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Abstract  
 
 
 
 
 
 
 
 
In the thesis an auditory browser based on granular synthesis is designed and 
implemented to aid in browsing through long EEG time courses. This application can be 
used when ICA is applied to EEG signals as a means of decontamination and is intended 
to accelerate the identification of artifactual time courses, though this was not confirmed 
through testing. Furthermore, an introduction to the rather young field of sonification and 
EEG sonification is presented, also including introductory chapters on auditory 
perception and sound synthesis. Concepts in classification are introduced and the idea of 
augmented data sets using PCA and ICA is investigated. It is shown that augmenting data 
sets can “supervise” PCA and ICA, though this was seen to be especially true for PCA.   
 
Keywords: Sonification, classification, EEG, granular synthesis, auditory perception, 
sound synthesis, augmented data sets, ICA, PCA. 
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Resumé  
 
 
 
 
 
 
 
 
I denne afhandling blev en lyd browser baseret på granular syntese konstrueret og 
implementeret til at assistere i browsing gennem lange EEG aktiveringer. Denne 
applikation kan bruges når ICA er benyttet til rensning af EEG signaler og er beregnet til 
at accelerere identifikationen af artefaktiske aktiveringer, dog var dette ikke bekræftet 
gennem afprøvning. Derudover blev sonifikation og EEG sonifikation introduceret, samt 
indledende kapitler om lyd opfattelse og lyd syntese. Begreber indenfor klassifikation 
introduceres, samt begreber indenfor supplerede dataset ved brug af PCA og ICA 
undersøges. Der vises, at de supplerede dataset kan “assistere” PCA og ICA, dog gælder 
dette især for PCA.  
 
Nøgleord: Sonifikation, klassifikation, EEG, granular syntese, lyd opfattelse, lyd syntese, 
supplerede dataset, ICA, PCA. 
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Chapter 1 
 
 
 
 
 
 
 
 

1 Introduction 
 
This thesis focuses on sonification and data analysis, and it was originally inspired by a 
project description by the name of, “The sound of the experienced self: A study of 
subjectivity disturbances and brain activity”, written by senior researcher Sidse Arnfred 
at Hvidovre Hospital. A subset of that project was to sonify event related EEG activity 
for novel ways of interpreting EEG data. Due to the fact that no previous investigations 
of sonification, or sonification of EEG data, had been conducted at IMM, an overview of 
the field of sonification was requested in this connection. Furthermore, EEG sonification 
is quite new and very few scientists are actively involved in this research area, and no 
well-documented or tested techniques were readily available for the requested task, which 
also required a study of the suggested techniques for analyzing EEG data through sound. 

The field of sonification is rather young, though the use of sound to convey 
information is not, for example Morse code and Geiger counters. Since the establishment 
of the annual international conference on auditory display in 1992, sonification seems to 
have become a more accepted discipline in exploring and presenting data, though the 
field is still in its early steps. As will be made clearer, the designing of auditory displays 
is interdisciplinary in nature and touches on many aspects such as data mining, computer 
science, human factors, signal processing, acoustics, psychology, auditory perception and 
more. In this thesis the main focus will be on auditory perception and sound synthesis 
techniques, which the author feels are important aspects when designing and 
implementing sonifications. As mentioned, an overview of the field of sonification and an 
overview of using auditory displays for analyzing EEG data will be given. Furthermore, 
an application for browsing through time courses will be designed and implemented 
using presented techniques. A usability test of this application is out of the scope of this 
thesis, but is a crucial part when determining the possible advantage of using 
sonifications compared to the more traditional visual displays. 
 The thesis also focuses on data analysis, which also is an important part of 
exploring and analyzing data. An investigation of augmenting labeled data sets will be 
conducted. The main idea behind augmented data sets is that unsupervised techniques 
such as PCA and ICA could to some extent become supervised. Experiments will be 
conducted on augmenting data sets using PCA and initial experiments will be conducted 
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on ICA (infomax). The investigation of augmenting data sets using unsupervised 
techniques was to reveal the possibilities of this technique, and since this is “new 
territory” this thesis only presents a preliminary heuristic assessment of this technique. 
 Chapter 2 in this thesis will give an introduction to pattern recognition and 
classification, including the investigations of augmented data sets. Chapter 3 deals with 
auditory perception and gives an introduction to the human ear and psychoacoustics. 
Subsequently, chapter 4 concerns the field of sonification and gives an introduction to the 
present techniques and the issues in designing sonification. Chapter 5 gives a brief 
introduction to the sound synthesis techniques where the weight is put on the granular 
synthesis technique. Chapter 6 will focus on EEG sonification and presents the auditory 
browser designed in the course of this project. Thereafter, a short discussion on 
sonification and the auditory browser is presented in chapter 7, and finally, the 
conclusion is made in chapter 8. 
 The project should be read as an introduction to sonification and EEG 
sonification, focusing on monitoring and browsing through classified states in time 
courses. Classification is introduced in this regard and an investigation is made on 
augmented data sets in the field of feature extraction and classification in binary 
classification problems. 
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Chapter 2 
 
 
 
 
 
 
 

2 Pattern Recognition and Classification 
 
In this chapter topics of pattern recognition, and especially classification, are presented. 
These include Bayes’ theorem that lets the posterior probability be expressed in terms of 
attainable quantities. This theorem is then used to deduce optimal decision boundaries 
and discriminant functions, which are central in classification problems. The concept of 
generalization is presented, which ensures that the inferred parameters are the optimal in 
a general sense. Furthermore, performance measures in binary classification problems are 
introduced, where the confusion matrix and the receiver operating characteristic curve are 
discussed. Then, a brief review of the Principal Component Analysis and the Independent 
Component Analysis, together with Fisher’s linear discriminant is presented. Finally, the 
concept of augmenting data sets is introduced followed by a heuristic investigation when 
this technique is used in concert with the principal component analysis and the 
independent component analysis. First of all, an introduction to classification is 
presented. 
 

2.1 Introduction to Classification 

 
Pattern recognition can be viewed as the process of assigning a label or input to an 
observation or output, as illustrated in Figure 1. In classification problems the task is to 
assign new inputs to one of a number of discrete classes or categories, the outputs. 
However, there is another pattern recognition task referred to as regression, where the 
outputs represent the values of continuous variables. Both regression and classification 
problems can be viewed as particular cases of function approximation. In regression 
problems it is the regression functions which we seek to approximate, while for 
classification the functions we seek to approximate are the probabilities of membership of 
the different classes [Bishop 1995 p. 6]. 
 
 



 12 

 

Figure 1. A schematic illustration of pattern recognition. 

 
The outcome of the classification can be represented in terms of a variable y, 

which takes the value 1 when a data point is classified as C1, and the value 0 if it is 
classified as C2. Thus, the overall system can be viewed as a mapping from a set of input 
variables x1,…,xd, to an output variable y representing the class label. In more complex 
problems there may be several output variables, which one can denote by yk where k = 

1,…,c. 
In general, it will not be possible to determine a suitable form for the required 

mapping, except with the help of a data set of examples. The mapping is therefore 
modeled in terms of some mathematical function which contains a number of adjustable 
parameters, whose values are determined with the help of the data x. In [Bishop 1995 p. 
5] the functions are written in the general form  

 

( )wx;kk yy =         2.1 

 
where w is the parameter vector. In this case, the parameters in w are often called 
weights. The method of determining the values for the adjustable parameters on the basis 
of the data set is called learning or training, and therefore the data set of examples is 
referred to as a training set. Neural network models (non-linear), as well as many 
conventional approaches to statistical pattern recognition (mostly linear), can be viewed 
as specific choices for the functional forms used to represent the mapping in equation 2.1. 
The determining of these parameters in the classification process is called inference. 

In statistical pattern recognition applications the original set of input variables 
x1,…, xd are usually transformed with the help of an important pre-processing stage 
before being fed into the statistical model or classifier. The removal of irrelevant 
information and extraction of key features to simplify a pattern recognition problem is 
referred to as pre-processing [Kennedy 1997 p. 1.17]. Any object or pattern which can be 
recognized and classified possesses a number of discriminatory properties or features. 
Transforming the original input variables, given by xi, to a single variable x1´ possessing 
the discriminatory attributes, is an example of pre-processing referred to as feature 

extraction [Bishop 1995 p. 6]. This is illustrated in Figure 2. The use of pre-processing 
can often greatly improve the performance of a pattern recognition system, the reason for 
this is: 

1. Incorporating prior knowledge 

2. Reducing the dimensionality 
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Figure 2. For a large part of pattern recognition applications the original input variables x1,…, xd are 

transformed by some form of pre-processing to give a new set of variables x´1,…, x´f. These are then 

treated as the inputs to the statistical model, whose outputs are denoted by y1,…, yc. This figure is 

redrawn from [Bishop 1995 p. 7] 

 
Prior knowledge is information which we possess about the desired form of the 

solution and is additional to the information provided by the training data [Bishop 1995 
p. 295]. Secondly, by increasing the dimensionality of a model one also needs to 
exponentially increase the size of the training data in order for the data to have the same 
density in feature space [Bishop 1995 p. 7]. This phenomenon has been termed the curse 

of dimensionality and in statistics it relates to the fact that the convergence of any 
estimator to the true value of a smooth function defined on a space of high dimension is 
very slow. In practice we are forced to work with limited quantity of data, then increasing 
the dimensionality of the space rapidly leads to the point where the data is very sparse, in 
which case it provides a very poor representation of the mapping. Some statistical 
methods for features extraction are Principal Component Analysis, Factor analysis, 
Fisher’s linear discriminant and Independent Component Analysis, some of which will be 
discussed later in the text.  

It is important to distinguish between two separate stages in the classification 
process as illustrated in Figure 3. The first is inference whereby (known/measured) data 
is used to determine the optimal parameter values. These are then used in the second 
stage, which is decision-making, in which the parameters are used to make decisions such 
as assigning a new data point to one of the possible classes [Bishop 1995 p. 20].  
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Figure 3. A schematic illustration of the two stages in the classification process. First inference is 

made about the labeled training resulting in the estimated parameters or weights, which then are 

used in the decision making stage to classify new data observations.  

 
As mentioned, for classification problems the functions which we seek to 

approximate are the probabilities of membership of the different classes expressed as 
functions of the input variables. The goal in classification is, thus to classify the data in 
such a way as to minimize the probability of misclassification. The ability of a model to 
generalize to new data and not over-fit or imitate the training data, is an important goal 
for any function or model approximation. This can be ensured by cross validation which 
will be presented in section 2.5. 
 

2.2 Bayes’ Theorem 

 
Bayes’ theorem is the starting point for inference problems using probability as logic. 
Bayesian approaches maintain that rational belief is governed by the laws of probability, 
lean heavily on conditional probabilities in their theories of evidence and their models of 
empirical learning. For continuous variables Bayes’ theorem can be expressed as [Bishop 
1995 p. 23] 
 

( ) ( ) ( )
( )x

x
x

p

CPCp
CP

kk

k

⋅
=       2.2 

 
where P(Ck|x) is called the posterior probability, since it gives the probability that the 
class is Ck given a measurement of x. Bayes’ theorem lets the posterior probability be 
expressed in terms of the prior probability P(Ck), together with the quantity p(x|Ck) which 
is called the class-conditional probability density function of x for class Ck. The 
denominator p(x) plays the role of a normalization factor, and ensures that the posterior 
probabilities sum to unity. The density p(x) for c distinct classes is given by  
 

  ( ) ( ) ( )∑
=

⋅=
c

k

kk CPCpp
1

xx       2.3 
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thus ensuring that the posterior probabilities sum to unity. The class-conditional densities 
p(x|Ck) can be assumed Gaussian distributed, which are modeled by parameterized 
functional forms as seen in equation 2.20. When viewed as functions of the parameters 
they are referred to as likelihood functions, of class Ck for the observed value of x. Bayes’ 
theorem can therefore be summarized in the textual form  
 

  
factorion normalizat

priorlikelihood
posterior

×=      2.4 

 
The joint probabilities density function of x and Ck occurring simultaneously is given by  
 

  ( ) ( ) ( )kkk CPCpCp ⋅= xx,       2.5 

 

2.3 Decision boundaries 

 
As mentioned, the posterior probability P(Ck|x) gives the probability of the pattern 
belonging to class Ck given a feature vector x. The probability of misclassification is 
minimized by selecting the class Ck having the largest posterior probability, so that a 
feature vector x is assigned to class Ck if [Bishop 1995 p. 23] 
 

  ( ) ( )xx jk CPCP > , for all kj ≠      2.6 

 
Since the density p(x) is independent of the class, it can be left out from the Bayes’ 
formula for the purposes of comparing posterior probabilities. Equation 2.2 can then be 
used to write the criterion in equation 2.6 to  
 

  ( ) ( ) ( ) ( )
jjkk CPCpCPCp ⋅>⋅ xx , for all kj ≠    2.7  

 
A pattern classifier provides a rule for assigning each point of feature space to one 

of c classes. The feature space can be regarded as being divided into c decision regions 
R1,…, Rc such that a point falling in region Rk is assigned to class Ck. The boundaries 
between these regions are known as decision surfaces or decision boundaries.  
 In order to find the optimal criterion for placement of decision boundaries, 
consider the simple case of a one-dimensional feature space x and two classes C1 and C2. 
As illustrated in Figure 4 the decision boundary tries to minimize the probability of 
misclassification. Assigning a new pattern to class C1 when in it belongs to class C2, or 
vice versa leads to a misclassification error. The total probability of an error of either 
kind occurring can be calculated by the following [Bishop 1995 p. 24] 
  

 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )dxCPCxpdxCPCxp

CPCxPCPCxP

CxPCxPP

2211

221112

2112

12

              

              

,,error

∫∫ +=

∈+∈=
∈+∈=

RR

RR

RR

    2.8 
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where P(x∈R1,C2) is the joint probability of x being assigned to class C1 and the true 
class being C2. Thus, if p(x|C1)P(C1) > p(x|C2)P(C2) for a given x, one should assign x to 
R1, since this gives a smaller contribution to the error. By choosing the decision boundary 
to coincide with the value x where the two distributions cross (shown by the arrow in 
Figure 4) one minimizes the area of the shaded region, illustrating the classification error, 
and therefore minimizes the probability of misclassification. This corresponds to 
classifying each new pattern x using equation 2.7, which is equivalent to assigning each 
pattern to the class having the largest posterior distribution. This can naturally be 
extended into the general case of c classes and d-dimensional feature vectors. Binary 
classification, however, is not an oversimplified method only used in textbook examples, 
it has its applications and is typically used in [Fawcett 2003] 

• Medical testing. To determine if a patient has certain disease or not; 

• Psychophysical testing. To determine thresholds e.g. of human listeners;  

• Quality control in factories. To decide whether a new product is good enough to 
be sold, or if it should be discarded 

 

 

Figure 4 is a schematic illustration of p(x|Ck)P(Ck), also known as the joint probability densities, as a 
function of a feature value x, for two class C1 and C2. If the vertical line is used as the decision 

boundary then the classification errors arise from the shaded region. By placing the decision 

boundary at the point where the two probability density curves cross (shown by the arrow), the 

probability of misclassification is minimized. This figure is taken from [Bishop 1995 p. 25]. 

 

2.4 Discriminant functions 

 
The focus of the previous section was on probability distribution functions, where the 
decision on class membership in the classifier was solely based on the relative sizes of 
the probabilities. The classification problem can be reformulated in terms of a set of 
discriminant functions y1(x),…, yc(x) such that an input vector x is assigned to class Ck if  
 

  )()( xx jk yy > ,  for all kj ≠      2.10 

 
The decision rule for minimizing the probability of misclassification may easily be cast in 
terms of discriminant functions, simply by choosing 
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  ( )xx kk CPy =)( .       2.11 

 
which leads to 
 

  ( ) ( )
kkk CPCpy xx =)( .      2.12 

 
Since it is only the relative magnitudes of the discriminant function which are important 
in determining the class, we can replace yk(x) by g(yk(x)), where g() is any monotonic 
function, and the decisions of the classifier will not be affected. A monotonous function 
usually applied in this case is the natural logarithm function, which lead to the 
discriminant functions in the form  
 

  ( ) ( )
kkk CPCpy lnln)( += xx       2.13 

 
In general, the decision boundaries are given by the regions where the discriminant 
functions are equal, so that if Rk and Rj are adjacent, then the decision boundary 
separating them is given by  
 

  )()( xx jk yy =         2.14 

 
The location of the decision boundaries are therefore unaffected by monotonic 
transformations of the discriminant functions. 
 Discriminant functions for two-class decision problems can be written in a more 
compact from. Instead of using two discriminant functions y1(x) and y2(x), a single 
discriminant function can be obtained 
 

  ( ) ( ) ( )xxx 21 yyy −=        2.15 

  
( )
( )




∈<
∈>

=
2

1

      ,0

      ,0
        

 Cy

 Cy

xx

xx
      2.16 

 
From equation 2.11 and equation 2.15 it follows that 
 

  ( ) ( )xxx 21)( CPCPy −=       2.17 

 
or alternatively, from equation 2.13 and equation 2.15 it follows that 
 

  
( )
( )

( )
( )2

1

2

1 lnln)(
CP

CP

Cp

Cp
y +=

x

x
x       2.18 

 
By relating the discriminant functions to the probabilities, one retains the link to the 
optimal criteria of decision theory introduced above.  

As suggested, in a practical application of discriminant functions, specific 
parameterized functional forms are chosen, and the values of the parameters are then 
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determined from a set of training data by means of inference. The simplest choice of a 
discriminant function consists of a linear combination of the input variables in which the 
coefficients in the linear combination are the parameters of the model, and has been 
considered widely in the literature on conventional approaches to pattern recognition, and 
has the well known functional form  
 

( ) 0

T
wy += xwx        2.19 

 

2.4.1 Discrimination between Two Normal Distributions 

 
The general multivariate normal probability density in d dimensions, as defined in 
[Bishop 1995 p. 35], can be written as  
 

   ( )
( )

( ) ( )






 −Σ−−

Σ
= −Τ µµ

π
xxx 1

211 2

1
exp

2

1
d

p    2.20 

 
where the mean �  is a d-dimensional vector and the covariance Σ  is d × d matrix. Thus, 
the normal probability density is governed by the parameters �  and Σ  and is usually 
specified as Nd(

� , Σ ).  
Considering a two-class problem in which the class-conditional probability 

densities are Gaussian distributions with equal covariance matrix, they can then be 
expressed as 
 

  ( )
( )

( ) ( )






 −Σ−−

Σ
= −Τ

kkdkCp µµ
π

xxx 1

211 2

1
exp

2

1
   2.21 

 
A graphical illustration of two classes in two dimensions is given in Figure 7. Inserting 
equation 2.21 into equation 2.18 gives   
 

  ( ) ( ) ( )
( )2

1
2

1

21

1

121

1 ln
2

1

2

1

CP

CP
y +Σ+Σ−−Σ= −−−Τ µµµµµµxx   2.22 

 
which can be written in the form of equation 2.19, where  
 

  ( )21
1 µµ −Σ= −w        2.23 

   

  
( )
( )2

1
2

1

21

1

10 ln
2

1

2

1

CP

CP
w +Σ+Σ−= −Τ−Τ µµµµ .    2.24 

  
 
It is clear to see that the discriminant function is linear in the components of x, where w 
is referred to as the d-dimensional weight vector and the parameter w0 is called the bias. 
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In practice, the parameters of the Gaussian distributions of the class-conditional 
probability densities need to be estimated. The estimation of the parameters, as defined in 
[Bishop 1995 p. 41], are given by  

 

 ∑
=

=
N

n

n

N 1

1
ˆ xµ         2.25 

 
and  
 

  ( )( )∑
=

Τ−−=Σ
N

n

nn

N 1

ˆˆ
1ˆ µµ xx       2.26 

 
where N is given by number of samples in x. If one assumes equal covariance matrices 
then the estimated pooled covariance matrix can be used [Ersbøll and Conradsen, 2003], 
and for a two class problem it is defined by  
 

 

( )( ) ( )( )

( ) ( )( )2211

21

T

2222
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1111
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
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−+
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NN i

nn

i

nn

p µµµµ xxxx

  2.27 

 

where N1 and N2 are the number of samples in each class, and 1µ̂  and 2µ̂ are the 

estimated expectations or means in each class, respectively. If one assumes two distinct 
covariance matrices then the resulting classifier is no longer linear, but rather quadratic 
and is given by 
 

  ( ) ( ) ( )2

1

21

1

1

1

2

1

1 2
2

1 µµ −−Τ−−Τ Σ−Σ−Σ−Σ−= xxxxy  

     
( )
( ) 1

2

2

1
2

1

21

1

1 ln
2

1
ln

Σ
Σ

++Σ+Σ− −Τ−Τ

CP

CPµµµµ .  2.28 

 
The above function is known as the quadratic discriminant function and as its name states 
the decision boundary is of a quadratic form and therefore has the potential of a more 
precise discrimination than the former linear discriminant function. In the above analysis 
a two-class problem was assumed, but this can easily be extended to several-class 
problem, which, if one is interested, can be found in [Bishop, 1995] and in [Ersbøll and 
Conradsen, 2003] to mention a few.  

