Real-time Global lllumination by
Simulating Photon Mapping

Bent Dalgaard Larsen

Kongens Lyngby 2004
IMM-PHD-2004-130



Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk

www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192



Abstract

This thesis introduces a new method for simulating photon mapping in real-
time. The method uses a variety of both CPU and GPU based algorithms for
speeding up the different elements in global illumination. The idea behind the
method is to calculate each illumination element individually in a progressive
and efficient manner. This has been done by analyzing the photon mapping
method and by selecting efficient methods, either CPU based or GPU based,
which replaces the original photon mapping algorithms. We have chosen to
focus on the indirect illumination and the caustics.

In our method we first divide the photon map into several photon maps in
order to make local updates possible. Then indirect illumination is added using
light maps that are selectively updated by using selective photon tracing on the
CPU. The final gathering step is calculated by using fragment programs and
GPU based mipmapping. Caustics are calculated by using photon tracing on
the CPU and the filtering which is performed on the GPU. Direct illumination
is calculated by using shading on the GPU.

We achieve real-time frame rates for simple scenes with up to 133.000 polygons.
The scenes include standard methods for reflection and refraction and hard
shadows. Furthermore, the scenes include our methods for progressively updated
caustics and progressively updated indirect illumination. We have compared the
image quality of our method to the standard photon mapping method and the
results are very similar.






Resumé

Denne afhandling introducerer en ny metode til at simulere photon mapping
i real-tid. Metoden benytter bade CPU og GPU baserede algoritmer for at
oge hastigheden for udregningen af de forskellige elementer der indgar i global
illumination. Idéen bag metoden er at udregne hvert enkelt bidrag til den globale
illuminations lgsning individuelt og pa en progressiv og effektiv made. Dette er
opnaet ved at analysere photon mapping metoden og for hvert skridt i metoden
er der udvalgt en effektiv algoritme, enten baseret pa CPU’en eller GPU’en, til
at erstatte den originale photon mapping algoritme. Vi har valgt hovedsageligt
at fokusere pa indirekte belysning og kaustikker.

Vores methode indebzrer at photon mappet forst bliver inddelt i flere photon
maps for at gore det muligt at lave lokale opdateringer. Indirekte belysning
bliver tilfgjet vha. light maps som selektivt bliver opdateret vha. selektiv photon
tracing pa CPU’en. Final gather bliver udregnet vha. fragment programmer og
GPU baseret mipmapping. Kaustikker bliver udregnet vha. photon tracing pa
CPU’en og filtrering pa GPU’en. Den direkte belysning bliver udregnet vha.
shading pa GPU’en.

Vi har opnéset real-tids billedeopdatering for simple 3D scener med op til
133.000 polygoner. Scenerne indkluderer standard metoder for reflektioner,
refraktioner og harde skygger. Yderligerer bliver den indirekte belysning og
kaustikkerne opdateret progresivt. Vi har sammenlignet billedekvaliteten som
opnaes med vores method med reference billeder som er udregnet vha. standard
photon mapping og resultaterne er meget ens.
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Preface

This thesis has been produced at the Image Analysis and Computer Graphics
Group at Informatics and Mathematical Modelling (IMM) and submitted to the
Technical University of Denmark (DTU), in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy, Ph.D., in applied mathematics.

The working title of the project is ”Collaborative Multi-user Virtual Environ-
ments”. One primary research topic in this field is to increase the collaborative
aspects in multi-user environments. Another primary research topic is to im-
prove the rendering speed and the image quality of 3D scenes. The research
performed during the Ph.D. study cover these research topics and a number
of projects that focus on specific problems have been carried out. One of the
projects is global illumination for real-time application which has become the
main topic of this thesis. The projects that have been carried out but did not
fit satisfactorily into this thesis are the following:

In [77] we demonstrate a multi-user collaborative 3D application in which it is
possible to construct and modify a 3D scene. We use Lego bricks as an example.
It is possible to interact with the 3D world from both a standard PC and from
a cellular phone. The project is titled: ”Using Cellular Phones to Interact
with Virtual Environments”, and was presented as a technical sketch at the
SIGGRAPH Conference in 2002. This is the second version of this application.
The first was accessible through a web-browser and was based on VRML and
Java.

Another project is real-time terrain rendering. In this project we optimize the
rendering of large terrains. Our particular focus is to avoid ”popping” when
switching between Level of Details (LOD) in a manner that takes advantage of
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modern graphics hardware. The project is titled: ”Real-time Terrain Rendering
using Smooth Hardware Optimized Level of Detail” ([79]). It was presented at
the WSCG Conference in 2003 and published in the Journal of WSCG 2003.

A third project focuses on improving the image quality of real-time soft shad-
ows. The penumbra region is calculated accurately by using two sets of shadow
volumes. The rendering utilizes per pixel operations, which are available on
modern graphics hardware, for calculating the penumbra regions. The project
is titled: ”"Boundary Correct Real-Time Soft Shadows” [63]. It was presented
at the Computer Graphics International 2004 Conference.

This thesis is mainly based on the following work: ”Optimizing Photon Map-
ping Using Multiple Photon Maps for Irradiance Estimates” ([78]) which was
presented at the WSCG Conference in 2003 and ”Simulating Photon Mapping
for Real-time Applications” ([80]) which was presented the Eurographics Sym-
posium on Rendering 2004. Some of the results in this thesis are currently not
published.

In order to read this thesis a prior knowledge of computer graphics is necessary.

Kgs. Lyngby, September 2004

Bent Dalgaard Larsen
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CHAPTER 1

Introduction

High visual realism has many important application areas. These areas include
applications such as games, virtual walk-throughs and 3D simulations. Visual
realism is very important in these applications but an even more important
property of these applications is that the images have to be rendered in real-
time. In the past it was necessary to choose between either high visual realism
or real-time frame rates. Currently a uniting between these two areas is taking
place. Many of the same techniques are used both for real-time rendering and
when creating high quality images. This area is a very active area of research
and in the following we will take a closer look at the some of the achievements.

The illumination in an image does not have to be physically correct, although
the more physically correct the images are, the better. In particular this is true
for interior illumination. Calculating physically correct images is usually a very
challenging task both computationally and mathematically.

In the next sections we will take a closer look at how one calculates the illumi-
nation in real-time applications.
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1.1 Global and Local Illumination

Local illumination is when a surface is shaded only by using the properties of
the surface and the light. The structure of the rest of the scene is not taken into
account.

Global illumination is when a surface is shaded using the properties of the sur-
face, the light and all light contributions to this surface from all other surfaces of
the scene. Adding global illumination improves visual realism compared to only
using the local illumination. Although global illumination is a very important
effect, it is mathematically difficult and computationally hard to calculate accu-
rately. The global illumination contributions to a sample point can be divided
into a number of individual contributions.

In Figure the different elements of calculating global illumination are de-
picted. Each of the elements will be described in more detail in the following.
One important property to note is that each of the contributions are indepen-
dent. This is a very important when calculating the illumination, as each of the
calculations can be performed individually and finally added together.

Scene
Inqiregt Shadoyv Direct c . Reflections
lllumination Calculation lllumination austics Refractions

Merge
Image
Elements

Final Image

Figure 1.1: Elements in global illumination

The physically correct way to calculate an image would be to simulate the pro-
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cess of photons being emitted from a light source using the physical properties of
the light and then simulating the interaction between the atoms of the surfaces
and the photons.

The energy of a green photon is approximately 3.90e —19J. The number of pho-
tons that would be necessary to distribute from a 60 Watt bulb would therefore
be approximately 1.54e20 per second. Today it is possible to trace approxi-
mately 1le6 photons per second in a scene consisting of simple polygons. This
means that computers need to get approximately lel4 times faster than they
are today to trace this scene. Assuming Moors law will be true for many years
to come it will be possible to trace this number of photons in approximately 100
years. Unfortunately it is substantially more complicated to simulate photon
interaction with a more realistic scene containing fabrics, organic structures and
animals. This means that it will take significantly longer to reach the computa-
tional power necessary to handle such a scene. This leaves us with two options.
Either we can forget about calculating computer graphics images or we can try
to find approximations for calculating these images instead. In this thesis we
have chosen the latter approach.

1.2 Rendering Images

Currently two primary methods exist for rendering a 3D model, namely raster-
ization and ray tracing. Nevertheless, one of the most popular methods used
for rendering movies is the Reyes architecture [30]. Reyes is a method for split-
ting render primitives (e.g. triangles, NURBS and subdivision surfaces) into
elements that are smaller than the size of a pixel and then scanline converting
these micropolygons. This is the method used in Pixar’s official implementation
of the RenderMan standard PRMan ([123], [52], [6]). Although this method is
very popular for movie production, it seems that the method is currently not
relevant for real-time graphics [96]. Furthermore, movie production is primarily
based on high level primitives like subdivision surfaces and NURBS, whereas
real-time rendering is almost exclusively utilizes triangles (both with regard to
rasterization and real-time ray tracing).

Currently there is an ongoing battle between rasterization and ray tracing with
regard to which of the methods that is most appropriate for real-time graphics
[2]. Traditionally ray tracing has only been considered useful for non-interactive
rendering of very realistic images. Rasterization, on the other hand, has been
considered most appropriate for fast real-time applications with less photoreal-
istic requirements. But today ray tracing is becoming faster while the image
quality of rasterization is constantly being improved. The two methods have so
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to speak entered into each other’s domains ([132], [102]).

1.2.1 Ray Tracing

Ray tracing was first presented by [7] and later improved by [143]. It turned
out that many effects were straight forward to calculate by using ray tracing.
In particular, shadows are simple, as they only require an extra ray for each
light source per pixel. In [31] distributed ray tracing was introduced and it was
shown how to easily integrate over many dimensions simultaneously in order to
achieve effects such as soft shadows, motion blur and depth of field.

The most time consuming part of ray tracing is the ray-object intersection cal-
culations (although shading is also becoming a time consuming part ([131])).
One method that can be used to optimize the ray tracing process is to cache
the results of previous frames and reuse these values. Sending rays to the most
important areas in the image and then interpolate the rest is another optimiza-
tion method. Tricks like these will optimize the ray tracing process but in many
circumstances minor errors will occur. As a result, it is therefore more desirable
to optimize the general ray tracing process ([125]).

In computer graphics scenes, one of the most frequently used primitives is the
triangle, and the algorithm to optimize is therefore the ray-triangle intersection
algorithm. This algorithm has been optimized heavily ([90], [5], [41], [111],
[125)).

Completely avoiding the ray-triangle intersection calculation for a ray that does
not intersect the triangle in any case is of course an even better alternative. This
can be accomplished by storing the triangles in a spatial data structure ([55]
[85] [75]). In [55] a vast number of spatial structures are examined, and it is
argued that the optimal structure in many cases is the kd-tree (sometimes also
called a BSP-tree). But generally the optimal spatial structure is dependent on
the nature of the scene. Consequently, no single data-structure is the fastest in
all circumstances.

The very fast ray tracers depend on a static spatial structure.

Better spatial data-structures usually demands longer pre-processing time. There
seems to be a tradeoff between rendering time and preprocessing. Consequently,
dynamic scenes are inherently slow to render as the spatial data structure con-
stantly needs to be rebuild. For this reason optimizing ray tracing for dynamic
scenes is an active area of research ([105],[132], [127], [82], [81]).
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Recently, ray tracing has been used for real-time rendering e.g. in [97]. In [132]
it is demonstrated that in static scenes with a very high polygon count and
given the special circumstance that all polygons are visible at the same time,
ray tracing may even be faster than rasterization. The systems developed by the
group lead by Slusallek are all based on clusters of PCs ([127], [126], [131] and
[129]). While the system developed by Parker et al. is based on a supercomputer

(197]).

In [133] and [134] the Render Cache approach is described. In Render Cache the
ray tracing process is running in a separate thread than the display process. In
this way the frame rate is interactive while the image is progressively updated.
When the viewpoint is changed, the points in the image are reprojected by using
the new camera position. This will create image artifacts and the occlusion may
be erroneous while the image is updated again. Nevertheless, the system is at
all time interactive.

For some time, the people of the demo scene ([40]) have been creating real-time
ray tracers running on standard PC hardware. It seems that many optimized
ray tracers with advanced features are currently being created by people of the
demo scene. Unfortunately information about their implementations is scarce.

Recently, it has been demonstrated that ray tracing can be implemented on
modern graphics hardware. In [99] it is proposed how ray tracing may be per-
formed on future GPUs (Graphics Processing Unit), while in [19] the GPU is
used as a fast ray-triangle intersection engine (for a good discussion of these
approaches see [125]).

The fastest software ray tracers are those that build a clever optimization struc-
ture and only perform few ray-triangle intersections. Therefore, the ray tracers
implemented on the graphics-card have not yet been able to exceed the perfor-
mance achieved by using just software ray tracers. This is because it has not
been possible, so far, to implement optimal spatial data-structures on the GPU
([125]). However this might change in the future. Furthermore, graphics hard-
ware accelerated ray tracing implementations are in some ways limited by the
speed of graphics hardware. Currently the speed of graphics hardware is increas-
ing much faster than the speed of CPUs ([3]). Therefore, it will be increasingly
more advantageous to use graphics hardware implementations. Despite that, it
still has to be proven that GPUs are the best option for ray tracing. Ray trac-
ing has also been implemented on the FPGA architecture ([109]). An FPGA is
programmable and more flexible in its architecture than the GPU. This FPGA
implementation is very fast although it only runs at a low clock frequency (90
MHz). Converting this implementation to another architecture than the FPGA
would further increase the speed dramatically.
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1.2.2 Rasterization

In the eighties and beginning of the nineties the development was driven by very
expensive Silicon Graphics systems, but later on the evolution was driven by
graphics cards for the PC.

The improvement in real-time 3D graphics has mainly been concentrated on
three areas: performance, features and quality (|3]). The performance is mea-
sured in triangles per second and in processed pixel fragments per second. How-
ever, at present bandwidth is one of the most important parameters. The fea-
tures are the visual effects which it is possible to simulate.

1.2.2.1 The Geometry Pipeline

The heart of rasterization is the geometry pipeline. The geometry pipeline
consists of a number of steps. As input to the geometry pipeline are the geometry
and some parameters that define how this geometry should be processed. In the
last step the geometry is rasterized, which means that the individual points
are connected to display the desired geometry. Each value is usually called a
fragment. When a fragment is displayed on the screen, it is termed a pizel. If
the fragment is used in a texture it is termed a texel. An overview of the steps is
given in Figure A much more thorough explanation of this process is given
in [5].

Over time more and more features have been added to the geometry pipeline.
Many features have been enabled and disabled by setting on/off flags in the
API’s and by creating special variables for these features. This has been done
in order to render more photo realistic images. But all these extra features
make it very complicated to develop the graphics cards because more and more
combinations of these flags exist. Many of the individual combinations need to
be handled individually and consequently a combinatorial explosion has taken
place. Furthermore, developers always want to have new very specific features
in order to implement their new algorithm on the graphics card. Many of these
options only have limited use and would therefore never be implemented on
graphics cards.

In order to solve the problems of the fixed pipeline the programmable geome-
try pipeline was introduced [83]. Currently two of the stages in the geometry
pipeline have been made programmable and it is very likely that more parts
will be made programmable in the future. The stages that are currently pro-
grammable are the vertex transformation stage and the fragment processing
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Figure 1.2: Fixed Function Pipeline

stage. Many different names have been given to these two stages. The stage
where the vertices are transformed to camera space have been named Vertex
Shaders and Vertex Programs. In the following we will name these programs
Vertex Programs. The stage where fragments are shaded have been named
Pizxel Shaders, Pizel Programs, Fragment Shaders and Fragment Programs. In
the following we will name these programs Fragment Programs. It seems that
the naming depends on the API that is being used, and the vendor which is
writing the documentation.

The parts in the graphics pipeline which have been substituted with programmable
elements can be seen in Figure[1.3.

Both vertex and fragment programs are created by using assembly instructions.
In general each assembly instruction, whether it is a simple multiplication or a
square root, takes one clock cycle.

More and more functionality for 3D calculations has been moved from the CPU
to the graphics card. Often the processor on the graphics card is now termed
GPU as it has become as powerful and complex as the CPU. Nevertheless, the
nature of the CPU is quite different from that of the CPU as the CPU has been
created to execute any type of program while the GPU has been created pri-
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Application

Transformatlonertex Program

Rasterisation

Fragment Fragment
shading Program

Figure 1.3: Programmable Pipeline

marily for rasterizing 3D geometry. Often the GPU is called a stream processor
because it works on streams of data. The GPU was developed to process graph-
ics although it can also perform general computations ([18]). Accordingly the
CPU and GPU each excel in their own area and they are not directly comparable
with respect to functionality and performance.

