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Abstract

Stability and efficiency in the electrical grid is very dependent on fluctuations in
reactive power which may be caused by wind turbines, transformers, generators,
motors, and capacitor-reactor banks. Control of these variations can be accom-
plished by using advanced static var compensators(ASVC). ASVC are capable
of compensating for variation in the reactive power load, but are disrupted when
harmonics are present in the system. Filtering to remove these harmonics, but
introduce a lag into the control system. Suboptimal control of compensation
can result in high losses and voltage fluctuations, and may cause the ASVC to
go offline during disturbances.

A description of the noise in the grid has been determined using time series
analysis methods with measured data from the grid. This model has been used
to design a stochastic adaptive filtering system which can quickly recognize
and react to actual phase shifts, thereby improving the quality and speed of
the compensation, while remaining impervious to harmonic distortion. This
adaptive filter has been implemented in a integral control system with gain
scheduling. A mean model of an ASVC is developed, as well as a switched
model, and the control strategy is tested upon it.

KEYWORDS: ASVC, STATCOM, FACTS,Reactive Power, Harmonic Fil-
ter, Adaptive Estimation, Stochastic Estimation, Harmonic Estimation, Wind
Turbine, Synchronization, Symmetrical Components.
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Chapter 1

Introduction

Reactive power occurs when reactive elements, such as capacitors, inductors,
transformers and motors, are connected to the grid. These elements cause
current to flow which is out of phase with the fundamental grid current. Reactive
current is a concern, because it increases losses in transmission lines without
increasing the usable power. It also is a source of instability in the grid, and
if the percentage of reactive power become too large, it can lead to instability
and even black outs.

In Figure 1.1, the voltage variations for different loading of the system mod-
elled in this project are plotted. This is done for different power factors, φ,
which correspond to the reactive component in the lines. The maximum power
reached by the curve is known as the critical point, because after this point,
the voltage drops. Thus it is seen that the power factor is a clear indicator of
the strength of the grid. Also, with increasing φ, the gradient of the PV curve
increases, causing power fluctuations to create larger voltage fluctuations.

Reactive power is a relevant topic for the wind power industry because wind
turbines consume reactive power, while also producing variable amounts of ac-
tive power. This combination could easily lead to fluctuation of the voltage near
wind parks, particularly since wind parks tend to be located in areas where the
grid is not particularly stiff. However, this potential problem has been con-
fronted by the wind industry by installation of reactive power compensation
and the development of asynchronous generators, which can actively compen-
sate reactive power. This has lead to a situation where wind parks are actually
becoming a stabilizing force in weak areas of the grid, rather than a disturbance.
At this point, utilities which have significant wind power production are consid-
ering requirements that wind plants should be able to ride through significant
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Figure 1.1: PV curve at different power factors
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Figure 1.2: Phasor Diagram of active and reactive currents

power events, and even act in island mode to help reinstate the grid in the case
of failure. Both of these requirements will depend on the ability of reactive
power controllers to act quickly and effectively, while remaining insensitive to
disturbances in the grid.

1.1 Controlling Reactive Power

Reactive elements are an integral part of the electrical system, so it is not
reasonable to remove them. In order to control the amount of reactive power in
the lines, it is necessary to compensate the reactive power near the site of the
source. Switched capacitor banks are often used for this purpose, because they
produce reactive power, while transformers and motors are said to consume
reactive power. In some cases, switched inductor banks are used to compensate
for the reactive power produced by the capacitance resulting from underground
cables.

Capacitor and reactor banks only produce a constant step value of reactive
power, and thus power electronics systems have been developed to dynamically
compensate for the variation in the grid. Basically, these compensators use an
inverter to control the phase of the current which the compensator injects into
the grid. This current is controlled by controlling the voltage across a leakage
inductance between the compensator and the grid. In this way, it is possible to
cancel out the reactive current flowing in the lines. These systems are known
as STATCOMs, static compensators, or VSC, (Var Static Compensators).

The voltage source used to provide the reactive current, is usually either a
DC link capacitor, or a HVDC (High Voltage Direct Current) voltage source
inverter. For this project, only systems using a DC link capacitor are considered.
The capacitor is charged by the rectified current from the grid, and this DC
voltage is then output using PWM (Pulse Width Modulation), to create the
output voltage.

When IGBT’s (Insulated Gate Bipolar Transistors) are used as switching
elements, a STATCOM is called an ASVC, or Advanced Static Var Compensator.
IGBT’s are high power switching elements, which have the capability of turning
on and off much quicker than previously used high power switching technology.
This allows the possibility of controlling the reactive power relatively quickly,
as well as both providing and consuming reactive power.

2



Controlling Reactive Power
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Figure 1.3: ASVC topography

However, there are a few challenges to be overcome in control of reactive
power compensators. The first comes as a result of the use of a capacitor as
the DC source. This introduces a nonlinearity into the system, which will be
discussed in more detail later in the report. Another nonlinearity is caused by
the switching elements, specifically for control of the capacitor voltage. For slow
control of the ASVC, this can be neglected, and a mean model of the system
can be used, but for faster control, it can be problematic.

Another problem is caused by what is effectively measurement noise in the
grid. There are many harmonics present in the grid, which are carried through
in the calculation of the required reactive power compensation. It is possible to
use a filter to remove these harmonics, but this causes a phase delay in voltage.
This delay is particularly notable during phase shifts, when the information
about the phase change can cause incorrect calculation of the current references,
and can take half a cycle to recover from. It is difficult to compensate for this
because the the frequency of the grid is varying. In the classical control of
SVC, the presence of harmonic components in the reference signal can lead to
problematic oscillations in the capacitor voltage, which can cause the lights to
flicker at nearby power outlets.

In this report, state space control is used to develop a controller which ap-
proaches optimal control of the nonlinear system of an ASVC. Measurements
of the electrical grid in Denmark are taken, to provide information about the
harmonic distortion. A system to estimate the fundamental frequency, phase,
and harmonic components dynamically with time is used as a filter for measure-
ment of voltage magnitude and phase at the point of common coupling (PCC).
A simulation of the implementation of the control system into an electrical grid
is developed using Matlab©Simulink and SimPowerSystems.
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Chapter 2

Simulation

2.1 Single Phase

If we look at a single phase of the ASVC, as shown in figure 2.1, we can try
to understand the fundamental characteristics of the system. First we can look
at the situation where switch s1 is closed. In this case, v = E, and Ohms law
across the inductor and resistor gives,

di

dt
=

1

L
(e− E − iRc) (2.1)

Across the capacitor and switching resistance, the voltage is described by,

dE

dt
=

i

C
− E

RsC
(2.2)

When s1 goes open, and s2 closes, the current, i initially remains the same,
because of the inductance, while the inverter voltage, v is changed to, −E. If a
logical vector S is chosen so that S = 1 when s1 is closed, and S = −1 when s2
is closed, the system can be represented in state space form as,

[

i̇

Ė

]

=

[

−Rc

L
S
L

1
C

− S
RsC

] [

i
E

]

+

[

1
L

0

]

e (2.3)

Thus, for one phase, switching allows the output voltage to be set to ±E or
zero. The capacitor is charged by the current through the inductor, which is in
turn controlled by the switched voltage.

L Rc s1

CRSi

e v
E

−E
s2

Figure 2.1: A single phase of the system
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Figure 2.2: Equivalent Circuit for STATCOM

2.2 Three Phase Analysis

In order to analyze three phase systems, several transformations are used to sim-
plify the system, discussed in detail in appendix A. The Clark transformation
is used to express a three phase variable, Xabc, as a two dimensional rotating
vector with a zero component, Xαβ0. The Park transformation is composed of
a two dimensional frame, which rotates at the same speed as the vector, Xαβ0,
resulting in a constant direct and quadrature vector, Xdq0. The phase of the
rotating axis is determined using a PLL (Phase Lock Loop) on the voltage at
the PCC. If the phase is defined as,

θ = arctan

(

eβ

eα

)

, (2.4)

then the reference frame has been chosen such that the quadrature voltage, eq,
becomes zero1.

