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Summary

In the process of drug development it is obligated, in many cases, to perform a study
of potential prolongation of a particular interval of the electrocardiogram (ECG), the
QT interval. The interval has gained clinical importance since a prolongation of it
has been shown to induce potentially fatal cardiac arrhythmias.
Because of correlation with heart rate, the length of the interval recorded at different
heart rates can not be compared directly, a correction for heart rate is needed first.
A number of formulas have been suggested for this purpose. Differences of opinion
however rises regarding the most useful formula.
In the thesis, data from a study designed to investigate potential QT prolongations
from a certain drug, will be used to analyse the relationship between the QT interval
and heart rate. Further, correction methods, that will allow QT intervals recorded
at different heart rates to be compared, will be analysed. It will be shown that the
most commonly used correction method in practice is inaccurate except under certain
circumstances. Using the method that is found to be the optimum method of the
ones discussed in the thesis, a possible drug induced QT prolongation of the drug in
question will be analysed.
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Chapter 1

Introduction

1.1 Background

In the process of drug development it is required, in many cases, to perform a study
of potential prolongation of a particular interval of the electrocardiogram (ECG), the
QT interval. The QT interval can be used as a measure of delay of cardiac repolarisa-
tion of the heart, that can lead to potentially fatal cardiac arrhythmias [1]. A number
of drugs have been reported to prolong the QT interval, both cardiac and non-cardiac
drugs. Recently, previously approved, as well as newly developed drugs have been
withdrawn from the marked or had their labeling restricted because of indication of
QT prolongation [2].
The QT interval is highly correlated with heart rate and because of this correlation it
is not possible to compare directly measurements of the interval recorded at different
heart rates. The concept of heart rate corrected QT interval, or the QTc interval has
therefore been developed. The idea of the QTc interval is to normalize the QT interval
as it would have been gathered at a standard heart rate of 60 beats per minute.
Even though drug developers and regulatory agencies are giving the subject of drug
induced QT prolongation a lot of attention, no formal guideline exist on how to per-
form such a study. However, while these words are written a draft on how to perform
a QT/QTc study has been written by the European Medicines Agency (EMEA) [3].
The draft is supposed be taken into operation in November, this year. The draft
concentrates more on the design of such study than how to correct the QT interval
and analyse the resulting data which remains controversy.
The purpose of the thesis is to analyse the relationship between the QT interval and
heart rate and to develop a correction method that can be applied to compare the
measured QT interval gathered at different heart rates. Data used for the analysis is
provided by H. Lundbeck A/S. Using the method developed, possible QT prolongation
resulting from an intake of LU 35-138 (coded drug number) will be analysed.



2 Introduction

1.2 Outline of thesis

A short overview of the cardiovascular system along with a description of a normal
12 lead electrocardiogram (ECG) will be given in Chapter 2. A definition of the QT
interval and issues regarding QT prolongation measures will further be discussed.

Chapter 3 includes a description of the data and the design of the study performed
by H. Lundbeck A/S. Some descriptive analysis will also be given in the chapter.

In Chapter 4, two articles found about QT interval prolongations will be summarised
and discussed. Further, a draft of a guideline on how to perform and analyse a
QT/QTc study written by the European Medicines Agency will be summarised.

Some statistical methods used in the thesis will be summarised in Chapter 5. A
statistical method for deriving the correction parameter in different correction models
will further be introduced in Chapter 6.

The data analysis will be divided into two chapters. In Chapter 7 only data gathered
from the placebo subjects will be used to analyse the relationship between the QT
interval and heart rate and to develop a correction method. In Chapter 8, the method
developed in Chapter 7 will then be applied on the data for the subjects that were
given the drug.

The results found will finally be summarised and discussed in Chapter 9.



Chapter 2

The cardiovascular system

A short description of the cardiovascular cycle will be given in the chapter. The
electrocardiogram will further be described along with a brief discussion about the
QT interval and problems regarding evaluation of QT prolongations. For information
about the cardiovascular cycle and the electrocardiogram, references [4] and [5] were
used.

2.1 The cardiac cycle

The human heart is composed primarily of cardiac muscle tissue. It has four chambers,
the left and right ventricles, which are placed at the bottom of the heart and left and
right atria placed at the top. The heart has four valves which control the flow of the
blood in and out of the heart. The valves between the atria and the ventricles are
called the tricuspid valve on the right and the mitral valve on the left. The third
valve is placed between the aorta and the left ventricle, called aortic valve and the
last valve between the pulmonary artery and the right ventricle, called the pulmonary
valve. A drawing of the human heart is shown in Figure 2.1 where RA represent the
right atrium, LA the left atrium, RV the right ventricle, LV the left ventricle, SVC
the superior vena cavae, ICV the inferior vena cavae, PA the pulmonary artery and
PV the pulmonary vein.
The cardiac cycle can be described as: Oxygenated blood is pumped from the left
ventricle to the aorta which branches out to the whole body. The deoxygenated blood
is then returned via the superior and inferior vena cavae to the right atrium and from
there to the right ventricle. The blood is then expelled via the pulmonary artery from
the right ventricle to the lungs where the blood is oxygenated. From the lungs the
blood is returned to the left atrium by the pulmonary veins and finally through the
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Figure 2.1: The human heart

mitral valve, again to the left ventricle.

2.2 The electrocardiogram and the 12 lead system

An electrocardiogram (ECG) is a recording of the electric wave generation during
heart activity. The electric activity starts at the top of the heart, spreads down and
then up again causing the heart to contract. The electricity is produced by special
cells in the heart called pacemaker cells. The cells change their charge by means of
depolarisation and repolarisation. When the heart muscle is at rest the pacemaker
cells are negatively charged but positively charged when the heart contracts. The
heart rate is normally indicated in a group of pacemaker cells called the sinoatrial
(SA) node, located in the right atrium near the superior vena cavae. From there, the
action potential enters the ventricles trough a cluster of cells called atrioventricular
(AV) node placed in the region of the interatrial septum.
The electrical activity can be measured by an array of electrodes placed on the body.
The most commonly used system is the 12 lead system. One wire is attached to each
of the limbs (hands and legs), and six wires to the chest. From these ten wires, twelve
leads or pictures are produced. The chest electrodes are named lead V1 and up to
lead V6. The other six leads are lead VR, lead VL, lead VF, lead I, lead II and lead
III. The placement of the leads and the relationship between the limb leads is shown
in Figures 2.2 and 2.3.
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Figure 2.2: The chest leads Figure 2.3: The limb leads

The most common lead used in QT researches is lead II [3]. It measures the potential
difference between the right arm and left leg electrodes. A normal ECG, as recorded
from lead II, along with definitions of the different waves and intervals is shown in
Figure 2.4.
The P wave represents the wave of depolarisation that spreads from the SA node
throughout the atria. The wave is normally 80-100 ms in duration. The wave is
followed by a short zero voltage period that represents the time where the impulse is
traveling within the AV node.
The distance between the beginning of the P wave to the beginning of the QRS
complex is called the PR interval. Normal length of the interval is 120-200 ms. It
represents the time between the beginning of atrial depolarisation and the beginning
of ventricular depolarisation.
The QRS complex represents the ventricular depolarisation. The duration of the
complex is normally only 60-100 ms. After the QRS complex a zero potential period
appears, the ST segment, followed by the T wave that represents ventricular repo-
larisation. It is longer than the QRS complex meaning that the repolarisation of the
ventricular is longer than its depolarisation.
The last interval marked on the figure is the QT interval which represents the time of
both ventricular depolarisation and repolarisation. The interval is therefore a rough
estimate of the duration of ventricular action potential. The interval normally ranges
from 200-400 ms, depending upon heart rate.
There is no visible wave representing the atrial repolarisation. It occurs at the same
time as the ventricular depolarisation and is therefore integrated in the QRS complex.
The ECG, as shown in Figure 2.4, is not as ceremonious in real life. A screen shot of
a real ECG’s, measured in all leads is shown in Figure 2.5.

2.3 The QT interval

As stated above, the QT interval is defined as the time required for completion of
both ventricular depolarisation and repolarisation. The interval has gained clinical
importance since a prolongation of it has been shown to induce potentially fatal ven-
tricular arrhythmia such as Torsade de Pointes [1]. The arrhythmia causes the QRS
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Figure 2.4: A normal ECG as recorded in lead II

complexes to swing up and down around the baseline in a chaotic fashion which prob-
ably caused the name, which means ”twisting of the points” in French.
The length of the QT interval is highly correlated with the RR interval, which is
defined as the time duration between two consecutive R waves on the ECG. The RR
interval and the heart rate are related inversely as

Heart rate[bpm] =
60

RR interval[sec]
(2.1)

Because of this QT interval correlation with heart rate (and the RR interval), it is
not possible to directly compare measurements of the interval, recorded at different
heart rates. The concept of heart rate corrected QT interval, or the QTc interval
has therefore been developed. The idea of the QTc interval is to normalize the QT
interval to a standard RR interval, or standard heart rate of 60 beats per minute (RR
interval = 1 sec). The resulting QTc interval should therefore be noncorrelated with
heart rate.
Number of formulas have been suggested for this purpose. However, differences of
opinion rises regarding the most useful correction formula. The most commonly used
formula is the Bazett formula [6] where the QT interval is adjusted by dividing it by
the square root of the corresponding RR interval or

QTc,Bazett =
QT√
RR

. (2.2)

The formula has been highly criticized for being inaccurate [7]-[8], even so it remains
the most widely used correction in practise. Another widely used formula is the
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Figure 2.5: A real ECG from all 12 leads

Fridericia formula [9] where the QT interval is divided by the cube root of the RR
interval or

QTc,Fridericia =
QT
3
√

RR
. (2.3)

Other types of correction have further been used, such as corrections resulting from
linear regression. One of those is the Framingham correction [10] defined as

QTc,Framingham = QT + 0.154(1−RR) (2.4)

Correction derived from a given study population are also used in practice. Instead
of using a predefined value for the correction parameter, in the correction method
used (as 0.154 in the Framingham correction), a correction parameter is derived from
off-drug data and the resulting correction formula used to correct the data in the
study.

2.4 Problems regarding QT prolongation analysis

The two procedures, the predefined correction and the correction derived from a given
study data have a drawback. If the goal is to make the QTc interval noncorrelated
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with heart rate in every subject, it needs to hold that the QT∼RR relationship does
not vary between subjects. For the predefined methods it must hold that all humans
have a common QT∼RR relationship, while for the study derived correction it must
hold that all participants in the study share a common QT∼RR relationship. Other-
wise no single correction method can be estimated that would fit different subjects.
Because of this drawback, other methods have been developed, such as subject specific
corrections [11]. Off-drug data is used to estimate a correction parameter for every
subject individually that leads to zero covariance, between QTc and RR, for that spe-
cific subject. The estimated correction parameter is then used in a correction formula
that is applied on the data for the subject. Subject specific corrections however rely
on another assumption. The QT∼RR must be similar within every subject between
days. In some cases it is difficult to attain subject specific methods, often because of
too few off-drug data points.
When deciding what kind of correction method should be applied, the QT∼RR rela-
tionship for the subjects of a study needs to be estimated using off drug data. Since
the physiological relationship between the two variables is not obvious, (linear rela-
tionship is though often assumed) different kind of models should be applied. The
models estimated should then be tested for equality both between (inter) subjects and
within (intra) subjects. Finally, depending on the intra- and intersubject variability
an appropriate correction method should be designed.



Chapter 3

The data

3.1 Data and design

The data used in the analysis comes from a study performed by H. Lundbeck A/S.
It consists of data derived from about 50.000 ECG’s captured digitally using Mortara
ELITM 200 Electrocardiographs. The purpose of the study, to investigate potential
QTc prolongations in healthy subjects treated with multiple doses of LU 35-138 and
placebo treated subjects [12].
H. Lundbeck A/S has provided two datasets for the analysis. The first set includes 42
variables including measurements of the RR, PR, QRS and QT intervals (see Figure
2.4). Some factor variables are also included in the dataset to discriminate between,
for example, the patients and the leads used. Variables that state the time of the
recording are further included in the set. The other dataset includes 39 variables
that describe different characteristics of the subjects, for example gender, age and
weight along with the number of the panel the subject belongs to. A description of
the different variables in the sets is given in Appendix A.
The study is a randomized, double blind, multiple dose study in healthy male and
female volunteers. The study is a parallel study meaning that while half of the group
was given placebo the other half was given the drug. Total of 80 subjects were used
in the study. All subjects, except one male subject, finished the study. The data
available for the one subject is excluded from the analysis. A total of 79 subjects are
therefore included in the analysis, 48 males and 31 females. 76 of the subjects are
caucasians and three of other races. The mean age of the subjects is 29.7 years (st.dev
= 7.6) and mean weight 71.7 kg (st.dev = 12.1).
The study was performed in five panels with 16 subjects per panel, named A-E. Within
each panel half of the subjects were given placebo (A0-E0), while the other half was
given the drug (A1-E1). A description of the panels is shown in Table 3.1.
For each subject, drug free 12 leads ECGs were taken the day before the dosing started



10 The data

Panel Sex Treatment Dose Panel Sex Treatment Dose
A0 male placebo 75 A1 male LU 35-138 75
B0 male placebo 100 B1 male LU 35-138 100
C0 male placebo 100 C1 male LU 35-138 100
D0 female placebo 75 D1 female LU 35-138 75
E0 female placebo 50 E1 female LU 35-138 50

Table 3.1: The panels

and regularly during dosing. After six days of dosing (on the seventh day), ECGs were
recorded at the same time points as the day before the dosing started. The time points
of the recording of the ECGs for the eight days is shown in Table 3.2.

Day number Intake ECGs
-1 - 8:00 10:00 12:00 14:00 20:00
1 8:00 8:00 (predose) 12:00
2 8:00 12:00
3 8:00 12:00
4 8:00 12:00
5 8:00 8:00 (predose) 12:00
6 8:00 8:00 (predose) 12:00
7 8:00 8:00 (predose) 10:00 12:00 14:00 20:00 8:00

Table 3.2: Time points of ECG recordings

From the recorded ECGs, the RR, PR, QRS and QT intervals (see Figure 2.4) were
determined in each of the 12 leads. For the analysis only measurements from lead II
will be used.
For each time point, three data points are given in the dataset (except for day 2, day
3 and day 4) where each point is based on the mean of three replicate recordings. The
number of measurements from lead II given in the dataset, categorized by gender and
treatments is shown in Table 3.3.

