Design of an asynchronous communication
network for an audio DSP chip

Master of Science Project

Informatics and Mathematical Modelling (IMM)
Computer Science and Engineering, division

Technical University of Denmark(DTU)

15 August 2005

SupervisorProf. Jens Sparsg
External supervisordohnny Halkjeer Pedersen
[William Demant Holding
Co-supervisor. Ph.D studenfobias Bjerregaard

Mikkel Bystrup StensgaardsQ01434

ABSTRACT

Abstract

This project investigates the replacement of the communication network in a multi-configurable
DSP-core developed bwilliam Demant Holding The existing network is implemented as a
subset of a fully connected network which contains many long wires that consume power and
complicates routing.

The existing network is replaced by 3 differguacket-switchedsource-routedasynchro-
nous networks, which solve many of the problems in the current network implementation. The
size of the networks are linear with the number of communicating blocks which makes it very
scalable, the networks are 'plug-and-play’ and can be ported to other applications, there are no
restrictions on which blocks that can communicate as in the current solution, and the networks
decouple the connected blocks which allows them to run in their own clock domain.

As the needed bandwidth is very low the networks are designed with area and power in
mind, and simple solutions are chosen for all design issues. The networks are implemented as
a binary tree omergerandrouter blocks, and both bundled data and-af-5delay-insensitive
data encoding are implemented and compared.

This report documents the design, implementation, synthesis, and verification of the net-
works. It also discusses the design choices in a number of different areas such as data-encoding,
network topology and how to implement multicasting. As the networks are designed as asyn-
chronous circuits, part of the report documents the implementation of these and how to handle
asynchronous circuits in a synchronous design flow.

Design of an asynchronous communication network for an audio DSP chip i

ACKNOWLEDGEMENTS

Acknowledgements

This master of science project has been carried out at the Technical University of Denmark
in close cooperation witWilliam Demant Holding | would like to thankWilliam Demant
Holding for the hospitality that you have showed me, for giving me inside information about the
Aphrodite chip, for letting me use your design flow and for letting me work at your facilities. |
am grateful to Johnny Halkjeer Pedersen fréfliam Demant Holdingor the time you spent
telling me about the Aphrodite chip, for integrating the developed NoCs into the existing system,
and helping me out on the design flow. There has been an increasing amount of work, that turned
up during the project. It has not been an easy task for you to find time to help me in your busy
schedule. Thanks a lot Johhny! Without your help the project would have been impossible.

In particular I would like to thank to my supervisor Jens Sparsg and Co-supervisor, Ph.D stu-
dent Tobias Bjerregaard. Your burning interest in Asynchronous circuits is a big inspiration, and
| would like thank you for always begin ready to share your experiences into the asynchronous
world and for the interest you both showed in this project.

Design of an asynchronous communication network for an audio DSP chip ii

CONTENTS

Contents

1 Introduction 1
1.1 Network-on-Chip. e 1
1.2 Previouswork e 3
1.3 Projectdescription. 3
1.4 Reportstructure e e 4

2 Background: Network-on-chips 6
2.1 OVEIVIEW o o e e e e e 6
2.2 Networktype e e e e e 6
2.3 Packetsandflits 7
2.4 Switchingtechniques 7
25 Routing 8
2.6 Guaranteeingbandwidth o0 o 9
2.7 Topology 9

3 Background: Asynchronous circuits 10
3.1 OVEIVIEBW o o e e e 10
3.2 TheC-element. e 11
3.3 Handshake protocols 12

3.3.1 Bundleddata. 12
3.3.2 Delay-insensitive encoding. L 0oL 13
3.3.3 Comparison e 14

4 Design methodology 15
4.1 OVEIVIEW . . . o o e e e e e e e e e e e e e 15
4.2 Standard cells and drive-strengths. 15
4.3 Basic asynchronous components 17

431 MUEX. e e e e e 17
432 C-elements. e 18
4.4 Complex asynchronous controllers 19
4.5 Bundled data design and asymmetricdelay. 22
4.6 Initializing asynchronous CirCcuits. oo 23

Design of an asynchronous communication network for an audio DSP chip

CONTENTS

5 The Aphrodite DSF 24
5.1 OVEIVIEW o o e e e e e e e e e 24
5.2 Configurablenetwork 24
5.3 Multicast e e 25
5.4 Clocks, dataflow and Lego2 protocol. 25
55 Sampleaddition e e 26

6 Specification of the Network interface 28
6.1 OVEIVIEW o o e e e e e e e e e e e e e 28
6.2 Adders. e e e 28
6.3 Networkports. e 29
6.4 Configuration. 30
6.5 FinalNoCinterface 32
6.6 Integrationinto Aphrodite. 32

7 Network design 33
7.1 OVEIVIEW . . . o o o e e e e e e e e e e e e e e e 33
7.2 TOpology 34
7.3 Dataencoding e 37
7.4 MURicast e 38
7.5 SUMMANY L e e e e e e e 41

8 Implementation 42
8.1 OVEIVIEW o o e e e e e e e e e e e e 42
8.2 Common network platform L o 43

8.2.1 NA,Network Adapter. 44
8.2.2 AN, Networkadapter. 45
8.2.3 Serializer. e 47
8.24 De-serializer. e e e 49
8.3 Specificnetworkblocks. L o 51
8.3.1 Bundled data networkblocks. 51
8.3.2 l-of-bnetworkblocks 51
8.4 Thenetworks. e 52
8.4.1 NoCl: Bundled data, multicastin NA. 52
8.4.2 NoC2: Bundled data, shared multicastblocks. 52
8.4.3 NoC3:lof5encoding, multicastinNA 53

9 Verification 57
9.1 OVEIVIEW . . . o o o e e e e e e e e e e e e e e 57
9.2 Maintestbench. e 58

9.2.1 \Verificationmodules. L o 60
0,22 Tests e e e 60

Design of an asynchronous communication network for an audio DSP chip

CONTENTS

10 Logic synthesis and simulation

10.1 RTL simulation
10.2 Logic synthesis
10.3 Gate-level simulation
10.4 Place and Route
10.5 Area and power estimates

11 Results and discussion

12 Conclusion

Bibliography

A

B

Design of an asynchronous communication network for an audio DSP chip

Synchronization

Cell library

CD contents

Network building blocks

D.1 Common blocks

D.2

D.1.1
D.1.2
D.1.3
D.1.4
D.1.5
D.1.6
D.1.7
D.1.8
D.1.9

D.2.1
D.2.2
D.2.3
D.2.4
D.2.5
D.2.6
D.2.7

serializer
Sequencar. oo
Sequencer en.,
D.1.10 Sequencer2
Bundled data blocks

Psink
D.3 1-of-5blocks

................

AM multicast
AM unicast

P_merge.
P merge tree.
P multicast.
Pnetwork.................

62

................ 62
................ 62
............... 63
................ 63

............... 63

64

................ 64
................ 64
......................... 65

............... 65
................ 67

70

73

74

76

78

............... 83
............... 84
............... 85
............... 86
............... 87
............... 88

CONTENTS

D.3.1 PC bundled 1of4. 96
D.3.2 PC 1of4 bundled. 97
D.3.3 S Iatch. e 98
D.3.4 S merge. e e e e 99
D.35 S merge tree. e 100
D.3.6 S network e 101
D.3.7 S router e 102
D.3.8 S router tree e e 103
D.3.9 S sink e 104
D.3.10 S SOUICe. e e e e e e 105

E Verilog Code 106
E.1 Celllibrary e 106
E.1.1 cell library.v. 106
E.1.2 cell library atb8000.v. 113

E.2 Networks e e 121
E.2.1 Converter. e e e e e 121
E.2.2 Converter P2 e 124
E.23 NoC. e 128
E.24 NoC P2 e 132
E.25 NoC S1 e 138

E.3 Commonblocks 144
E.3.1 global.v. 144
E.3.2 AM multicast 146
E.3.3 AM unicast 148
E.3.4 AN . . . 149
E.3.5 de serializer. 151
E.3.6 _Multicaster. e 154
E.3.7 NA . 157
E.3.8 serializer. e 160
E.3.9 Sequencer. 163
E.3.10 Sequencer_en. e e 164
E.3.11 SequencCer2 e e 165

E.4 Verification e 167
E.4.1 bfm lego2master. 167
E.4.2 Dbfm_lego2slave 171
E.4.3 Configuration e 175
E44 mutex. e e 178
E.45 noc top testbench., 179

E.5 Bundleddatablocks. 192
ES51 P merde. e 192
ES52 P _merge tree. 194
E.5.3 P multicast 197
E54 P network. e 199

Design of an asynchronous communication network for an audio DSP chip

CONTENTS

E.6

ES55 Prouter 201
E.5.6 P router tree 204
ES5.7 P sink e 207
1-of-5blocks e 208
E.6.1 PC bundled 10of4. 208
E.6.2 PC lof4 bundled.o 210
E.6.3 Silatch. 212
E.6.4 S merde. e 214
E.6.5 S merge tree. e 217
E.6.6 S network. e 220
E.6.7 Srouter e 222
E.6.8 S router tree 225
E.6.9 S sink 228
E.6.10 S soUrce. e e e 230

Design of an asynchronous communication network for an audio DSP chip

Vii

Chapter 1

Introduction

As CMOS technology advances, it becomes possible to design very large and complex circuits
on a single chip. Because the designs are so large and complex, the current trend is to combine
a number of predesigned reusable blocks such as microprocessors, digital signal processors
(DSPs), memories, input/output controllers, and special purpose data processing blocks. Some
of these blocks could be bought from other companies as "black boxes", while others might be
designed in-house. One of the major challenges for the designer is to create a communication
structure which allows the different blocks to exchange data.

A shared bus is one of the possible solutions the designer can choose from. A problem with
the shared bus is that the bandwidth becomes a possible bottleneck when many blocks are using
the same bus. Also, the capacitance of the bus raises dramatically with an increasing number of
connected blocks and length of the bus. This increases the power usage and decreases the speed
of the bus.

Another possibility is the fully connected network, where all blocks are directly connected.
The number of wires in a fully connected network is a second order function of the number of
communicating blocks, which makes it infeasible for a large number blocks. Even for a small
number of blocks the large number of wires complicates routing and each wire might require a
bus driver depending on the distance it spans on the chip.

Common for the shared bus and a fully connected network is that the designer faces a grow-
ing problem as more and more blocks are embedded on the same chip. As the same clock has
to be distributed over the entire chip, timing closure is an ever increasing problem. Because
of this, theSemiconductor Industry Associatiomadmap predicts that by 2007 many designs
will be Globally-Asynchronous Locally-Synchronous (GALS) where each block is running in
its own clock domain while communicating asynchronously. This can be accomplished by in-
corporating a small routing network on the chip, denoted a Network-on-Chip (NoC).

1.1 Network-on-chip
A NoC consists of a number of router nodes connected by point to point links. Flgiire

shows a simple example of a NoC where the router nodes are connected as a mesh topology.
This means, that the network can be expanded by adding new router nodes to the network,

Design of an asynchronous communication network for an audio DSP chip 1

1.1. NETWORK-ON-CHIP

S84 8% S84

i Block ;

Y
Y
Y

i
I

Bz Ry Ny
. Block . Block . Block
@T«> Rmé] Rota(r
nodg < nodg < noi
I Y
‘ T C O N

Block { Block { Block

Figure 1.1:Example of simple homogeneous NoC. Each block is connected to a router node
through a network adapter (NA), and the router nodes are connected in a mesh topol-
ogy using bi-directional links.

which makes the network extremely scalable. Because the router nodes are connected with
short point to point links, the need for large drivers are minimized, and it is possible to pipeline
the communication and thereby increase the bandwidth for a certain link width. One can say,
that the long wires are segmented into smaller pipeline stages, which increases the bandwidth
for a very small cost because the need for large drivers is no longer present. By sharing the same
links, the number of wires on the chip decreases significantly, and the homogenous structure of
the mesh topology makes routing a relatively easy task. By separating the blocks from each
other by means of the network, it is possible for the different blocks to run in separate clock
domains, such that timing closure can be done for each individual block instead of the entire
system.

The blocks are connected to the NoC through a network adapter, which could e.g. use the
Open Core Protocol (OCF]]. OCP defines a common standard for the interface between the
blocks and the network. In theory, this makes it possible to facilitate "plug and play" System-
on-Chip (SoC) designs, where any Intellectual Property (IP) block can communicate as long it
uses the OCP.

A block communicates by means of its network adapter, which sends data into the actual
network. The data is passed from router to router node until it reaches its destination. The
topology of the network does not need to be a mesh, and can for example be chosen such that
the number of wires to be routed for the specific application is minimized. A more in depth
overview of NoCs is given in chapt@r

The NoC can be implemented as both synchronous, asynchronous or a mixed solution. In
this project an asynchronous implementation is chosen. Some of the advantages are implicit
flow-control, no dynamic power consumption when idle, no clock to be routed in the network,
decreased electromagnetic emission, robust to process variations and battery voltages, and de-
creased electro migration. A short introduction to asynchronous circuits is to found in chapter
3.

Design of an asynchronous communication network for an audio DSP chip 2

1.2. PREVIOUS WORK

Figure 1.2:lllustration of the dataflow through the 'Aphrodite DSP’. The circles illustrates in-
dividual audio processing blocks and the arrows illustrates how data flows between
the different blocks.

1.2 Previous work

Currently, many universities are doing research in both synchronous and asynchronous NoCs.
Some of these NoCs are 'Nostrum’ from the Royal Institute of Technology in StockA@m [
'Xpipes’ from University of Bologna], 'Mango’ from the Technical university of Denmark

[6], and 'Chain’ from the university of ManchesteB]] The first three use the Open Core
Protocol (OCP), which relies on Read/Write transactions and the mesh topology as illustrated
in figure/1.1. As the router nodes implement 5x5 switches they are relatively large and contain
a considerable amount of buffers as they supply advanced features such as virtual channels
and guaranteed servidesThe OCP is not used in this project because this specific application
does not rely on Read/Write transactions as will be explained in the succeeding section. The
network designed in this project does not need to be this flexible and feature rich, thus the design
philosophy is to keep the network as simple as possible. The 'Chain’ network, which consists
of narrow asynchronous links, has such characteristics, and will be used to implement one of
the NoCs designed in this project.

1.3 Project description

In this project three simple asynchronous NoC solutions are designed and implemented for an
existing special purpose DSP, denoted the 'Aphrodite DSP’ or just 'Aphrodite’. The goal is to
replace the existing network with a NoC and compare these in terms of power and area.
'Aphrodite’ is a multi-configurable DSP-core for audio applications developeditliam
Demant Holding It consists of a number of audio processing blocks which are connected by
a small network. The network is used to set up a circuit-switched dataflow between the blocks
as shown in figurd.2. The circles illustrate individual audio processing blocks, and the arrows
illustrate how data flows between the different blocks. As the chip is to be used in a number of
different applications, the dataflow can be changed by reconfiguring the network. The network
used to configure the dataflow is currently implemented as a subset of a fully connected network

IChaptel2 goes into more detail about these terms

Design of an asynchronous communication network for an audio DSP chip 3

1.4. REPORT STRUCTURE

which has a number of disadvantages as already mentioned. In addition, the network is not
scalable as it is tailored to this specific application and must be redesigned if blocks are added
or removed. Also, as it is not a fully connected network, some of the blocks cannot communicate
at all. Even though design effort are used to design this network, there still are potential routing
problems due to the large number of wires. If the number of blocks are increased in future
versions of the chip, the size of the network would increase dramatically, making the current
network solution infeasible. In contrast a NoC is fully scalable and all blocks can communicate
which eliminates the need for any ad-hoc networks solutions. In theory, the NoC is ’plug and
play’ which decreases the development of new chips besides making it easier to do timing
closure, because the individual blocks are decoupled by the network.

Since the audio chip is a real application, and bec&iieam Demant Holdindhas helped
integrate the new NoCs into the original 'Aphrodite DSP’, it is possible to compare the existing
network solution with the suggested ones in terms of power and area. To my knowledge, NoC
has only been tested in academic applications or very small application with only 3-4 blocks.
This is therefore an exceptional opportunity to see how NoCs compare to a traditional network
solution and hopefully make some interesting and usable observations. Even though the size of
the network is small with only 12 communicating blocks, the needed bandwidth is very limited,
and the network utilization is low, this small application provides an example that asynchronous
NoCs are usable in real applications. If the NoCs turn out to use more power and area than the
existing network, it might still be a good solution in future generations of the audio chip.

The challenge in this project is not to design a large complex NoC, but instead to design
a very simple NoC which fulfill the needs in this specific application. The implementation is
kept as simple as possible and does not include huge amount of buffers, virtual channels or
guaranteed services. Design decisions are discussed in a number of different subjects which
include data encoding, network topology and how to handle multicasting. In order to implement
the NoCs, a design flow which allows the implementation of asynchronous circuits must be
established. A large part of this report is therefore about implementing the network using the
cell library used in the original 'Aphrodite DSP’ and how to handle asynchronous circuits in
the synchronous design flow used\Vatlliam Demant Holding Besides the actual network
many things such as network adapters, multicast controllers, and synchronization units must be
designed.

The report documents all the steps needed to design an asynchronous NoC using a standard
cell library, the implementation of 3 different NoCs, the integration of the NoCs into the existing
design, and a discussion of the results. The designs are not 'Place & Routed’, but mapped to
gate-level in a 0.1&m technology upon which estimates of the power and area are made.

1.4 Report structure

The report is structured such that chaffeand3 contain background information about NoC

and asynchronous circuits. Chap#mtroduces the design methodology and how to design
asynchronous blocks. ’Aphrodite’ is introduced in chajewhile chaptei6 defines a new
interface to the network such that the existing network can be substituted by a NoC. The actual
network designs are discussed in chagtand implemented in chapt& Verification is dis-

Design of an asynchronous communication network for an audio DSP chip 4

1.4. REPORT STRUCTURE

cussed in chapt& and notes about the logic synthesis and simulation flow are given in chapter
10. The results are presented and discussed in chabserd finally chaptel2 concludes what
has been archived in this project.

Gate-level implementations of all designed blocks can be found in app@ndind the code

for the blocks are included on the CD-ROM and in appeitli short description of the CD
content is included in appenc.

Design of an asynchronous communication network for an audio DSP chip 5

Chapter 2

Background: Network-on-chips

This chapter gives a general overview of NoCs and the different terms which are used to describe
them. Even though comments are made through the chapter concerning the specific application,
it can safely be skipped if such an introduction is not necessary.

2.1 Overview

Network-on-chip is a very broad term which simply states that some kind of communication
network is implemented on the chip. When designing the network, many choices and tradeoffs
must be made and the optimal network depends on e.g. the expected workloads, power con-
straints, physical constraints, number of communicating blocks, scalability, performance, and
ease of wire routing. This also means, that there is no network design which is perfect in all
applications and designs. The information used to write this section is mainly fouh#]in [

2.2 Network type

A network can be classified asshared-medium networknindirect network or adirect net-
work. Each type will be introduced in the following.

A shared bus is an example okshared-medium netwaorkvhere the network can only be
used by one block at a time. Due to the high number of communicating blocks the shared
network is not an option in this context. The bandwidth would probably suffice, but the ca-
pacitance of the bus would be very large because of the distance it spans and the number of
connected blocks.

Figure2.1 shows an example ofdirect network where each block interfaces the network
through a network adapter which is connected to a router node. The router nodes are connected
using either uni- or bi-directional links which allows data to be transferred between any of the
connected blocks. Indirect networkeach router node must be connected to a block, and router
nodes are considered part of the blocks. This means that the blocks are considered to be directly
connected, hence the temlirect network When a block wants to communicate, it sends data
to its network adapter which handles the actual communication. The router nodes do not need
a direct link to the destination router node, since data is transferred through intermediate router

Design of an asynchronous communication network for an audio DSP chip 6

2.3. PACKETS AND FLITS

S84 8% S84

i Block ; , Block i ., Block

Y
Y

=
A
23
22

=

é?‘ é?‘
. Block . Block
. Ve
ey =ty
¥ ¥
SN S 7
Block i}»»BIock i.n»BIock

Figure 2.1:Example of simple homogeneous NoC. Each block is connected to a node through a
network adapter and the nodes are connected in a mesh topology using bi-directional
links.

nodes. Because the blocks communicate with the network through a network adapter, they do
not need any information about the network implementation.

In contrast to thendirect networka direct networkalso contains independent router nodes
which are not connected to any block.

2.3 Packets and flits

The data which is communicated between the different blocks are encapsulatpddkéts
Depending on the used switching technique pheketcan contain a header with information
such as addresses of the destination nodes or the route to Be Besidles a header, tipacket

also contains a payload which is the actual data. If the size gfdbketis larger than the width

of the point-to-point links between two router nodes, plagketis partitioned into a stream of

flow control digits {lits) which are sent over the link one at a time. The size dftds the
number of bits which can be sent concurrently on a link and of course depends on the width
of the link. The width of the links do not need to be constant and can for example be varied in
different areas of the network depending on the bandwidth need for the specific link. Depending
on the implementation the number ftifs in a packetcan be constant or speciail flit can be

used to indicate the end of tipacket

2.4 Switching techniques

Communication is performed by forwardiqgcketsbetween the different router nodes till it
reaches its destination. This means that a router node must decide how to handle each received
packetas it can be sent on any of the outgoing links. This is denoted the routpaufketand

tSwitching techniques are introduced in the succeeding section

Design of an asynchronous communication network for an audio DSP chip 7

2.5. ROUTING

must be controlled using one of a number of different switching techniques. One possibility
is to applycircuit-switching where a path is reserved from the source block to the destination
block before sending any data. It takes some time to reserve the path but it is very fast to
send data when the reservation is compl€iecuit-switchingis especially useful for infrequent
communication of large lumps of data which is not the case in this application. This switching
technique also locks the router nodes such that other communication is blocked.

Instead, the data can be divided into snpaEtketswhich are sent one at a time and indi-
vidually routed. This is calleghacket-switcheg@ommunication, because eagacketis routed
individually instead of being sent using an already established r&ateket-switchedouting
exists in 3 different variants: The first is denostdre-and-forwardsince a route node receives
and stores an entiggacketbefore forwarding it to the next router node. This requires that the
buffers in the router nodes are large enough to contain an guatalket thus increasing both
the size of the router nodes and their latency.One major advantage jmthatscan be inter-
leaved through a router node and that deadlock cannot occur if the buffers are large enough. If
the packetonly consists of a singl#it the entirepacketcan be sent concurrently on theks,
making the switching inherentlstore-and-forward The second switching techniquevistual
cut-through switchingvhich basically works the same way astare-and-forwardexcept that
a router node starts forwarding tpacketbefore it has been received entirely. The buffers in
the router nodes are still large enough to contain an ep#ioief but the latency through the
network is decreased compared tetare-and-forwardhetwork. The last switching technique
is wormhole switchingvhich is the exact same thing astual cut-through switchingexcept
that the buffers are so small that they cannot contain an quaket This means that packet
always spans several router nodes and links. Ipteketis blocked for some reason, it can eas-
ily result in a deadlock. In order to avoid deadlocks special routing techniques can be applied
or virtual channelq8] can be introduced. A number eofrtual channelsshare the bandwidth
of a single physical link using for example time division or other sharing techniques. Each
virtual channelneeds its own separate buffer in the router node and circuitry must be added to
implement the sharing of the psychical link. Both increase the size of the router node.

2.5 Routing

The route of gpacketcan be eithedeterministigthat is, determined before tpacketis sent, or
adaptive where the route is determined dynamically on a per router node basic. &dhptive
routing is applied, a central routing controller or the individual router nodes determines the route
of eachpacketbased on the current traffic load in different parts of the network. In theory this
dynamically balances the load on the network and thereby reduces possible bottlenecks. If some
of the links suddenly start to malfunction, these links could be avoided. Since communication
between two specific blocks do not always take the same routeattletsmay arrive out of
order which further complicate things. All in alidaptiverouting leads to very complex, large,
and slow router nodes and is not an option in this project.

When the route of packethas been decided the router nodes must know how to route the
packet This can be done asetwork routingvhere thegpacketsimply contains a unique address
of the destination block. The router node then determines the route by looking in a routing table

Design of an asynchronous communication network for an audio DSP chip 8

2.6. GUARANTEEING BANDWIDTH

which can be changed dynamically by e.g. a central routing controller. This solution requires
large routing tables in each router node as well as circuity to look up the route. Also, the size of
the routing tables depends on the number of communicating blocks. Instead, the route can be
determined at the source block and contained in @acket This is denotedource routingand

makes the router nodes very simple, as they do not take any route decB@mnse routings
currently used in all the NoC articles that | have encountered because of the simple router node
implementation.

2.6 Guaranteeing bandwidth

Most NoC implementations use Best Effort (BE) routing where data is sent as fast as currently
possible. The time it takes foracketo arrive at the destination depends on the current network
load and is therefore dependent on other communicating blocks. Some applications require
the introduction of Guaranteed Services (GS) where 2 communication parties are guaranteed a
certain amount of bandwidth. This is the case in e.g. multimedia and audio applications where
guaranteed continuous streaming of data is required. Research has also been done in combining
best effort routing with guaranteed services. One approach, which is presen@jdismtp

provide GS by airtual circuit-switchednetwork by reserving a certain amount of bandwidth on
each link on the communication path. Instead of guaranteing bandwidth, one could also imagine
that network traffic is prioritized depending on the importance, thereby providing Quality of
Service (Qo0S).

2.7 Topology

The choice of topology depends on many different aspects such as number of communicating
blocks, scalability, ease of routing etc. A mesh structure, which is illustrated in Boljris the

most used topology because it extremely very scalable. The number of blocks can be increased
by adding new nodes without altering the existing layout. Also, the routing of wires can be done
very easily. Some of the disadvantages in this topology is that the nodes are quite complex as
they contain a 5x5 crossbar and a large amount of buffers. Other topologies include hyper-cubes,
binary trees, fat trees, hierarchical structures, hybrid solutions, and many more. A discussion of
which topology to use in this project is presented in chepiar

Design of an asynchronous communication network for an audio DSP chip 9

Chapter 3

Background: Asynchronous circuits

This chapter gives a short introduction to asynchronous circuits with emphasis on handshake
protocols and advantages over synchronous circuits. It is by no means a complete introduction
as the ones which can be found in textbooks as for exarf]e [

3.1 Overview

Traditional synchronous design consists of combinatorial logic separated by latches or registers
as illustrated in figur®.1a The slowest path through the combinatorial logic determines the
highest clock frequency at which the circuit can be clocked. Since all registers/latches are
clocked at the same time there will be a surge of power every time the clock ticks. These surges
lead to increased electromigration which decreases the lifetime of the chip and is an increasing
problem as technology size decreases. The power spectrum is highly non-uniform and contains
spikes at the clock-ticks which give rise to electromagnetic emission that can disturb analog
devices in the product. The non-uniformity also leads to lower battery time if the product is
battery driven due to the nature of batteries. If parts of the chip are idle for periods of time, as is
the case with a NoC, clock-gating must be explicitly applied to ensure that the registers/latches

ack

?

latch latch
A G v S e R L

& 18

¢

=~

cl

combinatorial combinatorial

logic logic

(a) Synchronous circuit. (b) Asynchronous circuit. The delay must
be larger than slowest path in the com-
binatorial logic.

Figure 3.1:In asynchronous circuits the clock is substituted with handshake controllers.

Design of an asynchronous communication network for an audio DSP chip 10

3.2. THE C-ELEMENT

a
albl|z] Z
0/0]0 b +C
0| 1 | nochange
1| 0 || nochange (b) Asymmetric C-element with function
111 1 z = ab+ za.
a [—

cn e

(a) Truthtable and symbolic representa- (c) Asymmetric C-element with function
tion of a 2 input C-element with func- z=b+z(a+b).
tionz = ab + z(a + b).

Figure 3.2:Truthtable and symbolic representation for different Muller C-elements.

are not clocked during idle periods.

In contrast, different parts of asynchronous circuits run at their own pace as registers/latches
are not clocked by a common clock. This is done by exchanging the clock with handshake
circuitry as illustrated in figur@.1kh Asynchronous circuits do not have any dynamic power
consumption during idle periods, and since no clock has to be distributed, the increasing problem
of clock skew and large clock trees are eliminated. As wires are getting taller, narrower, and
placed closer together, crosstalk is also an increasing problem in synchronous circuits. If a
delay-insensitive one-hot encoding is used, the problem with crosstalk is decreased because
wires which are routed together do not make transition at the same time.

There is no such thing as a free lunch. First of all the well-proven synchronous designflow
which is known by thousands of designers cannot be used directly, and commercial asynchro-
nous design tools are almost non-existing. As technology decreases the leakage current in-
creases heavily which means that the static power consumption is being a larger and larger part
of the total power consumption. As asynchronous circuitry tend to be larger than the equivalent
synchronous circuit, one of the major advantages might no be valid for future technologies.

3.2 The C-element

The Muller C-element plays a central role in the construction of asynchronous circuits. The
truthtable of a C-element with 2 inputs as well as its symbolic representation is shown in figure
3.2. The C-element implements the logic functien= ab + z(a + b) and is a state-holding
device. In contrast to an AND gate which indicates when the inputs are all 1, and an OR gate
which indicates when the inputs are all 0, the C-element indicates both. This is also known as a
join or rendezvous.

C-elements can also be asymmetric which means that not all inputs need to be the same for
the C-element to change state. For example the C-element in8dlimenplements the function
z = ab + za. Thebinput is denoted "plus" because it is only used in the rising transition. Both

Design of an asynchronous communication network for an audio DSP chip 11

3.3. HANDSHAKE PROTOCOLS

ack
I_ack
re
a 0 _ack L
time I_req
(a) lllustration of the 4 phases. (b) Implementation using a single C-

element and an inverter.

Figure 3.3:4-phase bundled data handshake. The data is valid whenever request is high which
is denoted thextended earlgata-validity scheme.

inputs still need to be "1’ for the output to change to '1’, but only inputeeds to be "0’ for the
output to go low. The C-element in figuB2bimplements the function = b + z(a + b). The
"minus” indicates that tha input is only used in the falling transition. Both inputs still need to
be 'O’ for the output to change to '0’ but only inpbtis needed for the output to go high.

3.3 Handshake protocols

Asynchronous circuits can be constructed using either bundled data or using a delay-insensitive
encoding. The 2 different possibilities are introduced in the following subsections.

3.3.1 Bundled data

All bundled data handshake protocols substitute the clock with handshake controllers, but keep
the combinatorial logic as illustrated in figuBelhh A delay which is larger than the slowest
path in the combinatorial logic must be inserted in the request wire.

The simplest and widely used handshake protocol is the 4-phase (Return-to-Zero) bundled
data protocol as illustrated in figuBe3a As the name '4-phase’ indicates, the handshake con-
sists of 4 phases: 1) the sender raisesefaestire to indicate that data is valid, 2) the receiver
raises thecknowledgavire to indicate that the data has been received and latched, 3) the sender
lowers therequestwire, 4) the receiver lowers trecknowledgevire which completes the hand-
shake cycle. Figur8.3bshows an implementation of a latch controller which is known as a
Muller pipeline'. Each stage implements such an un-decoupled 4-phase latch control circuit
using a single C-element and an inverter. The controller is denoted un-decoupled because the
incoming and outgoing handshakes of the controller are strictly coupled. This means, that two
succeeding latches cannot contain data at the same time. The two handshakes can also be fully
decoupled but this increases the complexity of the latch controller as well as the propagation
delay. Details about the implementation of different 4-phase latch controllers can be found in
[9]. In the Muller pipeline from figur®.3 the sender starts the handshake cycle which is known
as apushscheme because the data is pushed by the sender. In contrast the handshake is initiated
by the receiver in theull scheme by raising thequestwire to indicate that data can safely be

INamed after the inventor

Design of an asynchronous communication network for an audio DSP chip 12

3.3. HANDSHAKE PROTOCOLS

0_ack
7 i do | d1 || meaning
\ (0 |0 || Empty i | C oo
) L 0 1 1 |

110 |o Ldi } o

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 7 . k

e 1 |1 Not used Lo f—r 2
(a) lllustration of the 4 phases in a logic '0’ and (b) Truthtable. (c)A dual-rail latch
logic '1". implemented using

C-elements.

Figure 3.4:4-phase dual-rail handshake. The request signal is implicitly given as the data lines
are using a one-hot encoding where they are mutual exclusive.

sent. As indicated on figui® 3¢ the data is expected to be valid wheguestis high which is
denoted thextended earlgata-validity scheme. Differemtata-validity schemesxists, which
defines in which part of the handshake data is vdlg].[

The handshake can also consist of 2 phases (non-Return-to-Zero) instead of 4. This de-
creases the number of transitions in the handshake cycle but complicates the handshake cir-
cuitry. It is also possible to combine thequestandacknowledgevires into a single wire. As
the wire is driven by both the sender and receiver, it must have high impedance to keep its value
when it is not driven.

3.3.2 Delay-insensitive encoding

Another possibility is to use delay-insensitive encoding where the data is encoded using a one-
hot scheme. The simplest example is called dual-rail where each bit is encoded into two wires
as illustrated in figur8.4. The truthtable for the encoding and a pipeline stage which employs a
4-phase protocol is shown. The 4 phases of the handshake are: 1) the sendé taigeticate

a logic '0’ or d1 to indicate a logic '1’, 2) the receiver raises theknowledgeavire to indicate

that the data has been received and latched, 3) the sender kiéts4) the receiver lowers

the acknowledgeavire which completes the handshake cycle. Note that the 2 wires are mutual
exclusive and the request signal is implicitly given. It takes 4 transitions to communicate 1 bit
independent of the data value.

Several one-hot lines can be combined into a bus by using a special 'completion detection’
unit which detects when data is present on all lines and when all lines have returned to zero.
This is normally implemented using a C-element or a tree of these if necessary. When several
one-hit lines are combined into a bus they are using a sackrowledgevire.

Instead of encoding a single bit into 2 wires, a higher order encoding could also be chosen.
As an exampléd.-of-4encoding could be employed where 2 bits are encoded into 4 wires. The
advantages are that 2 bits are transferred using the same number of transitions as it takes to
transfer 1 bit in a dual-rail implementation. The size of the 'completion detector’ also decreases
compared to the dual-rail as the number of lines for a N-bit word decreases. If the number

Design of an asynchronous communication network for an audio DSP chip 13

3.3. HANDSHAKE PROTOCOLS

Protocol Wires | Transitions
Bundled data (Return to zero)N+2 | avg(N)+4
Dual-rail 2N+1 | 2N+2
1-of-4 2N+1 | N+2

Table 3.1:Number of wires and transitions for 3 different data encodings using a 4-phase pro-
tocol where N is the number of bits in a data word. The probability of ‘0’ and '1’ are
assumed to be 50% for both.

of wires do no contribute to the power consumption, 8 bits of data could be sent using just 4
transitions using 4-of-256encoding.

As with the bundled data protocol, a 2-phase protocol could also be chosen but this compli-
cates the circuitry.

3.3.3 Comparison

Table3.1 lists the number of wires and transitions used to transfer a single word of N bits
for a selection of 4-phase protocols. The number of wires includesckrowledgandrequest

wires. Note, that the number of transitions is constant for the one-hot encodings while it depends
on the actual data for the bundled data. | assume that the probability is 50% for both 0’ and '1’
and that the data lines returns to zero after each handshake. This might not always be the case.

The advantages of one-hot encoding are that there is no need for matched delays and the
circuits are truly delay-independent. This means that the circuitry will work no matter how large
the wire and gate delays are. After the chip has been manufactured it will work independent of
the temperature, process variations, and even supply voltage. The speed of the chips will differ
but will work as expected. A delay-insensitive implementation is used in some high bandwidth
network chips because it is possible to make them operate at very high speeds. It might also be
an advantage that the number of transitions is independent of the actual data as this makes the
power usage predictable.

Some of the disadvantages are that at least two wires are needed for each bit, that normal
combinatorial circuits cannot be used, and that the corresponding one-hot implementation is
potentially much larger and slower. In this project the network is not doing any computation
which means that a one-hot encoding might be a good solution.

Design of an asynchronous communication network for an audio DSP chip 14

Chapter 4

Design methodology

This chapter describes how the asynchronous blocks are designed and implemented at gate-level.

4.1 Overview

As it will be explained in chapte8 the networks are constructed by connecting a number of
small carefully designed building blocks. These block consists of a mix of speed-independent
control circuits and bundled data circuits. Logic synthesis tools are specialized in synthesis
of synchronous designs and cannot be uses in the synthesis of asynchronous circuits. In this
project, the asynchronous circuits are designed by deriving a set of speed-independent boolean
expressions which are implemented as netlists of standard cells. The designs are marked as 'do
not touch’, such that the logic synthesis tool does not optimize the circuits.

In the following sections the design of asynchronous controllers are explained in a bottom-
up fashion starting from the use of standard cell libraries and all the way to the finished blocks.
This includes including complex asynchronous controllers, matched delays in bundled data cir-
cuits, and how to handle initialization.

4.2 Standard cells and drive-strengths

In this project asynchronous controllers are designed as a netlist of standard cells. Since the
delay through each cell is carefully timed, we cannot use automatic drive-strength optimization.
Instead, each standard cell is implicit instantiated including the drive-strength. This allows us
to carefully control the delay through each block as well as the capacitance on the inputs and
drive-strength of the outputs.

Many cells in a standard cell library exist in 2-5 different versions with different drive-
strengths. Increasing drive-strength means that the cell has larger fanout and thereby can drive
more cells, but the size of the cell as well as the typical propagation delay increases. In some
standard cell libraries the input capacitance of the cell increases as well. The standard cell library
which is used in this project has almost constant input capacitances for all drive-strengths except
inverters, buffers, and high-performance gates. The input capacitance for a cell with drive-
strength 1 are denotahit input capacitancethrough the rest of the report. In the 0.18:

Design of an asynchronous communication network for an audio DSP chip 15

4.2. STANDARD CELLS AND DRIVE-STRENGTHS

process used in this project, the unit input capacitance is 40-60 nF. A cell with drive-strength
1 can drive approximately 4 inputs with unit capacitance at maximum speed. If the fanout
is larger, a cell with a larger drive-strength must be used, or the signal must be buffered to a
larger drive-strength. The buffering is normally done in a number of stages with an increase in
drive-strength by a factor 3-4 in each stage as this gives a good performance.

It would be nice to have a tool which could automatically choose the optimal driven-strengths
of each instantiated standard cell, but unfortunately no such tool exists for asynchronous circuits
at this point of time. An automatic tool could also identify the longest paths in the circuit and
slow down other paths to decrease the used power and area.

Instead, the drive-strengths are chosen manually based on some simple rules of thumb which
gives a good, but not optimal, solution. There is room for optimization in the size, power-usage
and speed of the circuit by choosing more optimal drive-strengths. Circuit optimization is not
important in this project since the purpose is not to produce a highly optimized solution, but to
show the concepts of an asynchronous NoC. Doing this kind of optimization by hand takes a
long time and the drive-strength must be recalculated every time the circuit is changed, or the
standard cell library is replaced.

