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Abstract

This paper presents a 3D graphics accelerator core for
an FPGA based system, and illustrates how to build a
System-on-Chip containing a Xilinx MicroBlaze soft-core
CPU and our 3D graphics accelerator core. The system
is capable of running uClinux and hardware accelerated
3D graphics applications such as a VRML viewer.

The 3D graphics core is connected to a PLB 64-bit
on-chip bus, and can render graphics into an on-chip tile
buffer, which is later copied, using bus-master DMA trans-
fers, to the frame-buffer in external DDR SDRAM mem-
ory. This memory is shared between the CPU, the 3D
graphics core, and the video display which periodically
reads from memory to display the final rendered graphics.
The graphics core uses internal scratch-pad memory to re-
duce its external bandwidth requirement, this is achieved
by implementing a tile-based rendering algorithm. Re-
duced external bandwidth means that the power consump-
tion is reduced as well.

We show how an FPGA based embedded system is ca-
pable of most tasks in a single chip solution, without re-
quiring additional CPU or graphics chips.

1. Introduction

Hardware accelerated 3D graphics is gaining influence
in low-cost embedded devices such as GPS navigators,
etc. For some applications FPGAs are on the way to re-
place CPUs, 3D graphics chips and other ASICs with soft-
cores located inside the FPGA, giving a reconfigurable
System-on-Chip solution. The main reason for this is the
fact that FPGA chips are rapidly getting cheaper, while
improving time-to-market. Although dedicated graphics
ASICs are used for high performance applications such as
game consoles, other applications which require moderate
performance above that achievable with software render-
ing may be better served with a soft-core graphics proces-
sor in an FPGA. A similar trend can be observed with soft-
core CPUs such as the Xilinx MicroBlaze and Altera Nios
replacing traditional CPU chips by moving the CPU into
the programmable FPGA fabric.

This paper presents a graphics core for such an FPGA
based system, and illustrates how to build a simple SoC

containing a Xilinx MicroBlaze soft-core CPU and our 3D
graphics accelerator core. The system is capable of run-
ning uClinux and hardware accelerated 3D graphics appli-
cations such as a VRML viewer.

The target for this implementation is the Xilinx Virtex-
4 ML401 XC4VLX25 FPGA evaluation platform. This
board features 64 MB 32-bit external DDR SDRAM
memory. The peak external memory bandwidth is 800
MBytes/sec when operating at 100 MHz. The board also
provides an external ADV7125 3x8-bit RGB video DAC
which is used for the VGA display.

The 3D graphics core is connected to a PLB 64-bit on-
chip bus, and can render graphics into a frame-buffer us-
ing bus-master DMA to external DDR SDRAM memory.
This memory is shared between the CPU, the 3D graph-
ics core, and the video display which periodically reads
from memory to display the final rendered graphics. The
graphics core uses internal scratch-pad memory to reduce
its external bandwidth requirement, this is achieved by im-
plementing a tile-based rendering algorithm.

We show how an FPGA based embedded system is ca-
pable of most tasks in a single chip solution, without re-
quiring additional CPU or graphics chips.

For the embedded application example with a GPS
navigator, the GPS signal processing tasks can also be em-
bedded in the FPGA to avoid the need for a dedicated GPS
signal processing ASIC.

2. The Hybris Graphics Architecture

The Hybris graphics architecture [6] is scalable from a
minimal embedded implementation to larger parallel im-
plementations. The first FPGA implementation of the
graphics architecture is presented in [7] where a sim-
pler version of the core is implemented on a Celoxica
RC1000PP PCI board using a Xilinx Virtex XCV1000
FPGA. The FPGA is streaming the input data from a host
PC via the PCI bus, and outputs the rendered graphics di-
rectly to a VGA monitor.

In this context we will look at a new implementa-
tion suitable for an embedded System-on-Chip based on
a cheap FPGA and low-cost 32-bit wide DDR SDRAM
external memory. The FPGA contains an embedded Mi-
croBlaze CPU and on-chip buses which replaces the PC
from the earlier PCI-bus based implementation. To keep



the cost low, the external memory is shared as main mem-
ory for the CPU, graphics memory for the 3D graphics
accelerator and framebuffer memory for the display. This
means that we need to have a bandwidth budget for the
complete system. Internally in the FPGA all the main
memory traffic is also present on a bandwidth matched
64-bit PLB (Processor Local Bus) on-chip bus.