Females Males

Treatment off-drug on-drug off-drug on-drug

Placebo 840 - 1352 -
LU 35-138 50mg 120 328 - -
LU 35-138 75mg 120 328 119 326
LU 35-138 100mg - - 240 644
Total 1080 656 1711 990

Table 3.3: Number of measurements from lead II in the dataset

For a part of the analysis only off-drug data can be used. All the data from the placebo
subjects will be considered off-drug. For every placebo subject a total of 56 data off
drug data points are therefore available. Only 15 off drug data points are however
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available for the subjects that were given the drug (data from day-1). In Figure 3.1,
scatter plots of the QT-RR data available, categorized by days, for a single randomly
chosen subject, is shown.

Day -1
900 1000 1100 1200

Day 1 Day 2 

340

350

360

370

380

390

900 1000 1100 1200

Day 3 

340

350

360

370

380

390

900 1000 1100 1200

Day 4 Day 5 

900 1000 1100 1200

Day 6 Day 7 

RR [ms]

Q
T

 [m
s]

Figure 3.1: QT-RR data available for a single subject

3.2 Descriptive analysis

From the datasets described above, the main variables are the measured RR interval
and the QT interval. A histogram of the available data, both on-drug and off-drug,
for the two variables measured in lead II is shown in Figure 3.2.
The histograms for both variables are bell shaped, indicating a Gaussian distribution
of the variables. It is though noticed that the distribution of the RR interval is some-
what skewed.
The mean length of the intervals among the subjects categorized by gender and treat-
ment, measured in lead II, is shown in Table 3.4.

It is noticed by looking at the table that the male subjects have on average longer
RR interval (slower heart beat) than the females. The difference between the genders
is found to be significant (p-value < 0.001) by using a t-test described in Section 5.5.
Since the QT interval is highly correlated with the RR interval it is not possible to
compare the length of the QT intervals, a correction for heart beat is needed first.
It is of interest to visualize the relationship between the two variables. A scatter plot
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Figure 3.2: A histogram of the measured RR- and the QT intervals using all data
available from lead II

Females Males

Treatment Mean RR Mean QT Mean RR Mean QT

Placebo 930.51 385.13 1080.58 395.81
LU35-138/50 mg 943.15 399.94 - -
LU35-138/75 mg 936.33 398.82 1042.97 394.43
LU35-138/100 mg - - 1094.36 404.07
Total mean 935.27 392.49 1078.88 398.30

Table 3.4: Mean length of the RR and the QT intervals in ms measured
in lead II

of the two variables categorized by gender using all data gathered in lead II (both
on-drug and off-drug) is shown in Figure 3.3. A least square fitted linear regression
models and lines are further included in the plots.

It can be seen, by looking the figure, that the line for the females is steeper than
the one for the males. Another scatter plot of the two variables, now categorized by
treatment, is shown in Figure 3.4. The data points plotted in the figure are the ones
after the intake started.
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Figure 3.3: The QT∼RR relationship categorized by gender using all data from lead
II
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By looking at the regression models included in the plots, it can be seen that the
value of the slope of the line for the placebo data is lower than the values of the slopes
for the on-drug data. The slope of the line through the data where the subjects were
given 50 mg of the drug is however a little steeper than the slope of the line where the
subjects were given 100 mg of the drug. It should be kept in mind that only females
were given 50 mg dose of the drug while only males were given 100 mg of the drug.



Chapter 4

Literature

In the following chapter, two articles about QT interval prolongations will be sum-
marised and discussed. The articles are written by Dr. Marek Malik and his associates
at the Department of Cardiac and Vascular Sciences, St. George’s Hospital Medical
School, London England. Dr. Malik and his associates have published a number of
articles about the subject of QT prolongations. The names of the chapters below refer
to the author and the placement of the article discussed, in the bibliography.

4.1 M. Malik and others [13]

The article Relation between QT and RR intervals is highly individual among healthy
subjects: implications for heart rate corrections of the QT interval was published in
March 2002. The objective of the study discussed was to compare the QT∼RR rela-
tion in healthy subjects in order to investigate the differences in optimum heart rate
correction of the QT interval. 50 healthy subjects took part in the study, 25 males
and 25 females. For each subject, 12 lead ECGs were gathered over 24 hours with a
10 second ECG obtained every two minutes. On average 671 ECGs were measurable
in every subject (range 431-741). In the article, six different QT∼RR relations are
suggested and tested. Six different correction formulas are further converted from the
QT∼RR relation with the objective to make the QTc interval noncorrelated with the
RR interval. The regression formulas and the corresponding correction formulas are
written as:
For every QT∼RR regression model, the slopes for the different subjects were com-
pared pairwise, using ”the regression related t-statistics test” (p.221) to investigate
whether the regression curves between the subjects were parallel. Further the fit be-
tween the regression curves was investigated, using ”the regression related F statistics
test” (p.221) to investigate whether the regressions of different subjects were identical.
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Type QT∼RR relationship Heart rate correction
A: Linear QT = β + α·RR QTc = QT +α (1-RR)
B: Hyperbolic QT = β + α/RR QTc = QT + α(1/RR - 1 )
C: Parabolic QT = β ·RRα QTc = QT/RRα

D: Logarithmic QT = β + α · ln(RR) QTc = QT - α · ln(RR)
E: Shifted logarithmic QT = ln(β + α·RR) QTc = ln(eQT + α(1-RR))
F: Exponential QT = β + α · e-RR QTc = QT + α(e-RR − 1/e)

Therefore a total of 14700 (2·50·(49/2)·6) comparisons were made.
In the analysis a p-value of p< 10−6 was considered significant in the regression com-
parisons. This is explained with: ”Since these tests were not mutually independent
(investigating the relation between 50 separate data sets) and the standard corrections
of p values for multiple tests were not appropriate, and since the regression tests are
rather sensitive, p< 10−6 was considered significant in the regression comparisons.”
(p. 221)
Even though a very low critical p-value was used when testing whether it can be as-
sumed that the regression lines for the different subjects are parallel, and further if
the regressions could be assumed to be identical, a number of significant differences
between subjects were found. The number of significant differences between subjects
for the test of parallel lines ranged from 17 to 49 and the test for identical regression
resulted in number of significant differences from 41 to 49. That is, for some of the
subjects no other subject was found to have the same value of regression coefficients.
The regression parameters were compared between females and males by using a
Mann-Whitney test. Significant differences were found for both parameters for all the
regression models. The regression parameters were not found to be related to age.
In order to compare the different regression types, the root mean square of the error
(RMSE) resulting from the different models were compared. The number of subjects
the different regression types gave the optimum results were further gathered. Regres-
sion models of type A and E, that is the linear and the exponential models, resulted in
lowest RMSE (11.08 ms and 11.07 ms respectively). Regression type A was however
found to be the optimum type for 20 subjects while regression type E only for 12
subjects.
In order to find the optimal α in the correction formulas, the formulas were applied to
the QT/RR data of each subject, varying the value of the parameter α from 0 to 1 in
steps of 0.001. The optimal α would be the one giving the lowest correlation between
the RR interval and the QTc interval.
The value of the optimal α from the heart rate correction formulas was shown to differ
between subjects. As an example, the range of α from the parabolic model was found
to be [0.233,0.485]. By using the mean optimal α among the subjects, as an overall
correction, the range of the correlation between the RR interval and the resulting QTc
interval (using the parabolic model) was found to be [-0.712,0.578] indicating that no
optimal overall correction can be found that fits different subjects.
The results of the authors are clear, no optimum heart rate correction formula can be
found that would permit accurate comparisons of QTc intervals between subjects. Or
by using their own words: ”When a precise determination of QTc interval is needed,
the heart rate correction should be optimized for the given person.” (p. 227)
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4.1.1 Discussion

After reading the article, some principal questions arise. It is not stated what kind
of method is used to estimate the parameters in the QT∼RR regression models. It
is however stated that the ”regression related t test” has been used to test if the
parameters for the different subjects can be assumed to be identical, indicating that
a ordinary least square method has been applied to estimate the parameters.
Using the same symbol, α, for the parameters in the regression models and the cor-
responding correction is misleading since it can be shown (derived in Chapter 6) that
the parameters are, in some cases the same, but others not. If it is assumed that
the parameters are the same, when they are in fact not, the QTc resulting from the
derived correction formulas are not independent of the RR interval as it should be.
Also by inserting the QT∼RR relation for the hyperbolic and the exponential model
into the corresponding correction formulas does not result in expression for the QTc
interval that is independent of heart rate. In order to achieve that, the terms in the
parenthesis needs to be switched.
No attempt is made to derive an expression for the parameters. It is only stated
that the optimal α in the correction formulas is the one giving the lowest correlation
between QTc and RR and is found by varying the value of the parameter in steps of
0.001.
The main purpose of the article seems to be to show that there is a significant dif-
ference in the QT∼RR relationship between subjects and therefore the right way to
go is to use subject specific corrections. No tests are however made regarding if the
QT∼RR relationship can be assumed to be constant within the subjects, which must
be an important assumption when using subject specific corrections. The authors
however refer to another study using an independent set of data where the QT∼RR
relationship was found to be stable within each person over time.

4.2 M. Malik and others [11]

The article, Differences Between Study-Specific and Subject-Specific Heart Rate cor-
rections of the QT interval in Investigations of Drug Induced QTc Prolongation was
published in June 2004. The article documents the analysis of a computational study
designed to investigate the differences between study-specific and a subject-specific
heart rate corrections of the QT interval. From 53 healthy subjects, serial 10 sec-
ond ECG were obtained during day time hours. From each subject 200 ECG’s were
selected that represented the QT∼RR relationship. From the population, 30000 dif-
ferent subgroups of 16 subjects were produced and their data used to model drug
induced QT interval prolongation by 0, 5, 10, 20 ms combined with drug induced
heart rate acceleration and deceleration. Fifteen different correction methods were
used in the analysis, six study-specific heart rates corrections with data pooled from
all subjects, six subject-specific heart rate corrections from the data for each subject
individually, subject optimized correction, where the best regression method was se-
lected for every individual and used for the correction and finally using the Bazett
and Fridericia corrections.
The same six regression models and derived correction models are used as in [13]
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but the authors are now using different symbols for the parameters in the regression
models and the correction models. The models are now defined as:

Type QT∼RR relationship Heart rate correction
A: Linear QT = η + ξ·RR QTc = QT +α (1-RR)
B: Hyperbolic QT = η + ξ/RR QTc = QT + α(1/RR - 1 )
C: Parabolic QT = η ·RRξ QTc = QT/RRα

D: Logarithmic QT = η + ξ · ln(RR) QTc = QT - α · ln(RR)
E: Shifted logarithmic QT = ln(η + ξ·RR) QTc = ln(eQT + α(1-RR))
F: Exponential QT = η + ξ · e-RR QTc = QT + α(eRR- − 1/e)

Again it is stated that the α in the correction formulas was optimized to get a zero
correlation between the QTc interval and the RR interval.
To study the relationship between study specific and subject specific correction of
the same type of regression model, the α resulting from the pooled correction was
compared to the average of the α resulting from the individualized correction. The
correlation between the study- and subject specific αs from the 30000 subgroups was
found to be very weak for the six model types (r = 0.215, 0.447, 0.056, 0.197, 0.222,
0.172).
All 15 heart rate corrections (6 study specific + 6 subject specific + subject optimized
+ Bazett + Fridericia) were used to calculate the difference between the baseline and
on-treatment QTc values for each individual. These QTc values were compared with
the initially introduced QTc prolongation. Differences between the reported QTc val-
ues and the true simulated QTc prolongations were taken as the error of the given
heart rate correction method. This was done separately for the simulated data for
treatment related heart rate deceleration and acceleration. The errors were found to
be larger with heart rate acceleration on model treatment than with deceleration. In
both cases the optimized correction and the individual correction using the exponen-
tial model gave the smallest error. The distribution of the errors from the subject
specific models was found to be much tighter than for the study specific models. The
worst performance was observed with the Bazett and the Fridericia formulas.
Again the conclusion of the authors is clear: ”Precise subject-specific corrections
should therefore be used in the intensive and definite studies aimed at providing the
final answer on the ability of a drug to prolong the QT interval.” (p. 800)

4.2.1 Discussion

Similar questions arise when reading the article as when reading [13]. Now the authors
however use different symbols for the parameters in the regression formulas and in the
correction formulas. Again the correction parameter is estimated iteratively to give
zero correlation between RR and QTc.
The authors choose to use the RMSE from the regression models to decide what
correction should be chosen for the subjects. Whether this is the correct way to go
will be looked at in Section 7.2.
As before, the results of the article is clear, subject specific methods should be used
to get accurate results. The important assumption about stable QT∼RR relationship
within a subject is however neither tested or discussed in the article.
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4.3 The European Medicines Agency [3]