The linear discriminant functions, as well as the quadratic, can be regarded as 
supervised learning techniques due to the fact that they take the target data into account, 
thus giving substantially more optimal results than compared with unsupervised 

techniques. 
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2.5 Generalization through Cross-Validation 

 
As previously mentioned, the goal of model training is not to learn an exact 
representation of the training data itself, but rather to build a statistical model of the 
process which generates the data. This is important if the model is to exhibit good 
generalization, i.e. to make good predictions for new inputs. In practical applications, one 
seeks to find the best overall performing model and the most important technique for 
doing this is called cross-validation [Bishop 1995 p. 332]. 
 

2.5.1 Cross-validation 

 
Since the goal is to find the network having the best performance on new data, the 
simplest approach to the comparison of different networks is to evaluate the error 
function using data which is independent of that used in the training process. Various 
models are trained by minimization of an error function defined with respect to a training 
data set. In this projects context the accuracy or the area under the ROC curve is 
maximized and therefore the classification error is minimized. The performance of the 
model is then compared by evaluating the error function using an independent validation 
set, and the model having the smallest classification error with respect to the validation 
set is selected. This approach is called the hold out method. Since this procedure can 
itself lead to some over-fitting to the validation set, the performance of the selected 
network should be confirmed by measuring its performance on a third independent set of 
data called a test set. Though if one has access to large data sets, e.g. experimental data, 
then it is enough to perform training and testing. 
 In practice, though, the availability of labeled data may be limited. In such cases 
the procedure of cross-validation can be adopted. This procedure divides the training set 
at random into S distinct segments, then trains a network using data from S – 1 of the 
segments and tests its performance, by evaluating the error function, using the remaining 
segment. This process is repeated for each of the S possible choices for the segment 
which is omitted from the training process, and the test errors averaged over all S results. 
Such a procedure allows the use of high proportion of the available data (a fraction 1 – 
1/S) to train the networks, while also making use of all data points in evaluating the 
cross-validation error. The disadvantage of such an approach is that it requires the 
training process to be repeated S times which in some circumstances could lead to a 
requirement for large amounts of processing time. Data can in extreme cases be very 
scarce, in this case one should set S = N for a data set with N data points, which involves 
N separate training runs per network, each using (N – 1) data points. This limit is known 
as the leave-one-out method and will be used in chapter 6. 
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2.6 Performance Measures for Binary Classifications 

 
During the process of cross-validation one has to evaluate the overall performance of the 
classifier or model. To measure the performance of a classification the estimation of the 
confusion matrix reveals relevant information. A confusion matrix contains information 
about actual and predicted classifications done by a classification system. Performances 
of such systems are commonly evaluated using the data in the matrix. Each of the 
possible output classes are represented both along the x and the y-axis. Each cell of the 
matrix shows the number of patterns from the class on the y-axis that was mapped into 
the class on the x-axis. Diagonal entries represent patterns that were correctly classified, 
whereas misclassifications are displayed off the diagonal. The confusion matrix can help 
identify which classes are being learned well and which classes are being confused. This 
may identify additional features that can be added in order to help the classifier 
differentiate among confused classes [Fawcett 2003]. 
 

 

Figure 5. A schematic illustration of a confusion matrix for a binary problem. 

 
In Figure 5 a schematic illustration of a confusion matrix for a binary classification 
problem is shown. The lower-case letters in the matrix have the following meaning; 

• a is the number of correct classifications that an observation is positive. This 
number is also called the number of hits. 

• b is the number of erroneous classifications that an observation is negative This 
number is also called the number of misses. 

• c is the number of erroneous classifications that an observation is positive This 
number is also called the number of false alarms. 

• d is the number of correct classifications that an observation is negative This 
number is also called the number of correct rejections. 

 
There has been defined several standard terms of the combinations of the elements in the 
confusion matrix for binary problems. In the following the terms used in this project are 
presented. The accuracy (AC) is the proportion of the total number of predictions that are 
correct. It is determined using the using the following equation; 
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dcba

da

+++
+=AC        2.29 

 
The true positive rate (TP) is the proportion of positive cases that were correctly 
identified, is calculated using the following equation; 
 

  
ba

a

+
=TP         2.30 

 
The false positive rate (FP) is the proportion of negatives cases that were incorrectly 
classified as positive, is calculated using the following equation; 
 

  
dc

c

+
=FP         2.31 

 
The accuracy determined using equation 2.29 may not be an adequate 

performance measure when the number of negative cases is much greater than the 
number of positive cases [Fawcett 2003]. Suppose there are 1000 cases, 995 of which are 
negative cases and 5 of which are positive cases. If the system classifies them all as 
negative, the accuracy would be 99.5%, even though the classifier missed all positive 
cases. A way of examining the performance of a classifier is through the receiver 

operating characteristic (ROC) graph. 
In signal detection theory, a ROC is a graphical plot of the FP as a function of TP 

as its decision boundary, also called discrimination threshold or criterion, is varied across 
the range of all possible observation values. The ROC can also be represented 
equivalently by plotting the 1-specificty as a function of the sensitivity. A completely 
random predictor would yield a straight line from the origin to the upper right corner, as 
illustrated by the solid line in Figure 6. This is due to the fact that as the decision 
boundary is moved, equal numbers of true and false positives are registered. This would 
correspond to a total overlap of two probability density functions. In the case where there 
is separation, the ROC curve becomes bowed, and for larger separations the more bowed 
the curve becomes. In Figure 6 a schematic illustration of two classes with a large and a 
small overlap is shown together with their corresponding ROC curves. In terms of noise, 
the large overlap is equivalent to large noise levels and the small overlap to low noise 
levels in a system. As it can be seen the area under the ROC curve increases from 0.5 for 
a random classifier to 1 for an ideal classifier: thus the area can be used as a measure of 
the discriminability of the two classes [Fawcett 2003]. This measure together with the 
accuracy measure will be used to compare results from real and experimental data, 
respectively. 
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Figure 6. A Schematic illustration of two classes with large overlap and the small overlap, 

corresponding to the dotted and the dash-dotted lines in the ROC curve, respectively. The solid line 

is, as explained in the text, a completely random predictor, representing total overlap. 

 

2.7 Principal component analysis (PCA) and Singular Value 
Decomposition (SVD) 

 
The goal in dimensionality reduction is to preserve as much of the relevant information as 
possible, and to make the essential structure in the data more visible or accessible. The 
procedures discussed in the following relies entirely on the input data itself without 
reference to the corresponding target data, and can be regarded as a form of unsupervised 

learning. While they are of great practical significance, the neglect of the target data 
information implies they can also be significantly sub-optimal, as mentioned previously. 
The current and the following section will focus on unsupervised techniques using linear 
transformations for dimensionality reduction. 

The goal in dimensionality reduction using PCA is to map vectors x
n in a d-

dimensional space (x1,…, xd) onto vectors z
n in an M-dimensional space (z1,…, zM), 

where M < d. The vector x can be represented, without loss of generality, as a linear 
combination of a set of d orthonormal vectors ui  
 

  ∑
=

⋅=
d

i

iiz
1

ux         2.32 
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where the vectors ui satisfy the orthonormality relation (orthogonal and unit length 
vectors) 
 

  ijji δ=uuT         2.33 

 
Explicit expressions for the coefficients zi in equation 2.32 can be found by using 
equation 2.33 to give  
 

  xuT

iiz =         2.34 

 
which can be regarded as a simple rotation of the coordinate system from the original x’s 
to a new coordinate given by the z’s. Reducing the dimensionality is equivalent to 
retaining only a subset M < d of the basis vectors ui, so that only M coefficients are used 
to create zi. The optimal linear dimensionality reduction procedure (in the sense of least 
squares) is determined by minimization of the following error function: 
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where Σ  is the covariance of the set of vectors {x

n} and µ̂  is the mean. Thus, the 

minimum error is obtained by choosing the d – M smallest eigenvalues, and their 
corresponding eigenvectors, to be discarded. It can be shown that the minimum of the 
error function occurs when the basis vectors ui satisfy 
 

  iii uu λ=Σ         2.36 

 
thus being the eigenvectors of the covariance matrix.  
 The first principal component is the linear combination (with normed coefficients) 
of the original variables which has the largest variance. The m’th principal component is 
the linear combination (with normed coefficients) of the original variables which is 
uncorrelated with the m – 1 first principal components and has the largest variance. 
 An efficient way of calculating the principal components is by using the singular 
value decomposition. The equation for SVD of a matrix X (m × n) is the following; 
 

Τ= USVX         2.37 
 
where U (m × m) and V (n × n) are orthogonal matrices with the left and right, 
respectfully, singular vectors, and S (n × n) is a diagonal matrix with singular values. By 
convention, the ordering of the singular vectors is determined by high-to-low sorting of 
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singular values, with the highest singular value in the upper left index of the S matrix. For 
a square, symmetric matrix X, SVD is equivalent to the solution of the eigenvalues 
problem; 

  ΤΛ= UUX         2.38 
  UXU Λ=         2.39 
 
where Λ  is a diagonal matrix with eigenvalues of X. V and U are now equal and hold the 
corresponding eigenvectors. Equation 2.39 is equivalent to equation 2.36, when X is 
substituted by a covariance matrix Σ . 

The classic use of PCA is usually described as an unsupervised dimensionality 
reduction technique, as was presented above. Although in this report, there will be 
examined to what extent the PCA can be made supervised or how prior knowledge is 
included by augmenting the data x

n by a class label vector. This technique will be 
described later in section 2.10. 
 

2.8 Independent component analysis (ICA) 

 
ICA distinguishes itself from other methods, such as PCA, in the sense that it looks for 
components that are both statistically independent, and non-Gaussian. In practical 
situations, one cannot in general find a representation where the components are really 
independent, but one can at least find components that are as independent as possible. 
 The general model for ICA is that the sources are generated through a linear basis 
transformation, where additive noise can be present. In the following, the noiseless model 
is considered, which has the form, 
 

  ASX = ,   ∑
=

⋅=
kN

k

nkkmnm

1

,,, SAX     2.40 

 
where X is the matrix holding the Nm mixed or observed signals in each row with N 
samples, A is the Nm × Nk basis transformation or mixing matrix, and S is the matrix 
holding the Nk independent source signals in rows of N samples. In the special case when 
assuming that the mixing matrix is an invertible square matrix and that no noise is 
present, the infomax solution is achieved [Kolenda 1998]. 
The estimation of S, will be called Y, and is found by solving 
 

XAWXY 1−==        2.41 
 
which is equivalent to unmixing the observed signals with the inverse of the estimated 
mixing matrix W. Thus the goal of ICA algorithm is to estimate W by assuming 
independent and non-Gaussian sources.  
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2.8.1 Independent sources  

 
The fundamental principle in ICA is that the sources are independent of each other. When 
the distribution of s can be written as the product of the distributions for each of the 
components separately in the form  
 

  ( ) ( )∏
=

=
kN

k

kspp
1

s        2.42 

 
then s is said to be statistically independent. If the signals are uncorrelated for all 
moments, including the higher order moments, then they are considered independent. To 
achieve independence, however, it is sufficient to estimate no more than fourth order 
moments [Kolenda 1998]. The fourth order moment can be expressed as the signal’s 
kurtosis γ , and describes the “top-steepness” of a signal. Since ICA is an unsupervised 
algorithm, the estimated sources will converge to a false optimum if the true sources are 
not independent. 
 

2.8.2 Source probability distribution  

 
Recovering the source signals involves more or less directly the source signals 
probability distributions. In the case of zero mean probability distributions, the error 
made by not matching the source distributions (if not too gross) results in merely a 
scaling of the estimated signals [Kolenda 1998]. The basic properties of the underlying 
distributions need therefore to be respected, although it might not make the optimization 
of the ICA algorithm unstable. 
 

2.8.3 Mixing matrix  

 
The mixing matrix A can be thought of as being a non-orthogonal transformation basis, 
as opposed to PCA. The columns in A are linearly independent and must have full rank 
[Kolenda 1998]. The matrix can at least be recovered from the true mixing matrix up to a 
scaling and permutation of the matrix rows. The number of sources, hence columns in A, 
are generally not known and must be estimated. In the case where the number of sources 
and number of observed signals are the same, the problem simplifies and the un-mixing 
matrix can be found as the inverse of A. 
 

2.9 Fisher’s Linear Discriminant (FD) 

 
The Fisher’s linear discriminant aims to achieve an optimal linear dimensionality 
reduction with respect to prior class information, and similar to linear discriminant 
analysis can be regarded as a form of supervised learning technique, as opposed to the 
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two latter techniques. The FD uses a linear projection of the data onto a one-dimensional 
space, so that an input vector x is projected onto a value y given by   
 

xwT=y         2.43 

 
where w is a vector of adjustable weight parameters. In general, the projection onto one 
dimension leads to a considerable loss of information and classes which are well 
separated in the original d-dimensional space may become strongly overlapping in one 
dimension. However, by adjusting the components of the weight vector w we can select a 
projection which maximizes the class separation.  
 In the following a two-class problem is considered, this can of course be extended 
to several classes [Bishop 1995 p. 100]. There are N1 points of class C1 and N2 points of 
class C2. The mean vectors of the two classes are estimated by 
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The resolution proposed by Fisher is to maximize a function which represents the 
difference between the projected class means, normalized by a measure of the within-

class scatter along the direction of w.  
 The projection in equation 2.43 transforms the set of labeled data points in x into 
a labeled set in the one-dimensional space y. The within-class scatter of the transformed 
data from class Ck is described by the within-class covariance, given by 
  

( )( )Τ
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and we can define the total within-class covariance for the whole data set to simply be 
 

  2

2

2

1 SSS +=W         2.46 

 
It can be shown that FD is given by  
 

( )12

1 ˆˆ µµ −∝ −
WSw        2.47 

 
As mentioned, this is not a discriminant but rather a specific choice of direction for 
projection of the data down to one dimension. 
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2.10 Augmented data sets  

 
In this chapter, the concept of augmenting data sets with a class label vector and 

then performing classical statistical analysis is investigated. The idea behind augmented 
data sets is to improve the statistical analysis by enforcing the concept of classes on the 
data set. 

The motivation for this approach was found in [Meinicke et al., 2004]. Here they 
propose an extension to the techniques that are based on an augmentation of the data 
space by additional dimensions for encoding class-membership, such as the ICA-FX 
method reported Kwak and Choi, most recently in [Kwak and Choi 2003]. Thus, unlike 
most EEG and MEG applications of ICA which aim at source separation [Jung et al. 
2000], [Jung et al. 2001], e.g. for isolation of muscle artifacts, the latter article proposes 
an ICA technique as an analysis tool in order to identify discriminative features in a two 
class problem. 
 In the following analysis, there are two different objectives. The first one being to 
investigate how PCA is affected by augmented data sets, and the second being whether a 
standard ICA technique (Infomax) can be used when augmenting data sets or if it is 
necessary to utilize an ICA technique proposed in [Meinicke et al., 2001], which allows 
for non-parametric source models. These, supposedly, give added flexibility and are 
important for capturing features with multimodal distributions, which can occur in 
augmented data techniques or are inherent for the measured distributions themselves 
[Kwak and Choi 2003]. 

In the following section, the testing method for this investigation is described. In 
section 2.10.3, it will be shown that augmenting data sets can further improve the 
discriminative features of the PCA procedure. The results will show that the augmented 
PCA (APCA) procedure generally gives just as good results as the Fischer’s linear 
discriminant (FD). 
 

2.10.1 The General Concept 

 
Consider a data set X consisting of two distinct classes in d-dimensions, where each data 
point is known to belong to either C1 or C2. The class label set g is a binary vector with 
the same length as X, which indicate the class membership of the corresponding data 
points. When speaking about augmented data sets it is simply intended that X is 
augmented with g, giving 
 

 



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X
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         2.48 

 

The augmented data set X
~

 now has the target values incorporated into the data set and 
this results in a d + 1 dimensional data set. The idea is now that unsupervised learning 
techniques, i.e. PCA or ICA, in some way become supervised due to the fact that the 
target values are taken into account, even though the information is embedded directly 
into the data set itself. 
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2.10.2 Augmented PCA 

 
Having augmented the data set as described in the previous section, one can now perform 
the standard PCA on the augmented data set. As mentioned, this can be done by 

estimating the covariance matrix of the augmented data 
X
~Σ , which results in a d + 1 × d 

+ 1 matrix. Performing SVD on the 
X
~Σ  results in  

 

  
ΤΛ=Σ UU

X
~        2.49 

 
where U correspond to the d + 1 eigenvectors. 

Performing PCA on X
~

 yields d + 1 eigenvectors of length d + 1 ( iu ), and 

considering that X is to be projected into the original data space, the last d + 1 coefficient 
in each eigenvector, corresponding to the class label space, is removed and the d + 1 

eigenvectors ( íu~ ) are now of length d. After this deletion, vectors in íu~  are no longer of 

unit length, thus the vectors in íu~  have to be rescaled, giving 
2

´ ~/~
iii uuu = . This gives, 

 

  XUZ ⋅= T´´         2.50 
 

It was observed through extensive testing of this method, that the eigenvector 

corresponding to the smallest eigenvalue in the X
~

 space or the d + 1 eigenvector 
generally gave the best discrimination, when the class label was in an interval of ]0; gmax]. 
Thus, the optimal discriminant projection is given by; 
 

  X⋅= ++
T´

1

´

1 dd uz         2.51 

 
and for a specific value of the class label. 

It was also observed that when varying the class label value the accuracy would 
vary and at some value a maximal accuracy was achieved, which can be observed in 
Figure 9 and Figure 10. When compared to the Fisher’s linear discriminant (FD) and 
other linear discriminant methods (linear discriminant and conditional distributions), it 
was seen that the APCA method gave results corresponding to these methods. These 
statements will be supported by the results of the experiments which follow in the next 
section. 
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2.10.3 Investigations and Observations of APCA 

 
In the following investigations, a data set consisting of two Gaussian distributed classes, 
were used. Two main distributions were used; 
 

1. Distribution 1: a distribution consisting of two different means (� 1 ≠  � 2), but 
with equal covariance matrices (Σ 1 = Σ 2), and  

2. Distribution 2: a distribution consisting of two different means (� 1 ≠  � 2), and 
covariance matrices (Σ 1 ≠  Σ 2),. 

 
A 2 dimensional schematic illustration of the general form of the distributions are shown 
in Figure 7. 
 

x
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x
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1
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Figure 7. A schematic illustration of a two dimensional two class, C1 and C2 respectfully, Gaussian 

distribution with their corresponding parameters. This illustration corresponds to equal covariance 

matrices. 

 
For the preliminary investigations, a two class problem consisting of a simple two 

dimensional Gaussian distribution with non-equal fixed means and equal covariance 
matrices were used. This made it less complex and therefore easier to achieve analyzable 
results. Though, after examination of the preliminary results, the data sets were extended 
to N dimensional 2 class Gaussian distributions with randomly generated means and 
covariance matrices. This was introduced to test the flexibility and robustness of the 
technique, particularly for higher dimensions and for as many as possible different 
Gaussian distributions. 

In the preliminary experiments the effect of varying the size of the class label was 

investigated by testing the discriminatory value of the resulting projections in ´U  in 
equation 2.50. These where compared to the discriminatory value of PCA and FD. For 
the class label vector g one class, usually the class with the most points, is assigned the 
label 0, while the other class was assigned a number lying in the interval [1e-5; 10]. In 
Figure 8, the 2 + 1 dimensional case is schematically illustrated. In can be seen that the 
distribution, which is assigned the non-zero class label, is moved parallel to the class 
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label axis when the value is changed and therefore the structure of the data is changed 
resulting in a change in the principal components, as described in the latter section.  
 

 

Figure 8. A schematic illustration of two two dimensional Gaussian classes in 2 + 1 dimensions when 

varying the class label g of the APCA. As g is varied the two dimensional Gaussian class C2 is moved 
parallel to the class label axis.  

