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ABSTRACT

Abstract

This project investigates the replacement of the communication network in a multi-configurable
DSP-core developed byWilliam Demant Holding. The existing network is implemented as a
subset of a fully connected network which contains many long wires that consume power and
complicates routing.

The existing network is replaced by 3 differentpacket-switched, source-routedasynchro-
nous networks, which solve many of the problems in the current network implementation. The
size of the networks are linear with the number of communicating blocks which makes it very
scalable, the networks are ’plug-and-play’ and can be ported to other applications, there are no
restrictions on which blocks that can communicate as in the current solution, and the networks
decouple the connected blocks which allows them to run in their own clock domain.

As the needed bandwidth is very low the networks are designed with area and power in
mind, and simple solutions are chosen for all design issues. The networks are implemented as
a binary tree ofmergerandrouter blocks, and both bundled data and a1-of-5delay-insensitive
data encoding are implemented and compared.

This report documents the design, implementation, synthesis, and verification of the net-
works. It also discusses the design choices in a number of different areas such as data-encoding,
network topology and how to implement multicasting. As the networks are designed as asyn-
chronous circuits, part of the report documents the implementation of these and how to handle
asynchronous circuits in a synchronous design flow.
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Chapter 1

Introduction

As CMOS technology advances, it becomes possible to design very large and complex circuits
on a single chip. Because the designs are so large and complex, the current trend is to combine
a number of predesigned reusable blocks such as microprocessors, digital signal processors
(DSPs), memories, input/output controllers, and special purpose data processing blocks. Some
of these blocks could be bought from other companies as "black boxes", while others might be
designed in-house. One of the major challenges for the designer is to create a communication
structure which allows the different blocks to exchange data.

A shared bus is one of the possible solutions the designer can choose from. A problem with
the shared bus is that the bandwidth becomes a possible bottleneck when many blocks are using
the same bus. Also, the capacitance of the bus raises dramatically with an increasing number of
connected blocks and length of the bus. This increases the power usage and decreases the speed
of the bus.

Another possibility is the fully connected network, where all blocks are directly connected.
The number of wires in a fully connected network is a second order function of the number of
communicating blocks, which makes it infeasible for a large number blocks. Even for a small
number of blocks the large number of wires complicates routing and each wire might require a
bus driver depending on the distance it spans on the chip.

Common for the shared bus and a fully connected network is that the designer faces a grow-
ing problem as more and more blocks are embedded on the same chip. As the same clock has
to be distributed over the entire chip, timing closure is an ever increasing problem. Because
of this, theSemiconductor Industry Associationroadmap predicts that by 2007 many designs
will be Globally-Asynchronous Locally-Synchronous (GALS) where each block is running in
its own clock domain while communicating asynchronously. This can be accomplished by in-
corporating a small routing network on the chip, denoted a Network-on-Chip (NoC).

1.1 Network-on-chip

A NoC consists of a number of router nodes connected by point to point links. Figure1.1
shows a simple example of a NoC where the router nodes are connected as a mesh topology.
This means, that the network can be expanded by adding new router nodes to the network,
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1.1. NETWORK-ON-CHIP

NA

Block

node
Router

NA

Block

node
Router

NA

Block

node
Router

NA

Block

node
Router

NA

Block

node
Router

NA

Block

node
Router

NA

Block

node
Router

NA

Block

node
Router

NA

Block

node
Router

Figure 1.1:Example of simple homogeneous NoC. Each block is connected to a router node
through a network adapter (NA), and the router nodes are connected in a mesh topol-
ogy using bi-directional links.

which makes the network extremely scalable. Because the router nodes are connected with
short point to point links, the need for large drivers are minimized, and it is possible to pipeline
the communication and thereby increase the bandwidth for a certain link width. One can say,
that the long wires are segmented into smaller pipeline stages, which increases the bandwidth
for a very small cost because the need for large drivers is no longer present. By sharing the same
links, the number of wires on the chip decreases significantly, and the homogenous structure of
the mesh topology makes routing a relatively easy task. By separating the blocks from each
other by means of the network, it is possible for the different blocks to run in separate clock
domains, such that timing closure can be done for each individual block instead of the entire
system.

The blocks are connected to the NoC through a network adapter, which could e.g. use the
Open Core Protocol (OCP) [1]. OCP defines a common standard for the interface between the
blocks and the network. In theory, this makes it possible to facilitate "plug and play" System-
on-Chip (SoC) designs, where any Intellectual Property (IP) block can communicate as long it
uses the OCP.

A block communicates by means of its network adapter, which sends data into the actual
network. The data is passed from router to router node until it reaches its destination. The
topology of the network does not need to be a mesh, and can for example be chosen such that
the number of wires to be routed for the specific application is minimized. A more in depth
overview of NoCs is given in chapter2.

The NoC can be implemented as both synchronous, asynchronous or a mixed solution. In
this project an asynchronous implementation is chosen. Some of the advantages are implicit
flow-control, no dynamic power consumption when idle, no clock to be routed in the network,
decreased electromagnetic emission, robust to process variations and battery voltages, and de-
creased electro migration. A short introduction to asynchronous circuits is to found in chapter
3.
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Figure 1.2:Illustration of the dataflow through the ’Aphrodite DSP’. The circles illustrates in-
dividual audio processing blocks and the arrows illustrates how data flows between
the different blocks.

1.2 Previous work

Currently, many universities are doing research in both synchronous and asynchronous NoCs.
Some of these NoCs are ’Nostrum’ from the Royal Institute of Technology in Stockholm [12],
’Xpipes’ from University of Bologna [5], ’Mango’ from the Technical university of Denmark
[6], and ’Chain’ from the university of Manchester [3]. The first three use the Open Core
Protocol (OCP), which relies on Read/Write transactions and the mesh topology as illustrated
in figure1.1. As the router nodes implement 5x5 switches they are relatively large and contain
a considerable amount of buffers as they supply advanced features such as virtual channels
and guaranteed services1. The OCP is not used in this project because this specific application
does not rely on Read/Write transactions as will be explained in the succeeding section. The
network designed in this project does not need to be this flexible and feature rich, thus the design
philosophy is to keep the network as simple as possible. The ’Chain’ network, which consists
of narrow asynchronous links, has such characteristics, and will be used to implement one of
the NoCs designed in this project.

1.3 Project description

In this project three simple asynchronous NoC solutions are designed and implemented for an
existing special purpose DSP, denoted the ’Aphrodite DSP’ or just ’Aphrodite’. The goal is to
replace the existing network with a NoC and compare these in terms of power and area.

’Aphrodite’ is a multi-configurable DSP-core for audio applications developed byWilliam
Demant Holding. It consists of a number of audio processing blocks which are connected by
a small network. The network is used to set up a circuit-switched dataflow between the blocks
as shown in figure1.2. The circles illustrate individual audio processing blocks, and the arrows
illustrate how data flows between the different blocks. As the chip is to be used in a number of
different applications, the dataflow can be changed by reconfiguring the network. The network
used to configure the dataflow is currently implemented as a subset of a fully connected network

1Chapter2 goes into more detail about these terms
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which has a number of disadvantages as already mentioned. In addition, the network is not
scalable as it is tailored to this specific application and must be redesigned if blocks are added
or removed. Also, as it is not a fully connected network, some of the blocks cannot communicate
at all. Even though design effort are used to design this network, there still are potential routing
problems due to the large number of wires. If the number of blocks are increased in future
versions of the chip, the size of the network would increase dramatically, making the current
network solution infeasible. In contrast a NoC is fully scalable and all blocks can communicate
which eliminates the need for any ad-hoc networks solutions. In theory, the NoC is ’plug and
play’ which decreases the development of new chips besides making it easier to do timing
closure, because the individual blocks are decoupled by the network.

Since the audio chip is a real application, and becauseWilliam Demant Holdinghas helped
integrate the new NoCs into the original ’Aphrodite DSP’, it is possible to compare the existing
network solution with the suggested ones in terms of power and area. To my knowledge, NoC
has only been tested in academic applications or very small application with only 3-4 blocks.
This is therefore an exceptional opportunity to see how NoCs compare to a traditional network
solution and hopefully make some interesting and usable observations. Even though the size of
the network is small with only 12 communicating blocks, the needed bandwidth is very limited,
and the network utilization is low, this small application provides an example that asynchronous
NoCs are usable in real applications. If the NoCs turn out to use more power and area than the
existing network, it might still be a good solution in future generations of the audio chip.

The challenge in this project is not to design a large complex NoC, but instead to design
a very simple NoC which fulfill the needs in this specific application. The implementation is
kept as simple as possible and does not include huge amount of buffers, virtual channels or
guaranteed services. Design decisions are discussed in a number of different subjects which
include data encoding, network topology and how to handle multicasting. In order to implement
the NoCs, a design flow which allows the implementation of asynchronous circuits must be
established. A large part of this report is therefore about implementing the network using the
cell library used in the original ’Aphrodite DSP’ and how to handle asynchronous circuits in
the synchronous design flow used atWilliam Demant Holding. Besides the actual network
many things such as network adapters, multicast controllers, and synchronization units must be
designed.

The report documents all the steps needed to design an asynchronous NoC using a standard
cell library, the implementation of 3 different NoCs, the integration of the NoCs into the existing
design, and a discussion of the results. The designs are not ’Place & Routed’, but mapped to
gate-level in a 0.18µm technology upon which estimates of the power and area are made.

1.4 Report structure

The report is structured such that chapter2 and3 contain background information about NoC
and asynchronous circuits. Chapter4 introduces the design methodology and how to design
asynchronous blocks. ’Aphrodite’ is introduced in chapter5, while chapter6 defines a new
interface to the network such that the existing network can be substituted by a NoC. The actual
network designs are discussed in chapter7 and implemented in chapter8. Verification is dis-
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cussed in chapter9 and notes about the logic synthesis and simulation flow are given in chapter
10. The results are presented and discussed in chapter11and finally chapter12concludes what
has been archived in this project.

Gate-level implementations of all designed blocks can be found in appendixD and the code
for the blocks are included on the CD-ROM and in appendixE. A short description of the CD
content is included in appendixC.
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Chapter 2

Background: Network-on-chips

This chapter gives a general overview of NoCs and the different terms which are used to describe
them. Even though comments are made through the chapter concerning the specific application,
it can safely be skipped if such an introduction is not necessary.

2.1 Overview

Network-on-chip is a very broad term which simply states that some kind of communication
network is implemented on the chip. When designing the network, many choices and tradeoffs
must be made and the optimal network depends on e.g. the expected workloads, power con-
straints, physical constraints, number of communicating blocks, scalability, performance, and
ease of wire routing. This also means, that there is no network design which is perfect in all
applications and designs. The information used to write this section is mainly found in [11].

2.2 Network type

A network can be classified as ashared-medium network, an indirect network, or adirect net-
work. Each type will be introduced in the following.

A shared bus is an example of ashared-medium network, where the network can only be
used by one block at a time. Due to the high number of communicating blocks the shared
network is not an option in this context. The bandwidth would probably suffice, but the ca-
pacitance of the bus would be very large because of the distance it spans and the number of
connected blocks.

Figure2.1 shows an example of adirect network, where each block interfaces the network
through a network adapter which is connected to a router node. The router nodes are connected
using either uni- or bi-directional links which allows data to be transferred between any of the
connected blocks. In adirect network, each router node must be connected to a block, and router
nodes are considered part of the blocks. This means that the blocks are considered to be directly
connected, hence the termdirect network. When a block wants to communicate, it sends data
to its network adapter which handles the actual communication. The router nodes do not need
a direct link to the destination router node, since data is transferred through intermediate router
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Figure 2.1:Example of simple homogeneous NoC. Each block is connected to a node through a
network adapter and the nodes are connected in a mesh topology using bi-directional
links.

nodes. Because the blocks communicate with the network through a network adapter, they do
not need any information about the network implementation.

In contrast to theindirect networka direct networkalso contains independent router nodes
which are not connected to any block.

2.3 Packets and flits

The data which is communicated between the different blocks are encapsulated intopackets.
Depending on the used switching technique thepacketcan contain a header with information
such as addresses of the destination nodes or the route to be used1. Besides a header, thepacket
also contains a payload which is the actual data. If the size of thepacketis larger than the width
of the point-to-point links between two router nodes, thepacketis partitioned into a stream of
flow control digits (flits) which are sent over the link one at a time. The size of aflit is the
number of bits which can be sent concurrently on a link and of course depends on the width
of the link. The width of the links do not need to be constant and can for example be varied in
different areas of the network depending on the bandwidth need for the specific link. Depending
on the implementation the number offlits in a packetcan be constant or specialtail flit can be
used to indicate the end of thepacket.

2.4 Switching techniques

Communication is performed by forwardingpacketsbetween the different router nodes till it
reaches its destination. This means that a router node must decide how to handle each received
packetas it can be sent on any of the outgoing links. This is denoted the route of apacketand

1Switching techniques are introduced in the succeeding section
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must be controlled using one of a number of different switching techniques. One possibility
is to applycircuit-switching, where a path is reserved from the source block to the destination
block before sending any data. It takes some time to reserve the path but it is very fast to
send data when the reservation is complete.Circuit-switchingis especially useful for infrequent
communication of large lumps of data which is not the case in this application. This switching
technique also locks the router nodes such that other communication is blocked.

Instead, the data can be divided into smallpacketswhich are sent one at a time and indi-
vidually routed. This is calledpacket-switchedcommunication, because eachpacketis routed
individually instead of being sent using an already established route.Packet-switchedrouting
exists in 3 different variants: The first is denotedstore-and-forward, since a route node receives
and stores an entirepacketbefore forwarding it to the next router node. This requires that the
buffers in the router nodes are large enough to contain an entirepacket, thus increasing both
the size of the router nodes and their latency.One major advantage is thatpacketscan be inter-
leaved through a router node and that deadlock cannot occur if the buffers are large enough. If
thepacketonly consists of a singleflit the entirepacketcan be sent concurrently on thelinks,
making the switching inherentlystore-and-forward. The second switching technique isvirtual
cut-through switchingwhich basically works the same way as astore-and-forwardexcept that
a router node starts forwarding thepacketbefore it has been received entirely. The buffers in
the router nodes are still large enough to contain an entirepacket, but the latency through the
network is decreased compared to astore-and-forwardnetwork. The last switching technique
is wormhole switchingwhich is the exact same thing asvirtual cut-through switching, except
that the buffers are so small that they cannot contain an entirepacket. This means that apacket
always spans several router nodes and links. If thepacketis blocked for some reason, it can eas-
ily result in a deadlock. In order to avoid deadlocks special routing techniques can be applied
or virtual channels[8] can be introduced. A number ofvirtual channelsshare the bandwidth
of a single physical link using for example time division or other sharing techniques. Each
virtual channelneeds its own separate buffer in the router node and circuitry must be added to
implement the sharing of the psychical link. Both increase the size of the router node.

2.5 Routing

The route of apacketcan be eitherdeterministic, that is, determined before thepacketis sent, or
adaptive, where the route is determined dynamically on a per router node basic. Whenadaptive
routing is applied, a central routing controller or the individual router nodes determines the route
of eachpacketbased on the current traffic load in different parts of the network. In theory this
dynamically balances the load on the network and thereby reduces possible bottlenecks. If some
of the links suddenly start to malfunction, these links could be avoided. Since communication
between two specific blocks do not always take the same route thepacketsmay arrive out of
order which further complicate things. All in all,adaptiverouting leads to very complex, large,
and slow router nodes and is not an option in this project.

When the route of apackethas been decided the router nodes must know how to route the
packet. This can be done asnetwork routingwhere thepacketsimply contains a unique address
of the destination block. The router node then determines the route by looking in a routing table

Design of an asynchronous communication network for an audio DSP chip 8



2.6. GUARANTEEING BANDWIDTH

which can be changed dynamically by e.g. a central routing controller. This solution requires
large routing tables in each router node as well as circuity to look up the route. Also, the size of
the routing tables depends on the number of communicating blocks. Instead, the route can be
determined at the source block and contained in eachpacket. This is denotedsource routingand
makes the router nodes very simple, as they do not take any route decisions.Source routingis
currently used in all the NoC articles that I have encountered because of the simple router node
implementation.

2.6 Guaranteeing bandwidth

Most NoC implementations use Best Effort (BE) routing where data is sent as fast as currently
possible. The time it takes for apacketto arrive at the destination depends on the current network
load and is therefore dependent on other communicating blocks. Some applications require
the introduction of Guaranteed Services (GS) where 2 communication parties are guaranteed a
certain amount of bandwidth. This is the case in e.g. multimedia and audio applications where
guaranteed continuous streaming of data is required. Research has also been done in combining
best effort routing with guaranteed services. One approach, which is presented in [6], is to
provide GS by avirtual circuit-switchednetwork by reserving a certain amount of bandwidth on
each link on the communication path. Instead of guaranteing bandwidth, one could also imagine
that network traffic is prioritized depending on the importance, thereby providing Quality of
Service (QoS).

2.7 Topology

The choice of topology depends on many different aspects such as number of communicating
blocks, scalability, ease of routing etc. A mesh structure, which is illustrated in figure2.1, is the
most used topology because it extremely very scalable. The number of blocks can be increased
by adding new nodes without altering the existing layout. Also, the routing of wires can be done
very easily. Some of the disadvantages in this topology is that the nodes are quite complex as
they contain a 5x5 crossbar and a large amount of buffers. Other topologies include hyper-cubes,
binary trees, fat trees, hierarchical structures, hybrid solutions, and many more. A discussion of
which topology to use in this project is presented in chapter7.2.
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Chapter 3

Background: Asynchronous circuits

This chapter gives a short introduction to asynchronous circuits with emphasis on handshake
protocols and advantages over synchronous circuits. It is by no means a complete introduction
as the ones which can be found in textbooks as for example [13].

3.1 Overview

Traditional synchronous design consists of combinatorial logic separated by latches or registers
as illustrated in figure3.1a. The slowest path through the combinatorial logic determines the
highest clock frequency at which the circuit can be clocked. Since all registers/latches are
clocked at the same time there will be a surge of power every time the clock ticks. These surges
lead to increased electromigration which decreases the lifetime of the chip and is an increasing
problem as technology size decreases. The power spectrum is highly non-uniform and contains
spikes at the clock-ticks which give rise to electromagnetic emission that can disturb analog
devices in the product. The non-uniformity also leads to lower battery time if the product is
battery driven due to the nature of batteries. If parts of the chip are idle for periods of time, as is
the case with a NoC, clock-gating must be explicitly applied to ensure that the registers/latches

logic

clk

combinatorial

(a) Synchronous circuit.

delay

latch
ctrl

latch
ctrl

logic

ack
req reqreq

ack

combinatorial

(b) Asynchronous circuit. The delay must
be larger than slowest path in the com-
binatorial logic.

Figure 3.1:In asynchronous circuits the clock is substituted with handshake controllers.
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Figure 3.2:Truthtable and symbolic representation for different Muller C-elements.

are not clocked during idle periods.
In contrast, different parts of asynchronous circuits run at their own pace as registers/latches

are not clocked by a common clock. This is done by exchanging the clock with handshake
circuitry as illustrated in figure3.1b. Asynchronous circuits do not have any dynamic power
consumption during idle periods, and since no clock has to be distributed, the increasing problem
of clock skew and large clock trees are eliminated. As wires are getting taller, narrower, and
placed closer together, crosstalk is also an increasing problem in synchronous circuits. If a
delay-insensitive one-hot encoding is used, the problem with crosstalk is decreased because
wires which are routed together do not make transition at the same time.

There is no such thing as a free lunch. First of all the well-proven synchronous designflow
which is known by thousands of designers cannot be used directly, and commercial asynchro-
nous design tools are almost non-existing. As technology decreases the leakage current in-
creases heavily which means that the static power consumption is being a larger and larger part
of the total power consumption. As asynchronous circuitry tend to be larger than the equivalent
synchronous circuit, one of the major advantages might no be valid for future technologies.

3.2 The C-element

The Muller C-element plays a central role in the construction of asynchronous circuits. The
truthtable of a C-element with 2 inputs as well as its symbolic representation is shown in figure
3.2. The C-element implements the logic functionz = ab + z(a + b) and is a state-holding
device. In contrast to an AND gate which indicates when the inputs are all 1, and an OR gate
which indicates when the inputs are all 0, the C-element indicates both. This is also known as a
join or rendezvous.

C-elements can also be asymmetric which means that not all inputs need to be the same for
the C-element to change state. For example the C-element in figure3.2bimplements the function
z = ab + za. Theb input is denoted "plus" because it is only used in the rising transition. Both

Design of an asynchronous communication network for an audio DSP chip 11



3.3. HANDSHAKE PROTOCOLS

�� � � � �� � � �
data

ack

time

req

(a) Illustration of the 4 phases.

� ��

o_ack

i_ack

o_req
i_req

C
(b) Implementation using a single C-

element and an inverter.

Figure 3.3:4-phase bundled data handshake. The data is valid whenever request is high which
is denoted theextended earlydata-validity scheme.

inputs still need to be ’1’ for the output to change to ’1’, but only inputa needs to be ’0’ for the
output to go low. The C-element in figure3.2bimplements the functionz = b + z(a + b). The
"minus" indicates that thea input is only used in the falling transition. Both inputs still need to
be ’0’ for the output to change to ’0’ but only inputb is needed for the output to go high.

3.3 Handshake protocols

Asynchronous circuits can be constructed using either bundled data or using a delay-insensitive
encoding. The 2 different possibilities are introduced in the following subsections.

3.3.1 Bundled data

All bundled data handshake protocols substitute the clock with handshake controllers, but keep
the combinatorial logic as illustrated in figure3.1b. A delay which is larger than the slowest
path in the combinatorial logic must be inserted in the request wire.

The simplest and widely used handshake protocol is the 4-phase (Return-to-Zero) bundled
data protocol as illustrated in figure3.3a. As the name ’4-phase’ indicates, the handshake con-
sists of 4 phases: 1) the sender raises therequestwire to indicate that data is valid, 2) the receiver
raises theacknowledgewire to indicate that the data has been received and latched, 3) the sender
lowers therequestwire, 4) the receiver lowers theacknowledgewire which completes the hand-
shake cycle. Figure3.3bshows an implementation of a latch controller which is known as a
Muller pipeline1. Each stage implements such an un-decoupled 4-phase latch control circuit
using a single C-element and an inverter. The controller is denoted un-decoupled because the
incoming and outgoing handshakes of the controller are strictly coupled. This means, that two
succeeding latches cannot contain data at the same time. The two handshakes can also be fully
decoupled but this increases the complexity of the latch controller as well as the propagation
delay. Details about the implementation of different 4-phase latch controllers can be found in
[9]. In the Muller pipeline from figure3.3, the sender starts the handshake cycle which is known
as apushscheme because the data is pushed by the sender. In contrast the handshake is initiated
by the receiver in thepull scheme by raising therequestwire to indicate that data can safely be

1Named after the inventor
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Figure 3.4:4-phase dual-rail handshake. The request signal is implicitly given as the data lines
are using a one-hot encoding where they are mutual exclusive.

sent. As indicated on figure3.3a, the data is expected to be valid whenrequestis high which is
denoted theextended earlydata-validity scheme. Differentdata-validity schemesexists, which
defines in which part of the handshake data is valid [13].

The handshake can also consist of 2 phases (non-Return-to-Zero) instead of 4. This de-
creases the number of transitions in the handshake cycle but complicates the handshake cir-
cuitry. It is also possible to combine therequestandacknowledgewires into a single wire. As
the wire is driven by both the sender and receiver, it must have high impedance to keep its value
when it is not driven.

3.3.2 Delay-insensitive encoding

Another possibility is to use delay-insensitive encoding where the data is encoded using a one-
hot scheme. The simplest example is called dual-rail where each bit is encoded into two wires
as illustrated in figure3.4. The truthtable for the encoding and a pipeline stage which employs a
4-phase protocol is shown. The 4 phases of the handshake are: 1) the sender raisesd0 to indicate
a logic ’0’ or d1 to indicate a logic ’1’, 2) the receiver raises theacknowledgewire to indicate
that the data has been received and latched, 3) the sender lowersd0/d1, 4) the receiver lowers
theacknowledgewire which completes the handshake cycle. Note that the 2 wires are mutual
exclusive and the request signal is implicitly given. It takes 4 transitions to communicate 1 bit
independent of the data value.

Several one-hot lines can be combined into a bus by using a special ’completion detection’
unit which detects when data is present on all lines and when all lines have returned to zero.
This is normally implemented using a C-element or a tree of these if necessary. When several
one-hit lines are combined into a bus they are using a singleacknowledgewire.

Instead of encoding a single bit into 2 wires, a higher order encoding could also be chosen.
As an example1-of-4encoding could be employed where 2 bits are encoded into 4 wires. The
advantages are that 2 bits are transferred using the same number of transitions as it takes to
transfer 1 bit in a dual-rail implementation. The size of the ’completion detector’ also decreases
compared to the dual-rail as the number of lines for a N-bit word decreases. If the number
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Protocol Wires Transitions

Bundled data (Return to zero)N+2 avg(N)+4

Dual-rail 2N+1 2N+2

1-of-4 2N+1 N+2

Table 3.1:Number of wires and transitions for 3 different data encodings using a 4-phase pro-
tocol where N is the number of bits in a data word. The probability of ’0’ and ’1’ are
assumed to be 50% for both.

of wires do no contribute to the power consumption, 8 bits of data could be sent using just 4
transitions using a1-of-256encoding.

As with the bundled data protocol, a 2-phase protocol could also be chosen but this compli-
cates the circuitry.

3.3.3 Comparison

Table 3.1 lists the number of wires and transitions used to transfer a single word of N bits
for a selection of 4-phase protocols. The number of wires includes theacknowledgeandrequest
wires. Note, that the number of transitions is constant for the one-hot encodings while it depends
on the actual data for the bundled data. I assume that the probability is 50% for both ’0’ and ’1’
and that the data lines returns to zero after each handshake. This might not always be the case.

The advantages of one-hot encoding are that there is no need for matched delays and the
circuits are truly delay-independent. This means that the circuitry will work no matter how large
the wire and gate delays are. After the chip has been manufactured it will work independent of
the temperature, process variations, and even supply voltage. The speed of the chips will differ
but will work as expected. A delay-insensitive implementation is used in some high bandwidth
network chips because it is possible to make them operate at very high speeds. It might also be
an advantage that the number of transitions is independent of the actual data as this makes the
power usage predictable.

Some of the disadvantages are that at least two wires are needed for each bit, that normal
combinatorial circuits cannot be used, and that the corresponding one-hot implementation is
potentially much larger and slower. In this project the network is not doing any computation
which means that a one-hot encoding might be a good solution.
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Chapter 4

Design methodology

This chapter describes how the asynchronous blocks are designed and implemented at gate-level.

4.1 Overview

As it will be explained in chapter8 the networks are constructed by connecting a number of
small carefully designed building blocks. These block consists of a mix of speed-independent
control circuits and bundled data circuits. Logic synthesis tools are specialized in synthesis
of synchronous designs and cannot be uses in the synthesis of asynchronous circuits. In this
project, the asynchronous circuits are designed by deriving a set of speed-independent boolean
expressions which are implemented as netlists of standard cells. The designs are marked as ’do
not touch’, such that the logic synthesis tool does not optimize the circuits.

In the following sections the design of asynchronous controllers are explained in a bottom-
up fashion starting from the use of standard cell libraries and all the way to the finished blocks.
This includes including complex asynchronous controllers, matched delays in bundled data cir-
cuits, and how to handle initialization.

4.2 Standard cells and drive-strengths

In this project asynchronous controllers are designed as a netlist of standard cells. Since the
delay through each cell is carefully timed, we cannot use automatic drive-strength optimization.
Instead, each standard cell is implicit instantiated including the drive-strength. This allows us
to carefully control the delay through each block as well as the capacitance on the inputs and
drive-strength of the outputs.

Many cells in a standard cell library exist in 2-5 different versions with different drive-
strengths. Increasing drive-strength means that the cell has larger fanout and thereby can drive
more cells, but the size of the cell as well as the typical propagation delay increases. In some
standard cell libraries the input capacitance of the cell increases as well. The standard cell library
which is used in this project has almost constant input capacitances for all drive-strengths except
inverters, buffers, and high-performance gates. The input capacitance for a cell with drive-
strength 1 are denotedunit input capacitancesthrough the rest of the report. In the 0.18µm
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process used in this project, the unit input capacitance is 40-60 nF. A cell with drive-strength
1 can drive approximately 4 inputs with unit capacitance at maximum speed. If the fanout
is larger, a cell with a larger drive-strength must be used, or the signal must be buffered to a
larger drive-strength. The buffering is normally done in a number of stages with an increase in
drive-strength by a factor 3-4 in each stage as this gives a good performance.

It would be nice to have a tool which could automatically choose the optimal driven-strengths
of each instantiated standard cell, but unfortunately no such tool exists for asynchronous circuits
at this point of time. An automatic tool could also identify the longest paths in the circuit and
slow down other paths to decrease the used power and area.

Instead, the drive-strengths are chosen manually based on some simple rules of thumb which
gives a good, but not optimal, solution. There is room for optimization in the size, power-usage
and speed of the circuit by choosing more optimal drive-strengths. Circuit optimization is not
important in this project since the purpose is not to produce a highly optimized solution, but to
show the concepts of an asynchronous NoC. Doing this kind of optimization by hand takes a
long time and the drive-strength must be recalculated every time the circuit is changed, or the
standard cell library is replaced.

Generally, the blocks are designed such that the outputs have a drive-strength of 1 and the
inputs have unit capacitances. While this might not be optimal in terms of power, speed, and
area, it is a good comprise that makes it easier to connect the blocks as all inputs have the same
capacitance and all outputs have the same drive-strength. Inside the individual blocks, cells with
drive-strengths 1 are used as a cell seldom drives more than 4 other cells. If a cell drives more
than 4 inputs a cell with a larger drive-strengths is used or a buffer is inserted. Since most cells
in the used standard cell library have unit input capacitance, independent of the drive-strength,
a cell with larger drive-strength is generally used in this project. By ensuring that all cells have
unit input capacitances, the drive-strength of a cell is only dependent on the number of cells that
it drives. If this wa not the case the drive-strength of a cell would be dependent on the number of
cells that it drivesand the input-capacitances of these. Since this blows up the complexity of the
problem, it is ensured that inputs always have unit capacitances. If a cell library is used where
the input capacitances increase with the drive-strength, a buffer should be used at the output of
a cell with drive-strength 1.

In some of the small asynchronous controllers it might be beneficial to use standard cells
with drive-strength1

2 which are both faster and use less power.

The following summarizes how to choose the drive-strengths of the cells:

• Outputs of blocks have drive-strength 1 and inputs have unit capacitance.

• Generally cells with drive-strength 1 are used

• If a drive-strength larger than 1 is needed, a cell with this drive-strength is used if:

1. Such a gate exists

2. The inputs to the cell still have unit capacitance

If this is not the case a buffer where each stage increases the drive-strength by 3-4 is
inserted instead
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o_grant1

o_grant2

i_request1

i_request2

s_q1

s_q2

Figure 4.1:Implementation of a mutex.

• Inside the asynchronous controllers, cells with drive-strength 1/2 are used in some cases.
(but outputs of the block must still have drive-strength 1).

4.3 Basic asynchronous components

In order to design asynchronous controllers a few asynchronous elements, which do not exist in a
ordinary cell library, must be created. This is the mutex and a collection of different C-elements.
Since custom cells are hard to implement and must be re-implemented if a new technology is
used, it is an advantage to construct these from available standard cells.

4.3.1 Mutex

The mutex is a component which ensures that two signals are mutually exclusive. This is used
to control access to shared blocks and is used when 2 busses are merged into one. It consists of
two inputs and two outputs, and its function is to ensure that at most one of the outputs is high
at any point of time. Figure4.1shows how this is implemented using two crosscoupled NAND
gates and 2 inverters. The 2 NAND gates handle the actual arbitration while the 2 inverters act
as a metastability filter to ensure that the outputs are never high at the same time. In the initial
state both inputs are low, the two intermediate nodess_q1ands_q2are high, and both outputs
low. If i_request1becomes high,s_q1goes low which ensures thats_q2stays high independent
of i_request2, and thato_grant1becomes high. The behavior is similar ifi_request2becomes
high. The arbitration comes into play if the two inputs become high at the same time. First, the
voltage ats_q1ands_q2will drop to about half of the supply voltage and enter a metastability
phase where the two NAND gates are trying to drive their respective outputs low. Eventually
one of them "wins" the race and eithers_q1or s_q2goes high while the other goes low. During
this metastability phase it is extremely important that none of the outputs becomes high as both
of NAND gates could turn out to be the "winner" and create a hazard on one or both outputs.
The two inverters work as a metastability filter which makes sure that none of the outputs go
high when the intermediate nodes are in the metastability phase. The threshold voltage of the
inverters is therefore important and must be well below half of the supply voltage. The shown
metastability filter is just one of many possible implementations, but common is that a detailed
analysis must be made at transistor level using the parameters from the used cell library.
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There are several problems during simulation with the illustrated implementation. Both
problems are due to the fact, that simulators only do binary simulation on logic-levels 0 and
1. First, the simulator enters an infinite loop when both inputs become high at the same time,
which deadlocks the simulation and makes both outputs infinitely alternate between 0 and 1.
Second, the metastability filter does not work at all. Both problems are simulator specific and
can be considered asfalse errorsbecause they will never happen in the produced chip.

One way to get around this is to do synthesis as normal and replace the mutex with a behav-
ioral model during simulation. This means that the area estimates are made with the real mutex,
while the delay and power estimates are made with a behavioral model. The SDF file which con-
tains the timing of the mutex must therefore be changed to contain the estimated propagation
delay of the mutex.

In this project, the behavioral version is used when simulation on RTL level while at netlist
version is used when simulation on gate-level. Simulation on the mutex, shows that the it works
as expected but that it sometimes produce a glitch on one of the outputs. This is not a problems,
since the blocks which contain the mutex do not malfunction because of a small glitch. If the
mutex was used in other blocks, it might has to be replaced by its behavioral version.

4.3.2 C-elements

The C-element is a state holding component which indicates when all its inputs are either 0 or
1. C-elements can be implemented in a number of different ways which all capture the correct
functionality. The number of inputs often determines which method that takes up the least area.
Ont method is to implement the C-elements using complex gates. Since standard cell libraries
do not always have the same types of complex gates, the C-elements probably have to be re-
implemented if the cell library is replaced. Figure4.2bshows a possible implementation of a 2
input C-element using a complex gate containing a feedback loop, such that it implements the
functionz = ab + z(a + b) = ab + zb + za. The C-element can be reset to 0 by setting all the
inputs to 0. This might not always be possible during the reset phase and by inserting an AND
gate in the feedback loop, it is possible to reset it to 0 by setting just one of its input to zero. One
could insert the reset gate at the output instead, but this would increase the propagation delay of
the cell.

Figure4.2cshows the implementation of a 3 input asymmetric C-element with the function
z = abc + z(a + b) = abc + za + zb . The i_c input is a "plus" input which must be 1 for the
output to go high, but does not need to be 0 for the output to go low.

Since the C-element is not an atomic cell but created of a complex gate with a feedback loop,
some assumptions must be made concerning the environment and the routing of the feedback
loop in order to avoid hazards. This is best illustrated by inspecting the karnaugh map of the 2
input C-element implementation which is shown in figure4.2a. The dotted areas represent the
min-terms,F indicates that the output is doing a falling transition andR that the output is doing
a rising transition. A dynamic hazard can occur if both inputs are 1 and the output is making a
rising transition from state 3 to state 7. Just as the output changes to 1, the environment changes
botha andb to 0 before the two min-terms have taken over. This means that the output might
change to 0 and afterwards become 1 for at short period due to one of the other min-terms.
The problem is that one min-term is "taking over" from another and is an important issue when
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tion.

Figure 4.2:Implementation of different C-elements.

designing asynchronous components.
In order to avoid this hazard the feedback connection must be stabilized before both of the

input changes. I presume that the feedback loop is routed locally, and, as I only include the
delay of an OR gate in the feedback loop, this should be the case. The C-elements can also
be implemented using simple gates, but this increases the problem with hazards and demands
further assumptions about the routing.

If C-elements containing many inputs are needed, it might not be possible to design them
using a single complex gate. Instead a 2-input C-element can be used as a state-holding device
with a set and reset input as illustrated in figure4.2d. A latch with asynchronous set and reset
input can also be used. This method might take up less area for large C-elements. Note, that the
set and reset logic must be designed such that it does not produce any dynamic or static hazards.

4.4 Complex asynchronous controllers

When designing complex asynchronous controllers a tool is needed to ensure a hazard free im-
plementation. In the project I have used Petrify [7] which can be used to synthesize Petri nets
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and asynchronous controllers. Petrify takes a Signal Transition Graph (STG) which describes
the behavior of the asynchronous controller and generates speed-independent boolean expres-
sions. The output can be implemented using either complex gates, C-elements, or technology
mapping. I have not looked into Petrify’s ability to do technology mapping and have instead
concentrated on complex gates and C-elements. When using C-elements, Petrify produces a set
and reset function as illustrated in figure4.2d, while it produces complex boolean expressions
when requesting a complex gate implementation. For this project I have used the complex gate
option as it produced the smallest circuits. This is because the controllers are quite small. If Pet-
rify gives a solution which requires a complex gate that does not exist in the standard cell library,
the C-element option must be used instead. The graphical tool, Visual STG Lab (VSTGL)[2],
which is developed at DTU was used to design the STG’s.

To illustrate the design of a complex asynchronous controller I have chosen to go through
the design of asequencerwhich is a simple 4-phase handshake generator. Figure4.3ashows the
symbol of thesequencerand its inputs and outputs. Basically, it accepts a handshake on the left
hand side and generates a handshake on the right hand side before completing the handshake
on the left hand side. In addition to this functionality thei_ack line can alternate when the
sequenceris currently not performing a handshake. This is because a number ofsequencersare
handshaking on the samerequestandacknowledgewires, why thei_ackwire must be ignored
when thesequenceris not currently performing a handshake.

The STG, which describes the order of events for thesequencer, is shown in figure4.3b.
Even though the STG captures the wanted behavior, the functionally is best understood by going
through the order of events: 1)i_ack can make a number of alternations if othersequencers
are performing a handshake. 2)i_req goes high to indicate the a handshake must start. 3)
A 4-phase handshake is performed ono_req andi_ack 4) o_ack is driven high to indicate
that the handshake has been completed on the right side. 5)i_ack can make a number of
alternations if othersequencersare performing a handshake. 6)i_req goes low ando_ack is
driven low to finish the handshake.

Figure4.3cshows the output of petrify using complex gates. The boolean expressions for
o_ack andcsc0 can be identified as asymmetric C-elements and 2 possible gate-level im-
plementations of the controller is shown in figure4.3d and4.3e. One very important note is
that Petrify assumes that the complex gates exists with both inverted and non-inverted inputs.
As it was not possible to design C-elements with inverted inputs using the complex cells in the
used standard cell library, inverters are inserted manually. Petrify produces speed-independent
boolean expressions which assume that wire delays are zero. Wire delays can be lumped into
the gates, except when there is a fork as for example thes_1 andi_req signals in figure4.3d.
The delays from the fork to all end-points should be identical which in asynchronous literature is
denoted anisochronicfork. As the designed circuits are normally very small, it is ok to assume
that this is the case except when inverters are inserted. This is the case for the implementation
in figure4.3dand instead the inverters are removed from the fork as shown in figure4.3e.
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# EQN file for model sequencer3
# Generated by petrify 4.2 (compiled 5-Jul-04 at 11:55 PM)
# Outputs between brackets "[out]" indicate a feedback to input "out"
# Estimated area = 8.00

INORDER = i_req i_ack o_req o_ack csc0;
OUTORDER = [o_req] [o_ack] [csc0];
[o_req] = i_req csc0;
[o_ack] = csc0’ (o_ack + i_ack’);
[csc0] = i_ack’ csc0 + i_req’;

# No set/reset pins required.

(c) Output from petrify.
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(e) Gate level implementation 2. All forks can be con-
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Figure 4.3:Thesequencercircuit which performs a 4-phase handshake.
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Figure 4.4:Delay must be inserted in the request path in the bundled data design.

4.5 Bundled data design and asymmetric delay

When designing a component which uses the bundled data protocol, a matched delay must be
inserted in the request line as described in chapter3.1. The matched delay must be larger than
the worst case latency of the functional block. Figure4.4aillustrates a typical scenario which
is encountered when designing a component for a bundled data network. The circuit takes 2
request lines and 2 data lines as input and outputs a single data value and request. The input
request lines are assumed to be mutual exclusive and control which of the 2 data inputs that are
to be outputted. According to the protocol theo_dataline must be stable beforeo_reqgoes high,
why a delay must be inserted before the output. This delay must be large enough to account for
the extra gate-delay which is contributed by the AND gate, but also include the delay which are
caused by wires and cross capacitances. In this case the data is a single bit, but it might be a bus,
which means that the request is driving several AND gates. It might even be necessary to insert
buffers to increase its drive strength. All these delays must be accounted for in the matched
delay and is a good example that we want to be in control of the used gates such that we are
sure to insert enough delay. As it is hard to predict the exact delay of the circuit, the matched
delay must be quite conservative. On the other hand the delay should not be too large, as this
will tslow down the circuit and the delay element will be larger and consume more power. In
order to validate that the delay is large enough, the circuit has to beplace and route’ed and the
delay back-annotated.

Figure4.4b shows a simple delay implementation which consists of a chain of inverters.
This delay is symmetric as thelow→high andhigh→low transitions takes the same amount of
time. In a 4-phase protocol an asymmetric delay is preferable as thehigh→low transition only
decreases the speed of the circuit. One possibility is to use non-balanced buffers, since their
high→low propagation delay is roughly twice the size of theirlow→highpropagation time. An
inverter must be inserted before and after the buffers, such that thelow→high transition that
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Figure 4.5:Initialization ripples through the circuit.

has the largest propagation delay. Figure4.4c shows another possible implementation of an
asymmetric delay where alow→high transition has to propagate through the entire chain of
AND gates. In contrast, ahigh→low transition are propagating through all the AND gates in
parallel and therefore has a propagation delay of a single AND gate. In complex bundled data
circuits which contain large portions of combinatorial circuits, more advanced delay techniques
could be used to improve performance. E.g the delay could depend on the data values as these
might influence the longest path. This not an issue in this project as the longest path are always
constant in the implemented network blocks. Also it is beyond the scope of this project to make
a study of asymmetric delay implementations.

4.6 Initializing asynchronous circuits

Before an asynchronous circuit can be used it must be brought into a known state. That is, it
must be initialized properly. One way to achieve this is by adding controllability to the outputs
of all asynchronous cells. Since this controllability is implemented by adding a number of gates
it increases the area, power usage, and propagation delay of the circuit. A better way is to insert
controllability in a few places and make sure that the initialization will ripple through the circuit.
Figure4.5 illustrates how a Muller pipeline is initialized by settingin_req to 0. Since the only
input to the pipeline is thein_req and the other input to the first C-element is in an unknown
state, the C-elements must contain a reset signal. This allows it to be reset when just one of its
inputs are set to 0.

When an asynchronous circuit is designed, the properties which ensures a proper initializa-
tion must be noted. This includes which inputs that must be set to a certain logic value and the
time it takes for the reset to propagate.
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Chapter 5

The Aphrodite DSP

This chapter gives an overview of the Aphrodite chip for which a NoC is designed. Focus is
kept on the configurable network which is to be replaced.

