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Abstract

We demonstrate how non-negative matrix factoriza{fldMF) can be used to decompose
the inter trial phase coherence (ITPC) of multivohel EEG to yield a unique
decomposition of time-frequency signatures pregerarious degrees in the recording
channels. The NMF optimization is easily generalize a parallel factor (PARAFAC)
model to form a non-negative multi-way factorizatidNMWF). While the NMF can
examine subject specific activities the NMWF cafeetively extract the most similar
activities across subjects and or conditions. Tle¢hwds are tested on a proprioceptive
stimulus consisting of a weight change in a handih@hd. While somatosensory gamma
oscillations have previously only been evoked ctical stimuli we hypothesized that a
natural proprioceptive stimulus also would be a@blevoke gamma oscillations. ITPC
maxima were determined by visual inspection andehesults were compared to the NMF
and NMWF decompositions. Agreement between theltesfithe visual pattern inspection
and the mathematical decompositions was satisfastoowing two significant coherent
activities; the predicted 40Hz activity 60 ms afsémulus onset in the frontal-parietal
region contralateral to stimulus side and additignan unexpected 20Hz activity slightly
lateralized in the frontal central region. Consetlye also proprioceptive stimuli are able
to elicit evoked gamma activity.

1 Introduction

The analysis of EEG has developed in two majordiiogs; one focusing on dipole or
source localization through elaborate statisticatleis trying to solve the “inverse”
electrostatics problem (Koles, Z. J., 1998); anofbeusing on mathematical decomposition
on the data (Dormann, W. U., et al., 1987; Mak&ig,et al., 1997; Rogers, L. J., 1991).
Lately there has been a growing interest in assessof event related
electroencephalographic (EEG) activity in tirae-frequencylomain (Duzel, E., et al.,
2003; Gruber, T., et al., 2004; Herrmann, C. Salgtl999; Jansen, B. H., et al., 2004,
Jones, K., et al., 2002; Lachaux, J. P., et alb520allon-Baudry, C.and Bertrand, O.,
1999). Our aim is here to extend the mathematieabthpositions of the EEG to the
wavelet transformed multi-channel event related BE&@ield easy interpretable time-
frequency plots.

We propose to apply non-negative matrix factormafNMF) (Lee, D. D.and Seung, H. S.,
1999; 2001) to analyze the inter trial phase comezeof multi-channel wavelet transformed
EEG given bychannel x time-frequencyThis NMF approach is easily adapted to a pdralle
factor (PARAFAC) analysis forming a non-negativelthnway factorization (NMWF). The
NMWF model enables analysis of EEG data encompgssaiore modalities such as
condition and subject without collapsing these ntibiéa (as is the case for the present
multi subject NMF analysis) giving a weighted awggaf the activity the most similar
across subjects and conditions. The PARAFAC modslgreviously been used to explore
the wavelet transformed event related EEG (Mgrup,a¥lal., 2006). It is however the first



time NMF is used to analyze the wavelet transforfa&® and the novel application of the
NMWEF includes the creation of time-frequency plotke decomposition techniques
presented herein are proposed to be valuable toailti-subject data exploration and
analysis since 1. they yield easy interpretable mmments and 2. they can be formed to give
subject specific information within the same scadpgion or to capture the activity the most
similar across subjects.

To demonstrate the viability of the algorithms tielF and NMWF models are applied to a
data set resulting from a stimulus, consisting afeaght change on a handheld load. As
such it is a natural compound somatosensory stisnolit as the major ingredient of the
stimulus is the change of applied force on a statiscle contraction, it is primarily
conceived as a proprioceptive stimulus (Arnfred,e®al., 2000; Arnfred, S. M., 2005).
Nerve stimulation has been the only type of stilsypueviously reported. in scalp
recordings of somatosensory gamma band activitynaggncephalographic (MEG)
recordings of gamma synchronization following etecstimulation of the thumb and little
finger has shown that thumb stimulation increase®isronization of higher frequencies
than little finger stimulation (Tecchio, F., et,a003). This has been suggested to be due to
more selective neural networks being activatedhoyrtb stimulation (Tecchio, F., et al.,
2003). Scalp electroencephalographic (EEG) studfie®matosensory gamma band activity
(GBA(30-80H2z)) following electric stimulation haveen investigated in the context of
pain modulation. Early (<100ms) parietal as wellater more central and frontal (100-
300ms) GBA, measured as power or phase coherenaegmented by pain (Babiloni, C., et
al., 2002; Chen, A. C.and Herrmann, C. S., 2001PBscalis, V.and Cacace, I., 2005; De
Pascalis, V., et al., 2004). In studies of visualgessing, GBA increases with perceptual
binding load and GBA is suggested to be the elgtiysiological manifestation of feature
binding (Herrmann, C. S., et al., 2004).

Considering the perceptual binding involved in anptex somatosensory stimulus like a
sudden load change, we hypothesised that the pagptive stimulus would elicit GBA to
be recorded at the scalp above the contralatemalapy somatosensory cortex. The results
of the NMF and NMWF decompositions of the data frilva proprioceptive stimulus are
compared to results obtained by visual inspectiothe data.