 
 The cross-validation procedure used in the following resembles the hold out 
method described in section 2.5.1. First a training set is created, which is used to find all 
projections of the PCA, APCA and FD, and, their optimal decision boundaries. With this 
found, a large test set is created from the same distribution as the training set, which then 
is used to assess the generality of the found projections and decision boundaries. In this 
project the accuracy is used to compare the results of the various experimental results due 
to the fact that the numbers of samples in each class were kept equal, i.e. N1 = N2. Figure 
9 and Figure 10, shows the results of the initial experiment for distribution 1 and 
distribution 2.  
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Figure 9. The results showing the discriminatory value expressed in accuracy of the APCA vectors ui, 

these are also compared to the best performing PCA eigenvector and Fisher’s linear discriminant. 

The black line corresponds to the AC of the 
´

1+du  vector and clearly this vector seems to give larger 

AC for smaller class labels. Distribution 1 is used in the test. 
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Figure 10. The results showing the discriminatory value expressed in accuracy of the APCA vectors 
ui, these are also compared to the best performing PCA eigenvector and Fisher’s linear discriminant. 

The black line corresponds to the AC of the 
´

1+du  vector and clearly this vector seems to give larger 

AC for smaller class labels. Distribution 2 is used in the test. 

 
These are very fascinating results and although nothing general can be said about 

this procedure yet, it can be seen that the discriminatory value of the PCA is improved by 
augmenting the data, the class label value has a clear effect, and it also seems that the 
discrimination is comparable to FD, which could indicate that this procedures 
discriminatory value is equivalent to linear discriminant functions. Furthermore, as 

mentioned above, it can be seen that T´

1+du  in both cases give the best overall results, 

though it was observed that in a few cases, for reasons yet unknown, other eigenvectors 
gave better results. 
 A Hotelling’s T2 test was performed on difference values, i.e. accuracy difference 
between APCA and FD, for 100 trails of distribution 1 and distribution 2 for randomly 
generated distributions. The results can be seen in appendix A and show that for 
distribution 1, APCA and FD give very similar results, whereas for distribution 2 the 
results differ in favor of APCA, which generally give slightly better results than FD.   
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 To be able to talk more generally about these observed phenomena the initial tests 
were extended into higher dimensions with randomly generated parameters, i.e. mean and 
covariance. The results of these tests are shown in appendix C1 and C2 for distribution 1 
and 2, respectively. Figure 11, Figure 12 and Figure 13 are a summary of these tests and 
will be described in the following. 
 
 

 

Figure 11 shows the discriminatory value of APCA, linear discriminant function (LD), Fisher’s linear 
discriminant (FD) and conditional distributions (P(g|x)) for various dimensions and for both 

distributions. It is clear from the figure that the APCA performs just as well as the other linear 

methods. 

 
Figure 11 shows a comparison of the discriminatory values of the APCA method with 
some standard linear discriminant functions, i.e. linear discriminant analysis, Fisher’s 
linear discriminant and conditional distributions. It can be seen that the APCA method 
lies extremely close to the other methods and this supports the fact that the APCA 
method is equivalent to a linear discriminant even for higher dimensions. 
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Figure 12. A plot of the comparison of the APCA method and the standard PCA method for both 
distributions. It is clear to see that the APCA generally performs better than the original PCA 

method, and in some instances up to 25% better, e.g. for distribution 2 and dimension 19. 

 
The augmented data clearly aids the standard PCA in finding more optimal 

transformations of the data. Generally APCA out performs the standard PCA with a 
considerable accuracy margin. 
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Figure 13. The class label values giving the best discriminatory value for the two distributions. It can 

be seen that the mean class label value for the first distribution is slightly lower than that of the 
second distribution. This could support the fact that for data with the same covariance matrices, the 

optimal class labels tends to be generally smaller than those for non alike covariance matrices. 

 
As observed in the preliminary two dimensional experiments and again in Figure 

13, the optimal class label seems to be larger for distributions with non alike covariance 
matrices. To sum up, it was observed through the above experiments that;  

1. the discriminatory value of the standard PCA was increased by using augmented 
data sets, 

2. the discriminatory value of the APCA is comparable with linear discriminant 
functions, even for higher dimensions, and that 

3. ´

1+du  generally seems to give the best results, though it was observed that for some 

data sets with little separation between classes, that the “first eigenvector”, 

corresponding to ´
1u , out performed ´

1+du , 

4. the value of the class label has influence on the discriminatory value of the 
vectors in U, furthermore, the optimal class labels for distribution 1 are slightly 
lower than those for distribution 2. 
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Figure 14. A flow diagram of the training of the APCA. The training procedure results in n vectors 
and their corresponding decision boundaries to be tested making this a computationally inefficient 

method. In this thesis ε = 1e-5. 

 
Finally, it should be said that the APCA method is computationally ineffective due to the 
fact that in the training process one needs to run through an interval [ε ; gmax] of n points, 
resulting in n vectors that need to be tested, which is just as inefficient. An illustration of 
the training procedure is shown in Figure 14. 
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2.10.4 Augmented ICA 

 
The augmented ICA (AICA) method is somewhat equivalent to APCA, although instead 
of performing PCA on the augmented data, ICA is performed. Due to the fact of the 
specific nature of ICA, there is no specific vector in the mixing matrix A that gives the 
best discrimination as was observed with APCA. Furthermore, a change in the value of 
the class label had no apparent effect on the discrimination. 

The testing of AICA is not as extensive as for APCA and this analysis leaves 
many questions uncovered. This section tests whether augmenting a data set with class 
information also affects the discriminatory value of ICA and to observe the directions 
found by ICA and AICA. In the following two experiments with different data types are 
performed, where; 

1. Data type 1 has the same distribution as the first experiment in the previous 
section, i.e. a simple 2 class Gaussian distribution with randomly generated means 
and covariance matrices, and 

2. Data type 2 is a distribution consisting of 2 dimensional 2 class super-Gaussian 
non-orthogonal data with zero mean, as illustrated in Figure 15. 

 

 

Figure 15. A schematic illustration of a 2 dimensional 2 class super Gaussian non-orthogonal data. 

 
The reason for using the latter data type is due to the fact that the ICA assumes data is 
non-Gaussian and non-orthogonal (independent), and that data of this type is typically 
analyzed by ICA. 

As mentioned, initial tests showed that the size of the class label had no effect on 
the discriminatory value, thus throughout the following tests the class label is kept 
constant to one and zero. Figure 16 shows the result of 100 trials of training and testing 
the AICA and ICA on different 2 class Gaussian distributions. It can be seen that the 
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discriminatory value of AICA is not as greatly improved by augmenting data as was seen 
with the APCA compared to PCA, though in some cases a considerable improvement is 
seen. 

 

 

Figure 16. The results of training and testing 100 random 2 dimensional 2 class Gaussian 
distributions. It is clear that AICA in some cases performs up to 10-20% better than the standard 

ICA, though the mean difference over all 100 trials shows that AICA only gives a general increase of 

around 1.3%. 

 
A Hotelling’s T

2 test performed on difference values, i.e. accuracy difference 
between AICA and ICA, for 100 trails of data type 1, which show that the results favor 
AICA, which generally performed slightly better than the ICA. This can be seen in 
appendix B. 
 

2.10.5 Investigations and Observations of AICA 

 
In the following experiment a 2 class 2 dimensional super-Gaussian distribution 

was created and the directions found in A for ICA and AICA were examined and 
compared. Figure 17 shows the directions found by ICA in a single run. The two colored 
lines represent the directions of the vectors in the resulting 2 × 2 mixing matrix. 
Equivalent to APCA, the AICA resulting mixing matrix is a 3 × 3 matrix where the 
coefficients corresponding to the class label dimension are deleted, resulting in 3 two 
dimensional directions. These are displayed in Figure 18. It was observed that the d + 1 
direction was different for each time AICA was run and in some instances seemed to 
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have random direction. In Figure 18, AICA was run 750 times for the same data set 
(shown in Figure 17) and for the two first directions (AIC1, AIC2) the directions are 
consistent with the data directions. 

 

Figure 17. The blue and green points are 2 distinct super-Gaussian distributions in a data set. The 

directions of A (the mixing matrix) are shown as red and yellow lines superimposed on the 

distributions. The first independent component (IC1) is in the direction of the largest tail of the green 
distribution, and the second independent component (IC2) direction is not aligned with any of the 

other main directions. 
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Figure 18. A scaled version of the 2 distributions in Figure 7 is seen with the augmented independent 

component (AIC) directions. Compared to Figure 7, where the standard ICA was used, the directions 

seem better tuned to the main tails of the two distributions. This is a very interesting result and 
supports the fact that the augmented data sets do have a positive effect on ICA. The pink dots that 

form a circle are the directions of AIC3, and in contrast to the other two directions, AIC3 does not 

seem to have any fixed direction.  

 
To sum up, it was observed through the above experiments that; 

1. although for some instances, the overall improvement using augmented data sets 
in combination with ICA was not as significant as for APCA using data type 1, 

2. when using data type 2, it was observed that the directions of the mixing matrix A 
are affected positively by the augmented data set. 
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2.11 Conclusion  

 
In this section pattern recognition was introduced, specifically for classification of two 
class problems; however, all of the procedures can be extended to an arbitrary number of 
class problems. There was given a brief description of Bayes’ theorem, inference and 
decision making techniques, and generalization. Furthermore, the standard PCA, ICA 
(infomax), and FD were presented. 
 The concept of augmented data sets was presented and several results of the 
preliminary heuristic investiigations using this technique were also presented. Using 
augmented data sets in combination with PCA yielded very interesting results. The most 
interesting being, that the discriminatory value of PCA can be increased to the level of 
linear discriminant functions by using this technique, without estimating any statistical 
parameters, i.e. mean and variance-covariance. Although, it should be said that the 
implementation of this procedure is computational inefficient compared to the other 
linear discriminant techniques presented in this chapter. It is clear that further 
investigation of this method is necessary to give a lucid and precise explanation of what 
is going on. 
 Augmented data sets in combination with ICA were also examined, though the 
testing, due to limited time, was not as extensive as for APCA. The augmented data sets 
seem to have little effect, although the accuracy percentage in some case was 
significantly larger for AICA, and that the directions in A, as seen in Figure 18, seem to 
correlate better with the data set. As for APCA, the method seems promising, though 
further investigation is needed. The minimal effect of the augmented data sets could be 
due to the fact highlighted in section 2.10 and mentioned in [Meinicke et al., 2001], i.e. 
the need for more flexible source models to capture the bimodal nature of the class label 
vector. 
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Chapter 3  
 
 
 
 
 
 
 
 

3 Auditory Perception 
 
In this chapter several aspects of auditory perception is presented. The following aspects 
will help to understand how to predict and possibly enhance the understandability of a 
sonification. This chapter is a conglomerate of chapters on the human ear and information 
processing in the auditory system taken from [Zwicker and Fastl, 1999], [Poulsen 2003], 
[Hartmann 2000], [Hermann 2002], and [Moore 2003].  
 The chapter begins with a brief introduction to the human ear and how it works. 
Thereafter, aspects of psychoacoustics are presented, which contributes important 
knowledge about the functional mapping from stimuli to sensations. Furthermore, sound 
processing such as sound segregation into different auditory streams are topics of 
auditory scene analysis. 
 

3.1 The Human Ear  

 
The ear can be divided into four main parts: the outer ear, the middle ear, the inner ear 
and the nerve connection to the brain. The first three parts are the peripheral parts of the 
auditory system, and are shown in Figure 19. The sound will reach the outer ear, progress 
through the outer ear canal, reach the tympanic membrane (the eardrum), transmit the 
movements to the bones in the middle ear, and further transmit the movements to the 
fluid in the inner ear. The fluid movements will be transformed to nerve impulses in the 
inner ear and the impulses are transmitted to the brain through the auditory nerve. 
 The outer ear, composed of the pinna and the auditory canal, influence the sound 
pressure level in front of the eardrum, though the shoulders as well as the head have also 
shown to play a crucial part in this. Such signal distortions are used by the auditory 
system to localize the sound source [Moore 2003]. The auditory system uses differences 
in timing and level, and spectral profiles between sound signals arriving at the left and 
right ear to conclude from this information the location of the sound source. 
 The sound affecting the outer ear consists of oscillations of air particles, whereas 
the inner ear contains fluids that surround the sensory cells. In order to excite, these cells, 
it is necessary to produce oscillations in the fluids. Thus, the major function of the middle 
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ear is to ensure the efficient transfer of sound from the air to vibrations in the fluids in the 
inner ear. As the impedance is much higher in fluid than in air, it is necessary to match 
the impedance. The impedance matching is achieved by; the difference in the dimensions 
of the tympanic membrane and that of the oval window, and the three small bones, the 
malleus, incus and stapes, amplify the vibration due to the leverage effect. Transmission 
of sound through the middle ear is most efficient at middle frequencies (500 – 4000 Hz) 
[Moore 2003]. 
 The cochlea (inner ear) is a crucial part of the ear and provides a key to many 
aspects of auditory perception, e.g. masking, loudness, and pitch perception. The cochlea 
is shaped like a snail and is embedded in the extremely hard temporal bone. The cochlea 
is filled with lymph and is closely connected to the balance organ that contains the three 
semicircular canals that controls our sense of balance. There are approximately 2.5 turns 
in the snail shell, and the total length from the base (basis) to the top (apex) is about 32 
mm. As mentioned, the function of the cochlea is to convert the vibrations into nerve 
impulses in the auditory nerve. Vibrations arriving at the oval window lead to fluid waves 
that travel from the oval window to the apical end. These waves lead to vibrations of the 
Reissner membrane resulting in a relative motion of the organ of Corti with its sensory 
cells. The function of the organ of Corti, which is located on the basilar membrane, is the 
transformation of the mechanical oscillations in the inner ear, into a signal that can be 
processed by the nervous system. The most important sensory cells are the inner and 
outer hairs cells, whose electrical potential changes depending on their deviation from the 
equilibrium position. The potential changes are passed on to the nerve fibers and may at 
this point cause neuronal pulses. 
 

 

Figure 19. An illustration of the structure of the peripheral auditory system showing the outer, 

middle and inner ear. This figure is taken from [Moore 2003]. 

 
 The function of the basilar membrane is very important for the understanding of 
the function of the ear. The basilar acts like a frequency decomposer. When the ear is 
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exposed to a pure tone a traveling wave propagates along the basilar membrane, and the 
movement of the basilar membrane will show a certain pattern and the pattern is 
connected to a certain position on the basilar membrane. If the frequency is changed, the 
general pattern will not change much, but the position of the pattern will move along the 
basilar membrane. The basic form of the wave is illustrated in Figure 20, which shows 
the instantaneous displacement of the basilar membrane (derived from a cochlear model) 
for two successive instants in time in response to a 200-Hz sinusoid. As a consequence, 
hair cells along the basilar membrane respond selectively to specific frequencies. The 
frequency that gives maximum response at a particular point on the basilar membrane is 
known as the characteristic frequency.  

 
 

 

Figure 20. The instantaneous displacement of the basilar membrane at two successive instants in 
time. The pattern moves from left to right, building up gradually with distance, and decaying rapidly 

beyond the point of maximal displacement. The dotted line represents the envelope of the waveform. 

This figure is taken from [Moore 2003]. 

 
As stated, the hair cells along the basilar membrane have excitation characteristics 

that are highly frequency selective. This selectivity, or analytical ability, can be seen in 
tuning curves of primary afferent fibers in the auditory nerve that are driven by the hair 
cells. A tuning curve is a threshold-of-hearing curve for a single neuron in the auditory 
nerve, using a sine-tone stimulus. The tuning seen in the neurons resembles non linear 
filters, which for low pressure levels are very selective, though for higher exposure levels 
the bandwidth broadens and where the characteristic frequency slightly shifts. This 
results in a nonlinear perception of sound pressure level, which shall be discussed in the 
next section. The tuning curve of a hair cell for two levels of stimuli is shown in Figure 
21.  
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Figure 21. Tuning curve of a hair cell. It shows the sound pressure level of a tone necessary to 

produce a certain DC receptor potential (circles 2mV, dots 10mV) as a function of frequency. The 

10mV is shifted downwards by 17dB so that the two curves are superimposed at low frequencies. 

This figure is taken from [Zwicker and Fastl 1999]. 

 

3.2 Psychoacoustics 

 
Psychoacoustics is a subset of psychophysics, which is the study of the relationship 
between the magnitude of sensation and the magnitude of a stimulus as measured in 
conventional physical units [Hartmann 2000]. The only relevant measuring instrument in 
this connection is a human, i.e. a test subject. Psychoacoustics is about human perception 
of sound and assesses the relation between stimuli and the hearing sensations they cause. 
The stimuli are described by physical properties of the sound, e.g. sound pressure, 
frequency, and location, and can be measured and controlled exactly. Corresponding 
subjective sensations, such as loudness, pitch, lateralization or localization, cannot be 
measured as easily as the physical counterpart because they depend on the listener. One 
goal in psychoacoustics, through psychophysical experiments, is to create sensation 
magnitudes and to determine their functional dependencies on the stimuli. This is made 
difficult by the fact that several stimuli may influence a single hearing sensation. For 
instance, although perceived pitch depends mainly on the frequency, sound pressure level 
also has a small effect on pitch perception. Perceptual interactions or coupled perceptual 
parameters are sometimes referred to as the lack of orthogonality [Kramer 1994].  
 Sensations are caused by a stimulus if it exceeds a perceptual threshold. Typical 
for psychoacoustic tasks are to determine the absolute threshold, which is the stimulus 
magnitude for which the corresponding sensation is audible for 50% of the listeners and 
the difference threshold; this is the stimulus increment by which 50% of the listeners 
have a difference in sensation.  
 In the following subsections, some psychoacoustic findings of the most important 
hearing sensations or perceptual parameters are presented. The hearing sensations, which 
will be presented, are loudness, pitch, and timbre. In [Zwicker and Fastl 1999], other 
sensations such as roughness, sharpness and fluctuation strength are described, though 
these are – to the author – a subset of timbre due to its ASA definition, see section 3.2.3. 
Finally, the a short introduction to the basic concepts of auditory organization, called 
auditory scene analysis, are presented. 
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3.2.1 Loudness 

 
The psychophysical sensation that corresponds to sound intensity of the stimulus is 
loudness. As explained earlier, the hair cells in the inner ear are excited when a 
perceivable sound is heard. The more the amplitude of an input sound increases the more 
hair cells are excited. The intensity of this excitation is perceived as loudness. Loudness 
is defined as that attribute of auditory sensation in terms of which sounds can be ordered 
on a scale extending from quiet to loud [Moore 2003]. The stimulus-sensation relation is 
constructed by results from measurements such as magnitude estimation or loudness 

comparisons. 
Loudness comparisons gave rise to the loudness level measure, which was created 

to characterize the loudness sensation of any sound. Loudness level of a sound is the 
sound pressure level of a 1 kHz tone in a plane wave and frontal incident that is as loud 
as the sound; its unit is phon [Zwicker and Fastl 1999]. Best known are the loudness 
levels for different frequencies of pure tones. Lines which connect points of equal 
loudness in the hearing area are often called equal-loudness contours or isophones, which 
are presented in Figure 23. Furthermore the absolute threshold, also known as the 
threshold in quiet, can bee seen to have the value 3 phon, corresponding to 1 kHz tone at 
3 dB as being the lowest perceptible loudness level. It is also clear that the perception of 
loudness depends strongly on the frequency. The line at the top shows the limit of 
damage risk. 

The phon scale does not provide information about the quantative relations 
between the loudness of two tones. Therefore the sone scale is used, which bases on 
experiments where loudness ratios, such as doubling and halving, are adjusted by human 
subjects. The loudness of a pure 1 kHz tone of 40 dB is set to 1 sone. Sound with a 
loudness of 4 sone is thus perceived as four times as loud, also illustrated in Figure 23. 
This measure is used to estimate the loudness function normally given for the 1 kHz tone, 
which is illustrated in Figure 22. 

 

 

Figure 22. The measured loudness of a 1 kHz tone. The solid line shows the idealized loudness by 

Stevens and Davis and Zwicker and Fastl [Hartmann 1998].  This figure is taken from [Hartmann 

1998]. 
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Figure 23. Hearing area. Threshold in quiet, limit of damage risk and equal-loudness contours are 

shown. Typical regions for music and speech are outlined. This figure is taken from [Hermann 2002]. 

