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“Information is the oxygen of the modern age.
It seeps through the walls topped by barbed wire,

it wafts across the electrified borders.”

– Ronald Reagan





Abstract

Today, information retrieval plays a large part of our everyday lives – especially with the advent
of the World Wide Web. During the last 10 years, the amount of information available in
electronic form on the Web has grown exponentially. However, this development has introduced
problems of its own; finding useful information is increasingly becoming a hit-or-miss experience
that often ends in information overload. In this thesis, we propose document clustering as a
possible solution for improving information retrieval on the Web.

The primary objective of this project was to assist the software company Mondosoft in evaluating
the feasibility of using document clustering to improve their information retrieval products. To
achieve this end, we have designed and implemented a clustering toolkit that allows experiments
with various clustering algorithms in connection with real websites.

The construction of the toolkit was based on a comprehensive analysis of current research within
the area. The toolkit encompasses the entire clustering process, including data extraction,
various preprocessing steps, the actual clustering and postprocessing. The aim of the document
clustering is finding similar pages and, to a lesser degree, search result clustering of webpages.
The toolkit is fully integrated with Mondosoft’s search engine and utilises a two-stage approach
to document clustering, where keywords are first extracted and then clustering is performed
using these keywords.

The toolkit includes prototype implementations of several promising algorithms, including sev-
eral novel ideas/approaches of our own. The toolkit implements the following 5 clustering
algorithms: K-Means, CURE, PDDP, GALOIS and a novel extended version of Apriori. In
addition to this, we introduce two novel approaches for extracting n-grams and a novel keyword
extraction scheme based on Latent Semantic Analysis.

To test the capabilities of the implemented algorithms, we have subjected them to extensive
performance tests, both in terms of memory and computational requirements. Our tests clearly
show that CURE and GALOIS become infeasible in connection with larger websites (10,000+
pages). To evaluate the quality of the remaining three algorithms and the toolkit in general, we
have also performed a user test based on the similar pages found by the algorithms.

The user test shows with statistic significance that the quality of the algorithms for this task can
be ranked in the following order: Apriori, K-Means and PDDP. Furthermore, the test provided
evidence that both K-Means and Apriori were as good as or better than a search-based approach
for finding similar pages. Finally, we have found strong evidence that the LSA-based method
for keyword extraction is better for subsequent clustering, than pure truncation of terms based
on their local weight.
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Chapter 1

Introduction

This thesis represents the written part of our Master’s Thesis project, which was undertaken
in collaboration with the software company Mondosoft1 that produces a suite of information
retrieval products. The project concerns different approaches to document clustering of medium
to large websites.

The primary objective of the project is to help improving Mondosoft’s range of information
retrieval products. We have focused on assisting Mondosoft in evaluating the quality and feas-
ibility of using document clustering to this end. In order to achieve this, we have designed a
clustering toolkit that implements prototypes of promising clustering approaches. We have used
this toolkit for performing tests and experiments with clustering.

Our main contributions in this project include the following methods/algorithms:

• A trie-based approach to discovering groups of stemmed words.

• Keyword extraction using Latent Semantic Analysis.

• A method for extracting n-grams using the results from a lattice-based clustering.

• A method for extracting n-grams using behaviour tracking data from a search engine.

• An extended version of the data mining algorithm, Apriori, which is able to build Galois
lattices.

Below, we will briefly outline the structure of this thesis, to give the reader a better overview of
the content herein.

1.1 Structure of the Report

First, in Chapter 2 - Background and Scope, we outline the background for the project, giv-
ing a brief introduction to information retrieval in general and document clustering in particular.
We then continue with a brief introduction to Mondosoft and their products. Having presented

1http://www.mondosoft.com/

http://www.mondosoft.com/
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the reader with this background information, we present the scope and problem definition of the
project.

In Chapter 3 - Analysis and Literature Study, we discuss the results of the compre-
hensive literature study that forms the basis for the project. First, we give a brief overview
of the information retrieval process that clustering is part of. We then move on to discuss-
ing different approaches to document clustering. After this, we introduce and discuss Latent
Semantic Analysis, which is a promising statistical and mathematical method for analysis of
textual information. Then, we discuss various preprocessing techniques that can be used to
improve the quality and efficiency of document clustering. Finally, we briefly define and discuss
the applications of document clustering that we have chosen to focus on.

In Chapter 4 - Chosen Approach we discuss the two-stage approach to document clustering
that we have chosen as basis for the clustering toolkit. We then motivate our choice of clustering
algorithms to implement. Finally, we outline the architecture that we have designed for the
toolkit.

In Chapter 5 - Implemented Preprocessing we discuss the preprocessing steps we have
implemented in the clustering toolkit. First, we briefly describe how we have integrated the
clustering toolkit with MondoSearchTM. Then we discuss the implemented term filtering, quickly
moving on to discussing the implemented term stemming and weighting schemes. Finally, we
discuss the two novel schemes for bigram extraction that we have designed and implemented.

In Chapter 6 - Implemented Keyword Extraction Algorithms we discuss the implemen-
ted algorithms for keyword extraction. Here we mainly focus on the novel approach based on
LSA that we have conceived and implemented. Finally, we briefly outline a simpler approach
based on truncation.

In Chapter 7 - Implemented Clustering Algorithms we introduce and discuss the 5 chosen
clustering approaches. For each algorithm, we also touch upon the algorithm’s complexity,
advantages and weaknesses. Finally, we provide important and relevant implementation details
for each algorithm.

In Chapter 8 - Implemented Postprocessing we discuss our implementation of the chosen
postprocessing schemes that use the implemented clustering to improve the information retrieval
process.

In Chapter 9 - Performance of the Implemented Algorithms we try to assess the running-
time and memory consumption of the implemented algorithms (in connection with large web-
sites) using an actual website as test data.

In Chapter 10 - Toolkit Evaluation we discuss some of the experiences we have gained,
while implementing and experimenting with the clustering toolkit. First, we present some of the
challenges that we have encountered when working with websites instead of pure text data. Then
we move on to a sensitivity analysis, outlining how sensitive the system is to changes in different
parameters. Finally, we present some preliminary results of using search result clustering in
connection with ambiguous queries.

In Chapter 11 - User Test we outline the user test that we have carried out to determine
how our algorithms compare to each other and to a simpler search-based approach with regard
to finding similar pages. We then move on to presenting the findings of the test.
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Finally, in Chapter 12 - Conclusion and Future Work we close this thesis with a conclusion,
where we summarise our contributions and main findings. In addition to the conclusion, we have
included our recommendations to Mondosoft for the work ahead as well as a section that outlines
future research opportunities within the areas of this thesis including future perspectives for
document clustering in general.
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Chapter 2

Background and Scope

In this chapter, we will give a brief introduction to information retrieval in general, including
common ways of representing documents in an information retrieval system. We will then move
on to document clustering, where we will briefly define and introduce the area. This includes
common applications, a taxonomy of document clustering and an overview of the challenges
specific to this area of information retrieval.

We will also give a brief introduction to Mondosoft, their products and motivations for parti-
cipating in this project. Finally, after having introduced the basic terminology of clustering and
Mondosoft’s situation, we will define the scope of the project based on the aims of Mondosoft
and ourselves.

2.1 A Brief Introduction to Information Retrieval

Information Retrieval (IR) is an emerging subfield of information science concerning represent-
ation, storage, access and retrieval of information [FBY92, BYRN99]. Current research areas
within the field of IR include:

• Searching and querying

• Ranking of search results

• Navigating and browsing information

• Optimising information representation and storage

• Document classification (into predefined groups)

• Document clustering (into automatically discovered groups)



6 Background and Scope

Information retrieval dates more than 4000 years back to the beginning of written language
[BYRN99], as information retrieval is related to knowledge stored in textual form. Today text
has grown to become:

“... the primary way that human knowledge is stored, and after speech, the primary
way it is transmitted.”1

Traditionally, information retrieval was a manual process, mostly happening in the form of book
lists in libraries, and in the books themselves, as tables of contents, other indices etc. These
lists/tables usually contained a small number of index terms (e.g. title, author and perhaps
a few subject headings) due to the tedious work of manually building and maintaining these
indices.

The above was true through most of history up until the middle of the 20th century, where
the digital computer fundamentally changed the way that Man was able to store, search and
retrieve textual information [FBY92]. As a result, information retrieval has grown well beyond
its previous limited form, mostly concerned with indexing and searching books and other kinds
of textual information [BYRN99].

Today, information retrieval plays a much larger part of our everyday lives – especially with
the advent of the Internet, and the World Wide Web (the Web) in particular. During the
last 10 years, the amount of information available in electronic form on the Web has grown
exponentially. Almost any kind of desired information is available on the Web, including: Bib-
liographic collections, news and message files, software libraries, multimedia repositories, online
encyclopedias, commercial information etc. [CR95]. Or, as pictured in [BYRN99, p. 2]:

“the web is becoming a universal repository of human knowledge and culture, which
has allowed an unprecedent [sic] sharing of ideas and information in a scale never
seen before”

Furthermore, the amount of documents managed in organisational intranets that represent the
accumulated knowledge of the organisations is also quickly growing, and efficient access to (and
retrieval of) these documents has become vital to the success of modern organisations [BEX02].

Information retrieval is at the center stage of this “revolution” and is a necessary condition
for its continuing expansion into even more areas of our lives. However, the Web and related
technologies have introduced problems of their own – finding useful information is increasingly
becoming a hit-or-miss experience that often ends in information overload. People still find
it difficult (if not impossible) to consistently locate and retrieve information relevant to their
needs. As Roussinov and Chen in [RC01] pessimistically put it:

“Our productivity in generating information has exceeded our ability to process it,
and the dream of creating an information-rich society has become a nightmare of
information overload.”

1[FBY92, p. vii]
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Search engines (such as Google and Yahoo) that are the common gateways to the huge collections
of electronic text on the Web, are continuously optimised and enhanced to better serve the needs
of their users. It has been recognised that the low precision2 of search results in search engines
today is the major limiting factor for locating relevant information [RG00]. An example3 of
this is a user searching for “computer games”, wanting to know more about the underlying
technologies. However, even with the sophisticated ranking algorithms used in today’s search
engines, it is not possible to predict (based on this query) whether the user is interested in
information in the latest advances in game technology or if the user is simply searching for the
latest entertainment products.

In [RG00], Rüger and Gauch outlines 3 basic approaches to amending this problem:

• Cluster documents to allow users to better preview and navigate the information structure
of the returned results.

• Organise documents into a predefined hierarchy of categories, where the user benefits from
familiar terms when navigating to the right information (e.g. Yahoo).

• Learn more about the user’s interests/tasks in order to allow the system to automatically
identify documents that are relevant for this particular user or for the task at hand.

This report is mainly concerned with research into the first of the above proposed solutions;
document clustering.

In modern information retrieval systems, several models exist to represent the information con-
tained in a large collection of textual documents. Below, we have outlined the two most common
models, known as the Boolean model and the vector model.

2.1.1 The Boolean Model

The Boolean model for information retrieval is a simple retrieval model based on set theory and
Boolean algebra. In its essence, the boolean representation of a document is a set of terms, where
the terms are words from the document extracted using different measures such as filtering (see
section 3.3.1). Looking at a collection of documents, each term set would then be represented
by a binary/boolean vector where a 1 represents a term present in the document and a 0 a term
which is not.

Searching for documents then proceeds by taking a query formulated in Boolean terms and
applying it on the index terms of some set of documents. For instance the query for documents
with the term ka and either the term kb or not the term kc would result in a selection as
demonstrated in figure 2.1.

Using such Boolean expressions for information retrieval has the great advantage of being easy
to learn and very simple to implement. The distance measure of the Boolean model both
between queries and documents and between documents in general is thus simply the size of the

2Precision refers to the common metric defined as the number of relevant documents in the result compared
to the total number of documents in the result.

