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Abstract

This article discusses inference problems in probabilistic graphical models that often oc-

cur in a machine learning setting. In particular it presents a unified view of several recently

proposed approximation schemes. Expectation consistent approximations and expectation

propagation are both shown to be related to Bethe free energies with weak consistency con-

straints, i.e. free energies where local approximations are only required to agree on certain

statistics instead of full marginals.

1 Introduction

Probabilistic graphical models, such as Bayesian networks, Markov random fields and Boltzmann
machines, are powerful tools for machine learning and reasoning in domains with uncertainty.
Unfortunately, exact inference in probabilistic models is in many interesting cases numerically
intractable. It requires the computation of marginal distributions and normalizing constants
either through high dimensional integrations or sums over a number of values which increases
exponentially with the number of variables. Hence, there is a great demand for techniques which
give sensible approximations in polynomial time.

The field of variational inference had been dominated for a while by the so–called mean field
method, where the full high-dimensional distribution is approximated by the closest one in a
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tractable family. While this is a fairly general concept giving a bound on free energies (the
negative logarithm of the intractable normalizer of the distributions), the accuracy of the method in
predicting marginal moments is for some applications (e.g. in decoding and other signal processing
applications) not sufficient. More recently, a variety of techniques for probabilistic inference which
directly seek to approximate these marginal moments, have been newly developed or rediscovered.
Ideas like the Bethe free energy approximations (introduced into machine learning by Yedidia
et al. (2001)), Thomas Minka’s EP framework (Minka, 2001b), the EC approach from Opper and
Winther (2005) (generalizing their adaptive TAP scheme) and the cavity method (Mézard et al.,
1987) seem to provide widely applicable concepts for approximate inference.

Unfortunately (as a variety of discussions within the machine learning community have in-
dicated) there is some confusion about the meaning, applicability and relations between these
approximations. It can be frustrating even for experts to compare derivations which are written
for different scientific communities using a variety of different notations. Hence the goal of this
paper is to address some of these issues, providing short derivations and cross connections (as
we understand them) for the above mentioned approaches using a coherent notation. We empha-
size that this is not intended to be a review article. Readers interested in complementary views
of variational inference techniques we refer to (Wainwright and Jordan, 2003) and (Ikeda et al.,
2000). We believe that by introducing a unification we can give some alternative points of view
about the approximations which may enlarge their applicability to problems for which they had
not been originally designed.

The paper is organized as follows. In Section 2 we define the main inference problems and
introduce notation. It defines the factor graph as a framework for representing models and for
representing choices in approximation schemes and introduces the sum-product for exact inference
on trees or approximate inference on graphs with cycles. Section 3 reviews expectation propaga-
tion (EP) and expectation consistent (EC) approximations. Expectation propagation iteratively
improves approximations by projecting onto tractable distributions. Expectation consistency ap-
proximations derive from the cavity method in statistical physics. Section 4 unifies both approxi-
mation methods from Section 3 by starting from a Bethe free energy and introducing the crucial
concept of weak consistency constraints.

2 Probabilistic inference

2.1 Computing partition sums and marginal distributions

Probabilistic inference is the problem of computing the posterior probabilities of unobserved model
variables X = {X1, . . . , XN} given the observations D of other model variables. The posterior
probability P (X = x|D), where X denotes the stochastic variable and x a particular realization,
can be used in many ways e.g. to make forecasts about future data values. These are then expressed
as certain expectations (averages) with respect to the posterior distribution. The goal of this paper
is to address one of the key technical problems of this conceptually simple approach which lies in
the practical computation of such expectations.

Our starting point is some probability distribution p(x) which is assumed to be defined in
terms of a given potential1 Ψ(x) and an unknown normalization Z,

p(x) =
Ψ(x)

Z
. (1)

This structure is immediately present in the posterior distribution discussed above, with2 p(x) ≡
P (X = x|D), Ψ(x) ≡ P (X = x,D) and normalization Z ≡ P (D) =

∑

X=x P (X = x,D). It is
also encountered in statistical models from physics, such as the Ising model with spin variables

1In physics, often the representation Ψ(x) = exp(−ψ(x)) is used, in which ψ(x) is called a potential.
2Here we focus for the moment on discrete variables, our main interest in this paper. Similar definitions apply

to continuous variables.
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xi = ±1,

p(x) =
1

Z
exp







∑

i,j

Jijxixj +
∑

i

θixi







, (2)

again with the partition sum Z such that the probability distribution normalizes to 1. The problem
of inference is already apparent when one tries to compute the normalizer of the distribution which
typically requires the computation of an in N exponentially large sum or an intractable integral
(for continuous x):

Z =
∑

x

Ψ(x) .

In statistical physics, Z is called the partition sum or function and − logZ is the corresponding
free energy. A similar inference problem is the computation of a marginal distribution of a subset
of variables xC ⊂ x which involves an exponential sum (or integral) over the variables outside the
subset of interest,

p(xC) =
∑

x\C

p(x) .

Approximate computations of Z and marginal distributions p(xi) from which other expectations
can be derived, will be the central topic of the paper.

We spend the remainder of this subsection to some notation. Expectations of a function h(x)
of the random variables x over a distribution p will be denoted by 〈h(x) 〉 , where we will add an
index such as 〈h(x) 〉 p, when it is not evident which distribution is used. We will use both sum
and integral notation, depending on whether x is best viewed as a discrete or continuous variable.
We stress that many equations with sum notation for discrete variables directly transfer to the
same equation with the sum replaced by an integral for continuous variables, and viceversa.

2.2 Factor graphs

In many practical applications the model potential is expressed as a product of factors, (or some-
times called cluster potentials) labeled by α,

Ψ(x) =
∏

α

Ψα(xα) (3)

in which xα denotes the variable vector restricted to the domain of Ψα.
This factorization can graphically be represented by a bi-partite graph known as a factor

graph (Kschischang et al., 2001). In the factor graph, factors are represented by rectangles and
variables are denoted by ovals. Each variable node xi is connected by an undirected link to every
factor node Ψα(xα) that contains the variable in their domain, xi ∈ xα.

