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Abstract— Temporal feature integration is the process of com- which give consistent and good performance over different
bining all the feature vectors in a time window into a single data sets and choices of classifier.
feature vector in order to capture the relevant temporal infor- In several feature extraction models, perceptual characte
mation in the window. The mean and variance along the tempora . . . ’ .
dimension are often used for temporal feature integration,but IStI.CS such as the beat [2] or p|tch [3] are modelleq directly
they capture neither the temporal dynamics nor dependencie This has the clear advantage of giving features which can be
among the individual feature dimensions. Here, a multivarate examined directly without the need of a classifier. However,
autoregressive feature model is proposed to solve this prégm for  most of the previous research has concentrated on shagt-tim
music genre classification. This model gives two differenteature features e.g. Audio Spectrum Envelope and the Zero-Crgssin

sets, the DAR and MAR features which are compared against . )
the baseline mean-variance as well as two other temporal faae Rate [4] which are extracted frorl) — 40 ms frames of the

integration techniques. Reproducibility in performance ranking Sound clip. Such features are thought to represent perigptu

of temporal feature integration methods were demonstratedising relevant characteristics such as e.g. music roughnessbreti

two data sets with five and eleven music genres, and by usingThey have to be evaluated as part of a full classification

four different classification schemes. The methods were ftiner system. A sound clip is thus represented by a multivariate ti

compared to human performance. The proposed MAR features . . . .
series of these features and different methods exist to ic@mb

perform better than the other features at the cost of increasd e o= )
computational complexity. this information into a single genre label for the whole sbun

. . . clip. An example is [5], based on a hidden Markov model of
Index Terms—Temporal feature integration, autoregressive . . .
model, music genre classification the time series of the cepstral coefficient features.
Temporal feature integration is another approach to coenbin
EDICS Category: AUD-CONT Content-Based Music information. It uses a sequence of short-time feature vecto

Processing to create a single new feature vector at a larger time sdale. |
assumes a minimal loss of the important temporal infornmatio
|. INTRODUCTION for music genre classification in the short-time featureasxt

N recent years, there has been an increasing interesttifw s_tage. Temporal_featur_e_integration is_ a very common
I the research area of Music Information Retrieval (MIR)t_echnlque. Often basic statistic estimates like the meah an

This is spawned by the new possibilities on the Internet SUCE%riance of the short-time features have been used [6], [7],

as on-line music stores like Apple’s iTunes and the enhan
capabilities of ordinary computers. The related topic ofiou
genre classification can be defined as computer-assigneel g
labelling of sound clips. It has received much attentiontén i
own right, but it is also often used as a good test-bench ) . : .
music features in related areas where the labels are ha endencies among the short-t!me_ feature d|men5|ons. In
to obtain than the musical genres. An example of this act, the model is a natural generalization of the meananag

[1], where rhythm features are assessed in a music geFﬁ@‘pOfa' feature mtegraﬂ_on model. . .
classification task. The present work provide an extension of our work in [8]

Music genre classification systems normally consist &f several Ieve_zls. In [8] each short-time featur_e dimension
feature extraction from the digitized music, followed by as modglled mdependently, hence, depender_mes among the
classifier that uses features to estimate the genre. In thik w eature dimensions were not modelled. In this work, these

we focus on identifying temporal feature integration meiho are .modelled n terms of correlation by applying the. mul-
tivariate autoregressive model (MAR). Furthermore, in the
The work is partly supported by the European Commissionujiiothe present work, we give a more detailed explanation of the

sixth framework IST Network of Excellence: Pattern AnadysBtatistical autoregressive model and its relation to the other invamtg
Modelling and Computational Learning (PASCAL), contract 506778 and

by the Danish Technical Research Council project No. 28@2 Intelligent Femporal featur_e integration meth(_)ds- CompUtational de’.:np
Sound (www.intelligentsound.org). ity have been included for the different methods and in the

Here, a new multivariate autoregressive temporal feature
érg]tegration model is proposed as an alternative to the mean-
variance feature set. The main advantage of the autorégress

del is its ability to model temporal dynamics as well as



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSINGOL. X, NO. X, AUGUST 200X 2

experimental section more classifiers and a data set wigledarof 20 — 40 ms. They are often based on a transformation

complexity have been added. to the spectral domain using techniques such as the Short-
In the experimental section we will compaBetemporal Time Fourier Transform. The assumption in these spectral

feature integration methods typically applied in the tdtere; representations is (short-time) stationarity of the sigvigich

the mean-variance (MeanVar), mean-covariance (MeanCoweans that the frame size has to be small.

filter bank coefficients (FC) with the proposed autoregressi In [4], we found the so-calledMel-Frequency Cepstral

models; the diagonal AR (DAR) and multivariate AR (MAR)Coefficient(MFCC) to be very successful. Similar findings

model. To generalize the result two different data sets cowere observed in [9] and [10]. They were originally develdpe

sisting of 5 and 11 different genres have been used in théor speech processing [11]. The details of the MFCC feature

experiments. Both data sets have been evaluated by a grexpaction are shown in Figure 2. It should be mentioned,

of persons to relate the obtained accuracies by the differdmowever, that other slightly different MFCC feature extiac

automated methods. Furthermore, to ensure a fair comparisshemes exist, see e.g. [12].

of the different temporal feature integration methodgjif-

ferent classifiers have been applied; a linear model (LM), a | Discrete Log of Mel-scale Discrete |
generalized linear model (GLM), a Gaussian classifier (Géit; Fourier |~ ampliude |~ and |~ Cosine |~

. X . Transform spectrum smoothing Transform features
and a Gaussian mixture model (GMM) classifer.

