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Abstract

This thesis presents a comprehensive overview of the problem of facial recogni-
tion. A survey of available facial detection algorithms as well as implementation
and tests of different feature extraction and dimensionality reduction methods
and light normalization methods are presented.

A new feature extraction and identity matching algorithm, the Multiple Indi-
vidual Discriminative Models (MIDM) algorithm, is proposed.

MIDM is in collaboration with AAM-API, a C++ open source implementation
of Active Appearance Models (AAM), implemented into the “FaceRec” Delphi
7 application, a real time automatic facial recognition system. AAM is used for
face detection and MIDM for face recognition.

Extensive testing of the MIDM algorithm is presented and its performance eval-
uated by the Lausanne protocol. The Lausanne protocol is a precise and widely
accepted protocol for the testing of facial recognition algorithms. These test
evaluations showed that the MIDM algorithm is superior to all other algorithms
reported by the Lausanne protocol.

Finally, this thesis presents a description of 3D facial reconstruction from a
single 2D image. This is done by using prior knowledge in form of a statistical
shape model of faces in 3D.

Keywords: Face Recognition, Face Detection, Lausanne Protocol, 3D Face Re-
construction, Principal Component Analysis, Fisher Linear Discriminant Anal-
ysis, Locality Preserving Projections, Kernel Fisher Discriminant Analysis.
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Resumé

Denne afhandling præsenterer et omfattende overblik over problemet ansigts
genkendelse. En oversigt over de tilgængelige algoritmer til detektering af an-
sigter s̊avel som implementation og test af forskellige metoder til ekstraktion af
egenskaber og dimensionsreduktion samt metoder til lysnormalisering præsen-
teres.

En ny algoritme til ektraktion af egenskaber og matchning af identiteter (Mul-
tiple Individual Discriminative Models - MIDM) er blevet foresl̊aet.

MIDM, sammen med AAM-API, en open-source C++ implementering af Ac-
tive Appearance Models (AAM), er blevet implementeret som applikationen
”FaceRec” i Delphi 7. Denne applikation er et automatisk system til ansigts
genkendelse, der kører i sand tid. AAM er brugt til ansigts detektering og
MIDM er brugt til ansigts genkendelse.

Udførlig testning af MIDM algoritmen er præsenteret og dens ydelse evalueret
ved hjælp af Lausanne protokollen. Lausanne protokollen er en præcis og bredt
accepteret protokol for test af ansigts genkendelses algoritmer. Disse test eval-
ueringer viste at MIDM algoritmen er alle andre algoritmer rapporteret ved
hjælp af Lausanne protokollen overlegen.

Endeligt, præsenterer denne afhandling en beskrivelse af 3D ansigts rekonstruk-
tion fra et enkelt 2D billede. Dette er gjort ved at bruge a priori kendskab i
form af en statistisk model for formen af ansigter i 3D.

Nøgleord: Ansigts Genkendelse, Ansigts Detektering, Lausanne Protokollen,
3D Ansigts Rekonstruktion, Principal Komponent Analyse, Fisher Linear Dis-
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kriminant Analyse, Locality Preserving Projections, Kernel Fisher Diskriminant
Analyse.



Preface

This thesis was prepared at the Section for Image Analysis, in the Department
of Informatics and Mathematical Modelling, IMM, located at the Technical
University of Denmark, DTU, as a partial fulfillment of the requirements for
acquiring the degree Master of Science in Engineering, M.Sc.Eng.

The thesis deals with different aspects of face recognition using both the geo-
metrical and photometrical information of facial images. The main focus will
be on face recognition from 2D images, but 2D to 3D conversion of data will
also be considered.

The thesis consists of this report, a technical report and two papers; one pub-
lished in Proceedings of the 14th Danish Conference on Pattern Recognition and
Image Analysis and one submitted to IEEE Transactions on Pattern Analysis
and Machine Intelligence, written during the period January to September 2005.

It is assumed that the reader has a basic knowledge in the areas of statistics
and image analysis.
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Jens Fagertun
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Chapter 1

Introduction

Face recognition is a task so common to humans, that the individual does not
even notice the extensive number of times it is performed every day. Although
research in automated face recognition has been conducted since the 1960’s, it
has only recently caught the attention of the scientific community. Many face
analysis and face modeling techniques have progressed significantly in the last
decade [30]. However, the reliability of face recognition schemes still poses a
great challenge to the scientific community.

Falsification of identity cards or intrusion of physical and virtual areas by crack-
ing alphanumerical passwords appear frequently in the media. These problems
of modern society have triggered a real necessity for reliable, user-friendly and
widely acceptable control mechanisms for the identification and verification of
the individual.

Biometrics, which is based on authentication on the intrinsic aspects of a spe-
cific human being, appears as a viable alternative to more traditional approaches
(such as PIN codes or passwords). Among the oldest biometric techniques is
fingerprint recognition. This technique was used in China as early as 700 AD
for official certification of contracts. Later on, in the middle of the 19th century,
it was used for identification of persons in Europe [31]. A currently developed
biometric technique is iris recognition [17]. This technique is now used instead
of passport identification for frequent flyers in some airports in United King-
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dom, Canada and the Netherlands. As well as for access control of employees to
restricted areas in Canadian airports and in the New Yorks JFK airport. These
techniques are inconvenient due to the necessity of interaction with the individ-
ual who is to be identified or authenticated. Face recognition on the other hand
can be a non-intrusive technique. This is one of the reasons why this technique
has caught an increased interest from the scientific community in the recent
decade.

Facial recognition holds several advantages over other biometric techniques. It is
natural, non-intrusive and easy to use. In a study considering the compatibility
of six biometric techniques (face, finger, hand, voice, eye, signature) with ma-
chine readable travel documents (MRTD) [32] facial features scored the highest
percentage of compatibility, see Figure 1.1. In this study parameters like the en-
rollment, renewal, machine requirements and public perception were considered.
However, facial features should not be considered the most reliable biometric.

Figure 1.1: Comparison of machine readable travel documents (MRTD)
compatibility with six biometric techniques; face, finger, hand, voice, eye,
signature. Courtesy of Hietmeyer [32].

The increased interest automated face recognition systems have gained, from
environments other than the scientific community is largely due to increasing
public concerns for security, especially due to the many events of terror around
the world after September 11th 2001.

However, automated facial recognition can be used in a lot of areas other than
security oriented applications (access-control/verification systems, surveillance
systems), such as computer entertainment and customized computer-human in-
teraction. Customized computer-human interaction applications will in the near
future be found in products such as cars, aids for disabled people, buildings, etc.
The interest for automated facial recognition and the amount of applications will
most likely increase even more in the future. This could be due to increased
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penetration of technologies, such as digital cameras and the internet, and due
to a larger demand for different security schemes.

Even though humans are experts in facial recognition is it not yet understood
how this recognition is performed. For many years psychophysicists and neu-
roscientists have been researching whether face recognition is done holistically
or by local feature analysis, i.e. is face recognition done by looking at the face
as a whole or by looking at local facial features independently [6, 25]. It is
however clear that humans are only capable of holding one face image in the
mind at a given time. Figure 1.2 shows a classical illusion called “The Wife and
the Mother-in-Law”, which was introduced into the psychological literature by
Edwin G. Boring. What do you see? A witch or a young lady?

Figure 1.2: “The Wife and the Mother-in-Law” by Edwin G. Boring.
What do you see? A witch or a young lady? Courtesy of Danial Chandler
[8].

1.1 Motivation and Objectives

Face recognition has recently received a blooming attention and interest from
the scientific community as well as from the general public. The interest from
the general public is mostly due to the recent events of terror around the world,
which has increased the demand for useful security systems. Facial recognition
applications are far from limited to security systems as described above.

To construct these different applications, precise and robust automated facial
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recognition methods and techniques are needed. However, these techniques
and methods are currently not available or only available in highly complex,
expensive setups.

The topic of this thesis is to help solving the difficult task of robust face recog-
nition in a simple setup. Such a solution would be of great scientific importance
and would be useful to the public in general.

The objectives of this thesis will be:

• To discuss and summarize the process of facial recognition.

• To look at currently available facial recognition techniques.

• To design and develop a robust facial recognition algorithm. The algo-
rithm should be usable in a simple and easily adaptable setup. This im-
plies a single camera setup, preferably a webcam, and no use of specialized
equipment.

Besides these theoretical objectives a proof-of-concept implementation of the
developed method will be carried out.

1.2 Thesis Overview

In the fulfilment with the objectives this thesis is naturally divided into five
parts, where each part requires knowledge from the preceding parts.

Part I Face Recognition in General. Presents a summary of the history of
face recognition. Discusses the different commercial face recognition sys-
tems, the general face recognition process and the different considerations
regarding facial recognition.

Part II Assessment. Presents an assessment of the central tasks of face recog-
nition identified in Part I, which include face detection, preprocessing of
facial images and feature extracting.

Part III Development. Documents the design, development and testing of
the Multiple Individual Discriminative Models face recognition algorithm.
Furthermore, preliminary work in retrieval of depth information from one
2D image and a statistical shape model of 3D faces are presented.
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Part IV Implementation. Documents the design and development of a face
recognition system using the algorithm devised in Part III.

Part V Discussion. Presents a discussion of possible ideas to future work and
conclude on the work done in this thesis.

1.3 Mathematical Notation

Throughout this thesis the following mathematical notations are used:

Scalar values are denoted with lower-case italic Latin or Greek letters:

x

Vectors, are denoted with lower-case, non-italic bold Latin or Greek letters. In
this thesis only column vectors are used:

x = [x1, x2, . . . , xn]T

Matrices are denoted with capital, non-italic bold Latin or Greek letters:

X =

[

a b
c d

]

Sets of objects such as scalars, vectors, images etc. are shown in vectors with
curly braces:

{a, b, c, d}

Indexing into a matrix is displayed, as row-column subscript of either scalars or
vectors:

Mxy = Mx , x = [x, y]

The mean vector of a specific data set, is denoted with lower-case, non-italic
bold Latin or Greek letters with a bar:

x̄
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1.4 Nomenclature

Landmarks set is a set of x and y coordinates that describes features (here
facial features) like eyes, ears, noses, and mouth corners.

Geometric information is the distinct information of an object’s shape, usu-
ally extracted by annotating the object with landmarks.

Photometric information is the distinct information of the image, i.e. the
pixel intensities of the image.

Shape is according to Kendall [33] all the geometrical information that remains
when location, scale and rotational effects are filtered out from an object.

Variables used throughout this thesis are listed below:

xi A sample vector in the input space.
yi A sample vector in the output space.
Φ An eigenvector matrix.
φi The ith eigenvector.
Λ A diagonal matrix of eigenvalues.
λi The eigenvalue corresponding to the ith eigenvector.
Σ A covariance matrix.
SB The between-class matrix, of Fisher Linear Discriminant Analysis.
SW The within-class matrix, of Fisher Linear Discriminant Analysis.
S The adjacency graph, of Locality Preserving Projections.
Ψ A non-linear mapping from an input space to a high dimensional

implicit output space.
K A Mercer kernel function.
I The identity matrix.
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1.5 Abbreviations

A list of the abbreviations used in thesis can be found below:

PCA Principal Component Analysis.
FLDA Fisher Linear Discriminant Analysis.
LPP Locality Preserving Projections.
KFDA Kernel Fisher Discriminant Analysis.
MIDM Multiple Individual Discriminative Models.
HE Histogram Equalization.
FAR False Acceptance Rate.
FRR False Rejection Rate.
EER Equal Error Rate.
TER Total Error Rate.
CIR Correct Identification Rate.
FIR False Identification Rate.
ROC Receiver Operating Characteristic (curve).
AAM Active Appearance Model.
ASM Active Shape Model.
PDM Point Distribution Model.
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Part I

Face Recognition in General





Chapter 2

History of Face Recognition

The most intuitive way to carry out face recognition is to look at the major
features of the face and compare these to the same features on other faces. Some
of the earliest studies on face recognition were done by Darwin [15] and Galton
[24]. Darwin’s work includes analysis of the different facial expressions due to
different emotional states, where as Galton studied facial profiles. However, the
first real attempts to develop semi-automated facial recognition systems began
in the late 1960’s and early 1970’s, and were based on geometrical information.
Here, landmarks were placed on photographs locating the major facial features,
such as eyes, ears, noses, and mouth corners. Relative distances and angles were
computed from these landmarks to a common reference point and compared to
reference data. In Goldstein et al. [26] (1971) a system is created of 21 subjective
markers, such as hair color and lip thickness. These markers proved very hard
to automate due to the subjective nature of many of the measurements still
made completely by hand.

A more consistent approach to do facial recognition was done by Fischler et al.
[23] (1973) and later by Yuille et al. [61] (1992). This approach measured the
facial features using templates of single facial features and mapped these onto
a global template.

In summary, most of the developed techniques during the first stages of facial
recognition focused on the automatic detection of individual facial features. The
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greatest advantages of these geometrical feature-based methods are the insensi-
tivity to illumination and the intuitive understanding of the extracted features.
However, even today facial feature detection and measurement techniques are
not reliable enough for the geometric feature-based recognition of a face and
geometric properties alone are inadequate for face recognition [12, 37].

Due to this drawback of geometric feature-based recognition, the technique has
gradually been abandoned and an effort has been made in researching holistic
color-based techniques, which has provided better results. Holistic color-based
techniques align a set of different faces to obtain a correspondence between pixels
intensities, a nearest neighbor classifier [16] can be used to classify new faces
when the new image is first aligned to the set of already aligned images. By the
appearance of the Eigenfaces technique [55], a statistical learning approach, this
coarse method was notably enhanced. Instead of directly comparing the pixel
intensities of the different facial images, the dimension of the input intensities
were first reduced by a Principal Component Analysis (PCA) in the Eigenface
technique. Eigenfaces is a basis component of many of the image based facial
recognition schemes used today. One of the current techniques is Fisherfaces.
This technique is widely used and referred [4, 9]. It combines the Eigenfaces
with Fisher Linear Discriminant Analysis (FLDA) to obtain a better separation
of the individual faces. In Fisherfaces, the dimension of the input intensity
vectors is reduced by PCA and then FLDA is applied to obtain an optimal
projection for separation of the faces from different persons. PCA and FLDA
will be described in Chapter 9.

After development of the Fisherface technique, many related techniques have
been proposed. These new techniques aim at providing an even better projec-
tion for separation of the faces from different persons. They try to strengthen
the robustness in coping with differences in illumination or image pose. Tech-
niques like Kernel Fisherfaces [59], Laplacianfaces [30] or discriminative com-
mon vectors [7] can be found among these approaches. The techniques behind
Eigenfaces, Fisherfaces, Laplacianfaces and Kernel Fisherfaces will be discussed
further later in this thesis.



Chapter 3

Face Recognition Systems

This chapter deals with the tasks of face recognition and how to report per-
formance. The performance of some of the best commercial face recognition
systems is included as well.

3.1 Face Recognition Tasks

The three primary face recognition tasks are:

• Verification (authentication) - Am I who I say I am? (one to one search)

• Identification (recognition) - Who am I? (one to many search)

• Watch list - Are you looking for me? (one to few search)

Different schemes are to be applied to test the three tasks described above.
Which scheme to use depends on the nature of the application.



14 Face Recognition Systems

3.1.1 Verification

The verification task is aimed at applications requiring user interaction in the
form of a identity claim, i.e. access applications.

The verification test is conducted by dividing persons into two groups:

• Clients, people trying to gain access using their own identity.

• Imposters, people trying to gain access using a false identity, i.e. an
identity known to the system but not belonging to them.

The percentage of imposters gaining access is reported as the False Acceptance
Rate (FAR) and an the percentage of client rejected access is reported as the
False Rejection Rate (FRR) for a given threshold. An illustration of this is
displayed in Figure 3.1.

3.1.2 Identification

The identification task is mostly aimed at applications not requiring user inter-
action, i.e. surveillance applications.

The identification test works from the assumption that all faces in the test are
of known persons. The percentage of correct identifications is then reported as
the Correct Identification Rate (CIR) or the percentage of false identifications
is reported as the False Identification Rate (FIR).

3.1.3 Watch List

The watch list task is a generalization of the identification task which includes
unknown people.

The watch list test is like the identification test reported in CIR or FIR, but can
have FAR and FRR associated with it to describe the sensitivity of the watch
list, meaning how often is an unknown classified as a person in the watch list
(FAR).
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Figure 3.1: Relation of False Acceptance Rate (FAR), False Rejection
Rate (FRR) with the distribution of clients, imposters in a verification
scheme. A) Shows the imposters and client populations in terms of the
score (high score meaning high likelihood of belonging to the client popu-
lation). B) The associated FAR and FRR, the Equal Error Rate (EER) is
where the FAR and FRR curve meets and gives the threshold value for the
best separability of the imposter and client classes.
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3.2 Face Recognition Vendor Test 2002

In 2002 the Face Recognition Vendor Test 2002 [45] tested some of the best
commercial face recognition systems for their performance in the three primary
face recognition tasks described in Section 3.1. This test used 121589 facial
images of a group of 37437 different people. The different systems participating
in the test are listed in Table 3.1. The evaluation was performed in reasonable
controlled indoor lighting conditions1.

Company Web site
AcSys Biometrics Corp http://www.acsysbiometricscorp.com

C-VIS GmbH http://www.c-vis.com

Cognitec Systems GmbH http://www.cognitec-systems.com

Dream Mirh Co., Ltd http://www.dreammirh.com

Eyematic Interfaces Inc. http://www.eyematic.com

Iconquest http://www.iconquesttech.com

Identix http://www.identix.com

Imagis Technologies Inc. http://www.imagistechnologies.com

Viisage Technology http://www.viisage.com

VisionSphere Technologies Inc. http://www.visionspheretech.com

Table 3.1: Participants in the Face Recognition Vendor Test 2002.

1Face recognition tests performed outside with unpredictable lighting conditions show a
drastic drop in performance compared with indoor experiments [45].
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The systems providing the best results in the vendor test show the characteristics
listed in Table 3.2.

Tasks CIR FRR FAR
Identification 73%
Verification 10% 1%
Watch list 56% to 77%2 1%

Table 3.2: The characteristics of the highest performing systems in the
Face Recognition Vendor Test 2002. The highest performing system for
the identification task and the watch list task was Cognitec. Cognitec and
Identix was both the highest performing system for the verification task.

Selected conclusions from the Face Recognition Vendor Test 2002 are:

• The identification task yields better results for smaller databases, than
larger ones. The identification task gave a higher score the smaller
database used. Identification performance showed a linear decrease with
respect to the logarithm of the size of the database. For every doubling
of the size of the database performance decreased by 2% to 3%. See Fig-
ure 3.2.

• The face recognition systems showed a tendency to more easily identify
older than younger people. The three best performing systems showed an
average increase of performance by approximately 5% for every ten years
increase of age of the test population. See Figure 3.3.

• The more time that elapses from the training of the system to the pre-
sentation of a new “up-to-date” image of a person the more recognition
performance is decreased. For the three best performing systems there
were an average decrease of approximately 5% per year. See Figure 3.4.

256% and 77% corresponds to the use of watch lists of 3000 and 25 persons, respectively.
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Figure 3.2: The Correct Identification Rates (CIR) plotted as a function
of gallery size. Color of curves indicate the different vendors used in the
test. Courtesy of Phillips et al. [45].

Figure 3.3: The average Correct Identification Rates (CIR) of the three
highest performing systems (Cognitec, Identix and Eyematic), broken into
age intervals. Courtesy of Phillips et al. [45].
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Figure 3.4: The average Correct Identification Rates (CIR) of the three
highest performing systems (Cognitec, Identix and Eyematic), divided into
intervals of elapsed time from the time of the systems construction to the
time a new image is introduced to the systems. Courtesy of Phillips et al.
[45].
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3.3 Discussion

Interestingly, the results from the Face Recognition Vendor Test 2002 indicate
a higher identification performance of older people compared to younger. In ad-
dition, the results indicate that it gets harder to identify people as time elapses,
which is not surprising since the human face continually changes over time. The
results of the Face Recognition Vendor Test 2002, reported in Table 3.2, are hard
to interpret and compare to other tests, since change in the test protocol or test
data will yield different results. However, these results provide an indication of
the performance of commercial face recognition systems.



Chapter 4

The Process of Face

Recognition

Facial recognition is a visual pattern recognition task. The three-dimensional
human face, which is subject to varying illumination, pose, expression etc. has
to be recognized. This recognition can be performed on a variety of input data
sources such as:

• A single 2D image.

• Stereo 2D images (two or more 2D images).

• 3D laser scans.

Also, soon Time Of Flight (TOF) 3D cameras will be accurate enough to be
used as well. The dimensionality of these sources can be increased by one by
the inclusion of a time dimension. A still image with a time dimension is a
video sequence. The advantage is that the identification of a person can be
determined more precisely from a video sequence than from a picture since the
identity of a person can not change from two frames taken in sequence from a
video sequence.

This thesis is constrained to face recognition from single 2D images, even when
tracking of faces is done in video sequences. However, Chapter 12 deals with
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3D reconstruction of faces from one or more 2D images using statistical models
of 3D laser scans.

Facial recognition systems usually consist of four steps, as shown in Figure 4.1;
face detection (localization), face preprocessing (face alignment/normalization,
light correction and etc.), feature extraction and feature matching. These steps
are described in the following sections.

Figure 4.1: The four general steps in facial recognition.

4.1 Face Detection

The aim of face detection is localization of the face in a image. In the case
of video input, it can be an advantage to track the face in between multiple
frames, to reduce computational time and preserve the identity of a face (person)
between frames. Methods used for face detection includes: Shape templates,
Neural networks and Active Appearance Models (AAM).

