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Abstract  

We demonstrate how non-negative matrix factorization (NMF) can be used to decompose 
the inter trial phase coherence (ITPC) of multi-channel EEG to yield a unique 
decomposition of time-frequency signatures present in various degrees in the recording 
channels. The NMF optimization is easily generalized to a parallel factor (PARAFAC) 
model to form a non-negative multi-way factorization (NMWF). While the NMF can 
examine subject specific activities the NMWF can effectively extract the most similar 
activities across subjects and or conditions. The methods are tested on a proprioceptive 
stimulus consisting of a weight change in a handheld load. While somatosensory gamma 
oscillations have previously only been evoked by electrical stimuli we hypothesized that a 
natural proprioceptive stimulus also would be able to evoke gamma oscillations. ITPC 
maxima were determined by visual inspection and these results were compared to the NMF 
and NMWF decompositions. Agreement between the results of the visual pattern inspection 
and the mathematical decompositions was satisfactory showing two significant coherent 
activities; the predicted 40Hz activity 60 ms after stimulus onset in the frontal-parietal 
region contralateral to stimulus side and additionally an unexpected 20Hz activity slightly 
lateralized in the frontal central region. Consequently, also proprioceptive stimuli are able 
to elicit evoked gamma activity. 

1 Introduct ion 

The analysis of EEG has developed in two major directions; one focusing on dipole or 
source localization through elaborate statistical models trying to solve the “inverse” 
electrostatics problem (Koles, Z. J., 1998); another focusing on mathematical decomposition 
on the data (Dormann, W. U., et al., 1987; Makeig, S., et al., 1997; Rogers, L. J., 1991). 
Lately there has been a growing interest in assessment of  event related 
electroencephalographic (EEG) activity in the time-frequency domain (Duzel, E., et al., 
2003; Gruber, T., et al., 2004; Herrmann, C. S., et al., 1999; Jansen, B. H., et al., 2004; 
Jones, K., et al., 2002; Lachaux, J. P., et al., 2005; Tallon-Baudry, C.and Bertrand, O., 
1999). Our aim is here to extend the mathematical decompositions of the EEG to the 
wavelet transformed multi-channel event related EEG to yield easy interpretable time-
frequency plots. 

We propose to apply non-negative matrix factorization (NMF)  (Lee, D. D.and Seung, H. S., 
1999; 2001) to analyze the inter trial phase coherence of multi-channel wavelet transformed 
EEG given by channel x time-frequency.  This NMF approach is easily adapted to a parallel 
factor (PARAFAC) analysis forming a non-negative multi-way factorization (NMWF). The 
NMWF model enables analysis of EEG data encompassing more modalities such as 
condition and subject without collapsing these modalities (as is the case for the present 
multi subject NMF analysis) giving a weighted average of the activity the most similar 
across subjects and conditions. The PARAFAC model has previously been used to explore 
the wavelet transformed event related EEG (Mørup, M., et al., 2006). It is however the first 
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time NMF is used to analyze the wavelet transformed EEG and the novel application of the 
NMWF includes the creation of time-frequency plots. The decomposition techniques 
presented herein are proposed to be valuable tools in multi-subject data exploration and 
analysis since 1. they yield easy interpretable components and 2. they can be formed to give 
subject specific information within the same scalp region or to capture the activity the most 
similar across subjects.  

To demonstrate the viability of the algorithms the NMF and NMWF models are applied to a 
data set resulting from a stimulus, consisting of a weight change on a handheld load. As 
such it is a natural compound somatosensory stimulus but as the major ingredient of the 
stimulus is the change of applied force on a static muscle contraction,  it is primarily 
conceived as a proprioceptive stimulus (Arnfred, S., et al., 2000; Arnfred, S. M., 2005).  
Nerve stimulation has been the only type of stimulus previously reported. in scalp 
recordings of somatosensory gamma band activity magnetoencephalographic (MEG) 
recordings of gamma synchronization following electric stimulation of the thumb and little 
finger has shown that thumb stimulation increases synchronization of higher frequencies 
than little finger stimulation (Tecchio, F., et al., 2003). This has been suggested to be due to 
more selective neural networks being activated by thumb stimulation (Tecchio, F., et al., 
2003). Scalp electroencephalographic (EEG) studies of somatosensory gamma band activity 
(GBA(30-80Hz)) following electric stimulation have been investigated in the context of 
pain modulation. Early (<100ms) parietal as well as later more central and frontal (100-
300ms) GBA, measured as power or phase coherence, is augmented by pain (Babiloni, C., et 
al., 2002; Chen, A. C.and Herrmann, C. S., 2001; De Pascalis, V.and Cacace, I., 2005; De 
Pascalis, V., et al., 2004). In studies of visual processing, GBA increases with perceptual 
binding load and GBA is suggested to be the electrophysiological manifestation of feature 
binding (Herrmann, C. S., et al., 2004).  

 

Considering the perceptual binding involved in a complex somatosensory stimulus like a 
sudden load change, we hypothesised that the proprioceptive stimulus would elicit GBA to 
be recorded at the scalp above the contralateral primary somatosensory cortex. The results 
of the NMF and NMWF decompositions of the data from the proprioceptive stimulus are 
compared to results obtained by visual inspection of the data. 

2 Methods 

2.1 Algori thms 

Traditionally the decomposition of the EEG into components has been based on 
decomposition techniques such as principal component analysis (PCA) (Collet, W., 1989; 
Dormann, W. U., et al., 1987; Kayser, J., et al., 2003; Picton, T. W., et al., 2000; Rogers, L. 
J., 1991) and independent component analysis (ICA) (Makeig, S., et al., 1997; Makeig, S., 
et al., 1999). When the EEG-data is subjected to the continuous wavelets transformation for 
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the analysis of frequency changes through time (Herrmann, C. S., et al., 2005), the 
representation is expanded from channel x time to a 3-way array of channel x frequency x 
time. Unfolding this three way array by collapsing the time and frequency dimensions into 
one dimension of time-frequency yields a matrix of channel x time–frequency that is 
analyzable by factor analysis models. These two-way factor analyses yield components 
consisting of time-frequency signatures with their mixing in the various recording channels. 
However, additional modalities arise when investigations are performed across subjects, 
trials or conditions as is commonly the case. Factor analysis models such as ICA, PCA and 
NMF permit the analysis of such data by further unfolding of these extra modalities. 
However, unfolding can to some extent hamper interpretation, but more importantly, 
potentially dismiss modality specific information by mixing information in a given modality 
with the more or less arbitrary chosen modalities that it has been folded with in a two-way 
matrix analysis. Furthermore, in this form of analysis the activity that is the most similar 
across trials or subjects is often the most interesting to access. Consequently, rather than 
just unfolding these multi-way arrays into matrices we also analyzed this form of data using 
the multi-way model PARAFAC given in figure 1.  