2 Methods

2.1 Algorithms

Traditionally the decomposition of the EEG into qwwnents has been based on
decomposition techniques such as principal compioaealysis (PCA) (Collet, W., 1989;

Dormann, W. U., et al., 1987; Kayser, J., et 002 Picton, T. W., et al., 2000; Rogers, L.
J., 1991) and independent component analysis (I@G#/keig, S., et al., 1997; Makeig, S.,
et al., 1999). When the EEG-data is subjected ¢octintinuous wavelets transformation for



the analysis of frequency changes through time riHenn, C. S., et al., 2005), the
representation is expanded frathannel x timao a 3-way array othannel x frequency x
time. Unfolding this three way array by collapsing timae and frequency dimensions into
one dimension oftime-frequencyyields a matrix ofchannel x time—frequencthat is
analyzable by factor analysis models. These two-faotor analyses yield components
consisting of time-frequency signhatures with thmixing in the various recording channels.
However, additional modalities arise when invedimas are performed across subjects,
trials or conditions as is commonly the case. Raatmlysis models such as ICA, PCA and
NMF permit the analysis of such data by further aldihg of these extra modalities.
However, unfolding can to some extent hamper imetgtion, but more importantly,
potentially dismiss modality specific informatioy mixing information in a given modality
with the more or less arbitrary chosen modalitiest it has been folded with in a two-way
matrix analysis. Furthermore, in this form of ars$ythe activity that is the most similar
across trials or subjects is often the most intergsto access. Consequently, rather than
just unfolding these multi-way arrays into matrices also analyzed this form of data using
the multi-way model PARAFAC given in figure 1.

The PARAFAC model, here detailed as the NMWF, eseatweighted average of the most
common activity revealing the degree to which taddivity is present in the various
subjects, trials or conditions.

Two-way analyses, e.g. the NMF, create regionatgmecomponents revealing how these
differ in time-frequency pattern in the various gdbs, trials or conditions.

Consequently, we here use NMWF but also NMF fougranalysis. Although the subject
specific activity is believed to deviate from theeoall mean (as assumed by NMWF) and
the placement of the electrodes are not identicaedss subjects (as assumed by NMF), the
decompositions enable an easy method to compargianwdthe activity across subjects.
Furthermore, the activity present in a differenbjsgt sample is likely to be captured by the
models since the model captures the activity comammnss the analyzed subjects.
However, the caveat must be that the componenthtrbig biased by a few subjects having
relatively strong signal strength. It follows thaaty conclusions reached based on the group
decompositions has to be validated by single sulgealyses. This problem of group
analyses is no different from the problems of grauprages when analyzing grand
averages of the evoked potentials.
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Factor :&nalysis PARAFAC

Figure 1: Graphical representation of the factor amlysis to the left and the PARAFAC
decomposition of a 3-way array to the right. Like he factor analysis, PARAFAC
decomposes the data into factor effects pertaining each modality. F denotes the
number of factors.

NMF nor ICA have to our knowledge been used preslipto analyze the frequency
transformed event related EEG. The use of PARAF&Cahalysis of wavelet transformed
EEG has recently been advanced. In 2004 Miwakeioldicolleagues (Miwakeichi, F., et
al., 2004) suggested the use of PARAFAC on theehsitransformed ongoing EEG of
channel x frequency x timend the PARAFAC model can be an efficient datd@gpive
tool for the event related wavelet transformed E®Marup, M., et al., 2006). Recently, the
PARAFAC model has also been advanced to the asatf§iMRI (Andersen, A. H.and
Rayens, W. S., 2004, Beckmann, 2005 #57)

The non-negative matrix factorization (NMF) wasraduced by Lee and Seung in 1999
(Lee, D. D.and Seung, H. S., 1999; 2001). They gtbhow the NMF decomposition gives
a more sparse decomposition than PCA and convaiti@A yielding more interpretable
components. The NMF has the advantage over PCAI@Adthat given the data spans the
complete positive octant, no rotation of the fadolutions is possible ensuring uniqueness
apart from trivial scaling and permutation, seeoal®onoho, D.and Stodden, V., 2004).
Although algorithms for positive ICA exist (Hgjergfnsen, P. A. d. F. R., et al., 2002;
Oja, E.and Plumbley, M., 2004) these were not atergd in the present work as they
would give results similar to NMF while being vetigne consuming.

The parallel factor (PARAFAC) model was independenproposed by Harshman
(Harshman, R. A., 1970) and by Carrol and Changr@aJ. D.and Chang, J., 1970), the
latter naming it Canonical Decomposition (CANDECOMM~he model is a parsimonious
extension of factor analysis to higher dimensiomatays as revealed on Figure 1.



PARAFAC, in contrast to conventional factor modetlkges not suffer from rotational
indeterminacy. As a result, the PARAFAC model isgeneral unique, apart from scaling
and permutation indeterminacies (Kruskal, J. B.779Sidiropoulos, N. D.and Bro, R.,
2000). Consequently, the main advantage of PARAIAEY factor analysis models such as
PCA, ICA and NMF is that uniqueness is ensured unaey mild conditions making it
unnecessary to impose constraints in the form tiogonality, statistical independence /
sparsity or requiring the data to span the comppewgtive octantThe “price paid” for such
strong uniqueness is a more restrictive model, tlaat only capture the activity that is the
most similar across trials, subjects and/or condgi Consider a three way array of size
ILJK. A F component PARAFAC model would have (I+JHK)ree parameters whereas the
corresponding unfolded factor analysis model woirdlude (I1+JK)F>>(1+J+K)F free
parameters.

Lee and Seung gave two algorithms for NMF both Hase gradient descent; one
minimizing the squared error the other minimizihg Kullbach-Leibler divergence (Lee, D.
D.and Seung, H. S., 2001). Both algorithms arelgasiapted to the PARAFAC model with
non-negativity on all modalities, giving a non ngga multi-way factorization NMWF, see
also (Hazan, T., et al., 2005; Shashua, A.and HaZanh 2005). In the following, the
matricesW,H, A, S andD will be defined as given in Figure 1.

In the factor analysis we have:
X =WHT +E or equivalently X" =HWT +E" (1)
WhereE is the approximation error.