4.2 Preprocessing

The aim of the face preprocessing step is to normalize the coarse face detection,
so that a robust feature extraction can be achieved. Depending of the applica-
tion, face preprocessing includes: Alignment (translation, rotation, scaling) and
light normalization/correlation.
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4.3 Feature Extraction

The aim of feature extraction is to extract a compact set of interpersonal dis-
criminating geometrical or/and photometrical features of the face. Methods for
feature extraction include: PCA, FLDA and Locality Preserving Projections
(LPP).

4.4 Feature Matching

Feature matching is the actual recognition process. The feature vector obtained
from the feature extraction is matched to classes (persons) of facial images
already enrolled in a database. The matching algorithms vary from the fairly
obvious Nearest Neighbor to advanced schemes like Neural Networks.

4.5 Thesis Perspective

This thesis will cover all four general areas in face recognition, though the pri-
mary focus is on feature extraction and feature matching.

A survey of face detection algorithms is presented in Chapter 7. Preprocessing
of facial images is discussed in Chapter 8. A more in-depth description of feature
extraction methods is presented in Chapter 9. The performance of these feature
extraction methods is presented in Chapter 10, where the Nearest Neighbor
algorithm will be used for feature matching. A new face recognition algorithm
is developed in Chapter 11.
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Chapter 5

Face Recognition

Considerations

In this chapter general considerations of the process of face recognition are
discussed. These are:

• The variation of facial appearance of different individuals, which can be
very small.

• The non-linear manifold on which face images reside.

• The problem of having a high-dimensional input space and only a small
number of samples.

The scope of this thesis is further defined with the respect to these considera-
tions.

5.1 Variation in Facial Appearance

A facial image is subject to various factors like facial pose, illumination and
facial expression as well as lens aperture, exposure time and lens aberrations of
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the camera. Due to these factors large variations of facial images of the same
person can occur. On the other hand, sometimes small interpersonal variations
occur. Here the extreme is identical twins, as can be seen in Figure 5.1. Different
constraints in the process of acquiring images can be used to filter out some of
these factors, as well as use of preprocessing methods.

In a situation where the variation among images obtained from the same person
is larger than the variation among images of two individuals persons more com-
prehensive data than 2D images must be acquired to do computer based facial
recognition. Here, accurate laser scans or infrared images (showing the blood
vessel distribution in the face) can be used. These methods are out of the scope
of this thesis and will not be discussed further. This thesis is mainly concerned
with 2D frontal face images.

Figure 5.1: Small interpersonal variations illustrated by identical twins.
Courtesy of www.digitalwilly.com.

5.2 Face Analysis in an Image Space

When looking at the photometric information of a face, face recognition mostly
rely on analysis of a subspace, since faces in images reside in a submanifold of the
image space. This can be illustrated by an image consisting of 32 × 32 pixels.
This image contains a total of 1024 pixels, with the ability to display a long
range of different scenerys. Using only an 8-bit gray scale per pixel this image
can show a huge number of different configurations, exactly 2561024 = 28192. As
a comparison the world population is only about 232. It is clear that only a small
fraction of these image configurations will display faces. As a result most of the
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original image space representation is very redundant from a facial recognition
point of view. It must therefore be possible to reduce the input image space
to obtain a much smaller subspace, where the objective of the subspace is to
remove noise and redundancy while preserving the discriminative information
of the face.

However, the manifolds where faces reside seem to be highly non-linear and
non-convex [5, 53]. The following experiment explores this phenomenon in an
attempt to obtain a deeper understanding of the problem.

5.2.1 Exploration of Facial Submanifolds

The purpose of the experiment presented in this section is to visualize that the
facial images reside in a submanifold which is highly non-linear and non-convex.

For this purpose ten similar facial images were obtained from three persons of
the IMM Frontal Face Database1, yielding a total of 30 images. All images were
converted to grayscale, cropped to only contain the facial region and scaled to
100 × 100 pixels. Then 33 new images were produced from each of the original
images by following manipulations:

• Translation; Translation of the original image was done along the x-axis
using the set (in pixels):

{−30,−24,−18,−12,−6, 0, 6, 12, 18, 24, 30}

• Rotation; Rotation of the original image was done around the center of
the image using the set (in degrees):

{−10,−8,−6,−4,−2, 0, 2, 4, 6, 8, 10}

• Scaling; Scaling of the original image was done using the set (in %):

{70, 76, 82, 88, 94, 100, 106, 112, 118, 124, 130}

These manipulations resulted in the production of 30 × 33 = 990 images. An
example of 33 images produced from one original image is shown in Figure 5.2.
A Principal Component Analysis was conducted on the original 30 images to
produce a three-dimensional subspace spanned by the three largest principal
components. Then all 990 images were mapped into this subspace. These

1This data set is further described in Chapter 6.
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mappings into this subspace can be seen in Figure 5.3, where the images derived
from the same original image are connected for easier visual interpretation.
These mappings intuitively suggest that the manifold in which the facial images
reside is non-linear and non-convex. A similar but more comprehensive test is
performed by Li et al. [37].

Figure 5.2: A sample of 33 facial images produced from one original
image. The rows A, B and C are constructed by translation, rotation and
scaling of the original image, respectively.

5.3 Dealing with Non-linear Manifolds

As described above is the face manifold highly non-linear and non-convex. The
linear methods discussed later in Chapter 9 such as Principal Component Anal-
ysis (PCA) and Fisher Linear Discriminant Analysis (FLDA) are as a result
only partly capable of preserving these non-linear variations.

5.3.1 Technical Solutions

To overcome the challenges of non-linear and non-convex face manifolds there
are two general approaches:

• The first approach is to construct a feature subspace where the face man-
ifolds become simpler, i.e. less non-linear and non-convex than the input
space. This can be obtained by normalization of the face image both geo-
metrically and photometrically to reduce variation. Followed by extraction
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Figure 5.3: Results of the exploration of facial submanifolds. The 990
images derived from 30 original facial images are mapped into a three-
dimensional space spanned by the three largest eigenvectors of the original
images. The images derived form the original images are connected. The
images of the three persons are plotted in different colors. The three sets
of 30 × 11 images derived by translation, rotation and scaling are displayed
in row A, B and C, respectively.
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of features in the normalized image. For this purpose linear methods like
PCA, FLDA or even non-linear methods as Kernel Fisher Discriminant
Analysis (KFDA) can be used [1]. These methods will be described in
Chapter 9.

• The second approach is to construct classification engines capable of solv-
ing the difficult non-linear classification problems of the image space.
Methods like Neural Networks, Support Vector Machines etc. can be used
for this purpose.

In addition the two approaches can be combined.

Work done using only the first approach to statistically understand and simplify
the complex problem of facial recognition is pursued in this thesis.

5.4 High Input Space and Small Sample Size

Another problem associated with face recognition is the high input space of an
image and the usually small sample size of an individual. An image consisting
of 32 × 32 pixels resides in a 1024-dimensional space, where as the number of
images of a specific person typically is much smaller. A small number of images
of a specific person may not be sufficient to make a appropriate approximation
of the manifold, which can cause a problem. An illustration of this problem
is displayed in Figure 5.4. Currently, no known solution comes to mind for
solving this problem. Other than capturing a sufficient number of samples to
approximate the manifold in a satisfying way.
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Figure 5.4: An illustration of the problem of not being capable of sat-
isfactory approximating the manifold when only having a small number of
samples. The samples are denoted by circles.
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Chapter 6

Available Data

This chapter presents a small survey of databases used for facial detection and
recognition.

These databases include the IMM Frontal Face Database [21], which has been
recorded and annotated with landmarks as a part of this thesis. The technical
report made in conjunction with the IMM Frontal Face Database is found in
Appendix A.

Finally, an in-depth description of the actual subsets of three databases used in
this thesis is presented. The three databases used are:

• IMM Frontal Face Database: Used for initial testing in Chapter 10.

• The AR database: Used for a comprehensive test of the MIDM face recog-
nition method (which is proposed in Chapter 11). The test results are
shown in Chapter 13.

• The XM2VTS database: Used for evaluating the performance of the
MIDM algorithm.

Work done using the XM2VTS database has been performed in collaboration
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with Dr. David Delgado Gomez1. The obtained results are to be used for the
participation in the ICBA20062 Face Verification Contest in Hong Kong, Jan-
uary 2006.

6.1 Face Databases

In order to build/train and reliably test face recognition algorithms sizeable
databases of face images are needed. Many face databases to be used for non-
commercial purposes are available on the internet, either free of charge or for
small fees.

These databases are recorded under various conditions and with various appli-
cations in mind. The following sections briefly describe some of the available
databases which are widely known and used.

6.1.1 AR

The AR-database was recorded in 1998 at the Computer Vision Center in
Barcelona. The database contains images of 116 people; 70 male and 56 fe-
male. Every person was recorded in two sessions each consisting of 13 images,
resulting in a total of 3016 images. The two sessions were recorded two weeks
apart. The 13 images of each session captured varying facial expressions, illumi-
nations and occlusions. All images of the AR database are color images with a
resolution of 768 × 576 pixels. Landmark annotations based on a 22-landmark
scheme are available for some of the images of the AR database.

Link: “http://rvl1.ecn.purdue.edu/∼aleix/aleix face DB.html”

6.1.2 BioID

The BioID database was recorded in 2001. BioID contains 1521 images of 23
persons, about 66 images per person. The database was recorded during an
unspecified number of sessions using a high variation of illumination, facial
expression and background. The degree of variation was not controlled resulting

1Post-doctoral at the Computational Imaging Lab, Department of Technology, Pompeu
Fabra University, Barcelona.

2International Conference on Biometrics 2006.
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in “real” life image occurrences. All images of the BioID database are recorded
in grayscale with a resolution of 384 × 286 pixels. Landmark annotations based
on a 20-landmark scheme are available.

Link: “http://www.humanscan.de/support/downloads/facedb.php”

6.1.3 BANCA

The BANCA multi database was collected as part of the European BANCA
project. BANCA contains images, video and audio samples, though only the
images are described here. BANCA contains images of 52 persons. Every person
was recorded in 12 sessions each consisting of 10 images, resulting in a total of
6240 images. The sessions were recorded during a three months period. Three
different image qualities were used to acquire the images, where each image
quality was recorded during four sessions. All images are recorded in color with
a resolution of 720 × 576 pixels.

Link: “http://www.ee.surrey.ac.uk/banca/”

6.1.4 IMM Face Database

The IMM Face Database was recorded in 2001 at the Department of Informatics
and Mathematical Modelling - Technical University of Denmark. The database
contains images of 40 people; 33 male and 7 female. It was recorded during one
session and consists of 7 images per person resulting in a total of 240 images.
The 7 images of each person were captured under varying facial expressions,
camera view points and illuminations. Most of the images are recorded in color
while the rest are recorded in grayscale, all with a resolution of 640 × 480 pixels.
Landmark annotations based on a 58-landmark scheme are available.

Link: “http://www2.imm.dtu.dk/pubdb/views/publication details.php?id=3160”

6.1.5 IMM Frontal Face Database

The IMM Frontal Face Database was recorded in 2005 at the Department of In-
formatics and Mathematical Modelling - Technical University of Denmark. The
database contains images of 12 people; all males. The database was recorded
during one session and consists of 10 images of each person resulting in a total
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of 120 images. The 10 images of each person were captured under varying facial
expressions. All images are recorded in color with a resolution of 2560 × 1920
pixels. Landmark annotations based on a 73-landmark scheme are available.

Link: “http://www2.imm.dtu.dk/∼aam/datasets/imm frontal face db high res.zip”

6.1.6 PIE

The Pose, Illumination and Expression (PIE) database was recorded in 2000 at
Carnegie Mellon University in Pittsburgh. The database contains images of 68
persons all recorded in one session. More than 600 images of each person were
included in the database, resulting in a total of 41368 images. The images were
captured under varying facial expressions, camera view points and illuminations.
All images are recorded in color with a resolution of 640 × 468 pixels.

Link: “http://www.ri.cmu.edu/projects/project 418.html”

6.1.7 XM2VTS

The XM2VTS multi database was recorded at the University of Surrey. The
database contains images, video and audio samples, though only the images are
described here. XM2VTS contains images of 295 people. Every person was
recorded during 4 sessions each consisting of four images per person, resulting
in a total of 4720 images. The sessions were recorded during a four month
period and captured both the frontal and the profiles of the face. All images
are recorded in color with a resolution of 720 × 576 pixels.

Link: “http://www.ee.surrey.ac.uk/Research/VSSP/xm2vtsdb/”

6.2 Data Sets Used in this Work

Three out of four data set used in this thesis are collected from face databases
and consist of two parts: facial images and landmark annotations of the facial
images. The last data set used in this thesis consists of 3D laser scans of faces.
The next sections present the four data sets.
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6.2.1 Data Set I

Data set I consists of the entire IMM Frontal Face Database [21]. In summary,
this database contains 120 images of 12 persons (10 images a person). The 10
images of a person displays varying facial expressions, see Figure 6.1. The images
have been annotated in a 73-landmark scheme, see Figure 6.2. A technical report
of the construction of the database can be found in Appendix A.

Figure 6.1: An example of ten images of one person from the IMM
Frontal Face Database. The facial expressions of the images are: 1-6,
neutral expression; 7-8, smiling (no teeth); 9-10, thinking.

6.2.2 Data Set II

Data set II consists of a subset of images from the AR database [41], where 50
persons (25 male and 25 female) were randomly selected. Fourteen images per
person are included in data set II, which are obtained from the two recording
sessions (seven images per person per session). The selected images were all
images in the AR database without occlusions. Data set II is as a result
composed of 700 images. Examples of the selected images of one male and one
female from the two recording session are displayed in Figure 6.3.

Since no annotated landmarks were available for all the images of the AR-
database, data set II required manually annotation using a 22-landmark scheme
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Figure 6.2: The 73-landmark annotation scheme used on the IMM
Frontal Face Database.
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Figure 6.3: Examples of 14 images of one female and one male obtained
from the AR database. The rows of images (A, B) and (C, D) was captured
during two different sessions. The columns display: 1, neutral expression;
2, smile; 3, anger; 4, scream; 5, left light on; 6, right light on; 7, both side
lights on.
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previously used by the Face and Gesture Recognition Working group3 (FGNET)
to annotate parts of the AR database4. The 22-landmark scheme is displayed
in Figure 6.4.

Figure 6.4: The 22-landmark annotation scheme used on the AR
database.

3Link: “http://www-prima.inrialpes.fr/FGnet/”.
4Of the 13 different image variations included in the AR database only 4 have been anno-

tated by FGNET.
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6.2.3 Data Set III

Data set III consists of all the frontal images from the XM2VTS database
[43]. To summarize, 8 frontal images were captured of 295 individuals during 4
sessions, resulting in data set III consisting of a total of 2360 images. Exam-
ples of the selected images of one male and one female from the four recording
session are displayed in Figure 6.5.

A 68-landmark annotation scheme is available for this data set, made in collabo-
ration between the EU FP5 projects UFACE and FGNET. However, this thesis
uses two non-public 64-landmark sets. The first set is obtained by manually an-
notation, where the second is obtained automatically by an optimized ASM [52].
Both landmark sets were created by the Computational Imaging Lab, Depart-
ment of Technology, Pompeu Fabra University, Barcelona. The 64-landmark
scheme is displayed in Figure 6.6.

6.2.4 Data Set IV

Data set IV consists of the entire 3D Face Database constructed by Karl
Skoglund [49] at the Department of Informatics and Mathematical Modelling
- Technical University of Denmark. This database includes 24 3D laser scans
of 24 individuals (including one baby) and 24 texture images corresponding
to the laser scans. Examples of five samples from data set IV are shown in
Figure 6.7.
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Figure 6.5: Examples of 8 images of one female and one male obtained
from the XM2VTS database. All images are captured in a neutral expres-
sion.
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Figure 6.6: The 64-landmark annotation scheme used on the XM2VTS
database.
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Figure 6.7: Five samples from 3D Face Database constructed in [49].
The 3D shape and texture, 3D shape and texture image is shown in the
columns respectively.



Part II

Assessment





Chapter 7

Face Detection: A Survey

This chapter deals with the problem of face detection. Since the scope of this
thesis is face recognition, this chapter will serve as an introduction to already
developed algorithms for face detection.

As described earlier in Chapter 4, face detection is the necessary first step in a
face recognition system. The purpose of face detection is to localize and extract
the face region from the image background. However, since the human face is
a highly dynamic object displaying large degree of variability in appearance,
automatic face detection remains a difficult task.

The problem is complicated further by the continually changes over time of the
following parameters:

• The three-dimensional position of the face.

• Removable features, such as spectacles and beards.

• Facial expression.

• Partial occlusion of the face, e.g. by hair, scarfs and sunglasses.

• Orientation of the face.
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• Lighting conditions.

The following will distinguish between the two terms face detection and face
localization.

Definition 7.1 Face detection , the process of detecting all faces (if any) in
a given image.

Definition 7.2 Face localization , the process of localizing one face in a given
image, i.e. the image is assumed to contain one, and only one face.

More than 150 methods for face detection have been developed, though only a
small subset are addressed here. In Yang et al. [60] face detection methods are
divided into four categories:

• Knowledge-based methods: The knowledge-based methods use a set
of rules, that describe what to capture. The rules are constructed from
the intuitive human knowledge of facial components and can be simple
relations among facial features.

• Feature invariant approaches: The aim of feature invariant approaches
is to search for structural features, which are invariant to changes in pose
and lighting conditions.

• Template matching methods: Template matching methods constructs
one or several templates (models) for describing facial features. The cor-
relation between an input image and the constructed model(s) enables the
method to discriminate over the case of face or non-face.

• Appearance-based methods: Appearance-based methods use statisti-
cal analysis and machine learning to extract the relevant features of a face
to be able to discriminate between face and non-face images. The features
are composed of both the geometrical information and the photometric
information.

The knowledge-based methods and the feature invariant approaches are mainly
used only for face localization, where as template matching methods and appear-
ance-based methods can be used for face detection as well as face localization.
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Approach Representative Work
Knowledge-based

Multiresolution rule-based method [57]
Feature invariant

- Facial Features Grouping of edges [36]
- Texture Space Gray-Level Dependence matrix of face pat-

tern [14]
- Skin Color Mixture of Gaussian [58]
- Multiple Features Integration of skin color, size and shape [34]
Template matching

- Predefined face templates Shape templates [13]
- Deformable Templates Active Shape Models [35]
Appearance-based method

- Eigenfaces & Fisherfaces Eigenvector decomposition and clustering [54]
- Neural Network1 Ensemble of neural networks and arbitration

schemes [47]
- Deformable Models Active Appearance Models [10]

Table 7.1: Categorization of methods for face detection within a single
image.

7.1 Representative Work of Face Detection

Representative methods of the four categories described above are summarized
in Table 7.1 as reported in Yang et al. [60].

Only appearance-based methods are further described in this thesis since supe-
rior results seem to have been reported using these methods compared to the
other three categories.

7.2 Description of Selected Face Detection Meth-
ods

In this section the methods of Eigenfaces, Fisherfaces, Neural Networks and
Active Appearance Models are described, though with special emphasis on the
Active Appearance Models. The Active Appearance Models show clear advan-
tages for facial recognition purposes, which will be described and used later in
this thesis.

1Notice that neural networks are not restricted to appearance-based methods, but only
neural networks working on photometrical information (texture) are considered here.
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7.2.1 General Aspects of Face Detections Algorithms

Most face detection algorithms work by systemically analyzing subregions of an
image. An example of how to extract these subregions could be, to capture
a subimage of 20 × 20 pixels in the top left corner of the original image and
continuing to capture subimages in a predefined grid. All these subimages are
then evaluated using a face detection algorithm. Subsampling of the image in
a pyramid fashion enables capture of different sizes face. This is illustrated in
Figure 7.1.

Figure 7.1: Illustration of the subsampling of an image in a pyramid
fashion. Which enables the capture of different size of faces. Besides,
rotated faces can be captured by rotating the subwindow. Courtesy of
Rowley et al. [47].

7.2.2 Eigenfaces

The Eigenface method uses PCA to construct a set of Eigenface images. Ex-
amples of Eigenface images are displayed in Figure 7.2. These Eigenfaces, can
be linear combined to reconstruct the images of the original training set. When
introducing a new image an error (ξ) can be calculated from the best image
reconstruction using the Eigenfases to the new image. If the Eigenfaces are
constructed from a large face database, the size of the error ξ can be used to
determine whether or not a newly introduced image contains a face.
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Figure 7.2: Example of 10 Eigenfaces. Notice that Eigenface no. 10
contains much noise and that the Eigenfaces are constructed from the shape
free images described in Section 7.2.5.

Another more robust way is to look upon the subspace2 provided by the eigen-
faces, and cluster face images and non-face images in this subspace [54].

7.2.3 Fisherfaces

Much like Eigenfaces, Fisherfaces construct a subspace in which the algorithm
can discriminate between facial and non-facial images. A more in-depth descrip-
tion of FLDA, which is used by Fisherfaces, can be found in Chapter 9.

7.2.4 Neural Networks

In a neural network approach features from an image are extracted and fed to
a neural network. One huge drawback of neural networks is that they can be
extensively tuned, in terms of deciding learning methods and on the number of
layers, nodes, etc.

One of the most significant work in neural network face detection has been done
by Rowley et al. [47, 48]. He used a neural network to classify images in a [−1; 1]
range, where -1 and 1 denotes a non-face image and a face image, respectively.
Every image window of 20×20 pixels was divided into four 10×10 pixels, 16 5×5
pixels and six 20 × 5 pixels (overlapping) sub windows. A hidden node in the

2Principal Component Analysis can reduce the dimensionality of the data, described further
in Chapter 9.
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neural network was fed each of these sub windows, yielding a total of 26 hidden
nodes. A diagram of the neural network design by Rowley et al. [47] is shown
in Figure 7.3. The neural network can be improved by adding an extra neural
network to determining the rotation of an image window. This will enable the
system to capture faces not vertically aligned in the input image, see Figure 7.4.

