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AbstratThis thesis is about the reonstrution of the depth in a sene from 2Dimages. A amera is moved around an objet, reating a sequene of 2Dimages. Features are traked through the images, where the movement isused for 3D reonstrution. Position, rotation and translation of the amerais known.Using feature detetion, no laser or strutured light has to be used. Threemethods of feature detetion are proposed and ompared, where one is hosenand used. These are orner detetion, edge detetion and optial �ow. Testsare arried out, where edge detetion is hosen to be the method used.An edge traking algorithm is implemented. This traking algorithmtraks edges through numerous images, whih is essential for a good 3Dreonstrution.A 3D reonstrution algorithm is implemented. This algorithm uses themovement of the edges ompared to the movement of the amera to estimatethe 3D position of the edges.This implementation is tested extensively. The limitations of the systemis found and solution to those proposed.Keywords : 3D reonstrution, feature detetion, edge traking.
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PrefaeThis thesis shows how Gunnar Hardarson, s991208, solved the problem of3D measurement using amera. This projet is written at the department ofInformatis and Mathematial Modelling (IMM) at Tehnial University ofDenmark (DTU) during the period Marh to Otober 2005.I would like to thank my supervisors Henrik Aanæs and Jens MihaelCarstensen for good suggestions, ideas and omments throughout the projet.
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Chapter 1Introdution
1.1 Quality ControlIn today's mass prodution soiety, with often great distanes between pro-dution and assembly, the need for a good quality ontrol system is great.The most easy-to-use quality ontrol is the human being. For many years,people have worked with quality ontrol, looking at objets running pastthem on an onveyor belt, visually inspeting the objets. This approahhas several disadvantages for the employees, and human error inreases astime goes by. Automation in this �eld is of great interest, due to better workonditions and higher preision.Mainly two types of quality ontrol systems exist. Contat and non-ontat systems. In a ontat system, a ensor touhes the objets in variousplaes, registering where there is resistane. These points are ompared tothe points on a build in model of the objet. If those points are in agreementwith the model, the objet is good.A non-ontat system an be made with the help of amera vision. Manyvariations exist. One or several ameras an be used and sometimes lasers.The advantage of this solution is that the objet is never touhed duringinspetion.1.2 The ProblemA three dimensional (3D) measurement system, used for quality ontrol is tobe designed and prototyped.This system will use a single amera moved around an objet. The objetis plaed inside a age, where a robot arm moves a amera around the objet.3D inferene will be made based on this input.9



10 CHAPTER 1. INTRODUCTION1.3 Quality Control SystemsVarious quality ontrol systems have been made trough the years, with dif-ferent approah. As mentioned earlier quality ontrol systems an be atego-rized into two groups; a ontat and non-ontat systems. A ontat systemis a system where the objet to be ontrolled is ontated physially by aensor.An example of a ontat system is the one used in the railway onstrutionindustry [1℄. The eretion of the four biggest modules, the �oor, roof and twowalls needs big preision and the working environment is hazardous. Insteadof having workers positioning and welding the modules in plae, a ontatsystem is made, positioning the modules and welding, without any humaninteration.As knowledge in image analysis and omputer siene has grown the useof image based quality ontrol systems has inreased. These systems are non-ontat systems. Cameras are used to measure the objet, either moving theamera or the objet. The results are often ompared to an underlying CADmodel. These systems use many di�erent tehniques, of gathering data for3D reonstrution. Some tehniques are mentioned below.1.3.1 Laser SystemsA laser system projets laser beam over the objet to be measured. Thebeam is re�eted on the surfae on the objet and traked. This way one anget very detailed information of the surfae struture of the objet.An advaned CAQ (Computer Aided Quality) system using di�erent laserapproahes is presented in [2℄.1.3.2 Marker SystemsIn marker systems, marks are put on the objet and deteted by the system.It reognizes the shapes of the markers and an thereby estimate the positionof eah marker.An example of a marker system is when athing the movement of aomplex non-rigid body like when a human is walking. This topi is disussedin [3℄. Markers are plaed on di�erent plaes, on the body, and then traked,using multiple ameras. This tehnique is used in gait analysis.



1.4. OUTLINE 111.3.3 Using Feature DetetionIn the before mentioned non-ontat systems, strutured illumination ormarkings on the objet to be measured, is used. In the urrent projet,this is not the ase. The intention is to make a quality ontrol system whihuses features in the objets. This way, the only hardware needed is a amera.A outline of the thesis is given in next setion.1.4 OutlineA robot moves a video amera above an objet. A framegrabber is used toollet a sequene of images. This image sequene is used to reonstrut thedepth in the sene.The thesis an be divided into four parts.The �rst part is feature detetion. Here three methods are onsideredand ompared. One method is hosen and used. This feature detetion mustapture the essential features in an objet.The seond part is feature traking. In order to detet movement in thesene, features have to be traked. Here the features are traked through theimage sequene.Third part overs the 3D reonstrution. Here the features that havebeen traked through the images are used to reonstrut the depth in thesene and to �nd the onstrution of the objet.The fourth part of the thesis deals with extensive testing of the sys-tem. Both the funtionality and how it performs under di�erent situationsis tested.
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Chapter 2The system
2.1 OverviewIn this hapter the system is desribed, both the theory behind it and itsimplementation. In Figure 2.1 an overview of the proess is shown.

Image Acquisition

Image Sequence

Tracking 3D reconstruction

Edge Detection

Geometry

Figure 2.1: Overview of the proess13



14 CHAPTER 2. THE SYSTEMFirst data is gathered by taking images. This is done with a robot armmoving a amera around the objet to be measured. Using a robot armthe movement and position of the amera is known. This an be used inthe omputations. A frame grabber is used to grab individual frames. Aphotograph of the robot is shown in Figure 2.2. More extensive text andillustration of the robot is found in [9℄.