3Adapted from [RG00].
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Figure 2.1: The selection resulting from the query q = ka ∧ (kb ∨ ¬kc).

intersection of the term sets (i.e. the dot-product of the vectors) – the greater the intersection,
the closer (more similar) the document is to the query.

However, the Boolean model also has a number of disadvantages. First of all, whether a docu-
ment is relevant for the query or not has become a binary decision – there is no grading scale
for relevance. Boolean queries further mean that partial matching (i.e. if the document fulfills
some, but not all requirements) is impossible and thus, ranking becomes difficult if not also
impossible, when strictly using Boolean algebra.

And finally there is no clear way to translate information needs to a boolean expression directly,
since a user request often is more like this: “I want documents about A, where from these, I am
most interested in B, less in C whereas D could also interest me if E is fulfilled”. Thus, even
though the language is as simple as it is, it still requires the users to be able to structure and
express their needs in a different way than they normally would.

A number of alternative schemes countering the above drawbacks have been designed, where
one of the often used models is the vector model [BYRN99] which we will describe in the next
section.

2.1.2 The Vector Model

The vector model for information retrieval is built on a thorough analysis of the documents:
By analysing the words or terms in the documents and comparing with the overall use of these
words, each word can be assigned a value describing its relative significance – either to the
containing document or to the set of documents (the collection). This value assignment is called
index term weighting or simply term weighting, which will be elaborated in section 3.3.3.

In this way, by adding weights to the index terms, we can suddenly view the problem from a
different perspective. Where we (in the Boolean model) used to consider documents as sets of
terms, we can now consider them as vectors of terms. This adds a geometrical “dimension” to our
model, where we can calculate query relevance and document similarity based on geometrical
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distance in a multi-dimensional4 term or feature space . Such geometrical distance measures
could for instance be the Cosine or the Euclidean distance – both are measures that work for
an arbitrary number of dimensions.

Using the vector model means that we now have several options for information retrieval. Instead
of the “either the document is relevant or not” approach of the Boolean model, we have gained
a “partial matching” approach, where documents can match the query even if just one term in
the query is present. We can, of course, still process the term space using set operations.

2.1.3 Other Models

The above models are by far the easiest to comprehend and thus to use for information retrieval
purposes. The last of the “classic” models is the probabilistic model, which is somewhat more
complicated, and not necessarily better than the vector model [BYRN99], so we have left it from
the discussion.

All of the classical models suffer from the fact that they assume that all index terms are mutually
independent, but a simple example can in fact prove that this assumption is not always correct: If
document A contains the term “computer” and document B contains the term “kindergarten”,
would you then consider discovering the term “network” in document A just as likely as in
document B?

This suggests that the classical models, where the term axes are all mutually orthogonal might
need some modifications, we introduce Latent Semantic Analysis in section 3.2 as a possible
solution to this. Another approach to this is to use language-based models, where word order
and linguistic information play a more important role.

2.2 Document Clustering

Imagine that you were given 100 newspaper articles and asked to sort them in a number of
piles, reflecting their content. The number of piles and the central themes of the article piles
are entirely up to you. You are also free to choose whether you want to read through every
article or if you will only read the headings and skim through the contents. Such is the task of
a document clustering system, with the only difference being that the task involves a lot more
than 100 documents and is to be performed automatically by a computer.

We define5 document clustering as:

The automatic discovery of document clusters/groups in a document collection,
where the formed clusters have a high degree of association (with regard to a given
similarity measure) between members, whereas members from different clusters have
a low degree of association.

In other words, the goal of a good document clustering scheme is to minimise intra-cluster
4The many terms each become an axis in the space, which results in very high dimensionality.
5Adapted from [FBY92].
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distances between documents, while maximising inter-cluster distances (using an appropriate
distance measure between documents). A distance measure (or, dually, similarity measure) thus
lies at the heart of document clustering. Several ways for measuring the similarity between two
documents exist, some are based on the vector model (e.g. Cosine distance or Euclidean distance)
while others are based on the Boolean model (e.g. size of intersection between document term
sets). More advanced approaches exist, for instance using Latent Semantic Analysis to transform
the vector space into a space of reduced dimensionality.

Clustering is sometimes erroneously referred to as automatic classification, however, this is inac-
curate, since the clusters found are not known prior to processing (as the name “classification”
would imply) [FBY92].

2.2.1 The Cluster Hypothesis

The application of clustering in information retrieval is largely based on the cluster hypothesis,
which was originally postulated by van Rijsbergen and Jardine in 1971. In [TVR02] Tombros,
Villa and van Rijsbergen state the hypothesis in this way:

“[The cluster hypothesis] states that relevant documents [to a given information
need] tend to be more similar to each other than to non-relevant documents, and
therefore tend to appear in the same clusters.”

This of course implies that the information retrieval process can be improved by somehow
helping the user to discover the cluster(s) that contain most of the relevant documents. This is
precisely what most applications of document clustering in information retrieval systems try to
accomplish.

2.2.2 Applications of Document Clustering

Generally, clustering is used in statistics to discover the structure of large “multivariate” data
sets. It can often reveal latent relationships hidden in complex data.

Within information retrieval, clustering (of documents) has several promising applications, all
concerned with improving efficiency and effectiveness of the retrieval process. Some of the more
interesting include:

• Finding Similar Documents to a given document. This feature is often used when
the user has spotted one “good” document in a search result and wants more-like-this.
The interesting property here is that clustering is able to discover documents that are
conceptually alike in contrast to search-based approaches that are only able to discover
whether the documents share many of the same words.

• Search Result Clustering allowing the user to get a better overview of the documents
returned as results in the search, and to navigate towards clusters that are relevant to the
user’s information need.



2.2 Document Clustering 11

• Guided/Interactive Search, where clustering is used to help the user drill down and
find the desired information step-by-step by gradually refining the search.

• Organising Site Content into Categories allowing browsing of the site in a Yahoo-like
fashion.

• Recommender System that, based on the documents the user has already visited,
recommends other documents. A typical use of this is in an e-commerce setting, where
products that might interest the customer are suggested based on products the user has
already examined/bought.

• Faster/Better Search utilising the clustering to optimise the search. A user query
could for instance be compared to clusters instead of the individual documents, effectively
limiting the search space.

2.2.3 A Taxonomy of Clustering Methods

When treating the subject document clustering, it is always important to know which kinds of
clustering are necessary and feasible for a given application. In this section, we will describe the
most obvious clustering classifications in order to later better describe the clustering methods
we choose to implement and to justify our choices.

Hard vs. Soft Clustering

Sometimes, information can be relevant for several categories at once. A subject such as “bio-
medical engineering” could be relevant for categories such as “chemical engineering”, “biology”
and “medicine” all at once. A clustering method able to cluster documents in several categories
at once is called a “soft” clustering method, since the boundaries of the clusters may be thought
of as soft. This concept is illustrated in figure 2.2, where documents appear in more than one
cluster.

More often than not - information is not categorised this way. Take for instance the way libraries
organise information - it is unthinkable that a book on biomedical engineering would be placed
at three different places in the library (even if it possessed three such books).

Thus, information might instead be organised according to the category it fits the best. The
book on biomedical engineering might therefore be placed in the chemical engineering category
since the book has the most in common with other books in this category. This is called hard
clustering and is illustrated in figure 2.3 where it is seen that the documents closest together are
clustered.

Hierarchical vs. Flat Clustering

When organising information, it is of course always important to determine what kind of organ-
isation is necessary. For some applications, simply putting all data into “buckets” and returning
these buckets on request is an acceptable solution. This is practical and realistic, when the inter-
cluster distances are high, the intra-cluster distances low, the noise of the term space negligible
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Document1
Document2 Document3

Document4
Document5 Document6

Figure 2.2: Documents clustered using soft clustering.

and all clusters of approximately the same (limited) size. Clustering methods simply resulting
in all the documents of the document space ending in different buckets are called flat clustering
methods.

However, information can often be regarded from many different angles, clusters might be of
varying size and each cluster may separately be considered as a subspace with its own clusters. If
we try to represent this with a flat clustering, unrelated information may be considered as being
in the same context and put in the same cluster. To avoid this, information can also be organised
hierarchically. The top-most levels of such a hierarchy would contain the largest clusters, which
should also be the most general topics of the collection. The large clusters are then split into
several smaller clusters as we proceed down the hierarchy. A hierarchical clustering method thus
produces a term space clustering and a hierarchical structure for the clustering.

Hierarchical clustering may be seen as a special case of “soft” clustering, where the clusters
contain other clusters. However, to make the distinction between soft and hard relevant in
connection with hierarchical clustering, we have chosen to define soft hierarchical clustering as
a hierarchical clustering, where there is overlap between clusters on the same “level” of the
hierarchy. A hard hierarchical clustering is then the case, where there is no overlap between
clusters on the same level. As we shall see in the next chapter, several approaches to creating a
hierarchical document clustering exist.

Online vs. Offline Clustering

Another important consideration is when clustering is to be performed. This depends on many
factors such as the size of the term space to cluster, the complexity of the algorithm to be used,
what the clustering is meant to be used for and how many of such operations must be performed
at the same time.

If the clustering operations require processing a huge term space, offline clustering is probably
the most suitable approach. This means creating and storing the clusters in a fast database and
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Figure 2.3: Documents clustered using hard clustering.

only leaving simple operations to be performed when querying the database (postprocessing).
This of course, has the drawback of not being up-to-date as soon as a single document is changed
or added, and thus requires frequent updates.

Online clustering, on the other hand, requires no such updates hence the fact that all operations
are performed on request. This obviously requires very fast algorithms and a limited data set,
but might be practical for clustering search results (see section 3.4).

2.2.4 Challenges in Document Clustering

Although commercial information retrieval systems6 utilising clustering exist, document clus-
tering is far from a trivial or solved problem. The clustering process is filled with challenges
like7:

• Selecting appropriate features of the documents that should be used for clustering.

• Selecting an appropriate similarity measure between documents.

• Selecting an appropriate clustering method utilising the above similarity measure.

• Implementing the clustering algorithm in an efficient way that makes it feasible in terms
of required memory and CPU resources.

• Finding ways of assessing the quality of the performed clustering.

• Finding feasible ways of updating the clustering if new documents are added to the col-
lection.

• Finding ways for applying the clustering to improve the information retrieval task at hand.
6See for instance http://www.vivisimo.com/
7Adapted from [FBY92, chap. 16]

http://www.vivisimo.com/
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Furthermore, with medium to large document collections (10,000+ documents), the number of
term-document relations is fairly high (millions+), and the computational complexity of the
algorithm applied is thus a central factor in whether it is feasible for real-life applications. If
a dense matrix is constructed to represent term-document relations, this matrix could easily
become too large to keep in memory - e.g. 100, 000 documents × 100, 000 terms = 1010 entries
∼ 40 GB using 32-bit floating point values. If the vector model is applied, the dimensionality
of the resulting vector space will likewise be quite high (10,000+). This means that simple
operations, like finding the Euclidean distance between two documents in the vector space,
become time consuming tasks.

In order to somewhat amend this, the sparse nature of term-document relations should be utilised
to save the information in what is known as a sparse matrix. In this matrix, only non-zero entries
and their position within the matrix are stored.

The Curse of Dimensionality

The high-dimensional space mentioned above also has another drawback referred to as the curse
of dimensionality : Since the high-dimensional space is very sparsely populated, two randomly
picked points in a hyper-cube tend to have a constant distance from each other, regardless of
the distance measure applied [RG00]. Few meaningful clusters thus exist in such a space. In
addition, the sparsity of the document space leads to many documents being orthogonal (sharing
none of the same features).

