089 8.10 0.01 0.13 0.1 0.01 0.19 3.35
City Block 67.96 159.76 10.7 15.51 91.28 8.74 4.45 20.28 0.14 9.04 74.16 3.78
Chessboard 18.53 52.19 11.99 9.44 31.76 9.81 2.18 8.77 0.16 4.63 26.94 4.18

33 Q-Euclidean 17.29 49.21 11.99 4.50 26.96 9.80 1.13 5.31 0.15 2.67 18.64 4.18
33 C-Euclidean 9.57 18.54 14.80 2.49 14.96 12.45 0.74 2.84 0.19 2.01 13.88 5.39

33 < a, b, c >opt 3.39 9.27 14.59 1.00 7.82 12.51 0.31 1.54 0.2 0.76 6.97 5.29
53 Q-Euclidean 2.40 6.55 37.04 0.50 3.40 34.95 0.22 0.98 0.54 0.60 4.46 15.30

FMM 1.76 2.78 167.72 0.23 2.07 183.67 0.31 1.00 1.41 0.40 1.84 77.93
FMMHA 0.40 0.62 170.43 0.03 0.27 184.15 0.04 0.33 1.45 0.06 0.95 78.42

SFMMHA 0.40 0.62 118.99 0.03 0.27 115.17 0.04 0.33 0.74 0.06 0.95 46.77

TABLE II
EACH DISTANCE TRANSFORMATION METHOD WAS TESTED WITH EACH DATA SET. THE AVERAGE ERROR, MAXIMUM ERROR , AND RUN-TIME ARE GIVEN

FOR EACH (2.6GHZ P4). THE NUMBER IN BRACKETS INDICATES THE AMOUNT OF VOXELS IN THE BOUNDARY CONDITION

Average (UNC CThead)
2 3 4 5 10 20 50

FMM 0.065 0.075 0.085 0.096 0.141 0.219 0.364
FMMHA 0.037 0.039 0.041 0.042 0.047 0.054 0.062
SFMMHA 0.037 0.039 0.041 0.042 0.047 0.054 0.062
VCVDT 0.025 0.024 0.022 0.020 0.017 0.014 0.012
33 < a, b, c >opt 0.046 0.056 0.067 0.078 0.130 0.248 0.544
53 Q-Euclidean 0.062 0.060 0.063 0.073 0.115 0.202 0.425

Max (UNC CThead)
2 3 4 5 10 20 50

FMM 1.187 1.187 1.187 1.187 1.333 1.517 1.760
FMMHA 0.475 0.475 0.560 0.679 0.799 0.851 0.891
SFMMHA 0.475 0.475 0.560 0.679 0.799 0.851 0.891
VCVDT 0.168 0.191 0.191 0.191 0.191 0.191 0.191
33 < a, b, c >opt 0.229 0.336 0.359 0.409 0.702 1.398 3.612
53 Q-Euclidean 0.302 0.313 0.326 0.368 0.598 1.065 2.508

TABLE III
THE AVERAGE AND MAXIMUM ERROR FOR THEUNC CTHEAD USING SEVERAL METHODS. FOR EACH METHOD, THE COLUMN n INDICATES THE

ERRORS FOR ALL VOXELS UP TO DISTANCEn FROM THE SURFACE(THAT ARE NOT IN THE BOUNDARY CONDITION).

reaching compression values at the level of a few per cent of
the full volume representation. However, if the distance field
contains features at very diverse scales, theAdaptive Distance
Fieldstechnique, first proposed by Frisken et al. [GPRJ00] is a
better choice for its representation, at the cost of more complex
storage and retrieval. The basic idea is to subdivide space using
an octree data structure [Sam90]. The distance values are sam-
pled from a continuous distance field at the vertices of each cell
in the octree, and a cell is split recursively until the interpolated
distance field within closely matches the continuous field.

ADFs are useful for compactly representing complex dis-
tance fields. Frisken et al. also demonstrate how their ADFs
can be manipulated using CSG operations. In more recent
work, Perry and Frisken [PF01] improve on some of their re-
sults. Especially techniques for fast rendering using points and
techniques for triangulation are proposed. The triangulation is
an extension of surface nets [Gib98] from regular to adaptive
grids. In recent work by Ju et al. [JLSW02], the method has

been extended further to adaptive grids where precise edge in-
tersections and normals are known. Finally, a new, faster tile
based generation of ADFs is proposed.

