
Optimization of Path Protection

Kasper Bonne Rasmussen

Supervisor:

Thomas K. Stidsen

Informatics and Mathematical Modeling

Technical University of Denmark

December 5, 2005

ii

iii

Abstract

As connection oriented network solutions are used more and more for
telecommunication, live television broadcast, streaming of sound and video,
solving the timing issues in voice over IP (VoIP) and much more, it becomes
increasingly important to protect such networks from link failures as they
do not have the inherent protection of a packet switched network.

Protection from link failure can be costly since additional capacity is
needed for backup paths. In this theses we will present a path protection
method called Shared Backup Path Protection which has a capacity re-
quirement very close to the lower bound. We will show how the model is
implemented and test the final program on several well known networks.

Kgs. Lyngby, December 5, 2005

Kasper Bonne Rasmussen, s992293

iv

Contents

1 Introduction 1

1.1 Chain of events . 2

1.2 Protection methods . 3

1.2.1 1+1 protection . 3

1.2.2 Ring Protection . 4

1.2.3 p-cycle Protection . 4

1.2.4 Local Backup Protection 5

1.2.5 Local Dynamic Backup Protection 5

1.2.6 Global Rerouting . 6

1.2.7 Single Backup Path Protection 7

1.2.8 Reverse Single Backup Path Protection 8

1.3 Methods compared . 8

2 Single Backup Path Protection 11

2.1 The model . 11

2.2 Notation . 12

2.3 The master problem . 12

2.3.1 The second constraint 13

2.4 The sub problem . 14

2.4.1 The z values . 15

2.4.2 Combine the flow constraints? 16

2.5 Complexity of the master- and sub problem 16

3 Converting to COIN 19

3.1 Converting the problem to COIN 19

3.2 Master problem . 21

3.2.1 Master problem A matrix 22

3.3 A graphic representation . 23

3.4 Sub problem . 24

3.4.1 Sub problem A matrix 25

v

vi CONTENTS

4 Applied algorithms 29

4.1 Column generation . 29

4.1.1 Improvements . 30

4.2 MIP algorithm . 33

4.3 Bhandari algorithm . 35

4.4 LP–solver . 36

4.4.1 Improvements . 37

5 Implementation 41

5.1 Environment . 41

5.2 Classes . 41

5.3 Running time analysis . 43

5.4 Data structures . 44

6 Results and Discussion 47

6.1 The networks . 47

6.2 Solutions . 48

6.3 Quality . 48

6.3.1 Solution time . 50

6.4 Implementability . 50

6.5 Objective values . 50

6.6 Integer solution . 51

6.6.1 The integer results . 52

6.7 Reverse Single Backup Path Protection 53

6.7.1 New formulation . 53

6.7.2 Rsbpp master problem 54

6.7.3 Rsbpp sub problem . 54

6.7.4 Sbpp vs. rsbpp . 55

7 Future research 57

7.1 Stop–release in sbpp . 57

7.2 Bhandari prices . 59

7.3 Optimize master problem . 59

8 Conclusion 61

A Selected source code 63

A.1 columngen.cc . 63

A.2 sbppmasterproblem.cc . 66

A.3 sbpp sub mip.cc . 77

A.4 sbpp sub bhandari.cc . 85

A.5 network.cc . 88

A.6 lex.cc . 92

A.7 basefilereader.cc . 95

CONTENTS vii

A.8 topfilereader.cc . 97

B Network formats 101

B.1 Top format . 101
B.2 xy2 format . 102

C Network structures 103

viii CONTENTS

List of Figures

1.1 The idea behind path protection. 1

1.2 Path protection chain of events. 2

1.3 1+1 protection. 3

1.4 Ring (and p-cycle) protection. 4

1.5 Local backup protection. 5

1.6 Local Dynamic Backup Protection. 6

1.7 Global Rerouting. 6

1.8 Single Backup Path Protection. 7

1.9 Sbpp vs. 1+1 protection . 8

1.10 Reverse Single Backup Path Protection. 8

1.11 Various known protection methods, and their average capac-
ity requirements compared to the lower bound. 9

2.1 A possible primary and backup path for the data if the con-
straints where combined in a single constraint. 16

2.2 The relationship between the different complexity classes. . . 17

3.1 The testnet2 network. 20

3.2 Coin model. 20

3.3 The A matrix and the upper and lower row bounds of the
master problem. 22

3.4 This is the optimal solution for the testnet2 network. 24

3.5 The A matrix and the upper and lower row bounds of the sub
problem. This example represents the testnet2 network. . . 26

4.1 This is data from the 11n26s network with no improvements.
Left to right the graphs show: Number of Columns, Total gap

and the Objective value. 31

4.2 This is data from the 11n26s network when using the first
pruning strategy (Prune every column not in basis). Left to
right the graphs show: Number of Columns, Total gap and
the Objective value. 31

ix

x LIST OF FIGURES

4.3 This is data from the 11n26s network when using the second
pruning strategy (Prune every column with a positive reduced
cost). Left to right the graphs show: Number of Columns,
Total gap and the Objective value. 32

4.4 This is data from the 11n26s network when using the limit
columns strategy. Left to right the graphs show: Total gap

and the Objective value. 33
4.5 This is the 28n45s network solved using only the MIP–solver,

and using first the Bhandari heuristic and then the MIP–
solver. The left ones are the Total gaps and the right ones
are the Objective values . 34

4.6 The weights of the links before and after the weight change. . 36
4.7 Two paths through a network. The first shortest path path1 =

ABCDEZ, and the second shortest path (with new weights)
path2 = AFCBGEDHZ. 36

4.8 This is the distribution of the solution columns and a plot of
a dual variable, both without stabilization. 38

4.9 This is the euklidian distance from the current iteration to
the final iteration of the 13n21s_2 network and the 28n45s

network. 39

5.1 Relationship between the different classes. 42
5.2 The bars show the relative runtime of the master- and sub

problem for all the networks. The graphs on the left show
the average node degree (×10) and density of the networks
and the graphs on the right show the number of nodes and
spans of the networks. 44

5.3 The structure of the demands. 45

6.1 Split path. 51
6.2 Reverse Single Backup Path Protection (rsbpp) 53

7.1 A scenario in which the use of stop–release would improve
the solution. The full lines are primary paths and the dotted
lines are backup paths. 58

8.1 Various known protection methods, and their average capac-
ity requirements compared to the lower bound. 62

C.1 The 11n26s network. (Also known as cost239) 103
C.2 The 13n21s network. (Also known as PanEuropean) 104
C.3 The 28n45s network. (Also known as USANetwork) 104
C.4 The 33n68s network. (Also known as Italy) 105
C.5 The 43n71s network. (Also known as France) 105

List of Tables

6.1 The networks. 48
6.2 The solutions. 49
6.3 The quality of the solutions. 49
6.4 The original sbpp solution compared to the solution of the

final master problem solved as a mixed integer problem. . . . 52
6.5 The original sbpp solution and the lower bound compared to

the rsbpp solution . 56

xi

xii LIST OF TABLES

Chapter 1

Introduction

As digital communication networks becomes ever larger, the likelihood of an
equipment or link failure within such a network becomes equally great. It is
important that these networks can recover from e.g. a link failure without
loosing the connection in order for us to be able to trust the network as a
reliable media.

One way of providing this protection from failure is by using a path

protection scheme. The concept of path protection is to somehow reserve
enough bandwidth on an alternate path through the network, to allow for
a single link failure to occur on any given link in the network. If the failure
occurs on a path that carries data, the data uses the alternate route.

On figure 1.1 the data follows an alternate path when the failure occurs,
but in order to use this path it must first be found, and we must ensure that
there is enough capacity on the new path to handle the data flow. All this
takes time, and if we want to switch to the new path without interrupting
the connection, the alternate path must be found in advance.

An advantage of finding the alternate- or backup paths in advance is that

Figure 1.1: The idea behind path protection.

1

2 Chapter 1. Introduction

Detection Notification Switch over

Figure 1.2: Path protection chain of events.

we can switch between them very fast. A disadvantage is that the backup
path can not reuse any of the links in the primary path, since we do not
know in advance which particular link on the path will break.

The problem is complicated further if there are more than one connection
on the network (which there always are in any real world network). Maybe
the alternate path can only handle some of the connection load and therefore
the backup paths have to be spread out. Maybe the path we had intended
to use as backup is now used by another connection.

In order to ensure that we have reliable backup paths we must not only
find alternate paths, we must also reserve some bandwidth for them so we
are sure they will be available if needed. All these issues must be handled
by the path protection scheme we choose.

In this thesis we will explore a path protection scheme called Single
Backup Path Protection (sbpp). To better understand the qualities of sbpp
we will start by looking at a range of different protection methods. This will
also give an idea of what to expect, and what to look for in a path protection
scheme.

1.1 Chain of events

Before we begin looking at the individual methods it is important to know
how the chain of events are from fault detection to the data flow have been
established on the backup path (see figure 1.2).

First of all the fault must be detected. That goes without saying but
when we are evaluating the recovery time of the different protection schemes
it is important who i.e. what node, is responsible for detecting the fault.

When a fault is detected this information must be conveyed to the net-
work entity responsible for taking the appropriate action. Sometimes that
will be the same node that discovers the fault, and sometimes not. The
information is transmitted in the form of a Fault Indication Signal (FIS),
and the length it has to travel is a vital component of the recovered time [3].

Finally a switch over mechanism is needed to redirect traffic to the
backup path. In MPLS1 networks this is actually two nodes, the first is
defined as a path source label switch router (PSL), and the second is a path
merge label switch router.

1Multi protocol Label Switching

1.2 Protection methods 3

9

8

3 5

42

10

7

6

1

Figure 1.3: 1+1 protection.

The details of how this is accomplished is not the focus of this theses.
When we review the different protection methods, it is important to know
that these tasks must be handled by nodes that are capable of of doing so,
and that all nodes does not necessarily possess these capabilities.

1.2 Protection methods

The different protection methods fall roughly into two categories: Path Pro-
tection and Link Protection. Path protection is characterized by the fact
that the connection between two points is seen as a continues path, and it
is this path we are trying to protect. That means that if the path breaks,
i.e. any of the links on the path breaks, we must use an alternate path. In
path protection we generally call the path that carries the data “the primary
path” and the alternate path is “the backup path”.

In Link protection schemes we protect the individual links without regard
for how the rest of the path is laid out. That means that if a link breaks,
we try to restore the connection between the two points on either side of the
link failure.

Although we distinguish between these two groups we will look at both
types of methods since they both offer protection of the traffic from source to
destination. We will now look at several of the known path/link protection
schemes and try to get an idea of the strengths and weaknesses of each one.

1.2.1 1+1 protection

One form of path protection that is widely used today is 1+1-protection,
where the data is sent simultaneously via two paths that do not share any
links. (see figure 1.3).

The most important advantage of this method is the extremely fast re-
covery time. If a link failure occurs anywhere on the primary path, the data
flow will be interrupted and the destination node will just switch to the
backup path.

4 Chapter 1. Introduction

2 4

53

1

8

9

10

6

7

Figure 1.4: Ring (and p-cycle) protection.

Since there is no signaling needed to change paths the switch is almost
instantaneous, however this ultra fast recovery time comes at a prize.

When we look at the amount of resources 1+1 protection consumes,
a different picture emerges. Let’s say we have a network and we need to
transport some data from node a to node b using 1+1-protection. First we
need to get two paths to the destination node, as the first path (the primary
path) pp we choose the shortest path between a and b. As the second path
(the backup path) pb we choose the next best path, we just used the shortest
path so pb must be at least as long as pp or longer.

pb ≥ pp

That means we use at least 100% extra capacity on the network in order
to protect the traffic, probably more.

It seems 1+1 protection is very good in terms of recovery time, but very
expensive in terms of network capacity.

1.2.2 Ring Protection

Another protection method used is rings. The ring protection method uses
additional capacity allocated in rings to protect the links. If a link on the ring
breaks the data is just sent the other way around the ring. (see figure 1.4)

This form of protection is called link protection because it protects indi-
vidual links and not the entire path. If a link between node i and j fails the
data is still routed to node i via the original path, then via the ring, around
the failed link to node j and then on to the destination.

This can create some unnecessarily long paths if the rings are big, and is
not very efficient in terms of capacity however it is a very simple protection
method to implement and is therefore used in many practical situations.

1.2.3 p-cycle Protection

A related link protection method is p-cycles. The p-cycle protection method
is very similar to rings, however the p-cycle method distinguishes between

1.2 Protection methods 5

7

10

2

1

84

53 9

6

Figure 1.5: Local backup protection.

links that are on a cycle and links which connects two nodes on a cycle but
are not on the cycle themselves. On figure 1.4 an on-cycle link could be 2-3
and an off cycle link could be 3-4.

If an on-cycle link breaks the data can just travel the other way around
the cycle like in ring protection. If a off-cycle link (straddling link) breaks
the data can be sent either way around the cycle that each of the ends are
connected to [14].

The problems with p-cycles are the same as with rings, the paths can get
very long, however since p-cycle protection also protects the straddling links
it is more efficient than ring protection in terms of capacity. The recovery
time is comparable to that of link protection.

1.2.4 Local Backup Protection

This is another link protection scheme. It tries to find the optimal “replace-
ment path” for all the links in the network, so that no matter which link
fails is has an optimal replacement ready for that link (see figure 1.5).

It is more efficient in terms of capacity than ring- or p-cycle protection,
since the backup paths will use the shortest (or cheapest) route to restore
the link and not a possibly much longer ring. however this comes at a price.

In order for each node in the network to be able to redirect the traffic to
a backup path, each node must have PLS capabilities, and in order for any
node to be an “endpoint” for other backup paths they must also have PML
capabilities.

The fact that all the nodes in the network needs advanced capabilities
makes this method very expensive and complex to implement. The recovery
time of local backup protection is reasonably good, but the complexity can
lead to low resource utilization [3].

1.2.5 Local Dynamic Backup Protection

Local dynamic backup protection is very similar to local backup protection.
In this scheme we try to reduce the demands on each individual node by

6 Chapter 1. Introduction

10

3

2 64

5

1

7 9

8

Figure 1.6: Local Dynamic Backup Protection.

2 64

5

1

73

8

9

10

Figure 1.7: Global Rerouting.

moving the PML functionality to the destination node (see figure 1.6).

This means that we must find an alternate path from each node on the
primary path to the destination node. This can however introduce a problem
on the nodes close to the destination. Not a capacity problem since only
one of the backup paths can ever be used at a time, but they must still be
stored on the nodes as possible backup paths, so a node can end up having
to manage a long list of paths. (one for each link on the primary path).

The recovery time is about the same as for local backup, but the capacity
utilization is probably a bit better.

1.2.6 Global Rerouting

In global rerouting protection we have a completely new backup path for all

primary paths in the network for every link. In other words for each and
every possible link failure, we have a completely new set of paths supplying
the demands on the network (see figure 1.7).

This is a protection method that differs from the others in that it is
totally impractical to implement in a network, since a link failure anywhere
in the network would tear down all the connections in the network and
reroute them in an optimal way.

The reason this is interesting is that in terms of the capacity needed
to protect the traffic, no protection method can ever hope to do better

1.2 Protection methods 7

9

8

3 5

42

10

7

6

1

Figure 1.8: Single Backup Path Protection.

than global rerouting. This makes it useful as a lower bound for protection
methods and provides the means of comparing all the methods to see how
well they perform

The comparison is only on the amount of capacity needed to protect the
network traffic against link failure. It does not take into account restoration
time, node complexity, price etc.

1.2.7 Single Backup Path Protection

Single Backup Path Protection (sbpp) is the focus of this theses and works
by reserving capacity for a backup path just like 1+1-protection, but unlike
1+1-protection it does not transmit data on the reserved backup path until
it is needed i.e. a link on the primary path fails. (see figure 1.8).

This small change enables us to route several backup paths over the same
links and only pay for the amount of traffic the worst case link failure would
cause.

On figure 1.9 the same network using the two different protection meth-
ods, single backup path protection and 1+1 protection, are shown next to
each other. As we can see from the figure the middle link does not need to
receive capacity for both backup paths since they can never be used at the
same time2.

In this small example we save a single unit of capacity, which might
not seem that impressive, however here we only have two demands. As the
number of demands becomes higher so does the number of backup paths
that can use the same links and the benefit of using sbpp will be more clear.
Also as we shall see in chapter 6 one demand can be split up, thereby taking
advantage of the shared backup paths.

The only drawback with single backup path protection is that the FIS
needs to be sent back to the source node before the switch over can happen.
This does have one advantage though: All the complexity is on the rim of
the network so the nodes in the middle does not have to be very expensive.

2We work under the assumption that only one link failure can occur at a time.

8 Chapter 1. Introduction

Capacity needed on linkBackup path

Capacity needed = 7Capacity needed = 8

Shared Backup Path Protection1 + 1 Protection

Primary path
x

1

2

1

11

1 1

1

1

1

11

1 1

Figure 1.9: Sbpp vs. 1+1 protection

64

5

1

7

2 8

9

10

3

Figure 1.10: Reverse Single Backup Path Protection.

1.2.8 Reverse Single Backup Path Protection

Reverse single backup path protection (rsbpp) is an attempt to minimize
the data loss caused by the restoration time in sbpp. When a link failure
is detected the data is sent back to the source node along with the FIS, so
that when the source node makes the switch over it can send all the data
along the backup path. There will still be a “hole” in the data flow, but the
data that was transmitted in the time it took to send the FIS is not lost.

It is clear that there must be a poorer capacity utilization than with
sbpp. Exactly how poor is investigated in chapter 6.

1.3 Methods compared

In order to get some idea of the resource efficiency of the different protection
methods they have all been compared to global rerouting, which is the lower
bound for protection methods on circuit switched networks [13]. The result
of that comparison can be seen on figure 1.11.

1.3 Methods compared 9

Lower bound for protection

%
 e

xt
ra

 c
ap

ac
ity

 n
ee

de
d

20%

Reverce Single Backup Path Protection (rsbpp)

10%

Ring protection (JC)

1+1 protection

Ring protection (SC)

60%

50%

Single Backup Path Protection (sbpp)

40%

p−cycles (SP)

30%

p−cycles (JP)

Figure 1.11: Various known protection methods, and their average capacity
requirements compared to the lower bound.

The most capacity efficient path protection method on figure 1.11 is
Single Backup Path Protection. The rest of this theses will explore various
properties of sbpp such as the capacity requirements, the running time and
the implementability.

10 Chapter 1. Introduction

Chapter 2

Single Backup Path

Protection

Single Backup Path Protection is a protection method in which you allocate
two paths from the source node to the destination node, in which none of
the links from one path is used in the other, a so called disjoint path pair.

Another feature of Single Backup Path Protection (sbpp) is that since
the backup paths are not used until a link failure actually occurs, multiple
backup paths can use the same links at no additional cost as long as enough
capacity is reserved on all the links to handle the worst case failure situation.

In this thesis a failure situation is when a link in the network breaks, and
the traffic on all the paths using that link has to use there backup paths.
The model can handle one failure situation at a time, i.e. one link failure at
a time.

2.1 The model

The model consists of a master problem and a subproblem linked together
by a column generation algorithm. The objective of the master problem is
to find the cheapest set of disjoint path pairs, that will satisfy the current
demand.

The disjoint path pairs are generated by the sub problem based on the
prices of the spans in the network. Initially the prices are the weight1 of the
spans, but when the master problem is solved the prices are updated by the
column generation algorithm, to reflect which spans are “most busy” thus
enabling the sub problem to find the most optimal disjoint path pairs.