For a given voltage, u, and current, i, the definitions of active and reactive
power are, respectively,

P =
3

2
(udid + uqiq) (2.5)

Q =
3

2
(udiq + uqid) (2.6)

If the reference frame has been chosen such that eq is zero, the active and reactive
power are a function of ed and the active and reactive current, respectively.
However, for the ASVC, the output vq is not zero, in most cases, so the active
and reactive power will be functions of both id and iq.

2.3 Mean Model

An equivalent circuit for the STATCOM is shown in Figure 2.2. The PWM and
IGBTs are replaced by ideal switches, where the switching losses are modelled

1The function for arctan should be one which determines the angle quadrant using the

signs of the two input voltages, in Matlab, atan2
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Figure 2.3: Simulink mean model of ASVC

by a resistor, Rs, parallel to the switching elements. The conducting losses are
modelled by another resistor, Rc, at the output of the inverter.

In order to create a simulation which can run quickly, a mean model has
been used to develop the control. The Simulink diagram is shown in Figure 2.3.
Essentially, the PWM of the inverter is modelled as a voltage source, thereby
avoiding the nonlinearities involved in switching. The capacitor is modelled by
an integrator, with an equivalent modulation factor, m, and a parallel average
resistance, Rs.

dE

dt
= − 3m

2CE
(vdid + vqiq) −

E

RsC
(2.7)

This equation is derived in section 3.2. In reality, the values that the output
voltage, v, can attain, are limited by the value of the dc link voltage,E, mul-
tiplied by the modulation factor, E, so a dynamic limiter is included. This is
generally not an issue, except for when the system is already in trouble. Addi-
tionally, a memory block is included for the inverter voltage output, to remove
algebraic loops.

2.4 Disturbance Model

The reactive current characteristics of a site are assumed to be described suffi-
ciently by a 400V voltage source with an equivalent impedance and variable re-
active load, as shown in figure 2.4 on the following page. A reactive load, rather
than impedance, is chosen because many consumer elements will use switching
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Figure 2.4: Equivalent diagram of transmission network

to maintain a constant power consumption, regardless of voltage at the source.
Unless otherwise noted, the consumer reactive power disturbance given is a step
change in the reactive power consumption from Q = 0 to Q = 50kV ar at 0.05s,
to Q = −50kV ar at 0.1 s, and back to Q = 0 at 0.15s. This is a step of half of
the rated reactive power for this system. The active consumer load is a constant,
P = 500 kW. The line impedance is 10 mH, and the line resistance is 0.01 Ω.

8



Disturbance Model

<−−−−I

E

0

Q

A B C

A B C

R_eq 
L   

[e_abc]

Measurements

A

B

C

A

B

C

Line

PQ

m
A
B
C

Dynamic 
Reactive 
Load   

e_abc

v_abc

i_abc

iB2_abc

iB3_abc

iQ*

E*

E

vDQ

iDQ

v*_abc

Control System

A B Ca b c B3

A

B

C

a

b

c

B2 A B Ca b c B1

vDQ

iDQ

V*_abc

E

V_a

V_b

V_c

ASVC

N

A

B

C

400v

A B C

1kW

[Iabc_B3]

[V_abc]

[Iabc_B1]

[Iabc_B2]

iQ reference

E reference

Figure 2.5: Simulink Model of Grid

9





Chapter 3

Control

3.1 Vector Control

Vector control is a standard method of controlling ASVC’s. The vector control
system consists of two loops, one of which controls the reactive current, while the
other controls the DC capacitor voltage. This is done by creating a linear mean
model of the inverter, and neglecting harmonics, switching losses and losses in
the inductor. This system works surprisingly well, generally reacting to a step
input within one 50 Hz cycle. The layout of the control is shown in Figure 3.1 on
the next page. The system has effectively been reduced to two separate PI loops,
which don’t disturb each other too much, though there is some interdependence.
The voltage of the capacitor is actually a nonlinear function, as seen in (2.7),
but in this control method, it is linearized by assuming that the power in the
capacitor is only a function of the direct voltage at the grid and direct current
out of the inverter. The quadrature terms have disappeared in this equation,
because the grid voltage is the reference for the transformation.

EI =
3

2
vdid (3.1)

The ratio of the capacitor and output voltages are expressed in the literature as
a function of an average modulation factor, m, and are phase to phase values,
leading to an expression for the current entering the capacitor [13].

vd =
m

2
√

2
E (3.2)

I =
3m

2
√

2
id (3.3)

The differential equation for the capacitor is,

I = −C dE
dt

(3.4)

Therefore, in terms of the phase and quadrature components, the transfer func-
tion for the mean capacitor voltage can be found by combining equations (3.4)
and (3.3).

E

id
= − 3m

2
√

2Cs
(3.5)
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For the direct and quadrature current control, the transfer functions are,

F(s) =
id(s)

e′d(s)
(3.6)

=
iq(s)

e′q(s)
(3.7)

=
1

Ls +R
(3.8)

The reference values for the inverter, are then determined by including the
offset of the voltage at the point of common coupling, and the frequency terms
resulting from the park transform.

v∗d = −e′d + ωLiq + ed (3.9)

v∗d = −e′q − ωLid (3.10)

As a baseline, a mean model of the the classical control system has been
simulated using Matlab Simulink with the Power Systems toolbox. The control
parameters are shown in Table 3.1 on page 14. The state response to a step
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3. Control

Current Control DC Voltage Control
ξ ω K a ξ ω K a

0.7 500 -1.8 319.7 0.7 100 71.42 -0.064

Table 3.1: Control Parameters for Vector Control

i d
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E
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0

20

Figure 3.3: State variation for vector control

input in reactive load is shown in Figure 3.3. The inverter set-point voltages
are shown in Figure 3.4 on the facing page. The grid voltage, reactive current
into the grid, and comparison of inverter and load reactive current are shown
in Figure 3.5 on the next page.

Additionally, the AC current and voltage across the inductor are shown in
Figure 3.6 on page 16. This is useful for understanding how the ASVC works,
as the inverter voltage chances in relation to the grid voltage, depending on the
reactive load. Looking at the current through the inductor, it can be seen that
the current changes its amplitude during the reactive power step changes. Note
that the current is not zero when the reactive load is zero, due to losses in the
converter, this also contributes to some phase change in the current during step
inputs.
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Figure 3.5: Grid voltage and reactive currents for vector control
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3.2 State Space Control

In order to design advanced control algorithms for a STATCOM, it is useful
to formulate the system as a state space model. This allows the designer to
maintain a holistic view over the system, rather than the classical approach of
using two separate loops. It also facilitates the use of optimization algorithms
in control design. This method formulates the system as a set of matrices, A,
B, C, and D, such that,

ẋ = Ax + Bu (3.11)

ẏ = Cx + Du (3.12)

Where x is the state vector, u is the input, or control, vector, and y is the
output.

The voltage equation at the output of the inverter reactors is:

d

dt





ia
ib
ic



 = −Rc

L





ia
ib
ic



 +
1

L





va − ea

vb − eb

vc − ec



 (3.13)

The system can be transformed into the d-q reference frame,

d

dt

[

id
iq

]

=

[

−Rc

L
−ω

ω −Rc

L

] [

id
iq

]

+
1

L

[

vd − ed

vq − eq

]

(3.14)

The frequency, ω, is the rate at which the d-q frame is rotating. This is generally
equal to the fundamental frequency of the grid but may differ when the PLL is
not locked in. When the PLL is correctly locked in, the quadrature voltage at
the grid should be zero, by definition, but without that assumption it is possible
that there will be a quadrature component.
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State Space Control

The inverter voltages are a nonlinear function of the angle, φ, by which the
inverter voltage is required to lead the line voltage. The relative magnitude of
the inverter voltages is given by the modulation factor, m. A simple way to
express this is demonstrated in [17],

vd = mE cosφ (3.15)

vq = mE sinφ

The dc voltage in the capacitor is determined by,

dE

dt
= − 1

C

(

I +
E

Rs

)

(3.16)

Where I can be determined by using the inverter voltage description (3.2), and
the instantaneous power equation,

P = EI =
3

2
(vdid + vqiq) (3.17)

A state space representation can be formulated by defining the state, input, and
disturbance vectors below, and using equations, (3.14),(3.2), and (3.17).

x =





id
iq
E



 u =

[

vd

vq

]

v =

[

ed

eq

]

(3.18)