Fig. 2.
in [13].
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According to [14], short-time representations of the full
time-frequency domain, such as the MFCC features, can be
seen as models of the music timbre.

MFCC features MAR features GLM Classifier Sum-rule

661500 x 1 4008 x 6 72 x 135 72 x 11

5 1x1
(30 s song@ 22050 Hz)

B. Medium-time features

Fig. 1. The full music genre classification system. The fldwast illustrates
the different parts of the system, whereas the names jusivbible chart are
the specific choices that gives the best performing systdm. nfumbers in
the bottom part of the figure illustrate the (large) dimenalidy reduction
that takes place in the system (the number of genred Bre

Figure 1 illustrates the full music genre classificatiortsys

Medium-time features are here defined as features, which
are extracted on time scales arourid0 — 2000 ms. [3] uses
the term ‘Texture window’ for this time scale where impottan
aspects of the music “lives” such as note changes and tremolo
[15]. Examples of features for this time scale are the Low
Short-Time Energy Ratio (LSTER) and High Zero-Crossing

that was used for evaluating the temporal feature intemratiRate Ratio (HZCRR) [16].
methods.

Section Il describes common feature extraction and integrél
tion methods, while section Ill gives a detailed explamatio . o o
of the proposed multivariate autoregressive feature model LONg-time features describe important statistics of efglla
Section IV reports and discusses the results of experimefié9 Or a larger sound clip. An example is the beat histogram
that compare the newly proposed features with the best of fig@ture [17] which summarize the beat content in a sound clip

existing temporal feature integration methods. Finakigton
V concludes on the results.

Long-time features

D. Temporal Feature Integration

Temporal feature integration is the process of combining
Il. FEATURE EXTRACTION AND INTEGRATION all the feature vectors in a time window into a single feature

Several different features have been suggested in mu$Retor that captures the temporal information of this windo
genre classification. The general idea is to process fixesl-sf "€ new features generated do not necessarily capture any
time windows of the digitized audio signal with an algorithn®XPlicit perceptual meaning such as perceptual beat or mood
which can extract relevant information in the sound clipeThPUt captures information which are useful for the subseguen
size of the windows gives the time scale of the feature. TI#asSifier. In [2] the ‘beat-spectrum’is used for musiciesial
features are often thought to represent aspects of the md¥idhythmic similarity. The beat-spectrum can be derivexirr
such as the pitch, instrumentation, harmonicity or rhythm. Short-time features such as the STFT or MFCCs as noted

The following subsections explain popular feature extoact N [2]. This clearly indicates that the evolution of the shor

methods. They are listed on the basis of their time scale. T#H&€ features contain important temporal informationufeg3
process of temporal feature integration is explained irnitetShows the first six MFCCs of a ten second excerpt of the music

piece "Masters of Revenge” by "Body Count”. This example

shows a clear repetitive structure in the short-time fesgtur

Another important property of temporal feature integnatio

is data reduction. Consider a four minute piece of music
Most of the features that have been proposed in the litexatuepresented as short-time features (using the Gifgt=CCs).

are short-time features, which usually employ frame siz#%ith a hop- and frame-size dfd ms and20 ms, respectively,

in the end of the section.

A. Short-time features
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A ten second excerpt of the solgsters of Revengey Body Count . . .
7 ‘ ‘ ‘ ‘ samples of short-time features are independent and Gaussia

distributed and, furthermore, that each feature dimengon
GWWWWWW independent. Using maximum-likelihood the parameters for
this model are estimated as
5W‘JWWMW | Wt
4WWWWWWMM R AR
n=0
3WWM 1 !
Cki — Z (Ik~Hs+n,i - mk,i)2 ) (2)

Wi

Coefficient order

n=0

fori=1,..., D, which results in the following feature at the
IWW new time scale

! | ‘ | | 2k = [ m ] , ®)
0 2 4 6 8 10
Time [s]

wherez,;, is of dimensiol2D andm andc are the estimated
mean and variance of the short-time features. As seen iné-igu
Fig. 3. The first six normalized MFCCs of a ten second snippéBody 3, the assumption that each feature dimension is indepénden
Count - Masters of Revenge”. The temporal correlations arg clear from ' L

this piece of music as well as the cross-correlations amdmeg feature IS NOt correct. A more reasonable temporal feature integrat
dimensions. This suggests that relevant information isgeand could be model is the multivariate Gaussian model, denoted in the
extracted by selecting a proper temporal feature integratiodel. experimental section as MeanCov, where correlations among

features are modelled. This model of the short-time feature

this results in approximatelg88 kB of data using al6 bit can be formulated ax ~ A/(m, C), where the mean and

representation of the features. The hop-size is definedeas ?Hvanance are calcu_lated over the given wmdqw of shareti

frame-size minus the amount of overlap between frames gtures. Thus, the diagonal@fcontains the varlance featl_Jres

specifies the “effective sampling rate” of the features.sTiki romk I\/(Ijegr;Var. Thefm?an vector afngl_ °°Vaf'a”§e3mag'x are

a rather good compression compared to the original size %"F‘C ed into a new feature vectay of dimensionz (3 + D)

the music 8.84 MB, MPEG1-laye3@128 kb/s). However, if my,

the relevant information can be summarized more efficiently Zk = vech(Cy) |

in less space, this must be preferred. _ )
The idea of temporal feature integration can be expresséferevech(C) refers to stacking the upper triangular part of

more rigorously by observing a sequence of consecutive-shdf€ matrix including the diagonal.