As new disjoint path pairs are found the master problem has more to
choose from and the prices of the spans are updated to reflect the new

1The initial weight can be the same for all the spans in the network or based on the
length of the span or something else. The overall solution is evaluated based on the initial
price of the spans.

11

12 Chapter 2. Single Backup Path Protection

“situation”. This loop continues until no disjoint path pair that can improve
the overall solution can be found.

In order to make the model manageable, a few assumptions have been
made that are not necessarily true in real life but necessary for the model
to work.

• We assume that we have infinite bandwidth on all links. We will not
use huge amounts of bandwidth, in fact the hole point of the protection
scheme is to use as little bandwidth as possible, but it ensures that we
can always place a path on a set of links.

• We also assume that the links are infinitely dividable, i.e. we can use
any percentage of any link.

• Lastly we assume that only one link can fail at a time. This assumption
might seem restrictive, but it is unlikely that two links would fail at
exactly the same time, and it is necessary for the model to work.

2.2 Notation

Before we get too far into the description of the master- and sub problem,
we will briefly describe how indices are used in this formulation.

The indices i, j, k, l, q, r ∈ {1, ..,N} are node indices. E.g. ij is the bi-
directional span between node i and node j. Even though they all represent
node indices it is very important to notice witch set of indices are used, as
each set have a different meaning.

ij is the span from node i to j when the span is working.
qr is used when the two indices represent a span that is broken
kl is only used when specifying a demand.
p represents a disjoint path pair

Apart from that, an index in parentheses (ij) means the oriented link
from node i to node j. ij with no parentheses means, as mentioned, the
bi-directional span from i to j.

The words“link”and“span”both refer to the connections between nodes.
The word link is used when ever we talk about the oriented connection
between two nodes, and span is used for the bi-directional connection.

2.3 The master problem

In the master problem xkl
p ∈ R+ is the flow on the disjoint path pair p that

satisfy a demand from node k to node l and yij ∈ R+ is the required capacity
on span ij.

2.3 The master problem 13

The objective of the master problem is to minimize the total required
capacity of the protection for all the demands (2.1). In other words minimize
the amount we have to pay for all the spans we use. The spans have a fixed
price so you could say that we are minimizing the usage of spans.

This objective is of course subject to some constraints. First of all, all
demands must be met (2.2). The second constraint (2.3) will be described
at length below, but basically it states that all primary paths must pay for
the spans on that path, and the backup paths must pay if the primary path
fails. Finally no paths can have a negative data flow. The same goes for
individual links (2.4).

One formulation of the master problem looks like this:

Minimize:
∑

ij

Cij · yij (2.1)

Subject to:

∑

p

xkl
p ≥ Dkl ∀kl (2.2)

∑

kl

∑

p

akl
p,ij · x

kl
p +

∑

kl

∑

p

akl
p,qr · b

kl
p,ij · x

kl
p ≤ yij ∀(il, qr)|ij 6= qr (2.3)

xkl
p , yij ∈ R+ (2.4)

Dkl is the demand between node k and l. Cij is the price of span ij.

2.3.1 The second constraint

The second constraint can be confusing, so we will go through that step by
step. The first important thing to notice is the meaning of the indicator
variables a and b:

• akl
p,ij = 1 if link ij is part of the primary path in xkl

p and 0 otherwise.

• akl
p,qr = 1 if link qr is part of the primary path in xkl

p and 0 otherwise.

• bkl
p,ij = 1 if link ij is part of the backup path in xkl

p and 0 otherwise.

Now if we look at the first part of the constraint
∑

kl

∑

p akl
p,ij · x

kl
p , it is

clear that if the span ij is part of the primary path it will force the variable
yij to be raised until the constraint is satisfied. Keep in mind that we only
pay for the yij’s so this way we always pay for a span if it is part of the
primary path.

The second part of the constraint
∑

kl

∑

p akl
p,qr · b

kl
p,ij · x

kl
p has to do with

the backup paths. When we know the meaning of a and b it becomes clear
what is going on. If the span qr is part of the primary path and the span ij

14 Chapter 2. Single Backup Path Protection

is part of the backup path it will force the variable yij to be raised until the
constraint is satisfied.

In other words we only pay for a span on the backup path in those
situations where that span can be used if a span on the primary path fails.

The first and second part of the constraint can never be activated at the
same time, since the same link can not exist in the primary path and the
backup path at the same time akl

p,ij + bkl
p,ij ≤ 1. This is what we mean when

we say that two paths are disjoint. The disjointness is ensured by the sub
problem.

Figure 3.3 on page 22 is a visualization of the master problem, and it
might help to look at it now. The figure will be described in more detail in
chapter 3

Almost all the data needed in the master problem is already available:
All the spans are given by the network data, as are the span prices. The
demands are fixed and must be provided separately. The only thing missing
is the actual disjoint path pairs. To find them we must define a new problem.

2.4 The sub problem

In the subproblem x(ij) ∈ {1, 0} is the oriented flow on link (ij) where (ij)
is a link on the primary path. y(ij) ∈ {1, 0} is the oriented flow on link
(ij) where (ij) is a link on the backup path. zij,qr ∈ {1, 0} is an indicator
variable described in detail below.

Notice that when ever a pair of indices is in a parentheses it means
they represent an oriented link. If there are no parentheses it means they
represent a bi-directional span.

The objective of the sub problem is to find new disjoint path pairs
through the network. The price of these paths is what we want to mini-
mize (2.5).

The first two constraints are flow constraints, one for the primary path
(2.6) and one for the backup path (2.7). They ensure that all data that
“flows” into a node will also flow out again, except in the source node and
the destination node.

The next constraint (2.8) ensures that a link can at most be used by one

of the paths, and if it is used in one direction, no path, not even the same
one can use it again in the other direction. This is okay since there is always
a positive cost on the links, and therefore it is never useful to go back and
forward along the same link.

The final constraint (2.9) ensures that if a link on the primary path
breaks, an indicator variable zij,qr is set for each link on the backup path.
One formulation of the sub problem looks like this:

2.4 The sub problem 15

Minimize:
∑

(ij)

c(ij) · x(ij) +
∑

ij

∑

qr

βji,qr · zji,qr (2.5)

Subject to:

∑

(ij)

x(ij) −
∑

(ji)

x(ji) =

1 for i = k
−1 for i = l

0
∀i (2.6)

∑

(ij)

y(ij) −
∑

(ji)

y(ji) =

1 for i = k
−1 for i = l

0
∀i (2.7)

x(ij) + x(ji) + y(ij) + y(ji) ≤ 1 ∀{ij} (2.8)

x(qr) + x(rq) + y(ij) + y(ji) − 1 ≤ zij,qr ∀(ij, qr)|ij 6= qr (2.9)

where c(ij) is the price of link ij in the network. These prices are updated
every time the master problem is solved. β is the cost vector taken from the
dual row prices of the master problem.

The link prices of the network c(ij) are defined as:

c(ij) =
∑

qr

βij,qr

where β is the cost vector described above. In other words the price of a link
in the network is determined by the sum of all the row prices of the rows in
the matrix representing that link. More informally we can say that the link
price is a measure of how much we are willing to pay for extra capacity on
that link.

2.4.1 The z values

The final constraint (2.9) ensures that the value of zij,qr will be raised if ij
is used by the backup path and qr is used by the primary path.

This enables us to use the zij,qr values in the objective function instead
of the yij’s and in doing that, we only pay for the links on the backup path,
if using that link will cause us to need to reserve more capacity.

The capacity needed on each link is given by the following formula:

Ci =
∑

p

Ppi + max
(

∑

ρ

Bρi

)

in other words: The capacity Ci of a link i is the sum of the capacity of
all the primary paths using that link

∑

p Ppi since there is data running
on those, we have to reserve capacity for that no matter what. Plus the
maximum capacity needed by backup paths using that link.

16 Chapter 2. Single Backup Path Protection

Primary path

Backup path

Figure 2.1: A possible primary and backup path for the data if the con-
straints where combined in a single constraint.

Since a backup path is only used if the primary path p fails, a situation
could occur where we already need to reserve capacity for a backup path,
and a second can then use the link for free because it will never use the
capacity at the same time as the other one.

The way this is accomplished in the sub problem is to use the master
problems row prices as a cost vector for the zij,qr values. That way only the
ones with a row cost greater than 0 will contribute to the prize of the sub
problem.

2.4.2 Combine the flow constraints?

At first glance it might seem that the two flow constraints (2.6) and (2.7)
can be combined in a single constraint. That would simplify the problem
and save some space in the implementation. The new constraint would then
look like this:

∑

(ij)

x(ij) −
∑

(ji)

x(ji) +
∑

(ij)

y(ij) −
∑

(ji)

y(ji) =

2 for i = k
−2 for i = l

0
∀i

However this is not possible, since the primary path and the backup path
could then be mixed. Traffic entering a node via the primary path could
exit the node via the backup path. Figure 2.1 illustrates this mix.

2.5 Complexity of the master- and sub problem

In order to describe the complexity of the two problems we will first briefly
introduce some complexity classes [6], [9].

P is the class of problems which can be solved in polynomial time (quickly).

2.5 Complexity of the master- and sub problem 17

Optimization Problems

Decision Problems
NP

P

NP−CompleteP

NP−Hard

Figure 2.2: The relationship between the different complexity classes (As-
suming P 6= NP).

NP is the class of problems for which answers can be checked by an algo-
rithm whose run time is polynomial in the size of the input. Note that
this does not require or imply that an answer can be found quickly,
only that any claimed solution can be verified quickly.

NP − Complete is the subset of NP for which no other NP problem is
more than a polynomial factor harder. That means that any NP-
complete problem can be“reduced”to any other NP-complete problem
in polynomial time. This class contains the hardest NP problems.

These complexity classes are defined for so called decision problems.
When a decision problem is proved to belong to the class of NP-complete
problems, then the corresponding optimization problem is said to be NP-
hard, see figure 2.2.

The master problem is an lp problem so it can be solved in polynomial
time, and is as such trivial in this context. The sub problem however is more
interesting.

The sub problem is an optimization problem which tries to find the
cheapest disjoint path pair connecting k and l. The corresponding decision
problem is:

“Is there a disjoint path pair with a price ≤ k?”

First of all it is easy to determine if a proposed solution has a price less
than k, just verify that the disjoint path pair does in fact connect k and l
and that no links are used in both paths, then just sum up the prices of the
links, so it is clearly in NP.

Secondly it can be written as a binary integer program (BIP), and then
we can ask: does this BIP have a feasible solution?

Since the decision problem is in NP and can be “reduced” to a BIP
(which is NP-complete) the decision problem must be NP-complete. Given
that the decision problem associated with the sub problem is NP-complete,
the original sub problem ”what is the cheapest path?” must be NP-hard.

18 Chapter 2. Single Backup Path Protection

Chapter 3

Converting to COIN

In this chapter we will look at how the model is converted so it can be
implemented and solved by a computer. The algorithms and implementation
details are described in chapter 4 and chapter 5 respectively, this chapter
will focus on the conversion.

In order to better explain various details in this chapter an example
network is used, this network can be seen on figure 3.1. Although some
figures and explanations are based on this network, it is a trivial matter
to extend the arguments to any other larger network. It is used for it’s
simplicity.

3.1 Converting the problem to COIN

Before we can start writing algorithms to solve the master- and sub problems
we need to convert the model into something we can do calculations on with
a computer.

We are using the coin
1 [1] api so that will dictate how the conversion

must take place. The coin model can be seen on figure 3.2. It consists
of 7 parts: The main matrix which corresponds to the constrains of the
problem, an upper and lower row bound which can be manipulated to cre-
ate greater-than-or-equal, less-than-or-equal or equal constraints, upper and
lower column bounds used to bound the decision variables, and finally the
objective values which act as a cost vector for the decision variables in the
objective function.

The three types of constraints greater-than-or-equal, less-than-or-equal

and equal can be created using the row bounds in the following way:

1COmputational INfrastructure

19

20 Chapter 3. Converting to COIN

4

3

1

2

Figure 3.1: The testnet2 network. A small network used for illustrative
purposes.

Objective values

Upper Column bound

Lower Column bound

U
pp

er
 R

ow
 b

ou
nd

Matrix

Lo
w

er
 R

ow
 b

ou
nd

Figure 3.2: Coin model. The shaded part corresponds to the data shown in
figure 3.3 and figure 3.5

3.2 Master problem 21

Lower Upper
Constraint Row bound Row bound

a ≤ x ≤ b a b
a ≥ x ≥ b b a

x = a a a

Despite that, we are going to convert all the constraints to less-than-or-

equal or equal constraints. It will simplify the creation of the row bound
arrays and ensure that all the dual prices have the same sign.

3.2 Master problem

First we will convert the problem to a “standard” form. That means all the
decision variables must be present in the objective function and appear only
on the left side of the constraints, and all constraints must be less-than-or-

equal or equal constraints.
The master problem on standard form looks like this:

Minimize:
∑

ij

0 · xij +
∑

ij

Cij · yij

Subject to:

−
∑

p

xkl
p ≤ −Dkl ∀kl (3.1)

∑

kl

∑

p

akl
p,ij · x

kl
p +

∑

kl

∑

p

akl
p,qr · b

kl
p,ij · x

kl
p − yij ≤ 0 ∀(il, qr)|ij 6= qr (3.2)

xkl
p , yij ∈ R+ (3.3)

The yij has moved to the left side of the (3.2) constraint, and the de-
mand constraint (3.1) has been multiplied with −1 to get a less-than-or-equal

constraint. In the objective function the sum
∑

ij 0 · xij has been added.
Now that the master problem is on standard form we can replace all the

constraints with a matrix A and all the decision variables with a vector x.
The problem then looks like this:

Minimize:

cT x (3.4)

Subject to:

lbrow ≤ Ax ≤ ubrow (3.5)

Where cT is a vector containing the costs of the decision variables, i.e. 0
for the old x’es and the price of the links Cij for the old y’s.

22 Chapter 3. Converting to COIN

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

kl−D

rowlb

A − matrix
Master problem

Y’s X’es rowubDummy

≤ ≤−∞ 0

Figure 3.3: The A matrix and the upper and lower row bounds of the master
problem. To save space, only the x-columns that make up the optimal
solution are included. This example represents the testnet2 network.

lbrow and ubrow are the lower and upper row bounds. Figure 3.3 shows
the A matrix and the lower and upper row bounds for a the test network in
figure 3.1

3.2.1 Master problem A matrix

In figure 3.3 each column of the A matrix corresponds to one decision vari-
able in the master problem. Each row of the A matrix corresponds to one
constraint in the master problem.

In the following description I will refer to the specific situation described
by figure 3.3, but the explanation applies equally well to any problem.

The first six rows represent the demand constraint (3.1). The number of
demands is n(n− 1)/2 in this case 6. All demands must be met, that means

3.3 A graphic representation 23

that all rows in that first block must be covered by at least one ’-1’, in order
to balance the corresponding number in the Dkl vector.

The rest of the matrix is divided into L equal parts of L− 1 rows, where
L is the number of spans in the network, in this case 5. The L parts each
represent one span, and the L − 1 rows in each block represent the number
of other spans that can be broken while you use this span, or the number of
failure situations. The reason there are not L rows pr. span is that you can
not use “this span” if it is broken.

The price in the objective function is 0 for all the x-columns, so what
determines if one column (disjoint path pair) is better than another? The
answer is of course how many, and which, spans the the disjoint path pair
use.

The dummy columns right next to the y-columns are added from the
beginning to make sure we have a feasible solution, but they use all the
spans in the network2 and are thus very expensive. Every time we use one
unit of flow on one dummy path, all the y’s have to be increased by one in
order to stay within the constraints.

As we solve the subproblems and thereby find better disjoint path pairs
through the network, we add the actual x-columns. The spans used by a
particular disjoint path pair determines which rows in the rest of the column
must be one.

A disjoint path pair consists of two paths, a primary and a backup.
If a span s is part of the primary path it must be paid for, no matter
which other spans in the network break down. In other words all the failure
situations under s must be paid for. In the first real (not dummy) x-column
on figure 3.3, span number 2 is part of the primary path3.

If a span is part of the backup path it must be paid for only in those
failure situations where a span on the primary path fails. In the first real
(not dummy) x-column on figure 3.3, span number 0 and 1 are part of the
backup path, so they need only be paid for in the failure situation where
span 2 breaks.

The columns shown on figure 3.3 are only the y-columns, the dummy
columns and the x-columns that make up the final optimal solution to the
network on figure 3.1.

3.3 A graphic representation

A more graphic representation of the same solution can be seen on figure 3.4.

For each span on figure 3.4 we must reserve capacity for all the primary

2These paths are usually not even possible but that does not matter here. It is a
question of making the path so expensive that they will never be a part of the final
solution.

3Note: The first span is number 0 so span number 2 is the third block.

24 Chapter 3. Converting to COIN

x Backup path (only used

Primary path

if x breaks)

4

2

3
0

0
3

1

0
1

4
1,4

21,
44

1
3

3 4

10

2

Figure 3.4: This is the optimal solution for the testnet2 network.

paths and enough extra for the backup paths to cover the worst case scenario.
The worst case capacity for all the spans are:

Span 0 One for the primary path and two extra in case span 1 or span 4
breaks. Three in total

Span 1 Two for the primary paths and one extra in case any of the spans
0, 2, 3 or 4 breaks. Three in total

Span 2 One for the primary path

Span 3 One for the primary path and two extra in case span 1 or span 4
breaks. Three in total

Span 4 Two for the primary paths and one extra in case any of the spans
0, 1 or 3 breaks. Three in total

That means that the total number of spans we have to pay for in order
to protect the traffic on this network is:

3 + 3 + 1 + 3 + 3 = 13

3.4 Sub problem

Just like the master problem the sub problem needs to be “standardized”.
The standardized sub problem looks like this

Minimize:
∑

(ij)

c(ij) · x(ij) +
∑

(ij)

0 · y(ij) +
∑

ij

∑

qr

βji,qr · zji,qr (3.6)

3.4 Sub problem 25

Subject to:

∑

(ij)

x(ij) −
∑

(ji)

x(ji) =

1 for i = k
−1 for i = l

0
∀i (3.7)

∑

(ij)

y(ij) −
∑

(ji)

y(ji) =

1 for i = k
−1 for i = l

0
∀i (3.8)

x(ij) + x(ji) + y(ij) + y(ji) ≤ 1 ∀{ij} (3.9)

x(qr) + x(rq) + y(ij) + y(ji) − zij,qr ≤ 1 ∀(ij, qr)|ij 6= qr (3.10)

The objective function (3.6) now contains all the decision variables, and
in the last constraint (3.10) the zij,qr is now on the left side of the less-than-

or-equal sign. The flow constraints remain unchanged even though they have
equal signs instead of less-than-or-equal signs, but that just means that the
upper and lower bounds are equal.

Now we need to convert the problem to matrix form just like the master
problem.

Minimize:

cT x (3.11)

Subject to:

lbrow ≤ Ax ≤ ubrow (3.12)

Where cT is a vector containing the costs of the decision variables, i.e.
the price of the links for the old x’es, 0 for the old y’s and the dual row price
from the master problem for the old z’s.

lbrow and ubrow are the lower and upper row bounds. Figure 3.5 shows
the A matrix and the lower and upper row bounds for a the network in
figure 3.1

3.4.1 Sub problem A matrix

Figure 3.5 is an example of the sub problem A matrix as it would look for
the testnet2 network on figure 3.1 with node 1 as source and node 4 as
destination.

On figure 3.5 each column of the matrix corresponds to one decision
variable in the sub problem. Each row of the matrix corresponds to one
constraint in the sub problem.

