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Abstract

The two main focus areas of this thesis are State-Space Models and multi modal
signal processing. The general State-Space Model is investigated and an addition
to the class of sequential sampling methods is proposed. This new algorithm is
denoted as the Parzen Particle Filter. Furthermore, the Markov Chain Monte
Carlo (MCMC) approach to filtering is examined and a scheme for MCMC to be
used in on-line applications is proposed. In estimating parameters, it is shown
that the EM-algorithm exhibits slow convergence especially in the low noise
limit. It is demonstrated how a general gradient optimizer can be applied to
speed up convergence.

The linear version of the State-Space Model, the Kalman Filter, is applied to
multi modal signal processing. It is demonstrated how a State-Space Model can
be used to map from speech to lip movements.

Besides the State-Space Model and the multi modal application an information
theoretic vector quantizer is also proposed. Based on interactions between par-
ticles, it is shown how a quantizing scheme based on an analytic cost function
can be derived.






Dansk Resumé

Hovedfokus for denne athandling er klassen af tilstandsmodeller (State-Space
Models). Den generelle version af modellen analyseres og inden for den specifikke
gruppe af modeller, der estimerer tilstanden ved hjaxlp af sekvensiel sampling,
foreslas en ny algoritme baseret pa Parzens taethedsestimator. Envidere vises
det, hvordan metoder baseret pa Markovkaede Monte-Carlo (MCMC) metoder
kan anvendes til online estimation. Den informationsteoretiske tilgang til sig-
nalbehandling bergres igennem en algoritme til vektor kvantisering. Indenfor
parameter estimation vises hvordan EM-algoritmen har sine begraensninger og
der foreslas en metode, der ggr det muligt at anvende en standard optimer-
ingstilgang istedet.

Endelig anvendes en stor del af afhandlingen pa at ggre rede for hvordan til-
standsmodeller kan anvendes inden for multimodal signalbehandling. Det vises,
hvordan den linezre version (Kalman Filteret) kan traenes til at oversatte
mellem tale og mundbevaegelser.
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CHAPTER 1

Introduction

Animals and humans have the ability to combine impressions from different
senses. This ability enables natural signal processing systems to extract infor-
mation from and understand noisy and complex environments. If we see a man
putting his hands together and shortly there after hear a sharp noise we are able
to combine these two impressions to infer that what we witnessed was in fact a
clap. In the same way, we are able to imagine what sound a dog would make,
and what it would feel like to touch it just by looking at it. Figure 1.1 sketches
two examples of audio and visual combination. In figure 1.1(a), the sound and
the images are both observed and the joint impression leads to the conclusion
that a bird is hidden in the box. In figure 1.1(b), the sound of the bird is heard
and recognized, and from that, an image of the bird can be formed.

In fact, in most human sensing more than one modality like speech, facial ex-
pression, smell, gestures and haptics plays a role. In computer science, these
modalities are traditionally modeled individually at a high levels of sophisti-
cation. Especially audio and visual signals have received much individual at-
tention. The field of image processing has developed a range of techniques to
describe pictures and the objects on them and lots of energy has been put into
speech recognition. However, only in the last few years the combination of these
fields have become the object of attention of a larger number of researchers.
With new MPEG standards for describing coding and labeling of both audio
and visual signals it has suddenly become easier to combine the two modalities.
Likewise, the fast propagation of web-cameras has made it possible to collect
both audio and video signals in a simple manner. The MPEG standards for
multimedia storage and transmission include not only the compressed signals
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(a) There are two observations of what is in (b) From the bird’s song an impression of the
the box, an audio signal and a visual signal. bird is made, and it is possible to imagine what
Both signals may be unclear due to noise and the bird looks like.

distortions. However, by combining the two

impressions, it is possible to figure out that the

box contains a bird.

Figure 1.1: Two examples of multi modal signal processing. The visual and the
audio impressions can be combined or one can be derived from the other.

but also meta information, like what is happening in this scene, who is in it,
what clothes are the actors wearing, and where to buy it. This will allow
quick access to huge bodies of information while watching tv, but perhaps more
importantly, it will make it possible to search in multimedia files. In the case of
Hollywood movies with huge budgets it is no problem to hire a guy to manually
type in all this information, but for live news casts, older content, and small
budget productions, it is vital to have automatic extraction of the information.
In this thesis, focus is put on combing audio and visual inputs, but the com-
bination schemas can be used on any type of dual modality signals including
brain scans like fMRI and EEG, map making from airplane and satellite images,
military applications like tracking a tank using radar and infrared sensors and
condition monitoring using acoustic emission, temperature, magnetic measure-
ments, etc.

On an finer scale, research in audio and visual combination is driven by a range
of different goals:

Lip-reading Improving speech recognition in noisy environments.

Lip synchronization Cloning and animation of faces, creating avatars, agents
or virtual actors. Even changing the appearance of real actors to synchro-
nize with another person speaking (perhaps in another language).

Human computer interface The computer should understand speech and
gestures, and also communicate via speech and gestures.

Tracking of persons In a video conference, finding the person who is speaking
and fixing the camera on him is important.



13

Classification Classification, of video sequences into e.g. news or sport, en-
ables search.

Recognition Identification of the person speaking can be useful in security
applications. In searches for a specific person or object in a database of
video clips, recognition is necessary.

Even though the goals of the research are very different, the techniques that are
used are similar. In this work, focus is on lip-synchronization, but the framework
could just as easily have been applied to lip-reading, tracking or any other point
of the list.

The motivations for generating facial expressions using a speech signal are at
least threefold: Firstly, the language synchronization of movies often leaves the
actor’s mouth moving while there is silence or the other way around, this looks
rather unnatural. If it was possible to manipulate the face of the actor to match
the actual speech it would be much more pleasant to view synchronized movies
(and cartoons).

Secondly, even with increasing bandwidth, sending images via the cell phone
is quite expensive, therefore a system that allows a single image to be sent in
the beginning of the conversation and then models the face corresponding to
the speech would be useful. Such a device would also help hearing impaired
people lip-read over the phone without the person in the other end investing in
expensive equipment'.

Thirdly, when producing agents on the computer (like Mr. Clips) it would make
communication more plausible if the agent could interact with lip movements
corresponding to the (automatically generated) speech.

From a physiological view the combination of sensor information is also an inter-
esting task. A wide range of experiments has been performed to reveal how hu-
mans perceive multi modal signals. In the audio visual community, the McGurk
effect ( , ) is perhaps the most important. It is an
effect of mixing audio and visual signals. When a listener is presented with the
sound of /ba/ and the visual impression (lip movements) of /ga/ most people
will perceive /da/. That is /ba/+/ga/=/da/. The reason for this is that the
sound /ba/ could not have been made with the lip movements for /ga/ and the
other way around. The most likely sound given both audio and visual stimuli is
/da/. Arnt Maasg has a video sequence illustrating the effect on his home page
http://www.media.uio.no/personer/arntm/McGurk_english.html. The ef-
fect indicates that the visual system is important in speech recognition. An
extended version of the McGurk effect is reported by ( ) com-
bining the audio ”My gag kok me koo grive” with the visual "my bab pop me
poo brive” the perceived sentence is "my dad taught me to drive”.

In the above experiments, it is utilized that the confusion between phonemes
is different in the audio and the visual representation. The mouth position

I The European project ‘synface’ http://www.speech.kth.se/synface/ is at the moment
developing a commercial product for this.
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(a) Auditory confusion in white noise with de- (b) Visual confusion in white noise with de-
creasing signal to noise ratio in DB. creasing signal to noise ratio.

Figure 1.2: Confusion between sounds in the audio and visual representation.
From Dodd and Campbell (1987) and reproduced in Lavagetto (1995). The
confusion is not the same in the two modalities, for example /f/ and /v/ are
close in the visual domain but distinct in the audio domain.

of sounds like /b/,/p/ and /m/ or /k/,/n/ and /g/ cannot be distinguished
even though the sounds can. Similarly, the sounds of /m/ and /n/ or /b/ and
/v/ are very similar even though the mouth position is completely different.
In figure 1.2, the audio and visual confusions are described. The difference in
confusion can be utilized to improve speech recognition when using both audio
and visual streams.

1.1 Speech to image mapping — Talking faces

The first attempts to control facial animation by speech was developed as early
as the 1970s (Parke, 1975), however, not much attention was paid to field until
the mid 1980s where development really began with the work of (Bergeron and
Lachapelle, 1985; Hill et al., 1988; Lewis and Parke, 1987; Massaro and Cohen,
1990; Morishima et al., 1989).

In an early overview about state of the art lip-sync, Lewis (1991) concludes that
using loudness to control the jaw is not a useful approach since sounds made
with closed mouth can be just as loud as open mouth sounds. He also notes
that the spectrum matching method has severe problems due to the formants
independence of pitch. In this method, the shape of the mouth is determined
from the frequency content of the speech. The problem is illustrated by the fact
that the mouth shape is the same when a sound e.g. an ’a’ is spoken with a
high or a deep voice. Finally, he mentions that it is possible to automatically
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generate speech from text and in this way gain control of which phoneme to
visualize. In his view, the speech synthesis in 1991 was not of sufficient quality to
sound natural, and although progress has been made in the field, automatically
generated speech is still far from perfect?. The suggestion in ( ) is
to extract phonemes using a Linear Prediction speech model and then map the
phonemes to keyframes given by a lip reading chart.
The idea of extracting phonemes or similar high-level features from the speech
signal before performing the mapping to the mouth position has been widely
used in the lip-sync community. ( ) suggested a system
called ”Face Me!”. He extracts phonemes using Statistical Trajectory Modeling.
Each phoneme is then associated with a mouth position (keyframe). In Mike
Talk ( , ), phonemes are generated from text and then
mapped onto keyframes, however, in this system trajectories linking all possible
keyframes are calculated in advance thus making the video more seamless. In
"Video rewrite” ( , ), phonemes are again extracted from the
speech, in this case using Hidden Markov Models. Each triphone (three consec-
utive phonemes) has a mouth sequence associated with it. The sequences are
selected from training data, if the triphone does not have a matching mouth
sequence in the training data, the closest available sequence is selected. Once
the sequence of mouth movements has been determined, the mouth is mapped
back to a background face of the speaker. Other authors have proposed meth-
ods based on modeling of phonemes by correlational HMM’s (

, ) or neural networks ( , )-
Methods where speech is mapped directly to facial movement are not quite as
popular as phoneme based methods. However, in "Picture my voice’ (

, ), a time dependent neural network, maps directly from 11 x 13 Mel
Frequency Cepstral Coefficients (MFCC) as input to 37 facial control parame-
ters. The training output is provided by a phoneme to animation mapping, but
the trained network does not make use of the phoneme representation.

( ) proposed a method based on (entropic) HMM’s where speech is mapped
directly to images. Methods that do not rely on phoneme extraction have the
advantage that they can be trained to work in all languages, and that they are
able to map non-speech sounds like yawning or laughing.

There are certain inherent difficulties in mapping from speech to mouth posi-
tions. The most profound is the confusion between visual and auditive informa-
tion as described in the previous section. When mapping from speech to facial
movements, one cannot hope to get a perfect result simply because it is very
difficult to distinguish whether a ”ba” or a ”da” was spoken. Another difficulty
is time-scales, sounds are typically recorded at 10-100 kHZ and images at 10-100
Hz, furthermore synchrony between the streams is not guarantied.

This short introduction captures a representative sample of the contributions
to the speech to face problem, the list of authors is far longer. In appendix A a

2Just try to get Acrobat reader or Microsoft Sam to read a text out loud.
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time line with an overview of the progress in the field is presented, this includes
references to a broader range of authors. A historical view (dating back to Don
Quixote) is provided by the excellent web page http://www.haskins.yale.
edu/haskins/heads.html by Philip Rubin and Eric Vatikiotis-Bateson.

1.2 Why State-Space Models?

Studying the attempts that were made in the past, it became clear that most
approaches use some kind of function approximation that does not take the
temporal aspect into account. The approaches that do utilize the temporal
structure of speech and images uses Hidden Markov Models (HMMs).
Popularized by ( ), the HMM has been studied extensively by the
speech recognition community and all kinds of extensions like coupled HMMs
( , ), asynchronous HMMs ( , ), and Fac-
torial Hidden Markov Models ( , ) have been pro-
posed. The nature of the HMM where the state vector contains a probability
distribution over classes makes it suitable for a task like speech recognition. At
each time step, the most probable phoneme can be found. However, the reason
that this model has been studied only briefly in this work is that the discrete
nature of the hidden space also makes the transitions in observation space jump.
Given the temporal structure of the data and given that the movements of faces
are smooth and continuous the idea arose to use continuous State-Space Models
to create talking faces. The continuous State-Space Model shares graphical
model with the HMM, and can in many regards be considered to fall into the
same family (see e.g. ( )). For example the Viterbi
algorithm ( , ) used to find the optimal state sequence in HMMs is
similar to the Kalman smoothing algorithm.

Unlike the hidden Markov Model, the State Space Models work on continuous
input and output spaces. It has many instances and even though the most
straight forward one, the Kalman Filter ( , ), has been studied in
much detail in the past there are still many interesting aspects of State-Space
Models to investigate.

The examination of State-Space Models for speech to image mapping led to
many ideas and questions about the nature of State-Space Models and possible
extensions. In this way, the studies was broadened to cover more theoretic
algorithmic aspects rather than just application of the model to the specific
problem.

1.2.1 Scientific contribution

The contributions of this work fall mainly into three categories: Information
theory, State-Space Models and Talking faces. Information theory is used to
derived a vector quantization scheme and it is also used in the derivation of a


http://www.haskins.yale.edu/haskins/heads.html
http://www.haskins.yale.edu/haskins/heads.html

1.2 Why State-Space Models? 17

novel approach for Particle Filtering. The general State-Space Model is exam-
ined in detail, besides Particle Filtering and the linear Gaussian case, Markov
Chain Monte Carlo (MCMC) has been treated. The linear version of the State-
Space Model is investigated particularly carefully and a new method for infer-
ring parameter-values using gradients rather than expectation maximization has
been derived.

The continuous State-Space Model is then used for multi-modal signal pro-
cessing. Especially the problem of mapping from speech to lip-movements is
considered.

Most of the work presented in this thesis has previously been published in the
following papers:

Journal papers

Lehn-Schigler, T., Hegde, A., Erdogmus, D., Principe, J. C. , Vector-
Quantization using Information Theoretic Concepts, Natural Computing,
vol. 4, pp. 39-51, 2005 ( , )

Conference papers

Lehn-Schigler, T., Hansen, L. K., Larsen, J. , Mapping from Speech to Im-
ages Using Continuous State-Space Models, Lecture Notes in Computer
Science, vol. 3361, pp. 136 - 145, 2005 ( , )

Lehn-Schigler, T. , Talking Faces a state-space approach, Proceedings of DSAGM,
pp. 103-111, 2004 ( , )

Lehn-Schigler, T. , Multimedia Mapping using Continuous State-Space Mod-
els, IEEE 6’th Workshop on Multimedia Signal Processing Proceedings,
pp. 51-54, 2004 ( , )

Lehn-Schigler, T., Erdogmus, D., Principe, J. C. , Parzen Particle Fil-
ters, ICASSP, vol. 5, pp. 781-784, 2004 ( , )

Hegde, A., Erdogmus, D., Lehn-Schigler, T., Rao, Y., Principe, J. ,
Vector-Quantization by density matching in the minimum Kullback-Leibler
divergence sense, IEEE International Conference on Neural Networks -
Conference Proceedings, vol. 1, pp. 105-109, 2004 ( , )

Publications in progress

Olsson, R. K., Petersen, K. B., Lehn-Schigler, T. , State-Space Models -
from the EM algorithm to a gradient approach, Submitted to Neural Com-
putation, 2005 ( ,

Ferkinhoff-Borg, J., Lehn-Schigler, T. . The Failure of Particle Filters, In
progress, 2005 ( , )
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1.3 The structure of the thesis

In chapter 2 the multi modal data sets are presented and relevant features are
extracted. The chapter is concluded with the findings on Information Theoretic
Vector Quantization originally presented in ( );
( ). Chapter 3 presents the State-Space Model, both the linear and
the non-linear non-Gaussian cases are treated. The chapter is based on
( ) and on sofar unpublished work (

). Continuing the treatment of State-Space Models, chapter 4 descrlbes
parameter estimation with particular focus on the linear State-Space Model.
Parts of the chapter build on work presented in ( ). Finally,
chapter 5 presents the results of using State-Space Models for generation of talk-
ing faces, the chapter relies on the results presented in ( ,b);

(2005a).



CHAPTER 2

Data

In this chapter, the specific application mapping from speech to video is in focus.
This is in contrast to the following two chapters that will deal with more general
algorithmic questions.
The main focus of this chapter is on the data; it is obvious that a mapping from
speech to images requires data in the form of video. It is also obvious that some
kind of preprocessing is necessary. The preprocessing — or feature extraction —
both in the image and the sound domain is treated in the following.
In the data fusion literature, three different methods are used; early fusion where
data is treated directly without any preprocessing. Intermediate fusion where
data is preprocessed, but the features are handled simultaneously. Finally, in
late fusion, processing is done in each modality separately and the combination
is done after the analysis. Even though the task at hand is mapping rather than
fusion, the same categorizations can be used. As shall be clear from this chapter
and chapter 5, the strategy chosen in this work mainly fits in the intermediate
fusion framework.
To finish of this chapter, a vector quantizer based on information theory is
presented. This algorithm was originally derived in ( );

( ) to aid in the feature extraction process.

2.1 Data acquisition

The data for automatic lip-sync are of course video clips containing images
and sounds of speaking people. Unfortunately, unlike the speech recognition
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community no standard data-sets are available for this task. The closest data-

sets are the Vid-Timit database! ( , ,b), the AV-Timit corpus
2 the AV-ViaVoice database ( , ) and the Johns Hopkins
Lipreading Corpus ( , ).

The VidTimit database was mainly created for multi-modal person authentica-
tion. It is comprised of video and corresponding audio recordings of 43 people
(19 female and 24 male), reciting short sentences. The sentences — 10 per person
— are from the test section of the TIMIT corpus. The first two sentences for
all persons are the same, with the remaining eight generally different for each
person. The sentences are all of length 3-5 seconds.

The AV-TIMIT corpus consist of continuous, phonetically balanced speech, spo-
ken by multiple speakers, It uses 450 TIMIT-SX sentences. The corpus also con-
tain time aligned phonetic transcriptions of the speech. The database contains
223 speakers, 117 of which are male and 106 are female.

The AV-ViaVoice database by IBM has 290-subject, uttering sentences from a
large-vocabulary. Designed for speaker independent audio-visual speech recog-
nition, the corpus consists of video and audio from a 290 subjects uttering a
large set collection of sentences.

Unfortunately the AV-ViaVoice database is proprietary, the AV-TIMIT database
was not public at the time when it was needed (and is still not, even though it
might be possible to get access to it by contacting the authors), and also the
John Hopkins Lipreading Corpus was un-available.

That leaves only the VidTimit database which has been used in most of this
work, a single picture of one of the subjects is shown in figure 2.1.

As described above the VidTimit database contains many different speakers
but only ten sentences from each speaker. In many cases ten samples are not
enough to train and validate a model. To overcome this problem a new data
set was gathered, the set contain two speakers uttering 20 sentences of length
5-15 seconds each. The sentences were chosen to contain all English phonemes
chosen from the English Language Speech Database for Speaker Recognition
(ELSDSR) database ( ) ). In table 2.1 examples of sentences from both
the VidTimit and the ELSDR databases are found. During the recordings the
lighting was not set up properly causing shadow effects to appear in the movies
and hence also in the final mappings. On the positive side the noise level was
very low. Figure 2.2 show a single frame with each of the speakers?

2.2 Feature extraction sound

Processing of speech signals is perhaps one of the most active fields in signal
processing and has been since the early 1970’s. It began as early as 1936 in

Thttp://users.rsise.anu.edu.au/ conrad/vidtimit/
2http://www.csail.mit.edu/research/abstracts/abstracts04/html/191/191.html
3Which by the way are my wife and myself.
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Table 2.1: Example sentences from the VidTimit and ELDSR, database.
Database | Sentence

VidTimit | ”Don’t ask me to carry an oily rag like this.”

”She had your dark suit in greasy wash water all
year.”

ELDSR ”Chicken little was in the woods one day when an
acorn fell on her head. It scared her so much she
trembled all over. The poor girl shook so hard all
her feathers fell out.”

"My friend Trisha suggests me to go to the woods to
watch the poor bear being hunted for pleasure, and
I said yes.”

Figure 2.1: Sample image from the VidTimit database. The database contains
ten sentences (5-8 seconds each) from a wide range of speakers.

(a) Tue (b) Christine

Figure 2.2: Sample images from own recordings. Twenty sequences of each
speaker each 8-15 seconds where recorded.
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AT&T’s Bell Labs.

The community has had plenty of standard data sets like the Timit database
and many different approaches has been taken. Still, speaker independent large
vocabulary speech recognition is difficult, and the best systems to date achieves
word recognition rates of 60-90 % depending on the data-set. Since the mapping
from speech to phonemes is at best 90% correct and since the goal is to ani-
mate the face rather than to understand speech, phoneme recognition was not
employed in this project. However, the speech recognition society has also de-
veloped a host of preprocessing features to describe audio at shorter timescales.
These include short term energy (STE), linear prediction coefficients (LPCs),
Perceptual Linear Prediction (PLP), discrete Fourier transform (DFT), zero
crossing rate (ZCR) and Mel Frequency Cepstral Coefficients (MFCCs).

In the talking face litterateurs many of these features has been used

( ); ( ) used PLP and a modification J-Rasta-PLP,
( ) used DFT, ( ) used PLPs and
( ); ( ) used MFCC’s. In ( ) a Vector

Quantization (VQ) approach is used.
Regardless of the problems with recognition rate a number of researchers has
chosen to base their talking head on phonemes. In this case phonemes must
be extracted from speech ( , ; , ) or
speech must be artificially generated along with the lip movements (

| 1999).
Due to their close link to human perception and the wide use in speech recogni-
tion MFCC’s were chosen as the sound feature. The choice of MFC coefficients
as the sound feature is mainly based on the popularity of this feature in the
literature. The sound is split into 40 ms blocks (to match the frame rate of the
movie) and 13 MFCC features are extracted from each block. In figure 2.3 a
speech signal and the first two MFCC features are shown for illustration.
In a perfect world a better set of sound features would be available. They should
be able to capture the important aspects of sound, especially speech, and they
should be generative. With such features the opposite mapping, i.e. from images
to sound would also be possible.

2.3 Feature extraction images

In multi-modal signal processing a range of methods for processing the images
has been used. When using the images to improve speech recognition or to infer
speaker identity the goal is simply to extract information about the face. The
facial model needed for this can be very simple and need not have the ability to
reconstruct the face.

In most applications low level features are used for analysis of the face, this
includes like Gabor Filters, edge detectors and color histograms. When more
task specific knowledge is added, geometric properties like the distance between
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Figure 2.3: From the speech signal 13 MFCCs are extracted. The figure show
an example of a speech signal and the first two MFCCs.

the eyes or the opening of the mouth are of interest. Examples of this can be
found in multi-modal speech recognition (e.g. ( )), in multi-modal
person authentication (e.g. ( )) and in many other
applications. However, when trying to animate a face it is necessary to make a
mapping back into the image domain; hence, a generative model is needed.
The generative models needed for facial animation can be of two basic types:
Computer graphics models as used in computer games and animated movies,
and photo-realistic models.

In computer graphics the face is typically animated by manipulating control
points in the model. Since the emergence of the MPEG-4 standard a set of
control points called Facial Animation Points (FAPs) has been used in many
animation schemas. In figure 2.4 the location of these points are shown. The
long list of authors animating talking faces using the computer graphics ap-
proach include ( ); ( );

(2002); (2003); (1991); (1998);
(1999).

The computer graphics models can be deformed to match the shape of a real
person, and also texture can be applied to make the realism greater. However,
at this stage in development the visual quality of the models does not match that
of real video, at least not with standard hardware and reasonable computation
times.

The photo realistic approach is to generate faces from video of a real person
speaking. This can be done by selecting images from training data and rear-
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ranging them to match the new speech as it is done in Brand (1999); Bregler
et al. (1997). A video sequence is segmented into short clips each of which
describes a specific triphone (sequence of three phonemes). Once new speech
arrives the sequences are reordered by selecting the most similar sequence to
the new phonemes. Similarity is measured by using a visual similarity lookup
table. A similar reordering approach is proposed by Arslan and Talkin (1998)
even though they use computer graphics models to do the animation.
Statistical models of faces can be created from a set of keyframes from video of
real people. The keyframes are selected to describe the most important positions
of the mouth, then a keyframe is assigned to each phoneme and some kind of
morphing or optical flow is calculated to interpolate between the keyframes
(Goldenthal et al., 1997; Tiddeman and Perrett, 2002). An extension of this
is the Multidimensional Morphable Model (MMM). It was first introduced by
Jones and Poggio (1998) and is based on morphing between keyframes. A set of
important images are selected form the data set and one of them is selected to
be the reference image. Then the optical flow vectors are calculated to morph
each image to the reference. Shape parameters describing the warp from the
reference to the current frame can then be extracted from real video. In Ezzat
and Poggio (1998) it is used to create talking faces; each phoneme is described
by a Mixture of Gaussians in the parameter space and the best possible path
through parameter space can be calculated.

The Active Appearance Model (AAM) (Cootes et al., 1998) has been used to
model the face in this work. It has previously been used to describe faces,
both inter subject variations (Bettinger and Cootes, 2004; Stegmann, 2002) and
deformations and expressions in single subjects (Gross et al., 2004; Lepsoy and
Curinga, 1998; Matthews et al., 2002; Theobald et al., 2003). The AAM is
closely related to the MMM in the way that it builds a statistical model of
the face based on sample images. Like the computer vision modeling the AAM
offer a parametric approach to generating faces. There is a bijective mapping
between any point in a continuous parameter space and an image of a face. A
closer description of the AAM is given in section 2.3.1. The AAM has recently
been used to create talking faces by Theobald et al. (2004) and Cosker et al.
(2004).

2.3.1 Active Appearance Models

As mentioned previously Active Appearance Models (AAMs) are used in a wide
range of image processing tasks, among these the modeling of faces. For a
detailed description of the AAM the original paper Cootes et al. (1998) gives a
good insight, and a comprehensive description can be found in an unpublished
report by the same author http://www.isbe.man.ac.uk/ bim/Models/app_
models.pdf. Extensions and improvements to the model has been proposed
amongst others by Matthews and Baker (2004).

The basic idea behind Active Appearance Models is to build a statistical model
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Figure 2.4: Ilustration of the facial feature points (from
www.research.att.com/projects/AnimatedHead). The points are chosen
to represent the facial movements. In the modeling groups 2,3,4,8,10 and 11
representing the outline of the face, the eyes, and the mouth where used.
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by supplying a training set of images. Each of the images must be annotated
using the same set of landmarks, then the location (x-y coordinates) of land-
marks in an image can be collected in a vector to describe the shape of the face,
in figure 2.5 an annotated face can be seen. After gathering vectors from all
training images the mean face can be found. Using triangulation on the original
coordinates a linear mapping from each training image to the mean shape can
be found, and for every image the texture can be mapped onto the mean shape.
The data from each image now consist of two parts, the first is the shape con-
taining the coordinates of the landmarks and the second a vector with the pixel
values after mapping to the mean shape. Using a mean shape for the texture
ensures that the texture vectors are of equal length. Assuming the features are
Gaussian distributed a principal component analysis can be carried out on each
of the two part of the data, it turns out that usually most of the variance in
the data can be described by a small number of components. It is important to
note that it is possible to map back from the coefficients to the image domain.
In e.g. ( ) AAM’s are used to send images of faces at low
bandwidth by extracting coefficients in the sending end, transmitting them to
the receiver and then use the model and the coefficients to recreate the image.
Extraction of features is done by minimizing the distance between the model
output and the image by performing a nonlinear optimization in the model
parameters.

In this work the AAM implementation by Mikkel B. Stegman http://www. imm.
dtu.dk/~aam ( , ) is used.

Model building

To extract features a suitable subset of images in the training set is selected
and annotated with points according to the MPEG-4 facial animation standard
(figure 2.4). An example training set can be seen in figure 2.7. Using the anno-
tations a 14-parameter model of the face is created; thus, with 14 parameters
it is possible to create a photo realistic image. The image can be of any facial
expression seen in the training set, or it can be a new unseen expression, as
long as the image is a linear combination of the faces in the training set. In this
example a face from the VidTimit database is used, but other models where
build using the same procedure.

To validate the model a leave one out test is performed. The model was trained
on all but one image and tested on the last, this procedure is repeated until all
images had been left out. The result in all cases showed good correspondence
between the model and the test image, indicating that the model is able to
capture the important variations at least within the training set.

