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Abstract— Temporal feature integration is the process of com-
bining all the feature vectors in a time window into a single
feature vector in order to capture the relevant temporal infor-
mation in the window. The mean and variance along the temporal
dimension are often used for temporal feature integration,but
they capture neither the temporal dynamics nor dependencies
among the individual feature dimensions. Here, a multivariate
autoregressive feature model is proposed to solve this problem for
music genre classification. This model gives two different feature
sets, the DAR and MAR features which are compared against
the baseline mean-variance as well as two other temporal feature
integration techniques. Reproducibility in performance ranking
of temporal feature integration methods were demonstratedusing
two data sets with five and eleven music genres, and by using
four different classification schemes. The methods were further
compared to human performance. The proposed MAR features
perform better than the other features at the cost of increased
computational complexity.

Index Terms— Temporal feature integration, autoregressive
model, music genre classification

EDICS Category: AUD-CONT Content-Based Music
Processing

I. I NTRODUCTION

I N recent years, there has been an increasing interest in
the research area of Music Information Retrieval (MIR).

This is spawned by the new possibilities on the Internet such
as on-line music stores like Apple’s iTunes and the enhanced
capabilities of ordinary computers. The related topic of music
genre classification can be defined as computer-assigned genre
labelling of sound clips. It has received much attention in its
own right, but it is also often used as a good test-bench for
music features in related areas where the labels are harder
to obtain than the musical genres. An example of this is
[1], where rhythm features are assessed in a music genre
classification task.

Music genre classification systems normally consist of
feature extraction from the digitized music, followed by a
classifier that uses features to estimate the genre. In this work
we focus on identifying temporal feature integration methods
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Modelling and Computational Learning (PASCAL), contract no. 506778 and
by the Danish Technical Research Council project No. 26-04-0092 Intelligent
Sound (www.intelligentsound.org).

which give consistent and good performance over different
data sets and choices of classifier.

In several feature extraction models, perceptual character-
istics such as the beat [2] or pitch [3] are modelled directly.
This has the clear advantage of giving features which can be
examined directly without the need of a classifier. However,
most of the previous research has concentrated on short-time
features e.g. Audio Spectrum Envelope and the Zero-Crossing
Rate [4] which are extracted from20 − 40 ms frames of the
sound clip. Such features are thought to represent perceptually
relevant characteristics such as e.g. music roughness or timbre.
They have to be evaluated as part of a full classification
system. A sound clip is thus represented by a multivariate time
series of these features and different methods exist to combine
this information into a single genre label for the whole sound
clip. An example is [5], based on a hidden Markov model of
the time series of the cepstral coefficient features.

Temporal feature integration is another approach to combine
information. It uses a sequence of short-time feature vectors
to create a single new feature vector at a larger time scale. It
assumes a minimal loss of the important temporal information
for music genre classification in the short-time feature extrac-
tion stage. Temporal feature integration is a very common
technique. Often basic statistic estimates like the mean and
variance of the short-time features have been used [6], [7],
[3].

Here, a new multivariate autoregressive temporal feature
integration model is proposed as an alternative to the mean-
variance feature set. The main advantage of the autoregressive
model is its ability to model temporal dynamics as well as
dependencies among the short-time feature dimensions. In
fact, the model is a natural generalization of the mean-variance
temporal feature integration model.

The present work provide an extension of our work in [8]
at several levels. In [8] each short-time feature dimension
was modelled independently, hence, dependencies among the
feature dimensions were not modelled. In this work, these
are modelled in terms of correlation by applying the mul-
tivariate autoregressive model (MAR). Furthermore, in the
present work, we give a more detailed explanation of the
autoregressive model and its relation to the other investigated
temporal feature integration methods. Computational complex-
ity have been included for the different methods and in the
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experimental section more classifiers and a data set with larger
complexity have been added.

In the experimental section we will compare3 temporal
feature integration methods typically applied in the litterature;
the mean-variance (MeanVar), mean-covariance (MeanCov),
filter bank coefficients (FC) with the proposed autoregressive
models; the diagonal AR (DAR) and multivariate AR (MAR)
model. To generalize the result two different data sets con-
sisting of 5 and 11 different genres have been used in the
experiments. Both data sets have been evaluated by a group
of persons to relate the obtained accuracies by the different
automated methods. Furthermore, to ensure a fair comparison
of the different temporal feature integration methods,4 dif-
ferent classifiers have been applied; a linear model (LM), a
generalized linear model (GLM), a Gaussian classifier (GC)
and a Gaussian mixture model (GMM) classifer.

MAR features
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Fig. 1. The full music genre classification system. The flow-chart illustrates
the different parts of the system, whereas the names just below the chart are
the specific choices that gives the best performing system. The numbers in
the bottom part of the figure illustrate the (large) dimensionality reduction
that takes place in the system (the number of genres are11).

Figure 1 illustrates the full music genre classification system
that was used for evaluating the temporal feature integration
methods.