The PARAFAC model, here detailed as the NMWF, creates a weighted average of the most 
common activity revealing the degree to which this activity is present in the various 
subjects, trials or conditions.  

Two-way analyses, e.g. the NMF, create regional specific components revealing how these 
differ in time-frequency pattern in the various subjects, trials or conditions.    

Consequently, we here use NMWF but also NMF for group analysis. Although the subject 
specific activity is believed to deviate from the overall mean (as assumed by NMWF) and 
the placement of the electrodes are not identical across subjects (as assumed by NMF), the 
decompositions enable an easy method to compare and view the activity across subjects.  
Furthermore, the activity present in a different subject sample is likely to be captured by the 
models since the model captures the activity common across the analyzed subjects. 
However, the caveat must be that the components might be biased by a few subjects having 
relatively strong signal strength. It follows that any conclusions reached based on the group 
decompositions has to be validated by single subject analyses. This problem of group 
analyses is no different from the problems of group averages when analyzing grand 
averages of the evoked potentials. 
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Figure 1: Graphical representation of the factor analysis to the left and the PARAFAC 
decomposition of a 3-way array to the right. Like the factor analysis, PARAFAC 
decomposes the data into factor effects pertaining to each modality. F denotes the 
number of factors. 

 

NMF nor ICA have to our knowledge been used previously to analyze the frequency 
transformed event related EEG. The use of PARAFAC for analysis of wavelet transformed 
EEG has recently been advanced. In 2004 Miwakeichi and colleagues (Miwakeichi, F., et 
al., 2004) suggested the use of  PARAFAC on the wavelet transformed ongoing EEG of 
channel x frequency x time and the PARAFAC model can be an efficient data explorative 
tool for the event related wavelet transformed EEG (Mørup, M., et al., 2006). Recently, the 
PARAFAC model has also been advanced to the analysis of fMRI (Andersen, A. H.and 
Rayens, W. S., 2004, Beckmann,  2005 #57) 

 

The non-negative matrix factorization (NMF) was introduced by Lee and Seung in 1999 
(Lee, D. D.and Seung, H. S., 1999; 2001). They showed how the NMF decomposition gives 
a more sparse decomposition than PCA and conventional ICA yielding more interpretable 
components. The NMF has the advantage over PCA and ICA that given the data spans the 
complete positive octant, no rotation of the factor solutions is possible ensuring uniqueness 
apart from trivial scaling and permutation, see also (Donoho, D.and Stodden, V., 2004). 
Although algorithms for positive ICA exist (Højen-Sørensen, P. A. d. F. R., et al., 2002; 
Oja, E.and Plumbley, M., 2004) these were not considered in the present work as they 
would give results similar to NMF while being very time consuming. 

  

The parallel factor (PARAFAC) model was independently proposed by Harshman 
(Harshman, R. A., 1970) and by Carrol and Chang (Carrol, J. D.and Chang, J., 1970), the 
latter naming it Canonical Decomposition (CANDECOMP). The model is a parsimonious 
extension of factor analysis to higher dimensional arrays as revealed on Figure 1. 
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PARAFAC, in contrast to conventional factor models, does not suffer from rotational 
indeterminacy. As a result, the PARAFAC model is in general unique, apart from scaling 
and permutation indeterminacies (Kruskal, J. B., 1977; Sidiropoulos, N. D.and Bro, R., 
2000). Consequently, the main advantage of PARAFAC over factor analysis models such as 
PCA, ICA and NMF is that uniqueness is ensured under very mild conditions making it 
unnecessary to impose constraints in the form of orthogonality, statistical independence / 
sparsity or requiring the data to span the complete positive octant. The “price paid” for such 
strong uniqueness is a more restrictive model, that can only capture the activity that is the 
most similar across trials, subjects and/or conditions. Consider a three way array of size 
I⋅J⋅K. A F component PARAFAC model would have (I+J+K)⋅F free parameters whereas the 
corresponding unfolded factor analysis model would include (I+J⋅K)⋅F>>(I+J+K)⋅F free 
parameters. 

 

Lee and Seung gave two algorithms for NMF both based on gradient descent; one 
minimizing the squared error the other minimizing the Kullbach-Leibler divergence (Lee, D. 
D.and Seung, H. S., 2001). Both algorithms are easily adapted to the PARAFAC model with 
non-negativity on all modalities, giving a non negative multi-way factorization NMWF, see 
also (Hazan, T., et al., 2005; Shashua, A.and Hazan, T., 2005). In the following, the 
matrices W,H, A, S and D will be defined as given in Figure 1. 

In the factor analysis we have: 

EWHX += T    or equivalently   TTT EHWX +=   (1) 

Where E is the approximation error. 

The PARAFAC model can be written in matrix notation by use of the Khatri-Rao product, 
i.e. [ ]FF sasasaSA ⊗⊗⊗=⊗ ...2211  where F is the number of factors and the n-mode 

matricizing of the multiway array NIII ×⋅⋅⋅×× 21
XXXX , i.e. ( )
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In general the PARAFAC model for higher orders than three can be expressed as 
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Notice, in the two-way case the matricizing corresponds to taking the transpose and the 
formulation in 3 becomes equivalent to the regular factor analysis with HZWA == )1()1( ,  

and WZHA == )2()2( ,T . In the following we will require X, W, H, A, S and Z to be non-
negative. 

2.1.1 NMWF based on Least-Squares 

Consider the least square cost function C given by:  

( )( )∑∑ −=−=−=
I

i

J

j
ij

T
ij

TTT xC
222

WHWHXWHX  
(4) 

Minimizing C corresponds to maximizing the likelihood of a homoscedatic Gaussian noise 
model. 

Lee and Seung found the following convergent updates for W and H, by differentiating C 
with respect to each element in W and H and updating with a gradient based search using a 
stepsize resulting in multiplicative updates, see (Lee, D. D.and Seung, H. S., 2001) for 
details: 

( )
( )

( )
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λ
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λ
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j
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j
T

jj
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i
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(5) 

The positivity constraint on W and H is insured since these multiplicative updates are bound 
to remain positive granted X, W and H are positive. 

Due to equation 2 the PARAFAC model can be stated as three equivalent least square 
minimizations giving the following three equivalent cost function expressions for C: 

C= ( )
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3

2
2

2

2
1

)1(

TTT
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In general following the formulation of equation 3 the cost function for the least square 
minimization for higher orders can be stated as the equivalent problems: 

( ) ( ) ( ) ( ) ( ) ( ) 2
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As the minimization of the expressions in equation 6 and 7 corresponds to the regular factor 
analysis the update of each factor is given directly by the NMF updates by interchanging the 
roles of X, W and H in 5 with that of X(n), 

)(nA  and ( )nZ . Consequently each )(nA  is updated 

according to: 
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The convergence of the updates follows straight forward from the convergence of regular 
NMF simply by interchanging the roles of W and H with that of )(nA  and ( )nZ  in the proof 

given by Lee and Seung (Lee, D. D.and Seung, H. S., 2001). 