When two variables xi and xj always occur together in a factor, the two can be grouped
together into a single (clustered) variable xβ which has more states. In the remainder of the
paper we will use the notation xβ for the (clustered) variable nodes in the factor graphs, thereby
including the factor graphs with the original variables as nodes as a special case. In other words,
the convention in this paper is to label factor nodes by α and variable nodes by β. Since there
is such a free choice in defining variables and factors, we will occasionally refer to xα and xβ as
clusters. In this terminology factor nodes are often called outer clusters and variable nodes inner
clusters.

From (3) it is obvious that the factor nodes should span the whole domain:

⋃

α

xα = x .

For each variable node β there should be at least one factor node α that fully subsumes it:

∀β∃α such that xα ∩ xβ = xβ .
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Figure 1: A factor graph corresponding to the i.i.d. assumption in Bayesian statistics. See Exam-
ple 1.

Last but not least, in this paper we restrict ourselves to the case of non-overlapping variable nodes,
i.e.,

xβ ∩ xβ′ = ∅ ∀β 6=β′ .

The more general case of overlapping variable nodes can be handled with so-called region graphs
and leads to Kikuchi-based approximations (Yedidia et al., 2001).

The neighbor sets of α and β in the factor graph are denoted by Nα and Nβ respectively.
These sets have cardinalities nα ≡ |Nα| and nβ ≡ |Nβ |.

The mapping from the original model to a factor graph is not unique. Two factors Ψα′ and
Ψα′′ can always be combined by taking their product,

Ψα(xα) ≡ Ψα′(xα′)Ψα′′(xα′′ ) ,

where xα = xα′ ∪ xα′′ . In addition, the factors are not unique. If two factors are connected via a
variable node xβ we can shift these factors by any non-zero factor Φβ(xβ):

Ψ′
α(xα) = Ψα(xα)Φβ(xβ), Ψ′

α′(xα′) =
Ψ′

α′(xα′)

Φβ(xβ)
.

Finally, we note that two different factors may have the same domain, xα = xα′ . This will turn
out useful in the discussion of approximate inference methods.

Example 1 Let us consider the following problem, often encountered in Bayesian statistics and
machine learning. We have a joint probability model P (X,Y ) = P (Y |X)P (X), with P (X) the
prior distribution and P (Y |X) a generative model. We observe a data set D = {y1, . . . , yi, . . . , yn}
with different realizations of the random variable Y and would like to derive (properties of) the
posterior distribution P (X = x|D). Assuming the data points yi independently and identically
distributed (i.i.d.), Bayes’ rule yields

P (X = x|D) =
P (X = x)

∏

i P (Y = yi|X = x)

P (D)
, (4)

with P (D) =
∑

X=x P (X = x)
∏

i P (Y = yi|X = x) the proper normalization. This can be written
in the form (3) e.g. with definitions Ψ0(x) = P (X = x) and Ψi(x) = P (X = x|Y = yi). The
corresponding factor graph is visualized in Figure 1. There are n+ 1 factor nodes and 1 variable
node, linked to all factor nodes. All factor nodes have the same, namely the complete, domain.

Example 2 The two-dimensional Ising lattice of K × L nodes is (without external fields θi)

p(x) =
1

Z
exp







K−1
∑

i=1

L
∑

j=1

Ji,j;i+1,jxi,jxi+1,j +
K

∑

i=1

L−1
∑

j=1

Ji,j;i,j+1xi,jxi,j+1







.

With the definitions

Ψi,j;i+1,j(xi,j , xi+1,j) = exi,jJi,j;i+1,jxi+1,j and

Ψi,j;i,j+1(xi,j , xi,j+1) = exi,jJi,j;i,j+1xi,j+1

we obtain the factor graph from Figure 2 (left). This choice results in a model with loops. By
grouping variables together in vertical chains x′j ≡ [x1,j ;x2,j ; . . . ;xK,j ], and combining factors
accordingly we obtain the factor graph from Figure 2 (right).
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x1,1 Ψ1,1;1,2 x1,2

Ψ1,1;2,1 Ψ1,2;2,2

x2,1 Ψ1,2;2,2 x2,2

x′1 = [x1,1, x2,1] Ψ′
1,2 x′2 = [x1,2, x2,2]

Figure 2: The left graph shows a straightforward factor graph representation of a two-dimensional
Ising lattice. The right graph shows a representation of the same model. In this representation
variables and factors are grouped together such that the resulting graph is a tree. See Example 2.

2.3 The sum-product algorithm

2.3.1 Trees

A factor graph is called a tree if there is at most one path from a node in the graph to another
node in the graph. In a tree, the joint probability can be expressed in terms of its cluster marginals
p(xα) and p(xβ),

p(x) =

∏

α p(xα)
∏

β p(xβ)nβ−1
, (5)

where
p(xα) =

∑

x\α

p(x) and p(xβ) =
∑

x\xβ

p(x) .

The other way around, any set of cluster marginals {pα(xα), pβ(xβ)} that satisfies the following
conditions

pα(xα) ≥ 0 and pβ(xβ) ≥ 0 ∀α, β (non-negativity) (6)
∑

xα

pα(xα) = 1 and
∑

xβ

pβ(xβ) = 1 ∀α,β (normalization) (7)

pα(xβ) ≡
∑

xα\β

pα(xα) = pβ(xβ) ∀β,α∈Nβ
(local consistency) (8)

defines a global distribution on a tree as in (5), with marginals

p(xα) = pα(xα) and p(xβ) = pβ(xβ) .

2.3.2 The discrete case

We can view (5) as an alternative factorization to (3). It can be found by applying a message-
passing algorithm called belief propagation or, in the context of factor graphs, the sum-product
algorithm (Kschischang et al., 2001; Pearl, 1988). For multinomial models with just discrete
variables, the messages Mβ→α(xβ) are initially all set to 1, and updated as

Mα→β(xβ) =
∑

xα\β

Ψα(xα)
∏

β′∈Nα\β

Mβ′→α(xβ′) ,

Mβ→α(xβ) =
∏

α′∈Nβ\α

Mα′→β(xβ) . (9)

After convergence of the procedure, which can be guaranteed within a finite number of updates if
no edges are neglected, the marginals follow from

p(xα) ∝
∏

β∈Nα

Mβ→α(xβ)Ψα(xα) , (10)

p(xβ) ∝
∏

α∈Nβ

Mα→β(xβ) .
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Furthermore, the partition function reads

Z =
∑

xβ

∏

α∈Nβ

Mα→β(xβ) for any β .