Section II describes common feature extraction and integra-
tion methods, while section III gives a detailed explanation
of the proposed multivariate autoregressive feature model.
Section IV reports and discusses the results of experiments
that compare the newly proposed features with the best of the
existing temporal feature integration methods. Finally, section
V concludes on the results.

II. FEATURE EXTRACTION AND INTEGRATION

Several different features have been suggested in music
genre classification. The general idea is to process fixed-size
time windows of the digitized audio signal with an algorithm
which can extract relevant information in the sound clip. The
size of the windows gives the time scale of the feature. The
features are often thought to represent aspects of the music
such as the pitch, instrumentation, harmonicity or rhythm.

The following subsections explain popular feature extraction
methods. They are listed on the basis of their time scale. The
process of temporal feature integration is explained in detail
in the end of the section.

A. Short-time features

Most of the features that have been proposed in the literature
are short-time features, which usually employ frame sizes

of 20 − 40 ms. They are often based on a transformation
to the spectral domain using techniques such as the Short-
Time Fourier Transform. The assumption in these spectral
representations is (short-time) stationarity of the signal which
means that the frame size has to be small.

In [4], we found the so-calledMel-Frequency Cepstral
Coefficient(MFCC) to be very successful. Similar findings
were observed in [9] and [10]. They were originally developed
for speech processing [11]. The details of the MFCC feature
extraction are shown in Figure 2. It should be mentioned,
however, that other slightly different MFCC feature extraction
schemes exist, see e.g. [12].
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Fig. 2. Mel frequency Cepstral coefficients feature extraction as described
in [13].

According to [14], short-time representations of the full
time-frequency domain, such as the MFCC features, can be
seen as models of the music timbre.

B. Medium-time features

Medium-time features are here defined as features, which
are extracted on time scales around1000− 2000 ms. [3] uses
the term ‘Texture window’ for this time scale where important
aspects of the music “lives” such as note changes and tremolo
[15]. Examples of features for this time scale are the Low
Short-Time Energy Ratio (LSTER) and High Zero-Crossing
Rate Ratio (HZCRR) [16].

C. Long-time features

Long-time features describe important statistics of e.g. afull
song or a larger sound clip. An example is the beat histogram
feature [17] which summarize the beat content in a sound clip.

D. Temporal Feature Integration

Temporal feature integration is the process of combining
all the feature vectors in a time window into a single feature
vector that captures the temporal information of this window.
The new features generated do not necessarily capture any
explicit perceptual meaning such as perceptual beat or mood,
but captures information which are useful for the subsequent
classifier. In [2] the ‘beat-spectrum’ is used for music retrieval
by rhythmic similarity. The beat-spectrum can be derived from
short-time features such as the STFT or MFCCs as noted
in [2]. This clearly indicates that the evolution of the short-
time features contain important temporal information. Figure 3
shows the first six MFCCs of a ten second excerpt of the music
piece ”Masters of Revenge” by ”Body Count”. This example
shows a clear repetitive structure in the short-time features.
Another important property of temporal feature integration
is data reduction. Consider a four minute piece of music
represented as short-time features (using the first6 MFCCs).
With a hop- and frame-size of10 ms and20 ms, respectively,
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Fig. 3. The first six normalized MFCCs of a ten second snippet of ”Body
Count - Masters of Revenge”. The temporal correlations are very clear from
this piece of music as well as the cross-correlations among the feature
dimensions. This suggests that relevant information is present and could be
extracted by selecting a proper temporal feature integration model.

this results in approximately288 kB of data using a16 bit
representation of the features. The hop-size is defined as the
frame-size minus the amount of overlap between frames and
specifies the “effective sampling rate” of the features. This is
a rather good compression compared to the original size of
the music (3.84 MB, MPEG1-layer3@128 kb/s). However, if
the relevant information can be summarized more efficiently
in less space, this must be preferred.

The idea of temporal feature integration can be expressed
more rigorously by observing a sequence of consecutive short-
time features,xi of dimensionD, wherei represents thei’th
short time feature. These are integrated into a new featurezk

of dimensionM

zk = f(xk·Hs
, . . . ,xk·Hs+Ws−1), (1)

whereHs is the hop-size andWs window-size (both defined
in number of samples) andk = 0, 1, . . . is the discrete time
index of the larger time scale. There exists a lot of different
models, here denoted byf(·), which map a sequence of short-
time features into a new feature vector.

A very simple temporal feature integration method is that of
stacking consequtive short-time features, see e.g. [5], [4], into
a new feature vector and thereby maintaining information. This
method require a robust machine learning algorithm to cope
with the often high dimensional feature vectors created, and
does not introduce any sort of compression. In the following
the MeanVar, MeanCov and Filter bank Coefficients (FC) will
be discussed. These methods have been suggested for temporal
feature integration in the literature. All of these methods
introduce a good level of compression compared to that of
stacking. Furthermore, as will become clear these methods
have closed form solutions.