5.1 Overview

’Aphrodite DSP’ is a multi-configurable DSP-core for audio applications developed byWilliam
Demant Holding. It consists of a number of audio processing blocks which can be connected
different ways using a circuit-switched configurable network. An example of such a dataflow
was shown in figure1.2 on page3. The DSP blocks include microphone inputs, headphone
outputs, audio processing blocks, and an interface to a digital microprocessor. A block does not
necessarily contain one input and one output but can contain any number of inputs and outputs.

The network is configured using a special configuration bus which enables the same DSP to
be used in many different audio applications. The configuration can even be changed at run-time
without resetting the system.

There is a total of 16 input ports and 12 output ports in the network, and generally samples
of 18 bits are communicated between the different blocks with a few cases of 16 bits. In the
case of 16 bits, the sample is appended 2 bits to make it 18 bits as well.

5.2 Configurable network

The current network is implemented as a subset of a fully connected network. In a fully con-
nected network each input port in the network is connected to all possible output ports. This
gives a total of18noni wires, when the data is 18 bits,ni is the number of input ports, andno

is the number of output ports. Since many of these connections are not used in any feasible
configuration they are removed from the design. The result of this process is a subset of a fully
connected network, where each input port is only connected to a subset of the output ports as
illustrated in figure5.1.

Since several input ports are connected to the same output port, each output port contains
a multiplexor which enables each port to ”choose” which input port to receive data from. The
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Figure 5.1:The current network implementation is a subset of a fully connected network. Each
input port is connected to a subset of the output ports.

multiplexors are controlled by a number of registers which is accessed through a separate con-
figuration bus.

5.3 Multicast

The current network design supports multicasting as each input port is routed to all feasible
output ports. This means, that data arrives at all output ports and multicasts are handled by
configuring several multiplexors to receive data from the same input port. In theory some of the
DSP-blocks in the ’Aphrodite DSP’ can send apacketto 6 different blocks at a time. It is very
unlikely that this many destinations are used at the same time and in the current configurations
only 2 destinations are used simultaneously.

5.4 Clocks, dataflow and Lego2 protocol.

Two different clocks are used in the DSP. Thesample clockis the slowest, controlling the fre-
quency at which new samples are feed into the system and taken out. Themain clockis running
96 times faster than thesample clockand controls the flow of samples through the network and
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Figure 5.2:The Lego2 protocol which is used to communicate data between the different blocks.
Thevalid signal indicates that data is valid at the corresponding positive edge of the
clock.

computation inside the individual blocks. Themain clockis capable of running up to 10 MHz,
but is currently configured at 1 MHz. Thesample clockhas a maximal operating speed of 106
KHz when themain clockis at its fastest.

Imagine a scenario where data is sampled at the microphones, processed in the Filter Bank
and sent to the digital microprocessor. This communication and audio processing takes a given
number ofsampleclock cycles. What is important is not the number of cycles, since a small
delay in sound is inaudible, but that the number of cycles are constant from sample to sample.
If this is not the case noise and clicks will be heard at the receiving party.

Since the individual blocks have different latencies, and samples are not communicated each
main clockcycle, the sample is accompanied by an additionalvalid signal to indicate the validity
of data. This means that the dataflow is data-driven and a sample can be visualized as a token
flowing through the different blocks. The used protocol is denoted the Lego2 protocoland is
illustrated in figure5.2. As thevalid signal is sampled each clock period it must be high for one
clock period only.

5.5 Sample addition

Three of the multiplexors in the current design contain an adder such that several incoming
samples can be added. These are calledMUXADDersto distinguish them from a normal multi-
plexor. One of theseMUXADDers can add two samples while the two remaining can add up to
three samples.

Besides being able to work as a normal multiplexor theMUXADDer can be set up to add
several of the incoming signals. In this case theMUXADDerwaits for data on the inputs which
are to be added. That is, it waits for a valid token on the respective inputs. When all data have
arrived the samples are added and the result sent to the block.

One could imagine a setup where the user listens to music and an alarm suddenly starts. In
this setup a sinusoid is added to the music, even when the alarm is silent. This is controlled
by disabling the sinusoid generator such that it does not produce any samples, and thereby not

Design of an asynchronous communication network for an audio DSP chip 26



5.5. SAMPLE ADDITION

Control

Result
A

B

C
(a) Illustration of aMUXAD-

Der with 3 inputs.

Control Result

0 A

1 B

2 A+B

3 A+B+C

(b) Configuration table.
Bold inputs indicate
masterinputs.

Figure 5.3:Example of aMUXADDerwhich have 4 different functions. Some of these include
the addition of the incoming samples.

a valid signal. Since no sample is sent from the sinusoid generator, theMUXADDer will stall
as it waits for data on this input. In order to avoid this situation some of the inputs to the
MUXADDer are marked asmasters. TheMUXADDer will do the addition as soon as all the
mastersignals have arrived which ensures that the stall will not occur.

Figure5.3shows the symbol of aMUXADDerand an example of its functionality. It should
be noted that this example is fictive and is not used in the Aphrodite DSP. Whenever theMUX-
ADDer is used to add incoming signals themastersignals are marked bold in the configuration
table.
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Chapter 6

Specification of the Network interface

This chapter introduces a new general network interface which allows any network to be inserted
and tested. The new network interface is integrated into the ’Aphrodite DSP’, which requires
some work due to the existence of computational units in the existing network.

6.1 Overview

In order to replace the current network in the Aphrodite DSP with different NoC implementa-
tions, a clear and simple network interface must be defined. The term interface is used to denote
the protocol at the network input and output ports and how the network is configured. The inter-
face must be designed such that any network can be inserted and configured without changing
the environment. When such an interface has been created it is possible to insert, simulate, and
synthesize different network implementations and compare them in terms of area and power.
Instead of creating a testbench for each designed NoC, the common interface also allows the
creation of a common testbench, which makes it possible to verify the network without being
integrated in the Aphrodite DSP.

One of the major problems with the existing network is that it contains computational units
which do not belong in a network. If the network and computational units are not totally decou-
pled, some of the advantages of a scalable, reusable NoC are no longer present. It is therefore
important that this computation is removed from the network.William Demant Holdinghas
been so kind to help implement the computational units outside the network, such that the new
network can be integrated into the Aphrodite DSP.

In the following sections, theMUXADDersare removed from the network, a protocol at the
input and output ports are defined, a universal configuration method is created which is able
to configure any inserted network, and the network interface is integrated into the ’Aphrodite
DSP’.

6.2 Adders

As explained in chapter5.5 three of the multiplexors in the current design can add several in-
coming samples, in addition to the normal multiplex functionality. In order to implement a NoC
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Figure 6.2:Illustrations of the input and output ports to the network.

this functionality must be moved away from the network. A straight forward solution would be
to create a network output port for each possible operand in the addition. This simplifies the
adder implementation, but increases the number of output ports as well as area of the network
itself. Instead, a single output port is created which receives samples from all operands as il-
lustrated in figure6.1. The adder accumulates the received samples until the expected number
of samples has been received. Since the adders can be configured to add a different number of
samples, a control signal is used to indicate the number of operands in the current addition. As
explained in chapter5.5 some of the samples are denoted asmastersamples. Since the adder
receives all samples on the same port, there is no way to distinguish themastersamples from
the ones which are not. One solution would be to create two output ports. One for themaster
samples, and one for thenon-mastersamples. Again, this is not a feasible solution due to the
area overhead of the network. Instead an extramastersignal is inserted as shown in figure6.1.
Themastersignal is not constant for a given input port and can even be different for different
receivers of a multicast. Therefore, it must be included in the configuration introduced in section
6.4.

6.3 Network ports

The current network uses the Lego2 protocol at both the input ports and output ports. The Lego2
protocol was introduced in section5.4and simply consists of 18 data bits and avalid signal to
indicate the presence of data. The new network input and output ports are illustrated in figure
6.3. As is seen, the network input port is unchanged, while the output ports also contain amaster
signal used in the addition.
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Figure 6.3:The current configuration must be converted into a new configuration. Here 2 pos-
sible implementations are shown.

6.4 Configuration

In the current implementation the network is configured by controlling the multiplexors at the
network output ports as explained in chapter5.2. That is, each network output port decides
which network input port to receive data from. An example of such a configuration is shown in
figure 5.3 on page27. In the new network it is the network input port who determines where
to send the data. Also, the current configuration is only usable in this specific implementation
and if an additional output or input port is added to the design, the number of inputs to the
multiplexors changes and so do the configuration.

The current configuration could be converted directly to the new configuration as illustrated
in figure6.3a. This means that a configuration converter should be implemented for each new
network as they are configured differently. If the original configuration was changed, all config-
uration converters should be updated to reflect this change.

Instead, the existing configuration is converted into a general configuration as illustrated in
figure6.3b. By creating a general configuration only one converter must be implemented from
the existing configuration. It is much easier, and less error prone, to implement a converter
from a specific configuration to a general configuration than between two specific ones. Also, a
general configuration makes the configuration independent of the Aphrodite Configuration and
would make it much easier to port the NoCs to other applications.

The network is configured using a general configuration matrix as illustrated in table6.1.
Each row represents an input port and each column an output port. A ’1’ means that the input
port is sending data to the output port while a ’0’ means that no data is sent. As explained in
chapter6.2, amastersignal must be specified for in eachpacket. Therefore a second matrix is
created which determines the value of themastersignal for the specific connection.

The two configuration matrices allow the network to be configured in a general and sim-
ple way, it supports multicast, and themastersignal can be changed for each destination in a
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Output

In
pu

t

1 2 .... 11 12

1 0 0 0 0

2 0 0 0 0

....

15 0 0 0 0

16 0 1 0 1

Table 6.1:Configuration matrix. Each row represents an input port and each column represents
an output port. In the shown configuration input port 16 sends data to output port 2
and 12.
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Figure 6.4:Illustration of the new network interface.

multicast. Besides, the configuration can quite easily be translated to the configuration which is
used in each specific NoC implementation. If a NoC was to be used in a real application, the
configuration would of course be specified directly for the used NoC. The indirect configuration
is only meant to create a general configuration which is independent of the inserted NoC.
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Figure 6.5:Integration of the new network interface into the Aphrodite DSP.

6.5 Final NoC interface

Figure6.4shows the final NoC interface. It consists of 16 input ports and 12 output ports using
the Lego2 protocol. The input ports are 18 bit wide, while the output ports are 19 bit wide
because of the additionalmastersignal which is used in the addition. The network is configured
by providing the general configuration matrix.

6.6 Integration into Aphrodite

In order to integrate this network interface into the Aphrodite DSP, the functionality of the
MUXADDersmust be implemented and inserted between the current network interface and the
new network interface.William Demant Holdinghas implemented these new adder blocks. The
configuration converterwhich converts the current configuration into a general configuration
matrix and control the signals to the adders has not been implemented. Instead, the configuration
is specified directly as a general configuration matrix for the needed configurations. Figure6.5
shows how the new interface is integrated into the aphrodite DSP. Themastersignal is only used
in the adders and is discarded if no adder is inserted at the specific output port.
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Chapter 7

Network design

In this chapter the network design is discussed. Design decisions are taken in a number of
different areas such as topology, data encoding, and how to handle multicast. Many of the terms
used in this chapter was introduced in chapter2.

7.1 Overview

In chapter6 a new interface to the network was introduced as illustrated in figure6.4 on page
31. This chapter discusses the actual network design which is to replace the existing network.
Basically, the network can be viewed as a switch with 16 inputs and 12 outputs as illustrated
in figure7.1. Network adapters are inserted at input and output ports to interface between the

Configuration Converter

AN

AN

AN

ANNA

NA

NA

NA

General Configuration

Input ports Output ports
NetworkNetwork

16x12 Switch

16

11

1

15

2

12

1

2

Figure 7.1:The network can be viewed as a switch with 16 inputs and 12 outputs.
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Route Master Data

msb bit 23-19 bit 18 bit 17-0 lsb

Table 7.1:The basicpacketformat. The route is assumed to be 4 bit but this is not always the
case.

ports and the network. The network adapters at the input ports, denoted NA, encapsulate the
data received on the input ports inpacketsand handles the sending of thesepacketsinto the
network. In figure7.1, multicasts are also handled in the NA, network adapters, but this might
not be the case, as discussed later. At the output ports the network adapters are denotedAN.
Their function are to receivepacketsfrom the network and forward the data from thepacketsto
the output ports in compliance with the Lego2 protocol.
There are several important design decisions to discuss in this chapter:

• Choice of topology.

• Data encoding: Bundled data or delay-insensitive encoding.

• Should the links be wide enough to contain an entirepacketor should thepacketsbe
serialized into a stream offlits.

• How are multicasts implemented.

Many networks can be implemented having different characteristics in terms of area, bandwidth,
latency, power usage, and supply of advanced features. Since the bandwidth need is very low in
this application, the networks are designed with focus on low area and power. This also means
that no advanced features such asGuaranteed servicesor virtual channelsare needed,c as they
complicate the network circuitry. In other words, the network is kept as simple as possible.

Only source-routednetworks are considered, where the route is determined by the sender
and contained in eachpacket. This is to make the router nodes as simple as possible. Table
7.1 illustrates the basic format of apacket. The 19 least significant bits contain the data and
masterbit while the most significant bits determine the route to the destination block. When
the packetreaches a router node the most significant bit is used to determine the route at this
specific router. The entire route is then shifted one bit to the left while the data andmaster
bits are kept untouched. The network is implemented using 4-phase handshake protocols since
2-phase protocols are more complicated to implement.

In the following sections the different design decisions are discussed.

7.2 Topology

The topology of the network is very important in terms of area, power dissipation, bandwidth,
and latency. The following lists some of the possible topologies:

Crossbar At one extreme, one could make a 16x12 crossbar which is a non-blocking switch
having 16 inputs and 12 outputs. In a crossbar, communication between two ports does
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(a) Balanced binary tree network. (b) The Baseline network. An example of an
unidirectional multistage 16x16 network.

Figure 7.2:2 examples of network topologies.

not influence the communication between other ports. An example of a crossbar is a fully
connected network. It is also possible to restrict the crossbar such that some ports cannot
communicate at all, as it is the case for the current network implementation in Aphrodite.
Even for a low number of communicating block a crossbar is prohibitive big and is out of
the question for this project.

Binary tree: At the other extreme, one could design a binary tree as illustrated in figure7.2a.
The inputs are merged into a single line using a tree of 2 inputmergerblocks and are
routed to the outputs using a tree of 2 outputrouter blocks. In this topology data always
passes through the entire depth of the tree and all communication isblockingas it passes
through the root of the tree. The root thereby becomes a bottleneck, but this might not be
a problem due to the small bandwidth requirements.

Multistage network: Another possible topology is a multistage interconnection network as
illustrated in figure7.2b. A multistage network is constructed using a number of small
switches (or crossbars), which are connected in a specific pattern. The illustrated network
is called abaselinenetwork and consists of 4 stages of each 4, 2x2 switches. As a switch
can be implemented using onemergeblock and onerouter block, the latency through the
network is the same as for the binary tree. In contrast to the binary tree there is not a single
point in the network where all communication must pass. On the other hand the network
uses a far larger amount of transistors and wires. It should be noted that this topology is
not a crossbar, as there are restrictions on which ports that can communicate in parallel.

General routers: The fourth option is to connect a number of general routers by either uni-
or bidirectional links. Figure7.3bshows an example where the general routers are con-
nected in a mesh structure using bidirectional links. A network adapter, which handles
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Figure 7.3:2 examples of network topologies.

both input and output, is connected to each router node and each router node implements
a 5x5 switch or crossbar. This topology is interesting because it is extremely scalable
and because there is no central point through which all communication must pass. For
example, locality can be exploited by placing blocks that create high traffic loads close
to each other. The general router nodes can be connected in many different ways as for
example toruses, hypercubes, or a hierarchical structure with increasing bandwidth for
central router nodes [11].

This topology takes up a lot of area because of the large router nodes and the needed
number of wires. Care must also be taken to avoid deadlock, and techniques such as
virtual channelsmight have to be applied which complicate the router nodes even more.
Due to the limited bandwidth need and relatively small number of communicating blocks
this topology is not relevant for this application.

Hybrids: It is also possible to construct hybrid solutions of the mentioned topologies. One
which could be interesting for this application is a 4x4 switch which connects a num-
ber of binary trees as shown in figure7.3a. In this solution there is no longer a single
point in the network where all data must pass, thereby allowing parallel communication.
This, of course, requires that the 4x4 switch is implemented such that it allows parallel
communication as e.g a 4x4 crossbar or a multistage network.

The binary tree topology has been chosen due to the small number of wires and routing circuits.
Due to the small bandwidth requirement, there is no reason to employ a more complex topology.
Some of the disadvantages with the binary tree are that packets are always passing through the
entire depth of the tree and locality of communicating blocks is not exploited. The binary tree is
still the best topology for this application, as the number of communicating blocks are so small,
that even the smallest hybrid solution would require far to much circuitry.
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As the network contains 12 output ports, 4 layers ofroutersare needed. Each routing deci-
sion needs 1 bit and apackettherefore needs 4 bits for routing. It should be noted that some of
the output ports only needs 3 bits for routing.

7.3 Data encoding

Both bundled data and one-hot delay-insensitive encoding can be used in the network. If a one-
hot encoding is used, the need for matched delays are no longer present. Since the matched
delays in a bundled data solution must be conservative in order to ensure validity of data under
all operating conditions and process variations, delay-insensitive communication tends to be
faster than bundled data. As stated in chapter3.3.2and summarized in table3.1on page14, 1-
of-4 encoding uses less transitions thandual-rail encoding. The problem with1-of-4encoding
in this context is that each routing decision requires 1 bit, while each1-of-4 lines encodes 2
bits. This can be solved by making routers with 4 outputs instead of 2, or by re-encoding the
packetinside the router. These solutions are not used as they complicate the router circuitry and
the fanout of therouter will increase to 4. Instead, each routing decision is encoded into 2 bits
which increases the number of route bits to 8. Also, an extra unused bit is appended, such that
thepacketcontains an even number of bits. All in all, the size of apacketincreases from 23 to
28 bits.

Besides choosing how to encode the data, the width of the links must also be decided. Either
the links are wide enough to contain an entirepacket, or thepacketis be divided into a stream
of flits and sent using for examplewormhole switchingas discussed in chapter2.4. This reduces
the number of wires and size of the router circuitry. On the other hand the bandwidth is lower,
and thepacketsmust be serialized intoflits at the input ports and de-serialized at the output
ports.

I have chosen to implement two different data encodings in order to compare them in terms
of power and area. The first is a parallel bundled data encoding using 25 wires divided into 19
wires for data (including themastersignal), 4 wires for routing, and 2 wires forrequestand
acknowledge. The second is a1-of-5 delay-insensitive encoding sent aswormhole switching
using 6 wires divided into 5 wires for data and 1 foracknowledge. The reason to use1-of-5
encoding instead of1-of-4 is to be found in the article about the ’CHAIN’ network [3]. The
authors made an experiment where the number offlits in a packet was constant, such that the
routers simply have to count the number offlits. However, experimental results show that this
has the disadvantage of complicating the router circuitry and the packet must always contain the
same number offlits. Instead, a specialend of packet(EOP) wire is asserted by the lastflit to
indicate that the wormhole can be closed, thereby resetting therouter andmergeblocks. This
also means that the routers do not need to know the size of thepacket, and the size could even
differ depending on the data payload. I denote this a1-of-5encoding. Apacketis serialized into
15flits, 4 for routing, 10 for data (including themastersignal) and 1 for EOP.

Since the bandwidth of the bundled data network is much larger than the one using1-of-
5 encoding, the bundled data network is made without any buffers to decrease its size. This
means that the network adapters at the input ports perform handshakes directly with the network
adapters at the output ports.
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Figure 7.4:3 different proposals for implementing multicast support.

7.4 Multicast

In the current implementation multicasts are implicitly supported because data arrives at all
possible destinations1. This is not the case in apacket-switchedNoC implementation and instead
apacketmust be generated for each destination. The following paragraphs go through different
possibilities, adding support for multicasts.

Multiple network adapters A simple solution is to create a network adapter for each possible
destination. If a port in the original network can send to 3 different destinations this re-
quires 3 separate network adapters as illustrated in figure7.4a. The input port is connected
to all three network adapters, which each handles the generation of a singlepacket. The
individual network adapters can be disabled/enabled by a configuration controller.

The disadvantages of this solution are the sizes of the additional network adapters and
that the number of input ports in the network increases significantly. This leads to an
increase in network size, power usage, and latency. This increase in network size makes
this solution infeasible.

Blocks handles multicast If the connected DSP blocks generate apacketfor each destination,
the network only has to support unicast. This simplifies the network as it does not have to
worry about multicasts at all. If the DSP blocks are general purpose processors or similar

1Chapter5.3
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devices, they can generate thepacketsin software. The DSP blocks in the ’Aphrodite
DSP’ are not general purpose processors and the idea in this project is to substitute the
current network with a new network having the same functionality. Therefore, this pro-
posal is out of the question.

Multicast before the Network Adapters Instead of letting the blocks handle multicasts a spe-
cial multicast controller can be inserted between the input ports and the network adapters
as illustrated in figure7.4b. This allows the multicast controller to be implemented in the
synchronous domain and the network adapter only needs to handle unicasts

In this solution the networks adapters need a way to tell the multicast controllers that the
previouspackethas been successfully sent. This indication is asynchronous and must be
synchronized in the multicast controller which takes at least 4 clock cycles if a 4-phase
protocol is used2. Even though this might not be a problem this solution has not been
chosen because of the latency.

Multicast in the Network Adapters The route of apacketis determined in the network adapter
and another possibility is to implement the multicast functionality inside the network
adapter. Figure7.4cillustrates how the network adapter contains a multicast controller.

When multicasts are handled in the network adapter, the multicast circuitry can be made
both in the synchronous domain or the asynchronous domain. A synchronous solution is
analogue to placing the multicast controller before the network adapter and has already
been considered. By implementing the multicast controller in the asynchronous domain,
no synchronization is necessary between thepackets. This also makes it possible to send
severalpacketswithin the same clock-cycle.

Reusable Multicast blocks In the solutions mentioned so far, one of the major disadvantages is
that the number of possible destinations must be known when doing the synthesis and that
the multicast circuitry must be included in all network adapters which is foreseen to do
multicast. Instead of implementing multicast in the network adapters, a shared multicast
block is created. This multicast block receives a singlepacketon its input and sends two
packetson its output. If a block wants to multicast it does not send thepacketdirectly
to the destinations. Instead it does an indirect multicast by sending a singlepacketto
one of the shared multicast blocks, which handle the actual multicast. A number of these
shared multicast blocks are instantiated according to the needs in the specific application.
Since the multicast blocks are shared, only a subset of the number of multicast blocks are
needed and the complexity of the network adapters decreases as they only need to support
unicast. The needed number of multicast blocks are the largest number of simultaneously
multicasts for all input ports. In this application at most 2 input port are multicasting at
the same time.

One question arises when talking about multicast blocks: Where are they to be placed in
the network? The placement of the multicast blocks affects both the area and dynamic

2AppendixA goes into detail about synchronization between two different domains
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Figure 7.5:The reusable multicast blocks are placed at the root of the tree to decrease the latency
of multicasts. This example only contains two multicast blocks, but any number of
multicast blocks could be inserted.

power consumption. In this project a binary tree topology is implemented and one solu-
tion is to increase the size of the network with one additional input and output for each
multicast block.

Another solution is to place the multicast blocks near the root of the tree, thereby decreas-
ing the latency of multicasts. Figure7.5aillustrates a possible implementation of this. An
additionalrouter andmergeblock are inserted independent of the number of multicast
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blocks. Figure7.5b illustrates a unicast which does not use the multicast blocks, while
figure7.5cillustrates a multicast.

If general a router topology is used, the multicast blocks could be distributed across the
router nodes or placed at special router nodes which was reserved to serve multicast.

Two different multicast implementations are compared. In the first, multicasts are handled
in the network adapters while the second solution handles multicasts in two shared multicast
blocks.

7.5 Summary

Three differentpacket-switched, source-routednetworks will be implemented and compared.
All are using a binary tree topology, which is constructed by a number of binarymergeand
router network blocks. The networks have 16 input ports and 12 output ports which means that
eachpackethas to be routed at most 4 times. All asynchronous circuits implemented using a
4-phase handshake protocol.

The bundled data networks are transparent to handshakes while the1-of-5 network are
pipelined.

The networks differ in their data encoding, their link width, and the way multicasts are
handled.

NoC1 is using a bundled data encoding and the link width is 25 bits includingrequestand
acknowledgewires. Multicasts are implemented in the network adapters at the network
input ports.

NoC2 is using a bundled data encoding and the link width is 25 bit includingrequestand
acknowledgewires. Multicasts are implemented as two reusable multicast blocks which
are placed in the root of the binary tree.

NoC3 is using1-of-5 encoding and the link width is 6 bits including anacknowledgewire.
Multicasts are implemented in the network adapters at the network input ports.
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Implementation

This chapter goes through the actual implementation of the networks.

8.1 Overview

In order to design three networks and avoid code redundancy, a hierarchical design structure
is employed. By creating a number of small Network Building Blocks (NBBs) many kinds of
networks can be created by instantiating and connecting a number of NBBs . Many NBB’s use
other NBB’s to implement their functionality and some even recursively instantiate themselves.
The NBBs are designed as templates, which allow for example the width of a bundled data
channel or the number of inputs and outputs to be specified for each instance.

In order to further decrease the redundancy, a "Common network platform" is created. It
consists of a number of NBBs which can be used in all networks, independent of the data encod-
ing and network topology. The "common network platform" contains network adapters, which
converts between the synchronous and asynchronous domains, and blocks, which serialize a
packetinto a stream offlits and vise versa.

The implementation is done using the ’Verilog’ Hardware Description Language (HDL)
which is widely used within the IC industry. Since ’Verilog’ is also used atWilliam Demant
Holding it is an obvious choice. Many of the NBBs are made as templates by using the ’para-
meter’ statement in ’Verilog’, which can be specified for each instance of a module. Inside the
modules, ’generate’ statements are used to utilize the specified parameters to change the cre-
ation and behavior of the module. ’generates’ are used to make structural code and is included
in the ’Verilog’ 2001 standard. It is of course required that the used tools support ’generates’
which is not always the case.

The NBBs are implemented by instantiating cells from a virtual cell library, such that the
implementation is independent of the used standard cell library. The virtual cell library also
inserts delay in the behaviorial version of the cells. AppendixB gives a short introduction to the
cell library.

In the following sections the ’common network platform’ is introduced and the NBBs are
implemented. Then, specific network blocks for the 2 data encodings are implemented and at
last the three networks are designed using the introduced NBBs.
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Figure 8.1:The "Common network platform" is used by all networks to connect the input and
output ports to the network.

AppendixD contains a complete list of NBBs,including their gate-level implementation,
while appendixE contains all ’Verilog’ code which can also be found on the attached CD-ROM.

8.2 Common network platform

The networks are designed using a "common network platform" which consists of a number
of standard NBBs that can be used by all networks. The NBBs within the "common network
platform" are used to convert from the Lego2 protocolto an asynchronouspacketand the other
way around.

Figure8.1aillustrates how the NA, network adapter is connected to the network input port
and the actual network such it can be used in all network implementations. It accepts data
using the Lego2 protocol and creates a number ofpackets, which are sent into the network. The
Address Managerblock is connected to the network adapter, such that the same network adapter
can be used for both unicast and multicast. The output port, which is connected to the actual
network, uses a 4-phase bundled data protocol where the entirepacketis sent in parallel. An
optionalseralizerblock, which serializes thepacketinto flits, can be inserted if needed. At last,
a protocol converteris used to convert from 4-phase bundled data to the protocol which is used
in the actual network. This structure makes thenetwork adapterandserializerreusable for all
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network implementations. Theprotocol converteris not considered as a part of the "common
network platform" as it is specific for each data encoding.

A similar construct is used to receivepacketsfrom the network and output the data to the
network output port. This is illustrated in figure8.1b. First, an optionalprotocol converter
converts from the protocol used inside the actual network to a 4-phase bundled data protocol, if
these are not the same. If thepacketis sent using severalflits, a de-serializerblock is inserted
to convert theflits into a singlepacket, before it is connected to the AN, network adapter which
outputs the data using the Lego2 protocol. Both the AN, network adapter andde-serializerare
reusable for all network implementations.

In the following subsections, the implementation of the network blocks which are part of
the "common network platform" are implemented.

8.2.1 NA, Network Adapter

The NA, network adapter receives data using the Lego2 protocol, encapsulates the data in a
packet, and sends thepacketinto the network using a 4-phase bundled data protocol. As the
Lego2 protocol does not contain anacknowledgewire, there is no flow control at the input port.
This means that the network adapter does not have any means to indicate that it is not ready
to receive data. Therefore, it must always be able to receive data. If this are not the case, data
might be lost. In this application it is assumed, that the delay between succeeding data to the
network adapter is large enough for the network adapter to handle the sending of apacket. This
is fulfilled because the DSP blocks communicate at most one sample eachsample period, as it
was explained in chapter5. If this is not the case, buffers must be inserted such that no data is
lost.

Figure8.2ashows an STG which captures the wanted behavior of the NA, network adapter.
1) i_valid goes high which indicates that data has arrived at the input port. 2)o_req is
asserted to send apacket3) Thepacketis acknowledged byi_ack and, at some point, the
environment lowersi_valid . (In parallel) 4)o_req is driven low and wheno_ack goes
low the cycle is complete.

Note thato_req is not lowered untili_valid has gone low. This means that the outgoing
handshake is coupled with thei_valid signal. I was not able to design a simple STG which
allows i_valid to go low at any point of time. Petrify needs some timing assumptions that
I do not know how to provide. It is possible to design an STG which decouples the handshake
from thei_valid signal, but the produced circuit was relatively large and is not needed in this
application. A de-coupled handshake controller [9] could also be inserted between the generated
handshake controller and the outputs.

Figure8.2 shows the gate-level implementation of the NA, network adapter. As it is seen,
the generated handshake is not sent directly to the output port, but it instead sent to a so called
Address Manager. The idea is, that the same network adapter should be used for both uni- and
multicasts and that theAddress Managerhandles the handshaking and generation of routes. The
Address Managershown in figure8.2handles a unicasts by connecting the in-going handshake
with the out-going handshake and supplying a single route. The AM_multicast, which handles
multicasting, can be found in appendixD.1.1.

Data is saved in a D flip-flop on positive edges of thei_valid signal. It would have used
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Figure 8.2:Implementation of the NA, network adapter.

less area if a level-sensitive latch could have been used instead, but this is not possible because
data is only valid on the rising edge of thei_valid wire.

8.2.2 AN, Network adapter

The AN, network adapter receivespacketsfrom the network using a 4-phase bundled data pro-
tocol and outputs data using the Lego2 protocol. Since the direction of data is from the asyn-
chronous to the synchronous domain, the Lego2 protocol must be synchronized using the clock
signal from the block to which it is connected. When data is transferred from one clock domain
to another, or from an asynchronous to a synchronous domain, safe synchronization must be
applied. AppendixA explains the basics of such synchronization.

Figure8.3 illustrates 4 different ways to synchronize from the asynchronous domain to the
Lego2 protocol. The latch which stores the data is not shown, but must be included in the actual
implementation. Note that the signal after the first flip-flop is never used, because it can be in a
state of metastability and thereby create hazards.

Figure8.3aillustrates a solution which will fail, because the handshake can complete within
a single clock cycle. If this is the case, the synchronous part will never see the data and this solu-
tion is not to be used. At the other extreme, figure8.3bshows the classic two-flop synchronizer
which takes at least 4 clock-cycles as the handshake waits for therequestsignal to be synchro-
nized on both its rising and falling edge. The solution in figure8.3cimproves this by completing
the handshake before the synchronization of the falling transition ofrequest. This means that
the handshake finishes much faster, but this solution will not work, if a new handshake starts
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Figure 8.3:4 different implementations of the asynchronous to Lego2 protocol synchronization.
The last flip-flop and the AND gate with inverted input is added to make sure that
o_valid is only high for one clock-cycle. A latch for storing the data is not shown
on the figures.

before the previous handshake has been completely synchronized. As some of the ports in the
’Aphrodite DSP’ can receive more than onepacketeachsample period, this solution is not a
possibility for this application. The solution in figure8.3davoids the need of a data-latch, be-
cause the data is first acknowledged after the data has been sent using the Lego2 protocol. The
penalty is one extra clock-cycle for the synchronization of the risingrequestsignal.

In summary, only two of the four solutions are usable. The standard two-flop synchronizer
in figure8.3bis used because it completes the handshake in 4 clock-cycles. In order to decouple
the handshake between the network and the synchronization to the Lego2 protocol, buffers can
be inserted between the network and the network adapter.

As the clock frequency in Aphrodite is at most 10 Mhz, it would also be possible to clock
the first register by the negative clock edge instead of the positive clock edge. This would
decrease the number of clock periods needed for the synchronization, but I have not investigated
this option further and one always have to be careful when playing around with the clock and
synchronization.

The final gate-level implementation of the NA, network adapter is included in figure8.4. A
flip-flop is used as state-holding device even though a level-sensitive latch would suffice. This
is because there was problems during the integration into ’Aphrodite’ when the data returned to
zero after the handshake has completed.
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Figure 8.4:Gate-level implementation of the AN, network adapter.

8.2.3 Serializer

This network block serializes apacketinto a stream of 2 bitflits. Both the input and output use a
4-phase bundled data protocol. After the lastflit has been sent, a special "End Of Packet" (EOP)
wire is asserted to indicate that there is no moreflits in thepacket. The EOP wire works like the
request wire and a 4-phase handshake must be performed.

Theserializercan be implemented in many ways with different speed, area and power char-
acteristics. An obvious possibility is to employ a shift register but this would consume a lot of
unnecessary power and is not considered an option.

Instead, the bits are selected 2 at a time using multiplexors as illustrated in figure8.5a. The
block is hard-coded to outputflits of 2 bits but this could very well have been selectable by a
’parameter’. The ’brain’ of theserializer is the controller which handles all handshakes and
generates control signals for the two multiplexors. The control signals also act as the outgoing
request signal. The request is generated by OR’ing the control signals. A matched delay is
inserted on therequestwire such that the data is stable before therequestwire is asserted. Note
that the controller is instantiated to perform one more handshake than the number of dataflits.
The last control wire is forwarded aso_eop to perform the EOP handshake.
The functionality of the controller is as follows:
1) i_req goes high to indicate that new data has arrived at the input. 2a) One of the control sig-
nals is asserted. This is used to control the multiplexors and generate a request to the succeeding
stage. 2b) The succeeding stage acknowledges the input 2c) The control signal is lowered 2d)
The succeeding stage lowersi_ack 3) Step 2 is repeated till all data has been send. In this case
4 flits are sent. 3 for data and 1 for EOP. 4) The 4-phase handshake to the preceding stage which
started the conversion is completed.

The controller can be implemented in many different ways:

• The entire controller can be specified as an STG which is made into a speed-independent
asynchronous circuit using Petrify. The STG can be auto-generated by a script depending
on the number offlits.

• The controller can be designed as an ordinary synchronous state-machine. After the cir-
cuits which determines the next state and output have been synthesized it must be turned
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Figure 8.5:Implementation of theserializerblock which sends 3flits of each 2 bit and an EOP
flit. Note that the controller is using 4sequencersbecause the EOPflit must be
generated and acknowledged.

into an asynchronous state-machine by inserting matched delays. It should be noted, that
this option has not been investigated thoroughly.

• The controller can be decomposed into smaller blocks which each handle one handshake
and the setup of one control wire. The needed blocks can be designed as STG’s and
realized using Petrify.

The first two options need to be re-implemented each time the number offlits changes, which
is not the case for the third option. Because the design is decomposed into smaller circuits, the
circuits are also easier to design and implement.

Figure8.5bshows an implementation of the controller which can handle 4 handshakes. 3
handshakes for dataflits and one for the EOP handshake. The controller is constructed by con-
necting 4 simpleSequencerblocks which each carries out a single handshake. TheSequencer
block was designed in chapter4.4and basically accepts a handshake on the left hand side, gen-
erates a handshake on the right hand side, and completes the handshake on the left hand side. In
addition to this functionality, thei_ack wire can alternate when thesequenceris not involved
in an outgoing handshake. This is needed because the same acknowledge wire is connected to
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Figure 8.6:Implementation of thede-serializerwhich handled 3flits.

all the sequencers. When asequencerhas completed the handshake on its right hand side it
acknowledges the handshake on the left hand side which starts the succeedingsequencer.

The big advantage of this construction is that it is very easy to design controllers which
handle a different number offlits. Only the buffer which is inserted such that the incoming
acknowledge can drive allSequencersis dependent on the number ofSequencers. Note that the
controller is instantiated one stage larger than the number offlits such that the last control signal
can be used asEOP.

If the latency of theserializer turns out to slow down the sending of data, the serialization
can be divided into a number of pipeline stages to improve the latency of each stage. This is
only an advantage if the succeeding blocks are able to receive data fast enough.

8.2.4 De-serializer

This network block de-serializes a stream of 2 bitflits into a single data value. Both input and
output uses a 4-phase bundled data protocol. After the lastflit has been received, a special "End
Of Packet"(EOP) wire is asserted to indicate that there are no moreflits in thepacket.

The de-serializeris very similar to theserializerand the implementation suggestions and
comments made in the previous subsection applies for thede-serializeras well. Again, a shift
register is avoided due to the unnecessary power consumption.

The chosen solution is illustrated in figure8.6a. The block is divided into a controller which
handles all handshakes and control signals to a number of latches. The 2 incoming data wires
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Figure 8.7:Implementation of thesequencer2.

are connected to 3 flip-flops which are controlled by individual signals from the controller. The
control signals also act as acknowledge to the preceding stage why they are OR’ed. The basic
idea is that one of the flip-flop control signals is asserted when aflit arrives. This makes sure that
one of the flip-flops stores the data, while the others stay unchanged. A solution using latches
was also tried out, but the complexity and size of the controller increased. This is because the
latches must be inopaquemode except when they are receiving data, thus a pulse must be made
independent of theacknowledge.

The controller are implemented in a similar way to the controller in theserializer. A small
block, denotedsequencer2, handles one handshake and controls one flip-flop. A number of
these are instantiated and connected as illustrated in figure8.6b which makes it very easy to
construct controllers of different size. In the initial state all inputs, outputs, and internal wires
are ’0’ except for thei_en input to the firstsequencer2. This means that the firstSequencer2is
enabled while the rest are disabled. Wheni_req makes a rising transition the firstsequencer2
performs a 4-phase handshake usingi_req ando_ack1 before it assertso_en which enables
the nextsequencer2. In this fashion thesequencer2blocks perform a handshake one by one.
When the lastsequener2is done, the feedback resets the construct and the cycle is complete.
This construction assumes that the number offlits is constant for allpackets.

Figure8.7shows an STG capturing the behavior of thesequencer2as well as its gate-level
implementation. It has many similarities to thesequencerSTG which is used as an example
in chapter4.4. The sequence of events are as follows: 1)i_req can make a number of tran-
sitions if other controllers are handshaking, 2)i_en goes high to indicate that the controller
is activated, 3) wheni_req goes high a 4-phase handshake is completed usingo_ack and
i_req , and the next controller is activated by risingo_en , 4) i_req can make a number of
transitions if other controllers are handshaking, 5) wheni_en is loweredo_en is set to ’0’
which completes the cycle.
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8.3 Specific network blocks

Both bundled data and1-of-5delay-insensitive encoding are used in the network implementa-
tions. In order to implement a network using a specific encoding, amergeandrouterblock must
be implemented. Themergeblock merges two input port onto a single output port. As the input
ports are not mutual exclusive, themergeblocks must contain some sort of arbitration. The
routerblock receives apacketont its input port and routes it to one of its output ports depending
on the route. The route is contained in thepacket.

Besides these two elementary blocks, a number of behavioral blocks are created for use
in the testbenches. For example asourcewhich sends data, and asink which receives and
acknowledges data.

8.3.1 Bundled data network blocks

The 4-phase bundled data blocks do not contain any buffers or latches and are transparent to
handshakes. This means, that the network adapters at the input and output port are performing a
handshake directly with each other. Gate-level implementations of all bundled data blocks can
be found in appendixD.2.

Merge block (AppendixD.2.1)
The mergeblock consists of a handshake arbiter and a multiplexor1. The handshake
arbiter grants one of the inputs access to the output port and locks the arbiter until the
handshake is complete. The multiplexor is implemented using an complex AND-OR
gate.

Router block (AppendixD.2.5)
As explained in chapter7.1, the most significant bit is used to determine the route of
the packetand the route is shifted left by one. Thepacketis sent to one of the output
ports depending on the route. A new route is first accepted when the handshake cycle is
complete. Note, that AND gates are inserted such that data are only sent to one of the
output ports. The data could safely be routed to both output ports since only one of the
port receives a handshake. This would cause the data to shift through the entire network
and would contribute heavily to the power consumption.

8.3.2 1-of-5network blocks

The 1-of-5 blocks encode 2 bits of data into 4 wires, while it uses a fifth wire to indicate the
End-Of-Packet(EOP) as explained in chapter7.3. The router andmergeblocks are almost an
exact implementation from the ’Chain’ network [3]. Gate-level implementations of all1-of-5
network blocks can be found in appendixD.3.

Merge block (AppendixD.3.4)
When one of the input ports are granted access to the output port, a controller blocks the
other input port until an EOPflit has been received and acknowledged.

1The arbiter is implemented is chapter 5.8.2 in [13].
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Destination 1 2 3 4 5 6 7 8 9 10 11 12

Enable 0 0 1 0 0 0 0 0 0 1 0 0

Table 8.1:Configuration vector which represents a multicast to destination 3 and 10.

Router block (AppendixD.3.7)
When the firstflit arrives, a controller determines the route of the packet and locks the
router. This means, that succeedingflits are routed to the same output port. The controller
is reset when the EOPflit is received.

In order to incorporate the1-of-5 blocks into the ’common network platform’, two protocol
converters are implemented.PC_bundled_1of4converts 2 bit of bundled data into a1-of-4
delay-insensitive encoding whilePC_1of4_bundledconverts the other way around.

8.4 The networks

The ’Common Network platform’ and network blocks for the 2 encodings have now been pre-
sented and it is time to construct the 3 network solutions. The network design was discussed in
chapter7 and the design decisions summarized in chapter7.5.

An overview of the three network implementations is presented in the following subsections.
In order to configure the networks, the general configuration matrix presented in chapter6.4
must be converted into a local configuration for each network. This conversion is discussed for
each of the three networks.

8.4.1 NoC1: Bundled data, multicast in NA

This network uses a 4-phase bundled data protocol through the entire network and handles
multicasts in the network adapter. Figure8.8 illustrates how the network is constructed using
the network building blocks. The ’Verilog’ code can be found in appendixE.2.3.

A configuration converter is instantiated inside eachAM_multicastblock, as multicasts are
handled in each NA, network adapter. The converter takes a vector from the general configura-
tion matrix as input. This vector describes which output ports thepacketmust be sent to. The
format of the input vector is illustrated in table8.1 where each bit represents a possible output
port. The converter converts the vector into a number of routes and enable signals which are
used by theMulticasterblock. If an input port is only sending to a single destination, only a
single route is configured and enabled. The code for the converter is included in appendixE.2.1.