An ADF scheme was also proposed by Bærentzen [Bær01a].
The data structure and the CSG operations resemble the work
by Frisken and Perry. However, Bærentzen proposes a simple
decoupling of the space subdivision and the representationof
distances at cell corners. An octree is used to represent the
space subdivision whereas a 3D hash table is used to represent
points. This decoupling is important because cells share cor-
ners. Thus (without a separate point data structure) each cell
must have either separate copies of the distance values at its
corners or pointers to these values. With a 3D hash table, the
corner position is simply used to look up distance values.

In [HLC+01] a representation called aComplete Distance
Field Representation(CDFR) is proposed. A CDFR is a reg-
ular subdivision of space into a 3D grid of cells where each
cell contains a set of triangles. These are the triangles which
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might affect the distance field within the cell. To build thisdata
structure, triangles are initially stored in the cells theyintersect.
Subsequently, the triangles are pushed to neighbouring cells. A
neighbouring cell tests whether the triangle might influence its
distance field and stores the triangle if this is the case. When
no cells contain triangles that influence neighbouring cells, the
process stops. From the triangles stored in each cell, we can
compute the exact shortest distance from a point in the cell to
the surface.

Another approach which was recently proposed by Wu et al.
is to construct a BSP tree from a triangle mesh [WK03]. Within
each cell, the distance field is approximated by a simple linear
function (plane distance). The triangle model is passed to a
function that recursively splits the model into smaller pieces.
For each piece of the model, a distance field approximation is
generated and the approximation error is estimated. If the error
is above a given tolerance the model is split again. Medial axis
information is used to split the model approximately along high
curvature ridges. The method leads to a very compact represen-
tation. It is not evenC0, but the authors argue that this is less
important as long as the maximum approximation error can be
controlled. As an example of an application, the method is used
to guarantee a bound on the error during mesh decimation.

The techniques proposed by Kobbelt et al. [KBSS01] and
Qu et al. [QZS+04] are aimed at representation and subse-
quent reconstruction of surfaces with sharp edges by triangu-
lation techniques. This is, referring to the sampling theory, a
task which is in general not possible to accomplish by means
of a regular sampled field. Therefore, additional information
should be provided. In the first case, theenhanced DF repre-
sentation[KBSS01], for each voxel its directed distances along
thex, y andz axes to the surface are stored. Thus, more precise
information about the surface shape is provided. In the latter
technique, theoffset DF(ODF) [QZS+04], the distance field
is sampled in a semi-regular pattern, which iteratively adapts
itself to the actual geometry. Further on, the authors propose
a unified DF (UDF), which combines the aforementioned off-
set DF with representations proposed in [KBSS01], [HLC+01],
[JLSW02], together with the plain DF storing just the minimal
distances. Their motivation is that none of these techniques can
itself successfully capture all the possible variations ofsurface
details and therefore the most suitable one should always be
chosen.

These representations have very different properties: CDFR,
ODF, UDF and Wu’s BSP tree representation can be construed
as static data structures for accelerating distance computations
(almost like Meshsweeper [Gué01]). Hierarchical and run-
length encoded grids and ADFs on the other hand allow for
modifications of the distance field, the latter being the mostsuit-
able in situations where very small features in the distancefield
are of interest.

Nielsen and Museth [NM05] proposeDynamic Tubular
Grids (DT-grids) as a data structure for representing the evolv-
ing interface during PDE simulation. DT-grids are a very com-
pact data structure just representing the interface, and are there-
fore dependent upon the size of the interface rather than thesize
of the domain of the simulation (as grid methods such as ADFs
are). The advantages of this scheme include being able to track

the interface ”out of the box” — the interface is not restricted to
a finite grid as is the case in the other representations. Theygive
an example simulation where their method requires just 64MB
compared to a hierarchical method which would require 5GB
of grid storage, and offers better time performance. The data is
represented by 1D columns which are runs of connected data.
Additional structures store (or imply) the coordinates of voxels
within the run, and store the voxel values. Algorithms are given
for accessing the grid randomly, via neighbouring voxels inthe
coordinate direction and within a stencil.