It is thus important to use methods of reducing dimensionality in connection with document
clustering. Promising methods range from simple filtering to more advanced approaches, like
Latent Semantic Analysis8.

2.3 Scope of the Project

This project was initiated as a collaboration between ourselves (the authors) and the software
company Mondosoft9. The main aim of the project is to help improving the quality and effect-
iveness of Mondosoft’s information retrieval products through clustering utilising cutting-edge
research within the area. We envision that our partnership with Mondosoft will be mutually
beneficial, since we offer Mondosoft a fresh perspective and an academic focus, while Mon-
dosoft, on the other hand, allows us to utilise their substantial knowledge and experience within
information retrieval as a foundation for our work.

First, we will briefly introduce Mondosoft’s basis for this project, including their main products
and their motivation and expectations for the project. After this, we will present the problem
definition that we have developed in collaboration with Mondosoft.

8See section 3.2
9See http://www.mondosoft.com/

http://www.mondosoft.com/
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2.3.1 Introduction to Mondosoft

Mondosoft is a software company offering a suite of enterprise search, analytics and site optim-
isation products. Mondosoft has three main product offerings:

• MondoSearchTM is a multi-lingual search engine targeted at search within individual (large)
sites.

• BehaviorTrackingTM is an analytical reporting tool providing information on the search
activity and visitor behaviour on the site.

• InformationManagerTM utilises the data from BehaviorTrackingTM to allow web managers
to refine content and search experience.

As illustrated in figure 2.4, the three main products thus form a kind of “feedback loop” allowing
BehaviorTrackingTM data to influence how MondoSearchTM works (via InformationManagerTM).

Figure 2.4: Mondosoft’s three main products form a feedback loop.

Compared with global search engines such as Google and Yahoo, Mondosoft is in an interesting
position. The site owners that manage Mondosoft’s search products are the owners of the site
contents, on which the search engine is operating. This means that Mondosoft is as concerned
with the needs of the information providers (site owners) as with the needs of the information
users (users visiting the site). This is a challenge, but fortunately, the needs of these two groups
often coincide (e.g. ”if the customer can’t find it, the customer can’t buy it).

Mondosoft’s interest in clustering is primarily to provide:

• A “More-Like-This” feature that allows users to expand a search by finding documents
similar to an interesting document in the search result.

• An automatic (hierarchical) clustering/categorisation of the search results to help users
getting a better overview of the returned pages, with the clear aim of improving the search
experience and effectiveness. At the moment, MondoSearchTM uses manually assigned
categories to partition search results, but experience shows that most site owners would
prefer a more automatic process.

However, since Mondosoft is always interested in improving search quality, effectiveness and
experience, they are also very interested in other applications for clustering that might help
achieve this.
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Since the typical customers of MondoSearchTM crawl and index their sites at regular intervals
(e.g. once a week) – Mondosoft believes that it would be natural if the clustering happened as
part of this regular process (i.e. offline clustering).

2.3.2 Problem Definition

In short, the scope of this project is to help Mondosoft to evaluate the quality and feasibility
of using cutting edge clustering methods to hopefully improve their products. In order to
achieve this, we will design a clustering toolkit that implements prototypes of the most promising
clustering methods. This toolkit should be aimed at clustering experiments on medium to large-
scale websites already indexed by Mondosoft’s MondoSearchTM.

For practical reasons, we will focus on clustering websites in English. However, whereever
possible, we will try to create language-independent solutions. The clustering algorithms that
will be implemented in the toolkit should be based on current academic research and theory. If
feasible, the implemented clustering should produce soft clusters as we believe that soft clusters
better capture the underlying information structure in a website.

With the above toolkit, we will carry out experiments primarily aimed at evaluating the quality
and feasibility of using clustering in connection with a “More-Like-This” feature, finding other
documents similar to a chosen document. Time allowing, we will also try to evaluate automatic
categorisation of search results. If possible, the evaluation should be based on user tests, since
we strongly believe that, at the end of the day, the user experience is what really matters. In
addition to our own experiments, we envision that Mondosoft will be able to utilise our toolkit
for further experiments with other clustering applications, and as a foundation for integrating
clustering-based functionality into their products.

Hence, the primary goal of the toolkit is to create practically viable (in terms of space and
time requirements) implementations of the clustering algorithms, which can be used for off-
line clustering of the document collection in connection with crawling and indexing a web-
site using MondoSearchTM. The clustering toolkit must therefore be closely integrated with
MondoSearchTM – for instance using data structures similar to those of MondoSearchTM mak-
ing later integration into a final product easier. If possible, the toolkit should also utilise the
information recorded by Mondosoft’s BehaviorTrackingTM to improve clustering.



Chapter 3

Analysis and Literature Study

It is important to emphasise that getting from a collection of documents to a clustering of the
collection, is not merely a single operation, but is more a process in multiple stages. These stages
include more traditional information retrieval operations such as crawling, indexing, weighting,
filtering etc. Some of these other processes are central to the quality and performance of most
clustering algorithms, and it is thus necessary to consider these stages together with a given
clustering algorithm to harness its true potential. To help the reader better understand the
context that the actual clustering is a part of, we will therefore give a brief overview of the
clustering process, before we begin our literature study and analysis.

We have divided the offline clustering process into the four stages outlined below, each stage
possibly having multiple substages:

Crawling & Indexing

Preprocessing

Document Clustering

Postprocessing

NoteNoteWeb-
site

Figure 3.1: Document Clustering is just one stage in a multi-stage process.
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Crawling and Indexing Crawling is the process where the links of a given set of websites are
traversed to gather all relevant pages. As part of this process, the information of the individual
pages is indexed. Often, some information is filtered out (crawl-time filtering) for instance
pictures and known stop-words. Indexing is responsible for building indexes of term/document
relations. Such indexes form the basis for the term-document matrix that is often the starting
point for clustering.

Preprocessing Various subprocesses concerned with adapting the above indexes for clustering
purposes are what we refer to as “preprocessing techniques”. These include everything from the
basic task of converting the indexes into a suitable data representation (e.g. a term-document
matrix) to more advanced techniques such as various kinds of filtering, stemming and term
weighting.

Document Clustering This is the actual document clustering process concerned with dis-
covering clusters of documents using some given distance measure. This process is of course the
main focus of the report.

Postprocessing The actual applications of a document clustering to some purpose within
information retrieval is what we refer to as “postprocessing”. In this project, our postprocessing
efforts are mainly focused on a more-like-this function and, to a lesser degree, clustering of search
results.

Fortunately, crawling and indexing is a part of the foundation MondoSearchTM provides us with.
Hence, we do not need to spend time “reinventing the wheel”. On the other hand, the remaining
three stages are where we will focus our efforts in this project.

Below, we will first discuss different approaches to document clustering. Then, we will look
into Latent Semantic Analysis, an emerging technique within the field of information retrieval
that has been applied within both traditional search and clustering with quite promising results.
Finally, we will examine various preprocessing techniques, and also briefly discuss more-like-this
and search result clustering.

3.1 Common Clustering Methods

Over the course of our literature study, we have encountered a wide variety of different ap-
proaches to document clustering. We have classified the most common approaches into the
below four “main” categories, inspired by [ZHTY03]. The classification is primarily based on
the underlying techniques that the algortihms rely on, but also on the kinds of clusters the
algorithms produce (see our taxonomy in section 2.2.3).

For each class of algorithms, we have attempted to assess its feasibility for the scope of this
project. Feasibility concerns include:

• Computational requirements – we should be able to cluster medium to large websites,
within a reasonable amount of time.
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• Memory requirements – our clustering toolkit should be able to run on a standard PC
limited by a 32-bit address space.

• Required input data – the data the algorithm requires should be easily extractible from
MondoSearchTM (or the BehaviorTrackingTM database). Algorithms should thus primarily
rely on term-document relations and not the raw documents.

• Evidence that the algorithms actually work – algorithms without promising published
results demonstrating the feasibility are thus less interesting.

• Complexity of the approach – for two algorithms showing similar qualities, we prefer the
simpler algorithm (a kind of “Occam’s razor” for clustering algorithms).

3.1.1 Partition-based Clustering

Partition-based algorithms partition a document collection into a number of hard clusters using
a given distance measure. These methods are traditionally divided into single-pass methods and
relocation-based methods. Common for these two classes of methods are that they usually work
well for finding spherically shaped clusters in small to medium-sized databases. However, these
methods are less adept at discovering clusters of non-convex shapes.

A good partitioning follows the general cluster criterion that documents in the same cluster are
close and related, while documents in different clusters are different and apart (based on the
given distance measure).

Single-pass Partitioning

Single-pass algorithms use a greedy approach assigning each document to a cluster only once.
They are thus very fast, but at the cost of quality, since the single-pass approach does not allow
for correction of “mistakes” (documents assigned to a suboptimal cluster).

The most simple implementation works by attempting to find spherical clusters of equal size
by assigning the first document to a new cluster. Subsequent documents are then either (A)
assigned to an existing cluster, or (B) used to create a new cluster if the distance to the closest
cluster1 exceeds a predefined threshold. [FBY92, chap. 16] [ZHTY03]

Relocation-based Partitioning

Relocation-based algorithms run in multiple passes. First, an initial partitioning is formed, and
thereafter an iterative relocation technique is applied to attempt to improve the partitioning by
moving documents/objects between partitions.

The most popular relocation-based algorithm is by far K-Means (see section 7.1). K-Means has
almost become a “gold” standard that many other clustering algorithms are measured by. In
K-Means K random documents are chosen as initial cluster centers. Hereafter, all documents

1“Closest” is defined depending on the given algorithm - this can for instance be a centroid or a representative
document for the cluster.
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in the collection are assigned to the closest cluster2. Then, the cluster centers are recalculated
and the documents are relocated. The process of calculating centers and reassigning documents
is repeated until the clustering has been stabilised.

Several variations of K-Means exist, for instance K-centroid (see [ZHTY03]), where the document
closest to the mean of the cluster is chosen to represent the cluster as a kind of centroid. Common
for all K-Means variations is that they usually perform quite well with regard to quality and
have reasonable computational requirements.

3.1.2 Hierarchical Clustering

Hierarchical clustering approaches attempt to create a hierarchical decomposition of the given
document collection thus achieving a hierarchical structure as described in section 2.2.3. Hier-
archical methods are usually classified into Agglomerative and Divisive methods depending on
how the hierarchy is constructed.

Agglomerative Methods

Agglomerative methods start with an initial clustering of the term space, where all documents
are considered representing a separate cluster. The closest clusters using a given inter-cluster
similarity measure are then merged continuously until only 1 cluster or a predefined number
of clusters remain. Some of these methods are more suitable for discovering clusters of non-
convex forms than partition-based algorithms. Agglomerative methods normally produce hard
(hierarchical) clusters.

Agglomerative algorithms are usually classified according to the inter-cluster similarity measure
they use. The most popular of these are single-link, complete-link and group average. More
exotic similarity measures, for instance Ward’s method (see [FBY92]) also exist. Common for
all agglomerative methods is high computational complexity, often quadratic or worse.

Figure 3.2: The single-link distance measure.

Single-Link Clustering algorithms based on this similarity measure join the two clusters con-
taining the two closest documents (using a given distance measure) that are not yet in the same
cluster (see figure 3.2). This scheme can be implemented in a reasonably effective way relative
to the two below similarity measures. However, it has a slight inclination towards chaining3

2Here, the closest cluster is the cluster with the closest center using the given distance measure.
3Chaining occurs when clusters that should be separate are joined too early in the hierarchy causing strange

or elongated clusters in the term space.
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[FBY92, chap. 16]. Popular clustering methods based on this similarity measure include CURE
and Minimum Spanning Tree (MST). CURE is particularly interesting since it aims to avoid
chaining effects by employing a so-called shrinking scheme.

Figure 3.3: The complete-link distance measure.

