
Adaptive Firewalls for Grid
Computing

Dawei Yao

Kongens Lyngby 2005

2

Abstract

Grid technology is getting more and more popular now. One of the challenges to
deploy Grid applications into the existing environment is to configure the Grid
firewalls. The state of art technology is to open the ports as many as needed.
Such firewall policy is so risky, and a more dynamic way for controlling the
firewall is needed. In this project we propose a secure and dynamic mechanism
to adaptively control the firewall for Grid computing. Also, an implementation
is made to verify our ideas.

ii

Preface

This thesis is submitted to fulfill the requirements of the Master of Science in
Computer System Engineering. The project was done by Dawei Yao during
the period February 2005 to August 2005 at the department of Informatics and
Mathematical Modeling (IMM), Technical University of Denmark (DTU). The
work was supervised by Professor Robin Sharp.

At here, I’d like to thank Professor Robin Sharp for leading me into this special
and exciting research area, and for his good ideas and encouragement for better
results.

A special thank goes to my parents and wife - Ling Bai, who offered me metic-
ulous support during the whole process.

Lyngby, August 2005

Dawei Yao

iv

Contents

Abstract i

Preface iii

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 3

1.3 Terminology . 3

2 Grid Firewall Requirements 5

2.1 Grid Security . 5

2.2 GT Firewall Requirements . 9

2.3 Summary . 13

3 The Threats and Requirements 15

3.1 Attacks . 15

vi CONTENTS

3.2 Communication Failure . 20

3.3 System Failure . 21

3.4 Adaptive GRID Firewall Requirements 21

3.5 Referenced Idea: Port Knocking 22

3.6 Summary . 23

4 Conceptual Design 25

4.1 Network Security Challenges . 26

4.2 Communication Failure . 30

4.3 System Failure . 30

4.4 Summary . 31

5 Protocol Design 33

5.1 Message Design . 33

5.2 Client and Server Behavior Design 35

5.3 Summary . 46

6 Architecture Design and Protocol Modeling 49

6.1 Architecture Design . 49

6.2 Protocol Modelling . 51

6.3 Summary . 54

7 Protocol Implementation 57

7.1 Software Architecture . 57

CONTENTS vii

7.2 Test . 61

7.3 Summary . 64

8 Conclusion and Future Work 67

A Timed Automatas of Protocol 69

viii CONTENTS

Chapter 1

Introduction

1.1 Background

Grid is a system that coordinates distributed resources using standard, open,
general-purpose protocols and interfaces to deliver nontrivial qualities of service.[3]
As WWW technology allows people to share the content, Grid helps people to
share the computing resources, including data, application, and experimental
facilities through the Internet. Such share could even be transparent, so that
the user does not even need to consider the location of the facilities. The ulti-
mate goal of Grid is that finally the computational power could be used in the
same way as the electric power in the power plants.

The rate of increase in the popularity of Grid system depends on how fast we
can solve the challenges imposed when integrating the technology into the exist-
ing infrastructure. One of the biggest challenges is security. The Grid security
includes many disciplines; The functionalities that should be offered include
authentication, delegation, single sign-on, credential life span and renewal, au-
thorization, privacy, confidentiality, message integrity, policy exchange, secure
logging, manageability and firewall traversal.

The Grid security requirements are modeled in a concept of “The Secure Grid
Society”, which uses virtual organizations to model the relationship between

2 Introduction

entities in such a society. The concept of the Virtual Organizations (VOs) is
“flexible, secure, coordinated resource sharing among dynamic collections of in-
dividuals, institutions, and resources[4]”. Virtual organizations provide bridges
of trust between different entities that belong to separate policy domains. The
entities that belong to the same virtual organization could talk with each other
in a trusted environment - virtual organization domain.

Figure 1.1: Virtual organization to bridge sub-domains .

To fix Grid applications into the currently existing environment, and provide
services through the open network, one of the common tasks is to set up the
firewalls. Because of the traffic feature of some services, firewalls are normally
required to open a big number of ports for incoming connections. A good
example is the “Grid Resource Acquisition and Management (GRAM)” service.
The service requires both parties to open some ports for incoming connection.
But some of the ports are kept open all the time even though they are not in
use. This is dangerous and an intelligent way of opening and closing firewall by
needs should be proposed.

1.2 Motivation 3

1.2 Motivation

To control a firewall remotely through open network, in a dynamic, secure and
intelligent way for Grid computing, we propose a secure protocol on top of IP
layer for the remote authenticated user to open and close the firewall. The
challenges for our research are:

1. What are the main threats for the remote firewall control, and how to
defend the attacks?

2. How to make the protocol robust against system and communication fail-
ures?

3. How to integrate the proposed protocol with the existing Grid platforms
transparently?

The objective of this project is to study the current state of the art in Grid
systems and firewalls. Based on this understanding, design mechanisms for
controlling the firewalls adaptively in a secure manner.

1.3 Terminology

The following terms are used in this document:
Ephemeral Port:
A non-deterministic port assigned by the system in the untrusted port range
(> 1024).

Controllable Ephemeral Port:
An ephemeral port selected by the Globus Toolkit libraries that is constrained
to a given port range.

Grid Service Ports:
Static ports for well-known Grid services

GT2:
Globus Toolkit version 2.x. This release contains only services based on preweb
services technology.

4 Introduction

GT3:
Globus Toolkit version 3.x. This release contains both pre-web services technol-
ogy and web services-based technology based on OGSI.

GT4:
Globus Toolkit version 4.x. This release contains both pre-web services technol-
ogy and web services-based technology based on WSRF.

PRE-WS Services:
Globus services predating the adoption of web services. I.e. the services present
in GT2, but also found in GT3 and GT4.

Well-known Port:
A port number registered with IANA .

WSRF:
The Web Services Resource Framework. A set of proposed Web services specifi-
cations that define a rendering of the WS-Resource approach in terms of specific
message exchanges and related XML definitions. These specifications allow the
programmer to declare and implement the association between a Web service
and one or more stateful resources.[5]

GSI:
Grid Security Infrastructure, A service used by the Globus Toolkit for secure
authentication and communication over an open network. GSI services include
mutual authentication and single sign-on. [11]

OGSI:
Open Grid Service Infrastructure, A Global Grid Forum(GGF) standard that
defines the core semantics of a transient Web service, including naming, lifetime,
and exposing service state. [9]

OGSA:
Open Grid Services Architecture, An integration of Grid and Web services tech-
nologies that defines standard interfaces and behaviors for distributed system
integration and management. [17]

Chapter 2

Grid Firewall Requirements

Our motivation is to propose an adaptive mechanism for Grid firewalls. But
before start, the requirements of Grid computing to its underlying firewall are
the first factors we should consider. Such requirements varies with different
technology architectures that are adopted during the evolution of Grid. In this
chapter we will explore such requirements to present a clear view .

2.1 Grid Security

Grid computing, during the process of evolvement, has adopted two different
technology mainstreams - the “Pre Web Service (Pre-WS) Technologies” and
“Web Service(WS) Technologies ”. The associated security technologies are also
not the same.

2.1.1 “PRE-WS” Grid Architecture: Hourglass

The Grid Architecture at the beginning is based on the principles of the “hour-
glass model”, as shown in Figure 2.1. The idea is to build different high-level

6 Grid Firewall Requirements

behaviors based on the small number of core abstractions and protocols at the
narrow neck of the “hourglass”.

Figure 2.1: The layered hourglass Grid Architecture.

The “Fabric Layer” wraps the local, resource-specific operations as sharing op-
erations, to offer the interfaces for local control from higher layer. The “Connec-
tivity Layer” defines core Grid-specific network protocols. Also, it includes basic
security solutions, such as single sign-on and delegation. The “Resource Layer”
makes the sharing of single resources possible. But, it does not concern the is-
sues of global state and atomicity of actions between distributed resources. The
main purpose of “Collective Layer” is to coordinate multiple resource sharing,
such as monitoring, data replication, and scheduling. The Grid application is
built in the top layer of such model, utilizing services from other layers beneath.

2.1.2 Globus Toolkit Version 2

The Globus Toolkit is a collection of clients and services to enable Grid com-
puting. It is an open source software toolkit used for building Grid systems
and applications. Globus Toolkit is being developed by the Globus Alliance
and many others all over the world.[7] The toolkit offers a platform for Grid
application development, and is popularly used in many places.

Until now, there have been four versions of the Globus Toolkit - “GT1”, “GT2”,
“GT3”, and “GT4”. “GT1” and “GT2” use “PRE-WS” technologies. “GT3”
and “GT4” adopt “WS-technologies”, and will be discussed later. “GT2” ad-
dresses the Grid technology requirements imposed by “ Hourglass” model. It

2.1 Grid Security 7

implements most of the features in “Fabric Layer”, “Connectivity Layer”, and
“Resource Layer”, but little in “Collective Layer”.

The security in “GT2” is implemented as components in connectivity layer, and
is defined by “Grid Security Infrastructure (GSI)”. GSI defines the services for
single sign-on authentication, communication protection, and restricted delega-
tion. Single sign-on allows a user to authenticate once and then create a proxy
credential that a program can use to authenticate with any remote service on
the user’s behalf. [6] The Delegation allows the creation and communication to
a remote service of a delegated proxy credential that the remote service can use
to act on the user’s behalf,perhaps with various restrictions; All these services
are tightly coupled with an underlying security framework, such as “SSL with
X.509/PKI”, and “DCE with Kerberos”[20].

2.1.3 WS Grid Architecture:OGSA

Figure 2.2: The main architecture of OGSA.

With the emergence of web services, a new architecture with service orientation
feature is introduced to Grid computation field - “Open Grid Services Archi-
tecture”. OGSA is “An integration of Grid and web services technologies that
defines standard interfaces and behaviors for distributed system integration and

8 Grid Firewall Requirements

management.”[9] As illustrated in Figure 2.2, the three principle elements of
OGSA include:

• OGSA Services

• OGSI

• Web Services

The “Open Grid Services Infrastructure (OGSI)” is “A Global Grid Forum stan-
dard that defines the core semantics of a transient web service, including naming,
lifetime, and exposing service state. ”[9] The specification defines grid services
based on the mechanisms of web services like XML and WSDL to specify stan-
dard interfaces, behaviors, and interaction for all grid resources. OGSI extends
the definition of web services to provide capabilities for dynamic, stateful, and
manageable web services that are required to model the resources of the grid.[22].
OGSI defines essential building blocks for constructing distributed system.

Based on OGSI and web services, the core Grid services are developed. “Ser-
vice Management” provides automated help in managing the deployed services,
such as installation, maintenance and monitoring. “Service Communication”
supports the fundamental communication between Grid services. “Policy Ser-
vices” create a general framework for creation, administration, and management
of policies and agreements for system operation.[22]

“Security Services” are built from XML-based security protocol components,
which specify the security architecture in a manner that is agnostic to the ac-
tual underlying mechanisms. These mechanism-agnostic approaches allow the
same basic assertion formats and protocols to be deployed with different under-
lying security infrastructures. An infrastructure could be built on top of WS
security without any knowledge about the underlying mechanisms [23]. Such
an approach could offer good scalability for the system, since the underlying in-
frastructure could be replaced with another one to meet changed requirements
without affecting the existing web services that are built on top of the previous
infrastructure.