The Hybris graphics architecture uses tile based ren-
dering to allow for scalable parallel implementations. The
method gets its name as it divides the screen into rectan-
gular tiles. Each tile is relatively small so it can easily fit
into on-chip memory next to the rendering engine. While
we can divide the screen into many tiles, e.g. a 640x480
pixel framebuffer can be divided into 20x15 32x32 pixel
tiles, we cannot afford to implement 20x15 tile rendering
engines running in parallel. If we have one tile engine ren-
dering to a virtual tile, we can render all tiles in sequence.
This is also known asvirtual local framebuffersee [5].
Similar techniques are also used in [8, 4, 9, 3] as well as by
GigaPixel, which was acquired by 3dfx and then Nvidia.
Some more recent work is [1, 2]. The advantages are that
we do not need to access off-chip memory while rendering
a tile, that we can use more bits per pixel in the small tile
than we would in a global framebuffer without increas-
ing off-chip bandwidth, that we can render multiple tiles
in parallel, and that we can render at a higher resolution
to implement supersampled anti-aliasing again without in-
creasing off-chip bandwidth. Unfortunately since we must
collect and bucket sort input data (triangles) for a tile be-
fore rendering it, we need a potentially large input buffer,
which is the main drawback of the tile based rendering
method. This is not a problem for scenes with a relatively
low triangle count.

3. MicroBlaze Soft-Core CPU

The MicroBlaze [10] is a 32-bit soft-core RISC proces-
sor from Xilinx, optimized for FPGA implementation. We
use the MicroBlaze CPU core mainly because it is well
supported by the Xilinx implementation tools (EDK 7.1
and ISE 7.1), allowing us to focus our work on the system-
design and hardware accelerator design. In addition to the
usual on-chip bus-interfaces, MicroBlaze also provides
eight Fast Simplex Links (FSL) which are useful for di-
rect communication with hardware accelerators. For this
application we use the MicroBlaze CPU to run the user
programs and if necessary also the uClinux operating sys-
tem.

The MicroBlaze CPU is also used for the front-end of
the graphics architecture. This means that 3D transfor-
mation and lighting as well as triangle set-up is done in
software on the CPU. The new MicroBlaze CPU version
4.0 provides hardware floating point support to help ap-
plications such as this, removing the need to convert the
program to fixed-point. In a future implementation a hard-
ware floating point vector co-processing module can be
connected to the CPU using one of the FSL links. This
makes it possible to implement dedicated matrix-vector

multiplication and dot product hardware which is useful
for accelerating 3D transformation and lighting. Since a
FSL core does not need to send anything back to the CPU,
the FSL core can be used to send its processed data di-
rectly to the graphics processor core or main memory, by-
passing the overhead of sending it back through the CPU
and its bus interface.
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Figure 1. Overview of the embedded graph-
ics system.

4. A SoC with CPU and Graphics Core

An overview of the System-on-Chip is presented in
Figure 1. In addition to the graphics and memory sub-
system the system contains the MicroBlaze CPU and two
on-chip buses. We need to use the 64-bit PLB (Proces-
sor Local Bus) on-chip bus to support the performance re-
quirements of the graphics system, while the 32-bit OPB
(On-chip Peripheral Bus) is required for the MicroBlaze
CPU. The on-chip buses are bridged via an OPB-to-PLB
bus bridge which has a slave interface on the OPB side
and a master interface on the PLB side. The bridge allows
the CPU to initiate accesses to the devices on the PLB bus.

An important part of the PLB-side of the system is the
main memory subsystem which is controlled by the DDR
SDRAM controller. The DDR controller provides access
to external DDR memory via the PLB-bus. The PLB bus
bandwidth is dimensioned so it will match the bandwidth
of the external memory. In practice this is accomplished
by using 32-bit wide DDR SDRAM, which is represented
internally as single data rate 64-bits on the PLB on-chip
bus. If wider, e.g. 64-bit, DDR SDRAM is used the PLB
on-chip bus may not be fast enough to match the memory
bandwidth, as we cannot change the bus-width of the PLB,
only the frequency. In such a case a dedicated link be-
tween the graphics core and the DDR memory controller
core will be necessary. The DDR SDRAM in this system
is built from two infineon 16Mbit x 16 chips which each



internally uses four 8192 row by 256x32 column DRAM
banks, forming 64 MBytes of main memory with a page
size of 4 kBytes.