1) Gaussian model:A very simple model for temporal
feature integration is the so-called MeanVar model which has
been used in work related to music genre classification, see
e.g. [17], [8]. This model implicitly assumes that consecutive

samples of short-time features are independent and Gaussian
distributed and, furthermore, that each feature dimensionis
independent. Using maximum-likelihood the parameters for
this model are estimated as

mk =
1

Ws

Ws−1
∑

n=0

xk·Hs+n

ck,i =
1

Ws

Ws−1
∑

n=0

(xk·Hs+n,i − mk,i)
2
, (2)

for i = 1, . . . , D, which results in the following feature at the
new time scale

zk =

[

mk

ck

]

, (3)

wherezk is of dimension2D andm andc are the estimated
mean and variance of the short-time features. As seen in Figure
3, the assumption that each feature dimension is independent
is not correct. A more reasonable temporal feature integration
model is the multivariate Gaussian model, denoted in the
experimental section as MeanCov, where correlations among
features are modelled. This model of the short-time features
can be formulated asx ∼ N (m,C), where the mean and
covariance are calculated over the given window of short-time
features. Thus, the diagonal ofC contains the variance features
from MeanVar. The mean vector and covariance matrix are
stacked into a new feature vectorzk of dimensionD

2 (3 + D)

zk =

[

mk

vech(Ck)

]

, (4)

wherevech(C) refers to stacking the upper triangular part of
the matrix including the diagonal.

One of the drawbacks of the Gaussian model, whether this
is the simple (MeanVar) or the multivariate model (MeanCov),
is that temporal dependencies in the data are not modelled.

2) Filter bank coefficients (FC):The filter bank approach
considered in [18] aims at capturing some of the dynamics
in the sequence of short-time features. They investigated the
method in a general audio and music genre classification task.
The idea is to extract a summarized power of each feature
dimension independently in four specified frequency bands.
The temporal feature integration functionf(·) for the filter
bank approach can be written compactly as

zk = vec (PkW) , (5)

whereW is a filter matrix of dimensionN×4 andPk contains
the periodograms of each short-time feature and has dimension
D×N , whereN = Ws/2 whenWs is even andN = (Ws −
1)/2 for odd values.

The four frequency bands in which the periodograms are
summarized are specified in the matrixW. In [18] the four
filters applied to handle the short-time features are: 1) a DC-
filter, 2) 1−2 Hz modulation energy, 3)3−15 Hz modulation
energy and 4)20 − 43 Hz perceptual roughness [19].

The advantage of this method is that the temporal structure
of the short-time features is taken into account, however, cor-
relations among feature dimensions are not modelled. In order
to model these, cross-correlation spectra would be required.
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III. M ULTIVARIATE AUTOREGRESSIVEMODEL FOR

TEMPORAL FEATURE INTEGRATION

The simple mean-variance model does not model temporal
feature correlations, however, these features have shown to
perform remarkably well in various areas of music information
retrieval, see e.g. [17], [20]. The dependencies among features
could be modelled using the MeanCov model, but still do not
model the temporal correlations. The filter bank coefficient
(FC) approach includes temporal information in the integrated
features, but the correlations among features are neglected.

This section will focus on the multivariate autoregressive
model (MAR) for temporal feature integration, since it has
the potential of modelling both temporal correlations and
dependencies among features.

For simplicity we will first study the diagonal multivariate
autoregressive model (DAR). The DAR model assumes inde-
pendence among feature dimensions similar to the MeanVar
and FC feature integration approaches. The full multivariate
autoregressive model (MAR) in considered in section III-B.

A. Diagonal multivariate autoregressive model (DAR)

The DAR model was investigated in [8] where different
temporal feature integration methods were tested and showed
improved performance compared to the MeanVar and FC
approaches, however, the theory behind the model was not
fully covered. For completeness we will here present a more
detailed description of the model.

Assuming independence among feature dimensions theP ’th
order causal autoregressive model1 for each feature dimension
can be written as

xn =

P
∑

p=1

apxn−p + Gun (6)

for n = 0, . . . , Ws − 1, whereap for p = 1, . . . , P is the
autoregressive coefficients,un is the noise term, assumed i.i.d.
with unit variance and mean valuev. G sets the scale of the
noise term. Note that the mean value of the noise processv
is related to the meanm of the time series bym = (1 −
∑P

p=1 ap)
−1v.

