
3D Measurement Using CameraMasters Thesis

Gunnar Hardarsons991208
O
tober 2005IMM DTU



2



Abstra
tThis thesis is about the re
onstru
tion of the depth in a s
ene from 2Dimages. A 
amera is moved around an obje
t, 
reating a sequen
e of 2Dimages. Features are tra
ked through the images, where the movement isused for 3D re
onstru
tion. Position, rotation and translation of the 
amerais known.Using feature dete
tion, no laser or stru
tured light has to be used. Threemethods of feature dete
tion are proposed and 
ompared, where one is 
hosenand used. These are 
orner dete
tion, edge dete
tion and opti
al �ow. Testsare 
arried out, where edge dete
tion is 
hosen to be the method used.An edge tra
king algorithm is implemented. This tra
king algorithmtra
ks edges through numerous images, whi
h is essential for a good 3Dre
onstru
tion.A 3D re
onstru
tion algorithm is implemented. This algorithm uses themovement of the edges 
ompared to the movement of the 
amera to estimatethe 3D position of the edges.This implementation is tested extensively. The limitations of the systemis found and solution to those proposed.Keywords : 3D re
onstru
tion, feature dete
tion, edge tra
king.
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Prefa
eThis thesis shows how Gunnar Hardarson, s991208, solved the problem of3D measurement using 
amera. This proje
t is written at the department ofInformati
s and Mathemati
al Modelling (IMM) at Te
hni
al University ofDenmark (DTU) during the period Mar
h to O
tober 2005.I would like to thank my supervisors Henrik Aanæs and Jens Mi
haelCarstensen for good suggestions, ideas and 
omments throughout the proje
t.
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Chapter 1Introdu
tion
1.1 Quality ControlIn today's mass produ
tion so
iety, with often great distan
es between pro-du
tion and assembly, the need for a good quality 
ontrol system is great.The most easy-to-use quality 
ontrol is the human being. For many years,people have worked with quality 
ontrol, looking at obje
ts running pastthem on an 
onveyor belt, visually inspe
ting the obje
ts. This approa
hhas several disadvantages for the employees, and human error in
reases astime goes by. Automation in this �eld is of great interest, due to better work
onditions and higher pre
ision.Mainly two types of quality 
ontrol systems exist. Conta
t and non-
onta
t systems. In a 
onta
t system, a 
ensor tou
hes the obje
ts in variouspla
es, registering where there is resistan
e. These points are 
ompared tothe points on a build in model of the obje
t. If those points are in agreementwith the model, the obje
t is good.A non-
onta
t system 
an be made with the help of 
amera vision. Manyvariations exist. One or several 
ameras 
an be used and sometimes lasers.The advantage of this solution is that the obje
t is never tou
hed duringinspe
tion.1.2 The ProblemA three dimensional (3D) measurement system, used for quality 
ontrol is tobe designed and prototyped.This system will use a single 
amera moved around an obje
t. The obje
tis pla
ed inside a 
age, where a robot arm moves a 
amera around the obje
t.3D inferen
e will be made based on this input.9



10 CHAPTER 1. INTRODUCTION1.3 Quality Control SystemsVarious quality 
ontrol systems have been made trough the years, with dif-ferent approa
h. As mentioned earlier quality 
ontrol systems 
an be 
atego-rized into two groups; a 
onta
t and non-
onta
t systems. A 
onta
t systemis a system where the obje
t to be 
ontrolled is 
onta
ted physi
ally by a
ensor.An example of a 
onta
t system is the one used in the railway 
onstru
tionindustry [1℄. The ere
tion of the four biggest modules, the �oor, roof and twowalls needs big pre
ision and the working environment is hazardous. Insteadof having workers positioning and welding the modules in pla
e, a 
onta
tsystem is made, positioning the modules and welding, without any humanintera
tion.As knowledge in image analysis and 
omputer s
ien
e has grown the useof image based quality 
ontrol systems has in
reased. These systems are non-
onta
t systems. Cameras are used to measure the obje
t, either moving the
amera or the obje
t. The results are often 
ompared to an underlying CADmodel. These systems use many di�erent te
hniques, of gathering data for3D re
onstru
tion. Some te
hniques are mentioned below.1.3.1 Laser SystemsA laser system proje
ts laser beam over the obje
t to be measured. Thebeam is re�e
ted on the surfa
e on the obje
t and tra
ked. This way one 
anget very detailed information of the surfa
e stru
ture of the obje
t.An advan
ed CAQ (Computer Aided Quality) system using di�erent laserapproa
hes is presented in [2℄.1.3.2 Marker SystemsIn marker systems, marks are put on the obje
t and dete
ted by the system.It re
ognizes the shapes of the markers and 
an thereby estimate the positionof ea
h marker.An example of a marker system is when 
at
hing the movement of a
omplex non-rigid body like when a human is walking. This topi
 is dis
ussedin [3℄. Markers are pla
ed on di�erent pla
es, on the body, and then tra
ked,using multiple 
ameras. This te
hnique is used in gait analysis.



1.4. OUTLINE 111.3.3 Using Feature Dete
tionIn the before mentioned non-
onta
t systems, stru
tured illumination ormarkings on the obje
t to be measured, is used. In the 
urrent proje
t,this is not the 
ase. The intention is to make a quality 
ontrol system whi
huses features in the obje
ts. This way, the only hardware needed is a 
amera.A outline of the thesis is given in next se
tion.1.4 OutlineA robot moves a video 
amera above an obje
t. A framegrabber is used to
olle
t a sequen
e of images. This image sequen
e is used to re
onstru
t thedepth in the s
ene.The thesis 
an be divided into four parts.The �rst part is feature dete
tion. Here three methods are 
onsideredand 
ompared. One method is 
hosen and used. This feature dete
tion must
apture the essential features in an obje
t.The se
ond part is feature tra
king. In order to dete
t movement in thes
ene, features have to be tra
ked. Here the features are tra
ked through theimage sequen
e.Third part 
overs the 3D re
onstru
tion. Here the features that havebeen tra
ked through the images are used to re
onstru
t the depth in thes
ene and to �nd the 
onstru
tion of the obje
t.The fourth part of the thesis deals with extensive testing of the sys-tem. Both the fun
tionality and how it performs under di�erent situationsis tested.
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Chapter 2The system
2.1 OverviewIn this 
hapter the system is des
ribed, both the theory behind it and itsimplementation. In Figure 2.1 an overview of the pro
ess is shown.

Image Acquisition

Image Sequence

Tracking 3D reconstruction

Edge Detection

Geometry

Figure 2.1: Overview of the pro
ess13



14 CHAPTER 2. THE SYSTEMFirst data is gathered by taking images. This is done with a robot armmoving a 
amera around the obje
t to be measured. Using a robot armthe movement and position of the 
amera is known. This 
an be used inthe 
omputations. A frame grabber is used to grab individual frames. Aphotograph of the robot is shown in Figure 2.2. More extensive text andillustration of the robot is found in [9℄.