(4)

short time feature. These are integrated into a new featurelS the simple (MeanVar) or the multivariate model (MeanCov)
of dimensionM is that temporal dependencies in the data are not modelled.
2) Filter bank coefficients (FC)The filter bank approach
7 = f(Xpm,s oo XbH 4 WL —1), (1) considered in [18] aims at capturing some of the dynamics
where H, is the hop-size andlV, window-size (both defined in the sequence of short-time features. They investigated t
in number of samples) ankl = 0, 1, . .. is the discrete time method in a general audio and music genre classification task

index of the larger time scale. There exists a lot of différer N€ id€a is to extract a summarized power of each feature
models, here denoted Hy-), which map a sequence of shortdimension independently in four specified frequency bands.

time features into a new feature vector. The temporal feature integration functidif-) for the filter
A very simple temporal feature integration method is that &Nk approach can be written compactly as
stacking consequtive short-time features, see e.g. [B]iritb 2y, = vec (P, W), (5)

a new feature vector and thereby maintaining informatidmis T

method require a robust machine learning algorithm to copdereW is a filter matrix of dimensioV x 4 andP}, contains
with the often high dimensional feature vectors created, athe periodograms of each short-time feature and has dimrensi
does not introduce any sort of compression. In the followin® x N, whereN = W, /2 whenW; is even andV = (W, —

the MeanVar, MeanCov and Filter bank Coefficients (FC) will)/2 for odd values.

be discussed. These methods have been suggested for ttempoiiehe four frequency bands in which the periodograms are
feature integration in the literature. All of these methodsummarized are specified in the matNX. In [18] the four
introduce a good level of compression compared to that fifers applied to handle the short-time features are: 1) a DC
stacking. Furthermore, as will become clear these methddter, 2) 1 — 2 Hz modulation energy, 3} — 15 Hz modulation
have closed form solutions. energy and 4p0 — 43 Hz perceptual roughness [19].

1) Gaussian model:A very simple model for temporal The advantage of this method is that the temporal structure
feature integration is the so-called MeanVar model whichk haf the short-time features is taken into account, howea¥, ¢
been used in work related to music genre classification, setations among feature dimensions are not modelled. larord
e.g. [17], [8]. This model implicitly assumes that cons@aut to model these, cross-correlation spectra would be reduire
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IIl. M ULTIVARIATE AUTOREGRESSIVEMODEL FOR and the error signal,, measured betweeh, andz,, is
TEMPORAL FEATURE INTEGRATION P
The simple mean-variance model does not model temporal €n = Ty — Ty = Tp — ZGPI”—P' (8)
feature correlations, however, these features have shown t p=1

perform remarkably well in various areas of music inforroati
retrieval, see e.g. [17], [20]. The dependencies amongifest
could be modelled using the MeanCov model, but still do n
model the temporal correlations. The filter bank coefficient P
(FC) approach includes temporal information in the integgta E(z) = <1 -> apz_p> X(2)=A(2)X(2). (9)
features, but the correlations among features are nedlecte p=1

This section will focus on the multivariate autoregressivigy the following we will switch to frequency representation
model (MAR) for temporal feature integration, since it has — ¢/« and in functions useX (w) for representingX (e7+).
the potential of modelling both temporal correlations anflssuming a finite energy signalk;,, the total error to be
dependencies among features. minimized in the ordinary least squares methég,, is then

For simplicity we will first study the diagonal multivariateaccording to Parseval's theorem given by
autoregressive model (DAR). The DAR model assumes inde-

pendence among feature dimensions similar to the MeanVar o et o 1
and FC feature integration approaches. The full multivaria tot = Z “n = on
autoregressive model (MAR) in considered in section III-B. =0

wheree,, is known as the residual. Taking theransformation
8P both sides of Equation (8), the error can now be written as

|E(w)|?dw. (10)
To understand why this model is worthwhile to consider,
A. Diagonal multivariate autoregressive model (DAR) we will now explain the spectral matching capabilities of th

The DAR model was investigated in [8] where differenEnOdel' First, we look at the model from Equation (6) in the

temporal feature integration methods were tested and tmo\ﬁétransformed domain, which can now be described as

improved performance compared to the MeanVar and FC P

approaches, however, the theory behind the model was not X(2) =Y apX(2)27" + GU(2), (11)
fully covered. For completeness we will here present a more p=1

detailed description of the model. wherev = 0 is assumed without loss of generalizability. The

Assuming independence among feature dimension&fie  system transfer function becomes
order causal autoregressive motiér each feature dimension

can be written as H(z) = X(2) _ G : (12)
P Uz)  1- 211;1 apzP
Tn = Zlapx"‘p +Gun, (6) and its corresponding model power spectrum
=
. 2
forn =0,...,W, — 1, wherea, forp = 1,..., P is the P(w) = [Hw)U (W) = |Hw)]? = Gf (13)
autoregressive coefficients,, is the noise term, assumed i.i.d. |A(w)[?