8.4.2 NoC2: Bundled data, shared multicast blocks

This network uses a 4-phase bundled data protocol through the entire network and handle mul-
ticasts using two shared multicast blocks. Figure8.9 illustrates how the network is constructed
using the network building blocks. The ’Verilog’ code can be found in appendixE.2.4.
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The configuration converter must specify a single route for each NA, network adapter and
two routes for each multicast block. This is done by counting the number of destinations for
each input port and reserving one of the shared multicast blocks if a multicast is required.

1 destination Assign destination route directly to theAN_unicastblock.

2 destinations Reserve a shared multicast block, assign the route of the multicast block to the
AN_unicastblock and assign the 2 destination routes to the multicast block.

The behavioral implementation of the converter is included in appendixE.2.2.

8.4.3 NoC3:1of5encoding, multicast in NA

In this network data is sent as a stream of 2 bitflits using a1-of-5 delay-independent data
encoding. Multicasts are handled at the NA, network adapters. Figure8.10illustrates how the
network is constructed using the network building blocks. The ’Verilog’ code can be found in
appendixE.2.5.

The configuration converter developed for NoC1 is also used for this network as the topology
and routing decisions are the same. The 4 route bits must be divided into 4flits as an entireflit
is used for each routing decision. As eachflit encodes 2 bits, this is done in theNoC_S1block
by appending a ’0’ to each route bit.
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Figure 8.8:NoC1: 4-phase bundled data network where multicasts are handled in the NA, net-
work adapter. Gate-level implementations of the different blocks can be found in
appendixD.
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Figure 8.9:NoC2: 4-phase bundled data network where multicasts are handled in share mul-
ticast blocks. Gate-level implementations of the different blocks can be found in
appendixD.
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Figure 8.10:NoC3: 1-of-5 delay-insensitive network where multicasts are handled in the NA,
network adapter. Gate-level implementations of the different blocks can be found
in appendixD.
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Chapter 9

Verification

This chapter introduces the techniques which are used to verify the behavior of the NoCs and
the individual network blocks.

9.1 Overview

When designing a large and complex system, the behavior of the system must be properly veri-
fied. This is typically done by creating a testbench which controls the inputs to the system and
monitors the outputs. The testbench should expose the system to different scenarios and test if it
behaves as expected in all imaginable situations. Random tests are not likely to detect all possi-
ble errors, and instead every system part and feature should be tested separately and in different
combinations. It is also necessary to include tests which stress the system to its maximum.

In this project, two types of testbenches are created. A ’main’ testbench which verifies
the functionality of the entire network and a number of small ’individual’ testbenches which
test each network block individually. The ’main’ testbench is able to test all networks as they
are accessed and configured the same way. The common network interface was introduced in
chapter6. The construction of the ’main’ testbench is gone through in the succeeding sections.

The ’individual’ testbenches make it much easier to thoroughly verify the behavior of the
individual network blocks, because the inputs and outputs can be directly controlled and ob-
served, respectively. Some input situations rarely occur when the network blocks are integrated
into a NoC. As an example, themutex, which was introduced in chapter4.3.1, is ensuring that
2 signals are mutual exclusive. The correct behavior of themutexis hard to verify when it is in-
tegrated into other network blocks. The testbench in appendixE.4.4tests all possible situations
that can occur. Many, but not all, of the network blocks have individual testbenches. It should
also be noted that the testbenches are not documented and that the testbenches are not included
in the Appendix, but can be found on the CD-ROM.

Besides testbenches, many of the network blocks contain behavioral code which monitors
the signals inside the block. This makes it possible to report if an unsuspected situation occur. In
ordinary sequential programming languages, such as C and C++, this is known as ’assertions’.
As an example the NA, network adapter must be idle when new data arrives. This is verified by
the ’Verilog’ code in figure9.1by checking ifo_route_req or i_route_ack is high when

Design of an asynchronous communication network for an audio DSP chip 57



9.2. MAIN TESTBENCH

‘ifdef ERROR_CHECKING
always @(posedge i_valid)
begin

if(o_route_req!=0 || i_route_ack!=0)
begin

$display ("ERROR!. Valid signal came through when
network adapter was already busy.\n");

$display (" req: %b",o_route_req);
$display (" ack: %b",i_route_ack);
$stop;

end
end
‘endif

Figure 9.1:Example of verification code which monitors the signals in the NA, network adapter.
The code writes an error message and stops the simulation if an unsuspected situa-
tion occurs.

new data arrives. Note thatERROR_CHECKINGmust be defined for the verification code
to be enabled. This allows all verification code to be enabled or disabled by means of a single
definition. The file,global.v, in appendixE.3.1, is used to specify which network to instantiate.
Error checking and debug information is also enabled/disabled in this file.

9.2 Main testbench

Figure9.2 illustrated how the main testbench is constructed by attaching special verification
modules to the input ports, output ports, and the configuration port of the network interface
which was specified in chapter6. Each verification module contains a number oftasks1 which
is used by theTestbench controller to perform a number of tests. The main testbench code
instantiates the different verification modules, the network under test, and contains the code
which implements theTestbench controller. It can be found in appendixE.4.5.

In the succeeding subsection the verification modules are explained in more detail, but here
I briefly mention their basic functionality. TheConfiguration controller module gives easy
access to the network configuration, including multicast and control of themastersignal. The
Lego2 mastermodule is responsible for sending data into the network using the Lego2 protocol,
while theLego2 slavemodule is responsible for receiving data and check if the data is correct.
A separate slave module is instantiated for each output port while a single master module is
connected to all input ports. The reason that a single master module is used to control all input
ports, is that data must be sent into the network on several input ports at the same time instant.
As it is not possible to call severaltasksin parallel, this behavior requires that the sending of
data is implemented in a single module.

When apacketis sent into the network, it must be verified that it arrives at the expected
output ports, and that the data has not be altered inside the network. A problem is that it is not
possible to tell from which input port thepacketwas sent when it arrives at an output port. One
solution is to encode a unique ID for the input port into the data. Also, when severalpacketsare

1A taskis a behavioral procedure call
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Figure 9.2:The testbench is constructed by attaching special verification module to the input
ports, output ports and configuration.

sent into the network at the same time, it is very important thatpacketsdo not contain the same
data. If this was the case it would not be possible to distinguish thepacketsfrom each other,
and thepacketscould in theory have arrived at the wrong output port. Random data is therefore
not a possibility, and instead the data is encoded as shown in table9.1. Thepacketcontains the
input port who sent it, as well as the addresses of the output ports to which it was sent. It should
be noted that when apacketis multicasted, the samepacketis sent to several output ports and
there is no way to distinguish thepackets, except for themastersignal which is specified for
each destination output port. If apacketis sent to more than 2 output ports it is not possible to
distinguish thepackets.

In order to test that severalpacketsaddressed for the same output port has been received
correctly, theLego2 slaveis implemented such that it expects apacketfrom each input port.
The module contains an array of data values, one for each input port. As the input port is
encoded into thepacket, it is possible to use the input port as an index into this array.
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Unused Output port3 Output port2 Output port1 Input port

msb bit 17-16 bit 15-12 bit 11-8 bit 7-4 bit 3-0 lsb

Table 9.1:Encoding of the data which is sent into the Noc. The encoding makes it possible to
distinguish allpackets.

9.2.1 Verification modules

In the following, a short description of the functionality is given for each verification module.

Configuration controller This module eases the configuration of the network. It consists of
task to enable a certain route,enableRoute, by specifying the input and output port for
the route and the value of themastersignal. It also contains atask to disable a certain
route,disableRoute, and atask to disable all routes,clear. The code can be found in
appendixE.4.3.

Lego2 master This module sends data into the network using the Lego2 protocol. The module
is first configured by specifying which input ports that are to receive data. This is done
using thetasksetup_txswhich configures the module to send data to single input port.
setup_txscan be called several times if data is to be sent to several input ports. When
the module has been configured, thetask txs is called to send the configured data to the
inputs ports. Data is only sent to the input ports which have been configured, and all data
are sent at the same time. Code can be found in appendixE.4.1.

Lego2 slaveThis module counts the number ofpacketsthat arrives at each output port and
checks if the received data is correct. It contains a singletask, setExpectedDatawhich
tells the module which data andmastersignal to expect from a certain input port. When
it receives apacket, it checks if apacketwas expected from the input port which sent it,
and checks if the data is correct. Then it notes that no further data is expected from the
specific input port. This is to make sure that the arrival of the samepackettwice is treated
as an error. If an error occurs, it makes a pulse on a wire which is read by thetestbench
controller . The Code can be found in appendixE.4.2.

9.2.2 Tests

A number of different tests are performed to test different aspects of the network. Each test is
conducted by performing the following actions in sequence:

1. The wanted routes are setup by using theConfiguration controller .

2. It is specified which input ports that are to receive data and which data they are to receive.
This is done using theLego2 master.

3. EachLego2 slavemodule is told which data to expect from which input ports.

4. Lego2 masteris instructed to send the requested data to the input ports.
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5. Wait for a number of clock-cycles which should ensure that the network has delivered all
data on the output ports.

6. Check if theLego2 slaves received the expected number ofpackets, and if these packets
were all correct.

The following lists the different tests, their purpose and notes on their implementation.

Unicast The purpose of this test is to test unicast. Each input port sends data to each output
port, one at a time. All combinations are tested.

Multicast The purpose of this test is to test the multicast functionality. Each input port sends
data to two output ports at a time. All combinations of input and output ports are tested.

Multicast2 This is another multicasting test. Two input ports are doing multicast at the same
time. Many, but not all, combinations are tested due to the large number of combinations.

Chaos Test This test is stressing the network. All inputs are sending data to the same output
port at the same time instance. All output ports are tested.

Adder Tests the basic functionality of the adders which are inserted when integrating the NoC
interface into the ’Aphrodite DSP’.
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Chapter 10

Logic synthesis and simulation

In this chapter the logic synthesis and simulation flow is briefly discussed, and some notes are
given on the power and area estimates.

10.1 RTL simulation

When a design has been implemented as an RTL-description, it is simulated to verify the be-
havior of the implementation. The purpose of this simulation is to check the functionality of
the behavioral code, not the timing. In many synchronous design flows, such as the one used
at William Demant Holding, the default simulation settings do not include gate-delays. This
is a problem as the designed networks are specified directly at gate-level by instantiating and
connecting specific cells from the standard cell library. If there is no delays through the cells,
the asynchronous circuits will behave unexpected. Actually, the behavioral version of the used
standard cell library does not include delays at all. Therefore, new cells are created which wraps
the cells from the standard cell library to insert delays. The new cells are presented in appendix
B.

10.2 Logic synthesis

After the RTL-description has been verified, a logic synthesis tool is used to translate the RTL-
description into a netlist of standard cells. Among many things, the logic synthesis tool op-
timizes the design, chooses drive-strengths and insert buffers. The logic synthesis tools are
designed to handle synchronous design and cannot be used on asynchronous design as the de-
sign styles are very different. If the optimization step is not removed from the synthesis flow,
one can be absolutely certain that the circuit will not work as expected. This is easily fixed by
stopping the logic synthesis after the design is mapped to gate-level.
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10.3 Gate-level simulation

When simulating at gate-level, it is important to turn off X-propagation on the registers which
do synchronization. If X-propagation is enabled, the simulator will propagate ’X’ if a timing-
violation occurs due to a setup or hold error on the register input. This will stall the asynchro-
nous circuit and the simulation stops. In this project, the registers in the NA, network adapter
discussed in chapter8.2.1contains synchronization registers.

10.4 Place and Route

After the gate-level implementation has been verified, the design is ’placed and routed’. This
allows to estimate the wire capacitances and insert buffers which are needed to drive these.
Unfortunately, the network designs are not ’placed and routed’ due to the lack of time. It could
be very interesting to do this in the future and it will, hopefully, show a positive impact on the
total length of wires and their power consumption.

10.5 Area and power estimates

Area estimates of the networks are extracted from the gate-level implementation and only in-
clude area of the standard cells. If the area of wires should be included, the design should have
been ’placed and routed’.

An estimate of the power consumption can be performed on the gate-level implementation
or after ’place and routing’. The former only contains the power consumption in the standard
cells, while the latter includes the power consumption of wire transitions as well.

The plan was to estimate the power by integrating the networks into ’Aphrodite’ and use
the original testbench. This makes it easy to compare the original network and the networks
designed in this project. The networks were successfully integrated and simulated on the RTL-
description. We did not manage to extract power estimates due to tool issues that are solved at
the time of writing.
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Chapter 11

Results and discussion

This chapter presents and discusses the results.

11.1 Overview

The designed networks are successfully integrated into the ’Aphrodite DSP’ and mapped to
gate-level by a logic synthesis tool. As the designs are not ’placed and routed’, the presented
area estimates are based on the gate-level implementations and do not contain area of wires.
The area of the original Aphrodite network is also estimated from its gate-level implementation
to enable a fair comparison between the designed networks and the existing netowkr solution.
The area of the original network is estimated as the area of the multiplexors at the output ports,
minus the area of the computational units in theMUXADDers. The original Aphrodite network
is estimated to consist of 7395 gate equivalents which takes up roughly 0.092mm2 in a 0.18
µm process1. This corresponds to 1.2% of the total chip area.

Throughout the report it has been stated that both area and power estimates would be pre-
sented. Unfortunately it has not been possible to extract power estimates due to unforseen
difficulties with the design and verification tools.

In the following sections the area and bandwidth estimates are presented and commented,
and the results are discussed.

11.2 Results

Table11.1shows a comparison between the area and bandwidth of the different network imple-
mentations. The bandwidth is extracted from the gate-level simulation using worst case timing
parameters. It is a measure of the number of bits that can be sent through the network, without
synchronization or multicasting. The listed bandwidths are only possible if the synchronization
in the network adapters are decoupled from the network communication, which is currently not
the case. A detailed list of the area usage for each network are shown in table11.2.

1There are approximately 80.000 gate equivalents prmm2
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Network Area
(mm2)

Bandwidth
(MBit/s)

% of origi-
nal network

% of chip

Original 0.093 100% 1.19%

NoC1 0.084 358 91% 1.08%

NoC2 0.078 253 85% 1.00%

NoC3 0.19 100 203% 2.41%

Table 11.1:Area usage and bandwidth of the different networks.

11.2.1 Bundled data networks

The first two networks use a 4-phase bundled data protocol, and the network blocks are transpar-
ent to handshakes. The difference between the two networks is that NoC1 handles multicasting
in the network adapters, while NoC2 handles multicasting in two shared multicast blocks. This
decreases the area of multicasting from 14% to 8%, but increases the latency for unicasting, as
an additionalmergeandrouter block are inserted at the root of the network.

The latency for all 4-phases of the handshake is 5.2 ns for themergeblock and 8 ns for the
router block. This is a total latency of 53 ns and 66 ns for the longest paths through the two
networks. As 19 bits are transferred in eachpacket, the bandwidths are 358 MBit/s and 253
MBit/s, respectively.

11.2.2 1-of-5network

The third network employs narrow links using a1-of-5delay-insensitive encoding, and handles
multicasting in the NA network adapter. At first sight it seems odd, that this network is twice
the size of the other networks. The main reason is that theserializerandde-serializerblocks
use roughly 50 % of the area, but I believe that there are a number of other reasons as well:

• The two other networks contain no buffers at all. This makes all blocks in these networks
extremely simple. In contrast, therouter andmergeblocks in NoC3 contains one and
two latches, respectively. Some of these latches could be removed without decreasing the
bandwidth, as theserializerandde-serializerare currently the bottlenecks in this design.

• The 1-of-5 blocks use a large amount of C-elements with both 2 and 3 inputs. These
C-elements use an area of 5-6 gate equivalents which is almost as much as a flip-flop.
If more effective implementations were used, this area could be decreased. For example
inverting C-elements could be used in many situations. If possible, the C-elements could
even be designed as custom cells.

• Each block uses a number of OR gates with 5 and 8 inputs. These OR gates are initially
implemented as an binary tree of 2 input OR gates. This is large and slow, and should be
implemented using NOR-NAND constructs or other inverting multi-input gates.

• Theserializerandde-serializertakes up 45% of the total area. Around half of the area
in thede-serializeris used by flip-flops which could be exchanged by latches if the con-
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Block Number Area/block Area Percent

NA, network adapter 16 115 1840 27 %

AN, network adapter 12 135 1620 24 %

AM_multicast 16 60 960 14 %

Merger 15 87 1305 19 %

Router 11 92 1012 15 %

Total 6637 (0.084mm2)

(a) NoC1: 4-phase bundled data network where multicasting is handled in the NA, net-
work adapters.

Block Number Area/block Area Percent

NA, network adapter 16 115 1840 29 %

AN, network adapter 12 135 1620 26 %

Merger 15 87 1305 21 %

Router 11 92 1012 16 %

Multicast part (478) (8%)

Merger 2 87 174 3%

Router 2 92 184 3 %

P_Multicast 2 60 120 2 %

Total 6255 (0.078mm2)

(b) NoC2: 4-phase bundled data network where multicasting is handled in share multicast
blocks.

Block Number Area/block Area Percent

NA, network adapter 16 115 1840 12 %

AN, network adapter 12 135 1620 11 %

AM_multicast 16 60 960 6 %

Merger 15 145 2175 14 %

Router 11 103 1133 8 %

Serializer 16 272 4352 29 %

De-Serializer 2960 20 %

normal 8 241

discards oneflit 4 258

Total 15040 (0.19mm2)

(c) NoC3:1-of-5delay-insensitive network where multicasting is handled in the NA, net-
work adapters.

Table 11.2:Area usage of the different blocks in the three networks.
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trollers were modified. In theserializer, 30% of the area in used by 3 OR gates with
14 inputs. As already explained, these large OR-gates are made as trees of 2 input non-
inverting OR gates, which is far from an optimal implementation. At last, other imple-
mentations of the controller in both theserializerandde-serializershould be considered,
as the current implementation is large compared to the rest of the network.

I believe that the listed changes could decrease the implementation of NoC3 by at least 2-3000
gate equivalents, thereby using approximately 2% of the total chip area.

As the1-of-5networks consist of 4 different network blocks with different latency, it is diffi-
cult to calculate the bandwidth. Theserializeris the slowest block and therefore the bandwidth
of the network is determined by this. It takes 20 ns to transfer aflit of 2 bits, which gives a band-
width of 100 Mbit/s. From the gate-level implementation I have measured that it takes 240 ns to
send 20 bits of data from an input to an output port, including serialization and de-serialization
of theflits. This gives a bandwidth of 83 Mbit/s. This is lower than 100 Mbit/s but it includes
the 5flits used for routing and EOP, and handshakes to start theserializer. The individualrouter
andmergerblocks can transfer approximately 500 MBit/s.

11.3 Discussion

The first thing to notice is that the two bundled data networks are actually 9 and 15% smaller
than the original network, which must be considered a success. In addition to this, the area of
the original network is expected to increase further if the designs were ’place and routed’. This
is because area of the gates in the networks are only one part of the story. The original network
in Aphrodite contains many long wires which complicate routing and require bus-drivers. Some
of the network input ports are connected with up to 6 different output ports, which require even
larger bus-drivers. These bus-drivers are not included in the area estimates. In contrast, all the
networks designed in this project consists of short wires, which drive at most two gate-inputs.
Also, therouter andmergeblocks can be distributed among the communication blocks, making
routing easier for the ’place and route’ tool. The GALS methodology even allows timing-closure
to be performed for each communicating block instead of the entire design, thereby making
’place and routing’ easier.

It is also noticeable that the network adapters take up more than 50% of the total network
area in the two bundled data solutions. This is a quite a surprise, as they practically contains
nothing more than a flip-flop for the data. It illustrates that therouter andmergeblocks in the
bundled data networks are very small. If buffers are inserted into the a network to increase its
bandwidth, the area of the network will raise, making the network infeasible for the ’Aphrodite
DSP’.

The difference between NoC1 and NoC2 is that NoC2 implements multicasting in shared
multicast blocks, which decreases the area of multicasting from 14% to 8%. This slight de-
crease in area corresponds to less than 0.1% of the total chip area. If each network input port
sendspacketsto more than 2 destinations, the blocks which handles multicast, will take up far
more area, and the gain of shared multicast blocks will increase. If the number of simultane-
ous multicasts increases, the advantage might no longer be present, as each shared multicast
block requires an additionalrouter andmergeblock in the network. These additional blocks are
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connected with wires which must be routed on the chip, and included in the area estimate. In
concerns of power in NoC2, eachpacketsent from the NA, network adapters pass through an
additionalrouter andmergeblock, thus increasing the power consumption of unicasts. On the
other hand, multicasts use less power in NoC2, because they are handled at the root of the tree.
In summary, the number of possible multicasts for each block and the number of simultaneous
multicasts affects the areas of the two bundled data networks. The power consumption is depen-
dent of the distribution of unicasts and multicasts in the communication, and the networks must
be ’place and routed’ and power simulated before choosing between these two networks.

The NoC3 network takes up more area than the other networks, but it might not be out of the
question. The network uses 2.4% of the total chip area, which is not an unreasonable amount. As
the width of the links is 6 wires, less wires are to be routed than in the bundled data networks.
Also, the use of1-of-5 encoding decreases the problem with crosstalk, because only one of
the wires make a transition when transferring data. As crosstalk is increasing with decreasing
technology ,this might be important in future chips.1-of-5 encoding doe not need matched
delay and the circuitry can be made very fast. Especially in processes with large variations,
as the matched delay in a bundled data solution must be conservative and therefore slow. The
router andmergeblocks can handle approximately 500 Mbit/s, which makes it a good choice
for bandwidth demanding applications. A number of links can be routed in parallel if more
bandwidth is needed.

Even though power consumption has not been estimated, it is still possible to make some
remarks concerning the expected tendency. The dynamic power used at at node is given by

P = CV 2f

whereC is the capacitance of the node,V is the voltage, andf is the switching frequency. As
mentioned, the fanout and length of the wires in the designed networks, results in a reduction
in capacitance compared to the existing network solution. Concerning switching activity, the
original network uses roughly 11 transitions for eachpacket, which is 2 for the valid signal and
9 transtions for half of the data-bits2. In the bundled data solutions, apacketis transferred using
approximately 27 transitions, which is 4 for the handshake and half of the 23 data bits including
the return to zero. The1-of-5 solutionalways uses 60 transitions as it takes 4 transitions to
transfer aflit, and apacketconsists of 15flits including routing. The switching activity for the
1-of-5 network is increased by a factor of 6, and the power consumption of this network will
probably increase. For the bundled data networks, the number of transitions are almost tripled.
On other hand I postulate that the capacitance of the wires are reduced by more than a factor of 3,
thereby reducing the power consumption. When technology decreases, wires becomes taller but
thinner which increase their resistance and the coupling between the wires [4]. This tendency
promotes short wires even more as the capacitance of wires, and thereby power consumption,
increases.

In the ’Aphrodite DSP’ only a subsection of the input and output ports can communicate.
If a larger subset can communicate, the advantages over the existing network solution are in-
creased, as the designed networks do not increase in size. The area of the networks are linear

2I assume that data is un-correlated
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dependent on the number of inputs and outputs, making the network very scalable. The net-
works could very well be used in other applications with different number of inputs, outputs and
data bits. The network could be decoupled from the synchronization at the network adapters, if
needed. This depends on the bandwidth and latency requirements for the application. It should
be noted that the bandwidth in the two bundled data networks decreases with the number of in-
puts and outputs, because the networks do not include any buffers. It is possible to trade area for
bandwidth by inserting buffers between therouter andmergeblocks such that communication
is pipelined. As allpacketspass through the root of the network, the power consumption raises
with an increasing number of inputs and outputs. For very large applications and bandwidth
demanding systems, a more general topology might be beneficial such that locality can be ex-
ploited by placing blocks that create high traffic loads close to each other. On the other hand,
the router nodes in such a general topology are much larger.
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Chapter 12

Conclusion

This chapter concludes on the work done in this project and the results which was discussed in
the previous chapter.

I have successfully designed and implemented three asynchronouspacket-switched, source-
routednetworks. The networks have 16 input ports ,12 output ports, and supports multicasting.
Two of the networks use a 4-phase bundled data protocol, while the third uses a1-of-5delay-
insensitive encoding. The networks are integrated into the ’Aphrodite DSP’ and mapped to
standard cells in a 0.18µm technology. The estimated areas are extracted from the gate-level
implementations, as the designs are not ’placed and routed’.

All three networks show promising results and the smallest bundled data network takes up
0.084 mm2, which is 15% less than the existing network solution. Still, it provides sufficient
bandwidth and is able to communicate 358 Mbit/s, using estimates from the gate-level imple-
mentation. If the designs are ’place and routed’, the area of the designed networks are expected
to decrease even more, relative to the existing network solution.

The power consumption of the networks are not estimated due to difficulties regarding the
design and verification tools. Still, I have argued that the power consumption decreases for the
bundled data network, due to the shorter wires. If time permitted, it would be very interesting
to ’place and route’ the designs, such that the area and power could be properly estimated and
compared.

The network which uses1-of-5encoding takes up 0.19 mm2, which is twice as much as the
original network. Still, this is only 2.4% of the total chip area. I expect this network to use more
power than the bundled data network, and it is not a good choice for this application. It might be
an option for other applications who need more bandwidth, as it provides the largest bandwidth
per wire and is delay-insensitive.

The designed networks are ’plug-and-play’ and can easily be ported to future generations
of the ’Aphrodite DSP’ or other applications with different number of inputs, outputs and band-
width requirements. The size of the networks are linear dependent of the number of inputs,
outputs, multicasts and number of data bits. This makes the networks very scalable. The band-
width in the two bundled data networks decrease with the number of inputs and outputs, because
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these networks do not include any buffers. It is possible to trade area for bandwidth by insert-
ing buffers between therouter andmergeblocks, such that communication is pipelined. As
the networks decouple the communicating blocks, the chip can be designed using the GALS
methodology, which eases timing-closure and allows each block to run in its own clock domain.

Even though the networks are not ’placed and routed’, the results illustrates that it is possible
to design smallpacket-switchednetworks for applications with limited bandwidth requirements.
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Appendix A

Synchronization

When transferring data from one clock domain to another or from an asynchronous to a syn-
chronous domain, safe synchronization must be applied. As described in [10] it is extremely
dangerous to optimize the synchronization circuits as it is quite easy to make fatal mistakes
which makes the circuit malfunction. The article describes some of the many mistakes that has
been made in the past when the designer thinks that he has done something really clever.

FigureA.1 shows the basic two flop synchronizer which is a safe and widely used synchro-
nization technique. In this example the two flop synchronizer uses a push scheme to transfer
data between two different clock domains. As seen the receiver synchronizes the request and
the sender synchronizes the acknowledge.

If the first flops get metastable because the request line changes just asclk_2 ticks, ther1
signal will be metastable for a unknown period of time. Instead of usingr1 directly it is feed
into a new flop and has a whole clock period to stabilize.

[10] notes the following equation for Mean Time Between Failures (MTBF) for the two flop
synchronizer

MTBF =
e

T
τ

TW fAfD
(A.1)

whereτ is the settling time constant of the flop,TW is a parameter related to its time window
of susceptibility,fA is the clock frequency of the flops andfD is the frequency of which data is

��

��

r2r1
domain 1 domain 2

clk_2

ack

clk_1

req

Figure A.1:2 flop synchronization.
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pushed across the clock domains. As seen, the MTBF is closely related to T. In a 18µm process,
conservative parameters areτ =10ps,TW = 50ps,fA = 200Mhz andfD = 20Mhz the MTBF
the two-flop synchronizer is10240 years. Compared to this a single flop will enter metastability
at a rate of 1

TW fAfD
= 5µs which can hardly be considered safe.
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Appendix B

Cell library

Instead of instantiating cells from the cell library directly, a new virtual cell library is created
which wraps the cells in the used standard cell library. A cell in the virtual cell library starts
with the letterC_.
There are several reasons for creating this template cell library.

• To insert a propagation delay in the behavioral simulation. As explained in section10.1,
there is no delay in the used cell library.

• To take advantage of the complex gates in the used standard cell library which has to be
implemented by simple gates if they do not exist.

• To implement the asynchronous cells such as the Mutex and different C-elements using
complex gates.

In addition to the virtual cell library, a small number of ’template cells’ has also been created.
They all start with the letterTC_ and are created to ensure unit capacitance of the inputs as
the design rule in section4.2 indicates. The template cells are used whenever a gate needs
a drivestrength larger than one. This is for example the case if an enable signal is feed to a
number of latches. There is also template cells with a variable number of inputs. For example, a
multiplexor and an N-input OR gate which are constructed using a number of simple or complex
cells. It should be noted the selection of template cells are far from complete. This is because I
only implemented the ones which were needed for this project.

The use of template cells makes the actual design almost independent of the actual standard
cell library. If the cell library is exchanged, only the virtual cells and template cells must be
re-implemented. The delay through the cell does however differ from each cell library and the
matched delay must therefore be recalculated based on the used standard cell library.

Figure B.1 shows an inverter template cell which parameter is the FANOUT, that is the
standard unit capacitance that it can drive. The verilog ’generate’ statement is then used to
select an appropriate cell from the used standard cell library. The verilog code for virtual cells
and template cells can be found in appendixE.1.2andE.1.1, respectively.
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module TC_INV(a,z);
parameter FANOUT = 2;

input a;
output z;
wire s_z;

generate
if(FANOUT<=1)

inv0d0 inv_d0(.a(a), .z(s_z));
else
if(FANOUT<=4)

inv0d1 inv_d1(.a(a), .z(s_z));
else
if(FANOUT<=8)

inv0d4 inv_d4(.a(a), .z(s_z));
else
if(FANOUT<=16)

inv0d7 inv_d7(.a(a), .z(s_z));
else
if(FANOUT<=32)

inv0da inv_da(.a(a), .z(s_z));
endgenerate
assign #‘GATE_DELAY z = s_z;

endmodule

Figure B.1:Example of wrapper cell which inserts a gate delay into the behavioral model.
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Appendix C

CD contents

The attached CD-ROM includes all source code from appendixE, divided into 3 directories:

blocks/ All network blocks.

include/ Template cell library andglobal.vwhich contains global defines such as routes, which
network to use, debug_level etc.

noc_top/ Contains the tree networks as well as the main testbench.
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Appendix D

Network building blocks

D.1 Common blocks

D.1.1 AM_multicast

Function:

This is anAddress Managerwhich is used to provide multicast for the AN network adapter. The
Multicaster module (appendixD.1.5) is used to provide the multicast functionality while the
converter module converts from the general configuration matrix into a number of routes and
enable signals. The converter is included in appendixE.2.1.

Note that even though the illustration below only shows a multicast with 2 destinations, any
number of destinations can be provided.
Code can be found in AppendixE.3.2

Gate-level Implementation:

o_route

i_conf_enable

o_ack

i_req

o_ack

i_req

o_req i_ack o_data

Converter

Multicaster

o_route1 o_route2o_en2o_en1

i_data1 i_data2i_en2i_en1

o_req i_ack

i_conf_enablei_conf_master

i_conf_master
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D.1.2 AM_unicast

Function:

This is anAddress Managerwhich is used to provide unicast for the AN network adapter. It is
simply implemented by connecting the ingoing handshake with the outgoing handshake and as
it only has one route the incoming route is also connected directly to the outgoing.

Note that even though the illustration below only shows a multicast with 2 destinations, any
number of destinations can be provided.
Code can be found in AppendixE.3.3

Gate-level Implementation:

AM_unicast

i_req o_ack o_route i_ack o_req

i_route
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D.1. COMMON BLOCKS

D.1.3 AN, network adapter

Function:

The AN network adapter inputs apacketusing a 4-phase bundled data protocol and outputs data
using the Lego2 protocol. The design and implementation was discussed in chapter8.2.2

Data is latched in a flip-flop on the positive edge ofi_req . It could also be implemented
by connecting a level-sensitive latch too_ack , but this gave rise to problem when integrating
the NoC’s into the ’Aphrodite DSP’.

Note that the handshake is synchronized to the clock domain of the output port. This means
that it takes at least 4 clock cycles from for the entire handshake to complete and buffers should
be inserted before the network adapter to decouple if from the network.
Code can be found in AppendixE.3.4

Gate-level Implementation:

i_clk��
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i_data

o_ack

i_req

o_master

o_data

o_valid
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D.1. COMMON BLOCKS

D.1.4 de_serializer

Function:

This network block de-serializes a stream of 2 bitflits into a single data value. Both input and
output uses a 4-phase bundled data protocol. After the lastflit has been received, a special "End
Of Packet"(EOP) wire is asserted to indicate that there are no moreflits in thepacket.

Details about the implementation can be found in chapterE.3.5
Code can be found in AppendixE.3.5

Gate-level Implementation:

o_data

o_ack

flip−flops

i_req

i_data

Controller

De_serializer

i_eop o_req

i_ack

s_ctrl
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D.1. COMMON BLOCKS

D.1.5 Multicaster

Function:

The multicaster is used to generate any number of multicasts. The illustrated gate-level imple-
mentation only shows 2 multicasts, but the code is made such that themulticastercan provide
any number of multicasts.

Wheni_req is asserted the firstsequencerhandshakes on the output port while outputting
the data fromi_data1 . When the firstsequencerhas finished its handshake the succeedingse-
quenceris activated and so forth. At last the incoming handshake is completed. Each sequencer
can be disabled which is used in for example the multicastAddress Managerfrom appendix
D.1.1.
Code can be found in AppendixE.3.6

Gate-level Implementation:

o_acki_en2i_en1

o_req i_ack

Delay

i_req

i_data1 i_data2

o_data

Multicaster

Sequencer_en Sequencer_en
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D.1. COMMON BLOCKS

D.1.6 NA, network adapter

Function:

The NA network adapter inputs data using the Lego2 protocol and generatespacketsusing a
4-phase bundled data. It is assumed that the delay between data on the input port is large
enough for the network adapter to have sent the lastpacket. An Address Managermust be
connected to the network adapter which provide the route for thepacket. The currentAddress
Managersare AM_unicast and AM_multicast. AM_unicast is shown in the figure to illustrate
the basic behavior of the adapter. Chapter8.2.1contains more in depth information about the
implementation.
Code can be found in AppendixE.3.7

Gate-level Implementation:

C

i_data o_data

i_valid

AM_unicast

NA

o_req

i_ack

o_route_req i_route_ack i_route o_route_ack i_route_req

route
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D.1. COMMON BLOCKS

D.1.7 serializer

Function:

This network block serializes apacketinto a stream of 2 bitflits. Both the input and output
uses a 4-phase bundled data protocol. After the lastflit has been sent a special "End Of Packet"
(EOP) wire is asserted to indicate that there are no moreflits in thepacket. The EOP wire works
like the request wire and a 4-phase handshake must be performed using the EOP wire asrequest.

Details about the implementation can be found in chapter8.2.3.
Code can be found in AppendixE.3.8

Gate-level Implementation:

M
ux

i_ack

o_eop

o_req

o_data

Serializer

M
ux

i_data

s_ctrl

delay

Controlleri_req

o_ack
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D.1. COMMON BLOCKS

D.1.8 Sequencer

Function:

Thesequenceraccepts a 4 phase handshake on the left hand side and generates a 4-phase hand-
shake on the right hand side before completing the handshake on the left hand side. A more in
depth explanation of its functionality and the implementation can be found in chapter4.4. The
sequenceris for example used in the serializer which can be found in appendixD.1.7.
Code can be found in AppendixE.3.9

Gate-level Implementation:

C
��

��

��

si_ack_b

s_2s_1

si_req_b

i_ack

i_req

o_req

o_ack

C
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D.1. COMMON BLOCKS

D.1.9 Sequencer_en

Function:

This module wraps thesequencerfrom appendixD.1.8such that it can be disabled. Ifi_en is
’1’ is functions as thesequencer. If it is disabled, by loweringi_en , it does not produce any
outgoing handshake and simply completes the incoming handshake right away.
Code can be found in AppendixE.3.10

Gate-level Implementation:

Sequencer��

��
i_req

o_ack

i_req

i_en

o_ack

o_req

i_ack
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D.1. COMMON BLOCKS

D.1.10 Sequencer2

Function:

This sequenceris used in thede-serializerin appendixE.3.5. The functionality and implemen-
tation was gone through in chapter8.2.4.
Code can be found in AppendixE.3.11

Gate-level Implementation:
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C

C o_ack

o_en

i_en
i_req
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D.2. BUNDLED DATA BLOCKS

D.2 Bundled data blocks

D.2.1 P_merge

Function:

This module merges 2 input ports onto a single output port. The protocol on both input and
output ports are 4-phase bundled data. The 2 input ports do not have to be mutual exclusive and
arbitration is done inside the merge module.

The merger consists of a handshake arbiter and a multiplexor. The handshake arbiter grants
one of the inputs access to the output ports and locks the arbiter until the handshake is complete.
The multiplexor is implemented using an complex AND-OR gate.
Code can be found in AppendixE.5.1

Gate-level Implementation:
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D.2. BUNDLED DATA BLOCKS

D.2.2 P_merge_tree

Function:

This module instantiates a binary tree of P_merge elements. The code is recursively defined as
shown in the figure below by instantiating two smaller P_merge_tree’s and connecting them by
a single P_merge element.
Code can be found in AppendixE.5.2

Gate-level Implementation:

P_merge_tree

P_merge_tree

P_merge
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D.2. BUNDLED DATA BLOCKS

D.2.3 P_multicast

Function:

This module implements a 4-phase bundled data multicaster. It accepts apacketon its input
port and generates a number ofpacketson the output ports. The routes of thepacketsmust be
provided.

Note that even though the illustration below only shows a multicast with 2 destinations, any
number of destinations can be provided.
Code can be found in AppendixE.5.3

Gate-level Implementation:
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D.2. BUNDLED DATA BLOCKS

D.2.4 P_network

Function:

This module instantiates a binary tree of P_merge elements and a binary tree of P_router ele-
ments and connects them as illustrated below.
Code can be found in AppendixE.5.4

Gate-level Implementation:

P_router_treeP_merge_tree
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D.2. BUNDLED DATA BLOCKS

D.2.5 P_router

Function:

This module routes apacketfrom the input port to one of the two output port using a 4-phase
bundled data protocol. As was explained in chapter7.1, the most significant bit is used to
determine the route of thepacketand the route is shifted left by one. This also means that the
least significant route bit is set to 0.

Note that AND gates are inserted such that data are only sent to one of the output ports. The
data could safely be routed to both output ports since only one of the port receives a handshake.
This would cause the data wires to shift through the entire network and would contribute heavily
to the power consumption.

In the illustration below the route is 2 bits, but both the number of bits used for the route and
for the data can be specified.
Code can be found in AppendixE.5.5

Gate-level Implementation:

bufferC

0

i_req

i_data

o_ack

o_data1

0

o_data2

i_ack1

o_req1

o_req2

i_ack2

��

��

��

��

buffer

delay

delay

�	

C

delay


�

�

��

��

��

��

��

��

��

��

��

 !

"#

$%

Design of an asynchronous communication network for an audio DSP chip 93



D.2. BUNDLED DATA BLOCKS

D.2.6 P_router_tree

Function:

This module instantiates a binary tree of P_router elements. The code is recursively defined as
shown in the figure below by instantiating two smaller P_router_tree’s and connecting them by
a single P_router element.
Code can be found in AppendixE.5.6

Gate-level Implementation:

P_router

P_router_tree

P_router_tree
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D.2. BUNDLED DATA BLOCKS

D.2.7 P_sink

Function:

This is a simple sink for the 4-phase bundled data protocol. The sink is a eager consumer which
acknowledges the input as soon as it arrives and is always ready to receive new data.

The module also contains behavioral code which displays the received data.
Code can be found in AppendixE.5.7

Gate-level Implementation:

delay

i_req

o_ack

i_data
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D.3. 1-OF-5BLOCKS

D.3 1-of-5blocks

D.3.1 PC_bundled_1of4

Function:

This 2 bit Protocol converter, converts a 4 phase bundled data protocol into a 4 phase1-of-4
delay insensitive encoding. Note the AND gates with inverted inputs which disables all outputs
while theacknowledgewire is asserted. If these gates were not inserted the output might change
beforei_reqgoes low.
Code can be found in AppendixE.6.1

Gate-level Implementation:

delay

C

C

C

C

o_d3

o_d2

o_d1

o_d0

i_acko_ack

i_req

i_msb

i_lsb
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D.3. 1-OF-5BLOCKS

D.3.2 PC_1of4_bundled

Function:

This 2 bitProtocol converter, converts a 4 phase1-of-4delay insensitive encoding into a 4 phase
bundled data protocol. Therequestsignal is simply generated when either of the incoming data
wires goes high and the 4 one-hot wires converted into a 2 bit representation. A small delay is
inserted in therequestwire to make sure that the data is stable when theo_req wire is asserted.
Code can be found in AppendixE.6.2

Gate-level Implementation:

delay

o_msb

o_lsb

o_req

i_d0

i_d1

i_d2

i_d3

i_acko_ack
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D.3. 1-OF-5BLOCKS

D.3.3 S_latch

Function:

This is a simple1-of-5 latch using a 4-phase handshake protocol. The latch is inspired from the
CHAIN network [3].
Code can be found in AppendixE.6.3

Gate-level Implementation:

C

C

C

C

C

��

��

��

��

�	


�

�

��

��

��

i_d0

i_d1

i_d3

i_d2

i_eop

o_d0

o_d1

o_d2

i_d3

o_ack

i_ack

o_eop

Design of an asynchronous communication network for an audio DSP chip 98



D.3. 1-OF-5BLOCKS

D.3.4 S_merge

Function:

This module merges 2 input ports using a1-of-5protocol onto a single output port. The 2 input
ports do not have to be mutual exclusive and arbitration is done inside the merge module. The
merger is inspired from the CHAIN network [3] and the only difference is that C-elements are
used as state-holding instead of set/reset latches.
Code can be found in AppendixE.6.4

Gate-level Implementation:
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D.3. 1-OF-5BLOCKS

D.3.5 S_merge_tree

Function:

This module instantiates a binary tree of S_merge elements. The code is recursively defined as
shown in the figure below by instantiating two smaller S_merge_tree’s and connecting the by a
single S_merge element.
Code can be found in AppendixE.6.5

Gate-level Implementation:

S_merge

S_merge_tree

S_merge_tree
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D.3. 1-OF-5BLOCKS

D.3.6 S_network

Function:

This module instantiates a binary tree of S_merge elements and a binary tree of S_router ele-
ments and connects them as illustrated below.
Code can be found in AppendixE.6.6

Gate-level Implementation:

S_merge_tree S_router_tree
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D.3. 1-OF-5BLOCKS

D.3.7 S_router

Function:

This module inputs apacketusing a1-of-5 protocol and routes it onto one of two possible
output ports based on the values of the firstflit. The value ’0’ routes the remainingflits to output
port 1 while the value ’2’ routes remainingflits to output port 2. The router is inspired from
the CHAIN network [3] and the only differences are that C-elements are used as state-holding
instead of set/reset latches and that only the values ’0’ and ’2’ routes the data.
Code can be found in AppendixE.6.7

Gate-level Implementation:
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D.3. 1-OF-5BLOCKS

D.3.8 S_router_tree

Function:

This module instantiates a binary tree of S_router elements. The code is recursively defined as
shown in the figure below by instantiating two smaller S_router_tree’s and connecting the by a
single S_router element.
Code can be found in AppendixE.6.8

Gate-level Implementation:

S_router

S_router_tree

S_router_tree
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D.3. 1-OF-5BLOCKS

D.3.9 S_sink

Function:

This is a simple sink for the1-of-5, 4-phase handshake protocol. The sink is a eager consumer
which acknowledges the input as soon as it arrives and is always ready to receive new data.