The system can be represented as,

ẋ = f(x, u, v) =





−Rc

L
id − ωiq + 1

L
vd

+ωid − Rc

L
iq + 1

L
vq

− 3
2CE

(vdid + vqiq) − E
RsC



 +





− 1
L

0
0 − 1

L

0 0





[

ed

eq

]

(3.19)

The third row in the system matrix is not linear, so a linearization must be
performed, resulting in,

d

dt





∆id
∆iq
∆E



 =







−Rc

L
−ω0 0

ω0
−Rc

L
0

− 3vd0

2CE0

− 3vq0

2CE0

3
2CE2

0

(vd0id0 + vq0iq0) − 1
RsC











∆id
∆iq
∆E





+





1
L

0
0 1

L

− 3id0

2CE0

− 3iq0

2CE0





[

∆vd

∆vq

]

+





− 1
L

0
0 − 1

L

0 0





[

∆ed

∆eq

]

(3.20)

For a linearized system, the states are observed as perturbations from the steady
state values at the point of linearization. This results in,

δẋ = F δx + Gδu (3.21)
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Figure 3.7: Variation of steady state conditions with changing iQ and E

Where F and G are the matrices from equation (3.20). The steady state values
can be determined by solving equation (3.19) for Ẋ = 0, for a given ed, eq,
E, and iq. This can be accomplished numerically using the Newton-Raphson
method, where

xi+1 = xi −H−1f (3.22)

x =





vd

vq

id



 , H =
δf

δx
=





1
L

0 −Rc

L

0 1
L

ω

− 3id

2CE
− 3iq

2CE
− 3vd

2CE





Now, for a required y, we can determine an optimal feedback gain, K, which
modifies the steady state control input, r0, keeping in mind that the states are
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Figure 3.8: Optimal gain matrix for varying iQ and E
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now perturbations from the linearization point.

u = u0 + K(x0)x0 − K(x)x (3.23)

The optimal gain is found by minimizing the cost function,

J(u) =

∫ ∞

0

δxT Qδx + δuT Rδu (3.24)

where Q and R are weights on the state and input vectors, respectively. The
variation of the operating points with respect to iQ and E is shown in Figure 3.7
on page 18.

The weights used for this system were simply,

Q =





1 0 0
0 1 0
0 0 1



 R =

[

0.1 0
0 0.1

]

(3.25)

This allows us to design a control system around the range of operating
points. During operation, this "gain schedule" can be used to change the gain
appropriately for the operating point in question, without using too much com-
puting time. It can be seen in figure 3.8 on the preceding page, that the gain
components vary in response to changes in iQ and E.

It is important to note that some of the gains go from positive to negative,
which could have an effect on the stability of the system. The dependence
on E is not particularly strong in the normal operating range. It has most
variation when E approaches zero, because of the inverse term in its differential
equation. However, in actual operation, this is a time when the control is not
really operating normally, as the modulation factor is saturated. The variation
in E is included in the gain scheduling for this project, but may not be desirable
in practice.

3.2.1 Simulation

The gain scheduling control is implemented in the grid model as shown in Figure
3.9. The control objective in this system is to minimize the reactive current flow
in the grid. In this case, the objective is achieved by setting the reactive current
output of the STATCOM to balance the demand from the load.

The output of the gain scheduling control is a inverter voltage which has
been developed using an assumed grid voltage. In order to correct for any error
in this assumption, or variation in the grid, the difference between the assumed
voltage and measured voltage is added to the output voltages of the inverter.

For a step input the input states and output voltages are shown in Figures
3.10, 3.11, and 3.12. The variation of the gain is shown in Figure 3.13 on
page 23. This system has no feedback, but the actual output is near to the
actual required output. This shows that the model is correct, at least for the
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Figure 3.9: Simulink gain scheduling control block
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Figure 3.10: State variation for state space control with gain scheduling
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Figure 3.11: Inverter voltages for state space control with gain scheduling
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Figure 3.12: Grid voltage and reactive currents for state space control with
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Figure 3.13: Gain schedule for state space control with gain scheduling

assumptions made for the mean model of the ASVC. However, in reality the
model is never completely correct, so it is useful to have feedback in the control.

There is a spike in the change from positive to negative reactive power. This
is due to the transition from positive to negative gains in the gain schedule,
around iq = 0.

3.3 Integral Control

Integral control is useful for removing steady state error. An additional state,
xI =

∫ t
Cx − r is augmented to the state matrix, resulting in the following

state matrices.
[

ẋ

ẋI

]

=

[

0 A

0 C

] [

x

xI

]

+

[

B

0

]

u −
[

1
0

]

r (3.26)

and the feedback is,

u = −
[

K0 KI

]

[

x

xI

]

(3.27)

In the case of integral control, is is possible to use the reactive current into the
transmission line as the control objective, rather than the load current. This
automatically means that the ASVC matches the load reactive current, because
they are the only three current branches in the system. However, because the
purpose of this control is to be resistant to harmonics, it is better to keep the
control objective as matching the load current.

For a step input, the input states and output voltages are shown in Figures
3.15, 3.16, and 3.17. The weight of the integral state is quite high in the con-
trol, but allows the system to become very fast, without too much overshoot.
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Figure 3.15: State variation for integral state space control
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Figure 3.16: Inverter voltages for integral state space control
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Figure 3.17: Grid voltage and reactive currents using integral state space con-
trol in power simulation
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Figure 3.18: Change in integral gain matrix with varying iQ and E

Though there is some feed forward in this system with the tables looking up the
appropriate voltage set points, the current still reaches almost 50 amps, before
the system reacts.

3.3.1 Integral control with gain scheduling

It is also possible to include feed forward in the integral control, so that the
known dynamics are accounted for and the response can be more immediate. In
this case, the gain becomes,

u = u0 + K0x − KIxI (3.28)

The R weights are the same, but the weight for the states is now chosen as,
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Q =













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 50 × 106 0
0 0 0 0 10 × 103













(3.29)

In Figure 3.21, it could be seen that there are some unusual dynamics of integral
control over the iQ axis. The variation in the gain for the new integral states is
shown in 3.18 on the facing page.

The two control strategies are be combined, resulting in the state variation
shown in Figure 3.20 on the next page. The input variation is shown in Fig-
ure 3.21 on the following page. The grid voltages and currents are shown in 3.22
on page 29. This control shows reasonable response, it is very quick, without
much overshoot, and no disturbances when crossing iQ = 0.
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Figure 3.20: State Variation for integral state space control with gain schedul-
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Figure 3.21: Output variation for integral state space control with gain schedul-
ing
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Figure 3.22: Reactive current into grid using integral state space control with
gain scheduling
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Chapter 4

Harmonic Estimation

4.1 Measurements

In order to describe the stochastic and harmonic components in the grid, mea-
surements were taken in the lab at the the Ørsted department at the Technical
University of Denmark. A weak grid was simulated by running the grid con-
nection through a relatively large inductance. In order to initiate a phase shift,
resistors were connected to ground with a switch. A nonlinear load was created
by connecting an H-bridge rectifier and DC load. The phase jump was initiated
when the nonlinear load was connected. An unbalanced grid was also created
by quickly ramping up the motor-generator combination.

4.1.1 Equipment

The component values used in this experiment are noted in Table 4.1 on page 33.
The measurements were taken using Labview with a PCI-6024E measurement
card, which has a sample rate of up to 200 kS/s. Measurements of the three
phase current and voltage were taken at 6400 Hz, allowing accurate measure-
ment of harmonics up to the 64th, while still well within the capability of the
card. The exceptions are the measurement of the generator startup, and the
wind turbine cut-in and cut-out measurements which were sampled at 3200 Hz.

The sampling times were taken as power of two, to optimize for fourier
analysis. Additionally, a hold and sample strategy was used to ensure that the
data points were taken at the same time.

Measurements of the grid near the Nordtank wind turbine (NTK 550, 41)
are taken using the measurement setup developed for the wind turbine measure-
ments course at the Technical University of Denmark. The measurement point
is at the 400V terminals of the generator. A series where the generator turns
off is shown in Figure 4.2 on the next page, and the subsequent turn on period
is shown in Figure 4.2 on the following page.