wit.h unit variance and mean value G sets the sgale of the Combining the information in equations (9), (10), (13) ahe t
noise term. Note that the mean value of the noise procesg,q; thatP(w) = | X (w)|?, the total error to be minimized can

is related to the meam of the time series byn = (1 —  po \vritten as
P _ s

Zp:l ap_) 1U' . i 5 _ G2 P(w) dw (14)
Equation (6) expresses the “output;; as a linear function tot = o - . p(w) '

of past outputs and present inputs,. There are several ) o ) S

methods for estimating the parameters of the autoregeessiv 1he first observation is that trying to minimize the total
model, either in the frequency domain [21] or directly in &im error&o_t is equivalent to mlnlmlzat|op of the integrated ratio
domain [22]. The most obvious and well-known method is tHef the signal spectrun(w) and its estimated spectruf(w).
ordinary least squares method, where the mean squared ertgthermore, at minimum errof,,, = G the following

is minimized. Other methods suggested are the generalized'g'ation holds 1 [ PWw)

weighted) least squares where the noise process is allawed t — ) o = 1. (15)
be colored. In our case the noise process is assumed white, 27 J—n P(w)

therefore the least squares method is applied and descrilye@ two equations (14) and (15) result in two major propsytie
in the following. The prediction of a new sample based oa ‘global’ and ‘local’ property [21]:

estimated parameters,, becomes « The global property states that since the contribution
P to the total error&,,; is determined as a ratio of the

Ty = Zapxnfp, (7) two spectra, the matching process should perform uni-

p=1 formly over the whole frequency range, irrespective of the

1 o . o shaping of the spectrum. This means that the spectrum
In the speech community this is known as a linear predictoding (LPC)

model, however, here applied to a sequence of short-tintarésainstead of match at_freql'!enCi_es with small energy is just as good as
the raw sound signal. frequencies with high energy.
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14 ¢ - {2, 4,8} indicating thatx,, is predicted from these previous
| i state vectors. Note that the mean value of the noise process
v is related to the meam of the time series byn = (I —
S LAy
The matricesA, for p = 1,..., P are the coefficient
matrices of theP’th order multivariate autoregressive model.
They encode how much of the previous information in
{Xn—1(1),Xn—1(2)s - - - » Xn—1(p) } IS present ink,,. In this work
the usual form of the multivariate AR model have been used,
hence,l = {1,2,..., P}.
A frequency interpretation of the multivariate autoreges
: : model can, as for the univariate case, be established for the
O 01 02 03 04 050 01 02 03 04 05 multivariate case. The main difference is that all crosxspe
Normalized Frequency are modelled by the MAR model. In e.g. [24], a frequency
domain approach is used for explaining the multivariate au-
Fig. 4. Power density of the zero-order MFCC of a piano ndteplayed toregressive model by introducing the ‘autocovariancecfun

for a duration ofl.2s. The four figures show the periodogram as well as thgign' which contains all cross covariances for the mu e
AR-model power spectrum estimates of ord8r$,9 and 31, respectively. ’

w

12 \ Model-order

10

Log-power

]

The normalized frequency df/2 corresponds t66.67 Hz. case. The power spectral matrix can be defined from the
autocovariance function as
Ws—1
o The local property deals with the matching of the spec- flw) = Z L(h)e ", a7
trum in each small region of the spectrum. In [21], the h=—W+1

author concludes that a better fit Bfw) to P(w) will be
obtained at frequencies whef§w) is larger thanP(w), and fulfills "2 |[T(h)]l> < oo, under stationarity.

than at frequencies wher® is smaller. Thus, for . .
harmonic s%%alslthev;eaks(uvjv)illlbe better applrjoximat dAs with the DAR model the ordinary least squares approach
than the area in between the harmonics %as been used in estimating the parameters of the MAR model,
. ' see e.g. [22] for detailed explanation of parameter esiimat
It is now seen th_at the AR-method and the F_C approac_h-l-he parameters which are extracted from the least squares
are related, since in the latter method, the per'OdOgramdBproach for both the DAR and MAR models are the AR-
summarized in four frequency bands where for the AR'mOdﬂatriceS'{Al ...,Ap}, the intercept ternv and the noise

approach a selection of frequency bands is unnecessag SifG arianceC. The temporal feature integrated vector of win-
the power spectrum is modelled directly. dow k& then becomes

Figure 4 shows the periodogram of the zero-order MFCC

where the autocovariance functi@ii’) is a positive function

of the piano noted5 corresponding to the frequenég0 Hz z, = [vec (By)" vivech (C;)"]7, (18)
recorded over a duration df.2 seconds as well as the AR- ] ] ]
model approximation for four different model ordefss,9 WhereB = [A1, As,..., Ap] is of dimensionD x PD and

and31. The hop-size of the MFCCs wefie5 ms correspond- 2k Of dimension(P +1/2)D? + (3/2)D. Note that for the
ing to a samplerate 0133.33 Hz. As expected, the model PAR model, only the diagonals of tha,, and C matrices
power spectrum becomes more detailed as the model or@E used.

increases.