The module also contains behavioral code which displays the received data.
Code can be found in AppendixE.6.9

Gate-level Implementation:
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D.3. 1-OF-5BLOCKS

D.3.10 S_source

Function:

This is pure behavioral source for the1-of-5, 4-phase handshake protocol. The source contains
tasksfor both sending a singleflit and an entirepacketincluding the End Of Packet (EOP)flit.
Code can be found in AppendixE.6.10
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Appendix E

Verilog Code

E.1 Cell library

E.1.1 cell_library.v

‘ i f n d e f _ c e l l _ l i b r a r y _ v
‘ d e f i n e _ c e l l _ l i b r a r y _ v
/∗

D e s c r i p t i o n :
L i b r a r y o f c e l l s .

Naming c o n v e n t i o n :
C_" C e l l t y p e " " Number o f I n p u t s " " Op t ions "_D" S t r e n g t h "

Op t ions :
’A ’ : Each ’A ’ means t h a t a s i n g l e p o r t i s nega ted .

S t r e n g t h :
The d r i v e s t r e n g t h og t h e p o r t . I f t h i s i s 1 , i t i s no t w r i t t e n

e . g :
C_AND2 : 2 i n p u t AND ga te
C_AND2_D3 : 2 i n p u t AND ga te w i t h d r i v e s t r e n g t h 3
C_AND2A : 2 i n p u t AND ga te where t h e f i r s t p o r t i s nega ted
C_OR4AA : 4 i n p u t OR ga te where t h e f i r s t 2 p o r t s are nega ted

A l l c e l l s t h a t r e s e t s t o someth ing ends w i th "_R0" o f "_R1" f o r
r e s e t t o ze ro or 1

C−Elements are a b i t s p e c i a l as t h e y can be a s s y m e t r i c
’M’ : Each ’M’ means t h a t a s i n g l e p o r t i s a s s y m e t r i c "−" (MINUS

) . S t a r t i n g from f i r s t p o r t
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E.1. CELL LIBRARY

’P ’ : Each ’P ’ means t h a t a s i n g l e p o r t i s a s s y m e t r i c "+" (PLUS)
. S t a r t i n g from l a s t p o r t

e . g :
C_C2_R0 : C−e lemen t w i t h 2 i n p u t s t h a t r e s e t s t o ze ro
C_C3P_R1_D2 : C−e lemen t w i t h 3 i n p u t s t h a t r e s e t s t o one . The

l a s t p o r t i s a s s y m e t i c "+ " . The o u t p u t
has t h e d r i v e s t r e n g t h 2

C_C2M_R0 : C−e lemen t w i t h 2 i n p u t s t h a t r e s e t s t o one . The
f i r s t p o r t i s a s s y m e t i c "−"

C_C4MMP_R1 : C−e lemen t w i t h 4 i n p u t s t h a t r e s e t s t o one . The
f i r s t 2 p o r t s are a s s y m e t i c "−"

wh i l e t h e l a s t p o r t i s a s s y m e t i c "+"

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /

/ / ‘ i n c l u d e " c e l l _ l i b r a r y _ b e h a v i o r a l . v "
‘ i n c l u d e " c e l l _ l i b r a r y _ a t 5 8 0 0 0 . v "

‘ t i m e s c a l e 1 ns / 1 ps

module TC_delay ( a , z ) ;
parameter DELAY_PS=200; / / Delay i n p i co seconds

‘ d e f i n e De layPrS tage 200
‘ d e f i n e NumberOfStages (DELAY_PS/ ‘ D e l a y P r S t a g e +1)
‘ d e f i n e NumberOf Inve r te rs ( ‘NumberOfStages∗2)

i npu t a ;
output z ;

wire [ 0 : ‘NumberO f Inve r te r s ] s_tmp ;

/ / Delay i s s i m p l y an even number o f i n v e r t e r s
i nv0d0 i n v e r t e r _ c h a i n [ 0 : ‘NumberOf Inve r te rs−2] ( . i ( s_tmp [ 0 :

‘NumberOf Inve r te rs−2]) , . zn ( s_tmp [ 1 : ‘NumberOf Inve r te rs−1]) ) ;
inv0d1 i n v e r t e r _ o u t p u t ( . i ( s_tmp [ ‘NumberOf Inve r te rs−1]) , . zn ( s_tmp [

‘NumberO f Inve r te r s ] ) ) ;
/ / Ass ign i n p u t
a s s i g n s_tmp [ 0 ] = a ;
/ / Ass ign o u t p u t
a s s i g n #(DELAY_PS/ 1 0 0 0 . 0 ) z = s_tmp [ ‘NumberO f Inve r te r s ] ;

endmodule / / TC_delay

/∗
OR, 5 i n p u t
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E.1. CELL LIBRARY

∗ /
module C_OR5( a , b , c , d , e , z ) ;

i npu t a , b , c , d , e ;
output z ;

wire s_1 , s_2 ;

C_OR2 or11 ( . a ( a ) , . b ( b ) , . z ( s_1 ) ) ;
C_OR3 or12 ( . a ( c ) , . b ( d ) , . c ( e ) , . z ( s_2 ) ) ;
C_OR2 or2 ( . a ( s_1 ) , . b ( s_2 ) , . z ( z ) ) ;

endmodule

/∗
NOR, 5 i n p u t

∗ /
module C_NOR5( a , b , c , d , e , z ) ;

i npu t a , b , c , d , e ;
output z ;

wire s_1 , s_2 ;

C_OR2 or11 ( . a ( a ) , . b ( b ) , . z ( s_1 ) ) ;
C_OR3 or12 ( . a ( c ) , . b ( d ) , . c ( e ) , . z ( s_2 ) ) ;
C_NOR2 nor2 ( . a ( s_1 ) , . b ( s_2 ) , . z ( z ) ) ;

endmodule

/∗
OR, 8 i n p u t

∗ /
module C_OR8( a , b , c , d , e , f , g , h , z ) ;

i npu t a , b , c , d , e , f , g , h ;
output z ;

wire s_1 , s_2 , s_3 ;

C_OR2 or11 ( . a ( a ) , . b ( b ) , . z ( s_1 ) ) ;
C_OR3 or12 ( . a ( c ) , . b ( d ) , . c ( e ) , . z ( s_2 ) ) ;
C_OR3 or13 ( . a ( f ) , . b ( g ) , . c ( h ) , . z ( s_3 ) ) ;
C_OR3 or2 ( . a ( s_1 ) , . b ( s_2 ) , . c ( s_3 ) , . z ( z ) ) ;

endmodule

module C_ORx( i n p u t s , z ) ;
parameter NUMBER=2;
i npu t [NUMBER−1:0] i n p u t s ;
output z ;

‘ d e f i n e N_UPPER (NUMBER/ 2 )
‘ d e f i n e N_LOWER (NUMBER−‘N_UPPER )
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E.1. CELL LIBRARY

wire s_z1 ;
wire s_z2 ;

genera te
i f (NUMBER>2)
begin

/ / Upper and lower or groups
C_ORx #( ‘N_UPPER ) o r_upper ( . i n p u t s ( i n p u t s [NUMBER−1:‘N_LOWER ] ) , .

z ( s_z1 ) ) ;
C_ORx #(‘N_LOWER) o r_ lower ( . i n p u t s ( i n p u t s [ ‘N_LOWER−1:0 ] ) , . z (

s_z2 ) ) ;
/ / Connect t h e t r e e s
C_OR2 or2 ( . a ( s_z1 ) , . b ( s_z2 ) , . z ( z ) ) ;

end e l s e
i f (NUMBER==2)
begin

/ / Connect t h e t r e e s
C_OR2 or2 ( . a ( i n p u t s [ 0 ] ) , . b ( i n p u t s [ 1 ] ) , . z ( z ) ) ;

end e l s e
a s s i g n z = i n p u t s [ 0 ] ;

endgenerate
endmodule

module TC_INV ( a , z ) ;
parameter FANOUT = 2 ;

i npu t a ;
output z ;

wire s_z ;

genera te
i f (FANOUT<=2)

inv0d0 inv_d0 ( . i ( a ) , . zn ( s_z ) ) ;
e l s e
i f (FANOUT<=4)

inv0d1 inv_d1 ( . i ( a ) , . zn ( s_z ) ) ;
e l s e
i f (FANOUT<=8)

inv0d2 inv_d2 ( . i ( a ) , . zn ( s_z ) ) ;
e l s e
i f (FANOUT<=28)

inv0d0 inv_d7 ( . i ( a ) , . zn ( s_z ) ) ;
endgenerate

a s s i g n #(‘GATE_DELAY) z = s_z ;
endmodule

module TC_BUF( a , z ) ;
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parameter FANOUT = 2 ;

i npu t a ;
output z ;

wire s_z ;

genera te
i f (FANOUT<=4)

bu f fd1 buf_d1 ( . i ( a ) , . z ( s_z ) ) ;
e l s e
i f (FANOUT<=12)

bu f fd3 buf_d3 ( . i ( a ) , . z ( s_z ) ) ;
e l s e
i f (FANOUT<=28)

bu f fd7 buf_d7 ( . i ( a ) , . z ( s_z ) ) ;
endgenerate

a s s i g n #(‘GATE_DELAY) z = s_z ;
endmodule

module TC_INV ( a , z ) ;
parameter FANOUT = 2 ;

i npu t a ;
output z ;

wire s_z ;

genera te
i f (FANOUT<=2)

inv0d0 inv_d0 ( . i ( a ) , . zn ( s_z ) ) ;
e l s e
i f (FANOUT<=4)

inv0d1 inv_d1 ( . i ( a ) , . zn ( s_z ) ) ;
e l s e
i f (FANOUT<=8)

inv0d2 inv_d2 ( . i ( a ) , . zn ( s_z ) ) ;
e l s e
i f (FANOUT<=28)

inv0d0 inv_d7 ( . i ( a ) , . zn ( s_z ) ) ;
endgenerate

a s s i g n #(‘GATE_DELAY) z = s_z ;
endmodule

module TC_AND2A( a , b , z ) ;
parameter FANOUT = 2 ;
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i npu t a , b ;
output z ;

wire s_z , s_z2 ;

genera te
i f (FANOUT<=4)

an12d1 an12d1 ( . a1 ( a ) , . a2 ( b ) , . z ( s_z ) ) ;
e l s e
i f (FANOUT<=8)

an12d2 an12d2 ( . a1 ( a ) , . a2 ( b ) , . z ( s_z ) ) ;
e l s e
i f (FANOUT<=16)

an12d4 an12d4 ( . a1 ( a ) , . a2 ( b ) , . z ( s_z ) ) ;
e l s e
i f (FANOUT<=28)
begin

an12d4 an12d4 ( . a1 ( a ) , . a2 ( b ) , . z ( s_z2 ) ) ;
/ / I n s e r t b ig b u f f e r
bu f fd7 bu f fd7 ( . i ( s_z2 ) , . z ( s_z ) ) ;

end
endgenerate
a s s i g n #(‘GATE_DELAY∗2) z = s_z ;

endmodule

/∗
M u l t i p l e x o r w i t h 1−ho t c a p a b i l i t y

∗ /
module TC_mux ( i _ d a t a , i _ c t r l , o_da ta ) ;

parameter SIZE =2;
/ / I n p u t s
i npu t [ SIZE−1:0] i _ d a t a , i _ c t r l ;
/ / Ou tpu ts
output o_da ta ;
/ /
wire [ SIZE−1:0] s_tmp ;

C_AND2 ands [ SIZE−1 : 0 ] ( . a ( i _ d a t a ) , . b ( i _ c t r l ) , . z ( s_tmp ) ) ;
C_ORx #SIZE o r _ t r e e ( . i n p u t s ( s_tmp ) , . z ( o_da ta ) ) ;

/∗
Error ch eck in g

∗ /
‘ i f d e f ERROR_CHECKING
i n t e g e r count , i ;
always @( i _ c t r l or i _ d a t a )
begin

coun t =0;
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f o r ( i =0; i <SIZE ; i = i +1)
begin

i f ( i _ c t r l [ i ] ) coun t = coun t +1;
i f ( ( i _ c t r l [ i ] ! =1 ’ b1 && i _ c t r l [ i ] ! =1 ’ b0 ) | | ( i _ d a t a [ i ]==1 ’ b1 &&

i _ d a t a [ i ]==1 ’ b0 ) )
begin

$d i sp l a y ( "TC_mux : ERROR" ) ;
$d i sp l a y ( " Some i n t e r n a l s i g n a l s i s unknown ! " ) ;
$d i sp l a y ( " i _ c t r l : %b " , i _ c t r l ) ;
$d i sp l a y ( " i _ d a t a : %b " , i _ d a t a ) ;
$s t o p ;
end

end
i f ( count >1)
begin

$d i sp l ay ( "TC_mux : ERROR" ) ;
$d i sp l ay ( " More than 1 c o n t r o l i s h igh and i t i s suppose t o

be ’ one hot ’ encod ing ! " ) ;
$d i sp l ay ( " i _ c t r l : %b " , i _ c t r l ) ;
$s t o p ;

end
end

‘ e n d i f

endmodule

‘ e n d i f
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E.1.2 cell_library_at58000.v

/∗
D e s c r i p t i o n :

C e l l l i b r a r y

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /
‘ i f n d e f _ c e l l _ l i b r a r y _ a t 5 8 0 0 0 _ v
‘ d e f i n e _ c e l l _ l i b r a r y _ a t 5 8 0 0 0 _ v

/ / ‘ u s e l i b d i r = . . / t e c h n o l o g y / l i b e x t =. v

‘ t i m e s c a l e 1 ns / 1 ps
‘ i n c l u d e " g l o b a l . v "

‘ d e f i n e GATE_DELAY 0.150 / / 150 ps

/∗
AND, 2 i n p u t

∗ /
module C_AND2( a , b , z ) ;

i npu t a , b ;
output z ;

wire s_z ;

an02d1 an02d1_ i ( . z ( s_z ) , . a1 ( a ) , . a2 ( b ) ) ;
a s s i g n #‘GATE_DELAY z = s_z ;

endmodule

/∗
NAND, 2 i n p u t

∗ /
module C_NAND2( a , b , z ) ;

i npu t a , b ;
output z ;

wire s_z ;

nd02d1 nd02d1_i ( . zn ( s_z ) , . a1 ( a ) , . a2 ( b ) ) ;
a s s i g n #‘GATE_DELAY z = s_z ;

endmodule

/∗
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AND, 2 inpu t , A nega ted
∗ /
module C_AND2A( a , b , z ) ;

i npu t a , b ;
output z ;

wire s_z ;

an12d1 an12d1_ i ( . z ( s_z ) , . a1 ( a ) , . a2 ( b ) ) ;
a s s i g n #‘GATE_DELAY z = s_z ;

endmodule

/∗
AND, 3 i n p u t

∗ /
module C_AND3( a , b , c , z ) ;

i npu t a , b , c ;
output z ;

wire s_z ;

an03d1 an03d1_ i ( . z ( s_z ) , . a1 ( a ) , . a2 ( b ) , . a3 ( c ) ) ;
a s s i g n #‘GATE_DELAY z = s_z ;

endmodule

/∗
AND, 4 i n p u t

∗ /
module C_AND4( a , b , c , d , z ) ;

i npu t a , b , c , d ;
output z ;

wire s_z ;

an04d1 an04d1_ i ( . z ( s_z ) , . a1 ( a ) , . a2 ( b ) , . a3 ( c ) , . a4 ( d ) ) ;
a s s i g n #‘GATE_DELAY z = s_z ;

endmodule

/∗
OR, 2 i n p u t

∗ /
module C_OR2( a , b , z ) ;

i npu t a , b ;
output z ;

wire s_z ;
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or02d1 or02d1_ i ( . z ( s_z ) , . a1 ( a ) , . a2 ( b ) ) ;
a s s i g n #‘GATE_DELAY z = s_z ;

endmodule

/∗
OR, 3 i n p u t

∗ /
module C_OR3( a , b , c , z ) ;

i npu t a , b , c ;
output z ;

wire s_z ;

or03d1 or03d1_ i ( . z ( s_z ) , . a1 ( a ) , . a2 ( b ) , . a3 ( c ) ) ;
a s s i g n #‘GATE_DELAY z = s_z ;

endmodule

/∗
OR, 4 i n p u t

∗ /
module C_OR4( a , b , c , d , z ) ;

i npu t a , b , c , d ;
output z ;

wire s_z ;

or04d1 or04d1_ i ( . z ( s_z ) , . a1 ( a ) , . a2 ( b ) , . a3 ( c ) , . a4 ( d ) ) ;
a s s i g n #‘GATE_DELAY z = s_z ;

endmodule

/∗
NOR, 2 i n p u t

∗ /
module C_NOR2( a , b , z ) ;

i npu t a , b ;
output z ;

wire s_z ;

nr02d1 nr02d1_ i ( . zn ( z ) , . a1 ( a ) , . a2 ( b ) ) ;
a s s i g n #‘GATE_DELAY z = s_z ;

endmodule

/∗
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AND−OR
∗ /
module C_AOR22( a , b , c , d , z ) ;

i npu t a , b , c , d ;
output z ;

wire s_z ;

aor22d1 aor222d1_ i ( . z ( s_z ) , . a1 ( a ) , . a2 ( b ) , . b1 ( c ) , . b2 ( d ) ) ;

/ / Delay th rough complex g a t e s
a s s i g n #‘GATE_DELAY z = s_z ;

endmodule

/∗
C−e lement , 2 i n p u t

R e s e t s ( low ) t o ze ro
∗ /

module C_C2_R0 ( a , b , z , r e s e t _ b ) ;
i npu t a , b , r e s e t _ b ;
output z ;

wire s_z , s_z1 , s_z2 ;

aor222d1 aor222d1_ i ( . z ( s_z1 ) , . a1 ( a ) , . a2 ( b ) , . b1 ( a ) , . b2 ( s_z ) , . c1
( b ) , . c2 ( s_z ) ) ;

/ / Delay th rough complex g a t e s
a s s i g n #‘GATE_DELAY s_z2 = s_z1 ;
/ / R e s e t ga te
C_AND2 adds1 ( . a ( s_z2 ) , . b ( r e s e t _ b ) , . z ( s_z ) ) ;
/ / Output
a s s i g n z = s_z2 ;

endmodule

/∗
C−e lement , 2 i n p u t

R e s e t s ( low ) t o ze ro

Asymet r i c , one p l u s

∗ /
module C_C2P_R0 ( a , b , z , r e s e t _ b ) ;

i npu t a , b , r e s e t _ b ;
output z ;
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wire s_z , s_z1 , s_z2 ;

aor22d1 ao r22d1_ i ( . z ( s_z1 ) , . a1 ( a ) , . a2 ( b ) , . b1 ( a ) , . b2 ( s_z ) ) ;

/ / Delay th rough complex g a t e s
a s s i g n #‘GATE_DELAY s_z2 = s_z1 ;
/ / R e s e t ga te
C_AND2 adds1 ( . a ( s_z2 ) , . b ( r e s e t _ b ) , . z ( s_z ) ) ;
a s s i g n z = s_z2 ;

endmodule

/∗
C−e lement , 2 i n p u t

R e s e t s ( low ) t o ze ro

Asymet r i c , one minus , one p l u s

∗ /
module C_C2MP_R0( a , b , z , r e s e t _ b ) ;

i npu t a , b , r e s e t _ b ;
output z ;

wire s_z , s_z1 , s_z2 ;

aor21d1 ao r21d1_ i ( . z ( s_z1 ) , . b1 ( a ) , . b2 ( s_z ) , . a ( b ) ) ;
/ / Delay th rough complex g a t e s
a s s i g n #‘GATE_DELAY s_z2 = s_z1 ;
/ / R e s e t ga te
C_AND2 a n d _ r e s e t ( . a ( s_z2 ) , . b ( r e s e t _ b ) , . z ( s_z ) ) ;
/ / o u t p u t
a s s i g n z = s_z2 ;

endmodule

module C_C3MPP_R0( a , b , c , z , r e s e t _ b ) ;
i npu t a , b , c , r e s e t _ b ;
output z ;

wire s_z , s_z1 , s_z2 ;

aor22d1 ao r22d1_ i ( . z ( s_z1 ) , . b1 ( a ) , . b2 ( s_z ) , . a1 ( b ) , . a2 ( c ) ) ;
/ / Delay th rough complex g a t e s
a s s i g n #‘GATE_DELAY s_z2 = s_z1 ;
/ / R e s e t ga te
C_AND2 a n d _ r e s e t ( . a ( s_z2 ) , . b ( r e s e t _ b ) , . z ( s_z ) ) ;
/ / o u t p u t
a s s i g n z = s_z2 ;

endmodule
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/∗
C−e lement , 3 i n p u t

R e s e t s t o ze ro

a s s y m e t r i c , 2 P l u s s e s

∗ / module C_C3PP_R0 ( a , b , c , z , r e s e t _ b ) ;
i npu t a , b , c , r e s e t _ b ;
output z ;

wire s_z , s_z1 , s_z2 , s_z3 ;

ao i321d1 aor321d1_ i ( . zn ( s_z1 ) , . c1 ( a ) , . c2 ( b ) , . c3 ( c ) , . b1 ( a ) , . b2 (
s_z ) , . a (1 ’ b0 ) ) ;

/ / Delay th rough complex g a t e s
a s s i g n #‘GATE_DELAY s_z2 = s_z1 ;
inv0d1 inv ( . i ( s_z2 ) , . zn ( s_z3 ) ) ;

/ / R e s e t ga te
C_AND2A a n d _ r e s e t ( . a ( s_z2 ) , . b ( r e s e t _ b ) , . z ( s_z ) ) ;
/ / o u t p u t
a s s i g n z = s_z3 ;

endmodule

/∗
C−e lement , 3 i n p u t

R e s e t s t o ze ro
∗ /
module C_C3_R0 ( a , b , c , z , r e s e t _ b ) ;

i npu t a , b , c , r e s e t _ b ;
output z ;

wire s _ s e t , s _ r e s e t _ b ;

an03d1 or3 ( . a1 ( a ) , . a2 ( b ) , . a3 ( c ) , . z ( s _ r e s e t _ b ) ) ;
or03d1 and3 ( . a1 ( a ) , . a2 ( b ) , . a3 ( c ) , . z ( s _ s e t ) ) ;

C_C2_R0 c2 ( . a ( s _ s e t ) , . b ( s _ r e s e t _ b ) , . z ( z ) , . r e s e t _ b ( r e s e t _ b ) ) ;

/∗ reg z ;

a lways @( r e s e t _ b )
z <= 0;
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a lways @( a or b or c )
i f ( a==b && b==c )

#‘GATE_DELAY z <= a ;
∗ /
endmodule

/∗
C−e lement , 3 i npu t ,

R e s e t s ( low ) t o ze ro

Asymet r i c , one p l u s
∗ /
module C_C3P_R0 ( a , b , c , z , r e s e t _ b ) ;

i npu t a , b , c , r e s e t _ b ;
output z ;

wire s_z , s_z1 , s_z2 ;

ao i322d1 ao i322d1_ i ( . zn ( s_z1 ) , . c1 ( a ) , . c2 ( b ) , . c3 ( c ) , . b1 ( a ) , . b2 (
s_z ) , . a1 ( b ) , . a2 ( s_z ) ) ;

/ / Delay th rough complex g a t e s
a s s i g n #‘GATE_DELAY s_z2 = s_z1 ;
/ / R e s e t ga te
C_AND2A adds1 ( . a ( s_z2 ) , . b ( r e s e t _ b ) , . z ( s_z ) ) ;
/ / o u t p u t
TC_INV i n v _ o u t p u t ( . a ( s_z2 ) , . z ( z ) ) ;

endmodule

/∗
Mutex , 2 i n p u t

Re s e t low
∗ /
module C_MUTEX2( i_ req1 , i _ req2 , o_req1 , o_req2 ) ;

i npu t i _ req1 , i _ r e q 2 ;
output o_req1 , o_req2 ;

‘ i f d e f SYNTHESIS_ON
/ / RTL v e r s i o n
wire s_q1 , s_q2 ;
nd02d0 nand1 ( . zn ( s_q1 ) , . a1 ( i _ r e q 1 ) , . a2 ( s_q2 ) ) ;
nd02d0 nand1 ( . zn ( s_q2 ) , . a1 ( i _ r e q 2 ) , . a2 ( s_q1 ) ) ;
inv0d1 inv1 ( . i ( s_q1 ) , . zn ( o_req1 ) ) ;
inv0d1 inv2 ( . i ( s_q2 ) , . zn ( o_req2 ) ) ;

‘ e l s e
/ / B e h a v i o r a l v e r s i o n
reg o_req1 , o_req2 ;
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always @( posedge i _ r e q 1 )
begin

i f ( ! o_req2 )
o_req1 <= 1 ’ b1 ;

end
always @(negedge i _ r e q 1 )

begin
o_req1 <= 1 ’ b0 ;
i f ( i _ r e q 2 )

o_req2 <= 1 ’ b1 ;
end

always @( posedge i _ r e q 2 )
begin

i f ( ! o_req1 && ! i _ r e q 1 )
o_req2 <= 1 ’ b1 ;
end

always @(negedge i _ r e q 2 )
begin

o_req2 <= 1 ’ b0 ;
i f ( i _ r e q 1 )

o_req1 <= 1 ’ b1 ;
end

‘ e n d i f / / SYNTHESIS_ON

endmodule

/∗
Latch

A c t i v e low
Q o u t p u t on l y
Re s e t ( low )

∗ /

module C_LATCHQL( d , en , q ) ;
i npu t d , en ;
output q ;

wire s_q ;

l a n l q 1 l a n l q 1 _ i ( . q ( s_q ) , . en ( en ) , . d ( d ) ) ;
a s s i g n #‘GATE_DELAY q = s_q ;

endmodule

/∗
D− f l i p f l o p ,

P o s i t i v e c l o c k edge
Q o u t p u t on l y

∗ /
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module C_FD1Q( d , c lk , q ) ;
i npu t d , c l k ;
output q ;

wire s_q ;

d fn rq1 d f n r q 1 _ i ( . q ( s_q ) , . cp ( c l k ) , . d ( d ) ) ;
a s s i g n #‘GATE_DELAY q = s_q ;

endmodule

/∗
S e t / R e s e t module ( a c t i v e low f o r bo th s e t and r e s e t )
Q and Q_Bar o u t p u t

∗ /
module C_SR( se t_b , r e s e t _ b , q , q_b ) ;

i npu t se t_b , r e s e t _ b ;
output q , q_b ;

wire s_q , s_qb ;

/ / Using a s e t / r e s e t f l i p−f l o p
l abhb1 l a b h b 1 _ i ( . q ( s_q ) , . qn ( s_qb ) , . e (1 ’ b0 ) , . d (1 ’ b0 ) , . cdn (

r e s e t _ b ) , . sdn ( s e t _ b ) ) ;
a s s i g n #‘GATE_DELAY q = s_q ;
a s s i g n #‘GATE_DELAY q_b = s_qb ;

endmodule

‘ e n d i f

E.2 Networks

E.2.1 Converter

/∗
D e s c r i p t i o n :

Conve r t s a number o f enab led r o u t e s i n t o a r o u t e

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /
‘ i f n d e f _Conver te r_v
‘ d e f i n e _Conver te r_v

‘ i n c l u d e " g l o b a l . v "
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module C o n v e r t e r ( i _ e n a b l e , i _mas te r , o_enab le , o _ r o u t e ) ;

task i n t e g e r T o R o u t e ;
i npu t [ 3 : 0 ] a d d r e s s ;
output [ 3 : 0 ] r o u t e ;

begin
case ( a d d r e s s )

0 : r o u t e = ‘ROUTE_1 ;
1 : r o u t e = ‘ROUTE_2 ;
2 : r o u t e = ‘ROUTE_3 ;
3 : r o u t e = ‘ROUTE_4 ;
4 : r o u t e = ‘ROUTE_5 ;
5 : r o u t e = ‘ROUTE_6 ;
6 : r o u t e = ‘ROUTE_7 ;
7 : r o u t e = ‘ROUTE_8 ;
8 : r o u t e = ‘ROUTE_9 ;
9 : r o u t e = ‘ROUTE_10 ;
10 : r o u t e = ‘ROUTE_11 ;
11 : r o u t e = ‘ROUTE_12 ;
12 : r o u t e = ‘ROUTE_13 ;
13 : r o u t e = ‘ROUTE_14 ;
14 : r o u t e = ‘ROUTE_15 ;
15 : r o u t e = ‘ROUTE_16 ;
d e f a u l t : r o u t e = 0 ;

endcase
/ / $ d i s p l a y ( " i n t e g e r T o R o u t e : %d %b " , address , r o u t e ) ;

end
endtask

parameter N_MC=2;
parameter N_ROUTES=‘N_OUTPUTS ;

/ / I n p u t s
i npu t [N_ROUTES−1:0] i _ e n a b l e ;
i npu t [N_ROUTES−1:0] i _ m a s t e r ;
/ / Ou tpu ts
output [N_MC∗ ( ‘ROUTE_WIDTH+1)−1:0] o _ r o u t e ;
output [N_MC−1:0] o_enab le ;

reg [N_MC∗ ( ‘ROUTE_WIDTH+1)−1:0] o _ r o u t e ;
reg [N_MC−1:0] o_enab le ;

i n t e g e r i ;
always @( i _ e n a b l e or i _ m a s t e r )
begin
/ / $ d i s p l a y ( " Conve r t i ng : %b " , i _ e n a b l e ) ;

o_enab le = 0 ;
o _ r o u t e = 0 ;
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f o r ( i =0; i <N_ROUTES; i = i +1)
begin

i f ( ( ( i _ e n a b l e >> i ) &1’b1 ) ==1 ’ b1 )
begin

o _ r o u t e = o_rou te < <5;
i n t e g e r T o R o u t e ( i , o _ r o u t e [ 4 : 1 ] ) ;
o _ r o u t e [ 0 ] = ( ( i _mas te r >> i ) &1’b1 ) ;
o_enab le = ( o_enab le <<1) | 1 ’ b1 ;

end
end

/ / $ d i s p l a y ( " Done Conve r t i ng : en : %b r o u t e s : %b " , o_enable , o_ rou te )
;

end

/ / ambi t s y n t h e s i s o f f

/∗
Func t i on which t e s t s t h a t t h e i n p u t s are never acked a t t h e same t ime
∗ /
i n t e g e r l , coun t ;

always @( i _ e n a b l e )
begin

coun t =0;
f o r ( i =0; i <N_ROUTES; i = i +1)

i f ( ( ( i _ e n a b l e >>(N_ROUTES−i −1) ) &1’b1 ) ==1 ’ b1 )
coun t = coun t +1;

i f ( count >N_MC)
begin

‘ERROR( "ERROR ! . To Many m u l i c a s t s . " )
end
/ / ‘ERROR( ’"%d mc " , c o u n t ‘ )

end

/ / ambi t s y n t h e s i s on

endmodule

‘ e n d i f
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E.2.2 Converter_P2

/∗
D e s c r i p t i o n :

Conve r t s a number o f enab led r o u t e s i n t o a r o u t e

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /
‘ i f n d e f _Conver te r_P2_v
‘ d e f i n e _Conver te r_P2_v

‘ i n c l u d e " g l o b a l . v "

‘ d e f i n e ROUTE_MC_1 5 ’ b10000
‘ d e f i n e ROUTE_MC_2 5 ’ b11000
‘ d e f i n e ROUTE_MC_3 5 ’ b10100
‘ d e f i n e ROUTE_MC_4 5 ’ b11100

module Conver te r_P2 (
i _ e n a b l e ,
i _mas te r ,
o_ rou te ,
o_mc_enable , / / enab le f o r MC modules
o_mc_route / / r o u t e f o r MC modules

) ;

/∗
Parameters

∗ /
parameter N_MC_BLOCKS=2; / / Number o f m u l t i c a s t b l o c k s
parameter N_MC_PR_BLOCK=2; / / M u l t i c a s t s pr m u l t i c a s t b l o c k
parameter N_INPUTS=10;
parameter N_OUTPUTS=10;

parameter ROUTE_WIDTH=5+1; / / r o u t e + maste r

task i n t e g e r T o R o u t e ;
i npu t [ 4 : 0 ] a d d r e s s ;
output [ 4 : 0 ] r o u t e ;

begin
case ( a d d r e s s )

0 : r o u t e = ‘ROUTE_1 ;
1 : r o u t e = ‘ROUTE_2 ;
2 : r o u t e = ‘ROUTE_3 ;
3 : r o u t e = ‘ROUTE_4 ;
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4 : r o u t e = ‘ROUTE_5 ;
5 : r o u t e = ‘ROUTE_6 ;
6 : r o u t e = ‘ROUTE_7 ;
7 : r o u t e = ‘ROUTE_8 ;
8 : r o u t e = ‘ROUTE_9 ;
9 : r o u t e = ‘ROUTE_10 ;
10 : r o u t e = ‘ROUTE_11 ;
11 : r o u t e = ‘ROUTE_12 ;
12 : r o u t e = ‘ROUTE_13 ;
13 : r o u t e = ‘ROUTE_14 ;
14 : r o u t e = ‘ROUTE_15 ;
15 : r o u t e = ‘ROUTE_16 ;
d e f a u l t : r o u t e = 0 ;

endcase
end

endtask

task in tegerToMCRoute ;
i npu t [ 5 : 0 ] a d d r e s s ;
output [ 5 : 0 ] r o u t e ;

begin
case ( a d d r e s s )

0 : r o u t e = ‘ROUTE_MC_1 ;
1 : r o u t e = ‘ROUTE_MC_2 ;
2 : r o u t e = ‘ROUTE_MC_3 ;
3 : r o u t e = ‘ROUTE_MC_4 ;
d e f a u l t : r o u t e = 0 ;

endcase
end

endtask

/ / I n p u t s
i npu t [ N_INPUTS∗N_OUTPUTS−1:0] i _ e n a b l e ;
i npu t [ N_INPUTS∗N_OUTPUTS−1:0] i _ m a s t e r ;
/ / Ou tpu ts
output [ N_INPUTS∗ROUTE_WIDTH−1:0] o _ r o u t e ;
output [N_MC_PR_BLOCK∗N_MC_BLOCKS∗ROUTE_WIDTH−1:0] o_mc_route ;
output [N_MC_BLOCKS∗N_MC_PR_BLOCK−1:0] o_mc_enable ;

reg [ N_INPUTS∗ROUTE_WIDTH−1:0] o _ r o u t e ;
reg [N_MC_PR_BLOCK∗N_MC_BLOCKS∗ROUTE_WIDTH−1:0] o_mc_route ;
reg [N_MC_PR_BLOCK∗N_MC_BLOCKS−1:0] o_mc_enable ;

/ / Temporary r e g i s t e r s
reg [N_OUTPUTS−1:0] c u r r e n t _ e n a b l e , c u r r e n t _ m a s t e r ;
reg [ROUTE_WIDTH−1:0] tmp_rou te ;
/ / g e n e r a t e v e r i s
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i n t e g e r i , j , coun t ;
i n t e g e r currentMC , c u r r e n t A d d r e s s ;

always @( i _ e n a b l e or i _ m a s t e r )
begin

/ / F i r s t , r e s e t r o u t e s and m u l t i c a s t s
o _ r o u t e = 0 ;
o_mc_route = 0 ;
o_mc_enable =0;
/ / R e s e t m u l t i c a s t c o u n t e r
currentMC =0;

/ / Loop th rough a l l i n p u t s
f o r ( i =0; i <N_INPUTS ; i = i +1)
begin

c u r r e n t _ e n a b l e = i _ e n a b l e >>( i∗N_OUTPUTS) ;
c u r r e n t _ m a s t e r = i_mas te r >>( i∗N_OUTPUTS) ;

/ / F i r s t coun t t h e number o f d e s t i n a t i o n s f o r t h i s i n p u t
/ / t o d e t e r m i n e i f i t i s a u n i c a s t or m u l t i c a s t
coun t =0;
f o r ( j =0; j <N_OUTPUTS; j = j +1)

i f ( ( ( c u r r e n t _ e n a b l e >> j ) &1’b1 ) ==1 ’ b1 )
coun t = coun t +1;

/∗
Not used

∗ /
i f ( coun t ==0)
begin
end e l s e
/∗

Un icas t
∗ /
i f ( coun t ==1)
begin

fo r ( j =0; j <N_OUTPUTS; j = j +1)
i f ( ( ( c u r r e n t _ e n a b l e >> j ) &1’b1 ) ==1 ’ b1 )
begin

i n t e g e r T o R o u t e ( j , tmp_rou te [ROUTE_WIDTH−2:1 ] ) ;
tmp_rou te [ROUTE_WIDTH−1] = 1 ’ b0 ; / / No m u l t i c a s t
tmp_rou te [ 0 ] = ( ( c u r r e n t _ m a s t e r >> j ) &1’b1 ) ;
o _ r o u t e = o _ r o u t e | ( tmp_rou te << i∗ROUTE_WIDTH) ;

end
end
e l s e
/∗

M u l t i c a s t
∗ /
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i f ( coun t ==2)
begin

/ / F i r s t , send t h e p a c k e t t o t h e MC b l o c k
in tegerToMCRoute ( currentMC , tmp_rou te [ROUTE_WIDTH−1:1 ] ) ;
tmp_rou te [ 0 ] = 0 ; / / does no t m a t t e r
o _ r o u t e = o _ r o u t e | ( tmp_rou te << i∗ROUTE_WIDTH) ;

c u r r e n t A d d r e s s =0;
/ / Second , S e t up t h e b l o c k t o t h e 2 a d d r e s s e s
f o r ( j =0; j <N_OUTPUTS; j = j +1)

i f ( ( ( c u r r e n t _ e n a b l e >> j ) &1’b1 ) ==1 ’ b1 )
begin

i n t e g e r T o R o u t e ( j , tmp_rou te [ROUTE_WIDTH−1:2 ] ) ;
tmp_rou te [ 1 ] = 0 ; / / don ’ t ca re
tmp_rou te [ 0 ] = ( ( c u r r e n t _ m a s t e r >> j ) &1’b1 ) ;
/ / Se tup t h e r o u t e

o_mc_enable = o_mc_enable | (1 ’ b1 <<( c u r r e n t A d d r e s s +
N_MC_PR_BLOCK∗ currentMC ) ) ;

o_mc_route = o_mc_route | ( tmp_route <<(ROUTE_WIDTH∗ (
c u r r e n t A d d r e s s +N_MC_PR_BLOCK∗ currentMC ) ) ) ;

/ / Advance c u r r e n t add ress
c u r r e n t A d d r e s s = c u r r e n t A d d r e s s +1;

end
/ / Advance currentMC , such t h a t n e x t m u l t i c a s t uses t h e n e x t MC

b l o c k
currentMC=currentMC +1;

end e l s e
begin

‘ERROR( "ERROR ! . To Many m u l i c a s t s . Only 2 a l l owed " )
end

end
end

endmodule

‘ e n d i f
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E.2.3 NoC

/∗
D e s c r i p t i o n :

NoC .

P a r a l l e l bund led da ta v e r s i o n
Topology : B inary t r e e

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /
‘ i f n d e f _NoC_v
‘ d e f i n e _NoC_v

‘ i n c l u d e " g l o b a l . v "
‘ t i m e s c a l e 1 ns / 1 ps

module NoC(
i _ d a t a ,
i _ v a l i d ,
i _ c o n f _ e n a b l e ,
i _ co n f _ ma s te r ,
o_data ,
o_master ,
o_va l i d ,
i _ c l k ,
i _ r e s e t _ b ) ;

/∗
Parameters

∗ /
parameter INPUTS=‘N_INPUTS ;
parameter OUTPUTS=‘N_OUTPUTS ;
parameter DATA_WIDTH=‘DATA_WIDTH;

/ / Th i s i s no t r e a l l y a pa ramete rs . . +1 due t o master4 b i t
parameter ROUTE_WIDTH=‘ROUTE_WIDTH+1;
parameter BUS_WIDTH=DATA_WIDTH+ROUTE_WIDTH;

/ / TBD . Due t o models im crash
parameter ROUTE_WIDTH2=5;

/∗
I n p u t s

∗ /
i npu t [ INPUTS∗DATA_WIDTH−1:0] i _ d a t a ;
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i npu t [ INPUTS−1:0] i _ v a l i d ;
i npu t [ INPUTS∗OUTPUTS−1:0] i _ c o n f _ e n a b l e , i _ c o n f _ m a s t e r ;
i npu t i _ c l k , i _ r e s e t _ b ;

/∗
Outpu ts

∗ /
output [OUTPUTS∗DATA_WIDTH−1:0] o_da ta ;
output [OUTPUTS−1:0] o_mas te r ;
output [OUTPUTS−1:0] o _ v a l i d ;

/∗
I n t e r n a l s i g n a l s

∗ /
wire [ INPUTS∗BUS_WIDTH−1:0] s i _ d a t a ;
wire [OUTPUTS∗BUS_WIDTH−1:0] s o _ d a t a ;
wire [ INPUTS−1:0] s i _ r e q , so_ack ;
wire [OUTPUTS−1:0] so_req , s i _ a c k ;
wire [ INPUTS∗ROUTE_WIDTH−1:0] s _ r o u t e ;
wire [ INPUTS−1:0] s_ rou te_ack , s _ r o u t e _ r e q ;
wire [ INPUTS−1:0] s_req , s_ack ;

/∗
N e t l i s t

∗ /
/ / The network
P_network network ( s i _ d a t a , s i _ r e q , so_ack , so_da ta , so_req , s i_ack ,

i _ r e s e t _ b ) ;
defparam network . INPUTS=INPUTS ;
defparam network .OUTPUTS=OUTPUTS;
defparam network .BUS_WIDTH=BUS_WIDTH; / / w id th+Master
defparam network .DATA_WIDTH=DATA_WIDTH+1;

/ / The Network a d a p t e r s
genvar i ;
genera te

fo r ( i =0; i <INPUTS ; i = i +1)
begin : NA_genera t ion

NA naAdapte r (
. i _ d a t a ( i _ d a t a [ (1+ i )∗DATA_WIDTH−1: i ∗DATA_WIDTH] ) ,
. i _ v a l i d ( i _ v a l i d [ i ] ) ,
. o_da ta ( s i _ d a t a [ (1+ i )∗BUS_WIDTH−1: i ∗BUS_WIDTH ] ) ,
. o_req ( s i _ r e q [ i ] ) ,
. i _ a c k ( so_ack [ i ] ) ,
. o _ r o u t e _ r e q ( s _ r o u t e _ r e q [ i ] ) ,
. i _ r o u t e ( s _ r o u t e [ (1+ i )∗ROUTE_WIDTH−1: i ∗ROUTE_WIDTH] ) ,
. i _ r e q ( s _ r e q [ i ] ) ,
. o_ack ( s_ack [ i ] ) ,
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. i _ r o u t e _ a c k ( s _ r o u t e _ a c k [ i ] ) ,

. i _ c l k ( i _ c l k ) ,

. i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;
defparam naAdapter .DATA_WIDTH=DATA_WIDTH;
defparam naAdapter .BUS_WIDTH=BUS_WIDTH;
defparam naAdapter .ROUTE_WIDTH=ROUTE_WIDTH;

/ / AM_unicast am_un icas t ( s _ r o u t e 1 [ 0 : 3 ] , s _ r o u t e _ r e q [ i ] , s_ack [ i
] , s _ r o u t e 2 [ i∗‘ROUTE_WIDTH:(1+ i )∗‘ROUTE_WIDTH−1] , s_ req [ i ] ,
s _ r o u t e _ a c k [ i ] , i _ r e s e t _ b ) ;

AM_mul t icast a m _ m u l t i c a s t (
. i _ c o n f _ e n a b l e ( i _ c o n f _ e n a b l e [ ( i +1)∗OUTPUTS−1: i ∗OUTPUTS ] ) ,
. i _ c o n f _ m a s t e r ( i _ c o n f _ m a s t e r [ ( i +1)∗OUTPUTS−1: i ∗OUTPUTS ] ) ,
. i _ r e q ( s _ r o u t e _ r e q [ i ] ) ,
. i _ a c k ( s_ack [ i ] ) ,
. o_da ta ( s _ r o u t e [ (1+ i )∗ROUTE_WIDTH2−1: i ∗ROUTE_WIDTH2 ] ) ,
. o_req ( s _ r e q [ i ] ) ,
. o_ack ( s _ r o u t e _ a c k [ i ] ) ,
. i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;
defparam am _ m u l t i c a s t .DATA_WIDTH=ROUTE_WIDTH;

end
fo r ( i =0; i <OUTPUTS; i = i +1)
begin : AN_genera t ion

AN anAdapte r (
. i _ d a t a ( s o _ d a t a [ ( i +1)∗BUS_WIDTH−ROUTE_WIDTH: i∗BUS_WIDTH ] ) ,
. i _ r e q ( so_ req [ i ] ) ,
. o_ack ( s i _ a c k [ i ] ) ,
. o_da ta ( o_da ta [ (1+ i )∗DATA_WIDTH−1: i ∗DATA_WIDTH] ) ,
. o_mas te r ( o_mas te r [ i ] ) ,
. o _ v a l i d ( o _ v a l i d [ i ] ) ,
. i _ c l k ( i _ c l k ) ,
. i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

defparam anAdapter . SIZE=DATA_WIDTH+1;

end
endgenerate

/∗
Func t i on which t e s t s t h a t t h e i n p u t s are never acked a t t h e same t ime
∗ /

‘ i f d e f ERROR_CHECKING
i n t e g e r l , coun t ;
always @( so_req )
begin

coun t =0;
f o r ( l =0; l <OUTPUTS; l = l +1)

i f ( so_ req [ l ] )
coun t = coun t +1;
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i f ( count >1)
begin

$d i sp l ay ( "NoC . v : ERROR ! . two r e q u e s t a t t h e same t ime . %d %b \ n " ,
count , so_ req ) ;

$ s to p ;
end

end
‘ e n d i f
endmodule

‘ e n d i f

Design of an asynchronous communication network for an audio DSP chip 131



E.2. NETWORKS

E.2.4 NoC_P2

/∗
D e s c r i p t i o n :

NoC .