Measurements were also taken when the wind turbine was operating con-
tinuously, though in low winds, as shown in Figure 4.3 on page 33. The lab
measurements of the nonlinear load, weak grid, and phase shift are not shown
here explicitly, but are taken as test cases in the section on harmonic estimation.
This data will be used to test a filter which will estimate the fundamental fre-

quency, phase, and amplitude of the voltage, as well as the phase and amplitude
of the harmonic components. The power spectral density of the data measured
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Figure 4.1: Current and voltage during turbine cut-in
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Figure 4.2: Current and voltage during turbine cut-out

from the Nordtank in normal operation is shown in Figure 4.4 on the facing
page. All spectrums shown in this report use the Welch algorithm with a ham-
ming window of length 128 and 50% overlap. The power spectral density for
the lab measurements with a nonlinear load are shown in Figure 4.5 on page 34.

4.2 Estimation of grid dynamics

In order to estimate the frequency content of the grid, a state space maximum
likelihood estimation is implemented. The Hartley transform is used to formu-
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Figure 4.3: Current and voltage during normal turbine operation
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late the magnitude and phase in a linear manner.

y = A cos(ωt) +B sin(ωt) (4.1)

If harmonics are included, the series can be described by,

y =

H
∑

n

An cos(ωnt) +

H
∑

n=1

Bn sin(ωnt) (4.2)

where H is a vector of harmonic components to be estimated.

If the fundamental frequency of the system as well as the magnitude and
phase of the harmonics are to be estimated, the state space formulation can be
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found using linearization. The estimator is,

θ =

























ω0
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...
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...
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























(4.3)

And the linearized state vector is:

δŷ

δθ
≃ ψ =


















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

∑H

n=1 −ntA sin(ωnt) +
∑H

n=1 ntB cos(ωnt)
cos(ω0t)

...
cos(ωnt)
sin(ω0t)
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sin(ωnt)
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

















(4.4)

The cost function becomes,

ǫ = e−
H

∑

n=1

Ân cos(ω̂nt) +

H
∑

n=1

B̂n cos(ω̂nt) (4.5)

where,

ω = ω0







1
...
H






(4.6)

The system is then plugged into a Recursive Prediction Error Method (RPEM)
algorithm, with the addition of a forgetting factor, λ. In this case, the one-step
prediction is written,

ŷt|t−1(θ) = f(θ) (4.7)

Using only the first component of the Hessian, results in the following algorithm:

ǫt(θ̂t−1) = yt − ŷt|t−1(θ̂t−1) (4.8)

θ̂t = θ̂t−1 +R−1
t (θ̂t−1)ψt(θ̂t−1)ǫt(θ̂t−1) (4.9)

Rt(θ̂t−1) = Rt−1(θ̂t−1) + ψt(θ̂t−1)ψ
T
t (θ̂t−1) (4.10)
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where,

ψ = ∇θŷt|t−1(θ) (4.11)

However, if the second term in the Hessian matrix is maintained, the system
can achieve faster convergence near the linearization point. Away from the
linearization point, it carries a danger of leading to instability. Therefore the
second derivative of the cost function is only included when the error in the
estimate is small, e.g. e ≤ 10. In this case, the covariance matrix becomes,

Rt(θ̂t−1) = Rt−1(θ̂t−1) + ψt(θ̂t−1)ψ
T
t (θ̂t−1) −∇ψt(θ̂t−1)e (4.12)

In this implementation, all three residuals were required to be below the limit,
before using the second term.

It is expected that the system parameters will vary in time. The fundamental
frequency should have small variation, over a long time scale. The harmonic
components should vary with changes in load, which will be expressed as small
steps in the magnitude. The magnitude of the fundamental frequency will
have slow changes, but during phase shifts, these components should be able to
change very quickly. The forgetting factor is included as a weighted diagonal
matrix, modifying the covariance matrix. The forgetting factor can be selective,
such that the effective memory for each parameter can differ.

Rt =
√
λ

T
Rt−1

√
λ+ ψtψ

T
t −∇ψte (4.13)
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(4.14)

For a given λ, the effective length of the parameter memory is given as,

T =
Ts

1 − λ
(4.15)

Through experimentation and common sense, the parameters are chosen such
that the forgetting factor for the frequency is very close to 1, .995, while the
harmonics have a shorter memory, with a forgetting factor near .99. A few
harmonics which are characteristic of consumer loads are given a slightly lower
forgetting factor, .985,to allow for step variation. Finally, the fundamental
frequency components are weighted such that they have an effective memory
of one tenth of a cycle. This allows them to change very quickly during power
events.
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Estimation of grid dynamics

Initially, an estimation of frequency, phase, and magnitude of the three
phases was made separately. However, this turned out to be problematic, be-
cause in order to maintain sensitivity to changes in phase, the weighting of
the magnitude vectors, An and Bn was decreased. This results in hysterical
behavior within the estimator, if the frequency estimate is not given a more
stable weighting, resulting in a tendency of the frequency to decrease, and the
higher harmonic factors to take on the role of the fundamental. However, when
the frequency is given more inertia, it has a tendency to settle in a slightly
wrong location, while the magnitude vectors track the phase error actively. For
a three phase system, it is even more problematic, because the three frequency
estimates tend to settle in different places.

A solution to this is to estimate the frequency of the grid using all three
phases. This alone causes the estimate to be more stable. In essence, the com-
ponent magnitude is estimated on a phase by phase basis, while the frequency
is estimated with the effect of all three phases. This uses the same algorithm
as outlined above, but adds the requirement that the frequency estimate should
be the same for all phases. This assumption is fulfilled in practice.

ω̂ =
1

3
(ω̂a + ω̂b + ω̂c) (4.16)

The output of the filter is now the predicted value of the voltage for a given
time, using the estimated frequency, magnitude and phase of the fundamental
component of the signal.

y0 = A0 cos(ωt) +B0 sin(ωt) (4.17)

4.2.1 Simulated data

In order to test the algorithm on data of known parameters, a three phase grid
with harmonics was simulated. The equation for the simulated grid is,

ea =
∑

H

Ia [mHA cos(θa + φ+Hωt) +mHB sin(θa + φ+Hωt)] + ǫ

eb =
∑

H

Ib [mHA cos(θb + φ+Hωt) +mHB sin(θb + φ+Hωt)] + ǫ

ec =
∑

H

Ic [mHA cos(θc + φ+Hωt) +mHB sin(θc + φ+Hωt)] + ǫ (4.18)

where I is the relative intensity of each phase, θ is the relative angle of the
phases, and φ is the angle offset of all three phases. The values used for the
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Figure 4.7: Estimate, residual, and residual spectrum for simulated voltage

simulation are,

A = 400
√

2, B = 400
√

2, ω = 2π50

σ2 = 20, ǫ = N(0, σ2)

H =

















1
5
7
11
13
17

















, I =





1.0
0.9
1.0



 , θ =





0
− 2π

3
2π
3 + 5π

180





φ =

{

0, t < 0.6;
−300, t ≥ 0.6.

mH =

{

(

1.0 0.10 0.05 0.07 0.09 0.06
)T
, t < 0.3;

(

1.0 0.05 0.05 0.07 0.09 0.06
)T
, t ≥ 0.3.

This simulates many of the challenges that the estimator might encounter,
namely and unbalanced, nonsymmetric grid with noise, with a phase shift of
300 at t = 0.3 and a −50% step in the magnitude of the 5th harmonic at
t = 0.6. The amount of noise is also considerable, with a variance of 5% of the
fundamental amplitude.
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Figure 4.8: Harmonic estimates for simulated voltage
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Figure 4.9: Parameter Estimates for simulated voltage
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Figure 4.10: Sequence decomposition for simulated voltage
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Figure 4.11: Sequences near disturbance for simulated voltage
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The comparison between the measured and filtered simulated voltage, as well
as the residual and power spectral density of the residuals are shown in 4.7 on
page 38. The estimates of the phase magnitude, phase angle 1 , and fundamental
frequency are shown in 4.9 on page 39. The estimates of the final harmonic
magnitude of one phase and the evolution of the estimates are shown in 4.8 on
page 39.

The estimate of the 5th harmonic registers the step at 0.6s. The phase shift
at 0.3s is also registered quickly by the fundamental estimator. It should be
noted that phase jumps cause the harmonic estimates to go way off for a short
time, they also cause a step in the estimate of the frequency.