2.1.4 Globus Toolkit Version 3 and 4

“GT3” was born with a new GSI, which differs quite a lot from the former one.
It offers the functionality of authentication, identity federation, dynamic entities
and delegation, message-level security, management of overlaid trust domains,

2.2 GT Firewall Requirements 9

and security service abstraction. “GT3” and “GT4” contain both “PRE-WS”
and “WS” based components. In “GT3”, the web service components are based
on the “Open Grid Services Infrastructure (OGSI)” specification. In “GT4” the
web services components are based on the “Web Service Resource Framework
(WSRF)” specification. [8]

2.2 GT Firewall Requirements

The necessity of using a firewall is to restrict traffic between a protected network
and the open network, such as Internet. Especially, for some valuable computing
resources or experimental utilities running as Grid service providers, most of the
time, security must be firstly assured before performing any further operations.

The Globus Toolkit, as a standardized development platform for Grid applica-
tions, is raising its popularity as time goes, and has been widely used now. The
toolkit includes many service components that require the firewalls to let the
traffic go through. The character of traffic differs from service to service and
from version to version.

The main services of the Globus Toolkit include:

• Job Management - GRAM. It defines protocols for creating and inter-
acting with a managed job. GRAM jobs are typically associated with
computational resources. [11]

• Data Movement - GridFTP. It is a high-performance, secure, reliable data
transfer protocol optimized for high-bandwidth wide-area networks.[24]

• Monitoring and Discovery - MDS. MDS is a distributed service for pub-
lishing and discovering dynamic information about distributed resources.
[14]

Grid Security Infrastructure (GSI) support the authentication and message pro-
tection for the above services (see in figure 2.3).

Normally, firewalls exist between the communication entities. All the traffic
of such services must be enabled by the firewalls between the ends. At the
same time, firewalls should allow some supporting services, such as GSI-enabled
OpenSSH, MyProxy, and MPICH-G2.

10 Grid Firewall Requirements

Figure 2.3: The service architecture of Globus Toolkit .

In this section, we explore the services of different versions of Globus Toolkit,
their traffic character and corresponding firewall requirements.

2.2.1 Globus Authentication and Message Protection (GSI)

GSI is used in Globus Toolkit for user authentication and message protection.
GSI adopts SSL and X.509/PKI certificates to provide GSI protections for:

• Secure Mutual Authentication

• Integrity Protection

• Encryption

• Secure Delegation

The infrastructure needs the support from GSI-enabled OpenSSH, which has the
incoming connections to TCP port 22.

2.2.2 Job Initiation and Management (GRAM)

The“Grid Resource Acquisition and Management (GRAM)” service offers the
methods for job creation and job management from remote hosts. The mecha-
nism of protocol is different in versions of GT. The “PRE-WS” GRAM proto-
col, which could be found in “GT2”, “GT3” and “GT4”, generates connection

2.2 GT Firewall Requirements 11

traffic initiated from client for job creation, and traffic from both ends for job
management.

The WSRF and OGSI GRAM Protocols, which could be found in “GT3” and
“GT4”, generate connection traffic initiated from client for job creation and job
management. But the file staging will still result in reverse connections as in
“PRE-WS GRAM” .

2.2.3 Data Movement (GridFTP)

The Globus GridFTP server appears in all versions of the toolkit and is a “PRE-
WS” component. The network traffic characteristics of all versions are identical.
The protocol contains two kinds of channels, control channel and data channel.
The connection of control channel is initiated by the client. The data channel
could have single connection or multiple connections for parallel transfer. The
single connection starts from the client, but the multiple connections start from
the source of data. This could mean “bi-directional” connections.

2.2.4 Monitoring and Discovery Service (MDS)

MDS offers a means to monitor the status of the machines and find the proper
ones for use. The protocol and generated traffic differs in “PRE-WS MDS” ,
“OGSI and WSRF MDS”.

The “PRE-WS MDS” architecture has two main components: “Grid Resource
Information Servers (GRISs)” and “Grid Information Index Servers (GIISs)”.
“GRISs” run on resources and respond directly to any queries. “GRISs” also
typically register themselves to one or more GIISs. This allows users to query
a “GIIS”, see all the available resources in an organization and then query the
resource’s GRIS directory or through the “GIIS”. [8]

Traffic in both direction between “GRIS” and “GIIS” should be allowed. Also,
the traffic from Client to “GRIS” and “GIIS” should be permitted.

For “OGSI and WSRF MDS”, the model is similar to the “PRE-WS MDS”
model. But we only need to allow the traffic from client to the service port.

12 Grid Firewall Requirements

2.2.5 Client Site Firewall Requirements

From the above analysis of services, we could draw the following conclusions.

• Clients need the permission to connect freely from ephemeral ports on
host to all ports at server site.

• Since the GRAM service uses callbacks to client; client sites should allow
incoming connections and restrict the incoming port range.

2.2.6 Server Site Firewall Requirements

Sites that host Grid services often host or act as Grid clients. For example,
retrieving files needed by the job. So, the server firewall configuration should
meet all the client site firewall requirements.

2.2.6.1 Allowed Incoming Ports

A server site should allow incoming connections to the “well-known Grid Service
Ports” as well as ephemeral ports.[8]

For “PRE-WS” services these ports are:

• 22/tcp for GSI-ENABLED OPENSSH

• 2119/tcp for GRAM

• 2135/tcp for MDS

• 2811/tcp for GridFTP.

For “WS-based” services these ports are:

• 22/tcp for GSI-ENABLED OPENSSH

• 2811/tcp for GridFTP

• 8080/tcp (“GT3”) or 8443/tcp (“GT4”) for GRAM and MDS.

2.3 Summary 13

2.2.6.2 Allowed Outgoing Ports

Server sites should allow outgoing connections freely from ephemeral ports at
the server site to ephemeral ports at client sites as well as to Grid Service Ports
at other sites.[8]

From the above discussion, it is obvious that to construct a firewall policy that
can meet the Grid firewall requirements, administrators need to open several
well-known Grid Service Ports, and a range of ephemeral ports on server sites
for incoming connections. Even, the client sites need to open some ephemeral
ports for callback connections. Without dynamic firewall control, such ports
will be kept open even when there are no activities at all. This is dangerous!!!
Some backdoor programs could listen to such ports for incoming connections.

An adaptive firewall at each end, which could open and close ports based on
service needs, could solve such problem. The firewall will open the ports when
it receives authenticated requests. Moreover, the firewall will close the ports
when there are no service activities on those ports.

An alternative is to reduce the number of open firewall ports. A piece of software
called “Nexus Proxy” offers port tunneling by multiplexing and tunneling all
Globus communications through a specified port. A “Nexus Proxy” incoming
server runs outside the firewall. At the same time, a “Nexus Proxy” outgoing
server runs as a daemon process inside the firewall. But, the use of such proxy
process could impose heavy system burden and become a bottleneck when there
is a heavy load of communication.

2.3 Summary

In this chapter, we present two different architectures of Grid - “Hourglass”
and “OGSA” , as well as their security mechanisms. Also, we introduce the
services in these two architectures and their traffic feature and corresponding
requirements to firewalls.

There are two distinct architectures of Grid - “PRE-WS” and “WS” . The
security mechanisms that they use are also different. The services in each archi-
tectures that are implemented in Globus Toolkit are almost the same, but with
different characters of traffic. Thus , the firewall requirements off “PRE-WS”

14 Grid Firewall Requirements

and WS architecture are not the same.

Another factor that should be paid attention to is that the client side needs to
open some ports for incoming connections, which is obviously dangerous.

Chapter 3

The Threats and
Requirements

The threats to Adaptive Grid Firewall Protocol (named “ AGF-protocol ” in
the following discussion) could be attacks, communication failures and system
failures. They are all environmental factors that could exert some influences on
the normal operations of the protocol. In this chapter we will discuss about the
threats and requirements for an adaptive firewall.

3.1 Attacks

Before we design AGF-Protocol for firewall open and close, we need to research
the potential classes of network attacks. Such attack patterns could suggest
where protections need to be tightened during the design process. We expand
our discussion based on the presumption that the primary key of each ends
would not be compromised. AGF-Protocol is not designed to deal with the key
compromise vulnerability.

The classes of network attacks that we consider relevant include “Man in the
middle attacks”, “brute force attacks”, and “dictionary attacks”.

16 The Threats and Requirements

3.1.1 Man in the middle attacks

Figure 3.1: The process of Man in the Middle Attack.

A man in the middle attack (MITM) is an attack in which an attacker is able
to read, insert and modify at will, messages between two parties without ei-
ther party knowing that the link between them has been compromised.[10] The
MITM attack(figure 3.1) may include one or more of:“Eavesdropping”, “substi-
tution attack”, “replay attack”, and “denial of service attack”.

3.1.1.1 Eavesdropping

Eavesdropping includes traffic analysis and possibly a known plaintext attack.
The characteristic of such attack is intercepting and reading messages by unin-
tended recipient.

The threats of such attack to AGF-Protocol are that an adversary could find
out the exact port number that a client wants to open. Then, it’s possible for
him to race and setup connection earlier than the client and performs further
attacks. An adversary could also combine eavesdropping with other attacks such
as substitution attack to disguise as a client and open the firewall ports at will.

To protect the communication from such attack, a security service of confiden-
tiality, which is normally encryption, could be used. For AGF-Protocol, the
messages are encrypted partially. Parts of the message, which are used for

3.1 Attacks 17

identifying the message and insensitive, such as message type, and user ID, are
exposed to the communication channel. But, some parts of the message, which
are sensitive, such as the expected port to open, session key, are encrypted with
strong encryption algorithm.

3.1.1.2 Substitution attack

An adversary could substitute the messages maliciously without the notice from
either party. Such attack could change the meaning of messages, and cause the
abnormal behavior of the victim party.

If the content of messages could be changed without noticed, then it’s a night-
mare for both server and client. For AGF-Protocol, if the expected port number
could be modified by adversary on fly, the server side firewall would open a port
which is appointed by the attacker. The client, thinking the server has opened
the desired port, will encounter communication failure, since the port is not
opened actually. Thus, it seems like that the client is helping the attacker to
open any service ports within the allowed service port range.

To protect AGF-Protocol from such attack, we use message authentication code
(MAC). A MAC algorithm accepts as input a secret key and an arbitrary-length
message to be authenticated, and outputs a MAC (sometimes known as a tag).
The MAC value protects both a message’s integrity as well as its authenticity,
by allowing verifiers (who also possess the secret key) to detect any changes to
the message content. [16] MAC, in AGF-Protocol, is designed as an encrypted
digest of the whole message.

3.1.1.3 Replay attacks

The adversary could save parts or all of the data transmissions and resend or
delay the message at a detected pattern to the party, disguising the contrary
one.

For AGF-Protocol, such attack could cause the server to open the same firewall
ports that a client has ever opened to the attacker. There are two ways to
prevent replay attacks, one is session tokens, and another is time stamping.

The main idea of time stamping is that: The communication parties could
only accept the authenticated time stamped messages within a reasonable time
tolerance. The messages stamped out of synchronization will not be accepted.