7.2.5 Active Appearance Models

Active Appearance Models (AAM) are a generalization of the widely used Active
Shape Models (ASM). Instead of only representing the information near edges,
an AAM statistically models all texture and shape information inside the target
model (here faces) boundary.

To build an AAM a training set has to be provided, which contains images and
landmark annotations of facial features.

The first step in building an AAM is to align the landmarks using a Procrustes
analysis [28], as displayed in Figure 7.5. Next the shape variation is modelled
by a PCA, so that any shape can be approximated by

s = s̄ + Φsbs, (7.1)

where s̄ is the mean shape, Φs is a matrix containing the ts most important
eigenvectors and bs is a vector of length ts, which contains a distinct set of
parameters describing the actual shape. The number ts of eigenvectors in Φs and
the length of bs is chosen so that the model represents a user-defined proportion
of the total variance in data. To obtain the proportion of p percent variance the
value of ts can be chosen by

ts
∑

i=1

λi =>
p

100

n
∑

i=1

λi, (7.2)

where λi is the eigenvalue corresponding to the ith eigenvector and n is the total
number of non-zero eigenvalues.

The texture variation is modelled by first removing shape information by warp-
ing all face images onto the mean shape. This is called the set of shape free
images. Several methods can then be applied to eliminate global illumination
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Figure 7.3: Diagram of the neural network developed by Rowley et al.
[47].
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Figure 7.4: Diagram displaying an improved version of the neural network
in Figure 7.3. Courtesy of Rowley et al. [48].
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(a) (b) (c)

Figure 7.5: Full Procrustes analysis. (a) The original landmarks, (b)
translation of the center of gravity (COG) into the mean shape COG, (c)
result of full Procrustes analysis here the mean shape is plotted in red.

variation, see e.g. Cootes et al. [10]. Next, the texture variation can be modelled,
like the shape by a PCA, so that any texture can be approximated by

t = t̄ + Φtbt, (7.3)

where t̄ is the mean texture, Φt is a matrix containing the tt most important
eigenvectors and bt is a vector of length tt, which contains a distinct set of
parameters describing the actual texture. tt can be chosen, like ts by Eq. 7.2.

The AAM is now built by concatenating shape and texture parameters

b =

[

Wsbs

bt

]

=

[

WsΦ
T
s (s − s̄)

ΦT
t (t − t̄)

]

, (7.4)

where Ws is a diagonal matrix of weights between shape and texture. To remove
the correlation between shape and texture a PCA is applied to obtain

b = Φcc, (7.5)

where c is the AAM parameters. An arbitrary new shape and texture can be
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generated by

s = s̄ + ΦsW
−1
s Φc,sc (7.6)

and

t = t̄ + ΦtΦc,tc, (7.7)

where

Φc =

[

Φc,s

Φc,t

]

. (7.8)

The process of placing the AAM mean shape and texture on a specific location
in an image and search for a face near by this location, is shown in Figure 7.6.
This process will not be described further here. For a more detailed descrip-
tion of AAM the paper Cootes et al. [10] or the master thesis by Mikkel Bille
Stegmann [50] are recommended.

One advantage of the AAM (and ASM) algorithm compared to other face detec-
tion algorithms is that a localized face is described both by shape and texture.

Thus, a well defined shape of the face can be obtained by an AMM. This is
an improvement from others face detection algorithms, where the result is a
sub image containing a face without knowing exactly which pixels represent
background and which represent the face. An AAM is also desirable for tracking
in video sequences, assuming that changes are minimal from frame to frame.
Due to these advantages an AAM is used as the face detection algorithm in this
thesis, when automatic detection is required.
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Figure 7.6: Face detection (approximations) obtained by AAM, when
the model is initialized close to the face. The first column is the mean
shape and texture of the AAM. The last column is the converged shape
and texture of the AAM. Courtesy Cootes et al. [10].
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Chapter 8

Preprocessing of a Face Image

The face preprocessing step aims at normalizing, i.e. reducing the variation of
images obtained during the face detection step. Using AAM in the process of
face detection provides a well defined framework to retrieve the photometric
information as a shape free image as well as the geometric information as a
shape. Since this already has been described previously in this thesis only the
subject of light correction will be described within this chapter.

8.1 Light Correction

As described in Section 3.2, unpredictable change in lighting conditions is a
problem in facial recognition. Therefore, it is desirable to normalize the photo-
metric information in terms of light correction to optimize the facial recognition.
Here, two light correction methods are described.

8.1.1 Histogram Equalization

Histogram equalization (HE) can be used as a simple but very robust way to
obtain light correction when applied to small regions such as faces. The aim of
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HE is to maximize the contrast of an input image, resulting in a histogram of the
output image which is as close to a uniform histogram as possible. However, this
does not remove the effect of a strong light source but maximizes the entropy of
an image, thus reducing the effect of differences in illumination within the same
“setup” of light sources. By doing so, HE makes facial recognition a somehow
simpler task. Two examples of HE of images can be seen in Figure 8.1. The
algorithm of HE is straight forward and will not be explained here, an interested
reader can obtain the algorithm in Finlayson et al. [22].
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Figure 8.1: Examples of histogram equalization used upon two images to
obtain standardized images with maximum entropy. Notice, only the facial
region of an image is used in the histogram equalization.

8.1.2 Removal of Specific Light Sources based on 2D Face
Models

The removal of specific light sources based on 2D face models [56] is another
method to obtain light correlation of images. The method creates a pixelwise
correspondence of images (as already described in Section 7.2.5, the AAM shape
free image). By doing so, the effect of illumination upon each pixel x = {x, y}
of an image can be expressed by the equation

F̃x = ai,x · Fx + bi,x, (8.1)
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where F and F̃ are the images of the same scene recoded at normal lighting
condition (diffuse lighting) and upon the influence of a specific light source
(illumination mode i), respectively. ai,x is the multiplication compensation,
and bi,x is the additive compensation of the illumination mode i of pixel x in

the image F̃.

Having n sets of images in the normal illumination and the mode i illumination,
Eq. 8.1 can be rewritten as

G̃ = G

[

ai,x

bi,x

]

, (8.2)

where

G̃ =







F̃1,x

...

F̃n,x






, G =







F1,x 1
...

...
Fn,x 1






. (8.3)

If the n sets of images are of different persons, then the rows of G and G̃ are
independent and the least-squares solution to ai,x and bi,x in Eq. 8.2 is

[

ai,x

bi,x

]

= (GT G)−1GT G̃. (8.4)

Using Eq. 8.4 upon every pixel in the shape free image, the illumination com-
pensation images Ai and Bi can be constructed. By doing so it is possible
to reconstruct a face image in normal lighting conditions from a face image in
lighting condition i by

Fx =
F̃x − bi,x

ai,x

. (8.5)

Different schemes can be used to identify the lighting condition of a specific face
image, in Xie et al. [56] a FLDA is used.

Removal of two specific illumination conditions is displayed in Figure 8.2. This
used the illumination compensation maps displayed in Figure 8.4. However, this
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method sometimes creates artifacts in the faces. A close-up of the illumination
corrected faces from Figure 8.2 can be seen in Figure 8.3 that displays this fact.

Figure 8.2: Removal of specific illumination conditions from facial im-
ages. A) shows the facial images in normal diffuse lighting. B) column
1-4 and 5-8 show facial images captured under right and left illumination,
respectively. C) is the compensated images.

Figure 8.3: A close-up of the faces reconstructed in Figure 8.2. Notice
that faces 1-4 are influenced only little by artifacts while faces 5-8 are
influenced substantially by artifacts.

8.2 Discussion

It is clear that HE is a good and robust way of normalizing images. The more
complex method of removing specific illumination conditions seems to yield
impressive results, but has the drawback of sometimes imposing artifacts onto
the images, as can be seen in Figure 8.3, where “shadows of spectacles” can
be seen on persons not wearing spectacles. It was decided to only preprocess
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Figure 8.4: Illumination compensation maps used for removal of specific
illumination conditions. Rows A) and B) display the illumination compen-
sation maps for facial images captured under left and right illumination,
respectively.
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facial images with HE to ensure that the images are independent. No tests
were performed to see how facial recognition performs under the influence of
the artifacts introduced by the removal of specific light sources based on 2D
face models. This will be saved for future work.



Chapter 9

Face Feature Extraction:

Dimensionality Reduction

Methods

Table 9.1 lists the most promising dimensionality reduction methods (feature
extraction methods) used for face recognition. Out of these Principal Compo-
nent Analysis, Fisher Linear Discriminant Analysis, Kernel Fisher Linear Dis-
criminant Analysis and Locality Preserving Projections will be described in the
following.

Preserving Technique Method

Global Structure

Linear
Fisher Linear Discriminant Analysis

Principal Component Analysis

Non-linear
Kernel Fisher Linear Discriminant Analysis

Kernel Principal Component Analysis

Local Structure

Linear Locality Preserving Projections

Non-linear
Isomap

Laplacian Eigenmap

Table 9.1: Dimensionality reduction methods.
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9.1 Principal Component Analysis

Principal Component Analysis (PCA), also known as Karhunen-Loève transfor-
mation, is a linear transformation which captures the variance of the input data.
The coordinate system in which the data resides is rotated by PCA, so that the
first-axis is parallel to the highest variance in the data (in a one-dimension pro-
jection). The remaining axes can be explained one at the time as being parallel
to the highest variance of the data, while all axes are constrained to be orthogo-
nal to all previous found axes. To summarize, the first-axis will contain highest
variance, the second-axis contain the second highest variance, etc. An exam-
ple in two dimensions is shown in Figure 9.1. PCA, which is an unsupervised
method, is a powerful tool for data analysis, especially if data resides in a space
higher than three dimensions, where graphical representations are hard. One of
the main applications of PCA is dimension reduction, with little or no loss of
data variation. This is used to remove redundancy and compress data.

Figure 9.1: An example of PCA in two dimensions, showing the PCA
axis that maximizes the variation in the first principal component: PCA 1.

9.1.1 PCA Algorithm

Different methods can be used to calculate the PCA basis vectors. Here eigenval-
ues and eigenvectors of the covariance matrix of the data are used. Considering
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the data

X = [x1,x2, · · · ,xn], (9.1)

where n is the amount of data samples, xi is the ith data sample of dimension
d. First is the mean of X subtracted from the data

X̂ = [x1 − x̄,x2 − x̄, · · · ,xn − x̄]. (9.2)

The covariance matrix ΣX̂ is calculated by

ΣX̂ =
1

n
X̂X̂T . (9.3)

The principal axes are now given by the eigenvectors ΦX̂ of the covariance
matrix

ΣX̂ΦX̂ = ΦX̂ΛX̂, (9.4)

where

ΛX̂ =













λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λd













(9.5)

is the diagonal matrix of eigenvalues corresponding to the eigenvectors of

ΦX̂ = [φ1,φ2, · · · ,φd]. (9.6)

The eigenvector corresponding to the highest eigenvalue represents the basis
vector containing the most data variance, i.e. the first principal component.
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The ith data sample, xi, can be transformed into the PCA space by

yi = Φ−1

X̂
(xi − x̄) = ΦT

X̂
(xi − x̄). (9.7)

Notice that an orthogonal matrix as ΦX̂ has the property Φ−1

X̂
= ΦT

X̂
. Data in

the PCA space can be transformed back into the original space by

xi = ΦX̂yi + x̄. (9.8)

If only a subset of the eigenvectors in ΦX̂ is selected, then this will result in
data being projected into a PCA subspace. This can be very useful to reduce
redundancy in the data, i.e. remove all eigenvectors equal to zero. The above
method is described in greater detail in Ersbøll et al. [19].

9.1.2 Computational Issues of PCA

If one has n data samples in a d high-dimensional space where n ≪ d. Then
the computational time is quite large for retrieving eigenvectors and eigenvalues
from the d×d covariance matrix. The time needed for eigenvector decomposition
increases by the cube of the covariance matrix size [10]. However, it is possible
to calculate the eigenvectors of the non-zero eigenvalues from a much smaller
matrix with size n × n, by use of

Σn =
1

n
X̂T X̂, (9.9)

where X̂ is calculated by Eq. 9.2. The non-zero eigenvalues of the matrices in
Eq. 9.4 and Eq. 9.9 are equal

Λn = ΛX̂. (9.10)

The eigenvectors corresponding to non-zero eigenvalues can be expressed as

Φ̂X̂ = X̂Φn. (9.11)
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Notice that these eigenvectors are not normalized. This can be proved by the
Eckhart-Young Theorem [50].

9.2 Fisher Linear Discriminant Analysis

Fisher Linear Discriminant Analysis (FLDA), also known as Canonical Discrim-
inant Analysis is like PCA, a linear transformation. Unlike PCA, FLDA is a
supervised method, which implies that all training-data samples must be as-
sociated (manually) with a class. FLDA maximizes the between-class variance
as well as minimizes the within-class variance. A graphic example of FLDA is
shown in Figure 9.2.

Figure 9.2: An example of FLDA in two dimensions, showing the FLDA
axis that maximizes the separation between the classes and minimizes the
variation inside the classes.

The objective function for FLDA is as follows

max
w

wT SBw

wT SW w
, (9.12)
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where the between-matrix is defined as

SB =

c
∑

i=1

ni(x̄i − x̄)(x̄i − x̄)T (9.13)

and the within-matrix as

SW =
c

∑

i=1

ni
∑

j=1

(xi,j − x̄i)(xi,j − x̄i)
T , (9.14)

where xi,j is the jth sample in class i, x̄i mean of class i, x̄ mean of all samples,
c is number of classes and ni is the number of samples in class i.

The optimal projection that maximizes the between-class variance and min-
imizes the within-class variance is given by the direction of the eigenvector
associated to the maximum eigenvalue of S−1

W SB . Notice that the number of
non-zero eigenvalues is at most number of classes minus one [4].

9.2.1 FLDA in Face Recognition Problems

In face recognition problems SW is nearly always singular. This is due to the
fact that the rank of SW is at most n − c, where n (the number of training
samples) usually is much smaller than the number of pixels in each image.

In order to overcome this problem a PCA is usually performed1 on the images
prior to FLDA, which removes redundancy and makes the data samples more
compact. The within-matrix, SW , is made non-singular by only considering the
f most important principal components from the PCA, where f is the number
of non-zero eigenvalues of the within-matrix SW .

9.3 Locality Preserving Projections

The Locality Preserving Projections (LPP) algorithm has recently been de-
veloped [29]. When high-dimensional data lies on a low dimension manifold

1Normally capturing between 95-99% of the variance.
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embedded in the data space, then LPP approximate the eigenfunctions of the
Laplace-Beltrami operator of the manifold. LPP aims at preserving the local
structure of the data. This is unlike PCA and FLDA, which aims at preserving
the global structure of the data.

LPP is unsupervised and performs a linear transformation. It models the man-
ifold structure by constructing an adjacency graph, which is a graph expressing
local nearness of the data. This is highly desirable for face recognition compared
to non-linear local structure preserving methods in Table 9.1, since it is signifi-
cantly less computationally expensive and more importantly it is defined in all
points and not just in the training points as Isomaps and Laplacian Eigenmaps.

The objective function of LPP is

min
∑

ij

(yi − yj)
2Sij , (9.15)

where yi is a one-dimensional representation of the data sample xi and Sij is
an entry in the similarity matrix S that represent the adjacency graph. The
adjacency graph weight α if notes i and j are connected can be chosen by:

• A parameter function, [t ∈ R], e.g.

α = e−
‖xi−xj‖2

t . (9.16)

• A constant, e.g.

α = 1. (9.17)

Two ways of constructing the adjacency graph is:

• ǫ-neighborhood, [ǫ ∈ R]:

Sij =

{

α, ‖xi − xj‖2 < ǫ
0 otherwise

(9.18)

• k nearest neighbors, [k ∈ N]:

Sij =







α, if xi is among the k nearest neighbors of xj or
xj is among the k nearest neighbors of xi

0 otherwise
(9.19)
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The similarity matrix will inflict heavy penalties on the objective function in
Eq. 9.15 if neighboring points xi and xj are mapped far apart in the output
space. By minimizing the objective function LPP tries to ensure that yi and
yj are close in the output space if xi and xj are close in the input space. The
objective function can be reduced to

arg min
w

= wT XLXT w subject to wT XDXT w = 1, (9.20)

where the constraint wT XDXT w = 1 is used to normalize w, by

1
2

∑

ij(yi − yj)
2sij m

1
2

∑

ij(w
T xi − wT xj)

2sij m
∑

ij wT xisijx
T
i w −

∑

ij wT xisijx
T
j w m

∑

i w
T xidiix

T
i w − wT XSXT w m

wT XDXT w − wT XSXT w m
wT X(D − S)XT w m

wT XLXT w

, (9.21)

where X is a matrix containing all data points [x1,x2, . . . ,xn], D is a diagonal
matrix where the elements is Dii =

∑

j sji and L = D − S is the Laplacian

matrix. To normalize w the system is constrained by wT XDXT w = 1.

The vector w, which minimizes the objective function, is given by the eigenvector
corresponding to the minimum eigenvalue solution of the generalized eigenvalue
problem

XLXT w = λXDXT w. (9.22)

If XDXT has full rank it reduces the eigenvalue problem to

(XDXT )−1XLXT w = λw. (9.23)

Let W = [w0,w1, . . . ,wn−1] be the solutions to Eq. 9.23 ordered according to
the eigenvalues, λ0 < λ1 < · · · < λn−1. Then the LPP projection can then be
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written as

yi = WT xi. (9.24)

It is worth noticing that the matrix XLXT from LPP reduces to a PCA problem
if ǫ from Eq. 9.18 is set to infinity. Thus the eigenvectors with the largest
eigenvalues will correspond to the direction of maximal variance. Consult He et
al. [30] for more insight on this.

9.3.1 LPP in Face Recognition Problems

Like FLDA, LPP has the problem of having n images consisting of d pixels
where n ≪ d. The matrix XDXT is singular due to the fact that the rank of
XDXT , which is an d × d matrix, is at most n.

As in FLDA this is usually solved by applying PCA2 on the images prior to LPP,
remove redundancy and make data more compact. The XDXT matrix is made
non-singular by only considering the t most important principal components
from the PCA, where t is the number of non-zero eigenvalues of the XDXT

matrix.

9.4 Kernel Fisher Discriminant Analysis

Kernel Fisher Discriminant Analysis (KFDA) [44, 38] projects data in the input
space into a high-dimensional feature space where a Fisher Linear Discriminant
Analysis is performed on the data. Thus yielding a non-linear discriminant in
the input space, as a result KFDA is like FLDA supervised. Let

Ψ : x ∈ R
n → f ∈ F (9.25)

be the non-linear mapping from an d-dimensional input space to the e-dimensional
implicit feature space F , where d ≪ e. The objective function of KFDA is sim-

2Normally capturing between 95-99% of the variance.
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ilar to Eq. 9.12 of FLDA

max
w

wT SΨ
Bw

wT SΨ
W w

, (9.26)

where w ∈ F and the between- and within-matrices of F are

SΨ
B =

1

c(c − 1)

c
∑

i=1

c
∑

j=1

(ūi − ūj)(ūi − ūj)
T (9.27)

and

SΨ
W =

1

c

c
∑

i=1

1

ni

ni
∑

j=1

(Ψ(xj) − ūi)(Ψ(xj) − ūi)
T , (9.28)

where c is the number of classes, ni is the number of samples in class i and ūi

denotes the mean of the samples in class i in F given by

ūi =
1

ni

ni
∑

j=1

Ψ(xj). (9.29)

When the dimensionality of F becomes very high (or even infinite), this problem
becomes impossible to solve. However, by using the kernel trick [2] it is not
necessary to compute Ψ explicitly. The kernel trick uses Mercer kernels to
compute the inner product of two vectors in a feature space, L, by using only
the vectors of the input space, K(x,y) = Ψ(x) ·Ψ(y). A Mercer kernel satisfies
the Mercer conditions:

• K is continuous.

• K is symmetrical, K(x,y) = K(y,x).

• K is positive semi-definite. That is for any set of vectors
{x1,x2, . . . ,xm} belonging to the input space, the matrix
M = (K(xi,xj))ij , {i, j} = 1, . . . ,m is positive semi-definite.
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The kernel trick states that any kernel K(x,y) satisfying the Mercer conditions
can be expressed as a dot product in a high-dimensional space. Two examples
in the Mercer kernels family are Gaussian kernels,

K(xi,xj) = e
−‖x−y‖2

t , t ∈ R+ (9.30)

and polynomial kernels,

K(xi,xj) = (x · y)d, d ∈ R+. (9.31)

In order to avoid computing Ψ explicitly, Eq. 9.26 to Eq. 9.28 have to be for-
mulated using only inner products of Ψ, i.e. Ψ(x) ·Ψ(y), which can be replaced
by a kernel function.

Any solution w ∈ F must lie in the span of all training samples in F , proof of
this can be obtained by consulting a reproducing kernels textbook. Therefore
there exist n coefficients αi so that an expansion of w can be written as

w =
n

∑

i=1

αiΨ(xi). (9.32)

By use of Eq. 9.29 and Eq. 9.32 the projection of each class mean ūi into w can
be written as

wT ūi = αT











1
ni

∑ni

j=1 K(x1,xj)
1
ni

∑ni

j=1 K(x2,xj)
...