The x-columns represent oriented links in the primary path and the y
columns represent oriented links in the backup path. The z-columns are the
z-values described in chapter 2

26 Chapter 3. Converting to COIN

rowub

X’es

Sub problem
A − matrix

Y’s

rowlb

Z’s

24 Y32 Y34 Y41 Y42 Y43Y13 Y23 Y31Y12

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

−1

−1

1

0

1 1

1 1

1 1

1 1

1 1

1 1

1

1

1 1

1 1

1 1

1 1

1 1

1 1

1

1

1 1

1 1

1 1

1 1

1 1

1 1

1

1

1 1

1 1

1 1

1 1

1 1

1 1

1

1

1 1

1 1

1 1

1 1

1 1

1 1

1

1

1 1

1 1

1 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

−1

1

1

1

1

1

1

1

1

1

1

1

0

0

−1

1 −1

1−1 1 1 −1 −1

1 −1

1 1 1−1

1

1 1−1 −1

1 −1

1−1 1 1 −1 −1

1 −1

1 1 1−1 −1

1 1−1 −1

1 1

−1

1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

−1

−1

1 1

X12 X14 X21 X24 X32 X34 X41 X42 X43X13 X23 X31 Y14 Y21 Y

1

Figure 3.5: The A matrix and the upper and lower row bounds of the sub problem. This
example represents the testnet2 network.

The first two blocks of the matrix are the flow constraints. The lower and
upper bound for them are 0 except for the start node and the destination
node. For each link (column) there is a ’1’ and a ’-1’ representing at which
node the link starts and stops.

The third block is the “no share” constraints (3.9). E.g. if the oriented

link x12 is used by the primary path then none of the links x21, y12 or y21

can be used again. This ensures that the two paths found are disjoint.

The rest of the matrix is divided into L parts of L−1 rows, where L is the
number of spans in the network, in this case 5. The L parts each represent
a span, and the L − 1 rows represent the possible failure situations.

If for example the primary path use the link x23 and the backup path
use link y21 and y13, then z21,23 and z13,23 must be set to one to stay within
the constraints. Since the z-values rather than the y-values are included in
the objective function, this forces the backup path to be paid for only if the
price of the z-value > 0, i.e. if it increases the worst case situation described
in section 3.2.1.

3.4 Sub problem 27

This is because the row prices of the master problem is used as a cost
vector for the zij,qr values as described in section 2.4.1.

28 Chapter 3. Converting to COIN

Chapter 4

Applied algorithms

In this chapter we will cover the different algorithms used in the program.
This is a description of how the algorithms work, any relevant implementa-
tion details are covered in chapter 5.

The four main algorithms used in this program are:

• Column generation

• MIP algorithm

• Bhandari algorithm

• LP–solver

Other algorithms are used within the program to accomplish various
tasks, but they are either so small that they are not worth mentioning, or
so well known that they can be referenced by name, and need no further
introduction.

4.1 Column generation

The column generation algorithm is the master control algorithm for the
program. It is responsible for the coordination of the various subproblems
and the master problem. Algorithm 4.1 shows the basic column generation
algorithm in pseudo code.

First we have to read the network and get the demands. This is the only
input the algorithm needs, the rest is just calculation. Next we create the
master- and subproblem. The master problem implementation is done using
the coin [1] interface to cplex. The subproblem can be solved using either
the MIP algorithm alone or the MIP algorithm sped up by the Bhandari
algorithm described in this chapter.

After the initialization we enter the main column generation loop, in
which the master problem is first solved in order to get the dual prices for

29

30 Chapter 4. Applied algorithms

Algorithm 4.1 Column generation

1: network = ReadNetwork()
2: demand = InitializeNetworkDemand()
3: master = InitializeMasterProblem(network, demand)
4: sub = InitializeSubProblem(network)
5: while TotalGap > 0 do

6: TotalGap = 0
7: prices = solve(master)
8: update(network, prices)
9: for all subproblems do

10: dpath = solve(sub)
11: if price(dpath) < MasterRowPrice then

12: add(dpath, master)
13: TotalGap += (MasterRowPrice − price(dpath))
14: end if

15: end for

16: end while

the spans. Those prices are then used as the prices of the spans in the
network.

Next all the subproblems are solved in order to get a number of disjoint
path pairs though the network, based on the prices of the spans. If a disjoint
path pair has a price that is less than the reduced cost of the demand it
satisfy, that path can improve the solution and is therefore added to the
master problem.

When all the subproblems have been solved, the master problem is solved
again in order to update the network prices and then the subproblems are
solved again, and so on. The loop continues until no more disjoint path
pairs can be added to the master problem, this will cause the TotalGap to
be 0 and the algorithm to stop.

4.1.1 Improvements

A couple of things was tried to improve the performance of the column
generation algorithm:

• Pruning columns

• Limit the number of columns added pr. iteration

• Starting with Bhandari’s algorithm

4.1 Column generation 31

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 100 200 300 400 500 600 700 800 900

Number of columns

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500 600 700 800 900

Total gap = ∑i σi

 100

 105

 110

 115

 120

 125

 130

 135

 0 100 200 300 400 500 600 700 800 900

Objective finction

Figure 4.1: This is data from the 11n26s network with no improvements.
Left to right the graphs show: Number of Columns, Total gap and the Ob-

jective value.

 0

 2000

 4000

 6000

 8000

 10000

 0 200 400 600 800 1000 1200 1400 1600 1800

Number of columns

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 200 400 600 800 1000 1200 1400 1600 1800

Total gap = ∑i σi

 100

 105

 110

 115

 120

 125

 130

 135

 0 200 400 600 800 1000 1200 1400 1600 1800

Objective finction

Figure 4.2: This is data from the 11n26s network when using the first
pruning strategy (Prune every column not in basis). Left to right the graphs
show: Number of Columns, Total gap and the Objective value.

Pruning columns

The Master problem is taking a lot of time when the problems are getting
big. A profiling of the algorithm reveled that, on the large networks, it
takes more time to solve the master problem, than it does to solve all the
subproblems in a single iteration.

In order to try and fix this problem, a column pruning strategy is imple-
mented to reduce the size of the master problem when it reaches a certain
limit. Two different forms of pruning are tested, both activated when the
size of the master problem exceed 10,000 columns.

Figure 4.1 shows the data without doing any pruning. What is interesting
is that the algorithm finds an optimal solution in about 800 iterations.

Figure 4.2 shows the data generated when the first pruning strategy
is implemented. The pruning strategy is to delete all unused columns in
the master problem whenever the size exceed 10,000 columns. An unused
column is one that is not part of the current solution.

This strategy will take the number of columns down to the initial number
every time pruning is done. It does not improve the running time. In fact
the running time is about 5% longer than the original, but it completes twice
the number of iterations so it is significantly faster pr. iteration.

It looks like too many columns are deleted. Obviously there is some time
to be gained if only the columns that truly are not needed anymore can be
deleted, and the rest left alone.

32 Chapter 4. Applied algorithms

 0

 2000

 4000

 6000

 8000

 10000

 0 200 400 600 800 1000 1200 1400 1600

Number of columns

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 200 400 600 800 1000 1200 1400 1600

Total gap = ∑i σi

 100

 105

 110

 115

 120

 125

 130

 135

 0 200 400 600 800 1000 1200 1400 1600

Objective finction

Figure 4.3: This is data from the 11n26s network when using the second
pruning strategy (Prune every column with a positive reduced cost). Left
to right the graphs show: Number of Columns, Total gap and the Objective

value.

This observation leads me to try a second pruning strategy. This strategy
is to delete all the columns with a positive reduced cost whenever the size
exceed 10,000 columns. Figure 4.3 shows the data from that experiment.

The number of iterations is about 1,000 lower than with the first pruning
strategy, however still a lot higher than the original algorithm, and the actual
running time is over 20% higher than the original.

With no way of knowing which columns may be part of the solution in
the future, it looks like pruning might not be such a good idea.

Limit the number of columns added pr. iteration

Another way to limit the size of the master problem and at the same time
speed up the solution of the subproblems is to solve a limited number of
subproblems in each iteration. That way the master problem grows less,
and only some of the sub problems are solved in each iteration, so both the
master problem and the sub problem takes less time pr. iteration. Of course
you have to be careful to still solve all the subproblems and not just solve
the first ones over and over.

Figure 4.4 shows the data from that experiment. The number of columns
added every time is 10, so the “Number of Columns” graph is just a straight
line and have not been included. Note that this does not mean that only 10
subproblems are solved in each iteration, it means that enough subproblems
are solved to find 10 with a negative reduced cost.

It is interesting to see that the algorithm converged in about half the
number of iterations compared to the version where you just add all the
subproblem columns with a negative reduced cost in every iteration. That
together with the other benefits of a smaller master problem and faster
subproblems, resulted in a running time of about 9% of the original, that is
an improvement by a factor of more then 11.

That looks pretty good, but what if we go further down and add five or
two or just one column at a time? It turns out that the best running time
is achieved if you only add one column at a time, and doing that will reduce
the running time to about 2% of the original. That is a factor of about 50.

4.2 MIP algorithm 33

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 50 100 150 200 250 300 350 400 450 500

Total gap

 100

 105

 110

 115

 120

 125

 130

 135

 0 50 100 150 200 250 300 350 400 450 500

Objective function

Figure 4.4: This is data from the 11n26s network when using the limit
columns strategy. Left to right the graphs show: Total gap and the Objective

value.

The first two graphs on figure 4.5 shows an example of such a run on the
28n45s network.

Starting with Bhandari’s algorithm

Finally we can try to get a further speed increase by first solving the sub-
problems with the fast heuristic called Bhandari’s algorithm [10] described
in section 4.3, and then when the algorithm can no longer improve, we finish
the job with the MIP–solver.

As we can see on figure 4.5 the performance gained is not as dramatic
as with the “limit columns” strategy. The 28n45s network takes about 3877
seconds to solve with the limit columns strategy and about 3819 seconds
to solve when you also start solving with Bhandari’s algorithm. That is an
improvement of just 1,5%

There is a slightly bigger effect when the problem size increases. On the
43n71s network it takes about 33,9 hours to solve it with just the column
limiting strategy and about 31,7 hours when starting with Bhandari. That
is an improvement of about 6,4%. While this improvement has less effect on
the running time than the limit columns strategy, it is still an improvement
and will be used to generate the final results.

The reason for this more moderate effect is that this is an effort to speed
up the sub problem, but the most time consuming part of the algorithm, in
the large networks, seems to be solving the master problem. Further effort
should probably go into that.

4.2 MIP algorithm

The Mixed integer programming, or MIP algorithm, is the main way of
solving the sub problem. It is a direct implementation of the subproblem
model from chapter 2 using coin [1].

34 Chapter 4. Applied algorithms

Normal MIP–solution (limit columns to 1)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 200 400 600 800 1000 1200

Total gap

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 200 400 600 800 1000 1200

Objective values

Start with Bhandari, then MIP (limit columns to 1)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 200 400 600 800 1000 1200

Total gap

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 200 400 600 800 1000 1200

Objective values

Figure 4.5: This is the 28n45s network solved using only the MIP–solver,
and using first the Bhandari heuristic and then the MIP–solver. The left
ones are the Total gaps and the right ones are the Objective values

Once the main data structures have been created they can be re-used
over and over, so to solve a sub problem using this technique, we need only:

• Change the values representing the source and destination nodes in
the row bounds.

• Copy the new link prices and dual values to the objective function

• Let cplex solve it

• Restore the row-bounds

• Create a disjoint path pair

The values we need to change in the row bounds are based on which
demand we are solving the sub problem for. All flow-constraints must be
equal to 0 except the source and the destination node, so we change the row
bounds to reflect which source and destination node we are working on.

The parameters of the objective function consists of the link prices as
the x-columns, and the dual values of the link-rows in the master problem

4.3 Bhandari algorithm 35

Algorithm 4.2 Bhandari algorithm

1: path1 = BreathFirstSearch()
2: ChangeWeights(path1)
3: path2 = BreathFirstSearch()
4: RestoreWeights(path1)
5: RemoveOverlap(path1, path2)

as the z-columns. That means they must be changed every time the master
problem has been run.

When the bounds are set we can let cplex solve it. This is by far the
most time consuming part of the algorithm.

When the solver is done, we must restore the row bounds so they are
ready for the next sub problem, and then we can extract the disjoint path
pair and return it.

4.3 Bhandari algorithm

The Bhandari algorithm [10] is a heuristic that can find good solutions to
the sub problems. Algorithm 4.2 shows the pseudo code for the Bhandari
algorithm.

First we need to find the shortest path through the network using any
shortest-path-algorithm. A Breath-first-search (BFS) is particularly well
suited for the job since the algorithm needs to handle negative weights, so
Dijkstra can not be used without significant modifications. Another reason
to use BFS is that i tends to converge very fast as soon as the destination
node is reached.

For non negative graphs1, improvement in efficiency [compared
to Dijkstra] by a factor of as much as five has been observed for
sparse graphs with 100 vertices or so [10, p.33].

When we have have found the first path we change the weights w of all
the links on that path. All the links will be assigned a weight of infinite
in the direction used by the first path, and the same links in the opposite
direction will be assigned the weight −w (see figure 4.6).

When the weights are transformed the shortest path must be found again.
This time it is very important to use a shortest path algorithm that can
handle negative weights, since we just added negative weights on all the
links on the primary path.

There is no way the second path can share links in the same direction
as the first path, since those weights was set to infinite. However there is

1The graphs are initially non negative, since no links in a real network can have a
negative length (or whatever determines the weight). After the weight change some weights
become negative so that further complicates the use of Dijkstra.

36 Chapter 4. Applied algorithms

w
DestinationSource

INF

−w
DestinationSource

Figure 4.6: The weights of the links before and after the weight change.

E Z

H

D

G

CB

F

A

Figure 4.7: Two paths through a network. The first shortest path
path1 = ABCDEZ, and the second shortest path (with new weights)
path2 = AFCBGEDHZ.

a good chance that the second path will contain some of the same links in
the opposite direction. They where after all made extra attractive by giving
them a negative weight.

If the two paths do not share any links we are done, and the two paths
can be returned as a disjoint path pair. If however there are overlaps, as in
figure 4.7 the overlaps must be removed. The remaining links on the two
paths can then be combined into two independent paths.

On figure 4.7 the overlaps are link BC and link DE. Once they are re-
moved the disjoint path pair consists of the two paths ABGEZ and AFCDHZ.
Unless we are working on a“throw away”copy of the network data, we should
restore the weights to there original values at some point after we obtain the
second shortest path.

4.4 LP–solver

The master problem is solved using the coin interface to cplex. The algo-
rithm is somewhat like the one used for the MIP-algorithm:

• Add new columns to the master problem.

• Let cplex solve it

4.4 LP–solver 37

• Save the objective value

The first time the master problem is solved we need to create the data
structure for coin to work on, just like in the sub problem. After that coin

maintains its own internal data structure.

Before we solve the master problem we must add one or more new
columns. The first time the master problem is solved, all the new columns
are dummy columns, but after that, the column generation algorithm will
add the columns fond by the sub problem before trying to resolve.

When cplex is done the objective value and some other values are saved
for fast and easy access.

4.4.1 Improvements

This algorithm, specifically the part where cplex is solving is the most time
consuming part of the entire program for large networks. For that reason
it is very tempting to look into ways of improving the running time of this
part.

Since almost all the computation is in coin we must change the model to
improve the running-time of this part. One way to do this is by stabilization.

Stabilization

One way to improve the running time of the solver is to apply stabilization
to the problem. Several people suggest stabilization as a possibility for
reducing the running time and number of iterations of lp problems [8, 7].

The stabilized version of the master problem (Pmp) looks like this:

Minimize:

cT x + δT
−
y− + δT

+y+

Subject to:

Ax − y− + y+ ≤ b

y− ≤ ǫ−

y+ ≤ ǫ+

The idea behind stabilization is that the dual variables can fluctuate
and assume extreme values in the early iterations. This can lead to a false
representation of with rows are worth updating, and you thus spend a lot of
time generating columns that are never used in the final optimal solution.

If we look at the dual problem (Dmp):

Maximize:

bT π

38 Chapter 4. Applied algorithms

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

C
ol

um
ns

 (
%

)

Iterations (%)

13n21s_2

 0

 1

 2

 3

 4

 5

 0 50 100 150 200 250

R
ow

 p
ric

e

Iterations

Dual variable 0 from 13n21s_2

Figure 4.8: This is the distribution of the solution columns and a plot of a
dual variable, both without stabilization.

Subject to:

AT π ≤ c

−δ− ≤ π ≤ δ+

we see that the choice of the penalty vector δ sets bounds for the dual values
π, and so this method provides us with a way of controlling the fluctuations.

However there are no, or very little, fluctuation of the dual variables in
this program.

The first part of figure 4.8 shows where in the process the final solution
columns where found. It turns out that even in the early iterations there
are a relatively big percentage of columns found, and so the stabilization
prerequisite of extreme values, and thus poor early solutions, is not met
here. The lack of fluctuation and extreme values is shown clearly by the
second part of figure 4.8 which shows the value of a dual variable in all the
iterations.

If we view the final values of the dual variables as a point in n-dimensional
space, we can find the distance from the current point in n-dimensional space
to that point.

d =
√

∑

(π − π∗)2 (4.1)

This is the Euklidian distance. The graphs on figure 4.9 shows the euk-
lidian distance for the 13n21s_2, and the 28n45s network

The reason they do not start at iteration 0 is that only one column is
added to the master problem at a time, so the first n(n−1)/2 iterations will
have demands that are still covered by dummy columns and will thus give a
false impression of the distance to the solution. After all the columns have
been updated once (after n(n−1)/2 iterations) we see that the distance falls
rapidly towards 0, meaning that the problem converges at once and not in

4.4 LP–solver 39

 0

 5

 10

 15

 20

 25

 30

 60 80 100 120 140 160 180 200 220

E
uk

lid
ia

n
di

st
an

ce

Iterations

n(n-1)/2

Euklidian distance from final 13n21s_2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 300 400 500 600 700 800 900 1000 1100 1200

E
uk

lid
ia

n
di

st
an

ce

Iterations

n(n-1)/2

Euklidian distance from final 28n45s

Figure 4.9: This is the euklidian distance from the current iteration to the
final iteration of the 13n21s_2 network and the 28n45s network.

the final few iterations. That confirms the conclusion from figure 4.8 that
stabilization will not be of any great help in this problem.

It is not impossible that a small performance increase could be gained by
implementing stabilization, but the bounds on the dual values δ would have
to be very precise, and the overhead of calculating them would probably
cancel out any performance increase.

40 Chapter 4. Applied algorithms

Chapter 5

Implementation

This chapter contains a brief description of all the classes in the program
and some implementation specific running time considerations.

For a thorough description of specific methods see the source code and
comments in appendix A or the source code documentation.

5.1 Environment

The program is made in the following environment:

• CPU: UltraSPARC-III+ 1200 MHz

• OS: SunOS sunfire 5.9

• Language: c++

• Compiler: g++ (GCC) 3.3.3 (OpenPKG-2.0)

• COIN (CVS checkout: June 24th 2005)

• CPLEX Interactive Optimizer 9.0.0

5.2 Classes

On figure 5.1 you can see how the different classes that make up the program
interconnect.

The following list briefly describes what each of the classes do. The
classes are listed alphabetically.

basefilereader is the base class for all the different filereader objects. This
enables the network object to have file format independent access to
the data. It is also easy to add support for a new file format, just
create a new class to parse the format and make sure it derives from
basefilereader.