18 The Threats and Requirements

One of the defects of such protocol is that we must synchronize securely the
clocks at both ends, which could be difficult.

AGF-Protocol is designed with the idea from one-time password and pseudo-
random number sequence. It could be seen as a kind of session token method.
Both ends share a same primary key. For each session, the server will generate a
challenge to the client and negotiate a one-time session key for message encryp-
tion. Each message is numbered with the random number in the pseudorandom
sequence, which is generated based on session key and primary key.

Thus, an adversary can not reuse the intercepted messages to gain the access to
ports.

3.1.1.4 Denial of service attacks

The most popular type of such attack is to cause the consumption or overload
of system or network resources. The adversary could utilize the design faults of
protocol to keep the system too busy to serve any other clients.

For AGF-Protocol, such attack could cause the server fails to serve any requests
from client, and keep the firewall closed all the time.

To avoid such attacks, AGF-Protocol is designed to only open one service thread
for identical request messages. Also, the message authentication code could
prevent an adversary from generating random request messages without the
knowledge of primary key. The maximum number of such requests is the number
of all the user-port pairs, which most of the time is relatively small in scale .

3.1.2 Distributed Denial of service attacks

DDoS attacks is a kind of DoS attacks, but use many hosts on the Internet
(Figure 3.2). In a distributed attack, the attacking computer hosts are often
zombie computers with broadband connections to the Internet that have been
compromised by viruses or Trojan horse programs that allow the perpetrator
to remotely control the machine and direct the attack, often through a botnet.
With enough such slave hosts, the services of even the largest and most well-
connected websites can be denied.[15]

The effect of such attack is the same as DoS attack. The message authentication
code could also help at here to lower down the number of valid requests to the

3.1 Attacks 19

Figure 3.2: The process of Distributed Dinial of Service Attack.

number of all the user-port pairs. As long as the server could handle all the
requests from all the legitimate users at the same time, then it could handle
such attacks.

3.1.3 Brute force attacks

The adversary could decrypt the data transmission by trying a large number of
possible encryption keys.

For AGF-Protocol, such attacks, if success, could decrypt all the communica-
tions, and disclose the session key or even primary key. Then the attacker could
perform any kinds of attacks which are prevented by encryption and random
number generation technique.

To avoid such attack, we could only depend on the strong encryption method.
AES could offer strong encryption for 128-bits, 256-bits or even longer. We
adopt AES as encryption method for AGF-Protocol.

3.1.4 Dictionary attacks

Dictionary attack refers to the general technique of trying to guess some secret
by running through a list of likely possibilities, often a list of words from a

20 The Threats and Requirements

dictionary.[12]

The effects of such attack are the same as the effects of brute force attacks. One
of the most important feature of such attacks is that most of the possibilities
that they searches are human related. To defend AGF-Protocol against it, we
insulate all the information sent between two ends from human. The information
has nothing to do with any human kind, they are just generated randomly.
For example, we could generate primary key and session key from a hardware
random number generator, which use resistor or semiconductor noise as the
source of randomness.

3.2 Communication Failure

We should never make an assumption that the communication channel could be
seen as an ideal pipeline, especially for the connection through open networks. A
message, during the transmission, needs to go through many “decision makes”
before it could actually reach its final destination.

As the OSI network reference model shows, a message needs to go through
several layers from top to bottom at hosting machine before it is actually turned
into electronic signals and sent out. During the transmission, at each node of
the route, the signals have to be processed and passed to the next node. At
the destination host, such signals will be turned back to the original message by
going through several layers from bottom to top. Also, during transmission, the
message could be divided into many packets and reassembled at the destination
machine.

The message could be received correctly if and only if all the above steps run as
expected. But, there could be many errors. For example, the electronic signals
could be affected by the environmental electromagnetic field. Also, the packets
could be directed to a wrong place because of software or hardware design faults
of the nodes. Some overloaded nodes, such as routers, would delay or drop the
packet.

In total, the messages, during the transmission, could get corrupted, delayed,
or even lost.

The protocol that we designed should also be able to withstand such communi-
cation failures. Otherwise, the session will be so easy to break down. Then, it
would be hard for a client to keep the firewall open during a long time, because,
the connection is considered not stable enough to perform such a task.

3.3 System Failure 21

To deal with communication failures, we adopted some traditional ideas from
protocol design, such as resending and time out mechanisms.

3.3 System Failure

A system failure is “an internally detected error from which recovery is not
possible. Rather than continue to operate, risking data integrity, the operating
system halts the computer”.[18]

We can not stop system failure. How could the protocol get recovered from sys-
tem failure? The answer is “saving the status variables”. As for AGF-Protocol,
after the current session is finished, it is important for both sides to store the
status variables into history files for use in the next session. In order to recover
from system failure, both entities will also store the status variables at critical
steps into history files. With such files, the client and server could synchronize
to start from the same point.

Another question is: “How could the implementation guarantee that the firewall
is closed, when the operating system restart after a system failure?” It is an
obvious risk, if the firewall is kept open when the system restarts, only because
the implementation does not ever have a chance to close it. Such problem could
be solved, if the firewall rules that are modified are temporary, say only in the
memory, when firewall is running. Such rules will NEVER be written into the
firewall rule configuration files. Once the system restarts, the firewall will restart
and load the stable rules which are stored in files.

Here comes another question: “How could the implementation guarantee that
it will close the ports anyway when it encounters a program faults, or it is
stopped suddenly?” Well, it’s like a question of “Who could you depend on when
your gate guard gets sick?” My answer is “The gate could close by itself when
nobody opens it.” We could have another process, which is simple but robust,
to monitor the firewall. The process could open and close the firewall and must
get continuous keep-alive messages for keeping the firewall open; otherwise it
will close the firewall as soon as time out.

3.4 Adaptive GRID Firewall Requirements

Based on the discussion about Globus Toolkit firewall requirements and the
potential threats and failures. We found the following requirements, with the

22 The Threats and Requirements

consideration of integrating the implementation into the existing Grid services:

• The protocol should be resistant to the network attacks mentioned above

• The protocol should be robust enough to deal with potential communica-
tion and system failures, including:

– Message loss, corruption and delay

– Abnormal quit from program, such as system reboot and sudden
system power off.

– The firewall should close when there is a failure.

• The implementation of the protocol should be able to integrate into the
existing “GT2”, “GT3” and “GT4” applications. It should be configured
as transparent as possible to applications in the upper layer

3.5 Referenced Idea: Port Knocking

To design an adaptive firewall , one of the solutions could be to open only one
service port on the firewall for the AGF-Protocol server to receive incoming
“firewall-open” requests. The disadvantage of such method is that there still
exists a “ hole ” in the firewall. For a backdoor program, it could get some
chances to receive incoming connections through this port, when our service
program goes wrong and release the port.

An alternative is closing all the ports for incomming connections. The port is
only opened for a client when it could authenticate to the server. The capability
of penetrating the firewall is a must to deal with such situation.

Port Knocking is one of the solution for stealthy authentication across closed
ports. port knocking refers to a method of communication between two com-
puters in which information is encoded, and possibly encrypted, into a sequence
of port numbers.This sequence is termed the knock. [25]

The server presents no open ports to outside and “silently” monitors all con-
nection attempts. Only the client which could “knock” correctly could trigger
the server to open the expected port for it. Such knock is a sequence of TCP
“SYN” packets with specific port numbers on them. The monitor inside the
firewall could detect such knock by checking the firewall log file of incomming
TCP packets.If it detect a successful knock, it will open the required port(s).

3.6 Summary 23

The good thing for such method is that it provides a mechanism to communicate
to the processes inside firewall through closed ports. But the bad thing is that
it splits the request into small packets. The receiver has to have the capability
to “ reassemble ” the “SYN” packets. The communication parties have to make
sure the order of receiving the packets keeps the same as the order of sending
the packets, otherwise the decoded information will be different as sent. If the
packet is sent through a complex route, the order could not be guaranteed. Also,
since the packets are not authenticated, the server can not disdinguish a packet
from a forged one. The attacker can insert “SYN” with random port number
but same IP address as the client has, to prevent the server from receiving
correct knocking sequence.

To design AGF-Protocol , we take advantage of the goodness of Port Knocking
and use authenticated message within one IP packet. By using “PCAP” library,
we could detect incomming IP packets through a closed firewall. The solution
will be discussed in more detail in the following chapter.

3.6 Summary

As listed, the AGF-Protocol should fulfil all the requirements about attacks and
failures. The attacks include eavesdropping, substitution attacks, replay attacks,
DoS, DDoS, brute force attacks, and dictionary attacks. At the same time, AGF-
Protocol should also be designed to withstand communication failure(message
corruption, delay and loss) and system failure(OS halts,program failure).It is
also important that the protocol is feasible for integrating it with the existing
Grid architectures.

24 The Threats and Requirements

Chapter 4

Conceptual Design

The design process of adaptive Grid firewall includes three phases: conceptual
design, protocol design, architecture design and protocol modeling.

Conceptual design includes some basic ideas about how to solve the challenges
given by requirements about network attacks and system/communication fail-
ures. The protocol design concerns more about the details, such as message
format and behavior of the two ends. The architecture design gives the ar-
chitectural view of integrating protocol implementation into the existing Grid
service architecture.

The conceptual design has referenced many ideas from the state of the art
network security technologies and traditional communication protocol design
principles. The design gives the general view and direction of problem solving
against the requirement challenges.

26 Conceptual Design

4.1 Network Security Challenges

4.1.1 Eavesdropping

Eavesdropping is characterized as intercepting and reading messages by unin-
tended recipient. The threats of such attack to AGF-Protocol have been dis-
cussed in the former chapter. At here, we presents a more detailed solution.

To defend the data transition against eavesdropping, the protocol uses AES
encryption algorithm for a fast and strong protection. The advantage of AES
is that it could offer at least 128-bit security. And the key length could vary
based on different computational configurations and needs. Also the number
of encryption cycle can be extended to offer the option for trade-off between
performance and security level.

The AES is used to protect some sensitive parts of the message, including the
expected port number to open, the content of challenge, the content of response,
and the session key. And it is used as the generation algorithm for message
authentication code (MAC).

The information, such as user ID and message type, is exposed to the eavesdrop-
per. But, such information must be exposed, so that the communication parties
could recognize and process the messages. Even though eavesdroppers could
get the knowledge about communication pattern through such information, and
could substitute the messages at correct time. It will be no use for them, if such
behevior could be detected.

4.1.2 Substitution attack

The character of substitution attack is changing the message without notice.

The basic idea to defend the message against such attacks is protecting the
integrity. The integrity is the characteristic of data being accurate and complete.
The message authentication code (MAC) could offer the service of both integrity
and authenticity.

To defend the communication against IP falsification, we bind the IP address
with the message also. The technique in AGF-Protocol is appending the message
with host IP address, and the primary key. Then generate the hash value and
encrypt the value with current session key. The process is shown in figure 4.1.

4.1 Network Security Challenges 27

Figure 4.1: The process of MAC generation.