Figure 2.2: The robot. The arm 
an be moved in three dire
tionsThe 
onse
utive images make an image sequen
e, where the 
amera hastranslated in small steps between images. This movement is to be used tore
onstru
t the depth in the s
ene.For ea
h image, features are dete
ted. The features are then tra
kedbetween images, to dete
t the movement in the s
ene. The features dete
tedhave to des
ribe the obje
t very well.Using the information from the above mentioned pro
edures, the geom-etry in the s
ene is estimated. From this estimation, a qualitative guess ofthe 3D 
onstru
tion in the s
ene is made.2.2 DataThree datasets are made. These are



2.3. FEATURE DETECTION 15� Dataset1. A simple syntheti
 dataset. 6 verti
al lines are drawn andmoved di�erently between 20 images. The movement is sket
hed inFigure 2.3.
1 2 3 4 5 6

Figure 2.3: Di�erent movement of the lines. The numbers represent themovement in pixels� Dataset2. Images taken from the robot, as the arm moves in the xand y dire
tion. The obje
t is a bla
k box on a white ba
kground. Theedges are 
olored white. An example of the dataset is shown in Figure2.4.� Dataset3. Images taken from the robot, as the arm moves in the x-dire
tion. The obje
t is a model of a ship. An example of the datasetis shown in Figure 2.5.These datasets will be used through out the report when testing the system.The datasets represent a typi
al input to the system.2.3 Feature Dete
tionIn order to make a system as des
ribed above, one needs to dete
t featuresin the obje
t. Feature dete
tion is an essential part of 3D re
onstru
tion.
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Figure 2.4: Image from Dataset 2

Figure 2.5: Image from Dataset 3
Features in an image 
an be of various kinds. The most obvious ones are
orners, edges, shadings and 
olors. Shadings and 
olors are very hard todes
ribe and even harder to 
ompare as they often rea
h over large areasof the image. On the other hand, 
orners and edges are easier to des
ribeand 
ompare. This is due to a sudden swift in gradients in an image around
orners and edges. Some methods of feature dete
tion are dis
ussed below.



2.3. FEATURE DETECTION 172.3.1 Edge Dete
tionThe present system is most likely to be used in the welding industry or dealingwith obje
ts that are made of straight plates, rather that 
urved obje
ts likea 
hassis of a 
ar. Due to this edges are a good feature to use. An edge is awell de�ned form, and not likely to be misidenti�ed.Examples are taken from Dataset 2 and 3 to 
ompare the methods.Edges are dete
ted in a random image from Dataset 2. The results areshown in Figure 2.6.

50 100 150 200 250 300
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Figure 2.6: Edges foundThe edges dete
ted in Figure 2.6 des
ribe the obje
t well, with one ex-
eption though, the shadows. These will always be a problem.Figure 2.7 shows the result from dete
ting edges in a image taken fromDataset 3. One 
an 
ome to the same 
on
lusion here about the edge dete
-tion. It dete
ts the most obvious edges, but still the shadows are a problem.Noti
e the surfa
e damage just below the big hole in the bottom of the model.No edges are dete
ted there.2.3.2 Corner Dete
tionCorners are dete
ted in the same image from Dataset 2. The results areshown in Figure 2.8.The problem with 
orners are that they do not ne
essary des
ribe anobje
t very well. Corners 
an be found on surfa
es, whi
h may lead tomisidenti�
ation of a real 
orner on the obje
t. In Figure 2.8 are some obviousmisidenti�
ation's of 
orners whi
h 
an not be used for 3D re
onstru
tion.
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Figure 2.7: Edges found
image with corners
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Figure 2.8: Corners foundFigure 2.9 shows an image taken from Dataset 3 and 
orners found. Noti
ethe 
orners found on the surfa
e damage just below the hole in the bottom.These 
orners 
an not be used for 3D re
onstru
tion.An ex
ellent 
orner dete
tion algorithm is presented in [5℄.2.3.3 Opti
al FlowOpti
al �ow is a way of estimating the movement in a s
ene. One stereo-image is warped into another and the velo
ity �eld is 
omputed. This velo
ity
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image with corners
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Figure 2.9: Corners found�eld represents whi
h parts of the s
ene are moving and how fast. This 
anbe used as a feature dete
tion.A freely available software in C is used for the velo
ity �eld 
al
ulations1.The software pa
kage returns the velo
ity �elds in the form of gray-s
aleimages. The pixels are 
oded in the following way� Gray pixels represent no movement� Dark pixels represent movement in the negative dire
tion� Light pixels represent movement in the positive dire
tionTwo images are returned, one for the horizontal dire
tion (x) and one for theverti
al dire
tion (y).Some experiments were made with the opti
al �ow to 
he
k its potentialsand limitations.Images were taken from Dataset 2. The images are shown in Figure 2.10(a) and (b). The result is shown in Figure 2.10 (
). The method does well�nding the movement in the s
ene, where the box is shown in white pixels,whi
h represent movement in the positive dire
tion.But how well does the method 
ope with larger movements in the s
ene?Next test is done with images taken where the 
amera has translated more.The images are shown in Figure 2.11 (a) and (b). Observing Figure 2.11(
)one 
an see that the method needs the images to be taken 
lose to ea
h other.1http://www.
s.brown.edu/people/bla
k/
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(a) First image (b) Se
ond image

(
) Verti
al movement between the im-agesFigure 2.10: Images and result from opti
al �owTwo images are taken from Dataset 3 and the opti
al �ow 
omputed.The images are shown in Figure 2.12 (a) and (b). The result is shown inFigure 2.12 (
). Observing Figure 2.12 (
) some features are dete
ted, butthe algorithm has some trouble �nding the dire
tion the obje
ts are movingin. This 
an be due to 
omplexity in the s
ene.More extensive text and implementation on opti
al �ow 
an be found in[8℄.2.3.4 Choosing the method for this proje
tThe methods dis
ussed above are all �tted for feature dete
tion, but onlyone is to be used in this proje
t. The main 
riteria for method sele
tion wereto �nd the most des
ribing features, that are easy to tra
k.Edges are the features that des
ribe an obje
t the best and are easyto dete
t and tra
k. Comparing Figures 2.9 and 2.7 showing the resultsfrom edge dete
tion and 
orner dete
tion one 
an see that the informationgathered in Figure 2.7, by the edge dete
tion method is mu
h greater thanthe information in Figure 2.9. The edges found des
ribe the obje
t better.