The PARAFAC model can be written in matrix notatioy use of the Khatri-Rao product,
ie. Al0)S=[a, 0sa,0s, ... a: Os.] where F is the number of factors and the n-mode

matricizing of the multiway arrayx /=™, je. X=Xzl This gives the
equivalent expressions:
— o7 ® —
Xy =AZY +E,wherez® =90|D
X o =SZ?" +E,wherez = D|0JA (2)
3
X 5 =DZ®" +E wherez® = 90|A

In general the PARAFAC model for higher orders thfaree can be expressed as

F
ajjay )
/12:;_ A5 (3)
o =APZOT L E Cwherez®™ = AN|OIANO[OjACOjACD) oA



Notice, in the two-way case the matricizing cor@sgs to taking the transpose and the
formulation in 3 becomes equivalent to the regdiémtor analysis withA® =W ,z® =H

and A® =HT ,Z®@ =W . In the following we will requireX, W, H, A, S andZ to be non-
negative.

2.1.1 NMWF based on Least-Squares

Consider the least square cost function C given by:
0= X ~WHT[ = x" ~wH T = 33 - (wH") ¥
i

Minimizing C corresponds to maximizing the likeliw of a homoscedatic Gaussian noise
model.

4)

Lee and Seung found the following convergent upsldde W andH, by differentiating C
with respect to each element\ii andH and updating with a gradient based search using a
stepsize resulting in multiplicative updates, skee( D. D.and Seung, H. S., 2001) for
details:

(XH), (x"w),, (5)
W, « W A H . _H. j
" “WHTH)," 1 ‘HWTW)M

The positivity constraint oV andH is insured since these multiplicative updatestanend
to remain positive granted, W andH are positive.

Due to equation 2 the PARAFAC model can be statedhaee equivalent least square
minimizations giving the following three equivalemlst function expressions for C:

T|? (6)

c_Hx Az’

Hx —s70

Hx —pz®

M

In general following the formulation of equationtl3e cost function for the least square
minimization for higher orders can be stated asetipgivalent problems:

2 2

—AMZ 07 (7)

As the minimization of the expressions in equatioand 7 corresponds to the regular factor
analysis the update of each factor is given diyeloyl the NMF updates by interchanging the

roles ofX, W andH in 5 with that ofX,, A™ and Z". Consequently eacA™ is updated
according to:

§
C= me _AWZ0) "

)
= HX<2> _A@7()

=[x

(Xz™) 9)




The convergence of the updates follows straightvéwd from the convergence of regular
NMF simply by interchanging the roles W andH with that of A™ and Z" in the proof
given by Lee and Seung (Lee, D. D.and Seung, H2@1).

Specifically for the three-way PARAFAC model givenfigure 1, we get the convergent
updates:

(X (2)2(2))| D D (X(3)Z(3))i Vi (8)
S727 70 § 1 Vi » 5z e

2

Al,)l - Ail/l ’Sle <3S
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2.1.2 NMWF based on the divergence approach

Consider the Kullbach-Leibler divergence cost fumetin the Factor Analysis as defined by
(Lee, D. D.and Seung, H. S., 2001), i.e.:

D(x JIas7)=D(x" [IsA")= ZZX lograty X, +(AS"),

Using a gradient based search to minimize this rdiece with a stepsize yielding
multiplicative updates, the following updates\WfandH forming the NMF-KL algorithm
is achieved (Lee, D. D.and Seung, H. S., 2001):

: Xij I X
ZHMW ZWMW
JHy, o H, 32— (11)

CSH, Sw,

j=1

(10)

W, « W,

For the PARAFAC model given in figure 1, the divenge cost function can be stated as
the following three equivalent expressions:

T T T
px, 14297 )= Dl ,, 52?7 )= DlX , IIDZ®") (12)
And for higher orders than three as the equivabeablems:
bk, 114927 )=Dlx , 1A®Z®" )= = DlX,,, IA®Z"") (13)

As the minimization of the expression in equati@abain corresponds to the regular factor
analysis, the update of each factor is given diydry the NMF-KL updates as:



2l X i) (14)
; T
() m_ 7 Wz
Ain/‘ - Ain/] Ill2[]]]]mr\—3_|n+1[]]%:U
n

i
j=1

Again, the convergence of these updates followigiitaforward from the convergence of
the regular NMF-KL updates by interchanging theesobfW andH with that of A™ and
Z™ in the proof given by Lee and Seung (Lee, D. D.8edng, H. S., 2001).

Specifically for the three-way PARAFAC model givenfigure 1 the following updates are
achieved:

%Z(l) Xy iﬁz(z) X @)1y %Z@) X @y
B (AZ(DT]
1)

i i1 (gz@T s (pz@®T
A A j=1 i1j S S j=1 igj D D j=1 i3]
A < Mg I P R W r Hior < Higa

1 1 |l|3

Z 7 (}) Z 7 (_2) Z 7 (.3)

=1 =1 =1

(15)
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Model

Xy iy = Zai(lljai(f/l) Eﬂﬂﬂ(ﬂ) t €5, iy

A=1

Algorithm for NMWF-LS

Initialize all A® randomly

TI12

C —HX(N) —ANZN)

new —

While oS 55 do
C:old = Cnew
Forall ndo
(n)
A _ AM (X(n)Z )in/l
ind in (A(n)z(n)Tz(n))in/‘ +&

T2

c —HX(N) —ANZM)

new

Algorithm for NMWF-KL
Initialize all A® randomly
Cnew: D(X(N) ”A(N)Z(N)T)

oid —C

While Co=Cer 55 4o
Cold :Cnew
Forall ndo
0,1 ., 00
|1|2 nlln 1(n)N X(n)inj
. i OFAWN
= AMz o+
A _ A = (A2 ) e
ind ind Il M, 1y My
(n) +&
i
i=1

C.= D(X(N) ||A(N)Z(N)T)

new

7 = A(N)||:||A(N_1)||:||l|:||A(n+l)||:||A(n_l)||:||-||:||A(l)

Notice: X (o)