Complete-Link Clustering algorithms using this similarity measure join the two clusters with
the minimum “most-distant” pair of documents (see figure 3.3). In this way, clusters are kept
small and compact since all documents within a cluster have a maximum distance to each other
[FBY92, chap. 16]. The Vorhees algorithm is a typical example of a clustering approach using
this similarity measure, however, the computational complexity of clustering algorithms using
this measure is normally higher than that of single-link based algorithms.

Figure 3.4: The group average distance measure.

Group Average Clustering algorithms using this similarity measure join the two clusters with
the minimum average document distance – i.e. the distance between cluster centers (see figure
3.4). This similarity measure results in clusters somewhere between the large single-link clusters
and the more compact complete-link clusters [FBY92, chap. 16]. The BIRCH algorithm is a
typical example of a clustering algorithm using this similarity measure, however, experiments in
[GRS98] show that CURE in practise outperforms this algorithm.

Divisive Methods

Divisive clustering algorithms start with a single cluster containing all documents. It then con-
tinuously divides clusters until all documents are contained in their own cluster or a predefined
number of clusters are found. They thus work directly opposite of the agglomerative methods
discussed above. These methods are usually significantly faster than the agglomerative methods,
but have the drawback that “splits” or divisions cannot be undone to undo erroneous decisions
– see appendix C for an example of this. Due to the divisive nature, these algorithms almost
always produce a hard (hierarchical) clustering.

Principal Direction Divisive Partitioning (PDDP) [Bol98] is a typical example of a divisive
clustering algorithm splitting the documents of the term space based on finding the documents’
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projection on the principal direction. In addition to this, partition-based algorithms such as
K-Means can be made divisive by applying them to the largest cluster of the set of clusters until
a preset number of clusters are found.

3.1.3 Keyword-based Clustering

This is not really a class of clustering methods, but more a specific way of choosing the document
features that the clustering is applied on. However, some clustering algorithms are only feasible
with a limited set of features per document and thus require that a limited number of core-
terms/keywords are assigned per document.

Keyword-based clustering works by assigning a set of core-terms (a form of keywords) to each
document and uses these terms as features4 for the subsequent clustering. This is based on
the idea that the main topic/theme of a document can be captured in a relatively small set of
core-terms or keywords. This idea is related to the Topic-binder hypothesis5:

“A document set which shares a term (or terms) appearing uniquely in the set treats
the same topic and thus the documents in the set resemble each other. We call
such a term a ‘topic binding term’ or a ‘topic binder’. This is the ‘topic binder
hypothesis’...”

The use of index terms (keywords) to categorise library books and academic papers is a common
practise and has existed long before the emergence of electronic information collections.

Experiments by Schütze and Silverstein in [SS97] show that clustering using a simple truncation
of the terms based on their weight in the given document offer significant speed advantages
over “full term clustering” while offering comparable cluster quality. Having a small set of
keywords for each document thus allows for interesting clustering approaches such as lattice-
based clustering and frequent itemset clustering. Both would be too computationally demanding
to run on the full term set for every document.

Furthermore, the assigned keywords form very sparse document vectors that can be used to
drastically speed up distance calculations in more traditional clustering algorithms such as the
ones discussed above. Filtering out non-keyword terms can also (depending on the keyword
extraction method) have the effect of reducing noise, since only terms important to the main
topic of the document are allowed to remain.

Frequent Itemset-based Methods

Frequent itemset clustering is based on finding frequent sets of keywords that often occur together
in the document collection – an approach often used in data mining. These sets are then used as
soft (flat6) clusters, since documents sharing one or more keywords are supposed to be related

4As previously indicated, features are a generic term used to describe terms or other information extracted
from a document with the intent of using it for clustering.

5Stated in [TKUE99]
6However, as will be explained in section 7.5, the partial ordering of the frequent itemsets actually forms a

lattice and is therefore closely related to the lattice methods.
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if the keyword extraction scheme is well designed. The distance measure applied in this kind
of clustering is hence the inverse of the size of the intersection between the two documents’
keyword sets. The clustering method is based on a kind of Boolean model, since only the binary
relation between documents and keywords is used in the distance measure. An advantage of this
approach is that clusters are easily labelled by the keywords shared by the contained documents.

However, this method depends on a sufficient overlap between the keywords assigned to doc-
uments to form relevant clusters. In addition, the method only works with a rather limited
number of keywords assigned per document, since the complexity will otherwise be prohibitive
for large document collections.

Several algorithms exist to extract frequent itemsets, but the most popular is currently Apriori
[AS94], which performs quite well, even on large databases (document collections).

Lattice-based Methods

Lattice-based clustering is closely related to the frequent itemset approach above, but constructs
a lattice structure of concepts forming a kind of hierarchy with multiple inheritance. This
approach is based on Formal Concept Analysis and is often described as a form of conceptual
clustering. Since a document can be related to several concepts on the same level (in the lattice),
the lattice represents a hierarchical soft clustering of the document collection.

The lattices produced by methods from this class are known as Galois lattices or simply concept
lattices. The concepts themselves are based on the mathematically defined notion of Formal
Concept7 and are in some sense similar to the above frequent itemsets. A formal concept is
defined either by an intent by an extent , or both. The intent is the set of keywords that defines
the concept and the extent is exactly the documents that have these keywords in common.

Several methods exist for constructing a Galois lattice from a set of documents with assigned
keywords. A popular and relatively fast method for constructing such a lattice is GALOIS
[CR96].

3.1.4 Model-based Clustering

Model-based clustering, as we define it8, is based on hypothesising models for clusters in the
document collection, and then for each document finding the cluster whose model the document
best fits. These clustering methods can be both soft or hard as well as flat or hierarchical.
Model-based methods cover a wide variety of different approaches, but most fall in two major
categories: Statistical methods and Neural Network methods [ZHTY03].

Statistical Methods

Statistical methods hypothesise models for clusters using statistical analysis of the document
collection. Besides from this, these methods range from simple methods like RPCL to more ad-

7See [HSS03].
8Based on [ZHTY03].
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vanced approaches such as clustering based on principal component analysis or the closely related
latent semantic analysis (LSA) – for instance probabilistic latent semantic indexing (PLSI).

Rival Penalized Competitive Learning [KL99] (RPCL), in all its simplicity, works by first se-
lecting a number of random centers in the term space. Hereafter, documents are taken from the
collection as samples. The center which is closest to the sampled document is moved towards
the document by some fraction of the distance. The second closest center (the rival) “loses” and
is “penalised” by moving it a smaller fraction away from the sampled document. When a given
number of samples have been processed, all documents are assigned to clusters containing their
closest center. According to King [KL99], this method is considerably faster than K-Means,
however, the quality of the clusters is somewhat poorer.

Latent semantic analysis, which is closely related to principal component analysis, is a very
promising technology for reducing dimensionality of the term space while at the same time
removing noise and revealing hidden (latent) information in the document collection. We have
found that LSA looks so promising that we have dedicated section 3.2 in the analysis to discuss
this technique. An alternative related method for dimensional reduction (projection into a lower
dimension subspace) is independent component analysis.

Neural Network Methods

Neural networks are designed to emulate the internal functionings of the human brain, more spe-
cifically, the neurons. Neural network-based methods rely on either supervised or unsupervised
learning to assigning multi-dimensional outputs to multi-dimensional inputs. Neural networks
have been applied with great success in image processing and other related areas.

Methods based on supervised learning require a training phase, where inputs with desired out-
puts are presented to the network. This means that a very consistent model for the clustering is
needed already before the clustering is performed, this is thus rather classification than actual
clustering.

Unsupervised learning, on the other hand, dynamically learns/designs a model as it processes
input data. A typical clustering method based on unsupervised learning neural networks is
Kohonen’s self-organizing maps9. These methods produce fairly good results, but are hampered
by long processing time [BYSZ02] and are thus unfeasible for medium and larger document
collections (1,000+ documents) [BdMAS02].

Neural networks are also sometimes used to reduce dimensionality of the term-document matrix
before running more traditional clustering algorithms [DM02].

3.1.5 Other Clustering Methods

In addition to the four above classes of clustering approaches, several other interesting ap-
proaches to clustering webpages exist.

Fuzzy clustering is a special kind of soft clustering that assigns a degree of “belonging” for each
possible document-cluster relation (the cartesian product of all clusters and all documents).

9See for instance [BdMAS02] or [RC01].
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There are thus no clearly defined clusters, only fuzzy clusters with “blurred” borders. An ex-
ample of a fuzzy clustering algorithm is fuzzy C-Means (See [Miy03]). While this is an interesting
approach, a more conventional clustering will suffice for the kinds of postprocessing that we are
interested in.

When dealing with hypertext, it would be obvious to use the linking structure as a basis for
document clustering. Several methods for this kind of link-based clustering exist (see for instance
[HZDS01]). However, we feel that these kinds of methods fall outside the scope of this project,
since we have chosen to focus on clustering based on the textual contents of the documents.

Clustering methods based on suffix trees have often been used to cluster search results “on-
the-fly”. Suffix trees are a widely used data structure (somewhat related to tries) used for
string matching. When used for clustering, suffix trees are used to find subphrases shared by a
group of documents and then to use these as a basis for clustering. The obvious advantage of
this approach is that the clusters can be labelled using natural language subphrases [CSB03].
However, the construction of suffix trees relies on access to the full text of the documents which
is not readily available from MondoSearchTM.

Finally, a class of clustering algorithms, based on a linguistic analysis of the document collection,
exists (see for instance [AFMiA00] & [Hul03]). Such an analysis also relies on access to the full
text of the documents as well as to tables of word classes and grammatical rules, which makes
the approach impractical for this project.

3.2 Using Latent Semantic Analysis (LSA) to Improve Cluster-
ing

3.2.1 Introduction to LSA

Latent Semantic Analysis (LSA) is one of the more promising emerging technologies within the
area of Information Retrieval. It is a statistical/mathematical method for indexing, retrieval
and analysis of textual information and it has been applied within different fields of machine
cognition during the last 10-15 years [NPM01].

LSA is quite similar to Principal Component Analysis, which is often used in statistics to
analyse data sets composed of highly correlated variables [Ler99]. In its essence it is a clever
mathematical technique for uncovering common patterns of word/term usage across a collection
of documents (term co-occurrence). Which terms often occur in the same documents and which
documents share some of the same terms? [YCCP]. LSA is thus exploiting the obvious property
of natural language; words with similar semantic meanings tend to occur together.

Experiments show that LSA have many promising areas of application within Information Re-
trieval10:

• Automatic generation of domain specific synonyms.

• Keyword Extraction from documents, using global information from the entire collection11.
10List adapted from [Gro]
11Thus allowing a given document to be tagged with keywords that are not necessarily included in the document.
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• Finding sets of similar documents in a given collection (i.e. Document Clustering).

• Finding documents that are similar to a given document or to a given query (set of terms).

• Spam filtering of email12.

The results of using LSA within the above areas are surprisingly good. Some of the more com-
monly aknowledged benefits of LSA is noise reduction and dampening of synonymy (several
words can have the same meaning) and polysemy (a word can have several meanings) [CTN03].
LSA is thus often used as a solution to the problem of ambiguous terms (e.g. (software) ar-
chitecture vs. (building) architecture) and the problem of synonyms in information retrieval
(e.g. the user searches for “doctor”, but the desired documents contain the term “physician”).
In this way LSA can uncover latent (hidden) global information in the document collection.
This latent information has many interesting real-world applications. It can for instance be
utilised in a search engine to retrieve relevant documents that do not share any terms with the
query. E.g. LSA would be able to infer that a given document containing the terms “Saddam”,
“Gulf”,“Bush” and “War” with high frequency is related to the term “Iraq”– even though it
does not contain it. This can be inferred because other documents that contain the above terms
with high frequency also contain the term “Iraq” with high frequency. An LSA-based search
engine would thus be able to return the document to users searching for “Iraq”.