A thorough QT/QTc study is a study dedicated to evaluate a drug effect on cardiac
repolarisation. The clinical evaluation of QT/QTc interval prolongation and proar-
rhythmic potential for non-antiarrhythmic drugs is a draft on guidelines for sponsors,
concerning the design, conduct, analysis and interpretation of such a study. The draft
summarised here is the fifth draft from the 12th of May 2005. The first draft was
written in July 2003.
It is suggested that a thorough QT/QTc study is made early in the clinical devel-
opment by using electrocardiographic evaluation. It should be carried out in healthy
volunteers, if possible. The study should be adequate and well controlled and should
be able to deal with potential bias with the use of randomization, appropriate blinding
and a placebo control group. It is recommended to use a positive control group to
assay sensitivity.
Pros and cons of using parallel or crossover studies are listed in the draft. Crossover
studies usually need fewer subjects than parallel group studies and might advance
heart rate corrections based on individual subject data. For drugs with long elimina-
tion half lives, parallel studies might be preferable as when multiple doses or treatment
groups are to be compared.
The timing of the ECG’s is suggested to be guided by the available information about
the pharmacokinetic profile of the drug. Care should be taken to perform a ECG
recordings around the time points of the maximal observed concentration of the drug.
A negative thorough QT/QTc study is defined in the draft, as one which the upper
bound of the one sided 95% confidence interval on the time matched mean effect on
the QTc interval excludes 10 ms. This is done to provide reasonable assurance that the
mean affect on the QTc interval is not greater than 5 ms which is the threshold level
of regulatory concern. When the time-matched difference exceeds the threshold, the
study should be termed positive. A positive study influences the evaluation carried
out during later stages of the drug development. Additional evaluation in subsequent
clinical studies should then be performed.
Regarding collection, assessment and submission of the ECG’s, it is suggested in the
draft to use 12 lead surface ECG’s where the different intervals are measured by few
skilled readers. The readers should be blinded with time, treatment and subject iden-
tifier. The same reader should read all the ECG recordings from a given subject.
What kind of QT interval correction formulas and how to analyse QT/QTc interval
data is shortly discussed in the draft. It is stated that in order to detect small effects
in the QTc, it is important to apply the most accurate correction method available.
Since the best correction approach is a subject of controversy, uncorrected QT and
RR interval data, heart rate data as well as QT interval data corrected using Bazett’s
and Fridericia’s corrections should be submitted in addition to QT interval corrected
using any other formula. It is prevised that the Bazett formula overcorrects at high
heart rates but under corrects at heart rates below 60 bpm while the Fridericia is more
accurate in subjects with such altered heart rates. Regarding correction formulas de-
rived from within subject data it says in the draft: ”These approaches are considered
most suitable for the ’thorough’ QT/QTc study and early clinical studies, where it
is possible to obtain many QT interval measurements for each study subject over a
broad range of heart rates.” (p. 12)
Considering how the QT/QTc interval should be presented it is stated that it should
be presented both as analysis of central tendency (mean, medians) and categorial
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analysis. The largest time matched mean difference between the drug and placebo
over the collection period should be analysed along with changes occurring around
Cmax for each individual. The categorial analysis of the QT/QTc should be based on
number and percentage of subjects meeting or exceeding some predefined upper limit
value. What this upper limit value should be is not decided but stated that multiple
analysis using different limits are reasonable approach including absolute QTc interval
prolongation of > 450, > 480 and > 500 and change from baseline of > 30 and > 60.
Adverse events and how to handle them along with regulatory implications, labelling
and risk management strategies are finally discussed in the draft. Since these fac-
tors are not of importance for the analysis performed in this theses they will not be
summarised here.



Chapter 5

Statistical methods

An overview of the statistical methods used in the analysis will be given in the chapter.

5.1 Calculation rules for the expectation and the
variance of random variables

The calculation rules given in this section are taken from [14].
The following calculation rules are valid for the first moment, or the expectation, of
a random variable X:

E(a + bX) = a + bE(X) (5.1)
E(X + Y) = E(X) + E(Y) (5.2)
E(X ·Y) = E(X) · E(Y),X and Y are independent (5.3)

The second central moment of a random variable is the variance defined as

V(X) = E((X− E(X))2) = E(X2)− (E(X))2 (5.4)

The following calculation rules are valid for the variance

V(aX) = a2V(X) (5.5)
V(X + b) = V(X) (5.6)

V(X±Y) =
{

V(X) + V(Y)± 2Cov(X, Y)
V(X) + V(Y),X and Y are independent (5.7)

where Cov(X,Y) is the covariance between the two random variables X and Y defined
as

Cov(X, Y) = E(X− E(X))E(Y − E(Y )) (5.8)
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The following calculation rules apply for the covariance

Cov((a1X + b1), (a2Y + b2)) = a1a2Cov(X, Y) (5.9)

and finally
Cov(X + Y, U) = Cov(X,U) + Cov(Y, U) (5.10)

where X, Y and U are random variables.

5.2 Ordinary Least Squares

A multiple regression model with k independent variables can be written as

yi = β0 + β1xi1 + β2xi2 + · · ·βkxik + εi i = 1, 2, ..., n (5.11)

where
ε ∈ NID(0, σ2)

The observations, yi, should be uncorrelated and the independent variables fixed (that
is non random). The independent variables can be quantitative, transformations of
quantitative variables, interaction between variables or factor variables with several
levels.
In matrix notation the model can be written as

y = Xβ + ε (5.12)

where y is a (n×1) vector of observations, X is a (n×p) matrix of independent variables
(p = k+1 to allow for intercept), β is a (p× 1) vector of regression coefficients and ε
is a (n× 1) vector of independent random errors.
The vector of least square estimators, that minimizes

L =
n∑

i=1

ε2i = εT ε = (y − Xβ)T (y − Xβ) (5.13)

is found by solving
δL

δβ
= 0 (5.14)

and can be written as
β̂ = (XT X)−1XT y (5.15)

According to the Gauss-Markov theorem, the least square estimates of the regression
parameters have the smallest variance among all linear unbiased estimates [15]. There
might however exist a biased estimator with smaller mean square error. In some cases
it is not appropriate to use the least square estimator, for example when the inde-
pendent variables are not fixed or autocorrelation is found in the data. In other cases
it can’t be used for example when large multicolinearity is found in the independent
variables which leads to singular inverse of the (XTX) matrix.
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5.3 Regression related tests

5.3.1 Test on individual regression coefficients

The hypothesis to test whether a single parameter from the regression model has a
certain value c, can be written as

H0 : βj = c
H1 : βj 6= c (5.16)

The test statistic for the hypothesis is defined as [16]

T0 =
β̂j − c√
σ̂2Cjj

=
β̂j − c

se(β̂j)
(5.17)

where Cjj is the diagonal element of (XTX)−1 corresponding to β̂j . The null hypoth-
esis should be rejected if |t0| > tα/2,n−p.
A special case of the hypothesis is used to test whether a single parameter from the
regression model is significant, and can be written as

H0 : βj = 0
H1 : βj 6= 0 (5.18)

Failing to reject the null hypothesis is an indication that the regressor xj can be
deleted from the model.

5.3.2 Test for lower dimension of the model space

Consider a regression model with k regressor variables

y = Xβ + ε

The following test can be used to test if the mean vector can be assumed to lie in a
true subspace of the model space. The test is taken from [16].
The hypothesis can be written as

H0 : µ ∈ H
H1 : µ ∈ M\H.

(5.19)

where M is a k dimensional sub-space and H is a r dimensional sub-space of M where
k > r.
Let the regression sum of squares for the full model be defined as

SSR(βM ) = β̂T XT y

and

MSE =
yT y − β̂Xy

n− p
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where n is the number of observations of the dependent variable and p = k + 1. Let
us define βH as the regression coefficients in the reduced model and XH the columns
of X associated with βH . The sums of squares for the reduced model is then defined
as

SSR(βH) = β̂T
HXT

Hy.

The null hypothesis, may be tested by the test statistic

F0 =
(SSR(βM )− SSR(βH))/r

MSE
. (5.20)

The null hypothesis should be rejected if F0 > Fα,r,n−p,

5.3.3 Test for identity of regressions

It is suggested in [13] that the individually fitted RR∼QT regressions should be tested
pairwise for identity. As is discussed in Section 4.1, ”the regression related F statistics
test” should be used to investigate identity of regressions.
Considering two different regressions

Yi = β0 + β1xi + εi, i = 1, ...n
Y ′

i = β′0 + β′1xi + ε′i, i = 1, ...n′

where ε and ε’ ∈ N(0, σ2(I))
The hypothesis can be written as

H0 : The regressions are identical
H1 : The regressions are not identical (5.21)

The regression related F statistical test for testing identity of regressions can be writ-
ten as [17] (using the same notation)

Z =
n + n′ − 4

2((n− 2)s2 + (n′ − 2)s′2)
·

(b − b′)T [(XT X)−1 + (X ′T X ′)−1]−1(b− b′) (5.22)

where
b = (XT X)−1XT Y ,

Se = Y T (I −X(XT X)−1XT )Y

and
s2 = Se/(n− 2)

The test statistic should be rejected if Z> F2,n+n′−4
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5.4 Kolmogorov Smirnov test

The one sample Kolmogorov Smirnov test is used to test if a sample comes from a
population with a specific distribution, for example the normal distribution.
The hypothesis are

H0 : The sampled data follows the specified distribution
H1 : The sampled data does not follow the specified distribution

The test compares the hypothesized continuous distribution function F to the empiri-
cal distribution function F′ of the samples. The test statistic D is defined as the largest
absolute deviation between F(x) and F′(x) over the range of the random variable or

D = max
x
|F ′(x)− F (x)| (5.23)

where F′(x) is defined as

F ′(x) =
number of samples ≤ x

N

and N is the number of data points. The null hypothesis is rejected if the test statistic
D is greater than a critical value obtained from a table.

5.5 T-test for difference in means-variance unknown

The test can be used to test whether means of two normal distributions are equal
when the variance is unknown. The two sided hypothesis are

H0 : µ1 = µ2

H1 : µ1 6= µ2

Two different cases arise. First when the variances of the two populations can be
assumed to be equal and latter when the variances are not necessarily equal. The
appropriate test statistic when σ2

1 = σ2
2 = σ2 is defined as [16]

T0 =
X1 −X2

Sp

√
1

n1
+ 1

n2

(5.24)

where X1 and X2 are the sample means, n1 and n2 are the sample sizes and Sp is the
pooled estimator of σ2 defined as

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
(5.25)

where S2
1 and S2

2 are the sample variances.
The null hypothesis should be rejected when t0 > |tα/2,n1+n2−2|.
For the latter case when σ2

1 6= σ2
2 there is not an exact t-statistic available but under
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the null-hypothesis, the test statistic in (5.24) is approximately distributed as t, with
degrees of freedom given by [16]

v =

(
S2

1
n1

+ S2
2

n2

)2

(S2
1/n1)2

n1−1 + (S2
2/n2)2

n2−1

(5.26)

The null hypothesis, in this case, should be rejected when t0 > |tα/2,v|.

5.6 The paired t-test

A special case of the two sample t-test described in Section 5.5 is the paired t-test
which should be used if the observations on the two populations of interest are collected
in pairs.
Let us define µD = µ1 − µ2, the hypothesis about the difference between µ1 and µ2

can be written as
H0 : µD = 0
H1 : µD 6= 0 (5.27)

The test statistic for the hypothesis is defined as [16]

T0 =
D

SD/
√

n
(5.28)

where n is the number of pairs, D is the sample average of the difference between the
n pairs and SD is the sample standard deviation of the differences.
A 100(1 − α) confidence interval on the difference in means µD, where α is the level
of significance can be written as [16]

d̄− tα/2,n−1sD/
√

n ≤ µD ≤ d̄ + tα/2,n−1sD/
√

n (5.29)

5.7 Test for equality of two variances

Let X1 and X2 be two independent random samples from two normal distributions
with mean µ1 and µ2 and variances σ2

1 and σ2
2 respectively. To test the null hypothesis

H0 : σ2
1 = σ2

2

H1 : σ2
1 6= σ2

2

the following test statistic should be used [16]

F0 =
S2

1

S2
2

(5.30)

where S1 and S2 are the sample variances.
The null hypothesis should be rejected if f0 > fα/2,n1−1,n2−1 or f0 < f1−α/2,n1−1,n2−1
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5.8 Linearization of nonlinear functions

A Taylor series linearization can be used to derive a linear approximation to nonlinear
functions.
Let f be a nonlinear function of two variables X and U. A linearization of the function
around it’s nominal point is defined as [18]

f(X, U) ∼= f(X0, U0) +
δf

δX

∣∣∣
X=X0,U=U0

(X −X0) +
δf

δU

∣∣∣
X=X0,U=U0

(U − U0) (5.31)
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Chapter 6

Derivation of the correction
parameters

In the analysis, six different regression and correction models will be applied and
tested. The models are the same as used in [11] and [13] except that the order of the
terms inside the parenthesis of the hyperbolic and the exponential correction models
have been changed. The regression models can be written as (with a slight change in
notation from [11])

A Linear QT = ηA + ξA ·RR
B Hyperbolic QT = ηB + ξB/RR
C Parabolic QT = ηC ·RRξC

D Logarithmic QT = ηD + ξD · ln(RR)
E Shifted logarithmic QT = ln(ηE + ξE ·RR)
F Exponential QT = ηF + ξF · e-RR

(6.1)

and the corresponding correction models

Ac Linear QTc = QT + αA(1−RR)
Bc Hyperbolic QTc = QT + αB(1− 1/RR)
Cc Parabolic QTc = QT/RRαC

Dc Logarithmic QTc = QT − αD · ln(RR)
Ec Shifted logarithmic QTc = ln(eQT + αE(1−RR))
Fc Exponential QTc = QT + αF (1/e− e-RR)

(6.2)

It is noticed by looking at the regression models that models A,B,D and F are linear
in their parameters while models C and E are nonlinear.
It has been suggested in the literature, [11] and [13], that the α’s from the correction
models should be determined by varying their values from 0 to 1 in steps of 0.001.
When dealing with large amount of data it can be time consuming to estimate the
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correction parameters iteratively as suggested. An attempt to derive an expression
for the correction parameters for the models that are linear in their parameters will
therefore be made in the chapter. An attempt will also be made, by the use of some
approximations, to relate the correction parameters in the models that are nonlinear
in their parameters to the correction parameter in the linear model.

6.1 Linear models

The desired characteristic of the QTc interval is zero covariance between the QTc and
the RR intervals, or equivalent, the two vectors should be orthogonal. The condition
is written as

Cov(QTc, RR) = 0. (6.3)

By inserting, for example, the linear correction formula Ac from (6.2) into (6.3) gives

Cov(QT + αA(1−RR), RR) = 0. (6.4)

Solving for αA and apply it to calculate QTc would therefore result in orthogonal
vectors of QTc and RR intervals.
Applying covariance calculation rule (5.10), this can be written as

Cov(RR, QT ) + Cov(RR, αA) + Cov(RR,−αA ·RR) = 0.