The recipient receives the message, appends the message with source IP address
and its primary key, and generates the hash value B. Then it decrypts the MAC
with session key and get a hash value A. If the received decrypted hash value A
is the same as the received generated hash value B, the recipient could know that
the message is originated from authenticated counterparty, and is not tampered
during transmission. The process is shown in figure 4.2

4.1.3 Replay attacks

One of the premises for the success of replay attack is that the communica-
tion parties allow the reuse of messages that is ever sent or accept the delayed
message.

As designed, the protocol does not allow identical messages in the whole session.
Only the first message that the client sent to the server could be the same as last
session, for sake of failure recovery. But the reply to such a message is a new
challenging message, which changes randomly every time, thus the adversary
could not do anything further.

The protocol use Challenge/ Response mechanism before it sets up the session
and opens the firewall ports. The challenge is encrypted and varies every time
when establishing the session. The challenge includes a new session key for
use in this session. As discussed above, the MACs for the same content of
the message between different sessions will be different, because of the different

28 Conceptual Design

Figure 4.2: The process of MAC verification.

session key used. Thus, the messages, which are attached with MAC and sent
in different sessions, are different. Thus, the reuse of messages between sessions
is not possible.

It is also not possible to reuse the messages in one session. The process is
shown in figure 4.3. All the messages within one session are attached with
different random number from a same pseudorandom number sequence, which
are generated with the primary key and session key. Although, some messages,
such as keep-alive messages, are identical, the number attached with each of
them is different, and can not be replayed.

For the messages that arrive late, the parties will ignore them. For a message
A that has ever been received, if it could be considered as the resent message
because of communication failure, the party will resend the reply of it - message
B, which has ever been sent. Once the party has received the successive message
- message C, which is the “reply of its reply”, it will continue and ignore message
A, if such message is received during the successive steps. Thus, a replay attack
can not get success because it can not “drive” the party to go one step further.

4.1.4 Denial of service attacks

Since the system could only accept the new messages in the whole process,
except the first one. To consume the system resource, an adversary performing
DoS attack, could only take advantage of the first message feature. He keeps
sending the intercepted old first message to the server. The message is attached

4.1 Network Security Challenges 29

Figure 4.3: Pseudorandom Number Sequence Generation and Verification.

with the digest of the combination of original IP address, key, and the message
itself. It is not possible for the attacker to change the message to look like a
new request message, without violating the integrity. We name such message as
“start message”.

After receiving the start message, if it is correct, the server will generate a
challenge and wait for the response until time out. During the waiting process,
any identical messages will be ignored. Thus, there is only one thread created
for identical messages. The number of such valid “request messages” is the
same as the number of “user - port” pairs that a server could handle, which
normally is a relatively small number. Thus, such kind of attack is degraded to
a low level. Even if the attack starts a distributed denial of service attack, the
maximum number of servant threads that could be raised by such attack is the
same as the maximum valid number of “user - port ” pairs for the server. The
server could also degrade such kind of attacks.

30 Conceptual Design

4.1.5 Brute Force Attacks

The communication is protected by AES. Until now, we have not seen any report
about the possibility of cracking an AES encrypted cyphertext by brute force.

4.1.6 Dictionary attack

The random number attached to each message is picked from a pseudorandom
number sequence, and is 160 bits long. The primary key and session key are
also generated randomly. Nothing in the communication is generated from per-
sonalized information, such as name, birthday or human selected password. It’s
hard to have a dictionary for the random numbers used in the protocol.

4.2 Communication Failure

Communication Failure could include message loss, message delay and message
corruption. Based on the principle of traditional design, we could use simplex
communication, message retransmission, time out and maximum trying times to
guarantee the transmission of messages. The mechanisms could handle message
loss and delay. Both ends ignore the corrupted messages.

In simplex communication, the process will not continue until the party has
received the expected message in time or the receiving process is timeout. Such
method could synchronize the communication parties within the transmission
process simply but stably.

The message retransmission, together with time out mechanism, could make the
protocol robust against message loss and delay. The party will try to resend the
message if it can not receive its replay in time. If the maximum trying times is
reached, it will abandon the communication and quit.

4.3 System Failure

The protocol could save the status of communication as a history into history
file. When the session of communication gets success from the first message to
the last one, the history will be updated. When there is a failure in the process,

4.4 Summary 31

such history will not be updated, and we use it, then, as a starting point for
recovery. The more detailed discussion could be found in the section of protocol
design.

4.4 Summary

In this chapter, we present the basic design ideas to solve the problems imposed
by adaptive Grid firewall requirements.

• AES encryption for eavesdropping and brute force attacks

• MAC for substitution attack

• Challenge/Response plus Pseudorandom Number Sequence for replay at-
tack

• Single Thread for DoS and DDoS

• Random big number for dictionary attacks

• Timeout/Resend for communication failure

• Status Saving/Restore for system failure

The encryption and pseudorandom number sequence generation is performed
base on a key pair that’s shared between the two communication parties. A key
pair includes a primary key and session key. The primary key is kept stable,
while the session key is negotiated at the beginning of every session and changes
in different sessions.

32 Conceptual Design

Chapter 5

Protocol Design

The protocol design includes the design for the formats of messages, and the
behavior of two ends when they have received or failed to receive such messages.
In this chapter we will present you an insight of the different types of messages,
the meaning of each part in a message, and the process of a whole session for
opening and closing a firewall.

5.1 Message Design

Based on the ideas from conceptual design, we could extract the message format,
divide a message into several parts and set the relationship between them. And
finally we get the general message format and message types as design results.

1. Use random sequence generator to generate random number, and attach it
to every message

2. Use key pair, including primary key Kprim and session key Ksess. The
primary key keeps stable, while the session key changes from session to session.

3. The random sequence generator is a function of the sequence number n,
Kprim and Ksess.

34 Protocol Design

Xn = Rand(n, Kprim,Ksess)

4. A message M should include the message type, user ID, random sequence
number n, corresponding random number Xn , the encrypted expecting port
number EEP , and the optional encrypted content EC .

M = MessageType + UserID + n + Xn + EEP + EC

5. The content of the message, such as the expected port number, will be en-
crypted by the Ksess with a symmetrical encryption algorithm. The expression
is:

EC = Enc(Content, Ksess)

6. For each message M , the sender should make a digest of the concatenation
of the source IP address, the primary key Kprim , and M , then encrypt this
digest with the session key Ksess. ,using symmetrical encryption algorithm for
the concern of performance.

Sig(M) = Enc(Dig(M + IP + Kprim),Ksess)

The function Enc is the encryption function, such as AES. The Dig is the digest
algorithm, such as MD5. The result could be seen as kind of signature of the
message, and is sent, of course, together with this message.

7. The general format of the message is:

Figure 5.1: General Format of the Message.

8. There are eight types of messages, with the name:

• ASK: The first message of session, sent from client to server. The message
informs the server that a client wants to open a port.

• CHAL: The second message of the session, sent from server to client.
The message contains a challenge, which includes new session key nKsess

and new random sequence number nn. The challenge is encrypted with
primary key Kprim . As for the Client, it needs to decrypt the challenge,
generate a new random number based on the given nKsess , nn. The
function used is:

5.2 Client and Server Behavior Design 35

Xnn = Rand(nn, Kprim, nKsess)

• PORT: The third message of the session, sent from client to server. The
message is sent with Xnn and nn. It changes EEP to a new one —the
expected port number is encrypted with the new session key nKsess.

EEP = Enc(expectedport, nKsess)

• OPEN: The fourth message of the session, sent from server to client. The
message is sent with Xnn+1 and nn + 1. The port number is encrypted
with nKsess. The message is telling the client that its request to that port
could be granted. If the client could send a KEEP message, the firewall
at server site will open the port for it.

• KEEP: The fifth message of session, sent from client to server. The mes-
sage is sent with Xnn+2 and nn + 2. The port number is encrypted with
nKsess. The message is a kind of keep-alive message, telling the server
that the client wants to keep the port open. If the server is not able to
get this message, it will not open the firewall. Such type of message will
be sent during the session, to keep the connection alive. If the server is
not able to get this message within a given period of time, it will close the
firewall port.

• ACK: The sixth message of the session, sent from server to client. The
message is sent with Xnn+3 and nn + 3. The port number is encrypted
with nKsess. The message is telling the client that the expected port has
been opened at the server side. The client should keep sending the KEEP
messages, with the successive random numbers in sequence.

• TERM: The message offers a positive way for a client to close the remote
firewall port. It is sent from client to server. The port number is encrypted
with nKsess. The message is telling the server that the client wants to
quit the connection and closes the port.

• TACK: The last massage that is sent in the whole session. After this
message, the process terminates. The server sends it to client after it
receives TERM and closes the firewall port. The port number is encrypted,
the same as before. This message is telling the client that the server has
received its terminating request, and closed the firewall successfully.

5.2 Client and Server Behavior Design

After we have finished with the design of message types and their semantic
meanings, we need to define the behavior of the client and server about how to

36 Protocol Design

Figure 5.2: Message Transmission in One Session.

process the received messages, and how to deal with system and communication
failures. In this section we will discuss about the behavior of client and server
at each point that is labeled in figure 5.2

5.2.1 Communication Start: ASK

The session is initiated by the client. It loads the system status from a history
file. As mentioned before, the history mechanism is designed for system recov-
ery. Such file contains the system status information of last successful session,
including the expected port - ExpPort, userID, Kprim, Ksess , Xn and n.

In the process there are several state variant, which are used in the whole process.

5.2 Client and Server Behavior Design 37

• c curn: client variable, current random sequence number n for sending

• c curx: client variable, current random number Xn for sending

• c chkn: client variable, random sequence number for checking

• c chkx: client variable, random number for checking

• c curUID: client variable, current user ID

• c curKsess: client variable, current session key

• c expPort: client variable, expected port number

The process sets the variables as follows:

c curn = n

c curx = Xn

c chkn = n + 1

c chkx = Rand(n + 1,Kprim,Ksess)

c curUID = userID

c curKsess = Ksess

c expPort = ExpPort

Base on such information, it sends an ASK message:

Figure 5.3: ASK message format.

After sending the message, the client will calculate Xn+1 and n+1 to check the
reply from server.

38 Protocol Design

chkx = Xn+1

chkn = n + 1

Also, the client will start a timer to count time out. If a reply can not arrive
in time, it will try to send the same message again. If it still can not get reply
after trying for several times, say TryOutTimes, the client will give up, report
a communication failure and quit the process. We define such a process as wait
and try process, in short “W/T process”. The client uses such process when
sending all types of messages, including ASK, PORT, KEEP, and TERM. In
the following discussion, we will use “W/T process” to reference such behavior.

5.2.2 Reply and Challenge: CHAL

As a server, when it has received such an ASK message, it starts a new thread
to process the request. We call such a process as service process. The service
process first checks the user ID, if such ID is legitimate, the process will then
load the service status from a history file of this user. Such file contains the
system status information of last session, including the values of status variants
as below.

There are several state variants in the thread, which are used in the whole
session.