B. Multivariate autoregressive model (MAR) C. Issues on stability

In order to include both temporal and among feature corre-Until now we have assumed that the time-series under
lations the multivariate AR model with full matrices is ajgal Investigation is stationary over the given window. The
instead of only considering the diagonal of the matricesnas Vindow-size, however, is optimized to the given learning
the DAR model. A full treatment of the MAR models ardProblem which means that we are not guaranteed that the

given in [22] and [23]. time-series is stationary within each window. This couigl. e.
multivariate AR model is defined by might locally look non-stationary. In some applications,

this is not a problem, since reasonable parameter estimates

B P A 6 are obtained anyhow. In the considered music genre setup,
Xn = Z pXn—1I(p) T Un (16) the classifier seems to handle the non-stationary estimates
p=1 reasonably. In other areas of MIR, the power-spectrum

where the noise ternu,, is assumed i.i.d. with meam and estimate provided through the AR-model might be more
finite covariance matrixC. The above formulation is quite critical, hence, in such cases it would be relevant to ingatt
general sincd refers to a general set. E.g. for a model ordehe influence of non-stationary windows.

of 3, the set could be selected &s= {1,2,3} or as] =
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TABLE Il

COMPUTATIONAL COMPLEXITY OF THE MUSIC GENRE SETUP USING THE
There exists multiple order selection criteria. EXample€$primizep vaLUES FROM THE EXPERIMENTAL SECTIONHENCE P = 3,

are BIC (Bayesian Information Criterion) and AIC (Akaike  p — g anp W, = 188, 268, 322, 295, 162 FOR THEMEANVAR,
Information Criterion), see e.g. [23]. The order selection meanCov, FC, DARAND MAR, RESPECTIVELY NOTE THAT THE
methods are traditionally applied to a single time SeriegompLExITY VALUES ARE NORMALIZED SUCH THAT THE MEANVAR HAS
however, in the music genre setup, we are interested in findin COMPLEXITY 1.

a single optimal model order for a large set of time-series.
Additionally, there is a tradeoff between model order argl th

D. Selection of optimal length

Model Complexity relative to

dimensionality of the feature space and, hence, problertis wi & the MeanVar
overfitting of the subsequent classifier, see Figure 1, &ecti MeanCov 3.2
I. Therefore, the optimal order of the time-series alone is FC 15.6
normally not the same as the optimal order determined for DAR 27.2
the complete system. MAR 32.2

performance measure. Figure 1 in Section | illustrates the
complete classification system. The optimization of theesys
follows the data stream which means that the MFCC features
were optimized first (choosing number of coefficients to use,
whether to use normalization etc.). Afterwards, the terapor
feature integration part was optimized and so forth.

E. Complexity considerations

TABLE |
COMPUTATIONAL COMPLEXITY OF ALGORITHMS OF A WINDOW OF
SHORT-TIME FEATURES

METHOD MULTIPLICATIONS & ADDITIONS

A. Preliminary investigations
MeanVar A4DWs

Several investigations of preprocessing both before ated af
MeanCov (D + 3)DW, the temporal feature integration were made. Dimensignalit
reduction of the high-dimensional MAR and DAR features
by PCA did not prove beneficiland neither did whitening
DAR D(P41)3 + ((P+6)(P+1)+3) DW, (making the feature vector representation zero-mean aitd un
covariance matrix) or normalization (making each feature
component zero-mean and unit variance individually) foy an
(P+4+2)(PD +1)+ (D +2)) DW; of the features. To avoid numerical problems, however, they
were all normalized. Preprocessing, in terms of normatinat
... ofthe short-time MFCC features did not seem to have an effect
Table | shows the complete number of mul'uphcatlons.ther
and additions for a window of all the examined temporaqI '
feature integration methods. The column “multiplicatiafas

additions” shows the number of calculated multiplicatidgnsB. Features

additions of the particular method is the dimensionality of ~ To ensure a fair comparison between the features, their
the feature space? is the DAR/MAR model order, and;  optimal hop- and window-sizes were examined individually,

is the window-size in number of short-time feature samplesince especially window-size seems important with respect
In the calculations the effect of overlapping windows hawe nto classification accuracy. An example of its importance is

been exploited. Table Il shows the computational compfexifllustrated in Figure 5.

of our actual music genre setup. The complexities are scaled-or the short-time MFCC features the fiétcoefficients

FC (41ogy (Ws) + 3) DWs

1 3
LPD+1)3+
MAR 3 )

according to the MeanVar calculation. (including the zero-order MFCC) where found to be adequate
for the experiments on the two datasets. The optimal hop- and
IV. EXPERIMENTS frame-size were found to be5ms and 15 ms, respectively.

Trp_e optimal hop-size wa$00 ms for the DAR, MAR, Mean-

Simulations were designed to compare the baseline Me
. ar and MeanCov features aAd0 ms for the FC features. The
Var features with the newly proposed DAR and MAR feature?indow-sizes were 200 ms for the MAR features2200 ms

Additionally, the FC features and MeanCov features we
included in the comparisons. The FC features performed vepy the DAR features]1400 ms for the MeanVar2000 ms for
e MeanCov an@400 ms for the FC features.

well in [8] and the MeanCov features were included for th ; )
(8] An important parameter in the DAR and MAR feature
sake of completeness. dels is the model order paramefer The optimal values
The features were tested on two different data sets alw(?th' ! ¢ ¢ pdt Bbeand f t?]l DAIg ud
four different classifiers to make the conclusions generali or this parameter were found to nd» for the an

able. In all of the experimentd,0-fold cross-validation was MAR features, respectively. This optimization was based on

used to eSF'mat.e the mean and stanplard deviation of theThis is only true for the standard GLM and LM classifiers, tHaes not
mean classification test accuracy, which was used as thge significant overfitting problems.
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52

The first data set, denoted "data set A” consists106
GLM ’
50 f

sound clips distributed evenly among temusic genres:
Rock, Classical, Pop, Jaand Techno Each of thel00 sound
clips, of length30 s., are recorded in mono PCM format at a
sampling frequency 022050 Hz.