P a r a l l e l bund led da ta v e r s i o n
Topology : B inary t r e e

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /
‘ i f n d e f _NoC_P2_v
‘ d e f i n e _NoC_P2_v

‘ i n c l u d e " g l o b a l . v "
‘ t i m e s c a l e 1 ns / 1 ps

module NoC_P2 (
i _ d a t a ,
i _ v a l i d ,
i _ c o n f _ e n a b l e ,
i _ co n f _ ma s te r ,
o_data ,
o_master ,
o_va l i d ,
i _ c l k ,
i _ r e s e t _ b ) ;

/∗
Parameters

∗ /
parameter INPUTS=‘N_INPUTS ;
parameter OUTPUTS=‘N_OUTPUTS ;
parameter DATA_WIDTH=‘DATA_WIDTH;

parameter N_MC_BLOCKS=2;
parameter N_MC_PR_BLOCK=2;

/ / Th i s i s no t r e a l l y a pa ramete rs . . 5 b i t s f o r r o u t e and 1 f o r
m a t s t e r b i t

parameter ROUTE_WIDTH=5+1;
parameter BUS_WIDTH=DATA_WIDTH+ROUTE_WIDTH;

/ / TBD . Due t o models im crash . I t i s r e a l l y annoying , bu t t h i s seems
t o g e t around i t

parameter ROUTE_WIDTH2=(ROUTE_WIDTH+1−1) ;
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parameter DATA_WIDTH2=(DATA_WIDTH+1−1) ;
parameter BUS_WIDTH2=(BUS_WIDTH+1−1) ;

/∗
I n p u t s

∗ /
i npu t [ INPUTS∗DATA_WIDTH−1:0] i _ d a t a ;
i npu t [ INPUTS−1:0] i _ v a l i d ;
i npu t [ INPUTS∗OUTPUTS−1:0] i _ c o n f _ e n a b l e , i _ c o n f _ m a s t e r ;
i npu t i _ c l k , i _ r e s e t _ b ;

/∗
Outpu ts

∗ /
output [OUTPUTS∗DATA_WIDTH−1:0] o_da ta ;
output [OUTPUTS−1:0] o_mas te r ;
output [OUTPUTS−1:0] o _ v a l i d ;

/∗
Genera te v a r i a b l e s

∗ /
genvar i ;

/∗
I n t e r n a l s i g n a l s

∗ /
wire [ INPUTS∗BUS_WIDTH−1:0] s i _ d a t a ;
wire [OUTPUTS∗BUS_WIDTH−1:0] s o _ d a t a ;
wire [ INPUTS−1:0] s i _ r e q , so_ack ;
wire [OUTPUTS−1:0] so_req , s i _ a c k ;
wire [ INPUTS∗ROUTE_WIDTH−1:0] s _ r o u t e ;
wire [ INPUTS−1:0] s_ rou te_ack , s _ r o u t e _ r e q ;
wire [ INPUTS−1:0] s_req , s_ack ;

/∗
N e t l i s t

∗ /

/∗
Wires

∗ /
wire s_ack_ l1 , s_ack_ l2 , s _ac k_ l 3 ;
wire s_ req_ l1 , s_ req_ l2 , s _ r e q _ l 3 ;
wire [BUS_WIDTH−1:0] s _ d a t a _ l 1 , s _ d a t a _ l 2 , s _ d a t a _ l 3 ;
wire s_ack_r1 , s_ack_r2 , s_ack_ r3 ;
wire s_ req_r1 , s_ req_ r2 , s _ r e q _ r 3 ;
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wire [BUS_WIDTH−1:0] s_da ta_ r1 , s_da ta_ r2 , s _ d a t a _ r 3 ;
wire [N_MC_BLOCKS∗N_MC_PR_BLOCK∗ROUTE_WIDTH−1:0] s_mc_rou te ;
wire [N_MC_BLOCKS∗N_MC_PR_BLOCK−1:0] s_mc_enable ;

/∗
Conver te r , which c o n v e r t s c o n f i g u r a t i o n m a t r i x i n t o s i g n a l s f o r
M u l t i c a s t b l o c k s and Network a d a p t e r s

∗ /
/ / pa rameter N_MC_BLOCKS=2; / / Number o f m u l t i c a s t b l o c k s
/ / parameter N_MC_PR_BLOCK=2; / / M u l t i c a s t s pr m u l t i c a s t b l o c k
/ / parameter N_INPUTS=10;
/ / parameter N_OUTPUTS=10;

Conver te r_P2 #(N_MC_BLOCKS,N_MC_PR_BLOCK, INPUTS ,OUTPUTS) c o n v e r t e r (
. i _ e n a b l e ( i _ c o n f _ e n a b l e ) ,
. i _ m a s t e r ( i _ c o n f _ m a s t e r ) ,
. o _ r o u t e ( s _ r o u t e ) ,
. o_mc_enable ( s_mc_enable ) ,
. o_mc_route ( s_mc_route )

) ;

P_merge_ t ree #( INPUTS , BUS_WIDTH) merge_ t ree (
. i _ d a t a ( s i _ d a t a ) ,
. i _ r e q ( s i _ r e q ) ,
. o_ack ( so_ack ) ,
. o_da ta ( s _ d a t a _ l 1 ) ,
. o_req ( s _ r e q _ l 1 ) ,
. i _ a c k ( s_ ack _ l1 ) ,
. i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

P _ r o u t e r #(BUS_WIDTH, (DATA_WIDTH+1) ) r o u t e r (
. i _ d a t a ( s _ d a t a _ l 1 ) ,
. i _ r e q ( s _ r e q _ l 1 ) ,
. o_ack ( s_ ack _ l1 ) ,
. o_da ta1 ( s _ d a t a _ l 2 ) ,
. o_req1 ( s _ r e q _ l 2 ) ,
. i _ack1 ( s_ ack _ l 2 ) ,
. o_da ta2 ( s _ d a t a _ l 3 ) ,
. o_req2 ( s _ r e q _ l 3 ) ,
. i _ack2 ( s_ ack _ l 3 ) ,
. i _ r e s e t _ b ( i _ r e s e t _ b )
) ;

/ / Connect t h e lower p a r t d i r e c t l y
a s s i g n s _ d a t a _ r 2 = s _ d a t a _ l 2 ;
a s s i g n s _ r e q _ r 2 = s _ r e q _ l 2 ;
a s s i g n s_ac k_ l 2 = s_ack_ r2 ;

/ / w i r e s
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wire [N_MC_BLOCKS−1:0] s_ack_mc1 , s_ack_mc2 ;
wire [N_MC_BLOCKS−1:0] s_req_mc1 , s_req_mc2 ;
wire [N_MC_BLOCKS∗BUS_WIDTH−1:0] s_data_mc1 , s_data_mc2 ;
/ / M u l t i c a s t r o u t e r t r e e
P _ r o u t e r _ t r e e #(N_MC_BLOCKS, BUS_WIDTH, (DATA_WIDTH+1) )

m u l t i c a s t _ r o u t e r _ t r e e (
. i _ d a t a ( s _ d a t a _ l 3 ) ,
. i _ r e q ( s _ r e q _ l 3 ) ,
. o_ack ( s_ ack _ l3 ) ,
. o_da ta ( s_data_mc1 ) ,
. o_req ( s_req_mc1 ) ,
. i _ a c k ( s_ack_mc1 ) ,
. i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

/ / Genera te and connec t t h e m u l t i c a s t b l o c k s
genera te

fo r ( i =0; i <N_MC_BLOCKS; i = i +1)
begin : m u l t i c a s t _ b l o c k _ g e n e r a t i o n

P _ m u l t i c a s t p _ m u l t i c a s t (
. i _ r o u t e s ( s_mc_route [ ( i +1)∗N_MC_PR_BLOCK∗ROUTE_WIDTH−1: i ∗

N_MC_PR_BLOCK∗ROUTE_WIDTH] ) ,
. i _ r o u t e _ e n ( s_mc_enable [ ( i +1)∗N_MC_PR_BLOCK−1: i ∗

N_MC_PR_BLOCK] ) ,
. i _ d a t a ( s_data_mc1 [ i∗BUS_WIDTH+DATA_WIDTH−1: i ∗BUS_WIDTH ] ) ,
. i _ r e q ( s_req_mc1 [ i ] ) ,
. o_ack ( s_ack_mc1 [ i ] ) ,
. o_da ta ( s_data_mc2 [ ( i +1)∗BUS_WIDTH2−1: i ∗BUS_WIDTH2 ] ) ,
. o_req ( s_req_mc2 [ i ] ) ,
. i _ a c k ( s_ack_mc2 [ i ] ) ,
. i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

defparam p _ m u l t i c a s t .N_MC=N_MC_PR_BLOCK;
defparam p _ m u l t i c a s t .DATA_WIDTH=DATA_WIDTH;
defparam p _ m u l t i c a s t .BUS_WIDTH=BUS_WIDTH;
defparam p _ m u l t i c a s t .ROUTE_WIDTH=ROUTE_WIDTH;

end
endgenerate

/ / M u l t i c a s t merge t r e e
P_merge_ t ree #(N_MC_BLOCKS, BUS_WIDTH) m u l t i c a s t _ m e r g e _ t r e e (
. i _ d a t a ( s_data_mc2 ) ,
. i _ r e q ( s_req_mc2 ) ,
. o_ack ( s_ack_mc2 ) ,
. o_da ta ( s _ d a t a _ r 3 ) ,
. o_req ( s _ r e q _ r 3 ) ,
. i _ a c k ( s_ack_ r3 ) ,
. i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

P_merge merger (
. i _ d a t a 1 ( s _ d a t a _ r 3 ) ,
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. i _ r e q 1 ( s _ r e q _ r 3 ) ,

. o_ack1 ( s_ack_ r3 ) ,

. i _ d a t a 2 ( s _ d a t a _ r 2 ) ,

. i _ r e q 2 ( s _ r e q _ r 2 ) ,

. o_ack2 ( s_ack_ r2 ) ,

. o_da ta ( s _ d a t a _ r 1 ) ,

. o_req ( s _ r e q _ r 1 ) ,

. i _ a c k ( s_ack_ r1 ) ,

. i _ r e s e t _ b ( i _ r e s e t _ b )
) ;

defparam merger .BUS_WIDTH=BUS_WIDTH;

P _ r o u t e r _ t r e e #(OUTPUTS, BUS_WIDTH, (DATA_WIDTH+1) ) r o u t e r _ t r e e (
. i _ d a t a ( s _ d a t a _ r 1 ) ,
. i _ r e q ( s _ r e q _ r 1 ) ,
. o_ack ( s_ack_ r1 ) ,
. o_da ta ( s o _ d a t a ) ,
. o_req ( so_ req ) ,
. i _ a c k ( s i _ a c k ) ,
. i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

/ / The Network a d a p t e r s
genera te

fo r ( i =0; i <INPUTS ; i = i +1)
begin : NA_genera t ion

NA naAdapte r (
. i _ d a t a ( i _ d a t a [ (1+ i )∗DATA_WIDTH−1: i ∗DATA_WIDTH] ) ,
. i _ v a l i d ( i _ v a l i d [ i ] ) ,
. o_da ta ( s i _ d a t a [ (1+ i )∗BUS_WIDTH−1: i ∗BUS_WIDTH ] ) ,
. o_req ( s i _ r e q [ i ] ) ,
. i _ a c k ( so_ack [ i ] ) ,
. o _ r o u t e _ r e q ( s _ r o u t e _ r e q [ i ] ) ,
. i _ r o u t e ( s _ r o u t e [ (1+ i )∗ROUTE_WIDTH−1: i ∗ROUTE_WIDTH] ) ,
. i _ r e q ( s _ r e q [ i ] ) ,
. o_ack ( s_ack [ i ] ) ,
. i _ r o u t e _ a c k ( s _ r o u t e _ a c k [ i ] ) ,
. i _ c l k ( i _ c l k ) ,
. i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;
defparam naAdapter .DATA_WIDTH=DATA_WIDTH;
defparam naAdapter .BUS_WIDTH=BUS_WIDTH;
defparam naAdapter .ROUTE_WIDTH=ROUTE_WIDTH;

AM_unicast am_un icas t (
. i _ r e q ( s _ r o u t e _ r e q [ i ] ) ,
. i _ a c k ( s_ack [ i ] ) ,
. o_req ( s _ r e q [ i ] ) ,
. o_ack ( s _ r o u t e _ a c k [ i ] ) ,
. i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;
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end
/ / AN a d a p t e r s
f o r ( i =0; i <OUTPUTS; i = i +1)
begin : AN_genera t ion

AN anAdapte r (
. i _ d a t a ( s o _ d a t a [ ( i +1)∗BUS_WIDTH−ROUTE_WIDTH: i∗BUS_WIDTH ] ) ,
. i _ r e q ( so_ req [ i ] ) ,
. o_ack ( s i _ a c k [ i ] ) ,
. o_da ta ( o_da ta [ (1+ i )∗DATA_WIDTH−1: i ∗DATA_WIDTH] ) ,
. o_mas te r ( o_mas te r [ i ] ) ,
. o _ v a l i d ( o _ v a l i d [ i ] ) ,
. i _ c l k ( i _ c l k ) ,
. i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

defparam anAdapter . SIZE=DATA_WIDTH+1;

end
endgenerate

/∗
Func t i on which t e s t s t h a t t h e i n p u t s are never acked a t t h e same t ime
∗ /

‘ i f d e f ERROR_CHECKING
i n t e g e r l , coun t ;
always @( so_req )
begin

coun t =0;
f o r ( l =0; l <OUTPUTS; l = l +1)

i f ( so_ req [ l ] )
coun t = coun t +1;

i f ( count >1)
begin

$d i sp l ay ( "NoC . v : ERROR ! . two r e q u e s t a t t h e same t ime . %d %b \ n " ,
count , so_ req ) ;

$ s to p ;
end

end
‘ e n d i f
endmodule

‘ e n d i f
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E.2.5 NoC_S1

/∗
D e s c r i p t i o n :

NoC

S e r i a l v e r s i o n
Topology : B inary t r e e

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /
‘ i f n d e f _NoC_S1_v
‘ d e f i n e _NoC_S1_v

‘ i n c l u d e " g l o b a l . v "
‘ t i m e s c a l e 1 ns / 1 ps

module NoC_S1 (
i _ d a t a ,
i _ v a l i d ,
i _ c o n f _ e n a b l e ,
i _ co n f _ ma s te r ,
o_data ,
o_master ,
o_va l i d ,
i _ c l k ,
i _ r e s e t _ b ) ;

/∗
Parameters

∗ /
parameter INPUTS=‘N_INPUTS ;
parameter OUTPUTS=‘N_OUTPUTS ;
parameter DATA_WIDTH=‘DATA_WIDTH;

/ / Th i s i s no t r e a l l y a pa ramete rs . . +1 due t o master4 b i t
parameter ROUTE_WIDTH=‘ROUTE_WIDTH+1;
parameter BUS_WIDTH=DATA_WIDTH+ROUTE_WIDTH∗2 ;

/ / TBD . Due t o models im crash
parameter ROUTE_WIDTH2=5;

/∗
I n p u t s

∗ /
i npu t [ INPUTS∗DATA_WIDTH−1:0] i _ d a t a ;
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i npu t [ INPUTS−1:0] i _ v a l i d ;
i npu t [ INPUTS∗OUTPUTS−1:0] i _ c o n f _ e n a b l e , i _ c o n f _ m a s t e r ;
i npu t i _ c l k , i _ r e s e t _ b ;

/∗
Outpu ts

∗ /
output [OUTPUTS∗DATA_WIDTH−1:0] o_da ta ;
output [OUTPUTS−1:0] o_mas te r ;
output [OUTPUTS−1:0] o _ v a l i d ;

/∗
I n t e r n a l s i g n a l s

∗ /
wire [ INPUTS∗BUS_WIDTH−1:0] s i _ d a t a ;
wire [OUTPUTS∗ (DATA_WIDTH+2) −1:0] s o _ d a t a ;
wire [ INPUTS−1:0] s i _ r e q , so_ack ;
wire [OUTPUTS−1:0] so_req , s i _ a c k ;
wire [ INPUTS∗ROUTE_WIDTH−1:0] s _ r o u t e ;
wire [ INPUTS−1:0] s_ rou te_ack , s _ r o u t e _ r e q ;
wire [ INPUTS−1:0] s_req , s_ack ;

/∗
N e t l i s t

∗ /
/ / The network
S _ n e t w o r k _ w i t h _ c o n v e r t e r s network ( s i _ d a t a , s i _ r e q , so_ack , so_da ta ,

so_req , s i_ack , i _ r e s e t _ b ) ;
defparam network . INPUTS=INPUTS ;
defparam network .OUTPUTS=OUTPUTS;
defparam network .BUS_WIDTH=BUS_WIDTH; / / w id th+Master
defparam network .BUS_WIDTH_OUT=DATA_WIDTH+2;

/ / The Network a d a p t e r s
genvar i ;
genera te

fo r ( i =0; i <INPUTS ; i = i +1)
begin : NA_genera t ion

NA naAdapte r (
. i _ d a t a ( i _ d a t a [ (1+ i )∗DATA_WIDTH−1: i ∗DATA_WIDTH] ) ,
. i _ v a l i d ( i _ v a l i d [ i ] ) ,
. o_da ta ( s i _ d a t a [ (1+ i )∗BUS_WIDTH−1: i ∗BUS_WIDTH ] ) ,
. o_req ( s i _ r e q [ i ] ) ,
. i _ a c k ( so_ack [ i ] ) ,
. o _ r o u t e _ r e q ( s _ r o u t e _ r e q [ i ] ) ,
. i _ r o u t e ( {

/ / The r o u t e
s _ r o u t e [ (1+ i )∗ROUTE_WIDTH−1] ,1 ’ b0 ,
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s _ r o u t e [ (1+ i )∗ROUTE_WIDTH−2] ,1 ’ b0 ,
s _ r o u t e [ (1+ i )∗ROUTE_WIDTH−3] ,1 ’ b0 ,
s _ r o u t e [ (1+ i )∗ROUTE_WIDTH−4] ,1 ’ b0 ,
1 ’ b0 , s _ r o u t e [ (1+ i )∗ROUTE_WIDTH−5]
} ) ,

. i _ r e q ( s _ r e q [ i ] ) ,

. o_ack ( s_ack [ i ] ) ,

. i _ r o u t e _ a c k ( s _ r o u t e _ a c k [ i ] ) ,

. i _ c l k ( i _ c l k ) ,

. i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;
defparam naAdapter .DATA_WIDTH=DATA_WIDTH;
defparam naAdapter .BUS_WIDTH=BUS_WIDTH;
defparam naAdapter .ROUTE_WIDTH=ROUTE_WIDTH∗2 ;

AM_mul t icast a m _ m u l t i c a s t (
. i _ c o n f _ e n a b l e ( i _ c o n f _ e n a b l e [ ( i +1)∗OUTPUTS−1: i ∗OUTPUTS ] ) ,
. i _ c o n f _ m a s t e r ( i _ c o n f _ m a s t e r [ ( i +1)∗OUTPUTS−1: i ∗OUTPUTS ] ) ,
. i _ r e q ( s _ r o u t e _ r e q [ i ] ) ,
. i _ a c k ( s_ack [ i ] ) ,
. o_da ta ( s _ r o u t e [ (1+ i )∗ROUTE_WIDTH2−1: i ∗ROUTE_WIDTH2 ] ) ,
. o_req ( s _ r e q [ i ] ) ,
. o_ack ( s _ r o u t e _ a c k [ i ] ) ,
. i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;
defparam am _ m u l t i c a s t .DATA_WIDTH=ROUTE_WIDTH;

end
fo r ( i =0; i <OUTPUTS; i = i +1)
begin : AN_genera t ion

AN anAdapte r (
. i _ d a t a ( s o _ d a t a [ ( i +1)∗ (DATA_WIDTH+2)−2: i ∗ (DATA_WIDTH+2) ] ) ,
. i _ r e q ( so_ req [ i ] ) ,
. o_ack ( s i _ a c k [ i ] ) ,
. o_da ta ( o_da ta [ (1+ i )∗DATA_WIDTH−1: i ∗DATA_WIDTH] ) ,
. o_mas te r ( o_mas te r [ i ] ) ,
. o _ v a l i d ( o _ v a l i d [ i ] ) ,
. i _ c l k ( i _ c l k ) ,
. i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

defparam anAdapter . SIZE=DATA_WIDTH+1;

end
endgenerate

endmodule

module S _ n e t w o r k _ w i t h _ c o n v e r t e r s ( i _ d a t a , i _ req , o_ack , o_data , o_req ,
i_ack , i _ r e s e t _ b ) ;

parameter INPUTS = ‘N_INPUTS ;
parameter OUTPUTS = ‘N_OUTPUTS ;
parameter BUS_WIDTH = ‘BUS_WIDTH ;
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parameter BUS_WIDTH_OUT = ‘DATA_WIDTH;

/ / I n p u t s
i npu t [ INPUTS∗BUS_WIDTH−1:0] i _ d a t a ;
i npu t [ INPUTS−1:0] i _ r e q ;
i npu t [OUTPUTS−1:0] i _ a c k ;
i npu t i _ r e s e t _ b ;

/ / Ou tpu ts
output [ INPUTS−1:0] o_ack ;
output [OUTPUTS∗BUS_WIDTH_OUT−1:0] o_da ta ;
output [OUTPUTS−1:0] o_req ;

/ / i n t e r n a l s i g n a l s
wire [ INPUTS∗4−1:0] s i _ d a t a ;
wire [ INPUTS−1:0] s i _ e o p ;
wire [OUTPUTS−1:0] s i _ a c k ;

wire [ INPUTS−1:0] so_ack ;
wire [OUTPUTS∗4−1:0] s o _ d a t a ;
wire [OUTPUTS−1:0] so_eop ;

/ / ne twork
S_network #( INPUTS , OUTPUTS, 4) n e t ( s i _ d a t a , s i_eop , so_ack , so_da ta ,

so_eop , s i_ack , i _ r e s e t _ b ) ;

/ / c o n v e r t e r s
conv_PtoS #(BUS_WIDTH) c o n v _ P t o S _ i n s t [ INPUTS−1 : 0 ] ( . i _ r e q ( i _ r e q ) , .

i _ a c k ( so_ack ) , . i _ d a t a ( i _ d a t a ) , . o_ack ( o_ack ) , . o_da ta ( s i _ d a t a ) , .
o_eop ( s i _ e o p ) , . i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

/∗ conv_StoP #(BUS_WIDTH_OUT) c o n v _ S t o P _ i n s t [OUTPUTS−1 : 0 ] ( . i _ d a t a (
so_da ta ) , . i _eop ( so_eop ) , . o_ack ( s i _ a c k ) , . o_req ( o_req ) , . i _ a c k (
i _ a c k ) , . o_data ( o_data ) , . i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

defparam c o n v _ S t o P _ i n s t [ 0 ] . REMOVE_TRAILING_PACKET = 1;
defparam c o n v _ S t o P _ i n s t [ 3 ] . REMOVE_TRAILING_PACKET = 1;
defparam c o n v _ S t o P _ i n s t [ 6 ] . REMOVE_TRAILING_PACKET = 1;
defparam c o n v _ S t o P _ i n s t [ 9 ] . REMOVE_TRAILING_PACKET = 1;
∗ /
/ / 0
conv_StoP #(BUS_WIDTH_OUT, 1 ) c on v _ S t oP _ i n s t0 ( . i _ d a t a ( s o _ d a t a

[1∗4−1:0∗4] ) , . i _eop ( so_eop [ 0 ] ) , . o_ack ( s i _ a c k [ 0 ] ) , . o_req ( o_req
[ 0 ] ) ,

. i _ a c k ( i _ a c k [ 0 ] ) , . o_da ta ( o_da ta [1∗
BUS_WIDTH_OUT−1:0∗BUS_WIDTH_OUT ] ) , .
i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

/ / 1
conv_StoP #(BUS_WIDTH_OUT, 0 ) c on v _ S t oP _ i n s t1 ( . i _ d a t a ( s o _ d a t a

[2∗4−1:1∗4] ) , . i _eop ( so_eop [ 1 ] ) , . o_ack ( s i _ a c k [ 1 ] ) , . o_req ( o_req
[ 1 ] ) ,

Design of an asynchronous communication network for an audio DSP chip 141



E.2. NETWORKS

. i _ a c k ( i _ a c k [ 1 ] ) , . o_da ta ( o_da ta [2∗
BUS_WIDTH_OUT−1:1∗BUS_WIDTH_OUT ] ) , .
i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

/ / 2
conv_StoP #(BUS_WIDTH_OUT, 0 ) c on v _ S t oP _ i n s t2 ( . i _ d a t a ( s o _ d a t a

[3∗4−1:2∗4] ) , . i _eop ( so_eop [ 2 ] ) , . o_ack ( s i _ a c k [ 2 ] ) , . o_req ( o_req
[ 2 ] ) ,

. i _ a c k ( i _ a c k [ 2 ] ) , . o_da ta ( o_da ta [3∗
BUS_WIDTH_OUT−1:2∗BUS_WIDTH_OUT ] ) , .
i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

/ / 3
conv_StoP #(BUS_WIDTH_OUT, 1 ) c on v _ S t oP _ i n s t3 ( . i _ d a t a ( s o _ d a t a

[4∗4−1:3∗4] ) , . i _eop ( so_eop [ 3 ] ) , . o_ack ( s i _ a c k [ 3 ] ) , . o_req ( o_req
[ 3 ] ) ,

. i _ a c k ( i _ a c k [ 3 ] ) , . o_da ta ( o_da ta [4∗
BUS_WIDTH_OUT−1:3∗BUS_WIDTH_OUT ] ) , .
i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

/ / 4
conv_StoP #(BUS_WIDTH_OUT, 0 ) c on v _ S t oP _ i n s t4 ( . i _ d a t a ( s o _ d a t a

[5∗4−1:4∗4] ) , . i _eop ( so_eop [ 4 ] ) , . o_ack ( s i _ a c k [ 4 ] ) , . o_req ( o_req
[ 4 ] ) ,

. i _ a c k ( i _ a c k [ 4 ] ) , . o_da ta ( o_da ta [5∗
BUS_WIDTH_OUT−1:4∗BUS_WIDTH_OUT ] ) , .
i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

/ / 5
conv_StoP #(BUS_WIDTH_OUT, 0 ) c on v _ S t oP _ i n s t5 ( . i _ d a t a ( s o _ d a t a

[6∗4−1:5∗4] ) , . i _eop ( so_eop [ 5 ] ) , . o_ack ( s i _ a c k [ 5 ] ) , . o_req ( o_req
[ 5 ] ) ,

. i _ a c k ( i _ a c k [ 5 ] ) , . o_da ta ( o_da ta [6∗
BUS_WIDTH_OUT−1:5∗BUS_WIDTH_OUT ] ) , .
i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

/ / 6
conv_StoP #(BUS_WIDTH_OUT, 1 ) c on v _ S t oP _ i n s t6 ( . i _ d a t a ( s o _ d a t a

[7∗4−1:6∗4] ) , . i _eop ( so_eop [ 6 ] ) , . o_ack ( s i _ a c k [ 6 ] ) , . o_req ( o_req
[ 6 ] ) ,

. i _ a c k ( i _ a c k [ 6 ] ) , . o_da ta ( o_da ta [7∗
BUS_WIDTH_OUT−1:6∗BUS_WIDTH_OUT ] ) , .
i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

/ / 7
conv_StoP #(BUS_WIDTH_OUT, 0 ) c on v _ S t oP _ i n s t7 ( . i _ d a t a ( s o _ d a t a

[8∗4−1:7∗4] ) , . i _eop ( so_eop [ 7 ] ) , . o_ack ( s i _ a c k [ 7 ] ) , . o_req ( o_req
[ 7 ] ) ,

. i _ a c k ( i _ a c k [ 7 ] ) , . o_da ta ( o_da ta [8∗
BUS_WIDTH_OUT−1:7∗BUS_WIDTH_OUT ] ) , .
i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

/ / 8
conv_StoP #(BUS_WIDTH_OUT, 0 ) c on v _ S t oP _ i n s t8 ( . i _ d a t a ( s o _ d a t a

[9∗4−1:8∗4] ) , . i _eop ( so_eop [ 8 ] ) , . o_ack ( s i _ a c k [ 8 ] ) , . o_req ( o_req
[ 8 ] ) ,
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. i _ a c k ( i _ a c k [ 8 ] ) , . o_da ta ( o_da ta [9∗
BUS_WIDTH_OUT−1:8∗BUS_WIDTH_OUT ] ) , .
i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

/ / 9
conv_StoP #(BUS_WIDTH_OUT, 1 ) c on v _ S t oP _ i n s t9 ( . i _ d a t a ( s o _ d a t a

[10∗4−1:9∗4] ) , . i _eop ( so_eop [ 9 ] ) , . o_ack ( s i _ a c k [ 9 ] ) , . o_req ( o_req
[ 9 ] ) ,

. i _ a c k ( i _ a c k [ 9 ] ) , . o_da ta ( o_da ta [10∗
BUS_WIDTH_OUT−1:9∗BUS_WIDTH_OUT ] ) , .
i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

/ / 10
conv_StoP #(BUS_WIDTH_OUT, 0 ) conv_S toP_ ins t10 ( . i _ d a t a ( s o _ d a t a

[11∗4−1:10∗4] ) , . i _eop ( so_eop [ 1 0 ] ) , . o_ack ( s i _ a c k [ 1 0 ] ) , . o_req (
o_req [ 1 0 ] ) ,

. i _ a c k ( i _ a c k [ 1 0 ] ) , . o_da ta ( o_da ta [11∗
BUS_WIDTH_OUT−1:10∗BUS_WIDTH_OUT ] ) , .
i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

/ / 11
conv_StoP #(BUS_WIDTH_OUT, 0 ) conv_S toP_ ins t11 ( . i _ d a t a ( s o _ d a t a

[12∗4−1:11∗4] ) , . i _eop ( so_eop [ 1 1 ] ) , . o_ack ( s i _ a c k [ 1 1 ] ) , . o_req (
o_req [ 1 1 ] ) ,

. i _ a c k ( i _ a c k [ 1 1 ] ) , . o_da ta ( o_da ta [12∗
BUS_WIDTH_OUT−1:11∗BUS_WIDTH_OUT ] ) , .
i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

endmodule

‘ e n d i f
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E.3 Common blocks

E.3.1 global.v

/∗
D e s c r i p t i o n :

g l o b a l d e f i n i t i o n s

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /

‘ i f n d e f _ g l o b a l _ v
‘ d e f i n e _ g l o b a l _ v

/ / S y n t h e s i s or s i m u l a t i o n
‘ d e f i n e SYNTHESIS_ON
/ / ambi t s y n t h e s i s o f f

‘ u n d e f SYNTHESIS_ON
/ / ambi t s y n t h e s i s on

/ / ‘ d e f i n e NOC_INTEGRATED

/ / ‘ d e f i n e NoC_Instance NoC
/ / ‘ d e f i n e NoC_Instance NoC_P2
‘ d e f i n e NoC_Instance NoC_S1

/ / Debug l e v e l s
‘ d e f i n e DEBUG_LEVEL1
‘ d e f i n e DEBUG_LEVEL2
/ / ‘ d e f i n e DEBUG_LEVEL3
/ / Er ro r ch ec k i ng
/ / ‘ d e f i n e ERROR_CHECKING

/ / Data w id th d e f i n i t i o n s
‘ d e f i n e DATA_WIDTH 22
‘ d e f i n e ROUTE_WIDTH 4
‘ d e f i n e BUS_WIDTH (‘DATA_WIDTH+‘ROUTE_WIDTH)

/ / These number are seen from t h e network ! . .
‘ d e f i n e N_INPUTS 16
‘ d e f i n e N_OUTPUTS 12

/ / Route t o t h e d i f f e r e n t o u t p u t b l o c k s
/ / Shou ld match t h e c u r r e n t ne twork
‘ d e f i n e ROUTE_1 4 ’ b0000
‘ d e f i n e ROUTE_2 4 ’ b0010
‘ d e f i n e ROUTE_3 4 ’ b0011
‘ d e f i n e ROUTE_4 4 ’ b0100

Design of an asynchronous communication network for an audio DSP chip 144



E.3. COMMON BLOCKS

‘ d e f i n e ROUTE_5 4 ’ b0110
‘ d e f i n e ROUTE_6 4 ’ b0111
‘ d e f i n e ROUTE_7 4 ’ b1000
‘ d e f i n e ROUTE_8 4 ’ b1010
‘ d e f i n e ROUTE_9 4 ’ b1011
‘ d e f i n e ROUTE_10 4 ’ b1100
‘ d e f i n e ROUTE_11 4 ’ b1110
‘ d e f i n e ROUTE_12 4 ’ b1111
/ / Not used
‘ d e f i n e ROUTE_13 4 ’ b1100
‘ d e f i n e ROUTE_14 4 ’ b1101
‘ d e f i n e ROUTE_15 4 ’ b1110
‘ d e f i n e ROUTE_16 4 ’ b1111

/∗ ‘ d e f i n e ROUTE_1 4 ’ b0000
‘ d e f i n e ROUTE_2 4 ’ b0001
‘ d e f i n e ROUTE_3 4 ’ b0010
‘ d e f i n e ROUTE_4 4 ’ b0011
‘ d e f i n e ROUTE_5 4 ’ b0100
‘ d e f i n e ROUTE_6 4 ’ b0101
‘ d e f i n e ROUTE_7 4 ’ b0110
‘ d e f i n e ROUTE_8 4 ’ b0111
‘ d e f i n e ROUTE_9 4 ’ b1000
‘ d e f i n e ROUTE_10 4 ’ b1001
‘ d e f i n e ROUTE_11 4 ’ b1010
‘ d e f i n e ROUTE_12 4 ’ b1011
‘ d e f i n e ROUTE_13 4 ’ b1100
‘ d e f i n e ROUTE_14 4 ’ b1101
‘ d e f i n e ROUTE_15 4 ’ b1110
‘ d e f i n e ROUTE_16 4 ’ b1111
∗ /

‘ d e f i n e ROUTE_5_2 8 ’ b10001000

/ / Conver t
‘ d e f i n e CONV_1of4_to_2 ( d a t ) ( { d a t [ 2 ] | d a t [ 3 ] , d a t [ 1 ] | d a t [ 3 ] } )
‘ d e f i n e CONV_2_to_1of4 ( d a t ) ( { d a t [1]& d a t [ 0 ] , d a t [1]&~ d a t [ 0 ] , ~ d a t [1]&

d a t [ 0 ] , ~ d a t [1]&~ d a t [ 0 ] } )

‘ d e f i n e INIT_TESTBENCH $ t ime fo rma t (−9 , 10 , " ns " , 10) ;
‘ d e f i n e TIMESCALE ‘ t i m e s c a l e 1 ns / 1 ps
‘ d e f i n e ERROR( s ) $d i sp l ay ( "ERROR: " ) ; $d i sp l ay ( s ) ; $ s t o p ;

‘ d e f i n e CHECK( o , v a l ) i f ( o != v a l ) begin $d i s p l ay( " Value i s %b , bu t
shou ld be " , o , v a l ) ; $ s to p ; end

‘ d e f i n e CHECK_0( o ) ‘CHECK( o , 1 ’ b0 )
‘ d e f i n e CHECK_1( o ) ‘CHECK( o , 1 ’ b1 )

‘ e n d i f
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E.3.2 AM_multicast

/∗
D e s c r i p t i o n :

M u l t i c a s t module f o r t h e " Address Manager "

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /

‘ i f n d e f _AM_Mult icast_v
‘ d e f i n e _AM_Mult icast_v

‘ i n c l u d e " g l o b a l . v "

module AM_mul t icast (
i _ c o n f _ e n a b l e ,
i _ co n f _ ma s te r ,
i _ req ,
i_ack ,
o_data ,
o_req ,
o_ack ,
i _ r e s e t _ b ) ;

/∗
Parameters

∗ /
parameter N_ROUTES=‘N_OUTPUTS ;
parameter N_MC=2;
parameter DATA_WIDTH=5;

/∗
I n p u t s

∗ /
i npu t i _ req , i_ack , i _ r e s e t _ b ;
i npu t [N_ROUTES−1:0] i _ c o n f _ e n a b l e ;
i npu t [N_ROUTES−1:0] i _ c o n f _ m a s t e r ;

/∗
Outpu ts

∗ /
output o_req , o_ack ;
output [DATA_WIDTH−1:0] o_da ta ;

/∗
I n t e r n a l s i g n a l s

∗ /
wire [N_MC−1:0] s_en ;
wire [N_MC∗DATA_WIDTH−1:0] s _ d a t a ;
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/∗
N e t l i s t

∗ /
M u l t i c a s t e r # (N_MC, DATA_WIDTH) m u l t i c a s t e r s (

s_en ,
s_da ta ,
i _ req ,
i_ack ,
o_data ,
o_req ,
o_ack ,
i _ r e s e t _ b ) ;

C o n v e r t e r # (N_MC) c o n v e r t e r (
. i _ e n a b l e ( i _ c o n f _ e n a b l e ) ,
. i _ m a s t e r ( i _ c o n f _ m a s t e r ) ,
. o_enab le ( s_en ) ,
. o _ r o u t e ( s _ d a t a ) ) ;

endmodule

‘ e n d i f
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E.3.3 AM_unicast

/∗
D e s c r i p t i o n :

Un i cas t module f o r t h e " Address Manager "

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /

‘ i f n d e f _AM_unicast_v
‘ d e f i n e _AM_unicast_v

‘ i n c l u d e " g l o b a l . v "

module AM_unicast (
i _ req ,
i_ack ,
o_req ,
o_ack ,
i _ r e s e t _ b
) ;

/∗
I n p u t s
∗ /
i npu t i _ req , i_ack , i _ r e s e t _ b ;
/∗

Outpu ts
∗ /
output o_req , o_ack ;

/∗
N e t l i s t
∗ /
a s s i g n o_req = i _ r e q ;
a s s i g n o_ack= i _ a c k ;

endmodule

‘ e n d i f
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E.3.4 AN

/∗
D e s c r i p t i o n :

AN, Network adap te r

R e c e i v e s a p a c k e t u s i ng a 4−phase bund led da ta p r o t o c o l and
o u t p u t s da ta u s in g t h e Lego2 p r o t o c o l .

Takes a t l e a s t 4 c l o c k c y c l e s f o r t h e handshake t o comp le te . 2
f o r

r i s i n g edge o f r e q u e s t and 2 f o r f a l l i n g edge .