Previously, coding had to be done directly in the assembly language but these
days one sees a shift to high level languages. One of the more popular high-level
languages is Cg ([94] [86]). Cg is a language based on C (C for graphics) but
with some modifications in order to make it more appropriate for graphics cards.
The creation of Cg was evidently inspired by the Renderman standard. Further-
more, Cg has been constructed in such a way that an optimized compiler creates
code that is as fast as handwritten assembly code [102]. Currently, more shad-
ing languages are introduced but they all resemble Cg very closely. These are
OpenGL Shading Language ([106], [73]) which is a vendor independent OpenGL
shading language and HLSL which is an extension to Microsoft’s DirectX. High
level languages have many advantages compared to assembly languages. E.g.
high level languages are faster to write and debug, and they are often compilable
on several platforms. In this text we will only use Cg as this language is much
more readable than the assembly language. For good overviews of the different
shading languages and the evolution of real-time shading languages see [106]
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and [95].

1.2.2.2 Reflections and Refractions

Reflections and refractions are straightforward to implement by using ray trac-
ing. Implementing these effects by using rasterization is on the other hand quite
difficult. Planar reflections which uses the stencil buffer are described in [34],
[74] and [89], while planar reflections which use texture mapping are described
in [89]. Currently one of the most advanced examples of what is possible with re-
gard to reflections is presented in [92] where multiple reflections on both curved
and flat surfaces is demonstrated. Refractions on the other hand can be approx-
imated by using programmable hardware [102] and although it may be possible
to produce visually convincing images, the results are not 100% correct.

1.3 Ray Tracing versus Rasterization Discussion

Rasterization is easy to implement on graphics hardware as all that is needed
is a lot of hardware optimized vector arithmetic. Furthermore a pipeline is
also very suitable for hardware implementation since dedicated hardware can
be made for each step in the pipeline. Ray tracing, on the other hand, does not
naturally fit into a pipeline. Since the ray tracing algorithm traverses the entire
data-structure for each pixel, it is necessary to have the 3D scene in graphics
hardware.

Hence there are a vast number of hardware accelerated graphics card on the
market for rasterization but few for ray tracing, although hardware accelerated
ray tracing is currently an active area of research ([108], [109]).

Even so ray tracing has proven itself to be better than rasterization in special
circumstances ([132]), and only considering either ray tracing or rasterization
for real-time graphics will not be viable. Whether one should use rasterization
or ray tracing in a real-time application depends on the nature or the applica-
tion. Despite that, rasterization is at present the preferred real-time rendering
method.

As seen in Figure[1.1 calculating the direct illumination is a task separated from
the calculation of caustics and indirect illumination. Whether to use ray tracing
or rasterization for the direct illumination may therefore be independent from
choosing methods used for other effects. However, in practice some of the effects
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Ray tracing | Rasterization
Complexity O(logn) O(n)
Constant High Low
Flat reflections Yes Yes
Curved reflections Yes No/(Yes)
Arbitrary reflections Yes No
Refractions Yes No
Suited for parallelization Yes Yes (Vertex & Fragment programs)
Suited for pipeline implementation No Yes

Table 1.1: Comparison of ray tracing and rasterization

may share larger or smaller implementation parts.

In Table[1.1 we have made a comparison of some of the features of ray tracing
and rasterization.

Some claim that ray tracing is the physical correct way to render images. Ray
tracing is in some situations more physical correct than rasterization but the
only 100% physical correct way to simulate light is to simulate photons with
wavelengths as described in a previous section.

It is easy to render a large scene in O(logn) by using ray tracing. Often a scene
is also rendered in O(logn) by using rasterization. But this is because a lot of
auxiliary data structures are used. These are primarily level of detail algorithms
and culling algorithms [5]. Consequently, it is easier to achieve O(logn) render
time by using ray tracing than by using rasterization. On the other hand, when
one has spend weeks creating a detailed model it only takes a few minutes to
insert the portals ([107]).

Currently one of the hot questions in real-time graphics is whether ray tracing
will replace rasterization as the preferred method. This has been a very active
discussion area and no consensus has been reached so far [2].

1.4 Shadows

Calculating shadows is one of the oldest research topics in computer graphics
throughout the years and it has remained a very active research area. Recently
it has become even more active because of the new programmable graphics
Processors.

When one uses ray tracing, it is straight forward to determine whether a sample
point is located in the shadow of a point light source. A ray is traced toward



1.4 Shadows 13

the light source and if an object is intersected before the light source is reached,
the sample point is located in shadow ([143]). If the light source is an area light
source, a number of points on the area light source are used and again a ray is
traced from the sample point to the points on the light source. The percentage
of rays intersecting an object between the sample point and the light source
point determines the shadow percentage of the current pixel [31]. In order to
avoid artifacts when calculating shadows from area light sources, a large number
of rays have to be traced.

These two straightforward processes calculate accurately hard shadows and soft
shadows, and they are generally considered the most accurate methods. The
only problem is that shadow ray tracing is currently too slow to be used in
real-time. Even for movie production it has been considered too slow [24]. Hard
shadows are slow and soft shadows are many times slower because many more
rays have to be used. Often it is necessary to use several hundred shadow rays
per light source to achieve smooth soft shadows. In a scene with several hundred
light sources more than ten thousand shadow rays will consequently be needed.
Several approaches exist for reducing the number of shadow ray, although this
is still an active research area ([138], [65], [72], [43]).

In general the research in the real-time shadow generation aims for faster meth-
ods that can replace ray tracing. All of these methods have shortcomings and
therefore a lot of research has focused on fixing these shortcomings. In general,
two goals have been high rendering speed and high image quality.

The two dominant real-time shadow methods have been volume shadowing and
the shadow mapping.

The volume shadow method was introduced in [32]. This is a method where
a volume is created that surrounds the area that is in shadow. The volume is
calculated by finding the contour of the object that casts a shadow as seen from
the light source. Then the edges in the contour are extruded in the direction
away from the light source. In [58] a hardware implementation is described
which uses the stencil buffer. The method can only be used for hard shadows
but in [60] a technique is described that renders the shadow volume many times
and in this way the shadow can be made soft. Although this method is much
slower than the hard shadow version of volume shadows, it is still faster than
traditional ray tracing. The hardware implementation of the shadow volume
algorithm is problematic when the near viewing plane of the camera intersects
with a shadow volume. Consequently, the algorithm is not robust. This prob-
lem was solved recently in [42]. In [42] a solution is demonstrated which is
equally fast as the previous method and only minimally more complex and it
may therefore be surprising that no one had come up with this clever idea be-
fore. One shortcoming of shadow volumes is that the entire shadow volume has
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to be drawn and the graphics pipeline consequently becomes fill-rate limited. In
[88], [84], [70] and [20] a number of techniques are presented which reduces the
fill-rate requirement.

Another shortcomings of volume shadows is that they work best for simple
objects with few triangles. Furthermore, the object should be a closed 2 manifold
which makes it simpler to calculate the silhouette ([104], [88]). When objects
are more complex, it becomes harder and more time consuming to calculate the
shadow volume. In short, shadow volumes are best suited for relatively simple
objects.

The other dominant method is shadows maps ([144]). The scene is rendered
from the light, and a texture is created that contains the depth in the resulting
image. The depth corresponds to the distance to the nearest object. When
the scene is rendered a lookup is made into the depth texture to determine
whether the current sample point is further away from the light source than
the corresponding sample point in the depth texture. If so, the current sample
point is located in shadow. The problems with this algorithm are two types of
numerical problems. The first is the resolution with which the scene is rendered
from the point of light. The lower the resolution the more blocky the shadow
will be. The second problem is determining whether the current sample pixel is
in shadow, as a numerical accuracy problem occurs when making a lookup into
the depth texture. Many improvements have been developed for this algorithm
in order to overcome these two problems. In [103] a method is proposed for
avoiding the numerical problems of the limited numerical accuracy in the depth
component. In both [117] and [44] methods are suggested for reducing the blocky
appearance of low resolution shadow maps. This is done by using information
about the camera position. Near the camera position higher resolution is used
and further away less resolution is used. In this way the texture is used more
efficiently without increasing the resolution. Recently this approach has been
further refined ([145], [87], [1], [22]).

Only recently shadow maps have been implemented in commodity graphics hard-
ware. Real-time applications have therefore not been able to utilize this tech-
nology. However, a slightly modified version has become quite popular instead,
namely the projective texture. This is again an image rendered from the point
of the light source but only the shadow casting object is rendered and it is ren-
dered as purely black or grey and with no depth information. When the scene
is rendered the image is used as a standard texture, and it is then projected
onto the objects that should receive the shadow. The only problem is that the
object can not cast a shadow on itself. This has been solved in [62] by dividing
the object into several convex objects.

In [20] a method that combines shadow volumes and shadow maps is introduced.
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The advantage of this method is increased speed for rendering shadow volumes
as the high fill-rate requirement of volume shadows is removed by using shadow
maps for parts of the shadow regions.

Another method is to use light maps ([16], [34]). Here a texture is applied to
a surface, and the shadow (and light) at that location is pre-calculated. The
pre-computation can be made by using e.g. ray tracing or any other technique,
as long preprocessing time is acceptable. Geometry with light maps can be
displayed very fast as it is only an extra texture that is applied to a surface. Be
that as it may, this approach can only be used for static geometry.

A few other methods have been developed which are restricted to only casting
shadows on planar surfaces. The simplest is introduced in [15]. By using this
method, the 3D object is scaled to be completely flat in the direction of the
planar surface and it is then drawn on top of this surface. A method that is
also restricted to planar surfaces is the one presented in [51]. Here soft shadows
are achieved but the shadow is slightly larger than the correct shadow would
be, and the bigger the distance is between the shadow caster and the shadow
receiver the more incorrect the shadow will be.

Higher quality soft shadows which can cast shadows onto arbitrary surfaces are
currently a very active area of research ( [4], [63], [11] [54]). The general real-
time soft shadow approach is to use know hard shadow techniques like shadow
volumes or shadow maps and then extend these by using the advanced GPU
features.

In the near future it seems like shadow maps will be the preferred real-time
shadow method because of its simplicity and its scalability ([104]).

Current real-time applications use one or several of these methods. Only very
few real-time research applications use ray based shadow methods e.g. [132] and
[97]. To our knowledge, no commercial real-time application uses real-time ray
based shadows these days.

The methods that are only able to create shadows on planar surfaces were used
in many games previously, but recently, game developers have begun to use
more advanced geometry, and planar shadows are seldom used today.

Most games today use either shadow volumes or shadow maps (or the simpler
projective textures). Most often light maps are used for static geometry.

Comparing shadow algorithms can be done with respect to a number of parame-
ters. Some intuitive parameters would be: The possible types of shadow casting
objects, the possible types of shadow receiving objects, and the quality of the
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Self Cast on Possible Shadow quality Speed
shadows | curved surface geometry
Ray tracing Yes Yes No limit Soft+Hard Slow
Projection Shadow No No No limit Hard Medium
Shadow Maps Yes Yes No limit Hard Medium
Projective Texture (No) Yes No limit Hard | Medium
Volume Shadow Yes Yes | If contour defined Hard | Medium
Light Maps Yes Yes Only static Hard+Soft Fast
Table 1.2: Comparison of shadow algorithms
shadows.

The first two concern the type of objects that can cast a shadow and receive
a shadow using this method. The third parameter applies to the physically
correctness or quality of the shadows and whether the shadow method is able to
produce hard or soft shadows. In general, the more physical correctness and the
more general objects the shadow algorithm should be able to handle, the more
computation time is required in order to produce the shadow. This is of course
a very general description and not always entirely true, but it can nevertheless
be used as a rule of thumb.

Unfortunately, none of the described shadow algorithms are superior to all others
with respect to the three parameters which are mentioned above. If that were
the case, only one of these algorithms would have to be implemented in any
application. When comparing the algorithms on a spectrum of features, each
algorithm has advantages and disadvantages. In our opinion, it is not likely
that one of these algorithms in the near future will be superior to all other
algorithms. In Table we have made a simplified comparison of the shadow
algorithms described above. It is very hard to create a good comparison as the
shadow algorithms are very varied and many features can be used. E.g. it is
hard to say which of the algorithms that is the most expensive with regards
to rendering time, as it depends on the scene. Nevertheless, we think that the
features we have chosen provide a fair comparison.

1.5 Indirect Illumination

Calculating the indirect illumination has turned out to be the most time con-
suming part of rendering global illumination images. Indirect illumination is
the illumination originating from all other surfaces than the light source. The
illumination of a sample point is therefore a function of the illumination of scene
elements visible in the hemisphere of the sample point. But the sample point
itself also contribute to the illumination of all points visible in its hemisphere.
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This recursive dependency makes it very hard and most often impossible to
create an explicit formula for the illumination at a sample point.

Several approaches exist for calculating the indirect light. The first method
proposed was radiosity ([49]). Later a more general method namely path-tracing
has been proposed ([69]). Path tracing still stands as the most correct way of
calculating the illumination in an image. However the algorithm converges very
slowly. Accordingly, path-tracing quickly becomes impractically for larger scenes
and more complicated illumination models. For that reason, radiosity was for
a period the method of choice, although it is not as general and accurate as
path-tracing. The problem with radiosity is that it is very dependent on the
complexity of the scene. The time complexity is O(n?) where n is the number
of patches in the scene. This implies that as the scene grows, the method also
becomes more and more impractical. Furthermore, when using the radiosity
method, it is necessary to refine the mesh where lighting changes as the lighting
information is stored directly in the mesh ([53], [57], [61]). This refining makes
the complexity of the algorithm grow even more. Another issue is that radiosity
is restricted primarily to diffuse interreflections.

Density estimation ([110]) has been invented as a method for calculating global
illumination without the need for meshing. (Pseudo) photons are distributed
from the light source and stored in a data-structure. The final illumination at a
sample point is found by calculating the density of photons at the sample loca-
tion. Although this method is fairly accurate, a substantial number of photons
are required to calculate an image without noise, and it is almost impossible to
eliminate the noise completely.

Independently of this approach, photon mapping has been developed and in-
troduced in ([67] and [65]). The main idea in photon mapping is to divide the
different effects shown in Figure [1.1] into separate parts. Each of these parts
is then calculated separately. By carefully separating these parts, we are guar-
anteed that all effects are included and that no effect is included twice. The
indirect illumination is calculated similarly to the density estimation technique,
but a final gather step is added. Final gathering is an integration over the hemi-
sphere, and it is described in greater details in Chapter [5. The advantage of
using the final gather step is that far fewer photons have to be distributed, the
noise is reduced and the remaining noise is of low frequency. This noise is more
pleasing to the eye than high frequency noise. From radiosity method, it is well
known that the final gather step removes much of the noise [27].

The final gather step as used when calculating indirect illumination is the
most computational expensive step both in photon mapping and radiosity even
though both methods can be used without this final gather step. When using
radiosity, this step can be optimized by using hardware acceleration ([28]). In
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Monte Carlo Path Tracing | Radiosity Photon map
Mesh dependent No Yes No
FEzxploits caching No Yes Yes
Types of illumination | All Only diffuse | All

Table 1.3: Comparison of methods for calculating indirect illumination

Chapter [11] we demonstrate how it is possible to hardware accelerate the final
gather step in photon mapping.

As the final gathering step is very costly, photon mapping is a very slow algo-
rithm in its naive implementation. But a vast number of methods have been
developed for speeding up the process ([66], [118], [23]). A key optimization is
to use a fast ray tracer as tracing rays is part of the ’inner loop’ of the algorithm.

In Table[1.3 some of the methods for calculating indirect illumination are com-
pared.

As illumination changes over time it is necessary to recompute the entire illu-
mination in the scene. In Chapter [8 we introduce a method which makes it
possible only to recompute the irradiance at selected locations.

1.6 Using Indirect Illumination in Real-time Ap-
plications

In most real-time applications hardware rasterization is the method of choice for
creating images. When we want to visualize the indirect illumination only two
options currently exists. The first method is to apply a texture to the surface.
By using this method the light at the texel centers is calculated and stored in
the texture (this is often called baking). When the scene is drawn, the texture
is modulated with the surface textures or the vertex colors. The second method
is to store the illumination in the vertices and then blend the vertex colors with
the textures used on the surfaces. These two methods have several positive and
negative sides.

When a texture is applied the texture coordinates have to be calculated. This
can be done manually by using a 3D modelling tool or it can be done automat-
ically ([45]).

The texture should be applied to the geometry in such a way that the resulting
texel-sizes are nearly the same all over the model. What is more, the texture
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should be applied in such a way that there is a smooth interpolation across
polygon boundaries. The textures on the polygons should fit nicely together.
How textures are fitted to a model is a very active area of research nowadays.

Using vertices for storing the illumination has the weakness that enough vertices
must be added for the illumination to be accurate enough. Indirect illumination
can either be a high frequency or a low frequency function. Only few vertices
need to be used in order to capture a low frequency function while many vertices
need to be present to capture a high frequency function.

In some of the current gaming platforms (e.g. playstation 2) it is usually not
possible to use texture maps for storing the illumination information. Although
texture maps are present, the hardware design prevent the use of illumination
texture. This makes vertices the only possibility for storing the illumination.
The modelers therefore have to place vertices at all locations where the lighting
changes. Although this sounds rather complicated it seems to be the standard
when developing games ([107]).