2.3. FEATURE DETECTION 21
(a) First image (b) Movement between images isgreater now

(
) Verti
al movement between the im-agesFigure 2.11: Opti
al �ow with greater distan
eThe same is when using a simpler obje
t as in Dataset 2. The 
orners foundin Figure 2.8 
an not be used for 3D re
onstru
tion.The features found using opti
al �ow were good when the movementwas small, (Figure 2.10), but as the movement in
reased, (Figure 2.11), themethod performed worse. The method also fails when the obje
t gets more
omplex as in Figure 2.12.Furthermore in order to dete
t features in a s
ene using opti
al �ow,there has to be movement in the s
ene, and the dete
tion depends on thismovement. This makes this method less appealing.Considering the above the edge dete
tion method in 
hosen. The positivesides of edge dete
tion are listed below.� Des
ribes an obje
t well� Easy to dete
t� Easy to tra
kAs the 
hosen feature dete
tion method is edge dete
tion the following as-sumptions about the obje
ts to be measured have to be made
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(a) First image (b) Movement between images isgreater now

(
) Verti
al movement between the im-agesFigure 2.12: Opti
al �ow used on Dataset 3� The obje
t has to be des
ribed well by it's edges� The edges have to be visually easy to dete
t� The edges have to be straight2.4 Edge Dete
tionAs the 
hosen method is edge dete
tion, this method is explained in thisse
tion more extensively.To dete
t edges the sudden swift in the gradients in an image is used.Before the gradients are 
omputed the image is smoothed with a Gaussian�lter. This is done to eliminate noise in the image. Gradients are 
al
ulatedboth horizontally and verti
ally in the following way.Verti
ally: Gv(j; k) = A(j; k + 1)� A(j; k � 1) (2.1)



2.5. IMPLEMENTATION OF THE EDGE DETECTION 23Horizontally: Gh(j; k) = A(j + 1; k)� A(j � 1; k) (2.2)Where j and k are row and 
olumn pixel indi
es. A is the matrix representingthe image. G is the gradient matrix. The verti
al (Gv) and horizontal (Gh)gradients are then 
ombined into one gradient matrix (G) by (2.3).G =p[Gh℄2 + [Gv℄2 (2.3)After 
omputing the gradients, the pixels with the highest probability ofrepresenting an edge are sorted out with a threshold. The edges are thinnedto the width of one pixel and segmented into lines.2.5 Implementation of the Edge Dete
tionA freely available Matlab implementation2 was applied for the edge dete
tion.What it does is listed below.1. Load image2. Find edges3. Link edge pixels together4. Make list of edgesThese steps are dis
ussed in more detail below.2.5.1 Loading the imagesThis is a standard pro
edure, load the image and make it gray-s
ale. Thesystem works only with gray-s
ale images. An original image, taken fromDataset 3 is shown in Figure 2.13.2.5.2 Finding the edgesAn edge dete
tion algorithm is used to dete
t the edges in the image. Thefollowing 
all is used for thisedgeim=edge(im, '
anny', thresh, sigma).The parameters are explained below� The output edgeim is an image with the edges thinned to a single pixel.2http://www.
sse.uwa.edu.au/ pk/Resear
h/MatlabFns/
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Figure 2.13: An original image, taken by the robot� im is the image to be dete
ted, in gray s
ale.� 
anny is the edge dete
tion algorithm used.� thresh is a two-element ve
tor where the elements are low and highthresholds. These thresholds are used after a non-maximum suppres-sion, whi
h suppresses all pixels not at a maximum to a non-edge pixel.The algorithm sweeps over the remaining pixels, suppressing the pixelsbelow the lower threshold to a non edge pixel, and those above to anedge pixel. Those in-between are made either edge or non-edge pixels,depending on if there is a path from this pixel to an edge pixel.� sigma is the standard deviation of the Gauss �lter used to smooth theimages.Figure 2.14 shows the edges (white) found from the original image, shown inFigure 2.13.2.5.3 Linking edge pixelsThe edge-points are linked together, forming sequential list of edge-points.This is done in the following 
all[edgelist, labeledgeim℄=edgelink(edgeim, l).The parameters are explained below� edgelist is a 
ell array, where ea
h 
ell 
ontains a list of edge pixels.
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Figure 2.14: The edges found from Figure 2.13� labeledgeimage is the edge-image, with di�erent edges 
olored in dif-ferent 
olors.� edgeim is the edge-image returned from the edge 
all mentioned earlier.� l is the minimum length of edges to be dete
ted. Edges with lengthbelow this threshold are not 
lassi�ed as edges.Figure 2.15 shows the edges linked together and segmented.

Figure 2.15: The linked and segmented edges from the edges in Figure 2.14



26 CHAPTER 2. THE SYSTEM2.5.4 Making the list of edgesThe last thing the edge dete
tion algorithm does is to make straight linesfrom the edges found. This is a task of �nding the lines, and returning theendpoints.The 
ommand used here isseglist=lineseg(edgelist, tol, angtol,linkrad).The parameters are explained below� seglist is the list of endpoints. It is on the form264 x11 y11 x12 y12... ... ... ...xn1 yn1 xn2 yn2 375Where (x11; y11) and (x12; y12) are the two endpoints of the �rst line.� edgelist is the 
ell array returned from the edgelink 
ommand.� tol is one of three restraints, it is an upper threshold on the maximumdeviation from original edge.� angtol is a threshold on di�eren
e in angle.� linkrad is a measure of how 
lose endpoints are allowed to be beforethey are merged.The line-image is shown in Figure 2.16, along with the original image. One
an see that most of the important edges are dete
ted.2.6 Edge Tra
kingThe human vision system 
onstru
ts 3D view from two 2D images, one fromea
h eye. The di�eren
e between obje
ts in the two images is used to re-
onstru
t the depth in the s
ene. This 
on
ept is used in 3D re
onstru
tionsystems.In order for su
h a system to a
hieve 3D information, there has to beeither two 
ameras or a movement, either in the s
ene or the 
amera. Movingthe 
amera is 
hosen here. More information 
an be gathered this way. Asthe 
amera is moved, it 
aptures video sequen
e of the obje
t. Then usinga frame grabber, individual images are obtained. Taking two images, fromtwo 
onse
utive frames, 
orresponds to taking two images with an ordinary
amera, side by side. But as the 
amera is moved for some distan
e, more
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Figure 2.16: The lines found in the original imageinformation 
an be gathered and thus, a more a

urate model of the obje
t
an be 
onstru
ted.In order to measure the movement of the edges through the s
ene, anedge tra
king algorithm is implemented. This appli
ation is able to tra
kedges through a series of 
onse
utive images.The edge dete
tion algorithm des
ribed earlier, returns a list of edges onthe form 264 x11 y11 x12 y12... ... ... ...xn1 yn1 xn2 yn2 375for ea
h image. The tra
king algorithm 
ompares two lists of edge endpoints,sear
hing for mat
hes within a given range. If there is a mat
h, the index ofthe two edges is inserted into an index-matrix. If there is no mat
h in nextimage in the sequen
e a zero is inserted into the matrix. When the matrixis made, the algorithm runs through it again. Where there are zeros, whi
hmeans that an edge is not mat
hed, the edge is sought in the rest of theimages. This is done to prevent losing edges if they disappear in one imageand reappear later.Edges that appear after the �rst image is then dealt with last. An edgefound in an image after the �rst one, whi
h has not been mat
hed is soughtfor in the rest of the images. This is 
on
atenated to the end of the index-matrix. This 
ompletes the tra
king algorithm, whi
h by now should beable to tra
k most lines through a number of images, assuming not too bigtranslation between images.



28 CHAPTER 2. THE SYSTEMThe index matrix is shown below26664 u1;1 u1;2 : : : u1;mu2;1 u2;2 : : : u2;m... ... ui;j ...un;1 un;2 : : : un;m
37775Where ui;j denotes the jth edge in image i.The results of running the algorithm on several images, taken fromDataset2 is shown in Figure 2.17.