1
ni

∑ni

j=1 K(xn,xj)











= αT mi. (9.33)

Now, by use of Eq. 9.27 and Eq. 9.33 the numerator of Eq. 9.26 can be formulated
as

αT KBα, (9.34)
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where

KB =
1

c(c − 1)

c
∑

i=1

c
∑

j=1

(mi − mj)(mi − mj)
T . (9.35)

Similarly, by use of Eq. 9.28, Eq. 9.29 and Eq. 9.32 the denominator of Eq. 9.26
can be formulated as

αT KW α, (9.36)

where

KW =
1

c

c
∑

i=1

1

ni

ni
∑

j=1

(ζj − mi)(ζj − mi)
T (9.37)

and

ζj = [K(x1,xj) K(x2,xj) · · · K(xn,xj)]
T . (9.38)

Eq. 9.26 can be rewritten using Eq. 9.34 and Eq. 9.36 yielding

max
α

αT KBα

αT KW α
. (9.39)

FLDA can now be performed implicit in F by calculating the leading eigenvec-
tors of K−1

W KB in the input space. The projection of a given point x into w in
F is given by

w · Ψ(x) =

n
∑

i=1

αiK(xi,x). (9.40)
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9.4.1 Problems of KFDA

KFDA has numerical problems since KW is seldom of full rank. A simple way
to avoid this is to add a multiple of the identity matrix to KW [44] so that

K̃W = KW + µI. (9.41)

Another problem is how to select a kernel function for different tasks, which is
still an open problem [38].
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Chapter 10

Experimental Results I

The purpose of this chapter is to evaluate the the four feature extraction meth-
ods described in Chapter 9. To summarize, the four extraction methods are:

• Principal Component Analysis

• Locality Preserving Projections

• Fisher Linear Discriminant Analysis

• Kernel Fisher Discriminant Analysis

The idea is to extract facial features from facial images by use of the four
methods mentioned above presuming that the facial features are easily separated
in the feature space. For the tests presented in this chapter data set I is used.
The tests are divided into two parts, where the first is an illustration of the four
feature spaces, while the second tests face identification using a nearest neighbor
classifier in the four output spaces. The choice of nearest neighbor algorithm as
classifier used in the second part is based on the following observations:

• It is very simple, yet powerful if it contains an adequate number of classi-
fied samples, resulting in well defined populations.
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• It does not need training.

• It produces reproducible results, i.e. if several tests are conducted using
the same protocol for testing the obtained results are unambiguous. In
contrast, neural networks use some degree of randomness in the training,
which in some cases results in non-reproducible results.

Eq. 9.17 (α = 1) is used in these tests as the entries in the LPP’s similarity
matrix and it is constructed according to Eq. 9.19 (the k nearest neighbors).
After careful consideration k = ⌊m/2⌋ was used, since this seems to yield the
best results. Here, m is the average number of samples in the training set of
a specific person. For KFDA the Gaussian kernel in Eq. 9.30 is used, where
t = 250000 was used, since this seemed to yield the best results.

10.1 Illustration of the Feature Spaces

In the following sections feature spaces of PCA, LPP, FLDA and KFDA are
illustrated by scatter plot matrices of the three most discriminative dimensions.
Data set I consisting of 120 images of 12 persons was divided into two groups
of 60 images each. The first group consists of the images {1, 3, 5, 7, 9} of each
person1 and is used to calculate the mapping between the image space and the
feature space. The second group consists of the images {2, 4, 6, 8, 10}. These are
mapped into the feature spaces to visualize the separability of the 12 persons
when using the four methods. Furthermore, the test was conducted to obtain a
combined projection of photometric and geometric information. Tests could be
conducted only concerning either the photometric or the geometric information,
but due to space constraints these tests were not included.

The PCA space is constructed like a AAM (described in Section 7.2.5). First
a PCA is performed on the shape free images and then on the shapes. The
obtained results were then combined and a third PCA was performed yielding
a subspace containing both the geometric and photometric information. When
combining the results obtained from the first two PCA’s the weighting between
texture and shape is one (i.e. Ws = I in the AAM terminology) and the variance
captured by the PCA accounts for 99.9%. The PCA scatter plot matrix obtained
in the test is displayed in Figure 10.1.

The LPP, FLDA and KFDA spaces are constructed in the compact PCA space
described above. This is done to avoid singularity problems (described in Chap-
ter 9) and to reduce the huge workload associated with the image space of

1The image numbers are described in the technical rapport in Appendix A.
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Figure 10.1: The PCA scatter plot matrix of the combined features from
data set I. The 12 persons of data set I are displayed by different colors
and symbols.
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KFDA. The LPP, FLDA and KFDA scatter plot matrices are displayed in Fig-
ure 10.2, Figure 10.3 and Figure 10.4, respectively.
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Figure 10.2: The LPP scatter plot matrix of the combined features from
data set I. The 12 persons of data set I are displayed by different colors
and symbols.
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Figure 10.3: The FLDA scatter plot matrix of the combined features
from data set I. The 12 persons of data set I are displayed by different
colors and symbols.
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Figure 10.4: The KFDA scatter plot matrix of the combined features
from data set I. The 12 persons of data set I are displayed by different
colors and symbols.
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10.2 Face Identification Tests

The following face identification tests are conducted by dividing data set I

into a training set and a test set. The training set is used to construct the fea-
ture space (as described in the previous section) as well as used by the nearest
neighbor algorithm to classify new samples. The test set is classified by the
nearest neighbor algorithm from which the false identification rates are calcu-
lated.

10.2.1 50/50 Test

The 50/50 test uses the same scheme of dividing data set I into training set
and test set described in Section 10.1. The false identification rates are display
in Figure 10.5.
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Figure 10.5: False identification rates obtained from the 50/50 test,
where data set I is divided into two equal sized sets, a training set and
a test set. The false identification rates are plotted as a function of the
feature space dimension.
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10.2.2 Ten-fold Cross-validation Test

In the ten-fold cross-validation test data set I is divided into ten folds, each
fold consisting of one image of all persons. The cross-validation test was per-
formed at each of the ten iterations by using nine folds as the training set while
using the remaining fold as test set. The false identification rates are display in
Figure 10.6.
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Figure 10.6: The false identification rates obtained from the ten-fold
cross-validation test. The false identification rates are plotted as a function
of the feature space dimension.
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10.3 Discussion

Analysis of the scatter plot matrices, displayed in Figure 10.1, Figure 10.2,
Figure 10.3 and Figure 10.4 indicate that the methods LPP, FLDA and KFDA
improve the separability of the classes (persons) compared to PCA. Though,
LPP seems to have a problem separating two of the classes. This is supported
by the LPP FIR graphs (in Figure 10.5 and Figure 10.6) where the combined
feature shows a general FIR of 10%. In addition the shape feature display a
very high percentage of FIR in an interval of 10 to 80%.

These problems with the shape and combined features displayed by LPP are
probably due to the way the similarity matrix is constructed. In the current im-
plementation the nearness in the input space is defined by Euclidean distances,
which is not necessarily a meaningful measurement of a shape.

When using KFDA one has to consider the choice of a kernel function resulting
in a satisfying result. This choice is as described earlier still an open problem.
The parameter t in the chosen kernel function used in the presented tests has to
be adjusted when the KFDA method is used on a new data set. Another problem
when using KFDA compared to linear methods is the higher risk of overfitting
the training data, which in turn causes a drop in performance. KFDA as a
result can be considered “too flexible” from an implementation point of view.

Analysis of the FIR graphs shows that FLDA performs nearly as well as KFDA.
FLDA, in contrast to LPP and KFDA, does not contain any parameters needing
initializing, which makes FLDA a very robust method. Therefore, the design
of a new face recognition algorithm presented in the next chapter is built on
FLDA.

The problem of improving the similarity matrix in LPP is not pursued further
in this thesis.

The overall results show that the variation of data set I is very small.
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Part III

Development





Chapter 11

Multiple Individual

Discriminative Models

Typically, the techniques PCA, LPP, FLDA and KFDA are in the literature
classified with a nearest neighbor algorithm [40, 29, 44].

However, some inconvenience appears when testing the techniques using un-
known persons in the test set. In this case, a criterium has to be chosen to
decide whether or not an image of an specific person belongs to the training
set, e.g. only people with a Euclidean distance less than a given threshold are
considered as part of the training set. However, such a threshold should not
necessarily be the same for all classes (persons). The estimation of different
thresholds is not straightforward. Additional data are needed to estimate these.
In addition, it is a problem to determine the optimal dimensionality of the four
techniques described above.

In this chapter, a novel technique is proposed that addresses the inconveniences
described above. In this technique, denoted Multiple Individual Discriminative
Models (MIDM), the data are projected by FLDA into c one-dimensional spaces
instead of the “normal” FLDA (c−1)-dimensional space. Here, c is the number
of people in the data set.

The aim of each of the individual models, obtained by the projection of the
training set into the c one-dimensional spaces, is to characterize a given person
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uniquely, resulting in each of the individual models representing one person.
The multiple one-dimensional models allow statistical interpretation of the “de-
gree of membership” of a given person and allows detection of unknown persons
(faces). Furthermore, these individual models have several advantages in in-
terpretability, characterization, accuracy and easiness in updating one or more
models belonging to the MIDM.

11.1 Algorithm Description

The proposed algorithm is composed of two steps. The first step builds an
individual model for each person in the database using the photometrical and
geometrical information provided by the available images. Each model charac-
terizes a given person and discriminates the person from the other people in the
database. The second step carries out the identification. A classifier, which is
related to the standard Gaussian distribution, decides whether or not a facial
image belongs to a person in the database. In this section, the two steps of
the algorithm are described in detail. A diagram of the algorithm is displayed
in Figure 11.1. This diagram will be referred to during the description of the
algorithm to allow the reader to gain a deeper understanding.

11.1.1 Creations of the Individual Models

11.1.1.1 Obtaining the Geometry of the Face

The geometrical characterization of a given face is obtained by means of the
theory of statistical shape analysis [18]. In this theory, objects (faces) are rep-
resented by shapes.

Definition 11.1 A shape is, according to Kendall [33], all the geometrical in-
formation that remains when location, scale and rotational effects are filtered
out from an object.

In order to describe a shape, a set of landmarks or points of correspondence
matching between and within populations are placed on each face.

To obtain a shape representation according to the Definition 11.1, the obtained
landmarks are aligned in order to remove the location, rotational and scaling ef-
fects. To achieve this goal, the 2D Procrustes analysis is carried out (Figure 11.1
A).
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Figure 11.1: Overview of the MIDM algorithm. A: Landmark align-
ment using full Procrustes analysis. B: PCA conducted aligned landmarks
to remove redundancy. C: Texture normalization using global histogram
equalization. D: PCA conducted normalized texture to remove redundancy.
E: Combination of shape and texture feature information. F: PCA con-
ducted on combined features to remove redundancy. G & H: Process of
building the individual model using FLDA, where each person in turn are
left out of class 2 making the projection that discriminate that person.
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In order to remove redundancy in the shape data, PCA is applied to the aligned
landmarks (Figure 11.1 B).

11.1.1.2 Texture Formulation

To form a complete model of the face appearance the MIDM algorithm captures
the photometric information provided by pixels. In order to collect this texture
representation a Delaunay triangulation [46] of every shape is obtained. The
Delaunay triangulation connects the aligned landmark set of each image by a
mesh of triangles, so no triangle has any of the other points of the landmark set
inside its circumcircle. The Delaunay triangulation of the landmarks scheme in
data set II is displayed in Figure 11.2.
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Figure 11.2: Example of a Delaunay triangulation of the landmark
scheme in data set II.

The Delaunay triangulation obtained for each image is warped onto the De-
launay triangulation of the mean shape. Formally, let I be a given image and
M the mean shape previously obtained. Let u1 = [x1, y1],u2 = [x2, y2] and
u3 = [x3, y3] denote the vertices of a triangle T in I, and let v1,v2 and v3 be
the associated vertices of the corresponding triangle in M . Given any internal
point û = [x, y] in the triangle T , the corresponding point in the associated
triangle in the mean shape can be written as v̂ = αv1 + βv2 + γv3 where
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α = 1 − (β + γ), (11.1)

β =
yx3 − x1y − x3y1 − y3x + x1y3 + xy1

−x2y3 + x2y1 + x1y3 + x3y2 − x3y1 − x1y2
, (11.2)

γ =
xy2 − xy1 − x1y2 − x2y + x2y1 + x1y

−x2y3 + x2y1 + x1y3 + x3y2 − x3y1 − x1y2
. (11.3)

This transformation extracts the same shape free image of a given face image as
produced by AAM in Section 7.2.5. A histogram equalization is applied to the
collected texture as described in Section 8.1.1 to reduce the effects of illumina-
tion differences. This histogram equalization is performed independently in each
of the three color channels (RGB) to reduce lightning artifacts. Afterwards, the
three color channels can be converted into gray scale if a more compact repre-
sentation is desirable (Figure 11.1 C). PCA is conducted on the texture data
to reduce dimensionality and data redundancy (Figure 11.1 D). The solution
to the memory problems due to the huge dimension of the covariance matrix is
solved as described in Section 9.1.2.

11.1.1.3 Combining Color and Geometry

The shape and texture features are combined in a matrix (Figure 11.1 E). In
order to remove correlation between shape and texture and to make the data
representation more compact a third PCA is performed on the combined shape
and texture matrix (Figure 11.1 F).

11.1.1.4 Building an Individual Model

Once the geometrical and photometrical information of the faces has been cap-
tured, the MIDM algorithm builds an individual model for each person in the
training set. Each individual model is built in two steps. First the training
set is divided into two groups, one representing a person i and one representing
persons other than i (Figure 11.1 G). Second FLDA is applied on the two groups
(Figure 11.1 H). This is repeated for every person in the training set, resulting
in individual models representing each person.
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11.1.2 Classification

In order to obtain a method to classify a given image, the different individual
models are first standardized. The standardization of model i = 1, . . . ,m is
based on two assumptions. First, the number of observations for person i is
much smaller than the number of the observations for all other people. Second
the projection of the other people follows a Gaussian distribution. The two
assumptions imply that the distribution of all the observations can be assumed
as a Gaussian distribution with outliers. The standardization of model i is then
achieved by transforming the projections into a standard Gaussian distribution,
keeping the projections of the person i positive. Formally, let x̄i be the mean of
the projections on model i, σi the standard deviation and xi,j the projection of
image j in model i. These projections are standardized by

x̂i,j = (xi,j − x̄i)/σi. (11.4)

If the standardized projections of the images corresponding to person i are
negative, then x̂i,j are replaced by −x̂i,j for all projections. This causes the
projections of the images corresponding to person i to be positive and far from
the mean of the Gaussian distribution.

Once the model i is standardized, the probability that a projected image belongs
to the person i is given by the value of the standard normal cumulative function
in the projected value. This is used to classify a given image. If it is assumed that
the image belongs to a person from the training set, the image is projected by
all the individual models of MIDM. The image is then classified as belonging to
the model that results in the largest probability. Furthermore, it is statistically
possible to decide whether or not a given person belongs to the training set.
This can be achieved by comparing the largest projection obtained in all the
models with a threshold. E.g. if a probability of 99.9% is required, a given image
will only be considered as belonging to the database, if the projection in one
of the individual models is higher than 3.1 standard deviations. This in turn
estimates the FAR to be 0.1%. It is not possible to estimate the FRR this way.
The estimation of FRR, like other classifiers, requires use of test data set.

11.2 Discussion

The MIDM technique is very robust and highly accurate (as shown later in
this thesis) and it is based on a very simple setup analyzing single 2D images.
Furthermore, the projected subspaces yield a very intuitive interpretation, i.e.
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a high projected value indicates a large probability of that image belonging to
the person that the model represents. The statistical classifier does not need
training. Instead the value of the threshold can be selected to achieve a desired
FAR, i.e. the FAR is 1−P(t) where P is the cumulative distribution function of
the standard normal distribution and t is the threshold in standard deviations.
However, it is possible to train the classifier if e.g. the optimal separation of the
imposter and the client classes is of interest (EER threshold). The performance
of MIDM is extensively reported in Chapter 13.
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Chapter 12

Reconstruction of 3D Face

from a 2D Image

In order to achieve better results in the face recognition process, face recognition
in three dimensions would be interesting, since the face is a three-dimensional
object. 3D data can be collected in various ways, as already described in Chap-
ter 4. However, using the knowledge of statistical shape analysis it could be very
interesting to investigate the extraction of 3D information from a 2D image using
prior knowledge of faces in 3D.

This chapter will consult this issue, using only frontal facial images. Since
the topic is on the edge of the scope of this thesis it will not be a conclusive
presentation of the area, but only a brief appetizer.

12.1 Algorithm Description

Extraction of the 3D information from a 2D image is based on the existence of a
statistical shape model of 3D faces, i.e. a Point Distribution Model (PDM) [11].
By use of PDM the information obtained from a 2D image of a face can be used
to reconstruct the third image dimension, by manipulating the PDM until an
optimal fit is achieved. The fit is calculated by projecting the already annotated
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landmarks in the 3D shape into 2D followed by calculation of the least-squares
distance to the 2D image landmarks. An illustration of this process is displayed
in Figure 12.1.

Figure 12.1: Process of projecting 3D landmarks into a 2D image, which
is used to calculate a fit of the 3D shape.

Since the PDM algorithm is only used on frontal images, the problem of estimat-
ing the pose of the 2D image to obtain the correct projection of the 3D model
is not considered here. The PDM is constructed from data set IV described
in Chapter 6 and is annotated by a seven landmark scheme (a subset of the
landmark scheme used in data set I). An example of depth retrieval from one
2D image is displayed in Figure 12.2.

The PDM is fitted to landmarks in 2D. However, features hidden by the pose
of the 2D image may not be reconstructed correctly in 3D. An example is the
curvature of the nose. It can not be seen from a 2D frontal image whether the
nose is convex or concave. This can be solved by analyzing multiple 2D images
of different facial poses. An example of this is displayed in Figure 12.3.
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(a)

(b)

Figure 12.2: Example of retrieved depth information from a 2D frontal
face image. (a) The 2D and 3D landmarks superimposed on the frontal
face. The 2D and 3D landmarks are plotted in red and green, respectively.
(b) The obtained 3D representation of the 2D image shown in (a).
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(a) (b)

(c)

Figure 12.3: Example of retrieved depth information from a 2D frontal
face image and a 2D profile face image. (a) and (b) The 2D and 3D land-
marks superimposed on the frontal face and a profile face image, respec-
tively. The 2D and 3D landmarks are plotted in red and green, respectively.
(c) The obtained 3D representation of the two 2D images shown in (a) and
(b).
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12.2 Discussion

No testing was performed to analyze how much the recognition is improved by
reconstructing a 3D image from a 2D image. Data set IV only contains 24
individuals, and as a result it does not contain enough variation to capture new
faces differently from the images of data set IV. However, the reconstructions
performed are very promising, and 3D reconstruction is definitely an area of
interest when performing future work on face recognition.
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Chapter 13

Experimental Results II

13.1 Overview

In this chapter an evaluation of the MIDM algorithm proposed in Chapter 11
is performed. The evaluation is divided into two parts as described in the
following:

13.1.1 Initial Evaluation Tests

The initial evaluation will be done by performing the following tests on the
MIDM algorithm using data set II:

• Identification test. This test will show the performance of MIDM
against a regular Fisherface with a nearest neighbor classifier. In addition,
this experiment aims at testing whether or not the shape information is
important to the recognition process.

• Verification test. In this test a 25-fold cross-validation scheme is used
to ascertain the FAR and FRR for data set II of the MIDM.
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• Robustness test. By superimposing spectacles on a group of people it is
tested whether or not these persons identities obtained by MIDM change.

Furthermore, the pixels most important in the recognition process are identified
for selected models (persons) in the MIDM.

13.1.2 Lausanne Performance Tests

These following tests are conducted on the MIDM algorithm using data set

III according to the Lausanne protocol [39], and the obtained results are to be
used in the participation in the ICBA2006 Face Verification Contest in Hong
Kong in January, 2006:

• A Verification test using the Lausanne protocol configuration I with
manual annotation of landmarks.

• A Verification test using the Lausanne protocol configuration II with
manual annotation of landmarks.

• A Verification test using the Lausanne protocol configuration I with
automatic annotation of landmarks.

• A Verification test using the Lausanne protocol configuration II with
automatic annotation of landmarks.

The obtained results will be compared with results reported in the AVBPA20031

Face Verification Contest, 2003.

13.2 Initial Evaluation Tests

Data set II is used for all the initial evaluation tests.

13.2.1 Identification Test

The first test conducted is an identification test, testing the performance of
the MIDM method with respect to the Fisherfaces method in terms of correct

1The Audio Video Biometric Person Authentication Conference, 2003.
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classification rates.

In order to evaluate the importance of the geometrical information, the Fisher-
face technique was modified by replacing the texture data with the shape data.
In addition, the shape data and the texture data were combined. The two mod-
ified techniques are referred to as Fishershape and Fishercombined from now
on. In addition, the three Fisher-methods are implemented using the shape free
images instead of normal images, which are generally used by Fisherfaces. This
will make the tests more compatible, as they use the same data.

The Euclidean Nearest Neighbor algorithm was used as classifier in the Fisher
methods. The MIDM method classified images as belonging to the model yield-
ing the highest probability of recognition as described in Section 11.1.2.

The images from data set II were divided into two sets. Images from the first
session were used to build the individual models, and images from the second
session were subsequently used to test the performance.

The MIDM method was built using the geometrical (shape), the photometrical
(texture) and the combined information of each face corresponding to Fisher-
shape, Fisherface and Fishercombined, respectively.

The test was repeated exchanging the roles of the training and test sets, i.e.
images from session two was used as training set and images from session one
as test set. The correct identification rates from using the different techniques
are shown in Table 13.1.

The MIDM method shows a higher rate of performance than the Fisher methods
(Table 13.1). Moreover, by analyzing the obtained results in Table 13.1 it is
indicated that by use of texture data one obtains a higher accuracy than by using
shape data. This implies that the information contained in the texture data is
more significant than the information included in the shape data. However, the
information contained in the shape data is not insignificant, since the highest
correct classification rate is obtained when combining both shape and texture.