1.7 Caustics

Caustics arise when a photon hits a diffuse surface after having been specularly
reflected or refracted one or several times directly or indirectly from the light
source. The most general way to solve global illumination is to use path tracing
as presented in [69]. In this method, all rays originates from the eye point
and it is hard to capture caustics accurately. The reason is that caustics is a
focusing phenomena. Better methods are bidirectional path tracing methods
([76], [124]) as rays both originate from the light and from the eye. Specialized
methods that have solely been designed for capturing caustics, has proven to
produce the best results. In [8] a method is presented that traces photons from
the light, and when a diffuse surface is hit after one or more specular reflections
an energy amount is stored in a texture structure. In [142|, three rays are traced
from the light source simultaneously and they form a caustic polygon. When
these rays hit a diffuse surface, the intensity is determined by the area that
the polygon span. This approach does not work well when the diffuse caustic
receiving surface is complex. In [21] caustic photons are traced and energy
is deposited on the diffuse objects. Energy storing is done in image space, and
finally a filtering is performed in image space. In [67] and [65] a slightly different
approach is used. The photons are traced and stored in a kd-tree, and during
the reconstruction, a search for the nearest photons is performed. This method
is currently considered the most accurate method for reconstructing caustics.
We will describe the method in more detail in Chapter [4. Real-time caustics
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have been approximated in [136] but the solution is limited to single specular
interaction and the method assumes that the light sources are positioned far
away from the specular reflectors. Furthermore, they do not handle occlusion
between the light source and the specular reflector. The quality of the caustics
are fairly low for interactive frame rates. Recently, good quality caustics have
been implemented by using a fast ray tracer running up to 21 frames per second
on a setup with up to 18 dual processor PCs [50].

In Chapter[12 we propose a real-time method based on photon mapping.

1.8 Real-time Global Illumination

A fairly small number of methods for rendering real-time global illumination
have been produced. In the following, we will take a brief look at some of these
(for an good survey see also [33], [126] and Chapter 12 in [125]).

1.8.1 Progressive Update of Global Illumination

In [122], a method for calculating interactive global illumination is described.
The scene is rendered by using graphics hardware and the illumination is stored
in a hierarchical patch structure in object space. At first, the top level is used
but based on priorities calculated in camera space the patches are then sub-
divided. The illumination is calculated by using a path tracing algorithm and
the illumination of only 10 to 100 patches can be calculated per second on each
CPU. As a result of this low number up to 16 CPUs are used. When the camera
or objects are moved quickly artifacts will occur. The illumination is stored in
vertices which makes the method sensitive to the meshing. The method in [122]
has some similarities with the Render Cache ([133], [134]) and the Holodeck
ray cache ([137]) as the calculation of the illumination is decoupled from the
display process. Although, in Render Cache and the Holodeck ray cache, the
calculations are performed in image space while the calculations in [122] are
performed in object space. Another similar example of progressive image space
global illumination based on progressive ray tracing is the method presented in
[12] where discontinuities are tracked by using discontinuity edges.
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1.8.2 Instant Radiosity

Instant Radiosity was introduced in [71]. In this method ”big” photons are
traced from the light source (also called Virtual Point Lights). As each photon
hits a surface, the intensity and new direction of the bounced photon are handled
according to the BRDF of the surface. The clever part in this algorithm is that
a hardware light-source is placed at this intersection point, and then the scene
is rendered. On older hardware only eight hardware light sources are available.
Therefore, only a few of the photons are traced at each frame. Each frame is
added to the accumulation buffer, and by combining the image over a number
of frames, the final result is achieved. When a frame reaches a certain age, its
contribution will automatically be removed from the accumulation buffer. If
the properties of the lights change, the scene will gradually be modified in order
to reproduce the new lighting conditions. But if the elements in the scene are
moved or the camera changes viewpoint, this will invalidate the content of the
accumulation buffer, and the algorithm will need some time to create a new
valid image.

On modern hardware, it is possible to implement hardware lighting in both
vertex- and fragment-programs, and many more lights per frame is then possible.
Fragment-programs calculate the lights more accurately, while vertex programs
will calculate the lights faster. With this approach, far fewer frames will be
necessary for the image to converge. To our knowledge no one has implemented
this yet.

1.8.3 Selective Photon Tracing

In [35] a number of photons are traced from the light sources. As a photon
bounces of a surface the direction and energy of the bounced photon are han-
dled according to the BRDF of the surface. Nevertheless, only diffuse surfaces
are handled in their application. A fixed number of photons are used and these
photons are divided into groups. By using properties of the quasi-random se-
quence the photons in each group have very similar paths in the scene (see
Chapter 6] for more details on photon distribution by using Halton sequences).
By continuously retracing the primary photons and by recording which objects
these photons intersects with it is possible to register changes in the scene. If
a change is discovered, all photons from this group are re-traced using the old
scene configuration, and when a photon bounces off a surface the photon energy
is subtracted from the nearest vertex. When the photons are traced at the new
scene configuration, photon energies are added to the nearest vertex.
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As the illumination is stored in the vertices, the quality of the rendering is
dependent on the placement of these vertices. More vertices in an area mean
more detailed light. On the other hand, if too many vertices are placed in an
area, aliasing will occur because relatively few photons are being used. One way
to avoid this is to calculate the illumination of a vertex by averaging over the
neighboring vertices.

In the implementation in [35] they use their new technique for the indirect
illumination. The direct illumination and the shadows are calculated by using
traditional hardware point lights and traditional hardware-accelerated hard-
shadows. The shadow method that they have used is volume shadows, although
any type of hardware-accelerated shadow could have been used.

In Chapter [9 we present a modified version of the QMC photon distribution
approach introduced in [71] and [35].

1.8.4 Interactive Global Illumination

In [130] and [128] a method that is related to Instant Radiosity is used. The
method is often called Instant Global Illumination. ”Big” photons are dis-
tributed from the light source and small light sources are created when the
photons bounce off the surfaces as in Instant Radiosity. In this way, a vast
number of light sources are created. The scene is rendered by using ray tracing
on a cluster of traditional PCs ([130]). Since a sample point is potentially illu-
minated by a huge number of light sources, it would be very expensive to trace
rays toward all these light-sources. Therefore, rays are cleverly send to those
light sources that have the highest probability of illuminating the current sam-
ple point ([128]). No frame to frame coherence are utilized, and all the indirect
illumination is completely recalculated for each frame. The positive side of this
is that large parts of the scene can be modified without any major latency for
the illumination calculations to converge. The negative side is that the indirect
illumination calculations are quite crude. In order to avoid the typical Monte
Carlo noise in their images a screen space filter is used.

1.8.5 Photon Mapping on Programmable Graphics Hard-
ware

In [100] full global illumination is calculated almost entirely on the GPU. The
approach used is that of photon mapping. The direct illumination is calculated
by using ray tracing which is implemented on the graphics hardware. The
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photons are distributed from the light source and stored in texture maps. The
density estimates are calculated by lookups in the texture maps. The texture
maps are used as ordinary data-structures. In [100] it is demonstrated how
to use the photons in the textures for both indirect light and caustics. The
number of traced photons is fairly low and the positions at which the photons
are stored are also slightly approximated. As this only runs in near real-time,
there is no remaining time for the expensive final gathering step traditionally
used in photon mapping. Therefore, high frequency noise appears in the indirect
illumination. On the other hand the caustics are fairly accurate. The method
does not exploit frame-to-frame coherence, and that being the case, the solution
has to be recalculated from scratch whenever the scene or viewpoint is modified.
Currently CPU based methods are faster than this method. Nevertheless, it is
an interesting method with many new ideas which are likely to be improved
and further refined as the speed and features of the graphics cards rapidly are
improved.

1.9 Real-time Global Illumination Summary

In this introduction we have looked at the different elements that all contribute
to a complete global illumination solution. We have described these elements
and seen that each element can be computed in different ways. We have espe-
cially focused on methods that can be used in real-time. We have also described
some elements that will be handled in the forthcoming chapters.

1.10 Analysis and Structure of this Thesis

As described in this introduction the elements that constitute global illumination
have been examined extensively in the literature. In that case, what are the
challenges left and where is the room for improvement? Many techniques have
been presented which make global illumination faster or more accurate, but no
definitive solution for real-time global illumination has been introduced.

Based on our literature survey we believe that indirect illumination and caustics
are areas for which there have not been developed a sufficient good real-time
solution for. These two effects are characterized by several light bounces, which
means that the entire scene can affect any point. That is the property that
makes them harder to calculate. In this thesis we will focus on creating a real-
time solution for these effects.
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Many different kinds of strategies have been chosen for calculating caustics and
indirect illumination as described in this introduction. For instance solving
caustics by using photon mapping is very different algorithmically from using
the texture lookup method described in [136]. Also with regard to indirect
illumination, methods like e.g. radiosity and photon mapping are very different
in their nature, even though they solve the exact same problem. When creating
a new method, it can either be based on existing methods or a completely new
concept. The area of global illumination is a well researched area. We believe
that it is more likely that a good solution will build on known methods than on
entirely new concepts. It is therefore important to look at the existing methods
and examine their strengths and weaknesses.

When examining indirect illumination, it is clear that it often does not change
over a short period of time, or change slowly. This suggests that coherence
can be used in order to minimize the calculations per frame. Some of the real-
time techniques that have been presented do not use frame to frame coherence,
these are [100] and [128]. Instead they continuously recalculate the indirect
illumination. We believe that frame to frame coherence as presented in e.g. [35]
and [122] is important in order to minimize the recalculation which is necessary
per frame.

In Chapter[6 we examine the Quasi Monte Carlo sequences which is one of the
building bricks in their selective update of the indirect illumination.

As described in this introduction GPUs have become more powerful and some
calculations can be performed on the graphics card with great advantages. But
the architecture of the GPU is very different from the architecture of the CPU.
Therefore, just porting an existing algorithm is not possible. In [100] many of
the basic principles of photon mapping is implemented almost entirely on the
GPU. Nevertheless the method is slower and less accurate than photon mapping
implemented on the CPU. This shows that all the features and the speed of the
GPU do not automatically solve the problems of real-time global illumination.
We believe that if the GPU should be used in real-time global illumination, it
should only be used where the architecture of the GPU has advantages over the
CPU. In Chapter [3 and Chapter [5 we look at algorithms where both graphics
hardware and software methods can be used.

Real-time global illumination has been presented by using many parallel pro-
cessors ([128], [122], [137]). We will not examine this area further but instead
we will try to develop a solution that can run on commodity hardware. Never-
theless, it may be that the architecture of the standard PC or game console in
the future will contain many processors. In that case the algorithms for using
many parallel processors will be increasingly interesting.
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Photon mapping is implemented on graphics hardware in [100]. Although their
method is not real-time, we believe that it is possible to develop a real-time
method based on photon mapping. In Chapter [4 we will describe the photon
mapping algorithm in much more detail than in this introduction.

Distributing the photons more evenly e.g. by using Halton sequences does lower
the noise but it can not completely remove it. Currently no real-time method
uses final gathering. This may be because final gathering is not necessary or
because it is two expensive to calculate in real-time. Anyone who have tried to
implement photon mapping know that direct visualization of the photon density
estimates will produce noisy images. Consequently, something has to be done
with the noise in the images. Final gathering is one method for removing the
noise in the image, but it may not be the only one.

Images calculated by using radiosity does not contain noise even though final
gathering is not used. But radiosity has other disadvantages which will discussed
in Chapter/4l Even methods that uses photon distribution like Instant Radiosity
[71] and Instant Global Illumination [130] avoids high frequency noise without
the need for final gathering. This is achieved by using only few photons with
deterministic paths. However, using only few photons will lower the accuracy
of the solution.

We believe that final gathering is a very important element when calculating
high quality indirect illumination. In Chapter |5/ we will take a look at the
hemi-sphere integral which is the basis of final gathering.

In this introduction we have described many methods for solving global illu-
mination. Many of the methods have only been described very briefly. Since
describing thoroughly all these methods would be more than could fit into several
books we will only describe the elements that are important for the Contribu-
tion Part. The intention is that the elements in the Theory Part should lead to
the new methods that are presented in the Contribution Part.

In the Contribution Part our method for implementing photon mapping for real-
time applications will be presented. Finally, a summary and a conclusion will
be given in the Conclusion Part.
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CHAPTER 2

lllumination Theory

Illuminating a 3D scene is a fundamental problem in computer graphics. Illu-
mination is what happens when a light source such as the sun or a lamp sends
out photons and objects are illuminated.

The math behind illumination is well understood, but unfortunately it is usually
too time consuming to make these calculations accurately and most of the time it
is even impossible. In particular, it becomes problematic when the requirement
is that a 3D scene should be illuminated in real-time, but the problem also arises
in animations for movies. Therefore, all methods used today for calculating the
illumination rely on approximations in one way or the other. In general, the rule
is that the faster the images have to be generated the more approximations are
necessary. But before we take a closer look at some of these approximations, we
will take a closer look at the illumination theory. By doing this, we will know
what approximations we must use in order to calculate the images faster.

The rest of this chapter is about the illumination theory.
An overview of the symbols that will be introduced in this chapter can be seen

in Table

An overview of the terms used in Physics, Radiometry and Photometry can be
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Symbol | Name Unit

Qx Spectral radiant energy #

Q Radiant energy J

(0] Radiant flux wW=12Z

1 Radiant intensity %

E Irradiance %

M Radiant exitance %

B Radiosity %

L Radiance -

L Spectral radiance R eI

Table 2.1: Symbols used in Radiometry

Physics Radiometry Photometry
Energy Radiant Energy Luminous Energy
Flux (Power) Radiant Power Luminous Power
Flux Density Irradiance Mluminance
Radiosity Luminance
Angular Flux Density | Radiance Luminance
Intensity Radiant Intensity | Luminous Intensity

Table 2.2: Terms used in Physics, Radiometry and Photometry

seen in Table 2| In general in this thesis we will use the Radiometric terms.

The theory of illumination is divided into two categories, photometry and ra-
diometry. The difference between these two categories is that photometry is the
theory about perception of light while radiometry is the physics of light. In the
following we will take a look at the physics of light. This thesis will not go into
details about the perception of light.

The basic element is a photon, which is a packet of energy (ey). This energy is
inversely proportional to the wavelength (A) of its corresponding wave:

E\N = — (21)

The proportionality constant is Planck’s constant (h = 6.6310~34Js), and the
constant c is the speed of light (in vacuum = 299.792.458 ).
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The wavelength(\) of the photon is inversely proportional to its frequency(f).

A =c¢ (2.2)

An important property of photons is that two photons do not interact with each
other. This is an important property when calculating the illumination as the
each photon or energy bundle can be handled individually.

Spectral radiant energy @ is the energy in a number of photons which have the
same wavelength.

Qx = nex (2.3)

Radiant energy (@) is the energy of a number of photons regardless of their
wavelength.

Q= /0 QrdA (2.4)

The visible spectra of wavelengths are those having frequencies in the range from
380 to 780 nanometers and usually only this interval is considered in computer
graphics.

Radiant energy or radiant flux (®) is a measure of light energy flowing per unit
time through all points and in any direction. The flux is dependent on the
wavelength, and therefore the notation should be ®,, or even more precisely,
A should be in the range [A, A + dA]. In the following we will write & without
specifying the wavelength. It is further noted that a given flux does not corre-
spond to a fixed number of photons, as the energy of a photon is dependent on
its frequency (as seen in Equation [2.4).

In most practical applications, the light is calculated at three different wave-
length, corresponding to red, green and blue. This is an approximation as the
equations should of course be solved for infinitely many intervals in the range
from 380 to 780 nanometers. Nevertheless, this approximation will be sufficient
for most applications. For some applications it may be necessary to use more
color bands. The famous Cornell box has in its specification 76 spectral reflection
coefficients for its materials ([49], [28], http://www.graphics.cornell.edu/online/box/).
This is called multi spectral rendering. However, in the end, all these color bands
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have to be re-sampled to red, green and blue as this is what current display de-
vices are capable of displaying. Still, a more accurate rendering is achieved by
using multi spectral rendering.

As photons travel at the speed of light, it seems that the illumination happens
instantaneously when light is switched on or off. This means that the flow
of light finds an equilibrium and does not change unless the environment is
modified.

On a surface this equilibrium can be described by using a conservation equation
which contains five variables.

e light emitted from the surface.

i light coming from elsewhere hitting the surface(incident).

s light hitting the surface and flowing through it (streaming).

r light reflected on the surface.

a light that is absorbed in the surface.

The flux conservation equation can now be expressed using these five variables:

O, +0;, =0, + P, + D, (2.5)

When radiant flux is considered with regard to a surface, it is called radiant
flux area density, %. This term can be used both for in-scattered light and
reflected light. A more specific term for reflected radiant flux area density is
radiant exitance (M) or radiosity (B). The more specific term for in-scattered

radiant flux area density is irradiance (E).

2.1 Solid Angle

The direction (J) is a vector in 3D. The solid angle d& corresponds to a patch
on a sphere and it is unitless. Although it is unitless it is often termed steradian
and the unit used is sr (there is 47 on a complete sphere, and 27 on a hemi-
sphere). Solid angle also exists in 2D where it is an interval on the unit circle
(27 on a complete circle). The area on the unit sphere of di is sinfdfd¢. When
describing the direction with regard to a surface, & is usually the vector in the
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Figure 2.1: Definition of normals and angles

outgoing direction and &’ is the vector in the incoming direction. Both vectors
are pointing away from the surface and in the same direction as the normal (see

Figure[2.1).