Equation (6) expresses the “output”xn as a linear function
of past outputs and present inputsun. There are several
methods for estimating the parameters of the autoregressive
model, either in the frequency domain [21] or directly in time-
domain [22]. The most obvious and well-known method is the
ordinary least squares method, where the mean squared error
is minimized. Other methods suggested are the generalized (or
weighted) least squares where the noise process is allowed to
be colored. In our case the noise process is assumed white,
therefore the least squares method is applied and described
in the following. The prediction of a new sample based on
estimated parameters,ap, becomes

x̃n =

P
∑

p=1

apxn−p, (7)

1In the speech community this is known as a linear predictive coding (LPC)
model, however, here applied to a sequence of short-time features instead of
the raw sound signal.

and the error signalen measured betweeñxn andxn is

en = xn − x̃n = xn −
P
∑

p=1

apxn−p, (8)

whereen is known as the residual. Taking thez-transformation
on both sides of Equation (8), the error can now be written as

E(z) =

(

1 −
P
∑

p=1

apz
−p

)

X(z) = A(z)X(z). (9)

In the following we will switch to frequency representation
z = ejω and in functions useX(ω) for representingX(ejω).
Assuming a finite energy signal,xn, the total error to be
minimized in the ordinary least squares method,Etot, is then
according to Parseval’s theorem given by

Etot =

Ws−1
∑

n=0

e2
n =

1

2π

∫ π

−π

|E(ω)|2dω. (10)

To understand why this model is worthwhile to consider,
we will now explain the spectral matching capabilities of the
model. First, we look at the model from Equation (6) in the
z-transformed domain, which can now be described as

X(z) =

P
∑

p=1

apX(z)z−p + GU(z), (11)

wherev = 0 is assumed without loss of generalizability. The
system transfer function becomes

H(z) ≡
X(z)

U(z)
=

G

1 −
∑P

p=1 apz−p
, (12)

and its corresponding model power spectrum

P̂ (ω) = |H(ω)U(ω)|2 = |H(ω)|2 =
G2

|A(ω)|2
. (13)

Combining the information in equations (9), (10), (13) and the
fact thatP (ω) = |X(ω)|2, the total error to be minimized can
be written as

Etot =
G2

2π

∫ π

−π

P (ω)

P̂ (ω)
dω. (14)

The first observation is that trying to minimize the total
errorEtot is equivalent to minimization of the integrated ratio
of the signal spectrumP (ω) and its estimated spectrum̂P (ω).
Furthermore, at minimum errorEtot = G2 the following
relation holds

1

2π

∫ π

−π

P (ω)

P̂ (ω)
dω = 1. (15)

The two equations (14) and (15) result in two major properties,
a ‘global’ and ‘local’ property [21]:

• The global property states that since the contribution
to the total errorEtot is determined as a ratio of the
two spectra, the matching process should perform uni-
formly over the whole frequency range, irrespective of the
shaping of the spectrum. This means that the spectrum
match at frequencies with small energy is just as good as
frequencies with high energy.
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Fig. 4. Power density of the zero-order MFCC of a piano noteA5 played
for a duration of1.2 s. The four figures show the periodogram as well as the
AR-model power spectrum estimates of orders3, 5, 9 and 31, respectively.
The normalized frequency of1/2 corresponds to66.67 Hz.

• The local property deals with the matching of the spec-
trum in each small region of the spectrum. In [21], the
author concludes that a better fit ofP̂ (ω) to P (ω) will be
obtained at frequencies whereP (ω) is larger thanP̂ (ω),
than at frequencies whereP (ω) is smaller. Thus, for
harmonic signals the peaks will be better approximated
than the area in between the harmonics.

It is now seen that the AR-method and the FC approach
are related, since in the latter method, the periodogram is
summarized in four frequency bands where for the AR-model
approach a selection of frequency bands is unnecessary since
the power spectrum is modelled directly.

Figure 4 shows the periodogram of the zero-order MFCC
of the piano noteA5 corresponding to the frequency880 Hz
recorded over a duration of1.2 seconds as well as the AR-
model approximation for four different model orders,3, 5, 9
and31. The hop-size of the MFCCs were7.5 ms correspond-
ing to a samplerate of133.33 Hz. As expected, the model
power spectrum becomes more detailed as the model order
increases.

B. Multivariate autoregressive model (MAR)

In order to include both temporal and among feature corre-
lations the multivariate AR model with full matrices is applied
instead of only considering the diagonal of the matrices as in
the DAR model. A full treatment of the MAR models are
given in [22] and [23].

For a stationary time series of state vectorsxn the general
multivariate AR model is defined by

xn =

P
∑

p=1

Apxn−I(p) + un (16)

where the noise termun is assumed i.i.d. with meanv and
finite covariance matrixC. The above formulation is quite
general sinceI refers to a general set. E.g. for a model order
of 3, the set could be selected asI = {1, 2, 3} or as I =

{2, 4, 8} indicating thatxn is predicted from these previous
state vectors. Note that the mean value of the noise process
v is related to the meanm of the time series bym = (I −
∑P

p=1 Ap)
−1

v.
The matricesAp for p = 1, . . . , P are the coefficient

matrices of theP ’th order multivariate autoregressive model.
They encode how much of the previous information in
{xn−I(1),xn−I(2), . . . ,xn−I(P )} is present inxn. In this work
the usual form of the multivariate AR model have been used,
hence,I = {1, 2, . . . , P}.