Specifically for the three-way PARAFAC model given in figure 1, we get the convergent 
updates: 
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(8) 

 

2.1.2 NMWF based on the divergence approach  

Consider the Kullbach-Leibler divergence cost function in the Factor Analysis as defined by 
(Lee, D. D.and Seung, H. S., 2001), i.e.:  
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Using a gradient based search to minimize this divergence with a stepsize yielding 
multiplicative updates, the following updates of W and H forming the NMF-KL algorithm 
is achieved (Lee, D. D.and Seung, H. S., 2001): 
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For the PARAFAC model given in figure 1, the divergence cost function can be stated as 
the following three equivalent expressions: 

( ) ( ) ( )TTT
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And for higher orders than three as the equivalent problems: 
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As the minimization of the expression in equation 13 again corresponds to the regular factor 
analysis, the update of each factor is given directly by the NMF-KL updates as: 
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Again, the convergence of these updates follow straight forward from the convergence of 
the regular NMF-KL updates by interchanging the roles of W and H with that of )(nA  and 

( )nZ  in the proof given by Lee and Seung (Lee, D. D.and Seung, H. S., 2001). 

Specifically for the three-way PARAFAC model given in figure 1 the following updates are 
achieved: 
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Model 
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Algorithm for NMWF-LS 

Initialize all ( )nA  randomly 

( ) ( ) 2

)(

TNN
NnewC ZAX −=  

While 
new

newold

C
CC −

>δ do  

               newold CC =  

               ( )
( )( )

( ) ( ) ελ

λ
λλ +

←
n

n

nini

i
nTnn

i

n
nnn

)(

 do n allFor 

)(

)()(

ZZA

ZX
AA

 

             ( ) ( ) 2

)(

TNN
NnewC ZAX −=  

Algorithm for NMWF-KL 

Initialize all ( )nA  randomly 

( )TNN
Nnew DC )()(

)( || ZAX=  

While 
new

newold

C
CC −

>δ do  

               newold CC =  

                

( )∑

∑
⋅⋅⋅⋅⋅⋅⋅

=

⋅⋅⋅⋅⋅⋅⋅

=

+−

+−

+

+
←

Nnn

j

nni

n

Nnn

j

nini IIIII

j

n

ji

Tnn

jin
IIIII

j

n

nn

1121

1121

1

)()(

)(

1

)(

)()(
)(

do n allFor 

ε

ε

λ

λ

λ

λλ

Z

ZA

X
Z

AA
 

                ( )TNN
Nnew DC )()(

)( || ZAX=  

Notice:    

( ) ( ) ( ) ( ) ( )

( )

( ) ( )
)()(

1111)(

1121

......

n

Tnn
n

IIIIII
n

nnNNn

Nnnn

EZAX

XX

AAAAAZ

+=

=

⊗⊗⊗⊗⊗⊗=
⋅⋅⋅⋅⋅⋅×

−+−

+−  

The algorithms for NMWF based on least square (LS) and Kulbach-Leibler (KL) divergence minimization. δδδδ 
was set to 10-6 while εεεε=10-9 ensured no division by zero for numerical stability. Notice how the regular NMF 

algorithm is the special case of the NMWF algorithm given by ( ) ( )
212121

1

21
ii

F

iiii eaax +=∑
=λ
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2.2 The inter t r ia l  phase coherence 

The inter trial phase coherence (ITPC) is a measure of phase consistency through trials of 
the continuous wavelet transformed EEG-data. The complex wavelet transform projects the 
EEG-data onto the complex plane. Define the vector strength as the length of the vector 
given by the sum of n unit vectors in the complex plane. Then the vector strength measures 
coherence, i.e. the degree in which the vectors point in the same direction, see also figure 2. 
The ITPC is a statistical measure of the evoked activity given as the vector strength, i.e. 
coherence over epochs.  
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Figure 2: The vector strength is the sum over unit vectors in the complex plane. In regions 
where the vectors are uncorrelated, i.e. incoherent the vector strength is small compared to 
region where the vectors are correlated, i.e. coherent yielding a much larger vector 
strength (compare red vector to the left with red vector to the right). Consequently, the 
vector strength is a measure of coherence. 

 

Let Xe(c,f,t) be the coefficient of the wavelet transform at channel c at frequency f and time t 
for epoch e, and let there be a total of n epochs. The ITPC is given by (Delorme, A.and 
Makeig, S., 2004): 

( )
( )∑

=

=
n

e e

e

tfcX

tfcX

n
tfcITPC

1 ,,

,,1
),,(  (16) 

While an area of coherence is approximately normally distributed, random activity/noise is 
Raleigh distributed (Palva, J. M., et al., 2005) with an average value of approximately n-½, 
see Appendix for details. Compared to other measures of coherence such as the avWT 
(Herrmann, C. S., et al., 2005) the ITPC has two major advantages. 1) Since the statistical 
properties of random ITPC activity is known the significance of the ITPC activity is easily 
accessed, see also appendix. 2) Since all epochs are weighted the same the effect of even 
very noisy trials is limited making the cumbersome work of artifact rejection unnecessary. 
However, since the ITPC is a signal average over trials it is biased towards the averaged 
phase. Consequently, some event related brain activities might not be fully explained by 
phase changes and thereby not be captured by the ITPC. Furthermore, as the ITPC is a 
statistical measure of phase consistency this makes interpretation in terms of source 
localization difficult: the propagation factors are largely unknown as the amplitude 
information is removed in the ITPC measure. 

As random ITPC is Raleigh distributed, the significance of the ITPC can be compared to a 
null hypothesis of random ITPC. The following formula (see appendix for details) can be 
derived to access the significance of a given ITPC value, x. In the null hypothesis of the 
ITPC being randomly generated the maximum of N independent ITPC points has probability 
α of taking a value exceeding x, given by: 
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))1(1ln(2
1

2 Nx ασ −−−=  (17) 

2.3 Experimental  detai ls  

Fourteen healthy subjects (four females) were included after informed consent 
as approved by the Ethics Committee. They were paid to participate in the experiment. The 
mean age of the sample was 24.4 years (standard deviation (STD) 3.0) and the mean length 
of education was 15 years (STD 2.3). The proprioceptive stimulus was delivered by a 
custom build apparatus (Sv. Christoffersen, Department of Medical Physiology, University 
of Copenhagen): The subject has a plastic handle in his pronated hand and a minimum static 
load of 400g was applied through a nylon wire connected to the handle and an 
electromagnetic servomotor driving a spool. An additional load of 100g was applied with a 
linear increment of 20g/10ms. The maximum load was sustained for 500ms.  The hand was 
supported by a horizontal cushioned armrest to the level of the metacarpolphalangeal 
articulation of the thumb. A schematic of the set-up is shown in (Arnfred, S., et al., 2000). 
Stimulus delivery was controlled by the Presentation© software. Alternating between hands, 
three runs were recorded in both sides. Each run lasted four minutes and consisted of 120 
stimuli applied to the same hand with inter stimulus intervals of 1.5s resulting in a total of 
n=360 epochs. While recording, a monitor showing a fixation cross was placed 50cm in 
front of the comfortably seated subject, and 76dB masking white noise was delivered 
through loudspeakers just behind the monitor. The subject was asked to relax and fixate on 
the monitor and no attempt was made to direct his attention towards the proprioceptive 
stimuli.  