Jones [Jon04] gives a study into compressing distance fields.
He derives a predictor for calculating distance based upon the
vector transform (Section III-B.3). If the predictor is successful
in one of 13 previously visited directions a direction valuein-
dicating the direction can be stored. Otherwise the full distance
value is stored. This is followed by entropy encoding on the di-
rections, and bit-plane encoding followed by entropy encoding
on the distance values. He shows that this lossless Vector Trans-
form predictor gives a compression similar to the lossy wavelet
transform where around 75% of the coefficients have been set
to zero (i.e. files sizes are 25% of the original). Jones [Jon04]
gives further analysis.

V. A PPLICATIONS

A. Object Skeletons, Centerlines and Medial Axis

An object skeleton (medial axis, centerline [Blu64]) in a
plane is a locus of points having equal distance to at least two
distinct points on the object boundary. In 3D space this leads
to the notion of a medial surface and, in order to obtain a 1D
centerline, the condition must be strengthened to at least three
closest surface points. Unfortunately, such a set of pointscan be
discontinuous and subsequent processing ensuring continuity is
necessary.

Skeletons are a highly compact representation of objects,
serving for their description, recognition, collision detection,
navigation, animation etc. This multitude of purposes leads to
different requirements on the precision, with which a skeleton
should describe the given object. For further analysis and even-
tual recreation [Dan80], [CM00], they should represent theob-
ject with high fidelity, keeping all its topological properties. At
the other extreme, when used as navigation paths, just the most
important features should be kept [ZT99], [BKS01]. Therefore,
a large variety of specialized skeletonization and centerline de-
tection approaches exist, many of which depend on DF analy-
sis [Mon68] and detection of its C1 discontinuities—ridges. For
example, Blum [Blu64] defined the skeleton as a locus of those
DF points, where it is not possible to define a tangent plane.
Gagvani and Silver detect skeletal points taking advantageof
an observation that distance of a ridge point is larger than aver-
age of its neighbors [GS99]. This, by specifying a thresholdof
this difference, enables them to control the skeleton complex-
ity. For a similar purpose, in order to enable the level-of-detail
representation and also to decrease skeleton sensitivity on sur-
face noise, Malandain and Fernández-Vidal [MFV98] use the
fact that in vector DTs the position of the closest surface point
is registered and that two mutually close points, which straddle
the medial axis, have their corresponding closest surface points
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far apart (Section II-C). Observing that magnitude of the angle
defined by these surface points and the medial axis location re-
flects importance of the given voxel as a skeletal one, they pro-
pose adjustable parameters for their classification. The skele-
ton detection approach proposed by Siddiqi et al. [SBTZ99]
arises from the conservation of energy principle, which is vi-
olated at the ridge (shock) locations of a vector field. First, a
Euclidean distance field to a continuous approximation of the
object surface is computed. In a second step its gradient vector
field is obtained, followed by local computation of the field’s
net outward flux. The flux field is zero everywhere, except for
the shock (skeleton) points, where it is negative due to local
energy loss. Thus, the skeletal points are obtained by thresh-
olding of the flux field. This algorithm can lead to a skeleton
topology which is different with respect to the topology of the
original object. Therefore, in a sequel [BS00], the technique
was extended to preserve topology by introduction of a homo-
topy preserving thinning technique.

In navigation, a centerline, i.e. a central path through theof-
ten elongated and winding object is required [ZT99], [BKS01],
[WDK01]. It is usually a simple path connecting the start and
end points. If the goal is navigation in a tree structure, the
path can be represented by a tree structure of simple segments.
In this sense the centerline should be connected and should
not contain segments, which represent unimportant windings,
bulges or even noisy artifacts. Since neither of these require-
ments is ensured by the general purpose skeletonization algo-
rithms, special ones were developed.