Generally, the blocks are designed such that the outputs have a drive-strength of 1 and the
inputs have unit capacitances. While this might not be optimal in terms of power, speed, and
area, it is a good comprise that makes it easier to connect the blocks as all inputs have the same
capacitance and all outputs have the same drive-strength. Inside the individual blocks, cells with
drive-strengths 1 are used as a cell seldom drives more than 4 other cells. If a cell drives more
than 4 inputs a cell with a larger drive-strengths is used or a buffer is inserted. Since most cells
in the used standard cell library have unit input capacitance, independent of the drive-strength,
a cell with larger drive-strength is generally used in this project. By ensuring that all cells have
unit input capacitances, the drive-strength of a cell is only dependent on the number of cells that
it drives. If this wa not the case the drive-strength of a cell would be dependent on the number of
cells that it drivesand the input-capacitances of these. Since this blows up the complexity of the
problem, it is ensured that inputs always have unit capacitances. If a cell library is used where
the input capacitances increase with the drive-strength, a buffer should be used at the output of
a cell with drive-strength 1.

In some of the small asynchronous controllers it might be beneficial to use standard cells
with drive—strength} which are both faster and use less power.

The following summarizes how to choose the drive-strengths of the cells:

e Outputs of blocks have drive-strength 1 and inputs have unit capacitance.
e Generally cells with drive-strength 1 are used
e If a drive-strength larger than 1 is needed, a cell with this drive-strength is used if:

1. Such a gate exists
2. The inputs to the cell still have unit capacitance

If this is not the case a buffer where each stage increases the drive-strength by 3-4 is
inserted instead

Design of an asynchronous communication network for an audio DSP chip 16

4.3. BASIC ASYNCHRONOUS COMPONENTS

i_request; }E_ql
—‘ ~>O—— 0_grantl
] 4‘ So——o_grant2
i_request? }{qz -9

Figure 4.1:implementation of a mutex.

¢ Inside the asynchronous controllers, cells with drive-strength 1/2 are used in some cases.
(but outputs of the block must still have drive-strength 1).

4.3 Basic asynchronous components

In order to design asynchronous controllers a few asynchronous elements, which do not existin a
ordinary cell library, must be created. This is the mutex and a collection of different C-elements.
Since custom cells are hard to implement and must be re-implemented if a new technology is
used, it is an advantage to construct these from available standard cells.

4.3.1 Mutex

The mutex is a component which ensures that two signals are mutually exclusive. This is used
to control access to shared blocks and is used when 2 busses are merged into one. It consists of
two inputs and two outputs, and its function is to ensure that at most one of the outputs is high
at any point of time. Figurd.1 shows how this is implemented using two crosscoupled NAND
gates and 2 inverters. The 2 NAND gates handle the actual arbitration while the 2 inverters act
as a metastability filter to ensure that the outputs are never high at the same time. In the initial
state both inputs are low, the two intermediate naglgglands_g2are high, and both outputs

low. If i_requestlbecomes highs_qglgoes low which ensures thatg2stays high independent

of i_request2and thato_grantlbecomes high. The behavior is similai ifequestzbecomes

high. The arbitration comes into play if the two inputs become high at the same time. First, the
voltage ats_qglands_qg2will drop to about half of the supply voltage and enter a metastability
phase where the two NAND gates are trying to drive their respective outputs low. Eventually
one of them "wins" the race and eitterglor s_g2goes high while the other goes low. During

this metastability phase it is extremely important that none of the outputs becomes high as both
of NAND gates could turn out to be the "winner" and create a hazard on one or both outputs.
The two inverters work as a metastability filter which makes sure that none of the outputs go
high when the intermediate nodes are in the metastability phase. The threshold voltage of the
inverters is therefore important and must be well below half of the supply voltage. The shown
metastability filter is just one of many possible implementations, but common is that a detailed
analysis must be made at transistor level using the parameters from the used cell library.

Design of an asynchronous communication network for an audio DSP chip 17

4.3. BASIC ASYNCHRONOUS COMPONENTS

There are several problems during simulation with the illustrated implementation. Both
problems are due to the fact, that simulators only do binary simulation on logic-levels 0 and
1. First, the simulator enters an infinite loop when both inputs become high at the same time,
which deadlocks the simulation and makes both outputs infinitely alternate between 0 and 1.
Second, the metastability filter does not work at all. Both problems are simulator specific and
can be considered &alse errorsbecause they will never happen in the produced chip.

One way to get around this is to do synthesis as normal and replace the mutex with a behav-
ioral model during simulation. This means that the area estimates are made with the real mutex,
while the delay and power estimates are made with a behavioral model. The SDF file which con-
tains the timing of the mutex must therefore be changed to contain the estimated propagation
delay of the mutex.

In this project, the behavioral version is used when simulation on RTL level while at netlist
version is used when simulation on gate-level. Simulation on the mutex, shows that the it works
as expected but that it sometimes produce a glitch on one of the outputs. This is not a problems,
since the blocks which contain the mutex do not malfunction because of a small glitch. If the
mutex was used in other blocks, it might has to be replaced by its behavioral version.

4.3.2 C-elements

The C-element is a state holding component which indicates when all its inputs are either 0 or
1. C-elements can be implemented in a number of different ways which all capture the correct
functionality. The number of inputs often determines which method that takes up the least area.
Ont method is to implement the C-elements using complex gates. Since standard cell libraries
do not always have the same types of complex gates, the C-elements probably have to be re-
implemented if the cell library is replaced. Fig@t&bshows a possible implementation of a 2
input C-element using a complex gate containing a feedback loop, such that it implements the
functionz = ab+ z(a + b) = ab + zb + za. The C-element can be reset to 0 by setting all the
inputs to 0. This might not always be possible during the reset phase and by inserting an AND
gate in the feedback loop, it is possible to reset it to O by setting just one of its input to zero. One
could insert the reset gate at the output instead, but this would increase the propagation delay of
the cell.

Figure4.2¢shows the implementation of a 3 input asymmetric C-element with the function
z = abc + z(a + b) = abc + za + zb . Thei_cinputis a "plus” input which must be 1 for the
output to go high, but does not need to be 0 for the output to go low.

Since the C-element is not an atomic cell but created of a complex gate with a feedback loop,
some assumptions must be made concerning the environment and the routing of the feedback
loop in order to avoid hazards. This is best illustrated by inspecting the karnaugh map of the 2
input C-element implementation which is shown in figdta The dotted areas represent the
min-terms,F indicates that the output is doing a falling transition &nthat the output is doing
a rising transition. A dynamic hazard can occur if both inputs are 1 and the output is making a
rising transition from state 3 to state 7. Just as the output changes to 1, the environment changes
botha andb to 0 before the two min-terms have taken over. This means that the output might
change to 0 and afterwards become 1 for at short period due to one of the other min-terms.
The problem is that one min-term is "taking over" from another and is an important issue when

Design of an asynchronous communication network for an audio DSP chip 18

4.4. COMPLEX ASYNCHRONOUS CONTROLLERS

> 0 01 11 o1
0 1 3]2
0o 0O 0O/ R|O
4 5 T B
1 F |12 1
(a) Karnaugh map of 2 input C- (b) 2 input C-element with logic func-
element with the logic func- tion: z=ab+z(a+b).

tion z=ab+z(a+b).

i_reset b
-
i_a
—>
i_b 6z —> _
5 /_C
ic — Reset
—>
(c) 3 input asymmetric C-element with(d) Larger C-elements can be constructed from
logic function: z=abc+z(a+b). a 2 input C-element and a set and reset func-
tion.

Figure 4.2:implementation of different C-elements.

designing asynchronous components.

In order to avoid this hazard the feedback connection must be stabilized before both of the
input changes. | presume that the feedback loop is routed locally, and, as | only include the
delay of an OR gate in the feedback loop, this should be the case. The C-elements can also
be implemented using simple gates, but this increases the problem with hazards and demands
further assumptions about the routing.

If C-elements containing many inputs are needed, it might not be possible to design them
using a single complex gate. Instead a 2-input C-element can be used as a state-holding device
with a set and reset input as illustrated in figdt8d A latch with asynchronous set and reset
input can also be used. This method might take up less area for large C-elements. Note, that the
set and reset logic must be designed such that it does not produce any dynamic or static hazards.

4.4 Complex asynchronous controllers

When designing complex asynchronous controllers a tool is needed to ensure a hazard free im-
plementation. In the project | have used Petrif}\Wwhich can be used to synthesize Petri nets

Design of an asynchronous communication network for an audio DSP chip 19

4.4. COMPLEX ASYNCHRONOUS CONTROLLERS

and asynchronous controllers. Petrify takes a Signal Transition Graph (STG) which describes
the behavior of the asynchronous controller and generates speed-independent boolean expres-
sions. The output can be implemented using either complex gates, C-elements, or technology
mapping. | have not looked into Petrify’s ability to do technology mapping and have instead
concentrated on complex gates and C-elements. When using C-elements, Petrify produces a set
and reset function as illustrated in figi#e2d while it produces complex boolean expressions
when requesting a complex gate implementation. For this project | have used the complex gate
option as it produced the smallest circuits. This is because the controllers are quite small. If Pet-
rify gives a solution which requires a complex gate that does not exist in the standard cell library,
the C-element option must be used instead. The graphical tool, Visual STG Lab (VZ[,GL)[
which is developed at DTU was used to design the STG's.

To illustrate the design of a complex asynchronous controller | have chosen to go through
the design of @equencewhich is a simple 4-phase handshake generator. FiGeshows the
symbol of thesequenceand its inputs and outputs. Basically, it accepts a handshake on the left
hand side and generates a handshake on the right hand side before completing the handshake
on the left hand side. In addition to this functionality theck line can alternate when the
sequenceis currently not performing a handshake. This is because a numbegoéncerare
handshaking on the samequestandacknowledgevires, why thel_ackwire must be ignored
when thesequencers not currently performing a handshake.

The STG, which describes the order of events fordbguenceris shown in figured.3h
Even though the STG captures the wanted behavior, the functionally is best understood by going
through the order of events: l)ack can make a humber of alternations if otlsequencers
are performing a handshake. i2yeq goes high to indicate the a handshake must start. 3)

A 4-phase handshake is performedmmeq andi_ack 4)o_ack is driven high to indicate
that the handshake has been completed on the right side.a& can make a humber of
alternations if othesequencerare performing a handshake.i6jeq goeslow ana_ack is
driven low to finish the handshake.

Figureld.3c¢shows the output of petrify using complex gates. The boolean expressions for
0_ack andcscO can be identified as asymmetric C-elements and 2 possible gate-level im-
plementations of the controller is shown in fig@&dand4.3e One very important note is
that Petrify assumes that the complex gates exists with both inverted and non-inverted inputs.
As it was not possible to design C-elements with inverted inputs using the complex cells in the
used standard cell library, inverters are inserted manually. Petrify produces speed-independent
boolean expressions which assume that wire delays are zero. Wire delays can be lumped into
the gates, except when there is a fork as for example theandi_req signals in figurét.3d
The delays from the fork to all end-points should be identical which in asynchronous literature is
denoted amsochronicfork. As the designed circuits are normally very small, it is ok to assume
that this is the case except when inverters are inserted. This is the case for the implementation
in figure4.3dand instead the inverters are removed from the fork as shown in HoBee

Design of an asynchronous communication network for an audio DSP chip 20

4.4. COMPLEX ASYNCHRONOUS CONTROLLERS

i_req+

A/q\ P /\P 4
o_req+ v
0_reg- [i

i_ack-
i_ack- P é/q\%i
ir or
1o o |

i_ack+

Sequencer
(a) Symbol. (b) STG specification.

..

th
g
'«

i

EQN file for model sequencer3

Generated by petrify 4.2 (compiled 5-Jul-04 at 11:55 PM)

Outputs between brackets "[out]" indicate a feedback to input "out"
Estimated area = 8.00

INORDER = i_req i_ack o_req o_ack cscO;
OUTORDER = [o_req] [0o_ack] [cscO];

[o_req] = i_req cscO;
[o_ack] = cscO’ (o_ack + i_ack’);
[cscO] = i_ack’ cscO + i_req’;

No set/reset pins required.
(c) Output from petrify.

(d) Gate level implementation 1. The forkssatl and(e) Gate level implementation 2. All forks can be con-
i_req cannot be considereidochronichecause sidered assochronic
of the inverters.

Figure 4.3:Thesequencecircuit which performs a 4-phase handshake.

Design of an asynchronous communication network for an audio DSP chip

21

4.5. BUNDLED DATA DESIGN AND ASYMMETRIC DELAY

0_req o_data

inputE E E E output

(b) Symmetric delay implementation.

input

output
i_reql i_reg2 i_datal i_data?

(a) The delay must be matched such (c) Asymmetric delay implementation.
that request does not go high till
0_datais stable.

Figure 4.4:Delay must be inserted in the request path in the bundled data design.

4.5 Bundled data design and asymmetric delay

When designing a component which uses the bundled data protocol, a matched delay must be
inserted in the request line as described in cha®ttrThe matched delay must be larger than

the worst case latency of the functional block. Figdréaillustrates a typical scenario which

is encountered when designing a component for a bundled data network. The circuit takes 2
request lines and 2 data lines as input and outputs a single data value and request. The input
request lines are assumed to be mutual exclusive and control which of the 2 data inputs that are
to be outputted. According to the protocol thedataline must be stable before reqgoes high,

why a delay must be inserted before the output. This delay must be large enough to account for
the extra gate-delay which is contributed by the AND gate, but also include the delay which are
caused by wires and cross capacitances. In this case the data is a single bit, but it might be a bus,
which means that the request is driving several AND gates. It might even be necessary to insert
buffers to increase its drive strength. All these delays must be accounted for in the matched
delay and is a good example that we want to be in control of the used gates such that we are
sure to insert enough delay. As it is hard to predict the exact delay of the circuit, the matched
delay must be quite conservative. On the other hand the delay should not be too large, as this
will tslow down the circuit and the delay element will be larger and consume more power. In
order to validate that the delay is large enough, the circuit has pielse and routeed and the

delay back-annotated.

Figurel4.4b shows a simple delay implementation which consists of a chain of inverters.
This delay is symmetric as tHew—high andhigh—low transitions takes the same amount of
time. In a 4-phase protocol an asymmetric delay is preferable dgghe-low transition only
decreases the speed of the circuit. One possibility is to use non-balanced buffers, since their
high—low propagation delay is roughly twice the size of tHeiv—high propagation time. An
inverter must be inserted before and after the buffers, such thdowhehigh transition that

Design of an asynchronous communication network for an audio DSP chip 22

4.6. INITIALIZING ASYNCHRONOUS CIRCUITS

s g] S

Figure 4.5:Initialization ripples through the circuit.

has the largest propagation delay. Figdrdc shows another possible implementation of an
asymmetric delay where law—high transition has to propagate through the entire chain of
AND gates. In contrast, high—low transition are propagating through all the AND gates in
parallel and therefore has a propagation delay of a single AND gate. In complex bundled data
circuits which contain large portions of combinatorial circuits, more advanced delay techniques
could be used to improve performance. E.g the delay could depend on the data values as these
might influence the longest path. This not an issue in this project as the longest path are always
constant in the implemented network blocks. Also it is beyond the scope of this project to make

a study of asymmetric delay implementations.

4.6 Initializing asynchronous circuits

Before an asynchronous circuit can be used it must be brought into a known state. That is, it
must be initialized properly. One way to achieve this is by adding controllability to the outputs
of all asynchronous cells. Since this controllability is implemented by adding a number of gates
it increases the area, power usage, and propagation delay of the circuit. A better way is to insert
controllability in a few places and make sure that the initialization will ripple through the circuit.
Figure4.Sillustrates how a Muller pipeline is initialized by setting reqto 0. Since the only
input to the pipeline is then_reqand the other input to the first C-element is in an unknown
state, the C-elements must contain a reset signal. This allows it to be reset when just one of its
inputs are set to 0.

When an asynchronous circuit is designed, the properties which ensures a proper initializa-
tion must be noted. This includes which inputs that must be set to a certain logic value and the
time it takes for the reset to propagate.

Design of an asynchronous communication network for an audio DSP chip 23

Chapter 5

The Aphrodite DSP

This chapter gives an overview of the Aphrodite chip for which a NoC is designed. Focus is
kept on the configurable network which is to be replaced.

5.1 Overview

'"Aphrodite DSP’ is a multi-configurable DSP-core for audio applications develop&uiligm
Demant Holding It consists of a number of audio processing blocks which can be connected
different ways using a circuit-switched configurable network. An example of such a dataflow
was shown in figurd.2 on page3. The DSP blocks include microphone inputs, headphone
outputs, audio processing blocks, and an interface to a digital microprocessor. A block does not
necessarily contain one input and one output but can contain any number of inputs and outputs.

The network is configured using a special configuration bus which enables the same DSP to
be used in many different audio applications. The configuration can even be changed at run-time
without resetting the system.

There is a total of 16 input ports and 12 output ports in the network, and generally samples
of 18 bits are communicated between the different blocks with a few cases of 16 bits. In the
case of 16 bits, the sample is appended 2 bits to make it 18 bits as well.

5.2 Configurable network

The current network is implemented as a subset of a fully connected network. In a fully con-
nected network each input port in the network is connected to all possible output ports. This
gives a total ofl8n,n; wires, when the data is 18 bits; is the number of input ports, and,
is the number of output ports. Since many of these connections are not used in any feasible
configuration they are removed from the design. The result of this process is a subset of a fully
connected network, where each input port is only connected to a subset of the output ports as
illustrated in figures. 1.

Since several input ports are connected to the same output port, each output port contains
a multiplexor which enables each port to "choose” which input port to receive data from. The

Design of an asynchronous communication network for an audio DSP chip 24

5.3. MULTICAST

Network Network
Input ports Output ports

% 1 >] >

% 2 > 2 >

—>15 111>

—>/16 —>12 —>

Figure 5.1:The current network implementation is a subset of a fully connected network. Each
input port is connected to a subset of the output ports.

multiplexors are controlled by a number of registers which is accessed through a separate con-
figuration bus.

5.3 Multicast

The current network design supports multicasting as each input port is routed to all feasible
output ports. This means, that data arrives at all output ports and multicasts are handled by
configuring several multiplexors to receive data from the same input port. In theory some of the
DSP-blocks in the 'Aphrodite DSP’ can senghacketto 6 different blocks at a time. It is very
unlikely that this many destinations are used at the same time and in the current configurations
only 2 destinations are used simultaneously.

5.4 Clocks, dataflow and Lego2 protocol.

Two different clocks are used in the DSP. T$@mple clocks the slowest, controlling the fre-
guency at which new samples are feed into the system and taken ounaiinelockis running
96 times faster than theample clockand controls the flow of samples through the network and

Design of an asynchronous communication network for an audio DSP chip 25

5.5. SAMPLE ADDITION

valid data

Figure 5.2:The Lego2 protocol which is used to communicate data between the different blocks.
Thevalid signal indicates that data is valid at the corresponding positive edge of the
clock.

computation inside the individual blocks. Thein clockis capable of running up to 10 MHz,
but is currently configured at 1 MHz. Thleample clockhas a maximal operating speed of 106
KHz when themain clockis at its fastest.

Imagine a scenario where data is sampled at the microphones, processed in the Filter Bank
and sent to the digital microprocessor. This communication and audio processing takes a given
number ofsampleclock cycles. What is important is not the number of cycles, since a small
delay in sound is inaudible, but that the number of cycles are constant from sample to sample.
If this is not the case noise and clicks will be heard at the receiving party.

Since the individual blocks have different latencies, and samples are not communicated each
main clockcycle, the sample is accompanied by an additioahdl signal to indicate the validity
of data. This means that the dataflow is data-driven and a sample can be visualized as a token
flowing through the different blocks. The used protocol is denoted the Lego2 protocoland is
illustrated in figures.2. As thevalid signal is sampled each clock period it must be high for one
clock period only.

5.5 Sample addition

Three of the multiplexors in the current design contain an adder such that several incoming
samples can be added. These are calelKADDersto distinguish them from a normal multi-
plexor. One of thesMIUXADDers can add two samples while the two remaining can add up to
three samples.

Besides being able to work as a normal multiplexor MigXADDer can be set up to add
several of the incoming signals. In this case MigXADDerwaits for data on the inputs which
are to be added. That is, it waits for a valid token on the respective inputs. When all data have
arrived the samples are added and the result sent to the block.

One could imagine a setup where the user listens to music and an alarm suddenly starts. In
this setup a sinusoid is added to the music, even when the alarm is silent. This is controlled
by disabling the sinusoid generator such that it does not produce any samples, and thereby not

Design of an asynchronous communication network for an audio DSP chip 26

5.5. SAMPLE ADDITION

Control
Control | Result
A—>
Result |- .
esu
31+ L e
2 A+B
C 3 A+B+C
(a) lllustration of aMUXAD- (b) Configuration table.
Der with 3 inputs. Bold inputs indicate
masterinputs.

Figure 5.3:Example of avlUXADDerwhich have 4 different functions. Some of these include
the addition of the incoming samples.

a valid signal. Since no sample is sent from the sinusoid generatdv)ub&\DDer will stall
as it waits for data on this input. In order to avoid this situation some of the inputs to the
MUXADDer are marked amasters The MUXADDer will do the addition as soon as all the
mastersignals have arrived which ensures that the stall will not occur.

Figure5.3 shows the symbol of ®IUXADDerand an example of its functionality. It should
be noted that this example is fictive and is not used in the Aphrodite DSP. WhenekUie
ADDer is used to add incoming signals theastersignals are marked bold in the configuration
table.

Design of an asynchronous communication network for an audio DSP chip 27

Chapter 6

Specification of the Network interface

This chapter introduces a new general network interface which allows any network to be inserted
and tested. The new network interface is integrated into the 'Aphrodite DSP’, which requires
some work due to the existence of computational units in the existing network.

6.1 Overview

In order to replace the current network in the Aphrodite DSP with different NoC implementa-
tions, a clear and simple network interface must be defined. The term interface is used to denote
the protocol at the network input and output ports and how the network is configured. The inter-
face must be designed such that any network can be inserted and configured without changing
the environment. When such an interface has been created it is possible to insert, simulate, and
synthesize different network implementations and compare them in terms of area and power.
Instead of creating a testbench for each designed NoC, the common interface also allows the
creation of a common testbench, which makes it possible to verify the network without being
integrated in the Aphrodite DSP.

One of the major problems with the existing network is that it contains computational units
which do not belong in a network. If the network and computational units are not totally decou-
pled, some of the advantages of a scalable, reusable NoC are no longer present. It is therefore
important that this computation is removed from the netwoidlliam Demant Holdinghas
been so kind to help implement the computational units outside the network, such that the new
network can be integrated into the Aphrodite DSP.

In the following sections, thlUXADDersare removed from the network, a protocol at the
input and output ports are defined, a universal configuration method is created which is able
to configure any inserted network, and the network interface is integrated into the 'Aphrodite
DSP'.

6.2 Adders

As explained in chapteB.5 three of the multiplexors in the current design can add several in-
coming samples, in addition to the normal multiplex functionality. In order to implement a NoC

Design of an asynchronous communication network for an audio DSP chip 28

6.3. NETWORK PORTS

control

i

data+m>

valid 5

_master,| | valid

Figure 6.1:The new addition block accumulates samples received on its input port.

data data
valid
valid oo
—
(a) Network input port. (b) Network output
port.

Figure 6.2:lllustrations of the input and output ports to the network.

this functionality must be moved away from the network. A straight forward solution would be

to create a network output port for each possible operand in the addition. This simplifies the
adder implementation, but increases the number of output ports as well as area of the network
itself. Instead, a single output port is created which receives samples from all operands as il-
lustrated in figuré.1l. The adder accumulates the received samples until the expected number
of samples has been received. Since the adders can be configured to add a different number of
samples, a control signal is used to indicate the number of operands in the current addition. As
explained in chapte’.5 some of the samples are denotedhasstersamples. Since the adder
receives all samples on the same port, there is no way to distinguishastersamples from

the ones which are not. One solution would be to create two output ports. One foatter
samples, and one for th@n-mastersamples. Again, this is not a feasible solution due to the
area overhead of the network. Instead an extestersignal is inserted as shown in figuBel.

The mastersignal is not constant for a given input port and can even be different for different
receivers of a multicast. Therefore, it must be included in the configuration introduced in section
6.4

6.3 Network ports

The current network uses the Lego2 protocol at both the input ports and output ports. The Lego2
protocol was introduced in secti@4 and simply consists of 18 data bits angadid signal to
indicate the presence of data. The new network input and output ports are illustrated in figure
6.2 Asis seen, the network input port is unchanged, while the output ports also contastex

signal used in the addition.

Design of an asynchronous communication network for an audio DSP chip 29

6.4. CONFIGURATION

Current Configuration

—L__L

‘ Configuration Converterl ‘

Current Configuration

Genealétﬁi%urati on
—L L L

‘ Configuration Converter ‘ ‘ Configuration Converter2 ‘
New Configuration New Configuration
(a) The current configuration is converted di- (b) The current configuration is first converted
rectly into the new configuration. into a general configuration which is then

converted into the new configuration.

Figure 6.3:The current configuration must be converted into a new configuration. Here 2 pos-
sible implementations are shown.

6.4 Configuration

In the current implementation the network is configured by controlling the multiplexors at the
network output ports as explained in chafie?. That is, each network output port decides
which network input port to receive data from. An example of such a configuration is shown in
figure5.2 on page27. In the new network it is the network input port who determines where
to send the data. Also, the current configuration is only usable in this specific implementation
and if an additional output or input port is added to the design, the number of inputs to the
multiplexors changes and so do the configuration.

The current configuration could be converted directly to the new configuration as illustrated
in figurel6.3a This means that a configuration converter should be implemented for each new
network as they are configured differently. If the original configuration was changed, all config-
uration converters should be updated to reflect this change.

Instead, the existing configuration is converted into a general configuration as illustrated in
figure6.3h By creating a general configuration only one converter must be implemented from
the existing configuration. It is much easier, and less error prone, to implement a converter
from a specific configuration to a general configuration than between two specific ones. Also, a
general configuration makes the configuration independent of the Aphrodite Configuration and
would make it much easier to port the NoCs to other applications.

The network is configured using a general configuration matrix as illustrated inGable
Each row represents an input port and each column an output port. A '1’ means that the input
port is sending data to the output port while a '0’ means that no data is sent. As explained in
chaptei6.2, amastersignal must be specified for in eaphcket Therefore a second matrix is
created which determines the value of thastersignal for the specific connection.

The two configuration matrices allow the network to be configured in a general and sim-
ple way, it supports multicast, and theastersignal can be changed for each destination in a

Design of an asynchronous communication network for an audio DSP chip 30

6.5. FINAL NOC INTERFACE

Input

Output
12 11| 12
1 0 0 |0
2 0|0 0|0
15/0|0 0 |0
16| 0|1 0 |1

Table 6.1:Configuration matrix. Each row represents an input port and each column represents
an output port. In the shown configuration input port 16 sends data to output port 2

and 12.
Network Network
Input ports Output ports
- -
deta | [daa)
vaid - ! e ‘rfga
L |
—deia)| |, [dea)
— /|2 : valid .
valid ;7 Net k Sl master
A\ | T
dj?‘ 15 11 vaig 7
vali >] master
A | [daa)
da}‘aﬁ 16| : ivalic;a .
valid ;7 : || master

v{wconfiguratidn

Figure 6.4:lllustration of the new network interface.

multicast. Besides, the configuration can quite easily be translated to the configuration which is
used in each specific NoC implementation. If a NoC was to be used in a real application, the
configuration would of course be specified directly for the used NoC. The indirect configuration
is only meant to create a general configuration which is independent of the inserted NoC.

Design of an asynchronous communication network for an audio DSP chip

31

6.5. FINAL NOC INTERFACE

Block Block
Output ports Input ports
o o o s

| [data data
. 1 1 valid
7% | master L
| . data N n deta
e /2 2 valid
| did Net k master - U
n]] deia
‘data 15 11 valid
B - valid ;7 | master g
Jaia] | data data
_vdid 10 _ _ 12 % + vaid | |
= o ﬁ?g%agn | Mool
Configuration Converter control

Current Configuration

Figure 6.5:Integration of the new network interface into the Aphrodite DSP.

6.5 Final NoC interface

Figure6.4 shows the final NoC interface. It consists of 16 input ports and 12 output ports using
the Lego2 protocol. The input ports are 18 bit wide, while the output ports are 19 bit wide
because of the additionalastersignal which is used in the addition. The network is configured
by providing the general configuration matrix.

6.6 Integration into Aphrodite

In order to integrate this network interface into the Aphrodite DSP, the functionality of the
MUXADDersmust be implemented and inserted between the current network interface and the
new network interfacewilliam Demant Holdincghas implemented these new adder blocks. The
configuration convertewhich converts the current configuration into a general configuration
matrix and control the signals to the adders has not been implemented. Instead, the configuration
is specified directly as a general configuration matrix for the needed configurations. [&Eure
shows how the new interface is integrated into the aphrodite DSEn@ktersignal is only used

in the adders and is discarded if no adder is inserted at the specific output port.

Design of an asynchronous communication network for an audio DSP chip 32

Chapter 7

Network design

In this chapter the network design is discussed. Design decisions are taken in a number of
different areas such as topology, data encoding, and how to handle multicast. Many of the terms
used in this chapter was introduced in cha@ler

7.1 Overview

In chaptei® a new interface to the network was introduced as illustrated in fieidren page

31. This chapter discusses the actual network design which is to replace the existing network.
Basically, the network can be viewed as a switch with 16 inputs and 12 outputs as illustrated
in figure'7.1. Network adapters are inserted at input and output ports to interface between the

Network Network
Input ports Output ports
NA AN 9
NA AN
L T Do
L 011 116x12 Switch g
B \1/—,7 :
NA AN
NA i AN
B ———

‘ Configuration Converter ‘

General Configuration

Figure 7.1:The network can be viewed as a switch with 16 inputs and 12 outputs.

Design of an asynchronous communication network for an audio DSP chip

33

7.2. TOPOLOGY

Route | Master| Data
msb | bit 23-19| bit18 | bit17-0| Isb

Table 7.1:The basigacketformat. The route is assumed to be 4 bit but this is not always the
case.

ports and the network. The network adapters at the input ports, denoted NA, encapsulate the
data received on the input ports racketsand handles the sending of thgzacketsinto the
network. In figure7.1, multicasts are also handled in the NA, network adapters, but this might
not be the case, as discussed later. At the output ports the network adapters are Albhoted
Their function are to receiveacketfrom the network and forward the data from thecketso

the output ports in compliance with the Lego2 protocol.

There are several important design decisions to discuss in this chapter:

e Choice of topology.
e Data encoding: Bundled data or delay-insensitive encoding.

e Should the links be wide enough to contain an enpiaeketor should thepacketsbe
serialized into a stream dits.

e How are multicasts implemented.

Many networks can be implemented having different characteristics in terms of area, bandwidth,
latency, power usage, and supply of advanced features. Since the bandwidth need is very low in
this application, the networks are designed with focus on low area and power. This also means
that no advanced features such@asaranteed servicesr virtual channelsare needed,c as they
complicate the network circuitry. In other words, the network is kept as simple as possible.

Only source-routechetworks are considered, where the route is determined by the sender
and contained in eagbacket This is to make the router nodes as simple as possible. Table
7. 1illustrates the basic format of gacket The 19 least significant bits contain the data and
masterbit while the most significant bits determine the route to the destination block. When
the packetreaches a router node the most significant bit is used to determine the route at this
specific router. The entire route is then shifted one bit to the left while the dataastir
bits are kept untouched. The network is implemented using 4-phase handshake protocols since
2-phase protocols are more complicated to implement.

In the following sections the different design decisions are discussed.

7.2 Topology

The topology of the network is very important in terms of area, power dissipation, bandwidth,
and latency. The following lists some of the possible topologies:

Crossbar At one extreme, one could make a 16x12 crossbar which is a non-blocking switch
having 16 inputs and 12 outputs. In a crossbar, communication between two ports does

Design of an asynchronous communication network for an audio DSP chip 34

7.2. TOPOLOGY

?@C:
e

” [[[
(a) Balanced binary tree network. (b) The Baseline network. An example of an
unidirectional multistage 16x16 network.

VNN
¢

b

Ry

]
P

N
ﬁi D(ii(*

Figure 7.2:2 examples of network topologies.

not influence the communication between other ports. An example of a crossbar is a fully
connected network. It is also possible to restrict the crossbar such that some ports cannot
communicate at all, as it is the case for the current network implementation in Aphrodite.
Even for a low number of communicating block a crossbar is prohibitive big and is out of
the question for this project.

Binary tree: At the other extreme, one could design a binary tree as illustrated in flgRae
The inputs are merged into a single line using a tree of 2 inpergerblocks and are
routed to the outputs using a tree of 2 outpuiter blocks. In this topology data always
passes through the entire depth of the tree and all communicatibocisngas it passes
through the root of the tree. The root thereby becomes a bottleneck, but this might not be
a problem due to the small bandwidth requirements.

Multistage network: Another possible topology is a multistage interconnection network as
illustrated in figure7.2b A multistage network is constructed using a number of small
switches (or crossbars), which are connected in a specific pattern. The illustrated network
is called abaselinenetwork and consists of 4 stages of each 4, 2x2 switches. As a switch
can be implemented using onergeblock and oneouter block, the latency through the
network is the same as for the binary tree. In contrast to the binary tree there is not a single
point in the network where all communication must pass. On the other hand the network
uses a far larger amount of transistors and wires. It should be noted that this topology is
not a crossbar, as there are restrictions on which ports that can communicate in parallel.

General routers: The fourth option is to connect a number of general routers by either uni-
or bidirectional links. Figur&.3bshows an example where the general routers are con-
nected in a mesh structure using bidirectional links. A network adapter, which handles

Design of an asynchronous communication network for an audio DSP chip 35

7.2. TOPOLOGY

)

= A
>

()

= A
>
z2
e

¢S

e

<7
/S
>

Cv)<1

5
ZI B
>

CVDQ

R
5

>

4x4 Switch

éQ
e
e

- e’
- - C

— >
SN - -

- T O
.] I | A VA

-
— < < <
— \ — N VA A VA A '4 N 'A
- j/ [.
7 I Vv v Vv Vv
Or—Or—Or—O

VA vA VA VA

* —
(a) Hybrid. (b) Mesh.

Figure 7.3:2 examples of network topologies.

both input and output, is connected to each router node and each router node implements
a 5x5 switch or crossbar. This topology is interesting because it is extremely scalable
and because there is no central point through which all communication must pass. For
example, locality can be exploited by placing blocks that create high traffic loads close
to each other. The general router nodes can be connected in many different ways as for
example toruses, hypercubes, or a hierarchical structure with increasing bandwidth for
central router nodedl[].

This topology takes up a lot of area because of the large router nodes and the needed
number of wires. Care must also be taken to avoid deadlock, and techniques such as
virtual channelanight have to be applied which complicate the router nodes even more.
Due to the limited bandwidth need and relatively small number of communicating blocks
this topology is not relevant for this application.

Hybrids: It is also possible to construct hybrid solutions of the mentioned topologies. One
which could be interesting for this application is a 4x4 switch which connects a hum-
ber of binary trees as shown in figure3a In this solution there is no longer a single
point in the network where all data must pass, thereby allowing parallel communication.
This, of course, requires that the 4x4 switch is implemented such that it allows parallel
communication as e.g a 4x4 crossbar or a multistage network.

The binary tree topology has been chosen due to the small number of wires and routing circuits.
Due to the small bandwidth requirement, there is no reason to employ a more complex topology.
Some of the disadvantages with the binary tree are that packets are always passing through the
entire depth of the tree and locality of communicating blocks is not exploited. The binary tree is
still the best topology for this application, as the number of communicating blocks are so small,
that even the smallest hybrid solution would require far to much circuitry.

Design of an asynchronous communication network for an audio DSP chip 36

7.3. DATA ENCODING

As the network contains 12 output ports, 4 layersonftersare needed. Each routing deci-
sion needs 1 bit and@ackettherefore needs 4 bits for routing. It should be noted that some of
the output ports only needs 3 bits for routing.

7.3 Data encoding

Both bundled data and one-hot delay-insensitive encoding can be used in the network. If a one-
hot encoding is used, the need for matched delays are no longer present. Since the matched
delays in a bundled data solution must be conservative in order to ensure validity of data under
all operating conditions and process variations, delay-insensitive communication tends to be
faster than bundled data. As stated in chaBt@8r2and summarized in tabl&1 on pagel4, 1-
of-4 encoding uses less transitions ttthral-rail encoding. The problem with-of-4 encoding
in this context is that each routing decision requires 1 bit, while daofi4 lines encodes 2
bits. This can be solved by making routers with 4 outputs instead of 2, or by re-encoding the
packetinside the router. These solutions are not used as they complicate the router circuitry and
the fanout of theouter will increase to 4. Instead, each routing decision is encoded into 2 bits
which increases the number of route bits to 8. Also, an extra unused bit is appended, such that
the packetcontains an even number of bits. All in all, the size gfecketincreases from 23 to
28 bits.

Besides choosing how to encode the data, the width of the links must also be decided. Either
the links are wide enough to contain an enpiexket or thepacketis be divided into a stream
of flits and sent using for exampleormhole switchings discussed in chapi2/. This reduces
the number of wires and size of the router circuitry. On the other hand the bandwidth is lower,
and thepacketsmust be serialized intflits at the input ports and de-serialized at the output
ports.

| have chosen to implement two different data encodings in order to compare them in terms
of power and area. The first is a parallel bundled data encoding using 25 wires divided into 19
wires for data (including thenastersignal), 4 wires for routing, and 2 wires foequestand
acknowledge The second is 4-of-5 delay-insensitive encoding sent @srmhole switching
using 6 wires divided into 5 wires for data and 1 fmknowledge The reason to usg-of-5
encoding instead af-of-4is to be found in the article about the 'CHAIN’ networR][The
authors made an experiment where the numbdilitsfin a packet was constant, such that the
routers simply have to count the numberflit. However, experimental results show that this
has the disadvantage of complicating the router circuitry and the packet must always contain the
same number diits. Instead, a speciand of packdEOP) wire is asserted by the It to
indicate that the wormhole can be closed, thereby resettingther andmergeblocks. This
also means that the routers do not need to know the size qfatieef and the size could even
differ depending on the data payload. | denote tHisad-5encoding. Apacketis serialized into
15flits, 4 for routing, 10 for data (including thmastersignal) and 1 for EOP.

Since the bandwidth of the bundled data network is much larger than the onelusing
5 encoding, the bundled data network is made without any buffers to decrease its size. This
means that the network adapters at the input ports perform handshakes directly with the network
adapters at the output ports.

Design of an asynchronous communication network for an audio DSP chip 37

7.4. MULTICAST

Output ports—_ ...

Inpu\t port N A

NA

NA

Input port Output port

NA »D

(b) Multicasts are handled in the syn-
chronous domain before the network
adapter.