The second data set denoted "data set B” consists2 0
music snippets distributed evenly among themusic genres:
Alternative, Country, Easy Listening, Electronica, Jdzatin,
Pop&Dance, Rap&HipHop, R&B Soul, Reggaad Rock

48 |

46 |

!

ol 1My

42 +

!

40 |

Classification Test Accuracy (%)

sl Each of the sound clips, of lengt}0s., are encoded in the
/ MPEG1-layer3 format with a bit-rate ofl28 kb/s. The sound
36 & I clips were converted to mono PCM format with a sampling

34 frequency 0f22050 Hz prior to processing.

0 560 1b00 iSOO ,éOOO 2500 ‘3000 ‘3500‘ 4000‘ 4500
Window-Size (ms)

E. Human evaluation
Fig. 5. Classification test accuracy is plotted against wingize for the . . .
MAR features using the LM and GLM classifiers. The hop-sizes #@0 ms The level of performance in the music genre setups using

in these experiments and data set B, section IV-D, was useel.efror-bars various algorithms and methods only shows their relatife di

denote the standard deviation on the mean value. The inmertaf the = farences. However, by estimating the human performance on

window-size is clearly seen. The baseline classificaticcui@zy by random . .

guessing is~ 9.1%. the same data sets the quality of automated genre clagsificat
systems can be assessed.

Listening tests have been conducted on both the small data
the large data set B, see Section IV-D. Using these parasjeteet (A) and the larger data set (B). At first, subsets of thie ful
the resulting dimensions of the feature spaces become: MARtabases were picked randomly with an equal amount from
- 135, DAR - 42, FC - 24, MeanCov -27 and MeanVar -12.  each genre25 of 100 and 220 of 1210) and these subsets are

believed to represent the full databases. A group of pe@gle (

C. Classification and Post-processing specialists and non-specialists) were kindly asked terligo

Several classifiers have been tested such as a linear madeflifferent sound clips of length0s from data set A and
trained by minimizing least squares error (LM), Gaussig#lassify each sound clip into one of the genres on a forced-
classifier with full covariance matrix (GC), Gaussian mietu choice basis. A similar setup was used for the larger data set
model (GMM) classifier with full covariance matrices and &, but now25 persons were asked to classify sound clips
Generalized Linear Model (GLM) classifier [25]. The LM anc@f length30s *. No prior information except the genre names
GLM classifiers are robust and have been used in all of tMére given to the test persons. The average human accuracy on
initial feature investigations. data set A lies in 85%-confidence interval 0f0.97;0.99], and

The LM classifier is a linear regression classifier, but has tfor data set B it is[0.54;0.61]. Another interesting measure
advantage of being fast and non-iterative; the trainingmss is the confusion between genres which has been compared to
tially amounts to finding the pseudo-inverse of the featuréhe automated music system in Figure 7.
matrix. The GLM classifier is the extension of a logistic
regression classifier to more than two classes. It can alsoperesults and discussion
seen as an extension of the LM classifier, but with inclusibn o : I~ . -

The main classification results are illustrated in Figurer6 f

a regularisation term (prior) on the_weights and a crosepyt both the small and the large data set. The figures compares
error measure to account for the discrete classes. Theylie tfhe cross-validated classification test accuracies of Gaurkd

discriminative, which could explain their robust behaviothe : .
) . . . ... MeanCov features and the baseline MeanVar with the newly
fairly high-dimensional feature spack)-fold cross validation S
. o proposed DAR and MAR features. It is difficult to see much
was used to set the prior of the GLM classifier. . .
G - difference in performance between the features for the Ismal
1) Post-processing: Majority voting and the sum-rule ; .
) . e data set A (see Figure 6(a)), but note that it was createdvi® ha
were examined to integrate the classifier outputs ; ; ) )
. : ; only slightly overlapping genres which could explain why al
of all the windows into 30s (the size of the song
. o . .~ the features perform so well compared to the random guess
clips). Whereas majority voting counts the hard decision e .
of only 20% accuracy. The classification test accuracies of

argmax, P(c|zy) for k = 1’,‘, - K of the. .Class'f'e.r outputs, the different methods are not to far from the average human
the sum-rule sums over the "soft” probability densitieg:|z;,) G
classification accuracy ¢f8%.

Loerttker:t;é'n' }ﬁf{,riTthevzltjmm_ru'e was found to perform slightly The results from the more difficult, large data set B are
jorty 9 shown in Figure 6(b). Here, the MAR features are seen to

D. Data sets 3These sound clips have been created by splitting 8ashsound clip into
Two data sets have been used in this investigation. Both Qa?verlapping sound clips of0 seconds. This results if25 sound clips of
105.

the data sets have been described in more detail in [26] ana—ience,33 songs from the subset @20 were picked at random for each
[27]. test person
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c¢— 1 weight directions of the partial least squares (PLS) [28],
wherec refers to the no. of genres. The classification accuracy,
however, did not exceed the accuracy of the GLM classifier
on the MAR features.