Figure 2.17: The edge is tra
ked through a number of images
2.7 Implementation of the tra
king algorithmIn this se
tion the implementation of the tra
king algorithm is des
ribed inmore detail.The algorithm runs as follows� Mat
hes the �rst two images� Fills in the inde
es where edges have o

luded and reappeared� Runs through the index matrix mat
hing lines not seen in the �rstimage



2.7. IMPLEMENTATION OF THE TRACKING ALGORITHM 292.7.1 Mat
hing the �rst two imagesThe edges in the �rst image are numbered as they appear in the edge-matrix.These are then mat
hed to the edges in the se
ond image. The mat
hingpro
ess is made in the following steps� Make a box around ea
h endpoint in the �rst image� Sear
h within those boxes for the endpoints in the other image� Both endpoints must mat
h both endpoints in the other imageThis is done by the following 
allindex = mat
h1and2(totalseglist, box, sizes);where� index is the list of mat
hes. The �rst row 
onsists of numbers from oneto the number of edges in the �rst image. The se
ond row representsthe mat
hes to the lines in the se
ond image.� totalseglist is a 3D list of edges, for all the images.� box is the size of the sear
h-box. Setting this box too small may riskthe algorithm to fail to �nd the right edges, too big will slow down theexe
ution time. For the 
amera used in this proje
t the re
ommendedsize is 5 pixels.� sizes is the sizes of the edge-lists.2.7.2 Mat
hing the edges in the rest of the imagesNow the index matrix is two rows. The rest of the edge-images are nowmat
hed to ea
h other, using the numbering from the �rst image, and theendpoint 
oordinates from the pre
eding image. This way, the 
amera 
anmove over a 
onsiderable distan
e, without losing tra
k of the edges. This isdone in the following 
ommandnewindex=moreindex(totalseglist, finalindex)where� newindex is a two row ve
tor, where the se
ond row represents theedges mat
hed to the ones in the �rst image, using the 
oordinatesfrom the pre
eding image.� totalseglist is a 3D list of edges, for all the images.



30 CHAPTER 2. THE SYSTEM� finalindex is the index matrix so far. From this matrix the 
oordi-nates of the edges in the last image are taken.The above 
ommand has to be 
alled N � 2 times where N is the number ofimages, to 
apture all of the remaining images.2.7.3 Filling in the o

luded edgesNow edges that are lost in an image, and reappear few images later are de-te
ted and mat
hed. If an edge is o

luded the algorithm so far does notlook for it in the remaining images. This is mended by the fun
tionnewindex=fillin(finalindex, totalseglist);� newindex is the newest version of the index-matrix, now with o

ludededges.� finalindex is the index made from the previous 
all.� totalseglist is a 3D list of edges, for all the images.2.7.4 Mat
hing the lines appearing after the �rst imageAs the 
amera is moved, the lines that are on the �rst image, are not all thelines the 
amera dete
ts. Edges appearing on later images must be takeninto a

ount in the 
omputations. This is done in the following 
ommandtotalindex = extralines(newindex, totalseglist);where� totalindex is the latest version of the index-matrix. This versionin
ludes o

lusions and new appearing lines.� newindex is the index from the previous 
all.� totalseglist is a 3D list of edges, for all the images.This 
ompletes the index matrix, edges have been tra
ked throughout thewhole sequen
e.



2.8. GEOMETRY 312.8 GeometryNow that the edges have been identi�ed and tra
ked, the next step is tore
onstru
t the depth in the s
ene. As mentioned earlier, the human vision-system 
onstru
ts the 3D in a s
ene from the di�eren
e between the 2Dimages, from ea
h eye. This is used in the 3D re
onstru
tion algorithm.The information about the movement in the s
ene is used here to get 3Dinformation, or the depth in the s
ene. The movement of the 
amera is alsoused.This problem is 
losely related to that of the stru
ture from motion prob-lem. The di�eren
e is that in the 
urrent problem, the movement of the
amera, translation and rotation is known. This makes the 
omputationsmore simple.Figure 2.18 shows a sket
h of the problem.
View 2

aX1+bX2

Camera center 1 Camera center 2

Image Plan Image Plan

x1

x2
x4

x3

Normal

PlaneView 1

Figure 2.18: Sket
h of the problem. The edge is observed from two 
ameras.x are the endpoints of the edges observed.From the edge images taken from the image sequen
e, only 2D informa-tion is 
olle
ted. No information is given about the position in spa
e of theedge. This setup 
orresponds to V iew 1 in Figure 2.18. The only informa-tion is that the line lies on a plane, made from the 
enter of the 
amera,and the edge-line, seen on the image. Now, moving to V iew 2, the sameedge is dete
ted in that image. Making a plane the same way as before, thetwo planes interse
t in spa
e. The line in 3D spa
e is found. To be morea

urate, more views and planes are made, to get a better estimate of where



32 CHAPTER 2. THE SYSTEMthe planes interse
t. In the ideal world, where there is no noise in the images,the interse
tion of all the planes, would be exa
tly at one line. In the realworld, this is rarely, or never the 
ase. To 
ompensate for this, the line whi
his 
losest to des
ribe the interse
tion of the planes is sought and set to be there
onstru
ted line in 3D. From this it is easy to see that more information(images) give more planes and more a

urate estimate of the line.2.9 3D Re
onstru
tionThe re
onstru
tion algorithm is des
ribed more thoroughly step by step be-low.2.9.1 Computing the Camera MatrixThe 
amera matrix maps world points X to image points x a

ording tox = PX (2.4)The 
amera matrix P is written on the formP = [KRj �Kt℄ (2.5)where K is the 
amera 
alibration matrix, R is the rotation matrix and t isthe translation ve
tor.The 
amera 
alibration matrix is given by24 �x s x00 �y y00 0 1 35 (2.6)where� �x is the fo
al length in the x-dire
tion, in pixels� �y is the fo
al length in the y-dire
tion, in pixels� s is the skew fa
tor� x0 and y0 is the prin
ipal pointR is given in 24 r1;1 r2;1 r3;1r1;2 r2;2 r3;2r1;3 r2;3 r3;3 35 (2.7)where