== -
©(]011U0D
0NN

Input port Output port

NA

e | [Multicast e "
Controller

(a) Multiple network adapters, where each handles (c) Multicasts are handled by a multicast
one packet to one destination.

controller inside the network adapter.

Figure 7.4:3 different proposals for implementing multicast support.

7.4 Multicast

In the current implementation multicasts are implicitly supported because data arrives at all

possible destinatio#sThis is not the case in@acket-switchetloC implementation and instead

apacketmust be generated for each destination. The following paragraphs go through different
possibilities, adding support for multicasts.

Multiple network adapters A simple solution is to create a network adapter for each possible
destination. If a port in the original network can send to 3 different destinations this re-

quires 3 separate network adapters as illustrated in figdee The input port is connected
to all three network adapters, which each handles the generation of a sauljlet The
individual network adapters can be disabled/enabled by a configuration controller.

The disadvantages of this solution are the sizes of the additional network adapters and
that the number of input ports in the network increases significantly. This leads to an
increase in network size, power usage, and latency. This increase in network size makes

this solution infeasible.

Blocks handles multicast If the connected DSP blocks generatgazketfor each destination,

the network only has to support unicast. This simplifies the network as it does not have to
worry about multicasts at all. If the DSP blocks are general purpose processors or similar

1Chaptef5.3

Design of an asynchronous communication network for an audio DSP chip

38

7.4. MULTICAST

devices, they can generate thacketsin software. The DSP blocks in the 'Aphrodite
DSP’ are not general purpose processors and the idea in this project is to substitute the
current network with a new network having the same functionality. Therefore, this pro-
posal is out of the question.

Multicast before the Network Adapters Instead of letting the blocks handle multicasts a spe-
cial multicast controller can be inserted between the input ports and the network adapters
as illustrated in figur&.4h This allows the multicast controller to be implemented in the
synchronous domain and the network adapter only needs to handle unicasts

In this solution the networks adapters need a way to tell the multicast controllers that the
previouspackethas been successfully sent. This indication is asynchronous and must be
synchronized in the multicast controller which takes at least 4 clock cycles if a 4-phase
protocol is useél Even though this might not be a problem this solution has not been
chosen because of the latency.

Multicast in the Network Adapters The route of gackets determined in the network adapter
and another possibility is to implement the multicast functionality inside the network
adapter. Figur@.4cillustrates how the network adapter contains a multicast controller.

When multicasts are handled in the network adapter, the multicast circuitry can be made
both in the synchronous domain or the asynchronous domain. A synchronous solution is
analogue to placing the multicast controller before the network adapter and has already
been considered. By implementing the multicast controller in the asynchronous domain,
no synchronization is necessary betweenghekets This also makes it possible to send
severabpacketswithin the same clock-cycle.

Reusable Multicast blocks In the solutions mentioned so far, one of the major disadvantages is
that the number of possible destinations must be known when doing the synthesis and that
the multicast circuitry must be included in all network adapters which is foreseen to do
multicast. Instead of implementing multicast in the network adapters, a shared multicast
block is created. This multicast block receives a simgleketon its input and sends two
packetson its output. If a block wants to multicast it does not sendpheketdirectly
to the destinations. Instead it does an indirect multicast by sending a padketto
one of the shared multicast blocks, which handle the actual multicast. A number of these
shared multicast blocks are instantiated according to the needs in the specific application.
Since the multicast blocks are shared, only a subset of the number of multicast blocks are
needed and the complexity of the network adapters decreases as they only need to support
unicast. The needed number of multicast blocks are the largest number of simultaneously
multicasts for all input ports. In this application at most 2 input port are multicasting at
the same time.

One question arises when talking about multicast blocks: Where are they to be placed in
the network? The placement of the multicast blocks affects both the area and dynamic

2AppendixAl goes into detail about synchronization between two different domains

Design of an asynchronous communication network for an audio DSP chip 39

7.4. MULTICAST

. Reusable
Multicaster blocks

~-Multicast
Merge tree

Multicast —=
Router tree

: Router

Mer ei
g€ - Tree

Tree

Additiﬁnal merger
and router

(a) An additional router and merger are inserted to control access to the multicast net-
work which consists of a router tree, multicast blocks and a merger tree.

(b) Example of a unicast. (c) Example of a multicast. A single
packet is sent to one of the multicast
blocks which generates two new pack-
ets.

Figure 7.5:The reusable multicast blocks are placed at the root of the tree to decrease the latency
of multicasts. This example only contains two multicast blocks, but any number of
multicast blocks could be inserted.

power consumption. In this project a binary tree topology is implemented and one solu-
tion is to increase the size of the network with one additional input and output for each
multicast block.

Another solution is to place the multicast blocks near the root of the tree, thereby decreas-
ing the latency of multicasts. Figure5aillustrates a possible implementation of this. An
additionalrouter and mergeblock are inserted independent of the number of multicast

Design of an asynchronous communication network for an audio DSP chip 40

7.5. SUMMARY

blocks. Figure?.5billustrates a unicast which does not use the multicast blocks, while
figurel7.5c¢illustrates a multicast.

If general a router topology is used, the multicast blocks could be distributed across the
router nodes or placed at special router nodes which was reserved to serve multicast.

Two different multicast implementations are compared. In the first, multicasts are handled
in the network adapters while the second solution handles multicasts in two shared multicast
blocks.

7.5 Summary

Three differentpacket-switchedsource-routechetworks will be implemented and compared.
All are using a binary tree topology, which is constructed by a number of bimargeand
router network blocks. The networks have 16 input ports and 12 output ports which means that
eachpackethas to be routed at most 4 times. All asynchronous circuits implemented using a
4-phase handshake protocol.

The bundled data networks are transparent to handshakes whiledfb network are
pipelined.

The networks differ in their data encoding, their link width, and the way multicasts are
handled.

NoC1 is using a bundled data encoding and the link width is 25 bits includigestand
acknowledgevires. Multicasts are implemented in the network adapters at the network
input ports.

NoCz2 is using a bundled data encoding and the link width is 25 bit includéatgestand
acknowledgevires. Multicasts are implemented as two reusable multicast blocks which
are placed in the root of the binary tree.

NoC3 is using 1-of-5 encoding and the link width is 6 bits including acknowledgewire.
Multicasts are implemented in the network adapters at the network input ports.

Design of an asynchronous communication network for an audio DSP chip 41

Chapter 8

Implementation

This chapter goes through the actual implementation of the networks.

8.1 Overview

In order to design three networks and avoid code redundancy, a hierarchical design structure
is employed. By creating a number of small Network Building Blocks (NBBs) many kinds of
networks can be created by instantiating and connecting a number of NBBs . Many NBB's use
other NBB'’s to implement their functionality and some even recursively instantiate themselves.
The NBBs are designed as templates, which allow for example the width of a bundled data
channel or the number of inputs and outputs to be specified for each instance.

In order to further decrease the redundancy, a "Common network platform" is created. It
consists of a number of NBBs which can be used in all networks, independent of the data encod-
ing and network topology. The "common network platform" contains network adapters, which
converts between the synchronous and asynchronous domains, and blocks, which serialize a
packetinto a stream oflits and vise versa.

The implementation is done using the "Verilog’ Hardware Description Language (HDL)
which is widely used within the IC industry. Since "Verilog’ is also used\liam Demant
Holdingit is an obvious choice. Many of the NBBs are made as templates by using the 'para-
meter’ statement in "Verilog’, which can be specified for each instance of a module. Inside the
modules, 'generate’ statements are used to utilize the specified parameters to change the cre-
ation and behavior of the module. 'generates’ are used to make structural code and is included
in the "Verilog’ 2001 standard. It is of course required that the used tools support 'generates’
which is not always the case.

The NBBs are implemented by instantiating cells from a virtual cell library, such that the
implementation is independent of the used standard cell library. The virtual cell library also
inserts delay in the behaviorial version of the cells. Appeiigives a short introduction to the
cell library.

In the following sections the ‘common network platform’ is introduced and the NBBs are
implemented. Then, specific network blocks for the 2 data encodings are implemented and at
last the three networks are designed using the introduced NBBs.

Design of an asynchronous communication network for an audio DSP chip 42

8.2. COMMON NETWORK PLATFORM

4 phase 4 phase Network
Lefo 2 bundled data bundlied data specific
——>| Serializet—— Protocol
Input : ! : ConverterE ! To
Port R :> :> L Network
— - - 5
ase
bundled data | Address Manager

(a) The data is encapsulated in a singéeket serialized into a stream dfits and converted to the proper
protocol before sent into the actual network.

Network 4 phase 4 phase Lego 2

specific bundied data bundied data elgo
Protocol —— De— — RN
Converter|~: | Serialize D

(b) flits are received from the network and converted into 4-phase bundled data, de-serialized into a single
packetand converted to the Lego2 protocol.

Figure 8.1:The "Common network platform" is used by all networks to connect the input and
output ports to the network.

AppendixDl contains a complete list of NBBs,including their gate-level implementation,
while appendiE contains all "Verilog’ code which can also be found on the attached CD-ROM.

8.2 Common network platform

The networks are designed using a "common network platform” which consists of a number
of standard NBBs that can be used by all networks. The NBBs within the "common network
platform” are used to convert from the Lego2 protocolto an asynchrguexisetand the other

way around.

Figure8.laillustrates how the NA, network adapter is connected to the network input port
and the actual network such it can be used in all network implementations. It accepts data
using the Lego2 protocol and creates a numbgramketswhich are sent into the network. The
Address Manageblock is connected to the network adapter, such that the same network adapter
can be used for both unicast and multicast. The output port, which is connected to the actual
network, uses a 4-phase bundled data protocol where the patiketis sent in parallel. An
optionalseralizerblock, which serializes thpacketinto flits, can be inserted if needed. At last,
aprotocol converteiis used to convert from 4-phase bundled data to the protocol which is used
in the actual network. This structure makes tiedwork adapteandserializerreusable for all

Design of an asynchronous communication network for an audio DSP chip 43

8.2. COMMON NETWORK PLATFORM

network implementations. Tharotocol convertelis not considered as a part of the "common
network platform" as it is specific for each data encoding.

A similar construct is used to receiypacketsfrom the network and output the data to the
network output port. This is illustrated in figulh First, an optionaprotocol converter
converts from the protocol used inside the actual network to a 4-phase bundled data protocol, if
these are not the same. If tpacketis sent using severdits, a de-serializerblock is inserted
to convert thdlits into a singlepacket before it is connected to the AN, network adapter which
outputs the data using the Lego2 protocol. Both the AN, network adaptateandrializerare
reusable for all network implementations.

In the following subsections, the implementation of the network blocks which are part of
the "common network platform" are implemented.

8.2.1 NA, Network Adapter

The NA, network adapter receives data using the Lego2 protocol, encapsulates the data in a
packet and sends thpacketinto the network using a 4-phase bundled data protocol. As the
Lego2 protocol does not contain anknowledgevire, there is no flow control at the input port.

This means that the network adapter does not have any means to indicate that it is not ready
to receive data. Therefore, it must always be able to receive data. If this are not the case, data
might be lost. In this application it is assumed, that the delay between succeeding data to the
network adapter is large enough for the network adapter to handle the sendipgaied This

is fulfilled because the DSP blocks communicate at most one samplesaagte periodas it

was explained in chapt®: If this is not the case, buffers must be inserted such that no data is
lost.

Figure8.2ashows an STG which captures the wanted behavior of the NA, network adapter.
1)i_valid goes high which indicates that data has arrived at the input porb. 1&g is
asserted to send @acket3) The packetis acknowledged by ack and, at some point, the
environment lowers valid . (In parallel) 4)o_req is driven low and whemm_ack goes
low the cycle is complete.

Note thato_req is notlowered until_valid has gone low. This means that the outgoing
handshake is coupled with thevalid signal. | was not able to design a simple STG which
allowsi_valid to go low at any point of time. Petrify needs some timing assumptions that
| do not know how to provide. It is possible to design an STG which decouples the handshake
from thei_valid signal, but the produced circuit was relatively large and is hot needed in this
application. A de-coupled handshake contro/8}icjould also be inserted between the generated
handshake controller and the outputs.

Figurel8.2 shows the gate-level implementation of the NA, network adapter. As it is seen,
the generated handshake is not sent directly to the output port, but it instead sent to a so called
Address ManagerThe idea is, that the same network adapter should be used for both uni- and
multicasts and that th&ddress Managenandles the handshaking and generation of routes. The
Address Manageshown in figure8.2 handles a unicasts by connecting the in-going handshake
with the out-going handshake and supplying a single route. The AM_multicast, which handles
multicasting, can be found in appenddx1.1.

Data is saved in a D flip-flop on positive edges ofithealid signal. It would have used

Design of an asynchronous communication network for an audio DSP chip 44

8.2. COMMON NETWORK PLATFORM

g} i_data o _data
/ -
\

i_valid-

F

i valid

i_ack+

— i_ack
IEO o.reg
NA

0_route _req i_route_ack i_route o_route ack i_route req

| |
AM unicast
- route

(@) STG for which Petrify outputs the (b) Gate-level implementation.
boolean expression: o_req = i_valid+
0_reqi_ack'.

Figure 8.2:Implementation of the NA, network adapter.

less area if a level-sensitive latch could have been used instead, but this is not possible because
data is only valid on the rising edge of thevalid wire.

8.2.2 AN, Network adapter

The AN, network adapter receivpacketdrom the network using a 4-phase bundled data pro-
tocol and outputs data using the Lego2 protocol. Since the direction of data is from the asyn-
chronous to the synchronous domain, the Lego2 protocol must be synchronized using the clock
signal from the block to which it is connected. When data is transferred from one clock domain
to another, or from an asynchronous to a synchronous domain, safe synchronization must be
applied. AppendiyA explains the basics of such synchronization.

Figurel8.3illustrates 4 different ways to synchronize from the asynchronous domain to the
Lego2 protocol. The latch which stores the data is not shown, but must be included in the actual
implementation. Note that the signal after the first flip-flop is never used, because it can be in a
state of metastability and thereby create hazards.

Figure8.3aillustrates a solution which will fail, because the handshake can complete within
a single clock cycle. If this is the case, the synchronous part will never see the data and this solu-
tion is not to be used. At the other extreme, fig8r&bshows the classic two-flop synchronizer
which takes at least 4 clock-cycles as the handshake waits foequestsignal to be synchro-
nized on both its rising and falling edge. The solution in fig8u&improves this by completing
the handshake before the synchronization of the falling transitioagafest This means that
the handshake finishes much faster, but this solution will not work, if a new handshake starts

Design of an asynchronous communication network for an audio DSP chip 45

8.2. COMMON NETWORK PLATFORM

0_ack 0_ack
i clk ' i Ik

(a) This solution will fail if the asynchronous partis (b) Fool proof two-flop solution which takes at least
to fast. It is extremely dangerous and should be 4 clock-cycles to complete.

avoided.
0_ack
E&[}mid %Wd

i clk i clk
(c) Solution where only the first part of the hand- (d) Solution which takes at least 5 cycles but
shake is synchronized. Will fail if another hand- avoid a latch in the data path because the
shake starts before the entire synchronization is data is first acknowledges after the pulse on
done. o_valid

Figure 8.3:4 different implementations of the asynchronous to Lego2 protocol synchronization.
The last flip-flop and the AND gate with inverted input is added to make sure that
o_valid isonly high for one clock-cycle. A latch for storing the data is not shown
on the figures.

before the previous handshake has been completely synchronized. As some of the ports in the
'Aphrodite DSP’ can receive more than opacketeachsample periodthis solution is not a
possibility for this application. The solution in figu83davoids the need of a data-latch, be-
cause the data is first acknowledged after the data has been sent using the Lego2 protocol. The
penalty is one extra clock-cycle for the synchronization of the rispogiestsignal.

In summary, only two of the four solutions are usable. The standard two-flop synchronizer
in figure8.3bis used because it completes the handshake in 4 clock-cycles. In order to decouple
the handshake between the network and the synchronization to the Lego2 protocol, buffers can
be inserted between the network and the network adapter.

As the clock frequency in Aphrodite is at most 10 Mhz, it would also be possible to clock
the first register by the negative clock edge instead of the positive clock edge. This would
decrease the number of clock periods needed for the synchronization, but | have not investigated
this option further and one always have to be careful when playing around with the clock and
synchronization.

The final gate-level implementation of the NA, network adapter is included in fidre\
flip-flop is used as state-holding device even though a level-sensitive latch would suffice. This
is because there was problems during the integration into 'Aphrodite’ when the data returned to
zero after the handshake has completed.

Design of an asynchronous communication network for an audio DSP chip 46

8.2. COMMON NETWORK PLATFORM

0_master

i_data J o data

]

A

Figure 8.4:Gate-level implementation of the AN, network adapter.

8.2.3 Serializer

This network block serializesfgacketinto a stream of 2 biflits. Both the input and output use a
4-phase bundled data protocol. After the lithas been sent, a special "End Of Packet" (EOP)
wire is asserted to indicate that there is no nfbtein the packet The EOP wire works like the
request wire and a 4-phase handshake must be performed.

Theserializercan be implemented in many ways with different speed, area and power char-
acteristics. An obvious possibility is to employ a shift register but this would consume a lot of
unnecessary power and is not considered an option.

Instead, the bits are selected 2 at a time using multiplexors as illustrated in8i&ard he
block is hard-coded to outptiits of 2 bits but this could very well have been selectable by a
‘parameter’. The ’'brain’ of theserializeris the controller which handles all handshakes and
generates control signals for the two multiplexors. The control signals also act as the outgoing
request signal. The request is generated by OR’ing the control signals. A matched delay is
inserted on theequestwire such that the data is stable before tbguestwire is asserted. Note
that the controller is instantiated to perform one more handshake than the numberftifdata
The last control wire is forwarded as eop to perform the EOP handshake.

The functionality of the controller is as follows:

1)i_req goes high toindicate that new data has arrived at the input. 2a) One of the control sig-
nals is asserted. This is used to control the multiplexors and generate a request to the succeeding
stage. 2b) The succeeding stage acknowledges the input 2c) The control signal is lowered 2d)
The succeeding stage lowérack 3) Step 2 is repeated till all data has been send. In this case

4 flits are sent. 3 for data and 1 for EOP. 4) The 4-phase handshake to the preceding stage which
started the conversion is completed.

The controller can be implemented in many different ways:

e The entire controller can be specified as an STG which is made into a speed-independent
asynchronous circuit using Petrify. The STG can be auto-generated by a script depending
on the number oflits.

e The controller can be designed as an ordinary synchronous state-machine. After the cir-
cuits which determines the next state and output have been synthesized it must be turned

Design of an asynchronous communication network for an audio DSP chip a7

8.2. COMMON NETWORK PLATFORM

i_req _ o ctll
—>—>1_req oreqt—p——»
<+— 0_ack i_ack
Sequencer
) o_ctl2
0_ack | Serjalizer i ack ireq o_reqf—» e
Controller [
; ontro
_—s_l req <— 0_ack i_ack
1 0_€eop Sequencer

s ctrl 3

\ 0_req ir o_req —» 0—&

. - Cada) —— req ored —> —
i data / > e _

§\| i_ack

o_ack i_ack (buffer)—<—
c
——
ﬂ 0_data Sequencer
-
) o_ctl4
1_req 0_req >
N 0_ack
L | < <+«—fo ack i_ack
=
Sequencer
(a) Overview of theserializernetwork block. (b) Implementation of theerializer controller

Figure 8.5:Implementation of theerializerblock which sends 8its of each 2 bit and an EOP
flit. Note that the controller is using gequencerbecause the EOfit must be
generated and acknowledged.

into an asynchronous state-machine by inserting matched delays. It should be noted, that
this option has not been investigated thoroughly.

e The controller can be decomposed into smaller blocks which each handle one handshake
and the setup of one control wire. The needed blocks can be designed as STG’s and
realized using Petrify.

The first two options need to be re-implemented each time the numikits @hanges, which
is not the case for the third option. Because the design is decomposed into smaller circuits, the
circuits are also easier to design and implement.

Figure8.5b shows an implementation of the controller which can handle 4 handshakes. 3
handshakes for dathts and one for the EOP handshake. The controller is constructed by con-
necting 4 simpleSequenceblocks which each carries out a single handshake. Séguencer
block was designed in chapii and basically accepts a handshake on the left hand side, gen-
erates a handshake on the right hand side, and completes the handshake on the left hand side. In
addition to this functionality, the ack wire can alternate when ttfequenceis not involved
in an outgoing handshake. This is needed because the same acknowledge wire is connected to

Design of an asynchronous communication network for an audio DSP chip 48

8.2. COMMON NETWORK PLATFORM

% i_reset b
i_eop o_req L
. _en K1
0_ac
. = Couter) »ised oack =
1_re .. .
1 | De_serializer i_ack <o en
Controller
Sequencer?2
o ack ﬂ—— s_ctrl e
- i . 0_ack2
& » 1_req 0 ack —p——
V <+—0_en
1_data - Sequencer2
: . o_data —l
. : i_en
; : - 0_ack3
T > i_req o_ack
ﬂip—ﬂOpS : <+—o0_en
A Sequencer2
(a) Overview of thele-serializemetwork block. (b) Implementation of thele-serializer controller

Figure 8.6:Implementation of thele-serializewhich handled 3lits.

all the sequencers When asequencehas completed the handshake on its right hand side it
acknowledges the handshake on the left hand side which starts the sucasegiagcer

The big advantage of this construction is that it is very easy to design controllers which
handle a different number dlits. Only the buffer which is inserted such that the incoming
acknowledge can drive alequencers dependent on the number®&quencerd\ote that the
controller is instantiated one stage larger than the numbiétssuch that the last control signal
can be used asOP.

If the latency of theserializerturns out to slow down the sending of data, the serialization
can be divided into a number of pipeline stages to improve the latency of each stage. This is
only an advantage if the succeeding blocks are able to receive data fast enough.

8.2.4 De-serializer

This network block de-serializes a stream of 2fhii¢ into a single data value. Both input and
output uses a 4-phase bundled data protocol. After thdlilalsas been received, a special "End
Of Packet"EOP) wire is asserted to indicate that there are no nfliteein the packet

The de-serializeris very similar to theserializerand the implementation suggestions and
comments made in the previous subsection applies fodehserializeras well. Again, a shift
register is avoided due to the unnecessary power consumption.

The chosen solution is illustrated in figuBeba The block is divided into a controller which
handles all handshakes and control signals to a number of latches. The 2 incoming data wires

Design of an asynchronous communication network for an audio DSP chip 49

8.2. COMMON NETWORK PLATFORM

T
[@ i en+] @—‘40_;31
G L 1
Jr
T~ = i
\&] =
(oeee) o acke i_en 0_ack
- C
Jr
oent i_reg- +
(a) STG describing the behavior. (b) Gate-level implementation.

Figure 8.7:Implementation of theequencer2

are connected to 3 flip-flops which are controlled by individual signals from the controller. The
control signals also act as acknowledge to the preceding stage why they are OR’ed. The basic
idea is that one of the flip-flop control signals is asserted wiknaarives. This makes sure that
one of the flip-flops stores the data, while the others stay unchanged. A solution using latches
was also tried out, but the complexity and size of the controller increased. This is because the
latches must be inpaquemode except when they are receiving data, thus a pulse must be made
independent of thacknowledge

The controller are implemented in a similar way to the controller irsérgalizer A small
block, denotedsequencer2handles one handshake and controls one flip-flop. A number of
these are instantiated and connected as illustrated in {&i16kewhich makes it very easy to
construct controllers of different size. In the initial state all inputs, outputs, and internal wires
are '0’ except for thé_en inputto the firssequencer2This means that the firStequencerk
enabled while the rest are disabled. Wheeq makes a rising transition the firsequencer2
performs a 4-phase handshake usirgqg ando_ackl before it asserts_en which enables
the nextsequencer2In this fashion thesequencerdlocks perform a handshake one by one.
When the lassequenerds done, the feedback resets the construct and the cycle is complete.
This construction assumes that the numbdfitsfis constant for alpackets

Figure8.7 shows an STG capturing the behavior of #eguenceras well as its gate-level
implementation. It has many similarities to teequencelSTG which is used as an example
in chaptei4.4. The sequence of events are as followsi_t¢gq can make a number of tran-
sitions if other controllers are handshaking,i22n goes high to indicate that the controller
is activated, 3) whem req goes high a 4-phase handshake is completed usiagk and
i_reqg , and the next controller is activated by risiagen, 4)i _req can make a number of
transitions if other controllers are handshaking, 5) whem is loweredo_en is set to '0’
which completes the cycle.

Design of an asynchronous communication network for an audio DSP chip 50

8.3. SPECIFIC NETWORK BLOCKS

8.3 Specific network blocks

Both bundled data anti-of-5 delay-insensitive encoding are used in the network implementa-
tions. In order to implement a network using a specific encodinggi@eandrouter block must
be implemented. Thmergeblock merges two input port onto a single output port. As the input
ports are not mutual exclusive, tineergeblocks must contain some sort of arbitration. The
router block receives @acketont its input port and routes it to one of its output ports depending
on the route. The route is contained in fhecket

Besides these two elementary blocks, a number of behavioral blocks are created for use
in the testbenches. For examplesaurcewhich sends data, and aank which receives and
acknowledges data.

8.3.1 Bundled data network blocks

The 4-phase bundled data blocks do not contain any buffers or latches and are transparent to
handshakes. This means, that the network adapters at the input and output port are performing a
handshake directly with each other. Gate-level implementations of all bundled data blocks can
be found in appendii.2.

Merge block (AppendixD.2.1)
The mergeblock consists of a handshake arbiter and a multipfexdrhe handshake
arbiter grants one of the inputs access to the output port and locks the arbiter until the
handshake is complete. The multiplexor is implemented using an complex AND-OR
gate.

Router block (AppendixD.2.5)
As explained in chapter.l, the most significant bit is used to determine the route of
the packetand the route is shifted left by one. Tlpacketis sent to one of the output
ports depending on the route. A new route is first accepted when the handshake cycle is
complete. Note, that AND gates are inserted such that data are only sent to one of the
output ports. The data could safely be routed to both output ports since only one of the
port receives a handshake. This would cause the data to shift through the entire network
and would contribute heavily to the power consumption.

8.3.2 1-of-5network blocks

The 1-of-5blocks encode 2 bits of data into 4 wires, while it uses a fifth wire to indicate the
End-Of-Packet(EOP) as explained in chajie® Therouter andmergeblocks are almost an
exact implementation from the 'Chain’ netwoiB][Gate-level implementations of allof-5
network blocks can be found in appen3.

Merge block (AppendixD.3.4)
When one of the input ports are granted access to the output port, a controller blocks the
other input port until an EORit has been received and acknowledged.

The arbiter is implemented is chapter 5.8.218]]

Design of an asynchronous communication network for an audio DSP chip 51

8.4. THE NETWORKS

|

|

|

| 11] 12]

’ Destination ‘ 1
0 |0 |

1/2|3/4|5|6|7|8|9]10
olo/1]/ofofofojo]o|1 |

‘ Enable

Table 8.1:Configuration vector which represents a multicast to destination 3 and 10.

Router block (AppendixD.3.7)
When the firsfflit arrives, a controller determines the route of the packet and locks the
router. This means, that succeediliig are routed to the same output port. The controller
is reset when the EOffit is received.

In order to incorporate th&-of-5 blocks into the 'common network platform’, two protocol
converters are implemented?C_bundled_1of&onverts 2 bit of bundled data into laof-4
delay-insensitive encoding whiRC_1of4_bundledonverts the other way around.

8.4 The networks

The 'Common Network platform’ and network blocks for the 2 encodings have now been pre-
sented and it is time to construct the 3 network solutions. The network design was discussed in
chaptef7/and the design decisions summarized in chapter

An overview of the three network implementations is presented in the following subsections.
In order to configure the networks, the general configuration matrix presented in c6apter
must be converted into a local configuration for each network. This conversion is discussed for
each of the three networks.

8.4.1 NoC1: Bundled data, multicast in NA

This network uses a 4-phase bundled data protocol through the entire network and handles
multicasts in the network adapter. Figi8e illustrates how the network is constructed using
the network building blocks. The "Verilog’ code can be found in appeBdX3a

A configuration converter is instantiated inside eAdh_multicastblock, as multicasts are
handled in each NA, network adapter. The converter takes a vector from the general configura-
tion matrix as input. This vector describes which output portpteketmust be sent to. The
format of the input vector is illustrated in talBel where each bit represents a possible output
port. The converter converts the vector into a number of routes and enable signals which are
used by theMulticasterblock. If an input port is only sending to a single destination, only a
single route is configured and enabled. The code for the converter is included in apBehilix

8.4.2 NoC2: Bundled data, shared multicast blocks

This network uses a 4-phase bundled data protocol through the entire network and handle mul-
ticasts using two shared multicast blocks. Fig8i@illustrates how the network is constructed
using the network building blocks. The "Verilog’ code can be found in appeladx

Design of an asynchronous communication network for an audio DSP chip 52

8.4. THE NETWORKS

The configuration converter must specify a single route for each NA, network adapter and
two routes for each multicast block. This is done by counting the number of destinations for
each input port and reserving one of the shared multicast blocks if a multicast is required.

1 destination Assign destination route directly to teéN_unicasblock.

2 destinations Reserve a shared multicast block, assign the route of the multicast block to the
AN_unicasblock and assign the 2 destination routes to the multicast block.

The behavioral implementation of the converter is included in appda@ix.

8.4.3 NoC3:1of5encoding, multicast in NA

In this network data is sent as a stream of 2flis using al-of-5 delay-independent data
encoding. Multicasts are handled at the NA, network adapters. Filfdllustrates how the
network is constructed using the network building blocks. The 'Verilog’ code can be found in
appendibE.2.5

The configuration converter developed for NoC1 is also used for this network as the topology
and routing decisions are the same. The 4 route bits must be dividedfiitoa® an entirdlit
is used for each routing decision. As edithencodes 2 bits, this is done in thieC_S1block
by appending a '0’ to each route bit.

Design of an asynchronous communication network for an audio DSP chip 53

8.4. THE NETWORKS

AN

P_network

- % P_merger_tree || P_router_tree ' -

L
b

N
AN

Ry O

/ —
NA
AM_multicast Configuration
Multicaster «—| Converter B

Figure 8.8:NoC1: 4-phase bundled data network where multicasts are handled in the NA, net-
work adapter. Gate-level implementations of the different blocks can be found in
appendixD.

Design of an asynchronous communication network for an audio DSP chip 54

8.4. THE NETWORKS

AN

NoC_P2 \ /

P_merger_tree P_router_tree = T

P_multicast

A _multicast |

S S

Converter_P2

s
S AN
]
i

l
|

—
]
»

|
|

I

/ . ‘
Configuration

NA

[

AM_unicast

Figure 8.9:NoC2: 4-phase bundled data network where multicasts are handled in share mul-
ticast blocks. Gate-level implementations of the different blocks can be found in
appendixD.

Design of an asynchronous communication network for an audio DSP chip 55

8.4. THE NETWORKS

conv_StoP
PC_10f4 bundled de serializer AN

S network

|

7 AN

4 j ﬁ% S merger_tree || S router_tree ! =

/
conv_PtoS
NA seriaizer PC bundled_1of4
AM_multicast . .
Multicaster « | Converter .,// Confl gUI’atlon

Figure 8.10:NoC3: 1-of-5delay-insensitive network where multicasts are handled in the NA,
network adapter. Gate-level implementations of the different blocks can be found
in appendidD.

Design of an asynchronous communication network for an audio DSP chip 56

Chapter 9

Verification

This chapter introduces the techniques which are used to verify the behavior of the NoCs and
the individual network blocks.

9.1 Overview

When designing a large and complex system, the behavior of the system must be properly veri-
fied. This is typically done by creating a testbench which controls the inputs to the system and
monitors the outputs. The testbench should expose the system to different scenarios and test if it
behaves as expected in all imaginable situations. Random tests are not likely to detect all possi-
ble errors, and instead every system part and feature should be tested separately and in different
combinations. It is also necessary to include tests which stress the system to its maximum.

In this project, two types of testbenches are created. A 'main’ testbench which verifies
the functionality of the entire network and a number of small ’individual’ testbenches which
test each network block individually. The 'main’ testbench is able to test all networks as they
are accessed and configured the same way. The common network interface was introduced in
chaptei6. The construction of the 'main’ testbench is gone through in the succeeding sections.

The ’individual’ testbenches make it much easier to thoroughly verify the behavior of the
individual network blocks, because the inputs and outputs can be directly controlled and ob-
served, respectively. Some input situations rarely occur when the network blocks are integrated
into a NoC. As an example, thrautex which was introduced in chaptdr3.], is ensuring that
2 signals are mutual exclusive. The correct behavior ofthexis hard to verify when it is in-
tegrated into other network blocks. The testbench in appédhdiX.tests all possible situations
that can occur. Many, but not all, of the network blocks have individual testbenches. It should
also be noted that the testbenches are not documented and that the testbenches are not included
in the Appendix, but can be found on the CD-ROM.

Besides testbenches, many of the network blocks contain behavioral code which monitors
the signals inside the block. This makes it possible to report if an unsuspected situation occur. In
ordinary sequential programming languages, such as C and C++, this is known as 'assertions’.
As an example the NA, network adapter must be idle when new data arrives. This is verified by
the 'Verilog’ code in figuré9.1by checking ifo_route_req ori_route_ack is highwhen

Design of an asynchronous communication network for an audio DSP chip 57

9.2. MAIN TESTBENCH

‘ifdef ERROR_CHECKING
always @(posedge i_valid)
begin
if(o_route_req!=0 || i_route_ack!=0)
begin
$display ("ERROR!. Valid signal came through when
network adapter was already busy.\n");
$display (" req: %b",0_route_req);
$display (" ack: %b",i_route_ack);
$stop;
end
end
‘endif

Figure 9.1:Example of verification code which monitors the signals in the NA, network adapter.
The code writes an error message and stops the simulation if an unsuspected situa-
tion occurs.

new data arrives. Note th&#RROR_CHECKINGmust be defined for the verification code

to be enabled. This allows all verification code to be enabled or disabled by means of a single
definition. The fileglobal.y, in appendiE.3.], is used to specify which network to instantiate.
Error checking and debug information is also enabled/disabled in this file.

9.2 Main testbench

Figure9.Z illustrated how the main testbench is constructed by attaching special verification
modules to the input ports, output ports, and the configuration port of the network interface
which was specified in chaptér Each verification module contains a numbetasfk3 which

is used by théTestbench controllerto perform a number of tests. The main testbench code
instantiates the different verification modules, the network under test, and contains the code
which implements th&estbench controller. It can be found in appendi.4.5

In the succeeding subsection the verification modules are explained in more detail, but here
| briefly mention their basic functionality. Th€onfiguration controller module gives easy
access to the network configuration, including multicast and control ahtmersignal. The
Lego2 mastermodule is responsible for sending data into the network using the Lego2 protocol,
while theLegoZ2 slavemodule is responsible for receiving data and check if the data is correct.
A separate slave module is instantiated for each output port while a single master module is
connected to all input ports. The reason that a single master module is used to control all input
ports, is that data must be sent into the network on several input ports at the same time instant.
As it is not possible to call severtdsksin parallel, this behavior requires that the sending of
data is implemented in a single module.

When apacketis sent into the network, it must be verified that it arrives at the expected
output ports, and that the data has not be altered inside the network. A problem is that it is not
possible to tell from which input port theacketwas sent when it arrives at an output port. One
solution is to encode a unique ID for the input port into the data. Also, when s@asiattsare

1A taskis a behavioral procedure call

Design of an asynchronous communication network for an audio DSP chip 58

9.2. MAIN TESTBENCH

Testbench controller
Network Network
Input ports Output ports
- N ; B oy
| ego2 f INEr-—en
data |, pdda) ego2
Master valid 1 1 Va;isf Slegve
T R
: : 3 dat
—E e I v
valid master
- Network
il under test | g e
valid —ual Slave
] | d .
data_)yp| - 16 e Iéeg\?g -
valid : . . :
L Configuration ——Ee—
[Configuration controll er]

Figure 9.2:The testbench is constructed by attaching special verification module to the input
ports, output ports and configuration.

sent into the network at the same time, it is very important paaketsdo not contain the same
data. If this was the case it would not be possible to distinguisipéoketsfrom each other,
and thepacketscould in theory have arrived at the wrong output port. Random data is therefore
not a possibility, and instead the data is encoded as shown in@dol€he packetcontains the
input port who sent it, as well as the addresses of the output ports to which it was sent. It should
be noted that when packetis multicasted, the sanqacketis sent to several output ports and
there is no way to distinguish th@ackets except for themastersignal which is specified for
each destination output port. Iffeacketis sent to more than 2 output ports it is not possible to
distinguish thepackets

In order to test that severphcketsaddressed for the same output port has been received
correctly, theLego2 slaveis implemented such that it expectgacketfrom each input port.
The module contains an array of data values, one for each input port. As the input port is
encoded into theacket it is possible to use the input port as an index into this array.

Design of an asynchronous communication network for an audio DSP chip 59

9.2. MAIN TESTBENCH

Unused | Output port3| Output port2| Output portl| Input port
msb | bit 17-16 | bit 15-12 bit 11-8 bit 7-4 bit3-0 | Isb

Table 9.1:Encoding of the data which is sent into the Noc. The encoding makes it possible to
distinguish allpackets

9.2.1 \Verification modules

In the following, a short description of the functionality is given for each verification module.

Configuration controller This module eases the configuration of the network. It consists of
taskto enable a certain routenableRoute by specifying the input and output port for
the route and the value of theastersignal. It also contains taskto disable a certain
route, disableRoute and ataskto disable all routesglear. The code can be found in
appendiE.4.3

Lego2 master This module sends data into the network using the Lego2 protocol. The module
is first configured by specifying which input ports that are to receive data. This is done
using thetask setup_txswhich configures the module to send data to single input port.
setup_txscan be called several times if data is to be sent to several input ports. When
the module has been configured, thsktxs is called to send the configured data to the
inputs ports. Data is only sent to the input ports which have been configured, and all data
are sent at the same time. Code can be found in app&ndlis

Lego2 slave This module counts the number packetsthat arrives at each output port and
checks if the received data is correct. It contains a sitagk setExpectedDatawhich
tells the module which data amdastersignal to expect from a certain input port. When
it receives gacket it checks if apacketwas expected from the input port which sent it,
and checks if the data is correct. Then it notes that no further data is expected from the
specific input port. This is to make sure that the arrival of the gamckettwice is treated
as an error. If an error occurs, it makes a pulse on a wire which is read lgstisench
controller. The Code can be found in appentixd.2.