=X InXlql oyl [y

= A7z 0T
X =AVZY +E

The algorithms for NMWF based on least square (LSand Kulbach-Leibler (KL) divergence minimization. &
was set to 16 while e=10° ensured no division by zero for numerical stabiliy. Notice how the regular NMF

F
algorithm is the special case of the NMWF algorithngiven by X ; = Zai(;)ai(fj +te; -
A=1

2.2 The inter trial phase coherence

The inter trial phase coherence (ITPC) is a meastighase consistency through trials of
the continuous wavelet transformed EEG-data. Theptex wavelet transform projects the
EEG-data onto the complex plane. Define the vestoength as the length of the vector
given by the sum of n unit vectors in the compléane. Then the vector strength measures
coherence, i.e. the degree in which the vectoretpoithe same direction, see also figure 2.
The ITPC is a statistical measure of the evokedvidigtgiven as the vector strength, i.e.

coherence over epochs.
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Incoherent, i.e. uncorrelated Coherent. i.e. correlated
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Figure 2: The vector strength is the sum over univectors in the complex plane. In regions
where the vectors are uncorrelated, i.e. incoherenhe vector strength is small compared to
region where the vectors are correlated, i.e. cohent yielding a much larger vector
strength (compare red vector to the left with red ector to the right). Consequently, the
vector strength is a measure of coherence.

\ 4
v

v

Let X¢(c,f,t) be the coefficient of the wavelet transform atroiel c at frequency and timet
for epoche, and let there be a total of epochs. The ITPC is given Hpelorme, A.and
Makeig, S., 2004):

(cft)
[X.(c. f.1)

While an area of coherence is approximately nonnaistributed, random activity/noise is
Raleigh distributed (Palva, J. M., et al., 2005jhwén average value of approximately,n
see Appendix for details. Compared to other measwfecoherence such as the avWT
(Herrmann, C. S., et al., 2005) the ITPC has twgomadvantages. 1) Since the statistical
properties of random ITPC activity is known thersfigance of the ITPC activity is easily
accessed, see also appendix. 2) Since all epoehweighted the same the effect of even
very noisy trials is limited making the cumbersomerk of artifact rejection unnecessary.
However, since the ITPC is a signal average oviafstiit is biased towards the averaged
phase. Consequently, some event related brainigesivmight not be fully explained by
phase changes and thereby not be captured by tR€.IFurthermore, as the ITPC is a
statistical measure of phase consistency this makggpretation in terms of source
localization difficult: the propagation factors atargely unknown as the amplitude
information is removed in the ITPC measure.

As random ITPC is Raleigh distributed, the sigrafice of the ITPC can be compared to a
null hypothesis of random ITPC. The following fortausee appendix for details) can be
derived to access the significance of a given IMallie, x. In the null hypothesis of the

ITPC being randomly generated the maximum of N padelent ITPC points has probability

a of taking a value exceeding X, given by:

ITPC(C, f,t) = (16)

y 1
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x=y-20%In(L- 1-a) ") (17)

2.3 Experimental details

Fourteen healthy subjects (four females) were hetuafter informed consent
as approved by the Ethics Committee. They were pmjharticipate in the experiment. The
mean age of the sample was 24.4 years (standardtibev(STD) 3.0) and the mean length
of education was 15 years (STD 2.3). The propritgepstimulus was delivered by a
custom build apparatus (Sv. Christoffersen, Depantnof Medical Physiology, University
of Copenhagen): The subject has a plastic handhesipronated hand and a minimum static
load of 400g was applied through a nylon wire carttee to the handle and an
electromagnetic servomotor driving a spool. An &ddal load of 100g was applied with a
linear increment of 20g/10ms. The maximum load wastained for 500ms. The hand was
supported by a horizontal cushioned armrest to ldwel of the metacarpolphalangeal
articulation of the thumb. A schematic of the sptisl shown in (Arnfred, S., et al., 2000).
Stimulus delivery was controlled by the Presenta@isoftware. Alternating between hands,
three runs were recorded in both sides. Each rstedafour minutes and consisted of 120
stimuli applied to the same hand with inter stinsuintervals of 1.5s resulting in a total of
n=360 epochs. While recording, a monitor showin{jxation cross was placed 50cm in
front of the comfortably seated subject, and 76dBsking white noise was delivered
through loudspeakers just behind the monitor. Tilgext was asked to relax and fixate on
the monitor and no attempt was made to direct ltisndon towards the proprioceptive
stimuli.

2.3.1 Preprocessing

EEG data was recorded with 64 scalp electrodesS@&m Active electrodes system)
arranged according to the International 10-10 sys#&dditional recordings were obtained
from earlobes and at the maxillae beneath each &fie.grounding electrodes for the active
electrodes (CMS and DRL) were placed centrallyselto POz. Data was recorded
continuously at 2048 Hz/channel, band pass 0.1HHMy a LabView®© application
(ActivView®) on a Windows© based PC. Off-line preseng was performed in EEGLAB
for MatLab®© (Delorme, A.and Makeig, S., 2004). Tdeta was referenced to digitally
linked earlobes and cut into epochs (-250 to +5Q0ni$e data was wavelet transformed
using a complex Morlet wavelet (Herrmann, C. Salet1999; Miwakeichi, F., et al., 2004)

2

with center frequency 1 and bandwidth parametdzrez,ﬁ(t):iexdi Zn)exr{—t—] with

Jor 2
frequencies represented from 15 to 75 Hz with likterval. Baseline subtraction was not
performed prior to wavelet transformation sincewaelet transform is shift invariant. Since
even very noisy epochs might include relevant piva@semation while having relative little
impact on the overall ITPC, no epochs were rejectbss enabled the ITPC to be calculated as
an average across all trials, improving signaldisea ratio (SNR). Furthermore, to avoid
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reduction of SNR, the data were not normalized esubjects. Normalizing would increase the
influence of subjects having less coherence cormdpareandom activity in the analysis.