The other devices on the PLB bus are a VGA video dis-
play core and the 3D graphics accelerator itself. The VGA
video display core is a simple framebuffer display sys-
tem reading pixels from a framebuffer in main memory.
It stores an entire scanline of pixels in on-chip memory
which allows it to use a fixed pixel clock for sending pixel
data to the external video DAC, while periodically read-
ing from the framebuffer at the full bus-speed. The VGA
video display core is a PLB bus-master since it initiates
the read transactions for reading from the framebuffer.

The framebuffer memory area in the main memory can
be written to by the CPU (through the bus bridge), or by
the 3D graphics accelerator core. This makes it possible
to combine software rendering running on the CPU with
hardware rendered pixels from the 3D graphics core.

The 3D graphics core needs to read from a list of trian-
gles to render, and also needs to write to the framebuffer.
To minimize the bandwidth requirement on the PLB on-
chip bus and external memory, we use an on-chip scratch-
pad memory in the 3D graphics core. The scratch-pad
memory is used for rendering pixels in a single e.g. 32
x 32 pixel tile, we will later find the optimal tile size.
By rendering the pixels into a scratch-pad RAM, we can
later use a block-transfer to write a completed tile into the
framebuffer. This similar to the virtual local framebuffer
scheme as described in [5], which is often known as tile-
based rendering. To support tile-based rendering we must
first sort all triangles to be rendered into buckets corre-
sponding to the tiles they overlap, see figure 2. Bucket
sorting is an additional step not found in most commercial
rendering hardware because of its added complexity and
increased per-triangle cost and the requirement of a mem-
ory buffer for storing the bucket sorted triangles (figure
3). This imposes an upper limit on the number of trian-
gles we can process in a single pass. However we gain
several advantage with the on-chip scratch-pad memory
which can be used e.g. for cheap depth-buffering using
only on-chip memory. We can also use a simple solution
for anti-aliasing where a supersampled image is first ren-
dered to the scratch-pad memory and then down-filtered
when writing the resulting tile to the framebuffer. This
way a cheap way to do anti-aliasing can be provided for
low-resolution embedded displays to improve the visual
quality of the graphics. With minor changes to the render-
ing algorithms it is also possible to use sparse supersam-
pling instead of normal full supersampling, Sparse super-
sampling focuses on improving the visual quality by fo-
cusing the sample rate for nearly vertical and horizontal
edges, which is where the human eye is most sensitive to
aliasing artifacts. This can be achieved by using one of
the sub-pixel sampling patterns in figure 4.
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Figure 2. Examples of overlap in a tile-based
renderer. Triangle T2 is completely inside
one tile. T3 overlaps two tiles. T1 overlaps 4
tiles if bounding box bucket sorting is used,
but will only overlap 3 tiles if exact bucket
sorting is used.
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5. Optimizing the Hybris rendering engine

When building an embedded graphics system we must
optimize the datapaths so their performance matches
what is achievable given the limitations of the external
main memory, internal on-chip scratch-pad memory, CPU
caches and on-chip buses.

With a tile-based rendering engine one important para-
meter is the tile size. The size of a tile is mainly dictated
by the available on-chip RAM resources, and also by the
overlap factor which affects the overhead of the bucket
sorting step. A smaller tile size reduces the demands of
on-chip memory, but will also result in a larger overlap
factor as the probability of a triangle overlapping multi-
ple tiles will increase. A larger tile size will improve the
memory coherence within the tile and will also help to
reduce the overlap factor as a triangle will be less likely
to overlap multiple tiles. Figure 2 shows a few cases of
triangle-tile overlap.

This also depends on the triangle size distribution in
the 3D scenes to be rendered. Assuming a typical triangle
area of up to 64 pixels will keep the average overlap factor
below 2 when using a tile size of 32x32 pixels. This is
documented in [6].

Now that we know the bandwidth and memory limita-
tions, we need to use this knowledge to properly configure
the graphics architecture for a suitable implementation.

For the VGA video display we need to allocate main
memory bandwidth for video refresh. With 640 x 480
32-bit pixels at 60 Hz and a 25 MHz pixel clock, the
VGA display core will require an average bandwidth of
74 MBytes/sec from the main memory (100 MBytes/sec
during active display and 0 during the blanking period).
Updating the framebuffer at the same rate will require an-
other 74 MBytes/sec.