The computation time is linear in the number of clusters and exponential in the cluster size. For
example, the computation time in the K × L Ising grid of example 2 in its tree representation is
linear in K and exponential in L.

2.3.3 Generalization to the exponential family

Message passing in trees with discrete variables can be interpreted as a special case of message
passing in trees in the exponential family. In these models the cluster potentials are parameterized
as

Ψα(xα) = exp
{

κ⊤αφα(xα)
}

. (11)

The vector of functions φα(xα) is the so-called sufficient statistics of α. The sufficient statistics
are fixed, and as such they are part of the definition of the model class. The parameters in (11)
are given by κα, the parameter vector of cluster α. The multinomial model discussed above can
be written in exponential form by defining the sufficient statistics to be a vector with a component
for each state x′α:

φ
x′

α
α (xα) = 1 if xα = x′α

φ
x′

α
α (xα) = 0 otherwise

The messages at all times remain within this exponential family if the potentials have a para-
metrization that is preserved under marginalization from outer clusters to inner clusters. This
condition is valid if for all α ∈ Nβ, and any parameter vector κα the marginal of the outer cluster
can be written as a potential on the inner cluster β, parameterized in an exponential family form,

∫

dxα\β exp
{

κ⊤αφα(xα)
}

= exp
{

κ⊤β φβ(xβ)
}

in which κβ is a parameter vector of inner cluster β and φβ(xβ) its statistics. We will refer to
this condition as “closed under marginalization”. If the exponential family is indeed closed under
marginalization, the messages in (9) are easily shown to remain of exponential form and can be
fully expressed in terms of their parameters:

Mα→β(xβ) = exp
{

µ⊤
α→βφβ(xβ)

}

Mβ→α(xβ) = exp
{

µ⊤
β→αφβ(xβ)

}

.

Two well-known families that are closed under marginalization and hence allow for efficient
exact inference algorithms for tree structured models are models with multinomial potentials and
models with Gaussian potentials. The complexity of the message passing algorithms in such
models is linear in the number of clusters times the complexity of cluster marginalization. In
discrete models, this latter operation is exponential in the cluster size. In Gaussian models,
marginalization in a cluster of N nodes involves the inversion of an N × N matrix, which is
O(N3).

2.3.4 Loopy belief propagation

The sum-product algorithm (9) gives the exact marginals in trees. As an iteration scheme, however,
it can be implemented in non-trees as well. Pearl (1988) proposed to apply this scheme to non-trees
as an approximation method for computing cluster marginals. This approximation algorithm is
called loopy belief propagation. Loopy belief propagation is applicable to multinomial models, as
well as models in the exponential family with potentials that are preserved under marginalization
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as explained in the previous section, e.g, models with Gaussian potentials (Weiss and Freeman,
2001). Until recently, a disadvantage of the method was its heuristic character, and the absence
of a convergence guarantee. Often, the algorithm gives surprisingly good solutions, but sometimes
the algorithm fails to converge (Murphy et al., 1999).

Yedidia et al. (2001) showed that the fixed points of loopy belief propagation are actually
stationary points of the Bethe free energy from statistical physics (see also Heskes (2003)). This can
be considered as a breakthrough in the field. The Bethe free energy provides a firm theoretical basis
of loopy belief propagation and it served as a basis for more advanced methods, such as generalized
belief propagation (Yedidia et al., 2001). Furthermore, it provides a unifying framework relating
loopy belief propagation to several other approximation methods such as mean field theory (Jordan
et al., 1999), and last but not least, it provides a framework to solve the convergence problem by
the existence of an objective function which can be minimized directly (Welling and Teh, 2001;
Yuille, 2002; Teh and Welling, 2002; Heskes et al., 2003).

3 Two approximate inference methods using expectations

This section reviews expectation propagation (Minka, 2001b) and expectation consistent approxi-
mations (Opper and Winther, 2005). Expectation propagation has been proposed in the machine
learning community as an extension to assumed density filtering. Expectation consistency can be
viewed as a generalization of the ADATAP (Opper and Winther, 2001b,a) approximation intro-
duced in the physics community.

3.1 Expectation propagation

3.1.1 Assumed density filtering

In (Minka, 2001b), expectation propagation (EP) is motivated as an iterative refinement of
assumed density filtering (ADF). Assumed density filtering aims to approximate the posterior
P (X = x|D) from (4) that arises in the context of Bayesian machine learning, example 1. This
approximation, call it p̃(x), is chosen to be a certain (convenient) parametric distribution in the
exponential family, specified by the vector φ(x) of sufficient statistics.

The approximation is initialized by the prior p̃(x) = P (X = x) = Ψ0(x), which is here assumed
to be part of this family. Then each data point yi is visited exactly once in a sequential way. For
each data point, we first incorporate the data point by multiplying in the corresponding potential:

qi(x) ∝ p̃(x)Ψi(x) .

If Ψi(x) is not within the exponential family, neither is qi(x). Therefore, the next step is to project
qi(x) back to the exponential family by minimization of the Kullback-Leibler divergence

KL(qi(x)||p̃
new(x)) ≡

∫

dx qi(x) log
qi(x)

p̃new(x)
,

under the constraint that the new approximation p̃new(x) is again in the family. The minimization
under these constraints is equivalent to moment matching, i.e. the minimizing distribution p̃new(x)
is the unique distribution that satisfies 〈φ(x)〉qi

= 〈φ(x)〉p̃new . After updating p̃(x) = p̃new(x), the
procedure continues by incorporating the next data point.

3.1.2 Refining term effects

The outcome of assumed density filtering typically depends on the order in which the data points
are incorporated. Expectation propagation can be viewed as a refinement of the assumed density
filtering approximation that tries to compensate for this ordering anomaly. It does so by keeping
track of and refining the approximate contributions or term effects Mi(x) of each data point yi to
the approximate posterior p̃(x).

7



Initially, all term effects Mi(x) are set to 1 and as before p̃(x) is initialized to the prior Ψ0(x).
To refine a term effect, we first take it out by dividing through it:

p̃\i(x) ∝
p̃(x)

Mi(x)
.

Next, we create a new approximation by putting back the exact contribution Ψi(x), multiplying it
in:

qi(x) ∝ p̃\i(x)Ψi(x) .