It can be seen that the estimate of the fundamental frequency is not very
accurate, causing the fundamental amplitude estimates to actively track the
phase error. This is not problematic, because the resulting filtered estimate has
the correct phase. It is preferable to have this effect, rather than having large
steps in the frequency estimates during phase shifts. However, the forgetting
factor on the frequency should not be too stiff, or the stability of the estimator
becomes jeopardized.

The loss of tracking in the harmonics during phase jumps is not problematic,
because they are not used in the output. In fact, though the overall residuals do
go up during phase shifts, the fundamental frequency converges to the new phase
very quickly. However, it can be seen that estimates of harmonics which are not
present are not exactly zero. Though not catastrophic, these false parameters
degrade the estimate, and should be removed if possible.

In the classical control method, the filtered data would be fed into the Clark
and Park transformation, but this filter is actually perfect for using symmetrical
components, as described in Appendix A. This has several benefits; the trans-
formation removes any imbalance and non-symmetries in the actual measured
data, additionally, any non-symmetries introduced by the estimator during con-
vergence are also removed.

The positive negative and zero sequences are shown in 4.10 on the preceding
page. A closer look at the positive sequence during the phase shift is shown
in 4.11 on the facing page, where it can be seen that the phase shift is still
registered, though the harmonic components are removed.

4.2.2 Selecting harmonics

In order to determine which harmonic estimates are necessary to track changes
on the real electrical grid, the estimator has been run using all harmonic com-
ponents. The components whose standard deviation is larger than their mean
will be removed from the estimator. This test was performed on three sets
of data, the nonlinear load and the unbalanced grid from the laboratory, and
the wind turbine in normal operation. The smallest number of harmonics from

1The angles plotted here are the angle of phase a, and the angles of phase c and c, offset

by −1200 and 1200, respectively
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Figure 4.12: Estimate, residual, and residual spectrum for weak grid with
nonlinear load, using all harmonics
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Figure 4.13: Harmonic estimates for weak grid with nonlinear load, using all
harmonics
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Figure 4.14: Parameter Estimates for weak grid with nonlinear load, using all
harmonics

these three sets came from the unbalance grid, thus these are the harmonics
which have been chosen. The weak grid is a special case because it has been
measured at 3200 Hz, but also because it is one of the most difficult to track.
When attempting to use additional parameters when estimating the unbalanced
grid, it often diverged.

The harmonic estimates for all harmonics for the wind turbine are shown
in Figure 4.16 on the next page. The harmonic estimates for all harmonics for
the unbalanced grid are shown in Figure 4.17 on page 45. The harmonics which
have passed the standard deviation test are shown in the legend, and printed in
color.

There are three phases, and two amplitude estimates for each frequency, so
the variance and amplitude are averaged across the phases, and both amplitude
estimates are tested. The harmonic components which are finally selected are
shown in Table 4.2 on page 45.

The estimate, residuals and residual spectrum for the estimate of all harmon-
ics for the nonlinear grid are shown in Figure 4.12 on the facing page. It can
be seen that there is very little periodic content in the residual, so the estimate
has done a good job of absorbing the nonlinear component. The harmonic mag-
nitudes and estimates are shown in Figure 4.13 on the preceding page. The test
of the standard deviation of all harmonics in the nonlinear grid has removed
all of the even harmonics, except for the 2nd. It has also determined that odd
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Figure 4.15: Sequence decomposition for weak grid with nonlinear load, using
all harmonics
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Figure 4.16: Harmonic magnitude for wind turbine with all harmonics
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Figure 4.17: Harmonic magnitude for unbalanced grid with all harmonics

1 2 3 4 5 7 9 11 13 15 17 19

Table 4.2: Relevant Harmonics

harmonics above the 37th are negligible. For the wind turbine, and unbalanced
grid, this cutoff occurs after the 21st harmonic. This may give some clue as
to the the sampling speed which is required to accomplish the estimation, but
that would require further investigation, as it may be a result of the conver-
gence speed of the estimator. It may also be that the additional harmonics are
useful for dynamically covering the nonlinearities in the voltage, but are not
estimating complete harmonics.

Selected Harmonics

The filtering has been performed on measured data, as described in 4.1 on
page 31, where a rectified load has been added to a grid weakened by an im-
pedance. The nonlinear load presents a challenge to the estimator, because it is
not covered by the model which the estimator is using. It is also an increasingly
common feature of consumer loads.

In general, even harmonics are not expected to occur in the electrical grid.
This a result of cancelling of the even harmonics due to the inherent symmetry of
sine waves. For currents, harmonic factors of three should sum to zero because of
the three phase symmetry in the electrical grid. Both of these assumptions may
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Figure 4.18: Estimate, residual, and residual spectrum for weak grid with
nonlinear load
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Figure 4.19: Harmonic estimates for weak grid with nonlinear load
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Figure 4.20: Parameter Estimates for weak grid with nonlinear load
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Figure 4.21: Sequence decomposition for weak grid with nonlinear load
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Figure 4.22: Estimate, residual, and residual spectrum for nonlinear grid with
phase shift

be false in certain cases, particularly in the case of unbalanced, unsymmetrical
grids. The ASVC control system is only operating on the balanced symmetric
component of the grid, so it is not necessary to track these cases. However, in
each of the standard deviation test, the 2nd, 3rd and 9th harmonics were found
to be relevant parameters.

The nonlinear load has been estimated using only the harmonics deemed
relevant in the previous section, shown in Figure 4.18 on page 46. More of the
nonlinear load can now be seen in the residual, but still within reasonable limits.
The harmonic estimates are shown in Figure 4.19 on page 46, and the positive
sequence in Figure 4.21 on the previous page.

4.2.3 Phase Jump

Phase jumps occur when large active elements are switched onto the grid. These
occurrences are problematic for ASVC, because the voltage reference changes
quite suddenly. If an normal filter is being used, this change is not detected
immediately, because of the phase delay due to the filter. The phase shift in
analog filters tends to be quite large, because it has to filter the 5th harmonic,
which is relatively close to the fundamental.

In theory, the RPEM filter does not have a phase shift, because the output
is actually a prediction of the phase at the next time step. In the case of phase
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Figure 4.23: Harmonic estimates for nonlinear grid with phase shift
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Figure 4.24: Parameter Estimates for nonlinear grid with phase shift
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Figure 4.25: Sequence decomposition for nonlinear grid with phase shift

shifts, the time constraint is the convergence of the parameter values to the new
values, in particular the fundamental amplitude estimates, A0 and B0. The
forgetting factor for this parameter has been set to 1/10th of a cycle, so, if it
does converge, it will converge within that time. This has been shown to be
fairly resilient and resistant to noise in the simulated case. For measured data,
the estimate and residuals are shown in Figure 4.22 on page 48. The harmonics
are shown in Figure 4.23 on the previous page. The sequence filtering near the
phase shift is shown in Figure 4.26 on the facing page is useful in this case as
well, because the estimates have some overshoot when the phase jump occurs.
The sequence remove some of this error, while spreading the correct information
across the phases.

4.2.4 Unbalanced Grid

An unbalanced grid is an extremely difficult situation for the estimator to handle.
The optimal reaction is for the estimator to register the voltage change as quickly
as possible, in a symmetrical way. This is what the estimator does, as can be
seen in Figure 4.27 on the next page, Figure 4.30 on page 53, and Figure 4.31
on page 53. The sequence extraction actually slows the convergence down in
this case, but in this kind of situation, it is better to be conservative. It is
interesting to note that two of the higher harmonics pick up a lower frequency
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Figure 4.26: Sequences near disturbance for nonlinear grid with phase shift
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Figure 4.27: Estimate, residual, and residual spectrum for unbalanced grid
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Figure 4.28: Harmonic estimates for unbalanced grid
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Figure 4.29: Parameter Estimates for unbalanced grid
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Figure 4.30: Sequence decomposition for unbalanced grid
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Figure 4.31: Sequences near disturbance for unbalanced grid
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Figure 4.32: Estimate, residual, and residual spectrum for wind turbine voltage

after the power event, in Figure 4.28 on page 52. This may not be an actual
phenomena, but a result of the convergence of the parameters. It can also be
seen in the residuals. It does not appear to effect the final filtered estimate,
and should eventually dissipate. Unfortunately, this could not be ascertained
because the measurements end quickly.