One of the more remarkable and controversial results of using LSA’s inference capabilities is a
study by Landauer and Dumais [LD97] that shows that their system based on LSA performed
as good as average foreign students in TOEFL-tests of English proficiency13.

Mathematically LSA works by projecting the large multidimensional term-document space down
into a subspace of much smaller dimension, “squeezing” similar terms and similar documents to-
gether. It is closely related to neural network models, but is based on the mathematical technique
known as Singular Value Decomposition (SVD). We will discuss SVD in-depth below, but so far
suffice to say that SVD is a powerful mathematical matrix decomposition technique closely akin
to factor analysis, that performs an “optimal” (in the least squares sense) dimensional reduction
on the original term-document vector space [LFL98].

This dimensional reduction is done while preserving as much information as possible about the
document/term vectors while collapsing them down into the much smaller LSA-subspace. But of
course information is lost in this process, but in this case information loss is a good thing, since
most of the information that is lost is noise that was present in the original high-dimensional
term-document space. Similarities that were latent (hidden) in the original term-document
matrix are also revealed; similar documents/terms are squeezed closer together while dissimilar
documents/terms are torn further apart.

LSA takes a term-document matrix as input and hence works more or less directly on any col-
lection of text documents, no annotation or linguistic information is needed. It is thus language
independent in the sense that it can be used with any language without modifications.

12Apple’s popular email client Mail for instance uses a variant of LSA to dynamically learn how to distinguish
between spam and normal mail based on the textual content of the emails.

13Actually Landauer and Dumais even ventured as far as proposing LSA as a model of children’s learning, but
this falls outside of the scope of this report.
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3.2.2 Singular Value Decomposition (SVD)

As discussed above Singular Value Decomposition (SVD) is the mathematical matrix decom-
position technique that lies at the heart of LSA. SVD is what enables the “optimal” projection
of document or term vectors into any desired lower dimensional LSA-subspace. But before we
explore the mathematics behind SVD, it is advantageous to have an intuitive understanding of
what the technique aims to achieve. [YCCP] use the following instructive analogy to explain in
layman’s terms what the SVD algorithm tries to do:

“Imagine you keep tropical fish, and are proud of your prize aquarium – so proud
that you want to submit a picture of it to Modern Aquaria magazine, for fame and
profit. To get the best possible picture, you will want to choose a good angle from
which to take the photo. You want to make sure that as many of the fish as possible
are visible in your picture, without being hidden by other fish in the foreground. You
also won’t want the fish all bunched together in a clump, but rather shot from an
angle that shows them nicely distributed in the water. Since your tank is transparent
on all sides, you can take a variety of pictures from above, below, and from all around
the aquarium, and select the best one.

In mathematical terms, you are looking for an optimal mapping of points in 3-space
(the fish) onto a plane (the film in your camera). ’Optimal’ can mean many things
– in this case it means ’aesthetically pleasing’. But now imagine that your goal is
to preserve the relative distance between the fish as much as possible, so that fish
on opposite sides of the tank don’t get superimposed in the photograph to look like
they are right next to each other. Here you would be doing exactly what the SVD
algorithm tries to do with a much higher-dimensional space.”

In the case of LSA, the high-dimensional space discussed in the quote above is the term-document
space, typically having thousands of dimension. This n-dimensional vector space is defined by
the row or column vectors14 of the term-document matrix (cf. the vector space model discussed
in section 2.1.2). SVD decomposes the original term-document matrix into three matrices, that
factored together reproduce the original matrix:

A = UΣVT (3.1)

SVD is based on the following theorem in linear algebra:

“Any M×N matrix A whose number of rows M is greater than or equal to its number
of columns N , can be written as the product of an M×N column-orthogonal matrix
U, an N ×N diagonal matrix Σ with positive (or zero) elements (singular values),
and the transpose of an N × N orthogonal matrix V. The matrices U and V are
each orthogonal in the sense that their columns are orthonormal.”15

14Often an approach where documents are represented as vectors in a term space of dimension N (N being the
number of terms) is used, but the opposite approach, terms represented as vectors in a document space, is also
sometimes used.

15Adapted from [PFTV92]
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The following figure16 illustrates the above theorem:
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Since the singular vectors U and V and the singular values in Σ appear in sorted order (decreas-
ing magnitude), the D first singular triplets (row from U, singular value from Σ, column from
VT ) multiplied together provide the best D-dimensional least square approximation A′ of the
original matrix A. The first singular triplet thus captures the best 1-dimensional approximation
to the original document/term vectors, the first and second thus capture the best 2-dimensional
approximation to the original document/term vectors and so on. Only using the D leading sin-
gular triplets is known as Reduced Singular Value Decomposition. This technique of only using
a limited number of the leading singular triplets thus represent the dimensional reduction that
is at the core of LSA . D is known as the LSA-dimension and is a very important parameter in
LSA. Reduced SVD is illustrated below:

A ≈ A′ = U′Σ′V′T (3.3)

Where U′ is a M×D matrix, V′ a N×D matrix and Σ′ is a D×D diagonal matrix. (Reduced)
SVD thus computes 2 sets of orthogonal singular vectors U′ and V′ that form the basis of a new
abstract subspace. This new abstract subspace is known as LSA-subspace and is where LSA
perform its “magic”. In LSA the left singular vectors U′ provide a mapping from the original
term space to the newly generated abstract LSA-subspace. Whereas the right singular vectors V′

in turn provide a mapping from the original document space into the abstract LSA-subspace17

[Ler99].

The important point is that LSA utilises (Reduced) SVD to perform an “optimal” dimensional
reduction – on all the projections, on all the possible subspaces having the same number of
dimensions (D), the LSA/SVD projection has the lowest least square difference to the original
document vectors. So in that sense (Reduced) SVD is an optimal solution to dimension reduc-
tion [CTN03]. This “optimal” dimensional reduction is really the “gem” responsible for LSA’s
interesting properties, since it both reduces noise and at the same time uncovers latent inform-
ation from the original term-document matrix. It works because the leading singular triplets
capture the strongest and most meaningful regularities in the original data [Ler99].

The actual algorithms for computing the Reduced SVD (the D leading singular triplets) for
a given sparse matrix are quite sophisticated and will not be given here, but usually run in
O(3Dz), where z is the number of non-zero elements in the original matrix (the number of
document/term relations in the document collection). The traditional SVD algorithms (e.g.

16Adapted from [PFTV92]
17NB: In this text we have documents as columns and terms as rows, but LSA/SVD would work as well if the

original matrix was transposed, having documents as rows and terms as columns.
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Lanczos, Ritz-Raleigh iteration etc.) are global in the sense that they require the complete term-
document matrix as input. However, Brand [Bra02] and [Bra03] have propose an incremental18

SVD algorithm with O(MND) complexity for calculating the D leading singular triplets for
a M × N original matrix. This incremental approach might be useful in information retrieval
applications where new documents are added to the collection on a regular basis.

3.2.3 Using LSA in Connection with Document Clustering

Due to the beneficial effects mentioned in the above section, LSA has been widely applied within
document clustering research. The conventional19 way of using LSA in clustering, is to project
document vectors into the D-dimensional LSA-subspace (using the right set of singular vectors
for the mapping) [Ler99]. In this way each document gets represented by a D-dimensional vector
in LSA-subspace, where each dimension is an abstract linear combination of the actual terms.
Traditional clustering algorithms (e.g. K-Means) can then be applied to do the actual clustering
in this reduced dimensional subspace. The distance measure used in LSA-subspace is usually,
but not always, the cosine between the document vectors. Experiments show that this measure
works well, and according to [LFL98] there are some weak theoretical reasons for preferring it
over other methods (e.g. the Euclidean distance measure).

Good results have been reported using this approach20, which have two immediate benefits, the
first being that the calculations involved in the clustering algorithm are scaled down significantly
due to the reduced number of dimensions in LSA-subspace. Secondly many of the benefits
discussed above – noise reduction, dampening of synonymy and polysemy and uncovering of
latent information – improve the performance of most clustering algorithms significantly21.

However, using LSA for document clustering is also connected with some inherent challenges.
The first challenge is that there, given a collection of documents, are no commonly agreed upon
way to determine the optimal dimension of the reduced LSA vector space22. If too small an
LSA-dimension is chosen, important information patterns in the collection might be lost. In
many cases the optimal dimension thus have to be empirically decided for a given document
collection. However, Landauer and Dumais [LD97] have, based on numerous experiments within
different LSA applications, found 300 dimensions to be a good compromise when dealing with
large data sets.

Besides finding the optimal LSA-dimension, the effective usage of LSA require sophisticated fine
tuning of various elements that influence the quality of the method. By some this tuning is
almost viewed upon as an art. Some of the important factors (including LSA-dimension) that
influence the quality of LSA are listed below23:

18“Incremental” means that the algorithm dynamically calculates the result as the documents are added one
at a time.

19As shall become apparent soon, we have chosen to use our own novel approach to utilising the benefits of
LSA in connection with document clustering.

20See [GEG03] and [Ler99]
21During the implementation, we have experimented with the traditional approach of clustering directly in the

LSA subspace. However, we have found this approach much slower than the keyword-based approach, which we
will introduce below.

22In [Ler99] a method for finding the optimal dimensionality is proposed, but we have not found any additional
research verifying the correctness of this method.

23List adapted from [NPM01]
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• Preprocessing (stop-word removal, stemming, weighting of terms etc.).

• Normalisation of document vectors.

• Choice of LSA-dimension.

• Choice of similarity measure for clustering.

Grönqvist [Gro] points out some other challenges related to LSA. Most notably he argues that
since LSA works directly on the term-document matrix, it only looks at documents as “bags-of-
words” and important information, such as the structure and word order of the documents, is
hence lost. Grönqvist mentions usage of n-gram24 terms as a possible solution to this and other
shortcomings of LSA – an interesting idea that we will touch upon below in connection with the
section on preprocessing.

3.3 Commonly Used Preprocessing Techniques

As mentioned in the beginning of this chapter, the above clustering methods depend on various
preprocessing techniques to achieve optimal quality and performance. Selecting the best prepro-
cessing methods for a given clustering algorithm is almost an art, but we will try to approach
this from a scientific point of view and discuss some of the more commonly used preprocessing
techniques in this section.

3.3.1 Stop Words and Other Kinds of Term Filtering

When indexing large quantities of text, it is generally agreed upon [BYRN99] that a lot of the
words that are indexed are irrelevant for querying and other purposes (in our case, clustering).
Different classes of such irrelevant words exist, and some of these are only irrelevant for some
contexts. Filtering irrelevant words can reduce the size of the database as well as serving the
(for us) critical purpose of removing noise from the database.

Nouns generally carry the most information, whereas other large word classes such as verbs,
adverbs and adjectives, don’t carry as much information. Some filtering approaches focus on
dealing with this.

We regard term filtering as falling in two distinct classes: Crawl-time Filtering and Post-crawl
Filtering.

Crawl-time Filtering

Crawl-time filtering includes all rules that can be set up before actually fetching the data. This
includes stop-lists, numbers not falling into specific formats (e.g. maybe we want to keep dates)
and 1-character words. Depending on the topic covered in the documents that are indexed,
these can be modified and other rules may be added.

24N-grams are n-word (n usually being 2 or 3) sub-phrases that often occur in natural language, e.g. “Inform-
ation Retrieval”, “New York City” etc.
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A stop-list is a list of stop-words – words that don’t convey any practical (meaningful) inform-
ation. This includes very commonly used words such as “a”, “be” and “few”. An example of a
general stop-list is found in [FBY92, pp. 114].