Figure 2.2: The robot. The arm an be moved in three diretionsThe onseutive images make an image sequene, where the amera hastranslated in small steps between images. This movement is to be used toreonstrut the depth in the sene.For eah image, features are deteted. The features are then trakedbetween images, to detet the movement in the sene. The features detetedhave to desribe the objet very well.Using the information from the above mentioned proedures, the geom-etry in the sene is estimated. From this estimation, a qualitative guess ofthe 3D onstrution in the sene is made.2.2 DataThree datasets are made. These are



2.3. FEATURE DETECTION 15� Dataset1. A simple syntheti dataset. 6 vertial lines are drawn andmoved di�erently between 20 images. The movement is skethed inFigure 2.3.
1 2 3 4 5 6

Figure 2.3: Di�erent movement of the lines. The numbers represent themovement in pixels� Dataset2. Images taken from the robot, as the arm moves in the xand y diretion. The objet is a blak box on a white bakground. Theedges are olored white. An example of the dataset is shown in Figure2.4.� Dataset3. Images taken from the robot, as the arm moves in the x-diretion. The objet is a model of a ship. An example of the datasetis shown in Figure 2.5.These datasets will be used through out the report when testing the system.The datasets represent a typial input to the system.2.3 Feature DetetionIn order to make a system as desribed above, one needs to detet featuresin the objet. Feature detetion is an essential part of 3D reonstrution.



16 CHAPTER 2. THE SYSTEM

Figure 2.4: Image from Dataset 2

Figure 2.5: Image from Dataset 3
Features in an image an be of various kinds. The most obvious ones areorners, edges, shadings and olors. Shadings and olors are very hard todesribe and even harder to ompare as they often reah over large areasof the image. On the other hand, orners and edges are easier to desribeand ompare. This is due to a sudden swift in gradients in an image aroundorners and edges. Some methods of feature detetion are disussed below.



2.3. FEATURE DETECTION 172.3.1 Edge DetetionThe present system is most likely to be used in the welding industry or dealingwith objets that are made of straight plates, rather that urved objets likea hassis of a ar. Due to this edges are a good feature to use. An edge is awell de�ned form, and not likely to be misidenti�ed.Examples are taken from Dataset 2 and 3 to ompare the methods.Edges are deteted in a random image from Dataset 2. The results areshown in Figure 2.6.
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Figure 2.6: Edges foundThe edges deteted in Figure 2.6 desribe the objet well, with one ex-eption though, the shadows. These will always be a problem.Figure 2.7 shows the result from deteting edges in a image taken fromDataset 3. One an ome to the same onlusion here about the edge dete-tion. It detets the most obvious edges, but still the shadows are a problem.Notie the surfae damage just below the big hole in the bottom of the model.No edges are deteted there.2.3.2 Corner DetetionCorners are deteted in the same image from Dataset 2. The results areshown in Figure 2.8.The problem with orners are that they do not neessary desribe anobjet very well. Corners an be found on surfaes, whih may lead tomisidenti�ation of a real orner on the objet. In Figure 2.8 are some obviousmisidenti�ation's of orners whih an not be used for 3D reonstrution.



18 CHAPTER 2. THE SYSTEM

Figure 2.7: Edges found
image with corners
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Figure 2.8: Corners foundFigure 2.9 shows an image taken from Dataset 3 and orners found. Notiethe orners found on the surfae damage just below the hole in the bottom.These orners an not be used for 3D reonstrution.An exellent orner detetion algorithm is presented in [5℄.2.3.3 Optial FlowOptial �ow is a way of estimating the movement in a sene. One stereo-image is warped into another and the veloity �eld is omputed. This veloity



2.3. FEATURE DETECTION 19
image with corners
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Figure 2.9: Corners found�eld represents whih parts of the sene are moving and how fast. This anbe used as a feature detetion.A freely available software in C is used for the veloity �eld alulations1.The software pakage returns the veloity �elds in the form of gray-saleimages. The pixels are oded in the following way� Gray pixels represent no movement� Dark pixels represent movement in the negative diretion� Light pixels represent movement in the positive diretionTwo images are returned, one for the horizontal diretion (x) and one for thevertial diretion (y).Some experiments were made with the optial �ow to hek its potentialsand limitations.Images were taken from Dataset 2. The images are shown in Figure 2.10(a) and (b). The result is shown in Figure 2.10 (). The method does well�nding the movement in the sene, where the box is shown in white pixels,whih represent movement in the positive diretion.But how well does the method ope with larger movements in the sene?Next test is done with images taken where the amera has translated more.The images are shown in Figure 2.11 (a) and (b). Observing Figure 2.11()one an see that the method needs the images to be taken lose to eah other.1http://www.s.brown.edu/people/blak/



20 CHAPTER 2. THE SYSTEM
(a) First image (b) Seond image

() Vertial movement between the im-agesFigure 2.10: Images and result from optial �owTwo images are taken from Dataset 3 and the optial �ow omputed.The images are shown in Figure 2.12 (a) and (b). The result is shown inFigure 2.12 (). Observing Figure 2.12 () some features are deteted, butthe algorithm has some trouble �nding the diretion the objets are movingin. This an be due to omplexity in the sene.More extensive text and implementation on optial �ow an be found in[8℄.2.3.4 Choosing the method for this projetThe methods disussed above are all �tted for feature detetion, but onlyone is to be used in this projet. The main riteria for method seletion wereto �nd the most desribing features, that are easy to trak.Edges are the features that desribe an objet the best and are easyto detet and trak. Comparing Figures 2.9 and 2.7 showing the resultsfrom edge detetion and orner detetion one an see that the informationgathered in Figure 2.7, by the edge detetion method is muh greater thanthe information in Figure 2.9. The edges found desribe the objet better.
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(a) First image (b) Movement between images isgreater now

() Vertial movement between the im-agesFigure 2.11: Optial �ow with greater distaneThe same is when using a simpler objet as in Dataset 2. The orners foundin Figure 2.8 an not be used for 3D reonstrution.The features found using optial �ow were good when the movementwas small, (Figure 2.10), but as the movement inreased, (Figure 2.11), themethod performed worse. The method also fails when the objet gets moreomplex as in Figure 2.12.Furthermore in order to detet features in a sene using optial �ow,there has to be movement in the sene, and the detetion depends on thismovement. This makes this method less appealing.Considering the above the edge detetion method in hosen. The positivesides of edge detetion are listed below.� Desribes an objet well� Easy to detet� Easy to trakAs the hosen feature detetion method is edge detetion the following as-sumptions about the objets to be measured have to be made
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(a) First image (b) Movement between images isgreater now