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /
‘ i f n d e f _AN_v
‘ d e f i n e _AN_v

‘ i n c l u d e " g l o b a l . v "

module AN(
i _ d a t a ,
i _ req ,
o_ack ,
o_data ,
o_va l i d ,
o_master ,
i _ c l k ,
i _ r e s e t _ b ) ;

/∗
Parameters

∗ /
parameter SIZE=‘DATA_WIDTH; / / Datawid th ( i n c l u d i n g maste r )

/∗
I n p u t s

∗ /
i npu t [ SIZE−1:0] i _ d a t a ;
i npu t i _ req , i _ c l k , i _ r e s e t _ b ;

/∗
Outpu ts

∗ /
output [ SIZE−2:0] o_da ta ;
output o_va l i d , o_ack , o_mas te r ;

/∗
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Wires
∗ /
wire s _ v a l i d 1 , s _ v a l i d 2 , s _ v a l i d 3 ;

/∗
N e t l i s t

∗ /
/ / Data

/ / C_LATCHQL d a t a _ l a t c h e s [ SIZE−1:0] ( . d ( i _ d a t a ) , . en ( s _ v a l i d 2 ) , . q ( {
o_master , o_data } ) ) ;

C_FD1Q d a t a _ l a t c h e s [ SIZE−1:0] ( . d ( i _ d a t a ) , . c l k ( i _ r e q ) , . q ( { o_master ,
o_da ta } ) ) ;

/ / Ack when r e q u e s t a r r i v e s
/ / a s s i g n o_ack = s _ v a l i d 2 ;

C_AND2 a c k _ r e s e t ( . a ( i _ r e s e t _ b ) , . b ( s _ v a l i d 2 ) , . z ( o_ack ) ) ;
/ / a s s i g n o_ack = i _ r e q ;

/ / S y n c h r o n i z e v a l i d t o k e n on c l o c k s i g n a l
C_FD1Q sync1 ( i _ req , i _ c l k , s _ v a l i d 1 ) ;
C_FD1Q sync2 ( s _ v a l i d 1 , i _ c l k , s _ v a l i d 2 ) ;
C_FD1Q sync3 ( s _ v a l i d 2 , i _ c l k , s _ v a l i d 3 ) ;
TC_AND2A #4 oneshoo t ( s _ v a l i d 3 , s _ v a l i d 2 , o _ v a l i d ) ;

/∗ a lways @( posedge o _ v a l i d )
beg in

$ d i s p l a y ( "AN ! . mas te r : %b− %d " , o_master , SIZE ) ;
end
∗ /
endmodule

‘ e n d i f
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E.3.5 de_serializer

/∗
D e s c r i p t i o n :

de−S e r i a l i z e s a p a c k e t which c o n s i t s o f f l i t s o f 2 b i t s i n t o
a s i n g l e p a c k e t

Both i n p u t and o u t p u t uses a 4−phase bund led da ta p r o t o c o l

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /
‘ i f n d e f _ d e _ s e r i a l i z e r _ v
‘ d e f i n e _ d e _ s e r i a l i z e r _ v

‘ i n c l u d e " g l o b a l . v "

module d e _ s e r i a l i z e r (
i _ d a t a ,
i_eop ,
i _ req ,
o_ack ,
o_req ,
i_ack ,
o_data ,
i _ r e s e t _ b ) ;

/∗
paramete rs

∗ /
parameter BUS_WIDTH=‘BUS_WIDTH ;
parameter REMOVE_TRAILING_FLITS=0;
/ / no t a c t u a l pa ramete rs
parameter LINE_SIZE =2;
parameter N_LINES=(BUS_WIDTH/ LINE_SIZE ) ;

/∗
I n p u t s

∗ /
i npu t i _ack , i _ r e s e t _ b , i_eop ;
i npu t i _ r e q ;
i npu t [ 1 : 0 ] i _ d a t a ;

/∗
Output

∗ /
output o_ack , o_req ;
output [BUS_WIDTH−1:0] o_da ta ;
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/∗
I n t e r n a l s i g n a l s

∗ /
wire [ 1 : 0 ] s _ d a t a ;
wire [ N_LINES+REMOVE_TRAILING_FLITS−1:0] s _ c t r l ;
wire s_req , so_ack , so_ack2 ;

/∗
N e t l i s t

∗ /
a s s i g n s _ d a t a = i _ d a t a ;
a s s i g n o_ack = so_ack2 ;
a s s i g n s_ r e q = i _ r e q ;

d e _ s e r i a l i z e _ c o n t r o l l e r # ( N_LINES+REMOVE_TRAILING_FLITS)
c o n t r o l l e r (

. i _ r e q ( s _ r e q ) ,

. o _ c t r l ( s _ c t r l ) ,

. i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

a s s i g n o_req = i_eop ;

C_ORx #( N_LINES+REMOVE_TRAILING_FLITS+1) o r _ t h r e e (
. i n p u t s ( { s _ c t r l [ N_LINES+REMOVE_TRAILING_FLITS−1:0 ] , i _ a c k } ) ,
. z ( so_ack2 ) ) ;

genvar i ;
genera te

fo r ( i =0; i <N_LINES ; i = i +1)
begin : gen_con

C_FD1Q f f _ a r r a y [ 1 : 0 ] ( . d ( s _ d a t a ) , . c l k ( s _ c t r l [
REMOVE_TRAILING_FLITS+N_LINES−1− i ] ) , . q ( o_da ta [ i∗2+1: i ∗2 ] ) )
;

end
endgenerate

endmodule

/∗
d e _ s e r i a l i z e _ c o n t r o l l e r

∗ /
module d e _ s e r i a l i z e _ c o n t r o l l e r (

i _ req ,
o _ c t r l ,
i _ r e s e t _ b ) ;

/∗
Parameters
∗ /
parameter SIZE =2;
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/∗
I n p u t s
∗ /
i npu t i _ req , i _ r e s e t _ b ;
/∗

Outpu ts
∗ /
output [ SIZE−1:0] o _ c t r l ;
/∗

I n t e r n a l s i g n a l s
∗ /
wire [ SIZE−1:0] s i_en , so_en ;

/∗
N e t l i s t
∗ /
Sequencer2 s e q u e n c e r s [ SIZE−1:0 ] (

. i _ r e q ( i _ r e q ) ,

. i _en ( s i _ e n ) ,

. o_en ( so_en ) ,

. o_ack ( o _ c t r l ) ,

. i _ r e s e t _ b ( i _ r e s e t _ b )
) ;

C_AND2A a n d a _ r e s e t ( . a ( so_en [ SIZE−1]) , . b ( i _ r e s e t _ b ) , . z ( s i _ e n [ 0 ] )
) ;

a s s i g n s i _ e n [ SIZE−1:1] = so_en [ SIZE−2 :0 ] ;
endmodule

‘ e n d i f
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E.3.6 Multicaster

/∗
D e s c r i p t i o n :

M u l t i c a s t e r

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /
‘ i f n d e f _ M u l t i c a s t e r _ v
‘ d e f i n e _ M u l t i c a s t e r _ v

‘ i n c l u d e " g l o b a l . v "

/∗
Address ing Mechanicm

∗ /

module M u l t i c a s t e r (
i_en ,
i _ d a t a ,
i _ req ,
i_ack ,
o_data ,
o_req ,
o_ack ,
i _ r e s e t _ b ) ;

parameter N_MC=2;
parameter DATA_WIDTH=5;

/ / S t u p i d d e f i n e such t h a t models im does no t c rash
/ / TBD
‘ d e f i n e DATA_WIDTH_FIX_MODELSIM (DATA_WIDTH+1−1)

/ / I n p u t s
i npu t i _ req , i_ack , i _ r e s e t _ b ;
i npu t [N_MC−1:0] i _en ;
i npu t [N_MC∗DATA_WIDTH−1:0] i _ d a t a ;

/ / Ou tpu ts
output o_req , o_ack ;
output [DATA_WIDTH−1:0] o_da ta ;

/ / Wires
wire [N_MC−1:0] s i _ r e q , so_nex t , so_ req ;
wire [DATA_WIDTH ∗N_MC−1:0] s _ d a t a ;
wire [DATA_WIDTH ∗N_MC−1:0] s _ d a t a 2 ;
wire s _ r e q ;
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/ / C o n s t r u c t t h e sequence r
Sequencer_en s e q u e n c e r s _ e n [N_MC−1:0] (

. i _en ( i _en ) ,

. i _ r e q ( s i _ r e q ) ,

. i _ a c k ( i _ a c k ) ,

. o_req ( so_ req ) ,

. o_ack ( so_nex t ) ,

. i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;
a s s i g n s i _ r e q [ 0 ] = i _ r e q ;
a s s i g n o_ack = so_nex t [N_MC−1];
a s s i g n s i _ r e q [N_MC−1:1] = so_nex t [N_MC−2 :0 ] ;

genvar i , j ;
genera te

fo r ( i =0; i <N_MC; i = i +1)
begin : a n d _ t r e e _ g e n e r a t i o n

/ / C_AND2 DATA_ands [DATA_WIDTH−1:0] ( i _ d a t a [ ( z +1)∗DATA_WIDTH−1: z
∗DATA_WIDTH] , so_req [ i ] , s_da ta [ ( z +1)∗DATA_WIDTH−1: z∗DATA_WIDTH ] ) ;

f o r ( j =0; j <DATA_WIDTH; j = j +1)
begin : a n d _ t r e e _ g e n e r a t i o n 2

C_AND2 DATA_and ( i _ d a t a [ i∗DATA_WIDTH+ j ] , so_ req [ i ] , s _ d a t a [ i∗
DATA_WIDTH+ j ] ) ;

end
end

endgenerate

/ / Genera te OR t r e e s f o r r e q u e s t and data
genera te

C_ORx #(N_MC) r e q o r ( . i n p u t s ( so_ req ) , . z ( s _ r e q ) ) ;

f o r ( i =0; i <‘DATA_WIDTH_FIX_MODELSIM ; i = i +1) / / TBD: shou ld be
DATA_WIDTH

begin : r e q _ t r e e _ g e n e r a t i o n
f o r ( j =0; j <N_MC; j = j +1)

begin : r e q _ t r e e _ g e n e r a t i o n 2
a s s i g n s _ d a t a 2 [ i∗N_MC+ j ] = s _ d a t a [ j∗DATA_WIDTH+ i ] ;

end
C_ORx #(N_MC) d a t a _ o r ( . i n p u t s ( s _ d a t a 2 [ ( i +1)∗N_MC−1: i ∗N_MC] ) , . z (

o_da ta [ i ] ) ) ;
end

endgenerate

/ / Delay t h e r e q u e s t l i n e
TC_delay #1000 de lay1 ( s_req , o_req ) ;

endmodule
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‘ e n d i f
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E.3.7 NA

/∗
D e s c r i p t i o n :

Network adap te r

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /
‘ i f n d e f _NA_v
‘ d e f i n e _NA_v

‘ i n c l u d e " g l o b a l . v "

module NA(
i _ d a t a ,
i _ v a l i d ,
o_data ,
o_req ,
i_ack ,
o_ rou te_ req ,
i _ r o u t e ,
i _ req ,
o_ack ,
i _ r o u t e _ a c k ,
i _ c l k ,
i _ r e s e t _ b ) ;

/∗
Parameters

∗ /
parameter DATA_WIDTH=‘DATA_WIDTH;
parameter BUS_WIDTH=‘BUS_WIDTH ;
parameter ROUTE_WIDTH=‘ROUTE_WIDTH;

/∗
I n p u t s

∗ /
i npu t [DATA_WIDTH−1:0] i _ d a t a ;
i npu t [ROUTE_WIDTH−1:0] i _ r o u t e ;
i npu t i _ v a l i d , i _ c l k , i_ack , i _ r e s e t _ b ;
i npu t i _ req , i _ r o u t e _ a c k ;

/∗
Outpu ts

∗ /
output [BUS_WIDTH−1:0] o_da ta ;
output o_req , o_ rou te_ req , o_ack ;
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/∗
I n t e r n a l s i g n a l s

∗ /
wire [DATA_WIDTH−1:0] s _ d a t a ;
wire s _ r r ;
wire s _ r e s e t _ b ;

/∗
N e t L i s t

∗ /
TC_INV # ( 1 ) i n v _ r e s e t ( . a ( i _ r e s e t _ b ) , . z ( s _ r e s e t _ b ) ) ;
C_OR2 r r ( i _ v a l i d , s _ r e s e t _ b , s _ r r ) ;

/ / Data
C_FD1Q d a t a f l i p f l o p s [DATA_WIDTH−1:0] ( i _ d a t a , s _ r r , s _ d a t a ) ;
a s s i g n o_da ta = { i _ r o u t e , s _ d a t a } ;

/ / Reques t and ack
a s s i g n o_req = i _ r e q ;
a s s i g n o_ack = i _ a c k ;

/ / Route r e q u e s t
wire s _ r o u t e _ a c k ;
TC_INV # ( 1 ) inv1 ( i _ r o u t e _ a c k , s _ r o u t e _ a c k ) ;

C_AND2 a n d _ r e s e t ( . a ( i _ v a l i d ) , . b ( i _ r e s e t _ b ) , . z ( i _ v a l i d _ r e s e t ) ) ;
C_C2MP_R0 reqc ( s_ rou te_ack , i _ v a l i d _ r e s e t , o_ rou te_ req , i _ r e s e t _ b ) ;

/ / ambi t s y n t h e s i s o f f

/∗
Func t i on which t e s t s t h a t t h e v a l i d s i g n a l neve r comes t r u e when

t h e network adap te r i s
c u r r e n t l y a c t i v e

∗ /
‘ i f d e f ERROR_CHECKING
always @( posedge i _ v a l i d )
begin

i f ( o _ r o u t e _ r e q !=0 | | i _ r o u t e _ a c k !=0 )
begin

$d i sp l ay ( "ERROR ! . Va l i d s i g n a l came th rough when network a d a p t e r
was a l r e a d y busy . \ n " ) ;

$d i sp l ay ( " req : %b " , o _ r o u t e _ r e q ) ;
$d i sp l ay ( " ack : %b " , i _ r o u t e _ a c k ) ;
$ s to p ; / / masked by s y n t h e s i s o f f

end
end
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‘ e n d i f

/ / ambi t s y n t h e s i s on

endmodule

‘ e n d i f
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E.3.8 serializer

/∗
D e s c r i p t i o n :

S e r i a l i z e s a p a r r a l l e l p a c k e t i n t o f l i t s o f 2 b i t s

Both i n p u t and o u t p u t uses a 4−phase bund led da ta p r o t o c o l

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /
‘ i f n d e f _ s e r i a l i z e r _ v
‘ d e f i n e _ s e r i a l i z e r _ v

‘ i n c l u d e " g l o b a l . v "

module s e r i a l i z e r (
i _ req ,
i_ack ,
i _ d a t a ,
o_req ,
o_ack ,
o_data ,
o_eop ,
i _ r e s e t _ b ) ;

/∗
Parameters
∗ /
parameter BUS_WIDTH=‘BUS_WIDTH ;
parameter LINE_SIZE =2;
parameter N_LINES=(BUS_WIDTH/ LINE_SIZE ) ;

/∗
I n p u t s
∗ /
i npu t i _ req , i_ack , i _ r e s e t _ b ;
i npu t [BUS_WIDTH−1:0] i _ d a t a ;
/∗

Outpu ts
∗ /
output o_ack , o_req ;
output [ 1 : 0 ] o_da ta ;
output o_eop ;
/∗
I n t e r n a l s i g n a l s
∗ /
wire s _ r e q ;
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wire [ N_LINES : 0 ] s _ c t r l ;
wire [ N_LINES−1:0] s i _ d a t a 1 , s i _ d a t a 2 ;

/ / Handshake c o n t r o l l e r
s e r i a l i z e _ c o n t r o l l e r # ( N_LINES+1) c o n t r o l l e r (

. o _ c t r l ( s _ c t r l ) ,

. i _ r e q ( i _ r e q ) ,

. o_ack ( o_ack ) ,

. i _ a c k ( i _ a c k ) ,

. i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

genvar i ;
genera te

fo r ( i =0; i <N_LINES ; i = i +1)
begin : a s s i g n _ g e n

a s s i g n s i _ d a t a 1 [ i ] = i _ d a t a [BUS_WIDTH− i ∗2−2];
a s s i g n s i _ d a t a 2 [ i ] = i _ d a t a [BUS_WIDTH− i ∗2−1];

end
endgenerate

/ / Mux
TC_mux #N_LINES mux1 ( . i _ d a t a ( s i _ d a t a 1 ) , . i _ c t r l ( s _ c t r l [ N_LINES−1:0 ] )

, . o_da ta ( o_da ta [ 0 ] ) ) ;
TC_mux #N_LINES mux2 ( . i _ d a t a ( s i _ d a t a 2 ) , . i _ c t r l ( s _ c t r l [ N_LINES−1:0 ] )

, . o_da ta ( o_da ta [ 1 ] ) ) ;

/ / eop
a s s i g n o_eop= s _ c t r l [ N_LINES ] ;
/ / t h e r e q u e s t ou t i s an or o f t h e c o n t r o l l i n e s ( e x c e p t eop )
C_ORx #N_LINES o r _ t h r e e ( . i n p u t s ( s _ c t r l [ N_LINES−1:0 ] ) , . z ( s _ r e q ) ) ;

TC_delay #400 d e l a y _ r e q ( . a ( s _ r e q ) , . z ( o_req ) ) ;
endmodule

/∗
s e r i a l i z e _ c o n t r o l l e r

∗ /
module s e r i a l i z e _ c o n t r o l l e r ( i _ req , o_ack , i_ack , o _ c t r l , i _ r e s e t _ b ) ;

parameter SIZE =2;
/ / I n p u t s
i npu t i _ req , i_ack , i _ r e s e t _ b ;
/ / Ou tpu ts
output o_ack ;
output [ SIZE−1:0] o _ c t r l ;

/ / I n t e r n a l s i g n a l s
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wire [ SIZE−1:0] s i _ r e q , so_nex t , so_ req ;

/ / The c o n t r o l l e r s i m p l y c o n s i s t s o f a number o f s e q u e n c e r s
Sequencer s e q u e n c e r s [ SIZE−1:0] ( . i _ r e q ( s i _ r e q ) , . i _ a c k ( i _ a c k ) ,

. o_req ( so_ req ) , . o_ack ( so_nex t ) , . i _ r e s e t _ b (
i _ r e s e t _ b ) ) ;

a s s i g n s i _ r e q [ 0 ] = i _ r e q ;
a s s i g n s i _ r e q [ SIZE−1:1] = so_nex t [ SIZE−2 :0 ] ;
a s s i g n o_ack = so_nex t [ SIZE−1];
/ / The c o n t r o l l e r o u t p u t i s t h e r e q u e s t s i g n a l s
a s s i g n o _ c t r l = so_ req [ SIZE−1 :0 ] ;

endmodule

‘ e n d i f
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E.3.9 Sequencer

/∗
D e s c r i p t i o n :

Sequencer

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /

‘ i f n d e f _Sequencer_v
‘ d e f i n e _Sequencer_v

‘ i n c l u d e " g l o b a l . v "

module Sequencer ( i _ req , i_ack , o_req , o_ack , i _ r e s e t _ b ) ;

/ / I n p u t s
i npu t i _ req , i_ack , i _ r e s e t _ b ;
/ / Ou tpu ts
output o_req , o_ack ;
/ / I n t e r n a l s i g n a l s
wire s_1 , s_2 ;
wire s i_ack_b , s i _ r e q _ b ;

TC_INV #2 inv1 ( . a ( i _ r e q ) , . z ( s i _ r e q _ b ) ) ;
TC_INV #2 inv2 ( . a ( i _ a c k ) , . z ( s i _ac k_b ) ) ;
C_C2MP_R0 c2mp ( . a ( s i _ac k_b ) , . b ( s i _ r e q _ b ) , . z ( s_1 ) , . r e s e t _ b (

i _ r e s e t _ b ) ) ;
TC_INV #2 inv3 ( . a ( s_1 ) , . z ( s_2 ) ) ;
C_C2P_R0 c2a ( . a ( s_2 ) , . b ( s i _ac k_b ) , . z ( o_ack ) , . r e s e t _ b ( i _ r e s e t _ b ) ) ;
C_NOR2 nor2 ( . a ( s_2 ) , . b ( s i _ r e q _ b ) , . z ( o_req ) ) ;

endmodule

‘ e n d i f
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E.3.10 Sequencer_en

/∗
D e s c r i p t i o n :

Sequencer w i t h enab le

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /

‘ i f n d e f _Sequencer_en_v
‘ d e f i n e _Sequencer_en_v

‘ i n c l u d e " g l o b a l . v "

module Sequencer_en ( i_en , i _ req , i_ack , o_req , o_ack , i _ r e s e t _ b ) ;

/ / I n p u t s
i npu t i_en , i _ req , i_ack , i _ r e s e t _ b ;
/ / Ou tpu ts
output o_req , o_ack ;
/ / I n t e r n a l s i g n a l s
wire s_ack1 , s_ack2 ;
wire s_ r e q ;

Sequencer s e q u e n c e r (
. i _ r e q ( s _ r e q ) ,
. i _ a c k ( i _ a c k ) ,
. o_req ( o_req ) ,
. o_ack ( s_ack2 ) ,
. i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

C_AND2 and2 ( . a ( i _en ) , . b ( i _ r e q ) , . z ( s _ r e q ) ) ;
TC_AND2A #1 and2a ( . a ( i _en ) , . b ( i _ r e q ) , . z ( s_ack1 ) ) ;
C_OR2 or2 ( . a ( s_ack1 ) , . b ( s_ack2 ) , . z ( o_ack ) ) ;

endmodule

‘ e n d i f
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E.3.11 Sequencer2

/∗
D e s c r i p t i o n :

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /
‘ i f n d e f _Sequencer2_v
‘ d e f i n e _Sequencer2_v

‘ i n c l u d e " g l o b a l . v "

/∗
# EQN f i l e f o r model StoP4
# Genera ted by p e t r i f y 4 .2 ( comp i led 5−Ju l−04 a t 11:55 PM)
# Outpu ts between b r a c k e t s " [ ou t ] " i n d i c a t e a fe ed ba ck t o i n p u t " ou t "
# E s t i m a t e d area = 8 .00

INORDER = i_en i _ r e q o_ack o_en ;
OUTORDER = [ o_ack ] [ o_en ] ;
[ o_ack ] = o_en ’ ( i _en i _ r e q + o_ack ) ;
[ o_en ] = o_ack i_ req ’ + i_en o_en ;

o_ack = o_en ‘ i _en i _ r e q + o_en ‘ o_ack

# S e t / r e s e t p i n s : r e s e t ( o_ack )
∗ /

module Sequencer2 (
i _ req ,
i_en ,
o_en ,
o_ack ,
i _ r e s e t _ b

) ;

/∗
I n p u t s

∗ /
i npu t i _ req , i_en , i _ r e s e t _ b ;
/∗

Outpu ts
∗ /
output o_en , o_ack ;
/∗

I n t e r a l s i g n a l s
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∗ /
wire so_en_b , s i _ r e q _ b ;

/∗
N e t l i s t

∗ /
TC_INV #1 inv1 ( . a ( i _ r e q ) , . z ( s i _ r e q _ b ) ) ;
TC_INV #1 inv2 ( . a ( o_en ) , . z ( so_en_b ) ) ;

/ / o_ack
C_C3PP_R0 c1 ( . a ( so_en_b ) , . b ( i _en ) , . c ( i _ r e q ) , . z ( o_ack ) , . r e s e t _ b (

i _ r e s e t _ b ) ) ;
/ / o_en
C_C3MPP_R0 c2 ( . a ( i _en ) , . b ( o_ack ) , . c ( s i _ r e q _ b ) , . z ( o_en ) , . r e s e t _ b (

i _ r e s e t _ b ) ) ;

endmodule

‘ e n d i f
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E.4 Verification

E.4.1 bfm_lego2master

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / Copy r i gh t : O t i con A / S
/ / P r o j e c t : A p h r o d i t e
/ / Author : j hp
/ / Crea ted : 2 8 . 0 2 . 0 5
/ /
/ / F u n c t i o n a l i t y : Master BFM
/ /
/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / D e f i n e s
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

‘ d e f i n e READY_DATA_WL 1
‘ d e f i n e ENABLE_DATA_WL 1

‘ t i m e s c a l e 1 ns / 1 ps

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / Module
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
module bfm_ lego2maste r (

da ta_ou t ,
r dy_ou t

) ;

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / Parameters
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
parameter T_CLK=1000;
parameter NUM_OF_INPUTS=4;
parameter DATA_DATA_WL=18;

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / P o r t s
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
output [DATA_DATA_WL ∗NUM_OF_INPUTS−1:0] d a t a _ o u t ;
output [ ‘READY_DATA_WL ∗NUM_OF_INPUTS−1:0] rdy_ou t ;

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / S i g n a l s
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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reg [DATA_DATA_WL ∗NUM_OF_INPUTS−1:0] d a t a _ i ;
reg [ ‘READY_DATA_WL ∗NUM_OF_INPUTS−1:0] r d y _ i ;
reg [ ‘ENABLE_DATA_WL ∗NUM_OF_INPUTS−1:0] e n a b l e _ c h a n _ i ;

reg [DATA_DATA_WL ∗NUM_OF_INPUTS−1:0] da ta_o ;
reg [ ‘READY_DATA_WL ∗NUM_OF_INPUTS−1:0] rdy_o ;

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / F u n c t i o n a l i t y
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

task i n i t i a l i z e ;
begin

d a t a _ i = 0 ;
r d y _ i = 0 ;
e n a b l e _ c h a n _ i = 0 ;
da ta_o = 0 ;
rdy_o = 0 ;

end
endtask / / i n i t i a l i z e

/ / ==============================================
/ / c l e a r _ t x s − 1 . c l e a r t h e a c t u a l t r a n s a c t i o n ( s )
/ / ==============================================

/ / TX t a s k − c l e a r t r a n s m i s i o n
task c l e a r _ t x s ;

begin
d a t a _ i =0;
r d y _ i =0;
e n a b l e _ c h a n _ i =0;
end

endtask / / c l e a r _ t x s

/ / ==============================================
/ / s e t u p _ t x s− 2 . s e t t i n g up t h e a c t u a l t r a n s a c t i o n ( s )
/ / ==============================================

/ / TX t a s k − s e t u p t r a n s m i s i o n
task s e t u p _ t x s ;

i npu t [ 3 : 0 ] i n p u t _ c h a n _ i n t ; / / number between 0<=CH<=NUM_OF_INPUTS
−1

i npu t [ 1 7 : 0 ] d a t a _ i n t ;
begin

d a t a _ i = s e t _ d a t a ( d a t a _ i , d a t a _ i n t , i n p u t _ c h a n _ i n t ) ;
e n a b l e _ c h a n _ i = s e t _ e n a b l e ( enab le_chan_ i , 1 ’ b1 , i n p u t _ c h a n _ i n t ) ;
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end
endtask / / s e t u p _ t x s

/ / ==============================================
/ / t x s − 3 . s h o o t i n g t h e a c t u a l t r a n s a c t i o n ( s )
/ / ==============================================

/ / TX t a s k − m u l t i p l e mas te r s
task t x s ;

begin
da ta_o = ’ bx ;
# (T_CLK) ;
da ta_o = d a t a _ i ;

/ / # ( ‘T_CLK ) ;
rdy_o = e n a b l e _ c h a n _ i ;
# (T_CLK) ;
da ta_o = ’ bx ;
rdy_o = 0 ;

end
endtask / / t x s

/ / ==============================================
/ / s e t _ d a t a
/ / ==============================================

f u nc t i o n [DATA_DATA_WL ∗NUM_OF_INPUTS−1:0] s e t _ d a t a ;
i npu t [DATA_DATA_WL ∗NUM_OF_INPUTS−1:0] d a t a _ d a t a ;
i npu t [DATA_DATA_WL−1:0] d a t a _ i n t ;
i npu t [ 3 : 0 ] i n p u t _ c h a n _ i n t ;

begin : body
i n t e g e r i , j ;

reg [DATA_DATA_WL ∗NUM_OF_INPUTS−1:0] r e s ;

reg [DATA_DATA_WL−1:0] vec [ 0 : NUM_OF_INPUTS−1];
reg [DATA_DATA_WL−1:0] d1 , d2 ;

r e s = d a t a _ d a t a ;

f o r ( i = 0 ; i < NUM_OF_INPUTS; i = i + 1) begin
i f ( i n p u t _ c h a n _ i n t == i ) begin

fo r ( j = 0 ; j < DATA_DATA_WL; j = j + 1) begin / / i t e r a t e b i t s
r e s [ i ∗ DATA_DATA_WL + j ] = d a t a _ i n t [ j ] ;

end
end

end
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s e t _ d a t a = r e s ;

end
endfunc t ion / / s e t _ d a t a

/ / ==============================================
/ / s e t _ e n a b l e
/ / ==============================================

f u nc t i o n [ ‘ENABLE_DATA_WL ∗NUM_OF_INPUTS−1:0] s e t _ e n a b l e ;
i npu t [ ‘ENABLE_DATA_WL ∗NUM_OF_INPUTS−1:0] e n a b l e _ d a t a ;
i npu t [ ‘ENABLE_DATA_WL −1:0] e n a b l e _ i n t ;
i npu t [ 3 : 0 ] i n p u t _ c h a n _ i n t ;

begin : body
i n t e g e r i , j ;

reg [ ‘ENABLE_DATA_WL ∗NUM_OF_INPUTS−1:0] r e s ;

reg [ ‘ENABLE_DATA_WL −1:0] vec [ 0 : NUM_OF_INPUTS−1];
reg [ ‘ENABLE_DATA_WL −1:0] d1 , d2 ;

r e s = e n a b l e _ d a t a ;

f o r ( i = 0 ; i < NUM_OF_INPUTS; i = i + 1) begin
i f ( i n p u t _ c h a n _ i n t == i ) begin

fo r ( j = 0 ; j < ‘ENABLE_DATA_WL; j = j + 1) begin / / i t e r a t e
b i t s

r e s [ i ∗ ‘ENABLE_DATA_WL + j ] = e n a b l e _ i n t [ j ] ;
end

end
end

s e t _ e n a b l e = r e s ;

end
endfunc t ion / / s e t _ e n a b l e

/ / ==============================================
/ / misc
/ / ==============================================

a s s i g n d a t a _ o u t = da ta_o ;
a s s i g n r dy_ou t = rdy_o ;

endmodule / / b fm_ lego2mas te r
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E.4.2 bfm_lego2slave

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / Copy r i gh t : O t i con A / S
/ / P r o j e c t : A p h r o d i t e
/ / Author : j hp
/ / Crea ted : 2 8 . 0 2 . 0 5
/ /
/ / F u n c t i o n a l i t y : S l a v e BFM
/ /
/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
‘ i n c l u d e " g l o b a l . v "

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / Module
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
module b fm_ lego2s lave (

d a t a _ i n ,
mas te r_ in ,
rdy_ in ,
r e s u l t ,
r e s e t _ b

) ;

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / Parameters
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
parameter DATA_WL=18;
parameter N_SOURCES=12;
parameter SOURCE_WL=4;
parameter SLAVE_ID = 0 ;

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / P o r t s
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i npu t [DATA_WL−1:0] d a t a _ i n ;
i npu t m a s t e r _ i n ;
i npu t r d y _ i n ;
i npu t r e s e t _ b ;
output r e s u l t ;

/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / S i g n a l s
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
reg [DATA_WL∗N_SOURCES−1:0] e x p e c t e d _ d a t a ;
reg [N_SOURCES−1:0] e x p e c t e d _ m a s t e r ;
reg [N_SOURCES−1:0] e x p e c t i n g _ d a t a ;
reg [DATA_WL−1:0] tmp_data ;
reg tmp_master , tmp_expec t i ng ;

Design of an asynchronous communication network for an audio DSP chip 171



E.4. VERIFICATION

reg [SOURCE_WL−1:0] s o u r c e _ i n ;

reg r e s u l t ;
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / F u n c t i o n a l i t y
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i n t e g e r n _ p a c k e t s ; / / Number o f r e c e i v e d p a c k e t s

i n i t i a l begin
e x p e c t e d _ d a t a =0;
e x p e c t e d _ m a s t e r =0;
e x p e c t i n g _ d a t a =0;
n _ p a c k e t s =0;

end

always @( r d y _ i n )
begin

i f ( r d y _ i n ==1 && r e s e t _ b ==1 ’ b1 )
begin

/ / The 4 LSB i s t h e sende r o f t h e p a c k e t
s o u r c e _ i n = d a t a _ i n [ 3 : 0 ] ;

tmp_data= e xp e c t e d_ d a ta >>( s o u r c e _ i n∗DATA_WL) ;
tmp_master= expec ted_mas te r >> s o u r c e _ i n ;
tmp_expec t i ng = e x p e c t i n g _ d a t a >> s o u r c e _ i n ;

/ / $ w r i t e ( " . " ) ;

/ / Count number o f r e c e i v e d p a c k e t s
n _ p a c k e t s = n _ p a c k e t s +1;
/ / Check i f t h e c o r r e c t da ta has been r e c e i v e d
i f ( tmp_expec t i ng )

r e s u l t =( d a t a _ i n == tmp_data && m a s t e r _ i n == tmp_master ) ;e l s e
r e s u l t =0;

‘ i f d e f DEBUG_LEVEL3
$d i sp l ay ( " P o r t %0d : d a t a : %b , ex pe c t ed : %b , s o u r c e %d " ,

SLAVE_ID , d a t a _ i n , tmp_data , s o u r c e _ i n ) ;
$d i sp l ay ( " R e s u l t %b " , r e s u l t ) ;

‘ e n d i f

‘ i f d e f DEBUG_LEVEL2
i f ( r e s u l t ==0)
begin

i f ( tmp_expec t i ng !=1 ’ b1 )
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$d i sp l a y ( " P o r t : %0d r e c e i v e d d a t a when i t was no t supose t o
. " ,SLAVE_ID) ; e l s e

begin
$d i sp l a y ( " P o r t %0d : ex pe c t ed%d from s o u r c e %0d , go t %d . " ,

SLAVE_ID , tmp_data , sou rce_ in , d a t a _ i n ) ;
$d i sp l a y ( " − ex pec te d mas te r %b , go t %b " , tmp_master

, m a s t e r _ i n ) ;
end

end
‘ e n d i f

end e l s e
i f ( r d y _ i n ==0 && r e s e t _ b ==1 ’ b1 )
begin

/ / R e s e t Data
e x p e c t i n g _ d a t a = e x p e c t i n g _ d a t a | (1 ’ b1<< s o u r c e _ i n ) ;
e x p e c t i n g _ d a t a = e x p e c t i n g _ d a t a ^ (1 ’ b1<< s o u r c e _ i n ) ;
e x p e c t e d _ d a t a = e x p e c t e d _ d a t a | ( ( { {DATA_WL}{1 ’ b1 } } ) <<(

s o u r c e _ i n∗DATA_WL) ) ;
e x p e c t e d _ d a t a = e x p e c t e d _ d a t a ^ ( ( { {DATA_WL}{1 ’ b1 } } ) <<(

s o u r c e _ i n∗DATA_WL) ) ;
/ / e x p e c t e d _ d a t a = e x p e c t e d _ d a t a ^ ( ( { { DATA_WL} {1 ’ bx } } ) <<(

s o u r c e _ i n∗DATA_WL) ) ;
/ / e x p e c t e d _ m a s t e r = e x p e c t e d _ m a s t e r ^ (1 ’ bx<<s o u r c e _ i n ) ;

e x p e c t e d _ m a s t e r = e x p e c t e d _ m a s t e r | (1 ’ b1<< s o u r c e _ i n ) ;
e x p e c t e d _ m a s t e r = e x p e c t e d _ m a s t e r ^ (1 ’ b1<< s o u r c e _ i n ) ;

/ / S e t r e s u l t w i re high , Th i s means t h a t b u r s t s o f e r r o r s w i l l be
d e t e c t e d i n i d i v u d u a b l y .

r e s u l t =1;
end

end

/ /
/ / s e t E x p e c t e d D a t a t a s k
/ /

task s e t E x p e c t e d D a t a ;
i npu t [DATA_WL−1:0] d a t a _ i n t ;
i npu t m a s t e r _ i n t ;
i npu t [SOURCE_WL−1:0] s o u r c e _ i n t ;

begin
/ / $ d i s p l a y ( " p o r t %0d : e x p e c t %d from %0d " , SLAVE_ID , d a t a _ i n t ,

s o u r c e _ i n t ) ;
e x p e c t e d _ d a t a = e x p e c t e d _ d a t a | ( d a t a _ i n t <<( s o u r c e _ i n t∗DATA_WL)

) ;
e x p e c t e d _ m a s t e r = e x p e c t e d _ m a s t e r | ( m a s t e r _ i n t << s o u r c e _ i n t ) ;
e x p e c t i n g _ d a t a = e x p e c t i n g _ d a t a | (1 ’ b1<< s o u r c e _ i n t ) ;
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tmp_data= e xp e c t e d_ d a ta >>( s o u r c e _ i n t∗DATA_WL) ;
i f ( tmp_data == d a t a _ i n t )
begin
end
e l s e begin

/ / $ d i s p l a y ( " p o r t %0d : e x p e c t %d , from %0d bu t go t %d " , SLAVE_ID ,
d a t a _ i n t , s o u r c e _ i n t , tmp_data ) ;

/ / $ s t o p ;
end

end

endtask / / s e t E x p e c t e d D a t a
endmodule / / b f m _ l e g o 2 s l a v e
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E.4.3 Configuration

/∗
D e s c r i p t i o n :

Address c o n f i g u r a t i o n f o r t h e NoC . Der te rm ines t h e d e s t i n a t i o n s
f o r

each i n p u t p o r t . A lso hand les m u l t i c a s t .

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /
‘ i f n d e f _ C o n f i g u r a t i o n _ v
‘ d e f i n e _ C o n f i g u r a t i o n _ v

‘ i n c l u d e " g l o b a l . v "

module C o n f i g u r a t i o n ( c l k_sys , r e s e t _ b , o_enab le , o_mas te r ) ;

/ / Ou tpu ts
i npu t c l k _ s y s ;
i npu t r e s e t _ b ;
output [ ‘N_OUTPUTS∗ ‘N_INPUTS−1:0] o_enab le ;
output [ ‘N_OUTPUTS∗ ‘N_INPUTS−1:0] o_mas te r ;
reg [ 0 : ‘N_OUTPUTS∗ ‘N_INPUTS−1] s _ e n a b l e ;
reg [ 0 : ‘N_OUTPUTS∗ ‘N_INPUTS−1] s _ma s te r ;

/ / Ugly way t o i n v e r t t h e b i t s , bu t I can no t f i g u r e ou t how t o do i t
/ / w i t h o u t g e t t i n g co mp i l e r e r r o r s
genvar i , j ;
genera te

fo r ( i =0; i <‘N_INPUTS ; i = i +1)
begin : INPUT_generat ion

f o r ( j =0; j <‘N_OUTPUTS ; j = j +1)
begin : OUTPUT_generation

a s s i g n o_enab le [ i∗‘N_OUTPUTS+ j ] = s _ e n a b l e [ i∗‘N_OUTPUTS+ j ] ;
a s s i g n o_maste r [ i∗‘N_OUTPUTS+ j ] = s _m as t e r [ i∗‘N_OUTPUTS+ j ] ;

end
end

endgenerate

‘ i f n d e f SYNTHESIS_ON
i n i t i a l begin

c l e a r ;
end

/∗
c l e a r t a s k
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∗ /
task c l e a r ;
begin

s _ e n a b l e =0;
s_ma s te r =0;

end
endtask / / c l e a r

/∗
enab leRou te t a s k

Enab les t h e r o u t e from o u t p u t p o r t ’ source ’ t o i n p u t por t ’
d e s t i n a t i o n ’

0 i s t h e f i r s t p o r t
∗ /
task enab leRou te ;

i npu t [ 3 : 0 ] s o u r c e ;
i npu t [ 3 : 0 ] d e s t i n a t i o n ;
i npu t mas te r ;

begin
s _ e n a b l e [ s o u r c e∗‘N_OUTPUTS+ d e s t i n a t i o n ] = 1 ;
s_m as t e r [ s o u r c e∗‘N_OUTPUTS+ d e s t i n a t i o n ]= mas te r ;

end
endtask / / enab leRou te

/∗
d i s a b l e R o u t e t a s k

D i s a b l e s t h e r o u t e from o u t p u t p o r t ’ source ’ t o i n p u t por t ’
d e s t i n a t i o n ’

0 i s t h e f i r s t p o r t
∗ /

task d i s a b l e R o u t e ;
i npu t s o u r c e ;
i npu t d e s t i n a t i o n ;

begin
s _ e n a b l e [ s o u r c e∗‘N_OUTPUTS+ d e s t i n a t i o n ] = 0 ;
s_m as t e r [ s o u r c e∗‘N_OUTPUTS+ d e s t i n a t i o n ] = 0 ;

end
endtask / / d i s a b l e R o u t e

/∗
p r i n t t a s k

D i s a b l e s t h e r o u t e from o u t p u t p o r t ’ source ’ t o i n p u t por t ’
d e s t i n a t i o n ’

0 i s t h e f i r s t p o r t
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∗ /
task p r i n t ;

i n t e g e r i ;
reg [ ‘N_OUTPUTS−1:0] tmp ;
reg [ ‘N_OUTPUTS−1:0] tmp2 ;
begin

$d i sp l ay ( " P r i n t i n g c o n f i g u r a t i o n " ) ;
f o r ( i =‘N_INPUTS−1; i >=0; i = i −1)

begin : gen4
tmp = s_enab le >>( i∗‘N_OUTPUTS) ;
tmp2 = s_maste r >>( i∗‘N_OUTPUTS) ;
$d i sp l ay ( " %b − %b " , tmp , tmp2 ) ;

end
end

endtask / / p r i n t

‘ e n d i f / / ‘ i f n d e f SYNTHESIS_ON
endmodule

‘ e n d i f
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E.4.4 mutex

‘ i n c l u d e " g l o b a l . v "

‘ t i m e s c a l e 1 ns / 1 ps

module m u t e x _ t e s t b e n c h ( ) ;
/ / Dec la re i n p u t s as regs and o u t p u t s as w i r e s
reg i1 , i 2 ;
wire o1 , o2 ;

reg o ;

C_MUTEX2 m( i1 , i2 , o1 , o2 ) ;

‘ d e f i n e CHECK_00 o=o1 ; ‘CHECK_0 ( o ) o=o2 ; ‘CHECK_0 ( o )
‘ d e f i n e CHECK_01 o=o1 ; ‘CHECK_0 ( o ) o=o2 ; ‘CHECK_1 ( o )
‘ d e f i n e CHECK_10 o=o1 ; ‘CHECK_1 ( o ) o=o2 ; ‘CHECK_0 ( o )
‘ d e f i n e CHECK_11 o=o1 ; ‘CHECK_1 ( o ) o=o2 ; ‘CHECK_1 ( o )

/ / I n i t i a l i z e a l l v a r i a b l e s
i n i t i a l begin
$d i sp l ay ( " i 1 \ t i 2 \ t o1 \ to2 " ) ;
$monitor ( "%b \ t %b \ t %b \ t %b " ,

i1 , i2 , o1 , o2 ) ;
i 1 = 0 ;
i 2 = 0 ;
#50 ;
$d i sp l ay ( " System i s now r e s a t " ) ;
‘CHECK_00
#50 i 1 = 1 ;
#50 ‘CHECK_10
#50 i 2 = 1 ;
#50 ‘CHECK_10
#50 i 1 = 0 ;
#50 ‘CHECK_01
#50 i 1 = 1 ;
#50 ‘CHECK_01
#50 i 2 = 0 ;
#50 ‘CHECK_10
#50 i 1 = 0 ;
#50 ‘CHECK_00
#50 i 2 = 1 ;
i 1 = 1 ;
#50 i 1 = 0 ;
i 2 = 0 ;
#50 $ f i n i s h ;

end

endmodule
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E.4.5 noc_top_testbench

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / Copy r i gh t : O t i con A / S
/ / P r o j e c t : A p h r o d i t e
/ / Author : j hp
/ / Crea ted : 2 8 . 0 2 . 0 5
/ /
/ / F u n c t i o n a l i t y : Tes tbench f o r module noc_top .
/ /
/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/ / ‘ d e f i n e MIKKEL_TB

‘ d e f i n e TESTBENCH

‘ d e f i n e ADDER_TEST
‘ d e f i n e UNICAST_TEST
‘ d e f i n e MULTICAST_TEST
‘ d e f i n e MULTICAST2_TEST
‘ d e f i n e CHAOS_TEST

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / D e f i n e s
/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
‘ i n c l u d e " g l o b a l . v "
‘ t i m e s c a l e 1 ns / 1 ps

‘ d e f i n e INPUTS 16
‘ d e f i n e OUTPUTS 12
‘ d e f i n e DATA_WL 18

‘ d e f i n e CLK_FREQ 1 / / 10 Mhz −> 100 ns
‘ d e f i n e T_CLK (1000∗1 / ‘CLK_FREQ)

‘ d e f i n e T_RESET 10∗ ‘T_CLK / / Length o f i n i t i a l r e s e t−p u l s e
‘ d e f i n e T_FS (64∗ ‘T_CLK ) / / Sampl ing p e r i o d

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / Module
/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

module n o c _ t o p _ t e s t b e n c h ;