Once the AAM is created the model can be used to extract the lip movements
in an image sequences. For each image in the sequence the 14 parameters are
picked up. It should be noted that the features are not the same as the MPEG-
4 control point. In figure 2.5 the result of the tracking is shown for a single
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Figure 2.5: Image with automatically extracted feature points. The facial fea-
ture points used are selected from the MPEG-4 standard (figure 2.4). The points
are found by adjusting the parameters in the AAM model to fit the image and
then extract the shape component.
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Figure 2.6: The temporal development of the first three image features while
uttering the sentence: ”She had your dark suit in greasy wash water all year”.
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representative image, the black dots represent the control points. Searching the
entire image for the optimal parameter is an computational expensive and not
were robust procedure. However, when the face has been identified correctly
in the first image the continuity in the image sequence can be exploited. By
tracking the evolution of the parameters a reasonable starting guess in the next
frame can be obtained and the convergence speed of the nonlinear optimizer
can be increased greatly. The evolution of the first three features is shown in
figure 2.6.

2.3.2 Improvements

The way the AMM’s are used in this work is to model the entire face with a
single model. However, since the goal is to animate the face by using speech
as input it may seem a bit optimistic to imagine that all facial movements are
correlated with speech. Things like blinking are at best weakly correlated with
the speech. An entity like the emotional state of the person might also be
correlated with speech, but there is no evidence that emotions can be extracted
by using MFCC'’s as is done in this work. So why try to model the entire face
and not just the mouth? The answer is simply that a free floating mouth looks
extremely silly!

A solution to this could be to use a hierarchical framework, generate a model of
the mouth that is a sub-model of the entire face, the mouth model can then be
controlled by the speech input (MFCC’s) and the rest of the face can be kept
fixed. To improve this further random blinking and movements of the head can
be added. The ultimate goal would be to use emotion extraction techniques as
described e.g. in ( ) to animate the face while animating the
mouth according the words.

2.3.3 Distribution of parameters

In the previous sections the choice of both sound and image features have been
described, in the following chapters the choice of model will be discussed. Before
choosing a model it is interesting to see how the features are distributed.

In figure 2.8(a) histograms of the features for all sentences by a single speaker
are shown. Although especially the first five are either skewed or peaked, the
shapes are not too far from Gaussian. The same trend is seen in the image
features (figure 2.8(b)). A few features has a peak on one of the sides, this is an
artifact of the binning procedure.
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Figure 2.7: Training set for the AAM. The set contains 24 representative images.
A leave one out test was performed, training the AAM on all but one images
and testing it on the last. The result indicates that the training set has sufficient
variation to capture the facial dynamics. This is further supported by the fact
that the model was able to track all sequences accurate.
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(a) Distributions of MFCC’s from all sentences from a single
speaker. The distributions are approximately Gaussian.
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(b) Distributions of image features from all sequences from a single
speaker. As for the sound features the distributions are approxi-
mately Gaussian.

Figure 2.8: When collecting sound and image features in histograms it can be
seen that the distributions are approximately normal. However, this approach
ignores the temporal aspect of the data and therefore the distributions cannot
be used to model a single data point. Such a model should include the position
of the previous point.
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2.4 Vector quantization using information theo-
retic learning

Before proceeding to the chapters about mapping between the modalities a small
de-tour is taken into the domain of vector quantization. Although not directly
related to facial animation the reduction in data this method offers could be
used as a preprocessing step. By discretizing data a discrete model like the
Hidden Markov Model could be used for the mapping. Such an approach was
adopted in ( ). This work was first presented in
(2004); (2005b).

The process of representing a large data set with a smaller number of vectors in
the best possible way, also known as vector quantization, has been intensively
studied in the recent years. Very efficient algorithms like the Kohonen Self Or-
ganizing Map (SOM) ( , ) and the Linde Buzo Gray (LBG) (

, ) algorithm have been devised. In the following a physical approach
to the problem is taken, and it is shown that by considering the processing el-
ements as points moving in a potential field an algorithm equally efficient as
the before mentioned can be derived. Unlike SOM and LBG this algorithm
has a clear physical interpretation and relies on minimization of a well defined
cost-function. It is also shown how the potential field approach can be linked to
information theory by use of the Parzen density estimator. In the light of infor-
mation theory it becomes clear that minimizing the free energy of the system is
in fact equivalent to minimizing a divergence measure between the distribution
of the data and the distribution of the processing element, hence, the algorithm
can be seen as a density matching method.

2.4.1 Background and idea

The idea of representing a large data set with a smaller set of processing ele-
ments (PE’s) has been approached in a number of ways and for various reasons.
Reducing the number of data points is vital for computation when working with
a large amount of data whether the goal is to compress data for transmission or
storage purposes, or to apply a computationally intensive algorithm.

In vector quantization, a set of data vectors is represented by a smaller set of
code vectors, thus requiring only the code vector to be stored or transmitted.
Data points are associated with the nearest code vector generating a lossy com-
pression of the data set. The challenge is to find the set of code vectors (the
code book) that describes data in the most efficient way. Vector quantization
has application in both image processing and speech processing, in both domains
it can reduce the size of the data set and it can convert continuous signals to
discrete signals.

A wide range of vector quantization algorithms exist, the most extensively used
are K-means ( , ) and LBG ( , ).
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For other applications like visualization, a good code book is not enough. The
‘code vectors’, or processing elements (PE’s), as they are often denoted in the
self-organizing literature, must preserve some predefined relationship with their
neighbors. This is achieved by incorporating competition and cooperation (soft-
competition) between the PE’s. Algorithms with this property create what is
known as Topology Preserving Maps. The Self-Organized Map (SOM) (

, ) is the most famous of these. It updates not only the processing
element closest to a particular data point, but also its neighbors in the topol-
ogy. By doing this it aligns the PE’s to the data and at the same time draws
neighboring PE’s together. The algorithm has the ability to 'unfold’ a topology
while approximating the density of the data.

It has been shown ( , ) that when the SOM has converged, it is
at the minimum of a cost function. This cost-function is highly discontinuous
and drastically changes if any sample changes its best matching PE. As a result
it is not possible to use the conventional methods to optimize and analyze it.
Further more, the cost function is not defined for a continuous distribution of
input points since boundaries exist where a sample could equally be assigned to
two different PE’s ( , ). Attempts has been made to find a cost
function that, when minimized, gives results similar to the original update rule
( , 1993).

Efforts have also been made to use information theoretic learning to find good
vector quantifiers and algorithms for Topology Preserving Maps. ( )
introduces a cost function as a free energy functional consisting of two parts,
the quantization error and the entropy of the distribution of the PE’s. He also
explored the links between SOM, vector quantization, Elastic nets (

, ) and Mixture Modeling, concluding that the methods are closely
linked via the free energy. ( ) uses an information theoretic approach
to achieve self-organization. The learning rule adapts the mean and variance
of Gaussian kernels to maximize differential entropy. This approach, however,
leads to a trivial solution where PE’s eventually coincide. To circumvent this,

proposes to maximize the differential entropy and at the same time min-
imize the mutual information by introducing competition between the kernels.
The competition is not based on information theory but rather implements an
activity-based, winner-takes all heuristic. ( ) proposes an algo-
rithm (the Generative Topographic Map) in which a mapping between a lattice
of PE’s and data space is trained using the EM algorithm.

Ideas on interactions between energy particles have been explored previously
by ( ). However, in this work the problem is approached with an
information-theory perspective and the probability distributions of the particles
are explicitly used to minimize the free energy of the system.

In the following sections, an algorithm for vector quantization using information
theoretic learning (VQIT) is introduced. Unlike the methods described above,
this algorithm is designed to take the distribution of the data explicitly into
account. This is done by matching the distribution of the PE’s with the distri-
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bution of the data. This approach leads to the minimization of a well defined
cost function. The central idea is to minimize the free energy of an informa-
tion potential function. It is shown that minimizing free energy is equivalent
to minimizing the divergence between a Parzen estimator of the PE’s density
distributions and a Parzen estimator of the data distribution.

At first, an energy interpretation of the problem is presented and it is shown
how this has close links to information theory. Then, the learning algorithm
is derived using the Cauchy-Schwartz inequality. After a few numerical results
limitations and possible extensions to the algorithm are discussed.

2.4.2 Energy interpretation

The task is to choose locations for the PE’s, so that they represent a larger set of
data points as efficiently as possible. Consider two kind of particles; each kind
has a potential field associated with it, but the polarity of the potentials are
opposite. One set of particles (the data points) occupies fixed locations in space
while the other set (the PE’s) are free to move. The PE’s will move according to
the force exerted on them by data points and other PE’s, eventually minimizing
the free energy. The attracting force from data will ensure that the PE’s are
located near the data-points and repulsion between PE’s will ensure diversity.
The potential field created by a single particle can be described by a kernel of
the form K (-). Placing a kernel on each particle, the potential energy at a point
in space x is given by

1N
p(z) = N ZK(fE —x;) (2.1)

where the index ¢ runs over the positions of all particles (x;) of a particular
charge. If the kernel decays with distance (K(z) (m_lT)) the potential is
equivalent to physical potentials like gravitation and electric fields. However,
in the information theoretic approach, any symmetric kernel with maximum at
the center can be chosen. For the sake of simplicity, Gaussian kernels are used
herein.

Due to the two different particle types, the energy of the system has contribu-

tions from three terms:

1. Interactions between the data points; since the data points are fixed, these
interactions will not influence minimization of the energy.

2. Interactions between the data and the processing elements; due to the
opposite signs of the potentials, these particles will attract each other
and hence maximize correlation between the distribution of data and the
distribution of PE’s.

3. Interactions between PE’s; the same sign of all the PE’s potentials causes
them to repel each other.



34 Data

In the information theoretic literature equation (2.1) is also considered a density
estimator. In fact it is exactly the well known Parzen density estimator ( ,
). In order to match the PE’s with the data, equation (2.1) can be used to
estimate their densities and then minimize the divergence between the densities.
The distribution of the data points (z;) can be written as f(z) = >, G(z —
x;,0f) and the distribution over PE’s (w;) as g(z) = >, G(x — w;,0,). Where
G(p,0) denotes a normal distribution with mean g and variance o.
Numerous divergence measures exist, of which the Kullback-Leibler (K-L) diver-
gence is the most commonly used ( , ). The Integrated
square error and the Cauchy-Schwartz (C-S) inequality, are both linear approx-
imations to the K-L divergence. If C-S is used, the link between divergence and
energy interpretation becomes evident.
The Cauchy-Schwartz inequality

|ab| < []al]l[b]] (2.2)

is an equality only when vectors a and b are collinear. Hence, maximizing
% is equivalent to minimizing the divergence between a and b. To remove
the division, the logarithm can be maximized instead. This is valid since the
logarithm is a monotonically increasing function. In order to minimize the
divergence between the distributions f(z) and g(z) the following expression is

minimized

(/(f(@)g(x))dx)*

D._s(f(z),9(z)) = —log ffz(m)dxfgz(x)dw (2.3)
zlog/fg(ac)dac—210g/f(x)g(w)da:+log/g2(m)dx
Following ( ) V = [ ¢*(z)dz is denoted as the information

potential of the PE’s and C' = [ f(x)g(z)da the cross information potential
between the distributions of data and the PE’s. Note that

H(z) = —log/gQ(m)dw = —logV (2.4)

is exactly the Renyi quadratic entropy ( , ) of the PE’s. As a result,
minimizing the divergence between f and ¢ is equal to maximizing the sum
of the entropy of the PE’s and the cross information potential between the
densities of the PE’s and the data. The link between equation (2.3) and the
energy formulation can be seen by comparing the terms with the items in the
list above.

2.4.3 The algorithm

As described in the previous section, finding the minimum free energy location
of the PE’s in the potential field is equivalent to minimizing the divergence
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between the Parzen estimate of the distribution of data points f(z) and the
estimator of the distribution of the PE’s g(z). The Parzen estimate for the
data has a total of N kernels, where N is the number of data points, and the
Parzen estimator for the PE’s uses M kernels, M being the number of processing
elements (typically M << N).

Any divergence measure can be chosen, but in the following the derivation will
be carried out for the Cauchy-Schwartz divergence

log/f a:—210g/f dm+log/ 2(z)da (2.5)

The cost function J(w) is minimized with respect to the location of the PE’s
(w).

When the PE’s are located such that the potential field is at a local minima, no
effective force acts on them. Moving the PE’s in the opposite direction of the
gradient will bring them to such a potential minimum; this is also known as the
gradient descent method. The derivative of equation (2.5) with respect to the
location of the PE’s must be calculated; but, since the data points are stationary
only the last two terms of equation (2.5) (the cross information potential and
the entropy of the PE’s) have non-zero derivatives.

For simplicity, the derivation of the learning rule has been split in two parts; cal-
culation of the contribution from cross information potential and calculation of
the contribution from entropy. In the derivation Gaussian kernels are assumed,
although, any symmetric kernel that obeys Mercer’s condition ( , )
can be used.

Consider the cross information potential term (log [ f(z)g(z)dx); the Parzen es-
timator for f(z) and g(z) puts Gaussian kernels on each data point m] and each
PE w; respectively, where the variances of the kernels are of and a . Initially
the location of the PE’s are chosen randomly

¢ = [i@itns
N
= MN/ZG —w;, 0 )ZG(m—mj,JJ%)dm

J

= MNZZ/G —w;, 0 )G(I*l‘j,d?c)dl‘
- MNZZG ~ %:0)

where the covariance of the Gaussian after integration is o7 = a']% + 0. The
gradient update for PE wy from the cross information potential term then be-

comes d AC
% ologC = 22
dw, 21080 =25
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Where AC' denotes the derivative of C' with respect to wy
;X
AC = ~ N Zj:G(wk —xj,00)0, (wg — ;)

Similarly for the entropy term(— log [ ¢*(z)dx)

1 M M
V= /gz(m)dx = W Z ZG(U}Z - wja\/ﬁo'!])
d

i
AV
g | - =2
dw; ogV %
With
L XM
AV = 2 ZG(wk — wi,ﬁa’g)(jg—l(wk — w;)
i

The update for point k consist of two terms; cross information potential and
entropy of the PE’s

v C (2.6)
where 7 is the step size. The final algorithm for vector-quantization using infor-
mation theoretic concepts (VQIT), consist of a loop over all wy,. Note that AC
and AV are directional vectors where as C and V' are scalar normalizations.
As with all gradient based methods this algorithm has problems with local
minima. One of the ways local minima can be avoided is by annealing the kernel
size ( , ). The potential created by the particles will
depend on the width of the kernels and the distance between the particles. When
the distance is large compared to the width, the potential will be very ’bumpy’
and have many local minima, and when the particles are close compared to the
width, the corresponding potential will be ’smooth’. If, in addition, the number
of particles is large the potential will have the shape of a normal distribution.
Starting with a large kernel size will therefore help to avoid local minima. As
with the SOM, a good starting point is to choose the kernels such that all
particles interact with each other. The algorithm derived in this section uses the
gradient descent method to minimize an energy function based on interactions
between information particles. Each iteration of the algorithm requires O(M?2N)
Gaussian evaluations due to the calculation of C' for each PE. The parameters
for the algorithm are the variances of the density estimators U]% and 03 along
with the step size 1. The variances can be set equal and can be annealed from
a size where all particles interact. The step size should be chosen small enough
to ensure smooth convergence.

An alternative approach is to use the gradient from equation (2.6) along with
the value of the cost function equation (2.5) as input to a standard non-linear
optimizer.

wi(n+1) = wy(n) — (AV - 2“)
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Figure 2.9: Artificial data used to evaluate performance of the VQIT algorithm.
Points are chosen from two half circles distorted by Gaussian noise. Initially all
processing elements (PE’s) were chosen randomly from the unit square, in all
simulations the algorithm converged to the same solution (indicated by circles).

2.4.4 Simulations

In this section the ability of the VQIT algorithm to perform vector quantization
is illustrated on a synthetic data set consisting of two half circles with unit
radius which has been distorted with Gaussian noise with variance 0.1. One of
the halves is displaced in horizontal direction (figure 2.9).

The data essentially consist of two clusters, as shown in figure figure 2.9. Ini-
tially, 16 PE’s are placed at random locations. The objective is to have the
16 PE’s efficiently capture the structural property of the data. Using the algo-
rithm presented above, the final locations of the PE’s are shown, all in proper
alignment with the data (figure 2.9).

To assess the convergence of the VQIT, 50 monte-carlo simulations were per-
formed. Starting with different initial conditions chosen uniformly from the unit
square, it was found that with the right choice of parameters the algorithm al-
ways converges to the same solution. During training mode, having an initial
large kernel-size and progressively annealing it can avoid the local minima. In
this simulation, the width of the kernels was adjusted to equal the data-variance
on each of its individual projections. The initial kernel size for the PE’s was set
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(a) Development of the cost-function av- (b) The quantization error measure is in-
eraged over 50 trials. The cost-function is cluded for comparison with other algo-
always non-negative but, it is not guaran- rithms.

teed that a cost of zero can be achieved

Figure 2.10: Convergence of the VQIT algorithm, cost-function and quantization
error. The quantization error is calculated by computing the average distance
between the data points and their corresponding winner Processing Element.
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where o0, is the decaying variable. This is initially set to o9 = 1 and it decays
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The kernel size for the data (oy) was set equal to o,. The kernel sizes were
chosen such that initially all PE’s interact with all data points.

The evolution of the cost-function is shown in figure 2.10(a). Note that the cost-
function is always positive and that the minimum value it can obtain is zero;
this optimum is achieved if the two distributions are identical. The quantization
error (QE) is also calculated by computing the average distance between the
data points and their corresponding winner PE. The QE convergence curve is
shown in figure 2.10(b). To compare with other algorithms, the quantization
error is used as a figure of merit since it is a commonly used evaluation metric.
Comparison is provided with three algorithms: SOM, LBG and K-means. K-
means is the only algorithm of these that does not converge to the same solution
regardless of initial conditions. The result of the comparison can be seen in
table 2.2. The quantization error for the VQIT, SOM, and LBG centers around
0.14 while the K-means does not perform as well. It should be noted that
none of the algorithms directly minimizes QE, however, LBG includes it in the
iterations.
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VQIT | SOM LBG | K-means
QE | 0.1408 | 0.1419 | 0.1393 | 0.1668

Table 2.2: Quantization error (QE) for the data set shown in figure 2.9, the
results are the average of 50 trials with different initial conditions. The SOM,
LBG and the VQIT algorithm always converges to the same solution. The four
algorithms produce approximately the same results even though they do not
minimize the same error-measure.

2.4.5 Issues regarding VQIT

In this section some of the critical issues regarding the algorithm are discussed.
Emphasis is put on links to other algorithms and possible extensions.

The algorithm presented in this work is derived on the basis of the Cauchy-
Schwartz inequality. This leads to a divergence measure based on the inner-
product between two vectors in a Riemann space. As noted earlier this is not
the only choice, and has in fact only been used here because of its close links
to entropy. Another choice for cost-function is the Integrated Square Error
which uses the quadratic distance between the distributions instead of an inner
product

[(@ ~ 9@ = [ Paiae-2 [ f@g@do+ [P@de @0

The terms correspond to the information potentials of the data and the PE’s
and the cross information potential between the two. Note that equation (2.7)
is similar to equation (2.5) except for the logarithm. Derivations equivalent to
those used for C-S yields the very simple update

wr = wyg, + 1 (AV — AC) (2.8)

which requires O(M N) calculations per iteration. Annealing can also be used
and the performance is similar to the VQIT.
“Density estimation is an ill posed problem and requires large amount of data

to solve well” ( , ). Therefore, Vapnik suggests that one should not
try to estimate densities in order to solve simpler problems (like vector quanti-
zation).

Even though this approach uses Parzen density estimates in its formulation, the
pdf is never estimated. Instead the integral can be computed exactly through
the double sum and therefore the method does not violate Vapnik’s recommen-
dations.

In a physical system, all potentials have the same form and only the magnitude
(charge) can change, i.e. the same kernel type must be used for all particles.
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Also, in the Parzen estimator the mixture is homoscedastic, i.e. all mixtures
have the same variance. However, in many of the recent publications ( ,
; , ; , ), a heteroscedastic approach is followed allowing
the variance and weighting of the mixture components to change. It is easy to
extend the algorithm presented in this work to include heteroscedastic mixtures.
The cost-function can just as well be minimized with respect to both means,
variances and mixture weights. One can then choose to use either gradient de-
scent, or the EM algorithm to find the minimum. However, introducing more free
parameters also means estimating more parameters from the same data points
and can therefore lead to over fitting and poor generalization performance.
Another important issue is topology preservation. This feature is important
if the mapping is to be used for visualization. Unlike the SOM, the learning
rule proposed in this work is not topology preserving; it does not define an
ordering of the PE’s. It is however important to notice that if an ordering
exists, the algorithm will approximately keep this ordering during convergence.
Two different alterations can ensure that neighbors in the topology are also
neighbors in the mapping.
The first and simplest is to change the cost function equation (2.5). This can be
done by adding a term to the update schema equation (2.8). The term should
include attraction from PE’s that are close on the grid, one possibility is

> (wj —wy) (2.9)

ieEN

Where A is the set of neighbors defined by the topology. Since the cost-function
is changed, it cannot be expected that the PE’s converge to the same positions.
However, once the topology has unfolded, the weighting of the neighborhood
term equation (2.9) can be reduced and a solution will be obtained with PE at
the desired positions and this time with the desired topology. Another option
more along the lines of the SOM and other algorithms ( , ; , ),
is to change the update of the cross information potential term. If a winner PE
is chosen for every data point and it only itself and its neighbors are updated,
PE’s close in the topology will be drawn together. Unfortunately this is not
straight forward to put into the information theoretic framework.

The VQIT algorithm is based on block-computation of the data. It is possible
to develop an online sample-by-sample update, which may result in a significant
reduction in computational complexity. One way this can be achieved is by
eliminating the second summation in equation (2.6) and computing the Kernel
for only the current sample.

2.5 Final remarks

This chapter presented the data that is used through out the work. The available
(and not so available) multi modal databases were described and the rationale
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behind selecting the VidTimit database supplemented with own recordings was
given.

A vector quantization method based on information theory was presented, the
method is based on physical laws and introduces probability densities directly
into the optimization. Vector quantization can be a useful way of extracting fea-
tures from both sounds and images, and the initial idea behind researching this
algorithm was that it might be used in this way. As it turned out, Mel Frequency
Cepstral Coefficients and Active Appearance Model’s were more appealing, and
these representations will be used in the remainder of this thesis.






CHAPTER 3

State-Space Models

In this chapter, the State-Space Model is introduced and described in a general
context. The state-space framework plays a major role in the approach to multi-
modal mapping presented in the previous chapters. However, to save a little
excitement for the later chapters the explanation of exactly how the State-Space
Model is used to map from speech to faces will not be revealed before chapter 5.
The main purpose of this chapter is to give an introduction to the general
framework of discrete State-Space Models and to present results obtained in the
area of State-Space Models. These results concern the Parzen Particle Filter
( , ) and so far unpublished work on Markov Chain Monte
Carlo Filtering.

3.1 State-Space Modelling, a probabilistic ap-
proach

The model

T = f(mk,l)—kvk (31&)
Zr = h(wk)+wk (3.1b)

describes a scenario where an unobserved (hidden) state x is progressing in
time via a function f and driven by additive noise vy. At each time step an
observation z is made, the observation is a function of the hidden state with
added noise wg. An example of such a process is tracking of a vehicle. The
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state of the vehicle at time k is complectly determined by the vector ;. The
vector xj, could eg. include the position and velocity of the vehicle. The function
f(x) determines how the vehicle moves. At each time step the direction to the
vehicle zj is observed by the person tracking it, the relationship between the
state and the observation is given by h(x). To make the best possible guess
about the location of the vehicle both the process (expected movement) and the
observation must be taken into account.

In the above example the observation was of a lower dimension than the state,
but the opposite might as well be the case. This could happen if the observation
was a digital photograph of the scene. In that case each pixel represents a part
of the observation making h a mapping from a low dimension space to a high
dimensional space.

The function f is a mapping of the hidden state x from one time step (k — 1)
to the next (k), h is function mapping the hidden state to the observation z.
v and w are noise contributions drawn independently at each time step. The
functions are in general nonlinear and the noise can be distributed according
to any distribution. In the case where f and h are linear functions and both
noise distributions are Gaussian, the model reduces to the famous Kalman Filter
( , 1960).

Finding the probability of the hidden state at time k depends on how many ob-
servations are available. If observations from the ’future’ (w.r.t. k) are available
p(x|21.6+n) the process is called smoothing. If observations are available up
to the given time p(xy|z1.x) the process is called filtering. And, if there are no
observations available at the present time p(xy|zk_y) it is called prediction. In
this work focus is on filtering and smoothing but, the extension to prediction is
straight forward.

Filtering, smoothing, and prediction are all methods to find optimal hidden
states xy, but often the model also has a set of parameters that can be optimized.
This is e.g. the case when the transition and observation equations are linear and
the noise is Gaussian (Kalman Filtering). Here the function f(a,6y) is linear
and can be written as the matrix equation: Fx with (6 = {f,f12---})-
Parameter estimation will be dealt with in chapter 4.

There are different approaches to finding the optimal values of the hidden state.
The Markov property of the model makes it possible to handle the problem
sequentially, that is, find the optimal hidden state at time & = 1 and then
use that to find the optimal at time £ = 2 and so on. Using this technique
the filtering estimate can be calculated. Once the filtering estimate is found,
the chain can be traversed backwards in a similar manner and the smoothing
estimate can be found. The Kalman Filter (KF) and various Particle Filter
(PF) approaches all works this way. There are however other possibilities than
the sequential. If a Markov Chain Monte Carlo sampling schema is applied,
the smoothing density of the entire chain can be calculated simultaneous, this
approach is investigated in section 3.4. In the following the sequential method
is explored.
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3.1.1 Filtering

First note that the equations in (3.1) can be written as the transition probability
and the likelihood of the observation given the state

p(xp|Tr_1) = po(Tr — f(Tr-1)) (3.2a)
p(ze|x) Puw (2 — h(zy)) (3.2b)

For sequential filtering the update from the distribution of the hidden state
at time k — 1 given by p(@j—1|21.4—1) to the distribution at time k given by
p(xr|21.1) needs to be calculated. This can be done by rewriting p(xx|z1.x) to

p(@plzrg) = P($k|z1:k)p(21:k):p(ﬂ?k,z1:k—1,zk)
p(z1:1) P(z1:k-1,2k)
p(zg, Tr|z1:6—1)P(21:0—1)
p(zk|z1:k71)p(zlzk71)
p(zk|ze)p(Tk|21:8-1)
p(zk|z1:0-1)

Where the fact that z; does not depend on z,_; when xj, is known is used in
the last equality and use that

p(er|z1k-1) = /p($k|$k—1)p($k—1|Z1:k—1)d$k—1
The updating formula then becomes

p@slzre) = p(ziler) [ p(@e]Tr—1)p(@p—1|21:6—1)d@r_1 (3.3)
P(zk|Zz1k—1)

Unfortunately the update involves an integral that cannot be solved analyti-
cally in the general case. In section 3.2 methods to approximate the integral is
described but first the linear Gaussian case is dealt with.

3.1.2 The linear Gaussian version (Kalman Filter)

When the relationship between the states xj_; and xj is linear, the function
f(xi—1) can be written as a multiplication between the matrix F' and the state,
similarly for the observation function h(xj). When f and h are linear (F,H)
and the noise is Gaussian, the equations become

zy = Fxp_1+v,_1,v~N(0,Q) (3.4a)
zr = Hzp+wg,w~N(0,R) (3.4b)
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Since everything is linear and Gaussian all distribution involved are Gaussian

plxglTi—1) = Ny, (Fxp_1,Q) N(Fzi_1,Q) (3.5a)
p(zglzg) = N, . (Hzy, R) N(Hz,R) (3.5b)
p(xp|z18) = Ng, (zk, PF) N(z¥, P}) (3.5¢)
p(@k-1|z1:6-1) = Nay_ 1(wk pP'E %) _N(mk 1:Pz %) (3.5d)

In the middle column, the index on the N indicates what domain the distri-
bution lives in. The objective is to find filtering estimates for the mean z¥
and covariance Pﬁ of the state. The notation is slightly complicated, the sub-
index refers as usual to the discrete time, the super-index however, is used to
mark what the maximum observation included in the estimate is. When the
super-index is k — 1 the estimate does not include the latest observation.

Since everything is Gaussian, the end result is normalized and there is no need
to actually calculate the normalization constant. Plugging in to equation (3.3)
yields

N(zk, Pty = N(Haxy,R) / N(Fay_i, QN (2=t PV day .
Beginning with the integral
Ny, Pih) = / N(Fzy_1,Q)N(z}~1, Py_1)da)—1

zt~1 and P} can be found to be
k1 k-1
L = Fzy_,;
Pl = FPEIFT L Q

the calculations are given in appendix B.3.
Now the only thing that remains is to multiply with the likelihood

N(mk,Pi) = N(HwkaR)N(wzila‘P’I:_l)

Using the rules for multiplication of two Gaussians (equation (B.4)) and some
matrix identities ( appendix B.4) the mean z¥ and the covariance P’,: can be
found

z¥ = 2 |+ Ky(z, — Hx} ) (3.6a)
Pi = (I-KH)P/"' (3.6b)
K, = P/ 'H'(Q+HP{ 'H")™! (3.6¢)

these equations can be derived in numerous other ways e.g. using Hilbert spaces
as it was done originally by ( ) or by using expectations as e.g. in

(2000).
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3.1.3 Smoothing

In smoothing, values in the future are used as well as values in the past. Hence,
a sequential schema needs both a forward and a backward pass. The filter
described above is the forward pass and in the following the backward pass will
be derived using the probabilistic approach. As it was the case for the filter
many other derivations are possible.