A frequency interpretation of the multivariate autoregressive
model can, as for the univariate case, be established for the
multivariate case. The main difference is that all cross spectra
are modelled by the MAR model. In e.g. [24], a frequency
domain approach is used for explaining the multivariate au-
toregressive model by introducing the ‘autocovariance func-
tion’, which contains all cross covariances for the multivariate
case. The power spectral matrix can be defined from the
autocovariance function as

f(ω) =

Ws−1
∑

h=−Ws+1

Γ(h)e−ihω , (17)

where the autocovariance functionΓ(h) is a positive function
and fulfills

∑

∞

h=−∞
||Γ(h)||2 < ∞, under stationarity.

As with the DAR model the ordinary least squares approach
has been used in estimating the parameters of the MAR model,
see e.g. [22] for detailed explanation of parameter estimation.

The parameters which are extracted from the least squares
approach for both the DAR and MAR models are the AR-
matrices:{A1, . . . ,AP }, the intercept termv and the noise
covarianceC. The temporal feature integrated vector of win-
dow k then becomes

zk = [vec (Bk)
T

v
T
k vech (Ck)

T
]T , (18)

whereB = [A1,A2, . . . ,AP ] is of dimensionD × PD and
zk of dimension(P + 1/2)D2 + (3/2)D. Note that for the
DAR model, only the diagonals of theAp and C matrices
are used.

C. Issues on stability

Until now we have assumed that the time-series under
investigation is stationary over the given window. The
window-size, however, is optimized to the given learning
problem which means that we are not guaranteed that the
time-series is stationary within each window. This could e.g.
be in transitions from silence to audio, where the time-series
might locally look non-stationary. In some applications,
this is not a problem, since reasonable parameter estimates
are obtained anyhow. In the considered music genre setup,
the classifier seems to handle the non-stationary estimates
reasonably. In other areas of MIR, the power-spectrum
estimate provided through the AR-model might be more
critical, hence, in such cases it would be relevant to investigate
the influence of non-stationary windows.
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D. Selection of optimal length

There exists multiple order selection criteria. Examples
are BIC (Bayesian Information Criterion) and AIC (Akaike
Information Criterion), see e.g. [23]. The order selection
methods are traditionally applied to a single time series,
however, in the music genre setup, we are interested in finding
a single optimal model order for a large set of time-series.
Additionally, there is a tradeoff between model order and the
dimensionality of the feature space and, hence, problems with
overfitting of the subsequent classifier, see Figure 1, Section
I. Therefore, the optimal order of the time-series alone is
normally not the same as the optimal order determined for
the complete system.

E. Complexity considerations

TABLE I

COMPUTATIONAL COMPLEXITY OF ALGORITHMS OF A WINDOW OF

SHORT-TIME FEATURES

METHOD MULTIPLICATIONS & ADDITIONS

MeanVar 4DWs

MeanCov (D + 3)DWs

FC (4 log2(Ws) + 3) DWs

DAR D

3
(P + 1)3 + ((P + 6)(P + 1) + 3) DWs

MAR
1

3
(PD + 1)3+

`

(P + 4 + 2

D
)(PD + 1) + (D + 2)

´

DWs

Table I shows the complete number of multiplications
and additions for a window of all the examined temporal
feature integration methods. The column “multiplications&
additions” shows the number of calculated multiplications/
additions of the particular method.D is the dimensionality of
the feature space,P is the DAR/MAR model order, andWs

is the window-size in number of short-time feature samples.
In the calculations the effect of overlapping windows have not
been exploited. Table II shows the computational complexity
of our actual music genre setup. The complexities are scaled
according to the MeanVar calculation.

IV. EXPERIMENTS

Simulations were designed to compare the baseline Mean-
Var features with the newly proposed DAR and MAR features.
Additionally, the FC features and MeanCov features were
included in the comparisons. The FC features performed very
well in [8] and the MeanCov features were included for the
sake of completeness.

The features were tested on two different data sets and
four different classifiers to make the conclusions generaliz-
able. In all of the experiments,10-fold cross-validation was
used to estimate the mean and standard deviation of the
mean classification test accuracy, which was used as the

TABLE II

COMPUTATIONAL COMPLEXITY OF THE MUSIC GENRE SETUP USING THE

OPTIMIZED VALUES FROM THE EXPERIMENTAL SECTION, HENCEP = 3,

D = 6 AND Ws = 188, 268, 322, 295, 162 FOR THEMEANVAR,

MEANCOV, FC, DAR AND MAR, RESPECTIVELY. NOTE THAT THE

COMPLEXITY VALUES ARE NORMALIZED SUCH THAT THE MEANVAR HAS

COMPLEXITY 1.

Model
Complexity relative to

& the MeanVar

MeanCov 3.2

FC 15.6

DAR 27.2

MAR 32.2

performance measure. Figure 1 in Section I illustrates the
complete classification system. The optimization of the system
follows the data stream which means that the MFCC features
were optimized first (choosing number of coefficients to use,
whether to use normalization etc.). Afterwards, the temporal
feature integration part was optimized and so forth.