 
The above magnitudes are defined for pure tones occurring at one frequency at a 

time and finding a definition of loudness for pure tones appearing simultaneously and for 
complex tones is much more difficult. The spectral distribution of a sound can either be 
narrow (e.g. a sinusoidal tone) or broad (e.g. white noise). A comparison between the 
loudness level of a pure tone and the level of white noise makes it clear that white noise 
is perceived much louder than a 1 kHz tone at the same sound pressure level [Zwicker 
and Fastl 1999]. An important effect when dealing with simultaneous presented stimuli – 
as in the real world – is the masking effect. 

When two pure tones with different frequencies or a pure tone and a broad band 
signal are presented simultaneously the masking effect can be observed. The masking 
effect can simplest be explained by an everyday situation: imagine having a conversation 
at a reasonable level by a road, when the traffic becomes heavier conversation becomes 
unclear and the conversion level is raised. The reason for raising the conversation level is 
due to the fact that the traffic noise masks your conversation, thus raising the level of the 
threshold in quiet, called the masked threshold. Masking occurs both spectrally and 
temporally. For a more precise and thorough presentation of masking please see [Zwicker 
and Fastl 1999], [Moore 2003].    
 When sound bursts are reduced in duration to less than about 200ms, their level 
must be raised to remain audible. This dependence on threshold in quiet and masked 
threshold on the sound duration corresponds to a temporal integration of the sound 
intensity within a time window of 200ms. This is why the effect is frequently called 
temporal integration or loudness integration [Zwicker and Fastl 1999]. The reason for 
mentioning this is due to the fact that many auditory display researchers [Barrass and 
Kramer 1999], [Hermann 2002] use this ability of the ear to detect very short bursts of 
sound as an advantage over the visual system. 
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3.2.2 Pitch 

 
Pitch is related to the repetition rate of the waveform of a sound; for a pure tone this 
corresponds to the frequency. In contrast to the perception of loudness, which is an 
intensity perception, pitch is a positional perception of the traveling waves on the basilar 
membrane. Assigning a pitch value to a sound is generally understood to mean specifying 
the frequency of a pure tone having the same subjective pitch as the sound [Moore 2003]. 
The property of pitch being a positional perception has consequences on the possible 
methods for measuring perceptional functions: positional perception functions can be 
either determined by the stimulus steps, or from the measurements of pitch ratio. 
 It has been found, that in the frequency range up to about 1 kHz, the perceived 
pitch is doubled with a doubling of the frequency. This gradually becomes less true for 
frequencies above 1 kHz as can be seen in Figure 24. The figure shows that an interval of 
one octave at low frequency is perceptually smaller than an interval of one octave at high 
frequency. Ratio pitch was assigned the unit mel as it is related to our sensations of 
melody [Zwicker and Fastl 1999], though their mel scale is slightly different, with 125 
mels set to equal to 125 Hz. 

The pitch of pure tones depends not only on frequency, but also on other 
parameters such as sound pressure level, although this dependence is small. The 
dependence of the pitch of pure tones on the level is displayed in Figure 25. Pitch shifts 
of pure tones can also occur if additional sounds that produce partial masking are 
presented.  
 

 

Figure 24. The heavy line is the mel scale from Stevens and Volkman (1940). The thinner line 

corresponds to pitch given by frequency in Hz, and the dashed line shows pitch proportional to 

octave number (the musical scale). This figure is taken from [Hartmann 2000]. 

 
Complex tones can be regarded as the sum of several pure tones. Although 

complex tones contain many pure tones, they do not usually produce many pitches, rather 
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one single or perhaps a prominent pitch; the fundamental frequency. The pitch strength of 
stimuli, describes the sensation perceiving a sound as having distinct or faint pitch. It can 
be stated that sounds with line spectra generally elicit relatively large pitch strength, 
whereas sounds with continuous spectra produce only small values of pitch strength 
[Zwicker and Fastl 1999]. 

 

 

Figure 25 Pitch shift as a function of sound pressure level. This figure is taken from [Zwicker and 

Fastl 1999]. 

 

3.2.3 Timbre 

 
Timbre is defined in ASA (American Standard Association) as that quality which 
distinguishes two sounds with the same pitch, loudness and duration – spatial position is 
sometimes also included in the definition. Timbre is generally assumed to be 
multidimensional, where some of the dimensions have to do with the spectral envelope, 
the amplitude envelope, etc. The difficulty of timbre identity research is often increased 
by the fact that many timbre parameters are more similar for different instrument sounds 
with the same pitch, than for sounds from the same instrument with different pitch. 
Nevertheless, human perception or cognition generally identifies the instrument correctly 
[Jensen 2001]. Timbre is related to sensations like brightness, roughness, harshness, 
sonority, hardness, sharpness, etc. Experimentally, timbre is approached by doing 
dissimilarity tests. Asking subjects to judge the dissimilarity of a number of sounds and 
analyzing the results is the essence of the dissimilarity tests. Statistical analysis is used on 
the dissimilarity scores, and the resulting dimensions are analyzed to find the relevant 
timbre qualities. In [Jensen 2001], Jensen examines the results from several previous 
researchers on determination of the dimensions of timbre. He concludes that no clear 
consensus has emerged, though the most common dimensions seem to be spectral 
envelope associated with brightness and the resonances of the sounds, 
temporal/amplitude envelope associated with attack and delay time of the sounds, and 
irregularities, which are acoustic properties that cannot be uniquely associated with either 
of the two previous dimensions. The irregularities are divided into periodicity and non-
periodic noises. The noise on the amplitude and frequency envelope is, as defined by 
Jensen, shimmer and jitter, respectively. 

Timbre modeling consists in designing synthesis methods to generate sounds 
under perceptual constraints, reconstructing a given natural sound using algorithmic 
techniques. Due to the fact that both the spectral and the amplitude envelopes evolution 
over time play such an important role, many have approached timbre modeling with some 
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sort of time-frequency analysis method [Kronland-Martinet et al. 2002]. Timbre model 
synthesis techniques can therefore be realized by all types of synthesis techniques, though 
each technique having its advantages and disadvantages in fitting the perceptual 
parameters to the synthesis parameters. This is an extremely exciting field, though out of 
the scope of the project. 
 

3.2.4 Auditory Scene Analysis 

 
It has been suggested that it is useful to make a distinction between two concepts: source 
and stream [Bregmann 1990]. A source is some physical item which gives rise to 
acoustic pressure waves. An auditory stream, on the other hand, is the percept of a group 
of successive and/or simultaneous sound elements as a coherent whole, appearing to 
emanate from a single source. It is hardly ever the case that the sound reaching our ears 
comes from a single source, though generally we appear to have little difficulty in 
hearing out individual sources, e.g. listening to the melody of one instrument in a piece of 
music or a person talking at a cocktail party. The process of assigning multiple sources 
their own corresponding distinct streams is often called perceptual grouping, parsing or 
auditory scene analysis. The process of separating the elements arising from two 
different sources is sometimes called audio stream segregation [Moore 2003]. In short it 
can be said that, auditory scene analysis aims at understanding the process of decoding 
the auditory scene into separate auditory streams. 
 It has been suggested that the grouping of auditory streams depends on the focus 
of attention. In [Hermann 2002] a distinction is made between analytic and synthetic 
listening. Analytical perception aims at focusing on the maximal information of one 
stream, e.g. following the voice of one instrument in a band. Synthetic perception (also 
known as holistic perception) aims at perceiving the auditory scene as a whole, e.g. 
following the piece of music instead of one instrument alone.  
  Cues such as fundamental frequency, onset, change detection, correlated changes 
in amplitude or frequency (e.g. rhythm), and sound location are important in assigning 
sound components to their appropriate sources. Gestalt psychology, a theory of 
psychology that emphasizes the importance of configurational properties, identifies 
features that promote the binding of signal parts together. Gestalt principles like 
similarity, good continuation, common fate, disjoint allocation, and closure have been 
investigated mainly for the purpose of vision research, though these principles can also be 
carried over to the auditory domain [Moore 2003]. The most important gestalt principles 
in the auditory domain are: 

• Similarity. Components are perceived as related if they share the same attributes, 
usually implying closeness of timbre, pitch, loudness, or subjective location. 

• Good continuation. This principle exploits a physical property of sound sources, 
that changes in frequency, intensity, location or spectrum tend to be smooth and 
continuous, rather than suddenly. Hence a smooth change in any aspects indicates 
a change within a single source, whereas an abrupt change indicates that a new 
source has been activated. 
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• Common fate. If two or more components in a complex sound undergo the same 
kinds of changes at the same time, then they are grouped and perceived as part of 
the same source.  

• Disjoint allocation. This principle, also known as belongingness, is that a single 
component in a sound can only be assigned to one source at a time. In other 
words, once a component has been used in the formation of one stream, it cannot 
be used in the formation of a second stream.  

• Closure. Incomplete forms tend to be completed. The perception of virtual pitch 
is an example: the pitch of the fundamental frequency is perceived in a mixture of 
overtones even if the fundamental frequency does not exist within the spectrum.  

 
For an in-depth knowledge on these topics please see [Bregmann 1990].  
 

3.3 Conclusion 

 
In this chapter a brief introduction of the human ear was given, together with a 
presentation of psychoacoustics and some of the most prominent hearing sensations. 
Finally, a short introduction to the area of auditory scene analysis was given. 
 As will be made clear later on in the thesis, the understanding of the limits, the 
non linearities and the perceptual grouping of the auditory system will aid the design of 
auditory displays. Though, some preliminary conclusions can be made if one has in mind 
of mapping data to the above mentioned hearing sensations. 
 The linear mapping of data to frequency or to sound pressure level are not 
recommended due to the fact that the auditory system perceives these, more or less, 
logarithmically. Although, no clear consensus has emerged on the dimensions of timbre, 
amplitude and spectral envelope have been found to be amongst the most prominent. 
Furthermore, perceptual parameter interactions occur between all the presented 
sensations and do so in a non linear fashion (lack of orthogonality) mirroring the non 
linearity of the auditory system. This could pose a problem and result in a blurring of 
information when this information is presented through the perceptual parameters. This 
will be made discussed further in the next chapter.  
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Chapter 4 
 
 
 
 
 
 
 
 

4 Sonification 
 
This chapter will give an introduction to the field of sonification. In the following, the 
most accepted definitions will be presented and briefly discussed, subsequently; a 
presentation of the broad field of research involved in the process of sonification is 
reviewed to give an idea of the interdisciplinary nature of this area. A brief history of the 
field is presented to give an idea of how sound has been used to convey information in 
the past and which communities at this moment are active in the research. This leads to a 
more in-depth, though introductory, section that lists the already present application 
fields of sonification.  
 The most accepted sonification techniques are presented and discussed to give an 
idea of the possible methods of realizing sonifications and how to use the different 
realization methods most effectively. Finally, some issues in designing sonifications are 
presented. The main focus in this section is on using perceptual knowledge, 
considerations of the data, knowledge of the task at hand, and the evaluating the usability 
when using sonifications. 
  

4.1 Definition  

 
The most accepted definition is given [Kramer et al., 1999] states that, “Sonification is 
defined as the use of non-speech audio to convey information.” More specifically 
sonification is defined as, “the transformation of data relations into perceived relations in 
an acoustic signal for the purposes of facilitating communication or interpretation.” 
Sonification is also referred to as auditory display.   
 The first part of the definition restricts sonification to the use of non-speech sound 
to discriminate it from speech interfaces. However, speech can provide explanations in 
auditory displays without changing the media, and furthermore, data-driven use of 
speech-like sounds should also be called sonifications [Hermann 2002]. The second, and 
more general definition, emphasizes the purpose of sonification: the communication or 
interpretation of data in any given domain of study.   
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 In [Hermann 2002], Hermann summarizes the requirements for a sound to be 
called a sonification as: 

• the sound is synthesized depending upon the data of the domain under study, and 

• the intention for generating the sound is to learn something about the data by 
listening to it. The sound is only regarded as the medium of communication. 

 

4.2 Research Field of Sonification 

 
In most introductions to sonification it is stressed that the research field is very 
interdisciplinary. Several research disciplines contribute to the implementation and 
understanding of the involved processes. Figure 26 shows a typical information flow in a 
sonification system.  
For the development of a sonification system, it must first be understood what data are 
available and what the measurements mean. In the case of sonifying high-dimensional 
data, statistics and data mining, in cooperation with domain expertise, contribute 
techniques for an intelligent data preprocessing, e.g. for feature extraction and modeling. 
The discipline of human computer interaction (HCI) is concerned with many aspects of 
sonification systems. HCI topics include design guidelines for tools, human information 
processing, ergonomics, system design and usability. HCI contributes valuable insights 
into how such topics may be analyzed and evaluated. Computer science contributes to the 
realization of a sonification system in different aspects: software engineering copes with 
how to program the interface and how to implement the rendering of the sonifications 
from the data, signal processing provides techniques to manipulate sound signals. The 
field of acoustics and physics are an important part in sound generation. Examining the 
physics of sound generating processes can be inspiring for the selection of sound 
synthesis techniques to represent data, e.g. physical modeling synthesis. The 
transformation from the digital representation of a sonification to sound waves in air is 
preformed by soundcards or synthesizers, amplifiers and, loudspeakers or headphones. 
Depending on the needs, solutions from a mono loudspeaker system to complex multi-
speaker arrays or binaural implementations for high-resolution spatialization of the sound 
are used. Sound engineering is concerned with the technical realization and the sound 
signal changes due to reflections in the listening room. The disciplines of physiology and 
neurobiology are concerned with the processing of the sound signal after it reaches the 
ear (biological perspectives of signal processing). Psychology, psychoacoustics and 
auditory perception are concerned with higher-level perceptual processing which take 
place in the auditory brain. Guidelines like the auditory scene analysis, briefly described 
in chapter 3 section 3.2.3, provide guidelines for the usage of sound in sonifications. 
Musicology contributes to understanding different aspects of sound: it provides a 
framework to organize acoustic material concerning its rhythm, measure, harmony and it 
delivers tools for documentation (e.g. a score) and analysis of musical pieces. Finally 
cognition focuses on various aspects of the listener like acoustic memory, processing 
speed for auditory signals and the coupling of sound and emotional states.  
 In [Kramer et al. 1999], Kramer divides all of these areas into three main 
sonification components; perception, research and development tools (i.e. sound 
hardware and software), and sonification design and application. 
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Figure 26. A Schematic illustration of the information flow in a typical auditory display system. 

Related research disciplines are indicated on the right side. This figure is redrawn from [Hermann 

2002]. 

 

4.3 A Brief History of Sonification 

 
 Even though sonification is a somewhat young discipline, there are plenty 
examples throughout history of sound being used to convey information. Some examples 
of these are: sonar, Morse code, the telephone bell, alarms or sirens, pulsoximeter, Geiger 
counter, auditory thermometer, and metal detectors [Hermann 2002], [Kramer et al. 
1999], [Barrass and Kramer 1999]. Although this list is not extensive, it shows that 
humans frequently use sound to convey information and understand the world around 
them, and most of the times doing this effortlessly. In many domains audition is used to 
gain insight to a system. Car mechanics listen to the sound of an automobile engine in 
order to draw conclusions about causes of malfunction. Staying in the same groove, 
physicians apply their stethoscope to diagnose disease from auscultation (medical 
listening) to sounds of lungs, the heart and other parts of the body. These applications 
show that humans are very capable of learning to interpret sounds and to use acoustic 
clues.  
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The first recognized efforts in sonification were made in 1954 by Pollack and 
Ficks, who investigated the usage of abstract auditory variables (i.e. perceptual 
parameters) for the presentation of quantative information. Their display consisted of 
alternating tone and noise bursts, using, amongst others, attributes like loudness, pitch, 
relative duration, total duration, and stereo location. An important contribution in 
integrating audio signals with general computer interfaces was Gaver’s SonicFinder in 
1985 for the Apple Macintosh. In [Kramer 1994] there is an extensive review of the early 
research results in the field of auditory display and sonification. 

In 1992, the International Community of Auditory Display (ICAD) was 
established, and as a by-product of this meeting, the book on auditory display [Kramer 
1994] was published, which is until now an important and much cited book. Since the 
founding of ICAD, auditory display research has grown steadily. However, due to the 
fact that sonification is interdisciplinary in nature, ICAD is by far the only community 
concerned with auditory displays, and communities concerned with perception, 
psychology, visualization, computer music, HCI, multi-media systems, electrical 
engineering, and acoustics are also a source of inspiration for related publications. For 
this reason, it can be time consuming and problematic to find relevant information in the 
area of sonification. 
 

4.4 Application Fields 

 
Auditory displays find applications in very different contexts. Besides their utility to 
replace visual displays where visual displays are not possible (blind people) or 
unavailable (radio programs), they offer an additional information channel to extend 
visual displays. The main application fields can be listed as: 

• Alarm Systems. Alarms are the oldest application of auditory display and are 
associated with an urgent situation and alarm sounds are designed to stand out in 
the main acoustic environment. They usually have a strong effect of drawing the 
listener’s attention and eyes towards them, due to the fact that we cannot ignore 
them. More elaborate forms of alarms, which also represent data, are applied in 
airplane cockpits or during surgeries (e.g. pulsoximeter). 

• Auditory display for visually impaired people. Auditory display may provide 
location-based information, be the means for inspecting visual scenery, or to 
convey information about the structure or layout of a document (e.g. while 
browsing websites on the internet) as non-verbal auditory streams.  

• Browsing Data. Any quick browsing of information can be supported by 
sonification, e.g. traffic data, log files, virtual data spaces of sounds or searching 
in long-term EEGs. Since auditory perception offers a high temporal resolution, 
i.e. small detection times, data can be presented temporally very compressed. 

• Human-computer interaction. Sonification may be used to support the 
interaction with devices/computers, e.g. mobile phones. Many operating systems 
use sound to portray information about actions, like a deletion sound when 
dragging a symbol to the trashcan symbol. Auditory displays can for instance 
increase awareness by connecting the sound characteristics with data 
characteristics (e.g. size of the deleted file). 
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• Virtual reality. Interactions in the real-world cause sounds. In virtual reality 
systems, similar impacts between objects occur. Sonification can here increase the 
immersion effect, and communicate information about the interacting objects, 
thus augmenting the experience of the visual domain. 

• Process Monitoring. Sonifications are useful for monitoring processes because of 
two reasons: firstly auditory monitoring is eyes-free. The user may therefore 
perform other tasks at the same time. Secondly, the auditory system can give 
certain sounds a low priority of attention while maintaining awareness and 
drawing the listener’s attention if these sounds significantly changes. This is also 
known as backgrounding [Kramer 1994]. Listeners can familiarize themselves to 
a sound pattern (e.g. the engine sound of their own car) but remain attentive to 
even subtle changes. In addition, the ear is able to merge many acoustic streams to 
an auditory scenery. This makes the ear a suited instrument for process 
monitoring applications, from stock market, medical monitors, and power plants 
to complex robotics systems. 

• Online-Feedback. Situations where an auditory feedback is rendered to give a 
direct feedback on the action, either to analyze or track processes (real-time 
monitoring), but also to enable an interactive refinement of own actions (e.g. 
using sonification in rehabilitation, to retain coordinated muscle movements after 
a stroke). An examples of this form of sonification is given in [Williamson and 
Murray-Smith 2002]. 

• Exploratory Data Analysis. Exploratory data analysis is the application of 
listening to learn about an unknown system. Wherever data is available, 
sonification may just provide a new view on the data, and may be the factor for 
detecting the unexpected, for discovering new regularities or features in the data. 
The ear has been used for such analysis tasks in many scientific contexts, ranging 
from physics, neurophysiology, and medicine to geology. The high-developed 
skills of human listeners, e.g. in interpreting even very noisy sounds, or detecting 
spectral or rhythmical changes in sound make it a promising channel for this 
application. A successful example, which often is mentioned in this context, is the 
“Quantum Whistle” and the Voyager 2 problem around Saturn [Kramer et al. 
1999]. The physicists Davis and Packard attributed an important discovery, which 
they have called the “Quantum Whistle” to their use of a sonification technique. 
After months of unsuccessful study of visual oscilloscope traces for evidence of 
an oscillation predicted by quantum theory, Davis and Packard decided to listen to 
their experiment. The resulting sound was a faint whistling – the first evidence 
that these oscillations do actually occur. The second example was during the 
Voyager space mission where there was a problem with the spacecraft as it began 
its traversal of the rings of Saturn. The controllers were unable to pinpoint the 
problem using visual displays, which showed a lot of noise. When the data was 
played through a music synthesizer, a “machine gun” sound was heard during a 
critical period, leading to the discovery that the problem was caused by high-
speed collisions with electromagnetic charged micrometeoroids. 