Instead of calculating the conditional smoothing estimate p(xy|z1.7) directly the
joint probability p(xy, z1.7) is used. This makes the calculations more transpar-
ent and can easily be corrected in the end by remembering that p(xy,z1.7) =
p(xr|z1.7)p(z1.7)- The first step is to expand

p(Tk, 21.1) = /p(wk>$k+1>Z1:T)dmk+1

/p(z1:T|€Bk,$k+1)p($k,mk+1)dwk+1

= /p(Z1;k+1|wk,mk+1)p(zk+2:T|mk+1)p(mk,mk+1)dwk+1

where the last equality comes from the fact that the observations are indepen-
dent given the hidden variable, and that, given the hidden state at time k& + 1,
the observations are independent of the state at time k.
Now using that p(xg+1,21.7) = P(21.441|Tkr1)P(Zkt2.7|TR+1)D(Tk+1) the equa-
tion can be expanded further

p(21.7, Tpt1)
P(z1kr1]Try1)P(Tra)

p(xk, 21.7) = /p(z1:k+1|$ka$k+1)p($k,$k+1) dzp41

and even further by inserting

P(Z1k+1|Th, Tro1) = P(Zrk|Zr)P(Zhs1|Tha)

and

P(Z1:k+1|Tht1)D(Tpt1) /p(z1:k+1|a¢k,$k+1)p($k,$k+1)$k

p(zist|Tps) / pzurlen)p(@r Tpe)day

into the equation

p(z1: L+1|$kamk—i—l)p(‘rkawk+1)p(z1:Ta$k+1)d
P(Z1:041|Tk41)P(Tr41)
P(Z1:k|Tk)P(Zht1 | Trs1)D(Thp1 | Zr)P(xk)D(Z 10T, Thg1)

/
- / p(zrs1|@es1) [ p(z1k|2e)p(@hgr |2 ) p(2r ) day,
/

p(-’Bk, Zl:T) = Lh+1

dzp4q

P(Z1:k, Xk )P(Tht1|Tr) (217, Tig1)
I p(z1k, 1) p(®ta 1) ey,
B p(wk,zl k / wk+1|wk p(21.7, Try1)
 plzir) [ p(@k|z1:6)p(@hg1|2s)day,

dajq1

dzpi
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After reducing both sides can be divided by p(z;.7) and the results arises

wk+1|wk) (p+1|z1:7)
fp Tp|21:)D(Thpr|Tr) Ay

p(a:k|z1:T) a:k|z1 -k d:ltk_H (37)
It all boils down to a backwards pass that takes the smoothing estimate at
time k+ 1 given by p(xy+1|2z1.7) to the estimate at time k given by p(xg|z1.7).
Note that the filtering estimate from the forward pass (p(xx|2z1.1)) is part of the
smoothing.

3.1.4 The linear Gaussian version (Kalman Smoother)

Following the lines from the filter derivations, the Kalman smoother can be cal-
culated in exactly the same way by inserting the Gaussians from equation (3.5)
and the filtering estimates into equation (3.7). In this way the following back-
wards recursion arises

xl_, = zh+ I (xf -2 (3.8a)
Pl = PI 140, (P} P (3.8b)
Jy1 = PITIFT(PFH™! (3.8¢)

Where the superscript 7' denotes the smoothing estimate at the time indicated
by the subscript and T denotes the transpose. A superscript k indicates a
filtering estimate. The smoother is initialized with the final values of the filter
zk and PL. During smoothing the expectation of the mean and variance (<
Tk >p(ay.p|zr) a0 < TpTg >p(m1;T\z1;T)) of the observation probability can be
calculated with almost no overhead and so can the ‘lag-one” covariance smoother
(< TETE—1 >p(ayr|zr)) S€€ €.8. ( ). These quantities are used to
determine the parameters in the system.

3.2 Nonlinear sequential methods

If either the transition or the observation equation is nonlinear or if the noise
contributions are non-Gaussian, the Kalman Filter/smoother is not sufficient
and more advanced methods are needed. For most of these methods both
the filter and the smoother can be derived but smoothing often becomes ex-
tremely complicated and most applications deal with online estimation. There-
fore, smoothing methods have not been developed nearly as much as filtering
and here only a few methods shall be mentioned. The sequential smoothlng
methods include Expectation Propagation ( ,
), Particle Smoothing ( , ) and Extended Kalman smoothing
( , 2001).
The nonlinear filtering algorithms fall into four categories: Extended Kalman
Filters, Gaussian Sum Filters, Sigma-Point Kalman Filters and Sequential Monte
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Carlo Methods (Particle Filters) ( , ). Another way to
categorize the methods is Gaussian belief (Extended Kalman Filters, Sigma
Point Filters, Moment Matching), Mixture Of Gaussians (Gaussian-Sum Fil-
ter, Pseudo-Bayes) and non-parametric methods (Particle Filters) !. In the
Extended Kalman Filter, the distributions are assumed Gaussian but, the func-
tions are not linear. The functions f and h are linearized around the previous
state x_1 using a second order Taylor expansion and then the standard Kalman
equations are used. The result is a Gaussian distribution for p(z|z1.x) (see fig-
ure 3.1(b)). For nonlinear systems the solution is better than a normal Kalman
Filter, and it is accurate to first order. The Unscented Kalman Filter (Sigma
Point Filter) ( , ) propagates points one standard de-
viation from the previous state xj_; through the nonlinearity and then uses
the points weighted appropriately (Gaussian quadrature like) to estimate mean
and co-variance of a Gaussian. Finally this is used in the standard Kalman
equations. It is accurate to the second order.

If the process noise distribution is approximated by a Mixture of Gaussians the
family of Gaussian Sum Filters arises ( , ). In the
Mixture of Gaussians each mixture component is propagated through an ex-
tended Kalman Filter. The state update f is linearized around the means of
each mixture component and h is linearized around the predicted value for the
mean of each mixture f(xy—1). The resulting distribution is again a Mixture of
Gaussians. If the process noise is also non-Gaussian, this too can be approxi-
mated with a Mixture of Gaussians. However, in this case the number of mixing
components increases quickly.

Nonparametric methods are an entirely different approach to nonlinear filter-
ing. In the Particle Filter it is assumed that the distributions p(zx|21.x) and
p(xr—1|21:4—1) from equation (3.3) can be estimated by discrete distributions
(figure 3.1(c)). Samples are drawn from the posterior distribution using impor-
tance sampling and a proposal distribution. In the generic Particle Filter the
transition probability (p(ay|xr_1)) is used as proposal, but other proposals have
been proposed in e.g. the Extended Kalman Particle Filter and the unscented
Particle Filter ( , ), in these methods a filter (EKF or UKF)
is calculated for each particle and the resulting Mixture of Gaussians is used
as proposal distribution for the Particle Filter. In an attempt to combine the
Particle Filter and the Gaussian Sum Filter the Gaussian Sum Particle Filtering
was proposed ( , ). In this approach both the density
and the process noise are considered Mixture of Gaussians. In each time step
samples are drawn from the mixture approximating p(xg—1|21.5—1), these sam-
ples are propagated through the nonlinearity and used to offset the means in a
mixture describing p(xg|xr—1). Then samples are drawn from this distribution
too. In this way a discrete approximation of p(xy|z1.5—1) is obtained and the
sample mean and covariance of the new mixtures can be estimated. Unfortu-

!Thomas Minka http://wuw.stat.cmu.edu/ minka/dynamic.html
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T

(a) A density propa-
gated through a nonlin-
ear function.

(b) In the extended
Kalman Filter, the dis-
tribution is assumed to
be a Gaussian modified
by a linearization of the
nonlinearity around the
previous state.

(¢) In the Particle Fil-
ter the densities are
approximated by dis-
crete samples. These
samples can be sent
through the nonlinear-
ity to give an estimate

of the output density.

Figure 3.1: Propagation of a pdf through a nonlinearity 3.1(a) and different
approximations to the propagated distribution 3.1(b) and 3.1(c). This is the
prediction step corresponding to equation (3.2a). Afterwards the resulting pdf
is modified to match the measurements equation (3.2b).

nately the number of mixtures explode, to avoid this mixtures with small weight
can be thrown away. In a similar manner, the Gaussian Mixture Sigma Point
Particle Filter ( , ) uses a bank of Sigma Point Filters to
update p(xg|z1.4—1) and then samples are drawn from the mixture and the im-
portance weights are calculated before a Gaussian Mixture is fitted to produce
the posterior estimate.

In ( ) an algorithm based on the Parzen density esti-
mator is presented. The algorithm is best categorized as non-parametric, since
it can be seen as a direct extension to the Particle Filter. The basic concept
is to improve the performance of the Particle Filter by using a better density
estimate.

The algorithm is similar to the Gaussian Sum Particle Filter and the Kernel
Filter ( , ), however, it is derived in a different manner
that allows use of any kernel type. The derivation of the algorithm uses a sample
mean estimate of the integral p(xg|z1.4—1) and a ‘Particle Filter like " update of
the weights.

3.3 The Parzen Particle Filter

With a Parzen density estimator ( , ; , )
a distribution can be approximated arbitrarily close by a number of identical
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kernels centered on points chosen from the distribution. In the Particle Filter
the kernels are delta functions but information can be gained by using a broader
kernel.

The distribution at time £ — 1 can be approximated by

N
Pl 1lzie 1) & Y wp  K(AL (1 — @ )
7

where A’ is a transformation matrix used to keep track of distortions of the
kernel. Each kernel can be propagated through the mapping p(xi|xr_1) by
using a local linearization, yielding a continuous output distribution p(xg|z1.x).
This is again a sum of kernels but the kernels are no longer identical (in the
sense that they are from the same family of functions, yet they have different
parameters).

Using the kernel representation — and neglecting the normalization — equa-
tion (3.3) can be written as

p(Tr|21:1) (3.9)
N

x pleslen) [ ol fee) Y who K - oh)daie

N
= Y perlwwi, / polak — Flan-)) K (Ah_y w4y — h_y))dwpy

Each part of the sum can be handled individually, and under the assumption
that the kernels are small compared to the dynamics in the nonlinearity, f can
be locally linearized. That is, the kernels used to approximate the distribution
must be narrow compared to the changes in the function. By linearizing f
around x! | the jacobian Joi | = g%hvi_l is introduced and the following
change of variables can be employed

Ty =J

i (Tho1 —z)y)

Inserting the linearization and the new variable in the integral from the last line
of equation (3.9) one gets

/ pol(@s — F@i 1) K(AL_ (241 — 2L _,))dws
/ pol@ — fah ) —J

= /pv(a:k — f(@j_y) — Ep1) K (A}, (J

w;cfl(a:kil - w;'cfl))K(A;cfl(wkfl - Cﬂi,l))dmk,l

71 B
d&p—1

@) [l

i
L1

Changing variables again such that

Ero1=xp — flxh_y) — Tp
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This integral is an expectation over the process noise

By, [K (Al J1} (@ = f@oy) - i )]

and can be approximated by a sample mean. In the extreme case a single sample
drawn from the transition noise p, can be used, and the result is a translation
of the kernel by the noise sample

By, K (Al 1d1,) (@n— F(@) @)

;;cl—l(wk —f(@h ) — v 1)), vk 1~ Do

~ K ( P
Returning to the expression of equation (3.9)
p(xg|z1:1)

N .
S vlzslwn)wi, |7

X

i
L1

_1K( i g

;5_1(mk - fxj_y) - Uk—l)) » Uk—1

N
= Y uiK (i - a})

is obtained. Here the last equality arises because the density at time k should
also be expressed in terms of kernels. From this equation the component’s mean,
distortion and weight can be identified

x, = f(zp ) +ora
Ay = -1 ;21_1

. . . —1
wp = wiopElel) [Ty

This derivation holds for any kernel.
If the kernel is Gaussian, multiplying the input with A is equivalent to modifying
the covariance to AAT. In that case, the covariance update is given by

P = (A THAL) T = Tla (AN (AT

k—1

Tp_q

j T
m};_l 271'] a:;;71
The transformation matrix A (or ¥ in the Gaussian case) is distorted in each
iteration. To avoid to much distortion a resampling schema can be applied.
With a suitable frequency the distribution can be re-approximated by a Parzen
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estimator by drawing samples from p(xy|z1.x), choosing A or ¥ to take their
initial values, and setting the weights equal.

The properties of the kernel are iterated through the system equations, thus it is
not necessary to optimize the kernel parameters at every step. In addition, the
approximation of the integral — stochastically using a sample drawn from p, —
includes an inherent resampling step at every iteration, which allows the Parzen
Particle Filter accuracy to survive longer than the standard version. However,
in the experiments presented in the next section resampling was employed at
every iteration.

To round out the presentation of the Parzen Particle Filter pseudo code for the
algorithm is presented. Real code can be found at www.imm.dtu.dk/ " tls

Initialization

Find a mean (x}) for each kernel e.g. draw from a broad distribu-
tion

Set the (common) covariance e.g. 0.2cov means (o)

Set all weights wd = 1/N

For all time steps k =1: T

and for each kernel i =1: N

Find the mean xj, by drawing a sample from
paile_)

Find the weight wj, = wj,_p(Zk|z},)

Find the covariance L= JE5 NI

Renormalize the weights wh, = wh /Y (wy)

Find the predicted state =), wial

Find new kernels resample the distribution

Y wiN(z}, Z})

3.3.1 Parzen results and conclusion

In this section the performance of the Parzen Particle Filter will be compared
to the performance of the standard Particle Filter (SIR) ( ,
) The method is tested on a one-dimensional problem

Tp—1 Tr—1
= 25
Tk 5 T ra)

10 arctan(%) +wy (3.10b)

+ 8cos(1.2k) + v, (3.10a)

2k

Where vy, and wy are drawn from Gaussian distributions G(0, 1) (figure 3.3(a))
and from gamma distributions I'(3, 2) (figure 3.3(b)). Figure 3.2 show the tran-
sition function for £ = 0, a similar problem was originally proposed for testing
sampling methods in ( ) and was used again in

( ). Note that the fix-points move as k varies.
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Figure 3.2: The transition function used to evaluate the performance of the
Parzen Particle Filter. The functional form is given in equation (3.10) (k=0).
The function has two attracting fix-points and one repelling, thus making the
dynamics switch from one basin to another.

The Parzen Particle Filter and the generic Particle Filter has been used on 100
time series generated using equation (3.10).

In figure 3.3(a) the mean square error is plotted as a function of the number of
kernels. It can be seen that with few kernels the methods perform equally good
(or bad) but as the number of kernels increases the kernel method becomes
better. It can be seen that for this one-dimensional example, the methods
perform equally well but the number of particles can be reduced drastically by
improving the density estimate.

The simulations show that the Parzen Particle Filter improve the performance
both with Gaussian and non-Gaussian noise. In this work only the special case
with a Gaussian kernel is examined. However, it is expected that a broader
kernel would be well suited for long tailed noise, since it will be more likely to
get the particles spread out.

The code for the Filter can be downloaded at http://www.imm.dtu.dk/ tls/
code/.

3.4 Markov chain Monte Carlo

The Markov chain Monte Carlo (MCMC) method is an integration technique
alternative to the Particle Filter methods. Originally the use of Monte Carlo
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1.4

——-Particle Filter
1ok S Parzen Particle Filter| |

Mean square error

0 20 40 60 80
Number of kernels

(a) Performance results of the Parzen Particle Filter and the stan-

dard Particle Filter. In this case with Gaussian noise. Note that

the performance of a Parzen Particle Filter with & 10 kernels
equals that of a normal Particle Filter with &~ 20 kernels.

- —-Particle Filter
Parzen Particle Filter

0 20 40 60 80
Number of kernels

(b) Performance results of the Parzen Particle Filter and the stan-
dard Particle Filter. In this case with gamma distributed noise.

Figure 3.3: Comparison of standard Particle Filter (SIR) and Parzen Particle
Filter on the problem from equation (3.10). Both with Gamma distributed and
Normal distributed noise the Parzen Filter requires fewer kernels.
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techniques for State-Space Models was introduced by ( );
( ); ( )- A thorough outline of the MCMC sampling
in non-Gaussian State-Space Models are given in the review by
(2000).

The MCMC-method has the advantage of directly providing smoothing esti-
mates for the state space process, but in its traditional form the method suffers
from poor convergence properties. This problem has widely been held as an
argument in favor for the sequential-methods, in particular emphasizing the
advantages of these methods in scenarios involving real-time signal-processing
(on-line filtering). However, a caveat of the sequential type of approximation to
the true posterior density is that this approach is susceptible to long correlation
times of the state-space process. In principle, the MCMC-algorithm is free from
this problem, in keeping with the non-sequential representation of the sampling.
In the following the MCMC method will be presented and a way of applying it
to on-line filtering will be introduced.

3.4.1 MCMC for state-spaces

In the MCMC method, a state space, ¢ € ® is sampled according to a given
probability distribution, ¢ ~ p(¢), by generating a Markov chain of states,
{¢D};, through a fixed matrix of transition probabilities. Given the chain ¢ a
new chain ¢’ is selected. The transition probabilities, T'(¢ — ¢'), are chosen so
the condition of detailed balance is satisfied

p(A)T (¢ = ¢') =p(¢)T(¢' = ¢). (3.11)

Let p?(4|¢p(®)) denote the probability distribution of ¢ for the i’the element
of the Markov chain, when it is initialized in state ¢(®). According to Perron-
Frobenius theorem, p*) will converge to the ‘true’ distribution p(¢) independent
of the choice of ¢(®);

p(¢) = ilggop(i)(aﬁlw)),

provided that T is ergodic and aperiodic (see ie. ( ) for a
detailed discussion).

The transition probabilities are in a computational sense constructed as a prod-
uct of a proposal probability distribution ¢(¢’'|¢), and an acceptance rate a(¢'|¢),
ie. T(¢p— ¢') = q(¢'|d)a(d'|¢p). At the (i + 1)-step in the MCMC algorithm a
trial state ¢', is drawn according to the distribution ¢(¢'|¢(") and accepted as
the new state ¢(/tY) = ¢’ with the probability a(¢'|¢?)). Otherwise, one sets
¢t = (D) There is a considerable freedom in the choice of a. The standard

Metropolis-Hasting algorithm ( , ) is to use
noay o [ P()a(0]") }
o) =min{ G0 1) 12
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v

Time

Figure 3.4: Sampling in the MCMC method. Choosing a new path involves
selecting a point according to equation (3.15), in this case x_;. Once the point
is selected a move is proposed according to equation (3.16). The new sequence
can be accepted or rejected according to equation (3.17).

This prescription automatically satisfies the condition of detailed balance, as
verified by direct inspection of equation (3.11).

The main deficiency of the MCMC-method in the traditional form outlined
above, is its susceptibility to slow relaxation (long correlation times) of the
Markov chain. Slow relaxation reduces the effective number of samples and may
lead to results which are erroneously sensitive to the particular initialization of
the chain. It should be noted that the sequential methods suffers from the same
problems with relaxation.

3.4.2 MCMC method for on-line filtering

In the traditional Particle Filter approach to state-space tracking, the particles
represent a sample of the posterior density, p(xg|21.5) of the last state, x, only.
In applying the MCMC technique to the tracking problem, a state in the Markov
chain, ¢, is identified with the full history of states in the original state-space,
¢ = x1.;. It follows from the Markov property of the state transition density
and the observation likelihood, equation (3.1), that the joint posterior density
(@) = p(x1:5|21:1) is given by

k

11 p(e;lej—)p(zj1;)- (3.13)

p(@rk|21:0) = p(z1:1)

Notice, that the normalization constant p(z.;), cancels out in the Metropolis
definition of the acceptance rates, equation (3.12).

One obvious advantage of sampling the joint posterior density p(@1.x|z1.x) rather
than the marginalized posterior density p(xg|2z1.%) is the gain of statistical in-
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formation. However, such extension of the state-space implies that the pro-
posal density function commonly used in PF methods, q(xg|To.r—1,21.6) =
gpr(xK|Tr—1,zr), must be augmented with proposal for changing past states
x:<p. For simplicity, the extension of the proposal distribution is factorized in
time (T) and space (X) in the following manner

Q(mi:k|$1:k,Z1:k) = QT(t|k)qg§) ($2:k|$1:k; Zl:k)‘s(ﬂ?ﬂ;(tq) - wl:(t—l))- (3.14)

In effect, first a time index is selected, 1 < ¢t < k, independent of the current
state @1.x, according to the probability distribution gy (¢|k). Then, a trial path is
drawn according to the spatial proposal distribution, qg? (2).x|T1:x, Z1:1), which
is chosen to be zero for all pairs of paths which are not identical up to time ¢.
Since the Markov process is expected to generate states with exponentially de-
caying time-correlations, a natural form for ¢r(t|k) is the exponential distribu-
tion, gr(t|k) ~ exp((t — k)/7). Here, T equals the average size of the back-
propagating step in the path-space sampling following an observation at time k.
In order to make the MCMC method applicable for on-line filtering, an extra
emphasis should be put on the sampling of the latest state, ;. Therefore the
following definition of g7 are proposed

0 t>k

ar(tk) = { Prowdi + (1= prow) = exp((t = B)/7) 0<t<k (319

Here, ppoy is the probability of attempting a change to the latest state xj only,

and Ny is a normalization constant, Ny = Zle exp(t — k)/7 = i:‘(ﬁim.
(t)

As regards to the spatial proposal distribution gy’ ()., |®1.4; Z1:%), the direct
approach is simply to adopt the proposal distribution applied in a given PF-
method
¢

0% (hgleer, 20r) = app(@|@i-1, 200(@(psn) = Sernan)- (3.16)
This leads to a sampling scheme as sketched in figure 3.4. With the above choice
of ¢r and gx the acceptance rates in the MCMC method, equation (3.12) takes
the particular simple form

! ! !
a(][ @124, 21.4) = min {p(zt|mt)p(mt|mt—1)p(mt+1|mt)qPF(mf|mt—17zt) , 1}
P(Zt|$t)P($t|fUt—1)p(wt+1|$t)QPF($t|CEt71,Zt)

(3.17)

(zeq1];)

for 1 <t < k. The acceptance rates for t = k is obtained by omitting i(wtﬂ‘wt)
in the above expression. In the standard Particle Filter the transition probability
p(xi|xe—1) is used as proposal distribution. This choice is also used in the
MCMC method in the next section.

In essence the on-line version of MCMC selects a single sample from the se-
quence, propose a change of that sample and accept it according to equa-
tion (3.17). Samples near the current time are selected with higher probability
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because it is expected that new observations will be more likely to influence
them. Finally, knowledge about the system can be utilized to incorporate a
global move. In the following bimodal example a part of the sequence e.g.
T(r—20):(k) can change sign with low probability. This move also has to be
accepted with an acceptance rate similar to equation (3.17).

3.4.3 MCMC results

In order to compare the performance of various Particle Filtering methods with
the MCMC a bimodal, one dimensional model is examined. The model is similar
to the one used in section 3.3.1

xr = f(Tp—1)+ vg—1 (3.18a)
2h z\* T
o=y <<xf> - <mf>>
zp = g(xg) + wg (3.18b)
g(z) = 2’ +ex

The map f(x) has two attracting fix points at £z, and a repulsive fix point at
x = 0 (see figure 3.5) implying that the state-space is divided into two basins.
The process will spent most of the time fluctuating around zy or —zy. The
parameter h determines the potential barrier separating one basin from the
other. In these experiments z; = 10, ¢ = 1, the noise contributions v, and wy
are normal zero mean with variance 1. The value of h is varied between 2.5
and 4.5. The simple functional form of f(x) enables analytic calculations of the
transition times between the two basins of the models; these calculations are
utilized in sofar unpublished work by ( )

To quantify the results two error measures where studied. The traditional root-
mean-square error also used to quantify the performance of the Parzen Particle
Filter is given by

T
1
RMSE = | = le(mk— < zp >)?

where T is the total number of steps and < z; > is the posterior average of
the state variable at time k estimated through a given algorithm. In addition
to this the Basin Error (BE) defined as

1

T
BE = 5(1 - ;;(sgn(xk)sgn(< g >))

was used. It quantifies the fraction of times the algorithm predicts a wrong sign
for the state variable x. A value of BE = 0.5 means that the performance of the
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Figure 3.5: The transfer function used in the comparision of PF and MCMC
methods (equation (3.18)). The function is similar to the one used to test the
Parzen Particle Filter (figure 3.2). It has two stable fix-points at = +10 and
an unstable at = 0. Unlike the function used to test the Parzen Filter this
function has some nice analytical properties.
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Figure 3.6: One of the instances of the sequence used to test the methods. The
black line is the true path and the gray line is estimated using a PF approach.
Note that often the PF chooses the wrong basin despite the numerical value

being close to the true value.
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Method basin error | STD | RMS error | STD
Particle Filter 0.50 0.05 13.3 0.7
Sigma Point Particle Filter 0.47 0.04 13.0 0.3
Gaussian Sum Particle Filter 0.59 0.05 14.7 0.7
SRCDKEF 7 0.55 0.04 14.9 0.7

’ Particle Filter global move \ 0.44 \ 0.05 \ 12.3 \ 0.7 ‘

Table 3.1: Errors obtained with different filtering methods. The ReBEL tool-
box was used to perform the experiments. 1000 particles were used in the PF
methods.  Three times the output was NaN

algorithm in resolving the macro-state (basin) of the system is the same as by
guessing at random.

For each value of h in the model, 10 independent realizations of the state pro-
cess, equation (3.18), is generated starting from zg = 0. The process in each
realization is iterated T = 15000 times to ensure a non-vanishing number of
transitions between the basins for all h. For each realization, a corresponding
observation path zi.7 is generated. All algorithms discussed below are tested
on this fixed set of state and observation realizations.

In table 3.1 the RMSE and BE of the various sequential filtering algorithms
for h = 3.0 are listed. The ReBEL toolbox (http://choosh.ece.ogi.edu/
rebel/) by Rudolph van der Merwe and Eric A. Wan was used to perform the
experiments. The entries give the estimated average error and the uncertainty
of the estimate (STD) based on the 10 realizations and using N = 1000 particles.
For this number of particles, none of the methods performs significantly better in
estimating the basin than by guessing at random. This leaves to the conclusion
that the accuracy of the various algorithms are more or less identical for the
model at hand, and in the following focus will be on just one of these; the
standard Particle Filter method (SPF). Figure 3.6 shows a typical trajectory of
the state variable and the corresponding average value from the SPF method,
illustrating the failure of the method in estimating the right basin of the process.
As discussed in the previous section, one obvious remedy is to complement the
proposal distribution with a move which explicitly carries out the transitions
between the two basins. The last row of table 3.1 gives the accuracy of the
SPF method when this operation is added to the sampling. The abbreviation
SPF* is used for the the PF with global moves. Only a marginal improvement
of the algorithm is observed, which nevertheless indicates that the failure of the
method is related to the small transition probabilities between the basins.
Table 3.2 shows how the accuracy of the SPF* scales with the number of particles
for various choices of h. Two interesting observations can be made. First, a very
large number of particles are in general needed to reach the limiting accuracy.
Secondly, the algorithm performs worse for small values of h, corresponding to
larger transition probabilities between the basins. The general failure of the
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100 1000 10000 100000 1000000
2.5 1 0.53 £0.05 | 0.55 +0.03 | 0.30 & 0.03 | 0.17 £ 0.02 | 0.17 &+ 0.02
3.0 1045 +£0.05| 0.44 £ 0.05 | 0.30 &= 0.04 | 0.18 & 0.02 | 0.13 £ 0.02
3.5 ] 0.60£0.03 | 0.58+0.06 | 0.35 £ 0.04 | 0.17 £ 0.02 | 0.12 + 0.02
4.0 | 0.54 + 0.06 | 0.44 + 0.05 | 0.32 + 0.05 | 0.14 &+ 0.05 | 0.09 + 0.02
4.5 | 0.50 + 0.07 | 0.58 + 0.07 | 0.30 + 0.07 | 0.08 &+ 0.03 | 0.09 + 0.03

Table 3.2: The Basin Error for varying barrier heights (h) and number of par-
ticles. The experiments where performed with a Particle Filter using global
moves. A very large number of particles are needed to reach the limiting ac-
curacy. Also note that the algorithm performs worse for small values of h,
corresponding to larger transition probabilities between the basins.

Basin error | STD | RMS error | STD
2.5 0.24 0.005 8.51 0.38
3.0 0.140 0.002 6.41 0.05
3.5 0.090 0.001 5.18 0.04
4.0 0.056 0.002 4.14 0.08
4.5 0.079 0.002 4.95 0.07

Table 3.3: Experiments with MCMC using global moves for different barrier
heights (h). Compared to the Particle Filter in table 3.2 the errors are very
small given that only 1000 ‘particles’ where used.