Typically, two distance fields are employed. One, which sim-
ilarly as in the aforementioned skeletonization approaches en-
sures centering of the path within the object and is computed
with respect to the object boundary, and one which is com-
puted with respect to the path starting point and provides the
necessary topological and connectivity information. Zhouand
Toga [ZT99] use a 3-4-5 distance metrics for the first field and
a simpler 1-2-3 metrics for the second one. Areas with constant
values (codes) of the second field are denoted clusters. Since a
cluster is approximately planar and perpendicular to the object
axis, it usually contains a single voxel with a maximum value
of the first field. Thus, sequentially inspecting clusters inthe
order of their increasing code, centerline voxels are extracted
with ensured connectivity and centering.

The penalized volumetric skeleton algorithm proposed by
Bitter [BSB+00], [BKS01] builds upon Dijkstra’s minimum
cost path algorithm [CLR90]. Here, the cost is given as a sum
of the piecewise Euclidean lengths of path segments (segments
are on the voxel level, so the possible distances are 1,

√
2 and√

3) and voxel penalties, which increase with decreasing dis-
tance to the object boundary. Thus, the centerline is the simple
path of maximum length among all lowest cost paths. Further,
object skeletons may be built as the tree of maximum length
lowest cost paths found in the object.

B. Morphology

Distance fields have been found useful for morphological op-
erations [Ser82] of erosion (upon which the medial axis algo-
rithms are usually based) and dilation.

The mathematical morphological operation of ero-
sion [GW93] will remove external parts of an object (de-
pending upon the structuring element). Dilation will add parts
to the boundary of the object. Opening will enlarge cracks and
cavities, and closing will remove cavities and smooth spikes.

Given a structuring elementB, erosion of an objectX is de-
fined as:

X ⊖ B = {x|Bx ⊂ X} (15)

and dilation as:

X ⊕ B = {x|Bx ∩ X 6= ∅} (16)

Closing is a dilation followed by an erosion:

X • B = (X ⊕ B) ⊖ B (17)

and opening is an erosion followed by a dilation:

X ◦ B = (X ⊖ B) ⊕ B (18)

If B is defined as a ball of radiusr:

B = {b|d(b, (0, 0)) ≤ r} (19)

whered is the distance between two points, then erosion can be
defined as:

X ⊖ B = {x|sgn(x) · dist(x) ≤ −r} (20)

and dilation as:

X ⊕ B = {x|sgn(x) · dist(x) ≤ r} (21)

This gives us a practical algorithm for closing volumetric ob-
jects [Jon01]. First the distance field,d is calculated (2). The
surface,S⊕r , representing a dilation with a ball of radiusr is
equivalent toS⊕r = {q : d(q) = r} whereq ∈ R

3. To calcu-
late the erosion with a ball of radiusr for this surfaceS⊕r , we
calculate a new distance field,d′ based upon distances from sur-
faceS⊕r using the techniques described earlier (measuring to
the isosurface). The surfaceS•r which has been closed with a
ball of radiusr using a dilation of degreer followed by an ero-
sion of degreer is given byS•r = {q : d′(q) = −r}. Opening
is defined in a similar manner.

Morphological operators have been carried out on binary seg-
mented data by Höhne [HH92]. The use of three-dimensional
erosions and dilations was reported as a useful applicationfor
the extraction of homogenous regions in body scans. They have
also been used by Museth et al. [MBWB02] as editing op-
erators for level sets. Distance fields allow the intuitive view
of morphological operations that a dilation or erosion of 5mm
should be an offset surface 5mm outside or inside the object.

Figure 9 demonstrates accurate 3D closing operations of 20,
10 and 5 voxels on the eye socket and cheek of the UNC CT-
head.

C. Visualization

1) Accelerated Ray-Tracing of Volumetric Data:In volume
graphics [KCY93] objects are represented by 3D grids of densi-
ties, distances or other attributes. TheVolume of Interest(VOI)
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Fig. 9. True 3D distance closure of 20, 10 and 5 voxels of UNC CThead data
set (bottom right)

usually only occupies part of the complete grid and the pro-
portion of time spent on processing the irrelevant areas canbe
significant. One possibility to minimise the time spent process-
ing these areas is to identify the empty background voxels by
segmentation and to gather them into macro regions which can
be ignored during rendering. In ray-tracing this increasesthe
mean step length, and results in the speed up of single ray trac-
ing in comparison with fixed length algorithms.