The importance of geometrical information in facial recognition can be further
substantiated by retrieving the shape free image of a person from data set I

who has a very slim face. When looking at the normal image and the shape free
image displayed in Figure 13.1 even humans can have difficulties determining
whether or not the two images are of the same person. Though, the difference
between an shape and the mean shape is not always as significant as displayed

2Number of misclassified images reported in parentheses.
3The Fisher-methods are modified to use shape free images.
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Method Input features Correct Identification Rate2

MIDM method Shape 86.4% (95)
MIDM method Texture 99.6% (3)
MIDM method Texture and Shape 99.9% (1)
Fishershape3 Shape 85.9% (99)
Fisherface3 Texture 96.9% (22)

Fishercombined3 Texture and Shape 97.1% (20)

Table 13.1: Correct identification rates.

in Figure 13.1.

(a) (b)

Figure 13.1: Importance of geometrical information. (a) the facial region
of an image in data set I, (b) the facial region from (a) displayed as a
shape free image (warped into the meanshape).

13.2.2 The Important Image Regions

An interesting property of the MIDM algorithm is that it is capable of deter-
mining the most discriminative features of a given person. To illustrate this,
four models were built using only the texture information. The pixels of the
faces corresponding to these models are displayed in Figure 13.2. Here the 10%,
15% and 25% pixels of the weights of highest value are displayed in red. By
analyzing Figure 13.2 it is clear that the most important discriminating features
include eyes, noses, spectacles, moles and beards. Notice that the MIDM algo-
rithm detects the spectacles and the two moles of person 43 as discriminating
features.
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Person nr: 3 10% 15% 25%

Person nr: 16 10% 15% 25%

Person nr: 31 10% 15% 25%

Person nr: 43 10% 15% 25%

Figure 13.2: The 10%, 15% and 25% pixels weights of highest value
most important for discrimination between the test persons of data set

II. The mentioned pixels are shown in red.
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13.2.3 Verification Test

A verification test was performed to verify whether or not the MIDM algorithm
can be incorporated into a biometrical facial recognition scheme, i.e. whether or
not MIDM can identify people of the training set as well as detecting unknown
people.

A 25-fold cross-validation scheme was conducted in order to evaluate the per-
formance of MIDM. Seven face images of one male and seven face images of
one female of data set II were left out in each cross-validation iteration, i.e.
images of 48 people were used in the training of the MIDM algorithm. Just to
summarize, a total of seven images per person were included in the training set.
The “left out” male and female were considered as imposters (unknowns).

The verification test was conducted in two scenarios:

• Best case scenario.
In the best case scenario the imposter is obligated to try out all known
identities in the training set in the attempt to be recognized by the MIDM.
This is necessary since the imposters in the best case scenario does not
know which person in the training set he/she resembles most. The 25-fold
cross-validation results in 8400 client validations (25 folds × 48 persons ×
7 images) and 16800 imposter validations (25 folds × 2 persons × 48 total
number of identities × 7 images).

• Worst case scenario.
In the worst case scenario the imposters do know which person in the
training set they reassemble most. The imposters will therefore attempt
to be recognized by the MIDM only using this identity. In this scenario
the 25-fold cross-validation results in 8400 client validations (25 folds ×
48 persons × 7 images) and 350 imposter validations (25 folds × 2 persons
× 7 images).

The average False Acceptance Rate (FAR) and average False Rejection Rate
(FRR) graphs obtained in the best and worst case scenarios as well as the corre-
sponding average Receiver Operating Characteristic curve (ROC) are displayed
in Figure 13.3.

The verification test shows a high degree of separability between the client and
imposter populations for both scenarios. The highest degree of separation occurs
at the Equal Error Rate, yielding FAR and FRR at 0.3% and 1.8% obtained for
the best and worst case scenario, respectively.
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Figure 13.3: Best case (a. & b.) and worst case (c. & d.) scenario
verification tests. (a) & (c) False Acceptance Rate and False Rejections
Rate graphs obtained by the 25-fold cross-validation for the best and worst
case scenario, respectively. (b) & (d) Receiver Operating Characteristic
(ROC) curve obtained by the 25-fold cross-validation for the best and worst
case scenario, respectively. Notice that only the top left part of the ROC
curves is displayed.
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In addition, if the algorithm belongs to a security scheme, the degree of accessi-
bility can be changed by increasing or decreasing the threshold of the classifier,
e.g. if a false rejection rate of 5.5% is allowed in the worst case scenario a 0% false
acceptance rate is obtained. This accommodates biometrical security systems
requiring a high level of access control.

13.2.4 Robustness Test

Finally, a test is conducted in order to estimate the robustness of the MIDM
method. In addition, the test aims at settling that the MIDM method not only
discriminates on removable features, such as spectacles, but uses permanent
facial features in the discrimination process, as well. To achieve this goal eight
people (four male and four female) are synthetically fitted with four different
types of spectacles. The spectacles were obtained from people belonging to data

set II. By fitting the eight people with the four types of spectacles 32 synthetic
images was obtained.

The test was conducted in two steps.

• First, all images in session of data set II, except for images of the eight
selected persons, were used to build the MIDM. The goal is to examine
whether or not the eight selected people are considered as belonging to the
training set. The results show that none of the 32 synthetic images are
misclassified when considering a threshold of 3.1 standard deviations i.e.
the FAR will approximately be 0.1%. This is displayed in Figure 13.4 II,
where the projections of one of the eight unknown people into the different
models of the MIDM are displayed. The figure shows, that when the
displayed person is unknown to the MIDM, projections of this person onto
the individual models in the MIDM are all under the selected threshold of
3.1. As a result the MIDM does not classify any of the unknown people
as belonging to the training set.

• Second, the eight people not included in the training set in step one are
now included in the process of building the individuals models. Though,
only images of the eight people without spectacles are included. The goal
is to analyze whether or not MIDM still is capable of recognizing people
as belonging to the training set when slight changes in their appearance
have occurred. Here, slight changes in appearance of the eight people are
modelled by the 32 synthetic images. The 32 synthetic images of the eight
persons were classified correctly by the MIDM method. In Figure 13.4 III
this is observed for one of the eight persons, where the projections onto
the individual model of this person clearly surpass the threshold of 3.1.
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Session Shot Clients Impostors

1
1 Training set (Clients)
2 Evaluation set (Clients)

2
1 Training set (Clients)
2 Evaluation set (Clients) Evaluation set Test set

3
1 Training set (Clients) (Imposters) (Imposters)
2 Evaluation set (Clients)

4
1

Test set (Clients)
2

Table 13.2: Partitioning of data set III according to the Lausanne
protocol configuration I.

In addition, the projections of the person fitted with spectacles into the
individual models of the spectacle owners do not change noteworthily.

Similar results were obtained for all eight people selected to wear spectacles
as seen in Figure 13.4. These results show that MIDM is a highly suitable
candidate to be incorporated into a biometrical security system.

13.3 Lausanne Performance Tests

The Lausanne protocol Luettin et al. [39] describes how to test the XM2VTS
facial database (data set III), to obtain results which can be compared to
results obtained by other methods.

The Lausanne protocol uses two configurations to divide the 295 individuals
of data set III into three groups consisting of 200 clients, 25 evaluation im-
posters and 70 testing imposters, respectively. The client group is further di-
vided into three groups consisting of training clients, evaluation clients and
testing clients, respectively. The five groups are denoted training set (training
clients), evaluation set (evaluation clients + imposters) and test set (test clients
+ imposters) in the following. The partitioning are listed in Table 13.2 and
Table 13.3 for the Lausanne protocol configuration I and II, respectively.

The performance tests are conducted by training the MIDM method using the
training set. The threshold for the classifier was selected as the value at the EER
for the evaluation set. The FAR and FRR of the test set were then calculated
using this threshold.
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Figure 13.4: Effect of change in a persons appearance, illustrated by
superimposing spectacles onto a person from data set II not wearing
spectacles. (I) Original facial image without spectacles followed by four
images fitted with four types of spectacles. (II) The corresponding projec-
tions into the MIDM models obtained where the person is unknown to the
MIDM. (III) The corresponding projections into the MIDM models obtained
where the person is known to the MIDM. The red columns in the plots (II
& III) represents the model of the person from which the spectacles used
to superimpose were extracted.
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Session Shot Clients Impostors

1
1

Training set (Clients)
2

2
1
2 Evaluation set Test set

3
1

Evaluation set (Clients)
(Imposters) (Imposters)

2

4
1

Test set (Clients)
2

Table 13.3: Partitioning of data set III according to the Lausanne
protocol configuration II.

13.3.1 Participants in the Face Verification Contest, 2003

The participants in the Face Verification Contest, 2003 originated from seven
institutions around the world:

• University of Surrey, UK (UniS).

• University of Kent, UK (UniK).

• The Dalle Molle Institute for Perceptual Artificial Intelligence, Switzerland
(IDIAP).

• Universite Catholique de Louvain, Belgium (UCL).

• Mahanakron University of Technology, Thailand (MUT).

• Universidad Politcnica de Valencia, Spain (UPV).

• Tübitak Bilten, Turkey (TB).

In the following section results obtained from the MIDM are compared to the
results obtained during the Face Verification Contest, 2003.
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Evaluation Set Test Set
Method FAR FRR TER FAR FRR TER
UniS 1 - - 5.00 2.30 2.50 4.80

IDIAP 1 1.67 1.67 3.34 1.748 2.000 3.75
IDIAP 2 0.75 2.00 2.75 1.84 1.50 3.34
UniS 2 1.16 1.05 2.21 0.97 0.50 1.47
UCL 1.17 1.17 2.34 1.71 1.50 3.21
TB 2.34 1.00 3.34 5.61 5.75 11.36

UniS 3 0.0 0.0 0.0 0.86 0.75 1.61
UniS 4 0.33 1.33 1.36 0.48 1.00 1.48

MIDM 1 0.49 0.5 0.99 0.33 0.75 1.08
MIDM 2 0.31 0.33 0.64 0.27 0.75 1.02

Table 13.4: Error rates according to the Lausanne protocol configura-
tion I with manual annotation of landmarks. The three highest performing
methods in term of Total Error Rate (TER) are highlighted with consecutive
shades of gray. Here, dark gray, medium gray and light gray indicates the
highest, second highest and third highest performing method, respectively.

13.3.2 Results

The MIDM algorithm was implemented in two versions for use in testing of the
data set III (the XM2VTS database) according to the Lausanne protocol.
The two versions are denoted MIDM 1 and MIDM 2 and implemented as:

• MIDM 1.
The MIDM 1 version only rejects an imposter from the score of the identity
the imposter uses in the attempt to gain access.

• MIDM 2.
The MIDM 2 version is a improvement of the MIDM 1. It rejects an
imposter from the score of the identity the imposter uses in the attempt
to gain access as well as rejecting the imposter if he/she scores higher in
another identity of the MIDM 2 than in the one the imposter is claiming.
This can be illustrated by a situation where an imposter named Bo tries
to gain access using the identity Alice. The MIDM 2 evaluates Bo’s score
against all identities in the MIDM 2 database, and concludes that Bo
resembles Bob more than Alice, i.e. the system rejects Bo because he
resembles another identity of the MIDM 2 more than the one he uses in
the attempt to gain access.

The results reported in Messer et al. [42] and results obtained from using the
two versions of the MIDM algoritm, MIDM 1 and 2, are listed in Table 13.4 to
Table 13.7.
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Evaluation Set Test Set
Method FAR FRR TER FAR FRR TER
IDIAP 1 1.25 1.25 2.5 1.465 2.250 3.715
IDIAP 2 0.75 0.75 1.50 1.04 0.25 1.29

TB 1.10 0.50 1.60 3.22 4.50 7.72
UniS 4 0.33 0.75 1.08 0.25 0.50 0.75

MIDM 1 0.25 0.25 0.5 0.2 0.75 0.95
MIDM 2 0.21 0.25 0.46 0.21 0.5 0.71

Table 13.5: Error rates according to the Lausanne protocol configuration
II with manual annotation of landmarks. The three highest performing
methods in term of Total Error Rate (TER) are highlighted with consecutive
shades of gray. Here, dark gray, medium gray and light gray indicates the
highest, second highest and third highest performing method, respectively.

Evaluation Set Test Set
Method FAR FRR TER FAR FRR TER
UniS 1 - - 14.0 5.8 7.3 13.1

IDIAP 2 1.21 2.00 3.21 1.95 2.75 4.70
UPV 1.33 1.33 2.66 1.23 2.75 3.98

UniS 4 0.82 4.16 4.98 1.36 2.5 3.86

MIDM 1 0.5 0.5 1 0.42 1.25 1.67
MIDM 2 0.34 0.5 0.84 0.33 1.25 1.58

Table 13.6: Error rates according to the Lausanne protocol configuration
I with automatic annotation of landmarks (Annotations are obtained as
described in Section 6.2.3). The three highest performing methods in term
of Total Error Rate (TER) are highlighted with consecutive shades of gray.
Here, dark gray, medium gray and light gray indicates the highest, second
highest and third highest performing method, respectively.

Evaluation Set Test Set
Method FAR FRR TER FAR FRR TER
IDIAP 2 1.25 1.20 2.45 1.35 0.75 2.10

UPV 1.75 1.75 3.50 1.55 0.75 2.30
UniS 4 0.63 2.25 2.88 1.36 2.0 3.36

MIDM 1 0.36 0.67 1.03 0.47 0.75 1.22
MIDM 2 0.28 0.5 0.78 0.28 0.75 1.03

Table 13.7: Error rates according to the Lausanne protocol configuration
II with automatic annotation of landmarks (Annotations are obtained as
described in Section 6.2.3). The three highest performing methods in term
of Total Error Rate (TER) are highlighted with consecutive shades of gray.
Here, dark gray, medium gray and light gray indicates the highest, second
highest and third highest performing method, respectively.
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The TER results obtained from the two MIDM methods and the all over best
performing method presented in the Face Verification Contest, 2003, are taken
from Table 13.4 to Table 13.7 and shown in a bar plot in Figure 13.5. The all
over best performing method presented in the Face Verification Contest, 2003,
was UniS 4, presented by the University of Surrey.
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Figure 13.5: A bar plot of the TER obtained from the two MIDM meth-
ods and from UniS 4.

The results will be discussed in the following section.

13.4 Discussion

From the results obtained in the identification test in Section 13.2.1 it is clear
that the best performance of MIDM is obtained when both the geometrical and
the photometrical information are used. The MIDM algorithm has a higher rate
of performance than the Fisherface method (Table 13.1) and has the following
advantages:

• MIDM is very intuitive. The process used in MIDM to determine whether
or not a person is classified as belonging to a specific model of the MIDM
is a one-dimensional problem.

• MIDM is highly flexible and changes in one model do not interfere with
the other models of the MIDM.

• The scalability of MIDM is very high, since the MIDM method can be
easily parallelized to use in a cluster of computers.
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• No training is needed for the classifier to estimate the FAR. (Estimating
FRR requires training).

In Section 13.2.3 a verification test (a 25-fold cross-validation of data set II)
was performed in both a best and a worst case scenario yielding Equal Error
Rates as low as 0.3 and 1.8%, respectively. This is a very satisfying result
obtained from an image data set as large as 700 images.

From the robustness test in Section 13.2.4 a satisfying result was obtained.
Changing a persons appearance (i.e. whether or not a person wears spectacles
as well as change in the appearance of the spectacles.) does not result in change
of identity. This result points to the conclusion that face databases should be
captured omitting spectacles.

The performance test in Section 13.3 showed that the MIDM algorithm is su-
perior to all the participating methods in the Face Verification Contest in 2003
(Figure 13.5).

The MIDM algorithm proposed in Chapter 11 satisfies the demands settled at
the beginning of this thesis, i.e. the objective was to design and develop a robust
facial recognition algorithm constructed in a simple and easy adaptable setup.
The results presented in this chapter shows that the MIDM algorithm is a robust
and superior face recognition algorithm that is a highly qualified candidate to
be used in a facial recognition application.



120 Experimental Results II



Part IV

Implementation





Chapter 14

Implementation

14.1 Overview

This chapter describes the different implementations developed during this the-
sis. These are:

• FaceRec, a Delphi 7 implementation of an automatic facial recognition
process using AAM and MIDM.

• A DLL of selected functions of the AAM-API [51].

• A small C++ program used to collect the shape free images and save these
as texture vectors in a Matlab format.

• A Matlab function used to construct the MIDM Model File.

• Various Matlab functions of the described topics in this thesis.

A CD-ROM is enclosed containing all the above mentioned implementations,
source code and digital versions of this thesis.

The countless Matlab scripts used to generate the statistical results and the 3D
reconstruction are not included. The Matlab scripts are very comprehensive
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and left out, since they are very machine specific. The specific content of the
CD-ROM is listed in Appendix F.

14.2 FaceRec

FaceRec is a Delphi 7 implementation of a real time automatic facial recogni-
tion system. FaceRec is implemented for the face recognition task (one to many
search) and is not expected to encounter unknown persons. FaceRec uses AAM
for face detection and MIDM for face recognition. However, due to time con-
straints only texture information is used for face recognition by the MIDM. This
abolishes the need to implement solution algorithms to Procrustes analysis as
well as the eigenvalue problem in Delphi. A screen shot of FaceRec is displayed
in Figure 14.1. A quick user guide is provided in Appendix D.

Figure 14.1: The main window of the FaceRec application, which con-
tains an input from a webcam, the shape free image of a captured face, the
class image of the recognized person, a control panel and an AAM/MIDM
information panel.

A weakness of MIDM is that it is only trained to handle facial images and the
algorithm assumes that the face detection only provides facial images. This
causes a problem when MIDM is introduced to non-facial or half facial images.
A snapshot of a false recognition due to a non-facial image is displayed in Fig-
ure 14.2. It is recommended that the sensitivity of the AAM is kept so high
that only faces are captured. A AAM Model File and a MIDM Model File
built using the IMM Frontal Face Database (data set I) is included on the
CD-ROM, however face detection (AAM) will only be optimal when used in the
same lighting condition as the pictures used to build the AAM Model File.
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Figure 14.2: The FaceRec application obtaining a false recognition due
to a non-facial image.

14.2.1 FaceRec Requirements

The FaceRec application is designed for the windows platform and is fully tested
on a Windows-XP machine. FaceRec requires a webcam for image acquisition
and is compatible with all webcam drivers recognized by windows. For face de-
tection an AAM Model File (.amf) must be provided, which can be constructed
by the AAM-API. For face recognition a MIDM Model File (.mmf) must be
provided, which can be constructed by the makeMIDModel.m Matlab function
included on the inclosed CD-ROM.

14.2.2 AAM-API DLL

A DLL was developed enabling usage of selected classes/functions of the AAM-
API C++ implementation in a Delphi 7 application. The aam api.dll and
source code are included on the enclosed CD-ROM. A table of the included
functions and a short description are provided in Appendix E. For more in-
formation please consult the source code and the AAM-API documentation.
Notice that this DLL incorporates the AAM-API color model, so when building
an AAM Model File be sure to use the color option.
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14.2.3 Make MIDM Model File

The Matlab function makeMIDModel.m is used to construct the MIDM Model
File used by FaceRec. The function only implements the MIDM algorithm for
texture information. In order to retrieve texture vectors from free shape images
a small C++ application is developed. For more information please consult the
source code or type “help makeMIDModel” in Matlab.

14.2.3.1 Get Texture Vectors

The getTextureVectors.exe C++ application opens an AAM Model File and
saves the texture vectors of the free shape images obtained from all images
residing in the same folder as the AAM Model File, in a Matlab format.

14.3 Matlab Functions

The following Matlab functions were developed during this thesis and are in-
cluded on the enclosed CD-ROM for possible future use.

• flda.m

Fisher linear discriminant analysis, described in Section 9.2.

• histEqImage.m

Histogram equalization of an image, described in Section 8.1.1.

• kNearNeighbor.m

k nearest neighbor algorithm.

• lightCompensationModels.m

Removal of specific illumination conditions based on illumination compen-
sation models, as described in Section 8.1.2.

• lpp.m

Locality preserving projections, described in Section 9.3.

• pca minMem.m

Principal component analysis, using the method described in Section 9.1.2,
to achieve a speedup and reduction in memory usage.
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• pca numberOfEigenvectors.m

This function calculates the number of eigenvectors needed to capture a
certain percentage of the image variance, as described in Eq. 7.2.

pca minMem.m and pca numberOfEigenvectors.m are used by makeMIDModel.m.
The readasf.m Matlab function distributed with the AAM-API for reading asf

files is also included in the inclosed CD-ROM. The results in Chapter 10 for
the KFDA method was obtained by the Generalized Discriminant Analysis GDA
Matlab package provided by Baudat et al. [3].

14.4 Pitfalls

Two tricky issues of implementation are highlighted in the following, passing
arrays and the Matlab eig function.

14.4.1 Passing Arrays

When passing an array from Delphi to C++ the array is received by C++ as
a array pointer and the length of the array. An example is provided in the
following by the function in the aam api.dll for retrieving the center of gravity
of a shape:

Call from Delphi:

procedure shapeCOG_dll(shape:CAAMShapeHandle;

var shapeCOG : array of double); stdcall;

Function in the DLL (C++):

void __declspec(dllexport) shapeCOG(CAAMShapeHandle shape,

double *shapeCOG, int arraylength);

14.4.2 The Matlab Eig Function

When solving the eigenvalue problem in Matlab by using the function eig one
has to consider that Matlab release 14 (used in this thesis) does not guarantee
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that eigenvalues and eigenvectors are sorted in ascending order (which was the
case for Matlab release 13). To overcome this the following code snippet can be
used:

[eigV eigD]=eig(covarianceMatrix);

%Most important eigenvalue at buttom (right) Needs

%to be sorted, there is a "bug" (change) in Matlab R 14 eig.