2.3.1 Preprocessing 
EEG data was recorded with 64 scalp electrodes (BioSemi Active electrodes system) 
arranged according to the International 10-10 system. Additional recordings were obtained 
from earlobes and at the maxillae beneath each eye.  The grounding electrodes for the active 
electrodes (CMS and DRL) were placed centrally, close to POz. Data was recorded 
continuously at 2048 Hz/channel, band pass 0.1-160 Hz, by a LabView© application 
(ActivView©) on a Windows© based PC. Off-line processing was performed in EEGLAB 
for MatLab© (Delorme, A.and Makeig, S., 2004). The data was referenced to digitally 
linked earlobes and cut into epochs (-250 to +500ms).  The data was wavelet transformed 
using a complex Morlet wavelet (Herrmann, C. S., et al., 1999; Miwakeichi, F., et al., 2004) 

with center frequency 1 and bandwidth parameter 2, i.e. ( ) ( ) 






−=
2

exp2exp
2

1~
2t

tit π
π

ϕ
 

with 

frequencies represented from 15 to 75 Hz with 1 Hz  interval. Baseline subtraction was not 
performed prior to wavelet transformation since the wavelet transform is shift invariant. Since 
even very noisy epochs might include relevant phase information while having relative little 
impact on the overall ITPC, no epochs were rejected. This enabled the ITPC to be calculated as 
an average across all trials, improving signal to noise ratio (SNR). Furthermore, to avoid 
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reduction of SNR, the data were not normalized across subjects. Normalizing would increase the 
influence of subjects having less coherence compared to random activity in the analysis. 

2 .3 .2 NM F and NM WF decompos i t i ons  

Let kptfc ××××
XXXX  denote the multi-way array of ITPC activity given by the modalities channels 

(c), frequency (f), time (t), subjects (p) and conditions (k). Three types of arrays are then 
analyzed:  

• A single subject analysis of channel x time-frequency ITPC matrix, i.e. tfc ⋅×X   . 

• A multi-subject analysis of channel x time – frequency – subject – condition ITPC 
matrix, i.e. kptfc ⋅⋅⋅×X . 

• A multi-subject analysis of the 3-way array of channel x time-frequency x subject - 
condition ITPC, i.e. kptfc ⋅×⋅×

XXXX .  

Decomposing the ITPC given by the matrix tfc ⋅×X of channel x time-frequency, i.e.  

∑
=

+=
F

iiiiii esax
1

212121
λ

λλ
 (17) 

corresponds to the assumption that the underlying factors consist of a given time frequency 
signature sλ that has been mixed in the channels by aλ. Decomposing the ITPC given by the 
matrix kptfc ⋅⋅⋅×X of channel x time – frequency – subject – condition assumes the activity are 
centered around the same channels but might deviate in onset and frequency through the 
subjects and conditions. 

Since the ITPC by nature is non-negative the decompositions of the ITPC can be based on 
non-negativity constraints, i.e. 0,

21
≥λλ ii sa . Consequently, the non-negative ITPC signatures 

sλ can only be additively mixed in the channels. This is based on the assumption that the 
coherent activity measured at the scalp stem from the same underlying coherent activities in 
the brain recorded with varying strength depending on the electrode position. Furthermore, 
none of these coherent activities measured by the ITPC is allowed to cancel each other. This 
requires the coherent activities to be separated in either the channel or time-frequency 
domain. Since the Morlet wavelet transformation is overcomplete and granted the 
bandwidth of the wavelet is relatively small (here set to 2) the various coherent activities are 
likely to be separated when lifted to the time-frequency domain. 

 

Restricting the multi-subject analysis to a 3-way array kptfc ⋅×⋅×
XXXX of channel x time-frequency 

x subject-condition, i.e. into the PARAFAC model: 

∑
=

+=
F

iiiiiiiii edsax
1

321321321
λ

λλλ  (18) 
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corresponds to the additional assumption that the underlying factors are identical between 
each subject/condition but present to variable degree given by the score dλ, where 0

3
≥λid .  

 

Granted NMF captures all “systematic” variation, and since the ITPC is approximately 
normally distributed in regions of coherence (see appendix 1), the error can be considered 
normally distributed. Therefore, least square estimation corresponding to maximizing the 
likelihood of a homoscedatic Gaussian noise model, i.e. the NMF-LS and NMWF-LS 
algorithms is justified. Appealing to KL minimization is equivalent to assuming a 
multinomial noise model. Here the residuals are weighted by the relative size of the 
component. This form of analysis was mainly performed for comparison. Consequently, if 
the decompositions were too algorithm-dependent this was an indication of unviable results. 

 

The number of factors accepted as the best solution was purely based on visual inspection of 
the results. It is customary to assess the number of factors in matrix analyses through 
methods such as Bayesian Information Criterion (Hansen, L. K., et al., 2001), cross-
validation and analysis of residuals. Since no factor had to be orthogonal or independent to 
the remaining factors as is the case for PCA and ICA, respectively, the choice of number of 
factors used in NMF had little impact on the components found. We judged the amount of 
components to include by their relative norms and how localized they were. A small norm 
greatly spread in the channels and time-frequency domain was taken as an indication that 
too many components were included hence the component was modeling background 
activity. Each of the decompositions were performed three times and compared to ensure no 
local optimum was found. The NMF solution is presently compared to an ICA solution 
based on maximum likelihood as described in (Bell, A.and Sejnowski, T. J., 1995; Hansen, 
L. K., et al., 2001).  

 

The PARAFAC model is known to suffer from degeneracy and slow convergence 
(Beckmann, C. F.and Smith, S. M., 2005; Paatero, P., 2000). These problems are, however, 
circumvented when imposing non-negativity constraints on all modalities (Mørup, M., et al., 
2006). While an algorithm for the estimation of PARAFAC under non-negativity constraint 
has been proposed by (Bro, R., 1998; Bro, R.and Jong, S. D., 1997) the NMWF-LS 
algorithm yielded equivalent results, but both the LS and KL algorithm for NMWF is easier 
to implement and to our knowledge also faster in most situations. 