In distance-based acceleration, empty cuboid, octahedralor
(at least approximately) spherical macro regions are defined for
each background voxel with a radius equal to its distance to the
nearest surface point. This idea was introduced by Zuiderveld
et al. [ZKV92], [ZKV94] in the Ray Acceleration by Distance
Coding (RADC) scheme, which works in two phases. First,
a chamfer approximation of the Euclidean distance (using a
5 × 5 × 5 kernel according to [VVD89], Section III-B.2) is
computed for each background voxel and stored in a volume of
the same dimension as the data grid. The distance information
permits skipping of an appropriate number of samples in the
background, while in the foreground the ray is traversed with
unit step length.

The IsoRegion Leaping technique [FH98] extends the RADC
in that also homogeneous foreground regions are identified and
filled by distances to their boundary. Once a voxel with cer-
tain density and step length is reached, color and opacity of
the whole segment is accumulated and the appropriate length
is skipped. A similar Skip Field technique [LFS97] enables
higher acceleration rates by trading quality for speed. Thegra-
dient base error metrics [DH92] are used to identify the homo-
geneous regions. If no error is tolerated, the inside distance
information is ignored, otherwise the homogeneous inside re-
gions are skipped rapidly.

The Proximity Clouds (PC) technique, similar to RADC,

was proposed by Cohen and Sheffer [CS94]. It differs from
RADC in that it takes the shape of the free zone—the proxim-
ity cloud—around a background voxel into account: therefore
the step size depends not only on the distance value, but alsoon
the type of distance and ray direction.

The Chessboard Distance (CD) voxel traversal algo-
rithm [ŠK00a] takes advantage of the simple cubic geometry
of macro-regions defined by the chessboard distance which en-
ables the accelerated traversal of cubic, regular and even recti-
linear voxel grids. The algorithm defines a ray as a non-uniform
sequence of samples, which are positioned exactly at voxel
faces. This property enables rapid ray-surface intersection com-
putation by gradient based root finding techniques. Further, a
variant of the CD algorithm was proposed in [ŠK00a] for traver-
sal of anisotropic macroregions. Its motivation resides inthat
distance to already passed objects is often the limiting factor
of the traversal speed. Therefore, each background voxel isas-
signed to 8 macroregions, each registering directed distance to
the nearest object in the direction of the main body axis of the
volume. A similar technique was proposed in by Semwal and
Kvanrstrom [SK97], which needs only 6 distance volumes but
requires more complex distance computation.

In [HŠ93], [ŠK00a], the CD distance field was used to
speed up the template-based voxel traversal [YK92] with 26-
connected ray templates. If such a template is implemented as
an array of voxel positions, a known CD valued of a given
voxel enables a jump ofd voxels in this array template.

2) Distance acceleration in endoscopy:Using distance
based acceleration for endoscopy often leads to low values,
which reflect distances to structures which are out of the view-
ing frustum. Therefore, in addition to the standard distance
based acceleration [WKB99], [WSK02], techniques have been
developed which attempt to find a better acceleration than that
obtained by the basic distance transform. Shargi and Rick-
etts [SR01] assigned most of the voxels inside the colon cavity
to non-overlapping spheres, which the ray can safely skip. The
spheres are constructed by means of the 3-4-5 chamfer distance
transform (Section III-B.2) and identification of its localex-
trema. Spheres are obviously not the optimal shape to approxi-
mate tubular structures. The technique proposed by Vilanova et
al. [VKG00] therefore uses cylinders for their approximation
and consequently they obtain a higher speed up than the afore-
mentioned plain distance and sphere techniques. Distancesplay
a twofold role, they are used both in the cylinder construction
and rendering.