When creating stop-lists or filters, it is important to keep the context that will be indexed in
mind – what topics does this cover? Does it make sense to index the word “computer” if you
are indexing the site of a computer science faculty?

Post-crawl Filtering

In post-crawl filtering, we can take a step back and view the overall database content. This
enables us to identify stop word candidates by looking at their document frequencies. Words
occurring in more than 80% [BYRN99] of the documents are very good stop-word candidates.
Conversely, words only occurring in a few (maybe 1-2) of the documents in the database are
very likely misspellings and shouldn’t be indexed either.

However, care should be taken, when automating these operations – among the 200 most used
words in English litterature are “life”, “time” and “war” [FBY92] – all words that shouldn’t
be removed. This problem can be solved using “white-lists” specifying which words should be
included in any case.

Textual Contents

The downside of using the above filtering measures is that we might lose some of the implicit
information from the text. Especially English does not concatenate conjoined words and thus
some words or titles might be destroyed if for instance one part of the word is a stop-word and
is not indexed.

An often seen practice is then to keep the words for some purposes, but mark them that they
are not to be used alone. This will allow the user to search for complete phrases and will help
by reducing the noise (better clustering) and enabling n-gram discovery (see section 3.3.4). The
downside of this is the increased size of the database/index file.

For languages using only concatenated nouns such as Danish, it would be relatively straight-
forward to implement a dictionary with all verbs, adverbs etc. to mark all non-nouns, but since
English has a different structure, advanced semantic parsing is required to mark these words.
This we have deemed out of scope for this project.

3.3.2 Stemming

Different syntactic variations of a word generally describe the same concept. Present and past
tenses of the verb walk (i.e. walk, walks and walked) and singular and plural forms of the noun
lamp (i.e. lamp and lamps) are examples of words of different forms that for all information
retrieval purposes would sit within the same context. Besides from reducing the dimensionality
of the term space and thus making clustering easier, resolving these issues also reduces the total
size of the index files, and thus the memory and storage requirements.
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A number of different approaches to interpreting or discovering these variations exist, the process
of combining the syntactic variations are known as conflation [FBY92]. Conflation can either
be performed manually, for instance by defining regular expressions, or automatically. The
automatic conflation algorithms are commonly known as stemming algorithms, which comes
from the fact that we are looking for the common “stem” of words. Stemming is often performed
in the preprocessing stage25.

When performing automatic conflation, one must always consider the consequences of over-
stemming . Overstemming means to conflate two mostly unrelated words such as “engineer” and
“engine”. This will as a first consequence reduce information retrieval precision, when simply
searching a database. The result of this is poorer information retrieval quality, but is rarely
something that the user notices directly.

The more severe consequence for our purpose is that we will potentially be forming clusters of
completely unrelated concepts, which in the case of a more-like-this system could yield results
that don’t resemble the original page at all. In our case, understemming (i.e. not conflating some
word variations such as organisation and organisations) is thus preferable to overstemming.

Below, we will give a brief overview of the currently available conflation methods as outlined in
Figure 3.5 (adapted from [FBY92]).

Conflation Methods

Manual Automatic (Stemming)

Affix
Removal

Longest
Match

Simple
Removal

Successor
Variety

Table
Lookup

n-gram

Figure 3.5: Taxonomy of current conflation approaches.

Manual Conflation As mentioned above, manual conflation simply covers a set of conflation
rules based on observations of the term set. Since manual conflation quickly becomes infeasible
as the term set or document set grows beyond human capacity, various automatic means become
necessary.

Table Lookup Stemming using table lookup utilises a number of tables that contain the stem
of the word and its different syntactic varieties. This can obviously be implemented to be very
fast, but has a problematic limitation, namely that these tables are required. Such tables do
not exist, or only exist for very limited contexts.

n-gram An often seen stemming algorithm is the shared digram method [FBY92] where all
two-letter pairs (digrams) are extracted from the words in the corpus, those words having the

25In search engines, users’ queries are also often stemmed.
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most digrams in common according to some similarity measure are then made to be the same
stem. The problem here is that we have to re-estimate or optimise the similarity requirements
for different document corpora.

Successor Variety The successor variety of a string is the number of different characters that
follow it in words in some body of text. By observing the successor varieties of all prefixes of the
string, a steady decline or constant value for the successor varieties is expected until a sudden
rise in the varieties will signify that a word stem has been determined. Consider for instance how
the successor varieties would look for the word “reading” from a text body containing “read”,
“reads”, “reading” and “rent”. Obviously, the word “read” would be the stem of “reading”.

This approach is very promising - especially since it could be applied to different languages
without modification. However, the risk of overstemming plus the necessity to make the cut-
off requirements flexible depending on the size of the document corpus limits the uses of this
algorithm.

Affix Removal Stemmers using affix removal remove the suffix and/or prefix of words to
produce the stem. The simplest affix removal stemmers simply truncate the words and simply
keep e.g. 60% of the word or a set number of characters as the stem. This, of course, serves
some purposes, but this approach should only be applied when working in small term spaces
with very specific topics – otherwise the risk of overstemming and thus merging two or more
unrelated concepts becomes to great.

The more intelligent approach to affix removal is called “Longest Match”, where an iterative
longest match stemmer removes the longest possible string of characters from a word according
to a set of rules. This process is repeated until no further characters can be removed from
the word. If the stemmer contains enough (correct) rules, most word variations can be safely
conflated without the risk of overstemming.

Recoding Even though most words can be conflated using the Longest Match stemming
method, one issue still stands out; vowel transformations. For instance “Ponies” may be stemmed
to “Poni”, but this will not be conflated with “pony” unless further transformations are applied.
Such transformations are known as recoding and are also based on a (simpler) set of rules.

Porter Stemmer

According to [FBY92], affix stemming using the longest match approach is by far the most
popular. Even though the other approaches to stemming show promise for different applications,
our main concern is to have a stemming approach that will not require us to reoptimise our
stemmer every time we choose to change to a different term collection.

Because of this, we have chosen to use a longest match affix removal stemmer called the Porter
Stemmer, which is freely available26. The Porter Stemmer has the additional advantage of not
only containing affix removal stemming rules, but also recoding rules.

26See http://www.tartarus.org/∼martin/PorterStemmer/

http://www.tartarus.org/~martin/PorterStemmer/
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3.3.3 Term Weighting

As discussed in section 2.1.2 about the vector model, it is an advantage if the the relation
between terms and documents is not simply binary. In order to get a better approximation
of the interrelationship between terms and documents, non-binary weights are often applied.
However, it is far from given how to best calculate these weights. Various methods ranging from
simply using the term frequencies to very complex statistical measures have been proposed.
These methods are normally referred to as weight functions since they all result in a weight for
each term-document relation.

The choice of weight function significantly influences the result of a clustering algorithm (and for
that matter information retrieval in general). There is no commonly accepted theory detailing
which kinds of weight functions are best suited for a given purpose. Instead, various empirical
studies exist containing different and sometimes conflicting evidence for the performance and
quality of different weight functions. Hence, we will briefly discuss some of the more commonly
used weight functions27 in this section.

According to [NPM01] it is often convenient to express the transformation done by weight
functions as a product of two numbers - a local and a global weight (function).

Wt,d = L(t, d) ∗G(t) (3.4)

The local weight function L(t, d) represents the weight of the term t in document d and is a
measure of how related the given term and document are. The global weight function, on the
other hand, represents the weight of a term in the entire document collection, and is a measure
of how important the given term is as a descriptor of documents in the given collection. The
purpose of a good global weight function is to weight terms to minimise intra-cluster distances
and maximise inter-cluster distances. This is often done by increasing the weight of the terms
that best distinguish the documents containing them (e.g. terms that are relatively rare in the
collection).

The most commonly used local weight function is simply the term frequency, tft,d, which is
the frequency of term t in document d. This function works quite well, since words central to
a document’s content and theme often occur with high frequency. However, there is room for
improvement and more elaborate schemes that use information about the term’s position within
the document to calculate a term weight twt,d are sometimes also used. Here, terms appearing
within titles, or otherwise emphasised have higher weights than terms that only occur in the
main text. Usually term frequencies still play an important role in such weighting schemes,
albeit reduced or emphasised by the other factors.

As for global weight functions, many different approaches exist. The most simple global weight
function is the unity function:

G(t) = 1 (3.5)

This function corresponds to simply using the local weight function without any global weighting,
and is often used as a baseline for comparing whether global weighting improves performance
for a given application.

27Based on the elaborate discussion on this in [NPM01].
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Normalisation

Normalisation of the document vectors is another commonly used global weight function. Various
ways of normalising the document vectors exist. One popular method is given in [BYRN99, pp.
29]:

G(t) =
1

maxi(L(i, d)
(3.6)

This method simply takes the inverse of the maximum term weight in the given document
(vector). Doing so, the method ensures that the weights assigned to documents of different
sizes are scaled to comparable magnitudes. Another common normalisation approach is given
in [NPM01]:

G(t) =
1√∑

i

L(i, d)2
(3.7)

Here, the method uses the standard normalisation technique of dividing the document vector
with its length. It is thus ensured that all document vectors have unit length and their position
in the term space hence only depends on the textual content of the documents and not their
lengths.

IDF

In connection with clustering, the global weight function known as IDF is often applied. IDF
is an abbreviation for Inverse Document Frequency and is calculated as follows:

G(t) =
N

dft
(3.8)

Or, alternatively as log-IDF :

G(t) = 1 + log(
N

dft
) (3.9)

dft is the document frequency of the term t, i.e. the number documents where the term t occurs.
N is simply the number of documents in the collection. This weight function increases the
weight of rare terms since it is believed that these are better to distinguish document clusters.

Entropy-based Methods

Another class of global weight methods are based on the information-theoretic notion of entropy.
The entropy is calculated using the conditional probability of the document d under the condition
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that the term t occurs (i.e. the probability that a randomly selected occurrence of term t is in
document d):

pt,d =
tft,d

gft
(3.10)

Where gft is the global frequency of the term t, i.e. the number of times the term t occurs in
the collection28. The entropy of term t is then given as:

E(t) =
∑

i

(pt,i ∗ log(pt,i)) (3.11)

The first global weight function based on entropy is simply the absolute value of the entropy
(the entropy is always a negative number or 0):

G(t) = −E(t) (3.12)

The entropy measures the uniformity of the term’s frequency in the documents where it occurs
– i.e. the more uniform the distribution, the higher the global weight. The rationale behind
using the entropy for a global weight function is that using the term in a consistent manner
in a small group of documents is an indication that the term might relate these documents in
a “good” cluster. However, the document frequency is not factored into the equation, which
might present a problem in connection with terms that occur more or less uniformly in the entire
collection (e.g. common navigation elements and headers on webpages).

A global weight function that compensates for this, while still using the interesting properties
of the entropy is log-entropy :

G(t) = 1 +
E(t)

log(N)
(3.13)

In this scheme, the more uniform the occurrence of a term (in the entire collection), the less
interesting it is seen from a clustering perspective and is thus assigned a lower global weight.

[BN04] explains log-entropy in the following way:

“... [log-]entropy gives a measure [of] how well a word is suited to separate documents
by keyword search. For instance, words that occur in many documents will have low
[log-]entropy. The [log-]entropy can be seen as a measure of the importance of a word
in the given domain context. As index words a number of words that have a high [log-
]entropy relative to their overall frequency have been chosen, i.e. of words occurring
equally often those with the higher [log-]entropy can be preferred. Empirically this
procedure has been found to yield a set of relevant words that are suited to serve as
index terms.”

28Global frequency is sometimes also referred to as collection frequency (cft).