• s curn: server variable, current random sequence number n for sending

• s curx: server variable, current random number Xn for sending

• s chkn: server variable, random sequence number for checking

• s chkx: server variable, random number for checking

• s curUID: server variable, current user ID

• s curKsess: server variable, current session key

• s processSuc: server Boolean variable, indicate whether the process get
success in the whole session

• s oldchkn: server variable, the old random sequence number for checking

• s oldchkx: server variable, the old random number for checking

• s oldKsess: server variable, the old session key

5.2 Client and Server Behavior Design 39

• s expPort: server variable, expected port number

After loading, the service process checks the variable s processSuc. The variable
indicates whether the last session is a successful communication process. If it’s
true, the service process should accept the ASK message with the successive
random number and the ASK message with the old random number as well. If
it’s false, the service process should only accept the message with old random
number.

Because, as designed, the service process considers it to be successful if the
session is terminated by the client and the service process sends the last message
- TACK. Then the process will save the s processSuc as true into the history
file. But, if the client could not get the TACK, it will recognize the session as
unsuccessful, and will send the old ASK message next time when it starts.

If the service process receives a successive message, it updates s oldchkn, s oldchkx,
s oldKsess and s processSuc to the current correspondings, and save them into
history file, which is:

s oldchkn = s chkn

s oldchkx = s chkx

s oldKsess = s curKsess

s processSuc = false

If the service process receives an old message, instead, it will update the current
session key, current n, and current x based on old values, as follows:

s curKsess = s oldKsess

s curn = s oldchkn + 1

s curx = Rand(s curn, Kprim, s curKsess)

Figure 5.4: CHAL message format.

Afterwards, the service process generates randomly a new 160-bits big number
as the new session key nKsess, and select randomly a small integer nn. These

40 Protocol Design

two values form a pair, and are encrypted together with the Kprim as the content
of CHAL message(see figure 5.4).

The reason to encrypt the challenge with primary key, instead of the session
key, is to defense from the old session key compromise. Since the new session
key are transmitted from the wire, if we use old session key for protection, once
the old key is compromised , all the successive messages could be decrypted.
With a primary key, which has never been transmitted through wire, it’s not
possible to compromise the current communication, even if the old session key
is discovered.

After sending this message, the service process changes the checking variables
to the newly generated values, and sets a timer.

s chkn = nn

s chkx = Rand(s chkn, Kprim, nKsess)

If it can not receive a correct PORT message in time, the service process will
terminate itself. If there are some incorrect messages from the client, the ser-
vice process will resend the CHAL message, for the concern of message loss or
message corruption in both directions.

5.2.3 Response with Port Number: PORT

When the client receives the CHAL message in time, it will check the random
number and random sequence number with its checking variable: c chkx and
c chkn Then it decrypts the content and extracts the challenge

(nKsess, nn) = Dec(Enc((nKsess, nn),Kprim),Kprim)

The client needs to calculate the new Xnn with the received nn , nKsess. and
Kprim that it owns.

Xnn = Rand(nn, Kprim, nKsess)

Figure 5.5: PORT message format.

The PORT message should be sent with the calculated Xnn. , and encrypted

5.2 Client and Server Behavior Design 41

expected port number with session key , as follow(see figure 5.5):

This mechanism could guarantee that only after the client has received the
challenge correctly, could a correct PORT message be created. And, only the
party with nKsess could know the expected port number.

After sending PORT, the client updates its checking variable c chkx and c chkn:

c chkn = nn + 1

c chkx = Rand(nn + 1,Kprim, nKsess)

And then it starts the “W/T process”.

5.2.4 Open is Possible: OPEN

When the service process receives PORT correctly, it checks the random se-
quence number, and random number against checking variables, and decrypts
the EEP for port number. If such port number is allowed by firewall policy to
be assigned to the user, it will send OPEN message, otherwise quit the process.
If it is allowed, the service process then updates its variables and sends OPEN
to client:

s curKsess = nKsess

s curn = nn + 1

s curx = Rand(s curn, Kprim, s curKsess)

s chkn = s chk + 2

s chkx = Rand(s chkn, Kprim, s curKsess)

Figure 5.6: OPEN message format.

The message OPEN is shown in figure 5.6:

After sending the message, the service process starts a timer, and waits for
KEEP or TERM message. If it can not get either of these two types of messages

42 Protocol Design

correctly, the service process will terminate itself.

If the process receives PORT message that is just processed, it could be possibly
because the client has not received the OPEN message in time, and send the
PORT message again. The process, then, will resend the OPEN message, but
will not reset the timer. Other received messages are ignored.

An attacker could perform a replay attack here, but since the timer will not be
reset for resending, the service process will finally terminate when time out or
continue if a correct TERM or KEEP is received from client.The replay attack
can not get success. The processing of KEEP is discussed in step 6, and the
processing of TERM is discussed in step 8.

5.2.5 Keep Alive: KEEP

When the client receives OPEN message correctly, it checks the message the
same way as before, and updates the status variables:

c curKsess = nKsess

c chkn = c chkn + 2

c chkx = rand(c chkn, Kprim, c curKsess)

c curn = c chkn− 1

c curx = rand(c curn, Kprim, c curKess)

Figure 5.7: KEEP message format.

After this, it checks whether the user wants to quit without opening the firewall.
If it is not the case, the client sends KEEP message as follow and start “W/T
process”. Otherwise it sends TERM, the process is the same as the process when
the user wants to quit after the firewall is opened, as discussed in the last part
of step 7. The KEEP message is shown in figure 5.7.

5.2 Client and Server Behavior Design 43

5.2.6 Acknowledge and Continue: ACK

When the service process receives the KEEP message correctly, it will check the
message the same way as before, and update the status variables:

s curn = s curn + 2

s curx = Rand(s curn, Kprim, s curKsess)

s chkn = s chk + 2

s chkx = Rand(s chkn, Kprim, s curKsess)

Figure 5.8: ACK message format.

Then, the process opens the firewall and sends ACK message (see figure 5.8) to
the client.

After this, the service process sets the timer and starts to wait for another
KEEP or TERM message. If it could not get correct KEEP or TERM message
in time, the service process will close the firewall and terminate itself.

If the process receives KEEP message that is just processed, it could be possibly
because the client has not received the ACK message in time, and send KEEP
for the second time. The process, then, will resend the ACK message. Other
received messages are ignored. An attacker could perform a replay attack here,
as ever. But the attack could not influence too much because the timer will not
be reset.

5.2.7 Continue or Terminate? TERM

When the client receives the ACK correctly, it will check the message and update
the variable,

c chkn = c chkn + 2

c chkx = rand(c chkn, Kprim, c curKsess)

44 Protocol Design

c curn = c chkn− 1

c curx = rand(c curn, Kprim, c curKess)

Then it waits for a period of time and checks whether the user wants to close
the firewall, if not, the client goes back to step 5 to send the KEEP message.

The client - server system just repeats between step 5, 6 and 7 until

1. the user wants to quit

2. communication time out

Figure 5.9: TERM message format.

When the user wants to quit, the client will send a TERM message as shown in
figure 5.9, and start a “W/T process”:

5.2.8 Acknowledgement to Termination: TACK

When the service process receives TERM message correctly, it checks the TERM
message against checking variables, and closes the firewall. Afterwards, it up-
dates the status variables as follows:

s curn = s curn + 2

s curx = Rand(s curn, Kprim, s curKsess)

s chkn = s chk + 2

s chkx = Rand(s chkn, Kprim, s curKsess)

And then save the status variables into the history file with the following values:

s curn : nn + m + 1

s curx : Rand(nn + m + 1,Kprim, nKsess)

s chkn : nn + m + 2

5.2 Client and Server Behavior Design 45

s chkx : Rand(nn + m + 2,Kprim, nKsess)

s curUID : userID

s curKsess : nKsess

s processSuc : true

s oldchkn : n

s oldchkx : Xn

s oldKsess : Ksess

Figure 5.10: TACK message format.

After saving, it sends the message TACK as shown in figure 5.10, to acknowledge
the termination request.

After sending, the service process terminates.

5.2.9 Save Before Termination

When the client receives TACK correctly, it checks the message, and updates
status variables:

c chkn = c chkn + 2

c chkx = rand(c chkn, Kprim, c curKsess)

c curn = c chkn− 1

c curx = rand(c curn, Kprim, c curKess)

Then, the client saves the status variables with values as follow:

c curn : nn + m + 2

c curx : Rand(nn + m + 2,Kprim, nKsess)

46 Protocol Design

c chkn : nn + m + 3

c chkx : Rand(nn + m + 32,Kprim, nKsess)

c curUID : userID

c curKsess : nKsess

After saving the variables, the client process has accomplished its mission and
terminates.

After it has opened the firewall, if there’s a communication time out at server
side, the service process will suppose the client has quit the process suddenly.
It then closes the firewall and terminates, without saving the status variables.

We could have a more detailed view of the whole communication process as
shown in figure 5.11

5.3 Summary

Eight types of messages are designed in the protocol. A session includes the
following main steps:

• “ASK” is sent from client, the first message for a session.

• “CHAL” is sent from server to challenge the client.

• “PORT” is sent from client then to reply such challenge and indicate the
expected port number that the client wants to open.

• “OPEN” is sent from server after validation, indicating the firewall could
be opened for such port.

• “KEEP” is sent from client, saying that the client surely want to open the
firewall. The server then opens the firewall.

• “ACK” is sent from server, indicating the firewall has opened, and the
client should continue to send the keep-alive message.

• “KEEP” and “ACK” are continuously sent between client and server,
until ...

5.3 Summary 47

• “TERM” is sent from client, when the client wants to close the firewall.
The server will close the firewall when such message is received.

• “TACK” is sent from server, indicating the server has closed the firewall,
the session could be closed now.

48 Protocol Design

Figure 5.11: Detailed Message Transmission of One Session.

Chapter 6

Architecture Design and
Protocol Modeling

The architecture design gives the architectural view of integrating protocol im-
plementation into the existing Grid service architecture. The protocol modeling
is the implementation of ideas in conceptual design in forms of state machines.
We use a state machine modeling and verification tool — UPPAAL to simulate
and test the design.

6.1 Architecture Design

The aim of the architecture design is to fit the protocol implementation into the
Grid platform seamlessly.

As a firewall control mechanism, AGF-Protocol runs upon IP network layer.
The firewall ports need to be opened at both client and server sides before a
Grid service could really get start. From an architecture overview, the imple-
mentation is in the basic layer for Grid service, as shown in figure 6.1

In order to open the remote firewall before accessing the services, the client
needs first authenticate itself to the firewall by AGF-Protocol, gets the ports

50 Architecture Design and Protocol Modeling

Figure 6.1: Adaptive Firewall Control Protocol in the Whole GT Architecture

opened, and connects to the services behind the firewall and starts a higher level
session.

During the high-level session, Keep-Alive and Acknowledgement messages will
be exchanged between client and the firewall to keep the ports open. If the
client quit abnormally, for example when the service gets stuck. The client will
not send Keep-Alive messages any more, and the server firewall ports will be
closed automatically when time is out for receiving such messages.

When the high-level session terminates, the client will inform the firewall to close
the corresponding ports that have been opened for it, and quit the process.

One of the possibilities for integrating such mechanism into existing Grid envi-
ronment is using “Wrappers”. A wrapper is a script, which could combine an
existing Grid application, no matter service or client, with the implementation
of Adaptive Firewall Control protocol, and make them run in parallel.