() Vertial movement between the im-agesFigure 2.12: Optial �ow used on Dataset 3� The objet has to be desribed well by it's edges� The edges have to be visually easy to detet� The edges have to be straight2.4 Edge DetetionAs the hosen method is edge detetion, this method is explained in thissetion more extensively.To detet edges the sudden swift in the gradients in an image is used.Before the gradients are omputed the image is smoothed with a Gaussian�lter. This is done to eliminate noise in the image. Gradients are alulatedboth horizontally and vertially in the following way.Vertially: Gv(j; k) = A(j; k + 1)� A(j; k � 1) (2.1)



2.5. IMPLEMENTATION OF THE EDGE DETECTION 23Horizontally: Gh(j; k) = A(j + 1; k)� A(j � 1; k) (2.2)Where j and k are row and olumn pixel indies. A is the matrix representingthe image. G is the gradient matrix. The vertial (Gv) and horizontal (Gh)gradients are then ombined into one gradient matrix (G) by (2.3).G =p[Gh℄2 + [Gv℄2 (2.3)After omputing the gradients, the pixels with the highest probability ofrepresenting an edge are sorted out with a threshold. The edges are thinnedto the width of one pixel and segmented into lines.2.5 Implementation of the Edge DetetionA freely available Matlab implementation2 was applied for the edge detetion.What it does is listed below.1. Load image2. Find edges3. Link edge pixels together4. Make list of edgesThese steps are disussed in more detail below.2.5.1 Loading the imagesThis is a standard proedure, load the image and make it gray-sale. Thesystem works only with gray-sale images. An original image, taken fromDataset 3 is shown in Figure 2.13.2.5.2 Finding the edgesAn edge detetion algorithm is used to detet the edges in the image. Thefollowing all is used for thisedgeim=edge(im, 'anny', thresh, sigma).The parameters are explained below� The output edgeim is an image with the edges thinned to a single pixel.2http://www.sse.uwa.edu.au/ pk/Researh/MatlabFns/
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Figure 2.13: An original image, taken by the robot� im is the image to be deteted, in gray sale.� anny is the edge detetion algorithm used.� thresh is a two-element vetor where the elements are low and highthresholds. These thresholds are used after a non-maximum suppres-sion, whih suppresses all pixels not at a maximum to a non-edge pixel.The algorithm sweeps over the remaining pixels, suppressing the pixelsbelow the lower threshold to a non edge pixel, and those above to anedge pixel. Those in-between are made either edge or non-edge pixels,depending on if there is a path from this pixel to an edge pixel.� sigma is the standard deviation of the Gauss �lter used to smooth theimages.Figure 2.14 shows the edges (white) found from the original image, shown inFigure 2.13.2.5.3 Linking edge pixelsThe edge-points are linked together, forming sequential list of edge-points.This is done in the following all[edgelist, labeledgeim℄=edgelink(edgeim, l).The parameters are explained below� edgelist is a ell array, where eah ell ontains a list of edge pixels.



2.5. IMPLEMENTATION OF THE EDGE DETECTION 25

Figure 2.14: The edges found from Figure 2.13� labeledgeimage is the edge-image, with di�erent edges olored in dif-ferent olors.� edgeim is the edge-image returned from the edge all mentioned earlier.� l is the minimum length of edges to be deteted. Edges with lengthbelow this threshold are not lassi�ed as edges.Figure 2.15 shows the edges linked together and segmented.

Figure 2.15: The linked and segmented edges from the edges in Figure 2.14



26 CHAPTER 2. THE SYSTEM2.5.4 Making the list of edgesThe last thing the edge detetion algorithm does is to make straight linesfrom the edges found. This is a task of �nding the lines, and returning theendpoints.The ommand used here isseglist=lineseg(edgelist, tol, angtol,linkrad).The parameters are explained below� seglist is the list of endpoints. It is on the form264 x11 y11 x12 y12... ... ... ...xn1 yn1 xn2 yn2 375Where (x11; y11) and (x12; y12) are the two endpoints of the �rst line.� edgelist is the ell array returned from the edgelink ommand.� tol is one of three restraints, it is an upper threshold on the maximumdeviation from original edge.� angtol is a threshold on di�erene in angle.� linkrad is a measure of how lose endpoints are allowed to be beforethey are merged.The line-image is shown in Figure 2.16, along with the original image. Onean see that most of the important edges are deteted.2.6 Edge TrakingThe human vision system onstruts 3D view from two 2D images, one fromeah eye. The di�erene between objets in the two images is used to re-onstrut the depth in the sene. This onept is used in 3D reonstrutionsystems.In order for suh a system to ahieve 3D information, there has to beeither two ameras or a movement, either in the sene or the amera. Movingthe amera is hosen here. More information an be gathered this way. Asthe amera is moved, it aptures video sequene of the objet. Then usinga frame grabber, individual images are obtained. Taking two images, fromtwo onseutive frames, orresponds to taking two images with an ordinaryamera, side by side. But as the amera is moved for some distane, more
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Figure 2.16: The lines found in the original imageinformation an be gathered and thus, a more aurate model of the objetan be onstruted.In order to measure the movement of the edges through the sene, anedge traking algorithm is implemented. This appliation is able to trakedges through a series of onseutive images.The edge detetion algorithm desribed earlier, returns a list of edges onthe form 264 x11 y11 x12 y12... ... ... ...xn1 yn1 xn2 yn2 375for eah image. The traking algorithm ompares two lists of edge endpoints,searhing for mathes within a given range. If there is a math, the index ofthe two edges is inserted into an index-matrix. If there is no math in nextimage in the sequene a zero is inserted into the matrix. When the matrixis made, the algorithm runs through it again. Where there are zeros, whihmeans that an edge is not mathed, the edge is sought in the rest of theimages. This is done to prevent losing edges if they disappear in one imageand reappear later.Edges that appear after the �rst image is then dealt with last. An edgefound in an image after the �rst one, whih has not been mathed is soughtfor in the rest of the images. This is onatenated to the end of the index-matrix. This ompletes the traking algorithm, whih by now should beable to trak most lines through a number of images, assuming not too bigtranslation between images.



28 CHAPTER 2. THE SYSTEMThe index matrix is shown below26664 u1;1 u1;2 : : : u1;mu2;1 u2;2 : : : u2;m... ... ui;j ...un;1 un;2 : : : un;m
37775Where ui;j denotes the jth edge in image i.The results of running the algorithm on several images, taken fromDataset2 is shown in Figure 2.17.