[sorted I] = sort(sum(eigD));

eigV = eigV(:,I);

eigD = diag(sorted);
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Discussion





Chapter 15

Future Work

The following sections describe interesting areas which could improve the facial
recognition of the MIDM algorithm.

15.1 Light Normalization

One way to improve the robustness and flexibility of the MIDM algorithm is
to improve light normalization/correlation in the preprocess step. Looking into
methods that can remove specific light sources leaving the facial image in a
diffuse lighting is very interesting and can lead to the following improvements:

• Successful implementation of the MIDM algorithm in environments with
large variation in lighting conditions.

• An increase in performance of the MIDM algorithm, since it does not need
to be trained to be capable of handling multi-lighting conditions.

• The enrollment of new persons in the MIDM scheme would be a much
simpler and more robust process.
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15.2 Face Detection

From an implementation point of view proper face detection is very important
in a face recognition process. The performance of a face recognition scheme can
be notably improved by minimizing the false detection of faces. As described
in Chapter 14 the MIDM algorithm shows a weakness when it is presented to
a non-facial image, since it is not trained to handle the variation of non-facial
images, resulting in a possible misclassification. In addition, the face detection
algorithm (AAM) used in the implementation described in Chapter 14 is very
sensitive to specific lighting condition, which causes a problem. Decreasing the
AAM sensitivity towards specific lighting conditions would be an area of great
interest.

15.3 3D Facial Reconstruction

As described in Chapter 12 facial reconstruction in 3D from 2D images is a very
interesting area. The end goal is extraction of more discriminative 3D informa-
tion from which a better face recognition performance could be obtained com-
pared to that from 2D images. Reconstruction and recognition of not frontal face
images through 3D images are of great interest as well. The interest in this area
is not limited to facial recognition, since reconstruction of a three-dimensional
shape without use of 3D scanners would be useable in many applications as well.



Chapter 16

Discussion

16.1 Summary of Main Contributions

The following four sections describe the main contributions of this thesis to
facial recognition.

16.1.1 IMM Frontal Face Database

As a part of this thesis the IMM Frontal Face Database was constructed for use
in the initial testing of feature extraction methods. The database consists of 120
images of 12 persons and is described in detail in Appendix A. The database only
contains small variation (in term of facial poses, illumination conditions, etc.),
which makes it an ideal database when working in a low-dimensional feature
space, e.g. in dimension one to five. However, to obtain reliable performance
tests one need to use other databases with more variation.
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16.1.2 The MIDM Algorithm

A central part in this thesis is the development of the Multiple Individual Dis-
criminative Models (MIDM) algorithm, as described in Chapter 11. MIDM is
a feature extraction and identity matching algorithm, which has been proven
very robust and adaptive (see Chapter 13).

16.1.3 A Delphi Implementation

A Delphi implementation of an automated face recognition scheme was con-
structed as described in Chapter 14. The implementation includes a DLL, in-
corporating a C++ implementation of Active Appearance Models (AAM-API
[51]). The implementation is designed for the windows platform and requires a
webcam for image acquisition.

16.1.4 Matlab Functions

The following Matlab functions were constructed and used in this thesis:

• flda.m

Fisher linear discriminant analysis, described in Section 9.2.

• histEqImage.m

Histogram equalization of an image, described in Section 8.1.1.

• kNearNeighbor.m

k nearest neighbor algorithm.

• lightCompensationModels.m

Removal of specific illumination conditions based on illumination compen-
sation models, as described in Section 8.1.2.

• lpp.m

Locality preserving projections, described in Section 9.3.

• pca minMem.m

Principal component analysis, using the method described in Section 9.1.2,
to achieve a speedup and reduction in memory usage.
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16.2 Conclusion

The increase in complexity in consumer goods such as automobiles and home
appliances provides for a new market for technologies such as face recognition.
Additionally, the recent events in the world has spurred a public demand for
security and safety in public places; demands that could be partially met by
deployment of these technologies.

The four objectives of this thesis were: To discuss and summarize the process
of facial recognition, to look at currently available facial recognition techniques,
to design and develop a robust facial recognition algorithm and finally an im-
plementation of this new algorithm.

In Chapter 2 to Chapter 10 this thesis presents a comprehensive overview of the
area of facial recognition, satisfying the two first objectives. The third objective
of this thesis is satisfied by the work presented in Chapter 11 to Chapter 13
by the design and development of MIDM, a new feature extraction and identity
matching algorithm. By tests in the mentioned chapters MIDM has been proven
superior to all participating methods in the Face Verification Contest at The
Audio Video Biometric Person Authentication Conference in 2003. MIDM is to
participate in the Face Verification Contest at the International Conference on
Biometrics in Hong Kong in January, 2006.

The last objective is satisfied by the work presented in Chapter 14. The im-
plementation of the MIDM algorithm does not require any special hardware
besides a webcam for collection of input images.

Though MIDM has been developed to be used in the process of facial recognition
the algorithm can easily be adapted to recognize other objects. This makes
MIDM a useful algorithm in more than one sense.

With the completion of this thesis, an important step in addressing the quality
and reliability of face recognition schemes has been completed.
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The IMM Frontal Fa
e DatabaseAn Annotated Dataset of 120 Frontal Fa
e ImagesJens Fagertun and Mikkel B. StegmannInformati
s and Mathemati
al Modelling, Te
hni
al University of DenmarkRi
hard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby, Denmark29. August 2005Abstra
tThis note des
ribes a data set 
onsisting of 120 annotated mono
ular images of 12 di�erentfrontal human fa
es. Points of 
orresponden
e are pla
ed on ea
h image so the data set 
an bereadily used for building statisti
al models of shape. Format spe
i�
ations and terms of use arealso given in this note.Keywords: Annotated image data set, frontal fa
e images, statisti
al models of shape.1 Data Set Des
riptionThis database 
onsists of 12 people (all male). A total of 10 frontal fa
e photos has been re
ordedof ea
h person. The data set is 
ontaining di�erent fa
ial poses 
aptured over a short period oftime, with a minimum of varian
e in lighting, 
amera position, et
.All photos are annotated with landmarks de�ning the eyebrows, eyes, nose, mouth and jaw,see Figure 1. The annotation of ea
h photo is stored in the ASF format, des
ribed in AppendixA.2 Spe
i�
ations2.1 General Spe
i�
ations2.1.1 Spe
i�
ations of Test PersonsAll test persons are males, not wearing glasses, hats or other a

essories.2.1.2 Spe
i�
ations of Fa
ial ExpressionsTable 1 lists the fa
ial expressions 
aptured in this data set.Fa
ial expressions Des
riptionNo expression The normal fa
ial poseRelaxed happy Smiling vaguely (lips 
losed)Relaxed thinking The fa
ial expression is a little tense (try to multiply 57*9 ;
)Table 1: Spe
i�
ations of fa
ial expressions.1
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Figure 1: The 73 landmarks annotation de�ning the fa
ial features; eye-brows, eyes, nose, mouth and jaw.
2



The IMM Frontal Face Database 1472.1.3 Image Format and NamingThe images are in JPEG format and named XX_YY.jpg where XX is the person id and YY the photonumber. Table 2 shows the 
orresponden
e between the photo number and the fa
ial expression.Photo number Fa
ial expression01 to 06 No expression07 to 08 Relaxed happy09 to 10 Relaxed thinkingTable 2: Photo number spe
i�
ation.2.1.4 Annotation Spe
i�
ationsAll photos were annotated with 73 landmarks. Table 3 spe
i�es the 
orresponden
e betweenannotation landmarks and fa
ial features. For the pre
ise landmark pla
ements see Figure 1.Fa
ial Features Annotation landmarksRight eyebrow 1 - 8Left eyebrow 9 - 16Right eye 17 - 24Left eye 25 - 32Right eyes pupil 33Left eyes pupil 34Nose 35 - 46Mouth 47 - 62Jaw 63 - 73Table 3: The 73 landmarks annotation de�ning the fa
ial features; eyebrows,eyes, nose, mouth and jaw.2.2 Studio Spe
i�
ationsFigure 2 displays the studio setup.2.2.1 Spe
i�
ation of Ba
kdropIn this data set a white proje
tor s
reen is used as ba
kdrop, whi
h is a uniform nonre�e
tingsurfa
e, distinguishable from the test persons skin, hair and 
lothes. The 
amera lens has to beparallel to the ba
kground.2.2.2 Spe
i�
ations of Camera and Person Pla
ementThe person was sitting down on an o�
e 
hair and �lmed with a straight ba
k. The 
amera waspla
ed in the same height as the test person eyes. The fa
e of the test person was parallel tothe ba
kground and the 
amera lens. An example of a full size image is shown in Figure 3. The
amera 
aptures additional spa
e above and below the head of the test person in order to insure,that all test persons 
an be re
orded without altering the studio setup.2.2.3 Spe
i�
ations of LightThe di�use light is 
oming solely from two spot lights. The light was boun
ed o� using whiteumbrellas. In the studio there was no interferen
e from sun light, room light et
.3
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Figure 2: Studio setup: Height of the spots is from �oor to bulb. Height ofthe 
amera is from �oor to 
enter of lens.

Figure 3: Example of a full size image.4



The IMM Frontal Face Database 1492.3 Te
hni
al Spe
i�
ations2.3.1 Camera Spe
i�
ationsName Sony - Cyber-shotImage size 5.0 megapixelsModel no DSC-F7172.3.2 Image Spe
i�
ationsFo
al length 48 mm1Compression Fine/Normal (jpg)2Iso speed 200Aperture F/2.4Shutter speed 1/100 sImage size 2560 × 1920 pixelsExposure Compensation + 0.7 EVWhite balan
e Custom32.3.3 Spot Light Spe
i�
ationsSpot Light: Manufa
turer HedlerName Videolux 300Bulb: Manufa
turer OsramType HalogenName Photo Opti
 LampNo 64515Watt 300 w3 The Work Pro
ess Proto
ol of One Test Person1. The 
amera position is pla
ed a

ordingly to the spe
i�
ations above (approx 1.25 m from�oor to lens and same level as the eyes of the test person).2. The test person is explained the meaning of the pose to be re
orded, in terms of the fa
ialexpression.3. The test person is distra
ted for one se
ond to "reset" fa
ial features (ex. rolls with thehead), and assumes the wanted pose, the photo is re
orded. (Make sure the test personspit
h, roll and yaw is not to 
riti
al 
ompared to the 
amera lens. Nostrils should be justvisible).4. Item 3. is repeated until all the photos of this pose are re
orded.5. Item 2. is repeated for all the wanted poses.6. Re
ord the test persons age.1Equivalent to 190 mm with a 35 mm FOV.2The average �le size was 1.9MB.3The white balan
e on the 
amera was 
alibrated to the ba
kdrop with the spotlights.
5



150 Appendix A4 Things to Improve
• Green ba
kground (not shiny).
• More di�use lighting (the lighting 
an be pla
ed further away from the test person).
• A real photo 
hair (not an o�
e 
hair).
• Fixed fo
al length (a 
amera where you 
an see the 
urrent exa
t fo
al length).
• Stri
t rules for test persons pit
h, roll and yaw.5 Terms of UseThe data set 
an be freely used for edu
ation and resear
h. The only requirement is that areferen
e to this note is given.

6
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i�
ationAn ASF �le is stru
tured as a set of lines separated by a CR 
hara
ter. Anywhere in the �le,
omments 
an be added by starting a line with the '#' 
hara
ter. Comment lines and empty linesare dis
arded prior to parsing. The layout of an ASF �le is as follows:
• Line 1 
ontains the total number of points, n, in the shape.
• Line 2 to n+1 
ontains the point information (one line per point) su
h as the point lo
ation,type, 
onne
tivity et
., see below. Hen
e, qui
k and simple a

ess is preferred over data
ompa
tness.
• Line n+2 
ontains the host image, i.e. the �lename of the image where the annotation isde�ned.The formal point de�nition is:point := <path#> <type> <x-pos> <y-pos> <point#> <
onne
ts from> <
onne
ts to>

<path#> The path that the point belongs to. Points from di�erent paths must not be inter
hanged (in theline order).
<type> A bitmapped �eld that de�nes the type of point:

• Bit 1: Outer edge point/Inside point
• Bit 2: Original annotated point/Arti�
ial point
• Bit 3: Closed path point/Open path point
• Bit 4: Non-hole/Hole pointRemaining bits should be set to zero. An inside arti�
ial point whi
h is a part of an 
losed hole, has thusthe type: (1�1) + (1�2) + (1�4) = 1 + 2 + 4 = 7.

<x-pos> The relative x-position of the point. Obtained by dividing image 
oordinates in the range [0;image width-1℄by the image width (due to strange histori
 reasons...). Thus, pixel x = 47 (the 48th pixel) in a 256 pixelwide image has the relative position 47/256 = 0.18359375.
<y-pos> The relative y-position of the point. Obtained by dividing image 
oordinates in the range [0;image height-1℄by the image height (due to strange histori
 reasons...). Thus, pixel y = 47 (the 48th pixel) in a 256pixel tall image has the relative position 47/256 = 0.18359375.
<point#> The point number. First point is zero. This is merely a servi
e to the human reader sin
e theline at where the point o

urs impli
itly gives the real point number.
<
onne
ts from> The previous point on this path. If none <
onne
ts from> == <point#> 
an be used.
<
onne
ts to> The next point on this path. If none <
onne
ts to> == <point#> 
an be used.Further, the following format rules apply:

• Fields in a point spe
i�
ation are separated by spa
es or tabs.
• Path points are assumed to be de�ned 
lo
kwise. That is; the outside normal is de�ned tobe on left of the point in the 
lo
kwise dire
tion. Holes are thus de�ned 
ounter-
lo
kwise.
• Points are de�ned in the fourth quadrant. Hen
e, the upper left 
orner pixel is (0,0).
• Isolated points are signaled using <
onne
ts from> == <
onne
ts to> == <point#>.
• A shape must have at least one outer edge. If the outer edge is open, the 
onvex hull shoulddetermine the interior of the shape. 7



152 Appendix AExample ASF �le<BOF>######################################################################### AAM Shape File - written: Monday May 08 - 2000 [15:22℄########################################################################## number of model points#83## model points## format: <path#> <type> <x rel.> <y rel.> <point#> <
onne
ts from> <
onne
ts to>#0 0 0.07690192 0.44500541 0 82 10 0 0.09916206 0.42914406 1 0 20 0 0.12925033 0.39573063 2 1 3...0 0 0.07579006 0.52910086 80 79 810 0 0.06128729 0.49762829 81 80 820 0 0.05858913 0.46610570 82 81 0## host image#F1011flb.bmp<EOF>

8



Appendix B

A face recognition algorithm

based on MIDM



154 Appendix B



A face recognition algorithm based on MIDM 155

PROCEEDINGS OF THE 14TH DANISH CONFERENCE ON PATTERN RECOGNITION AND IMAGE ANALYSIS 2005 1

A face recognition algorithm based on multiple
individual discriminative models

Jens Fagertun, David Delgado Gomez, Bjarne K. Ersbøll, Rasmus Larsen

Abstract— In this paper, a novel algorithm for facial recogni-
tion is proposed. The technique combines the color texture and
geometrical configuration provided by face images. Landmarks
and pixel intensities are used by Principal Component Analysis
and Fisher Linear Discriminant Analysis to associate a one
dimensional projection to each person belonging to a reference
data set. Each of these projections discriminates the associated
person with respect to all other people in the data set. These
projections combined with a proposed classification algorithm are
able to statistically deciding if a new facial image corresponds to a
person in the database. Each projection is also able to visualizing
the most discriminative facial features of the person associated to
the projection. The performance of the proposed method is tested
in two experiments. Results point out the proposed technique as
an accurate and robust tool for facial identification and unknown
detection.

Index Terms— Face recognition, Principal Component Anal-
ysis, Fisher Linear Discriminant Analysis, Biometrics, Multi-
Subspace Method.

I. I NTRODUCTION

Regrettable events which happened during the last years
(New York, Madrid) have revealed flaws in the existing
security systems. The vulnerability of most of the current se-
curity and personal identification system is frequently shown.
Falsification of identity cards or intrusion into physical and
virtual areas by cracking alphanumerical passwords appear
frequently in the media. These facts have triggered a real
necessity for reliable, user-friendly and widely acceptable
control mechanisms for person identification and verification.

Biometrics, which bases the person authentication on the in-
trinsic aspects of a human being, appears as a viable alternative
to more traditional approaches (such as PIN codes or pass-
words). Among the oldest biometrics techniques, fingerprint
recognition can be found. It is known that this technique was
used in China around 700 AD to officially certify contracts.
Afterwards, in Europe, it was used as person identification
in the middle of the19th century. A more recent biometric
technique used for people identification is iris recognition [8].
It has been calculated that the chance of finding two randomly
formed identical irises is one in1078 (The population of the
earth is below1010) [7]. This technique has started to be
used as and alternative to passport in some airports in United
Kingdom, Canada and Netherlands. It is also used as employee
control access to restricted areas in Canadian airports and
in the New York JFK airport. The inconvenient of these
techniques is the necessity of interaction with the individual
who wants to be identified or authenticated. This fact has
caused that face recognition, a non-intrusive technique, has

increasedly received the interest from the scientific community
in recent years.

The first developed techniques that aimed at identifying
people from facial images were based on geometrical infor-
mation. Relative distances between key points, such as mouth
corners or eyes, were calculated and used to characterize
faces [17]. Therefore, most of the developed techniques during
the first stages of facial recognition focused on the automatic
detection of individual facial features. However, facial feature
detection and measurements techniques developed to date are
not reliable enough for the geometric feature based recog-
nition, and such geometric properties alone are inadequate
for face recognition because rich information contained inthe
facial texture or appearance is discarded [6], [13]. This fact
produced that gradually most of the geometrical approaches
were abandoned for color based techniques, which provided
better results. These methods aligned the different faces to
obtain a correspondence between pixels intensities. A nearest
neighbor classifier used these aligned values to classify the
different faces. This coarse method was notably enhanced
with the appearance of the Eigenfaces technique [15]. Instead
of directly comparing the pixel intensities of the different
face images, the dimension of these input intensities were
first reduced by a principal component analysis (PCA). This
technique settled the basis of many of the current image based
facial recognition schemes. Among these current techniques,
Fisherfaces can be found. This technique, widely used and
referred [2], [4], combines the Eigenfaces with Fisher linear
discriminant analysis (FLDA) to obtain a better separation
of the individuals. In Fisherfaces, the dimension of the input
intensity vectors is reduced by PCA and then FLDA is applied
to obtain a good separation of the different persons.

After Fisherfaces, many related techniques have been pro-
posed. These new techniques aim at providing a projection
that attain a good person discrimination and also are robustat
differences in illumination or image pose. Kernel Fisherfaces
[16], Laplacianfaces [10] or discriminative common vectors
[3] can be found among these new approaches. Typically, these
techniques have been tested assuming that the image to be
classified corresponds to one of the people in the database. In
these approaches, the image is usually classified to the person
with the smallest Euclidean distance.

However, some inconveniences appear when the person to
be analyzed may not belong to the data set. In this case, a
criterium to decide if the person belongs to the data set has
to be chosen. E.g. only people with an euclidian distance less
than a given threshold are considered as belonging to the data
set. However, this threshold has not to be necessarily the same
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for all the classes (different persons) and different thresholds
would need to be found. The estimation of these thresholds is
not straightforward and additional data might be needed.

In this work, a new technique that addresses the different
inconveniences is proposed. The proposed techniques takes
advantage of two novelties in order to deal with these in-
conveniences. First, not only the texture intensities are taken
into account but also the geometrical information. Second,the
data are projected inton one-dimensional spaces instead of a
(n − 1)-dimensional space, wheren is the number of people
in the data set.

Each of these individual models aims at characterizing
a given person uniquely. This means that every person in
the data set is represented by one model. These multi one-
dimensional models allow to statistically interpret the ”degree
of membership” of a person to the data set and to detect un-
knowns. Furthermore, these two facts have several advantages
in interpretability, characterization, accuracy and easiness to
update the model.

II. A LGORITHM DESCRIPTION

The proposed algorithm is made up of two steps. In the
first step, an individual model is built for each person in
the database using the color and geometrical information
provided by the available images. Each model characterizes
a given person and discriminates it from the other people in
the database. The second step carries out the identification.
A classifier, related with the standard Gaussian distribution,
decides if a face image belongs to one person in the database or
not. In this section, the two parts of the algorithm are described
in detail. A diagram of the algorithm is displayed in Fig. 1.
This diagram will be referred during the description of the
algorithm to obtain an easier understanding.

A. Creating the individual models

1) Obtaining the geometry of the face:The geometrical
characterization of a given face is obtained by means of the
theory of statistical shape analysis [1]. In this theory, objects
(faces) are represented by shapes. According to Kendall [11],
a shape is all the geometrical information that remains when
location, scale and rotational effects are filtered out froman
object. In order to describe a shape, a set of landmarks or
points of correspondence that matches between and within
populations are placed on each face. As an example, Fig. 2A
displays a set of 22 landmarks. These landmarks indicate the
position of the eyebrows, eyes, nose, mouth, jaw and size of
a given face.

To obtain a shape representation according to the definition,
the obtained landmarks are aligned in order to remove the
location, rotational and scaling effects. To achieve this goal,
the 2D-full Procrustes analysis is carried out. Briefly, let:

X = {xi} = {xi + i · yi}, i = 1, . . . , n

be a set ofn landmarks expressed in complex notation. In
order to apply full Procrustes analysis, the shapes are initially

Fig. 1. Algorithm overview. A: Landmarks alignment using full Procrustes
analysis. B: PCA on aligned landmarks to remove redundancy.C: Texture
normalization using global histogram equalization. D: PCAon normalized
texture to remove redundancy. E: Combining shape and texture features. F:
PCA on combined features to remove redundancy. G & H :In turn build the
individual model using FLDA.