9.2.2 Tests

A number of different tests are performed to test different aspects of the network. Each test is
conducted by performing the following actions in sequence:

1. The wanted routes are setup by using@unfiguration controller.

2. Itis specified which input ports that are to receive data and which data they are to receive.
This is done using theego2 master

3. EachLego2 slavemodule is told which data to expect from which input ports.

4. LegoZ2 masteris instructed to send the requested data to the input ports.

Design of an asynchronous communication network for an audio DSP chip 60

9.2. MAIN TESTBENCH

5. Wait for a number of clock-cycles which should ensure that the network has delivered all
data on the output ports.

6. Check if theLego2 slave received the expected numberpaickets and if these packets
were all correct.

The following lists the different tests, their purpose and notes on their implementation.

Unicast The purpose of this test is to test unicast. Each input port sends data to each output
port, one at a time. All combinations are tested.

Multicast The purpose of this test is to test the multicast functionality. Each input port sends
data to two output ports at a time. All combinations of input and output ports are tested.

Multicast2 This is another multicasting test. Two input ports are doing multicast at the same
time. Many, but not all, combinations are tested due to the large number of combinations.

Chaos Test This test is stressing the network. All inputs are sending data to the same output
port at the same time instance. All output ports are tested.

Adder Tests the basic functionality of the adders which are inserted when integrating the NoC
interface into the 'Aphrodite DSP'.

Design of an asynchronous communication network for an audio DSP chip 61

Chapter 10

Logic synthesis and simulation

In this chapter the logic synthesis and simulation flow is briefly discussed, and some notes are
given on the power and area estimates.

10.1 RTL simulation

When a design has been implemented as an RTL-description, it is simulated to verify the be-
havior of the implementation. The purpose of this simulation is to check the functionality of
the behavioral code, not the timing. In many synchronous design flows, such as the one used
at William Demant Holdingthe default simulation settings do not include gate-delays. This

is a problem as the designed networks are specified directly at gate-level by instantiating and
connecting specific cells from the standard cell library. If there is no delays through the cells,
the asynchronous circuits will behave unexpected. Actually, the behavioral version of the used
standard cell library does not include delays at all. Therefore, new cells are created which wraps
the cells from the standard cell library to insert delays. The new cells are presented in appendix
Bl

10.2 Logic synthesis

After the RTL-description has been verified, a logic synthesis tool is used to translate the RTL-
description into a netlist of standard cells. Among many things, the logic synthesis tool op-
timizes the design, chooses drive-strengths and insert buffers. The logic synthesis tools are
designed to handle synchronous design and cannot be used on asynchronous design as the de-
sign styles are very different. If the optimization step is not removed from the synthesis flow,
one can be absolutely certain that the circuit will not work as expected. This is easily fixed by
stopping the logic synthesis after the design is mapped to gate-level.

Design of an asynchronous communication network for an audio DSP chip 62

10.3. GATE-LEVEL SIMULATION

10.3 Gate-level simulation

When simulating at gate-level, it is important to turn off X-propagation on the registers which
do synchronization. If X-propagation is enabled, the simulator will propagate X' if a timing-
violation occurs due to a setup or hold error on the register input. This will stall the asynchro-
nous circuit and the simulation stops. In this project, the registers in the NA, network adapter
discussed in chapt&:.2.1contains synchronization registers.

10.4 Place and Route

After the gate-level implementation has been verified, the design is 'placed and routed’. This
allows to estimate the wire capacitances and insert buffers which are needed to drive these.
Unfortunately, the network designs are not 'placed and routed’ due to the lack of time. It could
be very interesting to do this in the future and it will, hopefully, show a positive impact on the
total length of wires and their power consumption.

10.5 Area and power estimates

Area estimates of the networks are extracted from the gate-level implementation and only in-
clude area of the standard cells. If the area of wires should be included, the design should have
been 'placed and routed’.

An estimate of the power consumption can be performed on the gate-level implementation
or after 'place and routing’. The former only contains the power consumption in the standard
cells, while the latter includes the power consumption of wire transitions as well.

The plan was to estimate the power by integrating the networks into 'Aphrodite’ and use
the original testbench. This makes it easy to compare the original network and the networks
designed in this project. The networks were successfully integrated and simulated on the RTL-
description. We did not manage to extract power estimates due to tool issues that are solved at
the time of writing.

Design of an asynchronous communication network for an audio DSP chip 63

Chapter 11

Results and discussion

This chapter presents and discusses the results.

11.1 Overview

The designed networks are successfully integrated into the 'Aphrodite DSP’ and mapped to
gate-level by a logic synthesis tool. As the designs are not 'placed and routed’, the presented
area estimates are based on the gate-level implementations and do not contain area of wires.
The area of the original Aphrodite network is also estimated from its gate-level implementation
to enable a fair comparison between the designed networks and the existing netowkr solution.
The area of the original network is estimated as the area of the multiplexors at the output ports,
minus the area of the computational units in M&XADDers The original Aphrodite network

is estimated to consist of 7395 gate equivalents which takes up roughly ©.082n a 0.18

wm process. This corresponds to 1.2% of the total chip area.

Throughout the report it has been stated that both area and power estimates would be pre-
sented. Unfortunately it has not been possible to extract power estimates due to unforseen
difficulties with the design and verification tools.

In the following sections the area and bandwidth estimates are presented and commented,
and the results are discussed.

11.2 Results

Table1ll.1shows a comparison between the area and bandwidth of the different network imple-
mentations. The bandwidth is extracted from the gate-level simulation using worst case timing
parameters. It is a measure of the number of bits that can be sent through the network, without
synchronization or multicasting. The listed bandwidths are only possible if the synchronization
in the network adapters are decoupled from the network communication, which is currently not
the case. A detailed list of the area usage for each network are shown iniable

There are approximately 80.000 gate equivalentspr>

Design of an asynchronous communication network for an audio DSP chip 64

11.2. RESULTS

Network | Area Bandwidth | % of origi- | % of chip
(mm?) (MBIt/s) nal network

Original | 0.093 100% 1.19%

NoC1 0.084 358 91% 1.08%

NoC2 0.078 253 85% 1.00%

NoC3 0.19 100 203% 2.41%

Table 11.1:Area usage and bandwidth of the different networks.

11.2.1 Bundled data networks

The first two networks use a 4-phase bundled data protocol, and the network blocks are transpar-
ent to handshakes. The difference between the two networks is that NoC1 handles multicasting
in the network adapters, while NoC2 handles multicasting in two shared multicast blocks. This
decreases the area of multicasting from 14% to 8%, but increases the latency for unicasting, as
an additionaimergeandrouter block are inserted at the root of the network.

The latency for all 4-phases of the handshake is 5.2 ns fan#rgeblock and 8 ns for the
router block. This is a total latency of 53 ns and 66 ns for the longest paths through the two
networks. As 19 bits are transferred in eaudtkef the bandwidths are 358 MBit/s and 253
MBIt/s, respectively.

11.2.2 1-of-5network

The third network employs narrow links usind @f-5delay-insensitive encoding, and handles
multicasting in the NA network adapter. At first sight it seems odd, that this network is twice
the size of the other networks. The main reason is thaséhializerand de-serializerblocks

use roughly 50 % of the area, but | believe that there are a number of other reasons as well:

e The two other networks contain no buffers at all. This makes all blocks in these networks
extremely simple. In contrast, threuter and mergeblocks in NoC3 contains one and
two latches, respectively. Some of these latches could be removed without decreasing the
bandwidth, as theerializerandde-serializerare currently the bottlenecks in this design.

e The 1-of-5blocks use a large amount of C-elements with both 2 and 3 inputs. These
C-elements use an area of 5-6 gate equivalents which is almost as much as a flip-flop.
If more effective implementations were used, this area could be decreased. For example
inverting C-elements could be used in many situations. If possible, the C-elements could
even be designed as custom cells.

e Each block uses a number of OR gates with 5 and 8 inputs. These OR gates are initially
implemented as an binary tree of 2 input OR gates. This is large and slow, and should be
implemented using NOR-NAND constructs or other inverting multi-input gates.

e Theserializerandde-serializertakes up 45% of the total area. Around half of the area
in the de-serializers used by flip-flops which could be exchanged by latches if the con-

Design of an asynchronous communication network for an audio DSP chip 65

11.2. RESULTS

Block Number | Area/block | Area | Percent
NA, network adapten 16 115 1840 | 27 %

AN, network adapter 12 135 1620 | 24 %
AM_multicast 16 60 960 | 14%
Merger 15 87 1305| 19%
Router 11 92 1012 | 15%
Total 6637 (0.084nm?)

(a) NoC1: 4-phase bundled data network where multicasting is handled in the NA, net-
work adapters.

Block Number | Area/block | Area | Percent
NA, network adapten 16 115 1840 | 29 %
AN, network adapter 12 135 1620 | 26 %
Merger 15 87 1305 | 21 %
Router 11 92 1012 | 16 %
Multicast part (478) | (8%)
Merger 2 87 174 | 3%
Router 2 92 184 | 3%
P_Multicast 2 60 120 | 2%
Total 6255 (0.078nm?)
(b) NoC2: 4-phase bundled data network where multicasting is handled in share multicast
blocks.
Block Number | Area/block | Area | Percent
NA, network adapten 16 115 1840 | 12 %
AN, network adapter 12 135 1620 | 11 %
AM_multicast 16 60 960 | 6%
Merger 15 145 2175 | 14 %
Router 11 103 1133 | 8%
Serializer 16 272 4352 | 29 %
De-Serializer 2960 | 20 %
normal 8 241
discards ondlit 4 258
Total 15040 (0.19nm?)

(c) NoC3:1-of-5delay-insensitive network where multicasting is handled in the NA, net-
work adapters.

Table 11.2:Area usage of the different blocks in the three networks.

Design of an asynchronous communication network for an audio DSP chip

66

11.3. DISCUSSION

trollers were modified. In theerializer, 30% of the area in used by 3 OR gates with

14 inputs. As already explained, these large OR-gates are made as trees of 2 input non-
inverting OR gates, which is far from an optimal implementation. At last, other imple-
mentations of the controller in both tiserializerandde-serializershould be considered,

as the current implementation is large compared to the rest of the network.

| believe that the listed changes could decrease the implementation of NoC3 by at least 2-3000
gate equivalents, thereby using approximately 2% of the total chip area.

As thel-of-5networks consist of 4 different network blocks with different latency, it is diffi-
cult to calculate the bandwidth. Tiserializeris the slowest block and therefore the bandwidth
of the network is determined by this. It takes 20 ns to transfiraf 2 bits, which gives a band-
width of 100 Mbit/s. From the gate-level implementation | have measured that it takes 240 ns to
send 20 bits of data from an input to an output port, including serialization and de-serialization
of theflits. This gives a bandwidth of 83 Mbit/s. This is lower than 100 Mbit/s but it includes
the 5flits used for routing and EOP, and handshakes to stagdhalizer. The individualrouter
andmergerblocks can transfer approximately 500 MBit/s.

11.3 Discussion

The first thing to notice is that the two bundled data networks are actually 9 and 15% smaller
than the original network, which must be considered a success. In addition to this, the area of
the original network is expected to increase further if the designs were 'place and routed’. This
is because area of the gates in the networks are only one part of the story. The original network
in Aphrodite contains many long wires which complicate routing and require bus-drivers. Some
of the network input ports are connected with up to 6 different output ports, which require even
larger bus-drivers. These bus-drivers are not included in the area estimates. In contrast, all the
networks designed in this project consists of short wires, which drive at most two gate-inputs.
Also, therouter andmergeblocks can be distributed among the communication blocks, making
routing easier for the ’place and route’ tool. The GALS methodology even allows timing-closure
to be performed for each communicating block instead of the entire design, thereby making
'place and routing’ easier.

It is also noticeable that the network adapters take up more than 50% of the total network
area in the two bundled data solutions. This is a quite a surprise, as they practically contains
nothing more than a flip-flop for the data. It illustrates thatrhaer andmergeblocks in the
bundled data networks are very small. If buffers are inserted into the a network to increase its
bandwidth, the area of the network will raise, making the network infeasible for the 'Aphrodite
DSP'.

The difference between NoC1 and NoC2 is that NoC2 implements multicasting in shared
multicast blocks, which decreases the area of multicasting from 14% to 8%. This slight de-
crease in area corresponds to less than 0.1% of the total chip area. If each network input port
sendspacketso more than 2 destinations, the blocks which handles multicast, will take up far
more area, and the gain of shared multicast blocks will increase. If the number of simultane-
ous multicasts increases, the advantage might no longer be present, as each shared multicast
block requires an additionabuter andmergeblock in the network. These additional blocks are

Design of an asynchronous communication network for an audio DSP chip 67

11.3. DISCUSSION

connected with wires which must be routed on the chip, and included in the area estimate. In
concerns of power in NoC2, eaglacketsent from the NA, network adapters pass through an
additionalrouter andmergeblock, thus increasing the power consumption of unicasts. On the
other hand, multicasts use less power in NoC2, because they are handled at the root of the tree.
In summary, the number of possible multicasts for each block and the number of simultaneous
multicasts affects the areas of the two bundled data networks. The power consumption is depen-
dent of the distribution of unicasts and multicasts in the communication, and the networks must
be 'place and routed’ and power simulated before choosing between these two networks.

The NoC3 network takes up more area than the other networks, but it might not be out of the
guestion. The network uses 2.4% of the total chip area, which is not an unreasonable amount. As
the width of the links is 6 wires, less wires are to be routed than in the bundled data networks.
Also, the use ofl-of-5 encoding decreases the problem with crosstalk, because only one of
the wires make a transition when transferring data. As crosstalk is increasing with decreasing
technology ,this might be important in future chip$-of-5 encoding doe not need matched
delay and the circuitry can be made very fast. Especially in processes with large variations,
as the matched delay in a bundled data solution must be conservative and therefore slow. The
router andmergeblocks can handle approximately 500 Mbit/s, which makes it a good choice
for bandwidth demanding applications. A number of links can be routed in parallel if more
bandwidth is needed.

Even though power consumption has not been estimated, it is still possible to make some
remarks concerning the expected tendency. The dynamic power used at at node is given by

P=CV?f

where(C' is the capacitance of the nodé,is the voltage, and is the switching frequency. As
mentioned, the fanout and length of the wires in the designed networks, results in a reduction
in capacitance compared to the existing network solution. Concerning switching activity, the
original network uses roughly 11 transitions for e@ettket which is 2 for the valid signal and
9 transtions for half of the data-tAtsin the bundled data solutionspacketis transferred using
approximately 27 transitions, which is 4 for the handshake and half of the 23 data bits including
the return to zero. Thé-of-5 solutionalways uses 60 transitions as it takes 4 transitions to
transfer dlit, and apacketconsists of 15lits including routing. The switching activity for the
1-of-5 network is increased by a factor of 6, and the power consumption of this network will
probably increase. For the bundled data networks, the number of transitions are almost tripled.
On other hand | postulate that the capacitance of the wires are reduced by more than a factor of 3,
thereby reducing the power consumption. When technology decreases, wires becomes taller but
thinner which increase their resistance and the coupling between the dlirdshjs tendency
promotes short wires even more as the capacitance of wires, and thereby power consumption,
increases.

In the "Aphrodite DSP’ only a subsection of the input and output ports can communicate.
If a larger subset can communicate, the advantages over the existing network solution are in-
creased, as the designed networks do not increase in size. The area of the networks are linear

2] assume that data is un-correlated

Design of an asynchronous communication network for an audio DSP chip 68

11.3. DISCUSSION

dependent on the number of inputs and outputs, making the network very scalable. The net-
works could very well be used in other applications with different number of inputs, outputs and
data bits. The network could be decoupled from the synchronization at the network adapters, if
needed. This depends on the bandwidth and latency requirements for the application. It should
be noted that the bandwidth in the two bundled data networks decreases with the number of in-
puts and outputs, because the networks do not include any buffers. It is possible to trade area for
bandwidth by inserting buffers between ttoeiter andmergeblocks such that communication

is pipelined. As alpbacketgass through the root of the network, the power consumption raises
with an increasing number of inputs and outputs. For very large applications and bandwidth
demanding systems, a more general topology might be beneficial such that locality can be ex-
ploited by placing blocks that create high traffic loads close to each other. On the other hand,
the router nodes in such a general topology are much larger.

Design of an asynchronous communication network for an audio DSP chip 69

Chapter 12

Conclusion

This chapter concludes on the work done in this project and the results which was discussed in
the previous chapter.

| have successfully designed and implemented three asynchrpaokst-switchedsource-
routednetworks. The networks have 16 input ports ,12 output ports, and supports multicasting.
Two of the networks use a 4-phase bundled data protocol, while the third dset&delay-
insensitive encoding. The networks are integrated into the 'Aphrodite DSP’ and mapped to
standard cells in a 0.18n technology. The estimated areas are extracted from the gate-level
implementations, as the designs are not 'placed and routed'.

All three networks show promising results and the smallest bundled data network takes up
0.084 mni, which is 15% less than the existing network solution. Still, it provides sufficient
bandwidth and is able to communicate 358 Mbit/s, using estimates from the gate-level imple-
mentation. If the designs are 'place and routed’, the area of the designed networks are expected
to decrease even more, relative to the existing network solution.

The power consumption of the networks are not estimated due to difficulties regarding the
design and verification tools. Still, I have argued that the power consumption decreases for the
bundled data network, due to the shorter wires. If time permitted, it would be very interesting
to 'place and route’ the designs, such that the area and power could be properly estimated and
compared.

The network which uses-of-5encoding takes up 0.19 nfmwhich is twice as much as the
original network. Still, this is only 2.4% of the total chip area. | expect this network to use more
power than the bundled data network, and it is not a good choice for this application. It might be
an option for other applications who need more bandwidth, as it provides the largest bandwidth
per wire and is delay-insensitive.

The designed networks are 'plug-and-play’ and can easily be ported to future generations
of the "Aphrodite DSP’ or other applications with different number of inputs, outputs and band-
width requirements. The size of the networks are linear dependent of the number of inputs,
outputs, multicasts and number of data bits. This makes the networks very scalable. The band-
width in the two bundled data networks decrease with the number of inputs and outputs, because

Design of an asynchronous communication network for an audio DSP chip 70

these networks do not include any buffers. It is possible to trade area for bandwidth by insert-

ing buffers between theouter and mergeblocks, such that communication is pipelined. As

the networks decouple the communicating blocks, the chip can be designed using the GALS

methodology, which eases timing-closure and allows each block to run in its own clock domain.
Even though the networks are not 'placed and routed’, the results illustrates that it is possible

to design smalpacket-switchedetworks for applications with limited bandwidth requirements.

Design of an asynchronous communication network for an audio DSP chip 71

BIBLIOGRAPHY

Bibliography

[1]
[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Open core protocol(ocp) homepage. http://www.ocpip.org/.
Visual stg lab (vstgl) homepage. http://vstgl.sourceforge.net/.

John Bainbridge and Steve Furber. CHAIN: A delay-insensitive chip area interconnect.
IEEE Micro, 22:16-23, 2002.

W. J. Bainbridge and S. B. Furber. Delay insensitive system-on-chip interconnect using
1-of-4 data encoding. IRroc. International Symposium on Advanced Research in Asyn-
chronous Circuits and Systemgages 118-126. IEEE Computer Society Press, March
2001.

Davide Bertozzi and Luca Benini. Xpipes: a network-on-chip architecture for gigascale
systems-on-chipCircuits and Systems Magazine, IEEK2):1101-1107, 2004.

Tobias Bjerregaard and Jens Sparsg. A router architecture for connection-oriented service
guarantees in the mango clockless network-on-chifrérc. Design Automation and Test
in Europe (DATE’05), ACM sigda, 200pages 1226—-1231, 2005.

J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev. Petrify: a
tool for manipulating concurrent specifications and synthesis of asynchronous controllers.
IEICE Transactions on Information and SysteiB80-D(3):315—-325, March 1997.

William J. Dally. Virtual-channel flow controllEEE Transactions on Applied Supercon-
ductivity, 3(2):194-205, 1992.

Stephen B. Furber and Paul Day. Four-phase micropipeline latch control cirttiE&
Transactions on VLS| Systepd$2):247-253, June 1996.

Ran Ginosar. Fourteen ways to fool your synchronizerPioc. International Sympo-
sium on Advanced Research in Asynchronous Circuits and Sygtages 89-96. IEEE
Computer Society Press, May 2003.

Sudhakar Yalamanchili José Duato and Lionel Niterconnection Networks: An engin-
erring approach Morgan Kaufmann, 2003. ISBN 1-55860-852-4, Revised printing.

Rikard Thid Shashi Kumar Mikael Millberg, Erland Nilsson and Axel Jantsch. The nos-
trum backbone - a communication protocol stack for networks on chiprdoeedings of
the IEEE International Conference on VLSI Desigages 693—-696, 2004.

Design of an asynchronous communication network for an audio DSP chip 72

BIBLIOGRAPHY

[13] Jens Sparsg and Steve Furber, editoPsinciples of Asynchronous Circuit Design: A
Systems PerspectivKluwer Academic Publishers, 2001.

Design of an asynchronous communication network for an audio DSP chip

73

Appendix A

Synchronization

When transferring data from one clock domain to another or from an asynchronous to a syn-
chronous domain, safe synchronization must be applied. As describ&@]in is extremely
dangerous to optimize the synchronization circuits as it is quite easy to make fatal mistakes
which makes the circuit malfunction. The article describes some of the many mistakes that has
been made in the past when the designer thinks that he has done something really clever.

FigureA.1 shows the basic two flop synchronizer which is a safe and widely used synchro-
nization technique. In this example the two flop synchronizer uses a push scheme to transfer
data between two different clock domains. As seen the receiver synchronizes the request and
the sender synchronizes the acknowledge.

If the first flops get metastable because the request line changes ikt 28cks, therl
signal will be metastable for a unknown period of time. Instead of usingdjrectly it is feed
into a new flop and has a whole clock period to stabilize.

[10] notes the following equation for Mean Time Between Failures (MTBF) for the two flop

synchronizer
T

MTBF = — (A1)

Twfafp
wherer is the settling time constant of the fldpyy, is a parameter related to its time window
of susceptibility,f 4 is the clock frequency of the flops arfg is the frequency of which data is

" domainl | " domain2 |
r rl r2

clk_2

ack

Figure A.1:2 flop synchronization.

Design of an asynchronous communication network for an audio DSP chip 74

pushed across the clock domains. As seen, the MTBF is closely related to T. imafdri®cess,
conservative parameters are=10ps, Ty = 50ps,f4 = 200Mhz andfp = 20M hz the MTBF
the two-flop synchronizer i50%4° years. Compared to this a single flop will enter metastability

at a rate of.——— = 5us which can hardly be considered safe.
Tw fafp

Design of an asynchronous communication network for an audio DSP chip 75

Appendix B

Cell library

Instead of instantiating cells from the cell library directly, a new virtual cell library is created
which wraps the cells in the used standard cell library. A cell in the virtual cell library starts
with the letterC .

There are several reasons for creating this template cell library.

e To insert a propagation delay in the behavioral simulation. As explained in sd€tidin
there is no delay in the used cell library.

e To take advantage of the complex gates in the used standard cell library which has to be
implemented by simple gates if they do not exist.

e To implement the asynchronous cells such as the Mutex and different C-elements using
complex gates.

In addition to the virtual cell library, a small number of 'template cells’ has also been created.
They all start with the letteT C__ and are created to ensure unit capacitance of the inputs as
the design rule in sectioA.2 indicates. The template cells are used whenever a gate needs
a drivestrength larger than one. This is for example the case if an enable signal is feed to a
number of latches. There is also template cells with a variable number of inputs. For example, a
multiplexor and an N-input OR gate which are constructed using a number of simple or complex
cells. It should be noted the selection of template cells are far from complete. This is because |
only implemented the ones which were needed for this project.

The use of template cells makes the actual design almost independent of the actual standard
cell library. If the cell library is exchanged, only the virtual cells and template cells must be
re-implemented. The delay through the cell does however differ from each cell library and the
matched delay must therefore be recalculated based on the used standard cell library.

FigureB.1 shows an inverter template cell which parameter is the FANOUT, that is the
standard unit capacitance that it can drive. The verilog 'generate’ statement is then used to
select an appropriate cell from the used standard cell library. The verilog code for virtual cells
and template cells can be found in apperii&.2andE.1.], respectively.

Design of an asynchronous communication network for an audio DSP chip 76

module TC_INV(a,z);
parameter FANOUT = 2;

input a;
output z;
wire S_z;
generate

if(FANOUT<=1)
inv0dO inv_dO(.a(a), .z(s_2z));
else
if(FANOUT<=4)
inv0dl inv_dl(.a(a), .z(s_2z));
else
if(FANOUT<=8)
inv0d4 inv_d4(.a(a), .z(s_z));
else
if(FANOUT<=16)
inv0d7 inv_d7(.a(a), .z(s_z));
else
if(FANOUT<=32)
inv0da inv_da(.a(a), .z(s_z));
endgenerate
assign #GATE_DELAY z = s_z;
endmodule

Figure B.1:Example of wrapper cell which inserts a gate delay into the behavioral model.

Design of an asynchronous communication network for an audio DSP chip

77

Appendix C

CD contents

The attached CD-ROM includes all source code from appefEdikvided into 3 directories:
blocks/ All network blocks.

include/ Template cell library andlobal.vwhich contains global defines such as routes, which
network to use, debug_level etc.

noc_top/ Contains the tree networks as well as the main testbench.

Design of an asynchronous communication network for an audio DSP chip 78

Appendix D

Network building blocks

D.1 Common blocks

D.1.1 AM_multicast
Function:

This is anAddress Managewhich is used to provide multicast for the AN network adapter. The
Multicaster module (appendi®.1.5) is used to provide the multicast functionality while the
converter module converts from the general configuration matrix into a number of routes and
enable signals. The converter is included in appebd2x].

Note that even though the illustration below only shows a multicast with 2 destinations, any
number of destinations can be provided.
Code can be found in Appendi 3.2

Gate-level Implementation:

0_req i_ack 0_route
Multicaster °'<d i_ack 0_data
Kk
= 0_ack
Lreq i_req
i_enl idatal enp 1 data2
Converter oenl o routel 0_€N2 o route2
i_conf_master i_conf_enable
i conf master i conf enable

Design of an asynchronous communication network for an audio DSP chip 79

D.1. COMMON BLOCKS

D.1.2 AM_unicast
Function:

This is anAddress Managewhich is used to provide unicast for the AN network adapter. It is
simply implemented by connecting the ingoing handshake with the outgoing handshake and as
it only has one route the incoming route is also connected directly to the outgoing.

Note that even though the illustration below only shows a multicast with 2 destinations, any
number of destinations can be provided.
Code can be found in Appendi.3.3

Gate-level Implementation:

i req o ack 0_route i_ack 0 _req

AM unicast

i route

Design of an asynchronous communication network for an audio DSP chip 80

D.1. COMMON BLOCKS

D.1.3 AN, network adapter
Function:

The AN network adapter inputspacketusing a 4-phase bundled data protocol and outputs data
using the Lego2 protocol. The design and implementation was discussed in hagier

Data is latched in a flip-flop on the positive edge akqg . It could also be implemented
by connecting a level-sensitive latchdoack , but this gave rise to problem when integrating
the NoC's into the 'Aphrodite DSP’.

Note that the handshake is synchronized to the clock domain of the output port. This means
that it takes at least 4 clock cycles from for the entire handshake to complete and buffers should
be inserted before the network adapter to decouple if from the network.

Code can be found in Appendi3.4

Gate-level Implementation:

0_master
i_data
0 _data
0_ack
i req D o valid
i_clk

*—
p—|

Design of an asynchronous communication network for an audio DSP chip 81

D.1. COMMON BLOCKS

D.1.4 de_serializer
Function:

This network block de-serializes a stream of 2flii into a single data value. Both input and
output uses a 4-phase bundled data protocol. After thdlilalsas been received, a special "End
Of Packet"EOP) wire is asserted to indicate that there are no nfiitein the packet

Details about the implementation can be found in chelBters
Code can be found in Appendi 3.5

Gate-level Implementation:

i_eop o_req
1_re
_:q— De_serializer 1_ack
-
Controller

=0_ack /{7
&

1_data

N
i
flip—flops L g) EI7—,

Design of an asynchronous communication network for an audio DSP chip 82

D.1. COMMON BLOCKS

D.1.5 Multicaster
Function:

The multicaster is used to generate any number of multicasts. The illustrated gate-level imple-
mentation only shows 2 multicasts, but the code is made such thatiultieastercan provide
any number of multicasts.

Wheni_req is asserted the firsequencehandshakes on the output port while outputting
the data from_datal . When the firssequencehas finished its handshake the succeediig
guenceris activated and so forth. At last the incoming handshake is completed. Each sequencer
can be disabled which is used in for example the multiéaktress Managefrom appendix
D.1.1
Code can be found in Appendi 3.6

Gate-level Implementation:

0_req i_ack o_data

Delay Multicaster

i_req—j —

Sequencer_en | Sequencer_en

i_enl i_en2 0 ack i_datal i data2

Design of an asynchronous communication network for an audio DSP chip 83

D.1. COMMON BLOCKS

D.1.6 NA, network adapter
Function:

The NA network adapter inputs data using the Lego2 protocol and genewatkstsusing a
4-phase bundled data. It is assumed that the delay between data on the input port is large
enough for the network adapter to have sent the pasket An Address Managemust be
connected to the network adapter which provide the route fopétket The currentAddress
Managersare AM_unicast and AM_multicast. AM_unicast is shown in the figure to illustrate
the basic behavior of the adapter. Cha@&.1contains more in depth information about the
implementation.

Code can be found in Appendi.3.7

Gate-level Implementation:

i_data 0_dat?
i_valid \
i_ack
0_req
NA
o_route req i_route ack i_route O_route acki_route req
AM _unicast

route

Design of an asynchronous communication network for an audio DSP chip 84

D.1. COMMON BLOCKS

D.1.7 serializer
Function:

This network block serializes packetinto a stream of 2 biflits. Both the input and output

uses a 4-phase bundled data protocol. After thefliagtas been sent a special "End Of Packet"

(EOP) wire is asserted to indicate that there are no ritsén thepacket The EOP wire works

like the request wire and a 4-phase handshake must be performed using the EORaque sis
Details about the implementation can be found in ché®2&

Code can be found in Appenci.3.8

Gate-level Implementation:

0 ack [Seriglizer | i_ack
i req Controller
! 0_eop
s ctrl =
.) I
i _data ¥)
— =l
- S -
- ﬂ 0_data
=
C
X

Design of an asynchronous communication network for an audio DSP chip

85

D.1. COMMON BLOCKS

D.1.8 Sequencer
Function:

Thesequenceaccepts a 4 phase handshake on the left hand side and generates a 4-phase hand-
shake on the right hand side before completing the handshake on the left hand side. A more in
depth explanation of its functionality and the implementation can be found in clfagterhe
sequenceis for example used in the serializer which can be found in appdndix.

Code can be found in Appendi 3.9

Gate-level Implementation:
+

s _ack b o ack
I_a¢ — S @7
-@ 5_2
|_re C:

+

0_reg

Design of an asynchronous communication network for an audio DSP chip 86

D.1.

COMMON BLOCKS

D.1.9 Sequencer_en

Function:

This module wraps theequencefrom appendidD.1.&such that it can be disabled.ilfen is
"1’ is functions as thesequencerlf it is disabled, by lowering_en , it does not produce any
outgoing handshake and simply completes the incoming handshake right away.

Code can be found in Appendix3.10

Gate-level Implementation:

0_ack

0_ack

Design of an asynchronous communication network for an audio DSP chip

i_ack

< —

i_en
¢ i_reg
} Sequencer
i_req

0_req

87

D.1. COMMON BLOCKS

D.1.10 Sequencer2

Function:

This sequenceris used in thale-serializerin appendixE.3.5 The functionality and implemen-
tation was gone through in chap&g.4
Code can be found in Appendi3.11

Gate-level Implementation:

rgﬁgoen
|
|
—]
i_en 0 _ack
i_reg @
|
|

Design of an asynchronous communication network for an audio DSP chip

88

D.2. BUNDLED DATA BLOCKS

D.2 Bundled data blocks

D.2.1 P_merge
Function:

This module merges 2 input ports onto a single output port. The protocol on both input and
output ports are 4-phase bundled data. The 2 input ports do not have to be mutual exclusive and
arbitration is done inside the merge module.

The merger consists of a handshake arbiter and a multiplexor. The handshake arbiter grants
one of the inputs access to the output ports and locks the arbiter until the handshake is complete.
The multiplexor is implemented using an complex AND-OR gate.

Code can be found in Appendi5.1

Gate-level Implementation:

varbifer """ TS X
! @ :

0_ack1 A=) %
: .ﬂ : : 0_req
: A EETEEEEE -
—M)
: m

i datal E Vi
)

i_regl : %D i>
: bu@)]

:': """" hm® ! ¥ 0_data
[l I)

i_reg2 i '_:rj) B
s

| ! I

i_data2 . P
s
: L
e
: Ho

0_ack2 E@ ; i_ack
:L :

Design of an asynchronous communication network for an audio DSP chip 89

D.2. BUNDLED DATA BLOCKS

D.2.2 P_merge_tree
Function:

This module instantiates a binary tree of P_merge elements. The code is recursively defined as
shown in the figure below by instantiating two smaller P_merge_tree’s and connecting them by
a single P_merge element.

Code can be found in Appendi5.2

Gate-level Implementation:

—P_merge _tree

—>

—> 1 P_merge
I

— P_merge tree

Design of an asynchronous communication network for an audio DSP chip 90

D.2. BUNDLED DATA BLOCKS

D.2.3 P_multicast
Function:

This module implements a 4-phase bundled data multicaster. It acceptkaton its input
port and generates a numberpaicketson the output ports. The routes of thacketsmust be
provided.

Note that even though the illustration below only shows a multicast with 2 destinations, any
number of destinations can be provided.
Code can be found in Appendi.5.3

Gate-level Implementation:

Design of an asynchronous communication network for an audio DSP chip 91

D.2. BUNDLED DATA BLOCKS

D.2.4 P_network
Function:

This module instantiates a binary tree of P_merge elements and a binary tree of P_router ele-
ments and connects them as illustrated below.
Code can be found in Appendi5.4

Gate-level Implementation:

— P_merge tree P_router_tree ——

|

—»

Design of an asynchronous communication network for an audio DSP chip 92

D.2. BUNDLED DATA BLOCKS

D.2.5 P_router
Function:

This module routes packetfrom the input port to one of the two output port using a 4-phase
bundled data protocol. As was explained in chaftdy the most significant bit is used to
determine the route of theacketand the route is shifted left by one. This also means that the
least significant route bit is set to O.

Note that AND gates are inserted such that data are only sent to one of the output ports. The
data could safely be routed to both output ports since only one of the port receives a handshake.
This would cause the data wires to shift through the entire network and would contribute heavily
to the power consumption.

In the illustration below the route is 2 bits, but both the number of bits used for the route and
for the data can be specified.

Code can be found in Appendi5.5

Gate-level Implementation:

i_req
delay ,7}
} o_datal
H —
: B
—r— e
i_data H}
+
:@—é buffer defay o_reql
i_ackl

0_ack

‘—'@ i_ack2
L 0_reg2

{>o @—é buffer ke

+

Design of an asynchronous communication network for an audio DSP chip 93

D.2. BUNDLED DATA BLOCKS

D.2.6 P_router_tree
Function:

This module instantiates a binary tree of P_router elements. The code is recursively defined as
shown in the figure below by instantiating two smaller P_router_tree’s and connecting them by
a single P_router element.

Code can be found in Appendi5.6

Gate-level Implementation:

P_router tree |—

P _router tree —»

—>
P_router —

Design of an asynchronous communication network for an audio DSP chip 94

D.2. BUNDLED DATA BLOCKS

D.2.7 P_sink
Function:

This is a simple sink for the 4-phase bundled data protocol. The sink is a eager consumer which
acknowledges the input as soon as it arrives and is always ready to receive new data.

The module also contains behavioral code which displays the received data.
Code can be found in Appendi5.7

Gate-level Implementation:

| data

Design of an asynchronous communication network for an audio DSP chip 95

D.3. 1-OF-5BLOCKS

D.3 1-of-5blocks
D.3.1 PC bundled _1lof4

Function:

This 2 bit Protocol converterconverts a 4 phase bundled data protocol into a 4 phase4

delay insensitive encoding. Note the AND gates with inverted inputs which disables all outputs
while theacknowledgevire is asserted. If these gates were not inserted the output might change
beforei_reqgoes low.

Code can be found in Appendi.6.1

Gate-level Implementation:

b_ack i_ack

|_req &

C o _do

5
:

Lﬁ UL

DU

Design of an asynchronous communication network for an audio DSP chip 96

D.3. 1-OF-5BLOCKS

D.3.2 PC_1of4 bundled
Function:

This 2 bitProtocol converterconverts a 4 phaskeof-4delay insensitive encoding into a 4 phase
bundled data protocol. Thequestsignal is simply generated when either of the incoming data
wires goes high and the 4 one-hot wires converted into a 2 bit representation. A small delay is
inserted in theequestwire to make sure that the data is stable wherotheq wire is asserted.

Code can be found in Appendi6.2

Gate-level Implementation:

0_ack i_ack

i_do o_lsb
B ——_
i_dl
i_d2
i_d3
0_msb

Design of an asynchronous communication network for an audio DSP chip 97

D.3. 1-OF-5BLOCKS

D.3.3 S latch
Function:

This is a simplel-of-5latch using a 4-phase handshake protocol. The latch is inspired from the
CHAIN network [3].
Code can be found in Appendi6.3

Gate-level Implementation:

T &op H@ 0_eop
i do H@ 0_do
a1 H@ o_d1
@ :@ o d2
a3 H@ i_d3
0_ack

i_ack

A

Design of an asynchronous communication network for an audio DSP chip 98

D.3. 1-OF-5BLOCKS

D.3.4 S_merge
Function:

This module merges 2 input ports using-af-5protocol onto a single output port. The 2 input
ports do not have to be mutual exclusive and arbitration is done inside the merge module. The
merger is inspired from the CHAIN networB][and the only difference is that C-elements are
used as state-holding instead of set/reset latches.

Code can be found in Appendi 6.4

Gate-level Implementation:

0_ackl
i_eopl %Z T
e

i d10)
— C)
_— ./ i_ack
—) S latch
i d1 2 =/
i d13

C) o dl

C Mutex [) 0 d2
i_eop2 (] o] ?) e
i d2 0 =/
— C)
i d2 1 =/
— C)
i d2 2 =/
— C)
i d2 3 H%

v

o_ack2 Z% ‘

Design of an asynchronous communication network for an audio DSP chip 99

D.3. 1-OF-5BLOCKS

D.3.5 S_merge_tree
Function:

This module instantiates a binary tree of S_merge elements. The code is recursively defined as
shown in the figure below by instantiating two smaller S_merge_tree’s and connecting the by a
single S_merge element.