Figure 2.17: The edge is traked through a number of images
2.7 Implementation of the traking algorithmIn this setion the implementation of the traking algorithm is desribed inmore detail.The algorithm runs as follows� Mathes the �rst two images� Fills in the indees where edges have oluded and reappeared� Runs through the index matrix mathing lines not seen in the �rstimage



2.7. IMPLEMENTATION OF THE TRACKING ALGORITHM 292.7.1 Mathing the �rst two imagesThe edges in the �rst image are numbered as they appear in the edge-matrix.These are then mathed to the edges in the seond image. The mathingproess is made in the following steps� Make a box around eah endpoint in the �rst image� Searh within those boxes for the endpoints in the other image� Both endpoints must math both endpoints in the other imageThis is done by the following allindex = math1and2(totalseglist, box, sizes);where� index is the list of mathes. The �rst row onsists of numbers from oneto the number of edges in the �rst image. The seond row representsthe mathes to the lines in the seond image.� totalseglist is a 3D list of edges, for all the images.� box is the size of the searh-box. Setting this box too small may riskthe algorithm to fail to �nd the right edges, too big will slow down theexeution time. For the amera used in this projet the reommendedsize is 5 pixels.� sizes is the sizes of the edge-lists.2.7.2 Mathing the edges in the rest of the imagesNow the index matrix is two rows. The rest of the edge-images are nowmathed to eah other, using the numbering from the �rst image, and theendpoint oordinates from the preeding image. This way, the amera anmove over a onsiderable distane, without losing trak of the edges. This isdone in the following ommandnewindex=moreindex(totalseglist, finalindex)where� newindex is a two row vetor, where the seond row represents theedges mathed to the ones in the �rst image, using the oordinatesfrom the preeding image.� totalseglist is a 3D list of edges, for all the images.



30 CHAPTER 2. THE SYSTEM� finalindex is the index matrix so far. From this matrix the oordi-nates of the edges in the last image are taken.The above ommand has to be alled N � 2 times where N is the number ofimages, to apture all of the remaining images.2.7.3 Filling in the oluded edgesNow edges that are lost in an image, and reappear few images later are de-teted and mathed. If an edge is oluded the algorithm so far does notlook for it in the remaining images. This is mended by the funtionnewindex=fillin(finalindex, totalseglist);� newindex is the newest version of the index-matrix, now with oludededges.� finalindex is the index made from the previous all.� totalseglist is a 3D list of edges, for all the images.2.7.4 Mathing the lines appearing after the �rst imageAs the amera is moved, the lines that are on the �rst image, are not all thelines the amera detets. Edges appearing on later images must be takeninto aount in the omputations. This is done in the following ommandtotalindex = extralines(newindex, totalseglist);where� totalindex is the latest version of the index-matrix. This versioninludes olusions and new appearing lines.� newindex is the index from the previous all.� totalseglist is a 3D list of edges, for all the images.This ompletes the index matrix, edges have been traked throughout thewhole sequene.



2.8. GEOMETRY 312.8 GeometryNow that the edges have been identi�ed and traked, the next step is toreonstrut the depth in the sene. As mentioned earlier, the human vision-system onstruts the 3D in a sene from the di�erene between the 2Dimages, from eah eye. This is used in the 3D reonstrution algorithm.The information about the movement in the sene is used here to get 3Dinformation, or the depth in the sene. The movement of the amera is alsoused.This problem is losely related to that of the struture from motion prob-lem. The di�erene is that in the urrent problem, the movement of theamera, translation and rotation is known. This makes the omputationsmore simple.Figure 2.18 shows a sketh of the problem.
View 2

aX1+bX2

Camera center 1 Camera center 2

Image Plan Image Plan

x1

x2
x4

x3

Normal

PlaneView 1

Figure 2.18: Sketh of the problem. The edge is observed from two ameras.x are the endpoints of the edges observed.From the edge images taken from the image sequene, only 2D informa-tion is olleted. No information is given about the position in spae of theedge. This setup orresponds to V iew 1 in Figure 2.18. The only informa-tion is that the line lies on a plane, made from the enter of the amera,and the edge-line, seen on the image. Now, moving to V iew 2, the sameedge is deteted in that image. Making a plane the same way as before, thetwo planes interset in spae. The line in 3D spae is found. To be moreaurate, more views and planes are made, to get a better estimate of where



32 CHAPTER 2. THE SYSTEMthe planes interset. In the ideal world, where there is no noise in the images,the intersetion of all the planes, would be exatly at one line. In the realworld, this is rarely, or never the ase. To ompensate for this, the line whihis losest to desribe the intersetion of the planes is sought and set to be thereonstruted line in 3D. From this it is easy to see that more information(images) give more planes and more aurate estimate of the line.2.9 3D ReonstrutionThe reonstrution algorithm is desribed more thoroughly step by step be-low.2.9.1 Computing the Camera MatrixThe amera matrix maps world points X to image points x aording tox = PX (2.4)The amera matrix P is written on the formP = [KRj �Kt℄ (2.5)where K is the amera alibration matrix, R is the rotation matrix and t isthe translation vetor.The amera alibration matrix is given by24 �x s x00 �y y00 0 1 35 (2.6)where� �x is the foal length in the x-diretion, in pixels� �y is the foal length in the y-diretion, in pixels� s is the skew fator� x0 and y0 is the prinipal pointR is given in 24 r1;1 r2;1 r3;1r1;2 r2;2 r3;2r1;3 r2;3 r3;3 35 (2.7)where