3) Distance Field Visualization:Distance fields may be vi-
sualized like any other implicit representation, but they also
have one big advantage: Except for points belonging to the cut
locus, we know that a pointp can be projected onto the surface
using a simple formula

pf = p −∇dS(p)dS(p) , (22)

wherepf ∈ ∂S is sometimes denoted thefoot pointof p. The
foot point can the be drawn directly as a point primitive [SA04].
This method was used in [BC02a], and in [PF01] Perry and
Frisken implement a similar method in the context of adaptive
distance fields.
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D. Modelling

1) CSG operations:In standard CSG, the basic operations
union, intersection and difference on solids are defined by the
regularized Boolean set operations [FD82]. This concept was
extended also to solids represented by scalar fields [Bre91],
[WK94], [CT00], with the Boolean operations replaced by
fuzzy set operations, and later even to distance fields [BMW98],
[ŠK00b]. Unfortunately, such an implementation often leads
to sharp details, where the resulting values do not represent
distance to the boundary of the solidδS anymore (Figure 10
left). While this situation occurs mainly in the vicinity ofob-
ject edges, it is not a problem in many applications (for exam-
ple, in visualization, unless it causes visible reconstruction ar-
tifacts [NŠD04]). However, in volumetric shape modeling and
sculpting this becomes a major problem [BC02b].

Assuming that the operands of a CSG operation are DFs of
representable solids (Section II-C), in order to obtain a cor-
rect result (i.e., a distance field of a representable solid), it is
necessary to incorporate the DF representability criterion (Sec-
tion II-C) also in the distance field CSG operators. Such a
scheme based on morphology was developed by Bærentzen and
Christensen [BC02b] for the purpose of volumetric sculpting
and implements volumetric CSG operations between a discrete
distance field and an unsampled continuous distance field of a
sculpting tool.

Another scheme proposed by Novotný et al. [NŠD04] pro-
cesses two sampled distance fields. They assume that the DFs
of input objects are truncated (Section IV) at a distance equal
to the radiusRs, as it is defined in the DF representability cri-
terion. Thus, each objectO partitions the space in three areas:
a transition areaTO with −Rs < d < Rs, inner areaIO with
d = −Rs and outer areaOO with d = Rs. The boundary be-
tween the inner (outer) and transition area is called inner (outer)
surface (Figure 10). In CSG intersection (extension to other op-
erations is straightforward), the fuzzy operators can be used for
both inner and outer areas, and even for most voxels which are
in the transition area of just one solid. Such areas are in Fig-
ure 10 delineated by the yellow lines. However, in the edge
vicinity, its is necessary to ensure that the correspondingme-
dial surface at most touches the inner surface of the result,in
order to keep the representability criterion fulfilled. Therefore,
it is necessary to detect the intersection line of the operands’ in-
ner surfaces and to store the distance to this intersection in the
edge area voxels.

Schroeder et al. [SLL94] use distance fields to create swept
surfaces and volumes. The object to be swept is voxelised to
create a distance field. For each segment along the swept path
voxels within the domain are inverse transformed back to the
distance field, and the distance field is trilinearly sampled. The
result is that the level 0 isosurface of the produced DF repre-
sents the swept volume.

2) Level Set Method:The level set method (LSM) [OS88],
[Set99b], [OF02] is a technique for tracking deforming inter-
faces with a great number of applications [Set99b], [OP03].
The interface is defined as the 0-level set of a functionΦ :
R

3 → R, and it is deformed indirectly by changingΦ according
to the speed of the interfaceF .

Almost invariably,Φ is initialized to a signed distance field,

Fig. 10. A cut through a tetrahedron defined by intersection of halfspaces.
Left—Intersection by the fuzzy intersection operator, right—DF representable
intersection. Green lines: inner surface, black: medial axis, blue: surface of the
DF representable intersection

and in the interest of numerical stability this property is usually
maintained using some method for reinitialization (c.f. Sec-
tion III-E). It has been observed that the distance property
can be maintained to some degree of accuracy if the speed
function is constant along a line perpendicular to the interface
[ZCMO96], [CMOS97], [AS99]. Alternatively, Gomes and
Faugeras [GF99] propose a reformulation of the LSM which
preserves the distance field property apparently without need
for reinitialization. Yet another approach is the sparse field
method proposed by [Whi98] where a simplified reinitializa-
tion is an integral part of the method which keeps explicit lists
of layers (ordered by distance) of adjacent grid points.

3) Animation: Gagvani and Silver [GS99] [GS01] use dis-
tance fields to create a skeletonized model of a volumetric data
set. The distance field model is thinned (or peeled) to create
a 1 voxel thick representation of the volume model. The user
then defines those voxels about which motion can take place,
and then this inverse kinematic (IK) skeleton is loaded intoand
manipulated using standard animation software to create mo-
tion. Finally the volumetric data set is reconstructed around the
manipulated IK skeletons for each frame of the animation. Re-
construction is carried out by scan filling known spheres about
the skeleton where the size of the sphere corresponds to the iso-
surface data.