It is possible to configure the wrapper about the destination and port numbers
that a Grid client needs to open. Sometimes, a Grid service needs to act as a
client to get the sub-services from other Grid sites. Then, we could configure
the wrapper of a Grid service like a Grid client, so that when such service starts,
it opens the remote firewalls, and closes them when it quits.

Because of time limit, we haven’t explored to find other possibilities. Such work
should be done in the future.

6.2 Protocol Modelling 51

6.2 Protocol Modelling

The design of the protocol is an evolutionary process like a spiral. The design
need to be improved based on the test of it and redesign. The process includes
several recursive steps as follows:

1. model the design

2. test the model

3. find the defects in design from modeling result

4. modify the design and return to step 1

The main purpose of protocol modeling is for testing the ideas in protocol design.
So that we could have a detailed view of the protocol, find the limitations for
some original ideas, and modify the design to be better.

All these activities are performed on a simulation platform - UPPAAL.

6.2.1 UPPAAL and Modelling

Uppaal is an integrated tool environment for modeling, validation and verifica-
tion of real-time systems modeled as networks of timed automata, extended with
data types. [19] It is appropriate for communication protocols that can be mod-
eled as a collection of non-deterministic processes with finite control structure
and real-valued clocks, communicating through channels or shared variables.
[21]

Uppaal consists of a description language, a simulator and a model-checker.

• The description language is a non-deterministic guarded command lan-
guage with data types (e.g. bounded integers, arrays, etc.). [21] It is used
as a modeling language to describe protocol behavior as networks of timed
automata.

• The simulator is a validation tool which enables protocol examination
during early design stage. The platform offers a virtual representation of
the dynamic behavior of the modeled protocol. Many faults during the
design are found in such simulation, such as deadlock.

52 Architecture Design and Protocol Modeling

• The model-checker can check invariant and reachability properties by ex-
ploring the state-space of a system. [21] Some of the protocol features
are checked by this tool. The following protocol features are turned into
requirement specification expressions and checked:

– The protocol is robust from message loss

– The protocol is robust from message repeat

– The protocol is robust from message delay

6.2.2 State Machines

The protocol is modeled in four state machines:

• Client

• Server

• Timer for Client

• Timer for Server.

A protocol can not run without its environment, which includes:

• User at client side

• Communication Media from client to server

• Communication Media from server to client

All the above three entities are modeled as independent process, which com-
municate with others by shared variables and channels. The channel here, in
UPPAAL modeling language, is a kind of special data type for modeling event
raising and receiving. Such mechanism is used in protocol modeling message
sending/receiving and synchronization between processes.

The client and server models describe the client/server behaviors in the protocol.
These two models simulate the behavior of encryption, decryption, pseudoran-
dom number generation, message sending and listening, time counting and so
on. The models are attached as appendix in figure A.2 and figure A.1.

6.2 Protocol Modelling 53

Figure 6.2: The state machine of Communication Media from Client to Server

The client and server are modeled to communicate with each other through the
communication media processes. When the server sends a message out, it puts
the data of message into a globally shared array and notifies the communication
media through a channel. The communication media will then notify the client
that there comes a message from server. When the client sends a message out,
it is similar, as shown in figure 6.3 and figure 6.2

Each communication media takes care of the communication of one direction.
Both of them are designed with the ability to lost, delay and resend messages.
So that we could test some protocol features as mentioned before. Some other
features, such as the abilities to defense from substitution attack and replay
attack, are difficult to model and are out of the scope of this project. We prove
such features by other means.

The time counting processes are modeled as independent state machines, like
“watches on the wall”, as figure 6.5 and figure 6.4 represent. The client and
server can set their timers by special channels, and get notification from other
channels when time is out.

The client user (figure 6.6) is modeled as a user with random behaviors, request-
ing the client to open or close the firewall randomly as time goes.

54 Architecture Design and Protocol Modeling

Figure 6.3: The state machine of Communication Media from Server to Client

6.3 Summary

The implementation of AGF-Protocol could be integrated into existing Grid
environment by “Wrappers”. The protocol are modeled in timed automata and
tested in UPPAAL.The tested features include robustness from message loss,
repeat and delay. Other features are hard to model, and will be proved by other
methods.

6.3 Summary 55

Figure 6.4: The state machine of Client Timer Process

Figure 6.5: The state machine of Server Timer Process

Figure 6.6: The state machine of Client User Process

56 Architecture Design and Protocol Modeling

Chapter 7

Protocol Implementation

7.1 Software Architecture

The protocol is implemented in C++, compiled and tested on Linux system.
The software suit includes a Key pair generator, a server, and a client.

7.1.1 Key Generation

The key pair generator is designed to generate user ID based on given user
name, create corresponding key pair for the server and client, so that, they can
communicate for the first time(figure 7.1). The key pair will be stored together
with other items in the history file, which will be updated after each session.

7.1.2 Server

The server and client are implemented with the help of pseudorandom bit gen-
eration, UNIX socket and packet filtering technology.

58 Protocol Implementation

Figure 7.1: Key pair generation Architecture

The program implements pseudorandom number generator, following the Fed-
eral Information Processing Standard 186 (FIPS 186), which is originally de-
signed for DSA (Digital Signature Algorism) private keys. The algorithm could
generate 160-bit pseudorandom number sequence based on the given prime and
seed, which is, in our application, the Kprimand Ksess.

The library “PCAP” is a “Packet Capture library, provides a high level interface
to packet capture systems. All packets on the network, even those destined for
other hosts, are accessible through this mechanism”. [13]The advantage of using
such library, is that it could work in front of the software firewalls. Because
of the requirements, the system must be able to catch the packets even though
the software firewall has blocked all types of traffics. The communication could
be seen as a kind of knocks to the firewall. On correct knocks, the firewall will
open.

The server uses multithread technology to process the requests from multiple
clients. The architecture of server is shown in figure 7.2. For each user, there is
a servant thread and an event queue created for it. The “Timer Thread” could
handle all the time counting requests from servant threads, distinguishing each
other by user ID. Then, when time is out, it will push the timeout event into
the corresponding event queue.

The message and time out processing of each servant thread is the same as the
one of “Client Thread”, which will be explained later. The “PCAP packet In-

7.1 Software Architecture 59

Figure 7.2: Server Software Architecture

terceptor” module for server has the ability of recognizing messages for different
servant threads by user ID, and could dispense them to different event queues.

7.1.3 Client

The architecture of client is designed as in figure 7.3. There are three threads in
the runtime. “User IO Thread” serves as a user interface gets the command of
open/close firewall, and prints the current status on to the screen. The “Timer
thread” waits the requests from “Client Thread” - set, stop and reset. When
time is out, it will create a timeout event and push it to the “ Event Queue”. “
Client Thread” is the brain of whole program, gets the events from event queue,
checks and generates messages, and sends them out.

“Client Thread” manages the process of message generation. It collects all the
necessary information, such as message types and contents, and then utilizes the

60 Protocol Implementation

Figure 7.3: Client Software Architecture

Figure 7.4: The Message Created by Client Thread

Figure 7.5: The Message Sent Through Network

“Rand” module to generate the pseudorandom number in sequence and encrypt
the content by “AES” module. The message that is generated is shown in figure
7.4.

Then the message is passed to “MAC gen” module, to attach message authen-
tication code to it. Afterwards, the message is turned into network byte-order
and sent as an IP packet by module“ Transport”. The format of the message is
shown in figure 7.5.

“ Client Thread” gets the new messages and time out events from “Event
Queue”. When a new relevant message is captured from network, it will be
pushed as an event into event queue. The “PCAP packet Interceptor” is pro-

7.2 Test 61

grammed with filter function, so that only the messages that belong to AGF-
Protocol would be put into “Event Queue”. Having received the message, the
“Client Thread” decrypts and checks the message by module “MAC CHK”,
“AES”, “Rand” to test message authentication code, the content, and check
the pseudorandom number.

7.2 Test

Figure 7.6: Test Enviroment Setup

As shown in figure 7.6 Once started, the client will load the history files, which
contain the key pairs, and send “ASK” messages to server. The server, having
loaded the history file, will authenticate the clients. Once the client has au-
thenticated itself, the server opens the firewall by modifying the firewall rules
tempararyly of “iptables” .

Figure 7.7 and Figure 7.8 show the whole process of a session. The client at
192.168.1.1 tryes to open port 25 at 192.168.1.29 using a user name “lingbai”,
whose user ID and key pair has already deployed at both client and server side.
Every time there’s a message received or sent, both sides will record the time of
receiving and sending, as the time values shown in Figure7.7 and Figure 7.8.

The test is performed on two machines with the following configuration:

Server:

• Intel Celeron 2.2G (M)

62 Protocol Implementation

Figure 7.7: The Client Output

• 256MB DDR Ram

• 100MB/10MB Ethernet Adapter

• LINUX 2.6

Client:

• Intel Pentum II 333

• 224MB Ram

• 10MB Ethernet

• LINUX 2.6

The performance for opening a firewall port is tested. The time counting starts
from the begining of client process until when it receives the first “ACK” mes-
sage, which means that the remote firewall port has been opened. We get the
following data:

7.2 Test 63

Figure 7.8: The Server Output

No. Time No. Time
001 0.56s 006 0.58s
002 0.58s 007 0.58s
003 0.58s 008 0.58s
004 0.58s 009 0.52s
005 0.59s 010 0.58s

The average time to open a port is 0.57 second.

Figure 7.9, 7.10 and 7.11 show the status of firewall rules before, during and
after the session. As we can see, at the beginning , the firewall does not accept
any incomming connection except port 22.

After the client is authenticated to server, a new chain ,named “ KNOCK-
ERS eth0” is added to the fireall rules, to open port 25 for incomming connec-
tion from 192.168.1.1.

64 Protocol Implementation

Figure 7.9: The Status of IPTABLES before Client Connects

Then, after the client send “TERM” message, the firewall closes port 25 by
removing rule “ACCEPT tcp – 192.168.1.1 0.0.0.0 tcp dtp:25” from chain“
KNOCKERS eth0”.

7.3 Summary

The software suit includes three programs: Key pair generator, server and client.
The pseudorandom number generation follows the standard of FIPS 186. The
communication between client and server could penetrate software firewall with
the help of “PCAP” library. We have performed tests on performance and the
feasibility of opening and closing firewall to verify the design ideas. But the tests
about the robustness of the protocol from attacks and failures are not performed
because of time and environment limits. The current work has only proved such
features in theory.

7.3 Summary 65

Figure 7.10: The Status of IPTABLES when firewall is Opened

66 Protocol Implementation

Figure 7.11: The Status of IPTABLES when the firewall port is Closed

Chapter 8

Conclusion and Future Work

The current work is basically around finding the requirements for a Grid Adap-
tive Firewall, proposing a conceptual design and offering a simple implementa-
tion.

We analysis the different firewall requirements of services in two different ar-
chitectures of Grid - Hourglass and OGSA. Then the possible threats to AGF-
Protocol, when it is exposed to open network, are collected, which include several
types of related attacks, as well as system failures and communication failures.
Based on the above steps, we draw a conclusion on the requirements for adaptive
Grid firewall.