2.9. 3D RECONSTRUCTION 33� r1;1 = os(�) os(K)� r1;2 = � os(�) sin(K)� r1;3 = sin(�)� r2;1 = os(
) sin(K) + sin(
) sin(�) os(K)� r2;2 = os(
) os(K)� sin(
) sin(�) sin(K)� r2;3 = � sin(
) os(�)� r3;1 = sin(
) sin(K)� os(
) sin(�) os(K)� r3;2 = sin(
) os(K) + os(
) sin(�) sin(K)� r3;3 = os(
) os(�)The parameters 
, � and K are the rotation around the x�, y� and zdiretion respetively. These are given in world oordinates. The amerais not rotated at all, so all those parameters are zero. Inserting zero in theequations, the identity matrix I is reahed. This simpli�es (2.5) toP = [Kj �Kt℄ (2.8)The translation vetor is given ast = 24 ÆxÆyÆz 35 (2.9)where the element represent the translation in eah diretion.2.9.2 Finding the Camera CentersIn order to �nd a plane in spae one needs three points in spae. In theurrent setup, three points are known, the amera enter and two points onthe edge-image.The amera enter an be omputed from the amera matrix P, given by(2.8) and a translation vetor t, given in (2.9). The world oordinate systemis set to have the origo just above the enter of the objet. The xy plane isparallel to the image plane, and the z axis is set along the optial axis. Thesystem is saled so the distane from the amera enter to the image plane isone unit. A sketh to demonstrate this is shown in Figure 2.19. The enterof the amera is found as  where P = 0:
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x

y

zFigure 2.19: De�nition of the world oordinate system2.9.3 Finding the PlanesThe two endpoints of eah edge are used as the two points left to de�ne theplane. In order to retrieve the world oordinates for these points, the am-era matrix is used. This time the translation vetor is the zero vetor, dueto the fat that we are now working in the image-oordinate system. Theequation for mapping from world oordinates to image oordinates is givenby (2.4). This equation must be solved with respet to X in order to mapfrom image oordinates to world oordinates. The solution to (2.4) an not befound diretly as P is not a square matrix, so the following ations are taken.1. The equation an be written as x = K[Rjt℄X2. K is a square matrix, so it an be inverted K�1x = [Rjt℄X3. Given that the rotation matrix is the identity matrix and the transla-tion vetor is the zero vetor the equation looks likeK�1x = 24 1 0 0 00 1 0 00 0 1 0 3524 XYZ 354. Multiplying yields K�1x = 24 XYZ 35This maps the 2D points to 3D, with the distane to the z plain set to 1 unit.The equation of the plane is on the following formnx = �� (2.10)



2.10. IMPLEMENTATION OF THE GEOMETRY 35where n = [nx; ny; nz℄ is the normal to the plain. � is the distane from everypoint on the plane to the origo, whih is set as the position of the amera.This plane is found for eah edge, in eah image.2.9.4 Finding the Intersetion of the PlanesAs said before, the line in spae is found where the planes are losest tointerset. Two points are found in spae wherePx = 0 (2.11)where P is the plane for eah line, and x is a point in spae. These twopoints span a line written on the form l = ax1 + bx2 where a and b are anynumber.2.10 Implementation of the GeometryThe reonstrution algorithm takes as input the oordinates of mathinglines. Finding the lines in 3D, the following steps are taken� Find the amera matrix� Find the enter of the amera� Find, in world oordinates, the edge endpoints� Determine plane� Find 3D points2.10.1 Finding the Center of the CameraAs said before, the enter of the amera is found where Px = 0.The following all is used for thisenter=ament(P)where� enter is the enter of the amera in 3D spae.� P is the amera matrix. The translation vetor t, is omputed as thedistane from origo.Using singular value deomposition, the x is omputed.



36 CHAPTER 2. THE SYSTEM2.10.2 Finding the Edge PointsThe edge points found on the edge-image are transformed into world oor-dinates using the amera matrix, with translation vetor equal to the zerovetor. The following all is used to do this[p1,p2℄=findedgepos(index,seglist)where� p1 and p2 are the endpoints in world oordinates� index is a list of mathing edges� seglist ontains the positions of the edges in image oordinates2.10.3 Making the PlaneGiven the three points in spae from the previously mentioned methods, onean now make a plane. The following all is used[n alpha℄ = makeplane(s1, s2, s3, enter)where� n is the normal vetor to the plane� alpha is the distane from a point on the plane to the origin. The pointon the plane here is hosen to be the amera enter.� s1, s2 and s3 are the points that make the plane.� enter is the amera enter, used to ompute alpha.For eah edge the n and � from the equation of the plane (2.11) is insertedin a matrix P . This matrix is used later to determine the line in 3D.2.10.4 Finding the 3D PointsThe intersetion of all the planes, is found using the equation Px=0. WhereP is a matrix of planes, disussed in the previous setion. This is done usingsingular value deomposition (svd). The svd returns points that are thelosest to represent the line where the planes interset.



2.11. CALIBRATION 372.11 CalibrationWhen taking a piture from a lens amera, some distortion will appear onthe image. Due to this, these images are not suitable for measurements. Thedistane between elements in the enter of the image, does not represent thedistane between elements at the edges of the image. This an be mended byalibrating the amera. By amera alibration, the distortion in the imageis measured. This is used later in the 3D omputations.The purpose of amera alibration is to ompute the parameters of theinner orientation, the foal length, prinipal point, distortion and skew.A omplete Camera Calibration Toolbox for Matlab may be downloaded3.This toolbox is used to alibrate the amera.First a alibration sheet is made. This sheet is a hessboard with equallysized squares, blak and white. The sheet is glued on a rigid metal plate,due to the risk of the sheet bending under the proedure.Twenty images of di�erent angle and position is taken from the amera.A alibration sheet of 24�38 squares, with side-length of 10�10mm is triedout but found to be too small. A 16 � 24 squares, with side-length 16mmgives a better result. If the squares are too small, the orners of the squaresare di�ult to detet, even visually as the ase was with the 10mm squares.If the squares are too big, the number of orners are too few for a goodalibration.Figures 2.20 and 2.21 show the original image, and the undistorted image.The parameters omputed by the alibration are shown in Table 2.1.x yFoal Length 380.60892 378.42038Prinipal Point 153.27998 119.84683Table 2.1: Parameters for the ameraSkew is 0.000141. The distortion parameters are[�0:25888; 0:36657; 0:00110; 0:00005℄. The parameters are desribed in moredetail below� Foal Length denotes the length from the Projetion Center to theImage Plane in pixels. The foal length is divided into x- and y diretionbeause the pixels are not quadratial.3http://www.vision.alteh.edu/bouguetj/alib_do/
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Original image (with distortion) − Stored in array I
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Figure 2.20: The alibration sheet used to alibrate the amera
Undistorted image − Stored in array I2

50 100 150 200 250 300

50

100

150

200

Figure 2.21: The undistorted image� Prinipal Point is the oordinates where the perpendiular from theProjetion Center intersets with the Image Plane� Skew is a oe�ient de�ning the angle between the x and the y pixelaxis