The covariance between a random variable and a constant is zero and using (5.9) leads
to

Cov(RR,QT )− αA · Cov(RR, RR) = 0.

or
Cov(RR,QT )− αA ·Var(RR) = 0. (6.5)

Let us now define vectors of N measurements of the RR and the QT intervals, RR =
[RR1 . . . RRN ]T and QT = [QT1 . . . QTN ]T . The estimate of the covariance between
RR and QT , assuming that the data is centered around the mean, can be written as

Cov[RR, QT ] =
1
N

N∑

i=1

RRi ·QTi =
1
N

RRT ·QT (6.6)

and the variance of RR as

Var[RR] =
1
N

N∑

i=1

RRi ·RRi =
1
N

RRT ·RR (6.7)

inserting into (6.5) gives

RRT ·QT = αA ·RRT ·RR.

and finally solving for αA gives

αA = (RRT ·RR)−1RRT ·QT . (6.8)
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It is noticed that this is the same as the LS estimator given in (5.15) with QT as the
dependent variable and RR the independent variable as in regression type A in (6.1).
Going through the same steps for the hyperbolic model Bc from (6.1) gives

Cov(QT + αB(1− 1/RR), RR) = 0 (6.9)

or
Cov(RR, QT )− αB · Cov(RR, 1/RR) = 0.

By considering X = 1/RR as a new random variable, and X = [1/RR1 . . . 1/RRN ]
as the corresponding vector of observations. Using the estimates of the covariances
results in

RRT ·QT = αB(RRT ·X)

and finally solving for αB

αB = (RRT ·X)−1RRT ·QT . (6.10)

It is noticed that this is not the same as the LS estimator for the hyperbolic model B
in (6.1), which can be written as

ξB = (XT ·X)−1 · (XT ·QT ). (6.11)

The same can be done for the other two linear models form (6.2), models Dc and Ec.
Defining Y = ln(RR) and Z = e−RR as new random variables and Y = [ln(RR1) . . . ln(RRN )]
and Z = [e−RR1 . . . e−RRN ] as the corresponding vector of observations, respectively,
an expression for their parameters can be written as

αD = (RRT · Y )−1 ·RRT ·QT (6.12)

and
αE = (RRT ·Z)−1 ·RRT ·QT (6.13)

which are not the same as the least square fitted regression parameters in the corre-
sponding regression models D and E which can be written as

ξD = (Y T · Y )−1 · Y T ·QT (6.14)

and
ξE = (ZT ·Z)−1 ·ZT ·QT . (6.15)

It has therefore be shown that the following is valid

αA = ξA (6.16)

αB 6= ξB (6.17)

αD 6= ξD (6.18)

αF 6= ξF . (6.19)
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6.2 Nonlinear models

For the two models that are nonlinear in their parameters, models C and F, an ap-
proximation of their corresponding QTc function is needed to be able to solve (6.3).
The functions are therefore linearized as is described in Section 5.8. Using (5.31), a
linearization of correction type Cc from (6.2) is given as

QTc =
QT

RRαC

∼= QT0

RRαC
0

−αC ·QT0 ·RR−αC−1
0 (RR−RR0) + RR−αC

0 (QT −QT0) (6.20)

and correction type Ec as

QTc = ln(eQT + αE(1−RR)) ∼= ln(eQT0 + αE(1−RR0))+

eQT0

eQT0 + αE(1−RR0)
(QT −QT0)− αE

eQT0 + αE(1−RR0)
(RR−RR0). (6.21)

Inserting (6.20) into (6.3) and applying the covariance rules leads to

1
RRαC

0

Cov(RR, QT )− αC ·QT0

RRαC+1
0

Cov(RR, RR) = 0

or
αC ·QT0

RRαC
0

Cov(RR,RR) = Cov(RR, QT ).

Again by considering RR and QT as vectors of observations and using the estimate
of the covariances leads to

αC

RRαC
0

=
1

QT0
(RRT ·RR)−1(RRT ·QT ).

Recognizing (RRT ·RR)−1(RRT ·QT ) as the LS estimator for the linear regression
model A and using (6.16) this can be written as

αC

RRαC
0

=
1

QT0
αA. (6.22)

Going through the same steps for correction type Ec gives

Cov(RR,
eQT0(QT −QT0)

eQT0 + αE(1−RR0)
) + Cov(RR,

−αE(RR−RR0)
eQT0 + αE(1−RR0)

) = 0

or
eQT0 · Cov(RR, QT )− αECov(RR, RR) = 0.

Once again using the estimates of the covariances and solving for αE gives

αE = (RRT ·RR)−1(RRT ·QT ) · eQT0 .

Again by recognizing the LS parameter from the linear regression model A and using
(6.16) this can be written as

αE = αA · eQT0 (6.23)
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It has been shown that by using an approximation to the nonlinear correction functions
it is possible to relate the two correction parameters from the non liner models to
the correction parameter in the linear correction model (type Ac). How well the
approximation works depends on the behavior of the approximated function. It is
therefore expected that the approximation used for the shifted logarithmic function
will perform better than the approximation for the parabolic model.
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Chapter 7

Analysis of QT correction
methods based on placebo

subjects

A correction method needs to be designed to normalize the QT interval as it would
have been measured at a constant heart rate. Such a method needs to be estimated
using pre treatment data. As can be seen in Figure 3.1, only 15 data points are
available per subject before the intake of the drug started. 56 data points are however
available for every placebo treated subject. Because of this lack of pre treatment
data, the data for the placebo subjects will be used for some of the analysis where
only off-drug data is needed. Since it was chosen randomly what kind of treatment the
subjects were given, it will be assumed that the same principles apply to the placebo
subjects and the subjects that were given the drug.
In the following chapter, only data from subjects that were given placebo will be used.

7.1 The QT∼RR relationship

In order to investigate the nature of the QT∼RR relationship, the six different models
given in (6.1) are analysed and tested. The models all have two parameters to be
estimated, ξ and η. It is noticed that four of the models (A,B,D,F) are linear in their
parameters, while the other two are nonlinear (C,E). Ordinary least squares method
is used to estimate the parameters in the linear models. For the models that are
nonlinear in their parameters, the built in Splus function nls that uses the Gauss-
Newton method is used for the estimation.
For every placebo treated subject, the six different model types are fitted individually
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to the data, that is the two regression parameters in the six models are estimated for
every subject. Bar plots of the individually fitted slopes for the six model types are
shown in Figure 7.1. The estimated mean value along with the range of the parameters
within each regression type is further included in the plots.
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Figure 7.1: The value of the individually fitted slopes for the six model types and the
39 placebo subjects

To determine what type of model from (6.1) fits the subjects best, the root mean
square error (RMSE) is used, that is the optimum model, for a given subject, is the
one resulting in the lowest RMSE among the models. The mean and range of the
RMSE among the subjects is shown in Table 7.1. The number of times the particular
model type results in the lowest RMSE is further listed in the table.

Model mean(RMSE) range(RMSE) Optimum cases
[ms] [ms] (total/female/male)

A 9.5443 [5.5240,12.4022] 16/4/12
B 9.6281 [5.6420,12.3761] 14/8/6
C 9.5481 [5.5492,12.3900] 0/0/0
D 9.5586 [5.5608,12.3862] 0/0/0
E 9.5462 [5.5254,12.4003] 4/1/3
F 9.5547 [5.5600,12.3860] 5/2/3

Table 7.1: Comparison of the six different regression models

It is noticed by looking at the table that model type A, the linear model, is the optimal
for a total of 16 subjects and model type B, the hyperbolic model, is the optimal one
for 14 subjects. The RMSE for model type B is however the largest of the six model
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types. Looking at the RMSE for regression type B more closely, it was found that
when the type was not found to be the optimum it was usually the one resulting in
the largest RMSE. It is also noticed that types A, C and E result in the lowest mean
RMSE among the subjects.
It is of interest to test if the regression parameters differ significantly between males
and females. Wether to use a parametric test or somewhat weaker nonparametric test
depends on if it can be assumed that the distribution of the parameters is normal.
In order to test this, a Kolmogorov Smirnov test is applied, described in Section 5.4.
The p-values for the tests are listed in Table 7.2. The first column applies when the
regression parameters for the males and females are pooled together and tested and
the latter two when the distribution of the regression parameters are tested separately
for normality. All p-values are larger than 0.05, as can be seen by looking at the table,
indicating that the null hypothesis, stating that the distribution is normal, can not
be rejected.

Pooled Females Males

Method slope intercept slope intercept slope intercept

A 0.752 0.428 0.469 0.467 0.282 0.921
B 0.990 0.609 0.091 0.338 0.498 0.324
C 1.095 0.629 0.356 0.645 1.056 0.389
D 0.875 0.495 0.220 0.745 0.316 0.387
E 0.532 0.245 0.724 0.756 1.101 0.067
F 0.903 0.614 0.456 0.647 0.016 0.113

Table 7.2: P-values resulting from Kolmogorov Smirnov tests for Gaussian-
ity

A t-test is used, described in Section 5.5, to test whether the regression parameters
differ between males and females. It is the appropriate test for testing whether two
normal distributions differ in mean when their variance is unknown. The test statistic
differs however, depending on whether it can be assumed that the variances are equal
or not. Therefore it needs to be tested whether the variances of the distributions for
the males and the females, can be assumed to be equal. The p-values resulting from
the tests are shown in Table 7.3.

Model Slope Intercept
A 0.3334 0.0021
B 0.2604 0.4569
C 0.0994 0.2566
D 0.2730 0.2576
E 0.4114 0.0021
F 0.2783 0.6212

Table 7.3: P-values resulting from a equal variance test between males and females

The variances of the distributions of the parameters for the males and the females
can be assumed to be the equal, except for the intercept in models A and E, as can
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be seen in the table. When testing whether the mean of the two distributions are
the same, the test statistic in (5.24) is used. For the cases when the variances can be
assumed to be equal the test statistic has a t distribution with 37 degrees of freedom
(n1 + n2 − 2) but 34.673 and 34.645 degrees of freedom for the test of the intercept
in models A and E respectively, according to (5.25). The p-values resulting from the
tests are given in Table 7.4.

Model Slope Intercept
A >0.001 >0.001
B 0.0828 0.0757
C >0.001 0.2754
D >0.001 0.2734
E >0.001 >0.001
F >0.001 0.0008

Table 7.4: P-values resulting from a equal mean t-test between males and females

By looking at the p-values, it can be concluded that for all types of regression models,
except type B, either the slope or the intercept of the regression lines differ between
males and females. Model type B is the only model were the difference between the
slopes is not significant using 0.05 as the level of significance.
It is of interest to test if the QT∼RR relationship varies significantly between subjects
and also if it can be assumed to stay similar within a subject between days. Since the
linear regression model, type A, is found to be the optimal model in most subjects
and the one resulting in the lowest mean RMSE among the subjects it will be used
to test for inter- and intrasubject variability.

7.1.1 Test of identical regression parameters between subjects

In order to test whether the regressions between the subjects are identical, it is sug-
gested in [13], that the individually fitted regression parameters are compared pairwise
for equality. The pairwise comparison will therefore provide, for every subject, the
number of subjects that share a common QT∼RR relationship with that given sub-
ject. However, since the goal here is to test whether it can be assumed that all the
subjects in the study share a common QT∼RR relationship, the pairwise comparison
can be avoided and replaced with a classical test for a lower dimension of the model
space, described in Section 5.3.2. It is decided to perform both test, first as it is done
by Dr. M. Malik and his associates in [13] and then to use the test for lower dimension
of the model space.

7.1.1.1 Pairwise comparison

When dealing with multiple comparison, the level of significance used needs to be
lowered to account for the number of comparisons made. While the given level of
significance is appropriate for each individual comparison, it is not for the set of all
comparisons. It is suggested in [13] to consider p-values of p< 10−6 as significant
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when dealing with 14700 comparisons. Here, a total of 741 comparisons are made
(39·(38/2)), or about 20 times fewer than in [13]. p< 2 ·10−5 (20 ·10−6) will therefore
be considered significant.
The test statistic given in (5.22) is used to test for the identity of the regressions,
that is the slope and the intercept at the same time. The test statistic is applied on
every pair of subjects and the number of significant differences counted. The result is
shown in Figure 7.2.
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Figure 7.2: The number of nonidentical regressions among the placebo subjects using
pairwise comparison

By looking at the figure it is noticed that non of the subjects can be assumed to share
a common regression line with all other subjects in the study. One of the subjects
does not even share a common regression with any of the other subjects in the study.

7.1.1.2 Test for lower dimension of the model space

It is of interest to test whether it can be assumed that all the subjects in the study
share a common QT∼RR relationship.
A linear model describing a common QT∼RR relationship among the subjects can be
written as

M1 : QTi = η + ξ ·RRi + εi i = 1 . . . N (7.1)

where N is the total number of data points available. A model allowing for different
slopes and intercepts for the 39 different subjects can be written as

M2 : QTi,j = ηj + ξj ·RRi,j + εi,j i = 1 . . . n, j = 1 . . . 39 (7.2)
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where n is the number of data points available for the given subject. The hypothesis
can be written as

H0 : µ = M1
H1 : µ = M2 (7.3)

The test statistic in (5.20) is used to used to test the hypothesis. The resulting
test statistic from the test is calculated to be 80.90 (p-value << 0.001) and the
null hypothesis therefore strongly rejected. It can therefore be concluded that the
QT ∼ RR relationship can not be assumed to be the same among the subjects.

7.1.2 Test of identical regression parameters within subjects

It is important that the assumption of similar RR∼QT relationship within a subject,
between days, is valid when subject specific correction methods are used. In order to
test whether this assumption is valid, a test is generated to see if the slopes and the
intercepts of the linear regression models are identical on day -1 and day 7. This can
be done by estimating separately linear regression models for every placebo subject
on the form (with a notation as is used in statistical software packages such as Splus
and SAS)

QT = η + ξRR + ξ2day + ξ3RR · day (7.4)

where day is a factor variable with two factors, day -1 and day 7. If ξ2 is found to be
significant it means that the intercepts of the regression lines for the two days can not
be assumed to be identical. If however ξ3 is found to be significant, the slopes of the
two regression lines representing the two days can not be assumed to be the same.
The test statistic defined in (5.24) is used to test the hypothesis of significant pa-
rameters. Only one subject, out of the 39 subjects, was found to have significantly
different slopes and intercepts between days. A plot of the data points, for four sub-
jects during the two days, along with the fitted regression lines is shown in Figure 7.3.
The subject shown in the top left corner is the only subject found with significant
difference between the two slopes and the two intercepts.