Code can be found in Appendi6.5

Gate-level Implementation:

—> S _merge tree

—>

—> 1 S merge
I

— S _merge tree

Design of an asynchronous communication network for an audio DSP chip 100

D.3. 1-OF-5BLOCKS

D.3.6 S network
Function:

This module instantiates a binary tree of S_merge elements and a binary tree of S_router ele-
ments and connects them as illustrated below.
Code can be found in Appendi.6.6

Gate-level Implementation:

—> S _merge tree S router_tree —

|

—_—

Design of an asynchronous communication network for an audio DSP chip 101

D.3. 1-OF-5BLOCKS

D.3.7 S_router
Function:

This module inputs gacketusing al-of-5 protocol and routes it onto one of two possible
output ports based on the values of the fiist The value 0’ routes the remainirilits to output

port 1 while the value '2’ routes remainirflits to output port 2. The router is inspired from

the CHAIN network B] and the only differences are that C-elements are used as state-holding
instead of set/reset latches and that only the values '0’ and '2’ routes the data.

Code can be found in Appencdi.6.7

Gate-level Implementation:

< i_ackl
i_eop c 0_eop
i_do @ 0.dl 0
idl @ odl1l
id2 @ o.dl 2
id3 4{!—0\ 0.dl 3
L/
0_ack C
~ Controller (
0_eop2
0_eop E‘ c >J =2
D\ 0.d20
i_routel ~—— R:‘g/ —
i_route2 - :‘_C)\ od21
o_routel ® 0.d22
i_eop b :L—J & 3
0_02_.
0_route2 R4+C
i_ack2
L e ———
Controller
i_eop_b

0_eop

0_routel
=

i_route2

0_route2
D

Design of an asynchronous communication network for an audio DSP chip 102

D.3. 1-OF-5BLOCKS

D.3.8 S _router_tree
Function:

This module instantiates a binary tree of S_router elements. The code is recursively defined as
shown in the figure below by instantiating two smaller S_router_tree’s and connecting the by a
single S_router element.

Code can be found in Appendi 6.8

Gate-level Implementation:

S router_tree —

—>
S router —

S router tree —

Design of an asynchronous communication network for an audio DSP chip 103

D.3. 1-OF-5BLOCKS

D.3.9 S sink
Function:

This is a simple sink for thé&-of-5 4-phase handshake protocol. The sink is a eager consumer

which acknowledges the input as soon as it arrives and is always ready to receive new data.
The module also contains behavioral code which displays the received data.

Code can be found in Appendi6.9

Gate-level Implementation:

1_eop

i_do

i_dl

i a2

Design of an asynchronous communication network for an audio DSP chip 104

D.3. 1-OF-5BLOCKS

D.3.10 S source

Function:

This is pure behavioral source for theof-5 4-phase handshake protocol. The source contains
tasksfor both sending a singlit and an entirgpacketincluding the End Of Packet (EORi.

Code can be found in Appendi.6.10

Design of an asynchronous communication network for an audio DSP chip 105

Appendix E

Verilog Code

E.1 Celllibrary

E.1.1 cell_library.v

‘ifndef _cell _library_v
‘define _cell_library_v
[*

Description:
Library of cells.

Naming convention:
C_"Cell type""Number of Inputs""Options"_D"Strength"

Options:
'A’: Each A’ means that a single port is negated.

Strength:
The drive strength og the port. If this is 1, it is not written

e.g:
_AND2 : 2 input AND gate
C_AND2_D3 : 2 input AND gate with drivestrength 3
C_AND2A : 2 input AND gate where the first port is negated
C_OR4AA 4 input OR gate where the first 2 ports are negated

All cells that resets to something ends with " _RO" of "_R1" for
reset to zero or 1

C-Elements are a bit special as they can be assymetric

'M’: Each 'M' means that a single port is assymetric—" (MINUS
). Starting from first port

Design of an asynchronous communication network for an audio DSP chip 106

E.1. CELL LIBRARY

'P’: Each 'P’' means that a single port is assymetric "+" (PLUS)
Starting from last port

e.g:
C_C2 RO . Gelement with 2 inputs that resets to zero
C C3P_R1 D2 : celement with 3 inputs that resets to one. The
last port is assymetic "+". The output
has the drive strength 2
C C2M_RO : Gelement with 2 inputs that resets to one. The
first port is assymetic ~"
C CAMMP_R1 : celement with 4 inputs that resets to one. The
first 2 ports are assymetic ="
while the last port is assymetic "+"
Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/
/l*'include "cell _library_behavioral.v"

‘include "cell_library_at58000.v"
‘timescale 1ns/1ps

module TC_delay(a,z);
parameter DELAY_PS=200; // Delay in pico seconds

‘define DelayPrStage 200
‘define NumberOfStages (DELAY_PS/‘DelayPrStage+1)
‘define NumberOflnverters (‘NumberOfStage®)

input a;
output z;

wire [0:‘NumberOfinverters] s_tmp;

/I Delay is simply an even number of inverters

inv0dO inverter_chain[0: ‘NumberOfinverters2] (.i(s_tmp[O:
‘NumberOflnverters—2]), .zn(s_tmp[l:‘NumberOfinverters1]));

inv0dl inverter_output (.i(s_tmp[‘NumberOfinvertersl]), .zn(s_tmp][
‘NumberOflnverters]));

/1l Assign input

assign s_tmp[0] = a;

/I Assign output

assign #(DELAY_PS/1000.0) z = s_tmp[‘NumberOflnverters];

endmodule // TC_delay

[
OR, 5 input

Design of an asynchronous communication network for an audio DSP chip 107

E.1. CELL LIBRARY

*/

module C OR5(a,b,c,d,e,z);
input a,b,c,d,e;
output z;

wire s_1,s 2;

C_OR2 orl11(.a(a), .b(b), .z(s_1));

C_OR3 or12(.a(c), .b(d), .c(e), .z(s_2));

C OR2 or2(.a(s_1), .b(s_2), .z(2));
endmodule

/%
NOR, 5 input

*/

module C_ NOR5(a,b,c,d,e,z);
input a,b,c,d,e;
output z;

wire s _1,s 2;

C OR2 orll(.a(a), .b(b), .z(s_1));

C OR3 orl12(.a(c), .b(d), .c(e), .z(s_2));

C_NOR2 nor2(.a(s_1), .b(s_2), .z(z));
endmodule

[*
OR, 8 input

*/

module C_OR8(a,b,c,d,e,f,g,h,z);
input a,b,c,d,e,f,qg,h;
output z;

wire s_1,s 2,s 3;

C OR2 orll(.a(a), .b(b), .z(s_1));

C OR3 orl2(.a(c), .b(d), .c(e), .z(s_2));

C OR3 or13(.a(f), .b(g), .c(h), .z(s_3));

C OR3 or2(.a(s_1), .b(s_2), .c(s_3),. z(z));
endmodule

module C_ORx(inputs ,z);
parameter NUMBER=2;
input [NUMBER-—1:0] inputs;
output z;

‘define N_UPPER (NUMBER/2)
‘define N_LOWER (NUMBER‘N_UPPER)

Design of an asynchronous communication network for an audio DSP chip

108

E.1. CELL LIBRARY

wire s_z1;
wire s _z2;

generate
if (NUMBER>2)
begin
//'Upper and lower or groups
C_ORx #(‘N_UPPER) or_upper (.inputs(inputs [NUMBER:'N_LOWER]) ,.
z(s_z1));
C ORx #(‘N_LOWER) or_lower (.inputs(inputs['N_LOWER1:0]) ,.z(
s_z2));
/I Connect the trees
C OR2 or2(.a(s_z1), .b(s_z2), .z(z));
end else
if (NUMBER==2)
begin
/I Connect the trees
C_OR2 or2(.a(inputs[0]), .b(inputs[1]), .z(z));
end else
assign z = inputs[0];
endgenerate
endmodule

module TC_INV(a,z);
parameter FANOUT = 2;

input a;
output Z;
wire s z;
generate

if (FANOUT<=2)

inv0dO inv_dO(.i(a), .zn(s_z));
else
if (FANOUT<=4)

inv0d1l inv_dl(.i(a), .zn(s_z));
else
if (FANOUT<=8)

inv0d2 inv_d2(.i(a), .zn(s_z));
else
if (FANOUT<=28)

inv0dO inv_d7 (.i(a), .zn(s_z));

endgenerate

assign #('GATE_DELAY) z = s_z;
endmodule

module TC BUF(a,z);

Design of an asynchronous communication network for an audio DSP chip

109

E.1. CELL LIBRARY

parameter FANOUT = 2;

input a;
output z;
wire s_z,;
generate

if (FANOUT<=4)

buffdl buf_dl(.i(a), .z(s_z));
else
if (FANOUT<=12)

buffd3 buf_d3(.i(a), .z(s_z));
else
if (FANOUT<=28)

buffd7 buf_d7(.i(a), .z(s_z));

endgenerate

assign #('GATE_DELAY) z = s_z;
endmodule

module TC_INV(a,z);
parameter FANOUT = 2;

input a;
output Z;
wire S _z;
generate

if (FANOUT<=2)

inv0dO inv_dO (.i(a), .zn(s_z));
else
if (FANOUT<=4)

inv0dl inv_dl(.i(a), .zn(s_z));
else
if (FANOUT<=8)

inv0d2 inv_d2(.i(a), .zn(s_z));
else
if (FANOUT<=28)

inv0dO inv_d7 (.i(a), .zn(s_z));

endgenerate

assign #(‘GATE_DELAY) z = s_z;
endmodule

module TC_AND2A(a,b,z);
parameter FANOUT = 2;

Design of an asynchronous communication network for an audio DSP chip

110

E.1. CELL LIBRARY

input a, b;
output z;

wire s z, s_z22;

generate
if (FANOUT<=4)
anl2dl anl2dl(.al(a), .a2(b), .z(s_z));
else
if (FANOUT<=8)
anl2d2 anl2d2(.al(a), .a2(b), .z(s_z));
else
if (FANOUT<=16)
anl2d4 anl2d4(.al(a), .a2(b), .z(s_z));
else
if (FANOUT<=28)
begin
anl2d4 anl2d4(.al(a), .a2(b), .z(s_z2));
/l'lnsert big buffer
buffd7 buffd7 (.i(s_z2), .z(s_z));
end
endgenerate
assign #(‘GATE_DELAYx*2) z = s_2z;
endmodule

/%
Multiplexor with 1-hot capability
*/
module TC mux(i_data, i_ctrl, o_data);
parameter SIZE=2;
/1 Inputs
input [SIZE—-1:0] i_data, i_ctrl;
/1 Outputs
output o_data;
/1
wire [SIZE—1:0] s_tmp;

C AND2 ands[SIZE-1:0](.a(i_data) ,.b(i_ctrl),.z(s_tmp));
C_ORx #SIZE or_tree (.inputs(s_tmp) ,.z(o_data));

%

Error checking
*/
‘ifdef ERROR_CHECKING
integer count,i;
always @(i_ctrl or i_data)
begin

count=0;

Design of an asynchronous communication network for an audio DSP chip 111

E.1. CELL LIBRARY

for (i=0;i<SIZE;i=i+1)
begin
if (i_ctrl[i]) count = count+1;
if (Ci_ctrl[i]'=1"b1 && i_ctri[i]!=1'b0) || (i_data[i]==1'bl &&
i_data[i]==1"b0))
begin
$display("TC_mux_ : ERROR");
$display("__Some internal_signals, is_unknown!");
$display("__i_ctrl: %b",i_ctrl);
$display("__i_data:;%b",i_data);
$stop;
end
end
if (count>1)
begin
$display("TC_mux: ERROR");
$display("__More_ than_ 1 control_is_high_and, it _is_supposeto_
be_'one_hot’ encoding!");
$display(" . i_ctrl: %b",i_ctrl);
$stop;
end
end
‘endif

endmodule

‘endif

Design of an asynchronous communication network for an audio DSP chip

112

E.1. CELL LIBRARY

E.1.2 cell library_at58000.v

/%
Description:
Cell library

Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/
‘ifndef _cell library_at58000_v
‘define _cell _library_at58000_v

[l ‘uselib dir=../technology/ libext=.v

‘timescale 1ns/1ps
‘include "global.v"

‘define GATE_DELAY 0.150 //150 ps

[*
AND, 2 input

x/

module C_AND2(a,b,z);
input a,b;
output z;

wire s_z;

an02dl an02dl i(.z(s_z), .al(a), .a2(b));
assign #GATE DELAY z = s_z;

endmodule

[%
NAND, 2 input

*/

module C_NAND2(a,b,z);
input a,b;
output z;

wire s_z;

nd02d1l nd02dl_i(.zn(s_z), .al(a), .a2(b));
assign #GATE_DELAY z = s_z;

endmodule

[

Design of an asynchronous communication network for an audio DSP chip

113

E.1. CELL LIBRARY

AND, 2 input, A negated
*/
module C_AND2A(a,b,z);
input a,b;
output z;

wire s_z;

anl2dl anl12dl i(.z(s_z), .al(a),
assign #GATE_DELAY z = s_z;

endmodule
[*

AND, 3 input
*/

module C_AND3(a,b,c,z);
input a,b,c;
output z;

wire s_z;

an03dl an03d1_i(.z(s_z), .al(a),
assign #GATE_DELAY z = s_z;

endmodule
[%

AND, 4 input
*/

module C_AND4(a,b,c,d,z);
input a,b,c,d;
output z;

wire s_z;

an04dl an04dl _i(.z(s_z), .al(a),
assign #GATE DELAY z = s_z;

endmodule

[+
OR, 2 input

x/

module C_OR2(a,b,z);
input a,b;
output z;

wire s_z;

-a2(b));

.a2(b),

.a2(b),

.a3(c));

.a3(c),

Design of an asynchronous communication network for an audio DSP chip

.a4(d));

114

E.1. CELL LIBRARY

or02d1 or02d1_i(.z(s_z), .al(a), .a2(b));
assign #GATE_DELAY z = s_z;

endmodule
[%

OR, 3 input
*/

module C_OR3(a,b,c,z);
input a,b,c;
output z;

wire s_z;

or03d1l or03d1l i(.z(s_z), .al(a), .a2(b), .a3(c));

assign #GATE_DELAY z = s_z;

endmodule
[%

OR, 4 input
*/

module C_OR4(a,b,c,d,z);
input a,b,c,d;
output z;

wire s_z;

or04d1 or04d1_i(.z(s_z), .al(a), .a2(b), .a3(c),
assign #GATE_DELAY z = s_z;

endmodule

[*
NOR, 2 input

*/

module C_ NOR2(a,b,z);
input a,b;
output z;

wire s_z;

nro2dl nr02dl _i(.zn(z), .al(a), .a2(b));
assign #GATE_DELAY z = s_z;

endmodule

[

Design of an asynchronous communication network for an audio DSP chip

.a4(d));

115

E.1. CELL LIBRARY

AND-OR

x/

module C_AOR22(a, b, c, d, z);
input a,b,c,d;
output z;

wire s_z;
aor22dl aor222dl1_i(.z(s_z), .al(a), .a2(b),

// Delay through complex gates
assign #GATE_DELAY z = s_z;
endmodule

[
C-element, 2 input
Resets(low) to zero
*/

module C_C2 _RO(a,b,z, reset_b);
input a,b, reset_b;
output z;

wire s z, s_z1,s z2;

aor222dl1 aor222dl1 _i(.z(s_z1), .al(a), .a2(b)
(b), .c2(s_z));

/I Delay through complex gates

assign #GATE_DELAY s_z2 = s_z1;

/l Reset gate

C AND2 addsl(.a(s_z2),.b(reset_b),.z(s_z));
/1 Output

assign z = s_z2;

endmodule

/%
C-element, 2 input
Resets(low) to zero

Asymetric, one plus
*/
module C_C2P_RO(a,b,z,reset_b);

input a,b,reset_b;
output z;

Design of an asynchronous communication network for an audio DSP chip

.bl(c), .b2(d));

, .bl(a),

.b2(s_2),

.cl

116

E.1. CELL LIBRARY

wire s z, s z1, s _z2;

aor22dl aor22d1_i(.z(s_zl1), .al(a), .a2(b), .bl(a), .b2(s_z));

// Delay through complex gates

assign #GATE_DELAY s_z2 = s_z1,;

// Reset gate

C _AND2 addsl(.a(s_z2),.b(reset_b),.z(s_z));
assign z = s_z2;

endmodule

[*
C-element, 2 input
Resets(low) to zero

Asymetric, one minus, one plus
*/
module C_C2MP_RO(a,b,z,reset_b);
input a,b,reset_b;
output z;

wire s z, s_z1, s_z2;

aor21dl aor21dl i(.z(s_z1), .bl(a), .b2(s_z), .a(b));

// Delay through complex gates
assign #'GATE_DELAY s _z2 = s_z1;
/I Reset gate
C_AND2 and_reset(.a(s_z2) ,.b(reset_b) ,.z(s_z));
[/ output
assign z = s_z2;
endmodule

module C_C3MPP_RO(a,b,c,z,reset_b);
input a,b,c,reset_b;
output z;

wire s_z, s z1, s_z2;

aor22dl aor22d1_i(.z(s_zl), .bl(a), .b2(s_z), .al(b), .a2(c));

// Delay through complex gates
assign #GATE_DELAY s_z2 = s_z1,;
/I Reset gate
C AND2 and_reset(.a(s_z2),.b(reset_b) ,.z(s_z));
[/l output
assign z = s_z2;
endmodule

Design of an asynchronous communication network for an audio DSP chip

117

E.1. CELL LIBRARY

[%
C-element, 3 input
Resets to zero

assymetric, 2 Plusses

x/module C_C3PP_RO(a,b,c,z,reset_b);
input a,b,c,reset_b;
output z;

wire s z, s z1, s z2, s_z3;

aoi321d1l aor321dl _i(.zn(s_zl1), .cl(a), .c2(b), .c3(c), .bl(a), .b2(
s z), .a(1'b0));

// Delay through complex gates

assign #GATE_DELAY s_z2 = s_z1,;

inv0dl inv(.i(s_z2),.zn(s_z3));

/I Reset gate
C AND2A and_reset(.a(s_z2) ,.b(reset_b) ,.z(s_2z));
[/ output
assign z = s_z3;
endmodule

/%
C-element, 3 input
Resets to zero
*/
module C_C3 RO(a,b,c,z,reset_b);
input a,b,c,reset_b;
output z;

wire s_set, s_reset_b;

an03dl or3(.al(a), .a2(b), .a3(c), .z(s_reset_b));
or03d1 and3(.al(a),.a2(b), .a3(c), .z(s_set));

C C2 RO c2(.a(s_set) ,.b(s_reset_b),.z(z), .reset_b(reset_b));
I« reg z;

always @(reset_b)
z <= 0;

Design of an asynchronous communication network for an audio DSP chip 118

E.1. CELL LIBRARY

always @(a or b or c)
if (a==b && b==c)
#'GATE_DELAY z <= a;
*/
endmodule

/%
C-element, 3 input,
Resets(low) to zero

Asymetric, one plus
*/
module C_C3P_RO(a,b,c,z,reset_b);
input a,b,c,reset_b;
output z;

wire s_z, s z1,s z2;

aoi322dl1l aoi322dl1_i(.zn(s_z1), .cl(a), .c2(b), .c3(c), .bl(a), .b2(
s z), .al(b), .a2(s_z));
/I Delay through complex gates
assign #GATE _DELAY s z2 = s_z1;
/I Reset gate
C _AND2A addsl (.a(s_z2),.b(reset_b) ,.z(s_z));
[l output
TC_INV inv_output(.a(s_z2),.z(z));
endmodule

/%
Mutex, 2 input
Reset low
x/
module C_MUTEX2(i_reql ,i_req2 ,0_reql,o_req2);
input i_reql,i_req2;
output o_reql, o_req2;

‘ifdef SYNTHESIS_ON
// RTL version
wire s_gql,s_q2;
nd02d0 nandl(.zn(s_qgl), .al(i_reql), .a2(s_q2));
nd02d0 nandl(.zn(s_q2), .al(i_req2), .a2(s_qgl));
invodl invl(.i(s_ql), .zn(o_reql));
inv0dl inv2(.i(s_g2), .zn(o_req2));

‘else
// Behavioral version
reg o_reql, o_reqg2;

Design of an asynchronous communication network for an audio DSP chip 119

E.1. CELL LIBRARY

always @(posedgei_reql)
begin
if (lo_req2)
0_regl <= 1'bl;
end
always @(negedgei_reql)
begin
o_reql <= 1'b0;
if (i_req2)
0_reg2 <= 1'bl;
end
always @(posedgei_req2)
begin
if ('o_reql && !'i_reql)
0_reg2 <= 1'bl;
end
always @(negedgei_req2)
begin
o_req2 <= 1'b0;
if (i_reql)
0_regl <= 1'bl;
end
‘endif //SYNTHESIS ON

endmodule

[*
Latch
Active low
Q output only
Reset (low)
*/

module C LATCHQL(d,en,q);
input d,en;
output q;

wire s_q;

lanlgl lanlgl_i(.q(s_q), .en(en), .d(d));
assign #GATE_DELAY q = s_(;

endmodule

[*
D-flip flop,
Positive clock edge
Q output only
*/

Design of an asynchronous communication network for an audio DSP chip 120

E.2. NETWORKS

module C_FD1Q(d, clk ,q);
input d,clk;
output q;

wire s_q;

dfnrgl dfnrgql_i(.q(s_q), .cp(clk), .d(d));
assign #GATE_DELAY q = s_(;

endmodule

/%
Set/Reset module (active low for both set and reset)
Q and Q_Bar output
*/
module C_SR(set_b, reset_b, q, gq_b);
input set_b ,reset_b;
output g, g_b;

wire s_qg, s_gb;

//Using a set/reset flip-flop

labhbl labhbl_i(.q(s_q), .qn(s_gb), .e(1'b0), .d(1'b0),

reset_b), .sdn(set_b));
assign #GATE_DELAY g = s_Q;
assign #GATE_DELAY g b = s _qgb;
endmodule
‘endif
E.2 Networks
E.2.1 Converter

[%
Description:
Converts a number of enabled routes into a route

Created by:

Mikkel Stensgaard— mikkel@stensgaard.org
x/

‘ifndef _Converter_v
‘define _Converter_v

‘include "global.v"

Design of an asynchronous communication network for an audio DSP chip

.cdn (

121

E.2. NETWORKS

module Converter(i_enable, i_master, o_enable, o_route);

task integerToRoute;
input [3:0] address;
output [3:0] route;

begin
case (address)
0 : route = ‘ROUTE_1,;
1 : route = '‘ROUTE_2;
2 route = '‘ROUTE_S3;
3 route = ‘ROUTE_4;
4 route = ‘ROUTE_5;
5 route = ‘ROUTE_6;
6 route = ‘ROUTE_7;
7 route = ‘ROUTE_S;
8 route = ‘ROUTE_9;
9 : route = ‘ROUTE_10;
10 : route = ‘ROUTE_11;
11 : route = ‘ROUTE_12;
12 : route = ‘ROUTE_13;
13 : route = ‘ROUTE_14;
14 : route = ‘ROUTE_15;
15 : route = ‘ROUTE_16;

default: route = O;
endcase
/1l $display (" integerToRoute: %d %b", address , route);
end
endtask

parameter N_MC=2;
parameter N_ROUTES='N_OUTPUTS;

/I Inputs

input [N_ROUTES-1:0] i_enable;

input [N_ROUTES-1:0] i_master;

/1l Outputs

output [N _MCx(‘ROUTE_WIDTH+1)—-1:0] o_route;
output [N_.MC-1:0] o_enable;

reg [N _MC«(‘ROUTE_WIDTH+1)—-1:0] o_route;
reg [NMC—1:0] o_enable;

integer i;

always @(i_enable or i_master)

begin

/I $display ("Converting: %b", i_enable);

o_enable = 0;
o_route = 0;

Design of an asynchronous communication network for an audio DSP chip

122

E.2. NETWORKS

for (i=0;i<N_ROUTES; i=i+1)
begin
if (((i_enable>>i)&1'bl)==1"bl)
begin
o_route = o_route <<5;
integerToRoute (i,o_route[4:1]);
o_route[0] = ((i_master>>i)&1'b1);
o_enable = (o_enable <<1) | 1'b1;
end
end
[/l $display ("Done Converting: en: %b routes: %b", o_enable, o_route)

end
/[l ambit synthesis off

/%

Function which tests that the inputs are never acked at the same time
*/

integer |, count;

always @(i_enable)
begin
count=0;
for (i=0;i<N_ROUTES; i=i+1)
if (((i_enable>>(N_ROUTES —1))&1'b1)==1"b1)
count = count+1;
if (count>N_MC)

begin
‘ERROR("ERROR!, To_Many_ mulicasts.")
end
/I'ERROR(""%d mc",count')
end

/I ambit synthesis on
endmodule

‘endif

Design of an asynchronous communication network for an audio DSP chip 123

E.2. NETWORKS

E.2.2 Converter_P2

[%
Description:
Converts a number of enabled routes into a route
Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/

‘ifndef _Converter_P2 v
‘define _Converter_P2_v

‘include "global.v"

‘define ROUTE_MC_1 5'b10000
‘define ROUTE_MC_2 5'b11000
‘define ROUTE_MC_3 5'b10100
‘define ROUTE_MC 4 5'b11100

module Converter_P2(

i_enable ,

i_master,

o_route ,

o_mc_enable,// enable for MC modules
o_mc_route //route for MC modules

)i

[*

Parameters
*/
parameter N_MC_BLOCKS=2; /I Number of multicast blocks
parameter N MC PR BLOCK=2; // Multicasts pr multicast block
parameter N_INPUTS=10;
parameter N_OUTPUTS=10;

parameter ROUTE WIDTH=5+1; //route + master
task integerToRoute;

input [4:0] address;
output [4:0] route;

begin
case (address)
0 : route = '‘ROUTE_1;
1 route = ‘ROUTE_2;
2 : route = ‘ROUTE_3;
3 route = ‘ROUTE 4;

Design of an asynchronous communication network for an audio DSP chip

124

E.2. NETWORKS

4 route = ‘ROUTE_5;
5 route = ‘ROUTE_6;
6 : route = ‘ROUTE_7;
7 : route = ‘ROUTE_S;
8 : route = ‘ROUTE_9;
9 : route = ‘ROUTE_10;
10 : route = ‘ROUTE_11;
11 : route = ‘ROUTE_12;
12 : route = ‘ROUTE_13;
13 : route = ‘ROUTE_14;
14 : route = ‘ROUTE_15;
15 : route = ‘ROUTE_16;

default: route = O;
endcase
end
endtask

task integerToMCRoute;
input [5:0] address;
output [5:0] route;

begin
case (address)
0O : route = ‘ROUTE_MC_1;
1 : route = ‘ROUTE_MC_ 2;
2 : route = ‘ROUTE_MC_3;
3 : route = ‘ROUTE_MC 4;
default: route = O0;
endcase
end
endtask
/I Inputs

input [N_INPUTS«N_OUTPUTS-1:0] i_enable;

input [N_INPUTS«N_OUTPUTS-1:0] i_master;

/1l Outputs

output [N_INPUTS«*ROUTE WIDTH-1:0] o_route;

output [N_MC PR BLOCK«N MC BLOCKS:ROUTE WIDTH-1:0] o_mc_route;
output [N_MC_BLOCKS«N_MC PR _BLOCK-1:0] o_mc_enable;

reg [N_INPUTS«xROUTE_WIDTH-1:0] o_route;
reg [N_MC_PR_BLOCK«N_MC_BLOCKS:ROUTE_WIDTH-1:0] o_mc_route;
reg [N_MC_PR_BLOCK:N_MC BLOCKS-1:0] o_mc_enable;

[/l Temporary registers

reg [N_OUTPUTS-1:0] current_enable, current_master;
reg [ROUTE WIDTH-1:0] tmp_route;

/I generate veris

Design of an asynchronous communication network for an audio DSP chip

125

E.2. NETWORKS

integer i,j,count;
integer currentMC, currentAddress;

always @(i_enable or i_master)

begin
/Il First, reset routes and multicasts
o_route = 0;
o_mc_route = O0;
0_mc_enable=0;
// Reset multicast counter
currentMC =0;

//Loop through all inputs

for (i=0;i<N_INPUTS; i=i+1)

begin
current_enable
current_master

= i_enable >>(N_OUTPUTS) ;
= i_master >>N_OUTPUTS) ;
/I First count the number of destinations for this input
//to determine if it is a unicast or multicast
count=0;
for (j=0;j<N_OUTPUTS; j=j+1)

if (((current_enable>>j)&1'b1)==1"b1)

count = count+1,;

[
Not used
*/
if (count==0)
begin
end else
[
Unicast
x/
if (count==1)
begin
for (j=0;j<N_OUTPUTS; j=j+1)
if (((current_enable>>j)&1'bl)==1"bl)
begin
integerToRoute (j,tmp_route [ROUTE_WIDH:1]) ;
tmp_route [ROUTE_WIDTH1] = 1'b0;//No multicast
tmp_route[0] = ((current_master>>j)&1’'bl);
o_route = o_route | (tmp_route <<xROUTE_WIDTH);
end
end
else
[*
Multicast
*/

Design of an asynchronous communication network for an audio DSP chip 126

E.2. NETWORKS

if (count==2)

begin
/I First, send the packet to the MC block
integerToMCRoute (currentMC ,tmp_route [ROUTE WIDFH:1]) ;
tmp_route[0] = 0; //does not matter
o_route = o_route | (tmp_route <<xROUTE_WIDTH);

currentAddress =0;
/l Second, Set up the block to the 2 addresses
for (j=0;j<N_OUTPUTS; j=j+1)
if (((current_enable>>j)&1'bl)==1"bl)
begin
integerToRoute (j,tmp_route [ROUTE_WIDFHL:2]) ;
tmp_route[1l] = 0; //don’t care
tmp_route[0] = ((current_master>>j)&1’'bl);
/Il Setup the route
o_mc_enable = o_mc_enable | (1'bl<<(currentAddress+
N_MC_PR_BLOCkscurrentMC));
0o_mc_route = o_mc_route | (tmp_route <<(ROUTE_WIB{H
currentAddress+N_MC_PR _BLOGKurrentMC)));
/I Advance current address
currentAddress = currentAddress +1;
end
/I Advance currentMC, such that next multicast uses the next MC
block
currentMC=currentMC +1,;
end else
begin
‘ERROR("ERROR! ., To_Many_ mulicasts _Only_2 allowed")
end
end
end

endmodule

‘endif

Design of an asynchronous communication network for an audio DSP chip 127

E.2. NETWORKS

E.2.3 NoC

/%
Description:
NoC.

Parallel bundled data version
Topology: Binary tree

Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/
‘ifndef _NoC_v
‘define _NoC_v

‘include "global.v"
‘timescale 1ns/1ps

module NoC(
i_data,
i_valid ,
i_conf_enable ,
i_conf_master,
o_data,
0_master,
o_valid
i_clk,
i_reset_b);

[

Parameters
*/
parameter INPUTS='N_INPUTS;
parameter OUTPUTS='N_OUTPUTS;
parameter DATA WIDTH='DATA_WIDTH;

[/ This is not really a parameters.. +1 due to master4 bit
parameter ROUTE_WIDTH="ROUTE_WIDTH+1;
parameter BUS_WIDTH=DATA_WIDTH+ROUTE_WIDTH;

//TBD. Due to modelsim crash
parameter ROUTE_WIDTH2=5;

/%
Inputs
*/
input [INPUTS«DATA WIDTH—-1:0] i_data;

Design of an asynchronous communication network for an audio DSP chip 128

E.2. NETWORKS

input [INPUTS-1:0] i_valid;
input [INPUTSxOUTPUTS-1:0] i_conf_enable ,i_conf_master;
input i_clk, i_reset_b;

%
OQutputs
x/
output [OUTPUTS:tDATA WIDTH—-1:0] o_data;
output [OUTPUTS-1:0] o_master;
output [OUTPUTS-1:0] o_valid;

[*
Internal signals
*/
wire [INPUTS«BUS WIDTH-1:0] si_data;
wire [OUTPUTS:BUS WIDTH-1:0] so_data;
wire [INPUTS-1:0] si_req,so_ack;
wire [OUTPUTS-1:0] so_req,si_ack;
wire [INPUTSx*ROUTE_WIDTH-1:0] s_route;
wire [INPUTS—1:0] s_route_ack, s_route_req;
wire [INPUTS-1:0] s_req,s_ack;

/%
Netlist
*/
// The network
P_network network(si_data, si_req, so_ack, so_data, so_req, si_ack,
i_reset_b);
defparam network .INPUTS=INPUTS;
defparam network .OUTPUTS=0OUTPUTS;
defparam network .BUS WIDTH=BUS WIDTH; // width+Master
defparam network .DATA WIDTH=DATA_ WIDTH+1;

/I The Network adapters
genvar i;
generate
for (i=0;i<INPUTS;i=i+1)
begin : NA_generation
NA naAdapter (
.i_data(i_data[(1+i)DATA_WIDTH-1:i«DATA WIDTH]) ,
.i_valid (i_valid[i]),
.0_data(si_data[(1+i$BUS_WIDTH-1:i«BUS_WIDTH]) ,
.o_req(si_req[i]),
.i_ack(so_ack[i]),
.0_route_req(s_route_req[i]),
.i_route(s_route[(1+i}ROUTE_WIDTH-1:i+«ROUTE_WIDTH]) ,
.i_req(s_reqli]),
.0_ack(s_ack[i]),

Design of an asynchronous communication network for an audio DSP chip 129

E.2. NETWORKS

.i_route_ack(s_route_ack][i]),
.i_clk(i_clk),

.i_reset_b(i_reset_b));

defparam naAdapter.DATA WIDTH=DATA WIDTH;
defparam naAdapter.BUS WIDTH=BUS WIDTH;
defparam naAdapter .ROUTE WIDTH=ROUTE_WIDTH;

/I AM_unicast am_unicast(s_routel[0:3], s_route_req[i], s_ack]Ji
],s_route2[i*'ROUTE_WIDTH:(1+i)x'ROUTE_WIDTH-1], s_req]li],
s_route_ack[i],i_reset_b);

AM_multicast am_multicast(
.i_conf_enable(i_conf_enable [(i+PUTPUTS-1:i«OUTPUTS]) ,
.i_conf_master(i_conf_master [(i+PUTPUTS-1:ixOUTPUTS]) ,
.i_req(s_route_reqli]),
.i_ack(s_ack[i]),
.0_data(s_route [(1+i9ROUTE_WIDTH2-1:i+«ROUTE_WIDTH2]) ,
.o_req(s_req[i]),
.0_ack(s_route_ack[il]),
.i_reset_b(i_reset_b));
defparam am_multicast.DATA WIDTH=ROUTE_WIDTH;
end
for (i=0;i<OUTPUTS; i=i+1)
begin : AN_generation
AN anAdapter (
.i_data(so_data[(i+19BUS WIDTH-ROUTE_WIDTH: ixBUS_WIDTH]) ,
.i_req(so_reqli]),
.0_ack(si_ackJi]),
.0_data(o_data[(1+ i9DATA WIDTH—1:i+DATA WIDTH]) ,
.0_master(o_master[i]),
.o0_valid(o_valid[i]),
Ji_clk(i_clk),
.i_reset_b(i_reset_b));
defparam anAdapter.SIZE=DATA WIDTH+1;

end
endgenerate

[
Function which tests that the inputs are never acked at the same time
x/

‘ifdef ERROR_CHECKING
integer |,count;
always @(so_req)
begin
count=0;
for (1=0;1<OUTPUTS; I=1+1)
if (so_req[l])
count = count+1;

Design of an asynchronous communication network for an audio DSP chip 130

E.2. NETWORKS

if (count>1)
begin
$display ("NoC.v: ERROR!. two_request at_the_ sametime. %d %b\n",
count,so_req);
$stop;
end
end
‘endif
endmodule

‘endif

Design of an asynchronous communication network for an audio DSP chip 131

E.2. NETWORKS

E.2.4 NoC_P2

/%
Description:
NoC.