The distribution qi(x) is typically outside the chosen family. Therefore, as with assumed density
filtering, we project it back to this family yielding the new p̃new(x). The refinement is updated
as the new approximate posterior (after incorporation of yi) divided by the one without the term
effect:

Mnew
i (x) ∝

p̃new(x)

p̃\i(x)
∝
p̃new(x)Mi(x)

p̃(x)
. (12)

It is then easy to see that when we start out with Mi(x) having the particular exponential form
(which we do when we initialize them to 1), it will always have this form. After updating p̃(x) =
p̃new(x) and Mi(x) = Mnew

i (x), the procedure continues by refining the next term effect.
Once “refining” all term effects sequentially is equivalent to assumed density filtering. Expec-

tation propagation typically iterates in random order until convergence (which is not guaranteed).

3.1.3 The general case

The above example is special in the sense that all potentials are functions over the complete
domain x. The corresponding factor graph, Figure 1, then contains just a single variable node.
Expectation propagation can handle the more general case of localized potentials as well.

In its simplest version, expectation propagation takes the approximating distribution fully
factorized, as a product of distributions of non-overlapping inner clusters β,

p̃(x) =
∏

β

p̃β(xβ) . (13)

Furthermore, each distribution p̃β(xβ) is chosen to be in a convenient exponential family defined
by a vector φβ(xβ) of sufficient statistics.

By definition, the approximating distribution can also be written as a product of term effects,

p̃(x) ∝
∏

α

Mα(xα) , (14)

where Mα(xα) corresponds to the contribution of the potential Ψα(xα). For (13) and (14) to be
consistent, the term effects should factorize over β as well and we can write

Mα(xα) =
∏

β∈Nα

Mα→β(xβ) , (15)

where, as will become clear later on, we can interpret the terms Mα→β(xβ) as messages. Reshuf-
fling, we can then also express p̃β(xβ) in terms of these messages:

p̃β(xβ) ∝
∏

α∈Nβ

Mα→β(xβ) . (16)

And finally, with p̃β(xβ) of a particular exponential form, the messages will have the same form:

Mα→β(xβ) = exp
{

µ⊤
α→βφβ(xβ)

}

parameterized by the vector µα→β .

8



Expectation propagation can be initialized by random parameter vectors µα→β for the effects
(such that the sums

∑

α∈Nβ
µα→β yield valid parameter vectors for the distributions pβ(xβ)).

Then the term effects are iteratively refined. The refinement of the term effects of α is carried out
as follows. First, we take out the term effect Mα(xα) and put back the exact potential Ψα(xα)
yielding

qα(x) =
p̃(x)

Mα(xα)
Ψα = qα(xα)

∏

β 6∈Nα

pβ(xβ) ,

with
qα(xα) ∝

∏

β∈Nα

∏

α′∈Nβ\α

Mα′→β(xβ)Ψα(xα) ,

which is easily derived from (??) through (16). Next, we project qα back onto the factorized
exponential family by minimizing KL(qα||p̃new). This yields for each β ∈ Nα a new moment-
matched exponential distribution

p̃new
β (xβ) = exp(γ⊤β φβ(xβ)) (17)

with γβ such that
〈φβ(xβ)〉

p̃new
β

= 〈φβ(xβ)〉
qα

.

The other β 6∈ Nα are not affected by the refinement of α. Finally, the new term effects of α are
found similarly to (12). In terms of the parameters they are

µnew
α→β(xβ) = γβ −

∑

α′∈Nβ\α

µα′→β(xβ) . (18)

This procedure of refinements is again iterated in random order until convergence (not guaranteed).
Expectation propagation applied to trees in an exponential family that is closed under mar-

ginalization reduces to the sum-product algorithm from Section 2.3 and gives the exact marginals
on inner and outer clusters.

It can be shown that the term effects in expectation propagation exactly correspond to the
messages in the sum-product algorithm (Minka, 2001b). Thus, expectation propagation can be
motivated from a tree-like argument, with in addition the assumption that the inner cluster mar-
ginals are approximately distributions from the chosen exponential family (e.g. Gaussians). In a
multinomial model, expectation propagation reduces to loopy belief propagation.

3.2 Expectation consistent (EC) approximations

In the following we will discuss the expectation consistent (EC) approximation introduced recently
by (Opper and Winther, 2005). It is a generalization of the ADATAP approximation (Opper and
Winther, 2001b,a), which itself is motitaved by the cavity method.

The cavity method (Mézard et al., 1987) can be viewed as a technique for deriving a closed
set of equations for approximate marginal distributions of probabilistic models. These equations
are often referred to as TAP equations (named after the physicists Thouless, Anderson & Palmer)
(Thouless et al., 1977). The method has its origin in the statistical physics of disordered magnets
with infinitely ranged random interactions. For its application to problems in the area of machine
learning the method – so far in its simplest version of a single pure state – had to be tuned to
allow for more complex probabilistic models with structured (non-random) interactions (Opper
and Winther, 2001b,a). The ideas presented in these papers were inspired by earlier work of Parisi
and Potters (Parisi and Potters, 1995). For similar work on TAP equations for Ising models,
see (Kappen and Rodŕıguez, 1999).

We will next try to motivate the EC approximation for models with pairwise interactions such
as the Ising model (2). We will use cavity ideas in a fairly informal way, refrain from giving formal
definitions of ”cavity fields” etc.
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The partition function of such models can be written in the form

Z =

∫

dx Ψ1(x)Ψ2(x) ,

with the factors

Ψ1(x) =
∏

i

ψi(xi)

Ψ2(x) = exp
[

xTJx
]

.

If the factor Ψ2 would be absent, all spins would be noninteracting and the model could be trivially
solved. To deal approximately for the neglected interactions we could introduce for each single
variable a cavity field which accounts for the influence of all other variables that are connected to
it in a mean field type of fashion. Doing this independently for each variable xi would lead to an
approximation for the partition function

Z ≈ Z1(Λ) =

∫

dx Ψ1(x) exp[ΛTφ(x)] (19)

where we set φ(x) = (x1, x
2
1, x2, x

2
2, . . . , xN , x

2
N ), (see (Opper and Winther, 2005) for other possi-

bilities). The linear terms act as simple mean field terms, and the quadratic ones (which are trivial
for Ising variables, but are needed for continuous xi), can be understood by assuming a Gaussian
statistics for the random field hi ≡

∑

j Jijxj measured in the “cavity” which is created when vari-
able xi is removed from the system. Such a Gaussian assumption seems reasonable because hi is
composed of a sum of many weakly dependent variables. It can be perfectly justified (assuming a
single ergodic state) for models with quenched random interactions in the“thermodynamic” limit
N → ∞. Nevertheless, even in this limit, the naive approximation (19) would be plain wrong
because important effects of the interactions are still neglected. We will motivate a correction
which also helps us to compute the vector of parameters Λ in a self-consistent way.