2.9. 3D RECONSTRUCTION 33� r1;1 = 
os(�) 
os(K)� r1;2 = � 
os(�) sin(K)� r1;3 = sin(�)� r2;1 = 
os(
) sin(K) + sin(
) sin(�) 
os(K)� r2;2 = 
os(
) 
os(K)� sin(
) sin(�) sin(K)� r2;3 = � sin(
) 
os(�)� r3;1 = sin(
) sin(K)� 
os(
) sin(�) 
os(K)� r3;2 = sin(
) 
os(K) + 
os(
) sin(�) sin(K)� r3;3 = 
os(
) 
os(�)The parameters 
, � and K are the rotation around the x�, y� and zdire
tion respe
tively. These are given in world 
oordinates. The 
amerais not rotated at all, so all those parameters are zero. Inserting zero in theequations, the identity matrix I is rea
hed. This simpli�es (2.5) toP = [Kj �Kt℄ (2.8)The translation ve
tor is given ast = 24 ÆxÆyÆz 35 (2.9)where the element represent the translation in ea
h dire
tion.2.9.2 Finding the Camera CentersIn order to �nd a plane in spa
e one needs three points in spa
e. In the
urrent setup, three points are known, the 
amera 
enter and two points onthe edge-image.The 
amera 
enter 
an be 
omputed from the 
amera matrix P, given by(2.8) and a translation ve
tor t, given in (2.9). The world 
oordinate systemis set to have the origo just above the 
enter of the obje
t. The xy plane isparallel to the image plane, and the z axis is set along the opti
al axis. Thesystem is s
aled so the distan
e from the 
amera 
enter to the image plane isone unit. A sket
h to demonstrate this is shown in Figure 2.19. The 
enterof the 
amera is found as 
 where P
 = 0:
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x

y

zFigure 2.19: De�nition of the world 
oordinate system2.9.3 Finding the PlanesThe two endpoints of ea
h edge are used as the two points left to de�ne theplane. In order to retrieve the world 
oordinates for these points, the 
am-era matrix is used. This time the translation ve
tor is the zero ve
tor, dueto the fa
t that we are now working in the image-
oordinate system. Theequation for mapping from world 
oordinates to image 
oordinates is givenby (2.4). This equation must be solved with respe
t to X in order to mapfrom image 
oordinates to world 
oordinates. The solution to (2.4) 
an not befound dire
tly as P is not a square matrix, so the following a
tions are taken.1. The equation 
an be written as x = K[Rjt℄X2. K is a square matrix, so it 
an be inverted K�1x = [Rjt℄X3. Given that the rotation matrix is the identity matrix and the transla-tion ve
tor is the zero ve
tor the equation looks likeK�1x = 24 1 0 0 00 1 0 00 0 1 0 3524 XYZ 354. Multiplying yields K�1x = 24 XYZ 35This maps the 2D points to 3D, with the distan
e to the z plain set to 1 unit.The equation of the plane is on the following formnx = �� (2.10)



2.10. IMPLEMENTATION OF THE GEOMETRY 35where n = [nx; ny; nz℄ is the normal to the plain. � is the distan
e from everypoint on the plane to the origo, whi
h is set as the position of the 
amera.This plane is found for ea
h edge, in ea
h image.2.9.4 Finding the Interse
tion of the PlanesAs said before, the line in spa
e is found where the planes are 
losest tointerse
t. Two points are found in spa
e wherePx = 0 (2.11)where P is the plane for ea
h line, and x is a point in spa
e. These twopoints span a line written on the form l = ax1 + bx2 where a and b are anynumber.2.10 Implementation of the GeometryThe re
onstru
tion algorithm takes as input the 
oordinates of mat
hinglines. Finding the lines in 3D, the following steps are taken� Find the 
amera matrix� Find the 
enter of the 
amera� Find, in world 
oordinates, the edge endpoints� Determine plane� Find 3D points2.10.1 Finding the Center of the CameraAs said before, the 
enter of the 
amera is found where Px = 0.The following 
all is used for this
enter=
am
ent(P)where� 
enter is the 
enter of the 
amera in 3D spa
e.� P is the 
amera matrix. The translation ve
tor t, is 
omputed as thedistan
e from origo.Using singular value de
omposition, the x is 
omputed.



36 CHAPTER 2. THE SYSTEM2.10.2 Finding the Edge PointsThe edge points found on the edge-image are transformed into world 
oor-dinates using the 
amera matrix, with translation ve
tor equal to the zerove
tor. The following 
all is used to do this[p1,p2℄=findedgepos(index,seglist)where� p1 and p2 are the endpoints in world 
oordinates� index is a list of mat
hing edges� seglist 
ontains the positions of the edges in image 
oordinates2.10.3 Making the PlaneGiven the three points in spa
e from the previously mentioned methods, one
an now make a plane. The following 
all is used[n alpha℄ = makeplane(s1, s2, s3, 

enter)where� n is the normal ve
tor to the plane� alpha is the distan
e from a point on the plane to the origin. The pointon the plane here is 
hosen to be the 
amera 
enter.� s1, s2 and s3 are the points that make the plane.� 

enter is the 
amera 
enter, used to 
ompute alpha.For ea
h edge the n and � from the equation of the plane (2.11) is insertedin a matrix P . This matrix is used later to determine the line in 3D.2.10.4 Finding the 3D PointsThe interse
tion of all the planes, is found using the equation Px=0. WhereP is a matrix of planes, dis
ussed in the previous se
tion. This is done usingsingular value de
omposition (svd). The svd returns points that are the
losest to represent the line where the planes interse
t.



2.11. CALIBRATION 372.11 CalibrationWhen taking a pi
ture from a lens 
amera, some distortion will appear onthe image. Due to this, these images are not suitable for measurements. Thedistan
e between elements in the 
enter of the image, does not represent thedistan
e between elements at the edges of the image. This 
an be mended by
alibrating the 
amera. By 
amera 
alibration, the distortion in the imageis measured. This is used later in the 3D 
omputations.The purpose of 
amera 
alibration is to 
ompute the parameters of theinner orientation, the fo
al length, prin
ipal point, distortion and skew.A 
omplete Camera Calibration Toolbox for Matlab may be downloaded3.This toolbox is used to 
alibrate the 
amera.First a 
alibration sheet is made. This sheet is a 
hessboard with equallysized squares, bla
k and white. The sheet is glued on a rigid metal plate,due to the risk of the sheet bending under the pro
edure.Twenty images of di�erent angle and position is taken from the 
amera.A 
alibration sheet of 24�38 squares, with side-length of 10�10mm is triedout but found to be too small. A 16 � 24 squares, with side-length 16mmgives a better result. If the squares are too small, the 
orners of the squaresare di�
ult to dete
t, even visually as the 
ase was with the 10mm squares.If the squares are too big, the number of 
orners are too few for a good
alibration.Figures 2.20 and 2.21 show the original image, and the undistorted image.The parameters 
omputed by the 
alibration are shown in Table 2.1.x yFo
al Length 380.60892 378.42038Prin
ipal Point 153.27998 119.84683Table 2.1: Parameters for the 
ameraSkew is 0.000141. The distortion parameters are[�0:25888; 0:36657; 0:00110; 0:00005℄. The parameters are des
ribed in moredetail below� Fo
al Length denotes the length from the Proje
tion Center to theImage Plane in pixels. The fo
al length is divided into x- and y dire
tionbe
ause the pixels are not quadrati
al.3http://www.vision.
alte
h.edu/bouguetj/
alib_do
/
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Original image (with distortion) − Stored in array I
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Figure 2.20: The 
alibration sheet used to 
alibrate the 
amera
Undistorted image − Stored in array I2
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Figure 2.21: The undistorted image� Prin
ipal Point is the 
oordinates where the perpendi
ular from theProje
tion Center interse
ts with the Image Plane� Skew is a 
oe�
ient de�ning the angle between the x and the y pixelaxis