3.3 Commonly Used Preprocessing Techniques 37

Final Remarks

[BYRN99, chap. 2] recommends a global weight function based on both normalisation and log-
IDF – effectively multiplying these two functions to form a new global weight function. However,
[Dum93] recommends using log-entropy in connection with LSA29. [NPM01] on the other hand
found some evidence that “pure” entropy performed slightly better than log-entropy also in
connection with LSA, but they mention that this might be specific to the document collection
they used.

3.3.4 Usage of N-Grams

Most clustering methods only consider documents as “bags-of-words” without taking word or-
der and the textual structure of the document into consideration. To preserve some of this
information, n-gram terms are sometimes extracted and used.

An n-gram is an n-word (n usually being 2 or 3) sub-phrase often occurring in natural language.
These sub-phrases often have a meaning that is somewhat different from the meanings of the
constituent words. This could be sub-phrases such as “keyword extraction” and “United States
of America”.

As mentioned, n-grams are particularly important in connection with English, since English
contains many n-word compounds (e.g. flower shop) as opposed to most other Germanic lan-
guages as well as Latin languages, where most compound words are formed by concatenation –
i.e. solid compounds (“flower shop” in Danish becomes “blomsterbutik”).

In connection with clustering, n-grams often make better conceptual descriptors compared with
the single word terms, since they capture more of the implicit information of the document.
[Hul03] found some evidence that n-grams improve the quality of automatic keyword extraction,
and make the keywords closer to a manually assigned set made by experts. In addition, [Gro]
suggests using n-grams in connection with Latent Semantic Analysis to remedy some of its
weaknesses (see section 3.2).

Obviously, we expect diminishing returns with regard to the length of n-grams when using n-
grams in connection with clustering. Many good bigrams exist in most documents, whereas
fewer common trigrams, quadgrams and beyond exist in typical document collections. Since,
most methods of extracting n-grams are often computationally demanding, it makes sense to
only focus on bigrams, and perhaps also trigrams.

One class of approaches to n-gram extraction employs various kinds of statistics to find relevant
n-grams. Alternatively a list of known/common n-grams can be used. However, it is often
difficult to cover all domains with one general list. Using domain-dependent lists is thus often
required to locate relevant n-grams with this method.

29See section 3.2.
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3.4 Postprocessing

As already mentioned in section 2.3.2, we have chosen to focus our efforts on two applications
of document clustering; finding similar documents (more-like-this) and search result clustering.

3.4.1 Finding Similar Documents (More-Like-This)

Finding similar documents is a popular way of enhancing the search experience, allowing the
user to easier identify pages containing desired information. This is often implemented as a
“similar pages” link next to each search result. If the user for instance searches for “jaguar”
with the intent to find pages concerning information about the vehicle, he might be presented
with results both about vehicles and animals. If he clicks on a similar page link besides one of
the results regarding vehicles, the more-like-this system should only present pages concerning
vehicles.

Another scenario for using more-like-this is to display links to pages resembling the current page
in a small additional frame while browsing a website.

However, it is not always clear what constitutes “similar pages”, since the definition can be
different to different people – for some people, more-like-this means pages in the same category
and for other people more-like-this means pages containing information on exactly the same
topic. We have chosen to use the following definition:

“Similar pages are pages that fall within the same category and hence contain (more-
like-this) information on related topics.”

The more specific a given page is, the more difficult it becomes to find related pages within
the same category and a choice should be made whether to display less relevant pages or to
display less pages. Tables of similar page information can be predetermined offline for maximum
performance at run-time.

3.4.2 Search Result Clustering

Today, most search engines operate by returning a long (ranked) list of results matching the user’s
query. However, as already mentioned, the cluster hypothesis states that similar documents tend
to be relevant to the same requests. It is thus often advantageous to not only rank search results,
but also to categorise them according to the main topic of the pages. However, the process of
manually categorising the pages of a website is often tedious and expensive. Document clustering
has thus often been used to automatically categorise a search result into topic groups (clusters).

This can either be done as a flat clustering of the search results, where the result is divided into a
number of hard or soft clusters. Another approach uses a hierarchy to capture the subsumption
relationship between different topics (e.g. “software engineering” is a subtopic of “engineering”).
The user is thus presented with a topic hierarchy that he/she can navigate through to find the
pages that are relevant.



3.4 Postprocessing 39

As an alternative to dividing the search result into clusters, clusters could also be presented as
part of the search result (in a Yahoo-like fashion). The user is thus presented with categories
that might interest him/her and these categories might contain pages that would not be found
with the original query.

Due to the nature of search results (the number of possible queries and corresponding results is
enormous), search result clustering has to be performed online (on-the-fly). However, this system
can of course still utilise an underlying offline clustering of the whole document collection to
generate clusters relevant to the given search results.
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Chapter 4

Chosen Approach

This chapter starts by outlining and motivating our chosen two-stage approach to document clus-
tering. We then motivate our choice of clustering algorithms, before moving on to a discussion
of the architecture we have designed for the clustering toolkit.

4.1 Using Core-Terms/Keywords to Represent Documents

We have decided to split the document clustering stage (stage three in figure 3.1 on page 17)
into two distinct stages:

1. Keyword Extraction In this stage, keyword or core-terms are assigned to each document
based on its main theme/topic.

2. Keyword-based Document Clustering In this stage, the assigned keywords are used
as features for clustering using one of the selected clustering algorithms (see below).

The two-stage approach is inspired by the experiments by Schütze and Silverstein in [SS97],
discussed earlier, which showed no loss of quality, but a drastic speed-up in connection with
truncation according to term weight. We expect that better keyword extraction schemes than
truncation will yield even better results with regard to quality.

We have thus essentially chosen to utilise keyword-based clustering as defined in the precious
chapter, because we believe that this method carries some interesting advantages and can be used
with most of the approaches to clustering outlined in section 3.1. The clustering algorithms are
simply used with keywords as features instead of the full term space. We consider this approach
natural, since a document’s content is often best described by a few well-chosen keywords rather
than by the full set of words – short descriptions are often the best descriptions since they are
long enough to capture the essence, but leave out the less relevant information (and noise).
Structuring and organising information has always required eliciting the essential information in
one way or another. This is for instance utilised in connection with the abstracts and keywords
that are often used in academic papers.
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Keyword-based Document Clustering

Crawling & Indexing

Preprocessing

Keyword Extraction

Postprocessing

NoteNoteWeb-
site

Figure 4.1: We have split the Document Clustering stage into 2 stages: Keyword Extraction and
Keyword-based Document Clustering.

Furthermore, this approach allows for interesting algorithms such as frequent itemsets and
lattice-based algorithms that require a limited set of features with large overlap. In connec-
tion with more conventional clustering approaches, the use of keywords instead of the full term
space results in a huge performance advantage as already touched upon. Since Mondosoft is
interested in using clustering technologies for clustering fairly large websites (100,000+ pages),
this performance gain is necessary to make clustering feasible.

The method of representing documents by a limited number of keywords is obviously connected
with a loss of information. However, we believe that, if keyword extraction is done correctly
(i.e. by choosing “good” keywords), most relevant information will be preserved, while noise
and irrelevant information are filtered out. This, of course, requires research into good keyword
extraction methods that are able to provide the necessary quality of keywords as well as ensuring
the keyword overlap necessary for clustering.

4.2 Chosen Algorithms

We have attempted to choose a set of clustering algorithms that cover most of the major classes
mentioned in the previous chapter. However, some classes of algorithms are not particularly
interesting with regard to the scope of this project.

Partition-based algorithms are very common and often offer a good trade-off between speed
and cluster quality. However, since we prefer a hierarchical clustering, we have chosen to use
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a partition-based algorithm as basis for a divisive hierarchical clustering. For this purpose, we
have chosen K-Means, since it is probably the most well-known clustering algorithm around,
and it will thus serve as a baseline to compare other algorithms against. The divisive version of
K-Means we have chosen to use, is often referred to as Bisecting K-Means.

Hierarchical clustering methods readily offer the hierarchical clustering structure, we desire, and
we have therefore chosen to implement one algorithm from each of the two main branches of
the category; CURE and PDDP. We have chosen CURE to represent the class of agglomerative
hierarchical algorithms, since it is fast compared to other algorithms in this category and since
it has an interesting way of handling clusters of non-convex shapes. PDDP has been chosen to
represent the class of divisive hierarchical algorithms, since it relies on an interesting approach
that promises excellent speed combined with good quality clusters.

As already mentioned, our chosen approach relies on keyword-based clustering. This allows
us to implement two lattice-based clustering algorithms: GALOIS and lattice-clustering based
on Apriori. GALOIS is an incremental approach to building a concept lattice from a set of
documents that we believe represents one of the fastest approaches to building such a lat-
tice. However, realising the close connection between frequent itemsets and concept lattices, we
have also chosen to implement an extended version of Apriori. This version is able to produce
“pruned” concept lattices that only contain clusters/concepts that have a minimum support in
the document collection. Since Apriori was developed to mine frequent itemsets in databases of
purchasing transactions, we hope that this way of generating concept lattices will scale well and
be significant faster than GALOIS.

As for model-based clustering algorithms, we have chosen to focus our efforts on Latent Semantic
Analysis, since we hope to benefit from some of the promising properties of this approach to
dimensional reduction. However, instead of using LSA directly in connection with clustering, we
will utilise it to extract keywords fulfilling the criteria set above. With regard to neural network-
based clustering methods, our literature study shows they either require training (supervised
methods) or perform too slowly to be feasible in connection with the sizes of the document
collections that we would like to be able to cluster.

The other mentioned methods in the analysis were shown to be either irrelevant or infeasible in
connection with the scope of this project.

We have thus chosen to implement the following algorithms:

• Keyword Extraction based on LSA1

• Bisecting K-Means

• CURE

• PDDP

• GALOIS

• The Apriori-based lattice clustering scheme

1We will also implement a keyword extraction scheme based on pure truncation (inspired by the positive results
in [SS97]) that can be used as a baseline to compare the LSA method against.
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4.3 Toolkit Architecture

In this section, we provide an overview of the architecture that we have designed for the toolkit.
The architecture is somewhat idealised, the actual implementation varies a bit for different
practical reasons.

During the design phase, our main emphasis has been on setting up an architecture that makes
experiments with (and evaluation of) preprocessing methods, keyword extraction, clustering
methods and postprocessing methods easy.

4.3.1 A Modular Design

We have chosen to design a modular architecture that allows for ease of customisation and
integration of different algorithms in the different stages of the clustering process. Using a
modular approach also makes it possible to expand the “repertoire” of algorithms in the different
stages, if so desired.

This modular architecture requires that interfaces between the different stages are defined in a
flexible way, in order to allow different combinations of algorithms to operate together (i.e. to
make sure that the output of one stage, regardless of the used algorithm, is compatible with
the input of the next). Furthermore, based on a given configuration file, the modules should
be interchangeable at run-time, allowing on-the-fly switching of algorithms without the need to
recompile.

Figure 4.2 below shows the different classes of modules in our architecture, which will be de-
scribed further in the following sections. As is seen, the different classes of modules are an
extension of the process flow in figure 4.1, omitting the crawling and indexing stage, which is
handled by MondoSearchTM.

Preprocessing 
Module

- Filtering
- Stemming
- N-gram extraction
- Weighting

Weighting 
Module

Weighting 
Module

Keyword 
Extraction 
Modules

- LSA-based
  module
- Pure truncation
  module

Weighting 
Module

Weighting 
Module

Clustering 
Modules

- K-Means
- CURE
- PDDP
- GALOIS
- Apriori-based
  lattice generation

Weighting 
Module

Weighting 
Module
Post 

Processing
Modules

- Similar page
  generation 
- Search result
  clustering

Presentation & 
Evaluation
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- XML for user  
  testing
- HTML for
  inspection
- Statistics 

Data Extraction
Module

- Automatic on- 
  the-fly extraction
  from
  MondoSearch™

Internal Data Representation
- MondoSearch™-compatible tables
- Binary sparse matrices

BehaviorTracking™ 
DB

MondoSearch™ DB

Figure 4.2: The different classes of modules in the architecture.