2.2 Radiance

The total amount of energy leaving a surface in all directions is measured as
radiant flux area density. Radiance(L) is a subpart of this. Radiance is the
energy that leaves a surface, per unit projected area of the surface per unit solid
angle of direction. Mathematically this can be expressed as:

i

L= dAcost dw

(2.6)

Radiance is one of the most important properties in computer graphics as it
states how much energy is leaving a point on a surface in a particular direction.
When knowing this quantity it is possible to illuminate a surface.

Another way of viewing radiance is to think about all the light incident on a
surface, and then only consider light leaving the surface in a particular direction.
But a point is approximated as an infinitesimal area which is the reason for the
dA factor in the equation. Likewise, the direction is also approximated as an
infinitesimal cone dw. The cosine factor is present because the projected area
will be smaller as the direction of the cone is altered from the direction of the
surface normal. It is noted that the cosine factor (cosf) also can be expressed
as (- 1).

The flux can of course then again be calculated as an integration over the radi-
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ance over all directions(§2) and the area (A) multiplied by the cosine factor.

@z//L(x,ﬁ)cosﬁdaUd:c (2.7
AlJo

Radiance is often expressed as L(x,w) meaning that the radiance is a parameter
of a given point(z) and a given direction(&). A point has three degrees of
freedom and a direction has two degrees of freedom. Therefore, radiance is a
five dimensional function.

Radiant intensity is the quantity of light in a particular direction going through
a surface.

2.3 Reflectance

Reflectance(p) is the relative amount of the incident light that is reflected. The
remaining light is either absorbed or streaming (setting the emission to zero in
Equation [2.5). At a surface point (x) this can be expressed as:

o) = (2.8)

When setting the emission to 0 it is clear from Equation (2.5 that p(z) will be
in the range [0; 1] as all variables are positive.

2.4 BRDFs

The relationship between incoming light (E;) and outgoing light (L,) at a point
() can be described using a function of three parameters. These parameters are
the point (), the incoming direction of light (&) and the outgoing direction of
light (). This function (f) is called the Bidirectional Reflectance Distribution
Function [91]
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dL,(z,d
ALy (z,5) (2.9)
dE;(x,d")

The function f has to comply with two rules. As f is integrated over the hemi-

sphere the function has to be less than or equal one. This is due to the rule of
energy preservation.

JRCEEITES (2.10)
Q

for any point (x) and any direction (w).

Another property of f is that the incoming and outgoing direction can be
swapped. This is called Helmholt reciprocity.

fz,3,d") = f(z,d', &) (2.11)

A diffuse surface (also known as Lambertian surface) reflects incident light uni-
formly in all directions over the hemisphere. This means that a diffuse surface
looks the same from all viewing directions. In that case the BRDF is a constant
function:

f(z, &', &) = fr.q = constant (2.12)

If a surface is diffuse, it can simplify many calculations e.g. the calculation of the
radiosity. A BRDF can either be an analytical formula or a measured function.
A vast number of analytical formulas exist which approximate different types
of surfaces e.g. Phong, Blinn, Ward, Cook-Torrance, Ashikmin etc. (a good
overview can be found in e.g. [46], [5], [48]). The BRDF of a surface can also
be measured by using a physical device ([139]).

When one knows the BRDF of a surface, one can render most surfaces correctly.
The assumption of the BRDF is that the energy leaving a point z is a function
of the in-scattered energy at that point. This assumption is correct for surfaces
such as metal and rocks.
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Other types of materials as e.g. milk and skin do not not comply with this
assumption. In these materials the light energy enters the surface at a point
and it will most likely exit the surface at a nearby point. In order to describe
such surfaces, a more advanced function than the BRDF is necessary. Here it is
necessary to use a BSSRDF ([91], [68]). Another type of surface is transparent
surfaces. These can be characterized by using two BTDFs (Bidirectional Trans-
mittance Distribution Function). A complete description needs 2 BRDFs and
2 BTDFs, which can be gathered in a single BSDF (Bidirectional Scattering
Distribution Function).

Most BRDF's can not handle Fluorescence, which when the reflected light has a
different frequency than the incoming light. Another effects that is usually not

accounted for is phosphorescence, which is when energy is stored and re-emitted
later.

2.5 Calculating the Radiance

In Equation we showed how to calculate the flux leaving a surface. The
radiance leaving a surface point in a particular direction can be described as:

L=1Lc+L, (2.13)

Expressing the radiance as a function of the incident radiance and the BRDF
of the surface yields the following formula:

This equation is also known as the Rendering Equation ([69]) although it was
originally introduced in a slightly different form.
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2.6 Describing the Path of Light

Photons originate from a light source. Before the photon finally enters the eye,
the path of the photon can be fairly complex. Heckbert introduces a compact
notation for expressing this ([56]).

The notation is defined as follows:

e L a light source
e D a diffuse surface
e S a specular surface

e E the eye

In order to describe multiple paths the symbols 4+,*,? and | are introduced.
The meaning of these symbols are as follows:

e -+ one or more
e * zero or more

e 7 zero or one

(alb) either a or b

For instance the expression L(S|D)+E means that the light hits one or more
surfaces that are either diffuse or specular before hitting the eye. Caustics can
be described using the following expression: LS+DE.

2.7 Summary

In this chapter we have introduced many of the fundamental properties of light.
This is just a brief introduction. For more information see [114], [66], [37], [38].
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CHAPTER 3

Direct lllumination

As described in the introduction, the direct illumination for real-time applica-
tions can be calculated both by using ray tracing and by using rasterization.
Both of these methods compute the following equation:

L(z,) = / F@. &, &) Liz, &) (n - &) d (3.1)
Q
If we consider an area light source, the expression diJ can be expressed as:

(i &) dA'

-/
RN

(3.2)

Where dA’is the area of the light source and (2’ — x)? is the squared distance
=/

between the light source and the point being shaded. 7’ is the normal of the
light source (See Figure [3.1)

If the distance between the area light source and the objects illuminated by the
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dA’

3L

X

Figure 3.1: Calculation of d&’

light source is large Equation can be approximated as:

i A
L(z,d) = f(z,d’,ﬁ)Li(x,ﬁ’)(ﬁ-ﬁ’)ﬁ (3.3)

This expression can be used directly in ray tracing and rasterization for evalu-
ating the direct light.

3.1 Ray tracing

By using ray tracing the shading code can be implemented in C as shown in
Figure This shader implements a Lambertian surface. The result of this
shader can be seen on a sample scene in Figure 3.3l
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Radiance shade( Vec sample_point, |/ Point currently being shaded
Vec sample_normal, // Normal at sample point
Vec light_point , /] Center of light source
Vec light-normal, [/ Normal of light source

Radiance L_i, // Radiance of the light
float area, // Area of the light source
Vec diffuse) // Lambertian coefficients

Vee dir = ( light_point —sample_point).normalize();

float dist = ( light_point —sample_point).length();

Vec f= diffuse/M_PI,

float cos_theta = dot(sample_normal, dir);

float cos_phi = dot(light_normal, —dir);

return f x L_i % cos_theta % cos_phi * area / ( dist * dist);

Figure 3.2: Shading code in C

3.2 Rasterization

The shading, which is demonstrated in Equation can also be implemented
by using rasterization. As the equation has to be evaluated per pixel it is
necessary to implement it in a fragment program. Some of the inputs to a
fragment program are most easily expressed in a vertex program, and then the
parameters are transferred to the fragment program.

A vertex program accepts two kinds of input variables, varying and uniform.
Varying variables are specific only to a single vertex while uniform variables are
values that can be used by all vertices. A vertex program can do any kind of
arithmetic on this vertex but in the end it must transform the vertex into the
canonical view space.

The fragment program is a program that is executed for each pixel that is drawn
to the screen. The fragment program can accept the output variables from the
vertex program. But the only output form the vertex program is a color and a
depth that are written to the framebuffer or any other buffer which is currently
active.

The code for implementing Equation can be seen in Figure[3.4] This shader
is similar to the one described in [3.2 but the notation is Cg ([94], [86]). The
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=

Figure 3.3: A Cornell box with a bumpy floor rendered using ray tracing imple-
mented with the code shown in Figure 3.2

result of this shader can be seen on a sample scene in Figure [3.5.

The scene in Figure[3.3land[3.5/has a bumpy floor and approximately 8000 poly-
gons. The resolution is 512 times 512 pixels. Rendering the simple scene using
rasterization took 0.01 seconds while rendering the scene by using ray-tracing
took 2.5 seconds on a Pentium 4, 2.4 GHz. It is probably possible to optimize
both the ray tracing implementation and the rasterization implementation. Nev-
ertheless, it is likely that the timing differences will still be approximately the
same.

It is noted that the shading of both ray tracing and rasterization is similar.

When rendering area light sources it is common to use many samples on the
light source and average these. This can be implemented by using ray tracing
and selecting random points on the light source. It can also be implemented by
using rasterization. In that case a number of image could be rendered and the
final result would be an average of these images, although other options exists
for implementing this.

The surface that we chose to render was a simple Lambertian surface but using
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void vertex_program( float in_sample_point : POSITION,
float3 in_sample_normal: NORMAL,

uniform floatfx4 model_view_proj,

out float4 h_point: POSITION,
out float3 sample_point,
out float3 sample_normal)

h_point = mul(model_view_proj, in_sample_point);
sample_point = in_sample_point.xyz;
sample_normal = in_sample_normal;

}

float3 fragment_program(float3 sample_point,
float3 sample_normal,
float3  light_point |
float3 light_normal,
floatd L_i,
float area,
floats diffuse ) : COLOR

float dir = ( light_point —sample_point).normalize();

float dist = ( light_point —sample_point).length();

floatd f = diffuse/M_PI,

float cos_theta = dot(sample_normal, dir);

float cos_phi = dot(light_normal, —dir);

return f * L_i x cos_theta * cos_phi * area | ( dist x dist);

Figure 3.4: Cg code for shading using a Lambertian surface and an area light
source.

textures or procedural textures will not change the result ([39]). Currently there
are some limitations to how complex the shaders can be in vertex and fragment
programs, but these limitations are constantly being reduced.

Although much functionality is achieved by using the programmable pipeline, a
number of solutions for advanced rendering exist. They use the fixed function
pipeline. Rendering arbitrary BRDF's using the fixed function pipeline is intro-
duced in [59]. Here a few number of cubemaps are used to factorize the general
BRDFs.
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Figure 3.5: A Cornell box rendered using the code in shown in Figure[3.4

In the shade tree is introduced. The shade tree is the basis for the Ren-
derMan shading language which is an advanced widely used shading language
([52]). In [98] a method is introduced which uses the fixed function pipeline
for approximating some of the RenderMan shading language features. This is
done by using multipass rendering where intermediate values are written to the
framebuffer and modified several times. The modification is performed by ren-
dering the same geometry over and over but using different textures for doing
mathematical operations directly in the framebuffer. The disadvantage of this
approach is that the same geometry has to be rendered many times and this
can be quite costly. Although this multi pass technique is quite powerful, it is
also somewhat limited as only some mathematical operations are possible.

3.3 Summary

In this chapter it has been demonstrated that ray tracing and rasterization can
be made to produce the same results. This is the case in many scenes. In
many situations it will therefore be equally valid to use either ray tracing or
rasterization.



CHAPTER 4

Photon Mapping

Photon mapping is a technique for calculating global illumination in a scene. It
is a hybrid method that uses different techniques for calculating the individual

contributions described in Chapter[1. In the following, each of the components
will be described.

4.1 Dividing the Incoming Radiance

The basic principle of photon mapping is to divide the incoming radiance into
a number of components which can be handled individually. The incoming
radiance at a sample point can be divided into three components (See also

Figure[1.1).

where

o L, is the direct light, i.e. L(D|S)E
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Figure 4.1: Cornell box with both direct illumination, caustics and indirect
illumination

e L, . is the caustics, i.e. L(S+)DE

e L, is the indirect light, i.e. L(D|S)* D(S|D)+ E

The direct illumination is calculated using traditional Whitted Style ray tracing
([143)).

The caustics and indirect illumination parts are each calculated separately in a
two step process. The first step is to distribute a number of pseudo photons from
the light source. The second step is the reconstruction phase where the photons
are used to calculate the caustics and the indirect illumination. This step is
called the reconstruction because it only uses already distributed energies.

In Figure 4.1 a Cornell box which contains both direct illumination, caustics
and indirect illumination is rendered using photon mapping. In Figure [4.2 only
the direct illumination is displayed, in Figure[4.3 only the caustics are displayed
and in Figure 4.4 only the indirect illumination is displayed.

The indirect and caustic illumination are calculated from the photon maps by
using a density estimation technique. In the following, we will give a more
detailed description of this process.
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Figure 4.2: Cornell box with direct illumination and soft shadows

Figure 4.3: Cornell box with caustics
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Figure 4.4: Cornell box with indirect illumination

Q%@%Q

Figure 4.5: The process of calculating caustics using photon mapping.

NG

Figure 4.6: The process of calculating indirect illumination using photon map-
ping.



4.2 Distributing Photons 49

4.2 Distributing Photons

A light source has a color and an amount of energy which it distributes to the
environment. In photon mapping, this energy amount is divided into a number
of pseudo photons. Each of these photons are traced through the environment.
The initial direction of each photon is dependent on the type of light source.

Photons are distributed twice from the light source. Once for the indirect illu-
mination photon map, and once for the caustic photon map. The photon map
method is designed in such a way that no light contribution is counted twice
even though the light is calculated in many different ways.

4.2.1 Storing Photons in the Indirect Illumination Photon
Map

As a photon is traced through the environment and intersects a surface, it is
necessary to handle the intersection appropriately. If the surface is a specular
surface, the photon is not altered in any way but reflected or refracted according
to the BRDF of the surface. If the surface is diffuse, the photon is stored
in the photon map used for the indirect illumination. Whether the photon
is terminated or reflected is determined by using a technique called Russian
Roulette ([116], [10] [66]). If it is determined that the photon is reflected, the
direction is chosen based on the BRDF of the surface. E.g. a diffuse surface will
reflect a photon in any direction on the hemisphere with equal likelihood. As the
Russian Roulette method terminates some photons, it is necessary to re-scale
the power of other photons in order not to remove energy from the system. The
energy of the photon is also modified by the BRDF of the surface. The Russian
Roulette method is used in order to avoid very long photon paths where the
energy of the photon only contributes minimally to the final result.

4.2.2 Storing Photons in the Caustic Photon Map

Caustics only occur when the photons first hit a specular surface (e.g. a mirror
or glass) and then hit a diffuse surface. Accordingly the paths that we are
interested in are L(S+)DFE (see Section[2.6).

When the photons are distributed from the light source, all photons that do not
hit a specular surface as the first hit are ignored. If a photon hits a specular
surface, it is reflected or refracted according to the properties of the surface.
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When the photon then hits a non-specular surface, it is stored in the caustic
photon map.

An optimization to this scheme is not to trace photons in directions where no
specular surfaces are present, as caustics only occur when photons intersect with
specular reflectors [66].

4.3 Density Estimation

Storing the photons can be done in any data-structure, but during the second
step of the photon mapping algorithm, the density needs to be found. The den-
sity of the photons is then used to estimate the irradiance.

Density estimation is the process of finding the density at a specific point.
As the photons are distributed in 3D the probability of finding any photons
at a random 3D point is zero. Therefore techniques have to be used to give a
measure of the density at a specific position. Many different techniques exist
for this purpose ([113]). Currently, the most popular method is the N-nearest
neighbors method. A fixed number of nearest neighbors are chosen and these
nearest photons are found. The energy of all these photons is summed up and
divided by the area that the photons span.

By using this method the outgoing radiance can be described in the following
way:

d*®;(z,d") - D, (z,w,)
-\ -/ - 7 ) ~ -/ = p ' P .
L,(z,&) = /Qf(amw ’w)idAi Zf(ac,w ’w)iAA (4.2)

The area which these photons span can be calculated in different ways. One
method is to use the convex hull of the photons. A faster but less accurate
method is to make a sphere around the photons. Since speed is very important,
as the density has to be calculated many times, the sphere method is often the
method of choice.

Finding the N-nearest photons can be quite time consuming. Therefore, it is
desirable to store the photons in a data-structure that makes queries for the N-
nearest neighbors easy. A kd-tree is fast to query for the N-nearest neighbors.
Therefore the kd-tree is traditionally the preferred data-structure. The fastest
kd-tree is the left-balanced kd-tree as it exploits cache-coherence on the CPU
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Figure 4.7: Density estimate for the caustic

best ([14], [66], [17]).

4.4 Reconstructing the Caustics

The reconstruction of the caustics is done by using density estimates in the
caustics photon map at the current sample point (see Figure[4.7). Caustics are
a high frequency effect and many photons are therefore needed to reconstruct
the caustics accurately. In order to avoid blurred caustics it can be desirable
to use filtering together with the density estimates ([66]). The filtering process
is a weighting of the photons where photons near the sample point is weighted
higher than photons further away from the sample point.