• Educational applications. It has been suggested that using sonification to present 
information to students in primary and secondary schools can provide a more 
engaging learning experience [Kramer 1994]. Rhythm and music are used as a 



 58 

mnemonic (method of aiding memory) device for teaching young students 
concepts such as the alphabet. Likewise, it may be possible to harness the 
underlying components of this learning dynamic to assist students in grasping 
more sophisticated concepts, e.g. in calculus or statistics. Representing concepts 
and data through sound provides a means of capitalizing on strengths of 
individual learning styles, some of which may be more compatible with auditory 
representations than more traditional verbal and graphical representations. 

 

4.5 Sonification techniques 

 
In this section the existing techniques that map data into an acoustic signal are discussed. 
A technique for searching a stereo sound scene is presented and two categorization 
methods of the sonification techniques are presented. The main sonification techniques 
are: 

• Audification  

• Earcons [Blattner et al. 1989] 

• (Parameterized) Auditory Icons [Gaver 1994] 

• Parameter Mapping [Kramer 1994] 

• Model-based Sonification [Hermann and Ritter 1999], [Hermann 2002] 
 

In addition to the above mentioned techniques, there also is a branch of 
sonification that puts a particular focus on sonification systems where the human user is 
closely integrated into an interactive loop; this is referred to as interactive sonification. 
This form of sonification, can with varying degrees of ease, be integrated into the above 
listed techniques.    
 

4.5.1 Audification 

 
Audification is the most direct transformation of data values into sound: the sound 
samples (instantaneous sound pressure levels) are directly obtained from the data values. 
That means that ordered lists of numbers, e.g. seismic data are directly taken as PCM 
(Pulse Code Modulation) data for a sound. There are a couple of interesting 
transformations like re-sampling, time stretching, pitch scaling, dynamic compression, 
filtering, etc., which allow to adapt the resulting sound better to the preferred frequency 
range of the ear. There exist domains where audification is very suited, i.e. where the data 
itself stems from a physical process (e.g. waves propagating through material) [Barras 
and Kramer 1999]. The advantages of audification are: 

1. Ease of production. Any data set can easily be heard by playing them as a 
standard sound file; 

2. Compressed information. Using standard sampling rates can compress 24 hours 
of very low frequency data into few minutes of sonified data, thus having the 
potential to save time in the analysis stage. 
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The disadvantages of audification are: 
1. Large data sets are needed. The standard sampling rates, as mentioned above, 

require large data sets to produce a sound of analyzable duration; 
2. Limited control. There is only limited independent control over temporal and 

spectral organization. Using the transformations mentioned above require some 
understanding to manipulate the audification in a constructive way.  

 

4.5.2 Earcons 

 
Earcons were developed to provide feedback about activities in a GUI. They are 
constructed by combining a lexicon of simple sounds to build more complex meanings,  
similarly as words can be combined to form phrases. The lexicon may have elements that 
vary in rhythm, pitch, timbre, register, and dynamics. An example of this was presented 
in [Blattner et al. 1989]. Consider tone “A” with pitch 440 Hz is given the meaning of 
“file” and, tone “B” with pitch 600 Hz is given the meaning “deleted”. Then combining 
A and B in series produces a rising tone “AB” that means “file deleted”. The advantages 
of earcons are: 

1. Ease of production. Earcons can be easily constructed and produced on almost 
any computer with tools that already exist for music and audio manipulation; 

2. Abstract representation. Earcon sounds do not have to correspond to the objects 
they represent, so objects that either make no or an unpleasant sound can still be 
represented [Barrass and Kramer 1999]. 

 
The disadvantage with earcons is learnability. Novices are able to learn up to 7 

symbolic sounds within minutes, which can be linked to the limits of our short term 
memory, but further learning of up to ten symbols can take hours. Beyond ten, the 
process is prolonged and some listeners may never learn the catalog (of earcons) 
completely [Patterson 1982].    
 

4.5.3 Auditory Icons 

 
Auditory icons were also originally designed to provide feedback about activities in a 
graphical user interface. The auditory icon approach is to map objects and events in the 
interface onto everyday sounds that represent reminiscent or conceptually related objects 
and events [Gaver 1994]. The meaning of the sound shall be connected to the information 
by metaphorical association. For example, when dragging a file symbol on the computer 
desktop to the trashcan symbol, a crushing sound could represent the deletion action. If 
the sound level or complexity would depend on the file size being deleted, this would be 
a parameterized auditory icon. Similar to their visual counterparts, auditory icons rely on 
the analogy between the everyday world and the model world, and the more intuitive the 
analogy is, the easier the icons are understood. Besides low-level use in computer 
desktop interaction, auditory icons can be used for interacting with data in exploratory 
data analysis, e.g. for categorization or classification. The advantages of auditory icons 
are: 
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1. Familiarity. Everyday sounds are already familiar and may be understood very 
quickly; 

2. Directness. Everyday sounds can allow direct comparisons of length or size or 
other quantities [Barrass and Kramer 1999]. 

 

The disadvantages of auditory icons are: 
1. Learnability. Representing a virtual event, such as a software operation, with a 

sound from a mechanical event, is a conceptual mapping that may invoke learning 
demands similar to those of earcons; 

2. Experience of the listener. The cultural experience of the listener may have 
significant effects on the recognition of recorded everyday sounds; 

3. Shortage of compelling sonic representations. Limited everyday sounds 
available that can be used to give the listener an intuitive idea of the information 
being conveyed.  

 

4.5.4 Parameter Mapping 

 
Parameter mapping is the widest used sonification technique for representing high-
dimensional data as sound. Typically, a data dimension is mapped onto an auditory 
parameter such as onset, duration, pitch, pitch variation, loudness, position (spatial cues), 
reverberation, brightness, etc. Different data variables can be mapped to different 
auditory parameters at the same time to produce a complex sound. For this reason, high-
dimensional data displays can be obtained. To formalize the parameter mapping let there 
be given a d-dimensional data point x = (x1, …, xd)

T. Simple parameter mappings, map a 
single data variable xj to values of an acoustic attribute pi. Such a mapping can be written 
as  
 

  ( )iii xhp = , di ≤        4.1 

 
The functions hi() provide a mapping of data values to attribute values. Usually 
monotonous functions or constant values are used. Figure 27 shows some frequently 
applied mapping functions. 
 



 61 

 

Figure 27 Typical transfer functions for parameter mapping. The piecewise linear transfer function 

(black line) is described by equation 3.3. The blue and green dashed lines are respectively sigmoid 

and exponential transfer functions. This figure is modified and expanded from [Hermann 2002]. 

 
The linear mapping with a clipping to min/max values in the attribute domain is very 
commonly used, and Hermann uses the following notation to clarify it: 
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The parameter mapping sonification technique is also sometimes referred to as sonic 
scatter plots or nth order parameter mapping. This technique has the following 
advantages: 

1. Ease of production. Existing tools (instrument sounds synthesized by efficient 
algorithms) allow almost real-time mappings to many auditory parameters; 

2. Flexible multivariate representations. Many data dimensions can be listened to 
simultaneously and the mapping choices can be changed using the same data 
giving different views of the same data. 
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The disadvantages of the parameter mapping approach are the following: 
1. Unpleasantness of produced sounds. The sounds that are produced using this 

method can become unpleasant. For example, if a data dimension is mapped to 
loudness and the data dimension encounters unexpected large values, the resulting 
sonification can become unpleasantly loud; 

2. Linear changes in one domain produce non-linear effects in the auditory 
domain. Linear changes in multivariate synthesis parameters can have complex, 
non-linear perceptual effects, and the range of the variation can differ 
considerably with different parameters and synthesis techniques. These perceptual 
interactions (coupled perceptual parameters) between parameters can obscure data 
relations and confuse the listener, and a truly balanced multivariate auditory 
display may not be possible in practice [Kramer 1994], due to the fact reason of 
lack of orthogonality, as mentioned in chapter 3. 

3. No Unique Mapping. There is no unique mapping from data to acoustic 
attributes, and therefore manual assignment is necessary making this a 
heuristically governed approach. 

4. Interpretability. Each mapping choice sounds different using the same data, 
which makes learning and adapting to these sonifications difficult, though this can 
also be viewed as the flexibility of this technique. 

 

4.5.5 Model-based Sonification 

 
Model-based sonification has been proposed as an alternative framework for computing 
data driven sound in [Hermann and Ritter 1999], [Hermann 2002]. The starting point is 
that sound in the real-world is the by-product of physical processes and the complex 
sound field encodes in a holistic way source-properties in its temporal evolution. 
However, since the extraction of source-related information from the sound has been of 
high importance in the real-world (e.g. to recognize arriving predators early) evolution 
has lead to an optimization of these sound processing skills, including the processing 
hardware, the brain. In addition, one often learns about the world by interacting with the 
world and interpreting the acoustic feedback (think about shaking a present at Christmas). 
To carry these concepts over to the domain of data exploration, a sonification model 
defines a kind of “virtual acoustic object”, whose setup might be driven by the dataset 
under analysis. Laws of dynamics (corresponding to the laws of physics in the real world) 
determine the temporal evolution of a sonification model. The advantages of model-based 
sonifications are: 

1. Source-related information. It is argued that by evolution the human auditory 
system is optimized to extract source-related information from sounds that result 
from a dynamic process. The sound of dynamic processes differ for different 
interactions, but the sound shares the same typical properties; 

2. Dissipative process. Model-based sonifications are typically a dissipative process, 
converging to a state of equilibrium, corresponding to silence. 
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The disadvantages of model-based sonifications are: 
1. Model selection. It is unclear what the best models are for certain analysis tasks at 

hand.  
2. Many parameters in physical models. When designing physical models many 

parameters are available and no generic transformation from the data dimensions 
to the physical dimension, equivalent to the problems faced with the parameter 
mapping technique. 

3. Computationally expensive. Model-based synthesis may be computationally more 
expensive than parameter mappings. 

4.  Boundary conditions or physical limits. The model, that is used to generate the 
sound, may contain critical borders that yield unexpected large changes of the 
sound even on smooth changes in the dataset. 

 

4.5.6 Interactive Sonification 

 
Different from offline sonifications, which are rendered without any interaction by the 
user and then consumed by uninterrupted listening (like to a piece of music), interactive 
sonification considers settings where the sonification is directly controlled (e.g. 
navigated, manipulated or excited) by the user. Interaction provides user-centered views 
on objects – like several visual views support understanding of visual objects (e.g. 3D-
shape), interaction with acoustic systems supports understanding the sound source, which 
is in the case of sonification the underlying data or generation process that involves the 
data. An interesting example of interactive sonification can be found in [Williamson and 
Murray-Smith 2002]. Here a general framework for formative audio feedback for gesture 
recognition is presented. A disadvantage at this moment is how to compare and evaluate 
displays that rely so heavily on interactive exploration processes [Hermann 2002]. 

The author believes that sonification toolboxes should to some degree be 
interactive to allow the user to tune parameters that can help improve the clarity of his or 
her display. This can be compared to changing the axes on a plot, changing the color or 
structure (dashed/dotted) of a line to enhance the information one is trying to present. 
 

4.5.7 Techniques for Spatialized Sonifications 

 
 An interesting technique, which is worth mentioning, is a technique for searching 
or browsing through an auditory scene, be that stereo or 3D. The Aura technique was 
presented in [Benford and Greenhalgh 1997] and later used as a component for sonic 
browsing in [Fernström and McNamara 1998]. In the former article the aura is described 
as a device through which users perceive the world and takes the form of a scope or area 
of interest. The idea behind this, as stated by Fernström and McNamara, was to exploit 
our ability to single out sounds in a sometimes sonically dense environment, i.e. the 
cocktail party problem. Browsing through sounds of interest that are either panned out in 
a stereo field or located in 3D space with the help of the aura acting as a magnifying glass 
cursor in the auditory domain, one is able to focus ones attention fully on a subset of the 
original sound field. The aura can be user controlled and can be adjusted in size. By 
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increasing the aura one expands the area of listening and by decreasing the size one 
zooms in on the sound(s) of interest. 
 

4.5.8 Categorization of Auditory Display Techniques  

 
In this section the two main methods of classifying auditory display techniques are 
presented. This was found important to include, due to the fact that the different 
perspectives on the techniques can expand the understanding of sonifications and further 
clarify which sonification technique best suits a given tasks. The two categorization 
techniques presented here are: 

• The Semiotic Categorization 

• The Analogic-Symbolic continuum 
  

Semiotics is the theory of signs and their meaning and it can be used to analyze 
communication media. The best known auditory display techniques were classified using 
the semiotic categorization by Blattner et al. in 1994. The semiotic distinctions are: 
syntactic, semantic, and lexical. Earcons focus on syntactic organization of acoustic 
material to communicate messages. The sounds are symbols to the signified, i.e. receiver 
of the signs. Auditory icons are an example of the semantic approach, i.e. the meaning is 
associated to the sound by metaphorical or iconic association. Parameter mapping is a 
lexical approach, i.e. the signs are created from the data [Barrass and Kramer 1999]. 

In [Kramer 1994] the ideas of A. Sloman about analogical representations are 
related to auditory display. A symbolic representation is a categorical representation of 
what is being represented. The information being represented is clustered in categories 
and the relationships between the representations do not reflect intrinsic relationships 
between the elements being represented. For example, words are typical examples for 
symbolic representations. In an analogical representation an immediate and intrinsic 
correspondence between the represented item and the representation is given, i.e. changes 
in the represented item map to similar changes in the representation, even though the 
representation can be a simplification of the represented item. A typical example, is a 
thermometer, i.e. the height of the thermometer column analogically represents the 
temperature. 

 In Figure 28 the main sonification techniques are presented along the analogic-
symbolic continuum. In [Hermann 2002] it is stated, that the model-based sonification 
technique is difficult to locate on this scale, due to the fact that model dynamics associate 
sounds to a dataset, thus the model may contain critical borders which yield to large 
changes of the sound even on smooth changes in the dataset, as mentioned earlier. 
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Figure 28 The Analogic-Symbolic continuum. This figure is redrawn from [Hermann 2002]. 

 
 The presented categorization techniques are by no means the only forms of 
categorization techniques present. One could choose to classify the sonification 
techniques by applied sound synthesis techniques, data domain, application etc.  
 

4.6 Issues in Designing Sonification 

 
The range of sonification techniques with different advantages and disadvantages lead to 
the question of which to choose, and there is no known method for determining the best 
way to map data relations into sound, though some general guidelines have been 
obtained. 

Knowledge of auditory perception can allow the designer to predict how the 
sonification will be heard by a human listener, and enables a theoretical evaluation of 
new untried designs. However, psychoacoustic theories do not involve issues of 
representation that are central in sonification, where the listener needs to correctly 
understand data relations from the sounds, though some experiments have shown possible 
perceptual observations that should be taken into consideration. 

In [Flowers 2005] a reflection is made on the past thirteen years of the history of 
auditory graphing, and mentions some of the strategies that work well and some that do 
not. He states that, using loudness changes to represent an important continuous variable 
can have its pitfalls. He writes, “Even with isolated presentation of a single auditory 
stream of constant pitch, ability to discriminate different loudness levels for reliable 
mapping to numeric values is far more limited than for pitch (log frequency) mapping to 
quantity, or temporal auditory changes such as modulation rate, pulse or note rate, etc. In 
addition, there is a major non-perceptual factor that makes loudness unsuitable for 
carrying fine-grained quantitative information – limitations of sound reproduction 
equipment, and differences in the dynamic ranges and general quality of such equipment 
from setting to setting.” Though he writes that, “Temporal or rhythmic patterning of 
loudness levels, especially when integrated into pitch and timbre defined data streams 
may be highly useful” to provide contextual cues and signal critical events. In [Neuhoff 
et al. 1999], they found that when people listened to a change in loudness with a rising 
pitch, they perceived the change to be greater than when they heard the same degree of 
change in loudness with falling pitch. 
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In [Walker and Ehrenstein 1997], it was investigated whether it is possible to 
attend to relative pitch while ignoring changes in pitch, and whether changes in pitch 
could be assessed independently of the overall pitch of a dynamic auditory stimulus. 
They define their stimuli as: 

• Congruent. High pitch stimulus that became higher in pitch, or low pitch that 
became lower; 

• Incongruent. High pitch stimulus that became lower in pitch or high pitch that 
became higher. 

 
Walker and Ehrenstien conclude that responses were almost always faster when the 
direction of pitch change matched the onset pitch position, i.e. for congruent stimuli. 
Similar effects in vision are also observed; the dimension of position influences the 
perception of direction and vice versa. Furthermore, the intrusion of the information of 
one dimension onto judgments regarding the other dimension was not symmetrical, in 
that pitch information had a greater influence on responses to direction of pitch change 
than direction information had on pitch judgments. The selective attention between pitch 
and pitch change was found not to be perfect. Though, it is suggested that auditory 
display designers should take advantage of this congruency effect when a crucial 
distinction must made between high and low pitches. 

In [Flowers 2005], Flowers writes that, “Pitch profiles are a compelling 
dimension for representing changes in numeric values. Mapping pitch height (essentially 
log frequency) to numeric magnitude affords perception of function shape or data profile 
changes, even for relatively untrained observers.” Though he writes that, “Listening to 
simultaneously plotted multiple continuous pitch mapped data streams, even when 
attention is given to timbre choice for different variables to reduce unwanted grouping, is 
probably not productive… it is generally the case that attending to three or more 
continuous streams of sonified data is extremely difficult.” This can be compared to 
listening to and understanding three conversations simultaneously, which is for the author 
an impossible task. 

As suggested, timbre differences can be useful for minimizing unwanted 
perceptual grouping of separate continuous data streams when multiple continuous 
variables are required to be plotted. Flowers further writes that, “Timbre changes due to 
onset envelope differences in note streams probably allow better separation than timbre 
differences due to harmonic content per se.” He also highlights that avoiding confusions 
between simultaneous data events and streams is important, and states that there is little 
basic psychoacoustic research that directly relates to the attention and perceptual 
demands of listening to auditory mappings of data, even though auditory scene analysis 
describes the basic concepts perceptual organization, more empirical research needs to be 
conducted. 

The need to consider the data structure in mapping data relations into auditory 
relations is found in Chris Hayward’s description of why audification techniques work 
well for seismic data [Barrass and Kramer 1999]. He explains that seismic data consists 
of large data sets and that a seismic audification will sound like a recording of natural 
environmental sounds, because sounds transmitted through air (acoustic waves) have 
similar physics to seismic vibrations transmitted through the earth (elastic waves). The 
direct physically consistent playback can take advantage of human experience with 
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natural sounds. It has been stated, that an arbitrary mapping from data to sound 
parameters often results in unpleasant sounds that lack any natural connection to the data 
represented. Gary Kendall, as written in [Barrass and Kramer 1999], proposed an 
approach that links the structure of the data with the structure of heard sounds. He 
observed that categorical data relations should sound categorical, and ordered data 
relations should sound ordered. He also states that, “Relevant changes in data should 
insure a change in what is perceived. Changes in what is perceived should signify 
meaningful changes in the data.” 

In some instances the “relevant changes in data” are unknown; therefore Kramer 
suggests that two broad types of tasks are important in auditory display [Kramer 1994 
p.15]: 

1. Analysis. Tasks where the user cannot anticipate what will be heard and is 
listening for “pop-out” effects, patterns, similarities and anomalies which indicate 
structural features and interesting relationships in the data. 

2. Monitoring. A “listening search” for familiar patterns in a limited and 
unambiguous set of sounds. 

 
The acceptance of a sonification may be influenced by the quality of the audio output, 
just as the perceived quality of television set was influenced by the quality by the audio. 
After having encountered obnoxious sounds, ambiguous meanings, negative 
connotations, and incomprehensibility in sounds used for background notification in 
operating systems, Jonathan Cohen strongly suggested that an experienced sound 
designer should be involved in any such project [Barrass and Kramer 1999]. With the 
expanding world of sound synthesis algorithms and control schemes, it should not be a 
major task to provide easy-to-use tools and systems that allow non-experts to make their 
own sonifications tailored to their particular task. However, there is still a surprising gap 
when it comes to a practical sonification toolbox. This is seen as a major obstacle for 
sonification.  