A. Preliminary investigations

Several investigations of preprocessing both before and after
the temporal feature integration were made. Dimensionality
reduction of the high-dimensional MAR and DAR features
by PCA did not prove beneficial2, and neither did whitening
(making the feature vector representation zero-mean and unit
covariance matrix) or normalization (making each feature
component zero-mean and unit variance individually) for any
of the features. To avoid numerical problems, however, they
were all normalized. Preprocessing, in terms of normalization
of the short-time MFCC features did not seem to have an effect
either.

B. Features

To ensure a fair comparison between the features, their
optimal hop- and window-sizes were examined individually,
since especially window-size seems important with respect
to classification accuracy. An example of its importance is
illustrated in Figure 5.

For the short-time MFCC features the first6 coefficients
(including the zero-order MFCC) where found to be adequate
for the experiments on the two datasets. The optimal hop- and
frame-size were found to be7.5 ms and 15 ms, respectively.
The optimal hop-size was400 ms for the DAR, MAR, Mean-
Var and MeanCov features and500 ms for the FC features. The
window-sizes were1200 ms for the MAR features,2200 ms
for the DAR features,1400 ms for the MeanVar,2000 ms for
the MeanCov and2400 ms for the FC features.

An important parameter in the DAR and MAR feature
models is the model order parameterP . The optimal values
for this parameter were found to be5 and3 for the DAR and
MAR features, respectively. This optimization was based on

2This is only true for the standard GLM and LM classifiers, thatdoes not
have significant overfitting problems.
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Fig. 5. Classification test accuracy is plotted against window-size for the
MAR features using the LM and GLM classifiers. The hop-size was 200 ms
in these experiments and data set B, section IV-D, was used. The error-bars
denote the standard deviation on the mean value. The importance of the
window-size is clearly seen. The baseline classification accuracy by random
guessing is∼ 9.1%.

the large data set B, see Section IV-D. Using these parameters,
the resulting dimensions of the feature spaces become: MAR
- 135, DAR - 42, FC - 24, MeanCov -27 and MeanVar -12.

C. Classification and Post-processing

Several classifiers have been tested such as a linear model
trained by minimizing least squares error (LM), Gaussian
classifier with full covariance matrix (GC), Gaussian mixture
model (GMM) classifier with full covariance matrices and a
Generalized Linear Model (GLM) classifier [25]. The LM and
GLM classifiers are robust and have been used in all of the
initial feature investigations.

The LM classifier is a linear regression classifier, but has the
advantage of being fast and non-iterative; the training essen-
tially amounts to finding the pseudo-inverse of the feature-
matrix. The GLM classifier is the extension of a logistic
regression classifier to more than two classes. It can also be
seen as an extension of the LM classifier, but with inclusion of
a regularisation term (prior) on the weights and a cross-entropy
error measure to account for the discrete classes. They are both
discriminative, which could explain their robust behaviorin the
fairly high-dimensional feature space.10-fold cross validation
was used to set the prior of the GLM classifier.

1) Post-processing: Majority voting and the sum-rule
were examined to integrate thec classifier outputs
of all the windows into 30 s (the size of the song
clips). Whereas majority voting counts the hard decisions
arg maxc P (c|zk) for k = 1, . . . , K of the classifier outputs,
the sum-rule sums over the ”soft” probability densitiesP (c|zk)
for k = 1, . . . , K. The sum-rule was found to perform slightly
better than majority voting.

D. Data sets

Two data sets have been used in this investigation. Both of
the data sets have been described in more detail in [26] and
[27].

The first data set, denoted ”data set A” consists of100
sound clips distributed evenly among the5 music genres:
Rock, Classical, Pop, JazzandTechno. Each of the100 sound
clips, of length30 s., are recorded in mono PCM format at a
sampling frequency of22050 Hz.

The second data set denoted ”data set B” consists of1210
music snippets distributed evenly among the11 music genres:
Alternative, Country, Easy Listening, Electronica, Jazz,Latin,
Pop&Dance, Rap&HipHop, R&B Soul, Reggaeand Rock.
Each of the sound clips, of length30 s., are encoded in the
MPEG1-layer3 format with a bit-rate of128 kb/s. The sound
clips were converted to mono PCM format with a sampling
frequency of22050 Hz prior to processing.

E. Human evaluation

The level of performance in the music genre setups using
various algorithms and methods only shows their relative dif-
ferences. However, by estimating the human performance on
the same data sets the quality of automated genre classification
systems can be assessed.

Listening tests have been conducted on both the small data
set (A) and the larger data set (B). At first, subsets of the full
databases were picked randomly with an equal amount from
each genre (25 of 100 and220 of 1210) and these subsets are
believed to represent the full databases. A group of people (22
specialists and non-specialists) were kindly asked to listen to
30 different sound clips of length10 s from data set A3 and
classify each sound clip into one of the genres on a forced-
choice basis. A similar setup was used for the larger data set
B, but now25 persons were asked to classify33 sound clips
of length30 s 4. No prior information except the genre names
were given to the test persons. The average human accuracy on
data set A lies in a95%-confidence interval of[0.97; 0.99], and
for data set B it is[0.54; 0.61]. Another interesting measure
is the confusion between genres which has been compared to
the automated music system in Figure 7.