2.12. CONSTRUCTING THE SCENE 39� Distortion are the parameters of the distortion funtionIt is assumed here that the amera used does not have the �Auto-zoom�turned on. Auto-zoom, hanges the foal length as objets in front of thelens is moved. This would have an erroneous e�et on the omputation ofthe foal length.2.12 Construting the seneWhen onstruting the sene physially, that is plaing the objet, hoosingbakground, light and so on, many things have to be onsidered. Those arethings that in�uene the end result. One an make a great 3D reonstrutionalgorithm, but lose some information to bad lighting or wrong bakground.One has to take into onsideration what features in the objet one wants toamplify. Some of these fators are disussed below.2.12.1 LightingWhen deteting features in an objet, an essential part is the lighting. Manyaspets of lighting have to be taken into onsideration. Some are� Intensity� ShadowsThe intensity of the light has to �t the surfae of the objet. Too strong lightan result in mirror e�et in the ase of metal surfaes. This ould disturbthe gradient alulations. Too weak light an result in bad illumination ofthe objet, and desribing features would not be deteted.Shadows in the sene an be deteted as edges, whih leads to a badreonstrution model. This an be mended using either ambient light, ormore easy, mounting the light on the same arm as the amera, so the partsthat are being photographed are illuminated at the same time.2.12.2 BakgroundAn essential part of hoosing bakground is that there should not be anydetetable features in the bakground. A lean sheet where the juntions donot show, will result in a good feature detetion. Other thing to be takeninto onsideration is the olor of the bakground. It is of great importanethat the olor is opposite to the olor of the objet. This way the edges ofthe objet are enhaned, leading to a better solution. This is partiularly



40 CHAPTER 2. THE SYSTEMimportant when working with an objet like the one in Dataset 3 where thereis a hole in the objet.2.13 Ground TruthFor testing how well the reonstrution algorithm performs, a ground truthis neessary.The objet in Dataset 2 is plotted in Matlab. In the ase of a moreomplex objet, this would be done in AutoCAD, and imported to Matlabvia the import-funtion ad2mat4. This plot is used for omparison of theoutput of the appliation. The plot is shown in Figure 2.22.
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Figure 2.22: The box

4http://www.mathworks.om/matlabentral/fileexhange/



Chapter 3TestsHow well does the system work? How does the di�erent parameters a�etthe outome? Answer to these questions and similar is the subjet of thishapter.In order to tell how well the system works, an extensive test sheme ismade and arried out. An overview of the tests is given in the following� Basi funtionality - some basi tests to see if parts of the algorithmwork.� The points in 3D that form the line on the objet should projeton, or lose to the line found on the edge image.� The epipolar line is used to see if the 3D point projets orretlyto the next image.� A simple syntheti data, from Dataset 1, is used to see if thealgorithm works with simple data.� Translation Determine the value of the amera translation t in pixelsand millimeters.� Tuning the Edge Detetion parameters - What e�et does theonstraint parameters in the edge detetion have.� Baseline - what e�et does it have to hange the length of the baseline?� Reonstruting the Box - data from Dataset 2 is used to reonstrutthe box.� Two diretions - Reonstruting edges where the amera moves per-pendiular to the edge and where it moves parallel to the edge.41



42 CHAPTER 3. TESTS� Noise in data - translation of an edge is simulated with no noise andreonstruted.3.1 Epipolar TestUsing epipolar geometry [7℄, a 3D point should be seen somewhere along theepipolarline from the other image. Knowing the translation of the robot onean predit the epipolarline. In the dataset used the robot arm moves onlyin the x diretion. This means that the epipolarline lies at y = k, where kis the y oordinate for the 3D point projetion in the �rst image. This isillustrated in Figure 3.1.
3D point

Camera Center 1 Camera Center 2

Point seen in image 1

Epipolar Line

Image plane 1 Image plane 2

Figure 3.1: The 3D point should be seen along the epipolarlineThe intersetion of the seond image-plane was omputed and omparedto the intersetion of the �rst image-plane. The y-oordinates proved to bethe same all the time.3.2 ProjetionWhen the points in 3D are found, they should projet near the edge-line inevery view when projeted to the amera enter.This is tested using the distane between two lines. The equation for theshortest distane between two lines an be written in the following wayD = j � (a� b)jja� bj (3.1)



3.3. TEST ON SYNTHETIC DATASET 43where a = x2 � x1, b = x4 � x3 and  = x3 � x1.x1, x2, x3 and x4 are explained in Figure 3.2. This was tested on various
point in 3D
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Figure 3.2: The distane between the lines should be minimaldatasets where the distane is found to be very small. This shows that thepoints projet orretly bak to the image plane, whih implies that theposition of the point in 3D spae is orret.3.3 Test on syntheti datasetIn order to see if the system works on a simple syntheti data, Dataset 1was made. The data is onstruted of 6 parallel lines, perpendiular to themovement of the amera. 20 images are made, where eah line moves di�erentamount in eah image. This an be ompared to when a person looks at astairase from above, and moves to the side. The topmost steps will movethe most, when the bottommost, will move the least. Figure 3.3 illustratesthe setup.The outome is as predited, a stair. The line that moves the least is theone most far from the amera, then step by step, loser to the amera. Asreen-shot of this is shown in Figures 3.4 and 3.5. As seen the lines form astep in both the xy and yz planes, whih shows that the 3D reonstrutionworks properly.
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1 2 3 4 5 6

Figure 3.3: The numbers represent the number of pixels the lines are movedbetween images