PF-methods arises from the fact that when a basin change occurs at some time-
step i, say x;—1 < 0 to x; > 0, the likelihood, p(z;|z), around =z = =; is not
sufficiently large to compensate for the low transition probabilities, p(z;|z;—1)
associated with the change of basin. Consequently, the posterior distribution

p(zi|z1:4) O(p(zi|37i)/p(«ri|xi—1)p($i—1|Zl:i—1)d$

will still be much larger for the original basin. Since the typical trajectory for a
basin change only involves a few number of states in the transition region, see
figure 3.6, no particles are likely to occupy the new basin after filtering when
the number of particles are small. In this case, the particles will be frozen in
the wrong basin once the state of the process reaches the new basin around z;.
As the number of particles becomes large enough it is more likely that particles
cross the barrier at the same time as the true trajectory and the filter is able to
pick up the basin change.

In contrast to this the MCMC performs better. In this setup it was allowed
1000 changes to the chain which is computational similar to a PF with 1000
particles. Since these 1000 changes also effect previous time steps it is easier for
the MCMC method to correct a decision to be in the wrong basin and utilize the
small change in likelihood introduced by € in equation (3.18). The parameter
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7 determining how far back in time changes are made to the chain is set to
250. In table 3.3 the result of running the MCMC method on the data can be
seen, results are much better than for the SPF*, especially considering the low
number of ’particles’.

It is demonstrated that it is always possible to formulate a MCMC algorithm
that uses the same proposal as a PF method. It has been shown that there
are no hinderance in using MCMC in online applications and the experiments
indicate that with the same computational complexity MCMC methods pro-
duces superior results. The reason for the success of the MCMC methods is the
ability to accumulate evidence over several time steps, thus utilizing the small
differences in posterior probabilities. On top of this there are standard ways
of improving the performance of MCMC methods such as simulated annealing,
parallel tempering and bridging ( , ).

3.5 Final remarks

The State-Space Model as presented in this chapter can be used in a very wide
range of applications. Whether a linear Gaussian model, a nonlinear sequential
model or the Markov Chain Monte Carlo method should be applied depends on
the problem at hand. However, with the approach for on-line MCMC described
here there are no obvious reasons to continue using sequential sampling methods.
In this chapter, it has been assumed that the model is known and that the
functional relationships and noise distributions must be given before estimating
the optimal hidden sequence. For physical systems this assumption is often
valid. A good estimate of the functions f and h and the noise contributions
can be found by observing the physical system. However, there are also a wide
range of systems where the dynamics of the system cannot be modeled by hand.
Fortunately, there are methods to deal with these cases. These methods will be
described in the next chapter.



CHAPTER 4

Parameter Estimation

In the previous chapter, the State-Space Model was introduced and a variety
of methods to estimating the hidden sequence were described. However, all the
methods assumed the parameters of the model were known. In this chapter,
parameter estimation using the Expectation Maximization (EM) algorithm will
be presented along with an alternative method, based on gradients, originally
proposed in ( ).

The general framework of parameter estimation is applied to the linear version
of the State-Space Model.

4.1 EM-Algorithm

Maximum likelihood is a popular estimator for the parameters of many different
models. For State-Space Models like the one in equation (3.1) it is the most
widely used method, but, the applications are much broader and extend into
Independent Component Analysis and Mixture Models just to name a few. In
the following the ( ) formulation of EM will be used.
Assuming a model with observed variables z, state-space variables & and pa-
rameters 8, then calculation of the log likelihood, £(8) involves an integral over
the state-space variables of the type

L£(0) =1Inp(z|0) = 1n/p(z|x,0)p(x|0)dx (4.1)

The marginalization in equation (4.1)) is intractable for most choices of p(z|x, )
and p(x|0), hence direct optimization is rarely an option — even in the Gaussian
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case. Therefore, a lower bound B on the log likelihood is introduced. The bound
is valid for any choice of distribution g(x|¢)
p(x,2|6)

50.9) = [ a(xle)in s < I p(a]o) (4.2)

Introducing this lower bound, B, may seem to have complicated matters, how-
ever, the lower bound has a number of appealing properties which makes the
original task of finding the parameters easier. An important fact about B be-
comes clear when rewriting it using Bayes theorem

B(0,¢) = Inp(z|0) — K L[q(x|¢)||p(x|z, 8)] (4.3)

where KL denotes the Kullback-Leibler divergence between the two distribu-
tions. Thus, if the variational distribution ¢ is chosen to be exactly the posterior
of the hidden variables, B is equal to the log likelihood. For this reason one
often tries to choose the variational distribution flexible enough to include the
true posterior and yet simple enough to make the necessary calculations as easy
as possible.

The approach is to maximize with respect to ¢, in order to make the lower
bound as close as possible to the log-likelihood and then maximize the bound
with respect to the parameters 8. This stepwise maximization can be achieved
by using the EM algorithm or by applying the Easy Gradient Recipe (see sec-
tion 4.3).

4.1.1 The EM update

The EM algorithm, as formulated in ( ), works in a straight-
forward scheme which is initiated with random values and iterated until suitable
convergence is reached

E: Maximize B(0,¢) w.r.t. ¢ while keeping 0 fixed.
M: Maximize B(6,¢) w.r.t. 8 while keeping ¢ fixed.

It is guaranteed that the lower bound function does not decrease on any com-
bined E and M step. Figure 4.1 illustrates the EM algorithm. The convergence
is often slow — e.g. the curvature of the bound function, B, might be much
higher than that of £, resulting in very conservative parameter updates. This is
particularly a problem in latent variable models with low-power additive noise.
In ( ) and ( ), it is demon-
strated that the EM update scales with the observation noise level. That is, as
the signal-to-noise ratio increases, the M-step change of the parameter decreases,
and more iterations are required to converge.

To illustrate how this works the Kalman Model is a good example. In this
model the E-step consists of estimating the hidden states given the parameters
6(F,H ...) and this is done by using the smoother as presented in section 3.1.3.
In the M-step the parameters are found keeping the hidden states fixed, which
can be done in ‘one shot” by setting the derivatives equal to zero.
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Figure 4.1: Schematic illustration of lower bound optimization for a one-
dimensional estimation problem, where 6,, and 6,,; are iterates of the standard
EM algorithm. The log-likelihood function, £(6), is bounded from below by the
function B(0, ¢,). The bound attains equality to £ in 6,, due to the choice of
variational distribution: ¢(z|¢,) = p(x|z,0,). Furthermore, in 8,, the deriva-
tives of the bound and the log-likelihood are identical. In many situations, the
curvature of B(0, ¢,) is much higher than that of £(8), leading to small changes
in the parameter.
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4.2 The gradient alternative

Optimization in State-Space Models based on maximizing the log-likelihood
with respect to the parameters fall in two main categories based on either gra-
dients or Expectation Maximization (EM).
The EM algorithm ( , ) is probably the most important
algorithm for parameter estimation. It was first applied to the optimization of
linear State-Space Models by ( ) and
( ). A general class of linear Gaussian (state-space) models was treated in
( ), in which the EM algorithm was the main engine
of estimation. In the context of Independent Component Analysis (ICA), the
EM algorithm has been applied, in among others ( ) and
( ). In ( , ), the EM
algorithm was applied to the Convolutive ICA problem.
A number of authors have reported slow convergence of the EM algorithm.
In ( ), impractically slow convergence in 2-component
Gaussian Mixture Models is documented. This critique is, however, moderated
by ( ). Modifications have been suggested to avoid the
slow convergence of the basic EM algorithm, ( ) and
( ) among many but most come at a high cost in
terms of computational complexity or at the expense of analytical simplicity.
Another approach to maximum likelihood in State-Space Models, and more
generally in complex models, is to iteratively search the space of 6 for the
maximal £(6) by taking steps in the direction of the gradient, VoL(6). A
basic ascend algorithm can be improved by supplying curvature information,
i.e. second-order derivatives, line-search, etc. Often, numerical methods are
used to compute the gradient and the Hessian, due to the complexity associated
with the computation of these quantities. In ( ) and
( ) fairly complex recipes are given for the computation
of the analytical gradient in the linear State-Space Model.
In the following sections it will be documented that the ezact gradient of the
log-likelihood function can be computed using only the relatively simple math
and programming of the EM algorithm. As a result, the reasonable conver-
gence properties of the gradient-based optimizer are restored. This procedure is
termed the FEasy Gradient Recipe. Furthermore, empirical evidence, supporting
the results in ( ), is presented to demonstrate that
the signal-to-noise ratio (SNR) has a dramatic effect on the convergence speed of
the EM algorithm. Under certain circumstances, i.e. in high SNR settings, the
EM algorithm fails to converge in reasonable time. The central points utilized
in the proposed recipe have been mentioned in, e.g. ( ),
but they did not comment on the relationship of the convergence properties to
the SNR.
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4.3 Easy Gradient Recipe

An alternative approach to the EM algorithm is to use a gradient based approach
like the Easy Gradient algorithm presented in ( ).

The key idea is to regard the bound, B, as a function of 6 only, instead of a
function of both the parameters 8 and the variational parameters ¢p. As a result,
the lower bound can be applied to reformulate the log-likelihood as

L(0) = B(6,¢.) (4.4)

where ¢, = ¢,(0) fulfils the constraint q(s|¢,) = p(s|x,0). In practise, it is
often complicated to find ¢, and it cannot always be done analytically. Com-
paring with the general expression of the bound function in terms of the log
likelihood and the Kullback-Leibler divergence (equation (4.3)) it is easy to
show that ¢, maximizes the bound. But, since ¢, is exactly minimizing the
KL-divergence, the partial derivative of the bound with respect to ¢ evaluated
in the point ¢,, is equal to zero. Therefore the gradient of B(8, ¢,) is equal to
the partial derivative

AB(0.¢,) _ 0B(6.9.) , 9B(6.9)
o 00 o

_0B(8.9.)

5 (4.5)

. 001

and due to the choice of ¢,, the partial derivative of the bound is the gradient

of the log likelihood
9L(0) _ 9B(6, 9.)

00 00

which can be realized by combining equation (4.4) and equation (4.5).

In this way exact values and gradients of the true log likelihood can be obtained
using the lower bound. The observation of this is not new, since it is essentially
the same that is used in ( ) to construct the so-called
Expected Conjugated Gradient Algorithm (ECG). The novelty of this recipe, is
the practical recycling of low-complexity computations carried out in connec-
tion with the EM algorithm. This allows for a much more efficient optimization
using any gradient-based non-linear optimizer. The recipe can be expressed in
MATLAB-style pseudo-code where a function loglikelihood takes the param-
eter @ as argument and returns £ and its gradient %

function [L, do] = logllkellhood(e)
1 Find ¢* such that 22 =0
2 Calculate £ = B(6, ¢* )

3 Calculate & = 28(9, ¢*)

Step 1, and to some extend step 2, are obtained by performing an E-step,
while 3 requires only little programming to implement the gradients used to
solve for the M-step. Compared to the EM algorithm, the main advantage is
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Figure 4.2: Comparing convergence of the EM algorithm and the gradient based
approach. The gradient method starts out slow but converges after ~ 40 itera-
tions. EM is fast in the initial iterations but then slows down and even after 50
iterations it has not converged and is ‘far’ from the level of the gradient method.
In figure 4.3 the convergence of the parameters are also provided.

that the function value and gradient can be fed to any non-linear gradient-
based optimizer, which in most cases provides a substantial improvement of the
convergence properties. In that sense, it is possible to benefit from the speed-ups
of advanced gradient-based optimization.

The advantage of formulating the log-likelihood using the bound function, B,
depends on the task at hand. In the linear State-Space Model (equation (3.1)) a
brute force computation of the gradient of the log-likelihood is costly, since the
computation of the gradients scales as (dy)? times the cost of one Kalman Filter
sweep.! When using the Easy Gradient Recipe, the combined computational
cost depends on the optimizer of choice. Often, state-of-the-art software induces
little overhead in addition to the computation of the gradient. In the case of
linear State-Space Models, the total computational cost of the Easy Gradient
Recipe is then dominated by steps 1 and 2, which require a single Kalman
smoothing. ( ) noted in their investigation of linear State-
Space Models that a reformulation of the problem resulted in a similar reduction
of the computational costs.

In this work, a quasi-Newton gradient-based optimizer has been chosen, that is
the optimizer estimates the inverse Hessian using the gradient. The implemen-
tation of the BFGS algorithm is due to Hans Bruun Nielsen, ( , ),
and has built-in line search and trust region monitoring.

To illustrate the difference in convergence speed figure 4.2 show the log likelihood
as a function of iterations for the two algorithms. In the experiment a one-
dimensional Kalman Model was used.

The computational complexity of the Kalman Filter is O[N(ds)?], where N is the data
length.
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4.4 The linear (Gaussian case

Before comparing the EM algorithm and the gradient alternative, parameter
estimation in the linear Gaussian case i.e. the Kalman Model will be discussed.
In the following iterative methods for system identification will be considered.
However, there are other alternatives e.g. one-shot algorithms like the subspace
method described in ( ); ( ).

4.4.1 Identifiability

The unknown parameters in the Kalman Filter (equation (3.4)) are all entries
in the transition matrix F', all entries in the observation matrix H, and the
two covariance matrices @ and R. Unfortunately, these parameters are not
uniquely defined from the observations. The simplest way to see this is to insert
an invertible matrix in the equations

Uz, = UFU Uz +Uvp_1,v~N(0,Q) (4.6a)
2y = HU 'Uzj + wy,w ~ N(0,R) (4.6b)

With the new variables @ = Uxy, F=UFU™" and so on, the output of the
system (z) remains the same. For a general system identification problem —
where the hidden space has a physical interpretation — this is off course unde-
sired. Even when one does not care about the hidden space the non-uniqueness
can cause problems for the optimization.

In the machine learning community the un-identifiability of the parameters has

in general not been considered a problem for example ( ) derives the
E-M algorithm for parameter estimation without even mentioning the problem.
In ( ); ( ) it is noted

that, without loss of generality, the transition noise @ can be set to the identity.
However, by remembering that cov(Uw) = Ucov(v)U" it is obvious that if Q
is the identity, U can be any rotation matrix. Hence, restrictions on Q removes
scale ambiguities, but leaves rotations.

Kevin Murphy’s toolbox Bayes Net Toolbox for Matlab? also implements pa-
rameter estimation in Kalman Filters along these lines without taking the un-
identifiability into account.

In the control community different canonical forms for the state-space system
have been investigated and for single input single output (SISO) systems e.g.
the observer and the controller canonical form solves the problem. However, for
multiple input multiple output (MIMO) systems, the canonical forms require
information about how many complex eigenvalues the system contains. The
problem arises because the hidden states can have two interpretations. Either
a state can describe a variable of the system or it can describe a delay. The
problem is treated in e.g. ( ); ( ),

2 http://www.ai.mit.edu/ murphyk/Software/
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in these papers non-unique overlapping parameterizations are suggested as well
as unique representations requiring the estimation of so called ’structure indices’.
In ( ) a data driven local parametrization is used.

The choice is now whether to keep the full system with all its ambiguities, fixate
Q@ and get rid of the scaling problems, choose F' to be diagonal and introduce
complex states, try to estimate the structure indices, or under-parameterize the
system by choosing F' to be diagonal and real.

Since this work stems from the machine learning community, the initial choice
was over-parametrization. However, as the work progressed this approach be-
came increasingly unattractive due mainly to the non-uniqueness of the solution
and thereby non-reproducible results. At later stages fixating @ was used, still
leaving the rotation ambiguities.

4.4.2 Kalman derivatives

To find the optimal parameters in the Kalman Filter the derivatives of the lower
bound B(6, ¢.) (equation (4.2)) must be found with respect to the parameters 6.
Here ¢, is the smoothing solution of the hidden state @ ...z thus q(x|¢,) =
p(x1.7|z1.7). The parameter 8 contain F', H, Q, R and the initial distribution
xo and X.

By looking at the lower bound at ¢.

p(, 216)
/q<a:|¢>log e

/ a(z]$.) log p(a, 2|0)de — / a@ld.) ng(zlp)dz  (4.8)

B

————dx (4.7)

it is seen that when ¢ is fixed, only the term [ g(z|@,)logp(x, z|@)dz can be
optimized.

Following e.g. ( ) the joint probability of the hidden variables and
the observation given the parameters can be factorized by using the Markov
property of the model

T T
p(@17, 21.710) = p(20]0) H (k| @h—1,0) H (zk|zk,0) (4.9)

Since all probabilities are dependent on 6, the dependence is left out in the
following to simplify the notation

B = /p(ml:T|Z1:T) lOg[P(mlzT,leT)]dml:T
T

T
/p(wl:T|Z1:T) {log[P(wo)] + Y loglp(axler-1)] + ) 10g[p(zk|ﬂ7k)]] de,.r

k=2 k=1
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So far everything holds for general distributions and both linear and non-linear
smoothers. Now the Gaussian distributions for the KF (equations (3.5)) can be
inserted

1
B = - /p(m1:T|z1;T) (4.10)
d, log[27] + log[|X0|] + (x1 — mO)TEal(ml —xg)

T

+ Z (d. log[2n] +10g[|Q|] + (z, — Fz4—1)"Q " (x4 — Fxi_1))

k=

T2

+ Z (d:log[27] + log[|R|] + (24 — Hay) "R ' (2, — Hzy)) }dmlzT
k=1

Beginning with the transition matrix F', the bound B can be differentiated with
respect to all the components in 6. Note that capital 7' denotes the length of
the time series and Tthe transpose

T
9 o1 1 o
aF? = FF [ ~3 /P($1:T|Z1:T) ;(l‘k —Fx,_1) Q "(x, — Fxp_y)dzr.r
1 T
= —5/ (x1.7|21.7) Z 2Q71F:L'k_1m£_1 — 2Q71mkwg_1)dm1;T
k=2
T
= —Q‘lFZ <zpazh oy >+QTNY <zl , > (4.11)
k=2 k=2

Where the expectation of the transition < m,ﬂ:zfl >=< mwzlfl >plaerr|z0)
is needed. Fortunately, this quantity was derived in section 3.1.3. A similar
derivation holds for the observation matrix H

0 0 1
8HB = 6—H|:—§/ ml T|z1T ]; zk—Hmk TR (zk—Hmk)dmlzT
1 T
= —5/ 11|21 ,; 2R_1H:13k:vz — 2R_1zkw{)daz1:T
T
= —Rflﬂz <mprl > +R71 sz <z > (4.12)
k=1 k=1

For the covariances R and Q a few extra calculations are needed since these ma-
trixes are symmetric and positive definite. Differentiating a symmetric matrix
is different than a normal matrix. When solving for %B =0 as is done in the
EM algorithm there is no need to take the symmetry into account however, if a
gradient based minimization is used it is important to use the correct gradient.
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the derivative of a symmetric matrix A can be found by differentiating as usual
pretending that the matrix A* has no structure and then transform the result
by: 5% = (74 + 54 ) diag(55;) ( ’ )-

However this does not ensure that the matrix is symmetric and positive definite
after a gradient step. Two different approaches handles this. The ﬁrst is to keep
A diagonal and optimize the deviation o instead of the variance o?. Another
approach but with full covariance structure is to write A = AOA0 and optimize
Ay, this unfortunately introduces new degrees of freedom since another division
of A Ay = AyU 2 could just as well have been chosen. With this new choice of
parameter the derivative is changed but fortunately not much. It can be found
by using the chain rule. %B = (8%3 + %B)AO. Using the second method
the ’standard’ derivative is needed

[— 1/p(:i:l:lel:T) (4.13)

OR 2

7~ 5l

(log[|R|] + (zp — Hwk)TR_l(zk — Hwk)) dwlzT]

k=1
1 T
= —5/ x1. T|Z1T Z R_T—R_T(zk —Hmk)(zk —H:vk)TR_Tda:l:T
k=1
1 T d
_ -r -T T T T
= —;(TR"-R (szz1 <zpxp > H +kzzkzk
=1
T s
—Hz<mk>zk sz<mk> HT)R_T
k=1 k=1

In this work the second method with a parameter change is employed.
For the derivative of B with respect to @ the same considerations as for R

3U can be any rotation matrix
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applies since @ is also symmetric

ag*B = 762[_ %/p(;,;l T|z1.7) (4.14)
ET: (log|Q[] + (x — Fap—1)'Q ' (f — Fxy_1)) d$1:T:|
k=2
= —%/p(fBl:ﬂZl:T)
ZT:(Q_l Q7 (x — Fay1)(xy — Fay 1) Q™ 'darr
k=2

T T
1
= —5((T -1)Q '-Q '(F E <zpxy_ >F + g < zpxp >
k=2 k=2

T T
~FY <mpazf>-Y <zpzi_, >FHQ! (4.15)
k=2 k=2

where the sum ZZ:Q <Tpom) | >= Zk | < TRx) >F# Zk , < xpx] > for
finite length sequences. The mean and the covariance for the initial condition
can also be found, the estimate of these however, are more uncertain since they
only rely on the beginning of sequence

0 0 1 =
37&70B = Dz [ 2 /P($1:T|Z1:T)($1 —20) Ty (21 — @o)darr
1
= Nyl (< x> —m) (4.16)

where < &1 >=< &1 >p(2,.1|z,.¢) 1S the expectation of the first hidden variable

over the posterior distribution

62)03 = BiEO[_ %/p(flTl:ﬂZl:T) (4.17)
(dy log[27] + log[|o|] + (@1 — @) "S5 (1 — o)) d:clzT}
= —%/p(mllezlzT)
(Z' ==z —mo) (@1 —x0) =" dwrr
= _% (2*1_

ST (<ma! >—<x >a) —mo < Tt > +Tp2h) T

with < 12] >=< Z1®] >p(@,.1|21.0)-
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As mentioned earlier the gradients can be used either in the EM-algorithm
where the exact update can be calculated by setting them equal to zero, or in
a gradient based optimizer. In the following section a comparison of the two
methods on three different problems will be carried out.

4.5 EM versus gradients

In ( ) The EM algorithm and the Easy Gradient Recipe were
applied to three different models that can all be fitted into the linear state-space
framework, the first is a one dimensional version of the Kalman model and the
two others are ICA models.

Mean field ICA

In Independent Component Analysis (ICA), one tries to separate linearly mixed
sources using the assumed statistical independence of the sources. In many cases
elaborate source priors are necessary, which calls for more advanced separation
techniques such as Mean Field ICA. The method, which was first introduced in
( ), can handle complicated source priors in an efficient
approximative manner.
The model in equation (3.4) is identical to an instantaneous ICA model provided
that F = 0 and that p(v;) is reinterpreted as the (non-Gaussian) source prior.
The basic generative model of the instantaneous ICA is

zr, = Hxy + wyg, (418)

where w; is assumed i.i.d. Gaussian and x; = vy, is assumed distributed by
a factorized prior [], p(v;x), which is independent in both time and dimension.
The Mean Field ICA is only approximately compatible with the Easy Gradient
Recipe, since the variational distribution g(x|¢) is not guaranteed to contain the
posterior p(x|z,0). This, however, is not a problem if ¢ is sufficiently flexible.

Convolutive ICA

Acoustic mixture scenarios are characterized by sound waves emitted by a num-
ber of sound sources propagating through the air and arriving at the sensors in
delayed and attenuated versions. The instantaneous Mixture Model of standard
ICA, equation (4.18), is clearly insufficiently describing this situation. In convo-
lutive ICA the signal path (delay and attenuation) is modeled by an FIR filter,
i.e. a convolution of the source by the impulse responses of the signal path

Zy = Z H;zp ¢ + wy (4.19)
¢

where H; is the mixing filter matrix. Equation (4.19) and the source indepen-
dence assumption can be fitted into the state-space formulation of equation (3.4),
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see ( , ), by making the following model choices: 1)
Noise inputs v and wy, are i.i.d. Gaussian. 2) The state vector is augmented
to contain time-lagged values, i.e.

X = [1‘17/6:617]{_1 c T2 kT2 g1 e T dy kTL k=1 - - .]T
3) state-space parameter matrices (e.g. F) are constrained to a special format
(certain elements are fixed to 0’s and 1’s) in order to ensure the independency
of the sources mentioned above.

4.6 Comparing algorithms

Before advancing to the more involved applications described above, the advan-
tage of gradient-based methods over EM will be explored for a one-dimensional
linear State-Space Model. In this case, F and H are scalars as well as the
observation variance R and the transition variance Q. The latter is fixed to
unity to resolve the inherent scale ambiguity of the model. As a consequence,
the model has only 3 parameters. The BFGS optimizer mentioned in section 4.3
was used.

Figure 4.3 shows the convergence of both the EM algorithm and the gradient-
based method. Initially, EM is fast, i.e. it rapidly approaches the maximum log-
likelihood, but slows down as it gets closer to the optimum. The large dynamic
range of the log-likelihood makes it difficult to ascertain the final increase in the
log-likelihood, hence figure 4.3(b) provides a closeup on the log-likelihood scale.
Table 4.1 gives an indication of the importance of the final increase. After 50
iterations, EM has reached a log-likelihood value of —24.5131, but the parameter
values are still far off. After convergence, the log-likelihood has increased to
—24.3883 which is still slightly worse than that obtained by the gradient-based
method, but the parameters are now near the generative values. Similar results
are obtained when comparing the learning algorithms on the Kalman Filter
Based Sensor Fusion, Mean Field ICA and Convolutive ICA problems.

As argued in section 4.1.1, it is demonstrated that the number of iterations
required by the EM algorithm to converge in state-space type models critically
depends on the SNR. Figure 4.4 shows the performance of the two methods
on the three different problems. The plots indicate that in the low-noise case,
the EM algorithm requires relatively more iterations to converge whereas the
gradient-based method performs equally well for all noise levels. Note that
iterations in the gradient-based approach may require more than one function
evaluation. Therefore, function evaluations were counted as iterations.

4.7 Final remarks

In this chapter, parameter estimation has been investigated; both in general and
especially in State-Space Models.
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(b) Zoom-in on the log-likelihood axis. Even after 50 iterations,
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(c) Parameter estimates convergence in terms of squared relative
(to the generative parameters) error. The gradient based method
has a much faster but not as smooth convergence.

Figure 4.3: Convergence of EM (dashed) and a gradient-based method (dotted)
in the linear State-Space Model. Figure 4.2(a) and 4.2(b) are repeated here
for convenience. The gradient method converges much faster than the EM
algorithm.
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(c) Convergence of EM and the gradient based
method in Convolutive ICA.

Figure 4.4: Iterations for EM (dashed) and gradient-based optimization (solid)
to reach convergence as a function of signal to noise ratio for the three different
problems. Convergence was defined as a relative change in log-likelihood below
1075. It is seen that in low SNR the EM requires many iterations in all the test
cases.
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’ \Generative Gradient EM 50 EM ~ ‘

Iterations - 43 50 1800
Log-likelihood | - -24.3882  -24.5131 -24.3883
H 0.5000 0.4834 0.5626 0.4859
F 0.3000 0.2953 0.2545 0.2940
R 0.0100 0.0097 0.0282 0.0103

Table 4.1: Estimation in the Kalman Model. The convergence of EM is slow
compared to the gradient-based method. Note that after 50 EM iterations, the
log-likelihood is relatively close to the value achieved at convergence, but the
parameter values are far from the generative values.

It was found that if applying the EM algorithm to maximum likelihood estima-
tion in State-Space Models, it has poor convergence properties in the low noise
limit. Often a value ’close’ to the maximum likelihood is reached in the first few
iterations while the final increase, which is crucial to the accurate estimation of
the parameters, requires an excessive amount of iterations.
A simple scheme for efficient gradient-based optimization is achieved by a trans-
formation from the EM formulation. The simple math and programming of the
EM algorithms is preserved. Following this scheme — or recipe one can get the
optimization benefits associated with any advanced gradient based-method. In
this way, the tedious and problem-specific analysis of the cost-function topology
can be replaced with an off-the-shelf approach. Although the analysis provided
in this thesis is limited to a set of linear Mixture Models, it is in fact applicable
to any model subject to the EM algorithm, hence constituting a strong and
general tool to be applied by the part of the machine learning community that
uses the EM algorithm.
In the linear Gaussian case, the problem of identifying a unique set of parameters
persists. Either the system becomes under-parameterized or a set of structural
parameters must be estimated along with the ‘real’ parameters.
Given the simplicity of the problem it seems like the solution is hiding some-
where. Yet, even though mathematicians, statisticians and control people has
been consulted along with piles of literature no final answer has been found.
For general State-Space Models with nonlinear functions and non-Gaussian noise
the parameter estimation problem is much harder than in the linear case. If the
function family is known, i.e. the functions is parameterized in some way, meth-
ods like the ones described in this chapter can be used to find these parameters
an example is found in ( ). If the functional form is
not known, a function approximation technique can be used to maximize the
likelihood. ( ) uses neural network and in

( ) the nonlinear mappings are modeled by radial basis
functions.



CHAPTER 5

Making Faces

In this chapter, the methods derived in the previous two chapters are applied
to the problem stated in the beginning of the thesis — the problem of mapping
from speech to images.