4) Collision Detection: For collision detection distance
fields have been used both in the context of rigid [GBF03],
[Erl04] and deformable [HFS03], [BMF03] body simulations.

A simple approach in the case of rigid bodies is to use a dual
representation. A set of sample points on the object surface
(e.g. the vertices) is one representation and a distance field is
the other. When two objects collide, the points of one object
can be tested against the distance field of the other. If a point is
detected to be inside the other object (according to the distance
field sign) it counts as a contact point, and the gradient of the
distance field can be used as contact normal [Erl04]. Alterna-
tively, one might trace a ray in the direction of the gradientto
find the exact contact point and the true surface normal at that
point [GBF03].

5) Dynamic Simulation:Fujishiro and Aoki [FA01] approx-
imated thawing ice by using erosion and dilation operations
(Section V-B) on binary voxelized data (each of their voxelsis
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two-state—inside or outside). Their method provides a certain
amount of realism (irregular melting) by using different sized
structuring elements (in their case different radii spheres) in ar-
eas where the object surface can see more of the heat source.
Their model is not physically based as there is no calculation
of heat energy and by using a distance field the process is just
visually improved.

Jones [Jon03] introduces a model that accurately models both
thermal flow and latent heat in rigid solids with complex sur-
faces. By using the phase mixture formulation based upon the
distance field, the method allows a fast (volume preserving)
physically based animation that allows effective control of the
melting process by using well defined parameters derived from
the physical properties of the material undergoing the phase
transition. One major advantage of employing a distance field
on a voxel grid is that it provides a structure that allows thefast
computation of heating due to radiative transfer.

By replacing the partial derivatives with finite differences,
Jones [Jon03] shows that it is relatively straightforward to solve
the Enthalpy formulation of the Heat Equation using a discrete
voxel grid giving results like that of Figure 11.

After 92s After 1932s

After 3680s After 17020s

Fig. 11. 24cm high wax legoman.k = 0.18 W/(moC), ρ = 1000kgm−3,
c = 2000 J/kgoC, h = 0.001m, L = 105kJ, with radiation from a100oC
heat source at the top left.

6) Morphing: Cohen-Or et al. [COSL98] implement mor-
phing by warping the source and target distance fields towards
each other. Interpolation between the distance fields is then
used to create the in-between object. Breen and Whitaker
[BW01] use level sets and distance fields to create a morph
between solid models. First the source and target objects are
converted into signed distance fields. The two objects are reg-
istered in order to create a warp between the objects. A level
set is fitted to the zero level of the source object, and using the
warp a corresponding point in the distance field of the targetob-
ject is found. Each point then moves along a trajectory normal
to the surface and proportional to the distance in the distance

field of the target. They demonstrate that this method creates
convincing morphs between objects.

7) Hypertexture: Perlin and Hoffert [PH89] proposed hy-
pertexture as a way of adding texture detail or noise (such asfur,
smoke and fire) to objects. The method relies upon being able
to specify a soft regionD(p) around the object, such that each
point p can be classified as inside the object, in the soft region
(where the hypertexture effect is applied), or completely out-
side the influence of the object and its texture. This is relatively
straightforward for implicitly defined objectsf(x, y, z) = r,
such as spheres and torii, where the soft region can be estab-
lished for all pointsp whereri < f(p) < ro for some inner
radiusri and outer radiusro.

Objects defined using triangular mesh data do not readily
have such a property, but Satherley and Jones [SJ02] demon-
strated that a space-filled distance fieldd could be used, and a
soft regionD(p) could be defined about the object:

D(p) =











1 if d(p)2 ≤ ri
2

0 if d(p)2 ≥ ro
2

ro
2
−d(p)2

ro
2−ri

2 otherwise

where,
ri = inner radius,
ro = outer radius
andp ∈ R

3

(23)

D(p) is used in the hypertexture gain, bias, noise and turbu-
lence functions of Perlin and Hoffert [PH89]. Using voxeliza-
tion, this approach allows hypertexture to be applied to general
objects. Figure 12 shows hypertexture on a voxelized tank and
the UNC CThead data set, and also demonstrates combining hy-
pertexture and clipping hypertexture. Miller and Jones [MJ05]
demonstrate the implementation of hypertexture on a GPU to
enable real-time rendering of animated fire texture amongst
other effects on complex objects.