−1 −0.5 0 0.5 1 1.5

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 3.4: xy view of the steps. The red asterix's represent the ameras3.4 Tuning Edge DetetionAn essential part of the system is edge detetion. Deteting the interestingedges is of great importane. Interesting edges are edges that desribe theobjet well. The edge detetion has some onstraints that an be adjusted. In
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Figure 3.5: yzview of the steps. The red asterix's represent the amerasthis projet it is ruial to detet long edges, that are easily traked througha set of images.The onstraints are the following� tol, an upper threshold on the maximum deviation from original edge.� angtol, a threshold on di�erene in angle.� linkrad, a measurement where endpoints is merged if they are loserthan this threshold.Two sets of values are tried out on data from Dataset 2. The values arelisted in Table 3.1. The outome of the di�erent parameters are shown inTestset 1 Testset 2tol 2 6angtol 0.05 0.2linkrad 2 6Table 3.1: Values for edge detetionFigures 3.6 and 3.7. Notie the right-top edge on the images. The one withthe smaller values is deteted as two edges, while the one with the biggervalues is deteted as one edge. This is the preferred situation in this projet,so the values in Testset 2 are hosen.
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Figure 3.6: Edges found using values from Testset 1
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Figure 3.7: Edges found using values from Testset 23.5 Determine the translationThe translation of the amera is an important parameter when omputing3D. The value of t is determined in this setion, both in pixels and millimeters.An image sequene from Dataset 2 is used. A single edge is trakedthrough 71 images and the total distane in pixels is taken. This way thedistane for eah translation is alulated. The edges are shown in Figure3.8.To measure the translation in millimeters the robot arm was moved a
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Figure 3.8: Edges foundertain distane, while taking a video sequene. Counting the number offrames the translation in millimeters is alulated. The images are takenwith an interval of 5 frames.The results are listed in Table 3.8. tPixels 1.44Millimeters between images 4.1Table 3.2: Translation of the amera
Looking at Figure 3.8 one observes that the lines �jump� in intervals of 2or 3 edges. This is due to the uneven movement of the robot arm. This anbe a soure of error.



48 CHAPTER 3. TESTS3.6 Baseline TestAording to [4℄ the optimal relation between the baseline and the distanebetween the objet and amera should beBD = 13 to 3: (3.2)This is skethed in Figure 3.9.
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Figure 3.9: Relation between baseline and distane to objetA test on an edge on the box from Dataset 2 is made. The test is madethe following way. The edge is deteted and traked through 135 imagesand reonstruted. Then an image is iteratively removed from the sequeneuntil only few is left. For eah removal, the 3D is reonstruted from theremaining edges. This way the baseline is shortened eah time. The error isthen alulated for eah iteration.As the edges an be of various lengths, it is a bit triky to ompute theerror in a reliable way. The solution is to make a plane in y = 0, omputethe intersetion of the lines with this plane. The distane in the z-diretionis omputed between the intersetions. Only the z-diretion is used here asit is the important part of the reonstrution. The distane is plotted as afuntion of images removed. The plot is shown in Figure 3.10.A translation of 135 images orresponds to 55.3 m. The distane fromthe objet to the amera is 100 m, so the relation (3.2) is ful�lled. Thetheoretial limit is plotted in the �gure as a red line. When the baselinepasses the limits, the error inreases drastially. This supports the relation.
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Figure 3.10: y axis is the error in pixels. x axis is the number of imagesremoved3.7 Reonstruting the boxDataset 2 is used for reonstruting the box and heking the funtionality,and limitations of the system with real data. First edges perpendiular tothe x-diretion are traked and reonstruted using part of the dataset wherethe amera moves in the x-diretion. Then edges parallel to the x-diretionare traked and reonstruted, using sequenes where the amera is movedin the y-diretion.The xy-plane is shown in Figure 3.11 (a). The ground truth is shownin Figure 3.11 (b). Edges traked in the x-diretion is plotted in red, edges
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(b) Ground truthFigure 3.11: xy-planetraked in the y-diretion is plotted in blue. The red asterix's are the ameras.Figure 3.12 (a) shows the box in the yz-plane. This view is perpendiularto the edges traked in the x-diretion, or those plotted in red. These arefairly well reonstruted, showing two edges as the bottom edges, and two



50 CHAPTER 3. TESTSedges as the top edges. The reonstrution is right up to a sale fator.
−1 −0.5 0 0.5 1

−2.5

−2

−1.5

−1

−0.5

0

0.5

y

z

(a) Reonstruted box −40 −20 0 20 40 60
0

10

20

30

40

50

60

70

80

90

100

(b) Ground truthFigure 3.12: yz-planeConsidering the z-position of the red lines in spae, the box is measuredand found to be 33 m. The distane from the �oor to the amera is 100m. From the image it an be seen that the two top lines are lose to being13 of the distane from the bottom lines to the ameras. This shows that thesystem does a good job estimating the z-position.Looking at the blue lines in Figure 3.12 (a) they look way o�. One shouldexpet a dot, as the view is along the line. The explanation to this is shownin Figure 3.13. The system �nds the lines where planes meet, and planes are
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Figure 3.13: Entire view of the boxa in�nite size. This means that the reonstruted edges an be of variouslengths. The edges an get quite long ompared to the edges on the box.



3.8. RECONSTRUCTION USING PARALLEL LINES TO THE CAMERAMOVEMENT51Looking along those lines, only a small error an give the wrong impression.If the lines are trimmed this e�et would be mended.At last the xz-plane is shown in Figure 3.14. This �gure shows the twotop edges lose to the same z-oordinates as the other top lines in Figure3.12. Now the red lines are far o�.
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(b) Ground truthFigure 3.14: zx-plane3.8 Reonstrution using parallel lines to theamera movementUntil now, edges that are perpendiular to the movement of the amera hasbeen used for 3D reonstrution. Is there a reason for this? The answer isyes.Going bak to Figure 2.18 in Setion 2.8 one an see that the translationof the amera is perpendiular to the edge. If the translation is parallel theplanes would all lie together, giving no information about the position of theedge. This an be ompared to looking at a line, and moving perpendiularto the line, one an see and register the movement well. Moving parallel tothe line, one an not see the movement (giving a line without any texture).Reonstruting two of the edges from the experiment in the previoussetion is tried out. The results are shown in Figure 3.15.The reonstrution of the two lines parallel to the amera movement failsmiserably. Obvious that the system detets no translation of the edge.3.9 Noise in dataIn this setion the in�uene of noise in the data is heked. An edge fromDataset 2 is traked through 73 images and is plotted in Figure 3.16. Looking
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Figure 3.15: Reonstruting edges using parallel amera movementat the �gure the noise in the data is obvious.
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Figure 3.16: An edge traked through a part of an image sequene. The noiseis obviousAnother data is reated to simulate the one in Figure 3.16. Edges arereated at the same start- and endpoints, but linearly distributed in between.This is shown in Figure 3.17.As in the previous setion, the edges are reonstruted and plotted inFigure 3.18.One an learly see whih edge the data was simulated from. The simu-lated line is vertial as oppose to the one reonstruted from real data.
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Figure 3.17: Syntheti data to simulate the one shown in Figure 3.16
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Figure 3.18: Edges reonstruted. Blue lines are edges traked from theimage sequene. Red line is syntheti data made to simulate one of the edgesThe xz view is plotted in Figure 3.19. The red line in this �gure appearsas a dot. This shows that the line is perfetly straight in the y-diretion.This shows that the appliation works good with noiseless data.
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Figure 3.19: The red line appears as a dot in this view