F. Results and discussion

The main classification results are illustrated in Figure 6 for
both the small and the large data set. The figures compares
the cross-validated classification test accuracies of the FC and
MeanCov features and the baseline MeanVar with the newly
proposed DAR and MAR features. It is difficult to see much
difference in performance between the features for the small
data set A (see Figure 6(a)), but note that it was created to have
only slightly overlapping genres which could explain why all
the features perform so well compared to the random guess
of only 20% accuracy. The classification test accuracies of
the different methods are not to far from the average human
classification accuracy of98%.

The results from the more difficult, large data set B are
shown in Figure 6(b). Here, the MAR features are seen to

3These sound clips have been created by splitting each30 s sound clip into
5 overlapping sound clips of10 seconds. This results in125 sound clips of
10 s.

4Hence,33 songs from the subset of220 were picked at random for each
test person



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. X, NO. X, AUGUST 200X 8

70 75 80 85 90 95 100

MAR

DAR

FC

MeanVar

MeanCov

Human

Human

Human

Human

HumanGMM GC LMGLM

GMM GC LMGLM

GMM GC GLM
LM

GMMGC
GLM

LM

GMMGCLM GLM

Crossvalidation Test Accuracy (%)

(a) Experiment on data set A

25 30 35 40 45 50 55 60

MAR

DAR

FC

MeanVar

MeanCov

Human

Human

Human

Human

HumanGMM GC LM GLM

GMMGC LM GLM

GMMGC LM GLM

GMMGC LM GLM

GMMGC LMGLM

Crossvalidation Test Accuracy (%)

(b) Experiment on data set B

Fig. 6. The figures show the music genre classification test accuracies for the
GC, GMM, LM and GLM classifiers on the five different integrated features.
The results for the small data set A is shown in the upper panelof the figure
and the results for the larger data set B in the lower panel. The mean accuracy
of 10-fold cross-validation is shown along with error bars, which are one
standard deviation of the mean to each side. 95% binomial confidence intervals
have been shown for the human accuracy.

clearly outperform the conventional MeanVar features when
the LM or GLM classifiers are used. Similarly, they outper-
form the MeanCov and DAR features. The DAR features only
performed slightly better than the three reference features,
but in a feature space of much lower dimensionality than
the MAR features. The GMM classifier is the best for the
low-dimensional MeanVar features, but gradually loses to the
discriminative classifiers as the feature space dimensionality
rises. This overfitting problem was obviously worst for the
135-dimensional MAR features and dimensionality reduction
was necessary. However, a PCA subspace projection was not
able to capture enough information to make the GMM clas-
sifier competitive for the MAR features. Improved accuracy
of the GMM classifier on the MAR features was achieved
by projecting the features into a subspace spanned by the

c−1 weight directions of the partial least squares (PLS) [28],
wherec refers to the no. of genres. The classification accuracy,
however, did not exceed the accuracy of the GLM classifier
on the MAR features.

The MAR features are still around9% from the average
human classification test accuracy of approximately57%,
however, it should be noted that only the initial6 MFCCs
were used. Furthermore, it should be noticed that random
classification accuracy is only9%.

The cross-validation paired t-test [29] was made on both
data sets to test whether the best performances of the DAR
and MAR features differed significantly from the best perfor-
mances of the other features. Comparing the MAR features
against the other four features gave t-statistics estimates all
above 3.90; well above the0.975 percentile critical value
of t9,0.975 = 2.26 for 10-fold cross-validation. Thus, the
null hypothesis of similar performance can be rejected. The
comparison between the DAR features and the three reference
features gave t-statistics estimates of2.67 and2.83 for the FC
and MeanVar features, but only1.56 for the MeanCov features
which means that the null hypothesis cannot be rejected for
the MeanCov.

As described in Section IV-B, the window-sizes were
carefully investigated and the best results were found using
window-sizes in the range of1200 ms to 2400 ms, followed
by the sum-rule on the classifier decisions up to30 s. However,
in e.g. music retrieval and regarding computational speed and
storage, it would be advantageous to model the whole30 s
music snippet with a single feature vector. This approach
have been followed by several authors, see e.g. [30], [31].
In [31], primarily models with no closed form solution of the
parameters have been investigated5.

Hence, experiments were made with the MAR features
with a window-size of30 s, i.e. modelling the sound snippet
with a single MAR model. The best mean cross-validated
classification test accuracies on data set B were44% and
40% for the LM and GLM classifiers, respectively, using
a MAR model order of3. In our view, this indicates that
these MAR features could be used with success in e.g. song
similarity tasks. Additional experiments with a Support Vector
Machine (SVM) classifier [32] using a RBF type of kernel
even improved the accuracy to46%. The SVM classifier was
used since it is less prone to overfitting. This is especially
important when each song is represented by a single feature
vector, which means that our training set only consists of
11 · 99 = 1089 samples in each cross-validation run.