41

42 Chapter 5. Implementation

Network
file

Lexical

Data & utility clases

Top−file
reader

Network
object

fil
e

re
ad

er
B

as
e

xy2−file
reader

Main Column
generation algorithm

analyzer
MIP

MIP sub
problem

Bhandari
solver

CPLEX
MAGIC

Column

COIN interface

Master
problem

Sub

gen.

UtillProgressDisjoint
Path

Error

problem

LP

Figure 5.1: Relationship between the different classes.

columngen is the master algorithm. It solves the master problem and adds
columns to the sub problem, using the other classes.

disjoint is a data type used for transferring solutions between the sub prob-
lems and master problem.

error contains several global error handling routines.

lex is the lexical analyzer. It reads a file and converts the characters to
tokens which makes higher level parsing easier.

network uses a file format independent filereader to read the network data
from a file. It then provides an api for querying and manipulating the
data.

progress provides a progress bar and some other “user information” func-
tions.

sbpp sub bhandari is the Bhandari solver. It is a heuristic that finds
disjoint path pairs in a network quite fast.

sbpp sub mip is the MIP–solver implementation of the sub problem. It

5.3 Running time analysis 43

uses the coin osi-api to access the underlying numerical solver (In this
case cplex) to find disjoint path pairs.

sbppmasterproblem is the master problem. It also uses coin osi-api to
access the underlying numerical solver, but it is used to find the right
combination of the available paths.

topfilereader is inherited from basefilereader and is used to parse top-
network-files.

utill is a collection of various miscellaneous functions and data containers,
such as a set used in the Bhandari solver.

5.3 Running time analysis

In this section we will look at how the running time is distributed among
the various functions.

The distribution of running time changes with the size of the network.
In the main column generation algorithm for the 43n71s network, 99,98%
of the running time is divided by these 3 functions:

MasterProblem –> solve 71,90%

OsiCpxSolverInterface –> resolve 71,79%
OsiCpxSolverInterface –> loadProblem 0,09%
OsiCpxSolverInterface –> initialSolve 0,01%

SubProblem –> solve 27,96%

OsiCpxSolverInterface –> branchAndBound 25,93%
OsiCpxSolverInterface –> setInteger 1,92%
OsiCpxSolverInterface –> loadProblem 0,09%

CreateMasterProblem 0,12%

MasterProblem –> CreateInitialCoinPackedMatrix 0,12%

As one can see on the table it is almost only OsiCpxSolverInterface1

functions that takes up time.
This is desirable in terms of optimization. If it is only OsiCpxSolver-

Interface functions that takes up time then there is no point in trying to
optimize any of the other classes to increase performance

The exact distribution of time changes with the network size and density.
Smaller networks have a relative higher percentage of running time in the
sub problem and less in the master problem. It is unclear exactly what
causes more time to be spent in the master problem in some networks and
less in others. On figure 5.2 is a plot of the relative running time of the

1
coin’s Open Solver Interface (osi) for cplex (cpx)

44 Chapter 5. Implementation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

testnet2 testnet 13n21s_2 13n21s 11n26s 28n45s 33n68s 43n71s

R
un

tim
e

(%
)

Network

Master problem
Sub problem

Avg. Node Dec
Density

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

testnet2 testnet 13n21s_2 13n21s 11n26s 28n45s 33n68s 43n71s

R
un

tim
e

(%
)

Network

Master problem
Sub problem

Nodes
Spans

Figure 5.2: The bars show the relative runtime of the master- and sub
problem for all the networks. The graphs on the left show the average node
degree (×10) and density of the networks and the graphs on the right show
the number of nodes and spans of the networks.

master- and sub problem for different networks shown as bars, and on top of
those are plots of either the avg. node degree and density or the number of
nodes and spans in the networks. It is not possible, based on this figure, to
say if the master problem will be more and more dominant as the network
size increases, but the running time of the master problem do play a more
significant role in the large networks compared to the small.

The network 11n26s seem to differ from the others in how the running
time is distributed. One explanation of this could be that the 11n26s net-
work is more dense than the other networks, that leads to more combinations
of paths and therefore more load on the master problem. Density alone is
not the answer though because the two largest networks 33n68s and 43n71s

both have very low density, but very different distribution of the master- and
sub problem running time.

One thing that is certain is that even though the running time is dis-
tributed differently in all the networks, the OsiCpxSolverInterface takes up
more than 95% of the total running time.

5.4 Data structures

The data structures in the program play a vital part in the performance
and extendibility of the program. Here is a short description of each of the
important data structures:

Disjoint path is a data type used to transfer data from the subproblem to
the master problem. The operations that are really important are to
be able to add new spans to a disjoint path pair very fast when a sub
problem finishes, and to run through them again when they are added
to the master problem.

5.4 Data structures 45

7
−

8
1

−
x |

 x
>

1

2
−

x |
 x

>
2

3
−

x |
 x

>
3

4
−

x |
 x

>
4

5
−

x |
 x

>
5

6
−

x |
 x

>
6

Figure 5.3: The structure of the demands.

Both an array implementation and a linked list implementation can
accomplish this but in the linked list implementation we must create
the “links” in the list on the fly, and that means a lot of memory
operations witch are notoriously slow, so the array implementation
was chosen.

The only problem with an array implementation is that enough mem-
ory must be reserved to handle the largest possible disjoint path pair
or we will still have to do expensive memory operations. That is not
a problem in this case, since we know that no path can be longer than
the total number of links. This of course wastes some memory, but
given the fact that there are less than 100 links and that we reuse the
same disjoint path object over and over so we only need to create one,
this is a good, clean, fast solution.

Network structures can be realized in several ways. In this case we use a
double representation to be able to quickly satisfy all requests.

There is an array of node structures each with a linked list of spans
used to describe how the network is interconnected and to be able to
return all the links connected to a particular node in O(1) time. Then
there is an array of span structures so we, given a span, can determine
what two nodes are connected to it in O(1) time. Finally there is a
matrix that acts as a node-to-span-map in which you, given two nodes,
can find the span that connects them in O(1) time.

Since all requests are handled in constant time the network object
provides a good and fast data structure for all the algorithms that use
it.

Demands are necessary so we know how much data that needs to be trans-
ported on the network.

There are one demand for each node pair so we could just use the top
half of a matrix, but that would waste the bottom half and since this
is not a performance critical structure there is no point in accepting
a waste. Instead the data is arranged in a single array, see figure 5.3,
where the first part is all the demands from node 1 to all the other
nodes, the next part is all the demands from node 2 to all the other

46 Chapter 5. Implementation

nodes (except 1) etc.

In addition to those there are several data structures used in the coin

library such as CoinPackedMatrix (CMP) and CoinPackedVector (CPV),
information on them can be found on the COIN–OR website [1].

Chapter 6

Results and Discussion

In this chapter the different networks will be described, and we will present
all the results and discuss their meaning and significance.

We will also look at the alternate path protection method called Reverse
Single Backup Path Protection (rsbpp) described in chapter 1 and look at
the pros and cons of that method versus sbpp.

6.1 The networks

The seven1 different networks presented in table 6.1 are what all the graphs
and other results are based on. The two smallest networks testnet and
testnet2 are to small to be realistic, but make good testing and debugging
networks. The rest are realistic networks from different sources [13], [14].

Some of the networks might have alternate names in other articles. E.g.
the 28n45s network is called france in [13], but since this paper is an
exploration of the sbpp protection model and not an actual solution to say
a specific transport problem, I prefer the more descriptive numerical name
over the geographical one.

The seven networks in table 6.1 make up a diverse test set since they
vary in size, density and span costs.

The density of the networks describe how many spans the network has,
compared to the maximum number of possible spans a network with that
amount of nodes, could have. The density of a graph G = (N,S) with N
nodes and S spans is

density =
number of spans

max. number of posible spans
=

S

N(N − 1)/2
=

2S

N(N − 1)

1There are actually eight networks listed in table 6.1, but 13n21s and 13n21s_2 are
the same network with different span costs.

47

48 Chapter 6. Results and Discussion

Number of Number of Average Span
Name Nodes Spans Density Node Degree costs

43n71s 43 71 7,9% 3,30 1
33n68s 33 68 12,9% 4,12 1
28n45s 28 45 11,9% 3,12 1
13n21s 13 21 26,9% 3,23 [1; 8]
13n21s 2 13 21 26,9% 3,23 1
11n26s 11 26 47,3% 4,73 1
testnet 6 7 46,7% 2,83 [0.9; 1]
testnet2 4 5 83,3% 2,50 1

Table 6.1: The networks.

The average node degree of the network is the average number of spans
that are connected to each node. It is calculated with the following simple
formula:

AvgNodeDeg =
2 · Number of Spans

Numer of Nodes
=

2S

N

because each span connects to two nodes the number of spans must be
multiplied by two.

The span cost is the price of each of the individual spans. A single ’1’
means that all the prices are one on all the spans, and an interval [1; 8] means
that the prices are between one and eight (both inclusive) on the spans.

6.2 Solutions

The solutions in table 6.2 are generated with the limit columns to 1 strategy
and the start with bhandari strategy since this is the fastest of the algorithms
described in chapter 4.

The demands are all one. That means that between every node pair
there is a demand and all the demands are equal, in this case one. The
number is scalable so if all the demands where 2, the objective value would
just be twice as big.

Iterations and Number of columns are the number of iterations it took
to solve the problem and the total number of columns in the final iteration,
including the y columns and the initial dummy columns.

The solution time is the number of seconds it took to reach the solution,
and the Objective value is the final result.

6.3 Quality

On table 6.3 the networks and there objective value are listed with the
lower bound and a gap. The lower bound is the absolute lowest cost of path

6.3 Quality 49

Number of Solution Objective-
Name Demands Iterations columns time1 value

43n71s all one 3699 4673 96535 5220,33
33n68s all one 2560 3156 193486 2352,66
28n45s all one 1124 1547 3819 1967,8
13n21s all one 329 428 81 1195,67
13n21s 2 all one 218 317 43 260
11n26s all one 540 621 129 102,267
testnet all one 32 54 <1 45,1
testnet2 all one 14 25 <1 13

1 This is only useful in comparison with the other networks, and can not be
compared to results calculated on other machines.

Table 6.2: The solutions.

Lower Objective-
Name bound value Gap

43n71s 5077 5220,33 2,8%
33n68s 2299,4 2352,66 2,3%
28n45s 1914,2 1967,8 2,8%
13n21s 1169 1195,67 2,3%
13n21s 2 248 260 4,8%
11n26s 97,6 102,267 4,8%
testnet 44 45,1 2,5%
testnet2 13 13 0%

Table 6.3: The quality of the solutions.

50 Chapter 6. Results and Discussion

protection, if we are allowed to reroute all the connections in the network
when a link failure occurs, not just the paths directly affected, but all paths
in the network. This is referred to as global rerouting in chapter 1. The
values are taken from [13].

This is of course not practical in a real world situation, but it provides
a useful lower bound to test how well this algorithm works. As is evident
from the table the algorithm is very close to the lower bound, between 2,3%
and 4,8% if we discard the two small test networks.

If we look at the quality of the solutions in terms of capacity requirements
sbpp performs exceedingly well. With an average gap of 2,8% from the
absolute lower bound the results are very close to perfect.

6.3.1 Solution time

The quality in terms of solution time of the sbpp algorithm is more debat-
able. It range from under one second on the very small networks to about
50 hours on the largest. Obviously 50 hours is to much time to be practical
if the environment is very dynamic, but in large backbone networks which
seldom change topography it might not be a problem.

6.4 Implementability

Sbpp can be a bit hard to implement in a live network in its current form.
First of all it requires complete knowledge of the demands on the network
and the link prices on all links.

On the other hand if the routing problem was solved on a computer and
then the nodes in the network where just told what to do, so the nodes them-
selves did not have to be intelligent, it could be realized with the technology
we have today.

It would be a problem to add or remove nodes from the network as the
entire problem would have to be solved again, at least to get an optimal
solution, but replacement of nodes would be easy since the new node would
just need the path configuration of the old one to fit into the plan.

6.5 Objective values

On first glance it might seem odd that the objective values can assume non
integer values when the demands and prices are all integer. It happens
because the flow that supply a particular demand is split into several paths.

To understand why it might be preferable to split a demand across two
or more paths it is important to remember that the master problem is an lp
problem and can use any percentage of any span.

6.6 Integer solution 51

Capacity needed = 4

Primary path
Backup path

0,4

0,4

0,6

0,6

Capacity needed = 3,2

0,6

1 1

11

0,6

Figure 6.1: Split path.

An example of a split path can be seen on figure 6.1. On the left part
of figure 6.1 is a normal disjoint path pair. All the data travels along the
primary path and therefore we need to reserve capacity for it. If one of the
spans on the primary path fails all the data must use the backup path, and
therefore we must reserve the same amount of capacity there.

On the right part of the figure is the same network and the demand
between the source and destination nodes is still one. This time the flow is
split into two disjoint path pairs. The one running along the left side of the
network carries 40% of the data and the one running along the right side
carries 60% of the data. Both backup paths share the spans from the source
to the destination.

The combined capacity of the spans on the primary path is still two,
but it is sufficient to reserve 0,6 on each of the backup spans as that is the
maximum amount of capacity we will need no matter which of the primary
paths fail.

It would have been even better to let each of the primary paths carry
50% of the traffic instead of 40-60. That would reduce the needed capacity
to 3.

6.6 Integer solution

The master problem of the sbpp model is an lp problem and that means that
you can use half the capacity on a link and that way only pay half the price.
In some real world situations that is probably not possible, as you might
be in a situation where you pay for a line whether you use the maximum
capacity or only a small fraction of the capacity.

One way to model this limitation is to add the constraint that either

52 Chapter 6. Results and Discussion

Name Sbpp Integer Gap

43n71s 5220.33 5221 0,00%
33n68s 2352,66 2354 0,05%
28n45s 1967.8 1968 0,01%
13n21s 1195.67 1196 0,02%
13n21s 2 260 261 0,38%
11n26s 102.267 104 1,69%
testnet 45.1 45,1 0,00%
testnet2 13 13 0,00%

Average gap 0,27%

Table 6.4: The original sbpp solution compared to the solution of the final
master problem solved as a mixed integer problem.

all of the decision variables in the master problem, or just the y’s, must be
integers. If we say that only the y’s have to be integers that means that we
can still split up the traffic supplying a single demand across multiple paths,
but once you use a link you pay the full price for it.

If we chose to make all the decision variables of the master problem
integer, it means that it would be impossible to only use, say half the capacity
on a disjoint path pair, but that would never be useful since we pay full price
for all the links on that path we might as well use all the capacity on them,
so the two methods well give the same result. Since they both give the same
result, we use the one where only the y’s are integers. It gives the simplest
problem, and it is the most intuitively correct way to model the situation.

In order to get an optimal integer solution we would have to convert the
master problem to a MIP problem and then our column generation algorithm
can no longer be used.

To investigate whether or not a complete integer “branch and bound”
or “branch and price” solution is necessary, we try to solve the final master
problem again, but this time we add the constraint that all the y-variables
must be integers. If this integer value is very close to the optimal lp value
we can argue that it is not necessary to recalculate the entire problem using
branch and bound/price. The results of this test can be seen in table 6.4.

As we can see in the table, the average gap is 0,27%. In fact, in many
of the networks the integer solution is just the lp solution rounded up and
is thus proven to be the optimal integer solution to the problem.

This confirms that the results we get are optimal, or very close to optimal
even in situations where the lp-simplification is not applicable.

6.6.1 The integer results

There are a couple of things worth noting in table 6.4. The first is the fact
that the integer solution of testnet is not integer. This is because the link

6.7 Reverse Single Backup Path Protection 53

64

5

1

7

2 8

9

10

3

Figure 6.2: Reverse Single Backup Path Protection (rsbpp)

prices of testnet are not all integer. The spans them selves (the y-columns)
are integer values, but when multiplied by the non integer costs according
to (2.1) we get a non integer sum.

Also worth noting is the fact that the integer solution of the 11n26s

network is 1,69% higher than the lp relaxation. That is pretty high compared
to the other networks. One explanation of this is that the network is much
more dense compared to the other networks and therefore there are more
opportunities to split the data flow between paths that can not be utilized
in an integer solution. See figure 6.1.

Another explanation is that this is a relatively small network so even
a relatively small difference yields a high percentage. The 33n68s network
is also more dense than most of the others, but because it is so large, a
difference of about 2,33 only yields a gap of 0,05%.

6.7 Reverse Single Backup Path Protection

In a situation where the recovery time is more important than the actual
transmission time, e.g. live television broadcasts we might be concerned
with the time it takes to discover that a link failure has occurred and then
retransmit all the data since the failure.

In such a situation it might be more desirable to have the node just
before the link failure transmit the data back to the source node and then
via the backup path to the destination, since that node is the first to discover
that a link failure has occurred [3], [2].

This is called Reverse Single Backup Path Protection (rsbpp) and is
illustrated on figure 6.2.

6.7.1 New formulation

The formulation of the Reverse Single Backup Path Protection (rsbpp) prob-
lem is almost identical to the sbpp problem described throughout this paper.

54 Chapter 6. Results and Discussion

We will take a look at the master and sub problems to see exactly where
they differ.

6.7.2 Rsbpp master problem

We need to reserve enough capacity for the data to be sent out and back
again on all the spans in the primary path except the last one. That means
we need to pay twice for all the spans in the primary path, except the last
one before the destination. The last one can never transport data forward
and back again since no span ahead of it can break.

The backup path is unchanged see figure 6.2. The following is a formu-
lation of the rsbpp problem:

Minimize:
∑

ij

Cij · yij (6.1)

Subject to:

∑

p

xkl
p ≥ Dkl ∀kl (6.2)

∑

kl

∑

p

akl
p,ij · (d

kl
ij + 1) · xkl

p +
∑

kl

∑

p

akl
p,qr · b

kl
p,ij · x

kl
p ≤ yij ∀(il, qr)|ij 6= qr

(6.3)

xkl
p , yij ∈ R+ (6.4)

The objective function and the demand are exactly the same as in the
sbpp formulation. We still only pay for the spans we use and all demands
must still be met.

The only difference is in constraint (6.3) where there is now an additional
(dkl

ij + 1). The indicator variable dkl
ij = 1 if the span ij is not connected to

the destination node l and 0 if it is.

6.7.3 Rsbpp sub problem

None of the constraints of the sub problem needs to change from the sbpp- to
the rsbpp formulation. We still need two disjoint paths through the network.
The only necessary change here is in the objective function to get the correct
price of the paths.

6.7 Reverse Single Backup Path Protection 55

Minimize:

(dkl
ij + 1) ·

∑

(ij)

c(ij) · x(ij) +
∑

ij

∑

qr

βji,qr · zji,qr (6.5)

Subject to:

∑

(ij)

x(ij) −
∑

(ji)

x(ji) =

1 for i = k
−1 for i = l

0
∀i (6.6)

∑

(ij)

y(ij) −
∑

(ji)

y(ji) =

1 for i = k
−1 for i = l

0
∀i (6.7)

x(ij) + x(ji) + y(ij) + y(ji) ≤ 1 ∀{ij} (6.8)

x(qr) + x(rq) + y(ij) + y(ji) − 1 ≤ zij,qr ∀(ij, qr)|ij 6= qr (6.9)

We added (dkl
ij +1) in front of the primary path sum where the indicator

variable dkl
ij = 1 if the span ij is not connected to the destination node l and

0 if it is (the same as in the master problem). That way we pay twice for
all the links on the primary path except the last link, and the backup path
is untouched.

In the formulations of the rsbpp master and sub problem we use dkl
ij as

an indicator for whether the span ij ı́s connected to the destination node l
or not. One implementational advantage of this approach is that dkl

ij only
need to be created once and then it can be used for lookups when needed.
This is more efficient than adding a new sum for the part of the primary
path that needs to reserve extra capacity.