The evaluation and validation of auditory stimuli for experimental or application 
use is an important component to the successful completion of a project utilizing sound. 
The choice of methods to test the perceptual properties of auditory stimuli depends on the 
goals of the specific system [Bonebright et al. 1998]. Bonebright et al. provide a general 
framework for data collection and analysis techniques appropriate for evaluating the 
perceptual properties of auditory stimuli. They present guidelines for subject selection, 
sample size, number of stimuli, pilot testing, number and type of practical trials, duration 
of data collection sessions, and examples of computer software that can be used to 
automate data collection procedures. The three main methods that can be used for 
determining the perceptual qualities of single auditory events are discussed; identification 

tasks, context-based ratings and attribute ratings.  
 Important for many sonification projects, is to examine the associations among 

auditory events. In [Bonebright et al. 1998], they recommend three techniques; 
discrimination trials, similarity ratings and sorting tasks. For most applications using 
multiple audio signals, it is important to determine if the auditory stimuli are 
distinguishable from one another and to measure the extent to which subjects can 
discriminate among the stimuli. This can be accomplished with a simple discrimination 
task. The similarity (or dissimilarity) rating method is a common data collection method 
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in perceptual studies and provides a means for examining the perceptual structure of a set 
of stimuli without imposing experimenter bias. This type of information can be useful in 
understanding how, and perhaps even why, subjects confuse stimuli. Sorting tasks are 
another method for collecting similarity data that provides information about perceptual 
relations among stimuli. 

According to Barrass and Kramer the major issues in sonification raised by 
experienced researchers in the field, which can be summarized as follows [Barrass and 
Kramer 1999]: 

1. Veridicality. The need to ensure that relations in the data can be heard correctly 
and confidently in the sounds, 

2. Usefulness. The effect that a sonification has on a task 
3. Usability. The amount of usage required before a sonification becomes useful, 
4. Acceptance. How much a sonification is actually used in practice 
5. Tools. Support for sonification by people who are not necessarily experts. 

 

4.7 Conclusion 

 
In this chapter the definition of a sonification was presented and discussed, the 
interdisciplinary nature of the auditory display was highlighted, and a very brief history 
of the field was presented. Furthermore, an overview of the applications that sonification 
can be incorporated into was given, a discussion of the main sonification techniques and 
their categorization. A selection of the issues one must have in mind when designing 
sonifications and issues that still need to be addressed were also presented. 
 It was made clear that designing an auditory display is an interdisciplinary affair, 
which needs to take many considerations into account, especially the knowledge of 
auditory perception and the specific task at hand (relating to the data structure). 
Translating the data relations into sound is made more difficult due to the fact of the lack 
of orthogonality, i.e. the interactions of the perceptual parameters. Experienced 
researchers in the field of sonification still see the need for conducting empirical research 
in auditory perception that is closer linked to sonification. Testing the sonifications is a 
crucial source of information that provides knowledge of the usefulness of the resulting 
auditory display, and this knowledge, together with a broadly accepted toolbox, is crucial 
for further expanding the use of auditory displays. 
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Chapter 5 
 
 
 
 
 
 
 
 

5 Synthesis Techniques 
 
In this chapter a broad range of synthesis techniques will briefly be presented. Synthesis 
techniques are very relevant in sonification procedures due to the fact that they, together 
with mapping functions, translate the data into sound.  The information used to write this 
section is mainly taken from [Roads 1996] from chapters 4 to 7. The synthesis techniques 
listed below are an extract of the most commonly known techniques:  

• Waveform Table-lookup synthesis 

• Sampling synthesis 

• Additive synthesis  

• Multiple Wavetable synthesis 

• Wave Terrain synthesis  

• Granular synthesis 

• Subtractive synthesis 

• Modulation synthesis 

• Physical modeling, Karplus-Strong, and Formant synthesis 

• Sound Spatialization 
 
The above techniques are listed in the order in which they will be presented in current 
chapter. Furthermore, the description of granular synthesis will be more thorough due to 
the fact that it will be used later in the thesis. It will also become apparent to the reader 
why this technique is interesting to use in classification or categorization sonifications. 
For a more in-depth coverage of these and other sound synthesis and sound 
transformation techniques please see [Roads 1996]. 
 

5.1 Waveform Table-lookup Synthesis 

 
The process of repeatedly scanning a wave-table in memory is called table-lookup 
synthesis, and is the core operation of a digital oscillator, which is a fundamental sound 
generator in most synthesizers. A digital oscillator can be controlled by many time-
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varying parameters causing it to undergo temporal and spectral change. An array of such 
digital oscillators can be combined to produce what is called additive synthesizer, which 
will be described in section 5.3.  
 

5.2 Sampling Synthesis 

 
Sampling synthesis is different from the classical technique of waveform synthesis 
briefly described above. Instead of scanning a small fixed wavetable containing one cycle 
of a waveform, a sampling system scans a large wavetable that contains thousands of 
individual cycles, i.e. several seconds of prerecorded sound. Since the sampled waveform 
changes over the attack, sustain, and decay portion of the event, the result is a rich and 
time-varying sound. All sampling instruments are designed around the basic notion of 
playing back prerecorded sounds, shifted to the desired pitch. Despite advances in 
sampling technology, samplers retain a “mechanistic” sound quality that makes them 
distinguishable from the animated sounds produced by good human performers. 
Furthermore, theses techniques require large memory capabilities since each sound 
(recorded instrument in the synthesizer) requires a large wavetable. 
 

5.3 Additive synthesis 

 
Additive synthesis is one of the oldest and most heavily researched synthesis techniques 
and is a class of sound synthesis techniques based on the summation of elementary 
waveforms, such as sinusoidal, triangular or rectangular waveforms, to create a more 
complex waveform. The sound is computed by;  
 

  ( ) ( ) ( )ii

i

i tftats ϕπ +⋅=∑ 2sin       5.1 

 
Sine waves with frequency fi and corresponding phase φ i are multiplied by an amplitude 
envelope ai(t) and superimposed and stored into s(t). The spectrum of many periodic 
functions, which many sounds can approximated to, consists of frequencies with are 
integer multiples of a fundamental frequency. Using 5.1 these sounds can be computed 
as; 

  ( ) ( ) ( )i

i

i tifatats ϕπ +⋅= ∑ 02sin      5.2 

 
Additive synthesis models can be further expanded for more flexible control over the 
sound and have been used for timbre modeling [Jensen 2001], [Marentakis and Jensen 
2002] to include irregularities, such as discussed in section 3.2.3. However, when 
mimicking realistic sounds complicated trajectories in parameter space have to be 
conducted and noisy and transient sounds are especially hard to model using this model 
[Hermann 2002]. In Figure 29 an illustration of a simple digital additive synthesis with 
two time-varying parameters: these are frequency (F) and amplitude (A) envelopes. 
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Figure 29. An illustration of time-varying additive synthesis with separate frequency (F) and 

amplitude (A) envelopes. This figure is taken from [Roads 1996]. 

 

5.4 Multiple Wavetable synthesis 

 
By multiple wavetable synthesis, one refers to two simple yet sonically effective 
methods: wavetable crossfading and wavestacking, though these are not the only 
synthesis methods that can use multiple wavetables.  
 Instead of scanning a single wavetable repeatedly, the oscillator crossfades 
between two or more wavetables over the course of an event, i.e. the event begins with 
waveform 1, and as 1 begins to fade away, waveform 2 fades in, and so on. The 
crossfading procedure is shown in Figure 30. Wavetable crossfading is the core of what 
has been called variously compound synthesis, vector synthesis (by Sequential Circuits, 
Korg, and Yamaha), and L/A or Linear Arithmetic synthesis (Roland). 
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Figure 30. Wavetable crossfading (vector synthesis) instrument using four wavetables. Each envelope 

on the right applies to a wavetabel on the left. This figure is taken from [Roads 1996]. 

 

5.5 Wave Terrain Synthesis 

 
As mentioned, many synthesis techniques start from the fundamental principle of 
wavetable lookup: a wavetable is scanned by means of an index that is incremented at 
each sample period. It is possible to extend the principle of wavetable lookup to the 
scanning of three-dimensional “wave surfaces”. Such surfaces are called wave terrain. 
Compared to the traditional wavetable which is a function of only one variable, wave 
terrains can be plotted as a function of two variables as shown in Figure 31. A scan over 
the terrain is called an orbit, and is naturally a function of x and y, to use the axis of 
Figure 31. 
 

 

Figure 31. The waveform terrain is a three-dimensional surface. The height (z-axis) of the terrain 

represents the waveform value. This figure is taken from [Roads 1996]. 
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5.6 Granular synthesis 

 
Granular synthesis (see [Truax 1988], [Roads 1996], [Childs 2002]) is a probabilistic 
sound generation method, based on drawing many short packets of sound called grains or 
granules, from source waveforms. A sound grain lasts a brief moment (typically 1 to 100 
ms), which approaches the minimum perceivable event time for duration, frequency, and 
amplitude discrimination [Roads 1996]. 
 An amplitude envelope shapes each grain. This envelope can vary in different 
implementations from a Gaussian bell-shaped curve to a simple three-stage line-segment 
attack/sustain/decay, each of which creating sonically different sounds. The grain 
duration can be constant, random, or it can vary in a frequency-dependent way. The 
waveform within the grain can be of two types: synthetic or sampled. Synthetic 
waveforms are typically sums of sinusoids scanned at a specified frequency. For sampled 
grains, one typically reads the waveform from a predetermined location in a stored sound 
file, with or without pitch-shifting. Several parameters can be varied on a grain-by-grain 
basis, including the duration, envelope, frequency, location in a sound file (for sampled 
grains), spatial location, and waveform (a wavetable for synthetic grains, or a file name 
or input channel for sampled grains). A simple granular synthesis process is shown in 
Figure 32. The resulting sound signal can be written as;  
 

( ) ( )∑ −=
i

iii ttgats θ,        5.3 

 
where g is the time-domain representation of a grain, whose envelope shape may be a 
function of parameters θ .   
 Despite the simplicity of the instrument, to generate even a plain, uncomplicated 
sound requires a massive amount of control data. These parameters describe each grain: 
starting time, amplitude, etc. The complexity of the sound generated by granular 
synthesis derives from the amount of control data fed to it. If n is the number of 
parameters for each grain, and d is the average grain density per second of sound, it takes 
d × n parameter values to specify one second. Since d typically varies between a few 
dozen and several thousand, it is clear that for the purposes of compositional control, a 
higher-level unit of organization for the grains is needed. The purpose of such a unit is to 
let composers specify large quantities of grains using just a few global parameters. 
Existing granular synthesis methods can be classified into five types, according to the 
organization of the grains: 

• Fourier and wavelet grids 

• Pitch-synchronous overlapping streams 

• Quasi-synchronous streams  

• Asynchronous clouds 

• Time-granulated or sampled-sound stream, with overlapped, quasi-synchronous, 
or asynchronous playback. 

 
As mentioned, the asynchronous granular synthesis has been implemented in this 

project and therefore is the only organization type that will be described.  
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Figure 32. Simple granular synthesis process. A much greater number og grains would be used in 

real output for a smoother waveform. When a new grain is created, a section of the waveform is 
copied. The position of the section is determined by the temporal distribution across the waveform. 

This section is the envelope. All of the currently active grains are summed to produce the final 

output. This figure is taken from [Williamson and Murray-Smith 2004]. 

 

5.6.1 Asynchronous Granular Synthesis 

 
The asynchronous granular synthesis (AGS) scatters grains in a statistical manner over a 
specified duration within regions inscribed on the frequency-time space. These regions 
are called clouds – the units which the composer works with. The composer specifies a 
cloud in terms of the following parameters: 

• Start time and duration of cloud 

• Grain duration or grain duration range 

• Density of grains per second or by time frame 

• Bandwidth of the cloud (only for synthetic waveforms) 

• Amplitude envelope of the cloud 

• Waveform(s) within the grains (only for synthetic waveforms) 

• Spatial dispersion of the grains in the cloud 
 

By varying these seven parameters of AGS one can realize a wide range of 
effects. For example, short grain durations lead to crackling, explosive sonorities, while 
longer durations create a much smoother impression. Sparse grain densities create 
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pointillistic textures, while high grain densities create more massive blocks of sounds. 
The spatial algorithm of a cloud can involve random scattering or panning effects over 
the duration of the cloud, and enhances granular texture. 

An analogy exists between the AGS and those created in the visual domain by 
particle synthesis. Particle synthesis has been used to create fire, water, clouds, fog, and 
grass-like textures, which are analogous to some of the audio effects possible with AGS 
(crackling fire, water gurgling, windy gusts, and explosions).  
 

5.6.2 Using Granular Synthesis to Display Probability Densities 

 
Recently in [Williamson and Murray-Smith 2004], it was proposed that sonification via 
granular synthesis is a particularly suitable method for performing the translation of 
changing conditional and joint probabilities. Consider each cloud in the AGS as a 
conditional probability density function of a specific class. The probability of being in 
each class is given by a probabilistic model of the data. For example, if the grain density 
is held constant, then the number of grains to be drawn from each class is the probability 
of being in the class multiplied by the grain density. 

A spatial distribution example was made together with the implementation of the 
AGS in the project process. An illustration in Figure 33 shows how a mixture of three 
Gaussians could be used to map regions of a two-dimensional state-space to sound. Each 
Gaussian is associated with a specific sound. As the cursor moves through the space, the 
timbre and/or the pitch of the sound changes accordingly. Although here the densities are 
in a simple spatial configuration, the technique is general and is applicable to higher 
dimensions. A QuickTime animation created of a fix path through the state-space was 
created and this can be found on the attached CD-Rom in folder “Granular Synthesis 
Using Probabilities”. Figure 34 shows a flowchart of the Matlab implementation of the 
sonification of conditional probabilities (or joint probabilities) using AGS with sampled 
sounds. The sampled sounds used in the implementation were made on a software 
synthesizer from Native Instruments called Absynth. The parameters in the initialization 
together with the sampled sounds were optimized such that the author found the sound 
results created as pleasurable as possible. The spatial dispersion of the grains where 
distributed evenly in the left and right channel thus creating a stereo sound file. 
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Figure 33. Illustration of a path through a two-dimensional state space comprised of three Gaussians. 

As the cursor (black diamond) moves along the path the sound at each point is given by the 

conditional probabilities of being in either of the classes given by the present point of the cursor. 
Imagine this path as being a tracking of some process through three distinct states represented by 

sounds. 
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Input:

P( C k |x) or P(x, C k ) (Prob)

Sample Selection (GSmode)

Initialization:

Grain Density - number of grains in each frame (n)

Grain Duration Range (MinGD, MaxGD)

Frames Per Second (fps)

Overlap of Frames (Overlap)

Envelope Type (Winmode)

Calculate:

Number of grains to be drawn for each class (draw_p = n.Prob)

Number of frames in sonification (Slen = length(Prob)/fps)

for 1:Slen

Get:

draw_p windows with random grain duration within [MinGD, MaxGD] for each class

(GE)

draw_p of random selection of grains from the samples for each class (Grains)

Calculate:

Sum uniformly distributed windowed grains in current time frame with previous

time frames in GrainSum

Sonification

of probabilities using

granular synthesis

(GrainSum)

 

Figure 34 shows an overview of the sonification process using probabilities to control an AGS, with 

the help of a flowchart. The number of grains drawn from each cloud for each time frame and the 

length of the sonification is controlled via the input data. 
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5.7 Subtractive synthesis 

 
Subtractive synthesis implies the use of time-variant filters to shape the spectrum of a 
usually broad band input sound, known as the excitation source. As the source signal 
passes through a filter, the filter boosts or attenuates selected regions of the frequency 
spectrum. If the original source is spectrally rich and the filter is flexible, subtractive 
synthesis can sculpt close approximations of many natural sounds. In Figure 35 the two 
main parts of the subtractive synthesis are shown. 
 

Filter or

resonator system

Excitation

sound source

Hz

A s
( t )

t

 

Figure 35. The two main parts of the subtractive synthesis are the complex excitation sound source 

and the filter or resonator system. 

 

5.8 Modulation synthesis 

 
Modulation in electronic and computer music means that some aspects of one signal (the 
carrier) varies according to an aspect of a second signal (the modulator). The familiar 
effects of tremolo (slow amplitude variation) and vibrato (slow frequency variation) in 
traditional instruments and voices exemplify acoustic modulation. In these cases the 
carrier is a pitched tone, and the modulator is a relatively slow-varying function (less than 
20 Hz). When the frequency of modulation rises into the audible range, modulation 
products or sidebands begin to appear. These are new frequencies added to the spectrum 
of the carrier. Thus, making modulation synthesis nonlinear, though more efficient in 
terms of parameter data, memory requirements, and computation time than additive 
synthesis and subtractive synthesis are. Listed below are some examples of modulation 
synthesis 

• Ring modulation 

• Amplitude modulation 

• Frequency modulation (FM) 

• Multiple-Carrier FM 

• Multiple-Modulator FM 
  
The basic FM synthesis technique, referred to as simple FM or Chowning FM [Roads 
1996], means computing a sound signal by 
 



 79 
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where fm is the modulation frequency, fc is the carrier frequency and the I(t) is the 
modulation index, which controls the amplitude of the modulator and thus the amount of 
modulation. As mentioned above, a vibrato effect can be realized for fm << fc. The 
frequency of the modulator is usually taken as a fixed multiple fm = γ fc, where for γ  = 1 
results in sounds containing frequencies that are integer multiples of the carrier 
frequency. Sounds with such a spectrum occur in many musical instruments where higher 
harmonics or overtones arise from the vibration properties of solids [Hermann 2002]. 
Specific modulation functions I(t) allow to mimic several instruments, e.g. an electric 
piano (linear decaying function) or brass instruments (rising function). Several timbre 
classes can be realized using other modulation ratios γ  = 2, 3, 1.414, etc. The latter 
produces bell-like sounds, with γ  = 2 the sound of organ pipes can be synthesized [Roads 
1996]. 
 

5.9 Physical Modeling, Karplus-Strong and Formant Synthesis 

 
Physical modeling synthesis models the acoustics of traditional instruments, such as a jet 
of air through a mouthpiece into resonating pipes or a guitar string being plucked at a 
certain position on the string. Implementing such “high-level” controls, such as plucking 
position, in other synthesis models would demand extensive parameter modifications, 
whereas in a physical model the plucking position can be controlled directly by the 
position of excitation [Hermann 2002]. The limited computation power makes it still 
necessary to reduce the complexity of the model for simulation. A simplified, though 
more computational efficient, variant of physical modeling is Spring-Mesh models, 
Modal synthesis, Karplus-Strong synthesis and Digital Waveguides. Karplus-Strong 

synthesis simulates the sound of plucked-string instruments such as guitars, mandolins, 
and harpsichords; drum like sounds can also be generated. Formant synthesis 
circumscribes a body of techniques that can simulate the resonances of the human vocal 
tract, as well as those of traditional and synthetic instruments.  
 

5.10 Sound Spatialization 

 
Sound spatialization is the projection of sound in three-dimensional space and is not a 
synthesis technique though can be regarded as a transformation of sound. The most 
popular spatial illusions are horizontal panning – lateral sound movement from speaker to 
speaker – and reverberating – adding a dense and diffuse pattern of echoes to a sound to 
situate it in a larger space. 

The sound signal arriving at the ears differ in timing, level and spectral profile as 
mentioned in chapter 3. The auditory system makes use of these cues to infer the location 
of the sound source. Interaural time differences (ITD) as well as interaural level 
differences (ILD) are easily computed by considering the traveling time and attenuation 
on propagation from the source to the ears. Given a stereo loudspeaker setup as shown in 
Figure 36, a sound can be localized by intensity panning. The virtual source s can be 
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located within the triangle formed by the listener and the loudspeakers. Assuming an 
angle θ max between the line of sight and a speaker, a direction (d, θ ) is reached by using 
the gains; 
 

max

amp
d

r

θ
θ=A         5.5 

 

( )( )maxamp
d

r θθ −−= 1B       5.6 

 
This method is called linear panning and is the simplest form of intensity panning. 
 

A B

m a x r
d
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Figure 36. To position a sound source at a point s between two loudspeakers A and B, ascertain the 

angle θ of the source measured from the middle point between A and B. In the middle θ equals 0 
degrees. The angle θmax is the maximum angle, r is the distance of the loudspeakers to the listener, 

and d is the distance of the sound source s. 