Parallel bundled data version
Topology: Binary tree

Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/
‘ifndef _NoC_P2 v
‘define _NoC_P2 v

‘include "global.v"
‘timescale 1ns/1ps

module NoC_P2(
i_data,
i_valid ,
i_conf_enable ,
i_conf_master,
o_data,
0_master,
o_valid
i_clk,
i_reset_b);

[

Parameters
*/
parameter INPUTS='N_INPUTS;
parameter OUTPUTS='N_OUTPUTS;
parameter DATA WIDTH='DATA_WIDTH;

parameter N_MC_BLOCKS=2;
parameter N_MC_PR BLOCK=2;

[/ This is not really a parameters.. 5 bits for route and 1 for
matster bit

parameter ROUTE_WIDTH=5+1;

parameter BUS_WIDTH=DATA WIDTH+ROUTE_WIDTH;

//TBD. Due to modelsim crash. It is really annoying, but this seems

to get around it
parameter ROUTE_WIDTH2=(ROUTE _WIDTH+1-1);

Design of an asynchronous communication network for an audio DSP chip 132

E.2. NETWORKS

parameter DATA WIDTH2=(DATA WIDTH+1-1);
parameter BUS_WIDTH2=(BUS_WIDTH+1-1);

[*
Inputs
*/
input [INPUTS«DATA WIDTH—-1:0] i_data;
input [INPUTS-1:0] i_valid;
input [INPUTSxOUTPUTS-1:0] i_conf_enable ,i_conf_master;
input i_clk, i_reset_b;

/%
Outputs
*/
output [OUTPUTS:DATA WIDTH-1:0] o_data;
output [OUTPUTS-1:0] o_master;
output [OUTPUTS-1:0] o_valid;

[%
Generate variables
x/
genvar i;
[%
Internal signals
x/

wire [INPUTS«BUS WIDTH-1:0] si_data;

wire [OUTPUTS«BUS WIDTH-1:0] so_data;

wire [INPUTS—-1:0] si_req,so_ack;

wire [OUTPUTS-1:0] so_req,si_ack;

wire [INPUTSxROUTE WIDTH-1:0] s_route;

wire [INPUTS-1:0] s_route_ack, s_route_req;
wire [INPUTS-1:0] s_req,s_ack;

[%
Netlist
x/

/%
Wires

*/

wire s_ack 11, s_ack_ 12, s_ack_I3;

wire s_req_Il1, s_req_I2, s_req_I3;

wire [BUS WIDTH—-1:0] s _data_ |1, s _data_ |2, s_data_I3;
wire s_ack rl, s _ack r2, s _ack r3;

wire s_req_rl, s_req_r2, s_req_r3;

Design of an asynchronous communication network for an audio DSP chip

133

E.2. NETWORKS

wire [BUS WIDTH-1:0] s_data_rl, s data_r2, s_data r3;
wire [N_MC_BLOCKStN_MC_PR_BLOCK:ROUTE _WIDTH-1:0] s_mc_route;
wire [N_MC BLOCKS«N_MC PR BLOCK-1:0] s_mc_enable;

[*
Converter , which converts configuration matrix into signals for
Multicastblocks and Network adapters

x/

/I parameter N_MC_BLOCKS=2; /I Number of multicast blocks

/I parameter N_MC PR BLOCK=2; // Multicasts pr multicast block

[l parameter N_INPUTS=10;

[l parameter N_OUTPUTS=10;

Converter_P2 #(N_MC_BLOCKS,N_MC_PR_BLOCK, INPUTS,OUTPUTS) converter (
.i_enable(i_conf_enable),
.i_master(i_conf_master),
.0_route(s_route),
.0_mc_enable(s_mc_enable),
.0_mc_route(s_mc_route)

)

P _merge_tree #(INPUTS, BUS WIDTH) merge_tree (
.i_data(si_data),
.i_req(si_req),
.0_ack(so_ack),
.0_data(s_data_I1),
.0_req(s_req_I1),
.i_ack(s_ack_I1),
.i_reset_b(i_reset_b));

P_router #(BUS WIDTH, (DATA WIDTH+1)) router(
.i_data(s_data_I1),
.i_req(s_req_I1),
.0_ack(s_ack_I1),
.0_datal(s_data_I2),
.0_reql(s_req_12),
.i_ackl(s_ack_12),
.0_data2(s_data_I3),
.o0_reg2(s_req_13),
.i_ack2(s_ack_13),
.i_reset_b(i_reset_b)

)

// Connect the lower part directly

assign s_data_r2 =s_data_I12;

assign s_req_r2 =s_req_I12;
assign s_ack_12 =s_ack_r2;

!/l wires

Design of an asynchronous communication network for an audio DSP chip

134

E.2. NETWORKS

wire [N_MC_BLOCKS-1:0] s_ack_mcl, s_ack_mc2;
wire [N_MC BLOCKS-1:0] s_req_mcl, s_req_mc2;
wire [N_MC BLOCKS«BUS WIDTH—-1:0] s_data_mcl, s_data_mc2;
/I Multicast router tree
P_router_tree #(N_MC_BLOCKS, BUS WIDTH, (DATA WIDTH+1))
multicast_router_tree (
.i_data(s_data_I3),
.i_req(s_req_13),
.0_ack(s_ack_13),
.0_data(s_data_mcl),
.0_req(s_req_mcl),
.i_ack(s_ack_mc1l),
.i_reset_b(i_reset_b));

/l Generate and connect the multicast blocks
generate
for (i=0;i<N_MC_BLOCKS; i=i+1)
begin : multicast_block_generation
P_multicast p_multicast(
.i_routes(s_mc_route[(i+XN_MC PR BLOCKROUTE WIDTH-1:i *
N_MC_PR_BLOCKROUTE_WIDTH]) ,
.i_route_en(s_mc_enable[(i+&) MC PR BLOCK-1:ix
N_MC_PR _BLOCK]) ,
.i_data(s_data_mc1l xBUS_WIDTH+DATA WIDTH-1:i*BUS WIDTH]) ,
.i_req(s_req_mcl[i]),
.0_ack(s_ack_mclf[i]),
.0_data(s_data_mc2[(i+iBUS WIDTH2-1:i+«BUS WIDTH2]) ,
.o_req(s_req_mc2[i]),
.i_ack(s_ack_mc2[i]),
.i_reset_b(i_reset_b));
defparam p_multicast .N_MC=N_MC PR BLOCK;
defparam p_multicast.DATA WIDTH=DATA WIDTH;
defparam p_multicast.BUS WIDTH=BUS WIDTH;
defparam p_multicast.ROUTE WIDTH=ROUTE _WIDTH;
end
endgenerate

/I Multicast merge tree
P_merge_tree #(N_MC BLOCKS, BUS WIDTH) multicast_merge_tree (
.i_data(s_data_mc2),
.i_req(s_req_mc2),
.0_ack(s_ack_mc2),
.0_data(s_data_r3),
.0_req(s_req_r3),
.i_ack(s_ack_r3),
.i_reset_b(i_reset_b));

P_merge merger (
.i_datal(s_data_r3),

Design of an asynchronous communication network for an audio DSP chip 135

E.2. NETWORKS

.i_regql(s_req_r3),
.0_ackl(s_ack_r3),
.i_data2(s_data_r2),
.i_req2(s_req_r2),
.0_ack2(s_ack_r2),
.0_data(s_data_rl),
.0_req(s_req_rl),
.i_ack(s_ack_r1),
.i_reset_b(i_reset_b)
)

defparam merger.BUS_WIDTH=BUS_WIDTH;

P_router_tree #(OUTPUTS, BUS WIDTH, (DATA WIDTH+1)) router_tree (
.i_data(s_data_r1),
.i_req(s_req_rl),
.0_ack(s_ack_rl),
.0_data(so_data),
.0_req(so_req),
.i_ack(si_ack),
.i_reset_b(i_reset_b));

/I The Network adapters
generate
for (i=0;i<INPUTS;i=i+1)
begin : NA_generation
NA naAdapter (

.i_data(i_data[(1+i}DATA WIDTH—1:i«DATA WIDTH]) ,
.i_valid (i_valid[i]),
.0_data(si_data[(1+i)BUS_WIDTH-1:ixBUS WIDTH]) ,
.o_req(si_reqli]),
.i_ack(so_ack]i]),
.0_route_req(s_route_req[i]),
.i_route(s_route[(1+i}ROUTE WIDTH-1:i+xROUTE_WIDTH]) ,
.i_req(s_req[i]) .,
.o0_ack(s_ack[i]),
.i_route_ack(s_route_ack][i]),
.i_clk(i_clk),
.i_reset_b(i_reset_b));
defparam naAdapter.DATA WIDTH=DATA WIDTH;
defparam naAdapter.BUS WIDTH=BUS WIDTH;
defparam naAdapter .ROUTE WIDTH=ROUTE_WIDTH;

AM _unicast am_unicast(
.i_req(s_route_reql[i]),
.i_ack(s_ack[i]),
.o_req(s_req[i]),
.0_ack(s_route_ack]i]),
.i_reset_b(i_reset_b));

Design of an asynchronous communication network for an audio DSP chip 136

E.2. NETWORKS

end
/IAN adapters
for (i=0;i<OUTPUTS; i=i+1)
begin : AN_generation
AN anAdapter (
.i_data(so_data[(i+19BUS_WIDTH-ROUTE_WIDTH: ixBUS_WIDTH]) ,
.i_req(so_reqlil]),
.0_ack(si_ack[i]),
.0_data(o_data[(1+ iDATA WIDTH—1:i«DATA WIDTH]) ,
.0_master(o_master[i]),
.o_valid(o_valid[i]),
.i_clk(i_clk),
.i_reset_b(i_reset_b));
defparam anAdapter.SIZE=DATA WIDTH+1;

end
endgenerate

[*

Function which tests that the inputs are never acked at the same time
*/

‘ifdef ERROR_CHECKING
integer |,count;
always @(so_req)
begin
count=0;
for (1=0;1<OUTPUTS; I=1+1)
if (so_req[l])
count = count+1;

if (count>1)
begin
$display ("NoC.v: ERROR!. two_request at_the_sametime. %d %b\n",
count ,so_req);
$stop;
end
end
‘endif
endmodule

‘endif

Design of an asynchronous communication network for an audio DSP chip 137

E.2. NETWORKS

E.2.5 NoC_S1

/%
Description:
NoC

Serial version
Topology: Binary tree

Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/
‘ifndef _NoC_S1 v
‘define _NoC_S1 v

‘include "global.v"
‘timescale 1ns/1ps

module NoC_S1(
i_data,
i_valid ,
i_conf_enable ,
i_conf_master,
o_data,
0_master,
o_valid
i_clk,
i_reset_b);

[

Parameters
*/
parameter INPUTS='N_INPUTS;
parameter OUTPUTS='N_OUTPUTS;
parameter DATA WIDTH='DATA_WIDTH;

[/ This is not really a parameters.. +1 due to master4 bit
parameter ROUTE_WIDTH="ROUTE_WIDTH+1;
parameter BUS_WIDTH=DATA_WIDTH+ROUTE_WIDTHx2;

//TBD. Due to modelsim crash
parameter ROUTE_WIDTH2=5;

/%
Inputs
*/
input [INPUTS«DATA WIDTH—-1:0] i_data;

Design of an asynchronous communication network for an audio DSP chip 138

E.2. NETWORKS

input [INPUTS-1:0] i_valid;
input [INPUTSxOUTPUTS-1:0] i_conf_enable ,i_conf_master;
input i_clk, i_reset_b;

%
OQutputs
x/
output [OUTPUTS:tDATA WIDTH—-1:0] o_data;
output [OUTPUTS-1:0] o_master;
output [OUTPUTS-1:0] o_valid;

[*
Internal signals
*/
wire [INPUTS«BUS WIDTH-1:0] si_data;
wire [OUTPUTS«(DATA WIDTH+2) —1:0] so_data;
wire [INPUTS-1:0] si_req,so_ack;
wire [OUTPUTS-1:0] so_req,si_ack;
wire [INPUTSx*ROUTE_WIDTH-1:0] s_route;
wire [INPUTS—1:0] s_route_ack, s_route_req;
wire [INPUTS-1:0] s_req,s_ack;

/%
Netlist
*/
// The network
S _network_with_converters network(si_data, si_req, so_ack, so_data
so_req, si_ack, i_reset_b);
defparam network .INPUTS=INPUTS;
defparam network .OUTPUTS=0OUTPUTS;
defparam network .BUS WIDTH=BUS WIDTH; // width+Master
defparam network.BUS_WIDTH_OUT=DATA WIDTH+2;

/I The Network adapters
genvar i;
generate
for (i=0;i<INPUTS;i=i+1)
begin : NA_generation
NA naAdapter (
.i_data(i_data[(1+i)DATA_WIDTH-1:i«DATA WIDTH]) ,
.i_valid (i_valid[i]),
.0_data(si_data[(1+i$BUS_WIDTH-1:i«BUS_WIDTH]) ,
.o_req(si_req[i]),
.i_ack(so_ack[i]),
.0_route_req(s_route_req[i]),
.i_route ({
/1 The route
s_route[(1+i*ROUTE_WIDTH-1],1'b0,

Design of an asynchronous communication network for an audio DSP chip

139

E.2. NETWORKS

s_route[(1+i*ROUTE_WIDTH-2],1'b0,
s_route[(1+ixROUTE WIDTH-3],1'b0,
s_route[(1+ixROUTE WIDTH-4],1'b0,
1'b0,s_route[(1+iX¥ROUTE_WIDTH-5]
b
.i_req(s_reqli]),
.0_ack(s_ack[i]),
.i_route_ack(s_route_ack][i]),
.i_clk(i_clk),
.i_reset_b(i_reset_b));
defparam naAdapter.DATA WIDTH=DATA WIDTH;
defparam naAdapter.BUS_WIDTH=BUS_WIDTH;
defparam naAdapter.ROUTE_WIDTH=ROUTE_WIDTZ2;

AM_multicast am_multicast(

.i_conf_enable(i_conf_enable [(i+PUTPUTS-1:i+xOUTPUTS]) ,
.i_conf_master(i_conf_master [(i+PUTPUTS-1:i«OUTPUTS]) ,
.i_req(s_route_reql[i]),
.i_ack(s_ack][i]),
.0_data(s_route [(1+i9ROUTE_WIDTH2-1:i+ROUTE_WIDTH2]) ,
.o_req(s_reqli]),
.0_ack(s_route_ack[i]),
.i_reset_b(i_reset_b));
defparam am_multicast .DATA WIDTH=ROUTE_WIDTH;

end

for (i=0;i<OUTPUTS; i=i+1)

begin : AN_generation

AN anAdapter (
.i_data(so_data[(i+1)(DATA WIDTH+2) —2:i « (DATA WIDTH+2)]) ,
.i_req(so_reqli]),
.0_ack(si_ackJi]),
.0_data(o_data[(1+ i§DATA_WIDTH—1:i«DATA WIDTH]) ,
.0_master(o_master[i]),
.o_valid(o_valid[i]),
.i_clk(i_clk),
.i_reset_b(i_reset_b));
defparam anAdapter.SIZE=DATA WIDTH+1,;

end
endgenerate

endmodule

module S_network _with_converters(i_data ,i_req,o_ack,o_data,o_req,
i_ack,i_reset_b);

parameter INPUTS = ‘N_INPUTS;

parameter OUTPUTS = ‘N_OUTPUTS;
parameter BUS WIDTH = ‘BUS_WIDTH;

Design of an asynchronous communication network for an audio DSP chip

140

E.2. NETWORKS

parameter BUS WIDTH_OUT = ‘DATA_WIDTH;

/1 Inputs

input [INPUTS+xBUS WIDTH-1:0] i_data;
input [INPUTS-1:0] i_req;

input [OUTPUTS-1:0] i_ack;

input i_reset_b;

/1 Outputs

output [INPUTS—1:0] o_ack;

output [OUTPUTS:BUS_WIDTH_OUT-1:0] o_data;
output [OUTPUTS-1:0] o_req;

/l'internal signals

wire [INPUTSx4—1:0] si_data;
wire [INPUTS-1:0] si_eop;
wire [OUTPUTS-1:0] si_ack;

wire [INPUTS-1:0] so_ack;
wire [OUTPUTS«4—-1:0] so_data;
wire [OUTPUTS-1:0] so_eop;

/I network
S_network #(INPUTS, OUTPUTS, 4) net(si_data, si_eop, so_ack, so_data,
so_eop, si_ack, i_reset_b);

/I converters
conv_PtoS #(BUS WIDTH) conv_PtoS_inst[INPUTR:0](.i_req(i_req),

i_ack(so_ack), .i_data(i_data), .o_ack(o_ack), .o_data(si_data),
o_eop(si_eop), .i_reset_b(i_reset_b));

/+conv_StoP #(BUS _WIDTH_OUT) conv_StoP_inst[OUTPYIS0](.i_data(
so_data), .i_eop(so_eop), .o_ack(si_ack), .o_req(o_req), .i_ack(
i_ack), .o_data(o_data), .i_reset _b(i_reset _b));

defparam conv_StoP_inst[0]. REMOVE_TRAILING_PACKET = 1;

defparam conv_StoP_inst[3].REMOVE_TRAILING_PACKET = 1;

defparam conv_StoP_inst[6]. REMOVE_TRAILING_PACKET = 1;

defparam conv_StoP_inst[9]. REMOVE_TRAILING_PACKET = 1;

*/

/10

conv_StoP #(BUS WIDTH _OUT,1) conv_StoP_inst0O(.i_data(so_data
[1x4—-1:0«4]), .i_eop(so_eop[0]), .o_ack(si_ack[0]), .o_reqg(o_req
[01),

.i_ack(i_ack[0]), .o_data(o_datajl
BUS WIDTH_OUT-1:0«BUS_WIDTH_OUT]) ,
i_reset_b(i_reset_b));

/11

conv_StoP #(BUS WIDTH_OUT,0) conv_StoP_instl (.i_data(so_data

[24¥4—1:1%4]), .i_eop(so_eop[l]), .o_ack(si_ack[1l]), .o_req(o_req
(11,

Design of an asynchronous communication network for an audio DSP chip 141

E.2. NETWORKS

.i_ack(i_ack[1l]), .o_data(o_dataj2
BUS_WIDTH_OUT-1:1«BUS_WIDTH_OUT]) ,
i_reset_b(i_reset_b));

/12

conv_StoP #(BUS WIDTH _OUT,0) conv_StoP_inst2 (.i_data(so_data
[3x4—1:2x4]), .i_eop(so_eop[2]), .o_ack(si_ack[2]), .o_req(o_req
[21) .

.i_ack(i_ack[2]), .o_data(o_data$3
BUS_WIDTH_OUT-1:2«+BUS_WIDTH_OUT]) ,
i_reset_b(i_reset_b));

/13

conv_StoP #(BUS WIDTH _OUT,1) conv_StoP_inst3(.i_data(so_data
[444—-1:3%4]), .i_eop(so_eop[3]), .o_ack(si_ack[3]), .o_req(o_req
[(31) .

.i_ack(i_ack[3]), .o_data(o_data§4
BUS WIDTH_OUT-1:3+BUS_WIDTH_OUT]) ,
i_reset_b(i_reset_b));

/14

conv_StoP #(BUS_WIDTH_OUT,0) conv_StoP_inst4 (.i_data(so_data
[5x4 —1:4x4]), .i_eop(so_eop[4]), .o_ack(si_ack[4]), .o_reqg(o_req
[41),

.i_ack(i_ack[4]), .o_data(o_dataf5
BUS_WIDTH_OUT-1:4«BUS_WIDTH_OUT]) ,
i_reset_b(i_reset_b));

/15

conv_StoP #(BUS WIDTH_OUT,0) conv_StoP_inst5(.i_data(so_data
[6x4—1:5%x4]), .i_eop(so_eop[5]), .o_ack(si_ack[5]), .o_req(o_req
[51) .

.i_ack(i_ack[5]), .o_data(o_dataj6
BUS_WIDTH_OUT-1:5+BUS_WIDTH_OUT]) ,
i_reset_b(i_reset_b));

/16

conv_StoP #(BUS WIDTH OUT,1) conv_StoP_inst6 (.i_data(so_data
[7«4—-1:6x4]), .i_eop(so_eop[6]), .o_ack(si_ack[6]), .o_req(o_req
[(61),

.i_ack(i_ack[6]), .o_data(o_dataf7
BUS WIDTH_OUT-1:6+BUS_WIDTH_OUT]) ,
i_reset_b(i_reset_b));

17

conv_StoP #(BUS_WIDTH_OUT,0) conv_StoP_inst7 (.i_data(so_data
[8Bx4—1:7x4]), .i_eop(so_eop[7]), .o_ack(si_ack[7]), .o_req(o_req
[71) .

.i_ack(i_ack[7]), .o_data(o_dataj8
BUS WIDTH_OUT-1:7«xBUS_WIDTH_OUT]) ,
i_reset_b(i_reset_b));

/18

conv_StoP #(BUS WIDTH_OUT,0) conv_StoP _inst8(.i_data(so_data
[9%4—-1:8%x4]), .i_eop(so_eop[8]), .o_ack(si_ack[8]), .o_req(o_req
[81),

Design of an asynchronous communication network for an audio DSP chip 142

E.2. NETWORKS

.i_ack(i_ack[8]), .o_data(o_dataf9
BUS_WIDTH_OUT-1:8+BUS_WIDTH_OUT]) ,
i_reset_b(i_reset_b));

/19

conv_StoP #(BUS WIDTH OUT,1) conv_StoP_inst9(.i_data(so_data
[10x4 —1:9%4]), .i_eop(so_eop[9]), .o_ack(si_ack[9]), .o _req(o_req
[90) .

.i_ack(i_ack[9]), .o_data(o_data[%0
BUS_WIDTH_OUT-1:9«+BUS_WIDTH_OUT]) ,
i_reset_b(i_reset_b));

/110

conv_StoP #(BUS WIDTH _OUT,0) conv_StoP_instl0(.i_data(so_data
[11x4—-1:10«4]), .i_eop(so_eop[10]), .o_ack(si_ack[10]), .o_req(
o_req[10]),

.i_ack(i_ack[10]), .o_data(o_data[%1
BUS_WIDTH_OUT-1:10«BUS_WIDTH_OUT]) ,
i_reset_b(i_reset_b));

/711

conv_StoP #(BUS_WIDTH_OUT,0) conv_StoP_instll (.i_data(so_data
[1244—1:11x4]), .i_eop(so_eop[l1l]), .o_ack(si_ack[11l]), .o_req(
o_req[11]),

.i_ack(i_ack[11]), .o_data(o_data[%2
BUS_WIDTH_OUT-1:11+BUS_WIDTH_OUT]) ,
i_reset_b(i_reset_b));

endmodule
‘endif

Design of an asynchronous communication network for an audio DSP chip

143

E.3. COMMON BLOCKS

E.3 Common blocks
E.3.1 global.v

[*
Description:
global definitions

Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/

‘ifndef _global_v
‘define _global_v

/I Synthesis or simulation

‘define SYNTHESIS_ON

/I ambit synthesis off
‘undef SYNTHESIS_ON

[/l ambit synthesis on

//*define NOC_INTEGRATED

[/l ‘define NoC_Instance NoC
//*define NoC_Instance NoC_P2
‘define NoC _Instance NoC_S1

/I Debug levels

‘define DEBUG_LEVEL1
‘define DEBUG_LEVEL2
//*define DEBUG_LEVEL3
/I Error checking

/1 'define ERROR_CHECKING

// Data width definitions

‘define DATA WIDTH 22

‘define ROUTE WIDTH 4

‘define BUS WIDTH (‘DATA WIDTH+ROUTE_WIDTH)

// These number are seen from the network!..
‘define N_INPUTS 16
‘define N_OUTPUTS 12

/I Route to the different output blocks
// Should match the current network
‘define ROUTE_1 4'b0000

‘define ROUTE 2 4'b0010

‘define ROUTE_ 3 4'b0011

‘define ROUTE 4 4'b0100

Design of an asynchronous communication network for an audio DSP chip

144

E.3. COMMON BLOCKS

‘define ROUTE 5 4'b0110
‘define ROUTE 6 4'b0111
‘define ROUTE_7 4'b1000
‘define ROUTE_8 4'b1010
‘define ROUTE_9 4'b1011
‘define ROUTE_10 4'b1100
‘define ROUTE_11 4'b1110
‘define ROUTE_12 4'b1111
/I Not used

‘define ROUTE_13 4'b1100
‘define ROUTE_14 4'b1101
‘define ROUTE_15 4'b1110
‘define ROUTE_16 4'b1111

I+« ‘define ROUTE_1 4'b0000
‘define ROUTE_2 4'b0001
‘define ROUTE_3 4'b0010
‘define ROUTE_4 4'b0011
‘define ROUTE_5 4'b0100
‘define ROUTE_6 4’'b0101
‘define ROUTE_7 4’'b0110
‘define ROUTE_8 4'b0111
‘define ROUTE_9 4'b1000
‘define ROUTE_10 4'b1001
‘define ROUTE_11 4'b1010
‘define ROUTE_12 4'b1011
‘define ROUTE_13 4'b1100
‘define ROUTE_ 14 4'b1101
‘define ROUTE_15 4'b1110
‘define ROUTE_16 4'b1111
*/

‘define ROUTE_5 2 8'b10001000

[/l Convert

‘define CONV_1lof4_to_2(dat) ({dat[2]|dat[3], dat[1l]|dat[3]})

‘define CONV_2 to_lof4(dat) ({dat[l]&dat[0], dat[l]&~dat[0], ~dat[l]&
dat[0], ~dat[1]&~dat[0]})

‘define INIT_TESTBENCH $timeformat{9, 10, ".ns", 10);
‘define TIMESCALE ‘timescale 1ns/1ps
‘define ERROR(s) $display("ERROR:"); $display(s); $stop;

‘define CHECK(o,val) if (o!=val) begin $display("Value_is _%b,_but_,
should be",o, val); $stop;end

‘define CHECK 0(o) ‘CHECK(0,1'b0)

‘define CHECK 1(o) ‘CHECK(0,1'bl)

‘endif

Design of an asynchronous communication network for an audio DSP chip 145

E.3. COMMON BLOCKS

E.3.2 AM_multicast

/%
Description:
Multicast module for the "Address Manager"
Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/

‘ifndef _AM_Multicast_v
‘define _AM_Multicast_v

‘include "global.v"

module AM_multicast(
i_conf_enable ,
i_conf_master,
i_req,
i_ack,
o_data,
o_req,
o_ack,
i_reset_b);
/%
Parameters
*/
parameter N_ROUTES='N_OUTPUTS;
parameter N MC=2;
parameter DATA WIDTH=5;

[*

Inputs
*/
input i_req, i_ack, i_reset_b;
input [N _ROUTES-1:0] i_conf_enable;
input [N_ROUTES-1:0] i_conf_master;

/%
Outputs
*/
output o_req,o_ack;
output [DATA WIDTH-1:0] o_data;

I
Internal signals
*/
wire [N_MC-1:0] s_en;
wire [N_MC«DATA WIDTH—1:0] s_data;

Design of an asynchronous communication network for an audio DSP chip 146

E.3. COMMON BLOCKS

[*
Netlist

*/

Multicaster #(N_MC, DATA WIDTH) multicasters (
s_en,
s_data,
i_req,
i_ack,
o_data,
o_req,
o_ack,
i_reset_b);

Converter #(N_.MC) converter(
.i_enable(i_conf_enable),
.i_master(i_conf_master),
.0_enable(s_en),
.0_route(s_data));

endmodule

‘endif

Design of an asynchronous communication network for an audio DSP chip 147

E.3. COMMON BLOCKS

E.3.3 AM_unicast

/%
Description:
Unicast module for the "Address Manager"
Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/

‘ifndef _AM_unicast_v
‘define _AM_unicast_v

‘include "global.v"

module AM_unicast(
i_req,
i_ack,
o_req,
o_ack,
i_reset_b
)
/%
Inputs
*/
input i_req, i_ack, i_reset_b;
[*
Outputs
*/
output o_req,o_ack;

[*
Netlist
*/
assign o_req = i_req;
assign o_ack=i_ack;

endmodule

‘endif

Design of an asynchronous communication network for an audio DSP chip

148

E.3. COMMON BLOCKS

E.3.4 AN

/%
Description:
AN, Network adapter

Receives a packet using a-phase bundled data protocol and

outputs data using the Lego2 protocol.

Takes at least 4 clock cycles for the handshake to complete. 2

for

rising edge of request and 2 for falling edge.

Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/
‘ifndef _AN_v
‘define _AN_ v

‘include "global.v"

module AN(
i_data,
i_req,
o_ack,
o_data,
o_valid
0_master,
i_clk,
i_reset_b);

[
Parameters
*/

parameter SIZE='DATA WIDTH; //Datawidth (including

[*
Inputs
*/
input [SIZE—-1:0] i_data;
input i_req,i_clk,i_reset_b;

[*
Outputs
*/
output [SIZE—-2:0] o_data;
output o_valid, o_ack, o_master;

[

Design of an asynchronous communication network for an audio DSP chip

master)

149

E.3. COMMON BLOCKS

Wires
*/
wire s_validl ,s_valid2 ,s_valid3;

[+
Netlist

*/

// Data

/IC_LATCHQL data_latches[SIZE1:0] (.d(i_data) ,.en(s_valid2), .q({
0_master ,o0_data}));

C_FD1Q data_latches[SIZE1:0] (.d(i_data) ,.clk(i_req), .gq({o_master,
o_data}));

/1 Ack when request arrives
/lassign o_ack = s_valid2;

C AND2 ack_reset(.a(i_reset_b),.b(s_valid2) ,.z(o_ack));
/lassign o_ack = i_req;

/1 Synchronize valid token on clock signal

C_FD1Q syncl (i_req, i_clk, s_validl);

C_FD1Q sync2 (s_validl, i_clk, s_valid2);

C_FD1Q sync3 (s_valid2, i_clk, s_valid3);
TC_AND2A #4 oneshoot (s_valid3, s_valid2 ,o0_valid);

/«always @(posedge o_valid)
begin
$display ("AN!. master: %b— %d",o_master, SIZE);
end
*/
endmodule

‘endif

Design of an asynchronous communication network for an audio DSP chip 150

E.3. COMMON BLOCKS

E.3.5 de_serializer

/%
Description:
de—Serializes a packet which consits of flits of 2 bits into
a single packet
Both input and output uses a—${hase bundled data protocol
Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/

‘ifndef _de_serializer_v
‘define _de_serializer_v

‘include "global.v"

module de_serializer(
i_data,
i_eop,
i_req,
o_ack,
o_req,
i_ack,
o_data,
i_reset_b);
[x
parameters
x/
parameter BUS WIDTH="BUS_WIDTH;
parameter REMOVE_TRAILING_FLITS=0;
/I'not actual parameters
parameter LINE_SIZE=2;
parameter N_LINES=(BUS_WIDTH/LINE_SIZE);

[
Inputs
*/
input i_ack, i_reset_b ,i_eop;

input i_req;
input [1:0] i_data;

[
Output
x/
output o_ack,o_req;
output [BUS WIDTH-1:0] o_data;

Design of an asynchronous communication network for an audio DSP chip 151

E.3. COMMON BLOCKS

/x

Internal signals
x/
wire [1:0] s_data;

wire [N_LINES+REMOVE_TRAILING_FLITS-1:0] s_ctrl;

wire s _req, so_ack, so_ack2;

[x

Netlist
x/
assign s_data=i_data;
assign o_ack = so_ack2;
assign s_req = i_req;

de_serialize_controller #(N_LINES+REMOVE_TRAILING_FLITS)

controller(
.i_req(s_req),
.o_ctrl(s_ctrl),
.i_reset_b(i_reset_b));

assign o_req = i_eop;

C_ORx #(N_LINES+REMOVE_TRAILING_FLITS+1) or_three (
.inputs ({s_ctrl [N_LINES+REMOVE_TRAILING_FLITS-1:0],i_ack}),

.z(so_ack2));

genvar i;

generate
for (i=0; i<N_LINES;i=i+1)
begin : gen_con

C _FD1Q ff_array[1:0](.d(s_data) ,.clk(s_ctrl[
REMOVE_TRAILING_FLITS+N_LINES-1-i]) ,.q(o_data[ix2+1:i%2]))

end
endgenerate

endmodule

[
de_serialize_controller
*/
module de_serialize_controller(
i_req,
o_ctrl,
i_reset_b);
[%
Parameters
*/
parameter SIZE=2;

Design of an asynchronous communication network for an audio DSP chip

152

E.3. COMMON BLOCKS

[
Inputs
x/
input i_req, i_reset_b;
[
Outputs
x/
output [SIZE—-1:0] o_ctrl;
[*
Internal signals
*/
wire [SIZE—-1:0] si_en, so_en;
[*
Netlist
*/
Sequencer2 sequencers [SIZH:0](

.i_req(i_req),
.i_en(si_en),
.0_en(so_en),
.0_ack(o_ctrl),
.i_reset_b(i_reset_b)

)
C_AND2A anda_reset (.a(so_en[SIzR]), .b(i_reset_b) ,.z(si_en[0])
)
assign si_en[SIZE-1:1] = so_en[SIZE-2:0];
endmodule
‘endif

Design of an asynchronous communication network for an audio DSP chip 153

E.3. COMMON BLOCKS

E.3.6 Multicaster

[%
Description:
Multicaster

Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/
‘ifndef _Multicaster_v
‘define _Multicaster_v

‘include "global.v"

[
Addressing Mechanicm
*/

module Multicaster (
i_en,
i_data,
i_req,
i_ack,
o_data,
o_req,
o_ack,
i_reset_b);

parameter N MC=2;
parameter DATA WIDTH=5;

[/ Stupid define such that modelsim does not crash
/1 TBD
‘define DATA _WIDTH_FIX_MODELSIM (DATA WIDTH+1 —1)

/! Inputs

input i_req, i_ack, i_reset_b;
input [N_MC—-1:0] i_en;

input [N_MC«DATA WIDTH-1:0] i_data;

/1l Outputs
output o_req,o_ack;
output [DATA WIDTH-1:0] o_data;

/1 Wires

wire [N.MC-1:0] si_req, so_next, so_req;
wire [DATA WIDTH*N_MC—1:0] s_data;

wire [DATA WIDTH*N _MC-1:0] s_data2;

wire s_req;

Design of an asynchronous communication network for an audio DSP chip

154

E.3. COMMON BLOCKS

// Construct the sequencer
Sequencer_en sequencers_en[N-MCO] (

.i_en(i_en),
.i_req(si_req),
.i_ack(i_ack),

.0_req(so_req),
.0_ack(so_next),
.i_reset_b(i_reset_b));

assign si_req[0] = i_req;

assign o_ack = so_next[N ME1];

assign si_reg[N_MC-1:1] = so_next[N_MG-2:0];

genvar i,j;
generate
for (i=0;i<N_MC;i=i+1)
begin : and_tree_generation

/1 C_AND2 DATA_ands[DATA WIDTH1:0] (i_data[(z+1)«xDATA WIDTH-1:z
*DATA WIDTH],so_req[i],s_data[(z+1)DATA WIDTH-1:zxDATA WIDTH]) ;
for (j=0;)<DATA WIDTH; j=j+1)
begin : and_tree_generation2
C AND2 DATA and (i_data[kDATA WIDTH+j],so_req[i],s_data[i
DATA WIDTH+j]) ;
end
end
endgenerate

// Generate OR trees for request and data
generate
C_ORx #(N.MC) reqor (.inputs(so_req), .z(s_req));

for (i=0;i<'DATA_WIDTH_FIX_MODELSIM; i=i+1) //TBD: should be
DATA_WIDTH
begin : req_tree_generation
for (j=0;j<N_MC; j=j+1)
begin : req_tree_generation2
assign s_data2[ikN_MC+j] = s_data[DATA WIDTH+i |;
end
C_ORx #(N_MC) data_or (.inputs(s_data2 [(i+N MC-1:ixN MC]) ,.z(
o_datali]));
end

endgenerate

/I Delay the request line
TC_delay #1000 delayl(s_req,o0_req);

endmodule

Design of an asynchronous communication network for an audio DSP chip 155

E.3. COMMON BLOCKS

‘endif

Design of an asynchronous communication network for an audio DSP chip 156

E.3. COMMON BLOCKS

E.3.7 NA

/%
Description:
Network adapter

Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/
‘ifndef _NA v
‘define _NA_v

‘include "global.v"

module NA(
i _data,
i_valid ,
o_data,
o_req,
i_ack,
o_route_req,

i_route ,

i_req,

o_ack,

i

i_route_ack,
i_clk,
_reset_b);

[*

Parameters
*/
parameter DATA WIDTH='DATA_WIDTH;
parameter BUS_WIDTH="BUS_WIDTH;
parameter ROUTE_WIDTH="ROUTE_WIDTH;

[
Inputs
*/
input [DATA WIDTH-1:0] i_data;
input [ROUTE_WIDTH-1:0] i_route;
input i_valid ,i_clk ,i_ack,i_reset_b;

input i_req, i_route_ack;
/%

Outputs
*/

output [BUS WIDTH-1:0] o_data;
output o_req, o_route_req, o_ack;

Design of an asynchronous communication network for an audio DSP chip 157

E.3. COMMON BLOCKS

[*
Internal signals
*/
wire [DATA WIDTH-1:0] s_data;
wire s_rr;

wire s_reset_b;

/%
NetList
*/
TC_INV #(1) inv_reset(.a(i_reset_b),.z(s_reset_b));
C OR2 rr(i_valid ,s_reset_b,s_rr);

/1 Data
C_FD1Q dataflipflops [DATA WIDTH-1:0] (i_data,s_rr, s_data);
assign o_data = {i_route ,s_data};

/I Request and ack
assign o_req = req;

=i
assign o_ack = i_ack;

/!l Route request
wire s_route_ack;
TC_INV #(1) invl (i_route_ack ,s_route_ack);

C AND2 and_reset(.a(i_valid) ,.b(i_reset_b) ,.z(i_valid_reset));
C _C2MP_RO reqgc (s_route_ack, i_valid _reset, o_route_req,i_reset _b);

/[l ambit synthesis off

[
Function which tests that the valid signal never comes true when
the network adapter is
currently active
*/

‘ifdef ERROR_CHECKING
always @(posedge i_valid)
begin
if (o_route_req!=0 || i_route_ack!=0)
begin
$display ("ERROR!. Valid_signal_came,through when network adapter
_was already busy.\n");
$display ("_.req: %b",o route_req);
$display (" __ack: %b",i route_ack);
$stop; // masked by synthesis off

end
end

Design of an asynchronous communication network for an audio DSP chip 158

E.3. COMMON BLOCKS

‘endif
/[l ambit synthesis on
endmodule

‘endif

Design of an asynchronous communication network for an audio DSP chip 159

E.3. COMMON BLOCKS

E.3.8 serializer

/%
Description:
Serializes a parrallel packet into flits of 2 bits
Both input and output uses a—${hase bundled data protocol
Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
x/

‘ifndef _serializer_v
‘define _serializer_v

‘include "global.v"

module serializer(

i_req,

i_ack,

i_data,

o_req,

o_ack,

o_data,

o_eop,
i_reset_b);

[*

Parameters

x/

parameter BUS WIDTH="BUS_WIDTH;
parameter LINE_SIZE=2;

parameter N_LINES=(BUS WIDTH/LINE_SIZE);

/%

Inputs

*/

input i_req, i_ack, i_reset_b;
input [BUS WIDTH-1:0] i_data;
[*

Outputs

*/

output o_ack, o_req;

output [1:0] o_data;

output o_eop;

[

Internal signals

*/

wire s_req;

Design of an asynchronous communication network for an audio DSP chip

160

E.3. COMMON BLOCKS

wire [N_LINES:0] s_ctrl;
wire [N_LINES—1:0] si_datal, si_dataZ2;

// Handshake controller
serialize_controller #(N_LINES+1) controller(
.o_ctrl(s_ctrl),

.i_req(i_req),
.0_ack(o_ack),
.i_ack(i_ack),
.i_reset_b(i_reset_b));
genvar i;
generate

for (i=0;i<N_LINES;i=i+1)

begin : assign_gen
assign si_datal[i] =i_data[BUS_WIDTHi x2—-2];
assign si_data2[i] =i_data[BUS_WIDTHi x2—1];

end

endgenerate

/1 Mux

TC_mux #N_LINES mux1(.i_data(si_datal) ,.i_ctrl(s_ctrl[N_LINES:0])
,.0_data(o_data[0]));

TC_mux #N_LINES mux2(.i_data(si_data2) ,.i_ctrl(s_ctrl[N_LINEZ:0])
,.0_data(o_data[1l]));

/leop

assign o_eop=s_ctrl[N_LINES];

//the request out is an or of the control lines (except eop)

C ORx #N_LINES or_three (.inputs(s_ctrl[N_LINESL:0]) ,.z(s_req));

TC_delay #400 delay_req(.a(s_req), .z(o_req));

endmodule
[
serialize_controller
x/
module serialize_controller(i_req, o_ack, i_ack, o_ctrl, i_reset_b);
parameter SIZE=2;
/! Inputs
input i_req, i_ack, i_reset_b;
/1 Outputs

output o_ack;
output [SIZE—-1:0] o_ctrl;

//Internal signals

Design of an asynchronous communication network for an audio DSP chip 161

E.3. COMMON BLOCKS

wire [SIZE—-1:0] si_req, so_next, so_req;

[/ The controller simply consists of a number of sequencers
Sequencer sequencers[SIZAH:0] (.i_req(si_req),

.o_req(so_req), .o_ack(so_next),

i_reset_b));
assign si_req[0] = i_req;
assign si_req[SIZE-1:1] = so_next[SIZE-2:0];
assign o_ack = so_next[SIZE1];

/I The controller output is the request signals

assign o_ctrl = so_req[SIZE-1:0];
endmodule

‘endif

Design of an asynchronous communication network for an audio DSP chip

.i_ack(i_ack),

.i_reset_b(

162

E.3. COMMON BLOCKS

E.3.9 Sequencer

/%
Description:
Sequencer

Created by:

Mikkel Stensgaard— mikkel@stensgaard.org
*/

‘ifndef _Sequencer_v
‘define _Sequencer_v

‘include "global.v"

module Sequencer(i_req, i_ack, o_req, o_ack, i_reset_b);
/1 Inputs
input i_req, i_ack, i_reset_b;
/I Outputs

output o_req,o_ack;
/l'Internal signals

wire s 1,s 2;

wire si_ack_b,si_req_b;