4.5 Reconstructing the Indirect Illumination

The indirect illumination is calculated using a Monte Carlo based final gathering
method (see Chapter |5 for more information on final gathering methods). At the
sample point (y), at which the indirect illumination is calculated, a vast number
of rays are traced (usually 500-2000) (see Figure [4.8). At each hit location z,
the outgoing radiance is found. The outgoing radiance can be calculated by
using the irradiance and the BRDF of the surface. The irradiance is found
as described above by using density estimation. The outgoing radiance from
all these surfaces in the direction of the sample point is then used to find the
incoming irradiance at the sample point. This incoming radiance is then used
together with the BRDF of the surface of the sample point to find the radiance
at the sample point (y). Thus the sample point is only illuminated by the light
of all other surfaces and not by the light of the light sources. Therefore it is
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y

Figure 4.8: Final gather for indirect illumination. A high number of rays are
distributed from the point being shaded

exactly the indirect light that is accounted for when one uses this method.

If the indirect illumination is calculated directly by using the photons at the
sample location as we do with the caustics, the image will be noisy. The reason
for this difference in the reconstruction is that caustics are a high frequency
effects while indirect illumination is a low frequency effect.

4.6 Making Photon Mapping Useful

The basic photon mapping method as described above is very powerful but also
quite slow. In particular the final gathering step of the indirect illumination
is slow. Therefore many methods have been developed to speed up photon
mapping. In the following we will describe the most important ones.

4.6.1 Pre-computed Density Estimates

In [23] a method for pre-computing density estimates is presented. When us-
ing the photon mapping method, the N-nearest neighbors has to be calculated
numerous times during the final gathering pass. For each indirect illumina-
tion calculation between 200 and 5000 rays need to be traced, and for each hit
point, a density estimate which uses the N-nearest neighbors in the kd-tree has
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to be calculated. In total, this gives a very high number of calculated density
estimates. Hence it is proposed in [23] that the density estimates should be pre-
calculated and stored at the photon positions. When one queries for the density
estimate at a given sample point, it is therefore only needed to find the nearest
photon and read the pre-calculated density estimate. Furthermore, according to
[23], it is sufficient only to store pre-calculated density estimates in every fourth
photon. This does not reduce the image quality.

4.6.2 Importance Driven Path Tracing using the Photon
Map

In order to lower the number of necessary rays to shoot during the final gathering
pass, a technique for only sending rays in important directions is presented in
[64]. At the given sample point, a number of nearby photons are found. Then
it is examined from which directions these photons originate. This is possible
because an incoming direction is stored along with the photons. The hemisphere
above the sample point is then divided into a number of cells. The more photons
that have arrived through a specific cell the more important is the direction of
this cell for the illumination of the sample point. In this way the final gathering
sample rays are distributed according to the incoming directions and the work is
concentrated where it matters the most. The method described above is called
an importance sampling technique (see Chapter 5lfor more details on importance
sampling techniques and final gathering).

4.6.3 Controlling the Number of Photons

A very interesting question is: How many photons should be distributed from
the light source? This is not known beforehand and dependens on the geometry
of the scene. A method for controlling the number of photons to distribute is
proposed in [119]. Here a number of importons are distributed from the eye-
point. These importons are stored in a structure similar to the photon map.
Many importons in an area indicates that this area is important to the final
image. When the photons are distributed, they are directed to the areas where
many importons are located, and only few photons are stored in areas where
the density of importons are low ([118], [119]).
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Figure 4.9: Points where the irradiance is calculated when using irradiance
caching

4.6.4 Irradiance Caching

The final gathering step when calculating the indirect illumination is the most
expensive. One method for speeding up this calculation is to use irradiance
caching. The method was initially presented in [141]. The basic idea is that the
irradiance only changes slowly and it can therefore be sufficient to only calculate
the irradiance at selected locations and interpolate at positions in between these
points. Each point which is calculated can be used by nearby points. Whether
the calculated value can be used depends on distances to other surfaces. In
corners e.g. the distances to other surfaces are small and the area where this
calculation can be used is therefore small. If the distance to other surfaces is
large, the calculated point can be used further away (see Figure4.9). The further
the distance to other surfaces the larger the radius in which this irradiance is
valid. Also the validity or the calculated irradiance is dependent on the normal
of the point at which the radius was calculated and on the currently examined
point.

The algorithm saves the irradiance values in an octree defined in world space.
In Figure[4.9 an image is displayed where the dots mark the points in which the
irradiance is calculated. The remaining irradiance values are interpolated.
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4.6.5 Irradiance Gradients

In [140] the method is improved by adding the use of gradients. The values
needed to calculate the irradiance gradient are already available in the parame-
ters used for calculating the irradiance cache. Thus it is not significantly more
costly to calculate the irradiance gradients, and it gives a significant quality
improvement.

The quality of the image is very dependent on the distance at which the irradi-
ance values are calculated. This distance is determined partly by the algorithm
and partly by a user defined parameter.

The method is further improved in [115]. In this paper it is shown how one can
find better positions for calculating the irradiance estimates.

As the irradiance estimates are interpolated, it is only possible to use the irra-
diance cache for diffuse surfaces.

4.6.6 Photon Mapping and Movie Production

Global illumination is rarely used in movie production. This is mainly due
to two reasons. First, global illumination has previously been fairly slow to
calculate and secondly global illumination takes away the artistic freedom, since
everything has to be physically correct. In [24] it is demonstrated that even
though photon mapping is a physically correct calculation method, it can also
create images that are tweaked for artistic purposes. Movie scenes are often
huge and these scenes does not fit into memory. It is only possible to render
these scenes using advanced caching schemes ([26]). The indirect illumination
will therefore also be very complex. A method for handling very complex and
detailed indirect illumination that does not fit in memory is presented in [25].
The first movie that uses global illumination in large scale is Shrek IT ([121]).
In this movie photon mapping is not used. Instead a simple one bounce indirect
illumination scheme is used. Research in global illumination for movies will
probably be a very active area in the near future.

4.7 Discussion

Compared to other methods that solves the rendering equation, photon mapping
has several advantages.
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Radiosity depends on the calculation of light transfer between all patches (A
patch is often identical to a polygon) which means the complexity can be ap-
proximated as O(n?) (Where n is the number of patches). Often the number of
patches is increased while calculating the solution in order to increase the accu-
racy of the illumination (|53]). This makes radiosity a poor choice for very large
scenes, e.g. a fractal scene would be very hard or impossible to solve by using
radiosity. On the other hand photon mapping is meshing independent as the
photons are stored in a separate data structure. In complex scenes, good global
illumination can be achieved by using fewer photons than triangles. Further-
more, radiosity is most appropriate for calculating the light transfer between
perfectly diffuse surfaces. Radiosity can be combined with ray tracing in order
to account for specular surfaces. Be that as it may, radiosity is not suited for cal-
culating light transfer between non-diffuse surfaces. Caustics are furthermore
not possible when one uses radiosity. Finally, the complex transport of light
interaction with glass surfaces can be impossible to simulate using radiosity.

Monte Carlo path tracing is usually considered the most correct method for
calculating global illumination. It is unbiased, and given any scene, it will
produce the correct result ([9]). Even though path-tracing will produce the
correct result, the time for the solution to converge will often be too long for
practical purposes. Therefore, path tracing will often be of a more theoretical
interest than of practical use. Caustics are particularly hard for path-tracing
to capture accurately. On the other hand, path tracing is a very good tool
for verifying whether an image which is calculated by using another method
is correct, because even though it will take longer to calculate the image, it is
guaranteed that the result will be correct.

Bidirectional path tracing ([76]) is similar to path tracing except that rays are
traced both from the light source and from the eye. The advantage of it, com-
pared to traditional path tracing, is that some effects, as for instance caustics,
are easier to calculate when tracing from the light source. The problem with
bidirectional path tracing is the same as with path tracing, namely that the
images are noisy unless enough samples are used.



CHAPTER 5

The Hemisphere Integral

One of the most important expressions to evaluate in global illumination is
the expression that calculates the total incoming light (Irradiance) at a specific
point and uses this incoming light to calculate the outgoing light (Radiance).
The integral is the following:

L(a:,&)):/Qf(x,w’,ﬁ)dE(r,cﬁ’):Lf(x,&’,&)Li(x,ﬁ’)(n-u?’)dw’ (5.1)

This integral integrates over the hemisphere (see Figure[5.1). Only in very rare
circumstances is it possible to solve this integral analytically and accordingly
this usually not considered a viable option. In the following, we will describe two
different strategies of solving this equation. The first is a Monte Carlo method
based on ray tracing, while the second is a hardware optimized method based
on rasterization.
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Figure 5.1: The hemisphere.

Figure 5.2: A sample on the hemisphere

5.1 Monte Carlo Integration

Monte Carlo integration is usually the default method for solving this integral.
When using Monte Carlo integration, a number of samples are evaluated, and
the integral is solved by using these samples as an approximation (see [37] for
more information on Monte Carlo methods). A sample in our case is a ray which
is traced from the sample point 2 in any direction on the hemisphere (see Figure

5.2).

The most obvious method may be to uniformly distribute the rays on the hemi-
sphere. This is called blind Monte Carlo. But often this will not be an optimal
strategy. Tracing a ray is expensive and it can therefore be desirable to mini-
mize the number of sample rays needed in order to reach a satisfactory image
quality.

By looking at the expression we are integrating, a number of strategies can be
used for minimizing the number of rays needed ([37]). All the methods are
called importance sampling techniques as the directions of most importance to
the final appearance of the point are sampled more intensively. These methods
are also called informed Monte Carlo. In the following each of the expressions in
Equation [5.1 will briefly be described in order to find a more optimal sampling
strategy.

f(z,d', &) This part is the BRDF (as described in Section [2.4). If the BRDF
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represents a highly specular surface, it is only a very limited number of
directions that contribute to the final appearance of the surface. It is
therefore optimal to sample these directions more intensively than other
directions. For a diffuse surface, the BRDF is a constant, and in this
case all sampling directions will be equally good. But in all other circum-
stances, some directions are more important to the final appearance than
others.

L;(z,&’) This is the incoming radiance. The incoming radiance usually varies
over the hemisphere. It is therefore desirable to sample the brighter di-
rections more intensively than the darker directions. The problem is to
determine what directions to sample from before actually sampling. By
using photon mapping this is possible as the photons near the sample
point z are examined and accordingly their incoming directions indicate
what directions the highest light contribution originates from. See [64] for
more details.

n -’ The cosine expression states that light at normal incidence to the surface
contributes more to the final appearance of the surface than light almost
perpendicular to the surface. It will therefore be desirable to sample or-
thogonal light more intensively than perpendicular light.

These different strategies can each be used independently or they can be com-
bined as desired.

In order to use importance sampling, a PDF (Probability Density Function) is
needed. For more information on using and creating a PDF see [37].

5.2 The Hemi-cube

The hemi-cube is a hardware acceleration technique based on rasterization that
can be used to calculate the integral in Equation [5.1](|28]). As it is not possible
to rasterize onto a hemi-sphere, a hemi-cube is used instead (see Figure [5.3).
This is described in the following.

The hemi-cube is placed with the sample point x as the center. Then the scene
is projected onto each of the 5 surfaces of the cube. This can be done by
interpreting each of the 5 surface as image-planes and then setting up a viewing
where the eye-point is the center of the hemi-cube and the rest of the viewing
parameters are set up to project onto the surfaces of the hemi-cube. The scene
is in this way rendered 5 times. The incoming radiance in a specific direction is
defined by using the color in the fragment buffer on a given hemi-cube surface.
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The area on the hemisphere that a fragment on the top surface of the hemi-cube
spans is defined as:

1

Ay —
T @y +1)2

AA; (5.2)

Where Aj, is the area of the hemisphere and Ay is the area of the fragment.
The (z,y) components are the distances from the center of the hemi-cube.

The area on the hemisphere that a fragment on one of the side surfaces of the
hemi-cube spans is defined as:

z

Ap = —
TR+ 2+ 1)?

AA; (5.3)

Again Ay, is the area of the hemisphere and Ay is the area of the fragment. The
y component is the distance of the plane from the center while z is the height
of the fragment from the ground surface.

By using these values and the BRDF it is now possible to calculate the integral
in Equation [5.1!

One of the expensive steps in the hemi-cube method is to read the fragments
in the image planes back from the frame buffer and to multiply each of these
fragment values with the BRDF. The fractional area that each of the fragments
span as defined in Equation [11.2] and Equation [5.3. An optimization to this
problem will be described in Chapter

Figure 5.3: The hemi-cube.
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5.2.1 Optimizing the Hemi-cube

In [112] a method for calculating the integral over the hemisphere is presented
which is related to the hemi-cube method. This method is based on the hemi-
cube method but it only utilizes one plane instead of five planes. As this ap-
proach does not create a solution which covers the entire hemisphere, the result
will not be accurate. But by changing the size of the plane, it is possible to
reduce this inaccuracy, even though it is not possible to remove it (see Figure

5.4).

Figure 5.4: Final gathering using a single plane

In [47] an optimized method for calculating an environment map is presented.
Instead of using a cubic environment map, a tetrahedron is proposed instead.
In this way, the number of image planes for rendering is reduced from six sides
to four sides. This tetrahedron map could also be used to integrate over the
hemisphere as with a hemi-cube. In this case the number of sides would be
three which is two fewer than with the hemi-cube. Compared to the single
plane method described above, this method is more accurate as covers the entire
hemisphere.

5.3 Discussion

When calculating the hemisphere integral it is not obvious whether to use a
Monte Carlo based method or a hemi-cube method. What to choose depends on
the nature of the scene and the surface. The hemi-cube samples the hemisphere
fairly uniform which in some cases may be desirable, especially if the surfaces
are diffuse. Therefore the hemi-cube method is desirable when the surfaces are
perfectly diffuse. For a perfectly specular surface the hemi-cube method is of
little or no use as it may be that no samples are taken in the exact specular
direction. This is because importance sampling does not work well together
with the hemi-cube method. Monte Carlo based methods on the other hand
are very general approaches that can handle all surfaces effective although in
many cases it is not as effective as the hemi-cube method. It can therefore be
concluded that neither of these methods are superior in all cases.
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CHAPTER 6

Halton Sequences

Sometimes the purpose of using random numbers is that each number should be
equally random, but for other purposes it is more important that the numbers
covers an interval uniformly. Halton sequences can be used as random numbers,
and although they are deterministic, they cover the interval uniformly. This
type of sequence is also called a quasi-Monte-Carlo sequence (QMC).

6.1 Definition of Halton Sequences

In technical terms a Halton sequence is called a reverse radix-based sequence.
The radical inverse function is used to obtain a number in the interval [0;1]
from an integer number. The radical inverse ®;(%) is the number obtained by
expressing ¢ in base b, then reversing the order of the resulting digit sequence,
and then placing the floating point at the sequence beginning;:

By (i) = Z a; (i i = Zaj(z')bj (6.1)

j=0

where a;(i) are subsequent digits of .
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The best way to describe this function is by some simple examples. In base 10 the
radical inverse of the number 1234 is 0.4321. This is expressed as $1(1234) =
0.4321. A few other examples are $14(524) = 0.425, ®1(2) = 0.2 and $10(23) =
0.32.

The base b is the number generating the sequence. The sequence continuously
subdivide the open ended unit interval [0;1[. The first b numbers are %. These
b numbers divide the interval into equally sized subintervals. This is called
the first level. The second level is the next b> — b' numbers, which divide each
subinterval into b new intervals. The next b —b? numbers are the third interval.
These numbers again divide the intervals into new equally sized intervals. There

is no limit to the number of possible levels.

The sequence for base 2 is:
————————— — .. 2
{0’2’4’4’8’8’8’8’16’16’16 ' (62)

It is easily observed that a standard Halton sequence is far from random. But
the sequence is highly uniform as long as entire levels are used. In order to
achieve more randomness in the Halton sequence, techniques such as leaping,
scrambling, and shuffling can be used ([135]).

6.2 Multiple Dimensions

When creating numbers in higher dimensions, it is important that the different
dimensions are uncorrelated. Only if they are uncorrelated will the numbers
will be distributed uniformly in the s-dimensional space [0; 1[*

By choosing prime Halton bases, e.g. base 2 and base 3, uncorrelated 2D points
can be generated (see Figure[6.1). Tt is clear that these numbers are distributed
more uniformly than numbers generated by using a traditional random number
generator (see Figure [6.2). The numbers in are generated by using the
drand48() function.

An interesting property of Halton sequences is that it is simple to divide the
numbers into non overlapping intervals. Using the base 2 and the first level
as dividers, the numbers in the levels which are greater than 1 can be divided
into the intervals [0; [ and [1;1[. For base 3, level 1 will divide the remaining
numbers into 3 intervals. Using base 2 and base 3 in 2D, 6 non overlapping
areas can be created (see Figure 6.3).
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Figure 6.1: Points generated using Halton sequences with base 2 and 3.

Figure 6.2: Points generated using random numbers.

6.3 Distributing Photons Using Halton Sequences

Distributing photons from a light source is usually done by generating two ran-
dom numbers and converting these to a direction. From a point light source the
conversion will be as follows:

¢ =/r2
0 =2nr

3
=

Where ¢ and 6 defines the direction while r; and ro are random numbers in the
interval [0, 1].
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Figure 6.3: A 2D area divided into 6 groups. Half of the groups are omitted.