The MicroBlaze CPU running at 100 MHz can at peak
use up to 400 MBytes/sec bandwidth through the 32-
bit OPB-to-PLB bus bridge. This is however not very
likely, because the CPU is configured to use 16 kByte
instruction- and data caches. The real bandwidth used by
the CPU is difficult to predict, but is far below the peak
figure mentioned before. If necessary, the CPU can also
run (small) programs from internal block ram based mem-
ory.

This leaves a worst case main memory bandwidth of
at least 800-400-100-74 = 226 MBytes/sec available for
other use. We can use this for either a higher resolution
framebuffer, or for the 3D graphics accelerator core.

The 3D graphics accelerator core will also need to read
from a bucket sorted head of triangles from the main mem-
ory. The bandwidth required for this depends on the num-
ber of triangles in the scene, the size of a triangle descrip-
tion node, the triangle tile overlap factor and the frame
rate.

Any remaining bandwidth can be used for other pur-
poses such as a future implementation of texture mapping,
or having a global depth (Z) buffer in main memory. Note
that the tile-rendering algorithm does not require a global
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Figure 5. Architectural overview of the
tile rendering engine back-end pipeline.
FIFO buffers are placed between iterating
pipeline stages to help average out load im-
balances. The double buffered tile buffer al-
lows the tile engine to render one tile while
the previously rendered tile is being copied
to the global framebuffer.
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Figure 6. Processes in the tile rendering en-
gine back-end pipeline. a) Setup Triangle
adjusts y-parameters to fit tile. b) Draw
Triangle iterates over the active scanlines,
generating spans. c) Setup Span adjusts x-
parameters to fit tile. d) Draw Span iterates
over the active pixels in the span, perform-
ing per-pixel shading and depth testing. e)
Final result for drawing one triangle.

depth buffer. However if the number of triangles in a scene
exceeds the memory allocated for the bucket sorted trian-
gle heap, a multipass algorithm could be used to save the
depth-buffer tiles to main-memory between the passes.

5.1. Rendering core performance
The 3D graphics core in figure 5 was implemented as a

core for the FPGA. Figure 6 shows how a triangle is raster-
ized by the tile rendering engine. The small FIFO buffers
provide dynamic load balancing between the stages. The
last pixel drawing stage is able to render a pixel on every
clock cycle, provided that the previous stages can sup-
ply data fast enough. For this reason the previous stages
should be designed so that the per-triangle cycle count
matches the per-scanline (times the number of scanlines)
cycle count and also the per-pixel cost (times the trian-
gle area). If we only render relatively large triangles it



Figure 7. Graphical testbench window used
for verification of the tile rendering engine.
The testbench was written in C using FLTK
for graphics and connects to ModelSim us-
ing FLI (Foreign Language Interface). Each
pixel in the 32x32 tile has been magnified
to a 4x4 pixel block and the shaded back-
ground makes it easier to see both dark and
bright pixels.

is sufficient to have a fast pixel drawing stage. Some ap-
plications require a large number of small triangles (this is
the trend today for increasing detail), one example is med-
ical visualization where we usually end up with millions
of triangles in a reconstructed 3D surface. For such ap-
plications, we anticipate a large number of small triangles
which places significant demands on per-triangle process-
ing as well. As a result our final implementation is dimen-
sioned so it is able to handle very small triangles without
slowing the pixel drawing rate, i.e. the per-triangle and
per-scanline processing time is also one clock cycle, i.e.
we have single cycle triangle setup and scanline setup. If
the triangle area is larger than a few pixels the tile render-
ing engine can be balanced to improve the pixel through-
put relative to the per-triangle throughput, this can be done
by reducing the hardware resources in the triangle and
scanline stages by using a multicycle machine for com-
puting the initial setup. For performance reasons another
approach is to speed up the pixel processing speed instead,
which can be done by using parallel pixel pipelines [6].

The rendering core has been tested in simulation using
ModelSim and also synthesized and tested on the FPGA
itself. A 32x32 pixel tile engine capable of rendering one
one pixel triangle per clock cycle occupies 2107 slices and
3 RAMB16 in a Virtex4 LX25, and can operate at 70 MHz
with single cycle triangle processing. The critical path
here is in the triangle setup stage, providing fast perfor-
mance for small triangles. If faster per-triangle process-
ing speed is needed we can pipeline the triangle setup and
the scanline setup stages. The design is well suited for au-

tomatic pipelining by adding several registers to the out-
put of each stage and then synthesizing it with register
balancing turned on in a synthesis tool which supports it.
Depending on the triangle size distribution in the appli-
cation we can also allow the triangle setup to take multi-
ple cycles, either using a FSM controller/datapath or use a
simpler setup with a multicycle combinational path.