7.2 Estimation of the correction parameters

In order to see if the expressions for the correction parameters, αA, αB , αD and αE ,
derived in Chapter 6 are correct, the parameters are estimated iteratively as suggested
in [13] and using the derived expressions. The two methods were found to give the
same results.
The expression for αC and αE were further compared to the corresponding iteratively
estimated parameters to see if the approximation used in the derivation is accurate.
The smallest difference between the two methods, for the parabolic model was found to
be 0.21% while the largest 21.35%, indicating that the approximation of the function
is not good enough. In the analysis, the iteratively estimated parameter in correction
type Cc will therefore be used.
For the shifted logarithmic model, the expression in (6.23) is used to calculate the
correction parameter and it compared to the corresponding iteratively estimated pa-
rameter. The largest difference between the two methods was found to be 0.4%,
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Figure 7.3: QT∼RR relationship for four subjects for the two days, day -1 and day 7

indicating that the approximation is accurate.
Bar plots of the correction parameters, calculated using the appropriate expression
(αC though estimated iteratively), along with the estimated mean value and the range
for the six correction types is shown in Figure 7.4.
It is noticed by looking at the figure that the value of the correction parameters dif-
fers somewhat between the subjects. It is further noticed that the Bazett parameter,
corresponding to αC = 0.5 does not even lie in the range of the estimated correction
parameters for model type Cc. As for the LS fitted regression parameters, Kolo-
mogorov Smirnov test is applied to see if it can be assumed that the parameters are
normally distributed. In all cases the p-values were larger than 0.05 indicating that
the null hypothesis can not be rejected. The distribution of the correction parameters
is therefore assumed to be normal.
The QTc intervals are estimated for every subject using the the six correction types
shown in (6.2) and the appropriate expression for the correction parameter (αC es-
timated iteratively). For the 39 subjects the optimal correction type is determined,
defined as the one resulting in the smallest correlation between the QTc interval and
the corresponding RR interval. The number of subjects each correction type was
found to be the optimal is listed in Table 7.5 along with the number of times the cor-
responding regression formula was found to lead to the smallest RMSE, also shown
in Table 7.1.
It can be seen in the table that the parabolic and the exponential models are the two
types that leads most often to the lowest correlation between the two intervals. It can
further be seen, that although a specific regression type is found to result in the lowest
RMSE, it does not mean that the corresponding correction type results in the lowest
correlation between the QTc and the RR intervals. By using the regression RMSE as
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Figure 7.4: The values of the correction parameters for the 39 subjects and the six
different correction types

Type Optimum cases LS Optimum cases COR
Linear 16 5
Hyperbolic 14 5
Parabolic 0 12
Logarithmic 0 1
Shifted logarithmic 4 4
Exponential 5 13

Table 7.5: The number of time the given correction type was found to be optimal,
using min(RMSE) and min(|COR|)

a criteria for choosing the optimal correction type, as is done in [13] might therefore
lead to some bias in the analysis. How much influence this has will be looked at in
Section 7.3.5.

7.3 QT correction

A method needs to be designed such that QT intervals recorded at different heart
rates can be compared.
Since it has been shown that the QT∼RR relationship exhibits a variability between
subjects, a correction formula that leads to zero RR-QTc covariance in one subject
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can lead to a large covariance in another. This means that when using the same
correction formula in a number of subjects, some over correction and some under
correction will occur. If the desired result is zero correlation between the QTc and
the RR intervals within every subject, subject specific methods should therefore be
used. If however only mean changes in QTc are of interest the same correction formula
could be applied on numbers of subjects and it assumed that the over corrections and
the under correction cancel each other out, leaving the mean change be caused by the
drug affect.
In the chapter, both approaches will be looked at and the following questions answered

- Is the method leading to zero covariance between RR and QTc within every
subject?

- When using the same correction formula for more than one subject, does the
over and under corrections cancel each other out?

To answer the latter question an optimized subject specific correction will be applied
to all the placebo subjects. That is, for every subject the correction formula from
(6.2) that leads to the smallest covariance between RR and QTc is chosen. The
correction parameter in the chosen formula is consequently estimated for the subject
and the resulting correction formula applied on the data. Afterwards, other kinds
of correction methods are applied and the resulting QTc intervals compared to the
optimized individually estimated QTc intervals. The correction methods that will be
compared to the individual optimized correction are

1. Predefined correction methods

- Bazett

- Fridericia

2. Study specific corrections, where the same correction parameter is applied on
the whole study population. The correction parameter is further

- estimated from the pooled data of the study - the pooled method.

- estimated individually for every subject in the study and the mean of the
estimated parameters used - the mean method.

- estimated individually for every subject in the study and the median of the
estimated parameters used - the median method.

3. Gender specific corrections, where two different correction parameters are ap-
plied, one on the females and another on the males. The correction parameters
are further

- estimated from the pooled data for females and pooled data for males - the
pooled method.

- estimated individually for every subject in the study and the mean of the
estimated parameters for the females applied on the females and the mean
of the estimated parameters for the males applied on the males - the mean
method.
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- estimated individually for every subject in the study and the median of
the estimated parameters for the females applied on the females and the
median of the estimated parameters for the males applied on the males -
the median method.

4. Panel specific corrections where five different correction parameters are applied,
one for every panel in the study. The correction parameters are further

- estimated from the pooled data within every panel - the pooled method.

- estimated individually for every subject in the study and the mean of the
estimated parameters within every panel used - the mean method.

- estimated individually for every subject in the study and the median of the
estimated parameters within every panel used - the median method.

For the different methods, the six different correction types listed in (6.2) will further
be applied. The difference between a subject specific correction using a fixed type of
correction for all the subjects and the optimized subject correction will also be looked
at.

As stated above, the idea behind the QTc interval is to normalize the QT inter-
val as it would have been recorded at a standard RR interval of 1 sec (corresponds to
heart rate of 60 bps). The resulting QTc interval should therefore be noncorrelated
with heart rate. To visualize what happens if this fails and the QTc interval is cor-
related with heart rate, three figures are produced. The first figure shows a scatter
plot of data where the QTc interval is not correlated with heart rate, the next where
the QTc interval is positively correlated with heart rate and the last where the QTc
interval is negatively correlated with heart rate. The figures are shown in Figure 7.5,
7.6 and 7.7 respectively.
It can be seen by looking at the figures that in the case of positive correlation between
the RR and the QTc intervals, some over correction is expected to occur for RR inter-
vals larger than 1 sec but some under correction for RR intervals smaller than 1 sec.
The opposite is expected to happen in case of negative correlation. This behavior is
summarised in figure 7.8.

7.3.1 Predefined correction methods

The simplest approach to heart rate correction of the QT interval is to use a predefined
correction model. One of these models is the Bazett formula published in 1920 [6],
defined as

QTc =
QT√
RR

. (7.5)

Even though the method has been criticized frequently [7]-[8], it is still the most
widely used correction method in practise.
Another commonly used method, published the same year as the Bazett correction,
is the Fridericia formula [9] defined as

QTc =
QT
3
√

RR
. (7.6)
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Both correction methods are applied on the placebo data. In order to see how well
the methods are performing regarding zero correlation between the RR and the QTc
interval, the correlation of the two intervals is calculated for every subject separately.
The size of the resulting correlation for the 39 subjects is shown in Figure 7.9.
Due to the large correlation between the two intervals it can be concluded that the
two formulas are not appropriate to use when a zero correlation within every subject
is wanted. It can be seen by looking at the figure that the Bazett method leads



46 Analysis of QT correction methods based on placebo subjects

    over
correction

    over 
correction

   under
correction

   under
correction

COR(RR,QTc)>0 COR(RR,QTc)<0

RR<1

RR>1

Figure 7.8: Expected over and under corrections

-1
.0

-0
.5

0.
0

0.
5

1.
0

C
or

re
la

tio
n

-1
.0

-0
.5

0.
0

0.
5

1.
0

C
or

re
la

tio
n

Males

Males

Females

Females

Range = [-0.8457,-0.2959]

Median = -0.6153

Bazett

Fridericia
Range = [-0.6684,0.3413]

Median = -0.1553

Figure 7.9: Correlation between the QTc and the RR interval for the placebo subjects
using the Bazett and the Fridericia correction methods



7.3 QT correction 47

0.7 0.8 0.9 1.0 1.1 1.2 1.3

RR[sec]

0.
36

0.
38

0.
40

0.
42

Q
T

c[
se

c]

Bazett, R105

Predefined correction methods

0.8 0.9 1.0 1.1

RR[sec]

0.
38

0.
39

0.
40

0.
41

0.
42

Q
T

c[
se

c]

Bazett, R405

0.7 0.8 0.9 1.0 1.1 1.2 1.3

RR[sec]

0.
36

0.
37

0.
38

0.
39

Q
T

c[
se

c]

Fridericia, R105

r = -0.4732

0.8 0.9 1.0 1.1

RR[sec]

0.
38

0.
39

0.
40

0.
41

0.
42

Q
T

c[
se

c]

Fridericia, R405

r = 0.3322

r = -0.8189 r = -0.3151

Figure 7.10: QTc resulting from Bazett and Fridericia for two subjects, one female
and one male

to negative correlation for all the subjects. The Fridericia method however results
in negative correlation for almost all the male subjects but positive correlation for
some female subjects and negative for others. To visualize what influence it has on
the QTc∼RR relationship, using these different methods, a scatter plot of the two
intervals, for two subjects, one male and one female is produced for the two methods.
The plots are shown in Figure 7.10.
Using Figure 7.8, it is concluded that the Bazett model is artificially prolonging the
QTc interval when RR < 1 sec while it is shortened when RR > 1 sec. For the
Fridericia model, the same is happening for the subjects with negative correlation
between the RR and the QTc interval while the opposite is happening for the subjects
with positive correlation between the two intervals.
It is of interest to see how much influence this over and under correction is having on
the QTc interval. The range of the difference in QTc between the two methods and
the QTc calculated by the optimized individual method, along with the mean of the
difference is shown in Table 7.6.

Method Range Mean
Bazett [-57.1906 , 38.8743] -1.88
Fridericia [-27.5184 , 16.2916] -1.43

Table 7.6: The range and the mean of the difference in ms from the optimized indi-
vidual method
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By looking at the table it is noticed that the largest under correction using the Bazett
method is about 57 ms and the largest over correction about 38 ms. The under and
over corrections are smaller using the Fridericia method or about 28 ms and 16 ms
respectively.
In order to see if the under and over corrections are canceling each other out, among
the subjects, the difference between the subject optimized corrected QTc interval and
the QTc intervals resulting from the Bazett and the Fridericia models are looked at.
Histograms of the difference, pooled for all the subjects, is shown in Figure 7.11 and
categorized by gender in Figure 7.12. The sums of the differences is included in the
figures. If the over and under corrections are canceling each other out completely, this
sum would be equal to zero.

0

10

20

30

40

50

-60 -40 -20 0 20 40

Bazett

-60 -40 -20 0 20 40

Fridericia

DQTc[ms]

P
er

ce
nt

 o
f T

ot
al

Bazett and Fridericia

Sum = -3094.44Sum = -4068.44

Figure 7.11: The difference in QTc between the optimized individual correction and
the Bazett and the Fridericia corrections

The sum of the error for the Bazett correction is -4068.44 ms while the sum is equal
to -3094.44 ms for the Fridericia correction, as can be seen by looking at the figures.
This means that both methods lead to an under correction of the QTc interval when
summing the error for all the subjects.
It is also interesting to look at how the error is distributed when it is categorized by
gender. The Bazett formula for the males is artificially prolonging the QTc interval for
the females (sum = 4518.22 ms) while it is shortened for the males (sum = -8586.56).
Since the females that were given placebo have on average RR interval of 0.930 sec
while the males have on average 1.080 sec, as shown in Table 3.4 this does not come to
a surprise since the correlation between the RR and the Bazett corrected QT interval
is negative. Looking at the error for the Fridericia correction categorized by gender,
it can be seen that the sum of the errors for the females is only -59.878 ms while it
is -3034.562 ms for the males. This can be explained by noticing that the correlation
for the males is always negative while for some of the females it is positive and others
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Figure 7.12: The difference in QTc between the optimized individual correction and
the Bazett and the Fridericia corrections categorized by gender

negative, allowing the error to cancel each other out up to a certain point.

7.3.2 Study specific correction methods

When using study specific correction methods, the same correction parameter is ap-
plied on the whole study population. The applied correction parameter is estimated
using the three different methods, described in Section 7.3 (the mean, the median an
the pooled methods), for the six correction types. The estimated correction parame-
ters used for the QTc calculations are listed in Table 7.7.

Method Ac Bc Cc Dc Ec Fc

mean 0.1155 -0.1151 0.2939 0.1149 0.1706 -0.3158
median 0.1085 -0.1152 0.2871 0.1117 0.1607 -0.3120
pooled 0.1272 -0.1402 0.3424 0.1360 0.1920 -0.3746

Table 7.7: The correction parameters used for the study specific methods

It can be seen by looking at the table that the correction parameters for the mean
and the median methods are similar while the numerical value of the parameters for
the pooled methods are higher than for the other two methods. The reason might
be found by looking at how the correction parameter is calculated. Defining, RR
= [RR1 . . . RRN ]T and QT = [QT1 . . . QTN ]T , as vectors of N observations of the
intervals and considering, for example, correction type Ac, the correction parameter,
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also given in (6.8) is calculated as

αA = (RRT ·RR)−1RRT ·QT .

Using the estimates of the covariance between RR and QT and the variance of RR
given in (6.6) and (6.7) this can be written as

αA =
COV (RR, QT )

V AR(RR)
(7.7)

This means that the mean of the fraction between the individually estimated covari-
ance between RR and QT and the individually estimated RR variance is lower than
the corresponding ratio using pooled data.
The correlation between the estimated QTc interval and the RR interval, using the
three methods and the six model types, is estimated within every subject to see how
well the method is performing in zero correlation between the two intervals. The
range of the estimated correlation for the three methods and six correction types is
listed in Table 7.8.