To do this we express the exact partition function Z using Z1 and a correction term:

Z = Z1(Λ1) 〈Ψ2(x) exp[−ΛT
1 φ(x)] 〉 p̃1

, (20)

where the average at the right is defined through the distribution

p̃1(x) =
1

Z1(Λ1)
Ψ1(x) exp

[

ΛT
1 φ(x)

]

(21)

Of course, this average cannot be computed efficiently, but we will again invoke a “cavity” type
of argument assuming that the replacement of the average over the many (hopefully weakly de-
pendent) variables using the exact distribution p̃(x) by the average over an effective factorizing
Gaussian distribution

q(x; Λ̂) =
1

Ẑ(Λ̂)
exp

[

Λ̂Tφ(x)
]

(22)

could give a good approximation. This yields an approximation to the partition function given by

Z ≈
Z1(Λ)Z2(Λ̂ − Λ)

Ẑ(Λ̂)
(23)

with

Z2(Λ) =

∫

dx Ψ2(x) exp[ΛTφ(x)] (24)

The parameter Λ̂ is defined through the requirement that (21) and its approximation (22) should
have the same expected statistics (expectation consistency) 〈φ 〉 q = 〈φ 〉 p̃1

Finally, the parameter
Λ is determined from the observation that the exact relation (20) is independent of Λ. Hence, a
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good idea should be to make the approximation (23) stationary with respect to variations of Λ.
This condition then leads to a further set of expectation consistency relations 〈φ 〉 q = 〈φ 〉 p̃2

,
where p̃2 is defined as in (21), but replacing Ψ1 by Ψ2.

It is not hard to show that these assumptions can also be expressed by the stationarity of the
following approximate EC free energy with respect to variations of two sets of variables Λ1 and
Λ2:

− logZEC(Λ1,Λ2) = − logZ1(Λ1) − logZ2(Λ2) + log Ẑ(Λ1 + Λ2) ,

Example 3 For Ising variables with ψi(xi) = [δ(xi + 1) + δ(xi − 1)] exp [θixi], the partition func-
tions Z1(Λ1) and Z2(Λ2) can be computed in polynomial time. In fact, Z1 completely factorizes
over the variables. Setting Λ1(i) = (γi, λi) we can write

Z1(Λ1) =
∏

i

∫

dxiψi(xi) exp
[

γixi + λix
2
i

]

=
∏

i

∑

xi=±1

exp
[

(γi + θi)xi + λix
2
i

]

=
∏

i

[

2 cosh(γi + θi)e
λi

]

. (25)

Z2 is nothing but the normalizer for a multivariate Gaussian integral:

Z2(Λ2) =

∫

dx exp
[

(γ + θ)Tx+ xT (diag(λ) + J)x
]

=

√

(4π)N

det(−(diag(λ) + J) )
exp

[

−(γ + θ)T (diag(λ) + J)−1(γ + θ)
]

. (26)

Note that λ cannot be chosen freely, but has to be restricted to values that make −(diag(λ) + J)
positive definite, see (Opper and Winther, 2005) for a discussion of how to deal with this in
practice. Finally

Ẑ(Λ) =
∏

i

{∫

dxi exp
[

(γi + θi)xi + λix
2
i

]

}

=
∏

i

{
√

4π

−λi

exp

[

−(γi + θi)
2

λi

]}

.

and

q(x) =
1

Ẑ(Λ)

∏

i

exp
[

(γi + θi)xi + λix
2
i

]

It is possible to generalize the EC approximation to models with the more general type of
factorization

p(x) =
1

Z

n
∏

α=1

Ψα(x) ,

and the corresponding intractable partition function

Z =

∫

dx
∏

α

Ψα(x) .

For this case the EC approximation is obtained by extremizing an EC free energy of the form

− logZEC(Λ1, . . . ,Λn) = −
∑

α

logZα(Λα) + (n− 1) log Ẑ(
1

n− 1

∑

α

Λα) . (27)

with respect to the parameters Λα, where the Zα are defined similar to (19,24). A solution is to
be found using numerical methods. Several solutions may exist and the expectation consistent
framework by itself does not provide a criterion to choose an optimal solution.
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4 Unifying approximations: weak consistency constraints

in Bethe free energies

The motivations for expectation propagation and expectation consistency are quite different. In
this section, we will show how both approaches can be derived from a Bethe free energy with
weak consistency constraints. Our arguments are closely related to the ones used for showing
the relationship between loopy belief propagation and the classical Bethe free energy with strong
consistency constraints (Yedidia et al., 2001). The original free energy corresponding to an expec-
tation propagation algorithm is from Minka (2001a). The relationship with the Bethe free energy
and the notion of weak consistency constraints is from Heskes and Zoeter (2002).

4.1 The Bethe free energy with weak constraints

4.1.1 A variational objective

Our starting point is (again) the probability distribution (1) with the factorization (3). We first
cast the (intractable) calculation of

logZ = log

∫

dx
∏

α

Ψα(xα)

as an optimization problem and then proceed by approximating the optimization problem. We
adhere to the notational convention in the physics literature and add a minus to obtain

− logZ = min
p̃

[− logZ + KL(p̃(x)||p(x))]

= min
p̃

[

− logZ +

∫

dx p̃(x) log
p̃(x)

Z−1
∏

α Ψα(xα)

]

= min
p̃

[

−
∑

α

∫

dxα p̃(xα) log Ψα(xα) +

∫

dx p̃(x) log p̃(x)

]

≡ min
p̃
F (p̃) , (28)

where the minimization is over all valid distributions over the domain of x, i.e. p̃(x) ≥ 0 for all x
and

∫

dx p̃(x) = 1. We will refer to F (p̃) as the variational free energy.
Note that with the choice of adding KL (p̃(x)||p(x)) as a slack term, the two occurrences of

logZ cancel and the optimization problem does not involve the intractable log partition function
any more. Since KL (p̃(x)||p(x)) is positive and equals zero only if p̃(x) = p(x) (Gibbs inequality),
exact minimization of the above variational problem results in the true − logZ. But as mentioned
above, we assume that this is intractable.