 
 As mentioned, spatialization is the projection of sound in three-dimensional space 
so that the source is characterized by (d, θ , φ ) at distance d from the center of the head, at 
an azimuth θ  and elevation φ . The only two effective ways of truly spatializing sound can 
be achieved by having multi-channel loudspeaker systems, or binaural sound in 
headphones, which convolves the sound source with angle-dependent filters called head-
related-transfer-functions (HRTFs). The latter is a convenient way of presenting 3D 
sound, though an in-depth presentation of this is out of the scope of this thesis. 
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5.11 Conclusion 

 
A broad range of sound synthesis techniques were briefly presented in this chapter, where 
emphasis was laid on the granular synthesis technique. Through [Williamson and 
Murray-Smith 2004], it was shown that the AGS is an appropriate technique for 
presenting probabilities, and thus suitable for monitoring known states in a system. An 
example of a path through a mixture of three Gaussians in a two-dimensional space was 
implemented to illustrate the above technique. Furthermore, a short section on sound 
localization and spatialization was presented. 
 It is clear that different techniques enable various degrees of sound control and 
results, with trade-offs present in each technique. For sonification it is crucial that the 
quality of sound produced by the chosen technique be of a certain standard, so as not to 
be annoying through extended use to the listener. Furthermore, the choice of technique 
should allow the designer to have access to sound parameters that can convey the 
information of the data in a predictable and suitable way. Extending sonifications into 
stereo or three-dimensional sound adds extra parameters, where one can convey 
information through position or the motion of a sound source.  
 As mentioned in the introduction to this chapter the translation of data into sound 
is achieved by the synthesis techniques, and having knowledge and access to various 
synthesis techniques while designing sonifications is extremely important. The author 
encourages future researches in this field to commence a project by investigating possible 
ways of achieving access to various synthesis techniques, for example controlling 
software synthesizers through MIDI (Musical Instrument Digital Interface). 
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Chapter 6  
 
 
 
 
 
 
 
 

6 EEG Sonification 
 
This chapter focuses on sonification of electroencephalographic (EEG) data and presents 
a concept for an auditory browser of EEG time courses. Initially, a brief introduction to 
EEG will be given, followed by a section regarding the artifacts found in EEG signals 
together with a subsection on the analysis of EEG data using ICA. Section 6.3 will focus 
on other researcher’s attempts on EEG sonification and, finally, a section on designing an 
auditory browser of EEG time courses, which could facilitate in the decontamination of 
the EEG signal when using ICA, is presented.  
 

6.1 Brief Introduction to EEG 

 
The EEG was first measured in humans by Hans Berger in 1929. The electrical activity, 
measured via electrodes at the scalp, which arises from neuronal activity in the brain, is 
known as electroencephalography. The principal source of the EEG is believed to mostly 
originate from pyramidal cells of layer 3 and 5 in the neocortex, and the amplitude 
changes in the EEG is a result of changes in the number of synchronously active neurons. 
The EEG provide information on activities that occur spontaneously or in response to 
sensory stimuli, where the latter is commonly known as evoked response potentials (EP), 
whereas sensory stimuli timed to an event is known as event related potentials (ERP). A 
classical measure of interest is the EEG coherence, which provides a measure of 
functional correlations between EEG sources.  
 The EEG has been decomposed into series of fixed broad spectral bands, though 
these are based on historical discoveries rather than theoretical framework. These bands 
are described in Figure 37. Generally, it can be said that the frequency of brain 
oscillations is negatively correlated with their amplitude [Mørup 2005]. 
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Figure 37. An illustration of the different EEG bands or rhythms on a frequency scale, and short 
descriptions of them. This figure is redrawn and modified from [Mørup 2005]. 

 

6.2 Artifacts in EEG 

 
 Contamination of EEG data can occur at many points during the recording 
process. Artifacts can either be biologically generated or technologically generated – by 
sources external to the brain. Technologically generated artifacts are, for example, 50 Hz 
electrical interference (in Europe), poor electrode contact, and other line noises. 
Biologically generated artifacts stem from eye blinks, eye movement, muscle activity, 
heart beat (pulse), and head movement. Figure 38 shows waveforms of some of the most 
common EEG artifacts. 
 

 

Figure 38. Examples of artifact waveforms. This figure is taken from [Knight 2003]. 
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Artifacts in EEG are commonly handled by discarding the affected segments of 
EEG. The simplest approach is to discard a fixed length segment from the time an artifact 
is detected. Often, EEG segments with artifacts larger than an arbitrarily preset value are 
rejected. However, when limited data are available, or blinks and muscle movements 
occur too frequently as with some patient groups (e.g. children), the amount of data lost 
to artifact rejection may be unacceptable. Another common artifact removal strategy is to 
average trials time-locked to all similar experimental events and discard or ignore 
averages of data from frontal and temporal electrodes [Jung et al. 2001]. An additional 
dilemma in the artifact removal in EEG signals is the fact that, the artifacts can happen 
simultaneously, e.g. 50 Hz line noise, eye blink, and heart beat can all be present 
together. This makes the discrimination between individual artifacts, and artifacts and the 
non-artifacts even more difficult. 

The first attempts at removing artifacts focused on the ocular artifacts. Regression 
using the electrooculargram (EOG) channel has been attempted in time and the frequency 
domain [Woestenburg et al. 1983]. These methods all rely on a clean measure of the 
artifact signal to be subtracted out. Since the EOG is contaminated with EEG signals, the 
regression of the ocular artifacts has the undesired effect of removing EEG signals from 
the observations. More recently, multivariate statistical techniques, such as PCA, ICA 
and Parafac models have been proposed to separate and remove noise signals from EEG 
signals. This approach assumes that EEG observations are generated by linear mixing of 
a number of source signals, where each method of signal separation applies its own 
assumptions. Results show that ICA can effectively detect, separate and remove activity 
in EEG records from a wide variety of artifactual sources, with results comparing 
favorably to those obtained using regression or PCA based methods [Jung et al. 2000], 
[Jung et al. 2001]. The Parafac analysis is still rather new, but seems to be very 
promising. 
 

6.2.1 ICA and EEG 

 
The ICA algorithm derives independent sources from highly correlated EEG signals 
statistically and without regard to the physical location or configuration of the source 
generators. The ICA method is based on assumptions that the time series recorded on the 
scalp: 

• are spatially stable mixtures of activities of temporally independent cerebral and 
artifactual sources; 

• the summation or mixture of potentials arising from different parts of the brain, 
scalp, and body is linear at the electrodes; 

• propagation delays from the sources to the electrodes are negligible. 
 
The two latter assumptions are reasonable for EEG data, and given enough data the first 
assumption is reasonable as well [Makeig et al. 1996]. The following will try to show 
how ICA (equations 2.40 and 2.41 in section 2.8) is applied to EEG data. 
 In EEG analysis, the rows of the input matrix, X, are EEG signals recorded at 
different electrodes and the columns are measurements recorded at different time points. 
ICA finds an unmixing matrix, W, which decomposes or linearly unmixes the multi-
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channel scalp data into a sum of temporally independent and spatially fixed components. 
The rows of the output data matrix, Y, are called time courses or activations of the ICA 
components. The columns of the estimated mixing matrix or the inverse of W give the 
relative projection strengths of the respective components at each of the scalp sensors. 
These scalp weights give the scalp topography or scalp maps of each component, and 
provide evidence for the components physiological origins.  
 Once the independent time courses of different brain and artifact sources are 
extracted from the data, artifact-corrected EEG signals can be derived by eliminating the 
contributions of the artifactual sources. This is done by removing the non-artifactual time 
courses from Y (i.e. setting them to zero), resulting in Y´ and then performing the 
follwing mixing 
 

  ´´ 1YWX −=         6.1 
 
where the rows of X´ are the artifact-corrected EEG signals from the different electrodes. 
This method has become a standard method of EEG analysis and decontamination, and 
can easily be done with the help of EEGLAB, which is an open source Matlab toolbox 
for EEG analysis. The process explained above is illustrated in Figure 39. For further 
information on ICA and EEG please see [Jung et al. 2000], [Jung et al. 2001]. 
 Identifying the artifacts in the time courses can be a time consuming affair if 
many electrodes are used in the EEG measurement and the analysis of these could be 
accelerated by an auditory browser that aids the user to identify potentially contaminated 
and non-contaminated time courses, though the basic idea can also be used to detect other 
relevant information such as the amount of power in the different EEG bands. An 
application of this type will be constructed in section 6.4. First a section on the previous 
EEG sonification methods will be presented.  
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Figure 39. Schematic overview of ICA applied to EEG data as explained in the text above. This figure 

is modified from [Jung et al. 2000].  
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6.3 Previous EEG Sonifications  

 
The reasons for sonifying EEG data have been linked to the multi-dimensional structure 
of the EEG data and our auditory systems sensitivity to discern rhythmical and spectral 
patterns in data of this kind [Baier and Hermann 2004], [Meinicke et al. 2004]. 
Furthermore, it has been stated that, besides the classical analysis techniques such as ERP 
and coherence studies, sonification of EEG data could be considered as a means of 
assisting and accelerating data inspection, pattern classification and exploratory data 
analysis. 

The earliest work found on sonification of EEG was done in [Mayer-Kress 1994]. 
In this article, activation from four electrodes were mapped directly to musical pitches of 
musical instruments (piano, flute, violin and glocken), which allowed only to present 
short EEG signal parts (ca. 100 ms) in a reasonable time. The method used could be 
described as a mixture of audification and parameter mapping techniques, although at the 
time this was called the “Orchestral paradigm” [Kramer 1994]. The objective of Mayer-
Kress was to detect short-time synchronizations during cognitive events in the region of 
the β - and γ -band. In [Jovanov et al. 1999] the same approach was used, even though the 
objective was different. The main problem with audification is that the resulting sound is 
very dissonant and independent control over playback speed and pitch is difficult, as 
mentioned in section 4.5.1, though as described in [Hermann et al. 2002] some features, 
e.g. outliers, are more easily detected from these sonifications than from the extremely 
noisy time series plots and even in the spectrogram plots. 

In [Hermann et al. 2002], a new approach in sonification of EEG data was 
presented. Three sonifications are presented in this paper: spectral mapping sonification, 
allowing the user to follow spectral activations within the brain of each electrode, 
distance matrix sonification, allowing the user to inspect the range and strengths of 
couplings between different electrodes, and differential sonification, allowing the 
comparison of data recorded for one subject under different testing/stimuli conditions. 
The spectral sonification uses short time Fourier transforms (STFT) of the time series as a 
starting point. Given the EEG measurements si(n), where i = 1,…, I determines the 
channel and n is the sample number, the STFT is computed for each channel i by  
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where m is the frame number, C the offset between succeeding frames, k = 0,…,N/2 the 
frequency index and N the window (w) width in samples. This gives I spectrograms and 
for each electrode i a set of Nosc time-variant oscillators whose frequency is fn for n = 
0,…, Nosc – 1 is given by,  
 

  ( ) ( )







−⋅

−
+⋅= 0

min

0

max

0

min
1

exp2ln pp
N

n
pf

osc

n    6.3 

 



 88 

where ( )0

min

0

max , pp  denoted the desired output pitch range in octaves. Let ( )ts
k

i
~  denote the 

time-variant function from interpolating the sequence ( )ksi ,0~ , …, ( )kMsi ,~  such that 

( ) =0~k

is ( )ksi ,0~   and ( ) =Ts
k

i
~ ( )kMsi ,~ . Then amplitude of the ith oscillator is given by  
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where ( )⋅δg  is a nonlinear function which suppresses all amplitudes less than a given 

threshold δ  and a is a constant. The fraction inside equation 6.4 is a form of 
normalization of the time-variant function between the values 0 and 1. The parameters of 
this sonification technique are; the frame size, the overlap size C, the pitch range 

( )0

min

0

max , pp , the EEG frequency range, and the threshold δ . As mentioned this allows the 

user to follow the spectral activation within the brain. 
 The time-dependent distance matrix sonification is given by; 
 

  ( ) ( ) ( )mmmD jiij ss ˆˆ −=       6.5 

 
which contain the Euclidian distance between the normalized spectral vectors of channel i 
and j in the mth window. Thus small numerical values in the distance matrix D indicate 
similar activity in these channels. High similarity is usually expected for electrodes with a 
small topological distance on the scalp, as a result, the topological distance between 
electrodes is used to drive the pitch of auditory grains which are superimposed into the 
sound vector at the appropriate onset. The similarity  
 

  ( )( )nDij−exp         6.6 

 
is used to drive the levels of these grains. Thus loud and high pitched contributions 
indicate interesting couplings. Sound lateralization, as explained in section 5.10, was also 
used to give an indication of which electrodes the coupling take place: if both electrodes 
are located on one side of the scalp the sound is played on the respective channel, 
couplings between different hemispheres are represented by tones played from the center. 
As mentioned, this allows the user to inspect the location, range and strengths of 
couplings between different electrodes.  
 In contrast to the previous sonifications, the differential sonification technique has 
a time axis used to distinguish the location of the electrodes, scanning the brain from the 
frontal side to occipital electrodes. For the comparison, for each condition α  and β , each 

channel i and each frequency band k, the time sequence of Fourier coefficients [ ]kjs i ,~
α , j 

= 1,…, Ni,α  is used. The mean  
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and the standard deviation  
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is computed. Assuming that both sequences are independent samples from the same 
distribution, the random variable  
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is the student-t distributed with υ  = Ni, α  + Ni, β  – 2 degrees of freedom. With increasing 
values of t´, it gets more significant that the means for the condition α  and β  differ. Thus 
it is used within the sonification to decide, if a sonic marker for frequency band k and 
channel i contributes to the sonification. The level of the played events increases with t´. 
As mentioned this allows the comparison of data recorded for one subject under different 
testing/stimuli conditions. The above is not a thorough description of this sonification 
technique and for further details please see [Hermann et al. 2002].       

The above methods can all be categorized as parameter mapping sonifications. In 
the article they conclude that due to high temporal resolution of the auditory system the 
EEG data recordings can be analyzed in a very condensed way. The methods were not 
tested for there usability or usefulness and were only tried for experimental data. In 
[Hooper 2004] a parameter mapping sonification using generalized mutual information 
was undertaken to revel functional coupling between cortical regions for all possible 
paired combinations. Again these methods were not tested for usability or usefulness, 
though real EEG data was used. In [Meinicke et al. 2004], which also was presented in 
section 2.10 as a source of inspiration for testing the augmented data set, is co-written by 
our good friend Hermann. Their particular interest was to identify features in EEG data 
which discriminate between different conditions according to the stimuli presented in the 
experiments and thereby draw conclusions on the cognitive processes associated with the 
chosen conditions. The analysis of their results from the data analysis was of course aided 
by sonifications. The features used in the extended ICA-FX algorithm were obtained by 
band-pass filtering the EEG signals from 0.3 Hz to 35 Hz and applying Short Time 
Fourier Transforms (STFTs) with half overlapping windows of 1 s duration to each EEG 
channel. For each window spectral amplitudes were averaged over the ranges of six 
frequency bands, shown in Table 1.  
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Table 1. Classification of EEG bands used for analysis. 

This table is taken from [Meinicke et al. 2004]. 

 
Then for each window position they derived one data vector with dimensions according 
to the number of channels times the number of frequency bands – including the additional 
label dimension, as described in section 2.10. In the paper the spectral mapping 
sonification was used. Practically, this was done by mapping the amplitude to the energy 
within a spectral band resulting in louder sound contributions if the band shows higher 
activation. Pitch was used to separate the adjacent bands by musical interval, e.g. a fifth. 
Pitch change is also used to represent variations in the activations. The left/right audio 
channel represents the left/right hemispheres.   
 In [Baier and Hermann 2004] an interesting model-based sonification was 
attempted. In the paper, they develop a method that can be used to estimate both 
frequency and phase of rhythmic events in signals with broad-band spectra. This was 
done, in short, by using an ensemble of differently, but sharply tuned differential 
equations (physical model of oscillators) to analyze a range of frequencies in parallel. 
The information found from this analysis was a temporal ordering of the detected 
rhythmic events for each differential equations eigenfrequency, giving the spectral 
information of the rhythmic events. Thus, the output of the model is converted to a 
sonification which communicates temporal and spectral information about the EEG 
signals rhythmical events. In the summary, they mention the need to asses the usability of 
their sonification and the construction of an improved human-computer interface that 
allows fast and easy navigation and exploration of EEG data.  
 The objective in [Hinterberger et al. 2004] is rather different than the previous 
mentioned article, though the sonification bears some resemblance to [Mayer-Kress 
1994]. They provide audio feedback of brain signals which operate a verbal spelling 
interface. Thus, interactive sonification is used for the training of self-regulation of the 
slow cortical potentials (SCPs) used as features to operate the interface. This is done, in 
short, by; band-pass filtering the EEG signal into the different frequency bands, detecting 
the temporal extrema in the frequency range below 12 Hz and the band power of the 
higher frequency bands, and converting the information of the different bands to distinct 
MIDI instruments changing in pitch and velocity. The change in pitch is governed by the 
time distance between temporal extrema, whereas the sizes of the maxima serve as values 
for the touch of a MIDI instrument. They conclude that physiological regulation of SCPs 
can be learned with auditory and combined auditory and visual feedback, although the 
performance in the latter case is significantly worse than visual feedback alone. Recently, 
in [Hinterberger and Baier 2005] a real-time version, called POSER, of the above system 
is implemented. POSER stands for Parametric Orchestration Sonification of EEG in Real 
Time. In appendix XX the signal flow chart of their system is illustrated together with an 
illustration of the extraction of parameters. 
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6.4 Using Sonification for Identification of Artifactual Features in 
Time Courses 

 
As stated, the main interest of this thesis is auditory browsing through time courses in the 
interest of decontamination of the EEG signals by excluding artifactual contaminated 
time courses. Due to limited time the focus will be on eye blinks, though can be extended 
to the detection of multiple artifacts or, for example, displaying the amount of activity in 
each EEG band. The flowchart of sonifying a time course is illustrated in Figure 40, and 
this is also the general order of topics that are presented in the following sections. More 
specifically the topic of the following sections consists of the identification of eye blinks 
due to the lack of available data, examining simple features, creating a training and 
validation set, optimal window size test, leave-one-out method and cross-patient 
validation of the different classifiers, and finally using the output of the model as 
parameters for the granular synthesizer to produce a sonification of the degree of artifact, 
i.e. eye blinks, contamination of the time course. 

   

 

Figure 40. Flowchart of the process of sonifying a time course 

 

6.4.1 Extracting Relevant features for Eye Blinks 

 
The EEG data used in the following was recorded by Sidse Arnfred (senior researcher at 
the Cognitive Research Unit at the Psychiatric Department at Hvidovre Hospital) and the 
experiment conducted was equivalent to the visual-binding experiment presented in 
[Herrmann et al. 2004]. In the experiment, Arnfred also recorded her patients sitting in a 
relaxed state with their eyes open and this data was used to create a training and test set. 
Due to lack of time, eye blinks from only two patients were located. The initial analysis 
and preprocessing of the data was performed in EEGLAB. The initial steps included 
importing data into EEGLAB, referencing the data, assigning channel locations, high-
pass filtering (@ 0.1Hz) to remove DC drift, performing ICA and saving the resulting 
EEG-struct (generated by EEGLAB) for both patients for later use in Matlab. 

The identification of the components that capture the most of the eye blinks is a 
relatively easy affair for as strong as a signal as the one created by the blinking of the 
eyes. The identification process included comparing the signals recorded in the frontal 
electrodes, e.g. at the Fpz electrode, and the time courses and the corresponding scalp 
maps. Scalp maps with main energy in the frontal region, as shown in Figure 41 and 
corresponding time courses with signals resembling the form in Figure 38b, were found 
and these were used for the data for this experiment.  
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Figure 41. Scalp map of the component capturing the eye blinks 

 
 After having isolated the eye blink data, the next step in the process was choosing 
features that describe the eye blinks. This was relatively easy due to the fact that eye 
blinks distinguish themselves from other artifacts and greatly from other non-artifactual 
occurrences in the EEG signal. The two first features tested were variance and zero-
crossings. These features were chosen due to the fact that when eye blinks occur, as seen 
in Figure 38b or Figure 42, a change resembling a strong spike is observed. This large 
change from the remaining signal will be registered by the variance, whereas low number 
of zero-crossings should capture signals that do not oscillate around the zero, such as the 
eye blink. This prior information is used to make relevant features of the data, as 
suggested in section 2.1. Artifacts such as eye movement and perhaps the commencement 
of muscle activity, as shown in Figure 38c and e, could also be registered by these 
features due to their resembles of eye blinks. 