Chapter 4Disussion and Future WorkThis hapter is a general disussion about the system and problems metduring implementation. These problems an be dealt with in future projet,to further develop the system.One possible soure of error is the uneven movement of the robot arm.This problem ould be mended physially by �xing the arm, or by softwareimplementation. The positions of the ameras are just a guess in the urrentsystem, but ould be used as a start-guess in a struture and motion problem,where the position of the ameras are optimized by iteration.The amera used in this projet is a 340x240 pixel amera. A translationbetween images is small in millimeters, but it is almost 1.5 pixels. This anresult in error when determining the di�erene in small movements.The exeution time is always an issue in a system like this. In the urrentsystem the exeution time is the highest in the traking part. A onversion toC and linking it to Matlab via Mex ould be a solution to this problem. Con-verting the system ompletely to C would make it faster, but as a developingtool Matlab is muh better hoie and therefor used in this projet.More automation of the robot ould be done. That is the robot takes onesweep over the objet and the resulting sequene is proessed. If the systemneeds some more information about a part of the objet the arm moves thereand another sequene is made. This ould be repeated several times.One way to improve the system ould be to remove outlier plane(s) inthe 3D reonstrution part. This would improve the determination of the 3Dposition of the reonstruted line.As information about the translation of a line is best aptured perpen-diularly the robot arm has to move both in the x- and y-diretions. To beable to retrieve information about the vertial edges, the robot should beable to rotate the amera, and move it perpendiular to those lines. Thiswould mean that the equations in Setion 2.9 ontaining the rotation matrix55



56 CHAPTER 4. DISCUSSION AND FUTURE WORKR would have to be realulated.To be able to visualize the reonstrution better, trimming the reon-struted lines is neessary. In the reonstrution planes are used, whih havein�nite size, so reonstruted lines an get very long.



Chapter 5ConlusionThe objetive of this thesis were� To propose and selet a suitable feature detetion� To implement a feature traker� To implement a 3D reonstrution algorithm� To test the implementationThese have been met to a large extent.Three methods for deteting features in an image are proposed, testedand ompared. These are orner detetion, edge detetion and optial �ow.These methods were tried out on atual data taken from the robot. Edge de-tetion was found to be the most suitable method. The problem with ornerdetetion is that orner an be deteted on mis-olorations on surfaes anddoes not neessary desribe the struture of the objet. Optial �ow worked�ne when the translation between images was small, but as the translationinreased the method failed to detet the movement. Edges are the featurethat desribe an objet well, and are easy to detet and trak.An edge traker is implemented. This edge traker is able to trak edgesthrough a whole sequene of images.A 3D reonstrution algorithm is implemented. The edges deteted bythe edge detetor and traked by the edge traker are used to reonstrut theobjet in 3D. Here it beomes essential that the features used desribe theobjet well.Tests are done to test the funtionality and limitation of the system. Mostof the tests are made on the 3D reonstrution part. One is made on the edgedetetion part. Here it is found that three onstraint parameters have greatin�uene of how detailed the detetion is. In this system it is essential that57



58 CHAPTER 5. CONCLUSIONthe system �nds long edges, as the detetion is able to detet and segmentthe smallest edges.The translation of the amera is measured in pixels and millimeters. Usingthose information atual measurements an be made on objets.The error is measured for di�erent lengths of the baseline, and found tobe in good oherene with the rule in the literature that the ratio betweenbaseline and distane to objet should be between 13 and 3. After the baselineis shorter that 13 the error inreases.The implementation was used to reonstrut a box. The reonstrutionproved to be a bit erroneous. The edges do not lie vertially in the z diretion.But the distane between the lines and amera proved to be right, whih isimportant.A test was done to show the di�erene between traking lines whih areperpendiular to the movement of the amera versus lines parallel to theamera. The test showed that lines parallel to the amera an not be reon-struted. This means that if vertial lines on the objet is to be reonstrutedthe robot has to be able to move the amera perpendiular to those.Noise in data proved to have a huge e�et of the quality of the reon-strution. An edge was traked through number of images where data wasobviously noisy. The data was simulated, with no noise and reonstruted.The reonstrution proved to be better.The results for the system implemented in this thesis show that the reon-strution algorithm and implementation work, but there is still work to doon the input data. This an be thought of as a step toward a fully automatiquality ontrol system.
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Appendix ACodeFigure A.1 shows a sketh of the struture of the ode. All �les and funtions
edge edgelink lineseg

maxlindev mergeseg

rightsize match1and2 moreindex fillin

seekelem

extralinesfindedgepos

cmat camcent

findcoord makeplane

reconstruction

image
sequence
in

3D
reconstruction
out

Figure A.1: Illustration of the odeare listed in Table A.1. All ode is written in Matlab. The ode and datasetsan be found on the aompanying CD.
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62 APPENDIX A. CODE

File name Funtionedge Takes an image as input and �nds its edgesedgelink Takes edges as input and links them togetherlineseg Takes edges as input and returns the endpointsmaxlindev Used by lineseg. Finds the point of maximum deviation from a linemergeseg Used by lineseg. Seeks to merge edges together given onstraintsrightsize Takes two lists of edges and makes them the same size sothey an be put togethermath1and2 Mathes two �rst images in a sequenemoreindex Mathes the lines in the �rst image to the rest of the images�llin Fills in edges where they have oludedseekelem Used by �llin and extralines. Seeks an edge in a list of edgesextralines Mathes lines that appear after the �rst image in a sequene�ndedgepos Finds position of an edge in spaemat Used by �ndedgepos. Computes the amera matrixament Used by �ndedgepos. Finds the enter of the amera�ndoord Used by �ndedgepos. Finds in world oordinates theposition of edge endpointsmakeplane Used by �ndedgepos. Makes a plane given three points in spaeTable A.1: Files used in this projet and funtion