2.3.2 NMF and NMWF decompositions

Let x """ denote the multi-way array of ITPC activity givey the modalities channels
(c), frequency f), time (), subjects [§) and conditionsk). Three types of arrays are then
analyzed:

« A single subject analysis ehannel x time-frequendf PC matrix, i.e. X'" .

* A multi-subject analysis ofthannel x time — frequency — subject — conditibRC
matrix, i.e. X '™¥,

« A multi-subject analysis of the 3-way array afannel x time-frequency x subject -
conditionITPC, i.e. x &™P¥

Decomposing the ITPC given by the matd<*'“of channel x time-frequency.e.

F
)qliZ :%ailxlslz/l +qli2 (17)

corresponds to the assumption that the underlyactpfs consist of a given time frequency
signatures, that has been mixed in the channelsapyDecomposing the ITPC given by the
matrix X “"™¥of channel x time — frequency — subject — conditissumes the activity are

centered around the same channels but might deinateset and frequency through the
subjects and conditions.

Since the ITPC by nature is non-negative the deasmipns of the ITPC can be based on
non-negativity constraints, i.e,,,s , = . Consequently, the non-negative ITPC signatures

sy can only be additively mixed in the channels. Tisivased on the assumption that the
coherent activity measured at the scalp stem fitmanseme underlying coherent activities in
the brain recorded with varying strength dependinghe electrode position. Furthermore,
none of these coherent activities measured byTR€Iis allowed to cancel each other. This
requires the coherent activities to be separateeither the channel or time-frequency
domain. Since the Morlet wavelet transformation asercomplete and granted the
bandwidth of the wavelet is relatively small (heet to 2) the various coherent activities are
likely to be separated when lifted to the time-freqcy domain.

Restricting the multi-subject analysis to a 3-wasag x ©' ™"

X subject-conditioni.e. into the PARAFAC model:

of channel x time-frequency

F
Xiiis =Za11A32Adi3A +8&,,, (18)
FE
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corresponds to the additional assumption that taetlying factors are identical between
each subject/condition but present to variable eegiven by the scoi, whered, , = Q

Granted NMF captures all “systematic” variation,dasince the ITPC is approximately
normally distributed in regions of coherence (sppemdix 1), the error can be considered
normally distributed. Therefore, least square eatiom corresponding to maximizing the
likelihood of a homoscedatic Gaussian noise model, the NMF-LS and NMWF-LS

algorithms is justified. Appealing to KL minimizan is equivalent to assuming a
multinomial noise model. Here the residuals areghiEd by the relative size of the
component. This form of analysis was mainly perfedifor comparison. Consequently, if
the decompositions were too algorithm-dependestwhas an indication of unviable results.

The number of factors accepted as the best solwampurely based on visual inspection of
the results. It is customary to assess the numbeaaiors in matrix analyses through
methods such as Bayesian Information Criterion @¢an L. K., et al., 2001), cross-
validation and analysis of residuals. Since nodatiad to be orthogonal or independent to
the remaining factors as is the case for PCA arl I€spectively, the choice of number of
factors used in NMF had little impact on the comgats found. We judged the amount of
components to include by their relative norms aod hocalized they were. A small norm
greatly spread in the channels and time-frequermyain was taken as an indication that
too many components were included hence the commom@s modeling background
activity. Each of the decompositions were perforrteg@e times and compared to ensure no
local optimum was found. The NMF solution is pradercompared to an ICA solution
based on maximum likelihood as described in (B&lgnd Sejnowski, T. J., 1995; Hansen,
L. K., et al., 2001).

The PARAFAC model is known to suffer from degengragnd slow convergence
(Beckmann, C. F.and Smith, S. M., 2005; Paatero2@00). These problems are, however,
circumvented when imposing non-negativity constiion all modalities (Mgrup, M., et al.,
2006). While an algorithm for the estimation of PARRAC under non-negativity constraint
has been proposed by (Bro, R., 1998; Bro, R.andg,J& D., 1997) the NMWF-LS
algorithm yielded equivalent results, but both g and KL algorithm for NMWEF is easier
to implement and to our knowledge also faster irstsituations.

The NMF algorithms of Lee and Seung are known téfesufrom slow convergence.
Consequently, we accelerated the algorithm as ddviiy (Salakhutdinov, R.and Sam, R.,
2003). The NMF decomposition is not unique in gaheAs mentioned earlier rotational
ambiguity is only removed when the data spans thepdete positive octant. In order to
achieve this, background ITPC activity was remobgdsubtracting the random coherence
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of 0.0465 estimated by bootstrapping (n=360). Aajues below zero after this subtraction
were set to zero. Consequently, all the decompmstshown in the results section have to
have this subtracted value added in order to retlee actual ITPC values. To access the
uniqueness properties of the decomposition we aedlyhe correlation between signatures
of several NMF analysis of the same data, seetalde 1.

3 Results and discussion

3.1 Single subject analysis

As seen on figure 3 and 4 the solutions of the IGWF-LS and NMF-KL all include a
coherent contralateral parietal-frontal activitydaa coherent frontal central activity of
lower frequency. Whereas the NMF methods give gastkrpretable representations of the
activities, the ICA method yields similar resultdsowever, in order to achieve independence
regions of the time-frequency signatures have becoegative.