Besides the classification test accuracy, an interesting mea-
sure of performance is the confusion matrix. Figure 7 illus-
trates the confusion matrix of the MAR system with highest
classification test accuracy and shows the relation to the human
genre confusion matrix on the large data set. It is worth
noting that the three genres that humans classify correctlymost
often, i.e., Country, Rap&HipHop and Reggae, are also the
three genres that our classification system typically classifies
correctly. To get an insight in the confusion among the
different genres, dendrograms were created from the confusion

5Gaussian mixture models and hidden Markov models (HMM).
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Fig. 7. The above confusion matrices were created from data set B. The
upper figure shows the confusion matrix from evaluations of the 25 people,
and the lower figure shows the average of the confusion matrices over the10
cross-validation runs of the best performing combination (MAR features with
the GLM classifier). The ”true” genres are shown as the rows, which each
sum to100%. The predicted genres are then represented in the columns. The
diagonal illustrates the accuracy of each genre separately.

matrices in Figure 7. The dendrogram of the human and MAR
confusion matrices have been illustrated in Figure 8(a) and
8(b), respectively. The confusion matrices were symmeter-
ized before creating the dendrograms. Furthermore, a scaled
exponential distance measure were applied for creation of
the 5-cluster dendrograms. Different distance measures were
investigated, however, no big differences were observed inthe
resulting clusters. The dendrograms illustrate that the larger
clusters of the human and MAR confusion matrices shares the
music genres: Alternative, Pop&Dance, Rb&Soul and Rock.
Furthermore, the MAR model with a GLM classifier tend to
confuse Rap&Hiphop and Reggae more than humans do.

A small scale analysis was conducted to test the robust-
ness of the MAR-model to MP3 encoding. The best per-
forming setup for data set A, which was a MAR model
with a LM classifier was investigated. Each music snippet
was encoded to128, 64, 32 and 16 kb/s, respectively, using
theLAME version 3.96.1 encoder. Similarily, the music
snippets were decoded using theLAME decoder prior to
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Fig. 8. Dendrograms illustrating the groupings of genres determined from
the confusion matrices in Figure 7.

the MFCC extraction stage. The different music snippets
were resampled to16 kHz when extracting the MFCCs, to
ensure a common ground for comparison. The classification
test accuracy was assessed with10-fold cross-validation. In
each fold, the training set consisted of the PCM samples
and test accuracies were obtained from the different MP3
encodings and the PCM encoding. The mean cross-validation
test accuracies obtained have been illustrated in table III.

TABLE III

MEAN CROSS-VALIDATION TEST ACCURACIES OF THELM CLASSIFIER ON

THE MAR FEATURES ONDATA SET A USING DIFFERENTMP3 ENCODING

RATES. TRAINING HAVE BEEN PERFORMED WITH THE RAWPCM

SAMPLES.

Encoding
Mean test accuracy±

Std. deviation of the mean

PCM 93.3% ± 1.8
128 kb/s 92.2% ± 2.4
64 kb/s 91.1% ± 2.2
32 kb/s 94.4% ± 1.8
16 kb/s 28.9% ± 4.7
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The combination of a MAR model and LM classifier is
robust in the given setup to encodings of32 kb/s and above.
It should be noticed, however, that since we are modelling the
short-time features, the robustness of the complete systemis
dictated by the robustness of the short-time features towards
the different encoding schemes. Still the investigation indicate
that the MAR features are not over-sensitive to small changes
in the short-time features.

V. CONCLUSION

In this paper, we have investigated temporal feature inte-
gration of short-time features in a music genre classification
task and a novel multivariate autoregressive feature integration
scheme was proposed to incorporate dependencies among the
feature dimensions and correlations in the temporal domain.
This scheme gave rise to two new features, the diagonal AR
(DAR) and multivariate AR (MAR), which were carefully
described and compared to features from existing temporal
feature integration schemes. They were tested on two different
data sets with four different classifiers and the successful
MFCC features were used as the short-time feature repre-
sentation. The framework is generalizable to other types of
short-time features. Especially the MAR features were found
to perform significantly better than existing features, butalso
the DAR features performed better than the FC and baseline
MeanVar features on the large data set and in a much lower
dimensional feature space than the MAR. Furthermore, it was
illustrated that the MAR features are robust towards MP3
encoding for bitrates of32 kb/s and above.

Human genre classification experiments were made on both
data sets and we found that the mean human test accuracy
was less than18% better relative to the best performing MAR
features approach on the11 music genre dataset.

Possible directions for future research include investigation
of other types of indexes for the general multivariate AR
formulation, hence, allowing a more flexible modelling of
short-time features at larger time scales.

As a closing remark it should be noticed that the considered
framework of temporal feature integration is open to other
areas of music information retrieval (MIR).
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