6.7.4 Sbpp vs. rsbpp

Table 6.5 lists the rsbpp results along side the sbpp results and the lower
bound. The “sbpp gap” is the relative distance from the sbpp solution to
the rsbpp solution and the “total gap” is the relative distance from the lower
bound to the rsbpp solution.

The results on table 6.5 speak for them self. The method is far more
expensive than sbpp in terms of capacity, however the rsbpp method is more
robust.

In sbpp the problem is that in the time it takes the node right in front
of the link failure to signal the source node to use the backup path, data
will already have been sent via the now broken path. The source node must
now re-send the data via the backup path and that causes a “hole” in the
data flow because re-sending usually means going back to the source of the
data and recreating it. Sometimes, like with live television broadcasts, it is
not possible to just recreate lost data. In that case you just have to accept
that a few seconds of transmission is lost.

56 Chapter 6. Results and Discussion

Lower Sbpp Total
Name bound Sbpp Rsbpp gap gap

43n71s 5077 5220,33 7842,83 50% 54%
33n68s 2299,4 2352,66 3570,12 52% 55%
28n45s 1914,2 1967,8 2877 46% 50%
13n21s 1169 1195,67 1524 27% 30%
13n21s 2 248 260 340 31% 37%
11n26s 96,7 102,267 133,267 30% 38%
testnet 44 45.1 53.3 18% 21%
testnet2 13 13 14 8% 8%

Table 6.5: The original sbpp solution and the lower bound compared to the
rsbpp solution

In rsbpp when the node right in front of the link failure discovers the
problem it just sends the data back to the source node and then via the
backup path. There will still be a small time hole in the data flow but no
data needs to be re-send.

Chapter 7

Future research

In this chapter we will look at some possibilities for future research related
to single backup path protection.

7.1 Stop–release in sbpp

The question of stop–release is the question of whether or not it is useful to
release the capacity of the primary path when a span on the primary path
breaks. At first glance it seams likely that another path can use some of the
released capacity thereby making an overall cheaper solution.

Formally the sbpp master problem using stop–release can look like this:

Minimize:
∑

ij

Cij · yij (7.1)

Subject to:

∑

p

xkl
p ≥ Dkl ∀kl (7.2)

∑

kl

∑

p

(1 − akl
p,qr) · a

kl
p,ij · x

kl
p +

∑

kl

∑

p

akl
p,qr · b

kl
p,ij · x

kl
p ≤ yij ∀(il, qr)|ij 6= qr

(7.3)

xkl
p , yij ∈ R+ (7.4)

The only difference from the original master problem in chapter 2 is the
added (1 − akl

p,qr) in constraint (7.3). The meaning of akl
p,qr is explained in

chapter 2, but informally this change means that if a span on the primary
path breaks, the primary path no longer use the capacity on any of it’s
spans.

In order to see whether this change will have any useful effect, we can go
though the possible benefits one by one. Note that the model stops as soon

57

58 Chapter 7. Future research

Primary path
Backup pathAp

Ab

Bp

Bb

Figure 7.1: A scenario in which the use of stop–release would improve the
solution. The full lines are primary paths and the dotted lines are backup
paths.

as a span breaks, so any benefit will have to be in the amount of capacity
we need to reserve for a particular link.

Let us assume that the disjoint path pair on which the link failure occurs
is called A where Ap is the primary path and Ab is the backup path. There
are four types of paths who can possibly take advantage of the released ca-
pacity: The primary path itself Ap, the backup path Ab, another primary
path supplying another demand Bp or another backup path supplying an-
other demand Bb.

The first candidate Ap can clearly not benefit from any released capacity
since the capacity is only released when Ap breaks. The backup path Ab can
not benefit either since it can not use any spans used by the primary path
(they are disjoint).

That leaves other primary and backup paths. Another primary path Bp

that share some unbroken links with Ap can not benefit from any released
capacity since enough capacity for both paths have to be reserved on all
shared links. After all, both paths should be running simultaneously most
of the time. What about another backup path Bb that share some unbroken
links with Ap? We also in this case need to reserve enough capacity on
all the links to accommodate the worst case scenario. A link failure could
occur anywhere, so Bb can not rely on capacity from a broken Ap becoming
available, because it won’t if the failure occurs on a link used by Bp but not
Ap. The only possible way this released capacity could be used is if there are

no such links, in other words Bp must be “covered ” by Ap (see figure 7.1).

If the situation is similar to the one on figure 7.1 then the backup path
Bb need not reserve capacity on the links covered by Ap because the only
way Bb will be used is if Bp is broken, but since Bp is covered by Ap that
implies that Ap is also broken and thus no longer need the capacity on the

7.2 Bhandari prices 59

links it covers.
In the situation on figure 7.1 the price of protection would be 2 less using

stop–release then without, and it could be an object of further research to
test how often this occurs in practice, and if the improved solutions are
worth the added complexity.

7.2 Bhandari prices

One of the things that help speed up the column generation algorithm is
the fact that we initially use a heuristic called Bhandari to generate some
disjoint path pairs.

We are not able to rely completely on this heuristic though, because
the disjoint path pairs are generated based on some inaccurate prices. The
Bhandari algorithm finds the disjoint path pair with the least combined
price, and then returns them as a disjoint path pair. When the pair is
created the Bhandari algorithm just chooses one of the paths to be the
primary and the other to be the backup path, however the price of the links
in the network depends on that choice.

When one of the paths are chosen to be the primary path, the link prices
for the backup path changes due to the fact that we only have to pay for
the links on backup paths if they might be used together with some other
paths on that link, as explained in chapter 2 and 3.

When the prices change we are no longer sure that we have the cheapest
disjoint path pair. The (now chosen) backup path might be cheaper or
indeed free if we chose another path. Due to this problem the Bhandari
algorithm can only be used as a starting point for the column generation
algorithm. After a number of iterations, Bhandari can no longer improve
the solution, and we have to use the MIP based method of solving the sub
problem.

It is not likely that we will ever find an improvement to Bhandari that
would make it capable of solving the sub problem completely1, but with a
few modifications it is likely that we can get much closer to the optimal
solution before we have to use the MIP-solver.

Further research could uncover whether recalculating the backup path
with the new prices after choosing the primary path would bring us closer
to the optimal solution.

7.3 Optimize master problem

As is suggested from the running time analysis in chapter 5 the time spent
solving the master problem plays a more and more significant role as the

1Not in polynomial time anyway. In chapter 2 we show that the sub problem is NP-
Hard, so such a solution would imply P=NP

60 Chapter 7. Future research

network size increases.
Exactly what parameters are responsible for more or less time spent in

the master problem as oppose to the sub problem are unclear, and anyone
wanting to optimize the master problem further would want to clarify that
first, in order to see whether or not the master problem will indeed become
more and more dominant as the network size increase or some factor other
than size are responsible.

In chapter 4 we conclude that stabilization of the master problem will
not have any great effect on the running time of the column generation
algorithm, but there may be other useful methods.

Another topic that might deserve further research is the pruning strat-
egy’s discussed also in chapter 4. If a way of reducing the size of the master
problem, without removing columns that are needed to verify the solution
could be found, it would surely mean a faster algorithm.

Chapter 8

Conclusion

In this theses a model for single backup path protection was presented. The
model was converted to a form that made it strait forward to implement,
and the implementation and result where presented along with some key
algorithms used in the implementation.

The sbpp model consisting of a master problem and a sub problem are
closely modeling a real world network and the assumptions of infinite band-
width and infinitely dividable links did not turn out to be a problem in the
solution.

The coin library is a well suited environment for implementing linear
programming- and integer programming models. After the problem was con-
verted to matrix form it was relatively strait forward to implement it using
the features of coin, especially when combined with the column generation
algorithm.

Many improvements where made to the original algorithms and the com-
bined result of all the optimizations was a running time 60 times faster than
that of the original program. We saw that the running time now depends
almost exclusively on the coin library and the underlying solver, in this case
cplex, so any future improvement would be on the model itself.

Stabilization was evaluated as a way of improving the model, but was
found not to be helpful. It is possible that other lp-optimization methods
would yield a faster result, but one vital part in improving the running time
would be to determine exactly where the majority of the time is spent. It
is still unclear exactly what network properties are responsible for whether
the master problem or the sub problem are the most time consuming.

The most impressing part of this model is the quality of the results
it produces. The capacity requirements are only a few percent from the
absolute lower bound of path protection. Even if we impose the restriction
that we must pay for the entire link no matter how small a part we use
the results are in many cases just rounded up from the lp-solution to the
nearest integer solution, thereby proving that the results are close to what

61

62 Chapter 8. Conclusion

Lower bound for protection

%
 e

xt
ra

 c
ap

ac
ity

 n
ee

de
d

20%

Reverce Single Backup Path Protection (rsbpp)

10%

Ring protection (JC)

1+1 protection

Ring protection (SC)

60%

50%

Single Backup Path Protection (sbpp)

40%

p−cycles (SP)

30%

p−cycles (JP)

Figure 8.1: Various known protection methods, and their average capacity
requirements compared to the lower bound.

we would expect to get if this protection scheme was implemented in a real
world network.

The closely related reverse single backup path protection model was pre-
sented and the capacity requirements where about comparable to ring pro-
tection. In this authors opinion the dramatic increase in capacity require-
ment compared to sbpp is not a price worth paying for the added robustness.

Overall single backup path protection is superior in terms of capacity
requirements but not as fast as 1+1 protection when it comes to recovery
from link failure.

If you want to protect the integrity of your network, but doesn’t need
instantaneous recovery or don’t want to pay the capacity-price that 1+1
protection demands, Single backup path protection is a very attractive al-
ternative as can be seen on figure 8.1.

Appendix A

Selected source code

This appendix contains part of the source code. All the source code can be
found on the CD.

A.1 columngen.cc

1 #include <stdio.h>

2 #include "config.h"

3 #include "error.h"

4 #include "disjoint.h"

5 #include "network.h"

6 #include "sbppmasterproblem.h"

7 #include "sbpp_sub_bhandari.h"

8 #include "sbpp_sub_mip.h"

9 #include "progress.h"

10

11 #define STATE_MIP 0

12 #define STATE_BHA 1

13

14 int main()

15 {

16 debugMsg("Debug messages are ON.\n");

17 debugMsg("Compile whitout DEBUGMSG defined to turn them off\n\n");

18

19 // Create a network object based on a filename

20 Network net("netdata/13n21s_2.top");

21

22 // Specify the demand

23 int nNodes = net.getNumNodes();

24 int nlinks = net.getNumSpans();

25 int nDemandSet = (nNodes*(nNodes-1)/2);

26 int demand[nDemandSet];

27 for(int n=0; n<nDemandSet; n++)

28 demand[n] = 1;

29

30 // Create the master- and subproblem objects we have to work on

31 SBPPMasterProblem mp(&net, demand);

63

64 Chapter A. Selected source code

32 #ifdef WITH_BHANDARI

33 SBPPSubProblem *sp = new SBPP_bhandari(&net, &mp);

34 int state = STATE_BHA;

35 double objval = 0;

36 int samecount = 0;

37 #else

38 SBPPSubProblem *sp = new SBPP_MIP(&net, &mp);

39 #endif

40

41 // alocate mem for a disjoint path

42 int *p1 = (int*)malloc(nlinks*sizeof(int));

43 int *p2 = (int*)malloc(nlinks*sizeof(int));

44 Dpath dpath(p1, p2, 0, 0);

45

46 // open a logfile to receve data

47 FILE *logfile = fopen("data.log", "w");

48 fprintf(logfile, "# Progress logfile v1.4 (5 columns)\n");

49

50 // enter the main column generation loop

51 bool fNewPaths=1, fJumpIn=0, fTerminate=0;

52 int iterations = 0;

53 double gap=0;

54 int klsave=0, ksave=0, lsave=0;

55 int k=0, l=0, kl=0;

56 int columnsAdded = 0;

57

58 while(fNewPaths)

59 {

60 // Reset fNewPaths... we didn’t find any yet

61 fNewPaths = 0;

62

63 // Solve the master problem

64 mp.solve();

65

66 #ifdef WITH_BHANDARI

67 if(state==STATE_BHA)

68 {

69 if(isEqual(mp.getObjValue(), objval))

70 samecount++;

71 else

72 {

73 samecount=0;

74 objval = mp.getObjValue();

75 }

76

77 if(samecount>=3)

78 {

79 delete sp;

80 sp = new SBPP_MIP(&net, &mp);

81 state = STATE_MIP;

82 }

83 }

84 #endif

85

A.1 columngen.cc 65

86 // update the network with new prices

87 for(int i=0; i<nlinks; i++)

88 net.setSpanWeight(i, mp.getDualSpanCost(i));

89

90 // Solve ’COL_PR_IT’ of the subproblems the subproblems

91 printf("Solving %i of the %i subproblems\n", COL_PR_IT, nDemandSet);

92 for(gap=0, columnsAdded=0, fTerminate=0; columnsAdded<COL_PR_IT;

93 fTerminate=1)

94 {

95 for(k=0, kl=0; k<nNodes-1 && columnsAdded<COL_PR_IT; k++)

96 for(l=k+1; l<nNodes && columnsAdded<COL_PR_IT; l++, kl++)

97 {

98 if(fJumpIn)

99 {

100 k = ksave;

101 l = lsave;

102 kl = klsave;

103 fJumpIn = 0;

104 continue;

105 }

106

107 // Solve the subproblem for the kl node-pair

108 sp->solve(&dpath, k, l);

109

110 // if this dpath can reduce the total cost of the

111 // masterproblem

112 if(mp.getDualDemandCost(kl)-dpath.getPrice() > 1e-4)

113 {

114 // Sum all the reduced costs to find a "gap"

115 gap += mp.getDualDemandCost(kl)-dpath.getPrice();

116

117 // Add the dpath to the master problem

118 mp.addPath(&dpath, kl, l, sp);

119

120 fNewPaths = 1;

121 fTerminate = 0;

122 columnsAdded++;

123 }

124

125 // Indicate activity to the user

126 blingbling();

127 }

128

129 if(fTerminate)

130 break;

131

132 // Save the k, l, and kl values so we can jump back in

133 if(columnsAdded>=COL_PR_IT)

134 {

135 ksave = k-1;

136 lsave = l-1;

137 klsave = kl-1;

138 fJumpIn = 1;

139 }

66 Chapter A. Selected source code

140

141 }

142

143 printf("gap = %g\n", gap);

144

145 // Write to the logfile and update iteration counter

146 fprintf(logfile, "%i %i %g %g %g\n", iterations,

147 mp.getNumCols(), mp.getDualDemandCost(0), gap,

148 mp.getObjValue());

149 iterations++;

150 }

151

152 // print the solution

153 printf("Final solution: %g\n", mp.getObjValue());

154

155 #ifdef INTEGER_SOLUTION

156 printf("Final integer solution: %g\n", mp.solveAsMIP());

157 #endif

158

159 // close the logfile

160 fclose(logfile);

161

162 // Clean up

163 free(p1);

164 free(p2);

165 delete sp;

166 return 0;

167 }

168

A.2 sbppmasterproblem.cc

1 #include <assert.h>

2 #include "config.h"

3 #include "error.h"

4 #include "sbpp_sub_mip.h"

5 #include "progress.h"

6

7 SBPPMasterProblem::SBPPMasterProblem(Network *n, int *d)

8 {

9 #ifndef USE_CLP_SOLVER

10 cplex = new OsiCpxSolverInterface;

11 #else

12 cplex = new OsiClpSolverInterface;

13 #endif

14 infinity = cplex->getInfinity();

15 net = n;

16 numberOfColumns = 0;

17 isFirstSolve = 1;

18 demand = d;

19 numColsCach = numNewColsCach = numRowsCach = 0;

20

A.2 sbppmasterproblem.cc 67

21 nnodes = net->getNumNodes();

22 nlinks = net->getNumSpans();

23

24 // Create the initial feaseble solution

25 cpm = createInitialCoinPackedMatrix();

26

27 // cach the demand row prices so they are

28 // availeble afte we modify the problem

29 rowPriceCach = new double[demandRows];

30 }

31

32 SBPPMasterProblem::~SBPPMasterProblem()

33 {

34 delete cplex;

35 delete cpm;

36 delete[] rowPriceCach;

37 }

38

39

40 CoinPackedMatrix* SBPPMasterProblem::createInitialCoinPackedMatrix()

41 {

42 debugMsg("[MasterProb] nodes: %i, links: %i\n", nnodes, nlinks);

43 demandRows = (nnodes*(nnodes-1))/2;

44

45 CoinPackedMatrix *matrix = new CoinPackedMatrix;

46

47 // Create the ’y’ columns

48

49 //first create the values

50 double yvalues[nlinks-1];

51 for(int i=0; i<nlinks-1; i++)

52 yvalues[i] = -1;

53

54 // Then create the indexes

55 int yindex[nlinks-1];

56 for(int ij=0; ij<nlinks; ij++)

57 {

58 for(int qr=0; qr<nlinks-1; qr++)

59 yindex[qr] = demandRows + qr + ij*(nlinks-1);

60

61 // add the column to the matrix

62 CoinPackedVector cpv(nlinks-1, yindex, yvalues);

63 matrix->appendCol(cpv);

64 numberOfColumns++;

65 }

66

67 // now we need enough paths (columns) to make a feaseble solution, but

68 // we make them so expensive they won’t be used in the final solution

69

70 // create the values and indexes.

71 int columnheight = nlinks*(nlinks-1)+1;

72 double xvalues[columnheight];

73 int xindex [columnheight];

74

68 Chapter A. Selected source code

75 for(int i=0; i<columnheight; i++)

76 {

77 #ifdef RSBPP

78 xvalues[i] = 2;

79 #else

80 xvalues[i] = 1;

81 #endif

82 xindex[i] = (demandRows-1) + i;

83 }

84 xvalues[0] = -1;

85

86 // add a column for each demand

87 for(int n=0; n<demandRows; n++)

88 {

89 // modify the first index to create a column for this demand

90 xindex[0] = n;

91 CoinPackedVector cpv(columnheight, xindex, xvalues);

92 matrix->appendCol(cpv);

93 numberOfColumns++;

94 }

95

96 return matrix;

97 }

98

99 int SBPPMasterProblem::isLinkInPath(int link, int *path, int plen)

100 {

101 for(int i=0; i<plen; i++)

102 if(path[i] == link)

103 return 1;

104 return 0;

105 }

106

107 void SBPPMasterProblem::addPath(Dpath *dp, int demidx, int dest,

108 SBPPSubProblem *sp)

109 {

110 int qr, icount=0, val;

111 #ifdef RSBPP

112 int n1, n2;

113 #endif

114

115 // Find the size of the Coin packed vector

116 int primPathSize = dp->len1*(nlinks-1);

117 int backPathSize = dp->len2*dp->len1;

118 int vectorsize = primPathSize + backPathSize +1;

119

120 double value[vectorsize];

121 int index[vectorsize];

122

123 // Add the indeces and values for the primary path.