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / S i g n a l s
/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i n t e g e r e r r o r ; / / e r r o r coun t
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i n t e g e r e r r o r _ t o t a l ;
i n t e g e r hand le ;
i n t e g e r r e c e i v e d _ p a c k e t s ;
i n t e g e r debug ;

reg c l k ;
reg c l e a r _ b ;
reg r e s e t _ b ;

wire [ ‘INPUTS−1:0] r i n ;
wire [ ‘INPUTS∗‘DATA_WL −1:0] d in ;

wire [ ‘OUTPUTS−1:0] rou t , m a s t e r o u t ;
wire [ ‘OUTPUTS∗‘DATA_WL −1:0] dou t ;
wire [ ‘OUTPUTS−1:0] r e s ;

wire [ ‘N_INPUTS∗‘N_OUTPUTS−1:0] s_con f_enab le , s _ c o n f _ m a s t e r ;

wire [ ‘DATA_WL −1:0] a d d e r _ d a t a _ o u t _ 0 ;
wire adder_ ready_0 ;

wire [ ‘DATA_WL −1:0] a d d e r _ d a t a _ o u t _ 1 ;
wire adder_ ready_1 ;

/ / Genarate v a r i a b l e s
genvar i ;

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / F u n c t i o n a l i t y
/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/ / Dev ice under t e s t
noc_top n o c _ t o p _ i n s t (

. c l k _ s y s ( c l k ) ,

. r e s e t _ b ( r e s e t _ b ) ,

. c l e a r _ b ( c l e a r _ b ) ,

. d in ( d in ) ,

. r i n ( r i n ) ,

. dou t ( dou t ) ,

. r o u t ( r o u t ) ,

. m a s t e r o u t ( m a s t e r o u t ) ,

. i _ c o n f _ m a s t e r ( s _ c o n f _ m a s t e r ) ,

. i _ c o n f _ e n a b l e ( s _ c o n f _ e n a b l e )
) ; / / n o c _ t o p _ i n s t

/ / defparam n o c _ t o p _ i n s t . INPUTS = ‘INPUTS ;
/ / defparam n o c _ t o p _ i n s t . OUTPUTS = ‘OUTPUTS ;

C o n f i g u r a t i o n c o n f i g u r a t i o n (
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. c l k _ s y s ( c l k ) ,

. r e s e t _ b ( r e s e t _ b ) ,

. o_enab le ( s _ c o n f _ e n a b l e ) ,

. o_mas te r ( s _ c o n f _ m a s t e r )
) ;

/ / Adders
noc_adder noc_adder_0 (

. c l k ( c l k ) ,

. r e s e t _ b ( r e s e t _ b ) ,

. s e l e c t (2 ’ d1 ) , / / s e l e c t ) ,

. r eq ( r o u t [ 0 ] ) ,

. d a t a _ i n ( dou t [ 1 7 : 0 ] ) ,

. rdy ( adde r_ ready_0 ) ,

. d a t a _ o u t ( a d d e r _ d a t a _ o u t _ 0 )
) ;

noc_adder noc_adder_1 (
. c l k ( c l k ) ,
. r e s e t _ b ( r e s e t _ b ) ,
. s e l e c t (2 ’ d2 ) , / / s e l e c t ) ,
. r eq ( r o u t [ 1 ] ) ,
. d a t a _ i n ( dou t [ 3 5 : 1 8 ] ) ,
. rdy ( adde r_ ready_1 ) ,
. d a t a _ o u t ( a d d e r _ d a t a _ o u t _ 1 )

) ;

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / Mas te rs
/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
bfm_ lego2maste r mst (

. d a t a _ o u t ( d in ) ,

. r dy_ou t ( r i n )
) ;
defparam mst . NUM_OF_INPUTS=‘INPUTS ;
defparam mst . T_CLK=‘T_CLK ;

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / S l a v e s
/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
b fm_ lego2s lave s l v [ ‘OUTPUTS−1:0] (

. d a t a _ i n ( dou t ) ,

. m a s t e r _ i n ( m a s t e r o u t ) ,

. r d y _ i n ( r o u t ) ,

. r e s e t _ b ( r e s e t _ b ) ,

. r e s u l t ( r e s ) ) ;
/ / De f i ne pa ramete rs t o s l a v e
genera te
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f o r ( i =0; i <‘OUTPUTS ; i = i +1)
begin

defparam s l v [ i ] . SLAVE_ID = i ;
defparam s l v [ i ] . SOURCE_WL=4;
defparam s l v [ i ] .DATA_WL=‘DATA_WL;
defparam s l v [ i ] . N_SOURCES=‘INPUTS ;

end
endgenerate

task s e t u p S l a v e ;
i npu t [ 3 : 0 ] i d ;
i npu t [ ‘DATA_WL −1:0] d a t ;
i npu t mas te r ;
i npu t [ 3 : 0 ] s e n d e r ;
begin

i f ( i d ==0)
s l v [ 0 ] . s e t E x p e c t e d D a t a ( dat , master , s e n d e r ) ;e l s e

i f ( i d ==1)
s l v [ 1 ] . s e t E x p e c t e d D a t a ( dat , master , s e n d e r ) ;e l s e

i f ( i d ==2)
s l v [ 2 ] . s e t E x p e c t e d D a t a ( dat , master , s e n d e r ) ;e l s e

i f ( i d ==3)
s l v [ 3 ] . s e t E x p e c t e d D a t a ( dat , master , s e n d e r ) ;e l s e

i f ( i d ==4)
s l v [ 4 ] . s e t E x p e c t e d D a t a ( dat , master , s e n d e r ) ;e l s e

i f ( i d ==5)
s l v [ 5 ] . s e t E x p e c t e d D a t a ( dat , master , s e n d e r ) ;e l s e

i f ( i d ==6)
s l v [ 6 ] . s e t E x p e c t e d D a t a ( dat , master , s e n d e r ) ;e l s e

i f ( i d ==7)
s l v [ 7 ] . s e t E x p e c t e d D a t a ( dat , master , s e n d e r ) ;e l s e

i f ( i d ==8)
s l v [ 8 ] . s e t E x p e c t e d D a t a ( dat , master , s e n d e r ) ;e l s e

i f ( i d ==9)
s l v [ 9 ] . s e t E x p e c t e d D a t a ( dat , master , s e n d e r ) ;e l s e

i f ( i d ==10)
s l v [ 1 0 ] . s e t E x p e c t e d D a t a ( dat , master , s e n d e r ) ;e l s e

i f ( i d ==11)
s l v [ 1 1 ] . s e t E x p e c t e d D a t a ( dat , master , s e n d e r ) ;

end
endtask

task countNumberOfRece ivedPackets ;
begin

r e c e i v e d _ p a c k e t s =0;
/ / f o r ( l 1 =0; l1 <‘OUTPUTS ; l 1=l 1 +1)
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/ / r e c e i v e d _ p a c k e t s = r e c e i v e d _ p a c k e t s + s l v [ l 1 ] . n _ p a c k e t s
;

r e c e i v e d _ p a c k e t s = r e c e i v e d _ p a c k e t s + s l v [ 0 ] . n _ p a c k e t s ;
r e c e i v e d _ p a c k e t s = r e c e i v e d _ p a c k e t s + s l v [ 1 ] . n _ p a c k e t s ;
r e c e i v e d _ p a c k e t s = r e c e i v e d _ p a c k e t s + s l v [ 2 ] . n _ p a c k e t s ;
r e c e i v e d _ p a c k e t s = r e c e i v e d _ p a c k e t s + s l v [ 3 ] . n _ p a c k e t s ;
r e c e i v e d _ p a c k e t s = r e c e i v e d _ p a c k e t s + s l v [ 4 ] . n _ p a c k e t s ;
r e c e i v e d _ p a c k e t s = r e c e i v e d _ p a c k e t s + s l v [ 5 ] . n _ p a c k e t s ;
r e c e i v e d _ p a c k e t s = r e c e i v e d _ p a c k e t s + s l v [ 6 ] . n _ p a c k e t s ;
r e c e i v e d _ p a c k e t s = r e c e i v e d _ p a c k e t s + s l v [ 7 ] . n _ p a c k e t s ;
r e c e i v e d _ p a c k e t s = r e c e i v e d _ p a c k e t s + s l v [ 8 ] . n _ p a c k e t s ;
r e c e i v e d _ p a c k e t s = r e c e i v e d _ p a c k e t s + s l v [ 9 ] . n _ p a c k e t s ;
r e c e i v e d _ p a c k e t s = r e c e i v e d _ p a c k e t s + s l v [ 1 0 ] . n _ p a c k e t s ;
r e c e i v e d _ p a c k e t s = r e c e i v e d _ p a c k e t s + s l v [ 1 1 ] . n _ p a c k e t s ;
i f ( debug )

$d i sp l ay ( " t =%8.2 f : %0d p a c k e t s was r e c i e v e d s u c c e c f u l l y " ,
$ r e a l t i m e , r e c e i v e d _ p a c k e t s ) ;

end
endtask

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / T e s t sequence
/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i n i t i a l
begin : t e s t _ s e q u e n c e

i n t e g e r ok , l1 , l2 , l 3 ;
i n t e g e r p a c k e t s ;
reg [ ‘DATA_WL −1:0] d a t ;

/ / Se tup t i m i n g
$ t ime fo rma t (−9 , 10 , " ns " , 10) ;
$ p r i n t t i m e s c a l e ;
$ p r i n t t i m e s c a l e ( mst ) ;
$ p r i n t t i m e s c a l e ( n o c _ t o p _ i n s t ) ;

/ / I n i t i a l i z e s i g n a l s
$d i sp l ay ( " INFO : I n i t i a l i z i n g s i g n a l s " ) ;
r e s e t _ b = 0 ;
c l e a r _ b = 0 ;
e r r o r = 0 ;
e r r o r _ t o t a l =0;
p a c k e t s =0;

debug =0;

mst . i n i t i a l i z e ;
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#( ‘T_RESET ) ;
r e s e t _ b = 1 ;
c l e a r _ b = 1 ;
#( ‘T_RESET ) ;

$d i sp l ay ( " INFO : S t a r t i n g t e s t s " ) ;

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / Adder T e s t
/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

‘ i f d e f ADDER_TEST
/ /
/ / Add
/ /
$d i sp l ay ( " \ nINFO : Add t e s t . Sending d a t a from one i n p u t t o an add

o u t p u t " ) ;

l 1 =1; / / i n p u t
l 2 =0; / / o u t p u t
/ / Se tup r o u t e
c o n f i g u r a t i o n . c l e a r ; / / s_e nab le=s_mas te r =0
#0.01 / / We must d e l a y here . . At l e a s t i n models im
c o n f i g u r a t i o n . enab leRou te ( l1 , l2 , 1 ) ;/ / s rc , ds t , mas te r

/ / PACKAGE1
d a t = 28 < <4| l 1 ;
/ / Se tup s l a v e
s e t u p S l a v e ( l2 , dat , 1 , l 1 ) ;/ / 1 : s lave_number ( o u t p u t ) , 2 : data , 3 : mas te r

?? ,4 : master_number ( i n p u t )
/ / Send data
mst . c l e a r _ t x s ;
mst . s e t u p _ t x s ( l1 , d a t ) ; / / i npu t_chan , t a r g e t , da ta
mst . t x s ;
p a c k e t s = p a c k e t s +1;

/ / coun tNumberOfRece ivedPacke ts ;
/ / $ d i s p l a y ( " t =%8.2 f : %0d o f %0d p a c k e t s was r e c i e v e d s u c c e c f u l l y

" , $ r e a l t i m e , r e c e i v e d _ p a c k e t s , p a c k e t s ) ;
/ / Wai t t i l l da ta has been r e c i e v e d
#(3∗ ‘T_CLK ) ;

/ / PACKAGE2
d a t = 17 < <4| l 1 ;
/ / Se tup s l a v e
s e t u p S l a v e ( l2 , dat , 1 , l 1 ) ;/ / 1 : ou tpu t , 2 : data , 3 : 1 ? ? , 4 : i n p u t
/ / Send data
mst . c l e a r _ t x s ;
mst . s e t u p _ t x s ( l1 , d a t ) ; / / i npu t_chan , t a r g e t , da ta
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mst . t x s ;
p a c k e t s = p a c k e t s +1;

/ / coun tNumberOfRece ivedPacke ts ;
/ / $ d i s p l a y ( " t =%8.2 f : %0d o f %0d p a c k e t s was r e c i e v e d s u c c e c f u l l y

" , $ r e a l t i m e , r e c e i v e d _ p a c k e t s , p a c k e t s ) ;
/ / Wai t t i l l da ta has been r e c i e v e d
#(3∗ ‘T_CLK ) ;

l 1 =1; / / i n p u t
l 2 =1; / / o u t p u t
/ / Se tup r o u t e
c o n f i g u r a t i o n . c l e a r ; / / s_e nab le=s_mas te r =0
#0.01 / / We must d e l a y here . . At l e a s t i n models im
c o n f i g u r a t i o n . enab leRou te ( l1 , l2 , 1 ) ;/ / s rc , ds t , mas te r

/ / PACKAGE1
d a t = 12 < <4| l 1 ;
/ / Se tup s l a v e
s e t u p S l a v e ( l2 , dat , 1 , l 1 ) ;/ / 1 : s lave_number ( o u t p u t ) , 2 : data , 3 : mas te r

?? ,4 : master_number ( i n p u t )
/ / Send data
mst . c l e a r _ t x s ;
mst . s e t u p _ t x s ( l1 , d a t ) ; / / i npu t_chan , t a r g e t , da ta
mst . t x s ;
p a c k e t s = p a c k e t s +1;

/ / coun tNumberOfRece ivedPacke ts ;
/ / $ d i s p l a y ( " t =%8.2 f : %0d o f %0d p a c k e t s was r e c i e v e d s u c c e c f u l l y

" , $ r e a l t i m e , r e c e i v e d _ p a c k e t s , p a c k e t s ) ;
/ / Wai t t i l l da ta has been r e c i e v e d
#(3∗ ‘T_CLK ) ;

/ / PACKAGE2
d a t = 7 < <4| l 1 ;
/ / Se tup s l a v e
s e t u p S l a v e ( l2 , dat , 1 , l 1 ) ;/ / 1 : ou tpu t , 2 : data , 3 : 1 ? ? , 4 : i n p u t
/ / Send data
mst . c l e a r _ t x s ;
mst . s e t u p _ t x s ( l1 , d a t ) ; / / i npu t_chan , t a r g e t , da ta
mst . t x s ;
p a c k e t s = p a c k e t s +1;

/ / coun tNumberOfRece ivedPacke ts ;
/ / $ d i s p l a y ( " t =%8.2 f : %0d o f %0d p a c k e t s was r e c i e v e d s u c c e c f u l l y

" , $ r e a l t i m e , r e c e i v e d _ p a c k e t s , p a c k e t s ) ;
/ / Wai t t i l l da ta has been r e c i e v e d
#(3∗ ‘T_CLK ) ;
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/ / PACKAGE3
d a t = 11 < <4| l 1 ;
/ / Se tup s l a v e
s e t u p S l a v e ( l2 , dat , 1 , l 1 ) ;/ / 1 : ou tpu t , 2 : data , 3 : 1 ? ? , 4 : i n p u t
/ / Send data
mst . c l e a r _ t x s ;
mst . s e t u p _ t x s ( l1 , d a t ) ; / / i npu t_chan , t a r g e t , da ta
mst . t x s ;
p a c k e t s = p a c k e t s +1;

/ / coun tNumberOfRece ivedPacke ts ;
/ / $ d i s p l a y ( " t =%8.2 f : %0d o f %0d p a c k e t s was r e c i e v e d s u c c e c f u l l y

" , $ r e a l t i m e , r e c e i v e d _ p a c k e t s , p a c k e t s ) ;
/ / Wai t t i l l da ta has been r e c i e v e d
#(3∗ ‘T_CLK ) ;

#(5∗ ‘T_CLK ) ;

$d i sp l ay ( " INFO : Add f u n c t i o n a l i t y was s u c c e s f u l l y t e s t e d " ) ;
countNumberOfRece ivedPackets ;
$d i sp l ay ( " %0d of %0d p a c k e t s was r e c i e v e d s u c c e c f u l l y " ,

r e c e i v e d _ p a c k e t s , p a c k e t s ) ;
$d i sp l ay ( " %0d ERRORS d e t e c t e d " , e r r o r ) ;

e r r o r _ t o t a l = e r r o r _ t o t a l + e r r o r ;
e r r o r =0;

‘ e n d i f / / ADDER_TEST

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / Un i cas t T e s t
/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

‘ i f d e f UNICAST_TEST
/ /
/ / UniCast
/ /
$d i sp l ay ( " \ nINFO : U n i c a s t t e s t . Send ing d a t a from a l l i n p u t s t o

a l l o u t p u t s " ) ;
f o r ( l 1 =0; l1 <‘INPUTS ; l 1 = l 1 +1)
f o r ( l 2 =0; l2 <‘OUTPUTS ; l 2 = l 2 +1)
begin

/ / Se tup r o u t e
c o n f i g u r a t i o n . c l e a r ;
#0 .01 / / We must d e l a y here . . At l e a s t i n models im
c o n f i g u r a t i o n . enab leRou te ( l1 , l2 , 1 ) ;
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p a c k e t s = p a c k e t s +1;

d a t = ( l2 < <4) | l 1 ;
/ / Se tup s l a v e
s e t u p S l a v e ( l2 , dat , 1 , l 1 ) ;
/ / Send data
mst . c l e a r _ t x s ;
mst . s e t u p _ t x s ( l1 , d a t ) ; / / i npu t_chan , t a r g e t , da ta
mst . t x s ;

/ / Wait t i l l da ta has been r e c i e v e d
#(6∗ ‘T_CLK ) ;

end
$d i sp l ay ( " INFO : U n i c a s t was s u c c e s f u l l y t e s t e d " ) ;
countNumberOfRece ivedPackets ;
$d i sp l ay ( " %0d of %0d p a c k e t s was r e c i e v e d s u c c e c f u l l y " ,

r e c e i v e d _ p a c k e t s , p a c k e t s ) ;
$d i sp l ay ( " %0d ERRORS d e t e c t e d " , e r r o r ) ;

e r r o r _ t o t a l = e r r o r _ t o t a l + e r r o r ;
e r r o r =0;

‘ e n d i f / / UNICAST_TEST

‘ i f d e f MULTICAST_TEST
/ /
/ / M u l t i C a s t
/ /
$d i sp l ay ( " \ nINFO : M u l t i c a s t " ) ;
f o r ( l 1 =0; l1 <‘INPUTS ; l 1 = l 1 +1)
begin

/ / We are send ing da ta from l 1 t o ( l 2 and l 3 )
$d i sp l ay ( " − I n p u t %0d i s m u l t i c a s t i n g " , l 1 ) ;
f o r ( l 2 =0; l2 <‘OUTPUTS ; l 2 = l 2 +1)
f o r ( l 3 = l 2 +1; l3 <‘OUTPUTS ; l 3 = l 3 +1)
begin
/ / Se tup r o u t e
c o n f i g u r a t i o n . c l e a r ;
#0 .01 / / We must d e l a y here . . At l e a s t i n models im
c o n f i g u r a t i o n . enab leRou te ( l1 , l2 , 0 ) ;
#0 .01 / / We must d e l a y here . . At l e a s t i n models im
c o n f i g u r a t i o n . enab leRou te ( l1 , l3 , 0 ) ;
p a c k e t s = p a c k e t s +2;

d a t = ( l3 < <8) | ( l2 < <4) | l 1 ;
/ / Se tup s l a v e s
s e t u p S l a v e ( l2 , dat , 0 , l 1 ) ;
s e t u p S l a v e ( l3 , dat , 0 , l 1 ) ;
/ / Send data
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mst . c l e a r _ t x s ;
mst . s e t u p _ t x s ( l1 , d a t ) ; / / i npu t_chan , t a r g e t , da ta
mst . t x s ;

/ / Wait t i l l da ta has been r e c i e v e d
#(10∗ ‘T_CLK ) ;

end
end
$d i sp l ay ( " INFO : M u l t i c a s t s u c c e s f u l l y t e s t e d " ) ;
countNumberOfRece ivedPackets ;
$d i sp l ay ( " %0d of %0d p a c k e t s was r e c i e v e d s u c c e c f u l l y " ,

r e c e i v e d _ p a c k e t s , p a c k e t s ) ;
$d i sp l ay ( " %0d ERRORS d e t e c t e d " , e r r o r ) ;
e r r o r _ t o t a l = e r r o r _ t o t a l + e r r o r ;
e r r o r =0;

‘ e n d i f / / MULTICAST_TEST

‘ i f d e f MULTICAST2_TEST
/ /
/ / Mu l t iCas t2
/ /
$d i sp l ay ( " \ nINFO : M u l t i c a s t i n g 2 . Two s i m u l t a n o u s l y m u l t i c a s t s " ) ;

/ / S e v e r a l m u l t i c a s t s a t a t ime
f o r ( l 1 =0; l1 <‘INPUTS−1; l 1 = l 1 +1)
begin

/ / We are send ing da ta from l 1 and l 1 +1 t o ( l2 , l 2 +1 , l 3 and l 3
+1)

$d i sp l ay ( " − I n p u t %0d and %0d a r e m u l t i c a s t i n g " , l1 , l 1 +1) ;
f o r ( l 2 =0; l2 <‘OUTPUTS−1; l 2 = l 2 +1)
f o r ( l 3 = l 2 +2; l3 <‘OUTPUTS−1; l 3 = l 3 +1)
begin
/ / Se tup r o u t e
c o n f i g u r a t i o n . c l e a r ;
#0 .01 / / We must d e l a y here . . At l e a s t i n models im
c o n f i g u r a t i o n . enab leRou te ( l1 , l2 , 0 ) ;
#0 .01 / / We must d e l a y here . . At l e a s t i n models im
c o n f i g u r a t i o n . enab leRou te ( l 1 +1 , l3 , 1 ) ;
#0 .01 / / We must d e l a y here . . At l e a s t i n models im
c o n f i g u r a t i o n . enab leRou te ( l1 , l 2 +1 ,1 ) ;
#0 .01 / / We must d e l a y here . . At l e a s t i n models im
c o n f i g u r a t i o n . enab leRou te ( l 1 +1 , l 3 +1 ,0) ;
p a c k e t s = p a c k e t s +4;

d a t = ( ( l 2 +1) <<8) | ( l2 < <4) | l 1 ;
mst . c l e a r _ t x s ;
/ / Se tup s l a v e s
s e t u p S l a v e ( l2 , dat , 0 , l 1 ) ;
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s e t u p S l a v e ( l 2 +1 , dat , 1 , l 1 ) ;
mst . s e t u p _ t x s ( l1 , d a t ) ; / / i npu t_chan , t a r g e t , da ta

d a t = ( ( l 3 +1) <<8) | ( l3 < <4) | ( l 1 +1) ;
/ / Se tup s l a v e s
s e t u p S l a v e ( l3 , dat , 1 , l 1 +1) ;
s e t u p S l a v e ( l 3 +1 , dat , 0 , l 1 +1) ;
mst . s e t u p _ t x s ( l 1 +1 , d a t ) ;/ / i npu t_chan , t a r g e t , da ta
/ / Send data
mst . t x s ;

/ / Wait t i l l da ta has been r e c i e v e d
#(60∗ ‘T_CLK ) ;

end
end

$d i sp l ay ( " INFO : M u l t i c a s t 2 s u c c e s f u l l y t e s t e d " ) ;
countNumberOfRece ivedPackets ;
$d i sp l ay ( " %0d of %0d p a c k e t s was r e c i e v e d s u c c e c f u l l y " ,

r e c e i v e d _ p a c k e t s , p a c k e t s ) ;
$d i sp l ay ( " %0d ERRORS d e t e c t e d " , e r r o r ) ;
e r r o r _ t o t a l = e r r o r _ t o t a l + e r r o r ;
e r r o r =0;

‘ e n d i f / / MULTICAST2

‘ i f d e f CHAOS_TEST
$d i sp l ay ( " \ nINFO : S imu l t anus send ing t e s t " ) ;
c o n f i g u r a t i o n . c l e a r ;
mst . c l e a r _ t x s ;
#0 .01 / / We must d e l a y here . . At l e a s t i n models im
f o r ( l 1 =0; l1 <‘OUTPUTS ; l 1 = l 1 +1)
begin

c o n f i g u r a t i o n . enab leRou te ( l1 , l1 , 1 ) ;
d a t = ( l1 < <4) | l 1 ;
p a c k e t s = p a c k e t s +1;
mst . s e t u p _ t x s ( l1 , d a t ) ; / / i npu t_chan , t a r g e t , da ta
s e t u p S l a v e ( l1 , dat , 1 , l 1 ) ;

end
/ / Send t h e da ta and wa i t
mst . t x s ;
# ( ‘INPUTS∗10∗ ‘T_CLK ) ;
$d i sp l ay ( " INFO : S u c c e s f u l l y t e s t e d " ) ;
countNumberOfRece ivedPackets ;
$d i sp l ay ( " %0d of %0d p a c k e t s was r e c i e v e d s u c c e c f u l l y " ,

r e c e i v e d _ p a c k e t s , p a c k e t s ) ;
$d i sp l ay ( " %0d ERRORS d e t e c t e d " , e r r o r ) ;
e r r o r _ t o t a l = e r r o r _ t o t a l + e r r o r ;
e r r o r =0;
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$d i sp l ay ( " \ nINFO : Chaos t e s t . Everybody i s send ing t o t h e same
r e c e i v e r " ) ;

f o r ( l 2 =0; l2 <‘OUTPUTS ; l 2 = l 2 +1)
begin

c o n f i g u r a t i o n . c l e a r ;
#0 .01 / / We must d e l a y here . . At l e a s t i n models im
mst . c l e a r _ t x s ;
f o r ( l 1 =0; l1 <‘INPUTS ; l 1 = l 1 +1)
begin

c o n f i g u r a t i o n . enab leRou te ( l1 , l2 , 0 ) ;
d a t = ( l2 < <4) | l 1 ;
p a c k e t s = p a c k e t s +1;
mst . s e t u p _ t x s ( l1 , d a t ) ; / / i npu t_chan , t a r g e t , da ta
s e t u p S l a v e ( l2 , dat , 0 , l 1 ) ;

end
/ / Send t h e da ta and wa i t
mst . t x s ;
# ( ‘INPUTS∗10∗ ‘T_CLK ) ;

end
$d i sp l ay ( " INFO : S u c c e s f u l l y t e s t e d " ) ;
countNumberOfRece ivedPackets ;
$d i sp l ay ( " %0d of %0d p a c k e t s was r e c i e v e d s u c c e c f u l l y " ,

r e c e i v e d _ p a c k e t s , p a c k e t s ) ;
$d i sp l ay ( " %0d ERRORS d e t e c t e d " , e r r o r ) ;
e r r o r _ t o t a l = e r r o r _ t o t a l + e r r o r ;
e r r o r =0;

‘ e n d i f / / CHAOS_TEST

/ / Count number o f r e c e i v e d p a c k e t s
countNumberOfRece ivedPackets ;

$d i sp l ay ( " \ nINFO : A l l t e s t s done " ) ;
i f ( r e c e i v e d _ p a c k e t s == p a c k e t s )
$d i sp l ay ( " INFO : a l l %0d p a c k e t s was r e c i e v e d s u c c e c f u l l y " , p a c k e t s

) ; e l s e
$d i sp l ay ( " INFO : %0d of %0d p a c k e t s was r e c i e v e d s u c c e c f u l l y " ,

r e c e i v e d _ p a c k e t s , p a c k e t s ) ;
$d i sp l ay ( " INFO : %0d ERRORS were d e t e c t e d " , e r r o r _ t o t a l ) ;

i f ( r e c e i v e d _ p a c k e t s == p a c k e t s && e r r o r _ t o t a l ==0)
$d i sp l ay ( "PASSED" ) ; e l s e
$d i sp l ay ( "FAILED" ) ;

/ / S t o r e e r r o r i n a f i l e f o r use by make
hand le = $fopen( " sim . e x i t c o d e " ) ;
$ f d i s p l a y ( hand le , "%d " , e r r o r _ t o t a l ) ;
$ f c l o s e( hand le ) ;
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‘ i f d e f MIKKEL_TB
$ s to p ;

‘ e n d i f
$ f i n i s h ;

end

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / Er ro r d e t e c t i o n
/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i n t e g e r cc ;
always @( r e s )
begin

fo r ( cc =0; cc <‘OUTPUTS ; cc=cc +1)
i f ( r e s [ cc ]==0)
begin

e r r o r = e r r o r +1;
end

end

/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / C lock g e n e r a t i o n
/ /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

always #( ‘T_CLK / 2 )
i f ( c l k === 1) c l k = 0 ;
e l s e c l k = 1 ;

reg [ 5 : 0 ] coun t ;

a s s i g n c q _ f s = coun t === 0 ;

always @(negedge c l k or negedge r e s e t _ b )
i f ( ! r e s e t _ b )

begin
coun t <= 0 ;

end
e l s e

begin
coun t <= coun t + 1 ;

end

endmodule
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E.5 Bundled data blocks

E.5.1 P_merge

/∗
D e s c r i p t i o n :

Merger f o r 4 phase bund led da ta p r o t o c o l

2 b u s s e s are merged i n t o a s i n g l e bus u s s i n g a r b i t r a t i o n .
The 2 incoming l i n e s does no t need t o be mutua l e x c l u s i v e

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /

‘ i f n d e f _P_merge_v
‘ d e f i n e _P_merge_v

‘ i n c l u d e " g l o b a l . v "

module P_merge (
i _ d a t a 1 ,
i _ req1 ,
o_ack1 ,
i _ d a t a 2 ,
i _ req2 ,
o_ack2 ,
o_data ,
o_req ,
i_ack ,
i _ r e s e t _ b
) ;

/∗
Parameters
∗ /
parameter BUS_WIDTH=‘BUS_WIDTH ; / / Number o f da ta b i t s

/∗
I n p u t s
∗ /
i npu t [BUS_WIDTH−1:0] i _ d a t a 1 , i _ d a t a 2 ;
i npu t i _ack , i _ req1 , i _ req2 , i _ r e s e t _ b ;

/∗
Outpu ts
∗ /
output o_ack1 , o_ack2 , o_req ;
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output [BUS_WIDTH−1:0] o_da ta ;

/∗
I n t e r n a l s i g n a l s
∗ /
wire s_g ran t1 , s _ g r a n t 2 ;
wire s _ g r a n t 1 _ t , s _ g r a n t 2 _ t ;
wire s _ r e q ;

/∗
N e t l i s t
∗ /

/ / Mutex
C_MUTEX2 mutex ( i_ req1 , i _ req2 , s _ g r a n t 1 _ t , s _ g r a n t 2 _ t ) ;

/ / The g r a n t S i g n a l must be b u f f e r e d t o s u p p o r t ’BUS_WIDTH’ p o r t s .
Th i s i s done i n t h e t e m p l a t e c e l l

TC_AND2A #(BUS_WIDTH) g r a n t 1 ( s_ack2 , s _ g r a n t 1 _ t , s _ g r a n t 1 ) ;/ / s _g ran t1
<= ! s_ack2 && s _ g r a n t _ t 1

TC_AND2A #(BUS_WIDTH) g r a n t 2 ( s_ack1 , s _ g r a n t 2 _ t , s _ g r a n t 2 ) ;/ / s _g ran t2
<= ! s_ack1 && s _ g r a n t _ t 2

/ / o u t p u t acks
C_C2_R0 ack1 ( i_ack , s_g ran t1 , s_ack1 , i _ r e s e t _ b ) ;
a s s i g n o_ack1 = s_ack1 ;
C_C2_R0 ack2 ( i_ack , s_g ran t2 , s_ack2 , i _ r e s e t _ b ) ;
a s s i g n o_ack2 = s_ack2 ;

/ / da ta g e n e r a t i o n
/ / Th i s i s done i n an AND−OR c o n t r u c t . I f t h e c e l l l i b r a r y s u p p o r t i t

, t h i s i s done
/ / i n a complex c e l l . E l se a NAND−NAND c o n s t r u c t
C_AOR22 aor22 [BUS_WIDTH−1:0] ( . a ( i _ d a t a 1 ) , . b ( s _ g r a n t 1 ) , . c ( i _ d a t a 2 ) ,

. d ( s _ g r a n t 2 ) , . z ( o_da ta ) ) ;

/ / Reques t g e n e r a t i o n
C_OR2 r e q o r ( s_g ran t1 , s_g ran t2 , s _ r e q ) ;

/ / Put i n some d e l a y on t h e r e q u e s t
/ / Th i s d e l a y must be l a r g e r than t h e TC_AND2A g a t e s + r o u t i n g
TC_delay #400 de lay1 ( s_req , o_req ) ;

endmodule

‘ e n d i f
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E.5.2 P_merge_tree

/∗
D e s c r i p t i o n :

B inary merge t r e e f o r a 4 phase bund led da ta p r o t o c o l

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /

‘ i f n d e f _P_merge_t ree_v
‘ d e f i n e _P_merge_t ree_v

‘ i n c l u d e " g l o b a l . v "

module P_merge_ t ree (
i _ d a t a ,
i _ req ,
o_ack ,
o_data ,
o_req ,
i_ack ,
i _ r e s e t _ b
) ;

/∗
Parameters

∗ /
parameter INPUTS=2; / / Number o f i n p u t s
parameter BUS_WIDTH=10; / / Width o f t h e bus

/∗
I n p u t s

∗ /
i npu t [ INPUTS∗BUS_WIDTH−1:0] i _ d a t a ;
i npu t [ INPUTS−1:0] i _ r e q ;
i npu t i _ a c k ;
i npu t i _ r e s e t _ b ;

/∗
Outpu ts

∗ /
output [ INPUTS−1:0] o_ack ;
output [BUS_WIDTH−1:0] o_da ta ;
output o_req ;

/∗
I n t e r n a l s i g n a l s

∗ /
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wire s_req1 , s_ req2 ;
wire s_ack1 , s_ack2 ;
wire [BUS_WIDTH−1:0] s_da ta1 , s _ d a t a 2 ;

/∗
N e t l i s t

∗ /
genvar i ;

‘ d e f i n e lower_n ( INPUTS / 2 )
‘ d e f i n e upper_n ( INPUTS−‘ l ower_n )

/ / Genera te an upper and lower merge t r e e and connec t
/ / them by a merge e lemen t
genera te
i f ( INPUTS==1)
begin

a s s i g n o_da ta = i _ d a t a ;
a s s i g n o_req= i _ r e q ;
a s s i g n o_ack= i _ a c k ;

end
e l s e
begin

P_merge_ t ree #( ‘ lower_n , BUS_WIDTH) merge_ t ree_ lowe r (
. i _ d a t a ( i _ d a t a [ ‘ l ower_n∗BUS_WIDTH−1:0 ] ) ,
. i _ r e q ( i _ r e q [ ‘ lower_n−1:0 ] ) ,
. o_ack ( o_ack [ ‘ lower_n−1:0 ] ) ,
. o_da ta ( s _ d a t a 1 ) ,
. o_req ( s_ req1 ) ,
. i _ a c k ( s_ack1 ) ,
. i _ r e s e t _ b ( i _ r e s e t _ b )
) ;

/ / defparam merge_ t ree_upper . INPUTS=‘ l ower_n ;
/ / defparam merge_ t ree_upper . BUS_WIDTH=BUS_WIDTH;

P_merge_ t ree #( ‘upper_n , BUS_WIDTH) merge_ t ree_uppe r (
. i _ d a t a ( i _ d a t a [ INPUTS∗BUS_WIDTH−1: ‘ l ower_n∗BUS_WIDTH ] ) ,
. i _ r e q ( i _ r e q [ INPUTS−1: ‘ l ower_n ] ) ,
. o_ack ( o_ack [ INPUTS−1: ‘ l ower_n ] ) ,
. o_da ta ( s _ d a t a 2 ) ,
. o_req ( s_ req2 ) ,
. i _ a c k ( s_ack2 ) ,
. i _ r e s e t _ b ( i _ r e s e t _ b )
) ;

/ / defparam merge_ t ree_upper . INPUTS=‘upper_n ;
/ / defparam merge_ t ree_upper . BUS_WIDTH=BUS_WIDTH;

/ / The merger f o r t h i s s t a g e
P_merge merger (

. i _ d a t a 1 ( s _ d a t a 1 ) ,
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. i _ r e q 1 ( s_ req1 ) ,

. o_ack1 ( s_ack1 ) ,

. i _ d a t a 2 ( s _ d a t a 2 ) ,

. i _ r e q 2 ( s_ req2 ) ,

. o_ack2 ( s_ack2 ) ,

. o_da ta ( o_da ta ) ,

. o_req ( o_req ) ,

. i _ a c k ( i _ a c k ) ,

. i _ r e s e t _ b ( i _ r e s e t _ b )
) ;

defparam merger .BUS_WIDTH=BUS_WIDTH;

end

endgenerate
endmodule

‘ e n d i f
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E.5.3 P_multicast

/∗
D e s c r i p t i o n :

P _ m u l t i c a s t

M u l t i c a s t module f o r a 4 phase bund led da ta p r o t o c o l

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /
‘ i f n d e f _ P _ m u l t i c a s t _ v
‘ d e f i n e _ P _ m u l t i c a s t _ v

‘ i n c l u d e " g l o b a l . v "

module P _ m u l t i c a s t (
i _ r o u t e s ,
i _ r o u t e _ e n ,
i _ d a t a ,
i _ req ,
o_ack ,
o_data ,
o_req ,
i_ack ,
i _ r e s e t _ b ) ;

/∗
Parameters

∗ /
parameter N_MC=2; / / Number o f m u l t i c a s t s
parameter DATA_WIDTH=‘DATA_WIDTH;
parameter BUS_WIDTH=‘BUS_WIDTH ;
parameter ROUTE_WIDTH=‘ROUTE_WIDTH;

/∗
I n p u t s

∗ /
i npu t [DATA_WIDTH−1:0] i _ d a t a ;
i npu t [N_MC∗ROUTE_WIDTH−1:0] i _ r o u t e s ;
i npu t [N_MC−1:0] i _ r o u t e _ e n ;
i npu t i _ req , i _ a c k ;
i npu t i _ r e s e t _ b ;

/∗
Outpu ts

∗ /
output [BUS_WIDTH−1:0] o_da ta ;
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output o_req , o_ack ;

/∗
I n t e r n a l s i g n a l s

∗ /
wire [ROUTE_WIDTH−1:0] s _ r o u t e ;

/∗
N e t L i s t

∗ /
M u l t i c a s t e r m u l t i c a s t e r (

. i _en ( i _ r o u t e _ e n ) ,

. i _ d a t a ( i _ r o u t e s ) ,

. i _ r e q ( i _ r e q ) ,

. i _ a c k ( i _ a c k ) ,

. o_da ta ( s _ r o u t e ) ,

. o_req ( o_req ) ,

. o_ack ( o_ack ) ,

. i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;
defparam m u l t i c a s t e r .N_MC=N_MC;
defparam m u l t i c a s t e r .DATA_WIDTH = ROUTE_WIDTH;

/ / Ass ign o u t p u t
a s s i g n o_da ta = { s _ r o u t e , i _ d a t a } ;
endmodule

‘ e n d i f
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E.5.4 P_network

/∗
D e s c r i p t i o n :

Network u s i ng 4 phase bund led da ta

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /

‘ i f n d e f _P_network_v
‘ d e f i n e _P_network_v

‘ i n c l u d e " g l o b a l . v "

module P_network (
i _ d a t a ,
i _ req ,
o_ack ,
o_data ,
o_req ,
i_ack ,
i _ r e s e t _ b

) ;

/∗
Parameters

∗ /
parameter INPUTS=‘N_INPUTS ;
parameter OUTPUTS=‘N_OUTPUTS ;
parameter BUS_WIDTH=‘BUS_WIDTH ;
parameter DATA_WIDTH=‘DATA_WIDTH;

/∗
I n p u t s

∗ /
i npu t [ INPUTS∗BUS_WIDTH−1:0] i _ d a t a ;
i npu t [ INPUTS−1:0] i _ r e q ;
i npu t [OUTPUTS−1:0] i _ a c k ;
i npu t i _ r e s e t _ b ;

/∗
Outpu ts

∗ /
output [ INPUTS−1:0] o_ack ;
output [OUTPUTS∗BUS_WIDTH−1:0] o_da ta ;
output [OUTPUTS−1:0] o_req ;

/∗
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I n t e r n a l s i g n a l s
∗ /
wire s_ack , s _ r e q ;
wire [BUS_WIDTH−1:0] s _ d a t a ;

/∗
N e t l i s t
∗ /
P_merge_ t ree #( INPUTS , BUS_WIDTH) merge_ t ree (

. i _ d a t a ( i _ d a t a ) ,

. i _ r e q ( i _ r e q ) ,

. o_ack ( o_ack ) ,

. o_da ta ( s _ d a t a ) ,

. o_req ( s _ r e q ) ,

. i _ a c k ( s_ack ) ,

. i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

P _ r o u t e r _ t r e e #(OUTPUTS, BUS_WIDTH, DATA_WIDTH) r o u t e r _ t r e e (
. i _ d a t a ( s _ d a t a ) ,
. i _ r e q ( s _ r e q ) ,
. o_ack ( s_ack ) ,
. o_da ta ( o_da ta ) ,
. o_req ( o_req ) ,
. i _ a c k ( i _ a c k ) ,
. i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

endmodule

‘ e n d i f
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E.5.5 P_router

/∗
D e s c r i p t i o n :

Rou te r f o r 4 phase bund led da ta p r o t o c o l

MSB LSB
−−−−−−−−−−−−−
ROUTE− DATA

Created by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /

‘ i f n d e f _P_ rou te r_v
‘ d e f i n e _P_ rou te r_v

‘ i n c l u d e " g l o b a l . v "

module P _ r o u t e r (
i _ d a t a ,
i _ req ,
o_ack ,
o_data1 ,
o_req1 ,
i_ack1 ,
o_data2 ,
o_req2 ,
i_ack2 ,
i _ r e s e t _ b
) ;

/∗
Parameters
∗ /
parameter BUS_WIDTH=‘BUS_WIDTH ; / / Width o f t h e bus
parameter DATA_WIDTH=23; / / Data w id th

/∗
I n p u t s
∗ /
i npu t [BUS_WIDTH−1:0] i _ d a t a ;
i npu t i_ack1 , i_ack2 , i _ req , i _ r e s e t _ b ;

/∗
Outpu ts
∗ /
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output o_ack , o_req1 , o_req2 ;
output [BUS_WIDTH−1:0] o_data1 , o_da ta2 ;

/∗
I n t e r n a l s i g n a l s
∗ /
wire s_ rou te1 , s _ r o u t e 2 ;
wire s_ack , s_req1 , s_ req2 ;
wire s _ r e q 1 _ b u f f e r e d , s _ r e q 2 _ b u f f e r e d ;
wire s _ r e q _ d e l a y e d ;
wire [BUS_WIDTH−1:0] s_da ta1 , s _ d a t a 2 ;

/∗
N e t l i s t
∗ /
/ / Route . The most s i g n i f i c a n t b i t d e t e r m i n e s t h e c u r r e n t r o u t e
a s s i g n s _ r o u t e 2 = i _ d a t a [BUS_WIDTH−1];
TC_INV #1 i n v _ r o u t e ( . a ( s _ r o u t e 2 ) , . z ( s _ r o u t e 1 ) ) ;

TC_delay #200 de lay1 ( . a ( i _ r e q ) , . z ( s _ r e q _ d e l a y e d ) ) ;