TC_INV #2 invl(.a(i_req), .z(si_req_b));
TC_INV #2 inv2(.a(i_ack), .z(si_ack_b));
C_ C2MP_RO c2mp(.a(si_ack_b) ,.b(si_req_b) ,.z(s_1), .reset_b(
i_reset_b));
TC_INV #2 inv3(.a(s_1), .z(s_2));
C_C2P_RO c2a(.a(s_2),.b(si_ack_b),.z(o_ack), .reset_b(i_reset_b));
C NOR2 nor2(.a(s_2),.b(si_req_b) ,.z(o_req));
endmodule

‘endif

Design of an asynchronous communication network for an audio DSP chip 163

E.3. COMMON BLOCKS

E.3.10 Sequencer_en

/%
Description:
Sequencer with enable

Created by:

Mikkel Stensgaard— mikkel@stensgaard.org
*/

‘ifndef _Sequencer_en_v
‘define _Sequencer_en_v

‘include "global.v"

module Sequencer_en(i_en, i_req, i_ack, o_req, o_ack, i_reset_b);
/1 Inputs
input i_en, i_req, i_ack, i_reset_b;
/I Outputs

output o_req,o_ack;
/l'Internal signals
wire s_ackl, s_ack2;
wire s_req;

Sequencer sequencer(
.i_req(s_req),
.i_ack(i_ack),
.0_req(o_req),
.0_ack(s_ack2),
.i_reset_b(i_reset_b));

C_AND2 and2(.a(i_en) ,.b(i_req) ,.z(s_req));
TC _AND2A #1 and2a(.a(i_en) ,.b(i_req) ,.z(s_ackl));
C OR2 or2(.a(s_ackl) ,.b(s_ack2),.z(o_ack));

endmodule

‘endif

Design of an asynchronous communication network for an audio DSP chip

164

E.3. COMMON BLOCKS

E.3.11 Sequencer2

/%
Description:

Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/
‘ifndef _Sequencer2_v
‘define _Sequencer2_v

‘include "global.v"

[*

EON file for model StoP4

Generated by petrify 4.2 (compiled—8ul—-04 at 11:55 PM)

Outputs between brackets "[out]" indicate a feedback to input "out"
Estimated area = 8.00

INORDER = i_en i_req o_ack o_en;
OUTORDER = [o_ack] [o_en];

[o_ack] = o_en’ (i_en i_req + o_ack);
[o_en] = o_ack i_req’ + i_en o_en;

o _ack = o_en' i_en i_req + o_en' o_ack

Set/reset pins: reset(o_ack)
x/

module Sequencer2(
i_req,
i_en,
o_en,
o_ack,
i_reset_b

)

/%
Inputs
*/
input i_req, i_en, i_reset_b;
/%
Outputs
*/
output o_en, o_ack;
[*
Interal signals

Design of an asynchronous communication network for an audio DSP chip 165

E.3. COMMON BLOCKS

*/
wire so_en_b, si_req_b;
[*
Netlist
*/

TC_INV #1 invl(.a(i_req) ,.z(si_req_b));
TC_INV #1 inv2(.a(o_en) ,.z(so_en_b));

/1 o_ack

C C3PP_RO cl(.a(so_en_b),.b(i_en),.c(i_req),.z(o_ack) ,.reset_b(
i_reset_b));

//o_en

C_C3MPP_RO c2(.a(i_en) ,.b(o_ack) ,.c(si_req_b) ,.z(o_en) ,.reset_b(
i_reset_b));

endmodule

‘endif

Design of an asynchronous communication network for an audio DSP chip 166

E.4. VERIFICATION

E.4 \Verification
E.4.1 bfm_lego2master

/11

[/l Copyright: Oticon A/S

/!l Project : Aphrodite

[/ Author . jhp

/I Created : 28.02.05

/1l

/1 Functionality: Master BFM
/1
/1

/1l
/!l Defines
/1

‘define READY_DATA WL 1
‘define ENABLE_DATA WL 1

‘timescale 1ns/1ps

/1l
/1 Module
/1
module bfm_lego2master (
data_out,

rdy _out

)i

/1
// Parameters
/11
parameter T_CLK=1000;

parameter NUM_OF_INPUTS=4;
parameter DATA DATA WL=18;

/1
I/l Ports
/1
output [DATA DATA WL «NUM_OF_INPUTS-1:0] data_out;
output [‘READY_DATA WL xNUM_OF INPUTS-1:0] rdy_out;

/11
/I Signals
/11

Design of an asynchronous communication network for an audio DSP chip

167

E.4. VERIFICATION

reg [DATA DATA WL «NUM_OF_INPUTS-1:0] data_i;
reg ['READY_DATA WL xNUM_OF_INPUTS-1:0] rdy_i;
reg ['ENABLE_DATA WL «*NUM_OF _INPUTS-1:0] enable_chan_i;

reg [DATA DATA WL «NUM_OF INPUTS-1:0] data_o;
reg [‘READY_DATA WL *NUM_OF INPUTS-1:0] rdy o;

/1
/1 Functionality
/1
task initialize;
begin
data_i = 0;
rdy i = 0;
enable_chan_i = 0;
data_o = 0;
rdy_o = O0;
end

endtask // initialize

/1

/Il clear_txs— 1. clear the actual

transaction(s)

/11

I/l TX task — clear transmision
task clear_txs;

begin

data_i=0;

rdy _i=0;
enable_chan_i=0;
end

endtask //clear_txs

/1

/Il setup_txs— 2. setting up the actual

/1

[/l TX task — setup transmision
task setup_txs;

input [3:0] input_chan_int; //number between 0<=CH<=NUM_OF_INPUTS

-1
input [17:0] data_int;
begin

transaction(s)

data_i=set_data(data_i,data_int ,input_chan_int);
enable _chan_i=set_enable (enable_chan_i,1'bl,input_chan_int);

Design of an asynchronous communication network for an audio DSP chip

168

E.4. VERIFICATION

end
endtask //setup_txs

/1
I/l txs — 3. shooting the actual transaction(s)
/1
/I TX task — multiple masters
task txs;
begin
data_o = 'bx;
#(T_CLK) ;

data_o = data_i;

/1 #('T_CLK);
rdy_ o = enable_chan_i;
#(T_CLK) ;
data_o = 'bx;
rdy_o = O0;

end
endtask // txs

/1
/l set_data
/1

function [DATA DATA WL *NUM_OF INPUTS-1:0] set_data;

input [DATA DATA WL «NUM_OF INPUTS-1:0] data_data;

input [DATA DATA WL —1:0] data_int;
input [3:0] input_chan_int;

begin body
integer i, j;

reg [DATA DATA WL +NUM_OF_INPUTS-1:0] res;

reg [DATA DATA WL —1:0]

reg [DATA DATA WL —1:0] dil,d2;
res = data_data;
for (i = 0; i < NUM_OF_INPUTS; i = i + 1) begin

if (input_chan_int==i) begin
for (j = 0; j < DATA DATA WL; j
res[i = DATA DATAWL + j] = data_int[j];
end
end
end

Design of an asynchronous communication network for an audio DSP chip

= j + 1) begin //

vec [0:NUM_OF INPUTS-1];

iterate bits

169

E.4. VERIFICATION

set _data = res;

end
endfunction // set_data

/11
I/l set_enable
/1

function [‘ENABLE_DATA WL «*NUM_OF INPUTS-1:0] set_enable;
input [‘ENABLE_DATA WL «*NUM_OF_INPUTS-1:0] enable_data;
input [‘ENABLE_DATA WL —1:0] enable_int;
input [3:0] input_chan_int;
begin : body
integer i, j;

reg ['ENABLE_DATA WL «*NUM_OF_INPUTS-1:0] res;

reg [‘ENABLE_DATA WL —1:0] vec [0:NUM_OF_INPUTS 1];
reg ['ENABLE_DATA WL —1:0] di,d2;

res = enable_data;

for (i = 0; i < NUM_OF_INPUTS; i = i + 1) begin
if (input_chan_int==i) begin
for (j = 0; j < ‘ENABLE_ DATA WL; j = j + 1) begin // iterate
bits
res[i = ENABLE_DATA WL + j] = enable_int[j];
end
end
end
set_enable = res;
end

endfunction // set_enable

/1
!/l misc
/1l

assign data_out = data_o;
assign rdy_out = rdy_o;

endmodule // bfm_lego2master

Design of an asynchronous communication network for an audio DSP chip

170

E.4. VERIFICATION

E.4.2 bfm_lego2slave

/1
/Il Copyright: Oticon A/S
/!l Project : Aphrodite

I/ Author : jhp
/l Created : 28.02.05
/1l
[/l Functionality: Slave BFM
/1
1/
‘include "global.v"
/1l
/! Module
1
module bfm_lego2slave (
data_in ,
master_in ,
rdy_in,
result ,
reset b
)
/1
// Parameters
/11

parameter DATA WL=18;
parameter N_SOURCES=12;
parameter SOURCE WL=4,
parameter SLAVE_ID = O;

/11
I/l Ports
/1
input [DATA WL-1:0] data_in;
input master_in;

input rdy_in;

input reset_b;

output result;

/1
/1 Signals
/11
reg [DATA WLxN_SOURCES-1:0] expected_data;
reg [N_SOURCES-1:0] expected_master;

reg [N_SOURCES-1:0] expecting_data;

reg [DATA WL-1:0] tmp_data;

reg tmp_master, tmp_expecting;

Design of an asynchronous communication network for an audio DSP chip 171

E.4. VERIFICATION

reg [SOURCE WIL-1:0] source_in;

reg result;
/1
/!l Functionality
/1
integer n_packets; //Number of received packets

initial begin
expected _data=0;
expected_master=0;
expecting_data=0;
n_packets=0;

end

always @(rdy_in)
begin

if (rdy_in==1 & reset_b==1"b1l)
begin

/I The 4 LSB is the sender of the packet
source_in = data_in[3:0];

tmp_data=expected_data >>(source xDATA WL) ;
tmp_master=expected_master>>source_in;
tmp_expecting=expecting_data>>source_in;

[/ $write (".");

/I Count number of received packets
n_packets=n_packets+1;

// Check if the correct data has been received

if (tmp_expecting)

result=(data_in==tmp_data & master_in==tmp_mastee)se

result=0;

‘ifdef DEBUG_LEVEL3

$display("Port_%0d: data:;%b, expected %b, source%d",

SLAVE_ID, data_in, tmp_data,source_in);
$display("__ Result%b",result);
‘endif

‘ifdef DEBUG_LEVEL2
if (result==0)
begin
if (tmp_expecting!=1'b1)

Design of an asynchronous communication network for an audio DSP chip

172

E.4. VERIFICATION

$display("Port: %0d received,datg when,it_was not_suposeto
.",SLAVE_ID); else
begin
$display("Port_%0d:_ expected%d_ from_source %0d, got %d.",
SLAVE ID,tmp_data, source_in ,data_in);
$display("—.expected master%b, got %b",tmp_master
, master_in);
end
end
‘endif
end else
if (rdy_in==0 & reset_b==1'b1)
begin
/I Reset Data
expecting_data expecting_data | (1'bl<<source_in);
expecting_data expecting_data ™ (1'bl<<source_in);
expected _data = expected_data | (({{DATAWL}1'b1}})<<(
source_inDATA WL)) ;
expected_data = expected_data ~ (({{DATA WL} 1'b1}})<<(
source_inkDATA WL)) ;
/1 expected_data = expected_data ™ (({{DATA WL}{1' 'bx}})<<(
source_inkDATA WL));
/1 expected_master

expected _master (1’'bx<<source_in);
expected_master expected_master | (1'bl<<source_in);
expected_master expected_master ~ (1’'bl<<source_in);
/I Set result wire high, This means that bursts of errors will be
detected inidivuduably.
result=1;
end
end

/1
/!l setExpectedData task
/1

task setExpectedData;
input [DATA WL-1:0] data_int;
input master_int;
input [SOURCE WL-1:0] source_int;

begin

/1 $display ("port %0d: expect %d from %0d",SLAVE ID, data_int,
source_int);

expected_data = expected_data | (data_int <<(sourcexDMNRA WL)

)
expected _master = expected master | (master_int<<source_int);
expecting_data = expecting_data | (1'bl<<source_int);

Design of an asynchronous communication network for an audio DSP chip 173

E.4. VERIFICATION

tmp_data=expected_data >>(source +DATA WL) ;
if (tmp_data == data_int)
begin
end
else begin
/I $display ("port %0d: expect %d, from %0d but got %d",SLAVE_ID,
data_int, source_int ,tmp_data);
/1l $stop;
end
end

endtask // setExpectedData
endmodule // bfm_lego2slave

Design of an asynchronous communication network for an audio DSP chip 174

E.4. VERIFICATION

E.4.3 Configuration

[%
Description:
Address configuration for the NoC. Dertermines the destinations
for
each input port. Also handles multicast.

Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/
‘ifndef _Configuration_v
‘define _Configuration_v

‘include "global.v"
module Configuration(clk_sys, reset_b, o_enable, o_master);

/1l Outputs

input clk_sys;

input reset_b;

output ['N_OUTPUTS+'N_INPUTS—-1:0] o_enable;
output ['N_OUTPUTS«'N_INPUTS—-1:0] o_master;
reg [0:'N_OUTPUTS«'N_INPUTS—1] s_enable;
reg [0:'N_OUTPUTS«'N_INPUTS—1] s_master;

/1Ugly way to invert the bits, but | can not figure out how to do it
/l'without getting compiler errors
genvar i,j;
generate
for (i=0;i<'N_INPUTS; i=i+1)
begin : INPUT_generation
for (j=0;j<'N_OUTPUTS; j=j+1)
begin : OUTPUT_generation
assign o_enable[k'N_OUTPUTS+j] = s_enable [#N_OUTPUTS+|];
assign o_master[k'N_OUTPUTS+j] = s_master [#N_OUTPUTS+|];
end
end
endgenerate

‘ifndef SYNTHESIS ON
initial begin

clear;
end

[%
clear task

Design of an asynchronous communication network for an audio DSP chip 175

E.4. VERIFICATION

*/

task clear;

begin
s_enable=0;
S_master=0;

end

endtask // clear

[%
enableRoute task

Enables the route from output port 'source’ to input port’
destination’
0 is the first port
*/
task enableRoute;
input [3:0] source;
input [3:0] destination;
input master;

begin
s_enable[sourc€N_OUTPUTS+destination]=1;
s_master[sourc€N_OUTPUTS+destination]=master;
end
endtask // enableRoute

[
disableRoute task

Disables the route from output port 'source’ to input port’
destination’
0 is the first port
x/
task disableRoute;
input source;
input destination;

begin
s_enable[sourc€N_OUTPUTS+destination]=0;
s_master[sourc€N_OUTPUTS+destination]=0;
end
endtask // disableRoute

%
print task

Disables the route from output port ’'source’ to input port’

destination’
0 is the first port

Design of an asynchronous communication network for an audio DSP chip 176

E.4. VERIFICATION

*/

task print;
integer i;
reg ['N_OUTPUTS—-1:0] tmp;
reg ['N_OUTPUTS-1:0] tmp2;

begin
$display("Printing_configuration");
for (i='N_INPUTS-1;i>=0;i=i-1)
begin: gen4

tmp = s_enable >>(G'N_OUTPUTS) ;
tmp2 = s_master >>(G'N_OUTPUTS) ;
$display("_ %b_— ... %b", tmp,tmp2);
end
end
endtask // print

‘endif //'ifndef SYNTHESIS_ON
endmodule

‘endif

Design of an asynchronous communication network for an audio DSP chip

177

E.4. VERIFICATION

E.4.4 mutex

‘include "global.v"

‘timescale 1ns/1ps

module mutex_testbench ();

/!l Declare inputs as regs and outputs as wires
reg il1,i2;

wire 0l1,02;

reg o;

C MUTEX2 m(il,i2,01,02);

‘define CHECK 00 o=01; ‘CHECK 0(0) 0=02; ‘CHECK_0(o0)
‘define CHECK_01 o=0l1; ‘CHECK_0(o) 0=02; ‘CHECK_1(o0)
‘define CHECK_10 o=0l1; ‘CHECK_1(o0) o0=02; ‘CHECK_0(o0)
‘define CHECK_11 o=o0l1; ‘CHECK_1(0) 0=02; '‘CHECK_1(0)

/! Initialize all variables
initial begin
$display ("il\t_i2\t_ol\to2");
$monitor ("%b\t _%b\t %b\t %b"
i1, i2, ol, 02);

il = 0;
i2 = 0;
#50;
$display("System,is_now_resat");
‘CHECK_00
#50 i1 = 1;
#50 ‘CHECK_10
#50 i2 = 1;
#50 ‘CHECK_10
#50 i1l = O;
#50 ‘CHECK 01
#50 i1 = 1;
#50 ‘CHECK 01
#50 i2 = 0;
#50 ‘CHECK_10
#50 i1 = O;
#50 ‘CHECK_00
#50 i2 = 1;
i1 = 1;
#50 i1l = O0;
i2 = 0;
#50 $finish;

end

endmodule

Design of an asynchronous communication network for an audio DSP chip

178

E.4. VERIFICATION

E.4.5 noc_top_testbench

/1
/Il Copyright: Oticon A/S
/!l Project : Aphrodite

I/ Author : jhp

/I Created : 28.02.05

/1l

/1 Functionality: Testbench for module noc_top.
/1

1/

//*define MIKKEL_TB
‘define TESTBENCH

‘define ADDER_TEST
‘define UNICAST_TEST
‘define MULTICAST_TEST
‘define MULTICAST2_TEST
‘define CHAOS TEST

1/
/1l Defines
/1
‘include "global.v"
‘timescale 1ns/1ps

‘define INPUTS 16
‘define OUTPUTS 12
‘define DATA WL 18

‘define CLK FREQ 1 //10 Mhz —> 100 ns
‘define T_CLK (1000x1/‘CLK_FREQ)

‘define T_RESET 1&‘T_CLK // Length of initial resetpulse
‘define T_FS (64'T_CLK) // Sampling period

/1l
/! Module
/1

module noc_top_testbench;

/1
/1l Signals
/1

integer error; // error count

Design of an asynchronous communication network for an audio DSP chip 179

E.4. VERIFICATION

integer error_total;
integer handle;

integer received_packets;
integer debug;

reg clk;

reg clear_b;

reg reset_b;

wire [INPUTS—-1:0] rin;
wire [‘INPUTS%'DATA WL —1:0] din;

wire [‘'OUTPUTS-1:0] rout, masterout;
wire [‘OUTPUTS«'DATA WL —1:0] dout;
wire [‘OUTPUTS-1:0] res;

wire [‘N_INPUTS*'N_OUTPUTS-1:0] s_conf_enable ,s_conf_master;

wire ['DATA WL —1:0] adder_data_out_O;
wire adder_ready_O;

wire ['DATA WL —1:0] adder_data_out_1;
wire adder_ready_1;

/! Genarate variables
genvar i;

/11
/!l Functionality
/1

// Device under test
noc_top noc_top_inst (
.clk_sys(clk),
.reset_b(reset_b),
.clear_b(clear_b),
.din(din),
.rin(rin),
.dout(dout),
.rout(rout),
.masterout(masterout),
.i_conf_master(s_conf_master),
.i_conf_enable(s_conf_enable)
); //noc_top_inst
[/ defparam noc_top_inst.INPUTS = ‘INPUTS;
/I defparam noc_top_inst.OUTPUTS = ‘OUTPUTS;

Configuration configuration (

Design of an asynchronous communication network for an audio DSP chip 180

E.4. VERIFICATION

.clk_sys(clk),
.reset_b(reset_b),
.0_enable(s_conf_enable),
.0_master(s_conf_master)

)

// Adders

noc_adder noc_adder_0 (
.clk(clk),
.reset_b(reset_b),
.select(2'dl), //select),
.req(rout[0]),
.data_in(dout[17:0]),
.rdy(adder_ready_0),
.data_out(adder_data_out_0)

)

noc_adder noc_adder_1 (
.clk(clk),
.reset_b(reset_b),
.select(2'd2), // select),
.req(rout[1]),
.data_in(dout[35:18]),
.rdy(adder_ready_1),
.data_out(adder_data_out_1)

)

/1
// Masters
/1
bfm_lego2master mst (
.data_out(din),
.rdy_out(rin)
)
defparam mst.NUM_OF_INPUTS=‘INPUTS;
defparam mst.T_CLK='T_CLK;

/1

/l Slaves

/1

bfm_lego2slave slv['OUTPUTS1:0] (
.data_in(dout),
.master_in(masterout),
.rdy_in(rout),
.reset_b(reset_b),
.result(res));

/I Define parameters to slave

generate

Design of an asynchronous communication network for an audio DSP chip 181

E.4. VERIFICATION

for (i=0;i<'OUTPUTS; i=i+1)

begin
defparam slv[i].SLAVE_ID = i;
defparam slv[i].SOURCE WL=4;
defparam slv[i].DATA WL=DATA WL;
defparam slv[i].N_SOURCES='INPUTS;

end

endgenerate

task setupSlave;
input [3:0] id;
input ['DATA_WL —1:0] dat;
input master;
input [3:0] sender;

begin
if (id==0)
slv[0]. setExpectedData(dat , master ,senderglse
if (id==1)
slv[1l]. setExpectedData (dat, master ,senderétse
if (id==2)
slv[2].setExpectedData(dat, master ,senderglse
if (id==3)
slv[3].setExpectedData(dat, master ,senderdtse
if (id==4)
slv[4]. setExpectedData(dat, master ,senderétse
if (id==5)
slv[5]. setExpectedData(dat, master ,senderglse
if (id==6)
slv[6]. setExpectedData(dat , master ,senderélse
if (id==7)
slv[7]. setExpectedData(dat, master ,senderglse
if (id==8)
slv[8]. setExpectedData(dat, master ,senderglse
if (id==9)
slv[9]. setExpectedData (dat , master ,senderétse
if (id==10)
slv[10].setExpectedData(dat, master ,senderglse
if (id==11)
slv[11l].setExpectedData(dat, master,sender);
end
endtask

task countNumberOfReceivedPackets;
begin
received_packets=0;
/1l for (11=0;11<'OUTPUTS; 11=11+1)

Design of an asynchronous communication network for an audio DSP chip 182

E.4. VERIFICATION

/1l received_packets =

received_packets
received_packets
received_packets
received_packets
received_packets
received_packets
received_packets
received_packets
received_packets
received_packets
received_packets

received_packets =

if (debug)

$display("t=%8.2f_: _%0d packets was,recieved,succecfully",

received_packets
received_packets
received_packets
received_packets
received_packets
received_packets
received_packets
received_packets
received_packets
received_packets
received_packets
received_packets

$realtime ,received_packets);
end
endtask

/1

/I Test sequence
/1

initial
begin test_sequence
integer ok,I1,12,13;
integer packets;

reg ['DATA WL —1:0] dat;

// Setup timing

$timeformat(-9, 10, " ns", 10);
$printtimescale;
$printtimescale (mst);
$printtimescale (noc_top_inst);

/I Initialize signals

$display("INFO: _Initializing_signals");
reset b 0;

clear_b 0;

error = 0,

error_total =0;

packets=0;

debug=0;

mst. initialize ;

+ 4+ + + + A+ A+ o+

slv[0].n_packets;
slv[1l].n_packets;
slv[2].n_packets;
slv[3].n_packets;
slv[4].n_packets;
slv[5]. n_packets;
slv[6].n_packets;
slv[7].n_packets;
slv[8].n_packets;
slv[9].n_packets;
slv[10].n_packets;
slv[11l].n_packets;

Design of an asynchronous communication network for an audio DSP chip

received _packets + slv[l1].n_packets

183

E.4. VERIFICATION

#(‘T_RESET) ;
reset b = 1;
clear_b = 1;
#('T_RESET) ;

$display("INFO: _Starting_tests");

/1
/! Adder Test
/1
‘ifdef ADDER_TEST
/11
/] Add
/1
$display("\nINFO:_Add_test ., Sending,datg from_one input_to_an_add
_output");
11=1; //input

12=0; //output

/l Setup route
configuration.clear;//s_enable=s_master=0

#0.01 //We must delay here.. At least in modelsim
configuration.enableRoute (11,12 ,1) {/src,dst, master

[PACKAGE1
dat = 28<<4]|I1;
Il Setup slave
setupSlave (12 ,dat,1,11);//1:slave_number(output) ,2:data,3: master
??,4:master_number(input)
/I Send data
mst. clear_txs;
mst.setup_txs(l1,dat);//input_chan ,htarget ,h data
mst. txs;
packets=packets +1;

/I countNumberOfReceivedPackets;

I/ $display ("t=%8.2f : %0d of %0d packets was recieved succecfully
",$realtime ,received_packets , packets);

/I Wait till data has been recieved

#(3*%'T_CLK) ;

[PACKAGE?2
dat = 17<<4|I1;
/l Setup slave
setupSlave (12 ,dat,1,11);//1:output ,2:data,3:1?? ,4:input
/I Send data
mst. clear_txs;
mst.setup_txs(l1,dat);//input_chan ,htarget ,h data

Design of an asynchronous communication network for an audio DSP chip 184

E.4. VERIFICATION

mst. txs;
packets=packets +1;

/I countNumberOfReceivedPackets;
/I $display ("t=%8.2f : %0d of %0d packets was recieved succecfully
",$realtime ,received_packets , packets);

// Wait till data has been recieved
#(3*%'T_CLK) ;
I1=1; //input

12=1; //output

/I Setup route
configuration.clear;//s_enable=s_master=0

#0.01 //We must delay here.. At least in modelsim
configuration.enableRoute (11,12 ,1) //src,dst, master

/1 PACKAGE1
dat = 12<<4]|I11;
/I Setup slave
setupSlave (12 ,dat,1,11);//1:slave_number(output) ,2:data,3: master
?7?,4:master_number(input)
// Send data
mst. clear_txs;
mst. setup_txs(l1,dat);//input_chan ,target ,data
mst. txs;
packets=packets +1;

/I countNumberOfReceivedPackets;

I/ $display ("t=%8.2f : %0d of %0d packets was recieved succecfully
",$realtime ,received_packets , packets);

/I Wait till data has been recieved

#(3%‘T_CLK) ;

/| PACKAGE2
dat = 7<<4|l1;
/l Setup slave
setupSlave (12 ,dat,1,11);// 1:output ,2:data,3:1??,4:input
// Send data
mst. clear_txs;
mst. setup_txs(l1,dat);//input_chan ,target ,hdata
mst. txs;
packets=packets +1;

// countNumberOfReceivedPackets;

I/ $display ("t=%8.2f : %0d of %0d packets was recieved succecfully
",$realtime ,received_packets , packets);

/I Wait till data has been recieved

#(3%‘T_CLK) ;

Design of an asynchronous communication network for an audio DSP chip 185

E.4. VERIFICATION

/| PACKAGE3
dat = 11<<4]|I1;
/I Setup slave
setupSlave (12 ,dat,1,11);// 1:output ,2:data,3:1??,4:input
// Send data
mst. clear_txs;
mst. setup_txs(l1,dat);//input_chan ,target,h data
mst. txs;
packets=packets+1;

/I countNumberOfReceivedPackets;

I/ $display ("t=%8.2f : %0d of %0d packets was recieved succecfully
",$realtime ,received_packets , packets);

/I Wait till data has been recieved

#(3+'T_CLK) ;

#(5%'T_CLK) ;

$display("INFO:_Add_functionality_was,succesfully,tested");

countNumberOfReceivedPackets;

$display ("9%0d of_%0d packets was recieved,succecfully",
received_packets , packets);

$display ("%0d ERRORS detected", error);

error_total = error_total+error;
error=0;

‘endif //ADDER_TEST

/1

/!l Unicast Test

/1l

‘ifdef UNICAST TEST
/1l
/!l UniCast
/1l

$display("\nINFO:_Unicast test ., Sending data from_all_inputs_to_
all_outputs™);

for (11=0;11<'INPUTS; I1=11+1)

for (12=0;12<'OUTPUTS; 12=12 +1)

begin
/]l Setup route
configuration.clear;
#0.01 //We must delay here.. At least in modelsim
configuration.enableRoute (11,12 ,1);

Design of an asynchronous communication network for an audio DSP chip 186

E.4. VERIFICATION

packets=packets +1;

dat = (12<<4)|I1;

/l Setup slave

setupSlave (12 ,dat,1,I11);

//Send data

mst. clear_txs;

mst. setup_txs (Il ,dat);//input_chan ,htarget , data
mst. txs;

/I Wait till data has been recieved
#(6%‘T_CLK);
end
$display("INFO: _,Unicast was,succesfully,tested");
countNumberOfReceivedPackets;
$display("_._._...%0d of_%0d_packets was recieved,succecfully",
received_packets ,packets);

$display ("%0d ERRORS detected", error);
error_total = error_total+error;
error=0;

‘endif //UNICAST_TEST

‘ifdef MULTICAST _TEST

/1

// MultiCast

/1

$display("\nINFO:_Multicast");

for (11=0;11 < INPUTS;I1=11+1)

begin
/I/We are sending data from 11 to (12 and I3)
$display("_—_Input_%0d,is_multicasting",I1);
for (12=0;12<'OUTPUTS; 12=12 +1)
for (13=12+1;13<'OUTPUTS; I3=13 +1)
begin
/l Setup route
configuration.clear;
#0.01 //We must delay here.. At least in modelsim
configuration.enableRoute (11,12 ,0);
#0.01 //We must delay here.. At least in modelsim
configuration.enableRoute (11,13 ,0);
packets=packets +2;

dat = (13<<8)|(l2<<4)]I1;
/]l Setup slaves
setupSlave (12 ,dat,0,11);
setupSlave (13 ,dat,0,I11);
//'Send data

Design of an asynchronous communication network for an audio DSP chip 187

E.4. VERIFICATION

mst. clear_txs;
mst.setup_txs(l1,dat);//input_chan ,target ,h data
mst. txs;

/I Wait till data has been recieved
#(10+«‘T_CLK);
end
end
$display("INFO: _,Multicast succesfully tested");
countNumberOfReceivedPackets;
$display("_._._...%0d of_%0d_packets was recieved,succecfully",
received_packets ,packets);

$display ("%0d ERRORS detected", error);
error_total = error_total+error;
error=0;

‘endif //MULTICAST_TEST

‘ifdef MULTICAST2_TEST
/1l
// MultiCast2
/1
$display("\nINFO:_Multicasting2 ., Two_simultanously multicasts ");
/I Several multicasts at a time
for (11=0;11<'INPUTS-1;11=11+1)
begin
//We are sending data from 11 and [1+1 to (l2,12+1, I3 and I3
+1)
$display (" _—_Input_%0d ,and %0d are_multicasting"”,I1, 11+1);
for (12=0;12<'OUTPUTS-1;12=12+1)
for (13=12+2;13<'OUTPUTS-1;13=13+1)
begin
/] Setup route
configuration.clear;
#0.01 //We must delay here.. At least in modelsim
configuration.enableRoute (11,12 ,0);
#0.01 //We must delay here.. At least in modelsim
configuration .enableRoute (11+1,13,1);
#0.01 //We must delay here.. At least in modelsim
configuration .enableRoute (11,12+1,1);
#0.01 //We must delay here.. At least in modelsim
configuration.enableRoute (11+1,13+1,0);
packets=packets +4;

dat = ((12+1)<<8)|(12<<4)]|I1;
mst. clear_txs;

/l Setup slaves
setupSlave (12 ,dat,0,I11);

Design of an asynchronous communication network for an audio DSP chip 188

E.4. VERIFICATION

setupSlave (12+1,dat,1,11);
mst.setup_txs(l1,dat);//input_chan ,target ,h data

dat = ((I13+1)<<8)|(13<<4)|(11+1);

/I Setup slaves

setupSlave (13 ,dat,1,11+1);

setupSlave (13+1,dat,0,11+1);
mst.setup_txs(l1+1,dat);//input_chan ,target ,h data
// Send data

mst. txs;

//' Wait till data has been recieved
#(60x'T_CLK);

end

end

$display("INFO: _ Multicast2 succesfully tested");

countNumberOfReceivedPackets;

$display ("9%0d of %0d packetswas, recieved,succecfully",
received_packets , packets);

$display("__ ... %0d ERRORS detected", error);

error_total = error_total+error;

error=0;

‘endif //MULTICAST2

‘ifdef CHAOS_TEST
$display("\nINFO:_Simultanus,sending,test");
configuration.clear;
mst. clear_txs;

#0.01 //We must delay here.. At least in modelsim
for (11=0;11<'OUTPUTS; I11=11+1)
begin
configuration .enableRoute (11,11 ,1);
dat = (l11<<4)]|I1;
packets=packets+1;
mst. setup_txs(l1,dat);//input_chan ,target ,h data
setupSlave (11 ,dat,1,I11);
end
/I Send the data and wait
mst. txs;
#('INPUTS%10+‘T_CLK) ;
$display("INFO:_Succesfully ,tested");
countNumberOfReceivedPackets;
$display ("9%0d of %0d packetswas recieved,succecfully"
received_packets , packets);
$display (", ... %0d ERRORS,detected", error);
error_total = error_total+error;
error=0;

Design of an asynchronous communication network for an audio DSP chip 189

E.4. VERIFICATION

$display("\nINFO:_Chaos,test. Everybody, is_sending,to_the_same,
receiver");
for (12=0;12<'OUTPUTS; 12=12 +1)
begin
configuration.clear;
#0.01 //We must delay here.. At least in modelsim
mst.clear_txs;
for (11=0;11<'INPUTS;I1=11+1)
begin
configuration.enableRoute (11,12 ,0);
dat = (12<<4)|I1;
packets=packets +1;
mst.setup_txs (11 ,dat);//input_chan ,target ,hb data
setupSlave (12 ,dat,0,11);
end
//Send the data and wait
mst. txs;
#('INPUTS+10+T_CLK) ;
end
$display("INFO: _Succesfully,tested");
countNumberOfReceivedPackets;
$display ("9%0d of %0d packets was recieved,succecfully"
received_packets , packets);
$display ("%0d ERRORS detected", error);
error_total = error_total+error;
error=0;

‘endif //CHAOS_ TEST

/I Count number of received packets
countNumberOfReceivedPackets;

$display("\nINFO:_AIll tests_ done");
if (received_packets==packets)
$display("INFO: _ all_%0d packets,was recieved,succecfully", packets
); else
$display("INFO: _%0d_ of_%0d packets was recieved,succecfully",
received_packets ,packets);
$display("INFO:_%0d ERRORS were detected", error_total);

if (received_packets==packets & error_total==0)
$display("PASSED"); else
$display("FAILED");

/I Store error in a file for use by make
handle = $fopen("sim.exitcode");
$fdisplay(handle, "%d", error_total);
$fclose(handle);

Design of an asynchronous communication network for an audio DSP chip

190

E.4. VERIFICATION

‘ifdef MIKKEL TB
$stop;
‘endif
$finish;

end

/1
/I Error detection
/1
integer cc;
always @(res)
begin

for (cc=0;cc<'OUTPUTS; cc=cc+1)

if (res[cc]==0)

begin

error = error+1,;

end

end

/1
/I Clock generation
/1

always #(‘'T_CLK/2)
if (clk === 1) clk = 0;
else clk = 1;

reg [5:0] count;
assign cq_fs = count === 0;

always @(negedge clk or negedge reset_b)
if (! reset_b)
begin
count <= 0;
end
else
begin
count <= count + 1;
end

endmodule

Design of an asynchronous communication network for an audio DSP chip 191

E.5. BUNDLED DATA BLOCKS

E.5 Bundled data blocks
E.5.1 P_merge
[*

Description:
Merger for 4 phase bundled data protocol

2 busses are merged into a single bus ussing arbitration.
The 2 incoming lines does not need to be mutual

Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/

‘ifndef _P_merge_v
‘define _P_merge_v

‘include "global.v"

module P_merge (
i_datal,
i_reql,
o_ack1l,
i_dataz,
i_req2,
o_ack2,
o_data,
o_req,
i _ack,

reset_b

i
)

[
Parameters
*/

parameter BUS WIDTH='BUS _WIDTH; //Number of data bits

[*
Inputs
*/
input [BUS WIDTH-1:0] i_datal, i_dataZ2;
input i_ack,i_reql, i_req2,i_reset_b;

[*

Outputs

*/

output o_ackl, o_ack2, o_req;

Design of an asynchronous communication network for an audio DSP chip

exclusive

192

E.5. BUNDLED DATA BLOCKS

output [BUS WIDTH-1:0] o_data;

/%

Internal signals

*/

wire s_grantl ,s_grant2;

wire s_grantl_t, s_grant2_t;
wire s_req;

[%
Netlist
*/

/1 Mutex
C MUTEX2 mutex(i_reql ,i_req2,s_grantl t,s _grant2_t);

/I The grant Signal must be buffered to support 'BUS WIDTH' ports.
This is done in the template cell

TC_AND2A #(BUS _WIDTH) grantl(s_ack2,s_grantl _t,s_grantlj)/s_grantl
<= Is_ack2 && s_grant_tl

TC_AND2A #(BUS WIDTH) grant2(s_ackl,s_grant2_t,s_grant2)/s_grant2
<= Is_ackl & s_grant_t2

[/l output acks

C_C2_ RO ackl(i_ack,s_grantl ,s_ackl,i_reset_b);
assign o_ackl = s_ackl;

C_C2 RO ack2(i_ack,s _grant2 ,s ack2,i_reset_b);
assignh o_ack2 = s_ack2;

/l data generation

/!l This is done in an ANBOR contruct. If the cell library support it
, this is done
I/ in a complex cell. Else a NANDIAND construct

C_AOR22 aor22[BUS WIDTH1:0] (.a(i_datal), .b(s_grantl), .c(i_data2),
.d(s_grant2) ,.z(o_data));

/I Request generation
C_OR2 reqor (s_grantl, s _grant2, s_req);

[/ Put in some delay on the request
/1 This delay must be larger than the TC_AND2A gates + routing
TC_delay #400 delayl(s_req,o_req);

endmodule

‘endif

Design of an asynchronous communication network for an audio DSP chip 193

E.5. BUNDLED DATA BLOCKS

E.5.2 P_merge_tree

/%
Description:
Binary merge tree for a 4 phase bundled data protocol
Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/

‘ifndef _P_merge_tree_v
‘define _P_merge_tree_v

‘include "global.v"

module P_merge_tree(
i data,
i_req,
o_ack,
o_data,
o_req,
i_ack,
i_reset_b
)
[*
Parameters
x/
parameter INPUTS=2; //Number of inputs
parameter BUS WIDTH=10; //Width of the bus

[*
Inputs
*/
input [INPUTS«BUS_WIDTH-1:0] i_data;
input [INPUTS-1:0] i_req;
input i_ack;
input i_reset_b;

/%

Outputs
*/
output [INPUTS—1:0] o_ack;
output [BUS WIDTH-1:0] o_data;
output o_req;