Range

Type mean median pooled

A [-0.6598 , 0.5769] [-0.6239 , 0.6115] [-0.7295 , 0.4813]
B [-0.6035 , 0.5493] [-0.6093 , 0.5455] [-0.7580 , 0.3871]
C [-0.5905 , 0.4750] [-0.5782 , 0.4917] [-0.6894 , 0.3016]
D [-0.5916 , 0.4954] [-0.5758 , 0.5114] [-0.7254 , 0.3336]
E [-0.6601 , 0.5796] [-0.6250 , 0.6128] [-0.7345 , 0.4782]
F [-0.5913 , 0.4935] [-0.5872 , 0.4977] [-0.7312 , 0.3279]

Table 7.8: Range of the correlation between QTc and RR for the
placebo subjects using the study specific correction

By looking at Table 7.8, it can be concluded that the study specific method is not
performing well in leading to zero correlation between the two intervals for individual
subjects. A figure showing the size of the correlation for every placebo treated subject
in the study, using the mean, the median and the pooled methods, for correction type
Cc is shown in Figure 7.13.
By looking at the figure, it is noticed that the correlation resulting from the mean
and the median methods are similar. The two intervals are negatively correlated for
most of the males while they are positively correlated for all the females. For the
pooled method, almost all the male subjects undergo negative correlation while the
correlation is positive for some of the female subjects and negative for others.
In order to see how much influence this over and under corrections have on the QTc in-
terval, the difference between the optimized individual correction and the QTc result-
ing from the study specific methods using the mean method and the pooled method
is looked at (median method skipped because of similarity to the mean method).
The range and the mean of the difference between the methods are listed in Table
7.9.

By looking at the range of the difference from the table, it is noticed that the largest
under correction of a single QTc interval is found when using pooled data and correc-
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Figure 7.13: The correlation between QTc and RR using the study specific method and
correction type Cc

Mean Pooled

Type mean range mean range

Ac -2.27 [-30.99 , 14.31] -2.60 [-37.98 , 11.85]
Bc 0.45 [-15.95 , 24.90] 0.49 [-23.72 , 32.07]
Cc -1.40 [-22.60 , 15.62] -1.62 [-29.41 , 16.73]
Dc -0.87 [-22.44 , 20.25] -1.09 [-30.29 , 19.65]
Ec -2.06 [-31.72 , 16.41] -2.40 [-38.64 , 13.92]
Fc 0.84 [-21.93 , 20.43] -1.07 [-29.79 , 19.58]

Table 7.9: The range and the mean of the differences (in ms)
between the optimal correction and the subject specific methods
shown in the table

tion type E, or 38.64 ms. The largest over correction is further found to be 32.08 ms
when using pooled data and correction type B.
On order to see how well the method is performing in canceling out the over and
under correction between the subjects, histograms of the difference using the mean
method is shown in Figure 7.14. A table showing the sums of the difference between
the optimized optimal correction and the subject specific correction is further shown
in Table 7.10.
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Figure 7.14: The difference in QTc between the optimized individual correction and
study specific correction using the mean method

Mean Pooled

Type total male female total male female

A -4930 -3051 -1879 -5629 -4590 -1040
B 991 668 302 1069 -1225 2294
C -3042 -1775 -1268 -3501 -3550 49
D -1889 -1014 -876 -2373 -2966 593
E -4465 -2737 -1728 -5203 -4372 -831
F -1831 -981 -850 -2310 -2954 645

Table 7.10: Sum of the difference (in ms) between the optimal
correction and the study specific methods shown in the table

It is noticed by looking at the table that the mean method is performing better than
the pooled method in leading to a total sum closer to zero. Looking at, for example,
the sums for correction type Cc using the mean method it is noticed that is is negative,
both for the females and the males. Noting that the RR interval for the males is on
average lager than 1 sec but smaller than 1 sec for the females and the fact that the
correlation for the males is most often negative but positive for the females, as can
be seen in Figure 7.13, rationalises this behavior. Looking at the sums for the pooled
method, it can be seen that it is negative for the males but positive for the females.
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Again by looking at how the correlations are distributed explains this. While the
correlation is negative for the males it is positive for some of the females but negative
for others, allowing the error to cancel each other out, up to a certain point.

7.3.3 Gender specific correction methods

For the gender specific correction methods, one correction parameter is estimated
and applied on the female subjects and another one on the male subjects. The same
three methods for estimating the correction parameters are used as for the subject
specific correction and again using the six correction types. The estimated correction
parameters, used to calculate the QTc interval, are listed in Table 7.11. The range

Method Ac Bc Cc Dc Ec Fc

mean, females 0.1467 -0.1247 0.3516 0.1353 0.2157 -0.3714
median, females 0.1479 -0.1187 0.3620 0.1372 0.2217 -0.3798
pooled, females 0.1589 -0.1409 0.3841 0.1506 0.2355 -0.4128
mean, males 0.0954 -0.1084 0.2566 0.1015 0.1416 -0.2793
median, males 0.0964 -0.1041 0.2539 0.0997 0.1464 -0.2727
pooled, males 0.1384 -0.1694 0.3867 0.1546 0.2066 -0.4271

Table 7.11: The correction parameters used in the gender specific correction

of the estimated correlation between the QTc interval and the RR interval estimated
for every subject, using the different gender specific corrections is shown in Table
7.12.

Range

Type mean median pooled

A [-0.5302 , 0.5256] [-0.5383 , 0.5191] [-0.7656 , 0.2167]
B [-0.5485 , 0.4910] [-0.5045 , 0.5261] [-0.8491 , 0.3820]
C [-0.4970 , 0.5189] [-0.4889 , 0.5254] [-0.7522 , 0.1409]
D [-0.5043 , 0.4818] [-0.4901 , 0.4940] [-0.8058 , 0.2041]
E [-0.5328 , 0.5127] [-0.5580 , 0.4913] [-0.7719 , 0.2177]
F [-0.5048 , 0.4758] [-0.4861 , 0.4922] [-0.8116 , 0.2039]

Table 7.12: The range of the correlation between QTc and RR for
the placebo subjects using gender specific methods

It is noticed when looking at the table that the mean and the median methods are
leading to similar range in the correlation while the pooled method is resulting in
more negative correlations than the other two methods, as before.
As for the study specific methods, the size of correlation resulting from using the
mean method and correction type Cc is plotted in Figure 7.15. By looking at the
figure it can be seen that for the mean and the median method the correlations are
positive for some of the males and females and negative for others. This behavior is
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Figure 7.15: The correlation between QTc and RR using the gender specific method
and correction type Cc

expected since the mean and the median within the two groups were used. For the
pooled method, the intervals for all males, except for one, are negatively correlated
while the correlation is positive for some of the females but negative for others.
In order to see how much these correlations are influencing the QTc interval, the range
and the mean of the difference for the mean and the pooled methods, are listed in
Table 7.13.

Mean Pooled

Type mean range mean range

A -0.46 [-22.65 , 11.21] -2.26 [-43.94 , 14.36]
B 1.03 [-14.11 , 22.25] -0.48 [-32.54 , 46.07]
C -0.09 [-17.70 , 12.07] -1.81 [-36.44 , 21.24]
D 0.31 [-17.88 , 13.86] -1.41 [-36.98 , 25.42]
E -0.29 [-23.29 , 11.19] -2.10 [-43.13 , 16.64]
F 0.33 [-17.47 , 14.14] -1.42 [-36.58 , 25.49]

Table 7.13: The range and the mean of the differences (in ms)
between the optimal correction and the gender specific methods
shown in the table

The largest under correction of a single QTc interval is found when using the pooled
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method and the linear model, or about 44 ms. The largest over correction is further
found to be about 46 ms using the pooled method and the hyperbolic model.
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Figure 7.16: The difference in QTc between the optimized individual correction and
gender specific correction using the mean method

To visualize how the difference is distributed, histograms of the difference using the
mean method where the difference from all the subjects is pooled together is shown
in Figure 7.16 and categorized by gender in Figure 7.17. A table showing the sums
of the difference between the optimized subject correction and the gender specific
corrections are further shown in Table 7.14.

Mean Pooled

Type total male female total male female

Ac -998 -992 -6 -4890 -5595 705
Bc 2234 1143 1091 -1050 -3399 2349
Cc -204 -496 292 3933 -5091 1158
Dc 668 121 547 -3054 -4631 1577
Ec -638 -743 104 -4549 -5543 884
Fc 704 139 565 -3075 -4659 1584

Table 7.14: Sum of the difference (in ms) between the optimal
correction and the gender specific methods shown in the table

By looking at the table is is noticed that some of the total sums for the mean methods
are positive while others are negative. The numerical value of the sums are further
lower than the corresponding sums in the study specific corrections, except for cor-
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Figure 7.17: The difference in QTc between the optimized individual correction and
gender specific correction using the mean method categorized by gender

rection type Bc. For the pooled method it is noticed that the sums for the females
are positive while they are negative for the males. By looking at figure 7.15 it is no-
ticed that the correlation is negative for most of the subjects, both males and females,
explaining the sign of the sums, for the correction type Cc.

7.3.4 Panel specific correction methods

For the panel specific correction methods, one correction parameter is estimated and
applied within each of the five panels. The same three methods for estimating the
correction parameters are used as for the other correction methods and again using
the six correction types. The correction parameters used for calculation of QTc for
the parabolic model, type Cc, are shown in table 7.15.

Method/Panel 1 2 3 4 5
mean 0.2422 0.2539 0.2756 0.3645 0.3368
median 0.2348 0.2820 0.2532 0.3664 0.3204
pooled 0.3662 0.3354 0.3912 0.4129 0.4854

Table 7.15: The correction parameters for the panel specific method and correction
type Cc

It can be seen by looking at the table that there is some difference between the
parameters used by the mean method and the median method. Again the parameters
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used by the pooled method are considerably higher than for the other two methods.
It is further noticed that for all the methods, the parameters used in the two last
panels are higher than the first three panels which can be explain by the fact that the
first three panels consists of male subjects while the last two of female subjects.
The ranges of the estimated correlation between the QTc interval and the RR interval
estimated for every subject, using the different panel specific corrections are shown in
Table 7.16.

Range

Type mean median pooled

A [-0.5116 , 0.4611] [-0.5705 , 0.5027] [-0.6907 , 0.0867]
B [-0.5398 , 0.5005] [-0.6088 , 0.5318] [-0.8154 , 0.0598]
C [-0.4889 , 0.4712] [-0.5658 , 0.5270] [-0.6807 , 0.0928]
D [-0.5218 , 0.4286] [-0.5647 , 0.4917] [-0.7546 , 0.0183]
E [-0.5245 , 0.4456] [-0.5686 , 0.4825] [-0.7044 , 0.0595]
F [-0.5256 , 0.4241] [-0.5667 , 0.4885] [-0.7632 , 0.0114]

Table 7.16: Range of the correlation between QTc and RR for the
placebo subjects using panel specific methods

The size of the correlation for the 39 subjects, using the three methods and correction
type Cc is shown in Figure 7.18.
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Figure 7.18: The correlation between QTc and RR using correction type Cc
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By looking at Table 7.16 and Figure 7.18, it can be seen that there is a larger differ-
ence between the correlation for the mean and the median methods now, than for the
study- and the gender specific methods. This does not come to a surprise since the
correction parameters used for the two methods are somewhat different. The pooled
method is once again is resulting in more negative correlation than the other two
methods.
The ranges and the means of the difference between the optimized individual method
and the panel specific corrections, using the mean, the median and the pooled meth-
ods, are listed in Table 7.17.

Mean Median Pooled

mean range mean range mean range

A -0.26 [-21.67 , 11.16] -0.30 [-24.94 , 13.44] -1.14 [-33.53 , 18.62]
B 0.91 [-16.47 , 22.66] 0.50 [-20.09 , 23.93] 0.51 [-28.40 , 44.44]
C 0.00 [-17.31 , 11.56] -0.22 [-21.20 , 12.34] -0.70 [-28.47 , 22.24]
D 0.34 [-18.73 , 15.94] 0.26 [-20.93 , 17.86] -0.35 [-31.08 , 26.70]
E -0.11 [-22.83 , 12.28] -0.12 [-25.37 , 14.15] -1.01 [-35.57 , 19.92]
F 0.36 [-18.46 , 16.32] 0.30 [-20.58 , 18.27] -0.36 [-30.85 , 25.90]

Table 7.17: The range and the mean of the differences (in ms) between the optimal
correction and the panel specific methods shown in the table

The largest under correction of a single QTc interval is found when using the pooled
method and correction type E, or 35.57 ms. The largest over correction is further
found to be 44.44 ms when using the pooled method and correction type B.
Histograms of the difference using the mean method where the difference from all
the subjects is pooled together is shown in Figure 7.19. To get an idea of how the
difference is distributed within the panels, histograms of the difference categorized
by panels for the mean method and correction type Cc is shown in Figure 7.20. It
is noticed that the distribution of the difference is very different between the panels.
For panels 1 and 3 it is tight, somewhat wider for panels 4 and 5 and very wide for
panel 2. In order to explain what is happening, the value of the correction parameters
for correction type C, for all placebo subjects, are shown in Figure 7.21. By looking
at the figure it is noticed that the correction parameter for two of the subjects from
panel 3 is much lower than for the other subjects explaining the wide distribution of
the difference.
A table showing the sums of the difference between the optimized individual correc-
tion and the panel specific correction is finally shown in Table 7.18.