Due to the computational advantages the linear Gaussian State-Space Model
is chosen for the map. The Gaussian assumption seems reasonable given the
distribution of parameters (see section 2.3.3). As for linearity it would be a
strange coincidence if the true dynamics where linear, and one could argue that
the more advanced models also presented in chapter 3 could be used instead.
However, the linear Gaussian model is the simplest and easiest to use, if it works
satisfactory everything is fine, if not, it sets the bar for more advanced models.
In the following the framework of using State-Space Models for modality map-
ping will be presented and the model set up will be explained. The framework
has a single parameter that is not trained directly namely the dimension of
the unobserved variable space. The optimal size is found and it is shown how
the dimension influences what type of dynamics the model can capture. After
explaining the setup and the training of the model a section is devoted to a
discussion of the pros and cons of this approach to modality mapping. This
chapter elaborates on the findings from ( ,b);

(2005a).
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5.1 Framework

As it was mentioned in chapter 1 the idea of using continuous State-Space
Models for the map is in contrast to most previous work where the mapping
typically is performed by either a Hidden Markov Model or a Neural Network.
Previously such exchange of HMM with Kalman Filters has been proposed for
speech recognition by e.g. ( ).

The advantage over a discrete approach is that is possible to control the pa-
rameters directly without using precalculated trajectories. The advantage over
mapping directly from sound to image features is that the temporal aspect is
considered. That is, the image sequence will contain only smooth transitions
and no jerky motion.

The model is set up as follows

T, = ATp_1 + 1 (5.1a)
y, = Bz, +nl (5.1b)
zr = Cxy +nj, (5.1c)

In this setting z, represents the image features at time k, y, represents the
sound features and xy, is a hidden variable without direct physical interpretation.
The hidden variable can be thought of as some kind of brain activity controlling
what is said. Each equation has i.i.d. Gaussian noise component n added to it.

During training both sound and image features are known, and the two obser-
vation equations can be collected in one (figure 5.1(a))

Yy

(%)=(&)=+(3) 62
By using the parameter estimation techniques presented in chapter 4 on the
training data, all parameters {A, B,C, X% XY 3%} can be found. As it was
also discussed in chapter 4 the solution is not unique, not even with X% = T.
When a new sound sequence arrives Kalman Filtering (or smoothing) can be
applied to equation (5.1a) and equation (5.1b) to obtain the hidden state x
(figure 5.1(b)). Given @ the corresponding image features can be obtained by the
maximum a posteriori estimate , z, = Cxy, (figure 5.1(c)). If the intermediate
smoothing variables are available the variance on zj can also be calculated.
Some inherent difficulties in the mapping becomes apparent when the model is
posed as above. As illustrated in Figure 5.1 the hidden sequence is estimated
based on the model — trained on both sound and images — and on the sound
data. It is not possible to get a perfect mapping simply because not all infor-
mation about lip movements is contained in the sound. This also relates to the
ambiguities in the sound and image representation described in chapter 2.
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@@}

(a) The Kalman Model with two different ob-
servation types.
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(b) With known parameters the hidden se- (c) Once the hidden states are known the
quence can be estimated from the sound image sequence can be found.
alone.

Figure 5.1: The state-space approach to modality mapping. The first step is to
estimate parameters of the model, then the hidden sequence can be estimated
given only one of the modalities. Finally the second modality can be retrieved
by mapping from the hidden sequence.
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5.2 Number of hidden units

In most machine learning models there is a trade of between flexibility and gen-
eralization, this complication is often referred to as the ”bias variance trade off”.
In ( ) it was showed that the bias variance predicament
also applies to State-Space Models when deciding how many hidden unit to use.
The results were achieved before the investigation of the convergence properties
of the EM-algorithm. Therefore, the EM-algorithm was used and many itera-
tions were needed to reach convergence. In fact with the results presented in
the previous chapter it is questionable if the optimum was ever reached. How-
ever, as the likelihood comes close to the true likelihood after few iterations it
is believed that the results are still valid.

The data used for the experiments was a single speaker from the VidTimit
database. Nine sentences were used to train the model and a single sentence
was used as test.

Figure 5.2 show, as expected, that as the number of hidden units increases the
models ability to describe data in the training set also increases. Measuring the
likelihood on the test set changes the picture, in figure 5.3 it is seen how adding
hidden variables decreases the generalization abilities; overfitting is experienced.
With few hidden units the model is not flexible enough and hence the test data
can not be described by he model. With too many hidden units the model
has been specialized to the training data and again does not describe the test
data. When considering Figure 5.2 and figure 5.3 it should be noted that the
likelihoods were not normalized and hence the absolute likelihood values cannot
be compared between training and test examples.

This kind of analysis is of course heavily dependent on the size of the training
set. If the training data really describes all situations well — that is the test set
does not contain new information — a well trained model should not experience
these problems. Unfortunately, there are never enough data! However, it is still
possible to investigate the relationship between the number of training examples
and the test error. Such an analysis will give an insight into the optimal training
set size.

A type of analysis often used in speech processing is to look at spectrograms.
Here spectrograms are used to understand what goes on in the hidden space and
an analysis on the feature level rather than in the speech domain is performed.
Creating the spectrogram of the hidden variables gives an idea of what dynamics
are captured, especially when there are few hidden variables. In figure 5.4(c)
a spectrogram from one of the hidden variables in a five variable model can be
seen. It is noted that only low frequency components are present. As the hidden
space gets larger it becomes possible to model more of the dynamics present in
the image. The spectrogram of a representative hidden variable when using
a 25 dimensional hidden space (figure 5.4(d)) has a structure very similar to
what is found in one of the image features (figure 5.4(a)). When increasing the
hidden units to 70, the model degrees of freedom becomes large and over fitting
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Figure 5.2: The likelihood evaluated on the training data. The more hidden
units, the better the model captures the dynamics of the training data.
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Figure 5.3: The likelihood evaluated on the test data. With few hidden variables
the model is not rich enough. With too many parameters over-fitting is expe-
rienced. An optimum is found in the range 25-40 hidden variables. Note that
due to normalization the test error and the training error can not be compared
directly.
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(a) Spectrogram of the first image (b) Spectrogram of the first sound
feature. feature.

s

(c) Using five hidden units, only the (d) When using 25 states, more of the
low frequencies are captured. dynamic present in the image can be
captured.

(e) When using 70 hidden units one (f) Using 70 hidden units one of the
of the components specializes to high components has no direct connection
frequencies. to the image and sound features.

Figure 5.4: In the spectrograms of one of the predicted hidden states of on
the test sequence, the effect of varying the size of the state-space can be seen.
Spectrograms of the first sound and image features are provided for comparison.
Note that the spectrograms are of the features and the states and not the speech
signal itself.
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becomes possible. Figure 5.4(e) and figure 5.4(f) show the spectrogram of two
hidden variables and it is seen that the states specializes. In figure 5.4(e) high
frequencies are dominant, and the spectrogram seemingly display a structure,
which resembles the dynamics of the sound features as seen in figure 5.4(b). This
dynamic is not relevant to the image representation due to the slower dynamics
of the facial expressions. These specializations are specific to the training set
and do not generalize according to figure 5.3. Given the tendency for the model
to overfit to training data and the computational complexity involved in training
the model a model with 25 hidden units was chosen for the mapping.

5.3 Does it work?

Looking at the strengths and weaknesses of the approach and the ability to
create the desired mapping, a quantitative measure of performance is difficult to
obtain. One of the only ways to get an idea if the system is usable is to perform
subjective tests. The mapping results are not perfect and visual inspection
as well as a single test with a hearing impaired person reveals that it is not
possible to lip-read from the sequences. Nevertheless, fairly accurate sequences
are produced and the both face and articulation looks natural. In figure 5.5
snapshots from the sequence are provided for visual inspection, but as it is the
temporal aspect that makes it interesting the reader is referred to http://www.
imm.dtu.dk/people/tls/code/facedemo.php for the entire sequence. Other
examples can be found in the flash demo http://www.imm.dtu.dk/people/
tls/code/flash/Demo_eng.swf. In the following a data-sheet like display of
the system is presented, the itemized lists gives an overview of the pros and cons
of the system and the accompanying text elaborates on the points.

5.3.1 Status

An understanding of how the State Space approach performs and how it relates
to other similar approaches can be gained by examining some characteristics of
the system:

e The video show natural facial animation.

It is not possible to lipread from the video.

e It is easy to the train model for new persons.

e It is easy to train the model for new languages.

e The video has smooth transitions and no problems with jerkiness.

The produced sequences are natural to look at, and at a first glance it is not
possible to distinguish them from form real recordings. However, once the lip-
movements are inspected closely it can be seen that it is not possible to lip


http://www.imm.dtu.dk/people/tls/code/facedemo.php
http://www.imm.dtu.dk/people/tls/code/facedemo.php
http://www.imm.dtu.dk/people/tls/code/flash/Demo_eng.swf.
http://www.imm.dtu.dk/people/tls/code/flash/Demo_eng.swf.
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(c)

Figure 5.5: Characteristic images taken from the test sequence. The predicted
face is to the left and the true face to the right.
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read from the sequences. There are systems that outperform this one in terms
of lipreading abilities e.g. ( ) and ( ).
These systems are based on a phonetic alphabet, and hence requires a phonetic
transcription of the spoken sentences.

It is no surprise that a phoneme to image mapping produces better results
than a sound to image mapping, just think of the ambiguities revealed by the
McGurk effect. The lipreading ability of the phonetic based systems indicates
that, as speech recognition gets better phoneme representations are a more
natural way to go when creating visual speech. However, besides the difficulties
in transcribing speech correctly a main drawback with the phonetic approach
is that there are many sounds that are not present in the phonetic alphabet.
Yawning, sneezing, and ‘hmm’ sounds does not have a phonetic transcription.
Further more, the construction of models in different languages requires different
phonetic alphabets and hence extraction of different key frames.

In contrast to this, the approach proposed in this work requires only that the
training data contains the desired sounds and the matching movements. The
speech can be in any language and non-speech sounds are mapped as well as
speech sounds. One of the greatest strength of this of mapping is the easy set
up for new conditions. Creating a system for a new person, a new vocabulary
or an entire new language is as easy as collecting video of the desired condition.
Then it is simply extracting the features and creating the map, both of which
can be set up to run automatically.

Finally, unlike other approaches the use of continuous State-Space Models en-
sures that the video is smooth, there are no problems with jerky motion or
unnatural transitions.

Possible uses:

As discussed later there is a range of possibilities for improving the system, but
even with the drawback that lipreading is not possible there are still applications
where cosmetic corrections or generation of lip-movements can be used:

e Low bandwidth transmission for mobile phones and video conferences (lip
reading accuracy not important).

e Correction of lip-movements in synchronized movies and commercials.
e Rough animation in cartoons (could be fine tuned by hand afterwards).
e In-game dialog.

In low-bandwidth communication it is important to get a sense of presence
often on a relatively low resolution screen. Lip-movements that are time-aligned
with the speech is an important factor for this. Even with a higher resolution
temporal accuracy is more important than entirely correct movements. The
same holds for synchronized movies, removing the most obvious miss-matches
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between would improve the illusion of language change greatly. In computer
games more and more in game dialog are entering, the dialog is part of the
game play and even though the speech is prerecorded, lip-movements can be
generated when they are needed.

Problems (and fixes):

Besides the fact that the same information is not present in the sound and image
domains there are a number of other reasons that the mapping is not perfect:

e The training corpus is to small.

e The system is speaker dependent.

The model is of entire face, not only the mouth.

The MFCC features are probably not optimal.

The lip movements have to small amplitude.
e The model is Linear and Gaussian.

The most prominent reason for the deficiencies in the mapping is that the train-
ing corpus is to small, the VidTimit database contain only ten examples leaving
at most nine to train the system. The homemade recordings contain more ex-
amples but, still far from the 20 min. used in ( ). To improve
performance a more complete training set needs to be created. Increasing the
amount of data is a two edged sword. The computations are already quite time
consuming as it is, and increasing the training set would only make this worse.
An alternative way to get more training data is to train the system on several dif-
ferent speakers. The assumption would be that most of the variation is governed
by the speech and that only a relatively small fraction of the face movements
where person specific. Even if the face movements are highly correlated with
the specific speaker a large enough number of speakers would ensure that these
inter person variabilities where handled as noise. Preliminary experiment with
this approach however, did not produce viable results. Trying to understand
why, two main obstacles comes to mind. Firstly, the approach taken in this
work models the entire face and not just the mouth. As described elsewhere,
the reason for this is that a free floating mouth is very unnatural to look at.
However, when trying to model several persons at a time the appearance of the
rest of the face becomes an important factor. A conceptual simple but time
consuming modification to the AAM, would allow a hierarchical model, where
the mouth was model by itself and then pasted back onto the face. Such a hier-
archical scheme would not only help in the multi-person case, but, it would also
reduce the Kalman Model complexity. Such a model would also allow a separate
control of the eyes, giving the possible to blink and thereby add realism.
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The second factor that could also improve both the single person and multi
person mapping is better sound features, even though MFCC’s are used in
speaker independent speech recognition they are not complectly unsensitive to
the speaker.

A final problem with the mapping approach is that the lip movements typically
are too small. The mouth simply does not open enough. An explanation could
be that the Kalman Model favors small changes in the states. The Gaussian
noise model gives large probability to small deviation from the previous and the
next state. This helps ensure that the transitions are smooth, but it might also
be to strict a requirement that makes fast transitions impossible. A solution
could be to use a model with a broader noise distribution, or perhaps a model
with nonlinear transitions.

Extensions

In the above section a list of possible ways to improve the system were presented,
the improvements are based on weaknesses in the mapping and data gathering.
There are also a couple of possibilities for extending the system based on the
strengths:

e Emotions.
e Animating other peoples faces.

One of the most interesting extensions is perhaps to estimate emotions from
speech. Emotion estimation in itself is a large research field, a good introduction
is given in ( ). A mapping from emotions to facial parameters
could then be trained and the facial expression could be adjusted to fit the
emotion. Such a system will rely on emotional expressions being in some sense
orthogonal to what is being said, the emotions should provide a ’background
face’ where on the lip movements could be superimposed.

Another possibility would be to utilize the underlying MPEG-4 control points.
In the mapping, as it is presented here, focus has been on the AAM-parameters
that where extracted from the video and later reproduced by the mapping.
However, from these parameters it is possible to find the MPEG control points
simply by using the shape part of the AAM. Once the MPEG-control points are
used it is possible to animate avatars using a MPEG-4 based model of a head
e.g. as the one presented in ( ).

5.4 A noninformative face
In other parts of this thesis the goal has been to make the mapping from speech

to images as accurate as possible. But, the set up has also been used in another
context. Numerous experiments have shown that vision can aid in understanding
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speech in noisy environments, this ability has also been used to build multi-
modal speech reading machines. The lip-movements carry a high degree of
information about was is being said. However, little is known about how much
the awareness that something is being said is utilized. It is possible that humans
has the ability to use vision as a primer for hearing.

Vision can be used to determine when the interesting sounds are being heard
and when the sounds are just background noise. Looking at someone’s lips,
gives a quite good indication of when they are speaking. If we know when the
interesting person is speaking it is possible to build a model of the background
noise when they are not. Having a model of the noise can perhaps aid the speech
recognition. To investigate this hypothesis it is necessary to create a face that
moves when something is being said, but, where the lip movements contain no
(or little) information about the content of the sentence.

If this hypothesis is true it is possible that a similar approach could be used to
improve speech separation algorithms. That is find some visual or other kind
of indicators of when the interesting sounds are being heard, build a model of
noise when they are not, use the noise model to separate the signal out.

By using the framework described in the beginning of this chapter it is possible
to create a noninformative talking face. The only modification it requires is to
exchange the hopefully very informative MFCC features with a noninformative
feature like the power of the signal. Since the mapping works best with low
dynamic range of the input the logarithm of the power can be used instead
of the power. The sequences that are produced gives an impression that the
mouth movements and the speech are coupled even though the only movement
is lip-opening and closing. It is interesting to note that in the early attempts to
create talking faces it was exactly the power of the speech that was used.
Currently the mappings described above are used in an investigation performed
by Lucas C. Parra and co-workers at the City College of New York to clarify if
the ‘noninformative’ images helps in speech understanding.

5.5 Final remarks

In this chapter, the linear State-Space Model is used to map from speech to
images, and it is demonstrated how the optimal size of the hidden space can
be estimated. The results presented in this chapter cover merely a fraction of
all the experiments that have been performed with the setup. Even though the
model in itself has only a single parameter that can be tuned, a range of other
things can cause problems. Each time when they do, a new set of experiments
must be set up to reveal why. Below is a list of some interesting findings that
are observed during the project but have not been fully examined/documented
due to the computational effort required for each of them:

e Slow convergence is a real problem. In the setting presented here, it is not
uncommon to require 100.000 iterations for the EM algorithm to converge
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and even the gradient approach requires thousands of iterations.

e Increasing the number of training examples does increase performance on
the test set.

e The optimal dimension of the hidden state depends on the size of the
training set.

e Often computational difficulties arises when the variance in some direc-
tions becomes much smaller that in others.

In conclusion: Based on State Space Modeling, a novel method for mapping from
speech to images has been proposed. The method is fast and easy trainable for
new persons and even for new languages. Even though the method is still at the
research level, the photo realistic and natural talking faces can be applied to a
wide range of real applications including synchronization of movies, computer
games, and video telephony.






CHAPTER 6

Conclusion

In this thesis, focus is on the application of State-Space Models to modality
mapping. It is proven that it is possible to produce image sequences that are
natural to look at given a speech input. However, what is novel, is not the
fact that such a mapping can be produced. The novelty is rather the usage of
continuous State-Space Models along with a parametric representation of the
face.

Work in three main directions is presented: Work done with an information
theoretic approach to signal processing leading to a vector quantization algo-
rithm, work done on the general State-Space Model and, finally, work done on
applying the State-Space Model to mapping from speech to images. The main
contribution of this thesis lies in the examination of State-Space Models but,
small contributions have also been presented to the information theoretic re-
search.

An alternative algorithm for vector quantization, the VQIT, has been derived.
The algorithm provides a new way of selecting a compact representation of a
data set. Like other vector quantization schemes, this algorithm can be used to
compress data for storage or transmission, or it can be used to discretize a data
set e.g. to make it possible to use a Hidden Markov Model afterwards.

The VQIT algorithm is derived based on concepts from information theoretic
learning, and it is shown how potential fields and Parzen estimators can be used
to give a physical interpretation of vector quantization. A set of Processing
Elements (PEs) are to be placed optimally in relation to the data set. Both
PEs and data points are considered to be information particles with associated
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potentials. When releasing the PEs in the potential field, they tend towards an
energy minimizing configuration. The VQIT algorithm is compared to conven-
tional algorithms and performs equivalently. The primary novelty is that this
algorithm utilizes a cost-function and its derivative to perform vector quantiza-
tion.

The general State-Space Model has been described and treated in some detail,
and, especially the simplest case of linear Gaussian filters has been examined
and applied to the specific problem of modality mapping. Working with the
general State-Space Model has led to some new ideas about filtering. By exam-
ining the class of non-linear sequential approaches, a new member, the Parzen
Particle Filter, is introduced into the family of Particle Filtering algorithms.
Inspired by information theory the idea of a particle as a point-shaped entity
is extended, and kernels are used to increase the volume covered by a particle.
The introduction of kernels with non-zero width sacrifices some of the nice com-
putational properties of the Particle Filter in return for increased information
transfer. It is demonstrated that by using the Parzen Particle Filter method,
filtering can be performed with a smaller number of particles than with the
standard approach.

Continuing with the general State-Space Model but entering the realm of Markov
Chain Monte Carlo (MCMC) sampling methods, it is demonstrated how MCMC
often proves to be superior to the sequential (Particle Filter) methods. A scheme
is supplied in which one can apply MCMC methods online as data arrive and at
the same time benefit from the properties of the chain. By including the history
in sampling, it becomes easier to overcome basin changes since evidence for the
new basin can be gathered over time.

During the investigations and use of the linear State-Space Model, the poor con-
vergence properties of the EM-algorithm turned out to be a problem — especially
in the low-noise limit. Even though values ’close’ to the optimal likelihood are
reached in few iterations, it is the final small changes in likelihood that ensure
convergence of the parameters. To compensate for this, an alternative way of
using the gradient of the lower bound function is proposed, it is termed the Fasy
Gradient Recipe. Following this recipe, one can get the optimization benefits
associated with any advanced gradient based-method. In this way, the tedious
problem-specific analysis of the cost-function topology can be replaced with an
off-the-shelf approach. The gradient alternative can be used in all cases where
the likelihood and the gradient of the lower bound can be calculated; that is, in
most of the cases where the EM-algorithm is applied in machine learning.

One of the great strengths of State-Space Models is the ability to model data that
evolve in time. This ability makes it an obvious choice when dealing with signals
where the temporal aspect is of importance. Video sequences are examples of
such data. The spatio temporal capacity of the model has been utilized by
applying the linear version of the State-Space Model to mapping from speech
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to images.

It is demonstrated that State-Space Models are indeed able to perform this task;
they provide a fast on-line way of generating photo realistic talking faces that
can be used in a wide range of real life applications.






APPENDIX A

Timeline

Time line of the advances in speech to video mapping. The criteria for gath-
ering this list was that the contribution should either be in on the exact topic
(that is, no audio-visual lip-reading etc.) or it should be of great importance
to the field. Even though an effort has been made to cover as much as possible
there are almost with certainty important contributors that are not been men-
tioned. Apologies to them. For a similar, slightly outdated, time-line gathered
by Philip Rubin and Eric Vatikiotis-Bateson see http://www.haskins.yale.

edu/haskins/HEADS/BIBLIOGRAPHY/biblioface.html.

Year

Event

Reference

1954

1975
1976

Importance of Visual information for
speech perception

First animation scheme for talking faces
The McGurk Effect

Sumby and Pollack

Parke
McGurk and Mac-
Donald

1985

1986

1987

1987
1988

Controlling facial expressions in car-
toons

Computer graphics model of face ani-
mation

Psychology of lip-reading

Automated lip sync
Animating speech

and

Bergeron
Lachapelle
Pearce et al.

Dodd
bell
Lewis and Parke

Hill et al.

and Camp-

Table A.1: Time line of the advances in speech to video mapping.
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Timeline

Year | Event Reference

1989 | Phoneme driven facial animation Morishima et al.

1990 | Early review of talking faces Massaro and Cohen

1991 | Automated lip-sync Lewis

1991 | Conversion from speech to facial images | Morishima and Ha-

rashima

1992 | Neural network for lip-reading Stork et al.

1994 | How talking faces can be used in phys- | Cohen and Massaro
iological experiments

1994 | Quality of talking faces Goff et al.

1995 | Lip sync from speech Chen et al.

1995 | Talking faces over the telephone Lavagetto

1996 | Face features for speech reading Petajan and Graf

1997 | Video rewrite, shuffling video to match | Bregler et al.
new speech

1997 | Speech driven synthesis of talking head | Eisert et al.
sequences (neural network, MPEG)

1997 | Driving synthetic mouth gestures using | Goldenthal et al.
phonemes

1997 | time-delay neural networks for estimat- | Lavagetto
ing lip movements from speech analysis

1997 | Acoustic driven viseme identification | Zhong et al.
for face animation

1998 | Psychology of lip-reading (new edition) | Campbell et al.

1998 | A computer graphics talking head | DeGraph and
(Mike) Wahrman

1998 | Mike talk, based on morphable models | Ezzat and Poggio

1998 | Conversion of articulatory parameters | Lepsoy and
into active shape model coefficients Curinga

1998 | Psychological view on sensory integra- | Massaro and Stork
tion

1998 | Active shape model for visual speech | Matthews et al.
recognition

1998 | Fourier based Lip-Sync McAllister et al.

1998 | Lip movement Synthesis from Speech | Yamamoto et al.
based on HMMs

1999 | Voice puppetry, based on Coupled | Brand
HMMs

1999 | User evaluation of talking faces Pandzic et al.

2000 Kshirsagar and

Lip sync using linear Predictive Analy-
sis

Magnenat-
Thalmann

Table A.1: Time line of the advances in speech to video mapping.
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Year | Event Reference
2000 | Talking faces wusing phonemes and | Noh and Neumann
RBFs
2000 | Visual speech processing based on | Petajan
MPEG-4
2000 | HMM based lip synthesis Tokuda et al.
2000 | Neural network for talking faces Vatikiotis-Bateson
et al.
2001 | Mixture of Gaussian and HMM ap- | Chen
proach to talking faces
2001 | Phoneme and MPEG4 based talking | Goto et al.
face
2001 | Neural network for talking faces Kakumanu et al.
2001 | Study of difference between /n/ and | Taylor et al.
Jm/
2002 | MPEG4 HMM approach to talking | Aleksic et al.
faces
2002 | Modeling Facial Behaviors Bettinger et al.
2002 | Talking head (Baldi) Cohen and Massaro
2002 | AAM neural network talking faces Du and Lin
2002 | Mike talk, based on morphable models | FEzzat et al.
2002 | MPEG4 HMM approach to talking | Hong et al.
faces
2002 | HMM based lip synthesis Nakamura
2002 | A HMM based speech to video synthe- | Williams and Kat-
sizer saggelos
2003 | Different types of HMM used for talking | Aleksic and Kat-
faces saggelos
2003 | PhD Thesis on Talking Faces Beskow
2003 | Perceptual Evaluation of Video Realis- | Geiger et al.
tic Speech
2003 | Real Time Speech driven Face Anima- | Hong et al.
tion
2003 | Visual Speech Kalberer et al.
2003 | Synface talking faces for the telephone | Karlsson et al.
2003 | AAM face animation Theobald et al.
2003 | HMM based lip synthesis Verma et al.
2004 | State space approach to talking faces Lehn-Schigler et al.
2004 | HMM based lip synthesis Aleksic and Kat-
saggelos
2004 | AAM talking face phonemes Theobald et al.
2004 | AAM based hierarchical talking face Cosker et al.
2004 | 3D talking faces Ypsilos et al.

Table A.1: Time line of the advances in speech to video mapping.






APPENDIX B

Gaussian calculations

B.1 Variable change

When multiplying two Gaussians it is useful to have them in the same space
No(Fpu, A) (B.1a)
Can be rewritten using a — Fu = F(F~'a — p)
(a—Fp)TA (a-Fp) = (F'la-p) T FTA'F(F'a - p)B.2a)
No(Fu, A) = Np,(a, A) N,(F'a,(FTA™'F)™")C (B.2b)

Where C' = ( W) is a constant that takes care of the normalization.

If F' is not square a pseudo inverse can be used. (Tall F' might give problems).

B.2 Multiplication of Gaussians

Let
Na(p, 5) = inr—mexp(—;(:c—u)TE‘l(w—u)) (B.3)
Then
Nw(ﬂlazl)Nw(l"2aE2) = CNw(ﬂ'caEc) (B-4a)
C = Nu,(p, 81+ ) (B.4b)
pe = (B +35H) 7Sy + 25 ke) (B
. = (ZTH45h (B.4d)
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see eg. ( )

B.3 Integrating a special Gaussian

For comparisons with section 3.1 a:’,:j =b,xp_1 = p,xy = a,A=Q,B =

Pﬁj . Consider

[ NalPu AN B)AL = [ Neu(@ ANLGB)AL (B5a)

Changing variables as in equation B.2 and using rules for multiplication of two
multidimensional Gaussian (equation B.4) the integral becomes

C/NH(F’la, (FTA™'F) )N, (b, B)du (B.6a)
= CNy(F 'a,B + (FTA*F)*)/Nu(...,...)du (B.6b)

The mean and covariance for the Gaussian N, is not important, since integrating
over p yields 1 anyway. After the integration the Gaussian Ny(F ‘a, B +
(FTA™'F)~!) and the constant C remain.

This is not the desired form, and the expression can be rearranged to

Ny(F'a,B+ (F'A'F) ') = N,(Fb, FBF" + A) (B.7a)
Note that the result of the integration is a scaled Gaussian. However, in the
Kalman calculation the scaling factor is not of interest.
B.4 Some matrix identities
the Woodbury identity
(A7'+B'C'B)"'=A-AB"(BAB” + C)"'BA (B.8)
the following equality holds for A and C positive definite

(A'+BT'Cc'B) 'B'Cc' = ABT(BAB" + C) ! (B.9)
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On the following pages the papers that has been produces during the past three
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Vector-Quantization using Information Theoretic Concepts
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Abstract. The process of representing a large data set with a smaller number
of vectors in the best possible way, also known as vector quantization, has been
intensively studied in the recent years. Very efficient algorithms like the Kohonen
Self Organizing Map (SOM) and the Linde Buzo Gray (LBG) algorithm have been
devised. In this paper a physical approach to the problem is taken, and it is shown
that by considering the processing elements as points moving in a potential field an
algorithm equally efficient as the before mentioned can be derived. Unlike SOM and
LBG this algorithm has a clear physical interpretation and relies on minimization of
a well defined cost-function. It is also shown how the potential field approach can be
linked to information theory by use of the Parzen density estimator. In the light of
information theory it becomes clear that minimizing the free energy of the system
is in fact equivalent to minimizing a divergence measure between the distribution of
the data and the distribution of the processing element, hence, the algorithm can
be seen as a density matching method.

Keywords: Information particles, Information theoretic learning, Parzen density
estimate, Self organizing map, Vector-Quantization

Abbreviations: SOM - Self-organized map; PE — Processing element; C-S —
Cauchy-Schwartz; K-L — Kullback-Leibler; VQIT — Vector-Quantization using In-
formation Theoretic Concepts; QE — Quantization error LBG — Linde Buzo Gray

1. Introduction

The idea of representing a large data set with a smaller set of pro-
cessing elements (PE’s) has been approached in a number of ways and
for various reasons. Reducing the number of data points is vital for
computation when working with a large amount of data whether the
goal is to compress data for transmission or storage purposes, or to
apply a computationally intensive algorithm.