 

The NMF algorithms of Lee and Seung are known to suffer from slow convergence. 
Consequently, we accelerated the algorithm as devised by (Salakhutdinov, R.and Sam, R., 
2003). The NMF decomposition is not unique in general. As mentioned earlier rotational 
ambiguity is only removed when the data spans the complete positive octant. In order to 
achieve this, background ITPC activity was removed by subtracting the random coherence 
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of 0.0465 estimated by bootstrapping (n=360). Any values below zero after this subtraction 
were set to zero. Consequently, all the decompositions shown in the results section have to 
have this subtracted value added in order to reflect the actual ITPC values. To access the 
uniqueness properties of the decomposition we analyzed the correlation between signatures 
of several NMF analysis of the same data, see also table 1.  

 

3 Resul ts and discuss ion 

3.1 Single subject analysis 

As seen on figure 3 and 4 the solutions of the ICA, NMF-LS and NMF-KL all include a 
coherent contralateral parietal-frontal activity and a coherent frontal central activity of 
lower frequency. Whereas the NMF methods give easily interpretable representations of the 
activities, the ICA method yields similar results. However, in order to achieve independence 
regions of the time-frequency signatures have become negative.  

 

Figure 3: ITPC analysis of one subject (No 2) during left hand stimuli. To the top left is the 
analyzed ITPC array of channel x time-frequency given by a 16x4 array of a given 
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channels time-frequency signature of the ITPC. Top right; analysis of the ITPC using 
independent component analysis. Bottom left; the result of a NMF-LS analysis of the ITPC. 
Bottom right; the result of a NMF-KL analysis of the ITPC. All three decompositions yield 
similar results. However, the ICA analysis yields negative results in order to achieve 
independence which is not physiologically justified. All methods find a strong activity 
around 40 Hz 50 ms in the right parietal region and a more frontal activity around 20 Hz 
70 ms. No apparent difference between the two NMF solutions is observed. Whereas the 
ICA model explains 72.75 % of the variance the NMFLS and NMFKL analysis explain 
respectively 72.65 and 69.82 % of the variance. The color axis of the head plots goes from 0 
to 1, see also figure 5. 

 

Figure 4: The ITPC of the same subject as figure 4 (No 2) during right hand stimulation. 
See legends of figure 4 for explanatory details. Again all three methods yield similar 
results, however in order to achieve independence the ICA method has forced large regions 
of both components to be negative in order to achieve independence. While the first 
components in all the analysis reveal a parietal left activity around 40 Hz 60 ms the second 
component pertains to a lower frequency frontal-central activity around 20 Hz 70 ms. 
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Whereas the ICA model explains 71.00 % the NMF-LS explains 70.58 % and NMF-KL 
67.14 % of the variance. The color axis of the head plots goes from 0 to 1, see also figure 5. 

 

To investigate whether the NMF solutions found are unique we evaluated the NMF analysis 
of both NMF-LS and NMF-KL on the data. The degree of consistency between the scalp 
and time-frequency signatures of both NMF decompositions are generally good but becomes 
perfect when removing the background activity, see table 1. This stems from the fact that 
removing background activity makes it much more likely that the analyzed data spans the 
complete octant. Since it is possible to achieve uniqueness without constraints of 
independence, NMF was superior in the analysis of the ITPC data. Had uniqueness not been 
achieved, sparseness constraints could have been imposed on the NMF decomposition as 
proposed by (Hoyer, P. O., 2002 ) (Eggert, J.and Kömer, E., 2004). 

 

No background subtraction Background Subtracted  

LS2 RS2 LS2 RS2 

a1 0.9919 0.9646 1.0000 1.0000 

s1 0.9867 0.9934 1.0000 1.0000 

a2 0.9979 0.9809 1.0000 1.0000 N
M

F
L

S
 

s2 0.9958 0.9684 1.0000 1.0000 

a1 0.9987 0.9974 1.0000 1.0000 

s1 0.9981 0.9958 1.0000 1.0000 

a2 0.9960 0.9954 1.0000 1.0000 N
M

F
K

L
 

s2 0.9839 0.9917 1.0000 1.0000 

Table 1: Mean correlations between signatures of 10 two-component models of NMF-
LS and NMF-KL to the mean signature of the 10 analyses. In general, the solutions are 
close to unique but they become completely unique when removing the background 
coherence. (LS2=Left hand stimuli subject nr. 2, RS2=Right hand stimuli subject nr. 
2). 

 

3.2 Mult i -subject analysis 

The NMF-LS analysis of the ITPC matrix of channel x time-frequency – subject – condition 
is given in figure 5. A three component analysis explained 73.61 % of the variance in the 
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data. The third component pertains to some consistent frontal central activity significant 
(p<0.05) in 14 of the 28 trials (14 subjects x 2 conditions) and in 9 of these it was even 
highly significant (p<0.001), see appendix on how this significance level is calculated. The 
first and second components pertain to the parietal-frontal gamma activity contralateral to 
stimulus side as the activity is mainly present during right hand stimuli in component one 
and left hand stimuli in component two. As seen from the subject specific time-frequency 
maps some variation between the activities of each subject is present. The significance of 
the two contralateral parietal-frontal activities will be examined in the section on visual 
inspection of the data. 

 

 

Figure 5: NMF-LS analysis of the ITPC data of channel x time-frequency-subject-condition 
(an NMF-KL analysis gave similar results). To the left is the scalp map revealed. To the 
right is the frequency-time map of each subject during the two conditions. The time-
frequency of the top row pertain to left and bottom row to right hand stimuli.  From the 
first factor it is seen that the left parietal-frontal activity is mainly due to gamma activity 
during right hand stimulation whereas the right parietal-frontal activity revealed in 
component 2 is mainly due to left hand stimulation. Clearly, the frontal activity given in 
component 3 is present in almost all subjects in both conditions. The three components 
explain a total of 73.61 % of the variance.  

 



 19 

In the NMWF analysis we assume identical activity through the subjects/conditions and 
variability only in strength. Two forms of NMWF analysis are performed; one decomposing 
each stimuli side separately, the other analyzing the frontal activity of the two conditions 
simultaneously by restricting the analysis to the activity between 15-25 Hz. The result for 
the first type of decomposition is given in figure 6. Here a two component NMWF analysis 
(based on NMWF-LS) captures in the first component the parietal contralateral activity and 
in the second the lower frequent frontal activity.  