124 for(int a=0; a<dp->len1; a++)

125 {

126 #ifdef RSBPP

127 net->getNodesConnectedToSpan(dp->p1[a], &n1, &n2);

128 (n1==dest || n2==dest) ? val=1 : val=2;

A.2 sbppmasterproblem.cc 69

129 #else

130 val = 1;

131 #endif

132

133 for(qr=0; qr<(nlinks-1); qr++)

134 {

135 index[icount] = demandRows + dp->p1[a]*(nlinks-1) + qr;

136 value[icount++] = val; // sbpp => val=1, rsbpp => val={1,2}

137 }

138 }

139

140 // Add indeces and values for the backup path

141 for(int b=0, c=0; b<dp->len2; b++, c=0)

142 for(qr=0; qr<nlinks; qr++)

143 {

144 if(qr==dp->p2[b]) {c=1; continue;}

145 if(isLinkInPath(qr, dp->p1, dp->len1))

146 {

147 index[icount] = demandRows + dp->p2[b]*(nlinks-1) + qr-c;

148 value[icount++] = 1;

149 }

150 }

151

152 // Add the index and value for the demand

153 index[icount] = demidx;

154 value[icount++] = -1;

155

156 // These will differ if a link is used more than once

157 assert(icount==vectorsize);

158

159 // Add the column to the problem

160 try

161 {

162 CoinPackedVector cpv(vectorsize, index, value);

163 cplex->addCol(cpv, 0, infinity, 0);

164 }

165 catch (CoinError e)

166 {

167 fprintf(stderr, "\nA CoinError occurred when adding a new path\n");

168 fprintf(stderr, "The error happened in class %s in %s\nError "

169 "Message: %s\n", e.className().c_str(), e.methodName().c_str(),

170 e.message().c_str());

171 fprintf(stderr, "(%i) prim links : ", dp->len1);

172 for(int i=0; i<dp->len1; i++)

173 fprintf(stderr, "%i ", dp->p1[i]);

174 fprintf(stderr, "\n(%i) backup links : ", dp->len2);

175 for(int i=0; i<dp->len2; i++)

176 fprintf(stderr, "%i ", dp->p2[i]);

177 fprintf(stderr, "\n");

178 ((SBPP_MIP*)sp)->test();

179 assert(EXIT_DUE_TO_COINERROR);

180 }

181 }

182

70 Chapter A. Selected source code

183 void SBPPMasterProblem::solve()

184 {

185 if(!isFirstSolve)

186 return resolve();

187

188 int numberOfRows = nlinks*(nlinks-1)+demandRows;

189

190 // Set the column bounds and objective values

191 debugMsg("[MasterProb] Seting the col bounds.\n");

192 double collb[numberOfColumns], colub[numberOfColumns], obj[numberOfColumns];

193

194 for(int c=0; c<numberOfColumns; c++)

195 {

196 collb[c] = 0;

197 colub[c] = infinity;

198 obj [c] = (c<nlinks) ? net->getSpanCost(c) : 0;

199 }

200

201 // set the row bounds

202 debugMsg("[MasterProb] Seting the row bounds.\n");

203 double rowlb[numberOfRows], rowub[numberOfRows];

204

205 for(int r=0; r<numberOfRows; r++)

206 {

207 rowlb[r] = -infinity;

208 rowub[r] = (r<demandRows) ? -demand[r] : 0;

209 }

210

211 // load the problem into cplex

212 cplex->loadProblem(*cpm, collb, colub, obj, rowlb, rowub);

213 cplex->setObjSense(1); // ’-1’ maximize ’1’ minimize

214 cplex->messageHandler()->setLogLevel(0);

215

216 // do some checking

217 assert(cplex->getNumRows() == numberOfRows);

218 assert(cplex->getNumCols() == numberOfColumns);

219

220 // let cplex solve it

221 debugMsg("[MasterProb] Solving the problem.\n");

222 try

223 {

224 cplex->initialSolve();

225 cacheValues();

226 printf("(%i) Obj val: %g\n", cplex->getNumCols(), objValue);

227 isFirstSolve = 0;

228 }

229 catch(CoinError e)

230 {

231 fprintf(stderr, "\nA CoinError occurred when doing the"

232 " initial solve\n");

233 fprintf(stderr, "The error happened in class %s in %s\nError "

234 "Message: %s\n\n", e.className().c_str(),

235 e.methodName().c_str(), e.message().c_str());

236 assert(EXIT_DUE_TO_COINERROR);

A.2 sbppmasterproblem.cc 71

237 }

238

239 assert(cplex->isProvenOptimal() == 1);

240 }

241

242 void SBPPMasterProblem::resolve()

243 {

244 debugMsg("[MasterProb] Re-solving..\n");

245

246 try

247 {

248 cplex->resolve();

249 cacheValues();

250 printf("(%i) Obj val: %g\n", cplex->getNumCols(), objValue);

251 }

252 catch(CoinError e)

253 {

254 fprintf(stderr, "\nA CoinError occurred when doing a resolve\n");

255 fprintf(stderr, "The error happened in class %s in %s\nError "

256 "Message: %s\n\n", e.className().c_str(),

257 e.methodName().c_str(), e.message().c_str());

258 assert(EXIT_DUE_TO_COINERROR);

259 }

260

261 assert(cplex->isProvenOptimal() == 1);

262 }

263

264 double SBPPMasterProblem::solveAsMIP()

265 {

266 // set the index sepcifying which variables are integer

267 int intidx[nlinks];

268 for(int i=0; i<nlinks; i++)

269 intidx[i] = i;

270 try

271 {

272 cplex->setInteger(intidx, nlinks);

273 cplex->branchAndBound();

274 cacheValues();

275 cplex->setContinuous(intidx, nlinks);

276 }

277 catch(CoinError e)

278 {

279 fprintf(stderr, "\nA CoinError occurred when doing solveAsMIP\n");

280 fprintf(stderr, "The error happened in class %s in %s\nError "

281 "Message: %s\n\n", e.className().c_str(),

282 e.methodName().c_str(), e.message().c_str());

283 assert(EXIT_DUE_TO_COINERROR);

284 }

285

286 return objValue;

287 }

288

289 void SBPPMasterProblem::cacheValues()

290 {

72 Chapter A. Selected source code

291 objValue = cplex->getObjValue();

292

293 const double *rp = cplex->getRowPrice();

294 for(int i=0; i<demandRows; i++)

295 rowPriceCach[i] = rp[i];

296

297 numNewColsCach = cplex->getNumCols() - numColsCach;

298 numColsCach = cplex->getNumCols();

299 numRowsCach = cplex->getNumRows();

300 }

301

302 int SBPPMasterProblem::getNumCols()

303 {

304 return numColsCach;

305 }

306

307 int SBPPMasterProblem::getNumNewCols()

308 {

309 return numNewColsCach;

310 }

311

312 double SBPPMasterProblem::getObjValue()

313 {

314 return objValue;

315 }

316

317 double SBPPMasterProblem::getDualSpanCost(int r)

318 {

319 assert(r < nlinks);

320 const double *dp = cplex->getRowPrice() + demandRows + r*(nlinks-1);

321 double sum=0;

322

323 for(int i=0; i<(nlinks-1); i++)

324 sum += dp[i];

325

326 return -sum;

327 }

328

329 void SBPPMasterProblem::testError()

330 {

331 try

332 {

333 throw CoinError("There is no problem :) You asked for this.",

334 "testError", "SBPPMasterProblem");

335 }

336 catch(CoinError e)

337 {

338 fprintf(stderr, "\nA CoinError occurred when trying to provoke "

339 "an error\n");

340 fprintf(stderr, "The error happened in class %s in %s\nError "

341 "Message: %s\n\n", e.className().c_str(),

342 e.methodName().c_str(), e.message().c_str());

343 assert(EXIT_DUE_TO_COINERROR);

344 }

A.2 sbppmasterproblem.cc 73

345 }

346

347 double SBPPMasterProblem::getDualDemandCost(int d)

348 {

349 return -rowPriceCach[d];

350 }

351

352 double SBPPMasterProblem::getLinkFailurePrize(int ij, int qr)

353 {

354 const double * dualrowprice = cplex->getRowPrice();

355 assert(ij != qr);

356 assert(qr < nlinks);

357 assert(ij <= nlinks);

358 int index = ij*nlinks + qr + demandRows;

359 if(qr>ij) index--;

360 return isEqual(dualrowprice[index],0) ? 0 : ABS(dualrowprice[index]);

361 }

362

363 double SBPPMasterProblem::getLinkRowPrice(int i)

364 {

365 const double * dualrowprice = cplex->getRowPrice();

366

367 assert(i < nlinks*(nlinks-1));

368 assert(!isnan(dualrowprice[demandRows + i]));

369

370 return ABS(dualrowprice[demandRows + i]);

371 }

372

373 void SBPPMasterProblem::pruneColumns()

374 {

375 int deadColumns[cplex->getNumCols()-nlinks];

376 int ndead=0;

377

378 debugMsg("[MasterProb] Pruning columns.\n");

379 try

380 {

381 const double* reducedCost = cplex->getReducedCost();

382

383 // delete all the columns with a ’too high’ reduced cost

384 for(int c=nlinks; c<cplex->getNumCols(); c++)

385 if(reducedCost[c] > 0)

386 deadColumns[ndead++] = c;

387

388 cplex->deleteCols(ndead, deadColumns);

389

390 numNewColsCach = cplex->getNumCols() - numColsCach;

391 numColsCach = cplex->getNumCols();

392 }

393 catch(CoinError e)

394 {

395 fprintf(stderr, "\nA CoinError occurred when pruning columns from "

396 "the master problem\n");

397 fprintf(stderr, "The error happened in class %s in %s\nError "

398 "Message: %s\n\n", e.className().c_str(),

74 Chapter A. Selected source code

399 e.methodName().c_str(), e.message().c_str());

400 assert(EXIT_DUE_TO_COINERROR);

401 }

402 }

403

404 void SBPPMasterProblem::printDpathBasedOnColumn(int col)

405 {

406 const CoinPackedMatrix *matrix = cplex->getMatrixByCol();

407 int colstart = matrix->getVectorStarts()[col];

408 int idx, last=-1, link, count=0;

409

410 for(int i=0; i<matrix->getVectorSize(col); i++)

411 if((idx=matrix->getIndices()[colstart+i]) >= demandRows)

412 {

413 link = (idx-demandRows)/(nlinks-1);

414

415 if(link != last)

416 {

417 printf("%i ", link);

418 count = 0;

419 }

420

421 if(++count == nlinks-1)

422 {

423 printf("\b* ");

424 count = 0;

425 }

426

427 last = link;

428 }

429 }

430

431 void SBPPMasterProblem::printSolutionColumns()

432 {

433 int basiscols = nlinks+demandRows;

434 int i=0;

435

436 try

437 {

438 const double *sol = cplex->getColSolution();

439 printf(" id col links (* prim)\n");

440 printf("----------------------\n");

441 for(int c=basiscols; c<cplex->getNumCols(); c++)

442 {

443 if(sol[c] > 1e-4)

444 {

445 printf("%3i %i [", i++, c);

446 printDpathBasedOnColumn(c);

447 printf("\b]\n");

448 }

449 }

450

451 }

452 catch(CoinError e)

A.2 sbppmasterproblem.cc 75

453 {

454 fprintf(stderr, "\nA CoinError occurred when fetching the "

455 "solution vector\n");

456 fprintf(stderr, "The error happened in class %s in %s\nError "

457 "Message: %s\n\n", e.className().c_str(),

458 e.methodName().c_str(), e.message().c_str());

459 assert(EXIT_DUE_TO_COINERROR);

460 }

461 }

462

463 int SBPPMasterProblem::getMatrixElement(int row, int col)

464 {

465 const CoinPackedMatrix *matrix = cplex->getMatrixByCol();

466 int colstart = matrix->getVectorStarts()[col];

467

468 for(int i=0; i<matrix->getVectorSize(col); i++)

469 if(matrix->getIndices()[colstart+i] == row)

470 return (int)matrix->getElements()[colstart+i];

471 return 0;

472 }

473

474 void SBPPMasterProblem::printSolutionMatrix()

475 {

476 int basiscols = nlinks+demandRows;

477

478 try

479 {

480 const double *sol = cplex->getColSolution();

481

482 // create matrix header

483 printf("price | ");

484 for(int i=0; i<nlinks; i++)

485 printf(" y ");

486 for(int j=basiscols; j<cplex->getNumCols(); j++)

487 printf("%s", isEqual(sol[j], 1)?"[x]":" x ");

488 printf("\n");

489

490 // create matrix rows

491 for(int r=0; r<cplex->getNumRows(); r++)

492 {

493 printf("%5.2f | ", ABS(cplex->getRowPrice()[r]));

494 for(int c=0; c<cplex->getNumCols(); c++)

495 if(c<nlinks || c>=basiscols)

496 {

497 int a = getMatrixElement(r,c);

498 if(a==0)

499 printf(" ");

500 else

501 printf("%2i ", a);

502 }

503 printf("\n");

504 }

505 }

506 catch(CoinError e)

76 Chapter A. Selected source code

507 {

508 fprintf(stderr, "A CoinError occurred in class %s in %s\nError "

509 "Message: %s\n\n", e.className().c_str(),

510 e.methodName().c_str(), e.message().c_str());

511 assert(EXIT_DUE_TO_COINERROR);

512 }

513 }

514

515 void SBPPMasterProblem::printSolutionBasis(bool fShowDemand)

516 {

517 try

518 {

519 const double *sol = cplex->getColSolution();

520

521 // create matrix header

522 printf(" ");

523 for(int i=0; i<nlinks; i++)

524 printf(" ");

525 for(int j=nlinks; j<cplex->getNumCols(); j++)

526 if(isEqual(sol[j], 1))

527 printf("%3i", j);

528 printf("\nprice | ");

529 for(int i=0; i<nlinks; i++)

530 printf(" y ");

531 for(int j=nlinks; j<cplex->getNumCols(); j++)

532 if(isEqual(sol[j], 1))

533 printf("[x]");

534 printf("\n");

535

536 // create matrix rows

537 for(int r=fShowDemand?0:demandRows; r<cplex->getNumRows(); r++)

538 {

539 printf("%5.2f | ", ABS(cplex->getRowPrice()[r]));

540 for(int c=0; c<cplex->getNumCols(); c++)

541 if(c<nlinks || (c>=nlinks && isEqual(sol[c], 1)))

542 {

543 int a = getMatrixElement(r,c);

544 if(a==0)

545 printf(" ");

546 else

547 printf("%2i ", a);

548 }

549 printf("\n");

550 }

551 printf("\n");

552 }

553 catch(CoinError e)

554 {

555 fprintf(stderr, "A CoinError occurred in class %s in %s\nError "

556 "Message: %s\n\n", e.className().c_str(),

557 e.methodName().c_str(), e.message().c_str());

558 assert(EXIT_DUE_TO_COINERROR);

559 }

560 }

A.3 sbpp sub mip.cc 77

561

562 void SBPPMasterProblem::writeRowPricesToFile(FILE *stream)

563 {

564 int bytes = fwrite(rowPriceCach, sizeof(double), demandRows, stream);

565 assert(bytes == demandRows);

566 }

567

568 void SBPPMasterProblem::readRowPricesFromFile(FILE *stream, double *buf,

569 int maxread)

570 {

571 int numRead = MIN(maxread, demandRows);

572 int bytes = fread(buf, sizeof(double), numRead, stream);

573 assert(bytes == numRead);

574 }

575

576 void SBPPMasterProblem::writeEuklidicalDistanceFromValue(FILE *stream,

577 double *optimalPrice, int iteration)

578 {

579 double sum=0;

580 fprintf(stream, "%i ", iteration);

581 for(int i=0; i<demandRows; i++)

582 {

583 sum += (rowPriceCach[i]-optimalPrice[i])*

584 (rowPriceCach[i]-optimalPrice[i]);

585 fprintf(stream, "%g ", (rowPriceCach[i]-optimalPrice[i])*

586 (rowPriceCach[i]-optimalPrice[i]));

587 }

588 fprintf(stream, "%g \n", sqrt(sum));

589 }

A.3 sbpp sub mip.cc

1 #include <assert.h>

2 #include "config.h"

3 #include "sbpp_sub_mip.h"

4 #include "error.h"

5

6 CoinPackedMatrix* SBPP_MIP::createInitialCoinPackedMatrix()

7 {

8 int nNodes = net->getNumNodes();

9 int nSpans = net->getNumSpans();

10 int basewidth = nNodes*nNodes-nNodes;

11 CoinPackedMatrix *matrix = new CoinPackedMatrix;

12

13 numberOfColumns = 2*(nNodes*nNodes-nNodes) + nSpans*nSpans-nSpans;

14 numberOfRows = 2*nNodes + nSpans*nSpans;

15

16 double linkok[2] = {1,-1};

17 double nolink[2] = {0, 0};

18 double *islink;

19 int findex[2];

20

78 Chapter A. Selected source code

21 // Flow constraint for the X’es

22 for(int i=0; i<nNodes; i++)

23 for(int j=0; j<nNodes; j++)

24 {

25 if(i==j) continue;

26

27 findex[0] = i;

28 findex[1] = j;

29

30 // if there is a link between node i and j

31 islink = (net->getLink(i, j)>=0) ? linkok : nolink;

32

33 CoinPackedVector cpv(2, findex, islink);

34 matrix->appendCol(cpv);

35 }

36

37 // Flow constraint for the Y’s

38 for(int i=0; i<nNodes; i++)

39 for(int j=0; j<nNodes; j++)

40 {

41 if(i==j) continue;

42

43 findex[0] = nNodes + i;

44 findex[1] = nNodes + j;

45

46 // if there is a link between node i and j

47 islink = (net->getLink(i, j)>=0) ? linkok : nolink;

48

49 CoinPackedVector cpv(2, findex, islink);

50 matrix->appendCol(cpv);

51 }

52

53 assert(matrix->getNumRows() == 2*nNodes);

54 assert(matrix->getNumCols() == 2*basewidth);

55

56 double values[4] = {1,1,1,1,};

57 int index [4];

58

59 // No-share constraint

60 for(int s=0; s<nSpans; s++)

61 {

62 int n1, n2;

63 // get the index of the nodes this span connects

64 net->getNodesConnectedToSpan(s, &n1, &n2);

65

66 // find, based on n1 and n2, the index’es.

67 int i = MIN(n1, n2);

68 int j = MAX(n1, n2);

69 index[0] = (nNodes-1)*i + j - 1;

70 index[1] = (nNodes-1)*j + i;

71 index[2] = (nNodes-1)*i + j - 1 + basewidth;

72 index[3] = (nNodes-1)*j + i + basewidth;

73

74 CoinPackedVector cpv(4, index, values);

A.3 sbpp sub mip.cc 79

75 matrix->appendRow(cpv);

76 }

77

78 assert(matrix->getNumRows() == 2*nNodes+nSpans);

79 assert(matrix->getNumCols() == 2*basewidth);

80

81

82 // Aux constraint

83 for(int ij=0; ij<nSpans; ij++)

84 {

85 int n1, n2, n3, n4, i, j;

86 // get the index of the nodes the ij span connects

87 net->getNodesConnectedToSpan(ij, &n3, &n4);

88

89 for(int qr=0; qr<nSpans; qr++)

90 {

91 if(ij==qr) continue;

92

93 // get the index of the nodes the qr span connects

94 net->getNodesConnectedToSpan(qr, &n1, &n2);

95

96 // find, based on n1, n2, n3 and n4, the index’es.

97 i = MIN(n1, n2);

98 j = MAX(n1, n2);

99 index[0] = (nNodes-1)*i + j - 1;

100 index[1] = (nNodes-1)*j + i;

101 i = MIN(n3, n4);

102 j = MAX(n3, n4);

103 index[2] = (nNodes-1)*i + j - 1 + basewidth;

104 index[3] = (nNodes-1)*j + i + basewidth;

105

106 // add the row to the matrix. It would be cool if you could

107 // just add the -1 for the z columns by setting index[4]

108 // but that results in a segmentation fault.

109 // Apperently you can’t add columns when appending rows.