In vector quantization, a set of data vectors is represented by a
smaller set of code vectors, thus requiring only the code vector to be
stored or transmitted. Data points are associated with the nearest code
vector generating a lossy compression of the data set. The challenge is
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to find the set of code vectors (the code book) that describes data in
the most efficient way. A wide range of vector quantization algorithms
exist, the most extensively used are K-means (MacQueen, 1967) and
LBG (Linde et al., 1980).

For other applications like visualization, a good code book is not
enough. The ‘code vectors’, or processing elements (PE’s), as they
are often denoted in the self-organizing literature, must preserve some
predefined relationship with their neighbors. This is achieved by incor-
porating competition and cooperation (soft-competition) between the
PE’s. Algorithms with this property create what is known as Topology
Preserving Maps. The Self-Organized Map (SOM) (Kohonen, 1982) is
the most famous of these. It updates not only the processing element
closest to a particular data point, but also its neighbors in the topology.
By doing this it aligns the PE’s to the data and at the same time draws
neighboring PE’s together. The algorithm has the ability to 'unfold’ a
topology while approximating the density of the data.

It has been shown (Erwin et al., 1992) that when the SOM has
converged, it is at the minimum of a cost function. This cost-function
is highly discontinuous and drastically changes if any sample changes
its best matching PE. As a result it is not possible to use the con-
ventional methods to optimize and analyze it. Further more, the cost
function is not defined for a continuous distribution of input points
since boundaries exist where a sample could equally be assigned to two
different PE’s (Erwin et al., 1992). Attempts has been made to find a
cost function that, when minimized, gives results similar to the original
update rule (Heskes and Kappen, 1993).

Efforts have also been made to use information theoretic learning
to find good vector quantifiers and algorithms for Topology Preserving
Maps. Heskes (1999) introduces a cost function as a free energy func-
tional consisting of two parts, the quantization error and the entropy
of the distribution of the PE’s. He also explored the links between
SOM, vector quantization, Elastic nets (Durbin and Willshaw, 1987)
and Mixture modeling, concluding that the methods are closely linked
via the free energy. Van Hulle (2002) uses an information theoretic ap-
proach to achieve self-organization. The learning rule adapts the mean
and variance of Gaussian kernels to maximize differential entropy. This
approach, however, leads to a trivial solution where PE’s eventually
coincide. To circumvent this, Van Hulle proposes to maximize the dif-
ferential entropy and at the same time minimize the mutual information
by introducing competition between the kernels. The competition is not
based on information theory but rather implements an activity-based,
winner-takes all heuristic. Bishop et al. (1996) proposes an algorithm
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(the Generative Topographic Map) in which a mapping between a
lattice of PE’s and data space is trained using the EM algorithm.

Ideas on interactions between energy particles have been explored
previously by Scofield (1988). However, in this paper, we approach the
same problem with an information-theory perspective and explicitly
use the probability distributions of the particles to minimize the free
energy between them.

In this paper, an algorithm for vector quantization using information
theoretic learning (VQIT) is introduced. Unlike the methods described
above, this algorithm is designed to take the distribution of the data
explicitly into account. This is done by matching the distribution of
the PE’s with the distribution of the data. This approach leads to
the minimization of a well defined cost function. The central idea is
to minimize the free energy of an information potential function. It
is shown that minimizing free energy is equivalent to minimizing the
divergence between a Parzen estimator of the PE’s density distribu-
tions and a Parzen estimator of the data distribution. In section 2, an
energy interpretation of the problem is presented and it is shown how
this has close links to information theory. In section 3, the learning
algorithm is derived using the Cauchy-Schwartz inequality. Numerical
results are presented in section 4, where performance is evaluated on
an artificial data set. In section 5 limitations and possible extensions
to the algorithm are discussed and it is compared to already existing
algorithms. Finally, concluding remarks are given in section 6.

2. Energy interpretation

The task is to choose locations for the PE’s, so that they represent a
larger set of data points as efficiently as possible. Consider two kind
of particles; each kind has a potential field associated with it, but the
polarity of the potentials are opposite. One set of particles (the data
points) occupies fixed locations in space while the other set (the PE’s)
are free to move. The PE’s will move according to the force exerted
on them by data points and other PE’s; eventually minimizing the free
energy. The attracting force from data will ensure that the PE’s are
located near the data-points and repulsion between PE’s will ensure
diversity.

The potential field created by a single particle can be described by a
kernel of the form K (-). Placing a kernel on each particle, the potential
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energy at a point in space x is given by

1 N
Pox) = 5 S Klx—x) 1)

where the index ¢ runs over the positions of all particles (x;) of a par-
ticular charge. If the kernel decays with distance (K(z) o ﬁ) the
potential is equivalent to physical potentials like gravitation and electric
fields. However, in the information theoretic approach, any symmetric
kernel with maximum at the center can be chosen. For the sake of
simplicity, Gaussian kernels are used herein.

Due to the two different particle types, the energy of the system has
contributions from three terms:

1. Interactions between the data points; since the data points are
fixed, these interactions will not influence minimization of the en-

ergy.

2. Interactions between the data and the processing elements; due to
the opposite signs of the potentials, these particles will attract each
other and hence maximize correlation between the distribution of
data and the distribution of PE’s.

3. Interactions between PE’s; the same sign of all the PE’s potentials
causes them to repel each other.

In the information theoretic literature equation (1) is also considered
a density estimator. In fact it is exactly the well known Parzen density
estimator (Parzen, 1962). In order to match the PE’s with the data, we
can use equation (1) to estimate their densities and then minimize the
divergence between the densities. The distribution of the data points
(x;) can be written as f(x) = Y, G(x — x;,0y) and the distribution
over PE’s (w;) as g(x) = Y, G(z — w;, gy).

Numerous divergence measures exist, of which the Kullback-Leibler
(K-L) divergence is the most commonly used (Kullback and Leibler, 1951).
The Integrated square error and the Cauchy-Schwartz (C-S) inequality,
are both linear approximations to the K-L divergence. If C-S is used,
the link between divergence and energy interpretation becomes evident.
The Cauchy-Schwartz inequality,

|ab] < ||al[][0]] (2)

is an equality only when vectors a and b are collinear. Hence, maximiz-
ing Ha‘ﬁ% is equivalent to minimizing the divergence between a and b.

To remove the division, the logarithm can be maximized instead. This
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is valid since the logarithm is a monotonically increasing function. In
order to minimize the divergence between the distributions f(z) and
g(x) the following expression is minimized:

. (/(f(x)g(x))dz)?
J P (x)dz [ g*(z)dx
= log / f(z)dz — 2log / f(x)g(z)dx + log/gQ(:C)dx

De—s(f (), 9(x)) = —lo ®3)

Following Principe et al. (2000) V = [g¢?(z)dz is denoted as the
information potential of the PE’s and C = [ f(z)g(z)dz the cross
information potential between the distributions of data and the PE’s.
Note that

H(z)=— log/gQ(x)dz = —logV’ (4)

is exactly the Renyi quadratic entropy (Rényi, 1970) of the PE’s. As a
result, minimizing the divergence between f and g is equal to maximiz-
ing the sum of the entropy of the PE’s and the cross information poten-
tial between the densities of the PE’s and the data. The link between
equation (3) and the energy formulation can be seen by comparing the
terms with the items in the list above.

3. The algorithm

As described in the previous section, finding the minimum energy lo-
cation of the PE’s in the potential field is equivalent to minimizing
the divergence between the Parzen estimate of the distribution of data
points f(z) and the estimator of the distribution of the PE’s g(z).
The Parzen estimate for the data has a total of N kernels, where N
is the number of data points, and the Parzen estimator for the PE’s
uses M kernels, M being the number of processing elements (typically
M << N).

Any divergence measure can be chosen, but in the following the
derivation will be carried out for the Cauchy-Schwartz divergence,

J(w) = log/fQ(x)d:r - 210g/f(x)g(x)d:r +log/.g2(x)dz (5)

The cost function J(w) is minimized with respect to the location of the
PE’s (w).

When the PE’s are located such that the potential field is at a
local minima, no effective force acts on them. Moving the PE’s in the
opposite direction of the gradient will bring them to such a potential
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minimum; this is also known as the gradient descent method. The
derivative of equation (5) with respect to the location of the PE’s must
be calculated; but, since the data points are stationary only the last two
terms of equation (5) (the cross information potential and the entropy
of the PE’s) have non-zero derivatives.

For simplicity, the derivation of the learning rule has been split in
two parts; calculation of the contribution from cross information poten-
tial and calculation of the contribution from entropy. In the derivation
Gaussian kernels are assumed, although, any symmetric kernel that
obeys Mercer’s condition (Mercer, 1909) can be used.

Consider the cross information potential term (log [ f(z)g(x)dz); the
Parzen estimator for f(x) and g(z) puts Gaussian kernels on each data
point z; and each PE w; respectively, where the variances of the kernels
are U)% and U’;. Initially the location of the PE’s are chosen randomly.

C = /f(x)g(x)dx o
N
M N

- MN EZ/G —wi,05)G(x — zj,07)dx (6¢)

= MNZZG —2j,07) (6d)

where the covariance of the Gaussian after integration is o2 = O'ch + 03.

The gradient update for PE wy from the cross information potential
term then becomes:
AC

d
o ogC = C (7)

Where AC' denotes the derivative of C' with respect to wy.
= MN ZG —xj,04)0, H(wg — ;) (8)

Similarly for the entropy term(— log [ g2(z)dz)

V= / Pla)de = 53 Gl —w;,V20,) (9a)

d AV
iy | =7
dwg 8V = v

Il
—
©
(=3
=
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With
1 M
V= i ZG( — w;, fag) Ywy — wy) (10)
i

The update for point k consist of two terms; cross information potential
and entropy of the PE’s:

(11)

AV AC)
c

wn(n+1) = wn() = 0 (57 2%

where 7 is the step size. The final algorithm for vector-quantization
using information theoretic concepts (VQIT), consist of a loop over all
wg. Note that AC and AV are directional vectors where as C' and V
are scalar normalizations.

As with all gradient based methods this algorithm has problems
with local minima. One of the ways local minima can be avoided is by
annealing the kernel size (Erdogmus and Principe, 2002). The potential
created by the particles will depend on the width of the kernels and the
distance between the particles. When the distance is large compared
to the width, the potential will be very ’bumpy’ and have many local
minima, and when the particles are close compared to the width, the
corresponding potential will be 'smooth’. If, in addition, the number
of particles is large the potential will have the shape of a normal dis-
tribution. Starting with a large kernel size will therefore help to avoid
local minima. As with the SOM, a good starting point is to choose the
kernels such that all particles interact with each other.

The algorithm derived in this section uses the gradient descent method
to minimize an energy function based on interactions between infor-
mation particles. Each iteration of the algorithm requires O(M?N)
Gaussian evaluations due to the calculation of C' for each PE. The
parameters for the algorithm are the variances of the density estimators
af and a along with the step size 1. The variances can be set equal
and can be annealed from a size where all particles interact. The step
size should be chosen small enough to ensure smooth convergence.

4. Simulations

In this section the ability of the VQIT algorithm to perform vector
quantization is illustrated on a synthetic data set consisting of two half
circles with unit radius which has been distorted with Gaussian noise
with variance 0.1. One of the halves is displaced in horizontal direction
(Figure 1).
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1.5 w

1

25

Figure 1. Artificial data used to evaluate performance, points are chosen from two
half circles distorted by Gaussian noise. Initially all processing elements (PE’s) were
chosen randomly from the unit square, in all simulations the algorithm converged

to the same solution (indicated by circles).

The data essentially consist of two clusters, as shown in Figure 1.
Initially, 16 PE’s are placed at random locations. The objective is to
have the 16 PE’s efficiently capture the structural property of the data.

1.4
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1
=08
2
=06
0.4
0.2

00 100 200 300
Iterations

a. Development of the cost-function
averaged over 50 trials. The cost-
function is always non-negative and
has its minimum at zero but it is not
guaranteed that a cost of zero can be
achieved.

o
13

I
~

~

Quantization error
o
w

0.2 ~
~— ]
0.1
G0 300

Iterations
b. The quantization error measure
is included for comparison with other
algorithms.

Figure 2. Convergence of the algorithm, cost-function and quantization error.
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Table I. Mean square errors for the data set
shown in figure 1, the results are the average of
50 trials with different initial conditions. The
Som, LBG and the VQIT algorithm always
converges to the same solution.

VQIT
0.1408

SOM
0.1419

LBG
0.1393

K-means
0.1668

o

Using the algorithm presented above, the final locations of the PE’s are
shown, all in proper alignment with the data (Figure 1).

To assess the convergence of the VQIT, 50 monte-carlo simulations
were performed. Starting with different initial conditions chosen uni-
formly from the unit square, it was found that with the right choice of
parameters the algorithm always converges to the same solution. Dur-
ing training mode, having an initial large kernel-size and progressively
annealing it can avoid the local minima. In this simulation, the width
of the kernels was adjusted to equal the data-variance on each of its
individual projections. The initial kernel size for the PE’s was set to

be:
0.75 0 }

"9:""{ 0 05

where o, is the decaying variable. This is initially set to oo = 1 and it
decays after every iteration according to:

"~ 1+ (0.0500n)

On

The kernel size for the data (of) was set equal to o.

The evolution of the cost-function is shown in figure 2.a. Note that
the cost-function is always positive and that the minimum value it
can obtain is zero. The quantization error (QE) is also calculated by
computing the average distance between the data points and their
corresponding winner PE. The QE convergence curve is shown in fig-
ure 2.b. To compare with other algorithms, the quantization error is
used as a figure of merit since it is a commonly used evaluation metric.
Comparison is provided with three algorithms: SOM, LBG and K-
means. K-means is the only algorithm of these that does not converge
to the same solution regardless of initial conditions. The result of the
comparison can be seen in Table I. The quantization error for the
VQIT, SOM, and LBG centers around 0.14 while the K-means does
not perform as well. It should be noted that none of the algorithms
directly minimizes QE, however, LBG includes it in the iterations.
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10 Lehn-Schigler et al.

5. Discussion

In this section some of the critical issues regarding the algorithm are
discussed. Emphasis is put on links to other algorithms and possible
extensions.

The algorithm presented in this work is derived on the basis of
the Cauchy-Schwartz inequality. This leads to a divergence measure
based on the inner-product between two vectors. As noted earlier this
is not the only choice, and has infact only been used here because
of its close links to entropy. Another choice for cost-function is the
Integrated Square Error which uses the quadratic distance between the
distributions instead of an inner product:

[ (@) = 9@ = [ £wda—2 [ f@g@de+ [ )02

The terms correspond to the information potentials of the data and
the PE’s and the cross information potential between the two. Note
that equation (12) is similar to equation (5) except for the logarithm.
Derivations equivalent to those used for C-S yields the very simple
update:

wg = wg + 1 (AV — AC) (13)

which requires O(M N) calculations per iteration. Annealing can also
be used and the performance is similar to the VQIT.

“Density estimation is an ill posed problem and requires large amount
of data to solve well” (Vapnik, 1995). Therefore, Vapnik suggests that
one should not try to estimate densities in order to solve simpler prob-
lems (like vector quantization).

Even though this approach uses Parzen density densimates in its
formulation, the pdf is never estimated. Instead the integral can be
computed exactly through the double sum and therefore the method
does not violate Vapnik’s recommendations.

In a physical system, all potentials have the same form and only
the magnitude (charge) can change, i.e. the same kernel type must be
used for all particles. Also, in the Parzen estimator the mixture is ho-
moskedastic, i.e. all mixtures have the same variance. However, in many
of the recent publications (Van Hulle, 2002, Yin and Allinson, 2001,
Heskes, 1999), a heteroskedastic approach is followed allowing the vari-
ance and weighting of the mixture components to change. It is easy to
extend the algorithm presented in this work to include heteroskedastic
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mixtures. The cost-function can just as well be minimized with respect
to both means, variances and mixture weights. One can then choose to
use either gradient descent or the EM algorithm to find the minimum.
However, introducing more free parameters also means estimating more
parameters from the same data points and can therefore lead to over
fitting and poor generalization performance.

Another important issue is topology preservation. This feature is
important if the mapping is to be used for visualization. Unlike the
SOM, the learning rule proposed in this work is not topology preserving;
it does not define an ordering of the PE’s. It is however important to
notice that if an ordering exists, the algorithm will approximately keep
this ordering during convergence. Two different alterations can ensure
that neighbors in the topology are also neighbors in the mapping.
The first and simplest is to add a term to the cost function equation (5).
The term should include attraction from PE’s that are close on the grid,
one possibility is:

> (w— ) (14)

ieN

Where N is the set of neighbors defined by the topology. Since the
cost-function is changed, we cannot expect the PE’s to converge to the
same positions. However, once the topology has unfolded, the weighting
of the neighborhood term equation (14) can be reduced and a solution
will be obtained with PE at the desired positions and this time with
the desired topology.

Another option more along the lines of the SOM and other algorithms
(Yin and Allinson, 2001, Van Hulle, 2002), is to change the update of
the cross information potential term. If we chose a winner PE for every
data point and then update only itself and its neighbors, PE’s close in
the topology will be drawn together. Unfortunately this is not straight
forward to put into the information theoretic framework.

The VQIT algorithm is based on block-computation of the data.
It is possible to develop an online sample-by-sample update, which
may result in a significant reduction in computational complexity. One
way this can be achieved is by eliminating the second summation in
equation (6) and computing the Kernel for only the current sample.
However, this idea is still being explored and efforts directed at finding
its similarity with the Kohonen-SOM will be addressed in a future

paper.
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6. Conclusion

In this paper an algorithm for finding the optimal quantization of
a data set is proposed. The algorithm is derived based on concepts
from information theoretic learning and it is shown how information
potential fields and Parzen estimators can be used to give a physical
interpretation of vector quantization. Simulations show errors equiva-
lent to those obtained by the SOM and the LBG algorithms. However,
unlike SOM and LBG, the algorithm proposed here utilizes a cost-
function and its derivative. The algorithm can easily be extended to
form a topology preserving map.

Future efforts will be directed towards comparing numerical proper-
ties of the algorithm and to incorporate the suggested changes. Further
more, it will be interesting to see how VQIT performs on real data.

The main contribution of this work is a novel approach to vector-
quantization utilizing physical laws and introducing probability densi-
ties directly into the optimization.

ACKNOWLEDGEMENT

This work is partially supported by NSF grant ECS- 0300340

References

Bishop, C. M., M. Svensen, and C. K. I. Williams: 1996, ‘GTM: a principled alter-
native to the self-organizing map’. Artificial Neural Networks—ICANN 96. 1996
International Conference Proceedings pp. 165-70.

Durbin, R. and D. Willshaw: 1987, ‘An Analogue Approach of the Travelling
Salesman Problem Using an Elastic Net Method’. Nature, 326, 689-691.

Erdogmus, D. and J. C. Principe: 2002, ‘Generalized Information Potential Criterion
for Adaptive System Training’. IEEE Transactions on Neural Networks 13(5).

Erdogmus, D., J. C. Principe, and K. Hild: 2002, ‘Beyond second-order statistics for
learning’. Natural Computing 1(1), 85-108.

Erwin, E.; K. Obermayer, and K. Schulten: 1992, ‘Self-organizing maps: ordering,
convergence properties and energy functions’. Biological Cybernetics 67:4755.

Graepel, T., M. Burger, and K. Obermeyer: 1995, ‘Phase Transitions in Stochastic
Sef-Organizing Maps’. Physical Review E 56(4), 3876-3890.

Heskes, T.: 1999, ‘Energy functions for self-organizing maps’. In: S. E. Oja and
Kaski (eds.): Kohonen Maps. Amsterdam: Elsevier, pp. 303-316.

Heskes, T. and B. Kappen: 1993, ‘Error potentials for self-organization’. Proceedings
IJCNN93 3, 1219-1223.

Kohonen, T.: 1982, ‘Self-organized formation of topologically correct feature maps’.
Biol. Cybern. 43, 59-69.

Kullback, S. and R. A. Leibler: 1951, ‘On information and sufficiency’. The Annals
of Mathematical Statistics 22, 79-86.

vqit.tex; 28/04/2004; 10:50; p.12



Vector-Quantization using Information Theoretic Concepts 13

Lampinen, J. and T. Kostiainen: 2002, ‘Generative Probability Density Model in
the SelfOrganizing Map’.

Linde, Y., A. Buzo, and R. M. Gray: 1980, ‘An algorithm for vector quantizer design’.
IEEE Trans Commun COM 28, 84-95.

MacQueen, J.: 1967, ‘Some methods for classification and analysis of multivariate
observations’. Proceedings of the Fifth Berkeley Symposium on Mathematical
statistics and probability 1, 281-297.

Mercer, J.: 1909, ‘Functions of positive and negative type and their connection
with the theory of integral equations’. Philosophical Transactions Royal Society
London, A 209, 415-446.

Parzen, E.: 1962, ‘On estimation of a probability density function and mode’. Ann.
Math. Stat 27, 1065-1076.

Principe, J. C., D. Xu, Q. Zhao, and J. Fisher: 2000, ‘Learning from examples
with information theoretic criteria’. Journal of VLSI Signal Processing-Systems
26(1-2), 61-77.

Rényi, A.: 1970, Probability Theory. North-Holland Publishing Company, Amster-
dam.

Scofield, C. L.: 1988, ‘Unsupervised learning in the N-dimensional Coulomb
network’. Neural Networks 1(1), 129.

Sum, J., C.-S. Leung, L.-W. Chan, and L. Xu: 1997, ‘Yet another algorithm which
can generate topography map’. Neural Networks, IEEE Transactions on 8(5),
1204-1207.

Van Hulle, M. M.: 2002, ‘Kernel-based topographic map formation achieved with an
information-theoretic approach’. Neural Networks 15(8-9), 1029-1039.

Vapnik, V. N.: 1995, The Nature of Statistical Learning Theory. Springer-Verlag,
New-York.

Yin, H. and N. Allinson: 2001, ‘Self-organizing mixture networks for probability
density estimation’. Neural Networks, IEEE Transactions on, 12(2), 405-411.

Address for Offprints: Tue Lehn-Schigler
Intelligent Signal Processing

Informatics and Mathematical Modelling
Technical University of Denmark
Richard Petersens Plads

DTU-Building 321

2800 Kgs. Lyngby

Denmark

vqit.tex; 28/04/2004; 10:50; p.13



vqit.tex; 28/04/2004; 10:50; p.14
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Abstract — Representation of a large set of high-
dimensional data is a fundamental problem in many
applications such as communications and biomedical
systems. The problem has been tackled by encoding the
data with a compact set of code-vectors called processing
elements. In this study, we propose a vector quantization
technique that encodes the information in the data using
concepts derived from information theoretic learning.
The algorithm minimizes a cost function based on the
Kullback-Liebler divergence to match the distribution of
the processing elements with the distribution of the data.
The performance of this algorithm is demonstrated on
synthetic data as well as on an edge-image of a face.
Comparisons are provided with some of the existing
algorithms such as LBG and SOM.

|. INTRODUCTION

Encoding an information source with a smaller set of code
vectors is a fundamental problem in digital signal processing.
There exists a huge literature on vector quantization (VQ)
algorithms that use various cost functions to minimize the
average distortion between the dataset and the information
contained in the codebook. The K-means [1] and the LBG
[2], count amongst the oldest of all VQ algorithms. The LBG
mainly adopts a binary split approach that consists of splitting
the centroids at each iteration, while partitioning the input
space based on the centroids. The processing elements (PEs)
are then updated such that they are placed at the centroids of
all the partitions in the input space. Kohonen’s SOM [3] is a
stochastically and competitively trained vector quantizer. An
important benefit of the SOM method is preservation of the
topology of the input. This means, neighboring PEs in the
weight space, correspond to neighboring points in the input
(data) space. In summary, the SOM tries to approximate the
distribution of the input data, while preserving structure.

One of the problems with the existing VQ algorithms is
that they do not explicitly minimize a cost function; they are
rather heuristic. Erwin [4] showed that when the SOM has
converged, it is at the minimum of some discontinuous cost
function. These discontinuities make the cost prone to drastic
changes in some instances, which is undesirable. Heskes et
al. [5] have made attempts to find a smooth cost function
that, when minimized, gives the SOM update rule.

Efforts have also been made to design VQ algorithms
using information theoretic perspectives. Heskes [5] used a

cost function consisting of the quantization error and the
entropy of the PEs. He also explored the links between SOM
[3], elastic nets [6], and mixture modeling concluding that
these methods are closely linked via the free energy point-of-
view. Van Hulle [7] used a learning rule that consists of
adapting the mean and variance of a Gaussian kernel, to
maximize the entropy of the PEs. In order to prevent this
algorithm from converging to a trivial solution where the PEs
coincide, he modifies the algorithm quite heuristically to
maximize entropy while minimizing mutual information by
introducing competition between the kernels.

Earlier the authors approached the VQ problem from a
density-matching point of view, where the statistical
distributions of the data and the distribution of the PEs were
matched through the maximization of the correlation,
resulting in a cost function based on the Cauchy-Schwartz
(CS) inequality [9]. In this paper, the VQ network weights are
optimized to minimize the Kullback-Leibler (KL) divergence
between the distribution of the data and the PEs. The
equivalence between the minimization of KL divergence and
the maximum likelihood principle is well known. Thus, the
resulting optimal VQ solution can be considered equivalently
as the maximum likelihood solution under the assumed
distribution model. This algorithm based on KL divergence
performs as well or better than the CS inequality algorithm,
with reduced computational complexity.

Section |l describes the proposed VQKL algorithm in
detail. Section Il presents simulation results using an
artificial data set and a data set obtained by edge-detection of
a face image. Comparisons with LBG and SOM are provided.
The final section concludes the paper with remarks on
possible future directions to improve the algorithm.

1. ALGORITHM
Consider the vector samples x ={xq,...xy} from an
information source in a d-dimensional signal space. Suppose
that these samples are drawn from the distribution g(x).
Since, in practice the data distribution is generally unknown,
it can be estimated using a Parzen-window estimator; this
estimate of the data probability density function (pdf) is:

N
6= > K(x-xiiA,) ®
i=1

where K(&; A) is the user-selected kernel function with A
being the kernel size matrix and x; are independent vector



samples drawn from the distribution g(x). One of the
requirements for the kernel function is that it should be
symmetric, unimodal, and continuously differentiable. A
Gaussian kernel meets all these requirements:

65 A) =<2 2m) 912 A2 @)
Similarly, let the true distribution of the PEs be f(x).
Suppose that the individual VQ weight vectors are
independent samples drawn from this distribution,
{wi,...wpm}. In VQ it is desirable to have M<<N. Using

Parzen windowing with Gaussian kernels as before, the
estimated density of the PEs is:

R M
f() =) 6x-wi Ay ®
i=1

The objective is to efficiently encode the data samples using a
much smaller set of quantized weights without compromising
the accuracy of the data representation. In other words, we
wish to find a compact set of processing elements that can
best represent the source data in terms of its distribution. This
can be achieved by optimizing the weight vectors w; such that
the estimated density of the weights maximally match the
estimated density of the data in accordance with some
divergence criterion. Specifically, the Kullback-Leibler (KL)
divergence [8], between two distributions a(x) and b(x), is

_ a(x) _ b(x)
K@||b) = j a(x)log%dx Kb|la) 7J-b(x)log%dx )

All integrals are evaluated from -oo to oo. The KL divergence
is not symmetric, i.e.,, K(a|b)= K(b|a). Both quantities
are nonnegative and become zero if and only if a(x)=b(x).

A. Vector Quantization Using Kullback-Leibler Divergence

The VQKL algorithm uses the KL divergence measure
as the optimality criterion. Due to the Parzen estimates of the
densities using continuous and differentiable kernels, the
performance surface is smooth, allowing us to use gradient-
based or other iterative descent algorithms. In particular, the
following cost function is minimized:

g(x
- J' f (x) log f (x)dx— j f (x) log §(x)dx
=E[log f (x)]- E ¢ [log §(x)]

18 1 M
zﬁzl:logﬁziG(wi ~WiiAy)
=] J:

1 1 &
_HZQIOQWZ;G(W‘ -XjiAy)
i= j=

where W=[wy,...,wy]. The strategy of this cost function can
be intuitively understood as follows: the first term is the
negative of the Shannon entropy of the weights, therefore
minimizing this cost is equivalent to maximizing the entropy
of the weights (similar to [7]); at the same time, minimizing

I(W) :J' f (x) log fé"; dx

©®)

the second term in (5) can be considered as maximizing the
correlation between the weight distribution f(x) and log of the
data distribution log(g(x)). The logarithm emphasizes the
contributions from the low-probability regions of the data.
This emphasis of sparse regions ensures that some weights
are reserved for representing these areas in the data space.
This cross term ensures that the weight distribution matches
the data distribution closely.