4.1.2 Trees

In general, the entropy term in the free energy involves a summation over exponentially many
states. In trees, the entropy can be simplified considerably. In a tree with outer clusters α and
inner clusters β, the joint distribution p̃(x) is fully specified in terms of locally consistent cluster
marginals p̃α(xα). By substitution of the representation in terms of marginals into the free energy,
we find that F can be written as

F (p̃) = −
∑

α

∫

dxα p̃α(xα) log Ψα(xα)

+
∑

α

∫

dxα p̃α(xα) log p̃α(xα) −
∑

β

(nβ − 1)

∫

dxβ p̃β(xβ) log p̃β(xβ)

= FB({p̃α, p̃β}) (29)

which is to be minimized under the consistency constraints (6), (7), and (8).
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4.1.3 Bethe-type approximations

If the model does not allow for a tree factorization with reasonably sized clusters we can approx-
imate F . (Structured) mean field approximations are obtained by restricting the set over which
p̃(x) is minimized (Saul et al., 1996; Wiegerinck, 2000). For instance, (28) can be minimized under
the additional constraints that p̃(x) is fully factorized

p̃(x) =
∏

n

p̃n(xn) .

This approximating joint distribution ignores the existence of clusters α that are explicitly
present in the cluster representation of the model. This is in contrast to the Bethe approximation,
which takes by construction all the clusters into account. The Bethe approximation considers a
set of locally consistent cluster marginals {p̃α, p̃β} rather than a restricted global joint distribution
p̃(x) as in mean field. In addition – despite the fact that the factor graph is in general not a tree
– it makes the “tree-like” assumption for the free energy,

F (p̃) ≈ FB({p̃α, p̃β}) (30)

with FB as defined in (29), which is again to be minimized under the constraints that the conditions
(6), (7), and (8) hold.

If the original model contains loops, the tree-like form (5) with p̃α(xα) for p(xα) and p̃β(xβ)
for p(xβ), need not be normalized. Also, computing marginals over xα and xβ from the product
in (5), even after a possible normalization, does not in general retrieve p̃α(xα) and p̃β(xβ). Hence
they are sometimes referred to as “pseudo-marginals”, see Wainwright and Jordan (2003) for a
detailed discussion.

Since the negative entropy term is not derived from a global distribution there is no guarantee
that minimizing (29) leads to a bound of − logZ as in the mean-field case.

Note also that, since we have restricted ourselves to factor graphs there are no two inner
clusters β and β′ such that xβ ⊂ xβ′ . A generalization to approximations where overlaps overlap
themselves is known as the Kikuchi free energy. We refer to Yedidia et al. (2001) for a more
detailed discussion.

4.1.4 Weak consistency constraints

To make the connection with expectation propagation and expectation consistent approximation,
we introduce the concept of weak constraints. First of all, instead of allowing any distribution
p̃β(xβ), we constrain these to be part of a particular exponential family, characterized through the
sufficient statistics φβ(xβ). Next we relax the constraints (8) by requiring only consistency with
respect to these sufficient statistics:

〈φβ(xβ)〉
p̃α(xβ) = 〈φβ(xβ)〉

p̃β(xβ) , ∀β∀α∈Nβ
. (31)

In Lauritzen (1992) the exponential family belief

r(xβ) ∝ eγ⊤φβ(xβ) with γ such that 〈φβ(xβ)〉
q

= 〈φβ(xβ)〉
p̃α

is called the weak marginal of p̃α(xα). In words we then can say that (31) only requires the consis-
tency of weak instead of strong marginals. To distinguish the local consistency constraint (8) from
the concept of weak consistency (31) introduced above, we will refer to (8) as strong consistency.

Note that we do not enforce a particular parametric form of p̃α(xα). However, at a minimum
of the approximate free energy its form depends on the factors Ψα(xα) of the original model and
the choice of sufficient statistics φβ(xβ). The exact relationship is discussed in Section 4.2.
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4.2 Finding stationary points of the free energy

4.2.1 The Lagrangian

In principle, we would like to find the global minimum of the Bethe free energy under the weak
consistency constraints. To see how far we can get, we start by constructing the Lagrangian. To
the Bethe free energy FB we add multipliers µβ→α for the weak consistency constraints (31) and
ζα and ζβ for the normalization constraints:

L({p̃β , p̃α, µβ→α, ζα, ζβ})

= −
∑

α

∫

dxα p̃α(xα) log Ψα(xα)

+
∑

α

∫

dxα p̃α(xα) log p̃α(xα) −
∑

β

∫

dxβ (nβ − 1)p̃β(xβ) log p̃β(xβ)

−
∑

β

∑

α∈Nβ

µ⊤
β→α

[∫

dxα φβ(xβ)p̃α(xα) −

∫

dxβ φβ(xβ)p̃β(xβ)

]

−
∑

β

ζβ

[

1 −

∫

dxβ p̃β(xβ)

]

−
∑

α

ζα

[

1 −

∫

dxα p̃α(xα)

]

. (32)

Duality theory then suggests that we should maximize w.r.t. the Lagrange multipliers and minimize
w.r.t. the primal variables to find an approximation of − logZ:

− logZ ≈ − log Z̃ = min
{p̃α,p̃β}

max
{µβ→α,ζα,ζβ}

L({p̃β, p̃α, µβ→α, ζα, ζβ}) .

This saddle-point problem is rather difficult to solve since the objective is non-convex in {p̃α, p̃β},
due to the concave entropy terms for inner clusters. If it were convex, we could exchange the order
of min and max, hoping that we could first solve the minimization with respect to {p̃α, p̃β} and
then maximization with respect to {µβ→α, ζα, ζβ}. But alas, changing the order is not allowed.

Necessary, but not sufficient, conditions for the global minimum of the Bethe free energy under
constraints are that the derivatives of the Lagrangian are zero. Therefore, we restrict in this section
our analysis to stationary points of the Lagrangian. We will derive fixed point iteration schemes
that can be seen as heuristics for finding local minima of the free energies. These fixed point
iteration schemes, or message passing algorithms as they are also referred to, are not guaranteed
to converge. But if they do, they tend to be a lot faster than the more involved algorithms that are
guaranteed to converge. One motivation for the algorithms based on fixed point iteration is that,
if the underlying model is a tree and the constraints are strong, they coincide with the algorithm
from Section 2 and hence produce exact results in an efficient manner.