(A) (B)

Fig. 2. (A) Set of 22 landmarks placed on a face image. (B) The Delaunay
triangulation of the 22 landmarks.
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(A) (B)

Fig. 3. (A) Superimposition of the sets of 22 landmarks obtained over 49
different face images. (B) Alignment of the landmarks.

centered. To center the different shapes, the mean of the shape,
x̄, is subtracted from each landmark:

wi = xi − x̄, i = 1, . . . , n

.
The full Procrustes mean shape [12],µ̂, is found as the

eigenvector corresponding to the largest eigenvalue of the
complex sum of squares and products matrix

n
∑

i=1

wiw
∗

i /(w∗

i wi)

where w
∗

i denotes the transpose of the complex conjugate
of wi. Using this Procrustes mean shape, the full Procrustes
coordinates ofw1, . . . ,wn (Fig. 1) A) are obtained by

w
P
i = w

∗

i µ̂wi/(w∗

i wi) i = 1, . . . , n

Fig. 3A displays the superimposition of the set of 22
landmarks described in Fig. 2, obtained on 49 different face
images. The result obtained after applying the full Procustres
alignment on theses landmarks can be observed in Fig. 3B.
In order to remove redundancy in the data, a Principal Com-
ponent Analysis is applied to the aligned landmarks (Fig. 1
B).

2) Texture formulation: To form a complete model of
the face appearance, the algorithm also captures the texture
information provided by the pixels. In order to collect this
texture representation, the Delaunay triangulation of every
shape is obtained. The Delanuay triangulation connects the
aligned landmark set of each image by a mesh of triangles,
so no triangle has any of the other points of the set inside
its circumcircle. The Delaunay triangulation obtained foreach
image is warped onto the Delaunay triangulation of the mean
shape. The Delanuay triangulation of the 22 landmarks is
displayed in Fig. 2B.

Formally, let I be a given image andM the mean shape
previously obtained. Letu1 = [x1, y1],u2 = [x2, y2] andu3 =
[x3, y3] denote the vertices of a triangleT in I, and letv1,v2

andv3 be the associated vertices of the corresponding triangle
in M . Given any internal point̂u = [x, y] in the triangleT ,
the corresponding point in the associated triangle in the mean
shape can be written aŝv = αv1 + βv2 + γv3 where:

α = 1 − (β + γ)

β =
yx3 − x1y − x3y1 − y3x + x1y3 + xy1

−x2y3 + x2y1 + x1y3 + x3y2 − x3y1 − x1y2

γ =
xy2 − xy1 − x1y2 − x2y + x2y1 + x1y

−x2y3 + x2y1 + x1y3 + x3y2 − x3y1 − x1y2

This transformation extracts the texture of a given face
image. A histogram equalization is applied to the collected
texture to reduce the effects of differences in illumination [9].
This histogram equalization is performed independently in
each of the three color channels. Afterwards, the three color
channels are converted into gray scale to obtain a more
compact representation (Fig. 1 C).

Similarly to the shape analysis, a PCA is conducted in the
texture data to reduce dimensionality and data redundancy
(Fig. 1 D). However, notice that the large dimension of the
texture vectors will produce memory problems because of
the huge dimension of the covariance matrix. In order to
avoid this difficulty, the Eckart-Young theorem is used [5].
Formally, letD represents the texture data matrix composed by
s n-dimensional texture vectors after the mean of the texture
vectors has been subtracted from each one of them (s << n).
Then then×n dimensional covariance matrix can be written
as:

ΣD =
1

s
DD

T

Let ΣS be the smallers × s dimensional matrix defined by

ΣS =
1

s
D

T
D

Then the non-zero eigenvalues of the matricesΣS and ΣD

are equal. Moreover, the columns of:

ΦD = D ·ΦS

where the columns ofΦS contain the eigenvectors ofΣS,
correspond with the the eigenvectors associated to the
non-zero eigenvalues ofΣD in the sense they have the same
direction. Therefore, if the columns ofΦD are normalized,
then ΦD holds the normalized eigenvectors ofΣD that has
eigenvalues bigger than zero. This not only avoid problems
with the memory but also it gives a substantial speed up of
the calculations.

3) Combining color and geometry:The shape and texture
features are concatenated in a matrix (Fig. 1 E). In order
to remove correlation between shape and texture and also
to make the data representation more compact, a third PCA
is performed on the concatenated shape and texture matrix
(Fig. 1 F).

4) Building an individual model:Once the geometry and
texture of the face have been captured, the proposed algorithm
builds an individual model for each person in the data set.
Each model is built using Fisher linear discriminant analysis.
Formally, letX be the data obtained after combining the shape
and texture and applying the PCA. Letn1 be the number of
data elements corresponding to the person for whom the model
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is being created (class 1) and letn2 be the number of elements
corresponding to the other people (class 2), (Fig. 1 G). Letx̄1

and x̄2 be the class mean vectors,x̄ be the total mean vector
andxi,j be thejth sample in theith class. Then the between
matrix is defined by:

B = n1(x̄1 − x̄)(x̄1 − x̄)T + n2(x̄2 − x̄)(x̄2 − x̄)T

and the within matrix is defined by:

W =
2

∑

i=1

ni
∑

j=1

(xi,j − x̄i)(xi,j − x̄i)
T

The projection that best discriminates the two populationsis
given by the direction of the eigenvector associated to the
maximum eigenvalue ofW−1

B (Fig. 1 H). To ensure that
the within matrix W is not singular, only thef first data
variables are taken into account, wheref is the number of
non-zero eigenvalues of the within matrixW.

B. classification

In order to obtain a method to classify a given image,
the different individual models are firstly standardized so
they can be compared. The standardization of modeli =
1, . . . , m is based on two assumptions. First, the number of
observations for personi is much smaller than the number of
the observations of all other people. The second assumption
is that the projection of the other people follows a Gaussian
distribution. These two assumptions imply that the distribution
of all the projected facial images on a particular discriminative
individual model can be assumed as a Gaussian distribution
with outliers. The standardization of modeli is then achieved
by transforming the projections into a standard Gaussian
distribution, keeping the projections of the personi positive.
Formally, letx̄i be the mean of the projections on modeli, σi

the standard deviation, and letxi,j be the projection of image
j in model i. These projections are standardized by:

x̂i,j = (xi,j − x̄i)/σi

If the standardized projection for the images corresponding
to personi are negative, then̂xi,j are replaced by−x̂i,j

for all projections. This causes the projection of the images
corresponding to personi to be positive and far from the mean
of the gaussian.

Once that the modeli is standardized, the probability of
a projected image of belonging to the personi is given by
the value of the standard normal cumulative function in the
projected value. This fact is used to classify a given image.If
it is assumed that the image belongs to a person from the data
set, the image is projected by all the models and classified
as belonging to the model that gives the largest probability.
Moreover, it is also statistically possible to decide if a given
person belongs to the data set or it is unknown. This can be
achieved by comparing the largest projection obtained in all
the models with a probabilistic threshold. E.g, if a 99.9% of
probability is required, a given image will only be considered
as belonging to the database if the projection in one of the
individual models is higher than 3.1 standard deviations.

III. E XPERIMENTAL RESULTS

Two experiments are conducted in order to evaluate the
performance of the proposed method. The objective of the
first experiment is to evaluate the recognition ability in terms
of correct classification rates. This first experiment also aims
at ranking the importance of shape and texture. The second
experiment aims at analyzing if the proposed method can
be incorporated into a biometrical facial recognition scheme.
The robustness of the proposed method to the presence of
unknowns is considered in this second experiment.

A. Experiment one

The first experiment aims at comparing the performance of
the proposed method with respect to the Fisherfaces method in
terms of correct classification rates. In order to be consistent
with a previously published work [15], unknown people are
not taken into account.

To achieve this first goal the AR face database [14] is
used. The database is composed of two independent sessions,
recorded 14 days apart. At both sessions, each person was
recorded 13 times, under various facial poses (all frontal),
lighting conditions and occlusions. The size of the images in
the database is 768× 576 pixels, represented in 24 bits RGB
color format.

In this study, a subset of 50 persons (25 male and 25
female) from the database was randomly selected. Seven
images per person without occlusions are used from each
session. Therefore, the experiment data set is composed of
700 images, with 14 images per person. An example of the
selected images for one person is displayed in Fig. 4.

Fig. 4. The AR data set: (Top row) The seven images without occlusions
from first session, (Bottom row) The seven images without occlusions from
the second session.

All the images were manually annotated with the 22 land-
marks previously mentioned.

The data set was divided into two sets. The images of the
first session were used to build the individual discriminative
models, and images from the second session were subse-
quently used to test the performance.

The landmarks corresponding to the images in the train-
ing set were aligned using full Procrustes analysis. The 44
(x,y)-coordinates were obtained to represent the geometrical
configuration of each face. In order to obtain the texture of
each face in the training set, the different images were warped
with respect to the mean shape. Each of the textures received
a histogram equalization in each color band to reduce the
differences in global illumination. The textures were converted
to gray scale and represented by 41337 pixels. The geometrical
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Method Input features Correct Classification Rate1

MIDM method Shape 86.4% (95)
MIDM method Texture 99.6% (3)
MIDM method Texture and Shape 99.9% (1)

Fishershape Shape 85.9% (99)
Fisherface Texture 96.9% (22)

Fishercombined Texture and Shape 97.1% (20)

TABLE I

CORRECT CLASSIFICATION RATES.

and color representation of each face was combined, reduced
and the individual models were built as described in Section
II.

The test set was used to evaluate and compare the proposed
method with respect to the Fisherface technique. In order to
evaluate the importance of the geometrical information, the
Fisherface technique was modified replacing the texture data
with the shape data and also combining the shape with the
texture. These two modified techniques will be referred to as
Fishershape and Fishercombined from now on. The Euclidean
Nearest-Neighbor algorithm was used as classifier algorithm
in the Fisher methods. The proposed method classified the
images as the person associated to the model that yields the
highest probability.

The test was repeated a second time changing the roles of
the training and test sets. So session two was used as training
data and session one as test data. The correct classification
rates for the different techniques are shown in Table I.

From Table I, it is observed that the proposed method has a
slightly better performance than the Fisher methods. Moreover,
it is also noticed that using the texture data one obtains a higher
accuracy than when the shape is used. This implies that the
information contained in the texture is more significant than
that included in the shape. However, the information contained
in the shape data is not insignificant. The highest correct
classification rate in both techniques is attained when both
shape and texture are considered.

An interesting property of the proposed algorithm are that
it is possible to determine which are the most discriminative
features of a given person. In order to illustrate this fact,four
models were built using only the texture. The pixels of the
faces corresponding to these models which received the 10,
15 and 25% highest weights in the model are displayed (in
red) in Fig. 5. It is clear that important discriminating features
include eyes, noses, glasses, moles and beards. Notice thatthe
algorithm detects the glasses and the two moles of person 43
as discriminate features.

B. Experiment two

The objective of this second experiment is to test the possi-
bility of incorporating the proposed technique into a biometri-
cal facial recognition scheme. This conveys the identification
of people in a data set and also the detection of unknown
people. The good performance of the proposed technique in
person identification was shown in the previous experiment.

1Number of misclassified images reported in parentheses.

Fig. 5. The 10, 15 and 25% most important pixels (shown in red)for
discriminating between the 50 test persons.

Therefore, this second experiment aims at evaluating the
performance of the technique in detection of unknown people.

To achieve this goal, the data set used in the previous
experiment is selected. In order to evaluate the performance of
the technique, a 25-fold crossvalidation was conducted. The
seven face images from one male and other seven face images
from one female were left out in each iteration. These two
people are considered as not belonging to the data set and
therefore unknowns. The images of the remaining 48 people
were used to train the algorithm.

The False Acceptance Rate (FAR) and False Rejection Rate
(FRR) graph, can be observed in Fig. 6. The corresponding
Receiver Operating Characteristic curve (ROC) is displayed in
Fig. 7.

Both graphs show that the known and unknown populations
have a good separability. The best separation happens at the
Equal Error Rate (3.1 standard deviations), giving a FAR
and FRR of 2%. Moreover, notice that, if the algorithm
belongs to a security scheme, the degree of accessibility can be
established by increasing or diminishing the standard deviation
threshold. E.g., if in the test a false rejection rate of 5.5%is
allowed, then a 0% false acceptance rate is obtained. This
accommodates biometrical security systems that requires a
high level of control access.

A second test is conducted in order to assess the robustness
of the proposed method. This test also aims at showing that the
method not only discriminates on removable features, such as
glasses. To achieve this goal, eight people (four male and four
female) are synthetically fitted with four different glasses taken
from people belonging to the data set, giving 32 synthetic
images.

This second test consists of two steps. First, these eight
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displayed here.

people are not used to built the individual models. The goal is
to examine if these eight people who do not belong to the data
set are considered as one of the person in the data set. Results
show that none of the 32 images is misclassified when a
threshold of 3.1 standard deviations is considered (probability
of correct classification of 99.9%). This fact can be noticedin
Fig. 8 II, where the projections of one of the eight unknown
people on the different models are displayed. It is observed
that, when the person is considered unknown, his projections
onto the individual models belonging to the data set are under
the selected threshold. This means that the proposed method
does not classify any of the unknown people as belonging to
the data set.

In the second step, the eight people (without glasses) are
also used to build the individuals models. In this case the
goal is to analyze if the method can still recognize people
belonging to the data set who has slight changes (same people
with glasses). In this second step, the 32 images are also
classified correctly by the method. In Fig. 8 III, it is observed
that the projections onto the individual model associated with
this person clearly surpass the threshold. It is also observed
that the projections into the individual models associatedto the
glasses’s owners do not increase significantly. Similar graphs

are obtained for the other seven people. These results show the
suitability of the proposed technique in being incorporated into
a biometrical security system.

Fig. 8. Impact of changing glasses. (I) Person without glasses and syntectic
fitted with 4 glasses form the data set. (II) The corresponding projections in
the models as unknown. (III) The corresponding projectionsin the models as
known. Red columns is the model corresponding to the superimposed glasses.

IV. D ISCUSSION AND CONCLUSION

In this paper, a novel method to identify people from face
images has been proposed. The developed technique aims at
being a precise and robust algorithm that can be incorporated
into biometrical security systems. The technique has been
tested on face images, but it can also be used in other
biometrical data, such as speech. Experimental results have
proved that the method can attain better classifications rates
than an other widely used technique. Moreover, the final one-
dimensional projection allows for a simple interpretationof the
results. If a given face image is projected onto the different
individual models, it is visually possible to determine if this
person belongs to one of the models. Moreover, it is also
statistically possible to observe the degree of belonging to that
model.

Another of the attracting characteristics of the proposed
method is its ability to deal with unknowns. The degree of
belonging to the data set can be determined statistically. A
decision threshold can be determined in relation to a standard
Gaussian distribution. This threshold value is used to set the
degree of security of the system. The higher this value is set,
the smaller the probability of a person being considered as
belonging to the data set.

The robustness of the algorithm has been tested using both
known and unknown people. The algorithm has been shown
to be robust to the inclusion of artifacts such as glasses.
On one hand, unknown people using glasses belonging to
people from the data set are still classified as unknown. This
fact implies that unknown people would not get access to
a security system when they use simple removable features
belonging to people from the data set. On the other hand,
known people using glasses, belonging to other people from
the data set, are still recognized as themselves. This meansif
someone gets glasses, the associated model does not need to
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be recalculated. Moreover, this fact suggests that the database
should be composed of facial images without glasses. This was
also shown by observing that the individual model projections
do not change significantly when the glasses were placed.

Another interesting property of the proposed method is its
easiness to be maintained and updated. If a large data set
is available, it is not needed to recalculate all the existing
individual models when a new person has to be registered.
Simply, a new individual model for the new person is created.
Similarly, if a person has to be removed from the database, itis
only needed to remove the corresponding individual model. In
conclusion, an accurate, robust and easily adaptable technique
to be used for facial recognition has been developed and
demonstrated.
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A face recognition algorithm based on multiple
individual discriminative models

David Delgado Gomez, Jens Fagertun and Bjarne K. Ersbøll

Abstract— In this paper, a novel algorithm for facial recogni-
tion is proposed. The technique combines the color texture and
geometrical configuration provided by facial images. Landmarks
and pixel intensities are used by Principal Component Analysis
and Fisher Linear Discriminant Analysis to associate a one-
dimensional projection to each person belonging to a reference
data set. Each of these projections discriminates the associated
person with respect to all other people in the data set. These
projections combined with a proposed classification algorithm
are able to statistically decide whether a new facial image
corresponds to a person in the database. Each projection is
also able to visualizing the most discriminative facial features
of the person associated to the projection. The performanceof
the proposed method is tested in two experiments. Results point
out that the proposed technique is an accurate and robust tool
for facial identification and unknown detection.

I. I NTRODUCTION

Regrettable events which happened during the last years
(New York, Madrid) have revealed flaws in the existing
security systems. The vulnerability of most of the current se-
curity and personal identification system is frequently shown.
Falsification of identity cards or intrusion into physical and
virtual areas by cracking alphanumerical passwords appear
frequently in the media. These facts have triggered a real
necessity for reliable, user-friendly and widely acceptable
control mechanisms for person identification and verification.

Biometrics, which bases the person authentication on the in-
trinsic aspects of a human being, appears as a viable alternative
to more traditional approaches (such as PIN codes or pass-
words). Among the oldest biometrics techniques, fingerprint
recognition can be found. It is known that this technique was
used in China around 700 AD to officially certify contracts.
Afterwards, in Europe, it was used as person identification
in the middle of the19th century. A more recent biometric
technique used for people identification is iris recognition [9].
It has been shown that the chance of finding two randomly
formed identical irises is one in1078 (The population of the
earth is below1010) [8]. This technique has started to be
used as an alternative to passport in some airports in United
Kingdom, Canada and Netherlands. It is also used as employee
control access to restricted areas in Canadian airports and
in the New York JFK airport. The inconvenience of these
techniques is the need for interaction with the individual who
wants to be identified or authenticated. This fact has caused
that face recognition, a non-intrusive technique, has increas-
ingly received the interest from the scientific community in
recent years.

The first developed techniques that aimed at identifying peo-
ple from facial images were based on geometrical information.

Relative distances between key points, such as mouth corners
or eyes, were calculated and used to characterize faces [19].
Therefore, most of the developed techniques during the first
stages of facial recognition focused on the automatic detection
of individual facial features. However, facial feature detection
and measurement techniques developed to date are not reliable
enough for geometric feature based recognition, and such
geometric properties alone are inadequate for face recognition
because rich information contained in the facial texture or
appearance is discarded [7], [15]. This fact caused that grad-
ually most of the geometrical approaches were abandoned for
color based techniques, which provided better results. These
methods aligned the different faces to obtain a correspondence
between pixels intensities. A nearest neighbor classifier used
these aligned values to classify the different faces. This coarse
method was notably enhanced with the appearance of the
Eigenfaces technique [17]. Instead of directly comparing the
pixel intensities of the different face images, the dimension
of these input intensities were first reduced by principal
component analysis (PCA). This technique settled the basisof
many of the current image based facial recognition schemes.
Among these current techniques, Fisherfaces can be found.
This technique, widely used and referred [3], [5], combinesthe
Eigenfaces with Fisher linear discriminant analysis (FLDA) to
obtain a better separation of the individuals. In Fisherfaces, the
dimension of the input intensity vectors is reduced by PCA
and then FLDA is applied to obtain a good separation of the
different persons.

After Fisherfaces, many related techniques have been pro-
posed. These new techniques aim at providing a projection that
attain a good person discrimination and also are robust against
differences in illumination or image pose. Kernel Fisherfaces
[18], Laplacianfaces [12], or discriminative common vectors
[4] can be found among these new approaches. Typically, these
techniques have been tested assuming that the image to be
classified corresponds to one of the people in the database.
In these approaches, the image is usually classified to the
person with the smallest Euclidean distance. However, some
inconveniences appear when the person to be analyzed may
not belong to the data set. In this case, a criterium to decideif
the person belongs to the data set has to be chosen. E.g. only
people with an Euclidian distance less than a given threshold
are considered as belonging to the data set. However, this
threshold does not have necessarily to be the same for all
the classes (different persons) and different thresholds would
need to be found. The estimation of these thresholds is not
straightforward and additional data might be needed.

In this work, a new technique that addresses these different
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limitations is proposed. The proposed technique introduces
two novelties. First, not only the texture intensities are taken
into account but also the geometrical information. Second,the
data are projected inton one-dimensional spaces instead of a
(n − 1)-dimensional space, wheren is the number of people
in the data set.

Each of these individual models aims at characterizing a
given person uniquely. This means that every person in the data
set is represented by one model. These multi one-dimensional
models allow to statistically interpret the ”degree of mem-
bership” of a person to the data set and to detect unknowns.
Furthermore, these two facts have several advantages in terms
of interpretability, characterization, accuracy, and easiness to
update the model.

II. A LGORITHM DESCRIPTION

The proposed algorithm is made up of two steps. In the
first step, an individual model is built for each person in
the database using the color and geometrical information
provided by the available images. Each model characterizes
a given person and discriminates it from the other people in
the database. The second step carries out the identification.
A classifier, related with the standard Gaussian distribution,
decides whether a face image belongs to one person in the
database or not. In this section, the two parts of the algorithm
are described in detail. A diagram of the algorithm is displayed
in Fig. 1. This diagram will be referred during the description
of the algorithm to obtain an easier understanding.