To design a protocol that could meet all the requirements, we use several
mechanisms in conceptual design: AES, MAC, Challenge-Response, Primary
key/session key, FIPS 186 Pseudorandom Number Sequence Generation, Time-
out/Resend , and so on.

Eight types of messages are designed in the protocol. We design the format of
messages and the behavior of communicaiton parties during one session. We
also give the suggestions for integrating the implementation into existing Grid
environment by “Wrappers”.

We have model and tested the protocol in timed automata with the help of a

68 Conclusion and Future Work

verification tool – UPPAAL.The robustness from message loss, repeat and delay
are tested.

A simple implementation to verify ideas is developed, which includes three pro-
grams: Key pair generator, server and client. The client and server could pen-
etrate software firewall with the support of “PCAP” library.

Some simple tests are performed on the implementation. The robustness of the
protocol from attacks and failures are proved in theory. Further tests about
such features should be done in the future.

Currently, the protocol is , in theory, immune from man in the middle attacks,
brute force attacks, and dictionary attacks. At the same time, it is robust
against system and communication failure. The implemenation could penetrate
a software firewall and open/close the firewall ports as requested.

The current implemenation could only open one port in each session, a future
work should improve it to open a range of ports or multiple ports in one session.

The firewall that we use for test is a LINUX “iptables” firewall. Some of the
commercial implementation use hardware firewall instead. One of the future
work is to find a proper way of controlling the hardware firewall as well.

The current implementation does not offer a way to encrypt the “history file”,
which contains key pair information. In the future, a utility to protect such files
should be found.

The current implementation does not deal with too much about the key man-
agement and distribution. To design a mechanism that can be compliant with
Grid authentication schemes and key delegation would be a future work to do.

Appendix A

Timed Automatas of Protocol

70 Timed Automatas of Protocol

sendASK ASKSent_WaitCHAL waitCHALstart_waitUser
checkCHAL CHALSuc

sendPORT

smallFailure1

PORTSent_WaitOPEN

waitOPEN checkOPEN OPENSuc

SendKEEP

smallFailure2

KEEPSent_WaitACKWaitACK checkACK ACKSuc

smallFailure3

goback

userClose
TERMSent_waitTACK

waitTACK checkTACK

TACKSuc

smallFailure4

UserClosedwithoutOPen

waitawhile
clk<=30

rightCS!

MCS[HEA] := ASK,
MCS[UID]:=curuID,
MCS[N] := curn,
MCS[X] := curx

setCTimer!
triedTimes++

openFirewall?

triedTimes :=0,
chkn :=oldchkn,
chkx :=oldchkx,
curseed:=oldseed,
curn:=chkn-1,
curx:=curn+curseed

rightSC?

r_header := MSC[HEA],
r_x := MSC[X],
r_n := MSC[N],
r_nn:= MSC[EME0] - curseed,
r_nseed:= MSC[EME1]-curseed

r_header == CHAL
and r_x == chkx
and r_n == chkn
nn:=r_nn,
nseed:=r_nseed,
nx:=nn+nseed,
// calculate the n and X
// for checking
chkn :=nn +1,
chkx :=chkn +nseed

go?

stopCTimer! triedTimes:=0

triedTimes!=TryOutTimes
go?

CTimeOut? !(r_header == CHAL
and r_x == chkx
and r_n == chkn)

go?communicationFailed!

triedTimes==TryOutTimes

rightCS!

MCS[HEA] := PORT,
MCS[X] := nx,
MCS[N] := nn,
MCS[UID] := curuID,
MCS[EME0] := curexpPort + nseed,
triedTimes++

setCTimer!
rightSC?

r_header := MSC[HEA],
r_x := MSC[X],
r_n := MSC[N],
r_expPort :=MSC[EME0]-nseed

r_header == OPEN
and r_x == chkx
and r_n == chkn
and r_expPort == curexpPort

go?

curseed:=nseed,
chkn := chkn+2,
chkx:= chkn+curseed,
curn:=chkn -1,
curx := curn + curseed

stopCTimer! triedTimes :=0

triedTimes!=TryOutTimes

go?

CTimeOut?

!(r_header == OPEN
and r_x == chkx
and r_n == chkn
and r_expPort == curexpPort)

go?

triedTimes==TryOutTimes
communicationFailed!

rightCS!

MCS[HEA]:=KEEP,
MCS[X] := curx,
MCS[N] := curn,
MCS[UID] :=curuID,
MCS[EME0]:=curexpPort+curseed,
triedTimes ++

setCTimer!

rightSC?

r_header :=MSC[HEA],
r_x := MSC[X],
r_n :=MSC[N],
r_expPort :=
MSC[EME0]-curseed

r_header == ACK
and r_n ==chkn
and r_x ==chkx
and r_expPort
== curexpPort

firewallOpened!

chkn :=chkn+2,
chkx :=chkn+curseed,
curn:=curn+2,
curx := curn + curseed

triedTimes!=TryOutTimes

go?

CTimeOut?
!(r_header == ACK
and r_n ==chkn
and r_x ==chkx
and r_expPort
== curexpPort)

go?
triedTimes==TryOutTimes
communicationFailed!

stopCTimer!

closeFirewall? triedTimes :=0

rightCS!

MCS[HEA] :=TERM,
MCS[N] := curn,
MCS[X] := curx,
MCS[UID] := curuID,
MCS[EME0]:=
curexpPort+curseed,
triedTimes++ setCTimer! rightSC?

r_header :=MSC[HEA],
r_x := MSC[X],
r_n :=MSC[N],
r_expPort:=
MSC[EME0]-curseed

r_header == TACK
and r_n == chkn
and r_x == chkx
and r_expPort
== curexpPort

go?

chkn :=chkn+2,
chkx :=curseed + chkn,
curn := curn+2,
curx := curn+curseed

triedTimes!=TryOutTimes
go?

CTimeOut?
go?

!(r_header == TACK
and r_n == chkn
and r_x == chkx
and r_expPort
== curexpPort)

triedTimes==TryOutTimes
communicationFailed!

stopCTimer!

triedTimes :=0,
oldchkn :=chkn,
oldchkx :=chkx,
oldseed :=curseed

closeFirewall? triedTimes :=0stopCTimer!

clk:=0

Figure A.1: The state machine of Client Process

71

start_waitASK checkASK

ASKSuc_SendCHAL

CHALSent_WaitPORT

checkPORT PORTSuc_SendOPEN

WaitKEEPorTERM

checkKEEPorTERM

KEEPSuc_OpenFirewall
ACKSent1

TERMSuc_CloseFirewallTACKSent_gotoStart

FWOpened_sendACK

FirewallClosed_SendTACK

WaitKEEPorTERM2

CheckKEEPorTERM2
SendACK2ACKSent2

TimeOut_CloseFirewall
FirewallClosed_gotoStart

leftCS?

MR[0]:=MCS[0],
MR[1]:=MCS[1],
MR[2]:=MCS[2],
MR[3]:=MCS[3],
MR[4]:=MCS[4],
MR[5]:=MCS[5],
MR[6]:=MCS[6],
MR[7]:=MCS[7],
MR[8]:=MCS[8],

r_header := MCS[HEA],
r_x:=MCS[X],
r_n:=MCS[N],
r_uID:=MCS[UID]

r_header == ASK
and curuID == r_uID
and chkn == r_n
and chkx == r_x
and processSuc

go?

MLAST[0]:=MR[0],
MLAST[1]:=MR[1],
MLAST[2]:=MR[2],
MLAST[3]:=MR[3],
MLAST[4]:=MR[4],
MLAST[5]:=MR[5],
MLAST[6]:=MR[6],
MLAST[7]:=MR[7],
MLAST[8]:=MR[8],

oldchkn := chkn,
oldchkx := chkx,
oldseed := curseed,

curn :=curn+2,
curx :=curseed+curn,
nn := curn +7,
nseed := curseed + 17,

chkseed := nseed,
chkn := nn,
chkx := chkseed+ chkn,
nASKRec:=true

leftSC!

// to send the challenge message
MSC[HEA] := CHAL,
MSC[X] := curx,
MSC[N] := curn,
MSC[EME0] := nn + curseed,
MSC[EME1] := nseed + curseed

leftCS?

MR[0]:=MCS[0],
MR[1]:=MCS[1],
MR[2]:=MCS[2],
MR[3]:=MCS[3],
MR[4]:=MCS[4],
MR[5]:=MCS[5],
MR[6]:=MCS[6],
MR[7]:=MCS[7],
MR[8]:=MCS[8],
r_header := MCS[HEA],
r_x:=MCS[X],
r_n:=MCS[N],
r_uID:=MCS[UID],
r_expPort := MCS[EME0]-nseed

go?

(r_header != ASK
or curuID != r_uID
or chkn != r_n
or chkx != r_x)
and !(r_header == ASK
and curuID == r_uID
and oldchkn == r_n
and oldchkx == r_x)

go?

r_header == PORT
and curuID == r_uID
and chkn == r_n
and chkx == r_x

MLAST[0]:=MR[0],
MLAST[1]:=MR[1],
MLAST[2]:=MR[2],
MLAST[3]:=MR[3],
MLAST[4]:=MR[4],
MLAST[5]:=MR[5],
MLAST[6]:=MR[6],
MLAST[7]:=MR[7],
MLAST[8]:=MR[8],

curseed := chkseed,
curn := nn+1,
curx := curn + curseed,
curexpPort := r_expPort,
chkn:=chkn+2,
chkx:= chkn+chkseed,
hasSetTimer :=false

leftSC!

// set the open message and send
MSC[HEA]:=OPEN,
MSC[X]:=curx,
MSC[N]:=curn,
MSC[EME0]:=r_expPort + nseed

go?

!(r_header == PORT
and curuID == r_uID
and chkn == r_n
and chkx == r_x)

leftCS?

MR[0]:=MCS[0],
MR[1]:=MCS[1],
MR[2]:=MCS[2],
MR[3]:=MCS[3],
MR[4]:=MCS[4],
MR[5]:=MCS[5],
MR[6]:=MCS[6],
MR[7]:=MCS[7],
MR[8]:=MCS[8],

r_header := MCS[HEA],
r_x:=MCS[X],
r_n:=MCS[N],
r_uID:=MCS[UID],
r_expPort := MCS[EME0]-nseed

go?

r_header == KEEP
and curuID == r_uID
and chkn == r_n
and chkx == r_x
and curexpPort ==r_expPort

MLAST[0]:=MR[0],
MLAST[1]:=MR[1],
MLAST[2]:=MR[2],
MLAST[3]:=MR[3],
MLAST[4]:=MR[4],
MLAST[5]:=MR[5],
MLAST[6]:=MR[6],
MLAST[7]:=MR[7],
MLAST[8]:=MR[8],
curn:=curn+2,
curx:=curseed+curn,
//calculate the check value
chkn:=chkn+2,
chkx=chkn+chkseed

leftSC!

// send ACK message
MSC[HEA]:=ACK,
MSC[X]:=curx,
MSC[N]:=curn,
MSC[EME0]:=curexpPort+curseed

go?