In Figure 42 the two features and the corresponding time course is shown. From 
the figure it is apparent that large values of variance and small values of zero crossings 
correlate with the presence of eye blinks. From this analysis it was decided that the 
features variance and zero crossings were good features for identifying eye blinks, though 
a further validation of the features is needed to confirm to what extent the features 
describe eye blinks. This was done by manually extracting the eye blinks from either 
patient to be used for generating eye blink features. The features extracted were then used 
as training and validation sets. Furthermore, the features from the eye blink sets were 
extracted for varying window sizes, due to the fact that an optimal window size was 
imagined. 
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Figure 42. The tested features compared to the time course signal capturing a large part of the eye 

blinks. A correlation is seen between eye blink occurring, and high variance values and a low number 

of zero crossings. 

 
 The variance of a signal depends on the strength of the signal and taking into 
account that the ICA components can have arbitrary strength some sort of normalization 
of this feature is needed. This was solved by normalizing with the variance of the window 
with the variance of the whole time course signal, as follows 
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The number of zero crossings was determined by calculating the number of sign changes 
occurring in a window. 
 Due to time constraints and the choice of good targets, there were only extracted 
37 eye blinks from patient 9, and 14 eye blinks from patient 6. The sparseness of the data 
encouraged the leave-one-out (LOO) method, described in section 2.5.1, for varying 
window sizes. The following section presents the results of the validation of the features 
for the varying window sizes and the different classifiers.  
 

6.4.2 Validation of the Features and the Classifiers 

 
This section presents the inference and evaluation procedure for several classifiers on the 
eye blink and non-eye blink data. As mentioned the LOO method was used as the 
validation technique due to sparse target data. This validation was done for all window 
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sizes for the two patients. The measure used to compare the classification performance of 
the different classifiers is the area under the ROC curve. The reason for this is due to the 
fact that the probability of an eye blink occurring was estimated to 1% and 3% of the 
total length of the data for patient 6 and 9, respectively. Thus, the accuracy measure is not 
adequate due to the fact that the number of negative cases is much larger than the number 
of positive cases. The probability of an eye blink occurring was estimated by 
 

 ( )
signalEEG  oflength  Total

 blinks eye oflength Mean blinks eye of no. Total
blinks eye

⋅=P   6.13 

 
It should be mentioned that the non-eye blink feature sets were created by selecting 1 – 
P(eye blinks) randomly from the remaining time courses for each training and validation 
instance. The results for the two patients are presented in Figure 43. 
 

      

Figure 43. Results of leave-one-out method for patient 6 (left) and 9 (right) with varying window 

sizes. In connection with chapter 2, the APCA also seems to work comparable to the FD even for 

non-experimental data. 

 
For every window size the LOO method was performed 14 and 37 times for patient 6 and 
9, respectively, and for every window size the mean area under the ROC curve is 
calculated and presented. The results show very good performance for all the classifiers.
 A test usually preformed when data is taken from different patients is Cross-
Patient (CP) validation method, which tests the generality of the model across patients. 
Thus, the training set stems from one patient and the validation from another. In Figure 
44, the CP validation method is preformed for both patients and for various window 
sizes. 
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Figure 44. Results of Cross patient method for two patients with varying window sizes. The solid 

lines show the results of training with patient 6 data and validating with patient 9 data (6-9), and the 

dashed lines show the results of training with patient 9 data and validating with patient 6 (9-6). The 
best results are generally obtained for larger window sizes, and when training with data from patient 

9 and validating with data from patient 6, though both give surprisingly good results. 

 
Due to the surprisingly good results for the CP test, the data from both patients 

were combined and the LOO method was performed on the 37 + 14 = 52 targets. The 
results of which are shown in Figure 45. From this it was decided to use the linear 
classifier as the discriminant function using a window size of 121 msecs, which is a 
trade-off between discrimination and the resulting length of the feature vector. The mean 
pooled covariance matrix and the mean means for both classes were estimated from the 
52 trials. These where then tested using the same LOO method though no training was 
preformed, since the parameters of the classifier already where estimated. The results 
from this were nearly indistinguishable from the results obtained in the former test, and 
thus these parameters were saved to be used in the decision making procedure (classifier) 
before the parameter mapping and sonification components. 
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Figure 45. Results of LOO method on the combined data from patients 9 and 6.  

 

6.4.3 Mapping of the Classifier Output to the Granular Synthesis 
Component 

 
The idea behind the browser is to allow the user to quickly sift through time course data 
and identify the ones that are contaminated with artifacts, i.e. in this case eye blinks. 
Since the time courses for EEG experiments are rather long (in this case just under 10 
minutes) some sort of further compression of the data is needed to generate sonifications 
of lengths that are not tiring to the user. A length of about 4-5 seconds was found (by the 
author) to be an acceptable length for the sonifications. Thus the sonifications give the 
user a rough estimate of where and how contaminated a time course is. This information 
is conveyed by using two sounds that are uniquely different depending on the 
classification of the linear discriminant, as illustrated in Figure 46. 
 

 

Figure 46. A schematic illustration of the information being conveyed by the sonifications. 

 
To insure that the user is able to differentiate between contaminated and non-
contaminated time courses the sounds are to be as different as possible, thus one could 
have sounds that are different in pitch and timbre. As described in chapter 5, the strengths 
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of these sounds are controlled by the probability of being in either class given the value 
of the features and the grain density specified in the granular synthesis, though, as shall 
be explained, this is done a bit differently due to the compressing of the signal.  
 The output from the linear classifier component is a vector v with values either -1 
or 1 indicating a detection of an eye blink or a non-eye blink, respectively. The time 
compression procedure chunks v it windows vwin and produces one value w, either -1 or 1, 
for each window. The value of w is determined by 
 

( )δλ -1>=∑
i

i

winvw        6.14 

 
where λ  is the window length and δ  is a threshold value. The values in vwin are summed 
producing a value between the [-λ , λ ] for each instance. Thus, if the threshold δ  is, for 
example, set to 1, then half of the values in vwin need to be classified as eye blinks before 
w is given the value -1. The output from the time compression component is a vector w, 
which is a compressed form of v. 
 The values in w now have to be conditioned to the granular synthesis component, 
which takes a matrix P with values between 0 and 1. This is done by what is christened 
the convert to pseudo probabilities component, and is preformed by 
 

   ( ) ( )[ ][ ]2/1-1    2/1tanh ++⋅= wwP c     6.15 

 
where c is a constant that determines the balance of the two sounds when either is 
detected. Equation 6.15 produces an n × 2 matrix, where n is the length of w. A flowchart 
of the process from the time course to the matrix P is shown in Figure 47.  
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Figure 47. A flow chart of the process from the time course to the creation of the P matrix. 

 
The threshold parameter δ  was adjusted so that for time courses with few eye blinks 
(<5%) where registered the percentage of non eye blinks classified in v would be the 
same as in w. For time courses with many eye blinks registered in v (>40%), thus where 
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eye blinks occur regularly, the resulting w gave close to 100% eye blink classification. 
Thus, when listening to the sonification of time courses with many eye blinks the main 
sound one hears is the sound connected to the contaminated sound, whereas the time 
courses with no eye blinks or little eye blink-ish waveform shapes, i.e. spikes, one mainly 
hears the sound connected with the non-contaminated sound, though, where there are 
spikes in the waveform one hears the sound connected to the eye blink sound. 

A graphical user interface (GUI) in Matlab was constructed to connect all the 
components and make an interface where it is easy to sonify different time course from 
an EEG-struct produced by EEGLAB.  
 

6.4.4 GUI of the Sonification procedure 

 
This section gives a brief overview of the GUI designed in this project, depicted in Figure 
48.  
 

 

Figure 48. GUI of the time course auditory browser. 
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The GUI was kept very simple with only the essential parameters assessable to the user. 
The main parameters are; 

• Choice of independent component. Corresponding to the time course sonified 
and scalp map displayed (top left hand side) 

• Choice of sounds. One can choose between several sounds (middle left hand side) 

• Perform sonification. (bottom left hand side) 

• Play sonification. (bottom right hand side) 
 

For the auditory browser to work one must have an EEG-struct from EEGLAB with 
the ICA components of the EEG signal in memory. An example of a typical way a user 
would employ the auditory browser could be: the user enters a component to be sonified 
and the scalp map of the selected component appears, if the sound type has been selected, 
one can create the sonification simply by pressing the Sonify-button, wait until the 
process is done and then press the Play-button to listen to the sonification. A further 
description of how to use the GUI and two small examples can be found in the enclosed 
CD-Rom, please see under folder “GUI and Instructions”. 
 

6.5 Conclusion 

 
Initially, a short introduction to EEG was given followed by a section on the artifacts 
present in EEG signals. Furthermore, a brief section on applying ICA on EEG for the 
purpose of artifact removal was presented, which led to a section on previous methods for 
EEG sonifications. Finally, a suggestion of how to use sonifications in auditory browsing 
of time courses with the intent to decontaminate the EEG signal when using the ICA 
method was presented. In this section descriptions of the features and of the validation 
procedure of the classifiers were included, together with a section were the author 
attempted to formalize the heuristic procedure of mapping the outputs of the classifier to 
an asynchronous granular synthesis. In connection with this a GUI of the browser was 
created to allow and encourage the reader to try the auditory browser. 
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Chapter 7 
 
 
 
 
 
 
 
 

7 Discussion  
 
The author believes that some statements that are repeated by many researchers paint a 
glorified picture of sonification as being a solution to the “limited” dimensionality of the 
visual system and thus proving useful for analyzing complex multivariate data. Is it clear 
how much information we can absorb and understand at one time? Does the auditory 
system allow comprehensible analysis of information in higher dimensionality than the 
visual system? These are important questions which the author is unable to answer, 
though feels are very important questions that need answering before statements such as 
the one presented above can be used as an incentive to use sonifications.  

Sonification, however, does allow data to be experienced in a new way, and can 
in some instances supply information that would not have been accessible otherwise. Can 
it then be specified in which instances using sonification will give a deeper understanding 
of the data? Like every method, sonification will not be the best choice for all problems, 
though, as mentioned, it does allow a new way of viewing data. A hint to this question 
could have been given by the examples of the Voyager 2 and the Quantum Whistle, 
where the information that was being sought was embedded in time series signals of high 
noise levels and was therefore unable to be perceived via the visual system.  

Using auditory displays leaves the eyes free for other important tasks that require 
the eyes fixed, for example, in many medical and critical monitoring situations. Here the 
concept of backgrounding is used, thus only drawing attention to specific information 
when unexpected states in the sonification, i.e. the data, are perceived, usually when large 
changes occur. 

Sonification may be a good aid for rapid screening of data since an auditory 
stream can be consumed with comparable little effort. Though usability tests proving 
where and why sonifications are superior to its visual counterpart are an invaluable 
source of information, and should be encouraged and possibly conducted with 
psychologists or psychophysicists. As mentioned earlier, the high temporal resolution, i.e. 
short detection times, of the auditory system allows the possibility of presenting data in a 
compressed form. Sound is also a good form of displaying time series data sets [Flowers 
2005] due to the fact that one can retain the time structure of the data. As in the auditory 
browser presented in this thesis, one can via sound not only detect if eye blink or eye 
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blink-ish events occur, but also when in time they occur. This is an advantage over static 
visual displays such as pie chart or numerical presentations of how many blinks were 
detected. 

When using sound one should refrain from using it in situations where it can 
interfere with speech communication or in open workspaces, where it can rapidly become 
annoying. Using bad sound quality or tiring sounds can also create fatigue and annoyance 
and will ultimately result in other solutions being found to convey the information. The 
limited ranges of loudness are a drawback of using sound. The ranges have to be in a 
range of pleasantness, i.e. presenting something too loud creates fatigue and annoyance, 
and presenting a sonification too soft makes the sonification sensitive to masking effects 
created by other sounds in the environment resulting in strenuous listening. The lack of 
orthogonality of auditory dimensions make sonifications become increasingly 
unpredictable the higher dimensions are used to convey the information. When working 
in this high dimensionality [Hermann 2002] best recommends the designer of a 
sonification to experiment until a solution is found that subjectively allows distinguishing 
the parameters of the sound. 

The cultural bias and the user’s ability to understand and interpret sounds play an 
important part in presenting data via sound. Musicians, for example, are better at 
discerning changes in sound than non-musicians. This leads to the learnability of auditory 
displays: inexperienced users might need to be trained in using auditory displays before 
they can yield the full benefit from these types of displays. Furthermore, experienced 
users may also require other sonifications and other interaction possibilities than 
inexperienced users [Flowers 2005]. A reason for this is that auditory displays are not 
common in conveying information and as with everything that is met for the first time 
some degree of familiarization is needed.  
 
The auditory browser presented in this thesis was intended to aid in the search of isolated 
artifacts in time courses for researchers that use ICA to form “decontaminated” versions 
EEG signals. Since the author used a lot of time on studying sonification literature and 
perhaps sidetracked and used too large a part on investigating the interesting possibilities 
of augmenting data sets for extracting relevant features in binary classification problems, 
the time remaining was limited. Due to this the only artifact taken into account was eye 
blinks, which is the easiest artifact to detect. This could of course be extended to include 
a search for more artifacts, such as muscle activity and line noise. A further extension 
could have been a search through ERP time courses for stimulus-locked, response-locked 
and non-phase locked activities as preformed manually in [Jung et al. 2001]. This could 
aid in finding “decontaminated” versions of ERP and the components that constitute the 
ERP. The auditory browser can be categorized as lying in between parameter mapping 
and parameterized auditory icons on the analogic/symbolic continuum. The reason for 
this is that the auditory browser does not represent analogically what is happening in the 
data, though does give a sense of the categorical time structure of the data.  

Instead of creating a model of eye blinks one could also have chosen to sonify the 
features of the eye blink. Sonifying the two features in this thesis is not a difficult affair; 
one could, for example, map one parameter to pitch and the other to a prominent 
dimension of timbre, such as brightness. However, if more features are needed in 
specifying other artifacts this kind of “feature mapping” becomes more difficult and less 
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intuitive. Therefore a model that classifies the multidimensional feature space and outputs 
values corresponding to which state it is in is a more general solution. One could argue 
that one removes oneself further from the actual data, due to the fact that the model only 
can identify the learned states from the current features, thus making it a less flexible 
approach if other searches for non-learned states are wanted, i.e. exploratory data 
analysis. However, exploratory data analysis and this form of monitoring are two separate 
tasks as suggested in [Kramer 1994 p. 15], and one could argue that new features can be 
extracted and the classifier updated only requiring the need to find a new way of 
representing the new state, making this approach a very flexible approach. Extending the 
feature space could have the result that other models types are needed, such as neural 
networks, relevance vector machines or Hidden Markov Models [Williamson and 
Murray-Smith 2003], though this does not influence the parameter mapping when using 
the probability outputs of the classifier. 

A feature that the author wanted to have added to the GUI was a “zoom” function, 
which is inspired by zooming in the visual domain. This would have allowed the user to 
listen to a short presentation of the time course, as it is now possible, and then be able to 
zoom in to listen to a more detailed representation of an interesting part of the time 
course. Thus, allowing the user the possibility to listen to a small area of the time course 
prolonged in time. This would perhaps have been interesting for ERP analysis, as 
suggested in [Mayer-Kress 1994]. Another, possibly farfetched, idea the author had was 
to use the scalp maps, i.e. the columns of the mixing matrix, to control where the sound 
in a three dimensional space originated from. Thus, if, for example, listening to the eye 
blink time course the sound generated would be perceived as coming in front of the 
listener. This would perhaps eliminate the need to present the scalp map in the GUI and 
for ERP analysis this could give an idea of where in the brain the process stem from and 
how they evolve in time. The author had imagined this best could be realized by using 
HRTF. Recently, in [Lokki 2005], HRTFs were used to create a three dimensional sound 
space to inform researchers in room acoustics in slow motion about the spatial 
distribution of early reflections and spectrum of each reflection. This was intended as a 
more intuitive investigation tool for room acoustic designers.  

As mentioned, the hypothesis of this form of browsing being more efficient and 
informative than the present form of analysis of time courses has to be tested, though was 
out of the scope of this thesis. Empirical research about learnability, reliability and 
usability are an important requirement for a more quantitative assessment of the 
performance of different sonification strategies and should be encouraged until a clearer 
picture of why sonifications work or do not work. This is important due to the fact that 
most of the mappings from data to sound are done in a heuristic fashion, requiring 
quantitative assessment of the sonification. It is suggested that a study must be done on 
the audience demographics [Walker and Kramer 1996], e.g. researchers in EEG, and 
thereafter the obtained knowledge should influence the choice of the testing technique(s) 
and the sonification, also including the GUI.  

For researchers that in the future are interested in the field of sonification one 
needs to have easy access to multiple sound synthesis techniques and sound 
transformation procedures. Having access and in-depth knowledge about these could 
make the mapping procedure easier and more intuitive.  
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Finally, the author reconfirms that, the frequently stated need for a flexible 
toolbox for sonification research and data exploration, still is in great demand. 
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Chapter 8 
 
 
 
 
 
 
 
 

8 Conclusion 
 
This project concerns auditory browsing based on monitoring the states (i.e. 
contaminated and non-contaminated) in EEG time courses. Features were extracted from 
the EEG time courses and a classification of these was performed. The granular synthesis 
technique was used to translate the probabilities of being in a state at a given time to 
auditory information. To ensure that relevant changes in the time course data were 
perceived when listening to the sonification; the classification component was an 
important part of the translation or mapping process. As a part of the classification study, 
the concept of augmented data sets for binary classification problems was investigated. 

The concept of augmented data sets was presented and a heuristically investigated 
in chapter 2. Here it was seen that the discriminatory value of the PCA increased to the 
level of linear discriminant functions. The results seemed to show that when using APCA 
the d + l eigenvector for small class labels in most cases gave the best results. The APCA 
procedure was tested on experimental data (chapter 2) in many dimensions and on real 
data (chapter 6) in two dimensions where it, in both cases, gave consistent results. 
Compared to other linear discriminant techniques, however, the APCA method is very 
computationally inefficient. Furthermore, a preliminary investigation of augmenting ICA 
(infomax) was also given. For data types of non-zero mean the AICA showed a general 
increase in discriminatory value when compared to ICA. For data types of zero mean, 
which are super Gaussian distributed, the directions of the column vectors in the mixing 
matrix seemed to correlate better with the directions of the data set than those obtained 
when ICA was run on the same data. Both the APCA and AICA are limited to binary 
classification problems and it is clear that further investigations of these methods are 
necessary to give a lucid and precise explanation of what is going on. 
  A brief introduction to auditory perception, and sound synthesis was presented as 
part of the understanding of the sonification procedure. Auditory perception and findings 
in this field are crucial to have in mind when designing sonifications and to understand 
the limitations of sonifications. Sound synthesis is a basic part in converting data to 
sound and in-depth knowledge of these techniques will aid the designer of auditory 
displays to perhaps more intuitively perform these mappings. A mapping of probabilities 
using asynchronous granular synthesis was presented and implemented, which was later 
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utilized for an auditory browser. The chapter on sonification gave an overview of the 
field of sonification and presented a section on the issues in designing sonifications 
where observations in auditory perception were related to sonification design. 
 In chapter 6 previous EEG sonification techniques were presented together with 
the design procedure of the auditory browser implemented in the course of the project. 
Furthermore, a GUI was designed to combine the components in an easy to use interface. 
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Appendix A: Hotelling’s T2 test performed accuracy 
differences between APCA and PCA for 100 trails of 
distribution 1 and 2. 
 
 

 

 

Results for distribution 1 presented as sorted by there accuracy differences 

 
A test for the mean value of the CCP differences to equal zero was preformed. 
Hotelling’s T2 was used, where the test hypothesis, about the mean vector �  being equal 
to a given vector � 0, is  
  

 0: 00 == µµH  

 
The results were 3.061 > F(1,99)0.999 = 6.9, thus the null hypothesis is not rejected for 
levels larger than 0.1%. 
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Results for distribution 2 presented as sorted by there accuracy differnces 

 
 

Here the results were 14.5559 > F(1,99)0.999 = 6.9, thus the null hypothesis is rejected for 
levels larger than 0.1%. This shows that APCA might have some advantage over FD for 
distributions with non alike covariance matrices. 
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Appendix B: Hotelling’s T2 test performed accuracy 
differences between AICA and ICA for 100 trails of data 
type 1 and 2. 

 
 
 
 

 
 
 
Here the results were 15.2651 > F(1,99)0.999 = 6.9, thus the null hypothesis is rejected for 
levels larger than 0.1%. This shows that AICA might have some advantage over ICA for 
distribution 2 – data with non-alike covariance matrices. 
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Appendix C1: Accuracy of APCA eigenvectors for higher 
dimensions as a function of class label. 
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Appendix C2: Accuracy of APCA eigenvectors for higher 
dimensions as a function of class label. 
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