The weight vectors are optimized by minimizing (5)
using gradient descent:

Wi (+1) < wi (n) =7 83 (W) /ow, ®)
The necessary gradient expressions with respect to each
weight vector are found to be:

(W) :ii GOWi — Wi AW AT (Wi - W)

owy M o p(wiwwlv---vaM Ayw) @
1 G =X A)A (Wi —x)
M PWi i Xg e XN Ay)
where
N
W X1 XN A) =D GW =X A) ®)

The alternative definition of KL divergence is not used
because it reduces to only matching of the weight distribution
to that of the data. This is easily seen by observing the
explicit expression. The alternative divergence is:

IW) = j 9(x) log ?8 dx .

=Ig(x) log g(x)dx—J'g(x) log f (x)dx

The first term does not depend on the weights, therefore it
can be dropped from the cost function. Since the entropy
maximization term is lacking, it has been observed that the
convergence is typically much slower, although the
computational load per iteration is lower in this alternative.
Therefore, we adopt the approach given in (5) in the rest of
the paper.

B. Discussion of Implementation Issues in VQKL

As in all gradient-based optimization techniques, this
algorithm might suffer from local minima. It has been shown
in previous papers that in learning algorithms designed using
the Parzen windowing technique one way to avoid local
minima is to anneal the kernel size [10]. A large kernel size
will stretch and smoothen the performance surface
eliminating some spurious local minima and enabling the PEs
to move towards the biased global optimum of the new
surface. As training progresses, the kernel size is annealed to
yield a narrower kernel and a weaker smoothening effect,
thus decreasing the bias in the global optimum allowing the
weights to converge to the global optimum. Therefore, in the
VQKL algorithm, we propose to start with a large kernel size
to enable interactions between all PE-PE and PE-data pairs.
By progressively annealing the kernel size with iterations, the
interactions are limited to only nearby points. This



Fig. 1. Simulated data consisting of two half circles (dots). 16 PEs
after convergence are shown in small circles.

0

Iterations

Fig. 2. Average MSQE versus iterations for VQKL in the first data

set.

VQKL SOM LBG
MSQE 0.024 0.024 0.023
J 2.437 3.378 2.460

Table 1. Comparison of MSQE for the three algorithms in the first
data set. The standard deviations of VQKL and SOM are
negligible over the Monte Carlo runs and for LBG it is zero.

progressive annealing strategy bears strong resemblance to
the cooperative/competitive learning technique employed by
the SOM.
Since VQKL uses batch updates, the kernel sizes are set
up as follows:
a)Estimate the sample covariance matrix X, of the data
{Xl,...,XN}.
b)Set A, (0)=A,(0)=cadiag(Z,), where >0 is a constant
determined empirically (typically in the order of 10 to
100), and diag(Z,) is a diagonal matrix consisting of the
variances of the data along each dimension.
c) Anneal both kernel sizes with every iteration (where n is
the iteration index) using some annealing factor A
according to

Ay (M) = A, () = adiag (T, ) /1+ An) (10)

The kernel size is never allowed to decrease below a
selected threshold Adiag(Z,), where £ >0 is a small constant

on the order of 10° to 10,

The VQKL algorithm requires O(M?*+MN) Gaussian
evaluations for updating the weights at every iteration. The
performance of the algorithm particularly depends on how
accurately the densities are estimated using the Parzen
window estimator. The kernel size matrices A,, and A,
constitute the free parameters of the density estimation
process. Additionally, a gradient descent step size 7 must be
selected. The step size must be sufficiently slow compared to
the annealing rate. The step size can also be annealed to
ensure smoother convergence.

I11. RESULTS

In this section, the quantization performance of the VQKL
algorithm is demonstrated on two data sets. The first data set
(also used in [9]) is an artificially generated two-cluster data
in 2-dimensions. The second data set is an edge-detected face
image, where the positions of the edge pixels in the image
constitute the data points (also 2-dimensional). The second
example is especially preferred as the edges of each organ in
the face constitute a natural clustering solution. Comparisons
with LBG and SOM are presented on these two data sets
using standard performance metrics.

The first data set, shown in Fig. 1, essentially consists of
samples drawn from two half circles with unit radius
distorted with a Gaussian noise with standard deviation 0.1.
Optimizing 16 randomly initialized PEs according to the KL
divergence measure discussed above, the quantization
solution shown in Fig. 1 is obtained consistently for all of the
20 Monte Carlo initializations. The average convergence
curve of the algorithm over these Monte Carlo runs,
quantified by the average mean-square-quantization-error
(MSQE), is presented in Fig. 2. In this example, we set
a=1.5, (=0, A=0.08, the variances of the data in each
direction were calculated as 0.75 and 0.51. The MSQE is
calculated by:

N
5= T -wal’ )
i=1

where w; is the nearest weight to sample x; after convergence
is achieved. This is a widely accepted measure in the VQ
literature and has become a standard error metric for
performance evaluation. The MSQE of VQKL, LBG, and
SOM are provided in Table 1 for the first data set. Since LBG
explicitly tries to minimize this criterion, it performs the best
among the three methods. Alternatively, distortion can also
be quantified by the KL divergence, J(W), between the
source and the PE distribution (5). Even though J(W) is
explicitly used as the cost function in VQKL, it appears to be
a stronger measure since it directly quantifies the extent to
which the distribution of PEs differ from the distribution of
the data. Evidently, higher order moments are considered in
J(W) as opposed to MSQE, which merely considers second
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Fig 3. lllustration of the a) VQKL, b) LBG and c) SOM algorithms to
quantize an edge-detected face image. 64 PEs are shown
superimposed on the face data.

VQKL SOM LBG
MSQE 3.37x10* 3.52e-4 | 3.06e-4
J 0.101 2.205 1.774

Table 2. Comparison of MSQE and KL divergence for the three
algorithms in the face data set. The standard deviations of MSQE and
J over the Monte Carlo runs are not provided as they were negligible.

order statistics. In this comparison, the VQKL outperforms
both the SOM and the LBG by yielding the smallest KL
divergence (also shown in Table 1).

The second example is the quantization of the edges of a
face image. The weights are expected to specialize in
interesting areas in the face, such as the ears, the nose, the
eyes, and the mouth. This VQ representation of a face finds
applications in face recognition and face modeling problems.
A quantizer with 64 PEs is optimized on the image shown in
Fig. 3a. Using the VQKL algorithm, the optimization results
varied insignificantly over the 20 Monte Carlo runs
performed with random initial conditions. The parameters
were set to 7=0.03, =30, 4=0.12, and p=0. The data
variances in each direction were found as 0.0171 and 0.0286.
For the same image, the LBG quantization result is presented
in Fig. 3b.

Even though the PE assignments in Fig. 3a and Fig. 3b
look very similar, certain subtle qualitative differences are
also evident. The left ear and the portion just above the right
ear are described better by the VQKL compared to the LBG.
The VQKL saves some weights from the shoulder
representation to model the eyes with more precision, for
example. This is expected because, intrinsically, the LBG
tries to partition the regions and place the PEs at the centroids
of the partitions, regardless of the distribution of the data. The
VQKL on the other hand extracts more information from the
data and allocates PEs to suit their structural properties. The
bias in the LBG towards the centroids can also be seen on the
shoulder region, in terms of the excessive number of PEs. For
a quantitative comparison, the MSQE and J(W) for VQKL,
LBG, and SOM are provided in Table 2. As before, the LBG
is better in terms of MSQE, while the VQKL outperforms the
other two algorithms in terms of KL divergence.

V. DiscussioN

In this study, we present an information theoretic
approach to the vector-quantization problem. The proposed
VQKL algorithm optimizes the code vectors by using the
gradient descent technique to minimize the Kullback-Liebler
(KL) divergence between the data distribution and the
quantization weight vector distribution. As opposed to many
existing VQ algorithms, which are based on heuristic
reasonings, the VQKL algorithm is based on a well defined
optimization problem, which also provides an intuitive notion
of how the resulting VQ models the statistical distribution of
the data. Its computational complexity is higher than that of
the SOM and the LBG; however, the information extracted
from the data enables a better infrastructure for quantization.

Comparisons on two data sets showed that the VQKL
algorithm outperforms the other two in terms of quantization
error entropy, which is a direct measure of quantization
uncertainty according to information theory. In the future, the
face image quantization example will be extended to the
important application of face recognition. Other possible
applications include speech recognition using the quantized
features. Finally, the sensitivity of the least-squares type



optimality criterion to outliers is well known in the statistics
and signal processing literature. The LBG method is expected
to be heavily biased due to the strong effects of the outliers to
the centroids. Since the outliers are defined as extremely rare
cases of degenerate samples, the proposed method is
expected to provide reduced sensitivity of the optimal VQ
solution to outliers as they will not contribute significantly to
the density mismatch between the data and the code vectors.
The effects of outliers on the performance will be studied in
detail in the future.
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ABSTRACT

Using a Parzen density estimator any distribution can be ap-
proximated arbitrarily close by asum of kernels. In particle
filtering this fact is utilized to estimate a probability den-
sity function with Dirac deltakernels; when the distribution
is discretized it becomes possible to solve an otherwise in-
tractable integral. In this work we propose to extend the
ideaand use any kernel to approximate the distribution. The
extra work involved in propagating small kernels through
the nonlinear function can be made up for by decreasing
the number of kernels needed, especialy for high dimen-
sional problems. A further advantage of using kernels with
nonzero width is that the density estimate becomes contin-
uous.

1. INTRODUCTION
The filtering problem can be formulated as

(18)
(1b)

f(xp—1) + Vi1
h(xy) + wy,

Xk =
Z =
where v and w are the process noise and the observation
noise. The state transition density isfully specified by f and

the process noise distribution and the observation likelihood
isfully specified by h and the observation noise distribution.

(28)
(20)

Po(xk — f(xx-1))
Pw (2 — h(xk))

p(Xk‘Xk—l)
p(zi|xr) =
Theproblemisto find an update formulafrom p(x;—1|21.x—1)
top(xx|z1.1), wherez, ., denotesall observation {z1, ...,z }

up totime k. The Bayesian approach [1] givesthefollowing
update:

p(Xk|z1:) = 3
plzelxe) [ pOxalxe-0)p(e—1lz1p—1)dxs o
I p(z|xi)p(Xk|21:0—1 ) dxge

The problem can be broken down to two subproblems. 1)
Find the propagation of a probability density function (pdf)

Deniz Erdogmus & Jose C. Principe
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through a nonlinearity. 2) Modify the pdf according to the
recorded measurements z;,. Figure 1(a) illustrates stage one
of the problem.

In equation (4) multiplying with p(zx|xx) can be seen
as stage two, and performing the multi-dimensional integra-
tion

p(xk|Z1:k-1) = /p(Xk\Xk_1)p(Xk_1\Z1;k_1)ka_1
&)
as stage one. In genera the integral can not be calculated
analyticaly, hence, we need some way of estimating the
distribution p(xx|z1.x-1) -

Algorithms fall into four categories: Extended Kalman
Filters, Gaussian Sum Filters, Sigma-Point Kalman Filters
and Sequential Monte Carlo Methods (Particle Filters) [2].
Anocther way to categorize the methods is Gaussian belief
(Extended Kaman filters, sigmapoint filters, moment match-
ing), mixture of Gaussians (Gaussian-sum filter, pseudo-
Bayes) and non-parametric methods (Particlefilters) [3]. In
the Extended Kalman Filter, the distributions are assumed
Gaussian, but, the functions are not linear. The functions
f and h are linearized around the previous state x;_; Us-
ing a second order Taylor expansion and then the standard
Kaman equations are used. The result is a Gaussian distri-
bution for p(xx|z1.x) (see figure 1(b)). For nonlinear sys-
tems the solution is better than a normal Kalman filter, and
it is accurate to first order. The Unscented Kalman Filter
(Sigma Point Filter) [4] propagates points one standard de-
viation from the previous state x;_; through the nonlin-
earity, then uses the points weighted appropriately (Gaus-
sian quadrature like) to estimate mean and co-variance of a
Gaussian. Finaly thisisused in the standard Kalman equa-
tions. It is accurate to the second order.

If the process noise distribution is approximated by a
mixture of Gaussians the family of Gaussian sum filters
arises[5]. In the mixture of Gaussians each mixture compo-
nent is propagated through an extended Kalman filter. The
state update f is linearized around the means of each mix-
ture component and h is linearized around the predicted
value for the mean of each mixture (f(zx—_1)). Theresulting
distribution is again a mixture of Gaussians. If the process
noise is also non-Gaussian, this too can be approximated



(a) A density propagated through a
nonlinear function.

(b) In the extended Kalman filter,
the distribution is assumed to be a
Gaussian modified by a lineariza-
tion of the nonlinearity around the
previous state.

[INERN

(c) Inthe particlefilter the densities
are approximated by discrete sam-
ples. These samples can be sent
through the nonlinearity to give an
estimate of the output density.

Fig. 1. Propagation of a pdf through a nonlinearity 1(a)
and different approximations to the propagated distribution
1(b) and 1(c). Thisis the prediction step corresponding to
equation (1a), the resulting pdf is then modified to match
the measurements equation (1b).

with amixture of Gaussians. However, in this case the num-
ber of mixing components increases quickly.

Nonparametric methods are an entirely different approach
to nonlinear filtering. In the Particle Filter it is assumed
that the distributions p(xx|z1.1) and p(xk—1|z1.k—1) from
equation (4) can be estimated by discrete distributions (fig-
ure 1(c)). Samples are drawn from the posterior distribution
using importance sampling and a proposal distribution. In
the generic particle filter the transition probability
(p(xk|xr—1)) is used as proposal, but other proposals has
been proposed in e.g. the extended Kalman particle filter
and the unscented particlefilter [6], in these methods afilter
(ekf or ukf) is calculated for each particle and the resulting
mixture of Gaussiansis used as proposal distribution for the
particlefilter. In an attempt to combine the particlefilter and
the Gaussian sum filter the Gaussian Sum Particle Filtering
was proposed [7]. In this approach both the density and the
process noise is considered mixture of Gaussians, in each
time step samples are drawn from the mixture approximat-
ing p(xx—1|z1.x—1). These samples are propagated through
the nonlinearity and used to offset the means in a mixture
describing p(xx|xx—1), then samples are drawn from this
distribution too. In this way a discrete approximation of
p(xk|z1.k—1) is obtained and the sample mean and covari-
ance of the new mixtures can be estimated. Unfortunately
the number of mixtures explode, to avoid this mixtures with
small weight can be thrown away. In a similar manner, the
Gaussian mixture Sigma Point Particle Filter [2] uses abank
of sigma point filters to update p(xy|z1.x—1) then samples
are drawn from the mixture and the importance weights are
calculated before a Gaussian mixture isfitted to produce the
posterior estimate.

In this paper an algorithm based on the Parzen density
estimator is presented. The algorithm is best categorized as
non-parametric, since it can be seen as a direct extension
to the particle filter. The basic concept is to improve the
performance of the particle filter by using a better density
estimate.

The agorithm is similar to the Gaussian Sum Particle
Filter and the Kernel Filter [8], however, it is derived in a
different manner that allows use of any kernel type. The
derivation of the algorithm uses a sample mean estimate of
the integral p(xy|z1.x—1) and a particle filter like update of
the weights. In section 2 the agorithm is derived and in
section 3 experimental results are provided.

2. KERNEL METHOD

With aParzen density estimator [9, 10] adistribution can be
approximated arbitrarily close by anumber of identical ker-
nels centered on points chosen from the distribution. In the
particlefilter the kernels are deltafunctions, but information
can be gained by using a broader kernel.



The distribution at time & — 1 can be approximated by:
p(Xk—1]z1:0-1) & va Wi K (A} (xk-1-%},_)), where
A" is atransformation matrix used to keep track of distor-
tions of the kernel. Each kernel can be propagated through
the mapping p(xx|xx—1) by using alocal linearization, yield-
ing acontinuous output distribution p(x|z1.x ), thisisagain
a sum of kernels but the kernels are no longer identical (in
the sense that they are from the same family of functions,
yet they have different parameters).

Using the kernel representation equation (4) can bewrit-
ten as:

>l / o (%= F (k1)) I (A (k11— _y)) ey
‘ ®)

Each part of the sum can be handled individually, and under
the assumption that the kernels are small compared to the
dynamic in the nonlinearity, f can belocally linearized. By
linearizing f around xj, _, the jacobian J|,; = &L,
is introduced and the following change of variables can be
employed: %51 = x;, — f(x}_;) — J‘XL,1 (xp—1— %4 _1).
Inserting thisin the integral from equation (5) yields:

-1
S lpo(Re-1) (6)
K (AL (o =6 ) ~ %) d%es
Thisintegral is an expectation over the process noise
E,, [K (A;,IJ\;L (xp — £(x_,) — ;(,Hﬂ and can be
approximated by a sample mean. In the extreme case asin-

gle sample drawn from p, can be used, and the result is a
tranglation of the kernel by the noise sample:

‘J\x;‘%

1

By, [K (Af0dlg! o — £ ) — %))

~ K (AL (o= £ 1) = Vi) Vier ~ B

Writing p(xx|z16) = S0 wi K (AL(xy — x3)) It is pos-
sible to identify the centers of the kernelsxi, = f(x%_,) +
vi—1 and the transformation matrix A; = Aj_ J|_! .
k—1
By considering equation (4), (5) and (6) the weight update
-1

can be found to be wi, = w}_;p(zx|x}) ‘J\XLI‘ . This
derivation holds for any kernel, however, for simplicity, in
this paper the kernels are considered Gaussian.

For a Gaussian a change of variables can be employed
such that the update of A can be replaced with an update
of the covariance matrix as follows:

i Al
A, = A,

i i T
X = J‘x;:712k71J|xL_1

(78)
(7b)

Thetransformation matrix is absorbed in the covariance ma-
trix.
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Fig. 2. Problem with nonlinear state transition, nonlinear

observation process and Gaussian noise. Note that the per-

formance of a Parzen particlefilter with ~ 10 kernelsequals
that of anormal particle filter with ~ 20 kernels.

Thetransformation matrix A (or 3 inthe Gaussian case)
is distorted in each iteration, to avoid to much distortion
a resampling schema can be applied. With a suitable fre-
quency the distribution can be re-approximated by a Parzen
estimator by drawing samplesfrom p(xx|z1.x), choosing A
or X totaketheir initial valuesand setting the weightsequal.

Earlier attempts use the kernels in the resampling phase
where the shape and kernel size are selected based on the
particle statistics (e.g. covariance) [11] . However, the pro-
posed method iterates these properties of the kernel through
the system equations, thus there is no need for optimization
of kernel parameters at every step. In addition, the approx-
imation of the integral stochastically using a sample drawn
from p, includes an inherent resampling step at every it-
eration, which allows the particle filter accuracy to survive
longer than the standard version.

3. EXPERIMENTS

In this section the performance of the Parzen particle filter
will be compared to the performance of the standard particle
filter. The method is tested on a one dimensional problem:

Th—1 Th—1
.= 25— 1.2k 8
Tk 2 + 5(1+$271)+8Cos( ) + v£84)
2z = 10 arctan(%) + wy, (8b)

Where v, and w;, are drawn from Gaussian distributions
G(0, 1) (figure 2) and from gammadistributionsI'(3, 2) (fig-

1Code to reproduce the results can be found at www.imm.dtu.dk/~tls
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Fig. 3. Problem with nonlinear state transition, nonlinear
observation process and gamma distributed noise.

ure 3).

The Parzen particle filter and the generic particle filter
has been used on 100 time series generated using equa-
tion (8).

In figure 2 the mean square error is plotted as a func-
tion of the number of kernels. It can be seen that with few
kernels the methods perform equally good (or bad), but as
the number of kernelsincreases the kernel method becomes
better. It can be seen that for this one dimensional example
the kernel methods perform equally well, but the number of
particles can be reduced drastically by improving the den-
sity estimate. It isexpected that this effect will be even more
impressive in higher dimensional problems.

4. CONCLUSION

A novel algorithm for nonlinear filtering is presented, the
algorithm is based on Parzen density estimates and particle
filter like propagation of the kernel through local lineariza-
tions of the nonlinear function.

It is shown that the improved density estimate help per-
formance both with Gaussian and non-Gaussian noise. In
thiswork only the special case with a Gaussian kerndl isex-
amined, however it is expected that a broader kernel would
be well suited for long tailed noise, since it will be more
likely to get the particles spread out.

The basic formulation for the arbitrary kernel case has

been derived and performances of various kernel choices
will be compared in afuture publication.
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Abstract

Slow convergence is observed in the EM algorithm for linear state-
space models. A solution to the problem is to apply quasi-Newton-
type optimizers that operate on the gradient of the log-likelihood func-
tion. We present a simple recipe for the computation of the exact gra-
dient of the log-likelihood function which recycles components of the
EM algorithm. We demonstrate the efficiency of the proposed method
in three relevant instances of the linear state-space model. In high sig-
nal to noise ratios, where EM is particularly prone to converge slowly,
we show that gradient-based learning results in a sizable reduction of
the iterations required for convergence, and hence the computation

time.



1 Introduction

State-space models are widely applied in cases where the data is generated by
some underlying dynamics. Control engineering and speech enhancement are
typical examples of applications of state-space models, where the state-space
has a clear physical interpretation. The other extreme is black-box cases,
where the objective is to provide in different applications a sufficiently flexible
model. The state-space dynamics have no direct physical interpretation, only
the generalization ability of the model matters, i.e. the prediction error on
unseen data.

A fairly general formulation of linear state space models (without deter-

ministic input) is:

si = Fsi1+v (1)

Xt Ast +n; (2)

where equations (1) and (2) describe the state and observation spaces, re-
spectively. State and observation vectors, s; and X;, are random processes
driven by i.i.d. zero-mean random inputs v, and n; with covariance Q and
R, respectively.

Optimization in state-space models based on maximizing the log-likelihood,
L(0), with respect to the parameters, 6, fall in two main categories based on
either gradients or Expectation Maximization (EM).

The principal approach to maximum likelihood in state-space models, and
more generally in complex models, is to iteratively search the space of 8 for

the maximal £(0) by taking steps in the direction of the gradient, Vo£(6). A
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basic ascend algorithm can be improved by supplying curvature information,
i.e. second-order derivatives, line-search, etc. Often, numerical methods
are used to compute the gradient and the Hessian, due to the complexity
associated with the computation of these quantities. In [Gupta and Mehra,
1974] and [Sandell and Yared, 1978] fairly complex recipes are given for the

computation of the analytical gradient in the linear state-space model.

The EM algorithm, [Dempster et al., 1977], is an important alternative to
gradient-based maximum-likelihood. It was first applied to the optimization
of linear state-space models by [Shumway and Stoffer, 1982] and [Digalakis
et al., 1993]. A general class of linear Gaussian (state-space) models was
treated in [Roweis and Ghahramani, 1999], in which the EM algorithm was
the main engine of estimation. In the context of Independent Component
Analysis (ICA), the EM algorithm has been applied in among other [Moulines
et al., 1997] and [Hgjen-Sgrensen et al., 2002]. In [Olsson and Hansen, 2004,
2005] and [Olsson and Hansen, 2005], the EM algorithm was applied to the

Convolutive ICA problem.

A number of authors have reported the slow convergence of the EM
algorithm. In [Redner and Walker, 1984], impractically slow convergence
in 2-component Gaussian mixture models is documented. This critique is,
however, moderated by [Xu and Jordan, 1996]. Modifications have been sug-
gested to avoid the slow convergence of the basic EM algorithm, e.g. [Lachlan
and Krishnan, 1997] and [Jamshidian and Jennrich, 1997] among many, but
most come at a high cost in terms of computational complexity or at the

expense of analytical simplicity.



The main contribution of this paper is to document that the exact gradi-
ent of the log-likelihood function can be computed using only the relatively
simple math and programming of the EM algorithm. As a result, the rea-
sonable convergence properties of the gradient-based optimizer are restored.
This procedure is termed the Fasy Gradient recipe. Furthermore, empirical
evidence, supporting the results in [Bermond and Cardoso, 1999], is pre-
sented to demonstrate that the signal-to-noise ratio (SNR) has a dramatic
effect on the convergence speed of the EM algorithm. Under certain circum-
stances, i.e. in high SNR settings, the EM algorithm fails to converge in
reasonable time. The central points utilized in the proposed recipe has been
mentioned in, e.g. [Salakhutdinov et al., 2003], but they did not comment

on the relationship of the convergence properties to the SNR.

Three specializations of state-space models are investigated: 1) Sensor
fusion for the black-box modelling of speech-to-face mapping problem. 2)
Mean Field Independent Component Analysis (Mean Field ICA) for esti-
mating a number of hidden independent sources that have been linearly and
instantaneously mixed, 3) Convolutive Independent Component Analysis for

convolutive mixtures.

In section 2, a theoretical introduction to EM and the Easy Gradient
Recipe is given. In section 3, the implicated models are stated and in section

4 simulation results are presented.



2 Theory

Assume a model with observed variables x, state space variables s and pa-
rameters @, the calculation of the log-likelihood involves an integral over the

state space variables:

L£(0) =Inp(x|0) = ln/p(x|s,0)p(s|0)ds (3)

The marginalization in equation (3) is intractable for most choices of state
prior and noise, hence direct optimization is rarely an option, even in the
Gaussian case. Therefore a lower bound, B, is introduced on the log-likelihood,

which is valid for any choice of ¢(s|¢):

= s np7(37x|0) s < lnp(x
50.6) = [ a(si6) 228 s < np(xlo)

At this point the problem seems to have been made more complicated, but
the lower bound B has a number of appealing properties which makes the
original task of finding the parameters easier. One important fact about B

becomes clear when we rewrite it using Bayes theorem

B(6, ¢) = Inp(x|0) — K L[q(s|#)||p(s|x, )] (4)

where KL denotes the Kullback-Leibler divergence between the two distrib-
utions. Thus if we choose the variational distribution, ¢, to be exactly the
posterior of the hidden variables, B is equal to the log-likelihood. For this
reason one often tries to choose the variational distribution flexible enough
to include the true posterior and yet simple enough to make the necessary

calculations as easy as possible.



The approach is to maximize with respect to ¢, in order to make the
lower bound as close as possible to the log-likelihood and then maximize the
bound with respect to the parameters 6. This stepwise maximization can
be achieved by using the EM algorithm or by applying the Easy Gradient

Recipe, see section 2.2.

2.1 The EM Update

The EM algorithm, as formulated in [Neal and Hinton, 1998], works in a
straightforward scheme which is initiated with random values and iterated

until suitable convergence is reached:

E: Maximize B(0, @) w.r.t. ¢ keeping 0 fixed.
M: Maximize B(0, ¢) w.r.t. 8 keeping ¢ fixed.

It is guaranteed that the lower bound function does not decrease on any com-
bined E and M step. Figure 1 illustrates the EM algorithm. As mentioned
in the introduction, the convergence is often slow - e.g. the curvature of the
bound function, B, might be be much higher than that of £, resulting in
very conservative parameter updates. As mentioned in the introduction, this
is particularly a problem in latent variable models with low-power additive
noise. In [Bermond and Cardoso, 1999] and [Petersen and Winther, 2005],
it is demonstrated that the EM update of the parameter A in equation (2)
scales with the observation noise level, R. That is, as the signal-to-noise
ratio increases, the M-step change in A decreases, and more iterations are

required to converge.



2.2 The Easy Gradient Recipe

The key idea is to regard the bound, B, as a function of @ only, instead of
a function of both the parameters @ and the variational parameters ¢. As a

result, the lower bound can be applied to reformulate the log-likelihood
L(6) = B(6,¢.) (5)

where ¢, = ¢,(0) fulfills the constraint ¢(s|¢,) = p(s|x,0). Practically, it
is often complicated to find ¢, and it cannot always be done analytically.
Comparing with equation (4), it is easy to see that ¢, maximizes the bound.
Since ¢, is exactly minimizing the KL-divergence, the partial derivative of
the bound with respect to ¢ evaluated in the point ¢,, is equal to zero.
Therefore the gradient of B(0, ¢,) is equal to the partial derivative

AB(0.¢.) _0B(0.¢.) , 9B(0.6)| 09| _ 9B(0.9.)

o 00 op e, 001s, 00 (©6)

and due to the choice of ¢,, the gradient of the log-likelihood is the partial

derivative of the bound

dL(0) _dB(6,¢.) _ 0B(6,9.)
o 40 96

which can be realized by combining equations (5) and (6).

In this way we can obtain exact values and gradients of the true log like-
lihood using the lower bound. The observation of this is not new, since it
is essentially the same which is used in [Salakhutdinov et al., 2003] to con-
struct the so-called Expected Conjugated Gradient Algorithm (ECG). The
novelty of the recipe, is the practical recycling of low-complexity computa-

tions carried out in connection to the EM algorithm for a much more efficient
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Cost function values

B(6.¢.)

Do — — — — — —

—
8.,  Parameter @

(a)
Figure 1: Schematic illustration of lower bound optimization for a one-
dimensional estimation problem, where 6, and 6,,,; are iterates of the stan-
dard EM algorithm. The log-likelihood function, £(), is bounded from
below by the function B(6, ¢,). The bound attains equality to £ in 6,, due
to the choice of variational distribution: ¢(s|¢,) = p(s|x, 8,,). Furthermore
in 0, the derivatives of the bound and the log-likelihood are identical. In
many situations, the curvature of B(8, ¢, ) is much higher than that of £(6),

leading to small changes in the parameter, 8,1 — 0,,,1.



optimization using any gradient-based non-linear optimizer. This can be
expressed in MATLAB-style pseudo-code where a function loglikelihood

receives as argument the parameter € and returns £ and its gradient %:

function [£, %] = loglikelihood(8)

: * oB —
1 Find ¢ such that bl = 0

2 Calculate £ = B(0, ¢")

3 Calculate % = 25(9, ¢*)

Step 1, and to some extend step 2, are obtained by performing an E-step,
while 3 requires only little programming that implements the gradients used
to solve for the M-step. Compared to the EM algorithm, the main advantage
is that the function value and gradient can be fed to any non-linear gradient-
based optimizer, which in most cases provides a substantial improvement of
the convergence properties. In that sense, it is possible to benefit from the
speed-ups of advanced gradient-based optimization.