The MAR features are still aroun@% from the average
human classification test accuracy of approximat&hjo,
however, it should be noted that only the init@MFCCs
were used. Furthermore, it should be noticed that random
classification accuracy is only%.

The cross-validation paired t-test [29] was made on both
data sets to test whether the best performances of the DAR
and MAR features differed significantly from the best perfor

LM GOGMM GLM Huma mances of the other features. Comparing the MAR features
—— against the other four features gave t-statistics estsnalie
70 75 80 85 %0 95 100 above 3.90; well above the0.975 percentile critical value
Crossvalidation Test Accuracy (%) of 90975 = 2.26 for 10-fold cross-validation. Thus, the
(@) Experiment on data set A null hypothesis of similar performance can be rejected. The
—___________________ ____ ________________ comparison between the DAR features and the three reference
MAR features gave t-statistics estimate2daf7 and2.83 for the FC
GMM GC LM GLM Human
. e e o o and MeanVar features, but only56 for the MeanCov features
DAR which means that the null hypothesis cannot be rejected for
GCGMMLM GLM Human the MeanCov. , _ ,
e — — As described in Section IV-B, the window-sizes were
carefully investigated and the best results were foundgusin
GC LM GMM GLM Human window-sizes in the range af200 ms to 2400 ms, followed
—— e e —_— by the sum-rule on the classifier decisions uge. However,
in e.g. music retrieval and regarding computational spewt a
GC LM GLM GMM Human storage, it would be advantageous to model the wisole
—— —————— e music snippet with a single feature vector. This approach
have been followed by several authors, see e.g. [30], [31].
GC LMGLM  GMM Human In [31], primarily models with no closed form solution of the
- - ‘ ‘ — parameters have been investig&ted
25 30 35 40 45 50 55 60 Hence, experiments were made with the MAR features

Crossvalidation Test Accuracy (%)

(b) Experiment on data set B with a window-size 0f30s, i.e. modelling the sound snippet

with a single MAR model. The best mean cross-validated
Fig. 6. The figures show the music genre classification testracies for the classification test accuracies on data set B wet& and
e e e o e e taes, 107% for the LM and GLM classifiers, respecively, using
and the resullts for the larger data set B in the lower paned.fian accuracy & MAR model order of3. In our view, this indicates that
of 10-fold cross-validation is shown along with error bars, whiare one these MAR features could be used with success in e.g. song
standard deviation of the mean to each side. 95% binomidid=ce intervals similarity tasks. Additional experiments with a Supporcidr
have been shown for the human accuracy. . i .
Machine (SVM) classifier [32] using a RBF type of kernel
even improved the accuracy #6%. The SVM classifier was
used since it is less prone to overfitting. This is especially
clearly outperform the conventional MeanVar features whemportant when each song is represented by a single feature
the LM or GLM classifiers are used. Similarly, they outpefvector, which means that our training set only consists of
form the MeanCov and DAR features. The DAR features onlyl . 99 = 1089 samples in each cross-validation run.
performed slightly better than the three reference feafure Besides the classification test accuracy, an interestiray me
but in a feature space of much lower dimensionality thagure of performance is the confusion matrix. Figure 7 illus-
the MAR features. The GMM classifier is the best for thgates the confusion matrix of the MAR system with highest
low-dimensional MeanVar features, but gradually loseshtd t c|assification test accuracy and shows the relation to theainu
discriminative classifiers as the feature space dimenkipnagenre confusion matrix on the large data set. It is worth
rises. This overfitting problem was obviously worst for thﬁoting that the three genres that humans C|assify COI’I’B"&]S{
135-dimensional MAR features and dimensionality reductiogften, i.e., Country, Rap&HipHop and Reggae, are also the
was necessary. However, a PCA subspace projection was th@ée genres that our classification system typically ifiass
able to capture enough information to make the GMM clagorrectly. To get an insight in the confusion among the

sifier competitive for the MAR features. Improved accuracyifferent genres, dendrograms were created from the cimmfus
of the GMM classifier on the MAR features was achieved

by projecting the features into a subspace spanned by th&aussian mixture models and hidden Markov models (HMM).
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i
“o| 160 27 93 93 13 00320 00 40 27 227 i
%\9 C‘o%e Rap&Hiphop
k/,&/ %) 53 93 00 40 13 93 00 40 00 120
5, )
%o, %9 173 0.0 | 847 80 120 00 1383 53 27 00 67 Jazz, Latin
2
Q.
g 53 00 00 13 00320 13 40 13 00
&%
% 53 00 53 27 13 40 00 00 country
P
%‘%%7 27 00 80 53 00 53 27 00
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'068,3;,/70@ 40 13 107 107 0.0 00 53 13 27 Alternative, Easy-listening, Electronica,
%
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(a) Dendrogram created from the human confusion matrix

L%
‘Ql?@ 53 00 00 40 00 00 13 53 27 0.0

Y % 120 1.3 93 00 13 27 80 13 27 00

S,
/)Q@
o O 45 36 36 27 82 27 45 36 182
Qs % )
k/,&,/)’g, 0.9 73 00 45 27 45 09 27 00 36 Rap&Hiphop, Reggae
Q.
6\/@0/ /”qg 18 118 45 27 27 00 27 36 55
"o, Electronica, Jazz
%y 55 09 109 55 73 109 27 55 09
&2