ICA

ITPC

Hz

Figure 3: ITPC analysis of one subject (No 2) durig left hand stimuli. To the top left is the
analyzed ITPC array of channel x time-frequency gien by a 16x4 array of a given
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channels time-frequency signature of the ITPC. Topight; analysis of the ITPC using
independent component analysis. Bottom left; the milt of a NMF-LS analysis of the ITPC.
Bottom right; the result of a NMF-KL analysis of the ITPC. All three decompositions yield
similar results. However, the ICA analysis yields agative results in order to achieve
independence which is not physiologically justifiedAll methods find a strong activity
around 40 Hz 50 ms in the right parietal region anca more frontal activity around 20 Hz

70 ms. No apparent difference between the two NMFokitions is observed. Whereas the
ICA model explains 72.75 % of the variance the NMFBE and NMFKL analysis explain
respectively 72.65 and 69.82 % of the variance. Tlo®lor axis of the head plots goes from 0

to 1, see also figure 5.

_ITPC

< 14

-
]

=
-

Figure 4: The ITPC of the same subject as figure éNo 2) during right hand stimulation.
See legends of figure 4 for explanatory details. A& all three methods yield similar

results, however in order to achieve independenched ICA method has forced large regions
of both components to be negative in order to achre independence. While the first
components in all the analysis reveal a parietal feactivity around 40 Hz 60 ms the second
component pertains to a lower frequency frontal-cetal activity around 20 Hz 70 ms.
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Whereas the ICA model explains 71.00 % the NMF-LSxglains 70.58 % and NMF-KL
67.14 % of the variance. The color axis of the hegalots goes from 0 to 1, see also figure 5.

To investigate whether the NMF solutions found amejue we evaluated the NMF analysis
of both NMF-LS and NMF-KL on the data. The degréeansistency between the scalp
and time-frequency signatures of both NMF decontpmss are generally good but becomes
perfect when removing the background activity, d#e 1. This stems from the fact that
removing background activity makes it much morelykthat the analyzed data spans the
complete octant. Since it is possible to achieviguweness without constraints of
independence, NMF was superior in the analysifi®fi TPC data. Had uniqueness not been
achieved, sparseness constraints could have bgesed on the NMF decomposition as
proposed by (Hoyer, P. O., 2002 ) (Eggert, J.anth&) E., 2004).

No background subtractior Background Subtracted

LS2 RS2 LS2 RS2

a  0.9919 0.9646 1.0000 1.0000
g st 0.9867 0.9934 1.0000 1.0000
% a 0.9979 0.9809 1.0000 1.0000
s  0.9958 0.9684 1.0000 1.0000
ap  0.9987 0.9974 1.0000 1.0000
g s 0.9981 0.9958 1.0000 1.0000
% a& 0.9960 0.9954 1.0000 1.0000
s 0.9839 0.9917 1.0000 1.0000

Table 1: Mean correlations between signatures of 1@wo-component models of NMF-
LS and NMF-KL to the mean signature of the 10 analges. In general, the solutions are
close to unique but they become completely uniqueh&n removing the background
coherence. (LS2=Left hand stimuli subject nr. 2, R&Right hand stimuli subject nr.
2).

3.2 Multi-subject analysis

The NMF-LS analysis of the ITPC matrix ofiannel x time-frequency — subject — condition
is given in figure 5. A three component analysiplained 73.61 % of the variance in the
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data. The third component pertains to some comdidtental central activity significant
(p<0.05) in 14 of the 28 trials (14 subjects x Adibions) and in 9 of these it was even
highly significant (p<0.001), see appendix on hdws tsignificance level is calculated. The
first and second components pertain to the parfevatal gamma activity contralateral to
stimulus side as the activity is mainly presentingiright hand stimuli in component one
and left hand stimuli in component two. As seemfrthe subject specific time-frequency
maps some variation between the activities of eadbject is present. The significance of
the two contralateral parietal-frontal activitiesliwbe examined in the section on visual
inspection of the data.

Subj. 1 Subj.2 Subj.3 Subj.4 Subj.5 Subj.6 Subj.7 Subj.8 Subj.9 Subj. 10 Subj. 11 Subj. 12 Subj. 13 Subj. 14

Right hand  Left hand

0 0.15 0.3
Subj. 1 Subj.2 Subj.3 Subj.4 Subj.5 Subj.6 Subj.7 Subj.8 Subj.9 Subj. 10 Subj. 11 Subj. 12 Subj. 13 Subj. 14
- -

Right hand  Left hand

]
]
5]

=

&
]

|

]
|
5]

=

z

.20

-4

Figure 5: NMF-LS analysis of the ITPC data of chanel x time-frequency-subject-condition
(an NMF-KL analysis gave similar results). To theéft is the scalp map revealed. To the
right is the frequency-time map of each subject dung the two conditions. The time-
frequency of the top row pertain to left and bottomrow to right hand stimuli. From the
first factor it is seen that the left parietal-frontal activity is mainly due to gamma activity
during right hand stimulation whereas the right parietal-frontal activity revealed in
component 2 is mainly due to left hand stimulationClearly, the frontal activity given in
component 3 is present in almost all subjects in ltlo conditions. The three components
explain a total of 73.61 % of the variance.
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In the NMWF analysis we assume identical activityough the subjects/conditions and
variability only in strength. Two forms of NMWF alyais are performed; one decomposing
each stimuli side separately, the other analyzhmg frontal activity of the two conditions

simultaneously by restricting the analysis to tleévéty between 15-25 Hz. The result for
the first type of decomposition is given in figudeHere a two component NMWF analysis
(based on NMWEF-LS) captures in the first comportéet parietal contralateral activity and
in the second the lower frequent frontal activity.