[+

Internal signals
*/

Design of an asynchronous communication network for an audio DSP chip 194

E.5. BUNDLED DATA BLOCKS

wire s _reql, s_req2;
wire s _ackl, s_ack2;
wire [BUS WIDTH-1:0] s_datal, s_data2;

[*
Netlist

*/

genvar i;

‘define lower_n (INPUTS/2)
‘define upper_n (INPUTS‘lower_n)

I/l Generate an upper and lower merge tree and connect
[/l them by a merge element
generate
if (INPUTS==1)
begin
assign o_data=i_data;
assign o_req=i_req;
assign o_ack=i_ack;
end
else
begin
P_merge_tree #(‘lower_n, BUS WIDTH) merge_tree_lower(
.i_data(i_data[‘lower_mrBUS WIDTH-1:0]),
.i_req(i_reqg[‘lower_n-1:0]),
.0_ack(o_ack[‘lower_n-1:0]),
.0_data(s_datal),
.0_req(s_reql),
.i_ack(s_ackl),
.i_reset_b(i_reset_b)
)
/1l defparam merge_tree_upper.INPUTS='lower_n;
1 defparam merge_tree_upper.BUS_WIDTH=BUS_WIDTH;

P_merge_tree #(‘upper_n, BUS WIDTH) merge tree_upper/(
.i_data (i_data[INPUTSBUS WIDTH-1:‘lower_n«BUS_WIDTH]) ,
.i_req(i_req[INPUTS-1:‘lower_n]),
.0_ack(o_ack[INPUTS1:‘lower_n]),

.0_data(s_data2),
.0_req(s_req2),
.i_ack(s_ack2),
.i_reset_b(i_reset_b)
)
/1 defparam merge_tree_upper.INPUTS=‘upper_n;
/1 defparam merge_tree_upper.BUS WIDTH=BUS_ WIDTH;
/I The merger for this stage
P_merge merger (
.i_datal(s_datal),

Design of an asynchronous communication network for an audio DSP chip

195

E.5. BUNDLED DATA BLOCKS

.i_regql(s_reql),
.0_ackl(s_ackl),
.i_data2(s_data2),
.i_req2(s_req2),
.0_ack2(s_ack2),
.0_data(o_data),
.0_req(o_req),
.i_ack(i_ack),
.i_reset_b(i_reset_b)
)

defparam merger.BUS_WIDTH=BUS_WIDTH;

end

endgenerate
endmodule

‘endif

Design of an asynchronous communication network for an audio DSP chip 196

E.5. BUNDLED DATA BLOCKS

E.5.3 P_multicast

/%
Description:
P_multicast
Multicast module for a 4 phase bundled data protocol
Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/

‘ifndef _P_multicast_v
‘define _P_multicast_v

‘include "global.v"

module P_multicast (
i_routes ,
i_route_en,
i_data,
i_req,
o_ack,
o_data,
o_req,
i_ack,
i_reset_b);

/%
Parameters
*/
parameter N MC=2; /I Number of multicasts
parameter DATA WIDTH="DATA WIDTH;
parameter BUS_WIDTH="BUS_WIDTH;
parameter ROUTE_WIDTH="ROUTE_WIDTH;

[
Inputs
*/
input [DATA WIDTH-1:0] i_data;
input [N_MC«ROUTE _WIDTH-1:0] i_routes;
input [N.MC—-1:0] i_route_en;
input i_req, i_ack;
input i_reset_b;

/%
Outputs
*/
output [BUS WIDTH—-1:0] o_data;

Design of an asynchronous communication network for an audio DSP chip

197

E.5. BUNDLED DATA BLOCKS

output o_req, o_ack;

[*
Internal signals
*/
wire [ROUTE WIDTH-1:0] s_route;

/%
NetList

*/

Multicaster multicaster (
.i_en(i_route_en),
.i_data(i_routes),
.i_req(i_req),

.i_ack(i_ack),
.0_data(s_route),
.0_req(o_req),
.0_ack(o_ack),
.i_reset_b(i_reset_b));
defparam multicaster .N_MC=N_MC;
defparam multicaster .DATA WIDTH = ROUTE_WIDTH;

// Assign output
assign o_data = {s_route ,i_data};
endmodule

‘endif

Design of an asynchronous communication network for an audio DSP chip

198

E.5. BUNDLED DATA BLOCKS

E.5.4 P_network

/%
Description:
Network using 4 phase bundled data

Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/

‘ifndef _P_network_v
‘define _P_network_v

‘include "global.v"

module P_network(

i data,

i_req,

o_ack,

o_data,

o_req,

i_ack,
i_reset_b

)i

[*

Parameters
x/
parameter INPUTS='N_INPUTS;
parameter OUTPUTS='N_OUTPUTS;
parameter BUS WIDTH='"BUS_WIDTH;
parameter DATA WIDTH='DATA_WIDTH;

S
Inputs
x/
input [INPUTS«BUS_WIDTH-1:0] i_data;
input [INPUTS-1:0] i_req;
input [OUTPUTS-1:0] i_ack;
input i_reset_b;

[*
Qutputs
x/
output [INPUTS—-1:0] o_ack;
output [OUTPUTS:BUS WIDTH-1:0] o_data;
output [OUTPUTS-1:0] o_req;

[

Design of an asynchronous communication network for an audio DSP chip

199

E.5. BUNDLED DATA BLOCKS

Internal signals
*/
wire s_ack, s_req;
wire [BUS WIDTH—-1:0] s_data;

[*
Netlist

x/

P_merge_tree #(INPUTS, BUS WIDTH) merge_tree (
.i_data(i_data),
.i_req(i_req),
.0_ack(o_ack),
.0_data(s_data),
.0_req(s_req),
.i_ack(s_ack),
.i_reset_b(i_reset_b));

P_router_tree #(OUTPUTS, BUS WIDTH, DATA WIDTH) router_tree (

.i_data(s_data),

.i_req(s_req),

.0_ack(s_ack),

.0_data(o_data),

.0_req(o_req),

.i_ack(i_ack),

.i_reset_b(i_reset_b));

endmodule

‘endif

Design of an asynchronous communication network for an audio DSP chip 200

E.5. BUNDLED DATA BLOCKS

E.5.5 P_router
/%

Description:
Router for 4 phase bundled data protocol

MSB LSB

ROUTE — DATA

Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/

‘ifndef _P_router_v
‘define _P_router_v

‘include "global.v"

module P_router (
i_data,
i_req,
o_ack,
o_datal,
o_reql,
i_ackl,
o_data2,
o_reqg2,
i_ack2,

i_reset_b

)

/%

Parameters

*/

parameter BUS WIDTH="BUS WIDTH; //Width of the bus

parameter DATA WIDTH=23; // Data width

/%
Inputs
*/
input [BUS WIDTH—-1:0] i_data;
input i_ackl, i_ack2,i_req,i_reset_b;

[+

OQutputs
*/

Design of an asynchronous communication network for an audio DSP chip 201

E.5. BUNDLED DATA BLOCKS

output o_ack, o_reql, o_req2;
output [BUS WIDTH-1:0] o_datal, o_dataZ2;

/%

Internal signals

*/

wire s_routel, s_route?2;

wire s_ack, s_reql, s_req2;

wire s_reql_buffered, s_req2_buffered;
wire s_reqg_delayed;

wire [BUS WIDTH-1:0] s_datal, s_data2;

/%

Netlist

*/

/I Route. The most significant bit determines the current route
assign s_route2 = i_data[BUS WIDTH1]J;

TC_INV #1 inv_route (.a(s_route2) ,.z(s_routel));

TC_delay #200 delayl(.a(i_req) ,.z(s_req_delayed));

/I Request out

TC_INV #2 inv_ack(s_ack,s_ack_b);

C_C3P_RO reqlc (.a(s_req_delayed), .b(s_ack_b), .c(s_routel), .z(
s reql), .reset_b(i_reset_b));

C _C3P_RO req2c (.a(s_req_delayed), .b(s_ack _b), .c(s_route2), .z(
s req2), .reset b(i_reset _b));

[/ Buffer up s_req driver
TC _BUF #(BUS WIDTH+1) req_bufl (.a(s_reql), .z(s_reqgql_buffered));
TC BUF #(BUS WIDTH+1) req_buf2(.a(s_req2), .z(s_req2_ buffered));

[/ Put in some delay on the delay line
TC_delay #400 reqlbuf(.a(s_reql_buffered), .z(o_reql));
TC_delay #400 req2buf(.a(s_req2_ buffered), .z(o_req2));

/1 Ack out
C_OR2 ackor (.a(i_ackl), .b(i_ack2), .z(s_ack));
assigh o_ack = s_ack;

// Data out. Shift the route one left as the MSB was used to determine
this route

assign s_datal = {i_data[BUS_WIDTH2:DATA WIDTH],1'b0,i_data][
DATA WIDTH—1:0]};

assign s_data2 = {i_data[BUS WIDTH2:DATA WIDTH],1'b0,i_data|
DATA WIDTH —-1:0]};

C_AND2 dataandl[BUS WIDTH1:0] (.a(s_datal), .b(s_reql _buffered), .z(
o_datal));

Design of an asynchronous communication network for an audio DSP chip 202

E.5. BUNDLED DATA BLOCKS

C _AND2 dataand2[BUS WIDTH1:0] (.a(s_data2), .b(s_req2 buffered), .z(
o_data2));

endmodule

‘endif

Design of an asynchronous communication network for an audio DSP chip 203

E.5. BUNDLED DATA BLOCKS

E.5.6 P_router_tree

/%
Description:
Binary router tree for a 4 phase bundled data protocol
Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/

‘ifndef _P_merge_tree_v
‘define _P_merge_tree_v

‘include "global.v"

module P_router_tree (
i _data,
i_req,
o_ack,
o_data,
o_req,
i_ack,
i_reset_b
)
[*
Parameters
*/
parameter OUTPUTS=2; /I Number of outputs
parameter BUS WIDTH=10;
parameter DATA WIDTH=6;

S
Inputs
*/
input [BUS_WIDTH-1:0] i_data;
input i_req;

input [OUTPUTS-1:0] i_ack;
input i_reset_b;

[*
Qutputs
x/
output o_ack;
output [OUTPUTS:BUS WIDTH-1:0] o_data;
output [OUTPUTS-1:0] o_req;

[

Design of an asynchronous communication network for an audio DSP chip 204

E.5. BUNDLED DATA BLOCKS

Internal signals
*/
wire s_reql, s_req2;
wire s_ackl, s_ack2;
wire [BUS WIDTH-1:0] s_datal, s_data2;

[*
Netlist

*/

genvar i;

‘define lower_n (OUTPUTS/2)
‘define upper_n (OUTPUTS'lower_n)

I/l Generate an upper and lower router tree and connect
/I them by a router
generate
if (OUTPUTS==1)
begin
assign o_data=i_data;
assign o_req=i_req;
assign o_ack=i_ack;
end
else
begin
P_router_tree #(‘'lower_n, BUS WIDTH, DATA WIDTH) route tree_lower(
.i_data(s_datal),
.i_req(s_reql),
.0_ack(s_ackl),
.0_data(o_data[‘lower_sBUS WIDTH-1:0]),
.0_req(o_req[‘lower_n-1:0]),
.i_ack(i_ack[‘lower_n—-1:0]),
.i_reset_b(i_reset_b)

)

P_router_tree #(‘upper_n, BUS WIDTH, DATA WIDTH) route_tree_upper/(
.i_data(s_data2),
.i_req(s_req2),
.0_ack(s_ack2),
.0_data(o_data [OUTPUKBUS WIDTH-1:‘lower_n«BUS_WIDTH]) ,
.0_req(o_req[OUTPUTSL1: ‘lower_n]),
.i_ack(i_ack[OUTPUTS1:‘'lower_n]),
.i_reset_b(i_reset_b)
);

/I parameter SIZE='BUS_WIDTH;

[/ parameter DATA WIDTH=23;
P_router #(BUS_WIDTH, DATA WIDTH) router (

Design of an asynchronous communication network for an audio DSP chip 205

E.5. BUNDLED DATA BLOCKS

.i_data(i_data),
.i_req(i_req),
.0_ack(o_ack),
.0_datal(s_datal),
.0_regl(s_reql),
.i_ackl(s_ackl),
.0_data2(s_data2),
.o0_reg2(s_req2),
.i_ack2(s_ack2),
.i_reset_b(i_reset_b)
)

end

endgenerate
endmodule

‘endif

Design of an asynchronous communication network for an audio DSP chip 206

E.5. BUNDLED DATA BLOCKS

E.5.7 P_sink

/%
Description:
Sink for parallel bundled data

Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/

‘ifndef _P_sink_V
‘define _P_sink_V

‘include "global.v"
module P_sink(i_data ,i_req, o_ack);

parameter SIZE=BUS WIDTH;
parameter SINK _ID=-1;

/lInputs

input [SIZE-1:0] i_data;
input i_req;

/1 Outputs

output o_ack;

[/ This is just to have some delay
TC_delay #1000 delayblock (i_req, o_ack);

‘ifdef DEBUG_LEVEL2
always @(posedge i_req)
begin
if (SINK_ID==-1)
$display("Sink: %x",i_data);
else
$display("Sink_%2d: %x" ,SINK_ID,i_data);
end
‘endif

endmodule
‘endif

Design of an asynchronous communication network for an audio DSP chip

207

E.6. 1-OF-5BLOCKS

E.6 1-of-5blocks
E.6.1 PC_bundled 1o0f4

[*
Description:
Protocol converter: Converts from 10of4 encoding into bundled
datra
Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/

‘ifndef _PC_bundled_1o0f4_v
‘define _PC_bundled_1of4_v

‘include "global.v"

module PC_bundled_1of4(
i data,
i_req,
o_ack,
o_data,
i_ack,
i_reset_b);

input [1:0] i_data;

input i_req, i_ack, i_reset_b;
output o_ack;

output [3:0] o_data;

/lwire [1:0] s_dataZ2;
wire [3:0] s_datad4, s_data4d_2;
wire s_req_delay, s_ack _b;

conv_2 1o0f4 converter(.i_data(i_data), .o_data(s_data4d));
/I Delay request for 2 gates.. something like 400 ps
TC_delay #400 delay(.a(i_req) ,.z(s_req_delayed));

C C2P_RO c_elements[3:0](
.a(s_req_delayed),
.b(s_datad4_2),
.z(o_data),
.reset_b(i_reset_b));

C_AND2A and2a[3:0](
.a(i_ack),
.b(s_data4),

.Z(s_data4_2));

Design of an asynchronous communication network for an audio DSP chip

208

E.6. 1-OF-5BLOCKS

assign o_ack=i_ack;

/+C_C3PP_RO c_elements[3:0](
.a(s_req_delayed),
.b(s_data4),

.c(s_ack_b),
.z(o_data) ,
.reset_b(i_reset_b));

assign o_ack=i_ack;

TC_INV inv (.a(i_ack) ,.z(s_ack_b));
x/

endmodule

module conv_2 1of4(i_data, o_data);

/1 Inputs

input [1:0] i_data;
/1 Outputs

output [3:0] o_data;

/I Netlist
C NOR2 norl(i_data[0],i_data[l],o_data[O]);
TC _AND2A #4 nd2(i_data[l],i_data[0],o0_data[l]);

TC _AND2A #4 and3(i_data[0],i_data[l],o_data[2]);

C AND2 and4(i_data[0],i_data[l],o0_data[3]);
endmodule

‘endif

Design of an asynchronous communication network for an audio DSP chip

209

E.6. 1-OF-5BLOCKS

E.6.2 PC_1lof4 bundled

/%
Description:

Protocol converter:
of4 encoding

Converts from parallel

bundled data

Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/
‘ifndef _PC_10f4_bundled_v

‘define _PC_10f4_bundled_v

‘include "global.v"
module PC_1o0f4_bundled (

i _data,

o_ack,

o_data,

i_ack,

o_req,

i_reset_b);

input [3:0]
input i_ack, i_reset_b;
output o_ack, o_req;
output [1:0] o_data;
wire s_req;

i_data;

assign o_ack=i_ack;

conv_1o0f4_2 converter(.i_data(i_data),

.0_data(o_data));

into 1

C OR4 req(.a(i_data[0]) ,.b(i_data[1]),.c(i_data[2]) ,.d(i_data[3]),.z(

o_req));

endmodule

module conv_1o0f4_2(i_data, o_data);
/I Inputs
input [3:0]
/] Outputs
output [1:0] o_data;

i_data;

I/l Netlist

C OR2 or_LSB(i_data[l],i_data[3],0_data[O0]);
C_OR2 or MSB(i_data[2],i_data[3],0_data[1]);

Design of an asynchronous communication network for an audio DSP chip

210

E.6. 1-OF-5BLOCKS

endmodule
‘endif

Design of an asynchronous communication network for an audio DSP chip 211

E.6. 1-OF-5BLOCKS

E.6.3 S_latch

/%
Description:
1 of 4 latch

Created by:

Mikkel Stensgaard— mikkel@stensgaard.org
*/

‘ifndef _S_latch_V
‘define _S_latch_V

‘include "global.v"

module S_latch(i_data, i_eop, o_ack, i_ack, o_data, o_eop, i_reset_b)
/lInputs

input [3:0] i_data;

input i_eop, i_ack, i_reset_b;

/1 Outputs

output o_ack,o_eop;
output [3:0] o_data;

/l'Internal signals
wire s_ack_b;

wire so_eop;

wire [3:0] so_data;
wire s_or_tl, s_or_t2;

/I Memory is made from -eelements

TC_INV #5 inv(i_ack,s _ack_b);

C C2 RO c_data[3:0](s_ack b ,i_data,so_data,i_reset_b);
C C2 RO c_eop(s_ack _b,i _eop,so_eop,i_reset_b);

assign o_data = so_data;

assign o_eop = sSo_eop;

/I Completion detection. which generates ack
C_OR5 or5(so_data[0],so_data[l],so_data[2],so_data[3],s0o_eop,o0_ack);

[/l ambit synthesis off
%

Error checking
*/

Design of an asynchronous communication network for an audio DSP chip 212

E.6. 1-OF-5BLOCKS

‘ifdef ERROR_CHECKING
integer count;
always @(posedge i_data or posedgei_eop)
begin
count=0;
if (i_eop) count = count+1;
if (i_data[0]) count = count+1;

if (i_data[1]) count = count+1;
if (i_data[2]) count = count+1;
if (i_data[3]) count = count+1;

if (count>1)
begin
$display("S_latch; ERROR");
$display("__More_than_ 1 signal_is_high._This_should not be,
happening,in_a_lof5 protocol!");
$display("__i_data;%b",i_data);
$display("_.i_eop: %b",i _eop);
$stop; // masked by synthesis off
end
end
‘endif

/I ambit synthesis on

endmodule
‘endif

Design of an asynchronous communication network for an audio DSP chip 213

E.6. 1-OF-5BLOCKS

E.6.4 S_merge

/%
Description:
S_merge

Created by:

Mikkel Stensgaard— mikkel@stensgaard.org
*/

‘ifndef _S_merge_V
‘define _S_merge_V

‘include "global.v"

[*
Internal sub-module
*/
module blok(i_data, i_eop, i_enable, i_ack, o_data, o_eop, o_ack,

i_reset_b);

input [3:0] i_data;
input i_enable ,i_ack,i_reset_b, i_eop;
output [3:0] o_data;
output o_ack,o_eop;

wire si_ack _b;
wire [3:0] so_data;
wire so_eop;

TC_INV #5 inv(i_ack,si_ack_b);

C_C3 RO c_eop(i_eop, si_ack_b, i_enable, so_eop, i_reset_b);

C C3P_RO c_data[3:0](si_ack_b, i_data, i_enable, so_data, i_reset_b);

C_OR5 orelem (so_data[0],so_data[l],so_data[2],so_data[3],so_eop,
o_ack);

assign o_data=so_data;
assign o_eop=so_eop;

endmodule
/%
S_merge module
*/
module S_merge (i_datal, i_eopl, o_ackl,i _data2, i_eop2, o_ack2,
o_data, o_eop, i_ack, i_reset _b);

Design of an asynchronous communication network for an audio DSP chip 214

E.6. 1-OF-5BLOCKS

input [3:0] i_datal, i_dataZ2;

input i_ack,i_reset_b, i_eopl, i_eop2;
output [3:0] o_data;

output o_ackl, o_ack2, o_eop;

wire s_completel ,s _complete2;

wire s_reql, s_req2;

wire s_grantl_t,s_grant2_t;

wire s_grantl ,s_grant2;

wire s_eopl, s_eop2;

wire s_eopl b, s _eop2 b;

wire s_resetl b, s_reset2_b;

wire [3:0] s_datal, s_data2,s_data;

/I Completion detection

C OR5 orl(i_datal[0],i_datal[l],i_datal[2],i_datal[3],i_eopl,
s_completel);

C_ OR5 or2(i_data2[0],i_data2[1],i_data2[2],i_data2[3],i_eop2,
s_complete2);

TC_AND2A #1 and2a_resetl (.a(s_eopl) ,.b(i_reset_b) ,.z(s_resetl_b));
TC _AND2A #1 and2a_reset2 (.a(s_eop2) ,.b(i_reset_b) ,.z(s_reset2_b));

/1 Mutex

C_C2MP_RO srl(.a(s_resetl_b), .b(s_completel), .z(s_reql), .reset_b(
i_reset_b));

C C2MP_RO sr2(.a(s_reset2_b), .b(s_complete2), .z(s_req2), .reset_b(
i_reset_b));

/IC_SR srl(.set_b(s_completel b), .reset_b(s_resetl b), .q(s_reql),
a_b());

/IC_SR sr2(.set_b(s_complete2_b), .reset_b(s_reset2_b), .q(s_req2),
q_b());

C MUTEX2 mutex(s_reql,s _req2,s_grantl t,s grant2_t);

/1 Grants
TC_AND2A #5 and_grantl (.a(s_eop2) ,.b(s_grantl _t),.z(s_grantl));
TC_AND2A #5 and_grant2 (.a(s_eopl) ,.b(s_grant2_t),.z(s_grant2));

/I The 2 enable blocks
blok c¢_blokl(i_datal, i_eopl, s_grantl, si_ack, s_datal , s_eopl,

o_ackl, i_reset_b);
blok c¢_blok2(i_data2, i_eop2, s_grant2, si_ack, s_data2 , s_eop2,
o_ack2, i_reset_b);

[/ Output blok

C_OR2 or_data[3:0](s_datal ,s_data2 ,s_data);

C_OR2 or_eop(s_eopl,s_eop2,s_eop);

S _latch latch_output(s_data, s_eop, si_ack, i_ack, o_data, o_eop,
i_reset_b);

Design of an asynchronous communication network for an audio DSP chip 215

E.6. 1-OF-5BLOCKS

[*
Error checking
*/
‘ifdef ERROR_CHECKING
integer count;
I/l Check that two acces are not allowed at the same time
always @(posedge s_grantl_tor posedge s_grant2_t)
begin
if (s_grantl t==1 & s_grant2_t==1)
begin
$display("S_merge ; ERROR") ;
$display("__Both_inputs_was,granted access,at_the_sametime!");
$stop;
end
end

// Check that two acces are not allowed at the same time
/«always @(posedge s_grantl_ t or posedge s_grant2_t)
begin

if(s_grantl_t==1)

begin

$display ("S_merge: ERROR");
$display (* Both inputs was granted access at the same time!");
$stop;
end
endsx/
‘endif

endmodule

‘endif

Design of an asynchronous communication network for an audio DSP chip 216

E.6. 1-OF-5BLOCKS

E.6.5 S_merge_tree

/%
Description:

Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/

‘ifndef _S merge_tree_v
‘define _S_merge_tree_v

‘include "global.v"

module S_merge_tree(
i _data,
i_eop,
o_ack,
o_data,
o_eop,
i_ack,
i_reset_b
)
/%
Parameters
*/
parameter INPUTS=2;
parameter BUS _WIDTH=4;

[
Inputs
*/
input [INPUTS«BUS WIDTH-1:0] i_data;
input [INPUTS—-1:0] i_eop;
input i_ack;
input i_reset_b;

/%
Outputs
*/
output [INPUTS—-1:0] o_ack;
output o_eop;
output [BUS WIDTH-1:0] o_data;

[%

Wires
x/
genvar i;

Design of an asynchronous communication network for an audio DSP chip 217

E.6. 1-OF-5BLOCKS

‘define lower_n (INPUTS/2)
‘define upper_n (INPUTS'‘lower_n)

wire s_eopl, s_eop2;
wire s_ackl, s_ack2;
wire [BUS WIDTH-1:0] s_datal, s_data2;

generate
if (INPUTS==1)
begin
assign o_data=i_data;
assign o_eop=i_eop;
assign o_ack=i_ack;
end
else
begin
S_merge_tree #(‘lower_n, BUS WIDTH) merge_tree_lower (
.i_data(i_data[‘lower_mrBUS WIDTH-1:0]),
.i_eop(i_eop[‘lower_n-1:0]),
.0_ack(o_ack[‘lower_n-1:0]),
.0_data(s_datal),
.0_eop(s_eopl),
.i_ack(s_ackl),
.i_reset_b(i_reset_b)

)

S _merge_tree #(‘upper_n, BUS WIDTH) merge_tree_upper(
.i_data(i_data[INPUTSBUS WIDTH-1:‘lower_n«BUS_WIDTH]) ,
.i_eop(i_eop[INPUTS-1:‘lower_n]),
.0_ack(o_ack[INPUTS1:‘lower_n]),

.0_data(s_data2),
.0_eop(s_eop2),
.i_ack(s_ack2),
.i_reset_b(i_reset_b)

)

S _merge merger (
.i_datal(s_datal),
.i_eopl(s_eopl),
.0_ackl(s_ackl),
.i_data2(s_data2),
.i_eop2(s_eop2),
.0_ack2(s_ack2),
.0_data(o_data),
.0_eop(o_eop),
.i_ack(i_ack),
.i_reset_b(i_reset_b)

)

Design of an asynchronous communication network for an audio DSP chip

218

E.6. 1-OF-5BLOCKS

end

endgenerate
endmodule

‘endif

Design of an asynchronous communication network for an audio DSP chip 219

E.6. 1-OF-5BLOCKS

E.6.6 S_network

/%
Description:
NoC network using Serial 1o0f4 data

Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/

‘ifndef _S_network_v
‘define _S_network_v

‘include "global.v"

module S_network (

i data,

i_eop,

o_ack,

o_data,

o_eop,

i_ack,
i_reset_b);

parameter INPUTS='N_INPUTS;
parameter OUTPUTS='N_OUTPUTS;
parameter BUS WIDTH = 4;

/1 Inputs

input [INPUTS«BUS_WIDTH—1:0] i_data;
input [INPUTS-1:0] i_eop;

input [OUTPUTS-1:0] i_ack;

input i_reset_b;

/1l Outputs

output [INPUTS-1:0] o_ack;

output [OUTPUTS«BUS WIDTH-1:0] o_data;
output [OUTPUTS-1:0] o_eop;

/%
Internal signals
*/
wire s_eop, s_ack;
wire [BUS WIDTH-1:0] s_data;

S_merge_tree #(INPUTS, BUS WIDTH) merge_tree(
.i_data(i_data),
.i_eop(i_eop),
.0_ack(o_ack),

Design of an asynchronous communication network for an audio DSP chip

220

E.6. 1-OF-5BLOCKS

.0_data(s_data),
.0_eop(s_eop),
.i_ack(s_ack),
.i_reset_b(i_reset_b)

)

S _router_tree #(OUTPUTS, BUS WIDTH) router_tree (

.i_data(s_data),

.i_eop(s_eop),

.0_ack(s_ack),

.0_data(o_data),

.0_eop(o_eop),

.i_ack(i_ack),

.i_reset_b(i_reset_b)

)
endmodule

‘endif

Design of an asynchronous communication network for an audio DSP chip 221

E.6. 1-OF-5BLOCKS

E.6.7 S_router

/%
Description:
S_merge

Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/

‘ifndef _S_router_V
‘define _S_router_V

‘include "global.v"

module route_control (

i_routel,

i_route2 ,
i_eopl2 b,

o_eop,

o_routel,
o_route2,
i_reset_b);

[*

Inputs

x/

input i_routel, i_route2, i_eopl2_b, i_reset_b;

[

OQutputs

*/

output o_eop, o_routel, o_route?2;

[
Internal signals
*/
wire s_gl, s_g2;
wire s_ql, s_qg2;
wire i_eopl2_b_reset;
wire s_locked_b;

[*
Netlist
*/
C C2 RO cl(i_routel, s locked b, s g1, i_reset_b);
C C2 RO c2(i_route2, s_locked b, s g2, i_reset_b);

Design of an asynchronous communication network for an audio DSP chip 222

E.6. 1-OF-5BLOCKS

C AND2 and_reset(.a(i_eopl2_b), .b(i_reset_b),.z(i_eopl2_b_reset));

C C2MP_RO srl(.b(s_gl), .a(i_eopl2_b _reset), .z(s_ql), .reset_b(
i_reset_b));

C C2MP_RO sr2(.b(s_g2), .a(i_eopl2 b _reset), .z(s_qg2), .reset_b(
i_reset_b));

C NOR2 nor2(.a(s_ql), .b(s_g2),.z(s_locked_b));

C AND2A and21(.a(s_gl), .b(s_ql),.z(o_routel));
C_AND2A and22(.a(s_g2), .b(s_g2),.z(o_route2));

C_NOR2 nor22 (.a(s_gl1),.b(s_g2),.z(s_eop));
C _NAND2 nand2 (.a(i_eopl2 b) ,.b(s_eop),.z(o_eop));

endmodule // Route_control

/>k 3k 3K sk K sk sk sk sk >k sk R skosk ok Sk ok sk R sk ok
S_router module
>k sk sk sk skosk sk sk sk sk sk skosk sk sk skosk kok */
module S_router (
i_data,
i_eop,
o_ack,
o_datal,
o_eopl,
i_ackl,
o_data2,
o_eop2,
i_ackz2,
i_reset_b);

[*
Inputs
*/
input [3:0] i_data;
input i_ackl, i_ack2 ,i_reset b, i_eop;

/%

Outputs

*/

output [3:0] o_datal, o_data2;
output o_ack, o_eopl, o_eop2;

S
Internal signals
*/
wire si_ackl_b,si_ack2_b;

Design of an asynchronous communication network for an audio DSP chip 223

E.6. 1-OF-5BLOCKS

wire s_routel, s_route2;

wire so_eopl, so_eop2;

wire [3:0] so_datal, so_data?2;
wire so_ackl,hso_ack2;

wire s_eopl2 b;

wire s _reql,s_req2;

[
Netlist
x/

TC_INV #5 inv1l(i_ackl,hsi_ackl_b);

TC_INV #5 inv2(i_ack2,si_ack2_b);

/leop and data out

C C3 RO c_eopl(i_eop,si_ackl b,s routel ,so_eopl,i_reset_b);

C C3 RO c_eop2(i_eop,si_ack2 b,s route2 ,so_eop2,i_reset_bh);

C C3P_RO c_datal[3:0](i_data,si_ackl b,s routel,hso_datal,i_reset_b);
C_C3P_RO c_data2[3:0](i_data,si_ack2_b,s_route2 ,so_data2,i_reset_b);
assign o_eopl=so_eopl;

assign o_eop2=so0_eop2;

assign o_datal=so_datal;

assign o_data2=so0_dataZ2;

//BIG or completion
C_OR8 or8(so_datal[0],so_datal[l],so_datal[2],so_datal[3],
so_data2[0],so_data2[1],so_data2[2],so_data2[3],s0o_ackl);

//router control

C_NOR2 nor_eopl2b(so_eopl,hso_eop2,s_eopl2 _b);

assign s_req2 = i_data[2];

assign s_reql = i_data[O0];

route_control routecontrol(
.i_routel(s_reql),
.i_route2(s_req2),
.i_eopl2_b(s_eopl2_b),
.0_eop(so_ack2),
.0_routel(s_routel),
.0_route2(s_route2),
.i_reset_b(i_reset_b));

/1 ack
C_OR2 or_ack(so_ackl, so_ack2,0_ack);
endmodule //S_router

‘endif

Design of an asynchronous communication network for an audio DSP chip 224

E.6. 1-OF-5BLOCKS

E.6.8 S_router_tree

/%
Description:

Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/

‘ifndef _S merge_tree_v
‘define _S_merge_tree_v

‘include "global.v"

module S_router_tree (
i _data,
i_eop,
o_ack,
o_data,
o_eop,
i_ack,
i_reset_b
)
/%
Parameters
*/
parameter OUTPUTS=2;
parameter BUS _WIDTH=4;

[

Inputs
*/
input [BUS WIDTH-1:0] i_data;
input i_eop;
input [OUTPUTS-1:0] i_ack;
input i_reset_b;

/%
Outputs
*/
output o_ack;
output [OUTPUTS«BUS WIDTH-1:0] o_data;
output [OUTPUTS-1:0] o_eop;

[%

Wires
x/
genvar i;

Design of an asynchronous communication network for an audio DSP chip 225

E.6. 1-OF-5BLOCKS

‘define lower_n (OUTPUTS/2)
‘define upper_n (OUTPUTS'lower_n)

wire s_eopl, s_eop2;
wire s_ackl, s_ack2;
wire [BUS WIDTH-1:0] s_datal, s_data2;

generate
if (OUTPUTS==1)
begin
assign o_data=i_data;
assign o_eop=i_eop;
assign o_ack=i_ack;
end
else
begin
S_router_tree #(‘lower_n, BUS WIDTH) route_tree_lower(
.i_data(s_datal),
.i_eop(s_eopl),
.0_ack(s_ackl),
.0_data(o_data[‘lower_sBUS WIDTH-1:0]),
.0_eop(o_eop[‘lower_n-1:0]),
.i_ack(i_ack[‘lower_n—1:0]),
.i_reset_b(i_reset_b)

)

S router_tree #(‘upper_n, BUS WIDTH) route_tree_upper(
.i_data(s_data2),
.i_eop(s_eop2),
.0_ack(s_ack2),
.0_data(o_data [OUTPUKBUS WIDTH-1:‘lower_n«BUS_WIDTH]) ,
.0_eop(o_eop[OUTPUTSL: ‘lower_n]),
.i_ack(i_ack[OUTPUTS1:‘lower_n]),
.i_reset_b(i_reset_b)

)

S _router router(
.i_data(i_data),
.i_eop(i_eop),
.0_ack(o_ack),
.0_datal(s_datal),
.0_eopl(s_eopl),
.i_ackl(s_ackl),
.0_data2(s_data2),
.0_eop2(s_eop2),
.i_ack2(s_ack2),
.i_reset_b(i_reset_b)

)

Design of an asynchronous communication network for an audio DSP chip

226

E.6. 1-OF-5BLOCKS

end
endgenerate
endmodule

‘endif

Design of an asynchronous communication network for an audio DSP chip 227

E.6. 1-OF-5BLOCKS

E.6.9 S _sink

/%
Description:
Sink for 1of5 data

Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/

‘ifndef _S_sink_V
‘define _S_sink_V

‘include "global.v"
module S_sink(i_data ,i_eop,o_ack);

parameter NUMBER=1; // Sink number. Used purely for debugging
parameter MAX_BITS_IN_ENTIRE_WORD=16;

input [3:0] i_data;
input i_eop;
output o_ack;

wire s_or_tl, s _or_t2;

/I Completion detection. which generates ack
C OR5 or5(i_data[0],i_data[l],i_data[2],i_data[3],i_eop,o0_ack);

/I ambit synthesis off

/x‘'ifdef DEBUG_LEVEL2
always @(posedge o_ack)
begin
$display ("S_sink%2.d: %b,%b" ,NUMBER, i _data ,i_eop);
end
‘endif
*/

/%

The following is receiving an entire word and displaying it
*/
reg [MAX_BITS_IN_ENTIRE_WORD-1:0] debug_data;

initial begin //masked by synthesis off

debug_data=0;
end

Design of an asynchronous communication network for an audio DSP chip 228

E.6. 1-OF-5BLOCKS

always @(posedge o_ack)

begin
if (i_eop==0)
begin
debug_data = (debug_data<<2) | ‘CONV_1of4 to 2(i_data);
end
else
begin

‘ifdef DEBUG_LEVEL2
$display("S_sink%2.d; %x_— _%b" ,NUMBER, debug_data ,debug_data);

‘endif
debug_data=0;
end
end
/%
Error checking
*/

‘ifdef ERROR_CHECKING
integer count;
always @(posedge i_data or posedgei_eop)

begin
count=0;
if (i_eop) count = count+1;
if (i_data[0]) count = count+1;
if (i_data[1]) count = count+1;
if (i_data[2]) count = count+1;
if (i_data[3]) count = count+1;

if (count>1)
begin
$display("S_sink: ERROR");
$display("__More_than_ 1 _signal_is_high._This_should not_be,
happening,in_a_lof5_ protocol!");
$display (", . i_data;%b",i_data);
$display("__i_eop:%b",i_eop);
$stop; //masked by synthesis off
end
end
‘endif

[/l ambit synthesis on

endmodule
‘endif

Design of an asynchronous communication network for an audio DSP chip 229

E.6. 1-OF-5BLOCKS

E.6.10 S _source

/%
Description:
S source for lof5 data

Created by:
Mikkel Stensgaard— mikkel@stensgaard.org
*/

‘ifndef _S _source_ V
‘define _S_source_V

‘include "global.v"

module S_source(o_data, o_eop, i_ack, i_reset_b);
[/l Parameters
parameter WORD _LENGTH=16;

output [3:0] o_data;
output o_eop;
input i_ack,i_reset_b;

‘ifndef SYNHESIS_ON

[l registers
reg [3:0] o_data;
reg o_eop;

always @(i_reset_b)
begin
if (i_reset_b==0)
begin
o_data=0;
0_eop=0;
end
end

integer i;
reg [1:0] data_current;
/[l TX task
task sendWord;
input [WORD LENGTH-1:0] data;

begin
‘ifdef DEBUG_LEVEL2
$display("S_source ;%x",data);
‘endif

Design of an asynchronous communication network for an audio DSP chip 230

E.6. 1-OF-5BLOCKS

//Send data MSB first

for (i=0;i<WORD_LENGTH; i=i+2)

begin
data_current = (data>>(WORD_LENGFH-2)) ;
o_data='‘CONV_2 to_lof4(data_current);
‘ifdef DEBUG_LEVEL3

$display("sending %b_— %b",data_current ,o_data);

‘endif
wait (i_ack==1);
o_data=0;
wait (i_ack==0);

end

//Send eop first

o_eop=1'bl;

wait (i_ack==1);

0_eop=1'h0;

wait (i_ack==0);

end
endtask // tx

/l sendSingle

task sendSingle;
input [3:0] data;
input eop;

begin
o_data=data;
0_eop=eop;
wait (i_ack==1);
o_data=0;
0_eop=0;
wait (i_ack==0);

end

endtask // tx

‘endif

endmodule
‘endif

Design of an asynchronous communication network for an audio DSP chip 231