2.12. CONSTRUCTING THE SCENE 39� Distortion are the parameters of the distortion fun
tionIt is assumed here that the 
amera used does not have the �Auto-zoom�turned on. Auto-zoom, 
hanges the fo
al length as obje
ts in front of thelens is moved. This would have an erroneous e�e
t on the 
omputation ofthe fo
al length.2.12 Constru
ting the s
eneWhen 
onstru
ting the s
ene physi
ally, that is pla
ing the obje
t, 
hoosingba
kground, light and so on, many things have to be 
onsidered. Those arethings that in�uen
e the end result. One 
an make a great 3D re
onstru
tionalgorithm, but lose some information to bad lighting or wrong ba
kground.One has to take into 
onsideration what features in the obje
t one wants toamplify. Some of these fa
tors are dis
ussed below.2.12.1 LightingWhen dete
ting features in an obje
t, an essential part is the lighting. Manyaspe
ts of lighting have to be taken into 
onsideration. Some are� Intensity� ShadowsThe intensity of the light has to �t the surfa
e of the obje
t. Too strong light
an result in mirror e�e
t in the 
ase of metal surfa
es. This 
ould disturbthe gradient 
al
ulations. Too weak light 
an result in bad illumination ofthe obje
t, and des
ribing features would not be dete
ted.Shadows in the s
ene 
an be dete
ted as edges, whi
h leads to a badre
onstru
tion model. This 
an be mended using either ambient light, ormore easy, mounting the light on the same arm as the 
amera, so the partsthat are being photographed are illuminated at the same time.2.12.2 Ba
kgroundAn essential part of 
hoosing ba
kground is that there should not be anydete
table features in the ba
kground. A 
lean sheet where the jun
tions donot show, will result in a good feature dete
tion. Other thing to be takeninto 
onsideration is the 
olor of the ba
kground. It is of great importan
ethat the 
olor is opposite to the 
olor of the obje
t. This way the edges ofthe obje
t are enhan
ed, leading to a better solution. This is parti
ularly



40 CHAPTER 2. THE SYSTEMimportant when working with an obje
t like the one in Dataset 3 where thereis a hole in the obje
t.2.13 Ground TruthFor testing how well the re
onstru
tion algorithm performs, a ground truthis ne
essary.The obje
t in Dataset 2 is plotted in Matlab. In the 
ase of a more
omplex obje
t, this would be done in AutoCAD, and imported to Matlabvia the import-fun
tion 
ad2mat4. This plot is used for 
omparison of theoutput of the appli
ation. The plot is shown in Figure 2.22.
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Figure 2.22: The box

4http://www.mathworks.
om/matlab
entral/fileex
hange/



Chapter 3TestsHow well does the system work? How does the di�erent parameters a�e
tthe out
ome? Answer to these questions and similar is the subje
t of this
hapter.In order to tell how well the system works, an extensive test s
heme ismade and 
arried out. An overview of the tests is given in the following� Basi
 fun
tionality - some basi
 tests to see if parts of the algorithmwork.� The points in 3D that form the line on the obje
t should proje
ton, or 
lose to the line found on the edge image.� The epipolar line is used to see if the 3D point proje
ts 
orre
tlyto the next image.� A simple syntheti
 data, from Dataset 1, is used to see if thealgorithm works with simple data.� Translation Determine the value of the 
amera translation t in pixelsand millimeters.� Tuning the Edge Dete
tion parameters - What e�e
t does the
onstraint parameters in the edge dete
tion have.� Baseline - what e�e
t does it have to 
hange the length of the baseline?� Re
onstru
ting the Box - data from Dataset 2 is used to re
onstru
tthe box.� Two dire
tions - Re
onstru
ting edges where the 
amera moves per-pendi
ular to the edge and where it moves parallel to the edge.41



42 CHAPTER 3. TESTS� Noise in data - translation of an edge is simulated with no noise andre
onstru
ted.3.1 Epipolar TestUsing epipolar geometry [7℄, a 3D point should be seen somewhere along theepipolarline from the other image. Knowing the translation of the robot one
an predi
t the epipolarline. In the dataset used the robot arm moves onlyin the x dire
tion. This means that the epipolarline lies at y = k, where kis the y 
oordinate for the 3D point proje
tion in the �rst image. This isillustrated in Figure 3.1.
3D point

Camera Center 1 Camera Center 2

Point seen in image 1

Epipolar Line

Image plane 1 Image plane 2

Figure 3.1: The 3D point should be seen along the epipolarlineThe interse
tion of the se
ond image-plane was 
omputed and 
omparedto the interse
tion of the �rst image-plane. The y-
oordinates proved to bethe same all the time.3.2 Proje
tionWhen the points in 3D are found, they should proje
t near the edge-line inevery view when proje
ted to the 
amera 
enter.This is tested using the distan
e between two lines. The equation for theshortest distan
e between two lines 
an be written in the following wayD = j
 � (a� b)jja� bj (3.1)



3.3. TEST ON SYNTHETIC DATASET 43where a = x2 � x1, b = x4 � x3 and 
 = x3 � x1.x1, x2, x3 and x4 are explained in Figure 3.2. This was tested on various
point in 3D

Camera Center

Edge

x

x

x

x

1

2

3

4

Figure 3.2: The distan
e between the lines should be minimaldatasets where the distan
e is found to be very small. This shows that thepoints proje
t 
orre
tly ba
k to the image plane, whi
h implies that theposition of the point in 3D spa
e is 
orre
t.3.3 Test on syntheti
 datasetIn order to see if the system works on a simple syntheti
 data, Dataset 1was made. The data is 
onstru
ted of 6 parallel lines, perpendi
ular to themovement of the 
amera. 20 images are made, where ea
h line moves di�erentamount in ea
h image. This 
an be 
ompared to when a person looks at astair
ase from above, and moves to the side. The topmost steps will movethe most, when the bottommost, will move the least. Figure 3.3 illustratesthe setup.The out
ome is as predi
ted, a stair. The line that moves the least is theone most far from the 
amera, then step by step, 
loser to the 
amera. As
reen-shot of this is shown in Figures 3.4 and 3.5. As seen the lines form astep in both the xy and yz planes, whi
h shows that the 3D re
onstru
tionworks properly.
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1 2 3 4 5 6

Figure 3.3: The numbers represent the number of pixels the lines are movedbetween images
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Figure 3.4: xy view of the steps. The red asterix's represent the 
ameras3.4 Tuning Edge Dete
tionAn essential part of the system is edge dete
tion. Dete
ting the interestingedges is of great importan
e. Interesting edges are edges that des
ribe theobje
t well. The edge dete
tion has some 
onstraints that 
an be adjusted. In
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Figure 3.5: yzview of the steps. The red asterix's represent the 
amerasthis proje
t it is 
ru
ial to dete
t long edges, that are easily tra
ked througha set of images.The 
onstraints are the following� tol, an upper threshold on the maximum deviation from original edge.� angtol, a threshold on di�eren
e in angle.� linkrad, a measurement where endpoints is merged if they are 
loserthan this threshold.Two sets of values are tried out on data from Dataset 2. The values arelisted in Table 3.1. The out
ome of the di�erent parameters are shown inTestset 1 Testset 2tol 2 6angtol 0.05 0.2linkrad 2 6Table 3.1: Values for edge dete
tionFigures 3.6 and 3.7. Noti
e the right-top edge on the images. The one withthe smaller values is dete
ted as two edges, while the one with the biggervalues is dete
ted as one edge. This is the preferred situation in this proje
t,so the values in Testset 2 are 
hosen.
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Figure 3.6: Edges found using values from Testset 1
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Figure 3.7: Edges found using values from Testset 23.5 Determine the translationThe translation of the 
amera is an important parameter when 
omputing3D. The value of t is determined in this se
tion, both in pixels and millimeters.An image sequen
e from Dataset 2 is used. A single edge is tra
kedthrough 71 images and the total distan
e in pixels is taken. This way thedistan
e for ea
h translation is 
al
ulated. The edges are shown in Figure3.8.To measure the translation in millimeters the robot arm was moved a