Left hand stimuli Right hand stimuli

15 — 15 ‘
02 ' 1 [
E . - o
- ) 0.1 I | -
B r 03 1 > .
\‘ y L L < 4
o 0.
75 o HEmll_ in 75
0 ms 330 0 s 350
15
-
’ N :
jasl
o < :
ot
0 350
ms

e B
e : o
u 750 - 0
Figure 6: The result of a two component NMWF-LS andysis of the ITPC (NMWF-KL

350
gave similar results) generated from the 14 subjestduring left hand stimuli (left
panel) and right hand stimuli (right panel). The first component in the left panel
pertains to the 40 Hz gamma activity in the right @rietal region whereas the first
component to the right pertains to the correspondig activity in the left parietal
region. Finally the second components in both panelpertains to the more frontal
lower frequent activity. While the coherent contrahteral parietal-frontal activity is
weak in subject 1,3,6 and 14 during left hand stimlation, this activity is weak in
subject 1,4,6 and 7 during right hand stimulation.The frontal activity is well present in
all but subject 8 both during right and left hand gimulation. While the NMWF model
of the left hand stimulation accounts for 49.95 % bthe variance the model accounts
for 51.82 % of the variance during right hand stimdation. The color axis of the head
plots goes from 0 to 1, see also figure 5.

2

From the decomposition of each side it seems dkeffrontal lower frequent activity is
slightly lateralized contralateral to stimulus sid€onsequently, we analyzed this activity
including both conditions simultaneously by redirng the NMWF analysis to the interval
15-25 Hz. As the NMWF captures the activity the mesmmon across subjects and
conditions a two component model would separate alotivity in an activity present at left
hand stimulation and an activity present mainlyight hand stimulation if the activity is
dependent on stimulus side. In figure 7 is givas MMWF decomposition using LS as well
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as KL. Indeed, the first components in both methiodiicate that the left hand stimulation
(corresponding to odd numbered bars) was the mamtributors to the right central
activity, while the right hand stimulation (evenmbered bars) was the main contributor to
the left central activity given in component twoowever, the difference between the
condition strengths (even versus odd numbered bas)not significant.

Least Squares KL-Divergence

= T . .III.|J.|i..JIUh.|| & . )lﬂnlmhll "
S '8l & L‘. ikl

Figure 7: A two component NMWF-LS and NMWEF-KL analysis of the lower
frequency frontal activity from 15-25 Hz of the 14subjects during left hand stimuli

(odd trials) and right hand stimuli (even trials) gving a total of 142=28 trials. Clearly

both the LS and KL methods indicate that also thisactivity is lateralized contralateral

to stimulus side. While the first component is maily present in odd trials (left hand

stimulation) the second component is mainly presenduring even trials (right hand

stimulation). The two components model explained 563 % of the data using the LS
method and 53.96 % of the data using the KL methodWhile second component of
both methods are more or less identical, the firscomponent is slightly different since
the LS and KL method weights the deviation of the radel to the data differently. Color

axis are identical to the color axis of figure 6.

The NMWF analysis captures the most common ITP@i#gtand indicates the strength to
which this activity is present in each subject and/ondition. This resulted in an estimate
of the subject specific strength relative to thestnm»mmon activity during each stimulus in
the single condition analysis. In the analysishad tower frequency activity including both

conditions the NMWF analysis indicated that thenfed central activity to some extent was
condition dependent lateralized contralateral t® stimulus side. Contrary to NMWF, the
multi subject NMF analysis captured the subject aoddition variability within the same

localized scalp region giving three components;oamon frontal component and two
components each representing the parietal-frontahrga activity contralateral to the
stimulus side.
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3.3 Validation by visual inspection

The single condition NMWF weight given in figure(BRMWFWeight) as well as the results
obtained from a two component multi-subject NMF exch condition (NMFITPC) was
compared to the results found by visual inspectbrthe 16x4 array of channel x time-
frequency ITPC activity of each subject. Furthereyathe lateralized ITPC maxima were
compared to the ITPC of the same time-frequencytpaithe corresponding channel across
the sagittal midline (controlITPC), i.e. ITPC at ECcontrolITPC at FC2. Since the
lateralized components of the multi-subject NMFlgsig of each condition separately gave
components identical to the lateralized componémtBgure 5 the figures of this analysis
has not been included.

Right hand stimuli

ITPC maxima were observed in the left frontal-paliecentral region, most commonly at
electrode FC1, but all maxima were within one efet¢ distance of electrode C1 and none
were in mid-line electrodes. Mean frequency was 8§HTD 4), latency 60ms (STD 11)
and ITPC 0.255 (STD 0.066). The probability of ti€®C in a single channel at one given
time frequency point for each subject to exceed5®.by random is @0°> see also
appendix. The mean NMFITPC was 0.232 (STD 0.07h)s tvas not different from the
result of the visual inspection. Again, for eaclbjeat to exceed this value by random has a
probability of 110°. The mean NMFITPC frequency was lower (33Hz (STD$2.132, df
=12, p =0.05), while the latency did not differ findhe result of the visual inspection (73ms
(STD 30),t =-1.776, df =12, p =0.1). Mean ControlITPC was4B1STD 0.055), a value
that could occur at random. The difference betwélam ITPC and ControlITPC was
significant (t =8.338, df =13, p = 1.4 x 1). The ITPC was not correlated to the
NMWFWeight, but it was correlated to NMFITPC,16k>6 7.419 0= 0.865, p =0.0008).
ControlITPC was not correlated to NMWFWeight{f; ¢ 1.0560= -0.053, p =0.5), nor to
NMFITPC (F2.126 1.5080= 0.337, p =0.2).