4.2.5 Wind Turbine

The estimate of the voltage at the terminals of the wind turbine generator
during normal operation is shown in 4.32. The harmonic estimate is shown
in 4.33 on the facing page, where the third harmonic is seen to be much larger
than would be expected. This is also seen in the power spectral density in
Figure 4.4 on page 33. The residual spectrum for this estimate has a lot of sharp
harmonic components. These are probably harmonics which occur during the
connection, and as long as the fundamental is not disturbed, it is not important
to follow them. However, if more dynamic information was desired about the
cut in harmonics, it would be necessary to include additional harmonics in the
estimate.
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Figure 4.33: Harmonic estimates for wind turbine voltage
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Figure 4.34: Parameter Estimates for wind turbine voltage
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Figure 4.35: Sequence decomposition for wind turbine voltage

4.2.6 Wind Turbine Cut-in

The measurements for this situation have been taken at the RisøNordtank wind
turbine, on a day with light wind. Therefore, it has been possible to catch a
cut-in and cut-out event.2 The measurements for this data have been taken
with a sampling frequency of 3200 Hz.

The estimation results for the case of a wind turbine connecting to the grid
is shown in 4.36 on the facing page. It can be seen in Figure 4.37 on the next
page that there are a lot of harmonics during the cut in, which are picked up
in the estimates of A and B. However, the positive sequence removes most of
these variations, as shown in Figures, 4.39 and 4.40.

It is noted that there appear to be some nonlinear components in the voltage
after cut-in, but not during normal operation. This may be the presence of a test
SVC, which was installed at Risøseveral years ago, and may still be operating.
The cut off series was not analysed because it is not very disruptive.

2This is quite an old turbine, so it’s electrical performance should not be taken as an

indication of the performance of all turbines!
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Figure 4.36: Estimate, residual, and residual spectrum for wind turbine cut-in
voltage
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Figure 4.37: Harmonic estimates for wind turbine cut-in voltage

57



4. Harmonic Estimation

|y
0
|[

V
]

θo
[o

]
ω

0
[r

a
d

s−
1
]

t

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

314.1

314.2

314.3

0

100

200

400

500

600

Figure 4.38: Parameter Estimates for wind turbine cut-in voltage
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Figure 4.39: Sequence decomposition for wind turbine cut-in voltage
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Figure 4.40: Sequences near disturbance for wind turbine cut-in voltage
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Chapter 5

Adaptive filtering in control

5.1 Harmonics in Transformations

When discussing harmonics in the context of reactive power compensation, it
should be understood that the goal of the ASVC has historically been to com-
pensate only for the RMS value of the reactive current, as reactive power is
not really defined as an instantaneous value. There is further discussion of this
topic in [14] and [5].

Therefore, the goal of an ASVC is to compensate for the current which is out
of phase with the fundamental voltage, while remaining insensitive to harmonics
in the grid voltage. Though active components tend to have a larger harmonic
component, it is possible for harmonics to occur in reactive current. However,
when there are harmonics in the grid voltage, they will initiate harmonic fluctu-
ation in the active current of a constant load (or vice versa). Though the same
thing may occur with reactive current, it is assumed that the magnitude of the
effect of reactive current harmonics on voltage is small enough to neglect.

In order to explore this a little bit more in a real system, the αβ and pq
components of the wind turbine in normal operation are shown in Figures 5.1
and Figure 5.2 on the next page. The values for a filtered system are also
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Figure 5.1: αβ components of wind turbine voltage and current
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Figure 5.3: pq components of wind turbine voltage and current

included in these plots, where y0 is the RPEM filtered voltage, and k is the
current calculated using the filtered voltage as a reference. It can be seen that
there is a large difference between the two, with some harmonic components
appearing the k values. This occurs because the harmonic components of the
active current are not in phase with the fundamental component of the voltage.
Therefore, they are included in the computed value of the reactive current,
yielding an incorrect value.
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Effect of harmonic distortion on Control
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Figure 5.4: States for gain scheduled integral state space control with harmon-
ics
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Figure 5.6: Grid voltage and reactive currents for gain scheduled integral state
space control with harmonics

5.2 Effect of harmonic distortion on Control

When harmonics are present in the voltage, the control system attempts to
react to them. For lower harmonics, this may be possible, but at some point
the harmonics are changing the voltage faster than the system can control it,
leading to a degradation of the quality of the output. When there are harmonics
in the grid voltage, the control of the capacitor is also adversely affected, and
even less able to track the variation because of the relatively slow time constant
on the DC voltage control.

Generally, harmonics are removed by filtering the input voltage, but because
lower harmonics are relatively close to the fundamental, this creates a significant
phase delay in the measurement data, in effect creating a lag in the control. It is
possible to compensate for this lag, but with changing grid frequency, and phase
jumps, this is not always possible. The effect of a phase jump is also problematic,
because it changes both the direct and quadrature reference voltages at the same
time, magnifying the cross coupling in the system.

The effect of harmonics and phase shifts on the control system have been
simulated in Matlab, as shown in Figure 5.4 on the preceding page, Figure 5.5
and Figure 5.6. The same reactive power variation as used in the previous
simulations is used, a step of 50 kVar at t = 0.05s, -100 kvar at t = 0.1s, and
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Figure 5.7: AC voltage and inductor current for gain scheduled integral state
space control with harmonics

50kVar at t = 0.15s. In addition, the grid voltage source is given a phase
shift of 150 at t = 0.075s, and back to the original phase at t = 0.125s. The
harmonic content is constant, with the 5th and 13th harmonic having a relative
magnitude to the fundamental of 15% and 10% respectively. The harmonics are
generated by the voltage source. All of the following simulations include these
disturbances.

It can be seen that all of the state variables in the system have become
distorted by harmonics. In particular, the direct voltage and current of the
inverter oscillate wildly, in an attempt to keep the capacitor voltage stable.
The current flowing into the reactive load in this simulation, has no harmonics,
however, it can be seen in Figure 5.7, that the ASVC is actually injecting
harmonics into the grid.

5.3 Implementation of Estimator in Simulink Model

Clearly, filtering the grid voltage is necessary to improve the operation of the
control system during harmonic distortion. However, when the voltage has been
filtered, it is useful to consider the currents in the inverter in reference to the
filtered voltage, so that the control system is operating as if on a nonharmonic
system. However, this takes care when transforming the currents, as will be
seen in the simulations.

The purpose of this thesis has been to design a filter which will improve the
control of an ASVC. Thus the estimator must not be disturbed by the actions of
the ASVC. The estimator has been implemented as a Matlab block, and placed
into the ASVC simulation with the measurement of the grid voltage as input.
The fundamental components are estimated and their positive sequence is taken.
This is then fed into the Clark transform, and the Park transform. The reference
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5. Adaptive filtering in control

phase for the park transformation of the grid voltage is then found using the
αβ terms from the filtered voltage. The control is the combined integral and
gain scheduling method.

The output of the estimator is the frequency estimate, ωt, the fundamental
cosine amplitude, A0,t, and the fundamental sin amplitude, B0,t. The positive
sequence of the A0,t and B0,t components are extracted using,

y012 =
1

3





1 β2 β
1 β β2

1 1 1



 (A0 + ıB0) (5.1)

y0,abc =





1
β2

β



 y1

yabc = ℜ (y0,abc) cos (ωt) + ℑ (y0,abc) ı sin (ωt)

Where β is exp 2πı
3 .

The phase angle used in the PLL to convert the load and grid current mea-
surements to the d-q frame is not the filtered one, but rather the arctangent
of the unfiltered1 grid voltage, as was used in the mean model. The inverter
currents are transformed using the filtered phase. The sampling period of the
estimator is 6400 Hz.

One has to be a little careful here, because now the load and inverter cur-
rents do not sum to the grid current, because they are in different reference
frames. In order to prevent the active harmonics from polluting the reactive
current reference, the harmonic phase must be used, however, if this is used on
the grid current, the non-harmonic active current into the inverter will pollute
the calculation of the grid reactive current. This affects the choice of control
objective, as it is no longer feasible to use zero reactive current into the grid as
the objective.