3.5. DETERMINE THE TRANSLATION 47

40 60 80 100 120 140

70

80

90

100

110

120

130

140

150

160

170

Figure 3.8: Edges found
ertain distan
e, while taking a video sequen
e. Counting the number offrames the translation in millimeters is 
al
ulated. The images are takenwith an interval of 5 frames.The results are listed in Table 3.8. tPixels 1.44Millimeters between images 4.1Table 3.2: Translation of the 
amera
Looking at Figure 3.8 one observes that the lines �jump� in intervals of 2or 3 edges. This is due to the uneven movement of the robot arm. This 
anbe a sour
e of error.



48 CHAPTER 3. TESTS3.6 Baseline TestA

ording to [4℄ the optimal relation between the baseline and the distan
ebetween the obje
t and 
amera should beBD = 13 to 3: (3.2)This is sket
hed in Figure 3.9.
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Figure 3.9: Relation between baseline and distan
e to obje
tA test on an edge on the box from Dataset 2 is made. The test is madethe following way. The edge is dete
ted and tra
ked through 135 imagesand re
onstru
ted. Then an image is iteratively removed from the sequen
euntil only few is left. For ea
h removal, the 3D is re
onstru
ted from theremaining edges. This way the baseline is shortened ea
h time. The error isthen 
al
ulated for ea
h iteration.As the edges 
an be of various lengths, it is a bit tri
ky to 
ompute theerror in a reliable way. The solution is to make a plane in y = 0, 
omputethe interse
tion of the lines with this plane. The distan
e in the z-dire
tionis 
omputed between the interse
tions. Only the z-dire
tion is used here asit is the important part of the re
onstru
tion. The distan
e is plotted as afun
tion of images removed. The plot is shown in Figure 3.10.A translation of 135 images 
orresponds to 55.3 
m. The distan
e fromthe obje
t to the 
amera is 100 
m, so the relation (3.2) is ful�lled. Thetheoreti
al limit is plotted in the �gure as a red line. When the baselinepasses the limits, the error in
reases drasti
ally. This supports the relation.
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Figure 3.10: y axis is the error in pixels. x axis is the number of imagesremoved3.7 Re
onstru
ting the boxDataset 2 is used for re
onstru
ting the box and 
he
king the fun
tionality,and limitations of the system with real data. First edges perpendi
ular tothe x-dire
tion are tra
ked and re
onstru
ted using part of the dataset wherethe 
amera moves in the x-dire
tion. Then edges parallel to the x-dire
tionare tra
ked and re
onstru
ted, using sequen
es where the 
amera is movedin the y-dire
tion.The xy-plane is shown in Figure 3.11 (a). The ground truth is shownin Figure 3.11 (b). Edges tra
ked in the x-dire
tion is plotted in red, edges
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(a) Re
onstru
ted box
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(b) Ground truthFigure 3.11: xy-planetra
ked in the y-dire
tion is plotted in blue. The red asterix's are the 
ameras.Figure 3.12 (a) shows the box in the yz-plane. This view is perpendi
ularto the edges tra
ked in the x-dire
tion, or those plotted in red. These arefairly well re
onstru
ted, showing two edges as the bottom edges, and two



50 CHAPTER 3. TESTSedges as the top edges. The re
onstru
tion is right up to a s
ale fa
tor.
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(a) Re
onstru
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(b) Ground truthFigure 3.12: yz-planeConsidering the z-position of the red lines in spa
e, the box is measuredand found to be 33 
m. The distan
e from the �oor to the 
amera is 100
m. From the image it 
an be seen that the two top lines are 
lose to being13 of the distan
e from the bottom lines to the 
ameras. This shows that thesystem does a good job estimating the z-position.Looking at the blue lines in Figure 3.12 (a) they look way o�. One shouldexpe
t a dot, as the view is along the line. The explanation to this is shownin Figure 3.13. The system �nds the lines where planes meet, and planes are
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Figure 3.13: Entire view of the boxa in�nite size. This means that the re
onstru
ted edges 
an be of variouslengths. The edges 
an get quite long 
ompared to the edges on the box.



3.8. RECONSTRUCTION USING PARALLEL LINES TO THE CAMERAMOVEMENT51Looking along those lines, only a small error 
an give the wrong impression.If the lines are trimmed this e�e
t would be mended.At last the xz-plane is shown in Figure 3.14. This �gure shows the twotop edges 
lose to the same z-
oordinates as the other top lines in Figure3.12. Now the red lines are far o�.
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(b) Ground truthFigure 3.14: zx-plane3.8 Re
onstru
tion using parallel lines to the
amera movementUntil now, edges that are perpendi
ular to the movement of the 
amera hasbeen used for 3D re
onstru
tion. Is there a reason for this? The answer isyes.Going ba
k to Figure 2.18 in Se
tion 2.8 one 
an see that the translationof the 
amera is perpendi
ular to the edge. If the translation is parallel theplanes would all lie together, giving no information about the position of theedge. This 
an be 
ompared to looking at a line, and moving perpendi
ularto the line, one 
an see and register the movement well. Moving parallel tothe line, one 
an not see the movement (giving a line without any texture).Re
onstru
ting two of the edges from the experiment in the previousse
tion is tried out. The results are shown in Figure 3.15.The re
onstru
tion of the two lines parallel to the 
amera movement failsmiserably. Obvious that the system dete
ts no translation of the edge.3.9 Noise in dataIn this se
tion the in�uen
e of noise in the data is 
he
ked. An edge fromDataset 2 is tra
ked through 73 images and is plotted in Figure 3.16. Looking
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Figure 3.15: Re
onstru
ting edges using parallel 
amera movementat the �gure the noise in the data is obvious.
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Figure 3.16: An edge tra
ked through a part of an image sequen
e. The noiseis obviousAnother data is 
reated to simulate the one in Figure 3.16. Edges are
reated at the same start- and endpoints, but linearly distributed in between.This is shown in Figure 3.17.As in the previous se
tion, the edges are re
onstru
ted and plotted inFigure 3.18.One 
an 
learly see whi
h edge the data was simulated from. The simu-lated line is verti
al as oppose to the one re
onstru
ted from real data.
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Figure 3.17: Syntheti
 data to simulate the one shown in Figure 3.16
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Figure 3.18: Edges re
onstru
ted. Blue lines are edges tra
ked from theimage sequen
e. Red line is syntheti
 data made to simulate one of the edgesThe xz view is plotted in Figure 3.19. The red line in this �gure appearsas a dot. This shows that the line is perfe
tly straight in the y-dire
tion.This shows that the appli
ation works good with noiseless data.