Note that the above results are for 8 bits per pixel + 32
bit per pixel for the Z (depth) buffer used in the tile render-
ing algorithm, which is mapped to the 3 block rams (sin-
gle buffered, 6 are needed in the double buffered version
shown in figure 5). Note that the tile size can be adjusted
to match the number of block rams available for the tile
rendering engine, the desired number of bits per pixel and
whether we need single or double buffering. The tile size
also affects the overlap factor during bucket sorting of the
triangles prior to rendering; larger tiles give lower overlap,
but use more memory and makes load balancing worse in
a parallel implementation. In [6] we show that a tile size
of ca. 32x32 pixels is a good compromise. This has also
been shown recently in [1].

For verification we used a specialized graphical test-
bench written in C, which interfaces to ModelSim SE
through its FLI interface. This graphical testbench pro-
vides a quick visual overview of what is written to the tile
pixel- and depth-buffers cycle by cycle. In practice this is
done by writing a VHDL entity which has the relevant
signals as input ports which then connects to the com-
piled testbench which was written in C and uses FLTK
to display a graphics window. Figure 7 shows an example
of the graphical testbench window. The synthesized tile
rendering engine has also been verified to work in hard-
ware using a VGA monitor to display data being read di-
rectly from the tile buffer, showing the same images as
the graphical testbench. Figure 8 shows an example of the
type of graphics that can be rendered with the graphics
core.

6. Summary and future work

The presented graphics system can be tuned for per-
formance depending on the target application. As a start-
ing point we are able to rasterize small triangles at a high
rate. Rendering one one pixel triangle per cycle at 70
MHz gives a peak triangle processing rate of 70 million
triangles per second. This assumes a memory system fast
enough to supply data to the tile engine. Internally each
triangle is sent to the tile rendering engine on a 333 bit
wide bus in a single cycle. This translates to a peak band-
width of roughly 3 Gbytes/sec for reading the input data.
The total bandwidth is only 800 MBytes/sec on the FPGA
evaluation board, so we cannot stream data fast enough
from the main memory. One way to solve this data mem-
ory bandwidth problem could be to store a small dataset
in the FPGA block rams, although that would limit the
usefulness of the system.

Note that the above bandwidth is a worst case calcula-
tion, if the graphics system is used to render more typical



Figure 8. Example of an object rendered
with the FPGA-based 3D graphics core.
This is the Standford Dragon laserscan with
870000 triangles. The image was rendered
in 2 seconds on the Virtex 1000 FPGA board
running at 25 MHz.

scenes with larger triangles with an average area of about
64 pixels, the bandwidth requirement for the external tri-
angle buffer will also drop by a factor 64, in the case of a
tile rendering engine rendering one pixel per cycle. Trian-
gles with an average area of 64 pixels also provide a good
match for the 32x32 pixel tile size, giving an overlap fac-
tor of 2.

To fully utilize the speed potential in this graphics sys-
tem, we need faster off-chip memory similar to the wide
and fast DDR2 SDRAM used in modern graphics cards.
Alternatively we can suggest that an evaluation board such
as the ML401 is more suited for processing intensive
rather than memory intensive applications. A Spartan 3E
FPGA with wider and faster external RAM might be bet-
ter suited for a low-cost implementation.

A complete System-on-Chip for an embedded graph-
ics system will also need to do transformation, lighting
and triangle setup before sending the triangles to the tile
rendering engine for rasterization. While this can be han-
dled in software on the MicroBlaze CPU version 4.0 with
a hardware floating point unit, a dedicated transformation
and lighting module can be implemented using e.g. the
new Xilinx core-generator floating point cores. A dedi-
cated vector processing unit will make it possible create
a balanced graphics system that can both generate trans-
formed and lit triangles, and also render them at the same
rate. In the future is will be interesting to investigate
the use of the PowerPC hard-core CPU found in the new
Virtex-4 FX FPGAs, as it provides an Auxiliary Processor
Unit interface to accelerator cores similar to the FSL links
found in the MicroBlaze. However we must be careful not
to build a system that requires an FPGA which is too ex-
pensive, which would make it difficult to compete against
systems using dedicated ASICs.
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