4.2.2 Stationary points of the Lagrangian

Necessary conditions for a minimum of the Bethe free energy under the consistency constraints can
be found by considering the zero derivative points of the Lagrangian (32). Setting the derivative

∂L

∂p̃α(xα)
= − logΨα(xα) + log p̃α(xα) + 1 −

∑

β∈Nα

[

µ⊤
β→αφβ(xβ)

]

− ζα

to 0, and replacing ζα by its maximum (which implies the normalization of p̃α) gives

p̃∗α(xα; {µβ→α}) =
1

Zα({µβ→α})
Ψα(xα)

∏

β∈Nα

eµ⊤
β→αφβ(xβ), with (33)

Zα({µβ→α}) =

∫

dxα Ψα(xα)
∏

β∈Nα

eµ⊤
β→αφβ(xβ) . (34)
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Analogously we get

p̃∗β(xβ ; {µβ→α}) =
1

Zβ({µβ→α})

∏

α∈Nβ

e
1

nβ−1
µ⊤

β→αφβ(xβ)
(35)

Zβ({µβ→α}) =

∫

dxβ

∏

α∈Nβ

e
1

nβ−1
µ⊤

β→αφβ(xβ)
. (36)

In the remainder of this section we will drop the explicit dependence of {µβ→α} in p̃∗α(xα; {µβ→α})
and p̃∗β(xβ ; {µβ→α}).

Plugging (33) and (35) into (32) gives, after straightforward manipulations,

L∗({µβ→α}) = −
∑

α

logZα({µβ→α}) +
∑

β

(nβ − 1) logZβ({µβ→α}) . (37)

Setting the partial derivatives of (37) to 0, we get back the weak consistency constraints (31) and
the stationary forms (33) and (35) for p̃∗α(xα) and p̃∗β(xβ). Our remaining task is therefore to find
an algorithm that makes the factor marginals weakly consistent with the overlap marginals under
the constraints that they are of the form (33) and (35). There are several fixed point schemes
possible. For instance we could cycle over all α and update all µβ→α such that after the update
the weak consistency constraints hold between α and all its neighbors. In the following section
we derive an update scheme that will be shown to correspond to the EP message passing method
described in Section 3.1.3.

Perhaps confusingly, it appears that the solution (35) corresponds to a maximum of (32) w.r.t.
p̃β rather than a minimum. This apparent contradiction is resolved when we realize that if the
constraints are satisfied (i.e., at a stationary point) p̃∗β(xβ) is fully determined by the neighboring
p̃∗α(xα) with which they have to be consistent. In other words, if all constraints are satisfied, the
overlap marginals p̃β are functionally dependent on the factor marginals p̃α, leaving no freedom
for maximization nor minimization.

4.3 Equivalence with expectation propagation

From (33) and (10) we have that the Lagrange multipliers µβ→α are identical to the canonical
parameters of the messages that are sent from overlaps to outer clusters in the sum product
algorithm:

Mβ→α(xβ) = eµ⊤
α→βφβ(xβ) .

This motivates the notation for the multipliers.
Suggested by the sum-product framework we can make a change of variables and introduce

µα→β , the messages that are send from outer clusters α to overlaps β. The definition of these
messages follows from

µβ→α ≡
∑

α′∈Nβ\α

µα′→β .

That is, the message that β sends to outer cluster α is the product of the messages that β receives
from all other outer clusters α′.

Using this substitution we can rewrite (35) as

p̃∗β(xβ ; {µα→β}) =
1

Zβ({µα→β})
exp





1

nβ − 1

∑

α∈Nβ

∑

α′∈Nβ\α

µα′→βφβ(xβ)





=
1

Zβ({µα→β})
exp





1

nβ − 1

∑

α∈Nβ

(nβ − 1)µα→βφβ(xβ)




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=
1

Zβ({µα→β})
exp





∑

α∈Nβ

µα→βφβ(xβ)



 (38)

Zβ({µα→β}) =

∫

dxβ exp





∑

α∈Nβ

µα→βφβ(xβ)



 .

We now pick an α and find new outgoing messages µnew
α→β that make α consistent with its

overlaps. In this scheme p̃∗α is fully determined by messages that are not changed during this
update. To make α weakly consistent with xβ , the new belief over β is set to

p̃new
β (xβ) = eγ⊤

β φβ(xβ), with γβ such that 〈φβ(xβ)〉
p̃new

β

= 〈φβ(xβ)〉
p̃α
. (39)

This process is sometimes referred to as moment matching. The new message from α to β then
follows from the above and (38) as

µnew
α→β = γβ −





∑

α′∈Nβ\α

µα′→β



 . (40)

The outer cluster α and overlap β are now weakly consistent, but since p̃β changed, consistency
with other outer clusters will be violated. So updates have to be iterated.

The equivalence between the EP updates, (17) through (18), and the fixed point updates (39)
and (40) is immediate. At a fixed point the approximation of − logZ is given by (37).

The above introduction of the message propagation algorithm in fact follows the arguments of
Yedidia et al. (2001) in reverse. In Yedidia et al. (2001) the starting point is a known algorithm
(loopy belief propagation) and stationary points of the Bethe free energy are shown to correspond
to fixed points of this algorithm. Here we have started with the Bethe free energy and defined a
fixed point algorithm such that the correspondence between stationary points and fixed points of
the algorithm is by construction.

Expectation propagation in practice often converges, but there is no guarantee that it does.
For problems with Bethe free energies with strong consistency constraints, Heskes (2003) shows
that stable fixed points of the above algorithm corresponds to local minima of the approximate
free energy. For problems with weak consistency constraints a similar result is conjectured, but a
formal proof is still lacking.

4.4 Equivalence with the expectation consistent approximation

The original EC formulation as discussed in Section 3.2 corresponds to Bethe-type approximation
in which we have n factors, each containing the whole domain x. Consequently, there is a single
variable xβ = x which has all factors as neighbors in the factor graph. Hence nβ = n. The free
energy (37) then boils down to

L∗({µβ→α}) = −
∑

α

logZα({µβ→α}) + (n− 1) logZβ({µβ→α}) , (41)

with Zβ({µβ→α}) from (36). The similarity with the EC free energy from (27) is striking. And
indeed, if we substitute the various definitions we find that (27) and (41) are completely equivalent,
with Λα playing the role of the messages µβ→α.