54 CHAPTER 3. TESTS

−3 −2 −1 0 1 2 3

−6

−5

−4

−3

−2

−1

0

1

2

3

x

z

Figure 3.19: The red line appears as a dot in this view



Chapter 4Dis
ussion and Future WorkThis 
hapter is a general dis
ussion about the system and problems metduring implementation. These problems 
an be dealt with in future proje
t,to further develop the system.One possible sour
e of error is the uneven movement of the robot arm.This problem 
ould be mended physi
ally by �xing the arm, or by softwareimplementation. The positions of the 
ameras are just a guess in the 
urrentsystem, but 
ould be used as a start-guess in a stru
ture and motion problem,where the position of the 
ameras are optimized by iteration.The 
amera used in this proje
t is a 340x240 pixel 
amera. A translationbetween images is small in millimeters, but it is almost 1.5 pixels. This 
anresult in error when determining the di�eren
e in small movements.The exe
ution time is always an issue in a system like this. In the 
urrentsystem the exe
ution time is the highest in the tra
king part. A 
onversion toC and linking it to Matlab via Mex 
ould be a solution to this problem. Con-verting the system 
ompletely to C would make it faster, but as a developingtool Matlab is mu
h better 
hoi
e and therefor used in this proje
t.More automation of the robot 
ould be done. That is the robot takes onesweep over the obje
t and the resulting sequen
e is pro
essed. If the systemneeds some more information about a part of the obje
t the arm moves thereand another sequen
e is made. This 
ould be repeated several times.One way to improve the system 
ould be to remove outlier plane(s) inthe 3D re
onstru
tion part. This would improve the determination of the 3Dposition of the re
onstru
ted line.As information about the translation of a line is best 
aptured perpen-di
ularly the robot arm has to move both in the x- and y-dire
tions. To beable to retrieve information about the verti
al edges, the robot should beable to rotate the 
amera, and move it perpendi
ular to those lines. Thiswould mean that the equations in Se
tion 2.9 
ontaining the rotation matrix55



56 CHAPTER 4. DISCUSSION AND FUTURE WORKR would have to be re
al
ulated.To be able to visualize the re
onstru
tion better, trimming the re
on-stru
ted lines is ne
essary. In the re
onstru
tion planes are used, whi
h havein�nite size, so re
onstru
ted lines 
an get very long.



Chapter 5Con
lusionThe obje
tive of this thesis were� To propose and sele
t a suitable feature dete
tion� To implement a feature tra
ker� To implement a 3D re
onstru
tion algorithm� To test the implementationThese have been met to a large extent.Three methods for dete
ting features in an image are proposed, testedand 
ompared. These are 
orner dete
tion, edge dete
tion and opti
al �ow.These methods were tried out on a
tual data taken from the robot. Edge de-te
tion was found to be the most suitable method. The problem with 
ornerdete
tion is that 
orner 
an be dete
ted on mis-
olorations on surfa
es anddoes not ne
essary des
ribe the stru
ture of the obje
t. Opti
al �ow worked�ne when the translation between images was small, but as the translationin
reased the method failed to dete
t the movement. Edges are the featurethat des
ribe an obje
t well, and are easy to dete
t and tra
k.An edge tra
ker is implemented. This edge tra
ker is able to tra
k edgesthrough a whole sequen
e of images.A 3D re
onstru
tion algorithm is implemented. The edges dete
ted bythe edge dete
tor and tra
ked by the edge tra
ker are used to re
onstru
t theobje
t in 3D. Here it be
omes essential that the features used des
ribe theobje
t well.Tests are done to test the fun
tionality and limitation of the system. Mostof the tests are made on the 3D re
onstru
tion part. One is made on the edgedete
tion part. Here it is found that three 
onstraint parameters have greatin�uen
e of how detailed the dete
tion is. In this system it is essential that57



58 CHAPTER 5. CONCLUSIONthe system �nds long edges, as the dete
tion is able to dete
t and segmentthe smallest edges.The translation of the 
amera is measured in pixels and millimeters. Usingthose information a
tual measurements 
an be made on obje
ts.The error is measured for di�erent lengths of the baseline, and found tobe in good 
oheren
e with the rule in the literature that the ratio betweenbaseline and distan
e to obje
t should be between 13 and 3. After the baselineis shorter that 13 the error in
reases.The implementation was used to re
onstru
t a box. The re
onstru
tionproved to be a bit erroneous. The edges do not lie verti
ally in the z dire
tion.But the distan
e between the lines and 
amera proved to be right, whi
h isimportant.A test was done to show the di�eren
e between tra
king lines whi
h areperpendi
ular to the movement of the 
amera versus lines parallel to the
amera. The test showed that lines parallel to the 
amera 
an not be re
on-stru
ted. This means that if verti
al lines on the obje
t is to be re
onstru
tedthe robot has to be able to move the 
amera perpendi
ular to those.Noise in data proved to have a huge e�e
t of the quality of the re
on-stru
tion. An edge was tra
ked through number of images where data wasobviously noisy. The data was simulated, with no noise and re
onstru
ted.The re
onstru
tion proved to be better.The results for the system implemented in this thesis show that the re
on-stru
tion algorithm and implementation work, but there is still work to doon the input data. This 
an be thought of as a step toward a fully automati
quality 
ontrol system.
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Appendix ACodeFigure A.1 shows a sket
h of the stru
ture of the 
ode. All �les and fun
tions
edge edgelink lineseg

maxlindev mergeseg

rightsize match1and2 moreindex fillin

seekelem

extralinesfindedgepos

cmat camcent

findcoord makeplane

reconstruction

image
sequence
in

3D
reconstruction
out

Figure A.1: Illustration of the 
odeare listed in Table A.1. All 
ode is written in Matlab. The 
ode and datasets
an be found on the a

ompanying CD.
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62 APPENDIX A. CODE

File name Fun
tionedge Takes an image as input and �nds its edgesedgelink Takes edges as input and links them togetherlineseg Takes edges as input and returns the endpointsmaxlindev Used by lineseg. Finds the point of maximum deviation from a linemergeseg Used by lineseg. Seeks to merge edges together given 
onstraintsrightsize Takes two lists of edges and makes them the same size sothey 
an be put togethermat
h1and2 Mat
hes two �rst images in a sequen
emoreindex Mat
hes the lines in the �rst image to the rest of the images�llin Fills in edges where they have o

ludedseekelem Used by �llin and extralines. Seeks an edge in a list of edgesextralines Mat
hes lines that appear after the �rst image in a sequen
e�ndedgepos Finds position of an edge in spa
e
mat Used by �ndedgepos. Computes the 
amera matrix
am
ent Used by �ndedgepos. Finds the 
enter of the 
amera�nd
oord Used by �ndedgepos. Finds in world 
oordinates theposition of edge endpointsmakeplane Used by �ndedgepos. Makes a plane given three points in spa
eTable A.1: Files used in this proje
t and fun
tion