The advantage of formulating the log-likelihood using the bound func-
tion, B, depends on the task at hand. In the linear state-space model, eq.
(1) and (2), a brute force computation of the gradient of the log-likelihood is
costly, since the computation of the gradients scales as (dy)? times the cost
of one Kalman Filter filter sweep.! When using the Easy Gradient Recipe,
the combined computational cost depends on the optimizer of choice. Often,
state-of-the-art software induces little overhead in addition to the compu-

tation of the gradient. In the case of linear state-space models, the total

!The computational complexity of the Kalman filter is O[N(d,)3], where N is the data

length.



computational cost of the Easy Gradient Recipe is then dominated by steps
1 and 2, which require only a Kalman smoothing, scaling as 2 Kalman Filter
filter sweeps. [Sandell and Yared, 1978] noted in in their investigation of
linear state-space models that a reformulation of the problem resulted in a
similar reduction of the computational costs.

In this paper, a quasi-Newton gradient-based optimizer has been chosen,
i.e. it estimates the inverse Hessian using the gradient. The implementation
of the BFGS algorithm is due to Hans Bruun Nielsen, [Nielsen, 2000], and

has built-in line search and trust region monitoring.

3 Models

The EM algorithm and the Easy Gradient Recipe were applied to three

different models that can all be fitted into the linear state-space framework:

3.1 Kalman Filter Based Sensor Fusion

The state-space model of equations (1)-+(2) can be used to describe systems
where two different types of signals are measured. The signals could be,
e.g., sound and images as [Lehn-Schigler et al., 2005], where speech and lip
movements were the observables. In this case, the observation equation (2)

can be split into two parts.

Ty = = St +



where n} ~ N(0, R') and n? ~ N (0, R?). The innovation noise in the state-
space equation (1) is defined as v; ~ N(0,Q). In the training phase, the
parameters of the system, F, A', A2, R'. R?,Q are estimated by maximum
likelihood using either EM or a gradient-based method. When the parameters
have been learned, the state-space variable s, which represents unknown
hidden causes, can be deduced from one of the observations (x; or xs) and

the missing observation can be estimated by mapping from the state space.

3.2 Mean Field ICA

In Independent Component Analysis (ICA), one tries to separate linearly
mixed sources using the assumed statistical independence of the sources.
In many cases elaborate source priors are necessary, which calls for more
advanced separation techniques such as Mean Field ICA. The method, which
was first introduced in [Hgjen-Sgrensen et al., 2002], can handle complicated
source priors in an efficient approximative manner.

The model in equation (2) is identical to an instantaneous ICA model
provided that F = 0 and that p(v;) is reinterpreted as the (non-Gaussian)

source prior. The basic generative model of the instantaneous ICA is
x; = As; + 1y (7)

where n; is assumed i.i.d. Gaussian and s; = v; is assumed distributed by
a factorized prior [, p(vi), which is independent in both time and dimen-
sion. The Mean Field ICA is only approximately compatible with the Easy

Gradient Recipe, since the variational distribution ¢(s|¢) is not guaranteed
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to contain the posterior p(s|x,@). This, however, is not a problem if ¢ is

sufficiently flexible.

3.3 Convolutive ICA

Acoustic mixture scenarios are characterized by sound waves emitted by a
number of sound sources propagating through the air and arriving at the sen-
sors in delayed and attenuated versions. The instantaneous mixture model of
standard ICA, equation (7), is clearly insufficiently describing this situation.
In convolutive ICA the signal path (delay and attenuation) is modelled by
an FIR filter, i.e. a convolution of the source by the impulse responses of the

signal path:
Xy = Z Cisik + 1y (8)
k

where Cy, is the mixing filter matrix. Equation (8) and the source indepen-
dence assumption can be fitted into the state-space formulation of equations
(1) and (2), see [Olsson and Hansen, 2004, 2005], by making the following
model choices: 1) Noise inputs v; and n, are i.i.d. Gaussian. 2) The state

vector is augmented to contain time-lagged values, i.e.
s — T
St = [Slvtsl’tfl <o S52152t—1 - SdgtS1,t—1 - - ]

3) State-space parameter matrices (e.g. F) are constrained to a special format
(certain elements are fixed to 0’s and 1’s) in order to ensure the independency

of the sources mentioned above.
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4 Results

Before advancing to the more involved applications described above, the the
advantage of gradient-based methods over EM will be explored for a one-
dimensional linear state-space model, i.e. an ARMA(1,1) process. In this
case, F' and A are scalars as well as the observation variance R and the
transition variance Q. The latter is fixed to unity to resolve the inherent scale
ambiguity of the model. As a consequence, the model has only 3 parameters.

The BFGS optimizer mentioned in section 2 was used.

Figure 2 shows the convergence of both the EM algorithm and the gradient
based method. Initially, EM is fast, i.e. it rapidly approaches the maximum
log-likelihood, but slows down as it gets closer to the optimum. The large
dynamic range of the log-likelihood makes it difficult to ascertain the final
increase in the log-likelihood, hence figure 2(b) provides a closeup on the
log-likelihood scale. Table 1 gives an indication of the importance of the
final increase. After 50 iterations, EM has reached a log-likelihood value of
—24.5131, but the parameter values are still far off. After convergence, the
log-likelihood has increased to —24.3883 which is still slightly worse than
that obtained by the gradient-based method, but the parameters are now
near the generative values. Similar results are obtained when comparing the

learning algorithms on the Mean Field ICA and Convolutive ICA problems.

As argued in section 2, it is demonstrated that the number of iterations re-

quired by the EM algorithm to converge in state-space type models critically
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Figure 2: Convergence of EM (dashed) and a gradient-based method (dotted)
in the ARMA(1,1) model. (a) EM has faster initial convergence than the
gradient-based method, but the final part is slow for EM. (b) Zoom-in on
the log-likelihood axis. Even after 50 iterations, EM has not reached the same
level as the gradient based method. (c¢) Parameter estimates convergence in
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ferent problems. (a) Kalman Filter model. (b) Mean Field ICA. (c¢) Con-
volutive ICA. Convergence was defined as a relative change in log-likehood

below 1075.

15



Generative Gradient EM 50 EM oo
Iterations - 43 50 1800
Log-likelihood | - -24.3882  -24.5131 -24.3883
F 0.5000 0.4834 0.5626  0.4859
A 0.3000 0.2953 0.2545  0.2940
R 0.0100 0.0097 0.0282  0.0103

Table 1: Estimation in the ARMA(1,1) model. The convergence of EM is
slow compared to the gradient-based method. Note that after 50 EM iter-
ations, the log-likelihood is relatively close to the value achieved at conver-

gence, but the parameter values are far from the generative values.

depends on the SNR. Figure 3 shows the performance of the two methods on
the three different problems. The plots indicate that in the low-noise case,
the EM algorithm requires relatively more iterations to converge whereas the
gradient-based method performs equally well for all noise levels. Note that
iterations in the gradient-based approach may require more than one function

evaluation. Therefore, function evaluations were counted as iterations.

5 Conclusion

In applying the EM algorithm to maximum likelihood estimation in state-
space models, we find, as many before us, that it has poor convergence prop-
erties in the low noise limit. Often a value ’close’ to the maximum likelihood

is reached in the first few iterations, while the final increase, which is crucial
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to the accurate estimation of the parameters, requires an excessive amount
of iterations.

More importantly, we provide a simple scheme for efficient gradient-based
optimization achieved by transformation from the EM formulation, i.e. the
simple math and programming of the EM algorithms is preserved. Follow-
ing this recipe, one can get the optimization benefits associated with any
advanced gradient based-method. In this way, the tedious, problem-specific,
analysis of the cost-function topology can be replaced with an off-the-shelf
approach. Although the analysis provided in this article is limited to a set
of linear mixture models, it is in fact applicable to any model subject to the
EM algorithm, hence constituting a strong and general tool to be applied by

the part of the neural community that uses EM algorithm.
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Abstract. In this paper a system that transforms speech waveforms to
animated faces are proposed. The system relies on continuous state space
models to perform the mapping, this makes it possible to ensure video
with no sudden jumps and allows continuous control of the parameters
in 'face space’.

The performance of the system is critically dependent on the number
of hidden variables, with too few variables the model cannot represent
data, and with too many overfitting is noticed.

Simulations are performed on recordings of 3-5 sec. video sequences with
sentences from the Timit database. From a subjective point of view the
model is able to construct an image sequence from an unknown noisy
speech sequence even though the number of training examples are lim-
ited.

1 Introduction

The motivation for transforming a speech signal into lip movements is at least
threefold. Firstly, the language synchronization of movies often leaves the actors
mouth moving while there is silence or the other way around, this looks rather
unnatural. If it was possible to manipulate the face of the actor to match the
actual speech it would be much more pleasant to view synchronized movies
(and a lot easier to make cartoons). Secondly, even with increasing bandwidth
sending images via the cell phone is quite expensive, therefore, a system that
allows single images to be sent and models the face in between would be useful.
The technique will also make it possible for hearing impaired people to lip read
over the phone. If the person in the other end does not have a camera on her
phone, a model image can be used to display the facial movements. Thirdly, when
producing agents on a computer (like Windows Office Mr. clips) it would make
communication more plausible if the agent could interact with lip movements
corresponding to the (automatically generated) speech.

* The work is supported by the European Commission through the sixth framework
IST Network of Excellence: Pattern Analysis, Statistical Modelling and Computa-
tional Learning (PASCAL), contract no. 506778.



Lewis [1] provides an early overview paper about state of the art lip-sync in
1991. He concludes that using loudness to control the jaw is not a useful approach
since sounds made with closed mouth can be just as loud as open mouth sounds.
He also notes that the spectrum matching method used by MIT in the early
1980’s has severe problems due to the formants independence of pitch. In this
method the shape of the mouth is determined from the frequency content of the
speech. The problem is illustrated by the fact that the mouth shape is the same
when a sound e.g. an ’a’ is spoken with a high or a deep voice. Final he mentions
that it is possible to automatically generate speech from text and in this way
gain control of what phoneme to visualize. In his view the speech synthesis in
1991 was not of sufficient quality to sound natural, and although progress has
been made in the field automatic generated speech is still far from perfect. The
suggestion in [1] is to extract phonemes using a Linear Prediction speech model
and then map the phonemes to keyframes given by a lip reading chart.

The idea of extracting phonemes or similar high-level features from the speech
signal before performing the mapping to the mouth position has been widely used
in the lip-sync community. Goldenthal [2] suggested a system called ”Face Me!”.
He extracts phonemes using Statistical Trajectory Modeling. Each phoneme is
then associated with a mouth position (keyframe). In Mike Talk [3], phonemes
are generated from text and then mapped onto keyframes, however, in this sys-
tem trajectories linking all possible keyframes are calculated in advance thus
making the video more seamless. In ”Video rewrite” [4] phonemes are again
extracted from the speech, in this case using Hidden Markov Models. Each tri-
phone (three consecutive phonemes) has a mouth sequence associated with it.
The sequences are selected from training data, if the triphone does not have a
matching mouth sequence in the training data, the closest available sequence
is selected. Once the sequence of mouth movements has been determined, the
mouth is mapped back to a background face of the speaker. Other authors have
proposed methods based on modeling of phonemes by correlational HMM’s [5]
or neural networks [6].

Methods where speech is mapped directly to facial movement are not quite
as popular as phoneme based methods. However, in 'Picture my voice’ [7], a time
dependent neural network, maps directly from 11 x 13 Mel Frequency Cepstral
Coefficients (MFCC) as inputto 37 facial control parameters. The training output
is provided by a phoneme to animation mapping but the trained network does
not make use of the phoneme representation. Also Brand [8] has proposed a
method based on (entropic) HMM'’s where speech is mapped directly to images.
Methods that do not rely on phoneme extraction has the advantage that they can
be trained to work on all languages, and that they are able to map non-speech
sounds like yawning or laughing.

There are certain inherent difficulties in mapping from speech to mouth po-
sitions an analysis of these can be found in [9]. The most profound is the con-
fusion between visual and auditive information. The mouth position of sounds
like /b/,/p/ and /m/ or /k/,/n/ and /g/ can not be distinguished even though
the sounds can. Similarly the sounds of /m/ and /n/ or /b/ and /v/ are very



similar even though the mouth position is completely different. This is perhaps
best illustrated by the famous experiment by McGurk [10]. Thus, when mapping
from speech to facial movements, one cannot hope to get a perfect result simply
because it is very difficult to distinguish whether a ”"ba” or a ”ga” was spoken.

2 Feature Extraction

Many different approaches have been taken for extraction of sound features.
If the sound is generated directly from text [3], phonemes can be extracted
directly and there is no need to process the sound track. However, when a direct
mapping is performed one can choose from a variety of features. A non-complete
list of possibilities include Perceptual Linear Prediction or J-Rasta-PLP as in
[11,8], Harmonics of Discrete Fourier Transform as in [12], Linear Prediction
Coeflicients as in [1] or Mel Frequency Cepstral Coefficients [2,7,6]. In this work
the sound is split into 25 blocks per second (the same as the image frame rate)
and 13 MFCC features are extracted from each block.
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Fig. 1. Facial feature points (from www.research.att.com/projects/AnimatedHead)



Fig. 2. Image with automatically extracted feature points. The facial feature points
used are selected from the MPEG-4 standard (Fig. 1), points from main groups
2,3,4,8,10 and 11 are used.

To extract features from the images an Active Appearance model (AAM)
[13] is used. The use of this model for lipreading has previously been studied
by Mathews et al. [14]. In this work the implementation by Mikkel B. Stegman
[15] is used. For the extraction a suitable subset of images in the training set is
selected and annotated with points according to the MPEG-4 facial animation
standard (Fig. 1). Using these annotations a 14-parameter model of the face is
created. Thus, with 14 parameters it is possible to create a photo realistic image
of any facial expression seen in the training set. Once the AAM is created the
model is used to track the lip movements in the image sequences, at each point
the 14 parameters are picked up. In Fig. 2 the result of the tracking is shown for
a single representative image.

3 Model

Unlike most other approaches the mapping in this work is performed by a con-
tinuous state space model and not a Hidden Markov Model or a Neural Network.
The reasoning behind this choice is that it should be possible to change the pa-
rameters controlling the face continuously (unlike in HMM) and yet make certain
that all transitions happen smoothly (unlike NN’s). Currently an experimental
comparison of the performance of HMM’s and the continuous state space models
is investigated.



In this work the system is assumed to be linear and Gaussian and hence the
Kalman Filter can be used [16]. This assumption is most likely not correct and
other models like particle filtering and Markov Chain Monte Carlo are consid-
ered. However, as it will be shown below, even with the simplification the model
produces useful results.

The model is set up as follows:

T = A1k71 + ni (1)
Y = Bz +nj (2)
zr =Czp +nj, 3)

In this setting z, is the image features at time &, y,, is the sound features and xj,
is a hidden variable without physical meaning, but it can be thought of as some
kind of brain activity controlling what is said. Each equation has i.i.d. Gaussian
noise component 1 added to it.

During training both sound and image features are known, and the two ob-
servation equations can be collected in one.

(%)= (&)= (33) g

By using the EM algorithm [17,18] on the training data, all parameters
{A,B,C, X% XY X%} can be found. X’s are the diagonal covariance matri-
ces of the noise components.

When a new sound sequence arrives Kalman filtering (or smoothing) can
be applied to equations (1,2) to obtain the hidden state x. Given « the corre-
sponding image features can be obtained by multiplication, y, = Czy. If the
intermediate smoothing variables are available the variance on y; can also be
calculated.

4 Results

The data used is taken from the vidtimit database [19]. The database contains
recordings of large number of people each uttering ten different sentences while
facing the camera. The sound recordings are degraded by fan-noise from the
recording pc. In this work a single female speaker is selected, thus 10 different
sentences are used, nine for training and one for testing.

To find the dimension of the hidden state (x), the optimal parameters
({A,B,C,X}) where found for varying dimensions. For each model the like-
lihood on the test sequence was calculated, the result is shown in Fig. 3.

With few dimensions the model is not rich enough to capture the dynamics of
the image sequence. This is illustrated by the spectrogram of a hidden variable
which represent the dynamics of the hidden space, as shown in Fig. 4(c). It is
noted that only low frequency components are present. As the hidden space gets
larger it becomes possible to model more of the dynamics present in the image.
The spectrogram of a representative hidden variable when using a 25 dimensional
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Fig. 3. The likelihood evaluated on the test data. With few hidden variables (dimesions
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Fig. 4. In the spectrograms of one of the predicted hidden states of on the test sequence,
the effect of varying the size of the state space can be seen. Spectrograms of the first
sound and image features are provided for comparison.



hidden space (Fig. 4(d)) has a structure very similar to what is found in one of
the image features (Fig. 4(a)). When increasing the hidden units to 70, the model
degrees of freedom becomes large and over fitting becomes possible. Fig. 4(e) and
Fig. 4(f) show the spectrogram of two hidden variables and it is seen that the
states specializes. In 4(e) high frequencies are dominant, and the other seemingly
displays a structure, which resembles the dynamics of the sound features as
seen in Fig. 4(b). This is not relevant due to the slower dynamics of the facial
expressions. These specializations are furthermore specific to the training set
and do not generalize according to Fig. 3. It should be noted that training a
large model is difficult, both in terms of computations and convergence. With
this analysis in mind a model with 25 hidden units is selected.

The test likelihood provides a measure of the quality of the model in feature
space and provides a way of comparing models. This also allows comparison
between this model and a similar Hidden Markov Model approach. However, it
does not measure the quality of the final image sequence. No precise metric exist
for evaluation of synthesized lip sequences. The distance between facial points
in the true and the predicted image would be one way, another way would be to
measure the distance between the predicted feature vector and the feature vector
extracted from the true image. However, the ultimate evaluation of faces can be
only provided by human interpretation. Unfortunately it is difficult to get an
objective measure this way. One possibility would be to get a hearing impaired
person to lipread the generated sequence, another to let people try to guess which
sequence was real and which was computer generated. Unfortunately, such test
are time and labor demanding and it has not been possible to perform them in
this study.

In Fig. 5 snapshots from the sequence are provided for visual inspection, the
entire sequence is available at http://www.imm.dtu.dk/ " tls/code/facedemo.php,
where other demos can also be found.

5 Conclusion

A speech to face mapping system relying on continuous state space models is
proposed. The system makes it possible to easily train a unique face model that
can be used to transform speech into facial movements. The training set must
contain all sounds and corresponding face gestures, but there are no language or
phonetic requirements to what the model can handle.

Surprisingly little attention has previously been paid to the training of state
space models. In this paper it is shown that the Kalman filter is able overfit
when the number of parameters are too large, similar effects are expected for
the Hidden Markov Model.

All though preliminary, the results are promising. Future experiments will
show how the Kalman model and other instances of continuous state space mod-
els compares to Hidden Markov Model type systems.



Fig. 5. Characteristic images taken from the test sequence. The predicted face is to
the left and the true face to the right.
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Abstract—In this paper a system that transforms speech mouth is mapped back to a background face of the speaker.
waveforms to animated faces are proposed. The system reliesQOther authors have proposed methods based on modeling of
on a state space model to perform the mapping. To create a pyhonemes by correlational HMM's (4) or neural networks (5).
photo realistic image an Active Appearance Model is used. The . . .
main contribution of the paper is to compare a Kalman filter and Methods where speech is mapped directly to facial move-
a Hidden Markov Model approach to the mapping. It is shown ment are not quite as popular as phoneme based methods.
that even though the HMM can get a higher test likelihood the However, in 'Picture my voice’ (6), a time dependent neural
Kalman filter is easier to train and the animation quality is better  network, maps directly from1 x 13 Mel Frequency Cepstral
for the Kalman filter. Coefficients (MFCC) as input to 37 facial control parameters.
The training output is provided by a phoneme to animation
mapping but the trained network does not make use of
the phoneme representation. Also Brand (7) has proposed a

The motivation for transforming a speech signal into lipnethod based on (entropic) HMM's where speech is mapped
movements is at least threefold. Firstly, the language synchtfirectly to images. In (8) Nakamura presents an overview
nization of movies often leaves the actors mouth moving whitsf methods using HMM's, the first MAP-V converts speech
there is silence or the other way around, this looks rathieito the most likely HMM state sequence and the uses a
unnatural. If it was possible to manipulate the face of the acttatble lookup to convert into visual parameters. In an extended
to match the actual speech it would be much more pleasanitrsion MAP-EM the visual parameters are estimated using
view synchronized movies (and a lot easier to make cartoong)e EM algorithm. Methods that do not rely on phoneme
Secondly, even with increasing bandwidth sending images \é&traction has the advantage that they can be trained to work
the cell phone is quite expensive, therefore, a system that all languages, and that they are able to map non-speech
allows single images to be sent and models the face in betwaeininds like yawning and laughing.
would be useful. The technique will also make it possible for There are certain inherent difficulties in mapping from
hearing impaired people to lip read over the phone. If thspeech to mouth positions an analysis of these can be found
person in the other end does not have a camera on her phomgQ). The most profound is the confusion between visual
a model image can be used to display the facial movemergad auditive information. The mouth position of sounds like
Thirdly, when producing agents on a computer (like Windows/,/p/ and /m/ or /k/,/n/ and /g/ can not be distinguished even
Office Mr. clips) it would make communication more plausiblénough the sounds can. Similarly the sounds of /m/ and /n/ or
if the agent could interact with lip movements corresponding/ and /v/ are very similar even though the mouth position is
to the (automatically generated) speech. completely different. This is perhaps best illustrated by the

The idea of extracting phonemes or similar high-level fedamous experiment by McGurk (10). Thus, when mapping
tures from the speech signal before performing the mappifram speech to facial movements, one cannot hope to get a
to the mouth position has been widely used in the lip-symperfect result simply because it is very difficult to distinguish
community. Goldenthal (1) suggested a system called "Fagether a "ba” or a "ga” was spoken.

Me!”. He extracts phonemes using Statistical Trajectory Mod- The rest of this paper is organized in three sections, section
eling. Each phoneme is then associated with a mouth positipfocuses on feature extraction in sound and images, in section
(keyframe). In Mike Talk (2), phonemes are generated from the model are described. Finally experimental results are

text and then mapped onto keyframes, however, in this systgpesented in section IV.

trajectories linking all possible keyframes are calculated in
advance thus making the video more seamless. In "Video
rewrite” (3) phonemes are again extracted from the speech,
in this case using Hidden Markov Models. Each triphone Many different approaches has been taken for extraction of
(three consecutive phonemes) has a mouth sequence assocstedd features. If the sound is generated directly from text
with it. The sequences are selected from training data, if theonemes can be extracted directly and there is no need to
triphone does not have a matching mouth sequence in fhecess the sound track (2). However, when a direct mapping
training data, the closest available sequence is selected. Oiscperformed one can choose from a variety of features. A

the sequence of mouth movements has been determined,rtbe-complete list of possibilities include Perceptual Linear

I. INTRODUCTION

Il. FEATURE EXTRACTION



In this settingi, is the image features at time s, is the
sound features ang is a hidden variable without physical
meaning.z can be thought of as some kind of brain activity
controlling what is said. Each equation has i.i.d. Gaussian
noise component added to it.

During training both sound and image features are known,
and the two observation equations can be collected in one.

(2)-(e)=(3i)  ®

By using the EM algorithm (18; 19) on the training data, all
parameterd A, B, C, X%, %% %'} can be foundX's are the
diagonal covariance matrices of the noise components.

When a new sound sequence arrives Kalman filtering (or
smoothing) can be applied to equations (1,2) to obtain the
Fig. 1. Image with automatically extracted feature points. The facial fearfidden statec. Givena the corresponding image features can
points are selected from the MPEG-4 standard be obtained by multiplicationi;, = Cx. If the intermediate

smoothing variables are available the variancepcan also
be calculated.
Prediction or J-Rasta-PLP as in (7; 11), Harmonics of Discreteln case of the Hidden Markov Model the approach is similar,
Fourier Transform as in (12), Linear Prediction Coefficients 48e transition probabilities, the emission probabilities for the
in (13) or Mel Frequency Cepstral Coefficients (1; 5; 6; 8pound and image features and the Gaussian mixture parameters
In this work the sound is split into 25 blocks per secondre estimated during training. During testing the most probable
(the same as the image frame rate) and 13 MFCC featuféate sequence can be found from the sound features and
are extracted from each block. To extract features from tkee image feature can be found using either the mean of the
images an Active Appearance model (AAM) (14) is use@mitted Gaussian or by drawing a sample from it.
The use of this model for lipreading has previously been
studied by Mathews et al. (15). AAM’s are also useful for IV. RESULTS
low bandwidth transmission of facial expressions (16). In this The data used is taken from the vidtimit database (20). The
work an implementation by Mikkel B. Stegman (17) is usediatabase contains recordings of large number of people each
For the extraction a suitable subset of images in the trainingering ten different sentences while facing the camera. The
set are selected and annotated with points according to #find recordings are degraded by fan-noise from the recording
MPEG-4 facial animation standard. Using these annotatiops. In this work a single female speaker is selected, thus 10
a 14-parameter model of the face is created. Thus, with different sentences are used, nine for training and one for
parameters it is possible to create a photo realistic imagetesting.
any facial expression seen in the training set. Once the AAMTo find the dimension of the hidden state)(the optimal
is created the model is used to track the lip movements in tharameters for both the KF and the HMM were found for
image sequences, at each point the 14 parameters are pickggling dimensions. For each model the likelihood on training
up. In Fig. 1 the result of the tracking is shown for a singland test sequences were calculated, the result is shown in Fig.
representative image. 2 and Fig. 3.
The test likelihood provides a statistical measure of the qual-

. M opEL ity of the model and provides a way of comparing models. This

In this work the mapping from sound to images is perllows comparison between the KF and the HMM approach.
formed by two types of state space models, a HMM witbinfortunately the likelihood is not necessarily a good measure
a mixture of Gaussians observations and a Kalman filtef the quality of a model prediction. If the distributions in the
Both approaches uses the toolbox written by Kevin Murphyodel are broad, i.e. the model has high uncertainty, it can
(http://www.ai.mit.edu/ murphyk/Software). describe data well, but, it is not a good generative model.

Normally, when using HMM's for speech to face-movement Looking at the results in Fig. 2 and Fig. 3 it is seen
mapping a bank of HMM’s are used. Each one is trained dhat the likelihood of a HMM does not increase as expected
a specific subset of data and when that model has the higheigh the model complexity. The KF on the other hand has
likelihood it is responsible for producing the image. In this peak in the test likelihood around 40 hidden states. The
work the entire sequence is considered at once and onlyeat likelihood shows that the HMM is a better model than
single state space model is trained. In case of the Kalmif. However when examining the output feature vectors
filter the model set up is as follows: controlling the face movement (Fig. 4) it is seen that the
output of the HMM is varying very fast and does not fol-
low the true feature vector. The output from the KF on
Bz, +nj, (2)  the other hand is smooth and closer to the desired. Visual
= Cz+ni (3) inspection of the video sequence shows good results from the

zr = Azp_i+nj (1)
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Fig. 2. The likelihood evaluated on the training data. The Kalman filter Big. 3. The likelihood evaluated on the test data. Again the Kalman filter
able to utilize the extra dimension to improve the training result, whereas timeproves performance as more hidden dimensions are added and overfitting is
HMM has almost the same performance no matter how many hidden stageen for high number of hidden states. The HMM has the same performance
are used. independent of the number of hidden states.

KF but very jerky and unrealistic motion from the HMM. "

In Fig. 5 snapshots from the KF sequence are provid HMM
for visual inspection, the entire sequence is availabe | | 777 Kalman
http://www.imm.dtu.dk/"tIs/code/facedemo.php, where oth — True

demos can also be found.

The failure of the likelihood to capture the quality ol
the final image sequence points to an interesting proble
No precise metric exist for evaluation of synthesized li
sequences. The distance between facial points in the true :
the predicted image would be one way, another way would
to measure the distance between the predicted feature ve
and the feature vector extracted from the true image. Howev
the ultimate evaluation of faces can be only provided by hum
interpretation. Unfortunately it is difficult to get an objective
measure this way. One possibility would be to get a hearil 0
impaired person to lipread the generated sequence, anotner
to let people try to guess which sequence was real and whigh 4. Dynamics of the first AAM component true and predicted. The
e O e e e . T i oo s e eang e e sy
labor demanding. Further more these subjective test does Jy i

p
. : = ; tmodel is greater. On top of that the discrete nature of the model makes it
provide an error function that can be optimized directly.  jumps suddenly from frame to frame making the face movement look jerky.

1 AAM component
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V. CONCLUSION
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