A. Creating the individual models

1) Obtaining the geometry of the face:The geometrical
characterization of a given face is obtained by means of the
theory of statistical shape analysis [2]. In this theory, objects
(faces) are represented by shapes. According to Kendall [13],
a shape is all the geometrical information that remains when
location, scale and rotational effects are filtered out froman
object. In order to describe a shape, a set of landmarks or
points of correspondence that matches between and within
populations are placed on each face. As an example, Fig. 2A
displays a set of 22 landmarks. These landmarks indicate the
position of the eyebrows, eyes, nose, mouth, jaw and size of
a given face.

To obtain a shape representation according to the definition,
the obtained landmarks are aligned in order to remove the
location, rotational and scaling effects. To achieve this goal,
the 2D-full Procrustes analysis is carried out. Briefly, let:

X = {xi} = {xi + i · yi}, i = 1, . . . , n

be a set ofn landmarks expressed in complex notation. In
order to apply full Procrustes analysis, the shapes are initially
centered. To center the different shapes, the mean of the shape,
x̄, is subtracted from each landmark:

wi = xi − x̄, i = 1, . . . , n

The full Procrustes mean shape [14],µ̂, is found as the
eigenvector corresponding to the largest eigenvalue of the

Fig. 1. Algorithm overview. A: Landmarks alignment using full Procrustes
analysis. B: PCA on aligned landmarks to remove redundancy.C: Texture
normalization using global histogram equalization. D: PCAon normalized
texture to remove redundancy. E: Combining shape and texture features. F:
PCA on combined features to remove redundancy. G & H :In turn build the
individual model using FLDA.

(A) (B)

Fig. 2. (A) Set of 22 landmarks placed on a face image. (B) The Delaunay
triangulation of the 22 landmarks.
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(A) (B)

Fig. 3. (A) Superimposition of the sets of 22 landmarks obtained over 49
different face images. (B) Alignment of the landmarks.

complex sum of squares and products matrix
n

∑

i=1

wiw
∗

i /(w∗

i wi)

where w
∗

i denotes the transpose of the complex conjugate
of wi. Using this Procrustes mean shape, the full Procrustes
coordinates ofw1, . . . ,wn (Fig. 1) A) are obtained by

w
P
i = w

∗

i µ̂wi/(w∗

i wi) i = 1, . . . , n

Fig. 3A displays the superimposition of the set of 22
landmarks described in Fig. 2, obtained on 49 different face
images. The result obtained after applying the full Procrustes
alignment on theses landmarks can be observed in Fig. 3B.
In order to remove redundancy in the data, a Principal Com-
ponent Analysis is applied to the aligned landmarks (Fig. 1
B).

2) Texture formulation: To form a complete model of
the face appearance, the algorithm also captures the texture
information provided by the pixels. In order to collect this
texture representation, the Delaunay triangulation of every
shape is obtained. The Delanuay triangulation connects the
aligned landmark set of each image by a mesh of triangles,
so no triangle has any of the other points of the set inside
its circumcircle. The Delaunay triangulation obtained foreach
image is warped onto the Delaunay triangulation of the mean
shape. The Delanuay triangulation of the 22 landmarks is
displayed in Fig. 2B.

Formally, let I be a given image andM the mean shape
previously obtained. Letu1 = [x1, y1],u2 = [x2, y2] andu3 =
[x3, y3] denote the vertices of a triangleT in I, and letv1,v2

andv3 be the associated vertices of the corresponding triangle
in M . Given any internal point̂u = [x, y] in the triangleT ,
the corresponding point in the associated triangle in the mean
shape can be written aŝv = αv1 + βv2 + γv3 where:

α = 1 − (β + γ)

β =
yx3 − x1y − x3y1 − y3x + x1y3 + xy1

−x2y3 + x2y1 + x1y3 + x3y2 − x3y1 − x1y2

γ =
xy2 − xy1 − x1y2 − x2y + x2y1 + x1y

−x2y3 + x2y1 + x1y3 + x3y2 − x3y1 − x1y2

This transformation extracts the texture of a given face
image. A histogram equalization is applied to the collected
texture to reduce the effects of differences in illumination [11].
This histogram equalization is performed independently in
each of the three color channels. Afterwards, the three color

channels are converted into gray scale to obtain a more
compact representation (Fig. 1 C).

Similarly to the shape analysis, PCA is conducted in the
texture data to reduce dimensionality and data redundancy
(Fig. 1 D). However, notice that the large dimension of the
texture vectors will produce memory problems because of
the huge dimension of the covariance matrix. In order to
avoid this difficulty, the Eckart-Young theorem is used [6].
Formally, letD represents the texture data matrix composed by
s n-dimensional texture vectors after the mean of the texture
vectors has been subtracted from each one of them (s << n).
Then then×n dimensional covariance matrix can be written
as:

ΣD =
1

s
DD

T

Let ΣS be the smallers × s dimensional matrix defined by

ΣS =
1

s
D

T
D

Then the non-zero eigenvalues of the matricesΣS and ΣD

are equal. Moreover, the columns of:

ΦD = D ·ΦS

where the columns ofΦS contain the eigenvectors ofΣS,
correspond with the the eigenvectors associated to the
non-zero eigenvalues ofΣD in the sense they have the same
direction. Therefore, if the columns ofΦD are normalized,
then ΦD holds the normalized eigenvectors ofΣD that
has eigenvalues bigger than zero. This does not only avoid
problems with the memory but also gives a substantial
speed-up of the calculations.

3) Combining color and geometry:Shape and texture
features are concatenated in a matrix (Fig. 1 E). In order
to remove correlation between shape and texture, and also
to make the data representation more compact, a third PCA
is performed on the concatenated shape and texture matrix
(Fig. 1 F).

4) Building an individual model:Once the geometry and
texture of the face have been captured, the proposed algorithm
builds an individual model for each person in the data set.
Each model is built using Fisher linear discriminant analysis.
Formally, letX be the data obtained after combining the shape
and texture and applying the PCA. Letn1 be the number of
data elements corresponding to the person for whom the model
is being created (class 1) and letn2 be the number of elements
corresponding to the remaining people (class 2), (Fig. 1 G).
Let x̄1 and x̄2 be the class mean vectors,x̄ be the total mean
vector andxi,j be thejth sample in theith class. Then the
between matrix is defined by:

B = n1(x̄1 − x̄)(x̄1 − x̄)T + n2(x̄2 − x̄)(x̄2 − x̄)T

and the within matrix is defined by:

W =

2
∑

i=1

ni
∑

j=1

(xi,j − x̄i)(xi,j − x̄i)
T
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The projection that best discriminates the two populationsis
given by the direction of the eigenvector associated to the
maximum eigenvalue ofW−1

B (Fig. 1 H). To ensure that
the within matrix W is not singular, only thef first data
variables are taken into account, wheref is the number of
non-zero eigenvalues of the within matrixW.

B. Classification

In order to obtain a method to classify a given image,
the different individual models are firstly standardized so
they can be compared. The standardization of modeli =
1, . . . , m is based on two assumptions. First, the number of
observations for personi is much smaller than the number of
the observations of all other people. The second assumption
is that the projection of the other people follows a Gaussian
distribution. These two assumptions imply that the distribution
of all the projected facial images on a particular discriminative
individual model can be assumed as a Gaussian distribution
with outliers. The standardization of modeli is then achieved
by transforming the projections into a standard Gaussian
distribution, keeping the projections of the personi positive.
Formally, letx̄i be the mean of the projections on modeli, σi

the standard deviation, and letxi,j be the projection of image
j in model i. These projections are standardized by:

x̂i,j = (xi,j − x̄i)/σi

If the standardized projection for the images corresponding
to personi are negative, then̂xi,j are replaced by−x̂i,j

for all projections. This causes the projection of the images
corresponding to personi to be positive and far from the mean
of the gaussian.

Once that the modeli is standardized, the probability of
a projected image of belonging to the personi is given by
the value of the standard normal cumulative function in the
projected value. This fact is used to classify a given image.If
it is assumed that the image belongs to a person from the data
set, the image is projected by all the models and classified
as belonging to the model that gives the largest probability.
Moreover, it is also statistically possible to decide if a given
person belongs to the data set or it is unknown. This can be
achieved by comparing the largest projection obtained in all
the models with a probabilistic threshold. E.g, if a 99.9% of
probability is required, a given image will only be considered
as belonging to the database if the projection in one of the
individual models is higher than 3.1 standard deviations.

III. E XPERIMENTAL RESULTS

Two experiments are conducted in order to evaluate the
performance of the proposed method. The objective of the first
experiment is to evaluate the recognition ability in terms of
correct classification rates. This first experiment also aims at
ranking the importance of shape and texture. The second ex-
periment aims at analyzing whether the proposed method can
be incorporated into a biometrical facial recognition scheme.
The robustness of the proposed method to the presence of
unknowns is considered in this second experiment.

A. Experiment one

The first experiment aims at comparing the performance of
the proposed method with respect to the Fisherfaces method in
terms of correct classification rates. In order to be consistent
with a previously published work [17], unknown people are
not taken into account.

To achieve this first goal the AR face database [16] is
used. The database is composed of two independent sessions,
recorded 14 days apart. At both sessions, each person was
recorded 13 times, under various facial poses (all frontal),
lighting conditions and occlusions. The size of the images in
the database is 768× 576 pixels, represented in 24 bits RGB
color format.

In this study, a subset of 50 persons (25 male and 25
female) from the database was randomly selected. Seven
images per person without occlusions are used from each
session. Therefore, the experiment data set is composed of
700 images, with 14 images per person. An example of the
selected images for one person is displayed in Fig. 4.

Fig. 4. The AR data set: (Top row) The seven images without occlusions
from first session, (Bottom row) The seven images without occlusions from
the second session.

All the images were manually annotated with the 22-
landmarks previously mentioned.

The data set was divided into two sets. The images of
the first session were used to build the multiple individual
discriminative models(MIDM), and images from the second
session were subsequently used to test the performance.

The landmarks corresponding to the images in the train-
ing set were aligned using full Procrustes analysis. The 44
(x,y)-coordinates were obtained to represent the geometrical
configuration of each face. In order to obtain the texture of
each face in the training set, the different images were warped
with respect to the mean shape. Each of the textures received
a histogram equalization in each color band to reduce the
differences in global illumination. The textures were converted
to gray scale and represented by 41337 pixels. The geometrical
and color representation of each face was combined, reduced
and the individual models were built as described in Section
II.

The test set was used to evaluate and compare the proposed
method with respect to the Fisherface technique. In order to
evaluate the importance of the geometrical information, the
Fisherface technique was modified replacing the texture data
with the shape data and also combining the shape with the
texture. These two modified techniques will be referred to as
Fishershape and Fishercombined from now on. The Euclidean
Nearest-Neighbor algorithm was used as classifier algorithm
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Method Input features Correct Classification Rate1

MIDM method Shape 86.4% (95)
MIDM method Texture 99.6% (3)
MIDM method Texture and Shape 99.9% (1)

Fishershape Shape 85.9% (99)
Fisherface Texture 96.9% (22)

Fishercombined Texture and Shape 97.1% (20)

TABLE I

CORRECT CLASSIFICATION RATES.

in the Fisher methods. The proposed method classified the
images as the person associated to the model that yields the
highest probability.

The test was repeated a second time changing the roles of
the training and test sets. So session two was used as training
data and session one as test data. The correct classification
rates for the different techniques are shown in Table I.

Fig. 5. McNemar Test. Number of misclassified examples by thetwo
classifiers for the combined features, texture features andshape features and
the maximum significant level (α) which accept Mcnemar’s null hypothesis.

From Table I, it is observed that the proposed method has
a better performance than the Fisher methods. A McNemar’s
test [1] [10] for each of the three features was carried out in
order to show that the observed differences in the performance
of both classifiers are significative. Briefly, letn10 be the
number of examples misclassified by the MIDM classifier
but not by the Fisher based method andn01 the number of
examples misclassified by the Fisher based method but not by
the MIDM method for a selected feature. If both classifiers
have a similar performance then the statistic

(|n01 − n10| − 1)2

n01 + n10

follows a χ2 distribution with one degree of freedom. The
misclassification errors of both classifiers for each selected
feature is displayed in Fig. 5 together with the minimum sig-
nificant level (α) that will accept the null hypothesis that both
classifiers have a similar performance. It is observed that the
the MDIM classifier has a lesser number of misclassification.
Moreover, Mcnemar test statistically indicates that when the

1Number of misclassified images reported in parentheses.

texture is considered (as most of the current research projects
do), the performance of both classifiers is strongly different.

It is also noticed that using the texture data one obtains a
higher accuracy than when the shape is used. This implies that
the information contained in the texture is more significant
than that included in the shape. However, the information
contained in the shape data is not irrelevant. The highest
correct classification rate in both techniques is attained when
both shape and texture are considered.

An interesting property of the proposed algorithm are that
it is possible to determine which are the most discriminative
features of a given person. In order to illustrate this fact,four
models were built using only the texture. The pixels of the
faces corresponding to these models which received the 10,
15 and 25% highest weights in the model are displayed (in
red) in Fig. 6. It is clear that important discriminating features
include eyes, noses, glasses, moles and beards. Notice thatthe
algorithm detects the glasses and the two moles of person 43
as discriminate features.

B. Experiment two

The objective of this second experiment is to test the possi-
bility of incorporating the proposed technique into a biometric
facial recognition scheme. This conveys the identificationof
people in a data set and also the detection of unknown
people. The good performance of the proposed technique in
person identification was shown in the previous experiment.
Therefore, this second experiment aims at evaluating the
performance of the technique in detecting of unknown people.

To achieve this goal, the data set used in the previous
experiment is selected. In order to evaluate the performance
of the technique, a 25-fold cross validation was conducted.
The seven face images from one male and other seven face
images from one female were left out in each iteration. These
two people are considered as not belonging to the data set and
therefore unknowns. The images of the remaining 48 people
were used to train the algorithm.

The False Acceptance Rate (FAR) and False Rejection Rate
(FRR) graph can be observed in Fig. 7. The corresponding
Receiver Operating Characteristic curve (ROC) is displayed in
Fig. 8.

Both graphs show that the known and unknown populations
have a good separability. The best separation happens at the
Equal Error Rate (3.1 standard deviations), giving a FAR
and FRR of 2%. Moreover, notice that, if the algorithm
belongs to a security scheme, the degree of accessibility can be
established by increasing or diminishing the standard deviation
threshold. E.g., if in the test a false rejection rate of 5.5%is
allowed, then a 0% false acceptance rate is obtained. This
accommodates biometrical security systems that requires a
high level of control access.

A second test is conducted in order to assess the robustness
of the proposed method. This test also aims at showing that
the method does not only discriminates on removable features,
such as glasses. To achieve this goal, eight people (four male
and four female) are synthetically fitted with four different
glasses taken from people belonging to the data set, giving 32
synthetic images.
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Fig. 6. The 10, 15 and 25% most important pixels (shown in red)for
discriminating between the 50 test persons.
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Fig. 7. False Acceptance Rate/False Rejections Rate graph obtained by the
25-fold cross validation.
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Fig. 8. Receiver Operating Characteristic (ROC) curve obtained by the 25-
fold cross validation. Notice that only the top left part of the ROC curve is
displayed here.

This second test consists of two steps. First, these eight
people are not used to build the individual models. The goal is
to examine if these eight people who do not belong to the data
set are considered as one of the person in the data set. Results
show that none of the 32 images is misclassified when a
threshold of 3.1 standard deviations is considered (probability
of correct classification of 99.9%). This fact can be noticedin
Fig. 9 II, where the projections of one of the eight unknown
people on the different models are displayed. It is observed
that, when the person is considered unknown, his projections
onto the individual models belonging to the data set are under
the selected threshold. This means that the proposed method
does not classify any of the unknown people as belonging to
the data set.

In the second step, the eight people (without glasses) are
also used to build the individuals models. In this case the goal
is to analyze if the method can still recognize people belonging
to the data set who has slight changes (same people with
glasses). In this second step, the 32 images are also classified
correctly by the method. In Fig. 9 III, it is observed that
the projections onto the individual model associated with this
person clearly surpass the threshold. It is also observed that
the projections onto the individual models associated to the
glasses’s owners do not increase significantly. Similar graphs
are obtained for the other seven people. These results show the
suitability of the proposed technique in being incorporated into
a biometrical security system.

Fig. 9. Impact of changing glasses. (I) Person without glasses and syntectic
fitted with 4 glasses form the data set. (II) The corresponding projections in
the models as unknown. (III) The corresponding projectionsin the models as
known. Red columns is the model corresponding to the superimposed glasses.

IV. D ISCUSSION AND CONCLUSION

In this paper, a novel method to identify people from
facial images has been proposed. The developed technique
aims at being a precise and robust algorithm that can be
incorporated into biometrical security systems. The technique
has been tested on face images, but it can also be used in
other biometrical data, such as speech. Experimental results
have proved that the method can attain better classifications
rates than an other widely used techniques. Moreover, the final
one-dimensional projection allows for a simple interpretation
of the results. If a given face image is projected onto the
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different individual models, it is visually possible to determine
if this person belongs to one of the models. Moreover, it is
also statistically possible to observe the degree of belonging
to that model.

Another of the attractive characteristics of the proposed
method is its ability to deal with unknowns. The degree of
belonging to the data set can statistically be determined. A
decision threshold can be determined in relation to a standard
Gaussian distribution. This threshold value is used to set the
degree of security of the system. The higher this value is set,
the smaller the probability of a person being considered as
belonging to the data set.

The robustness of the algorithm has been tested using both
known and unknown people. The algorithm has been shown to
be robust to the inclusion of artifacts such as glasses. On one
hand, unknown people using glasses belonging to people from
the data set are still classified as unknown. This fact implies
that unknown people would not get access to a security system
when they use simple removable features belonging to people
from the data set. On the other hand, known people using
glasses, belonging to other people from the data set, are still
recognized as themselves. This means if someone gets glasses,
the associated model does not need to be recalculated.

Another interesting property of the proposed method is its
easiness to be maintained and updated. If a large data set
is available, it is not needed to recalculate all the existing
individual models when a new person has to be registered.
Simply, a new individual model for the new person is created.
Similarly, if a person has to be removed from the database, itis
only needed to remove the corresponding individual model. In
conclusion, an accurate, robust and easily adaptable technique
to be used for facial recognition has been developed and
evaluated.
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When opening FaceRec one has to select a video driver from which the video
input will be received. This is displayed in Figure D.1 and Figure D.2.

Figure D.1: The main window of the FaceRec application. Go to the
menu “Video” -> “Capture WebCam Drivers” to select the video driver.

Figure D.2: The video driver list popup box.

It is possible to adjust the video feed (webcam) by activating the “Video Source”,
“Video Format”, “Video Display” and “Video Compression” panel from the
“Video” menu, if these are available in the selected video driver (available are de-
noted by black selectable items and non-available by gray non-selectable items).
An example of a Philips PCVC690K webcam “Video Source” panel is displayed
in figure D.3.

FaceRec is processing the face detection and face recognition in real time when
both an AAM Model File (.amf) and an MIDM Model File (.mmf) are loaded,
as displayed in figure D.4.
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Figure D.3: The specific “Video Source” panel included in the drivers
of the Philips PCVC690K webcam.
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Figure D.4: The FaceRec application capturing a face and recognizing
it as model (person) number 8. The FaceRec main window contains the
input from the webcam, the shape free image of the captured face, the
class image of the recognized person, a control panel and an AAM/MIDM
information panel.

In the Controls panel it is possible to change the sensitivity of the AAM (face
detection). A high sensitivity means that faces are detected with a high accu-
racy, but it may not detect all faces and vice versa. With the “Snapshot” button
it is possible to save snapshots of the video input. If the AAM Model File is
loaded the associated shape file (.asf) is also saved to disk. The directory, in
which the files are saved, can be changed by the “Set Snapshot Dir”.

The Info panel displays information on the fit and the number of iterations
used to achieve the fit of the AAM, as well as the largest projection and its
model number of this projection in the MIDM. In short, a good recognition is
characterized by a low fit and a large projection.
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DLL index Function name Short description

#1 deleteImage Deletes the AAM image object
#2 deleteModel Deletes the AAM model object
#3 deleteReferenceFrame Deletes the AAM reference frame

object
#4 deleteShape Deletes the AAM shape object
#5 evalShape Manipulates the AAM shape to

find a the best fit using a AAM
model object and a AAM image
object

#6 evalShapeFineTuning Manipulates the AAM shape to
find a the best fit using a AAM
model object and a AAM image
object

#7 getNCombinedPCA Returns the number of combined
pca parameters of a AAM model
object

#8 getNTextureSamples Returns the number of texture
samples in the shape free image
of a AAM model object

#9 getShape Returns the shape coordinates
#10 getShapeBox Returns the coordinates for the

box the AAM shape object re-
sides in

#11 getShapeFreeImage Returns the shape free image of a
AAM shape object, AAM image
object and AAM model object

#12 initializeShape Initialize a AAM shape object

Table E.1: Function list over the aam api.dll.



AAM-API DLL 179

DLL index Function name Short description

#13 modelImage Models a face (object) using the
combined PCA parameters onto
an AAM image object

#14 newImage Constructs a new AAM image
object

#15 newModel Constructs a new AAM model
object

#16 newReferenceFrame Constructs a new AAM reference
frame object

#17 newShape Constructs a new AAM shape
object

#18 readImage Reads an image from a char ar-
ray into an AAM image object

#19 readModel Reads an AAM model object
from file

#20 shapeCOG Returns the center of gravity of
an AAM shape object

#21 translateShape Translates an AAM shape object
#22 writeASF Writes an AAM shape object to

file
#23 writeImage Writes an image from an AAM

image object into a char array

Table E.2: Function list over the aam api.dll continued.
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CD-ROM Contents
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Figure F.1: The contents of the enclosed CD-ROM.
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