It is noticed by looking at the table that the mean method using correction type Cc

almost manages to cancel the over- and under correction out and leads to a total sum
of only 3 ms. It is further noticed that correction types Dc and Fc manage to do the
same for the male subjects (panels 1, 2 and 3).
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Figure 7.19: The sums of the difference between the optimized individual method and
the panel specific method using the mean method
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Figure 7.20: The sums of the difference between the optimized individual method and
the panel specific method using the mean method categorized by panels
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Figure 7.21: The value of the correction parameters for the parabolic correction

Mean Median Pooled

total male female total male female total male female

A -555 -911 356 -656 -1238 582 -2480 -4375 1895
B 1972 829 1143 1066 411 654 1096 -2523 3619
C 3 -474 477 -473 -897 424 -1514 -3876 2361
D 755 2 753 571 -109 680 -753 -3563 2811
E -250 -716 467 -916 -716 646 -2182 -4265 2083
F 784 2 782 650 -97 746 -777 -3598 2821

Table 7.18: Sum of the difference (in ms) between the optimal correction and the
panel specific methods shown in the table

7.3.5 Subject specific correction methods

In this section, the optimized individual correction will be compared to subject spe-
cific methods using a fixed correction type. That is, instead of choosing the optimal
correction for a single subject, all six correction types are applied on every subject
and compared to the optimized correction. The difference between the two methods
will therefore represent how much influence it has on the QTc interval when a wrong
correction type is used.
In order to see what influence it has on the QTc interval, using previously chosen
model type instead of choosing the optimum one, the estimated mean and range of
the difference are shown in Table 7.19.
It is noticed by looking at the table that choosing correction type Bc is causing the
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Type range mean
Ac Linear [-7.8086 , 3.5282] 0.09
Bc Hyperbolic [-8.5076 , 9.2927] -0.51
Cc Parabolic [-5.4904 , 4.9040] -0.10
Dc Logarithmic [-4.0722 , 4.9842] -0.20
Ec Shifted logarithmic [-7.2774 , 3.7781] 0.06
Fc Exponential [-5.0632 , 4.7988] -0.23

Table 7.19: The range and the mean of the difference between the optimized subject
method and the subject specific method

largest deviation from the optimal correction. Histograms of the difference between
the two methods, using the six correction types are shown in Figure 7.22.
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Figure 7.22: The distribution of the difference between the optimized subject specific
method and the subject specific method

Finally, it is of interest to see how the value of the individually fitted correction
parameters is dependent on the number of data points used to estimate it, since 56
data points were used in the analysis of the placebo subjects but only 15 data points
are available for the on-drug subjects. In order to look at this possible dependency,
the correction parameter, from correction type Cc, is estimated for the 39 subjects,
using 15 data points and up to 56 data points, adding one point at a time. Since
some diurnal variations might be present in the data, the order of the points is chosen
randomly. The result is shown in Figure 7.23. Looking at the figure it is noticed that
the value of the correction parameters is not stable as more data points are used to
estimate it. The difference in αc, using 15 and 56 data points is shown, for the 39
subjects in Figure 7.24.
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Figure 7.23: The value of the correction parameter for correction type Cc when adding
one data point at a time for the estimation
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Figure 7.24: Difference of the value of the correction parameter for correction type Cc

when using 15 data points and using 56 data points

By looking at the figure it is noticed that for some of the subjects the difference is very
large indicating that using only 15 data points to estimate the individual correction
parameter might be somewhat dangerous.
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7.4 Summary of methods used for QT correction

By comparing the different methods in the chapter, it is noticed that the panel-specific
correction, using the mean method and correction type Cc performed best in canceling
out the difference in QTc between the methods and the optimized individual method.
The method is therefore assumed to give accurate results when mean changes in the
QTc interval are looked at. When a zero correlation between the QTc interval and
the RR interval is however wanted, predefined-, subject-, gender- and panel specific
methods should be avoided. By looking at Tables 7.6, 7.9, 7.13 and 7.17 it is noticed
that the mean difference in QTc between the methods and the optimized subject cor-
rection ranges from about -2.60 ms using the study specific correction with the mean
method and the linear model and up to around 1.03 ms when using the gender specific
correction with the mean method and the hyperbolic model.
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Chapter 8

Analysis of possible drug
induced QTc prolongation

Before possible QT prolongation resulting from intake of LU 35-138 can be analysed it
needs to be decided what method to use for the QT correction. Since it has been been
shown, in the previous chapter, that the QT∼RR relationship varies between subjects,
while it could not be rejected that it is different, within a subject, the subject-specific
method seems to be the right method to use. However, there are only 15 off-drug
data points available per subject to estimate the correction parameter. Since it has
been shown, in Section 7.3.5, that using only 15 data points to estimate the correction
parameter can be somewhat dangerous it is decided to do a subject specific correction
but to use the panel specific correction using the mean method and correction type
Cc, to estimate possible QTc prolongations. The Bazett, the Fridericia and the study
specific correction, using the pooled method, will in addition be applied on the data
since these are the most commonly used corrections in practise.
Since the design was done in parallel, the subjects that were given the placebo are not
the same subjects that were given the drug. In order to make the analysis consistent,
the parabolic correction is applied on all subjects when using the the subject specific
and the study specific methods.

Both analysis of central tendency and categorial analysis will be given, as suggested
in [3]. The increase from baseline will be analysed using the largest time matched
mean difference between on- and off-drug data (on- and off placebo for the placebo
subjects). The time matched difference is defined as

∆QTci = QTcday 7, hours from intake i −QTcday -1, hours from intake i

Data is available right before the the drug is taken and then two-, four-, six- and
twelve hours after the intake. For each of these five time points, three measurements
are available. The mean of the three measurements will be used to represent the
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∆QTci for the specific time point. The mean of the time matched difference is then
calculated, that is for a fixed time point the mean of the ∆QTci is calculated within the
four doses groups, called ∆QTci,j were the index i represents hours from intake and
j the group the mean is calculated from. The largest time matched mean difference
is then defined as,

∆QTcmax,j = max(∆QTc00,j , ∆QTc02,j , ∆QTc04,j ,∆QTc06,j , ∆QTc12,j)

For evaluating the safety of the dose levels, the difference between the largest time
matched mean difference, and placebo at that same time, called the adjusted time
matched mean difference, will be used as is suggested in [19] or

∆QTcmax,adj,j = ∆QTcmax,j −∆QTc@max,placebo (8.1)

Two sided 90% confidence intervals will be presented for this difference between the
baseline adjusted mean difference between LU 35-138 and placebo using (5.29). The
upper limit will correspond to the one sided 95% upper limit that is suggested to use
in [3].
For the categorial analysis, percentages exceeding some upper limits, both of absolute
changes and changes from baseline in the QTc interval will be given. As suggested in
[3], absolute interval prolongations of

QTc > 450ms
QTc > 480ms
QTc > 500ms

(8.2)

and changes from baseline of
∆QTc > 30ms
∆QTc > 60ms (8.3)

will be counted.

Before the different methods are applied on the on-drug data, the influence of the
drug on the RR interval will be looked at. The adjusted time matched mean differ-
ence between the days along with the number of points exceeding the values defined
in (8.2) and (8.3) will then be given for the different methods. The results found using
different correction methods will finally be summarized in the end of the chapter.

8.1 Drug effect on the RR interval

In order to see what influence LU 35-138 has on the RR interval, measurements of the
interval before dosing are compared with measurements performed seven days later.
The mean length of the interval, for the subjects that were given LU 35-138, from day
-1 (off-drug) and day 7 (on-drug) are given in Table 8.1.

It is noticed by looking at the table that the drug seems to be prolonging the RR
interval. It is of interest to test whether this increase is significant or

H0 : µday−1 = µday7

H1 : µday−1 6= µday7
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Females Males

Treatment day -1 day 7 day -1 day 7

LU35-138/50 mg 0.944 0.954 - -
LU35-138/75 mg 0.911 0.943 1.009 1.061
LU35-138/100 mg - - 1.058 1.111

Table 8.1: Mean length of the RR interval measured in lead
II in seconds

The measurements of the RR interval within the groups are tested for normality using
the Kolmogorov Smirnov test, described in Section 5.4 and found to be normally dis-
tributed. The t-test described in Section 5.5 is therefore applied to test the hypothesis.
For the females that were given 50mg of the drug, the null hypothesis could not be
rejected (p-value = 0.154). For the females that were given 75mg of the drug and the
males that were given 75mg and 100mg, the null hypothesis is rejected (p values =
0.022, 0.005, <0.001 respectively) and the increase in the RR interval therefore found
to be significant.

8.2 The subject specific method

For every on-drug subject the correction parameters are estimated individually from
the data before the dosing started, using the parabolic correction. The time matched
mean difference between the two days for the different dosses groups and the five time
points are shown in Figure 8.1.
By looking at the figure it is noticed that the time matched mean difference in QTc
between the two days, peaks 6 hours after intake of the drug for the males and for the
females that were given 75mg of the drug. However, no measurements are available
until 6 hours later or 12 hours after the intake, meaning that measurements around
the true peak might be missing. For the females that were given 50mg of the drug,
the peak is found 4 hours after the intake started.
On order to evaluate the safety of the dose levels, two sided 90% confidence intervals
around ∆QTcmax,adj,j are generated and show in table 8.2.

mean 90% confidence interval
∆QTcmax,adj,males 75mg 17.88 [ 9.66 , 26.11]
∆QTcmax,adj,males 100mg 25.24 [19.39 , 31.09]
∆QTcmax,adj,females 50mg 17.23 [10.08 , 24.38]
∆QTcmax,adj,females 75mg 14.27 [ 6.27 , 22.27]

Table 8.2: ∆QTcmax,adj,j using the subject specific method

By looking at the table it is noticed that for all the groups, the upper confidence
interval around the mean exceeds the 10ms that are of regulatory concern. The
largest mean prolongation of the QTc interval, among the subjects, occurs for the
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Figure 8.1: The time matched mean difference using the subject specific method

male subjects that were given 100 mg of the drug or 25.24 ms. It is also noticed
that the largest mean difference for the females that were given 50mg of the drug is
larger than for the females that were given 75mg of the drug. Remembering that no
measurements are available between 6 hours and 12 hours from intake might explain
this.
The number and percentage of data points exceeding the limits given in (8.2) and
(8.3), categorized by dose groups are given in Table 8.3.

Criteria Males 75mg Males 100mg Females 50mg Females 100mg
QTc > 450 0 0 3(2.5%) 0
QTc > 480 0 0 0 0
QTc > 500 0 0 0 0
∆QTc > 30 7(5.8%) 33(13.8%) 11(9.2%) 4(3.3%)
∆QTc > 60 1(0.8%) 2(0.8%) 0 0

Table 8.3: Number of data points exceeding limits using the subject specific method

8.3 The panel specific method

For the panel specific method, different correction parameters are applied within the
panels, all estimated using the mean method and the parabolic model. The time
matched mean difference between the two days for the different doses groups and the
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Figure 8.2: The time matched mean difference using the panel specific method

five time points are shown in Figure 8.2. As before, it is noticed that the time matched
mean difference in QTc between the two days, peaks 6 hours after intake of the drug
for the males and for the females that were given 75mg of the drug. For the females
that were given 50mg of the drug, the peak is found 4 hours after the intake started.
On order to evaluate the safety of the dose levels, two sided 90% confidence intervals
around ∆QTcmax,adj,j are generated and show in table 8.4.

mean 90% confidence interval
∆QTcmax,adj,males 75mg 15.78 [10.62 , 20.93]
∆QTcmax,adj,males 100mg 22.71 [17.57 , 27.86]
∆QTcmax,adj,females 50mg 15.31 [ 8.56 , 22.06]
∆QTcmax,adj,females 75mg 13.56 [ 6.17 , 20.94]

Table 8.4: ∆QTcmax,adj,j using the panel specific method

By looking at the table it is noticed that the upper confidence limits, for all dose
groups, are much larger than the critical limit of 10ms.
The number and percentage of data points exceeding the limits given in (8.2) and
(8.3), categorized by dose groups are given in Table 8.5.
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Criteria Males 75mg Males 100mg Females 50mg Females 100mg
QTc > 450 0 0 1(0.8%) 1(0.8%)
QTc > 480 0 0 0 0
QTc > 500 0 0 0 0
∆QTc > 30 3(2.5%) 24(10%) 8(6.7%) 4(3.3%)
∆QTc > 60 2(1.7%) 1(0.4%) 0 0

Table 8.5: Number of data points exceeding limits using the panel specific method

8.4 Study specific correction using the pooled method

For the study specific method, a correction parameter is estimated from off-drug
data and applied on the whole study population. The time matched mean difference
between the two days for the different dose groups and the five time points are shown
in Figure 8.3.
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Figure 8.3: The time matched mean difference using study specific correction and the
pooled method

In order to evaluate the safety of the dose levels, two sided 90% confidence intervals
around ∆QTcmax,adj,j are generated and shown in Table 8.6.
By looking at the table it is noticed that the upper confidence interval is much larger
than the critical value of 10ms, as before. The number and percentage of data points
exceeding the limits given in (8.2) and (8.3), categorized by dose groups are finally
given in Table 8.7.
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mean 90% confidence interval
∆QTcmax,adj,males 75mg 10.84 [ 6.31 , 15.36]
∆QTcmax,adj,males 100mg 21.36 [17.27 , 25.44]
∆QTcmax,adj,females 50mg 15.68 [ 8.32 , 23.04]
∆QTcmax,adj,females 75mg 16.61 [10.08 , 23.13]

Table 8.6: ∆QTcmax,adj,j using study specific correction and the pooled method

Criteria Males 75mg Males 100mg Females 50mg Females 100mg
QTc > 450 0 0 0 1(0.8%)
QTc > 480 0 0 0 0
QTc > 500 0 0 0 0
∆QTc > 30 2(1.7%) 26(10.8%) 8(6.7%) 4(3.3%)
∆QTc > 60 2(1.7%) 1(0.4%) 0 0

Table 8.7: Number of data points exceeding limits using the study specific method and
the pooled method

8.5 Predefined methods

The most commonly used methods in practice, the Bazett and the Fridericia methods
are applied on the data. Same kind of analysis will be carried out as for the methods
above.