Fig. 12. (a) Bozo and melting texture on tank. (b) Clipped hair on skull.

8) Mesh Processing: Distance fields are potentially very
useful in mesh manipulation algorithms. In [BBVK04] Botsch
et al. argue that when multiple manipulations are applied toa
mesh, it is difficult to precisely compute the cumulative error.

An effective solution to this problem is to construct a dis-
tance field around the original surface. The manipulated sur-
face can then be checked against this distance field. In practice,
Botsch et al. propose to render the manipulated mesh using the
distance field of the original as a 3D texture. Thus, we can ren-
der the manipulated mesh with the distance to the original mesh
mapped on as a color using 3D texture mapping. Pixels are then
culled if the mapped distance values are below some tolerance.
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Consequently, pixels are only drawn if they are above the tol-
erance. Thus, a simple occlusion query [SA04] can be used to
check whether the manipulated mesh is within a given distance
of the original.

9) Mesh Generation: For many applications, such as soft
body simulations, simplicial meshes (i.e. triangle meshesin 2D
or tetrahedral meshes in 3D) are required. These meshes are
typically generated from some known geometry. Distance fields
can be a useful representation of this geometry, since it is very
easy to detect whether a mesh vertex is inside the shape, and
the vertex is easily projected onto the boundary. See Bridson et
al. [RBF05] and the Ph.D. thesis of Per-Olof Persson [Per05].

VI. D ISCUSSION

Building upon the properties of continuous distance fields
(Section II), this paper has presented a survey of the main tech-
niques for the production of three-dimensional discrete distance
fields (Section III). In particular, we gave detailed directions for
creating correctly signed distance fields of triangular mesh data
(Section III-A). To reduce voxelization time, we have shown
that it is possible to clamp the distance field to a shell around
the object, and make use of distance transform methods (such
as chamfer, vector and FMM) to enumerate the remainder of the
discrete space (Section III-B). As these methods are approxi-
mating, it becomes natural to ask the questions we gave in the
abstract —How accurate are these methods compared to each
other?, How simple are they to implement?and What is the
complexity and run-time of such methods?. Section III-F gave
a thorough analysis to provide answers to those questions. In
summary it appears that for best accuracy we should ensure the
the initial surface shell (Section III-B.1) contains vectors to the
surface rather than just distances, and then use a vector trans-
form. Where just distances are available, then it appears that
using the new SFMMHA method will give the most accurate
results, in the least time, and is easier to implement than the
previously published FMMs. After giving a thorough review
on the production of distance fields, we documented alternative
representations (Section IV), and their application to various
situations (Section V).
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[MFV98] Grégoire Malandain and Sara Fernández-Vidal. Euclidean skele-
tons. Image and Vision Computing, 16(5):317–327, 1998.

[MJ05] C. M. Miller and M. W. Jones. Texturing and hypertexturing of
volumetric objects. InProceedings of the International Workshop
on Volume Graphics ’05, pages 117–125, 2005.

[Mon68] Ugo Montanari. A method for obtaining skeletons using a quasi-
euclidean distance.Journal of the ACM, 15(4):600–624, 1968.

[Mul92] J. C. Mullikin. The vector distance transform in twoand three
dimensions.CVGIP: Graphical Models and Image Processing,
54(6):526–535, 1992.

[NM05] M. B. Nielsen and K. Museth. Dynamic Tubular Grid: An effi-
cient data structure and algorithms for high resolution level sets.
Accepted for publication inJournal of Scientific ComputingJan-
uary 26, 2005.
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[ŠK00a] M.Šrámek and A. Kaufman. Fast ray-tracing of rectilinear vol-
ume data using distance transforms.IEEE Transactions on Visu-
alization and Computer Graphics, 6(3):236–252, 2000.
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