From an area light source the conversion will be the following:

6 = acos(y/72)

0 =2mr;

Halton sequences can be used instead of random numbers. This will cause
the photons to be distributed more evenly, and in many cases it will create
illumination with less noise.

Another feature when using Halton sequences is that it is simple to divide the
photons into a number of groups with the same amount of photons (as demon-
strated in Figure . This feature is exploited in [35]. Here the photons are
divided into a number of groups, and when the scene is modified, only photons
from selected groups are redistributed. We will introduce a new method for
exploiting Halton sequences for redistributing photons in Chapter 9]
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CHAPTER 7

Problem Analysis

In the previous part we have described selected elements that can be used for
calculating global illumination. In this part, we will extend and combine these
methods in order to develop a method for calculating global illumination for real-
time applications. We will base our techniques primarily on photon mapping.

The first obvious option for increasing the speed of photon mapping would be
to use more CPUs. This approach works well with ray-tracing as it is easy to
parallelize ([132]). The problem with photon mapping is that it is a two pass
algorithm and that it queries and updates global data structures. If the photon
distribution phase is to be parallelized each of the CPUs should run a program
that distributes a number of photons. When this distribution is over the global
photon map should be built. But then all the traced photons on each CPU
should be distributed to all other CPUs, and then the photon maps should be
build on all CPUs as it is not possible to build only selected parts of the photon
map. Because of the problems in the photon distribution phase is not directly
suited for parallelization. However, a solution for calculating caustics by using
photon mapping in a distributed setup has been demonstrated [50]. No such
solution has yet been demonstrated for indirect illumination. The second phase
of photon mapping is better suited for parallelization. But because of the nature
of the first phase of photon mapping, it is currently not possible to approach
real-time speed for the indirect illumination just by parallelizing.



70 Problem Analysis

Mapping the entire photon mapping method to GPUs, as done in [100], is an-
other option. But as described in the introduction, this approach is currently
slower than photon mapping implemented in software, and also produces a poor
image quality. We believe the lack of speed and image quality is caused by the
difference in nature of the CPU and GPU.

Distributing the photons can either be done instantly or progressively. In [130]
and [71] all the photons are distributed each frame. This is possible because
only few photons are used. In [35] the photons are distributed progressively.
They use a very high number of photons which is necessary because they use
the photons for direct visualization of the indirect illumination. If all photons
should be distributed each frame it would be very time consuming. Furthermore
it would seem wasteful as almost all the photons would follow the exact same
path as they did in the last frame. Consequently, we will aim for a solution that
exploits frame to frame coherence. On disadvantage of the solution presented
in [35] is that it is necessary to store old scene configurations. We will discuss
a solution for this in Chapter [9

Updating indirect illumination can either be done instantaneously or progres-
sively by using frame to frame coherence. In [130] the updates are calculated
instantaneously but in their solution they are using a cluster of PCs and the
quality of the images are decreased. In [100] the indirect illumination is updated
instantaneously but image quality is also low and it is not real-time. Usually
the indirect illumination changes slowly in a scene it is therefore an attractive
property to exploit. When using this approach the illumination is updated
progressively. This is done in e.g. [35] and [122].

The progressive update of the illumination can either based on image space
updates or object space updates. Examples of progressive image space updates
are [137], [133] and [134]. Examples of progressive object space algorithms are
[35] and [122].

It is clear that instant update of indirect illumination will give the highest quality
results, but this is computationally very costly.

The Render Cache ([133] and [134]) uses an image space progressive update. As
described in the introduction this is a method where pixels in the image plane
is progressively updated by using ray tracing. The render cache implementation
only includes direct illumination and specular effects. Nevertheless, indirect
illumination and caustics could just as well be added. When one moves the
image contains a lot of artifacts. This may be a good solution for certain kinds of
application e.g. an architectural visualization. In an architectural visualization
one wants to move interactively and when the right view is found one may accept
to wait for a while to see the detailed image. But for other applications such as
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games this will probably never be acceptable.

Comparing progressive updates in image space and in object space we find
progressive object space updates to be the most visually pleasing methods. We
will therefore strive to create a method that uses object space updates.

In object space the indirect illumination can be stored in either texture maps or
in vertices as described in Chapter[1 (In special situation spherical harmonics can
also be used ([101] [93]). In [35] the indirect illumination is stored in the vertices.
In our solution we want to include final gathering. If we should calculate the final
gathering for each vertex or each face it would be computationally demanding.
If instead we chose to use textures we can apply a fairly coarse texture to even
a detailed mesh and in this way reduce the number of final gatherings. This
will of course produce less detailed indirect illumination, but in most cases this
will not be significant as indirect illumination usually is a very low frequency
function.

In [141] the indirect illumination is also stored in object space in a hierarchical
octree. Unfortunately, this type of data structure currently does not map well
to GPUs.

Our main idea is to be able to selectively update each of the data structures
used in photon mapping. As a first step, we will need to divide the photon
map into several photon maps. We describe this process in Chapter 8 This
step is necessary step since we want to be able to update only parts of the total
illumination stored on the surfaces in the scene. Our focus in that section is
not real-time, and we only present it as an optimization that can be used on
some scenes. In the following sections, we use this method as one of our main
elements in our real-time photon mapping solution.

In [35] a method for selectively distributing photons over a period of time is
described. This method uses Quasi Monte Carlo sequences as described in
Chapter [6l In Chapter[9] we extend the method from [35] and combine it with
the idea of dividing the photon map into several photon maps as introduced in
Chapter 8 By combining these methods we achieve the possibility of updating
many of the calculations which are used for distributing the light at a fine grained
level. The purpose is to exploit the high frame-to-frame coherence and minimize
repetitive calculations that produces similar results. Furthermore, we want to
retrieve information about where the most significant changes have occurred,
because these areas should be updated first.

Together Chapter [8 and[9] deal with the selective distribution of the light while
Chapter 10l and [11]describe how to use the distributed energies to calculate the
color used for the indirect illumination. We call this the reconstruction of the
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illumination as it is a step where we only use the already distributed energies. In
Chapter[10/we use the energies to calculate an approximation of the illumination
by using the distributed energies directly. This is done as described in Chapter[4
but the reconstruction is displayed by using textures. In Chapter[5 we described
different methods for calculating the hemi-sphere integral which is a key part
of the final gathering step in photon mapping. We described how this integral
can both be solved by using ray-tracing and by using rasterization. In Chapter
we introduce a method based on rasterization and GPU functionalities for
calculating a hemi-sphere integral entirely on the GPU.

Chapter[8][9] [10land[1T]describe our method for calculating indirect illumination
in real-time and the following Chapter [12 describes our method for calculating
real-time caustics. Our caustic calculation is based primarily on the photon
mapping approach as described in Chapter 4. Our distribution of photons is
similar to the original photon mapping method. Traditional photon mapping
uses a filter on the photons that is applied for each pixel. We believe this is a
good strategy, and therefore we have also implemented a filter on the photons.
We are using rasterization for displaying the photons and we use a fragment
program for the filtering.



CHAPTER 8

Using Several Photon Maps
for Optimizing Irradiance
Calculations

Usually two photon maps are used in the photon mapping algorithm. One
for caustics and one for indirect illumination (we ignore participating media).
In this chapter we will describe an optimization for calculating the indirect
illumination.

The basic idea behind the following optimization suggestion is to divide a large
problem into smaller problems and then solve each of these smaller problems
individually.

8.1 The Method

In order to calculate a good approximation of the irradiance, a large number
of photons are needed. Furthermore, it is important that the nearest photons
are used. One exception to that is when the photons are located on a surface
that does not point in the same direction as the surface where the irradiance
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is calculated. One solution to this problem is to use a disc to find the nearest
photons on surfaces pointing in the same direction (see Figure 8.1 and [8.2).

Figure 8.1: Photons from one surface leaking to another surface

Figure 8.2: Leaking avoided by using a disc instead of a sphere

Another solution is to compare the normal at the photon to the normal of the
surface that is examined. If these two normals point in approximately the same
direction the photon should be included in the density estimate, otherwise it
should be ignored.

This suggests that one could avoid leaking by using different photon maps on
adjacent surfaces that have a large angle between them. The important question
to answer can therefore be summarized to this: When should two adjacent
polygons use the same photon map and when should each of them use a different
photon map? The rule we have chosen is the following:
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o If the angle between two adjacent polygons is below a predefined threshold
(«) they should use the same photon map for storing photons and per-
forming lookups. The shared edge between such two polygons is classified
as connected.

e If the angle between two adjacent polygons is above the same predefined
threshold («) they should use different photon maps for storing photons
and performing lookups. The shared edge between such two polygons is
classified as unconnected.

It is noted that the angle between two polygons is the angle between their
normals.

This method is very similar to the way hard and soft edges are found in e.g.
VRML. Here a variable called crease-angle is used to specify whether or not the
normals of an edge should be interpolated between the two polygons which this
edge connects ([13]). In the 3D modelling tool 3D Studio Max, the polygons are
classified as belonging to different smoothing groups if the angle between them
is above a predefined threshold.

The method for assigning a photon map to a polygon can be described using
the following pseudo-code:

1. Mark all edges as either connected or unconnected

2. Assign a unique ID to all polygons

w

. If two polygons share a connected edge make their ID identical

I

. Create a photon map for each of the remaining ID’s

Each polygon is now connected to a photon map and several polygons can share
the same photon map. An example of the resulting photon maps from the
algorithm can be seen in Figure and

8.2 Results

The key issue is to answer the question: How big is the advantage of dividing
N photons into M photon maps compared to having one photon map with N
photons? In an attempt to answer this question, we have made two different
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Ay

Figure 8.3: A wireframe polygon model of a scene

tests. In the first test we measure the balance time and the time to calculate an
irradiance estimate. We perform this test multiple times while using different
sizes of the photon maps. For this purpose, we use photons that are distributed
randomly in space, although this is unlikely to happen in a real scene. Never-
theless, it will indicate the performance optimization that can be achieved. In
the second test we use a simple scene and render it by both using one photon
map as usual and several photon maps as we propose. All tests are performed
on a P4 1.7 MHz Dell Portable with 512 Kb level 2 Cache. The code used to
calculate the irradiance is the code made available in [66]. The results of the
first test can be seen in Figure [8.5] and Table [8.1. In Figure [8.6] the balance
time per photon is measured against the number of photons in the photon map.
Balancing a binary tree is done in O(nlog(n)) time. It is therefore expected that
the growth in the diagram is constant when time is drawn logarithmically. In
our implementation, each photon uses 40 bytes and with a 512 Kb level 2 cache
there is room for approximately 13.000 photons in this cache. We believe this
is the reason for the different appearances of the graph before and after 13.000
photons.

In Figure[8.5/the cost of calculating an irradiance estimate is shown as a function
of the number of photons in the photon map. The savings are not as significant
as when we balance the photons, but, nevertheless, a few hundred percent can
still be saved by creating smaller photon maps.

In Table 8.2l we took N photons and divided these photons into M photon maps.
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Figure 8.4: All polygons marked by a color from the photon map they refer to

Photons (N) Maps (M) Balancing the | Lookup for 500

each with N/M photons | M photon maps | nearest photons
1000000 1 5.05 s 332 us
1000000 10 3.08 s 291 ps
1000000 100 0.70 s 213 ps
1000000 1000 0.55 s 116 ps

Table 8.1: Comparison of photon map lookups using different amounts of pho-
ton maps for storing the same amount photons. The photon positions were
generated randomly.

All these results were found by creating 100 completely random photon maps
and then averaging the timings. In the second test we rendered the same scene
by using one photon map (as usual with the photon mapping method) (see
Figure and by using several photon maps as we propose (see Figure [8.8).
As expected there is no visible difference between the two images. In the scenes
displayed in figure [8.3 and [8.4] the timing difference for one and several photon
maps is substantial (see Table[8.2). 50.000 photons were used in this experiment.

It is clear from our results that it is an advantage to distribute the photons into
several photon maps.
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Time (ms)
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Figure 8.5: Cost of calculating an irradiance estimate using 500 photons (in ms)
using photon maps of different sizes

Balancing the Precalculating the
photon map(s) | irradiance estimates
One photon map 0.56 s 13.80 s
Several photon maps 0.08 s 5.88 s

Table 8.2: Comparison of timings for precalculating irradiance estimates for the
images in figure (8.3 and

8.3 Discussion

Although our proposed solution results in a speedup, the method does not apply
well to all scenes. Using several photon maps instead of one should be done with
care. A scene with many small triangles and sharp angles between these will not
be a good candidate for this optimization as the angles between the triangles
will no longer be a good measure for when to split the photon map. This will
typically be the case in scenes generated by using fractal algorithms. In general,
it is important to have a significant amount of photons in each photon map. If
dividing the photon map into multiple photon maps violates this property, it is
not a good idea to split up the photon maps. The photon map is created by
using a left balanced photon map. If photons are added or removed from the
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Figure 8.6: Balance time per photon (in us) as a function of number of photons
in the photon map

data structure, it is necessary to rebalance the entire tree. But if the photon
map is split up into several photon maps, it is only necessary to update the
photon maps that have been modified. This property can be very useful in
animations in which only some parts of the scene are modified from frame to
frame. Furthermore, if the irradiance has been precalculated as described in
[23], this precalculation can also be reused. In addition, by dividing the photon
maps into several photon maps, as we suggest, it is no longer necessary to store
the additional normal introduced by [23], although removing this normal can
only be done if the surfaces are perfectly diffuse. But this is also an assumption
which is often seen, e.g. irradiance caching ([141]) only works with perfectly
diffuse surfaces.

Another problem is how much memory to reserve when initializing the photon
maps. In general, it is not known how many photons to store as it depends on the
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Figure 8.7: Calculated by using one photon map

path that the photons take in the environment. For each time a photon bounces
using the random russian roulette algorithm, one more photon is stored in the
photon map. A photon distributed from the light source can therefore bounce
many times if the surfaces have a high reflectance, or it can just disappear if
it does not intersect any surface or is terminated (determined by the Russian
Roulette algorithm).

This problem can be solved in two ways. Either the memory is allocated dynam-
ically as more memory is needed, or a fixed amount of memory is set aside. The
approach of using dynamically allocated memory is usually the easiest when im-
plementing, while allocating a fixed memory pool is the fastest computationally
as memory defragmentation is avoided.

In our implementation we use the fixed size photon maps. We set aside a
sufficiently large memory area and then we calculate how much memory each
photon map can be granted. This calculation is based on the summed area of
the polygons in the photon map divided by the summed area of all the polygons
in the scene. This approach may be inefficient if the scene is large and all the
photons hit some few bright areas while the rest of the scene is dark.

To summarize: The advantages of having several photon maps are

e Faster irradiance calculations

e Faster balancing of the photon maps
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Figure 8.8: Calculated by using several photon maps

e No leaking problems in corners

e It may be possible to update a limited number of photon maps when
creating animations

Disadvantage of having several photon maps

e Connectivity has to be calculated
e A scheme for memory allocation for the photon maps has to be chosen

e It does not apply to all scenes

To use our method on the caustics and volume photon maps from the photon
mapping algorithm is not as easy as using indirect illumination. This is because
it is difficult to figure out when to split the photon maps. But if the problem
of figuring out when to split the photon maps is solved, then our optimization
applies to them as well.
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CHAPTER 9

Selective Photon Emission

In traditional photon mapping as described in Section[4 all photons are traced
in a first pass. But tracing all photons each frame in a real-time application
is too computationally expensive (at least when using only one CPU). The
selective photon tracing introduced in [35] solves this problem in some ways as
only intelligently selected photons are re-emitted each frame. They give each
photon a fixed initial direction using QMC Halton sequences, and the photons
from the light source are divided into groups where the initial direction of each
photon is similar. Each group contains an equal amount of photons with equal
energies. The photons are traced on the CPU. We find this to be an attractive
strategy, but we distribute the photons a bit differently. We do this to avoid
the weaknesses of the method which are described in the introduction (1.8.3).

9.1 The Method

We enumerate the photons in each group, and for each frame only one photon
from the group is traced. In the next frame, a new photon from the same group
is selected. This is done in a Round-Robin fashion. The path of each photon is
stored, and if the new path diverges from the previous path, all photons from
the group will be marked for redistribution. In this way, more effort is spent in
areas where the scene is modified. It is also guaranteed that minor changes will
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Figure 9.1: Photons distributed from a single group. The initial directions are
similar.

eventually be seen by a photon. It may nevertheless take more time to discover
minor changes than major changes. This is the case as only few photons from
the group may be invalidated and the group may act for a longer time as if
no changes have occured in its domain. Major changes will be registered faster
as many or all photons from a particular group will be invalidated. Photon
bounces are handled by using Russian Roulette ([66]).

The photons are stored as photon-hits on the surfaces along the path of the
traced photon. The complete path of each photon is also stored. In this way,
it is easy to remove the photon-hits from the scene in constant time if the path
of the photon is invalidated. It is also faster to determine whether the photon
path has been invalidated. Each surface also has pointers to the photon-hits
that have hit that particular surface, making it faster to determine the total
amount of photon energies on a surface. The extra storage needed per photon is
an energy amount for each hit, and a pointer from the photon-hit to the surface,
and a pointer from the surface to the photon-hit. The average length of a path
is fairly short when using Russian Roulette. The memory overhead for storing
the photon path is therefore not substantial.