 
Figure 6: The result of a two component NMWF-LS analysis of the ITPC (NMWF-KL 
gave similar results) generated from the 14 subjects during left hand stimuli (left 
panel) and right hand stimuli (right panel). The first component in the left panel 
pertains to the 40 Hz gamma activity in the right parietal region whereas the first 
component to the right pertains to the corresponding activity in the left parietal 
region. Finally the second components in both panels pertains to the more frontal 
lower frequent activity. While the coherent contralateral parietal-frontal activity is 
weak in subject 1,3,6 and 14 during left hand stimulation, this activity is weak in 
subject 1,4,6 and 7 during right hand stimulation. The frontal activity is well present in 
all but subject 8 both during right and left hand stimulation. While the NMWF model 
of the left hand stimulation accounts for 49.95 % of the variance the model accounts 
for 51.82 % of the variance during right hand stimulation. The color axis of the head 
plots goes from 0 to 1, see also figure 5. 

 

From the decomposition of each side it seems as if the frontal lower frequent activity is 
slightly lateralized contralateral to stimulus side.  Consequently, we analyzed this activity 
including both conditions simultaneously by restricting the NMWF analysis to the interval 
15-25 Hz. As the NMWF captures the activity the most common across subjects and 
conditions a two component model would separate this activity in an activity present at left 
hand stimulation and an activity present mainly at right hand stimulation if the activity is 
dependent on stimulus side. In figure 7 is given this NMWF decomposition using LS as well 
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as KL. Indeed, the first components in both methods indicate that the left hand stimulation 
(corresponding to odd numbered bars) was the main contributors to the right central 
activity, while the right hand stimulation (even numbered bars) was the main contributor to 
the left central activity given in component two. However, the difference between the 
condition strengths (even versus odd numbered bars) was not significant.  

 
Figure 7: A two component NMWF-LS and NMWF-KL analysis of the lower 
frequency frontal activity from 15-25 Hz of the 14 subjects during left hand stimuli 
(odd trials) and right hand stimuli (even trials) giving a total of 14⋅⋅⋅⋅2=28 trials. Clearly 
both the LS and KL methods indicate that also this activity is lateralized contralateral 
to stimulus side. While the first component is mainly present in odd trials (left hand 
stimulation) the second component is mainly present during even trials (right hand 
stimulation). The two components model explained 56.13 % of the data using the LS 
method and 53.96 % of the data using the KL method. While second component of 
both methods are more or less identical, the first component is slightly different since 
the LS and KL method weights the deviation of the model to the data differently. Color 
axis are identical to the color axis of figure 6. 

 

The NMWF analysis captures the most common ITPC activity and indicates the strength to 
which this activity is present in each subject and/or condition. This resulted in an estimate 
of the subject specific strength relative to the most common activity during each stimulus in 
the single condition analysis. In the analysis of the lower frequency activity including both 
conditions the NMWF analysis indicated that the frontal central activity to some extent was 
condition dependent lateralized contralateral to the stimulus side. Contrary to NMWF, the 
multi subject NMF analysis captured the subject and condition variability within the same 
localized scalp region giving three components; a common frontal component and two 
components each representing the parietal-frontal gamma activity contralateral to the 
stimulus side.  
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3 .3 Val ida t i on by  v i sua l  inspect ion 

The single condition NMWF weight given in figure 6 (NMWFWeight) as well as the results 
obtained from a two component multi-subject NMF of each condition (NMFITPC) was 
compared to the results found by visual inspection of the 16x4 array of channel x time-
frequency ITPC activity of each subject. Furthermore, the lateralized ITPC maxima were 
compared to the ITPC of the same time-frequency point in the corresponding channel across 
the sagittal midline (controlITPC), i.e. ITPC at FC1; controlITPC at FC2. Since the 
lateralized components of the multi-subject NMF analysis of each condition separately gave 
components identical to the lateralized components in figure 5 the figures of this analysis 
has not been included. 

 

Right hand stimuli 

ITPC maxima were observed in the left frontal-parietal central region, most commonly at 
electrode FC1, but all maxima were within one electrode distance of electrode C1 and none 
were in mid-line electrodes. Mean frequency was 36Hz (STD 4), latency 60ms (STD 11) 
and ITPC  0.255 (STD 0.066). The probability of the ITPC in a single channel at one given 
time frequency point for each subject to exceed 0.255 by random is 2⋅10-5, see also 
appendix. The mean NMFITPC was 0.232 (STD 0.071); this was not different from the 
result of the visual inspection. Again, for each subject to exceed this value by random has a 
probability of 1⋅10-3. The mean NMFITPC frequency was lower (33Hz (STD 6) t = 2.132, df 
=12, p =0.05), while the latency did not differ from the result of the visual inspection (73ms 
(STD 30), t =-1.776, df =12, p =0.1). Mean ControlITPC was 0.143 (STD 0.055), a value 
that could occur at random. The difference between the ITPC and ControlITPC was 
significant ( t =8.338, df =13, p = 1.4 x 10-6).  The ITPC was not correlated to the 
NMWFWeight, but it was correlated to NMFITPC, (F12,12,0: 7.419 α �= 0.865, p =0.0008). 
ControlITPC was not correlated to NMWFWeight (F13,13,0: 1.056 α �= -0.053, p =0.5), nor to 
NMFITPC (F12,12,0: 1.508 α= 0.337, p =0.2).  

Left hand stimuli 

The ITPC maxima were observed in the right central region, most commonly at electrode 
C2 and CP4, but all but one of the maxima was within one electrode distance of electrode 
C2. One maximum was at midline electrode Fz. Mean frequency was 41Hz (STD 9), latency 
60ms (STD 10) and ITPC 0.285 (STD 0.072). The chance of exceeding this value by 
random is less than 5⋅10-8. Again the NMFITPC was insignificantly smaller (mean 0.245 
(STD 0.079) t =7.775, df =13, p = 3.1 x 10-6). The chance of this value occurring at random 
was 1⋅10-4. The mean NMF latency was marginally increased (76ms (STD 30), t =-2.076, df 
=13, p =0.06), while the frequency did not differ from the result of the visual inspection 
(39Hz (STD 13) t = 1.908, df =13, p =0.08). Mean ControlITPC was 0.128 (STD 0.056). As 
with the right hand stimulus the difference between the ITPC and ControlITPC was 
significant ( t =6.405, df =13, p = 2.3 x 10-5). While the ITPC values found by visual 
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inspection was correlated to NMWFWeight (F13,13,0: 2.623 α = 0.619, p =0.04) and 
NMFITPC (F13,13,0: 13.450 α = 0.925, p<0.00009), the ControlITPC was not correlated to 
NMWFWeight (F13,13,0: 1.140 α = 0.123, p =0.4) nor to NMFITPC (F13,13,0: 0.832 α = -
0.201, p =0.6).  

 

Apart from the different locations of the maximum activity, neither frequency, latency nor 
the ITPC value differed between hands of stimulation.  