110 CoinPackedVector cpv(4, index, values);

111 matrix->appendRow(cpv);

112

113 }

114 }

115

116 assert(matrix->getNumRows() == numberOfRows);

117 assert(matrix->getNumCols() == 2*basewidth);

118

119 // The z’s

120 double zval[1] = {-1};

121 int zidx[1];

122 int baseheight = 2*nNodes + nSpans;

123

124 for(int z=0; z<nSpans*(nSpans-1); z++)

125 {

126 zidx[0] = baseheight + z;

127 CoinPackedVector cpv(1, zidx, zval);

128 matrix->appendCol(cpv);

80 Chapter A. Selected source code

129 }

130

131 assert(matrix->getNumRows() == numberOfRows);

132 assert(matrix->getNumCols() == numberOfColumns);

133

134 return matrix;

135 }

136

137 void SBPP_MIP::createMatrixBoundsAndObj()

138 {

139 int nNodes = net->getNumNodes();

140 int basewidth = nNodes*nNodes-nNodes;

141

142 //

143 // Set the column bounds and objective values

144 //

145

146 // We don’t need collb. The default values are 0

147 // but here we set them anyway. Mmmmmmmm, memory

148 collb = new double[numberOfColumns];

149 colub = new double[numberOfColumns];

150 obj = new double[numberOfColumns];

151

152 for(int c=0; c<numberOfColumns; c++)

153 {

154 collb[c] = 0;

155 colub[c] = 1;

156 obj [c] = 0;

157 }

158

159 // change the Y upper bound to 0 if the link dosn’t exist.

160 for(int i=0, ij=0; i<nNodes; i++)

161 for(int j=0; j<nNodes; j++)

162 {

163 if(i==j) continue;

164 colub[ij] = net->getLink(i, j)<0 ? 0: 1;

165 colub[ij+basewidth] = net->getLink(i, j)<0 ? 0: 1;

166 ij++;

167 }

168

169 // We do not yet know the dual prices of the marster problem

170 // so just set the X-prices and do the rest later.

171 for(int i=0, ij=0; i<nNodes; i++)

172 for(int j=0; j<nNodes; j++)

173 {

174 if(i==j) continue;

175 obj[ij++] = net->getLinkCost(i, j);

176 }

177

178 //

179 // set the row bounds

180 //

181

182 // We do not yet know witch node is start and witch is end, so we’ll

A.3 sbpp sub mip.cc 81

183 // just set that later.

184 rowlb = new double[numberOfRows];

185 rowub = new double[numberOfRows];

186

187 for(int r=0; r<numberOfRows; r++)

188 {

189 rowlb[r] = 0;

190 rowub[r] = (r<2*nNodes) ? 0 : 1;

191 }

192

193 // set the index sepcifying which variables are integer

194 intidx = new int[2*basewidth];

195 for(int i=0; i<2*basewidth; i++)

196 intidx[i] = i;

197 }

198

199 void SBPP_MIP::solve(Dpath* dpath, int k, int l)

200 {

201 int nNodes = net->getNumNodes();

202 int basewidth = nNodes*nNodes-nNodes;

203

204 // change some values in the row bounds

205 rowub[k] = rowlb[k] = 1;

206 rowub[k+nNodes] = rowlb[k+nNodes] = 1;

207 rowub[l] = rowlb[l] = -1;

208 rowub[l+nNodes] = rowlb[l+nNodes] = -1;

209

210 // set the parameters of the objective function

211 setObjParameters(l);

212

213 // load the problem into cplex

214 cplex->loadProblem(*cpm, collb, colub, obj, rowlb, rowub);

215 cplex->setInteger(intidx, 2*basewidth);

216 cplex->setObjSense(1); // ’-1’ maximize ’1’ minimize

217 cplex->messageHandler()->setLogLevel(0);

218

219 // do some checking

220 assert(cplex->getNumRows() == numberOfRows);

221 assert(cplex->getNumCols() == numberOfColumns);

222

223 // let cplex solve it

224 try

225 {

226 cplex->branchAndBound();

227 iterations++;

228 objValue = cplex->getObjValue();

229 }

230 catch(CoinError e)

231 {

232 fprintf(stderr, "\nA CoinError occurred doing the initial solve\n");

233 fprintf(stderr, "The error happened in class %s in %s\n"

234 "Error Message: %s\n\n", e.className().c_str(),

235 e.methodName().c_str(), e.message().c_str());

236 assert(EXIT_DUE_TO_COINERROR);

82 Chapter A. Selected source code

237 }

238

239 // If something went wrong, write some debug output

240 if(!cplex->isProvenOptimal())

241 writeDebugOutput(k, l);

242

243 // restore the row-bounds

244 rowub[k] = rowlb[k] = 0;

245 rowub[k+nNodes] = rowlb[k+nNodes] = 0;

246 rowub[l] = rowlb[l] = 0;

247 rowub[l+nNodes] = rowlb[l+nNodes] = 0;

248

249 // create dpath

250 createDpathFromSolution(dpath);

251 }

252

253 void SBPP_MIP::writeDebugOutput(int k, int l)

254 {

255 printf("\nPANIC!\n");

256 printf("Sub problem %i<->%i was not proven optimal, "

257 "here is some debug info:\n", k, l);

258 // Are there a numerical difficulties?

259 printf("isAbandoned() : %s\n",

260 cplex->isAbandoned()?"true":"false");

261 // Is optimality proven?

262 printf("isProvenOptimal() : %s\n",

263 cplex->isProvenOptimal()?"true":"false");

264 // Is primal infeasiblity proven?

265 printf("isProvenPrimalInfeasible() : %s\n",

266 cplex->isProvenPrimalInfeasible()?"true":"false");

267 // Is dual infeasiblity proven?

268 printf("isProvenDualInfeasible() : %s\n",

269 cplex->isProvenDualInfeasible()?"true":"false");

270 // Is the given primal objective limit reached?

271 printf("isPrimalObjectiveLimitReached() : %s\n",

272 cplex->isPrimalObjectiveLimitReached()?"true":"false");

273 // Is the given dual objective limit reached?

274 printf("isDualObjectiveLimitReached() : %s\n",

275 cplex->isDualObjectiveLimitReached()?"true":"false");

276 // Iteration limit reached?

277 printf("isIterationLimitReached() : %s\n",

278 cplex->isIterationLimitReached()?"true":"false");

279

280 printf("\nThe crash occured after %i iterations\n", iterations);

281 printf("Here are the bounds:\nrowlb: ");

282 for(int i=0; i<numberOfRows; i++)

283 printf("%g ", rowlb[i]);

284 printf("\nrowub: ");

285 for(int i=0; i<numberOfRows; i++)

286 printf("%g ", rowub[i]);

287 printf("\nobj : ");

288 for(int i=0; i<numberOfColumns; i++)

289 printf("%g ", obj[i]);

290 printf("\n");

A.3 sbpp sub mip.cc 83

291

292 assert(cplex->isProvenOptimal() == 1);

293 }

294

295

296 SBPP_MIP::SBPP_MIP(Network *network, SBPPMasterProblem *master)

297 {

298 net = network;

299 mp = master;

300 cpm = createInitialCoinPackedMatrix();

301 #ifndef USE_CLP_SOLVER

302 cplex = new OsiCpxSolverInterface;

303 #else

304 cplex = new OsiClpSolverInterface;

305 #endif

306

307 createMatrixBoundsAndObj();

308 iterations = 0;

309 }

310

311 SBPP_MIP::~SBPP_MIP()

312 {

313 // Free memory for the Coin packed matrix

314 delete cpm;

315

316 // Free memory for the row and column, upper-

317 // and lower bounds and objetive function

318 delete[] collb;

319 delete[] colub;

320 delete[] obj;

321 delete[] rowlb;

322 delete[] rowub;

323

324 // free memory for the integer variable index

325 delete[] intidx;

326

327 // Free memory for the cplex interface (osi)

328 delete cplex;

329 }

330

331 void SBPP_MIP::setObjParameters(int dest)

332 {

333 // for X

334 int nNodes = net->getNumNodes();

335 for(int i=0, ij=0; i<nNodes; i++)

336 for(int j=0; j<nNodes; j++)

337 {

338 if(i==j) continue;

339 #ifdef RSBPP

340 obj[ij++] = (j==dest) ? net->getLinkCost(i, j) :

341 2*net->getLinkCost(i, j);

342 #else

343 obj[ij++] = net->getLinkCost(i, j);

344 #endif

84 Chapter A. Selected source code

345 }

346

347 // for Z

348 int basewidth = nNodes*nNodes-nNodes;

349 for(int i=2*basewidth; i<numberOfColumns; i++)

350 {

351 obj[i] = mp->getLinkRowPrice(i-2*basewidth);

352 if(isEqual(obj[i],0))

353 obj[i] = 1e-4;

354 }

355 }

356

357 void SBPP_MIP::createDpathFromSolution(Dpath* dp)

358 {

359 int nNodes = net->getNumNodes();

360 int basewidth = nNodes*nNodes-nNodes;

361 int len1=0, len2=0;

362

363 try

364 {

365 const double *sol = cplex->getColSolution();

366

367 for(int i=0, ij=0; i<nNodes; i++)

368 for(int j=0; j<nNodes; j++)

369 {

370 if(i==j) continue;

371

372 // primary path

373 if(isEqual(sol[ij], 1))

374 dp->p1[len1++] = net->getSpan(i, j);

375

376 // backup path

377 if(isEqual(sol[ij+basewidth], 1))

378 dp->p2[len2++] = net->getSpan(i, j);

379

380 ij++;

381 }

382 dp->len1 = len1;

383 dp->len2 = len2;

384

385 // The objective value is the price

386 dp->price = objValue;

387 }

388 catch(CoinError e)

389 {

390 fprintf(stderr, "\nA CoinError occurred fetching the "

391 "solution vector\n");

392 fprintf(stderr, "The error happened in class %s in %s\n"

393 "Error Message: %s\n\n", e.className().c_str(),

394 e.methodName().c_str(), e.message().c_str());

395 assert(EXIT_DUE_TO_COINERROR);

396 }

397 }

398

A.4 sbpp sub bhandari.cc 85

399 int SBPP_MIP::test()

400 {

401 int nNodes = net->getNumNodes();

402 int basewidth = nNodes*nNodes-nNodes;

403

404 const double *sol = cplex->getColSolution();

405 printf("X: ");

406 for(int i=0; i<basewidth; i++)

407 printf("%i ", isEqual(sol[i], 1)?1:0);

408 printf("\nY: ");

409 for(int i=basewidth; i<2*basewidth; i++)

410 printf("%i ", isEqual(sol[i], 1)?1:0);

411 printf("\nZ: ");

412 for(int i=2*basewidth; i<cplex->getNumCols(); i++)

413 printf("%g ", sol[i]);

414 printf("\n");

415

416 return 0;

417 }

A.4 sbpp sub bhandari.cc

1 #include <malloc.h>

2 #include <assert.h>

3 #include <string.h> // for memset

4 #include "config.h"

5 #include "sbpp_sub_bhandari.h"

6

7 #define INF 1000000

8 #define INVALID -2

9 #define END_OF_PATH -1

10

11 void SBPP_bhandari::breathFirstSearch(int *nodes, int nnodes,

12 Network *net, int start, int end)

13 {

14 double d[nnodes];

15 int p[nnodes], i, j, o;

16

17 // Create some sets and pointers to them. The reason for the

18 // pointers is to make it quik and easy to flip sets.

19 Set s1, s2, s3;

20 Set *currentLayer=&s1, *neighbors=&s2, *relabeled=&s3, *tmp;

21

22 // init distance (d) and predesesor (p)

23 for(int i=0; i<nnodes; i++)

24 {

25 d[i] = INF;

26 p[i] = start;

27 }

28 d[start] = 0;

29

30 // init currentLayer

86 Chapter A. Selected source code

31 currentLayer->add(start);

32

33 // main BFS loop

34 while(!currentLayer->isEmpty())

35 {

36 // for all the nodes in this layer

37 while((j=currentLayer->getNext())>=0)

38 {

39 // check all the neighbors

40 net->getNeighborSet(neighbors, j);

41 while((i=neighbors->getNext())>=0)

42 {

43 double lji = net->getLinkCost(j,i);

44 assert(d[j] + lji >= 0);

45 if((d[j] + lji < d[i]) && (d[j] + lji < d[end]))

46 {

47 d[i] = d[j] + lji;

48 p[i] = j;

49 if(i!=end) relabeled->add(i);

50 }

51 }

52 }

53

54 // make the relabeled nodes the next layer

55 tmp = currentLayer;

56 currentLayer = relabeled;

57 relabeled = tmp;

58 }

59

60 memset(nodes, INVALID, nnodes*sizeof(int));

61 for(o=-1, i=end; i!=start; o=i, i=p[i])

62 nodes[i] = o;

63 nodes[start] = o;

64 }

65

66 void SBPP_bhandari::printPath(int *nodes, int start)

67 {

68 for(int i=start; i>=0; i=nodes[i])

69 printf("%i ", i);

70 printf("\n");

71 }

72

73 void SBPP_bhandari::createDisjointPath(Dpath* dpath, int *nodes1,

74 int *nodes2, int start, int end)

75 {

76 int *nodes;

77 int len1=0, len2=0;

78

79 dpath->price = 0;

80 nodes = nodes1;

81 for(int s=start, d=nodes[start]; d>=0; s=d, d=nodes[d])

82 {

83 dpath->p1[len1++] = net->getSpan(s,d);

84 dpath->price += mp->getDualSpanCost(net->getSpan(s, d));

A.4 sbpp sub bhandari.cc 87

85 #ifdef RSBPP

86 if(d != end)

87 dpath->price += mp->getDualSpanCost(net->getSpan(s, d));

88 #endif

89 if(nodes[d] == INVALID)

90 nodes = (nodes==nodes1) ? nodes2 : nodes1;

91 }

92

93 nodes = nodes2;

94 for(int s=start, d=nodes[start]; d>=0; s=d, d=nodes[d])

95 {

96 dpath->p2[len2++] = net->getSpan(s,d);

97 for(int qr=0; qr<len1; qr++)

98 dpath->price += mp->getLinkFailurePrize(net->getSpan(s, d),

99 dpath->p1[qr]);

100

101 if(nodes[d] == INVALID)

102 nodes = (nodes==nodes1) ? nodes2 : nodes1;

103 }

104

105 dpath->len1 = len1;

106 dpath->len2 = len2;

107 }

108

109 void SBPP_bhandari::bhandariDisjointPath(Dpath *dpath, int start, int end)

110 {

111 int link;

112 int nnodes = net->getNumNodes();

113 int nodes1[nnodes], nodes2[nnodes];

114

115 // find the shortest path through the network

116 breathFirstSearch(nodes1, nnodes, net, start, end);

117

118 // change the weights of the links on that path

119 for(int n=start; nodes1[n]>=0; n=nodes1[n])

120 {

121 // set all the backward links to -w

122 link = net->getLink(nodes1[n], n);

123 net->setLinkWeight(link, -net->getLinkCost(link));

124

125 // set all the forward links to (w + INF)

126 link = net->getLink(n, nodes1[n]);

127 net->setLinkWeight(link, net->getLinkCost(link)+INF);

128 }

129

130 // find the shortest path through the network again

131 breathFirstSearch(nodes2, nnodes, net, start, end);

132

133 // restore the weights of the links we changed before

134 for(int n=start; nodes1[n]>=0; n=nodes1[n])

135 {

136 // set all the backward links to -w

137 link = net->getLink(nodes1[n], n);

138 net->setLinkWeight(link, -net->getLinkCost(link));

88 Chapter A. Selected source code

139

140 // set all the forward links to (w - INF)

141 link = net->getLink(n, nodes1[n]);

142 net->setLinkWeight(link, net->getLinkCost(link)-INF);

143 }

144

145 // remove the overlaps betwen the two paths

146 for(int i=start; i>=0;)

147 if(nodes2[nodes1[i]] == i)

148 {

149 int next = nodes1[i];

150 nodes1[i] = INVALID;

151 nodes2[next] = INVALID;

152 i = next;

153 }

154 else

155 i=nodes1[i];

156

157 // create a Dpath created by grouping the remaining links

158 createDisjointPath(dpath, nodes1, nodes2, start, end);

159 }

160

161 SBPP_bhandari::SBPP_bhandari(Network *network, SBPPMasterProblem *master)

162 {

163 net = network;

164 mp = master;

165 }

166

167 SBPP_bhandari::~SBPP_bhandari()

168 {

169 }

170

171 void SBPP_bhandari::solve(Dpath *dpath, int k, int l)

172 {

173 bhandariDisjointPath(dpath, k, l);

174 }

175

A.5 network.cc

1 #include <stdio.h>

2 #include <string.h>

3 #include <assert.h>

4 #include <stdlib.h>

5 #include "error.h"

6 #include "network.h"

7 #include "utill.h"

8 #include "topfilereader.h"

9

10

11 Network::Network(const char* filename)

12 {

A.5 network.cc 89

13 // Get object designed to read the file format

14 infile = new TopFileReader(filename);

15

16 // Point data pointers to the data.

17 nodes = infile->getNodesData();

18 nNodes = infile->getNumNodes();

19 spans = infile->getSpansData();

20 nSpans = infile->getNumSpans();

21 nodeToLinkMap = infile->getNodeToLinkMap();

22 }

23

24 Network::~Network()

25 {

26 delete infile;

27 }

28

29 void Network::setWeights(int n, int *links, double *weights)

30 {

31 assert(n<=nSpans/2);

32 for(int i=0; i<n; i++)

33 {

34 spans[links[i]*2]->length = weights[i];

35 spans[links[i]*2+1]->length = weights[i];

36 }

37 }

38

39 void Network::setSpanWeight(int link, double weight)

40 {

41 spans[link*2]->length = weight;

42 spans[link*2+1]->length = weight;

43 }

44

45 void Network::setLinkWeight(int link, double weight)

46 {

47 spans[link]->length = weight;

48 }

49

50 int Network::getNumNodes()

51 {

52 return nNodes;

53 }

54

55 int Network::getNumSpans()

56 {

57 // we devide by 2 because there are two direcred spans for each

58 // undirected link.

59 return nSpans/2;

60 }

61

62 double Network::getLinkCost(int i)

63 {

64 return spans[i]->length;

65 }

66

90 Chapter A. Selected source code

67 double Network::getSpanCost(int i)

68 {

69 // we multiply by 2 because there are two direcred links for each

70 // undirected span. (i.e. link 0 and 1 is span 0, link 2 and 3 is

71 // span 1, ...)

72 return spans[2*i]->length;

73 }

74

75 double Network::getLinkCost(int i, int j)

76 {

77 if(nodeToLinkMap[i][j]<0)

78 return 999999;

79 return spans[nodeToLinkMap[i][j]]->length;

80 }

81

82 int Network::getLink(int i, int j)

83 {

84 return nodeToLinkMap[i][j];

85 }

86

87 int Network::getSpan(int i, int j)

88 {

89 // we devide by 2 because there are two direcred links for each

90 // undirected span. (i.e. link 0 and 1 is span 0, link 2 and 3 is

91 // span 1, ...)

92 assert(nodeToLinkMap[i][j]>=0);

93 return nodeToLinkMap[i][j]/2;

94 }

95

96 void Network::getNodesConnectedToSpan(int s, int *n1, int *n2)

97 {

98 // we multiply by 2 because there are two direcred links for each

99 // undirected span. (i.e. link 0 and 1 is span 0, link 2 and 3 is

100 // span 1, ...)