8.5.1 Bazett

The time matched mean difference between the two days for the different dose groups
and the five time points are shown in Figure 8.4.
In order to evaluate the safety of the dose levels, two sided 90% confidence intervals
around ∆QTcmax,adj,j are generated and shown in Table 8.8.

mean 90% confidence interval
∆QTcmax,adj,males 75mg 5.46 [-0.02 , 10.94]
∆QTcmax,adj,males 100mg 16.04 [13.10 , 18.99]
∆QTcmax,adj,females 50mg 15.99 [ 8.43 , 23.55]
∆QTcmax,adj,females 75mg 13.04 [ 3.99 , 22.09]

Table 8.8: ∆QTcmax,adj,j using the Bazett method

By looking at the table, it is noticed that for the males that were given 75mg of
the drug, the upper confidence interval is calculated to be only 10.94ms which is
considerably lower that for the other methods used. The number and percentage of
data points exceeding the limits given in (8.2) and (8.3), categorized by dose groups
are finally given in Table 8.9.



72 Analysis of possible drug induced QTc prolongation

Hours from intake

-5
0

5
10

15
20

25

∆Q
T

c

00:00 02:00 04:00 06:00 12:00

Males 75mg
Males 100mg
Females 50mg
Females 75mg
Placebo

Figure 8.4: The time matched mean difference using the Bazett method

Criteria Males 75mg Males 100mg Females 50mg Females 100mg
QTc > 450 0 0 0 1(0.8%)
QTc > 480 0 0 0 0
QTc > 500 0 0 0 0
∆QTc > 30 4(3.3%) 29(12.1%) 10(8.33%) 10(8.33%)
∆QTc > 60 0 0 3(2.5%) 2(1.7%)

Table 8.9: Number of data points exceeding limits using the Bazett method

8.5.2 Fridericia

The time matched mean difference between the two days for the different dose groups
and the five time points are shown in Figure 8.5.
In order to evaluate the safety of the dose levels, two sided 90% confidence intervals
around ∆QTcmax,adj,j are generated and shown in Table 8.10.

mean 90% confidence interval
∆QTcmax,adj,males 75mg 11.35 [ 7.00 , 15.70]
∆QTcmax,adj,males 100mg 21.41 [17.18 , 25.65]
∆QTcmax,adj,females 50mg 15.58 [ 8.23 , 22.93]
∆QTcmax,adj,females 75mg 16.55 [10.09 , 23.02]

Table 8.10: ∆QTcmax,adj,j using the Fridericia method

By looking at the table it is noticed that the upper confidence limit is much larger
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Figure 8.5: The time matched mean difference using the Fridericia method

than the critical limit of 10ms. The number and percentage of data points exceeding
the limits given in (8.2) and (8.3), categorized by dose groups are finally given in
Table 8.11.

Criteria Males 75mg Males 100mg Females 50mg Females 100mg
QTc > 450 0 0 1(0.8%) 1(0.8%)
QTc > 480 0 0 0 0
QTc > 500 0 0 0 0
∆QTc > 30 2(1.7%) 28(11.7%) 4(3.3%) 8(6.7%)
∆QTc > 60 2(1.7%) 1(0.4%) 0 0

Table 8.11: Number of data points exceeding limits using the Fridericia method

8.6 Summary of methods used for investigation of
QTc prolongation

It is clear, by looking at the the tables in the chapter, that LU 35-138 causes prolonga-
tion of the QT interval. However, the size of the prolongation is different, depending
on the method used for the correction. By comparing Tables 8.1 and 8.4 it is noticed
that the subject specific method is resulting in higher adjusted time matched mean
difference than the panel specific method. Since it has been shown, that using only 15
data points to estimate the correction parameters used in the subject specific method,
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can be somewhat dangerous, it is decided to use the results from the panel specific
method to determine the safety of the dose levels.
It is of interest to compare the results from the different methods to the results from
the panel specific method that is assumed to be the right method to use here. By
looking at Tables 8.6, 8.8 and 8.10 it is noticed that for the females that were given
50mg of the drug, the study specific-, the Bazett- and the Fridericia methods are all
leading to similar results as the panel specific method. It should be remembered that
this group of females was the only group found not to cause significant prolongation
of the RR interval. Looking at the same tables for the females that were given 75mg
of the drug, it is noticed that the study specific correction and the Fridericia methods
are resulting in higher adjusted time matched mean difference than the panel specific
correction. Looking at Figures (7.9) and (7.13) it is remembered that the methods
resulted in positive correlation between the QTc and the RR interval for most of the
females that were given the placebo. The Bazett method is however found to result
in lower adjusted time matched mean difference than the panel specific correction.
Looking again at Figure 7.9 it is noticed that the method is expected to result in
negative correlation between the QTc interval and the RR interval.
Looking at the same for the males, for both dose groups, the study specific-, the
Bazett and the Fridericia methods are resulting in lower adjusted time matched mean
difference than the panel specific method. Once again looking at Figures 7.9 and 7.13
it is noticed that all methods are resulting in negative correlation between the QTc
interval and the RR interval for the males that were given placebo.



Chapter 9

Results and discussion

In the chapter, a short summary of the results found in the thesis will be given followed
by a short discussion about the results and possible future work.

9.1 Summary of results

Data from a study designed to investigate potential QTc prolongations from a certain
drug, has been used to analyse the QT∼RR relationship in healthy subjects. Further,
correction methods that allow QT intervals recorded at different heart rates to be
compared have been analysed. Data gathered from subjects that were given placebo
was used for this purpose. Six different regression types were used to describe the
QT∼RR relationship and six different types of QT corrections applied, shown below.

Type QT∼RR relationship Heart rate correction
A: Linear QT = η + ξ·RR QTc = QT +α (1-RR)
B: Hyperbolic QT = η + ξ/RR QTc = QT + α(1-1/RR)
C: Parabolic QT = η ·RRξ QTc = QT/RRα

D: Logarithmic QT = η + ξ · ln(RR) QTc = QT - α · ln(RR)
E: Shifted logarithmic QT = ln(η + ξ·RR) QTc = ln(eQT + α(1-RR))
F: Exponential QT = η + ξ · e-RR QTc = QT + α(1/e− e-RR)

Most often, the linear relationship was found to be the optimal type of regression(using
RMSE as a criteria) and was therefore used to test the relationship further. The
QT∼RR relationship was found to vary between different subjects while it could not
be rejected that it is constant, between days, within the same subject. It was further
tested whether the regression parameters differed between males and females. For the
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linear model both the slope and the intercept were found to be significantly different
between the genders.
Expressions to calculate the correction parameters in the models that are linear in
their parameters were derived and the following found to be valid

αA = ξA

αB 6= ξB

αD 6= ξD

αF 6= ξF .

For the correction types that are nonlinear in their parameters, an attempt to relate
the correction parameter to the correction parameter for the linear model was made.
The following approximations were derived

αC

RRαC
0

=
1

QT0
αA

and
αE = αA · eQT0 .

The approximation for the parabolic model, type Cc, was found to be inaccurate while
the approximation for the shifted logarithmic model, type Ec, was found to be accu-
rate.
The six different correction types were applied on every placebo subject and the corre-
lation between the resulting QTc interval and the RR interval looked at. The optimal
correction type was defined as the one that resulted in the lowest correlation between
the two intervals. It was concluded that even though a certain regression type was
found to be optimal in a given subject, the corresponding correction formula might
not be the optimal one to use for that same subject.
An optimized correction was made by correcting every subject individually with the
correction type that was found to be optimal for that given subject. A number of
correction methods were then applied and compared to the optimized method, that
is, a gender specific, a panel specific, a study specific, the Bazett and the Fridericia
methods. In addition, three different methods were used to estimate the correction
parameter for the six different correction types. None of the above mentioned meth-
ods was found perform well in resulting in zero correlation between the QTc interval
and the RR interval within the subjects. However, the panel specific method, using
the parabolic model and the method using the means, was found to perform well in
canceling out over and under correction in the QTc interval. The most commonly
used method in practise, the Bazett method, was shown to perform very poorly both
in leading to zero correlation between subjects and in canceling out over and under
corrections.
After going trough the different correction methods, possible QTc prolongations re-
sulting from intake of the drug were investigated. It was decided to use the panel
specific method using the parabolic model and the mean method to determine if the
drug in question induced QTc prolongations. The difference in adjusted time matched
mean difference between the on drug groups and the placebo subjects are shown be-
low.
The threshold level of regulatory concern for this time matched mean difference is
around 5ms evidenced by an upper bound of the one sided 95% confidence interval
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mean 90% confidence interval
∆QTcmax,adj,males 75mg 15.78 [10.62 , 20.93]
∆QTcmax,adj,males 100mg 22.71 [17.57 , 27.86]
∆QTcmax,adj,females 50mg 15.31 [8.56 , 22.06]
∆QTcmax,adj,females 75mg 13.56 [ 6.17 , 20.94]

around the mean effect of 10ms (corresponds to the upper limit of the two sided 90%
confidence interval shown above). It can therefore be concluded that the drug induces
QTc prolongations since the upper bound for all groups is much larger than 10ms.
The results using the most commonly used methods in practice, the study pooled
method, the Bazett method and the Fridericia method were finally compared to the
results from the panel specific method that was assumed to be the correct method
to use. The methods were found to lead to similar results for the females that were
given 50mg of the drug which was the only group where the RR interval was found
not to be prolonged by the intake. For the other three dose groups, the RR interval
was found to be prolonged by the intake of the drug. For the females that were given
75mg of the drug, study specific and the Fridericia methods were found to result in
higher time matched mean difference than the panel specific method. The opposite
was found for the Bazett method in that same group of females. For the two groups
of males, the study specific, the Bazett and the Fridericia methods were all found to
result in lower time matched mean difference than the panel specific method. These
results were found to be consistent with the expected under and over corrections of
the methods discussed in Chapter 7.
According to these results, the correction type used is not important when looking
at the time matched mean difference, if the intake of the drug does not affect the
RR interval. If however the intake of the drug is found to prolong the RR interval,
methods that are found to result in positive correlation between the QTc interval and
the RR interval are expected to result in higher time matched mean difference than
a given optimal correction while methods that result in negative correlation between
the two intervals are expected to result in lower time matched mean difference. When
a drug is found to shortened the RR interval the opposite is expected to happen.

9.2 Discussion

The analysis of the different correction methods, using data gathered from placebo
subjects, indicated that a subject specific corrections should be used to correct the QT
interval because of large difference between the subjects. However, because of too few
off drug data points for the subjects that were given the drug, it was decided not to
use the method to determine the magnitude of drug induced prolongation of the QTc
interval. Having more data points to work with, the issue of inter- and intrasubject
variability could have been addressed more closely, possibly with the use of adaptive
techniques. Further, possibly diurnal variation of the different intervals on the ECG
could have been looked at. Using cross over designs in stead of parallel design in a
QT study of this kind would result in more off drug data for every individual in the
study, without having to measure more ECGs. It is therefore recommended to apply
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cross over designs in stead of parallel designs when possible.
Another issue that is interesting to look at more closely is the difference between males
and females. For this population of subjects it is clear that the QT∼RR relationship
and the correction parameters used for the QT correction differs between males and
females. Further, the mean RR interval was found to be significantly different between
males and females. Even though, the correction methods used today are designed to
normalize the QT interval as it would have been gathered at a constant RR interval
of 1 sec for both genders. The author of this thesis would not be surprised if QT
correction methods in the future will focus more on this difference between males and
females.
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Name of variable Description Type
F.STATUS Status Factor
patient Patient ID Factor
EVENT.ID Recorder visit ID Factor
PAG.NAME Page names Factor
EX.INT Interpretation Factor
EX.REQNO Ert Requisition number Factor
SCR.NO Screening no Factor
DSCR Visit Description Factor
EX.D Date recorded Numeric
EX.DD Day part Numeric
EX.MM Month part Numeric
EX.YY Yer part Numeric
EX.T Time recorded Numeric
EX.H Hour part Numeric
EX.M Minute part Numeric
EX.LEAD Lead number Factor
EXM.QTCB QTc-Bazett Numeric
EXM.QTCF QTc-Frederica Numeric
EXMEANHR Mean heart rate Numeric
EXM.RR Mean RR interval Numeric
EXM.PR Mean PR interval Numeric
EXM.QRS Mean QRS interval Numeric
EXM.QT Mean QT interval Numeric
EXRHYT.C Coded rhytm comment Factor
EXARRH.C Coded arrythmia comment Factor
EXCOND.D Coded conduction comment Factor
EXMORP.C Coded morphology comment Factor
EXMI.C Coded MI comment Factor
EXSEG.C Coded ST segment comment Factor
EXTWAV.C Coded T wave comment Factor
EXUWAV.C Coded U wave comment Factor
EXPHYS.C Physician comment Factor
EX.ELINA Name of visit into the ELI 2000 Factor
EX.TIMEP Names of time point into ELI 2000 Factor
EX.PT Time recorded Factor
EX.PD Date recorded Factor
visit.d Visit date Numeric
visit.dd Visit day Numeric
visit.mm Visit month Numeric
visit.yy Visit year Numeric
visit Visit number Numeric
studyday Study day Factor
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Name of variable Description Type
patno Patient number Factor
sex Patient sex Numeric
race Patient race Numeric
patient Patient Numeric
basbmi Baseline BMI Numeric
age Patient age Numeric
bashgt Patient height Numeric
baswgt Patient weight Numeric
sex2 Patient sex Factor
race2 Patient race Factor
demovar Sex/Age/Race/Weight Factor
treatment Treatment Numeric
treat Treatment Factor
sextreat Sex-Treatment Numeric
active Sex-Treatment Numeric
panel Panel Numeric
streat Sex-Doses-Treatment Factor
patpanel Patient:Panel Factor
n Number of doses taken Numeric
dose Dose administered Numeric
fdose.d Date first Time series
fdose.t Time first Time series
fdose.dt Date time first Time series
ldose.d Data last Time series
ldose.t Time last Time series
ldose.dt Date time last Time series
wcompl Did patient finish study Numeric
wae Discontinued due to AE? Numeric
wae.no AE Number Numeric
wlack Lack of efficacy Numeric
wnco Non-compliance Numeric
wprv Protocol violation Numeric
wprv.s Protocol violation reason Numeric
wcon Withdrawal of consent Numeric
wlfu Lost to follow up Numeric
wprim Primary reason Numeric
codebr Was subjects code broken? Numeric
dc.d Date Factor
stop.d Date Factor
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