/ / Reques t ou t
TC_INV #2 inv_ack ( s_ack , s_ack_b ) ;
C_C3P_R0 req1c ( . a ( s _ r e q _ d e l a y e d ) , . b ( s_ack_b ) , . c ( s _ r o u t e 1 ) , . z (

s_ req1 ) , . r e s e t _ b ( i _ r e s e t _ b ) ) ;
C_C3P_R0 req2c ( . a ( s _ r e q _ d e l a y e d ) , . b ( s_ack_b ) , . c ( s _ r o u t e 2 ) , . z (

s_ req2 ) , . r e s e t _ b ( i _ r e s e t _ b ) ) ;

/ / B u f f e r up s_req d r i v e r
TC_BUF #(BUS_WIDTH+1) req_bu f1 ( . a ( s_ req1 ) , . z ( s _ r e q 1 _ b u f f e r e d ) ) ;
TC_BUF #(BUS_WIDTH+1) req_bu f2 ( . a ( s_ req2 ) , . z ( s _ r e q 2 _ b u f f e r e d ) ) ;

/ / Put i n some d e l a y on t h e d e l a y l i n e
TC_delay #400 req1bu f ( . a ( s _ r e q 1 _ b u f f e r e d ) , . z ( o_req1 ) ) ;
TC_delay #400 req2bu f ( . a ( s _ r e q 2 _ b u f f e r e d ) , . z ( o_req2 ) ) ;

/ / Ack ou t
C_OR2 ackor ( . a ( i _ack1 ) , . b ( i _ack2 ) , . z ( s_ack ) ) ;
a s s i g n o_ack = s_ack ;

/ / Data ou t . S h i f t t h e r o u t e one l e f t as t h e MSB was used t o d e t e r m i n e
t h i s r o u t e

a s s i g n s _ d a t a 1 = { i _ d a t a [BUS_WIDTH−2:DATA_WIDTH] , 1 ’ b0 , i _ d a t a [
DATA_WIDTH−1 :0 ] } ;

a s s i g n s _ d a t a 2 = { i _ d a t a [BUS_WIDTH−2:DATA_WIDTH] , 1 ’ b0 , i _ d a t a [
DATA_WIDTH−1 :0 ] } ;

C_AND2 da taand1 [BUS_WIDTH−1:0] ( . a ( s _ d a t a 1 ) , . b ( s _ r e q 1 _ b u f f e r e d ) , . z (
o_da ta1 ) ) ;
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C_AND2 da taand2 [BUS_WIDTH−1:0] ( . a ( s _ d a t a 2 ) , . b ( s _ r e q 2 _ b u f f e r e d ) , . z (
o_da ta2 ) ) ;

endmodule

‘ e n d i f
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E.5.6 P_router_tree

/∗
D e s c r i p t i o n :

B inary r o u t e r t r e e f o r a 4 phase bund led da ta p r o t o c o l

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /

‘ i f n d e f _P_merge_t ree_v
‘ d e f i n e _P_merge_t ree_v

‘ i n c l u d e " g l o b a l . v "

module P _ r o u t e r _ t r e e (
i _ d a t a ,
i _ req ,
o_ack ,
o_data ,
o_req ,
i_ack ,
i _ r e s e t _ b
) ;

/∗
Parameters

∗ /
parameter OUTPUTS=2; / / Number o f o u t p u t s
parameter BUS_WIDTH=10;
parameter DATA_WIDTH=6;

/∗
I n p u t s

∗ /
i npu t [BUS_WIDTH−1:0] i _ d a t a ;
i npu t i _ r e q ;
i npu t [OUTPUTS−1:0] i _ a c k ;
i npu t i _ r e s e t _ b ;

/∗
Outpu ts

∗ /
output o_ack ;
output [OUTPUTS∗BUS_WIDTH−1:0] o_da ta ;
output [OUTPUTS−1:0] o_req ;

/∗
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I n t e r n a l s i g n a l s
∗ /
wire s_req1 , s_ req2 ;
wire s_ack1 , s_ack2 ;
wire [BUS_WIDTH−1:0] s_da ta1 , s _ d a t a 2 ;

/∗
N e t l i s t

∗ /
genvar i ;

‘ d e f i n e lower_n (OUTPUTS/ 2 )
‘ d e f i n e upper_n (OUTPUTS−‘ l ower_n )

/ / Genera te an upper and lower r o u t e r t r e e and connec t
/ / them by a r o u t e r
genera te
i f (OUTPUTS==1)
begin

a s s i g n o_da ta = i _ d a t a ;
a s s i g n o_req= i _ r e q ;
a s s i g n o_ack= i _ a c k ;

end
e l s e
begin

P _ r o u t e r _ t r e e #( ‘ lower_n , BUS_WIDTH, DATA_WIDTH) r o u t e _ t r e e _ l o w e r (
. i _ d a t a ( s _ d a t a 1 ) ,
. i _ r e q ( s_ req1 ) ,
. o_ack ( s_ack1 ) ,
. o_da ta ( o_da ta [ ‘ l ower_n∗BUS_WIDTH−1:0 ] ) ,
. o_req ( o_req [ ‘ lower_n−1:0 ] ) ,
. i _ a c k ( i _ a c k [ ‘ lower_n−1:0 ] ) ,
. i _ r e s e t _ b ( i _ r e s e t _ b )
) ;

P _ r o u t e r _ t r e e #( ‘upper_n , BUS_WIDTH, DATA_WIDTH) r o u t e _ t r e e _ u p p e r (
. i _ d a t a ( s _ d a t a 2 ) ,
. i _ r e q ( s_ req2 ) ,
. o_ack ( s_ack2 ) ,
. o_da ta ( o_da ta [OUTPUTS∗BUS_WIDTH−1: ‘ l ower_n∗BUS_WIDTH ] ) ,
. o_req ( o_req [OUTPUTS−1: ‘ l ower_n ] ) ,
. i _ a c k ( i _ a c k [OUTPUTS−1: ‘ l ower_n ] ) ,
. i _ r e s e t _ b ( i _ r e s e t _ b )
) ;

/ / pa rameter SIZE=‘BUS_WIDTH ;
/ / parameter DATA_WIDTH=23;
P _ r o u t e r # (BUS_WIDTH, DATA_WIDTH) r o u t e r (
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. i _ d a t a ( i _ d a t a ) ,

. i _ r e q ( i _ r e q ) ,

. o_ack ( o_ack ) ,

. o_da ta1 ( s _ d a t a 1 ) ,

. o_req1 ( s_ req1 ) ,

. i _ack1 ( s_ack1 ) ,

. o_da ta2 ( s _ d a t a 2 ) ,

. o_req2 ( s_ req2 ) ,

. i _ack2 ( s_ack2 ) ,

. i _ r e s e t _ b ( i _ r e s e t _ b )
) ;

end

endgenerate
endmodule

‘ e n d i f

Design of an asynchronous communication network for an audio DSP chip 206



E.5. BUNDLED DATA BLOCKS

E.5.7 P_sink

/∗
D e s c r i p t i o n :

S ink f o r p a r a l l e l bund led da ta

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /

‘ i f n d e f _P_sink_V
‘ d e f i n e _P_sink_V

‘ i n c l u d e " g l o b a l . v "

module P_s ink ( i _ d a t a , i _ req , o_ack ) ;

parameter SIZE=‘BUS_WIDTH ;
parameter SINK_ID=−1;

/ / I n p u t s
i npu t [ SIZE−1:0] i _ d a t a ;
i npu t i _ r e q ;
/ / Ou tpu ts
output o_ack ;

/ / Th i s i s j u s t t o have some d e l a y
TC_delay #1000 d e l a y b l o c k ( i _ req , o_ack ) ;

‘ i f d e f DEBUG_LEVEL2
always @( posedge i _ r e q )
begin

i f ( SINK_ID==−1)
$d i sp l ay ( " S ink : %x " , i _ d a t a ) ;

e l s e
$d i sp l ay ( " S ink %2d : %x " , SINK_ID , i _ d a t a ) ;

end
‘ e n d i f

endmodule
‘ e n d i f
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E.6 1-of-5blocks

E.6.1 PC_bundled_1of4

/∗
D e s c r i p t i o n :

P r o t o c o l c o n v e r t e r : Conve r t s from 1 o f4 encod ing i n t o bund led
d a t r a

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /
‘ i f n d e f _PC_bundled_1of4_v
‘ d e f i n e _PC_bundled_1of4_v

‘ i n c l u d e " g l o b a l . v "

module PC_bundled_1of4 (
i _ d a t a ,
i _ req ,
o_ack ,
o_data ,
i_ack ,
i _ r e s e t _ b ) ;

i npu t [ 1 : 0 ] i _ d a t a ;
i npu t i _ req , i_ack , i _ r e s e t _ b ;
output o_ack ;
output [ 3 : 0 ] o_da ta ;

/ / w i re [ 1 : 0 ] s_da ta2 ;
wire [ 3 : 0 ] s_da ta4 , s_da ta4_2 ;
wire s_ req_de lay , s_ack_b ;

conv_2_1of4 c o n v e r t e r ( . i _ d a t a ( i _ d a t a ) , . o_da ta ( s _ d a t a 4 ) ) ;
/ / Delay r e q u e s t f o r 2 g a t e s . . someth ing l i k e 400 ps
TC_delay #400 d e l a y ( . a ( i _ r e q ) , . z ( s _ r e q _ d e l a y e d ) ) ;

C_C2P_R0 c_e lemen ts [ 3 : 0 ] (
. a ( s _ r e q _ d e l a y e d ) ,
. b ( s_da ta4_2 ) ,
. z ( o_da ta ) ,
. r e s e t _ b ( i _ r e s e t _ b ) ) ;

C_AND2A and2a [ 3 : 0 ] (
. a ( i _ a c k ) ,
. b ( s _ d a t a 4 ) ,

. z ( s_da ta4_2 ) ) ;
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a s s i g n o_ack= i _ a c k ;

/∗C_C3PP_R0 c _ e l e m e n t s [ 3 : 0 ] (
. a ( s _ r e q _ d e l a y e d ) ,
. b ( s_da ta4 ) ,
. c ( s_ack_b ) ,
. z ( o_data ) ,
. r e s e t _ b ( i _ r e s e t _ b ) ) ;

a s s i g n o_ack=i _ a c k ;
TC_INV i n v ( . a ( i _ a c k ) , . z ( s_ack_b ) ) ;
∗ /
endmodule

module conv_2_1of4 ( i _ d a t a , o_da ta ) ;

/ / I n p u t s
i npu t [ 1 : 0 ] i _ d a t a ;
/ / Ou tpu ts
output [ 3 : 0 ] o_da ta ;

/ / N e t l i s t
C_NOR2 nor1 ( i _ d a t a [ 0 ] , i _ d a t a [ 1 ] , o_da ta [ 0 ] ) ;
TC_AND2A #4 nd2 ( i _ d a t a [ 1 ] , i _ d a t a [ 0 ] , o_da ta [ 1 ] ) ;
TC_AND2A #4 and3 ( i _ d a t a [ 0 ] , i _ d a t a [ 1 ] , o_da ta [ 2 ] ) ;
C_AND2 and4 ( i _ d a t a [ 0 ] , i _ d a t a [ 1 ] , o_da ta [ 3 ] ) ;
endmodule

‘ e n d i f
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E.6.2 PC_1of4_bundled

/∗
D e s c r i p t i o n :

P r o t o c o l c o n v e r t e r : Conve r t s from p a r a l l e l bund led da ta i n t o 1
o f4 encod ing

Created by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /
‘ i f n d e f _PC_1of4_bundled_v
‘ d e f i n e _PC_1of4_bundled_v

‘ i n c l u d e " g l o b a l . v "

module PC_1of4_bundled (
i _ d a t a ,
o_ack ,
o_data ,
i_ack ,
o_req ,
i _ r e s e t _ b ) ;

i npu t [ 3 : 0 ] i _ d a t a ;
i npu t i _ack , i _ r e s e t _ b ;
output o_ack , o_req ;
output [ 1 : 0 ] o_da ta ;
wire s _ r e q ;

a s s i g n o_ack= i _ a c k ;

conv_1of4_2 c o n v e r t e r ( . i _ d a t a ( i _ d a t a ) , . o_da ta ( o_da ta ) ) ;
C_OR4 req ( . a ( i _ d a t a [ 0 ] ) , . b ( i _ d a t a [ 1 ] ) , . c ( i _ d a t a [ 2 ] ) , . d ( i _ d a t a [ 3 ] ) , . z (

o_req ) ) ;

endmodule

module conv_1of4_2 ( i _ d a t a , o_da ta ) ;

/ / I n p u t s
i npu t [ 3 : 0 ] i _ d a t a ;
/ / Ou tpu ts
output [ 1 : 0 ] o_da ta ;

/ / N e t l i s t
C_OR2 or_LSB ( i _ d a t a [ 1 ] , i _ d a t a [ 3 ] , o_da ta [ 0 ] ) ;
C_OR2 or_MSB ( i _ d a t a [ 2 ] , i _ d a t a [ 3 ] , o_da ta [ 1 ] ) ;
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endmodule
‘ e n d i f
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E.6.3 S_latch

/∗
D e s c r i p t i o n :

1 o f 4 l a t c h

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /

‘ i f n d e f _S_la tch_V
‘ d e f i n e _S_la tch_V

‘ i n c l u d e " g l o b a l . v "

module S _ l a t c h ( i _ d a t a , i_eop , o_ack , i_ack , o_data , o_eop , i _ r e s e t _ b )
;

/ / I n p u t s
i npu t [ 3 : 0 ] i _ d a t a ;
i npu t i_eop , i_ack , i _ r e s e t _ b ;
/ / Ou tpu ts
output o_ack , o_eop ;
output [ 3 : 0 ] o_da ta ;

/ / I n t e r n a l s i g n a l s
wire s_ack_b ;
wire so_eop ;
wire [ 3 : 0 ] s o _ d a t a ;
wire s_o r_ t1 , s _ o r _ t 2 ;

/ / Memory i s made from c−e l e m e n t s
TC_INV #5 inv ( i_ack , s_ack_b ) ;
C_C2_R0 c _ d a t a [ 3 : 0 ] ( s_ack_b , i _ d a t a , so_da ta , i _ r e s e t _ b ) ;
C_C2_R0 c_eop ( s_ack_b , i_eop , so_eop , i _ r e s e t _ b ) ;
a s s i g n o_da ta = s o _ d a t a ;
a s s i g n o_eop = so_eop ;

/ / Comple t ion d e t e c t i o n . which g e n e r a t e s ack
C_OR5 or5 ( s o _ d a t a [ 0 ] , s o _ d a t a [ 1 ] , s o _ d a t a [ 2 ] , s o _ d a t a [ 3 ] , so_eop , o_ack ) ;

/ / ambi t s y n t h e s i s o f f

/∗
Error c he ck in g

∗ /
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‘ i f d e f ERROR_CHECKING
i n t e g e r coun t ;
always @( posedge i _ d a t a or posedge i _eop )
begin

coun t =0;
i f ( i _eop ) coun t = coun t +1;
i f ( i _ d a t a [ 0 ] ) coun t = coun t +1;
i f ( i _ d a t a [ 1 ] ) coun t = coun t +1;
i f ( i _ d a t a [ 2 ] ) coun t = coun t +1;
i f ( i _ d a t a [ 3 ] ) coun t = coun t +1;
i f ( count >1)
begin

$d i sp l ay ( " S _ l a t c h : ERROR" ) ;
$d i sp l ay ( " More than 1 s i g n a l i s h igh . Th is shou ld no t be

happen ing i n a 1 of5 p r o t o c o l ! " ) ;
$d i sp l ay ( " i _ d a t a : %b " , i _ d a t a ) ;
$d i sp l ay ( " i _eop : %b " , i _eop ) ;
$s t op ; / / masked by s y n t h e s i s o f f

end
end
‘ e n d i f

/ / ambi t s y n t h e s i s on

endmodule
‘ e n d i f
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E.6.4 S_merge

/∗
D e s c r i p t i o n :

S_merge

Created by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /

‘ i f n d e f _S_merge_V
‘ d e f i n e _S_merge_V

‘ i n c l u d e " g l o b a l . v "

/∗
I n t e r n a l sub−module

∗ /
module b lok ( i _ d a t a , i_eop , i _ e n a b l e , i_ack , o_data , o_eop , o_ack ,

i _ r e s e t _ b ) ;

i npu t [ 3 : 0 ] i _ d a t a ;
i npu t i _ e n a b l e , i_ack , i _ r e s e t _ b , i _eop ;
output [ 3 : 0 ] o_da ta ;
output o_ack , o_eop ;

wire s i _ac k_b ;
wire [ 3 : 0 ] s o _ d a t a ;
wire so_eop ;

TC_INV #5 inv ( i_ack , s i _ ack _b ) ;

C_C3_R0 c_eop ( i_eop , s i_ack_b , i _ e n a b l e , so_eop , i _ r e s e t _ b ) ;
C_C3P_R0 c _ d a t a [ 3 : 0 ] ( s i_ack_b , i _ d a t a , i _ e n a b l e , so_da ta , i _ r e s e t _ b ) ;
C_OR5 ore lem ( s o _ d a t a [ 0 ] , s o _ d a t a [ 1 ] , s o _ d a t a [ 2 ] , s o _ d a t a [ 3 ] , so_eop ,

o_ack ) ;

a s s i g n o_da ta = s o _ d a t a ;
a s s i g n o_eop=so_eop ;

endmodule

/∗
S_merge module

∗ /
module S_merge ( i _ d a t a 1 , i_eop1 , o_ack1 , i _ d a t a 2 , i_eop2 , o_ack2 ,

o_data , o_eop , i_ack , i _ r e s e t _ b ) ;
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i npu t [ 3 : 0 ] i _ d a t a 1 , i _ d a t a 2 ;
i npu t i _ack , i _ r e s e t _ b , i_eop1 , i_eop2 ;
output [ 3 : 0 ] o_da ta ;
output o_ack1 , o_ack2 , o_eop ;

wire s_comple te1 , s_comp le te2 ;
wire s_req1 , s_ req2 ;
wire s _ g r a n t 1 _ t , s _ g r a n t 2 _ t ;
wire s_g ran t1 , s _ g r a n t 2 ;
wire s_eop1 , s_eop2 ;
wire s_eop1_b , s_eop2_b ;
wire s _ r e s e t 1 _ b , s _ r e s e t 2 _ b ;
wire [ 3 : 0 ] s_da ta1 , s_da ta2 , s _ d a t a ;

/ / Comple t ion d e t e c t i o n
C_OR5 or1 ( i _ d a t a 1 [ 0 ] , i _ d a t a 1 [ 1 ] , i _ d a t a 1 [ 2 ] , i _ d a t a 1 [ 3 ] , i_eop1 ,

s_comp le te1 ) ;
C_OR5 or2 ( i _ d a t a 2 [ 0 ] , i _ d a t a 2 [ 1 ] , i _ d a t a 2 [ 2 ] , i _ d a t a 2 [ 3 ] , i_eop2 ,

s_comp le te2 ) ;

TC_AND2A #1 a n d 2 a _ r e s e t 1 ( . a ( s_eop1 ) , . b ( i _ r e s e t _ b ) , . z ( s _ r e s e t 1 _ b ) ) ;
TC_AND2A #1 a n d 2 a _ r e s e t 2 ( . a ( s_eop2 ) , . b ( i _ r e s e t _ b ) , . z ( s _ r e s e t 2 _ b ) ) ;

/ / Mutex
C_C2MP_R0 s r 1 ( . a ( s _ r e s e t 1 _ b ) , . b ( s_comp le te1 ) , . z ( s_ req1 ) , . r e s e t _ b (

i _ r e s e t _ b ) ) ;
C_C2MP_R0 s r 2 ( . a ( s _ r e s e t 2 _ b ) , . b ( s_comp le te2 ) , . z ( s_ req2 ) , . r e s e t _ b (

i _ r e s e t _ b ) ) ;
/ / C_SR sr1 ( . s e t _ b ( s_comp le te1_b ) , . r e s e t _ b ( s _ r e s e t 1 _ b ) , . q ( s_ req1 ) , .

q_b ( ) ) ;
/ / C_SR sr2 ( . s e t _ b ( s_comp le te2_b ) , . r e s e t _ b ( s _ r e s e t 2 _ b ) , . q ( s_ req2 ) , .

q_b ( ) ) ;
C_MUTEX2 mutex ( s_req1 , s_req2 , s _ g r a n t 1 _ t , s _ g r a n t 2 _ t ) ;

/ / Grants
TC_AND2A #5 and_g ran t1 ( . a ( s_eop2 ) , . b ( s _ g r a n t 1 _ t ) , . z ( s _ g r a n t 1 ) ) ;
TC_AND2A #5 and_g ran t2 ( . a ( s_eop1 ) , . b ( s _ g r a n t 2 _ t ) , . z ( s _ g r a n t 2 ) ) ;

/ / The 2 enab le b l o c k s
b lok c_b lok1 ( i _ d a t a 1 , i_eop1 , s_g ran t1 , s i_ack , s _ d a t a 1 , s_eop1 ,

o_ack1 , i _ r e s e t _ b ) ;
b lok c_b lok2 ( i _ d a t a 2 , i_eop2 , s_g ran t2 , s i_ack , s _ d a t a 2 , s_eop2 ,

o_ack2 , i _ r e s e t _ b ) ;

/ / Output b lok
C_OR2 o r _ d a t a [ 3 : 0 ] ( s_da ta1 , s_da ta2 , s _ d a t a ) ;
C_OR2 or_eop ( s_eop1 , s_eop2 , s_eop ) ;
S _ l a t c h l a t c h _ o u t p u t ( s_da ta , s_eop , s i_ack , i_ack , o_data , o_eop ,

i _ r e s e t _ b ) ;
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/∗
Error c he ck in g

∗ /
‘ i f d e f ERROR_CHECKING
i n t e g e r coun t ;
/ / Check t h a t two acces are no t a l l owed a t t h e same t ime
always @( posedge s _ g r a n t 1 _ t or posedge s _ g r a n t 2 _ t )
begin

i f ( s _ g r a n t 1 _ t ==1 && s _ g r a n t 2 _ t ==1)
begin

$d i sp l ay ( " S_merge : ERROR" ) ;
$d i sp l ay ( " Both i n p u t s was g r a n t e d a c c e s s a t t h e same t ime ! " ) ;
$s t op ;

end
end

/ / Check t h a t two acces are no t a l l owed a t t h e same t ime
/∗ a lways @( posedge s _ g r a n t 1 _ t or posedge s _ g r a n t 2 _ t )
beg in

i f ( s _ g r a n t 1 _ t ==1)
beg in

$ d i s p l a y ( " S_merge : ERROR" ) ;
$ d i s p l a y ( " Both i n p u t s was g ran ted a c c e s s a t t h e same t ime ! " ) ;
$s t op ;

end
end∗ /

‘ e n d i f

endmodule

‘ e n d i f
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E.6.5 S_merge_tree

/∗
D e s c r i p t i o n :

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /

‘ i f n d e f _S_merge_t ree_v
‘ d e f i n e _S_merge_t ree_v

‘ i n c l u d e " g l o b a l . v "

module S_merge_ t ree (
i _ d a t a ,
i_eop ,
o_ack ,
o_data ,
o_eop ,
i_ack ,
i _ r e s e t _ b
) ;

/∗
Parameters

∗ /
parameter INPUTS=2;
parameter BUS_WIDTH=4;

/∗
I n p u t s

∗ /
i npu t [ INPUTS∗BUS_WIDTH−1:0] i _ d a t a ;
i npu t [ INPUTS−1:0] i _eop ;
i npu t i _ a c k ;
i npu t i _ r e s e t _ b ;

/∗
Outpu ts

∗ /
output [ INPUTS−1:0] o_ack ;
output o_eop ;
output [BUS_WIDTH−1:0] o_da ta ;

/∗
Wires

∗ /
genvar i ;
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‘ d e f i n e lower_n ( INPUTS / 2 )
‘ d e f i n e upper_n ( INPUTS−‘ l ower_n )

wire s_eop1 , s_eop2 ;
wire s_ack1 , s_ack2 ;
wire [BUS_WIDTH−1:0] s_da ta1 , s _ d a t a 2 ;

genera te
i f ( INPUTS==1)
begin

a s s i g n o_da ta = i _ d a t a ;
a s s i g n o_eop= i_eop ;
a s s i g n o_ack= i _ a c k ;

end
e l s e
begin

S_merge_ t ree #( ‘ lower_n , BUS_WIDTH) merge_ t ree_ lowe r (
. i _ d a t a ( i _ d a t a [ ‘ l ower_n∗BUS_WIDTH−1:0 ] ) ,
. i _eop ( i_eop [ ‘ lower_n−1:0 ] ) ,
. o_ack ( o_ack [ ‘ lower_n−1:0 ] ) ,
. o_da ta ( s _ d a t a 1 ) ,
. o_eop ( s_eop1 ) ,
. i _ a c k ( s_ack1 ) ,
. i _ r e s e t _ b ( i _ r e s e t _ b )
) ;

S_merge_ t ree #( ‘upper_n , BUS_WIDTH) merge_ t ree_uppe r (
. i _ d a t a ( i _ d a t a [ INPUTS∗BUS_WIDTH−1: ‘ l ower_n∗BUS_WIDTH ] ) ,
. i _eop ( i_eop [ INPUTS−1: ‘ l ower_n ] ) ,
. o_ack ( o_ack [ INPUTS−1: ‘ l ower_n ] ) ,
. o_da ta ( s _ d a t a 2 ) ,
. o_eop ( s_eop2 ) ,
. i _ a c k ( s_ack2 ) ,
. i _ r e s e t _ b ( i _ r e s e t _ b )
) ;

S_merge merger (
. i _ d a t a 1 ( s _ d a t a 1 ) ,
. i _eop1 ( s_eop1 ) ,
. o_ack1 ( s_ack1 ) ,
. i _ d a t a 2 ( s _ d a t a 2 ) ,
. i _eop2 ( s_eop2 ) ,
. o_ack2 ( s_ack2 ) ,
. o_da ta ( o_da ta ) ,
. o_eop ( o_eop ) ,
. i _ a c k ( i _ a c k ) ,
. i _ r e s e t _ b ( i _ r e s e t _ b )
) ;
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end

endgenerate
endmodule

‘ e n d i f
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E.6.6 S_network

/∗
D e s c r i p t i o n :

NoC network us i n g S e r i a l 1 o f4 da ta

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /

‘ i f n d e f _S_network_v
‘ d e f i n e _S_network_v

‘ i n c l u d e " g l o b a l . v "

module S_network (
i _ d a t a ,
i_eop ,
o_ack ,
o_data ,
o_eop ,
i_ack ,
i _ r e s e t _ b ) ;

parameter INPUTS=‘N_INPUTS ;
parameter OUTPUTS=‘N_OUTPUTS ;
parameter BUS_WIDTH = 4 ;

/ / I n p u t s
i npu t [ INPUTS∗BUS_WIDTH−1:0] i _ d a t a ;
i npu t [ INPUTS−1:0] i _eop ;
i npu t [OUTPUTS−1:0] i _ a c k ;
i npu t i _ r e s e t _ b ;

/ / Ou tpu ts
output [ INPUTS−1:0] o_ack ;
output [OUTPUTS∗BUS_WIDTH−1:0] o_da ta ;
output [OUTPUTS−1:0] o_eop ;

/∗
I n t e r n a l s i g n a l s

∗ /
wire s_eop , s_ack ;
wire [BUS_WIDTH−1:0] s _ d a t a ;

S_merge_ t ree #( INPUTS , BUS_WIDTH) merge_ t ree (
. i _ d a t a ( i _ d a t a ) ,
. i _eop ( i_eop ) ,
. o_ack ( o_ack ) ,
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. o_da ta ( s _ d a t a ) ,

. o_eop ( s_eop ) ,

. i _ a c k ( s_ack ) ,

. i _ r e s e t _ b ( i _ r e s e t _ b )
) ;

S _ r o u t e r _ t r e e #(OUTPUTS, BUS_WIDTH) r o u t e r _ t r e e (
. i _ d a t a ( s _ d a t a ) ,
. i _eop ( s_eop ) ,
. o_ack ( s_ack ) ,
. o_da ta ( o_da ta ) ,
. o_eop ( o_eop ) ,
. i _ a c k ( i _ a c k ) ,
. i _ r e s e t _ b ( i _ r e s e t _ b )
) ;

endmodule

‘ e n d i f
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E.6.7 S_router

/∗
D e s c r i p t i o n :

S_merge

Created by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /

‘ i f n d e f _S_router_V
‘ d e f i n e _S_router_V

‘ i n c l u d e " g l o b a l . v "

module r o u t e _ c o n t r o l (
i _ r o u t e 1 ,
i _ r o u t e 2 ,
i_eop12_b ,
o_eop ,
o_rou te1 ,
o_rou te2 ,
i _ r e s e t _ b ) ;

/∗
I n p u t s
∗ /
i npu t i _ r o u t e 1 , i _ r o u t e 2 , i_eop12_b , i _ r e s e t _ b ;

/∗
Outpu ts
∗ /
output o_eop , o_rou te1 , o_ r ou t e2 ;

/∗
I n t e r n a l s i g n a l s
∗ /
wire s_g1 , s_g2 ;
wire s_q1 , s_q2 ;
wire i _ e o p 1 2 _ b _ r e s e t ;
wire s_ locked_b ;

/∗
N e t l i s t
∗ /
C_C2_R0 c1 ( i _ r o u t e 1 , s_ locked_b , s_g1 , i _ r e s e t _ b ) ;
C_C2_R0 c2 ( i _ r o u t e 2 , s_ locked_b , s_g2 , i _ r e s e t _ b ) ;
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C_AND2 a n d _ r e s e t ( . a ( i_eop12_b ) , . b ( i _ r e s e t _ b ) , . z ( i _ e o p 1 2 _ b _ r e s e t ) ) ;

C_C2MP_R0 s r 1 ( . b ( s_g1 ) , . a ( i _ e o p 1 2 _ b _ r e s e t ) , . z ( s_q1 ) , . r e s e t _ b (
i _ r e s e t _ b ) ) ;

C_C2MP_R0 s r 2 ( . b ( s_g2 ) , . a ( i _ e o p 1 2 _ b _ r e s e t ) , . z ( s_q2 ) , . r e s e t _ b (
i _ r e s e t _ b ) ) ;

C_NOR2 nor2 ( . a ( s_q1 ) , . b ( s_q2 ) , . z ( s_ locked_b ) ) ;

C_AND2A and21 ( . a ( s_g1 ) , . b ( s_q1 ) , . z ( o_ rou te1 ) ) ;
C_AND2A and22 ( . a ( s_g2 ) , . b ( s_q2 ) , . z ( o_ rou te2 ) ) ;

C_NOR2 nor22 ( . a ( s_g1 ) , . b ( s_g2 ) , . z ( s_eop ) ) ;
C_NAND2 nand2 ( . a ( i_eop12_b ) , . b ( s_eop ) , . z ( o_eop ) ) ;

endmodule / / R o u t e _ c o n t r o l

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
S _ r o u t e r module

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /
module S _ r o u t e r (

i _ d a t a ,
i_eop ,
o_ack ,
o_data1 ,
o_eop1 ,
i_ack1 ,
o_data2 ,
o_eop2 ,
i_ack2 ,
i _ r e s e t _ b ) ;

/∗
I n p u t s
∗ /
i npu t [ 3 : 0 ] i _ d a t a ;
i npu t i_ack1 , i _ack2 , i _ r e s e t _ b , i _eop ;

/∗
Outpu ts
∗ /
output [ 3 : 0 ] o_data1 , o_da ta2 ;
output o_ack , o_eop1 , o_eop2 ;

/∗
I n t e r n a l s i g n a l s
∗ /
wire s i_ack1_b , s i_ack2_b ;
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wire s_ rou te1 , s _ r o u t e 2 ;
wire so_eop1 , so_eop2 ;
wire [ 3 : 0 ] so_da ta1 , so _da ta2 ;
wire so_ack1 , so_ack2 ;
wire s_eop12_b ;
wire s_req1 , s_ req2 ;

/∗
N e t l i s t
∗ /

TC_INV #5 inv1 ( i_ack1 , s i _ack1_b ) ;
TC_INV #5 inv2 ( i_ack2 , s i _ack2_b ) ;
/ / eop and da ta ou t
C_C3_R0 c_eop1 ( i_eop , s i_ack1_b , s_ rou te1 , so_eop1 , i _ r e s e t _ b ) ;
C_C3_R0 c_eop2 ( i_eop , s i_ack2_b , s_ rou te2 , so_eop2 , i _ r e s e t _ b ) ;
C_C3P_R0 c_da ta1 [ 3 : 0 ] ( i _ d a t a , s i_ack1_b , s_ rou te1 , so_da ta1 , i _ r e s e t _ b ) ;
C_C3P_R0 c_da ta2 [ 3 : 0 ] ( i _ d a t a , s i_ack2_b , s_ rou te2 , so_da ta2 , i _ r e s e t _ b ) ;
a s s i g n o_eop1=so_eop1 ;
a s s i g n o_eop2=so_eop2 ;
a s s i g n o_da ta1 = s o_d a ta 1 ;
a s s i g n o_da ta2 = s o_d a ta 2 ;

/ / BIG or c o m p l e t i o n
C_OR8 or8 ( so_ da t a1 [ 0 ] , so_ da t a1 [ 1 ] , so _da ta1 [ 2 ] , so _da ta1 [ 3 ] ,

so _da ta2 [ 0 ] , so _da ta2 [ 1 ] , s o_d a ta 2 [ 2 ] , s o_d a ta 2 [ 3 ] , so_ack1 ) ;

/ / r o u t e r c o n t r o l
C_NOR2 nor_eop12b ( so_eop1 , so_eop2 , s_eop12_b ) ;
a s s i g n s_ req2 = i _ d a t a [ 2 ] ;
a s s i g n s_ req1 = i _ d a t a [ 0 ] ;
r o u t e _ c o n t r o l r o u t e c o n t r o l (

. i _ r o u t e 1 ( s_ req1 ) ,

. i _ r o u t e 2 ( s_ req2 ) ,

. i_eop12_b ( s_eop12_b ) ,

. o_eop ( so_ack2 ) ,

. o_ rou te1 ( s _ r o u t e 1 ) ,

. o_ rou te2 ( s _ r o u t e 2 ) ,

. i _ r e s e t _ b ( i _ r e s e t _ b ) ) ;

/ / ack
C_OR2 or_ack ( so_ack1 , so_ack2 , o_ack ) ;
endmodule / / S _ r o u t e r

‘ e n d i f
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E.6.8 S_router_tree

/∗
D e s c r i p t i o n :

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /

‘ i f n d e f _S_merge_t ree_v
‘ d e f i n e _S_merge_t ree_v

‘ i n c l u d e " g l o b a l . v "

module S _ r o u t e r _ t r e e (
i _ d a t a ,
i_eop ,
o_ack ,
o_data ,
o_eop ,
i_ack ,
i _ r e s e t _ b
) ;

/∗
Parameters

∗ /
parameter OUTPUTS=2;
parameter BUS_WIDTH=4;

/∗
I n p u t s

∗ /
i npu t [BUS_WIDTH−1:0] i _ d a t a ;
i npu t i _eop ;
i npu t [OUTPUTS−1:0] i _ a c k ;
i npu t i _ r e s e t _ b ;

/∗
Outpu ts

∗ /
output o_ack ;
output [OUTPUTS∗BUS_WIDTH−1:0] o_da ta ;
output [OUTPUTS−1:0] o_eop ;

/∗
Wires

∗ /
genvar i ;
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‘ d e f i n e lower_n (OUTPUTS/ 2 )
‘ d e f i n e upper_n (OUTPUTS−‘ l ower_n )

wire s_eop1 , s_eop2 ;
wire s_ack1 , s_ack2 ;
wire [BUS_WIDTH−1:0] s_da ta1 , s _ d a t a 2 ;

genera te
i f (OUTPUTS==1)
begin

a s s i g n o_da ta = i _ d a t a ;
a s s i g n o_eop= i_eop ;
a s s i g n o_ack= i _ a c k ;

end
e l s e
begin

S _ r o u t e r _ t r e e #( ‘ lower_n , BUS_WIDTH) r o u t e _ t r e e _ l o w e r (
. i _ d a t a ( s _ d a t a 1 ) ,
. i _eop ( s_eop1 ) ,
. o_ack ( s_ack1 ) ,
. o_da ta ( o_da ta [ ‘ l ower_n∗BUS_WIDTH−1:0 ] ) ,
. o_eop ( o_eop [ ‘ lower_n−1:0 ] ) ,
. i _ a c k ( i _ a c k [ ‘ lower_n−1:0 ] ) ,
. i _ r e s e t _ b ( i _ r e s e t _ b )
) ;

S _ r o u t e r _ t r e e #( ‘upper_n , BUS_WIDTH) r o u t e _ t r e e _ u p p e r (
. i _ d a t a ( s _ d a t a 2 ) ,
. i _eop ( s_eop2 ) ,
. o_ack ( s_ack2 ) ,
. o_da ta ( o_da ta [OUTPUTS∗BUS_WIDTH−1: ‘ l ower_n∗BUS_WIDTH ] ) ,
. o_eop ( o_eop [OUTPUTS−1: ‘ l ower_n ] ) ,
. i _ a c k ( i _ a c k [OUTPUTS−1: ‘ l ower_n ] ) ,
. i _ r e s e t _ b ( i _ r e s e t _ b )
) ;

S _ r o u t e r r o u t e r (
. i _ d a t a ( i _ d a t a ) ,
. i _eop ( i_eop ) ,
. o_ack ( o_ack ) ,
. o_da ta1 ( s _ d a t a 1 ) ,
. o_eop1 ( s_eop1 ) ,
. i _ack1 ( s_ack1 ) ,
. o_da ta2 ( s _ d a t a 2 ) ,
. o_eop2 ( s_eop2 ) ,
. i _ack2 ( s_ack2 ) ,
. i _ r e s e t _ b ( i _ r e s e t _ b )
) ;
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end
endgenerate
endmodule

‘ e n d i f
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E.6.9 S_sink

/∗
D e s c r i p t i o n :

S ink f o r 1 o f5 da ta

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /

‘ i f n d e f _S_sink_V
‘ d e f i n e _S_sink_V

‘ i n c l u d e " g l o b a l . v "

module S_s ink ( i _ d a t a , i_eop , o_ack ) ;

parameter NUMBER=1; / / S ink number . Used p u r e l y f o r debugg ing
parameter MAX_BITS_IN_ENTIRE_WORD=16;

i npu t [ 3 : 0 ] i _ d a t a ;
i npu t i _eop ;
output o_ack ;

wire s_o r_ t1 , s _ o r _ t 2 ;

/ / Comple t ion d e t e c t i o n . which g e n e r a t e s ack
C_OR5 or5 ( i _ d a t a [ 0 ] , i _ d a t a [ 1 ] , i _ d a t a [ 2 ] , i _ d a t a [ 3 ] , i_eop , o_ack ) ;

/ / ambi t s y n t h e s i s o f f

/∗ ‘ i f d e f DEBUG_LEVEL2
always @( posedge o_ack )
beg in

$ d i s p l a y ( " S _ s i n k %2.d : %b,%b " ,NUMBER, i_da ta , i _eop ) ;
end
‘ e n d i f
∗ /

/∗
The f o l l o w i n g i s r e c e i v i n g an e n t i r e word and d i s p l a y i n g i t

∗ /
reg [MAX_BITS_IN_ENTIRE_WORD−1:0] debug_da ta ;

i n i t i a l begin / / masked by s y n t h e s i s o f f
debug_da ta =0;

end
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always @( posedge o_ack )
begin

i f ( i _eop ==0)
begin

debug_da ta = ( debug_data < <2) | ‘CONV_1of4_to_2 ( i _ d a t a ) ;
end
e l s e
begin

‘ i f d e f DEBUG_LEVEL2
$d i sp l ay ( " S_s ink %2.d : %x − %b " ,NUMBER, debug_data , debug_da ta ) ;

‘ e n d i f
debug_da ta =0;

end
end

/∗
Error c he ck in g

∗ /
‘ i f d e f ERROR_CHECKING
i n t e g e r coun t ;
always @( posedge i _ d a t a or posedge i _eop )
begin

coun t =0;
i f ( i _eop ) coun t = coun t +1;
i f ( i _ d a t a [ 0 ] ) coun t = coun t +1;
i f ( i _ d a t a [ 1 ] ) coun t = coun t +1;
i f ( i _ d a t a [ 2 ] ) coun t = coun t +1;
i f ( i _ d a t a [ 3 ] ) coun t = coun t +1;
i f ( count >1)
begin

$d i sp l ay ( " S_s ink : ERROR" ) ;
$d i sp l ay ( " More than 1 s i g n a l i s h igh . Th is shou ld no t be

happen ing i n a 1 of5 p r o t o c o l ! " ) ;
$d i sp l ay ( " i _ d a t a : %b " , i _ d a t a ) ;
$d i sp l ay ( " i _eop : %b " , i _eop ) ;
$s t op ; / / masked by s y n t h e s i s o f f

end
end
‘ e n d i f

/ / ambi t s y n t h e s i s on

endmodule
‘ e n d i f
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E.6.10 S_source

/∗
D e s c r i p t i o n :

S_source f o r 1 o f5 da ta

Crea ted by :
Mikke l S tensgaa rd− mikke l@stensgaard . org

∗ /

‘ i f n d e f _S_source_V
‘ d e f i n e _S_source_V

‘ i n c l u d e " g l o b a l . v "

module S_source ( o_data , o_eop , i_ack , i _ r e s e t _ b ) ;
/ / Parameters
parameter WORD_LENGTH=16;

output [ 3 : 0 ] o_da ta ;
output o_eop ;
i npu t i _ack , i _ r e s e t _ b ;

‘ i f n d e f SYNHESIS_ON

/ / r e g i s t e r s
reg [ 3 : 0 ] o_da ta ;
reg o_eop ;

always @( i _ r e s e t _ b )
begin

i f ( i _ r e s e t _ b ==0)
begin

o_da ta =0;
o_eop =0;

end
end

i n t e g e r i ;
reg [ 1 : 0 ] d a t a _ c u r r e n t ;
/ / TX t a s k
task sendWord ;

i npu t [WORD_LENGTH−1:0] d a t a ;

begin
‘ i f d e f DEBUG_LEVEL2

$d i sp l ay ( " S_source : %x " , d a t a ) ;
‘ e n d i f
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/ / Send data MSB f i r s t
f o r ( i =0; i <WORD_LENGTH; i = i +2)
begin

d a t a _ c u r r e n t = ( da ta >>(WORD_LENGTH−i −2) ) ;
o_da ta =‘CONV_2_to_1of4 ( d a t a _ c u r r e n t ) ;
‘ i f d e f DEBUG_LEVEL3

$d i sp l ay ( " send ing %b − %b " , d a t a _ c u r r e n t , o_da ta ) ;
‘ e n d i f
wai t ( i _ a c k ==1) ;
o_da ta =0;
wai t ( i _ a c k ==0) ;

end
/ / Send eop f i r s t
o_eop =1 ’ b1 ;
wai t ( i _ a c k ==1) ;
o_eop =1 ’ b0 ;
wai t ( i _ a c k ==0) ;

end
endtask / / t x

/ / s e n d S i n g l e
task s e n d S i n g l e ;

i npu t [ 3 : 0 ] d a t a ;
i npu t eop ;

begin
o_da ta = d a t a ;
o_eop=eop ;
wai t ( i _ a c k ==1) ;
o_da ta =0;
o_eop =0;
wai t ( i _ a c k ==0) ;

end
endtask / / t x

‘ e n d i f
endmodule
‘ e n d i f

Design of an asynchronous communication network for an audio DSP chip 231