101 *n1 = spans[s*2]->orig;

102 *n2 = spans[s*2]->dest;

103 }

104

105 void Network::displayNodesAndSpans()

106 {

107 Link *li;

108 for(int n=0; n<nNodes; n++)

109 {

110 li = nodes[n]->links;

111 printf("node[%s] ", nodes[n]->nodeid);

112 while(li != NULL)

113 {

114 printf("%s ", spans[li->pos]->spanid);

115 li = li->next;

116 }

117 printf("\n");

118 }

119 for(int n=0; n<nSpans; n++)

120 printf("span[%s] (%s --> %s) {%g}\n", spans[n]->spanid,

A.5 network.cc 91

121 nodes[spans[n]->orig]->nodeid, nodes[spans[n]->dest]->nodeid,

122 spans[n]->length);

123 }

124

125 void Network::displayInternalMatrix()

126 {

127 for(int i=0; i<nNodes; i++)

128 {

129 for(int j=0; j<nNodes; j++)

130 nodeToLinkMap[i][j] == -1 ? printf(" - ") :

131 printf("%2i ", nodeToLinkMap[i][j]);

132 printf("\n");

133 }

134

135 }

136

137 void Network::getNeighborSet(Set *set, int n)

138 {

139 assert(n>=0);

140 assert(n<nNodes);

141

142 set->clear();

143 Link *li = nodes[n]->links;

144

145 while(li != NULL)

146 {

147 set->add(spans[li->pos]->dest);

148 li = li->next;

149 }

150 }

151

152 void Network::writeGAMSNetwork()

153 {

154 // Nodes

155 printf("SET NODE /");

156 for(int n=0; n<nNodes; n++)

157 printf("%s, ", nodes[n]->nodeid);

158 printf("\b\b/;\n\n");

159

160 // Spans

161 for(int l=0; l<nSpans; l++)

162 printf("SPAN(’%s’,’%s’)=1\n", nodes[spans[l]->orig]->nodeid,

163 nodes[spans[l]->dest]->nodeid);

164 printf("\n");

165

166 // Spancost

167 for(int l=0; l<nSpans; l++)

168 printf("SPAN_COST(’%s’,’%s’)=%g\n", nodes[spans[l]->orig]->nodeid,

169 nodes[spans[l]->dest]->nodeid, spans[l]->length);

170 printf("\n");

171

172 }

173

174 void Network::writeGnuplotNetwork()

92 Chapter A. Selected source code

175 {

176 int xmax=0, xmin=999999;

177 int ymax=0, ymin=999999;

178

179 // Nodes

180 for(int n=0; n<nNodes; n++)

181 {

182 printf("set label %i \"%s\" at %i,%i center\n", n+1,

183 nodes[n]->nodeid, nodes[n]->x, nodes[n]->y);

184 xmax = MAX(xmax, nodes[n]->x);

185 xmin = MIN(xmin, nodes[n]->x);

186 ymax = MAX(ymax, nodes[n]->y);

187 ymin = MIN(ymin, nodes[n]->y);

188 }

189

190 // Spans

191 for(int i=0; i<nSpans; i+=2)

192 printf("set arrow %i from %i,%i to %i,%i nohead\n", i+1,

193 nodes[spans[i]->orig]->x, nodes[spans[i]->orig]->y,

194 nodes[spans[i]->dest]->x, nodes[spans[i]->dest]->y);

195

196 printf("set noborder; set noxtics; set noytics\n");

197 printf("plot [%i:%i][%i:%i] 0 notitle lt 0 lw 0\n", xmin, xmax,

198 ymin, ymax);

199 }

200

A.6 lex.cc

1 #include <stdio.h>

2 #include <stdarg.h>

3 #include <stdlib.h>

4 #include "error.h"

5 #include "lex.h"

6

7 LexicalAnalyser::LexicalAnalyser(const char* filename)

8 {

9 // Open the file

10 if((ff = fopen(filename, "r"))==NULL)

11 fatalError("Error: file \"%s\" not found\n", filename);

12

13 // init some stuff

14 nextChar();

15 line = 0;

16

17 // Get first token

18 nextToken = yylex();

19 }

20

21 LexicalAnalyser::~LexicalAnalyser()

22 {

23 fclose(ff);

A.6 lex.cc 93

24 }

25

26 char LexicalAnalyser::nextChar()

27 {

28 ch = fgetc(ff);

29 if(ch == 0)

30 {

31 /* A NULL-char was found inside the file try the next one */

32 return nextChar();

33 }

34 return ch;

35 }

36

37 int LexicalAnalyser::isAlpha(char c)

38 {

39 return ((c>=’a’) && (c<=’z’)) || ((c>=’A’) && (c<=’Z’)) || c==’_’;

40 }

41

42 int LexicalAnalyser::isWspace(char c)

43 {

44 return ((c==’ ’) || (c==’\r’) || (c==’\t’));

45 }

46

47 int LexicalAnalyser::isDigit(char c)

48 {

49 return ((c>=’0’) && (c<=’9’));

50 }

51

52 int LexicalAnalyser::yylex()

53 {

54 int n;

55

56 // ignore whitespace

57 if(isWspace(ch))

58 {

59 for(nextChar(); isWspace(ch); nextChar());

60 return yylex();

61 }

62

63 // Count lines

64 if(ch==’\n’)

65 {

66 line++;

67 nextChar();

68 return yylex();

69 }

70

71 // numbers

72 if(isDigit(ch))

73 {

74 n=0;

75 for(yylval=0; isDigit(ch); nextChar())

76 {

77 yytext[n++] = ch;

94 Chapter A. Selected source code

78 yylval = yylval*10 + (ch-’0’);

79 }

80 if(ch==’.’)

81 {

82 yytext[n++] = ’.’;

83 nextChar();

84 for(int i=10; isDigit(ch); nextChar(), i*=10)

85 {

86 yytext[n++] = ch;

87 yylval = yylval + (double)(ch-’0’)/i;

88 }

89 yytext[n] = ’\0’;

90 return T_FLOAT;

91 }

92 else

93 {

94 yytext[n] = ’\0’;

95 return T_INT;

96 }

97 }

98

99 // negative numbers

100 if(ch==’-’)

101 {

102 nextChar();

103 yylex();

104 if(nextToken!=T_INT && nextToken!=T_FLOAT)

105 fatalError("’-’ found in front of a non-number\n");

106 yylval = -yylval;

107 return nextToken;

108 }

109

110 // Strings

111 if(isAlpha(ch))

112 {

113 for(n=0; isAlpha(ch) || isDigit(ch); nextChar())

114 yytext[n++] = ch;

115 yytext[n] = ’\0’;

116 return T_STR;

117 }

118

119 // default

120 nextToken = ch;

121 yytext[0] = ch;

122 yytext[1] = ’\0’;

123 nextChar();

124 return nextToken;

125 }

126

127 const char* LexicalAnalyser::tok2Str(int tok)

128 {

129 static const char *tstr[] = {"UNKNOWN", "STRING", "INT", "FLOAT"};

130 static char buf[] = ".";

131

A.7 basefilereader.cc 95

132 if(tok>=300 || tok<-1)

133 return "TOK-ERR";

134 if(tok>=256)

135 return tstr[tok-256];

136

137 buf[0] = tok;

138 return buf;

139 }

140

141 void LexicalAnalyser::accept(int t)

142 {

143 if(t!=nextToken)

144 fatalError("Error: expected [%s(%i)], found [%s(%i)] on line %i\n",

145 tok2Str(t), t, tok2Str(nextToken), nextToken, line+1);

146

147 nextToken=yylex();

148 }

149

A.7 basefilereader.cc

1 #include <stdio.h>

2 #include <string.h>

3 #include <assert.h>

4 #include <stdlib.h>

5

6 #include "basefilereader.h"

7

8 BaseFileReader::BaseFileReader(const char* filename)

9 {

10 lex = new LexicalAnalyser(filename);

11 nArraySize = 30;

12 sArraySize = 30;

13 nodes = (Node**)malloc(nArraySize*sizeof(Node*));

14 spans = (Span**)malloc(sArraySize*sizeof(Span*));

15 nNodes = 0;

16 nSpans = 0;

17 }

18

19 BaseFileReader::~BaseFileReader()

20 {

21 delete lex;

22 }

23

24 void BaseFileReader::addNode(char *nid, int x, int y, int size)

25 {

26 // if the array is full, enlarge it

27 if(nNodes >= nArraySize)

28 {

29 nArraySize*=2;

30 nodes = (Node**)realloc(nodes, nArraySize*sizeof(Node*));

31 }

96 Chapter A. Selected source code

32

33 // add the node to the array

34 nodes[nNodes++] = new Node(nid, x, y, size);

35 }

36

37 void BaseFileReader::addSpan(char *sid, int n1, int n2, double length)

38 {

39 // if the array is full, enlarge it

40 if(nSpans >= sArraySize)

41 {

42 sArraySize*=2;

43 spans = (Span**)realloc(spans, sArraySize*sizeof(Span*));

44 }

45

46 // add the span to the array, there is two since this

47 // is an undirected graph

48 spans[nSpans++] = new Span(sid, n1, n2, length);

49 spans[nSpans++] = new Span(sid, n2, n1, length);

50

51 // add the span to the two nodes it connects

52 nodes[n1]->links = new Link(nSpans-2, nodes[n1]->links);

53 nodes[n2]->links = new Link(nSpans-1, nodes[n2]->links);

54

55 // add the span to the map for easy lookup

56 nodeToLinkMap[n1][n2] = nSpans-2;

57 nodeToLinkMap[n2][n1] = nSpans-1;

58 }

59

60 int BaseFileReader::findNode(char *nid)

61 {

62 for(int n=0; n<nNodes; n++)

63 if(strcmp(nodes[n]->nodeid, nid)==0)

64 return n;

65 return -1;

66 }

67

68 int** BaseFileReader::newEmptyMatrix(int size)

69 {

70 int *data, **index;

71

72 // allocate the memory

73 data = (int*)malloc(size*size*sizeof(int));

74 index = (int**)malloc(size*sizeof(int*));

75

76 // create the index for easy access

77 for(int i=0; i<size; i++)

78 index[i] = data + i*size;

79

80 // make sure it’s empty

81 memset(data, -1, size*size*sizeof(int));

82

83 return index;

84 }

85

A.8 topfilereader.cc 97

86 Node** BaseFileReader::getNodesData()

87 {

88 return nodes;

89 }

90

91 int BaseFileReader::getNumNodes()

92 {

93 return nNodes;

94 }

95

96 Span** BaseFileReader::getSpansData()

97 {

98 return spans;

99 }

100

101 int BaseFileReader::getNumSpans()

102 {

103 return nSpans;

104 }

105

106 int** BaseFileReader::getNodeToLinkMap()

107 {

108 return nodeToLinkMap;

109 }

110

A.8 topfilereader.cc

1 #include <strings.h>

2 #include "topfilereader.h"

3 #include "error.h"

4

5 void TopFileReader::file()

6 {

7 header();

8 nodepart();

9 spanpart();

10 }

11

12 void TopFileReader::header()

13 {

14 // for now just bypass the header

15 while(strcmp(lex->yytext, "NODE")!=0)

16 lex->accept(lex->nextToken);

17 }

18

19 void TopFileReader::nodepart()

20 {

21 char nid[10];

22 int x, y, nsize;

23

24 // Process node header

98 Chapter A. Selected source code

25 lex->accept(T_STR); // NODE

26 lex->accept(T_STR); // X

27 lex->accept(T_STR); // Y

28 lex->accept(T_STR); // SIZE

29

30 // read all the nodes

31 while(strcmp(lex->yytext, "SPAN")!=0)

32 {

33 strcpy(nid, lex->yytext);

34 lex->accept(T_STR);

35

36 x = (int)lex->yylval;

37 lex->accept(T_INT);

38

39 y = (int)lex->yylval;

40 lex->accept(T_INT);

41

42 nsize = (int)lex->yylval;

43 lex->accept(T_INT);

44

45 // add node to list

46 addNode(nid, x, y, nsize);

47 }

48 nodeToLinkMap = newEmptyMatrix(nNodes);

49 }

50

51 void TopFileReader::spanpart()

52 {

53 char sid[10], orig[10], dest[10];

54 double length;

55 int n1, n2;

56

57 // Process span header

58 lex->accept(T_STR); // SPAN

59 lex->accept(T_STR); // O

60 lex->accept(T_STR); // D

61 lex->accept(T_STR); // LENGTH

62 lex->accept(T_STR); // UNITCOST

63

64 // read all the spans

65 while(lex->nextToken != T_EOF)

66 {

67 strcpy(sid, lex->yytext);

68 lex->accept(T_STR);

69

70 strcpy(orig, lex->yytext);

71 lex->accept(T_STR);

72

73 strcpy(dest, lex->yytext);

74 lex->accept(T_STR);

75

76 length = lex->yylval;

77 if(lex->nextToken==T_INT)

78 lex->accept(T_INT);

A.8 topfilereader.cc 99

79 else

80 lex->accept(T_FLOAT);

81

82 // unitcost is missing from the file????

83 //unitcost = la->yylval;

84 //lex->accept(T_NUMBER);

85

86 n1 = findNode(orig);

87 n2 = findNode(dest);

88 if(n1<0) fatalError("Error: Span ’%s’ is between nodes ’%s’ "

89 "and ’%s’, but ’%s’ is not found in the node list\n",

90 sid, orig, dest, orig);

91 if(n2<0) fatalError("Error: Span ’%s’ is between nodes ’%s’ "

92 "and ’%s’, but ’%s’ is not found in the node list\n",

93 sid, orig, dest, dest);

94

95 // add the span to the spanlist

96 addSpan(sid, n1, n2, length);

97 }

98 }

99

100 TopFileReader::TopFileReader(const char *filename) :

101 BaseFileReader(filename)

102 {

103 file();

104 }

100 Chapter A. Selected source code

Appendix B

Network formats

This appendix briefly describes the different network formats used.

B.1 Top format

The“top” format is a home made format. Not that I am the inventor, but it
is not standardized in any way, and not widely accepted (or known) outside
the institute of Informatics and Mathematical Modeling (IMM), DTU.

The data file consists of 3 blocks: the header, the nodes and the spans.
The header begins at the top of the file and ends with the reserved word
“NODE”. The nodes begin with the reserved word “NODE” and ends with
the reserved word“SPAN”. The Spans begins with the reserved word“SPAN”
and ends with the end of the file.

NAME: testnet2.top

DATE LAST MODIFIED: 20050513

MODIFIED BY: Kasper Bonne Rasmussen

NODE X Y SIZE

N1 1 1 -1

N2 3 1 -1

N3 6 1 -1

N4 9 1 -1

SPAN O D LENGTH UNITCOST

SO1 N1 N2 1

SO2 N1 N3 1

SO3 N2 N3 1

SO4 N2 N4 1

SO5 N3 N4 1

101

102 Chapter B. Network formats

B.2 xy2 format

The xy2 format is also a format used primarily on IMM, DTU. It consists of
3 lines describing the number of nodes, edges and demands respectively, and
two lines that describe the physical size of the network. (Used to display
the network graphically).

The rest of the file are lines describing individual nodes, edges and de-
mands. The different types of lines need not be in any particular order, but
it is customary to order them by type. Below is an example representing
the testnet2 network.

NumberOfNodes 4

NumberOfEdges 5

NumberOfDemands 10

Dimx 120

Dimy 140

Node 0 20 33 0

Node 1 35 26 0

Node 2 44 24 0

Node 3 60 22 0

Edge 0 1 -1

Edge 0 2 -1

Edge 1 2 -1

Edge 1 3 -1

Edge 2 3 -1

Demand 0 1 1

Demand 0 2 1

Demand 0 3 1

Demand 1 2 1

Demand 1 3 1

Demand 2 3 1

The initial declarations of the size of the network, makes this format
somewhat easier to parse than the top format, but the fact that you can’t
give the nodes and edges descriptive names makes it less suited for display.

Finally it is my opinion that the demand of the network is not a property
of the network, but a result of the current situation and therefore should
not be included in the network description.

Consequently all the networks are defined in the top format, and the xy2
format is avoided when ever possible.

Appendix C

Network structures

The following is a visual representation of the networks used in this thesis.
A gnuplot-script is generated using the Network::writeGnuplotNetwork()

function and gnuplot is then used for generating the images. The networks
testnet and testnet2 are considered debug/test networks and are not
shown.

London

Copenhagen

Amsterdam Berlin

Brussels Lux Prague

Paris Zurich Vienna

Milan

Figure C.1: The 11n26s network. (Also known as cost239)

103

104 Chapter C. Network structures

N01 N02 N03 N04

N05 N06

N07

N08N09

N10N11

N12

N13

Figure C.2: The 13n21s network. (Also known as PanEuropean)

N1 N2

N3 N4

N5

N6

N7 N8

N9
N10 N11

N12

N13

N14

N15

N16

N17 N18

N19

N20

N21

N22

N23

N24

N25

N26

N27

N28

Figure C.3: The 28n45s network. (Also known as USANetwork)

105

N00

N01
N02

N03

N04

N05
N06 N07

N08

N09

N10
N11

N12

N13 N14
N15

N16

N17

N18

N19
N20

N21

N22 N23

N24 N25 N26

N27

N28
N29

N30

N31

N32

Figure C.4: The 33n68s network. (Also known as Italy)

N1
N2

N3

N4

N5

N6

N7

N8

N9
N10

N11
N12

N13

N14
N15

N16

N17

N18

N19
N20

N21 N22

N23N24

N25

N26

N27
N28

N29
N30

N31

N32

N33

N34

N35

N36 N37

N38 N39

N40

N41
N42

N43

Figure C.5: The 43n71s network. (Also known as France)

106 Chapter C. Network structures

Bibliography

[1] COmputational INfrastructure for Operations Research (COIN–OR)
http://www.coin-or.org/

[2] Eusebi Calle, José L. Marzo, Anna Urra, Llúıs Fàbrega Enhancing Fault

Management Performance of Twostep QoS Routing Algorithms in GM-

PLS Networks, IEEE Communications Society, 2004.

[3] Eusebi Calle, José L. Marzo, Anna Urra, Protection performance com-

ponents in MPLS networks, Computer Communications 27 (2004)
1220–1228.

[4] Frederick S. Hillier, Gerald J. Lieberman, Introduction to Operations

Research, 7th edition, McGraw-Hill, 2001.

[5] J.W.Surballe, R.E.Tarjan, A Quick Method for Finding Shortest Pairs

of Disjoint Paths, John Wiley & Sons, Inc., 1984.

[6] Laurence A. Wolsey, Integer programming, John Wiley & Sons, Inc.,
1998, ISBN: 0-471-28366-5

[7] Mikkel Sigurd, David Ryan, Stabilized Column Generation for Set Par-

titioning Optimization, Aug 15, 2003

[8] Olivier du Merle, Daniel Villeneuve, Jacques Desrosiers, Pierre Hansen,
Stabilized column generation, Discrete Mathematics, 1999.

[9] Paul E. Black, Dictionary of Algorithms and Data Structures, NIST.
http://www.nist.gov/dads/HTML/complexityClass.html

[10] Ramesh Bhandari, Survivable Networks, Algorithms for Diverse Rout-

ing, 1999

[11] Richard Kipp Martin, Large Scale Linear and Integer Optimization,
Kluwet Academic Publications, 1999.

[12] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford
Stein, Introduction to Algorithms, 2nd edition, MIT Press, 2001.

107

108 BIBLIOGRAPHY

[13] Thomas Stidsen, Peter Kjærulff, Complete Rerouting Protection, Infor-
matics and Mathematical Modeling, Technical University of Denmark,
2005.

[14] Thomas Stidsen, Tommy Thomadsen, Joint Routing and Protection Us-

ing p-cycles, Informatics and Mathematical Modeling, Technical Uni-
versity of Denmark, 2005.