Q}e 09 45 82 27 36 27 73 64 27

A L Alternative, Latin, Pop&Dance, RB&Soul, Rock
@%ffo//;’ 36 82 27 45 36878 82 82 45 118 73
e,
cﬁ% Cq 64 91 64 91 09 118 27 36 27 36 Easy-listening
'?@ce 60,0 00 00 09 73 09 45 36 1.8 17.3 09
S
£ %| 09 82 91 09 91 118 73 91 291 55 91 'CJ
< ountry

L
‘gt?@ 09 09 00 36 45 55 18 173 3.6 0.0

C¢| 255 164 55 09 55 27 64 00 64 18 291

0.87 0.88 0.89 0.90 0.91 0.92 0.93
(b) Dendrogram created from MAR confusion matrix

Fig. 7. The above confusion matrices were created from dettd8sThe ) ) ) )

upper figure shows the confusion matrix from evaluationshef2s people, Fig. 8. Dendrograms illustrating the groupings of genretemieined from
and the lower figure shows the average of the confusion reatower thelo  the confusion matrices in Figure 7.

cross-validation runs of the best performing combinati@iAR features with

the GLM classifier). The "true” genres are shown as the rowsichveach

sum to100%. The predicted genres are then represented in the colurhes. T

diagonal illustrates the accuracy of each genre separately the MFCC extraction stage. The different music snippets
were resampled td6 kHz when extracting the MFCCs, to
ensure a common ground for comparison. The classification

matrices in Figure 7. The dendrogram of the human and MABst accuracy was assessed withfold cross-validation. In

confusion matrices have been illustrated in Figure 8(a) asdch fold, the training set consisted of the PCM samples

8(b), respectively. The confusion matrices were symmetemnd test accuracies were obtained from the different MP3

ized before creating the dendrograms. Furthermore, adcadémcodings and the PCM encoding. The mean cross-validation

exponential distance measure were applied for creation tekt accuracies obtained have been illustrated in tahle IlI

the 5-cluster dendrograms. Different distance measures were

investigated, however, no big differences were observedan TABLE IIl

resulting clusters. The dendrograms illustrate that th@efa ean crossvALIDATION TEST ACCURACIES OF THELM CLASSIFIER ON

clusters of the human and MAR confusion matrices shares thgz MAR FEATURES ONDATA SET A USING DIFFERENTMP3ENCODING

music genres: Alternative, Pop&Dance, Rb&Soul and RoCk. gares, TRAINING HAVE BEEN PERFORMED WITH THE RAWPCM

Furthermore, the MAR model with a GLM classifier tend to SAMPLES.

confuse Rap&Hiphop and Reggae more than humans do.

A small scale analysis was conducted to test the robust-

Mean test accuracy-

ness of the MAR-model to MP3 encoding. The best per- Encoding g4 “Geviation of the mean
forming setup for data set A, which was a MAR model
with a LM classifier was investigated. Each music snippet PCM 93.3% + 1.8

. . 128 kb/s 92.2% + 2.4
was encoded td2s8, 64,32 and 16 kb/s, r_es_pegtlvely, using 64kb/s 01.1% + 2.2
theLAME versi on 3. 96. 1 encoder. Similarily, the music 32kb/s 94.4% + 1.8

snippets were decoded using the\VE decoder prior to 16kb/s 28.9% +4.7
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The combination of a MAR model and LM classifier is [8] A. Meng, P. Ahrendt, and J. Larsen, “Improving music gewtassifi-

robust in the given setup to encodings32fkb/s and above.
It should be noticed, however, that since we are modellieg thyg

short-time features, the robustness of the complete system

dictated by the robustness of the short-time features tisva

the different encoding schemes. Still the investigatiafidate

f10]

that the MAR features are not over-sensitive to small change

in the short-time features.

V. CONCLUSION

[11]

[12]

In this paper, we have investigated temporal feature inte-
gration of short-time features in a music genre classificati 13]

task and a novel multivariate autoregressive feature iatem

scheme was proposed to incorporate dependencies amongq t
feature dimensions and correlations in the temporal domaih’

This scheme gave rise to two new features, the diagonal AR
(DAR) and multivariate AR (MAR), which were carefully [15]
described and compared to features from existing temporal
feature integration schemes. They were tested on two difter[16]
data sets with four different classifiers and the successful
MFCC features were used as the short-time feature repig)
sentation. The framework is generalizable to other types of
short-time features. Especially the MAR features were tbun

to perform significantly better than existing features, aiso

(18]

the DAR features performed better than the FC and baselpng
MeanVar features on the large data set and in a much lower
dimensional feature space than the MAR. Furthermore, it widl
illustrated that the MAR features are robust towards MP3

encoding for bitrates 082 kb/s and above.

Human genre classification experiments were made on b
data sets and we found that the mean human test accumaey H. Litkepohl, Introduction to Multiple Time Series Analysiand ed.

was less than8% better relative to the best performing MAR

features approach on thé music genre dataset.

Possible directions for future research include invetibga

[23]

of other types of indexes for the general multivariate ARA4l
formulation, hence, allowing a more flexible modelling of

short-time features at larger time scales.

As a closing remark it should be noticed that the consider
framework of temporal feature integration is open to oth

areas of music information retrieval (MIR).
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