The voltage output of the control system is now the control as if there were
no harmonics in the grid. However, there are harmonics at the grid side, and if
ignored, they will cause a harmonic current through the transformer. Therefore,
it is necessary to offset the harmonics and any estimate error by adding the
difference between the filtered and measured grid voltage to the output of the
inverter.

The control response for the integral control with gain scheduling and fil-
tering of the grid voltage and inverter current is shown in Figure 5.8 on the
next page. It can be seen that the converter is providing a relatively constant
reactive current, and that there is much less variation in the capacitor voltage
and direct current.

The inverter output voltages are shown in Figure 5.9. The output voltage is
clearly smoothed. Note that this measurement was taken before the measure-

1A filter could be used to remove much higher frequencies
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Figure 5.8: State Variation for estimator control
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Figure 5.9: Output variation for estimator control
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Figure 5.10: Output voltage and current for estimator control
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Figure 5.11: Output voltage and current for estimator control
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Figure 5.12: Estimate, residual, and residual spectrum for mean model with
estimator control

ment offset was added back to the voltage, so the actual inverter output would
be much more distorted.

The currents in the inductor are shown along with the reactive load current
in Figure 5.11 on the facing page. The AC current through the inverter in the
lower plot clearly has very few harmonics. This is shown with the load, in order
to prove that both the load reactive current and the inverter reactive current
are without harmonic distortion. The fact that the the difference between the
load and inverter current no longer equals the grid current is also apparent,
in Figure 5.10(b). This occurs because the ASVC is now drawing active and
reactive current with no harmonics, and in the reference of the harmonic voltage,
these are not incorporated correctly.

The results from the estimator are shown in Figure 5.12. It can be seen
that the large variation in reactive load does not seem to affect the estimate
much. The phase shifts are a notable disturbance, but the estimate recovers
quickly, and the control system recovers within a quarter of a cycle, and simply
compensates the harmonic component of the current until the estimate settles
again.

The fundamental parameter and harmonic estimates are shown in Figure 5.14
on the following page and Figure 5.13 on the next page. The magnitude of the
estimates of the harmonics seem to be correct. Though the mean squared error
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Figure 5.13: Harmonic estimates for mean model with estimator control
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Figure 5.14: Parameter estimates for mean model with estimator control
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Figure 5.15: Sequence decomposition for mean model with estimator control

is a little high, it should be remembered that there are two large phase jumps
within a very short period. Finally, the symmetrical three phase voltage which
is used for the control system is shown in 5.15.
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Chapter 6

Switching Simulation

The simulation is now performed on a Simulink power-systems model which
includes pulse width modulation and a Simulink Power Library model of a
universal bridge, with IGBT’s and diodes. The model for the ASVC is shown in
Figure 6.1. The parameters for the switching simulation are shown in Table 6.1.
Pulse width modulation has been used for this simulation. It is not the state
of the art, but is quick and easy for demonstrating the viability of this system.
The state of the art approach would be some sort of space vector modulation,
however, this has not been attempted in this project.

The snubber sizes, and component resistance were determined for a ±100
kVar inverter. The tT and tf are said to be the rise and fall time in the Mat-
lab documentation, but the name along switching problems suggest that tT is
actually the tail time, and this is what has been used. The switching frequency
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Figure 6.1: Simulink Power Systems model of switching ASVC

Rsnub Csnub Ron tf tT fs

1.8Ω 86nF 10 mΩ 100ns 39 nS 10 kHz

Table 6.1: Parameters used for PWM ASVC simulation
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Figure 6.2: States for switching model filter

is a reasonable value for PWM in practice, though it may be a little higher
than normal. Because there were no analog filters used in this project, it was
beneficial to have a higher switching frequency.

6.0.1 Switched Model Controlled With Adaptive Filter

Finally, the control is implemented in the switching model, including the adap-
tive filtering. The input parameters are shown in Figure 6.3 on the next page.
The state variation is shown in Figure 6.2. The capacitor voltage has quite a
bit more variation, which may be due to some inverter dynamics which have
not been modelled. However, the oscillation is not nearly as much as in the non
filtered system in Figure 5.4.

It can be seen in Figures 6.4 and 6.5, that the output reactive current of
the inverter is approximately constant, even though its reference current, iq,L

actually has harmonic components. This is exactly what the goal of this control
has been. There is clearly some noise in the system, and some high frequency
filters would certainly be helpful to clean up the operation.

The comparison of the filter estimate with the actual measurement is shown
in Figure 6.6 on page 76, along with the residuals and residual spectrum. The
fundamental parameter estimates are shown in Figure 6.8 on page 77. The
harmonic estimates are shown in Figure 6.7 on page 77. Finally, the sequence
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Figure 6.3: Inverter voltages for switching model filter
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Figure 6.4: Grid voltage and reactive currents for switching model filter
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Figure 6.5: Output voltage and current for switching model with filter
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Figure 6.6: Estimate, residual, and residual spectrum for switching model with
filter
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Figure 6.7: Harmonic estimates for switching model with filter
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Figure 6.8: Parameter estimates for switching model with filter
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Figure 6.9: Sequence decomposition for switching model with filter

extraction is shown in Figure 6.9. The estimation during the switching simu-
lation seems to be as good as the one where there is no switching. The only
harmonics estimated in the Simulink implementation are the ones which have
been injected into the voltage, which had a limit of two, but the previous tests
should show that the filter can withstand quite large disturbances.

The estimating system is able to handle phase jumps, with the largest change
occurring in the capacitor voltage, and returning to normal within less than a
quarter of a cycle. The positive sequence clearly does a good job of filtering out
the convergence of the estimator.
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Chapter 7

Conclusion

An adaptive phase estimator has been developed for use in the context of ASVC
control. The harmonic distortion of the 400 V grid has been determined by
taking measurements from the consumer grid in the lab, as well as at a operating
wind turbine. The ability of the phase estimator to estimate the full range
of measured harmonics has been evaluated, and the significant harmonics for
practical purposes have been selected, as shown in 4.2 on page 45.

A basic state space control system with integral action and gain schedul-
ing has been implemented, and simulated in Simulink using the power systems
library. Initially, a mean model has been used to develop the control and imple-
ment the filtering system. The control system is by no means the most advanced,
but it is simple, and improves the operation of the ASVC in comparison to vector
control.

It has been shown that by using the filtered phase in the park transformation
of the grid voltage and inverter current while leaving the harmonic components
in the phase reference for the park transformation of the load current, the ASVC
can be made insensitive to harmonic distortion.

The system has been implemented in a switching model, and has performed
as expected, suggesting that the assumptions made in this project are accept-
able.

7.0.2 Future Work

Future work could involve implementing this control system in a laboratory
demonstration. Also, it may be possible to get a better calculation of the
reactive currents in the system by subtracting the active currents from the three
phase measurements, by using an unfiltered transformation and then using the
filtered transformation to find the quadrature value. However, the gains from
this operation may not be worth the extra calculations.

Additionally, though processor speed is a moving target, it would be im-
portant to compare the time required to calculate the voltage estimate with
the frequency used in this simulation. If not feasible, the sensitivity of the
estimation to sampling period should be explored.

79





Chapter A

Appendices

A.1 Three phase transformations

In the analysis of active and reactive power in the three phase electrical system,
there are several transformations which are useful for extracting information
about the system. These transformations, and the assumptions that are made
are integral to the control of reactive power, and can be used on both voltage
and current. For this project, because of the use of the Matlab Powerlib, the
American standard for phase naming has been used, with θb = θa − 2pi/3 and
θc = θa +2π/3. However, all transformations will be kept in a general form here
to avoid confusion.

A.2 Clark Transformation

The Clark transformation is used to allow interpretation of the three phase sys-
tem as a single phase. The transformation is simply the sum of the projections
of the three phases on a two dimensional cartesian axis, as shown in figure A.1
on the following page.

[

x̂α

x̂β

]

= c

[

cos(θa) cos(θb) cos(θc)
sin(θa) sin(θb) sin(θc)

]





x̂a

x̂b

x̂c



 (A.1)

where c is a constant. When c is chosen as 2
3 , then the length of the voltage and

current vectors remain the same. If the constant is chosen as c =
√

2
3 , then the

power calculated in the αβ is the same as in the abc frame. Then the system
is said to be power invariant. For this project, the non-power invariant system
will generally be used.