4 Conclusion 

Using non-negativity constraints, it is possible to decompose the ITPC to yield easily 
interpretable time-frequency and scalp maps. The NMF successfully identified the evoked 
activity of a unilateral stimulus in a single subject analysis but was also capable of capturing 
the subject and condition variability within the same scalp localized region in a multi-
subject, multiple condition analysis. The NMWF gave the subject specific strength to the 
activity the most similar across the subjects. In the analysis of the lower frequent activity 
including both conditions the activities would be separated into condition specific 
components if the similarity across conditions was weaker than the similarity across 
subjects. This seemed indeed to be the case.  

The decomposition findings corresponded well to the results of the visual peak detection of 
the ITPC in time-frequency plots. Consequently, the present NMF and NMWF analyses 
efficiently extract the features of interest in the data. Here they reveal how a proprioceptive 
unilateral stimulus, as predicted, elicits significant evoked gamma activity contralateral to 
stimulus side from the scalp map likely to stem from somatosensory and motor cortices. 
Consequently, proprioceptive stimuli are able to elicit evoked gamma activity.  Additionally 
the decompositions revealed a later lower frequent (around 20Hz) activity at a more central 
frontal location. This activity needs further investigation.  

 

The NMF and NMWF analyses of time-frequency data developed here is obviously also 
applicable to magnetoencephalographic (MEG) data. Furthermore, the methods used should 
also be relevant to explore other non-negative measures such as the event related spectral 
perturbation as well as the other derivates of EEG wavelet transformations.  

 

Appendix 

Background coherence 
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Let v  be the vector strength, i.e. the ITPC, at a given time frequency point defined by 
averaging N unit vectors in the complex plane, i.e.: 
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Notice further that if nθ is uniformly distributed over the range [0;2π] the following result 
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The expected ITPC value at a region without coherence is now given by: 
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since 0)( =δE  and ( )2δE is very small.  However, as revealed on figure 9 this 
approximation is too imprecise to use for statistical evaluation. Consequently, the 
background average coherence will be estimated by bootstrapping. 

Distribution of the ITPC 

The ITPC is computed as the mean of n unit vectors in the complex plane. Furthermore, the 
variance of this distribution is finite since the ITPC takes values between 0 and 1. 
Consequently, we can appeal to the central limit theorem and expect that the distribution of 
the ITPC is asymptotically normal for n→∞ in regions of coherence, see also (Mardia, K. 
V.and Jupp, P. E., 1999). However, at regions of random activity the ITPC will tend to zero 
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approximately by
n

1
. In this region the ITPC is Raleigh distributed as revealed by 

bootstrapping on figure 8, i.e. 22

2
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xexf
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= . Notice that the Raleigh distribution is 

completely described by the mean value given by 2
πσ . 

 

Test of significance 

A conservative estimate of how significant the found ITPC values are is found by assuming 
the value of the ITPC at each channel, time and frequency are independent. Assume a total 
of N ITPC observations. The probability by random that a given ITPC values are less than 
the observed is given by: 
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Consequently, the probability that the N independent random ITPC values are less than the 
observed value x is given by: 
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Let this be given at the confidence level α: 
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In the null hypothesis of a random ITPC the probability of the maximum exceeding x is α. 
This is a strong type I control since in reality the ITPC values are not independent, i.e. a 
given ITPC-value will depend on its neighboring values. 

 

 
Figure 8: Bootstrap analysis of the ITPC for n=360 epochs. Left panel; the ITPC in 
regions with no coherence (each epoch were uniformly distributed with angle [0;2ππππ]) . 
A Raleigh distribution fitted by a bootstrapped mean is given by the black curve, 
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whereas the distribution corresponding to a mean of 
360

1
is given by the red curve. 

Clearly in regions of random coherence the ITPC is Raleigh distributed. However, 

approximating the mean by 
360

1
is slightly imprecise. Right panel; The ITPC given in 

regions of coherence (each epoch were uniformly distributed with angle [0:ππππ]). Clearly 
these ITPC values are normally distributed as revealed by the fit of a normal 
distribution to the bootstrapped ITPC values (black curve).  



 26 

References 

Andersen, A. H.,Rayens, W. S., 2004. Structure-seeking multilinear methods for the analysis of fMRI data. 
Neuroimage 22, 728-739 

Arnfred, S., Chen, A. C., Eder, D., Glenthoj, B.,Hemmingsen, R., 2000. Proprioceptive evoked potentials in 
man: cerebral responses to changing weight loads on the hand. Neurosci Lett 288, 111-4 

Arnfred, S. M., 2005. Proprioceptive event related potentials: gating and task effects. Clin Neurophysiol 116, 
849-60 

Babiloni, C., Babiloni, F., Carducci, F., Cincotti, F., Rosciarelli, F., Arendt-Nielsen, L., Chen, A. C.,Rossini, 
P. M., 2002. Human brain oscillatory activity phase-locked to painful electrical stimulations: a multi-channel 
EEG study. Hum Brain Mapp 15, 112-23 

Beckmann, C. F.,Smith, S. M., 2005. Tensorial extensions of independent component analysis for 
multisubject FMRI analysis. Neuroimage 25, 294- 311 

Bell, A.,Sejnowski, T. J., 1995. An Information-Maximization Approach to Blind Separation and Blind 
Deconvolution. Neural Computation 7, 1129-1159 

Bro, R., 1998. Multi-way Analysis in the Food Industry: Models, algorithms and Applications. Amsterdam, 
Copenhagen.  

Bro, R.,Jong, S. D., 1997. A fast non-negativity-constrained least squares algorithm. J. Chemom. 11, 393– 
401 

Carrol, J. D.,Chang, J., 1970. Analysis of individual differences in multidimensional scaling via an N.way 
generalization of 'Eckart-Young' decomposition. Psychometrika 35, 283-319 

Chen, A. C.,Herrmann, C. S., 2001. Perception of pain coincides with the spatial expansion of 
electroencephalographic dynamics in human subjects. Neurosci Lett 297, 183-6 

Collet, W., 1989. Doubts on the adequacy of the principal component varimax analysis for the identification 
of event-related brain potential components: a commentary on Glaser and Ruchkin, and Donchin and Heffley. 
Biol Psychol 28, 163-72 

De Pascalis, V.,Cacace, I., 2005. Pain perception, obstructive imagery and phase-ordered gamma oscillations. 
Int J Psychophysiol 56, 157-69 

De Pascalis, V., Cacace, I.,Massicolle, F., 2004. Perception and modulation of pain in waking and hypnosis: 
functional significance of phase-ordered gamma oscillations. Pain 112, 27-36 

Delorme, A.,Makeig, S., 2004. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics 
including independent component analysis. J Neurosci Methods 134, 9-21 

Donoho, D.,Stodden, V., 2004. When Does Non-Negative Matrix Factorization Give a Correct 
Decomposition into Parts? Advances in Neural Information Processing Systems 17,  