As a result of our chosen strategy of storing the photon paths, a moving light
source will cause all photon paths from this particular light to be invalidated
each frame.

In Figure an example of how photons are distributed from a single group
is shown. In Figure a screen shot of this situation is shown. In Figure [9.4
all primary photons which are distributed in one frame are shown. It is noted
that for each frame, new primary photons are traced. All photons which are
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Figure 9.2: Photons from one group

Figure 9.3: All photons distributed in the scene
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Figure 9.4: All primary photons

distributed are shown in Figure[9.3.

9.2 Discussion

As each light source has a fixed number of photon groups, it may be expensive
to trace a single photon from each group in every frame if many light sources
are present in the scene. It may therefore be desirable to trace fewer photons
from each light source per frame. Whether to trace one photon from each photon
group for each frame or to reduce this number can e.g. be determined by looking
at the distance from the light source to the viewer.
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Approximated Reconstruction
of the Full lllumination

The photons distributed as described in the previous section carry information
about the full illumination in the scene. These photons are used for reconstruct-
ing an approximation of the full illumination. This process is described in the
following.

If enough photons are distributed, the photons will represent the correct illu-
mination in the scene, and they can be calculated directly by using density
estimation ([110]). The problem is that "enough” photons are many millions
and it is almost impossible to completely remove the noise. Therefore, the pho-
tons are used to reconstruct an approximation of the full illumination, and then
this approximation is used in the final gathering step to calculate a smooth and
accurate approximation of the indirect illumination. The number of photons
needed when performing the final gathering is many times smaller than the
photons needed for density estimation (|66]).
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10.1 The Method

In order to approximate the full illumination we compute the irradiance using an
N-nearest neighbor query of the photons, and the total energy of these photons
is divided by the area that they span. The radiance of the surface is stored in
reconstruction texture maps applied to the surfaces. We call these texture maps
approximated illumination maps (AIMs).

Kd-trees are fast for N-nearest neighbor queries. In order to build the kd-tree,
only photons that are located on surfaces which could possibly contribute to the
irradiance of the current surface are considered. We use a technique similar to
the one presented in [78]. In [78] the division into surfaces is done automatically,
however in our implementation we have performed the division by hand by using
a 3D modelling tool. When a photon hits a surface, it is not stored in a global
data structure but in a structure local to the surface that was hit (see the
discussion for an analysis of this choice). A surface can contain an arbitrary
number of polygons. Figure[10.1]shows a Cornell box with a bumpy floor and
unique colors for each surface.

Figure 10.1: Left: A unique color is displayed for each surface, Right: Same
scene shown using wireframe (13.000 polygons and 16 surfaces

Updating all the AIMs for each frame is computationally expensive and unde-
sirable. Consequently, we use a delta value for each surface to control when
its AIM should be updated. The value (Ay) is a delta value for the full ap-
proximated illumination. The Ay value is affected by the energy of any photon
that is removed or stored on a surface. Only when Ay is larger than a small
threshold value, the AIM should be updated.

In practice it can be necessary to limit the amount of work done per frame. In
our implementation we first handle surfaces with high %, where A; is the area
of the surface. We only update a limited amount of surfaces per frame.
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Figure 10.2: The full approximated illumination

As only one photon map from a single surface is utilized at any point in time,
it is only necessary to create a single photon map in the memory. This photon
map only need to store the photons of a single surface. This makes the memory
requirement smaller than if one global photon map containing all the photons
had been used.

In Figure[10.2]the full illumination using the approximated textures (AIMs) is
shown.
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CHAPTER 1 1

Indirect lllumination using
Hardware Optimized Final
Gathering

As described in Chapter /5] a hardware optimized final gathering method was
introduced in [28], namely the hemi-cube. This method needs to render the
scene 5 times for each resulting final gathering value. The 5 renderings are one
for each side of the hemi-cube. The front side of the hemi-cube contributes
with about 56% of the incoming directions, while each of the side planes each
contribute with about 11% of the incoming directions. In [112] a method is
introduced which only uses the front plane of the hemi-cube and then enlarges
this front plane. In this way, a more accurate solution can be achieved, as we
only use the front plane. If e.g. the front side is enlarged to double side length,
thus making the total area 4 times larger, this accounts for about 86% of the
total incoming directions (see Figure[5.4).
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11.1 The Method

We use the hemi-plane method for the final gathering step. The scene is rendered
to the hemi-plane by using the full approximated illumination from the photons.
This is achieved by rendering the scene with the AIMs. Each pixel of this
rendering must be multiplied with the fraction of the hemisphere that it spans
and a cosine factor in order to calculate the irradiance. The irradiance is defined
as:

E = /QL(w’)(n W) dw (11.1)

where F is the irradiance, L is the incoming radiance, n is the normal, w is the
direction of the incoming light, and dw is the solid angle.

This expression can be approximated in the following way.

The cosine weighted area (This corresponds to (n - w’)dw in Equation [I1.1) on
the hemisphere which a fragment on the rendered surface of the rendered plane
spans is defined as:

1

F; =——F—AA 11.2

h(x7y) 7r(x2+y2+1)2 f ( )
where Fj, is the cosine weighted area of the hemisphere and AAy is the area
of a fragment. The (z,y) components are the distances from the center of the

plane([28]). The irradiance can then be approximated as:

E%Zp(x7y)Fh(x’y) (11'3)

z,Y

where p(x,y) is the pixel value of the rendered plane. The irradiance value
should be divided by the percentage of the hemisphere which the rendered plane
spans in order to compensate for the missing areas.

The calculation above can be implemented on the GPU. The way we have im-
plemented this is first to render the scene to a pixel buffer (pbuffer). Then this
pbuffer is used as input to a fragment program which multiplies each pixel with
a value calculated by using Equation [11.2) Then the resulting summation is
calculated by using hardware MIP map functionality (we use the OpenGL ex-
tension SGIS_generate_mipmap). The MIP map function calculates the average
of a texture in the topmost level of the MIP map. Therefore we multiply each
pixel by the total number of rendered pixels. This is performed in the fragment
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Figure 11.1: First, the hemi-plane rendering is multiplied with the area weighted
cosine term. The final irradiance value is calculated by using MIP mapping.

program which is run before the MIP map is executed (see Figure [11.1). We
copy this final pixel to a texture that is applied to the surface in the scene. We
call this texture the indirect illumination map (IIM) (In our implementation
they have the same resolution as the AIMs). All the steps are executed on the
GPU, and no expensive read-back to the CPU is necessary.

Calculating the radiance for the indirect illumination can be done in several
ways. If a texture is applied to the surface, the irradiance should be stored in
the IIM and multiplied with the texture during rendering. But if the surface has
a uniform color, the radiance could just as well be stored directly in the IIM.
This can be done by pre-multiplying the irradiance values with the reflectance
of the surface in the fragment program.

Displaying the illumination is often done in real-time applications by using tex-
ture maps which are also called light maps. Light maps usually contain both
direct and indirect illumination and they are often coarse. Since the indirect
illumination usually changes slowly over a surface it is possible to use an even
coarser texture.

It is noted that when we use this approach, only diffuse reconstruction of the
indirect illumination can be handled.

Many techniques can be used for applying a texture with uniform size to a
model, and several full automatic methods have been proposed ([45]). In our
implementation, we have applied the textures manually by using a 3D modelling
tool.

As with the AIMs, it is computationally expensive to update all the ITMs for
each frame. Therefore, we introduce A; which is the delta value for the indirect
illumination. This value is similar to Ay except that it is only affected by
photons that have bounced at least once. As with the AIMs the surface with
the highest A; will have its IIM updated first.
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Figure 11.2: The gather coordinates

In our implementation, we restrict the number of texels which can be updated
per frame in order to keep a high frame rate.

We use two textures for the IIMs. One that is visualized and one that is being
updated (double buffering). When the update of a texture is done, the two
textures are switched using a blend between the textures. This is done in order
to avoid popping. But for the indirect illumination to be updated this is a
trade-off between popping and lag. We have therefore set the blend function to
be fairly fast. Whether a quick or a slow blend should be used depends on the
application.

In Figure[11.2 the centers of the GPU based gathering is shown. These are the
centers of the textures.

11.2 Discussion

The final gathering method renders the entire visible scene using the center
of the texel that should be updated as the camera point. Since all pixels of
this rendering are averaged using MIP mapping before they are used, it is not
necessary to render an extremely accurate image, and the lowest level of detail
for all objects in the scene might as well be chosen. Culling algorithms should
of course also be enabled using the final gathering renderings.
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We have implemented the summation of all pixels in the final gathering step
using hardware MIP mapping. Currently this can only be done using 8 bit
precision. In the next generation of GPUs it is likely that this can be done
using floating point precision. Another option would be to calculate the MIP
mapping using fragment programs which is done in e.g. [93].

Aliasing is usually a problem when using hemi-cube based methods. To illus-
trate that aliasing is not an issue one can imagine an AIM with infinitely high
resolution. The rendering to the hemi-plane will in this case correspond ex-
actly to an N-nearest query lookup in the photon map. We use the hemi-cube
for gathering radiance values from textures with large texels. The large texels
is a filtering of the radiances which will reduce an eventual aliasing problem.
Further it is cheap to increase the size of the hemi-cube (see Table [14.2).



96

Indirect lllumination using Hardware Optimized Final Gathering




CHAPTER 1 2

Hardware Optimized
Real-time Caustics

Caustics arise when a photon hits a diffuse surface after having been specularly
reflected one or several times directly from the light source. When using photon
mapping, caustic photons are traced in the same way as with the photons used
for the indirect illumination. But photons are only traced in directions where
known caustics generators (specular reflectors) are located ([66]) (It should be
noted that this implies that caustics caused by indirect illumination can not
be captured). When the photon hits a diffuse surface, its location is stored.
Our method is based on this strategy, which means that we do not have the
limitations of the real-time caustic method described in [136].

12.1 The Method

We distribute the photons evenly by using QMC Halton sequences in order to
lower the noise and avoid flickering. The photons are traced by using a standard
CPU ray tracer. We store the photons in a simple list. We do not divide the
photons into groups as with the indirect illumination because caustics are very
localized.
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In order to reconstruct the caustics, we do the following. First we draw the
scene by using the color black to a pbuffer with the depth buffer enabled. This
is done in order to get the right occlusion of the photons. Then all the photons
are drawn additively as points by using blending to this pbuffer. Afterwards the
pbuffer contains a count of the photons that have hit a particular pixel. This
pbuffer is used as a texture, which makes it possible for a fragment program to
read the color value of the current pixel from the previous rendering. A screen
size polygon with this texture is therefore drawn by using a fragment program.

Furthermore it is also possible to read the photon count. Based on the photon
count of the nearby pixels, a filter is applied to the pixels:

koo k
c(z,y) =s Z Z t(x +i,y+§)V/1 + 2k2 — (12 + j2) (12.1)

i=—k j=—

where ¢(z,y) is the resulting color at position (z,y) and ¢(x,y) is the texture
value at position (z,y). s is a scaling value that adjusts power of the photon
energies. We use a filter of size 727 (i.e. k= 3).

By using this method, it is possible to count 255 photons (8 bits) at each pixel,
and this will be sufficient in most cases. When counting the photons in the
framebuffer it is assumed that all lights and all caustics generators have the
same color, otherwise a floating point pbuffer is needed.

This is a screen space filtering while photon mapping traditionally uses filtering
in world space. As a result the caustics are by no means physically correct.
If one zooms in on the caustic fewer photons will be filtered and consequently
the caustic will look less intense. If one zooms out or just changes the angle at
which the surface with the caustic is viewed, more photons will be filtered and
consequently the caustic will look brighter.

In order to solve this problem we want to scale the intensity of the caustic to
make it appear equally bright when the angle is changed and when one zooms
in and out. We have chosen to calculate the world space area size of a screen
space pixel and scale the intensity of the caustic by using this value. The area
of a pixel in world space can be described as follows:

A= (ng-n.)(4d* tan(Qf—x) tan(ﬁ)) (12.2)

Pz 2py

Where A is the world size area of the pixel. f, and f, are the field of view in the
z and y direction. p, and p, are the number of pixels in the z and y direction.
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Figure 12.1: World size area of a pixel.

[ d 1

Figure 12.2: World size area of a pixel seen from the side.

d is the distance from the eye point to the pixel (or the geometry that the pixel
represents). n. is the direction from the pixel toward to eye. ng is the normal
of the surface at the pixel (See Figure[12.1 and Figure [12.2).

The process is as follows: First the depth of the scene is rendered to one com-
ponent in a floating point pbuffer (e.g. the red component). Simultaneously,
the dot product between the n. and n; is rendered to another component in the
floating point pbuffer (e.g. the green component). The fragment program that
filters the caustic photons is then given this floating point pbuffer as input. By
using this approach it is possible for the fragment program to have access to the
current depth value and the dot product and as a result it is possible to evaluate
Equation [12.2 in the fragment program. In the following we will discuss some
of the implementation details.
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Calculating the screen space position (in the canonical view frustum) of a vertex
is done as follows:

s = Mppuw (12.3)

Where p, is the screen space position in homogeneous coordinates, M, is the
model view projection matrix and p,, is the world space position of the vertex.
This calculation is performed in a vertex program. In a fragment program the
z value that is written to the floating point pbuffer is calculated as follows:

e +1
z= % (12.4)

Where z is the interval [0;1].

In the fragment program which filters the caustic the z value of the current pixel
is read from the pbuffer. The d value can then be calculated from the z value
by using the following formula:

__onxf
zx(f—n)—f

Where n is the near plane and f is the far plane in the current projection matrix.

d= (12.5)

The surface normal ng can be found by multiplying the model matrix with the
normal of the object, while n. is found by creating a normalized vector from pg
to the eye point.

By using the approach described above all variables in Equation [12.2 are now
available in the fragment program. Nevertheless, this approach is still more
inaccurate than the the traditional nearest neighbor approach. By using our
approach a fixed search radius is used. When one zooms in very close the radius
will be too small and too few photons will be included. As a result the caustic
will become inaccurate. When one zooms out the radius will be too large and
the photons will not span the radius and the intensity will become too low.
However, weighting the intensity of the caustic with the area of a pixel makes
the caustic more physically correct and does improve the image quality (see

Figure[14.6)).

Tracing all photons in every frame may not be necessary. If the application runs
at e.g. 30 fps, it may not be notable if each photon is only retraced every second
to every tenth frame. If the specular object is moved fast, it will be possible to
see a trail after the specular object. Whether this is visually acceptable depends
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on the application. In our experience, the delayed photon distribution does not
disturb the visual appearance when the frame rate is high, and if the object
moves slowly it is hard to notice.

The implementation of equation [12.1 is a time consuming fragment program.
When using a filter of size 7x7, the summations are unrolled to a program that
has about 400 lines of assembly code and 49 lookups in the texture. Therefore
it is desirable to limit the use of the fragment program to areas where caustic
photons are actually present. This is done by using the following method.

Before the photons are drawn to the pbuffer, stenciling is enabled. The stencil is
set to increment on zpass. When the photons are drawn, they are also marked
in the stencil buffer. Then the screen is divided into a number of grid cells.
For each grid cell, an occlusion query is started as a quad is drawn. The stencil
function is set only to let pixel be written to the pbuffer if the stencil value in the
pbuffer is greater than zero. When the quad is drawn, the occlusion query will
return the number of pixels that were modified. If no pixels were modified, no
photons need to be filtered in this area. In this way, the inexpensive occlusion
query can identify the areas that have caustic photons. Often the caustic only
fills a few percent of the screen. The process is illustrated in Figure[12.3] The
process is similar to the process described in [36].

. A
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Figure 12.3: Left: photons are drawn on the screen. Middle: Areas on the
screen are tested for photons. Right: Areas are filtered in screen space.
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CHAPTER 1 3

Combining the Contributions

For the direct illumination we can chose either to use ray tracing or rasterization.
In Chapter [3 we made a simple comparison between ray tracing and rasteriza-
tion. We concluded that in many situations the result will be visually similar.
Nevertheless, rasterization will in many situations be faster. In our solution we
will therefore use rasterization for the calculating the direct illumination.

We use stencil buffer shadow volumes for calculating the shadows. Our im-
plementation uses hard shadows but real time hardware rendered soft shadows
could just as well have been used ([63], [11], [54]). Any soft shadow algorithm
is equally well suited as the shadow is rendered to a separate pbuffer. When
combining the light contributions the shadow is applied by using the shadow
pbuffer as a screen size texture.

We use a dynamic environment map for specular reflections. This is done by
using a cube-map. For each frame the scene is rendered six times in order to
update the sides of the cube. Multiple interreflections could have been used as
well ([92]).