!(r_header == KEEP
and curuID == r_uID
and chkn == r_n
and chkx == r_x
and curexpPort == r_expPort)
and
!(r_header == TERM
and curuID == r_uID
and chkn == r_n
and chkx == r_x
and curexpPort == r_expPort
)
and
!(r_header ==MLAST[HEA]
and r_x==MLAST[X]
and r_n==MLAST[N]
and r_uID==MLAST[UID]
and r_expPort ==MLAST[EME0]-nseed)

go?
r_header == TERM
and curuID == r_uID
and chkn == r_n
and chkx == r_x
and curexpPort == r_expPort
MLAST[0]:=MR[0],
MLAST[1]:=MR[1],
MLAST[2]:=MR[2],
MLAST[3]:=MR[3],
MLAST[4]:=MR[4],
MLAST[5]:=MR[5],
MLAST[6]:=MR[6],
MLAST[7]:=MR[7],
MLAST[8]:=MR[8],
curn = curn+2,
curx = curseed+curn,
chkn := chkn+2,
chkx := chkn + chkseed

leftSC!

// set the TACK message
MSC[HEA]:=TACK,
MSC[X]:=curx,
MSC[N]:=curn,
MSC[EME0]:=curexpPort+curseed

isOpen == false go?

isOpen := true,

 FWOpenTimes ++

isOpen == true
go?isOpen := false

//If any incomming message,
// just ignore
leftCS?

isOpen==true go?

FWOpenTimes ++

isOpen==falsego?

setSTimer!
hasSetTimer:=true

hasSetTimer==false

STimeOut?

processSuc:=false,
nASKRec :=false,
hasSetTimer :=false

setSTimer!

PORT ==MLAST[HEA],
r_x==MLAST[X],
r_n==MLAST[N],
r_uID==MLAST[UID],
r_expPort ==MLAST[EME0]-nseed

leftCS?

MR[0]:=MCS[0],
MR[1]:=MCS[1],
MR[2]:=MCS[2],
MR[3]:=MCS[3],
MR[4]:=MCS[4],
MR[5]:=MCS[5],
MR[6]:=MCS[6],
MR[7]:=MCS[7],
MR[8]:=MCS[8],
r_header := MCS[HEA],
r_x:=MCS[X],
r_n:=MCS[N],
r_uID:=MCS[UID],
r_expPort := MCS[EME0]-curseed

STimeOut?

processSuc:=false,
nASKRec :=false

r_header == KEEP
and curuID == r_uID
and chkn == r_n
and chkx == r_x
and curexpPort == r_expPort

go?

MLAST[0]:=MR[0],
MLAST[1]:=MR[1],
MLAST[2]:=MR[2],
MLAST[3]:=MR[3],
MLAST[4]:=MR[4],
MLAST[5]:=MR[5],
MLAST[6]:=MR[6],
MLAST[7]:=MR[7],
MLAST[8]:=MR[8],

curn:=curn+2,
curx:=curseed+curn,
//calculate the check value
chkn:=chkn+2,
chkx=chkn+chkseed,
triedTimes:=0

// the last correct KEEP message?
KEEP ==MLAST[HEA]
and r_x==MLAST[X]
and r_n==MLAST[N]
and r_uID==MLAST[UID]
and r_expPort == MLAST[EME0]-curseed
and triedTimes<=MAXTriedTimesgo?triedTimes++

//other messages
!(r_header == TERM
and curuID == r_uID
and chkn == r_n
and chkx == r_x
and curexpPort == r_expPort)
and

!(KEEP ==MLAST[HEA]
and r_x==MLAST[X]
and r_n==MLAST[N]
and r_uID==MLAST[UID]
and r_expPort == MLAST[EME0]-curseed
and triedTimes<=MAXTriedTimes)
and

!(r_header == KEEP
and curuID == r_uID
and chkn == r_n
and chkx == r_x
and curexpPort == r_expPort)

go?

r_header == TERM
and curuID == r_uID
and chkn == r_n
and chkx == r_x
and curexpPort == r_expPort

MLAST[0]:=MR[0],
MLAST[1]:=MR[1],
MLAST[2]:=MR[2],
MLAST[3]:=MR[3],
MLAST[4]:=MR[4],
MLAST[5]:=MR[5],
MLAST[6]:=MR[6],
MLAST[7]:=MR[7],
MLAST[8]:=MR[8],

curn = curn+2,
curx = curseed+curn,
chkn := chkn+2,
chkx := chkn + chkseed

leftSC!

// send ACK message
MSC[HEA]:=ACK,
MSC[X]:=curx,
MSC[N]:=curn,
MSC[EME0]:=curexpPort+curseed

setSTimer!

setSTimer!!hasSetTimer hasSetTimer :=true

processSuc :=false,
nASKRec :=false,
hasSetTimer :=false

STimeOut?

r_header == ASK
and curuID == r_uID
and oldchkn == r_n
and oldchkx == r_x
and !nASKRec go?

MLAST[0]:=MR[0],
MLAST[1]:=MR[1],
MLAST[2]:=MR[2],
MLAST[3]:=MR[3],
MLAST[4]:=MR[4],
MLAST[5]:=MR[5],
MLAST[6]:=MR[6],
MLAST[7]:=MR[7],
MLAST[8]:=MR[8],

curseed:=oldseed,
curn :=oldchkn+1,
curx :=curseed+curn,
nn := curn +7,
nseed := curseed + 17,

chkseed := nseed,
chkn := nn,
chkx := chkseed+ chkn

hasSetTimer

//If any incomming message,
// just ignore
leftCS?

hasSetTimer==true

processSuc:=true,
nASKRec :=false

isOpen==false

go?

isOpen == true

go?
isOpen := false

r_header == ASK
and curuID == r_uID
and chkn == r_n
and chkx == r_x
and !processSuc go?

r_header == ASK
and curuID == r_uID
and oldchkn == r_n
and oldchkx == r_x
and nASKRec

go?

Figure A.2: The state machine of Server Process

72 Timed Automatas of Protocol

Bibliography

[1] Robin Sharp, IMM, DTU, November 2001: OSI and other Layered Archi-
tectures: Principles and Implementation

[2] Robin Sharp, Lynby, 2002 : Principles of Protocol Design 2nd Edition

[3] Ian Foster and Carl Kesselman : The GRID 2 , P46, Morgan Kaufmann ,
2004

[4] The Anatomy of the Grid: Enabling Scalable Virtual Organiza-
tions. I. Foster, C. Kesselman, S. Tuecke, 8 Aug 2005 < http :
//www.globus.org/research/papers/anatomy.pdf >

[5] The WS-Resource Framework< http :
//www.globus.org/wsrf/specs/ws− wsrf.pdf >

[6] Ian Foster and Carl Kesselman : The GRID 2 , P56 , Morgan Kaufmann ,
2004

[7] Globus Toolkit web site ,06.Aug.2005 < http :
//www.globus.org/toolkit/ >

[8] Von Welch, NCSA/U. of Illinois: Globus Firewall Requirements,8/Jul/05
< http : //www − unix.globus.org/toolkit/security/firewalls/ >

[9] Ian Foster and Carl Kesselman : The GRID 2 , P667, Morgan Kaufmann
, 2004

[10] Man in the middle attack, Wikipedia 29 July 2005 < http :
//en.wikipedia.org/wiki/Man in the middle attack >

74 BIBLIOGRAPHY

[11] Ian Foster and Carl Kesselman : The GRID 2 , P662 , Morgan Kaufmann
, 2004

[12] Dictionary attack, Wikipedia ,20 July 2005.< http :
//en.wikipedia.org/wiki/Dictionary attack >

[13] Man page of PCAP , 06.Aug.2005< http :
//www.tcpdump.org/pcap3 man.html >

[14] Ian Foster and Carl Kesselman : The GRID 2 , P665 , Morgan Kaufmann
, 2004

[15] Distributed denial-of-service attacks, 20 August 2005 < http :
//en.wikipedia.org/wiki/Denial of service#Distributed denial − of −
service attacks >

[16] Message authentication code ,3 August 2005< http :
//en.wikipedia.org/wiki/Message authentication code >

[17] Ian Foster and Carl Kesselman : The GRID 2 , P667 , Morgan Kaufmann
, 2004

[18] HP technical documentation , chapter 1 , glossary of terms , 16.Aug.2005
< http : //docs.hp.com/en/32650− 90887/ch01.html >

[19] UPPAAL Home 10/April/2005 < http : //www.uppaal.com/ >

[20] Ian Foster and Carl Kesselman : The GRID 2 , P366 , Morgan Kaufmann
, 2004

[21] UPPAAL Introduction 10/April/2005 < http : //www.uppaal.com/ >

[22] Jay Unger , Matt Haynos ,IBM: A visual tour of Open
Grid Services Architecture , 29 Jun 2005< http : //www −
128.ibm.com/developerworks/grid/library/gr − visual/ >

[23] Ian Foster and Carl Kesselman : The GRID 2 , P367 , Morgan Kaufmann
, 2004

[24] TWiki SpGlossary, 25 Aug 2005 < http :
//wiki.astrogrid.org/bin/view/SSV O/SpGlossary >

[25] Martin Krzywinski, 25 Aug 2005 : PORTKNOCKING < http :
//www.portknocking.org/ >

[26] Vinay Bansal , Dept. of Computer Science , Duke University: Policy Based
Firewall for GRID Security

[27] GRuediger Berlich, Ursula Epting, Jos Van Wezel, 2003: Grid Computing,
Clusters and Security

BIBLIOGRAPHY 75

[28] A.Menezes, P.van Oorschot, and S.Vanstone, CRC Press, 1996: Handbook
of Applied Cryptography

[29] N. Haller, Bellcore, C.Metz, May 1996: RFC 1938 - A One-Time Password
System

[30] N. Haller, Bellcore, C.Metz, P.Nesser, M.Straw, Feb.1998: RFC 1938 - A
One-Time Password System

[31] Ian Foster, 17 Jan 2005:A Globus Toolkit Primer <
www.globus.org/toolkit/docs/4.0/key/GT4P rimer0.6.pdf >

[32] Borja Sotomayor ,2003: The Globus Toolkit 3 Programmer’s Tutorial <
http : //www − unix.globus.org/toolkit/license.html] >

[33] Gerd Behrmann, Alexandre David, and Kim G. Larsen, Department of
Computer Science, Aalborg University, Denmark, 17th November 2004: A
Tutorial on Uppaal

	Abstract
	Preface
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Terminology

	2 Grid Firewall Requirements
	2.1 Grid Security
	2.2 GT Firewall Requirements
	2.3 Summary

	3 The Threats and Requirements
	3.1 Attacks
	3.2 Communication Failure
	3.3 System Failure
	3.4 Adaptive GRID Firewall Requirements
	3.5 Referenced Idea: Port Knocking
	3.6 Summary

	4 Conceptual Design
	4.1 Network Security Challenges
	4.2 Communication Failure
	4.3 System Failure
	4.4 Summary

	5 Protocol Design
	5.1 Message Design
	5.2 Client and Server Behavior Design
	5.3 Summary

	6 Architecture Design and Protocol Modeling
	6.1 Architecture Design
	6.2 Protocol Modelling
	6.3 Summary

	7 Protocol Implementation
	7.1 Software Architecture
	7.2 Test
	7.3 Summary

	8 Conclusion and Future Work
	A Timed Automatas of Protocol