Dormann, W. U., Mundlos, S.,Haschke, R., 1987. Comparison of principal components computed with 
principal factor analysis on the basis of averaged and single-trial ERPs using the Fischer-Roppert procedure. 
Int J Psychophysiol 4, 319-23 

Duzel, E., Habib, R., Schott, B., Schoenfeld, A., Lobaugh, N., McIntosh, A. R., Scholz, M.,Heinze, H. J., 
2003. A multivariate, spatiotemporal analysis of electromagnetic time-frequency data of recognition memory. 
Neuroimage 18, 185-97 

Eggert, J.,Kömer, E., 2004. Sparse coding and NMF. Proceedings, Neural Networks 2529-2533 



 27 

Gruber, T., Malinowski, P.,Muller, M. M., 2004. Modulation of oscillatory brain activity and evoked 
potentials in a repetition priming task in the human EEG. Eur J Neurosci 19, 1073-82 

Hansen, L. K., Larsen, J.,Kolenda, T., 2001. Blind Detection of Independent Dynamic Components. proc. 
IEEE ICASSP'2001 5, 3197-3200 

Harshman, R. A., 1970. Foundation of the PARAFAC procedure: models and conditions for an 'explanatory' 
multi-modal factor analysis. UCLA Work. Pap. Phon. 16, 1-84 

Hazan, T., Polak, S.,Shashua, A., 2005. Sparse Image Coding using a 3D Non-negative Tensor Factorization. 
International Conference of Computer Vision (ICCV),  

Herrmann, C. S., Grigutsch, M.,Busch, N. A., 2005. EEG oscillations and wavelet analysis.  

Herrmann, C. S., Mecklinger, A.,Pfeifer, E., 1999. Gamma responses and ERPs in a visual classification task. 
Clin Neurophysiol 110, 636-42 

Herrmann, C. S., Munk, M. H.,Engel, A. K., 2004. Cognitive functions of gamma-band activity: memory 
match and utilization. Trends Cogn Sci 8, 347-55 

Hoyer, P. O., 2002. Non-Negative Sparse Coding. Neural Networks for Signal Processing XII  

Højen-Sørensen, P. A. d. F. R., Winther, O., Hansen, L. K., 2002. Mean Field Approaches to Independent 
Component Analysis. Neural Computation 14, 889-918 

Jansen, B. H., Hegde, A.,Boutros, N. N., 2004. Contribution of different EEG frequencies to auditory evoked 
potential abnormalities in schizophrenia. Clin Neurophysiol 115, 523-33 

Jones, K., Begleiter, H., Porjesz, B., Wang, K.,Chorlian, D., 2002. Complexity measures of event related 
potential surface Laplacian data calculated using the wavelet packet transform. Brain Topogr 14, 333-44 

Kayser, J., Fong, R., Tenke, C. E.,Bruder, G. E., 2003. Event-related brain potentials during auditory and 
visual word recognition memory tasks. Brain Res Cogn Brain Res 16, 11-25 

Koles, Z. J., 1998. Trends in EEG source localization. Electroencephalogr Clin Neurophysiol 106, 127-37 

Kruskal, J. B., 1977. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to 
arithmetic complexity and statistics. Linear Algebra Appl. 18, 95-138 

Lachaux, J. P., George, N., Tallon-Baudry, C., Martinerie, J., Hugueville, L., Minotti, L., Kahane, P.,Renault, 
B., 2005. The many faces of the gamma band response to complex visual stimuli. Neuroimage 25, 491-501 

Lee, D. D.,Seung, H. S., 1999. Learning the parts of objects by non-negative matrix factorization. Nature 
401(6755), 788-791 

Lee, D. D.,Seung, H. S., 2001. Algorithms for non-negative matrix factorization. Advances in Neural 
information processing 13,  

Makeig, S., Jung, T. P., Bell, A. J., Ghahremani, D.,Sejnowski, T. J., 1997. Blind separation of auditory 
event-related brain responses into independent components. Proc Natl Acad Sci U S A 94, 10979-84 

Makeig, S., Westerfield, M., Townsend, J., Jung, T. P., Courchesne, E.,Sejnowski, T. J., 1999. Functionally 
independent components of early event-related potentials in a visual spatial attention task. Philos Trans R Soc 
Lond B Biol Sci 354, 1135-44 

Mardia, K. V.,Jupp, P. E., 1999. Directional Statistics. WILEY & SONS 76-77 

Miwakeichi, F., Martinez-Montes, E., Valdes-Sosa, P. A., Nishiyama, N., Mizuhara, H.,Yamaguchi, Y., 2004. 
Decomposing EEG data into space-time-frequency components using Parallel Factor Analysis. Neuroimage 
22, 1035-45 



 28 

Mørup, M., Hansen, L. K., Herrmann, C. S., Parnas, J.,Arnfred, S. M., 2006. Parallel Factor Analysis as an 
exploratory tool for wavelet transformed event-related EEG. Neuroimage vol. 29, 938-947 

Oja, E.,Plumbley, M., 2004. Blind Separation of Positive Sources by Globally Convergent Gradient Search. 
Neural Computation 16, 1811-1825 

Palva, J. M., Palva, S.,Kaila, K., 2005. Phase Synchrony among Neuronal Oscillations in the Human Cortex. 
The Journal of Neuroscience 25, 3962-3972 

Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R., Jr., Miller, G. A., Ritter, W., 
Ruchkin, D. S., Rugg, M. D.,Taylor, M. J., 2000. Guidelines for using human event-related potentials to 
study cognition: recording standards and publication criteria. Psychophysiology 37, 127-52 

Paatero, P., 2000. Construction and analysis of degenerate PARAFAC models. Journal of Chemometrics 14, 
285–299 

Rogers, L. J., 1991. Determination of the number and waveshapes of event related potential components 
using comparative factor analysis. Int J Neurosci 56, 219-46 

Salakhutdinov, R.,Sam, R., 2003. Adaptive Overrelaxed Bound Optimization Methods. Proceedings of the 
twentieth International Conference o Machine Learning (ICML-2003)  

Shashua, A.,Hazan, T., 2005. Non-Negative Tensor Factorization with Applications to Statistics and 
Computer Vision. International Conference on Machine Learning (ICML)  

Sidiropoulos, N. D.,Bro, R., 2000. On the uniqueness of multilinear decomposition of N-way arrays. J. 
Chemometrics 14, 229-239 

Tallon-Baudry, C.,Bertrand, O., 1999. Oscillatory gamma activity in humans and its role in object 
representation. Trends Cogn Sci 3, 151-162 

Tecchio, F., Babiloni, C., Zappasodi, F., Vecchio, F., Pizzella, V., Romani, G. L.,Rossini, P. M., 2003. 
Gamma synchronization in human primary somatosensory cortex as revealed by somatosensory evoked 
neuromagnetic fields. Brain Res 986, 63-70 

 

 