Combining the various contributions is an additive process. We create a sepa-
rate pbuffer for the shadows and another for the caustics. When the scene is
rendered, the direct illumination is calculated for each pixel and multiplied by
the content in the shadow pbuffer. The texture value for the indirect illumina-
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tion is sampled in the ITMs which are applied to each surface. These values are
added to the final color along with the caustic’s value (see Figure[13.1). In this
way, we combine the contributions in a final pass.

. _ .
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Figure 13.1: Top left: The direct illumination without shadows. Top middle:
Shadows. Top right: Reflections. Bottom left: Indirect illumination. Bottom
middle: Caustics. Bottom right: Complete illumination

The formula is as follows:

L= Lindirect + Lcaustics + Lspecular + Ldirect * shadow (131)

When several lights are present in the scene the formula is as follows:

lights

L = Lindirect + Leaustics + Lspecular + Z Ldirect(i) * Shadow(l) (132>
=0
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Results

We have implemented our application on a Pentium 4, 2.4 Ghz with a GeForceFx
5950 graphics card running Windows. All code has been written in C++ and
compiled by using Visual Studio 6. Cg was used for all vertex and fragment
programs ([86]). Our photon-tracer utilizes a standard axis-aligned BSP-tree
build by using a cost function based on surface areas ([55], [120]). It is reasonably
fast. Even so, it is not as fast as the very optimized ray tracer used in [125].

Each dynamic object in the scenes uses a separate BSP-tree. Any photon traced
in the scene is therefore tested for intersection with all BSP-trees.

The scene in Figure [13.1 with indirect illumination and caustics runs a 35+
fps. The cube and the sphere are dynamic objects. 10000 photons are used for
the caustics, and they are completely updated over 8 frames. For the indirect
illumination, 77 photon groups are used each with 40 photons. A maximum of
20 texels per frame are updated by using final gathering. The big surfaces on
the walls have textures of 5 by 5 texels for both the AIM and IIM. In total, the
scene has 140 texels for the AIMs and similarly 140 texels for the IIMs. The
scene is rendered at a resolution of 512 by 512 pixels and all pbuffers are also
512 by 512 pixels. The environment map is rendered as a cube-map and the
scene is rendered 6 times per frame. Each side in the cube-map has a resolution
of 128 by 128 pixels. The memory used for storing the photons and their paths
is in this case the number of photons multiplied by 3 floats for the energies and
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the size of two pointers multiplied by the average path length, which in our case
is approximately 2. This gives a total memory requirement of approximately
120 Kb.

If we consider two unconnected rooms, and modifications only occur in one of
the rooms, then no updates will be necessary in the other room. Only minimal
computational power will be spent in the other room as no photons will be
invalidated. This case is shown in the top-most scene in Figure When
the rooms are connected, updates made in one of the rooms will now affect the
illumination in both rooms (see middle image in Figure [14.1). The bottom-
most image in Figure[14.1 shows a scene, where the right room is illuminated
primarily by indirect illumination.

Figure 14.1: Top: A scene with two divided rooms each with two light sources.
Middle: The rooms have been connected. Bottom: Two of the light sources
have been turned off.
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Photons | Irradiance lookup (100 photons) | Balancing time
300 0.023 ms 0.10 ms

500 0.027 ms 0.18 ms
1000 0.029 ms 0.39 ms
2000 0.034 ms 0.84 ms

Table 14.1: Timings for balancing a kd-tree with photons

Render size | Fragments | Polygons in scene | Timings
8 8x8 34 | 0.75 ms

16 16x16 34 | 0.76 ms

32 32x32 34 | 0.78 ms

8 8x8 13,000 | 0.90 ms

16 16x16 13,000 | 0.91 ms

32 32x32 13,000 | 0.97 ms

8 8x8 133,000 | 1.55 ms

16 16x16 133,000 | 1.57 ms

32 32x32 133,000 | 1.59 ms

Table 14.2: GPU final gathering timings

Balancing a kd-tree for fast searching is computationally cheap when the number
of photons in the kd-tree is low. In Table[14.1] timings for balancing a kd-tree
are shown. The time for finding the nearest 100 photons is also shown.

When the indirect illumination is updated it is important that the final gathering
step is fast. We have measured how much time a single final gathering takes.
A single final gathering includes a rendering of the scene using textures of the
approximated illumination, a fragment processing of each pixel, summation of
the pixels using hardware MIP map generation, and a copy of the final pixel to
a texture (see section 4). We have timed these steps using scenes with different
polygon count. The scenes with 13,000 and 133,000 polygons were made by
subdividing the surfaces and making the surfaces more bumpy. The results can
be observed in Table[14.2] It is noted that the timings are not very sensitive to
the number of polygons in the scene. Furthermore, it is observed that improving
the quality by increasing the render size does not significantly decrease the
performance.

Another option would be to use traditional ray-tracing for the final gathering
step and send the calculated value to the graphics hardware. Our timings show
that copying a single texture value from the CPU to the GPU takes 0.65 ms.
Tracing 1024 (32x32) rays in a scene with one dynamic object (i.e. two BSP-
trees) and 8000 polygons takes 16.7 ms using our implementation of the axis-
aligned BSP tree. Furthermore, the radiance should be calculated at the surface
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that each ray hits and a final cosine weighted summation should be performed.
Using our measurements, it can therefore be concluded that our hardware op-
timized final gathering method is many times faster than a ray-tracer based
approach.

The filtering of caustics in screen space is optimized by using the occlusion
query which is described in a previous section. Our timing of the occlusion
query shows that it takes 0.33 ms to run 100 occlusion queries over an area of
512 times 512 pixels. Using our GPU caustics filter on an area of 512 times 512
takes 37.6 ms while only filtering 1% of this area takes 0.38 ms. In a typical
scene, the caustics fills less than 5% of the screen (see Figure [14.2). The time
spent on the occlusion query is therefore well worth the extra effort.

Figure 14.2: Left: Caustics being cast from a dynamic object onto another dy-
namic object and a bumpy floor. Right: The same scene shown using wireframe

In Figure|14.3| we have calculated the same scene both using traditional photon
mapping and by using our method. It is observed that the results are very
similar.

In Figure [14.4] the scene is shown with low and high texture resolution for the
indirect illumination. The image with the low texture resolution uses textures
with approximately 5 by 5 texels on the large surfaces. The image with the high
texture resolution uses textures with approximately 50 by 50 texels on the large
surfaces. In the image with the low resolution textures minor mach banding
artifacts can be seen on the ceiling. Nevertheless, it is noted that in the given
situation a low texture resolution is sufficient.

In Figure we have compared the indirect illumination calculated by using
our hardware accelerated MIP-mapping approach and by using traditional ray
tracing based final gathering. The remaining calculations (direct illumination,
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Figure 14.3: Left: Full illumination in a scene calculated by using ray tracing
(hard shadows have been used for comparison). Right: The same scene shown
where the illumination is calculated by using our method

shadows, specular surfaces, caustics and photon distribution) are calculated by
using our method. The difference can therefore only be caused by the limited 8
bit precision of the calculations and the missing areas on the hemisphere caused
by our use of the hemi-plane. It is noted that the results are very similar, which
justifies the use of our hardware accelerated MIP-mapping method.

In Figure(14.6 we have compared the appearance of the caustic when one zooms
out. It is noticed that the brightness of the caustics are approximately the same.
This is due to our area weighting as introduced in Equation[12.2.
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Figure 14.4: Left: Illumination calculated using our method with high texture
resolution. Right: Illumination calculated using our method with low texture
resolution.

Figure 14.5: Left: Indirect illumination calculated using our method. Right:
Indirect illumination calculated using ray tracing based final gather.
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Figure 14.6: Left: Our area based method is used for scaling the intensity of
the caustic. Right: The same scene calculated by using traditional ray tracing
and photon mapping.
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Part 1V

Discussion & Conclusion






CHAPTER 1 5

Discussion

Many methods can be used for optimizing a 3D application. Popular methods
are Occlusion Culling, Level of Detail (LOD), tri-stripping, Portals and front-
to-back render order rendering, but many others can be used ([5]). These all
work well with our new methods.

Tracing photons is done by using an axis-aligned BSP-tree. If the scene is
divided into a number of cells e.g. by using portals the BSP-tree can just as
well be divided into several trees. Since photon tracing using a BSP-tree only
takes O(logn) it may not be desirable to split the BSP-tree.

Both our method for final gathering and photon tracing scales well with regard
to the number of polygons in the scene. The limiting factor is the movement of
objects in the scene that causes photons to be invalidated and the indirect illu-
mination to be updated. Particularly the accuracy of the indirect illumination,
i.e. the number of texels in the IIMs, is a limiting factor. Consequently, making
the scene larger e.g. with more rooms and floors, will not affect the lag and
frame rate if modifications occur locally. But the computation time will be af-
fected heavily if the objects get more detailed and more and smaller texels have
to be used for representing the illumination. Our method scales well with the
size of the scene but not with a lot of fine details in the geometry. Nevertheless,
a fractal floor, as demonstrated in our example, can be handled appropriately.
Avoiding many small texels in the IIMs is an area of future research.
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As each light source has a fixed number of photon groups it may be expensive
to trace a single photon from each group every frame if many light sources are
present in the scene. It may therefore be desirable to trace fewer photons from
each light source per frame. Whether to trace a photon from each photon group
or trace fewer photons from a light source can e.g. be determined by the distance
from the light source to the viewer.

One of the biggest advantages of using photon mapping compared to e.g. ra-
diosity is that it is mesh independent. When using our approach, we group the
geometry into surfaces and use local photon maps, and this suggests that our
method is less geometry independent than traditional photon mapping. But
when calculating the irradiance by using traditional photon mapping with an
n-nearest neighbors query, only photons with normals similar to the center of
the query are usually used. This can be viewed as an implicit division of the
geometry similar to our grouping of the surfaces.

One disadvantage of our method is our use of textures for storing the indirect
illumination. When using traditional photon mapping only point sampling is
used, and there is no need for applying texture maps to the surfaces. Applying
texture maps to surfaces is a complicated task. Currently it is a very active
research area ([45]). Nevertheless, creating animations by using photon mapping
utilizing Monte Carlo integration and point sampling often produces popping
and flickering ([33]). By storing the indirect illumination in textures popping
and flickering is avoided.

By using our method, shadows and direct illumination is updated in every frame
while the indirect illumination is updated progressively. We find this to be
a good strategy since our observation is that correct direct illumination and
shadows are more important than indirect illumination for the visual impression
of a scene.

Our strategy for updating the indirect illumination is in many ways similar to
[122] as the indirect illumination is updated selectively in object space. This is
in contrast to a number of other methods like [133], [134] and [137] in which the
updates are performed in image space.

We based our priorities on invalidated photons in object space. However, in
[122] the priorities are calculate in camera space (as in [133], [134] and [137]).
When using our method it is therefore possible to move the camera quickly
without severe artifacts. This is something that is often done in e.g. games.
This is possible because the indirect illumination of the entire scene is cached
and because the indirect illumination is assumed to be diffusely reflected. To the
best of our knowledge, there are no other approaches which performs progressive
updates based on object space information. The drawback of our approach is
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that expensive calculations are performed in parts of the scene that can not be
seen. On the other hand, the updates may often be caused by the user and as
a result the updates will often occur in the visible areas of the scene.

The Instant Global Illumination method (|128], [125]) utilizes no frame-to-frame
caching. Likewise, we do not use any frame-to-frame caching for direct illumi-
nation, shadows and specular surfaces. However, we base our method on raster-
ization while the Instant Global Illumination method is based on ray tracing.

Our approach is based on the combination of one CPU and the GPU. This is
also the case with [71], [35] and [100], whereas [128] and [122| utilizes many
CPUs.

The texture resolution for the indirect illumination (IIM) is fixed in our im-
plementation. Further research should be made to address the problem of dy-
namically choosing the texture resolution in order to reconstruct the indirect
illumination more accurately. One direction for this research could be to apply
a filter to the texture in order to find high second order derivatives, as this is
probably a good location for increasing the texture resolution. Another direc-
tion would be to use methods that depend on distances to other surfaces similar
to what is used in irradiance caching ([141]). A hierarchical method similar to
[122] could also be used for subdividing the surfaces although it requires a fine
meshing or a constant re-meshing of the scene.

It should be easy to add our methods at specific locations. E.g. in one room,
indirect illumination could be enabled and at an outdoor location, caustics could
be enabled for a single object. In this way, the designer of e.g. a game can make
sure that the application always runs at a sufficient frame rate while adding
additional features only where it will not compromise the frame rate.
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CHAPTER 1 6

Conclusion

This chapter concludes this thesis. The main topics treated in this thesis are
summarized in Section 16.1l An overview of the contributions are described in
Section 16.2l In Section[16.3 we give our view on directions for future research.
The Chapter is ended in Section 16.4] where we give our final comments.

16.1 Summary

In this thesis we have examined the components of global illumination. In the
introduction we gave an overview of the parts that constitute global illumination.
We also described a number of different methods for solving each of the parts
in global illumination. In particular we described ray tracing and rasterization
and the advantages and disadvantages of each of these methods.

The theory part had details on illumination but only the subjects that were
needed in order to describe the subject in the contributions’ part were treated.
First it was described how direct illumination from an area light source can both
be calculated using rasterization and ray tracing. It was demonstrated that in
some cases the result from these two methods are similar although rasterization
is substantially faster. Then the basics of photon mapping were described.
Furthermore many of the optimizations that were needed for photon mapping to
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run faster was described. In the discussion we concluded that photon mapping
in many ways is superior to path tracing and radiosity. This is due to the
speed and generality of photon mapping. In Chapter [5l we took a closer look
at one of the most time consuming parts when calculating global illumination,
which is the final gathering step. We described two main methods for solving
the final gathering integral. First we described a ray tracer based method and
different optimizations. Then we described several rasterization based methods
all derived from the hemi-cube method. The conclusion was that rasterization
methods can be made to run faster, while ray tracer based methods are more
general. But in many cases both methods are equally good, especially when we
are dealing with diffuse surfaces.

The contribution part begins with a method for dividing the photon map into
several photon maps. This is necessary since the latter algorithms make local
updates to each surface. Then a modified method for distributing the photons
selectively is introduced. The advantage of this method is that only areas, where
changes are made to the scene, will be updated. Then the full illumination is
calculated based on the photon energies on the surfaces. The full illumination is
stored in texture maps on the surfaces. The full illumination is used to calculate
the indirect illumination using final gathering. We then present a new method
for calculating the final gathering by using rasterization, fragment programs and
mip-mapping. The indirect illumination is also stored in textures.

Caustics are calculated using traditional photon tracing but the photon hits are
stored in a simple list. They are drawn to the screen by using points and they
are then filtered by using a fragment program. An optimization is presented
that limits the areas in which filtering is performed.

Finally all the individual components are combined by using a fragment pro-
gram. In the result section, real-time performance is demonstrated.

16.2 Contributions

The contributions in this thesis are all components that can be used to simulate
photon mapping in real-time.

The first contribution is to divide the photon map into several photon maps.
We demonstrated that it gives a speedup. But we have also concluded that
this solution is not the best approach in all circumstances. However, in order
to selectively update the indirect illumination as we introduce a method for in
Chapter/10/and Chapter[12] dividing the photon map in to several photon maps
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is a necessary step.

The second contribution is to selectively distribute the photons. By storing
the photon paths we are able to detect changes in the scene and in this way
concentrate the photon tracing to these areas. This has produced a very scalable
solution where the cost of updating the scene depends exclusively on the changes
in this scene.

A third contribution is selectively to update the approximated full illumination
and indirect illumination stored in textures. The updates are based on the
photon energies that are added or removed from the surfaces. Continuously the
surfaces on which the energies have changed the most are updated.

A fourth contribution is to calculate the final gathering by using rasterization,
fragment programs and MIP-mapping. By using this technique, it is now pos-
sible to calculate the final gathering directly on the GPU with no expensive
readbacks to the CPU.

The fifth contribution was to calculate caustics by using traditional photon
tracing but using fragment programs for filtering in image space to reconstruct
the caustics.

The sixth contribution was a technique for optimizing the caustic filtering by
using occlusion queries for testing in which areas one should perform filtering.
This produced a substantial optimization for calculating the caustics.

16.3 Directions for Future Research

Many methods exist for solving the global illumination problem. We believe
that the best method will always be a hybrid method, and it is unlikely that a
single new algorithm will outperform all others with respect to both quality and
speed. Photon mapping is a hybrid algorithm, and we believe that for many
years this algorithm and derivatives of it will be the best methods.

We use rasterization in our real-time photon mapping solution instead of ray
tracing for both direct illumination and final gathering. Nevertheless, ray trac-
ing is more flexible and general, and it is therefore desirable that real-time global
illumination can be achieved by using ray tracing at some point.

What clearly lacks in our work is to demonstrate that our methods work for
other scenes than fairly simple ones.
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16.4 Final Remarks

Currently, the quest for faster global illumination is a very active area. The goal
of this thesis was to create a method which could produce global illumination for
real-time applications. This has to some degree been accomplished. However,
this is not the end of the road as our new methods does not apply to all scenes.
Some of the generality and the high image quality of the original photon mapping
algorithm has suffered in order to make the algorithm run fast. We believe that
our new methods can be used in some applications. Further, we believe that
there is still room for improving our method with regard to generality, image
quality and speed.
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