4.5 Direct minimization of the free energy

The derivation of EP comes with a direct description of an algorithm. However, this algorithm has
no guarantee of convergence. EC suggests that we should look for zero derivatives of a functional,
the EC free energy (27). By itself it does not tell whether that should be a minimum, maximum,
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or saddle-point. The variational approach leads to a specific optimization problem, that we could
simply try to solve directly.

A difficulty with directly minimizing (29) is that the objective is in general not convex due to
the concave entropy terms

−(nβ − 1)

∫

dxβ p̃β(xβ) log p̃β(xβ) ,

that are contributed by the overlaps. Here we introduce the algorithm from Heskes and Zoeter
(2002) which is closely related to the CCCP algorithm from Yuille (2002) but makes use of tighter
upper bounds.

A slack term K is used to construct a convex upper bound of F :

Fbound({p̃α(xα), p̃β(xβ), rβ(xβ)}) = F({p̃α(xα), p̃β(xβ)}) + K({rβ(xβ)})

K({rβ(xβ)}) =
∑

β

(nβ − 1)
∑

xβ

p̃β(xβ) log
p̃β(xβ)

rβ(xβ)
. (42)

The weighted KL term K is guaranteed to be positive if we restrict the rβ ’s to be proper
distributions. Its clever choice effectively cancels the concave parts, resulting in an upper bound
convex in p̃α, p̃β , and rβ :

F({p̃α(xα), p̃β(xβ)}) ≤ Fbound({p̃α(xα), p̃β(xβ), rβ(xβ)})

=
∑

α

∫

dxα p̃α(xα) log
p̃α(xα)

Ψα(xα)
+

∑

β

(nβ − 1)
∑

xβ

p̃β(xβ) log rβ(xβ) .

The aim is now to minimize w.r.t. both {p̃α, p̃β} and {rβ}, under normalization constraints
and weak consistency constraints for {p̃α, p̃β}. A simple coordinate wise descent does the trick:

Inner loop minimize Fbound w.r.t. {p̃α, p̃β}: this is a convex problem with linear constraints
which can be solved by any convex minimization procedures. See e.g. Heskes and Zoeter
(2002) for some suggestions.

Outer loop minimize Fbound w.r.t. rβ(xβ): this is a convex problem. From (42) we see that
this minimization step implies a collection of KL minimization problems which is solved by
setting rβ(xβ) = p̃β(xβ) for all β.

4.6 Expectation propagation versus expectation consistency

Since both EP and EC can be derived from a Bethe approximation with weak consistency con-
straints, we have in fact shown that EP and EC are equivalent. We remind the reader that for
the sake of clarity we have restricted the treatment of both methods. EP is not restricted to fully
factorizing families, and EC is not restricted to approximations with a single overlap. However,
with analogous arguments it should be possible to extend the equivalence to more general cases.

The important difference between EP and EC derives from their motivation. EP is introduced
as a procedure for greedily improving localized approximations using projections on tractable
distributions. There are many variants of EP that are based on this same idea and do not
necessarily have an associated free energy. In some other cases, the free energy functional is
derived “after the fact”. An example is tree EP (Minka and Qi, 2003), which projects on tree
distributions instead of factorized distributions. Welling et al. (2005) shows how tree EP can
be derived from free energy functionals. In some cases, as in Zoeter and Heskes (2005), EP-like
approximations can only be derived from the energy, not from projection point of view.

EC is motivated by the cavity approach. This cavity interpretation may be useful in a variety
of ways. For example, we may be able to argue why the EC approximation gives better results
in some applications than for others. E.g., if couplings Jij in an Ising model are fairly short
ranged, a central limit argument seems less applicable making the EC approximation less reliable.
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Furthermore, the same central limit argument makes it clear why it makes sense to introduce the
Gaussian approximation and corresponding factorization that implements it. In fact, there are
classes of models for which the cavity approach and thus EC approximation becomes exact in the
limit of large N .

5 Discussion and Outlook

The goal of this paper was to review some recent popular and promising approximate inference
methods. We wanted to explain the underlying ideas and show how the methods can be unified
within a common free energy framework. Such a framework may hopefully stimulate new work
in this field, suggesting that many concepts for an approximation can often be extended beyond
their original area of application. A unification also satisfies practical needs in machine learning,
because it gives us general strategies for developing algorithms for which in some cases convergence
can be guaranteed.

However, we also tried to indicate that a general consistent framework for approximations is
not everything. It can be applied to a specific problem only after we have chosen appropriate
factorizations together with a set of statistics for which consistency is assumed. A justification of
the choice of clusters and statistics itself is not a part of such a framework but must come from
outside. The obvious requirement of computational tractability cannot be the only guideline.
A good amount of intuition about the probabilistic nature of a problem is necessary. The rich
experience gained within the area of statistical physics about the behavior of probabilistic models
with a large number of variables can be of great help.

Once we have committed ourselves to a specific approximation for a probabilistic model, the
accuracy of the method usually remains an open problem. In the literature one often finds empirical
studies of good predictive performances of approximate inference algorithms on concrete sets of
data. This may not necessarily be attributed to the quality of the underlying approximation. One
could think of malicious cases where a bad approximation applied to an insufficient data model
would by chance improve the actual prediction on the data set. For sensible applications such as
medical expert systems, the computation of a kind of an approximation error or a self-consistent
sanity check would be of obvious importance. Possible directions for getting such results could be
in the analysis of systematic improvements of approximations, such as higher order Bethe-Kikuchi
approximations or perturbative corrections. Alternative approaches could be in the development
of statistical, i.e. average case performance measures of approximation methods which would
take the random generation of training data into account. Similar to well established concepts in
Computational Learning Theory one may think of trying to prove that an approximation is probably
almost accurate. In the case when statistical errors are large it may often not be necessary to waste
computational power on achieving very small approximation errors. Another type of average case
analysis could be performed within the Bayesian approach. Here one may e.g. try to show that an
approximation achieves an expected loss (over a prior distributions of problem instances) which
is close to the Bayes optimal prediction using the correct, but intractable, posterior.
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