Clearly, this transformation is only invertible if the actual system is centered
on zero, or balanced, and has symmetry between the phases, by having the
angles correctly described by θa, θb, and θc. It is possible to include information
about the zero phase of the system by finding the resultant of the three phases
in the cartesian frame,





x̂α

x̂β

x̂0



 =





cos(θa) cos(θb) cos(θc)
sin(θa) sin(θb) sin(θc)√

2
2

√
2

2

√
2

2









x̂a

x̂b

x̂c



 (A.2)
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Figure A.1: Clark Transformation
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Figure A.2: Symmetrical Components

A.3 Positive Sequence

In the power system, symmetric balanced conditions are not a good assumption.
In fact, in the situations where the control system is most stressed, they are
almost certainly not the case. Thus, it is useful to separate the measurements
into positive, negative, and zero sequences. The positive sequence is composed
of three vectors which are equal in magnitude, 120o apart, with the sequence,
a→ b→ c. The negative sequence is also symmetric and balanced, but has the
sequence, a → c → b. The zero sequence is a measure of the imbalance in the
system, and is composed of three vectors which are equal in magnitude, and
have the same direction. The algorithm for accomplishing this transformation
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V 0
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Figure A.3: Symmetrical Components of an Voltage

Sequence Series Examples
Positive h = 6k + 1, k=1,2,. . . 7, 13, 19
Negative h = 6k − 1, k=1,2,. . . 5, 11, 17
Zero h = 3k, k=1,2,. . . 3, 9 , 15

Table A.1: Sequences of harmonics

uses the rotational operator, e
2π
3 , which will be replaced by β in the following

equation [16].





x̂p

x̂n

x̂0



 =
1

3





1 β2 β
1 β β2

1 1 1









x̂a

x̂b

x̂c



 (A.3)

An example of a nonsymmetric, nonzero, three phase voltage is shown in Fig-
ure A.3. The voltage is actually composed of the same components shown in
Figure A.2 on the facing page[9]. It should be understood that the signal which
is being transformed must be a complex number in order for this transformation
to work properly.

Harmonics of a voltage also have a sequence, as shown in Table A.1. This
means that if the positive sequence of a a signal is taken, the 5th harmonic will
be removed, but the 7th will pass through.

A.4 Park Transformation

Finally, if the rotational speed of the system is known, it is convenient to observe
the system from a reference frame which is rotating at the same speed, thereby
causing the steady state to appear as a constant vector. This is known as the
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Figure A.4: Park Transformation

park transform, and consists of a frame dq, which rotates with speed ω with
respect to the stationary frame, αβ. At any given moment, the transformation
is determined by the variable, θt, which can be calculated from atan(

vβ

vα
).

[

x̂d

x̂q

]

=

[

cos θt sin θt

− sin θt cos θt

] [

x̂α

x̂β

]

(A.4)

Note that this is the opposite direction what is used in most literature, as
a result of the American standard used in Matlab. Also note that when a
differentiation is performed on a variable which has been transformed in such a
manner, the time dependent term, θt must be included, introducing an ω term
into the transformation.

84



Bibliography

[1] D. Abramovitch. Phase-locked loops: a control centric tutorial. In Amer-
ican Control Conference, 2002. Proceedings of the 2002, volume 1, pages
1–15 vol.1. American Automatic Control Council, 2002.

[2] A.Draou, M. Benghanem, and A. Tahri. Control and dynamic analysis of a
static var compensator using a three level inverter topolopgy. In The 12th
International Conference on Microelectronics, pages 353–356, Tehran, Nov.
2000.

[3] Roland E. Best. Phase-locked Loops : Design, Simulation, and Applications.
McGraw-Hill, Oberwil, Switzerland, 3 edition, 1997.

[4] Su Chen and G. Joos. A novel dsp-based adaptive line synchronization sys-
tem for three-phase utility interface power converters. In Power Electronics
Specialists Conference, 2001. PESC. 2001 IEEE 32nd Annual, volume 2,
pages 528–532 vol.2. IEEE, 2001.

[5] Leszek S. Czarnecki. On some misinterpretations of the instantaneous reac-
tive power p-q theory. IEEE Transactions on Power Electronics, 19(3):828–
836, May 2004.

[6] R. Davalos M., J.M. Ramirez, and R. Tapia O. Three-phase multi-pulse
converter statcom analysis. International Journal of Electrical Power and
Energy Systems, 27(1):39–51, 2005.

[7] R. Grunbaum, P. Halvarsson, D. Larsson, and P.R. Jones. Conditioning of
power grids serving offshore wind farms based on asynchronous generators.
Power Electronics, Machines and Drives, 2004. (PEMD 2004). Second In-
ternational Conference on (Conf. Publ. No. 498), pages 34–39 Vol.1, 2004.

[8] V. Kaura and V. Blasko. Operation of a phase locked loop system under
distorted utility conditions. Industry Applications, IEEE Transactions on,
33(1):58–63, 1997.

[9] Prabha Kundur. Power System Stability and Control. Electric Power
Research Institute: Power System Engineering Series. McGraw-Hill, Inc.,
1993.

[10] Sang-Joon Lee, Jun-Koo Kang, and Seung-Ki Sul. A new phase detecting
method for power conversion systems considering distorted conditions in
power system. In Proceedings of 34th Annual Meeting of the IEEE Industry
Applications, volume 4, pages 2167 –2172. IEEE, 1999.

85



Bibliography

[11] S. Mohagheghi, R.G. Harley, and G.K.Venayagamoorthy. Intelligent con-
trol schemes for a static compensator connected to a power network. In
Power Electronics, Machines and Drives. Second International Conference
on, volume 2 of Conf. Publ. No. 498, pages 594–599. IEE, IEE, 2004.

[12] Knud Ole Helgesen Pedersen, Jørgen Kaas Pedersen, and Arne Hejde
Nielsen. Monitoring a dc-connected wind farm. 2001 Proc. On European
Wind Energy Conference and Exhibition, pages 1191–1195, 2001.

[13] R. Pena, J.C. Clare, and G.M. Asher. A doubly fed induction generator
using back-to-back pwm converters supplying an isolated load from a vari-
able speed wind turbine. In Electric Power Applications, IEE Proceedings-,
volume 143, pages 380–387. IEE, 1996.

[14] Fang Zheng Peng, George W. Ott, and Donald J. Adams. Harmonic and
reactive power compensation based on the generalized instantaneous reac-
tive power theory for three-phase four-wire systems. IEEE Transactions
on Power Electronics, 13(6):1174–81, November 2998.

[15] P. Petitclair, S. Bacha, and J.P. Rognon. Averaged modelling and nonlinear
control of an asvc (advanced static var compensator). In Power Electron-
ics Specialists Conference, volume 1, pages 753–758, Baveno , Italy, 1996.
IEEE.

[16] F. Ronchi and A. Tilli. Three-phase positive and negative sequences estima-
tor to generate current reference for selective active filters. In Proceedings
of the 10th Mediterranean Conference on Control and Automation, Lisbon,
Portugal, 2002. MED2002.

[17] C. Schauder and H. Mehta. Vector analysis and control of advanced static
var compensators. IEE Proceedings-C, 140:299–306, July 1993.

86


	Acknowledgements
	Abstract

	Contents
	List of Symbols

	1 Introduction
	1.1 Controlling Reactive Power

	2 Simulation
	2.1 Single Phase
	2.2 Three Phase Analysis
	2.3 Mean Model
	2.4 Disturbance Model

	3 Control
	3.1 Vector Control
	3.2 State Space Control
	3.3 Integral Control

	4 Harmonic Estimation
	4.1 Measurements
	4.2 Estimation of grid dynamics

	5 Adaptive filtering in control
	5.1 Harmonics in Transformations
	5.2 Effect of harmonic distortion on Control
	5.3 Implementation of Estimator in Simulink Model

	6 Switching Simulation
	7 Conclusion
	A Appendices
	A.1 Three phase transformations
	A.2 Clark Transformation
	A.3 Positive Sequence
	A.4 Park Transformation

	Bibliography