Left hand stimuli

The ITPC maxima were observed in the right cermgglon, most commonly at electrode
C2 and CP4, but all but one of the maxima was witine electrode distance of electrode
C2. One maximum was at midline electrode Fz. Meaguency was 41Hz (STD 9), latency
60ms (STD 10) and ITPC 0.285 (STD 0.072). The chasfeexceeding this value by
random is less thanB0®. Again the NMFITPC was insignificantly smaller (ame0.245
(STD 0.079)t =7.775, df =13, p = 3.1 x 1. The chance of this value occurring at random
was 110“ The mean NMF latency was marginally increasedn@STD 30)t =-2.076, df
=13, p =0.06), while the frequency did not diffeorh the result of the visual inspection
(39Hz (STD 13} = 1.908, df =13, p =0.08). Mean ControlITPC was28 (STD 0.056). As
with the right hand stimulus the difference betwéesn ITPC and ControllITPC was
significant (t =6.405, df =13, p = 2.3 x 1. While the ITPC values found by visual
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inspection was correlated to NMWFWeight{fs ¢ 2.623a = 0.619, p =0.04) and
NMFITPC (F313,6 13.450a = 0.925, p<0.00009), the ControlITPC was not cated to
NMWFWeight (R3 136 1.140a=0.123, p =0.4) nor to NMFITPC (§136 0.832a = -
0.201, p =0.6).

Apart from the different locations of the maximumtigity, neither frequency, latency nor
the ITPC value differed between hands of stimulatio

4 Conclusion

Using non-negativity constraints, it is possibledecompose the ITPC to yield easily
interpretable time-frequency and scalp maps. The-NMccessfully identified the evoked
activity of a unilateral stimulus in a single suttj@analysis but was also capable of capturing
the subject and condition variability within thersascalp localized region in a multi-
subject, multiple condition analysis. The NMWF gdkie subject specific strength to the
activity the most similar across the subjects.ha analysis of the lower frequent activity
including both conditions the activities would keparated into condition specific
components if the similarity across conditions waeeaker than the similarity across
subjects. This seemed indeed to be the case.

The decomposition findings corresponded well tordsults of the visual peak detection of
the ITPC in time-frequency plots. Consequently, phesent NMF and NMWF analyses
efficiently extract the features of interest in theta. Here they reveal how a proprioceptive
unilateral stimulus, as predicted, elicits sigrafi¢ evoked gamma activity contralateral to
stimulus side from the scalp map likely to stermireomatosensory and motor cortices.
Consequently, proprioceptive stimuli are able toieevoked gamma activity. Additionally
the decompositions revealed a later lower freq@rmund 20Hz) activity at a more central
frontal location. This activity needs further intgsation.

The NMF and NMWF analyses of time-frequency dateetlgped here is obviously also
applicable to magnetoencephalographic (MEG) datathEérmore, the methods used should
also be relevant to explore other non-negative messsuch as the event related spectral
perturbation as well as the other derivates of EaBelet transformations.

Appendix

Background coherence
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Let v be the vector strength, i.e. the ITPC, at a gitmere frequency point defined by
averaging N unit vectors in the complex plane; i.e.

1
vV=—
N

N

z eith

n

Notice further that ifg, is uniformly distributed over the range [@§2he following result
holds:

Ee e =E(["[ """ p(g) p(6,)dgd8)) =

1 1 (J'ZITJ-ZIT i(8 gj)dede) - O If ]¢|
2m2m 1if j=i

The expected ITPC value at a region without cohezéa now given by:

E(v) = E(\/%Zl:eg G:';]Zi;e‘ﬂ ] :%E(

Let 5:126(‘91 -4) By Taylor expansion we gél+ o ~1+15-13%. We now have
ni’j
i%

E(v)——E(\/_\/m):% E(vnlt +%5—%52)):%\/ﬁ(1—%5(52))=i

since E(0) =0 and E( 2)is very small. However, as revealed on figurei9 th

approximation is too imprecise to use for statatevaluation. Consequently, the
background average coherence will be estimatedobystrapping.

Distribution of the ITPC

The ITPC is computed as the mean of n unit vedtothe complex plane. Furthermore, the
variance of this distribution is finite since th@RC takes values between 0 and 1.
Consequently, we can appeal to the central linebtem and expect that the distribution of
the ITPC is asymptotically normal for-ne in regions of coherence, see also (Mardia, K.
V.and Jupp, P. E., 1999). However, at regions nfleen activity the ITPC will tend to zero
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approximately byl—. In this region the ITPC is Raleigh distributed esvealed by

An
2
L2

bootstrapping on figure 8, i.e.f(x):ﬁxe 22> . Notice that the Raleigh distribution is

completely described by the mean value givemtq;@.

Test of significance

A conservative estimate of how significant the fduPC values are is found by assuming
the value of the ITPC at each channel, time angueacy are independent. Assume a total
of N ITPC observations. The probability by randdmatta given ITPC values are less than
the observed is given by:

P(x <x) = [ f(x)dx=1-e

Consequently, the probability that the N independandom ITPC values are less than the
observed value x is given by:

N‘N

P(X.. < X) = P(X £ X, X, < X,...i Xy, € X) = (L—€ )

max

Let this be given at the confidence legel

1-a= (1_e_ﬁ)'\‘ = X:\/_ 202In(1— (1_0')%)

In the null hypothesis of a random ITPC the probgbof the maximum exceeding X .
This is a strong type | control since in realityetiTPC values are not independent, i.e. a
given ITPC-value will depend on its neighboringuwesd.

Reqion with random coherence Region of coherence

20
15
10

5

0
0.05 0.1 015 0z 0.25 055 06 065 0.7

]

Figure 8: Bootstrap analysis of the ITPC for n=360epochs. Left panel; the ITPC in
regions with no coherence (each epoch were uniforgndistributed with angle [0;2m]) .
A Raleigh distribution fitted by a bootstrapped mea is given by the black curve,
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. . . 1 . .
whereas the distribution corresponding to a mean of——is given by the red curve.
p g 360 g y
Clearly in regions of random coherence the ITPC isRaleigh distributed. However,
approximating the mean by ——is slightly imprecise. Right panel; The ITPC givenn
pp g y 360 gnhtly irmp gntp g

regions of coherence (each epoch were uniformly digbuted with angle [0:1q). Clearly
these ITPC values are normally distributed as revdad by the fit of a normal
distribution to the bootstrapped ITPC values (blackcurve).
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