Stage 1: Data Extraction

This stage represents the primary interface into the MondoSearchTM databases (including the ne-
cessary BehaviorTrackingTM data). The module is responsible for extracting the term-document
matrix on-the-fly, and should also handle other information requests to the databases from
subsequent stages.
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The primary output of this stage is a sparse feature-document matrix with terms as features.
Additionally, conversion tables for rows and columns into terms and documents are also pro-
duced.

Stage 2: Preprocessing and Weighting

In the second stage, the term-document matrix produced in stage 1 will be transformed through
the chosen preprocessing steps, including:

• Stop-word filtering and other kinds of post-crawl filtering2

• Stemming

• N-gram extraction

• Local and global weighting3

The primary output of this stage is a new sparse feature-document matrix with word stems
or n-grams as (document) features. Additionally, conversion tables for rows and columns into
n-grams/word stems and documents are also produced.

Stage 3: Extraction of Keywords

This stage is responsible for assigning a number of keywords/core-terms to every document
based on the feature-document matrix output by stage 2.

The primary output of this stage is a keyword table containing the keywords and corresponding
weights for each document.

Stage 4: Document Clustering

This is of course the core stage concerned with the actual document clustering based on the
keywords stored in stage 3. Modules in this stage contain the implementations of the chosen
algorithms that should work directly on the keyword table.

The primary output for the hierarchy-based algorithms (K-Means, PDDP and CURE), is a table
specifying each cluster and the documents contained in it. For the lattice-based algorithms
(GALOIS and extended Apriori), the primary output is a table specifying the lattice’s nodes
and their linking structure.

In addition, both types of algorithms also output an inverse table containing document-to-
cluster/node relations to speed up the subsequent postprocessing stage.

2For practical reasons, our actual implementation performs this directly during data extraction for maximum
efficiency.

3Depending on which weighting algorithms, the user has chosen.
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Stage 5: Postprocessing

This stage is primarily concerned with finding similar pages and, to a lesser degree, search result
clustering as specified in the scope of the project.

Modules in this stage contain functions for building more-like-this tables for either a hierarch-
ical clustering or a lattice-based clustering. Time allowing, the module should also contain
implementations of a search result clustering for both classes of clustering algorithms4.

The primary output of this stage is a table containing references to similar pages for each
document. The format of this table should be independent of the clustering algorithm applied
in stage 4. Search result clustering is as mentioned an online process, and we do not need to
generate any static output during the offline clustering process.

Stage 6: Presentation and Evaluation

This stage consists of various utility functions that output information/data that can be used
to evaluate the previous stages. Output functions should include:

• Functions to generate HTML versions of the keyword table and the similar page table,
allowing these to be inspected by human users.

• Functions to generate XML versions of the similar page table, allowing it to be used as
the basis of a user test of the similar page feature for the different algorithms.

• A simple search functionality that is able to output the result clustering of 1-word searches.
This should act as a preliminary “mock-up”, allowing us to determine the feasibility of
search result clustering.

• Functions to generate statistics for a given keyword table and to compare two keyword
tables to determine the percentage of changed keywords (for instance due to a change of
algorithm or algorithm parameters).

4.3.2 Internal Data Representation

The interfaces outlined above use two primary data structures; tables and sparse matrices. For
table-based data structures, we have chosen to use the same kinds of tables as those used by
MondoSearchTM to make later integration into MondoSearchTM easier. Doing this we also save
the work involved in developing a table-based database ourselves. For matrices, we have chosen
to use a standard binary sparse matrix format.

4Search result clustering for hierarchical algorithms has not been implemented due to time constraints.
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Implemented Preprocessing

In this chapter, we will outline the different preprocessing substages that we have implemented.
First, we will outline the extraction of data from MondoSearchTM. Then we move on to describing
the implemented post-crawl filtering of terms. After this, we will discuss the implemented
stemming scheme.

Following this, we will briefly outline the implemented local and global term weighting functions.
Finally, we will detail the two schemes we have designed to extract relevant bigrams that can
be used as document features.

5.1 Extraction of Data from MondoSearchTM

We have implemented a data extraction module that is directly integrated with MondoSearchTM

in the sense that it uses same the database files that the “live” version of MondoSearchTM

queries. It is thus very straight-forward to perform clustering on websites crawled and indexed
by MondoSearchTM. Being able to take advantage of the many hours that have been used
building the MondoSearchTM crawling and indexing system gives us a clear advantage compared
with other researchers in the field of information retrieval. In this way we have great freedom
in the choice of test data to use when optimising and evaluating our algorithms.

The main purpose of the data extraction module is build a term-document matrix that can
be used by the subsequent preprocessing stage. Our implementation allows term-document
matrices with either document frequencies or MondoSearchTM weighting1. To save space, the
term-document matrix is stored in sparse form only saving non-zero values. In practice, we use a
standard binary sparse matrix format2 to store the compiled matrix on disk. As a complement
to the matrix, the extraction module also builds conversion tables that are used to translate
between row and column numbers and the corresponding pageIDs and wordIDs that are used
internally in the MondoSearchTM database.

In addition to generating the term-document matrix, the data extraction module also handles
extracting the following information from the MondoSearchTM databases:

1See section 5.4 below, briefly introducing the MondosearchTM term weighting scheme.
2The definition for the file format can be inspected at: http://tedlab.mit.edu/∼dr/SVDLIBC/SVD F SB.html

http://tedlab.mit.edu/~dr/SVDLIBC/SVD_F_SB.html
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• Lookup of actual words (as strings) from wordIDs and vice versa.

• Lookup of page titles and URLs (as strings) from pageIDs.

• Determining the support of candidate bigrams in a given database.

• Getting the result of simple 1-word searches that can be used to test search result cluster-
ing.

5.2 Filtering of Terms

We make use of both crawl-time and post-crawl stop-word filtering methods. MondoSearchTM

has its own built-in stop-list for every supported language and automatically filters/removes
each stop-word. In addition to this, we have implemented an optional upper threshold (in %) on
terms’ document frequencies, thus essentially implementing post-crawl discovery and removal of
stop-words. This was done because we found that webpages often contain header and navigation
terms that are present on all (or most) pages on the given site. These words are normally not
suited as keywords since they might be assigned to too many pages. However, on certain sites the
upper threshold should be disabled since actual important words might also be part of header
or navigation terms.

Besides from stop-word filtering, we have also implemented a few other (post-crawl) filters to
improve quality and performance of our algorithms:

• A lower threshold (in number of documents) on terms’ document frequencies. This is
primarily done to improve speed and memory consumption, since this filter reduces the
number of terms by an order of magnitude (see section 10.2.1). Such rare words are often
spelling mistakes and are seldom very good for clustering (i.e. noise), since they are only
able to form clusters that in most cases are too small to be relevant. In connection with our
chosen keyword clustering based approach this is even more true, since rare terms decrease
keyword overlap and consequently lead to documents not having common keywords for
clustering.

• 1-character terms are also removed since these terms do not carry much meaning (if any)
and thus make poor keywords.

• Finally, we filter out numbers with less than 4 digits since these rarely carry much meaning.
However, numbers such as years and postal codes are sometimes important. We have thus
chosen to accept numbers with 4 or more digits in order to preserve years and (Danish)
postal codes, but we leave out short numbers that carry less meaning.

Our own informal tests on many different sites have shown that most of the above filters produce
good results. However, it is important to point out that all implemented post-crawl filters are
optional and it is thus up to the user to optimise the mix and settings of the filters to the given
site.
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5.3 Stemming

In this section, we will describe how we use the Porter Stemmer to create the database of features
that we will base our clustering algorithms on.

5.3.1 Porter Stemmer

In section 3.3.2 we decided to use the Porter Stemmer for the term conflation operations that
we need. In this section, we will describe how this is implemented in our system as well as the
data representation for the conflated terms.

The Porter Stemmer is a longest match affix removal stemmer for English text. The Porter
Stemmer has several sets of rules that are executed in turn to ensure maximal stemming and
minimal overstemming. The Porter Stemmer is freely available on http://www.tartarus.org/
∼martin/PorterStemmer/ where the original author maintains versions for different program-
ming languages.

The Porter Stemmer does not offer any facilities for building up a database of conflated words,
so in order to process our database, we have created a novel wrapping function that calls the
Porter Stemmer to get the word stem and builds a trie containing information about the stemmed
words. The wrapper takes the string representing the word, the word ID, the document frequency
for the word and the collection frequency for the word.

5.3.2 Data Structures: Trie

A trie is a tree structure that stores strings in such a way that there is one node for every
common prefix3. E.g. if the words “ape” and “apple” are put in the trie, they will be stored in
branches coming from the common branch “ap”. Also see figure 5.1 for an illustration of this
concept.

a

p

e
ap

ape

p

l

e

app

appl

apple

a

Figure 5.1: A simple trie.

The reason for using a trie instead of tables of some sort is that it is both efficient in terms of
computational complexity4, as well as in terms of memory usage, since we eliminate redundancy.

3See http://www.nist.gov/dads/HTML/trie.html
4O(log26n) for search and insert operations, where n is the number of characters in the word.

http://www.tartarus.org/~martin/PorterStemmer/
http://www.tartarus.org/~martin/PorterStemmer/
http://www.nist.gov/dads/HTML/trie.html
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In a node in the trie, we store the word IDs of words that stem to this node, the accumulated
frequencies from these words, the word ID of a candidate word and the frequencies of the
candidate word. The reason that we store a candidate word instead of just using the stem, is
that the word stems tend to be “less than a word” and thus are not very readable. Storing a
candidate word gives us more readable keywords and lets us label clusters easier. The candidate
word is simply the word with the largest collection frequency, which is usually the most general
syntactic variation of the word. We have left the option of using document frequency instead of
collection frequency, but we have seen the best results using the collection frequency.

Since the Porter Stemmer is an English-only stemmer, strings containing numbers and words
containing non-English characters cannot be stemmed. Therefore, we have extended the trie to
have an additional node in the top-most level simply containing a list of all non-english words
and their weights. The final version of our trie is shown in figure 5.2.

...

a b z

a b z

Word1
Frequencies
Word2
Frequencies

Word3
Frequencies

...

Non-English

...

a b z

aa ab az

Trie Node
Candidate WordID
Candidate Frequencies
Accumulated Frequencies

WordID List
WordID1
WordID2
...

Figure 5.2: The implemented trie structure for creating word stems.

5.3.3 Data Structures: Stem Group

Storing the trie in a flat database proves impractical, so in order to store the stemmed words
in the database, we have created so-called stem groups (see figure 5.3) that record lists of the
conflated words as well as the candidate words.

As we mentioned above, both the accumulated document frequency and the accumulated collec-
tion frequency are stored for customisability - different term weighting techniques use different
frequencies.

5.3.4 Modifications to the Porter Stemmer

When testing our stemming module, we discovered that some of the stemming rules resulted
in overstemming. More specifically, we saw “universe” and “university” conflated and “engine”
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Stem Group
Candidate WordID
Accumulated Document Frequency
Accumulated Collection Frequency

WordID List
WordID1
WordID2
...

Figure 5.3: Data representation for a group of conflated words.

and “engineer”. We have modified the Porter Stemmer to avoid overstemming in these cases,
and have not seen any cases of understemming resulting from our changes.

5.4 Term Weighting

As discussed in section 3.3.3, it is advantageous to split the weighting scheme into a local and a
global part. Below, we detail our implementation of these two parts.

5.4.1 Local Term Weighting

We have implemented two different schemes for local weighting. The first scheme is simply based
on using term frequencies. This scheme is commonly used and makes sense in most cases.

However, we were in the fortunate situation that Mondosoft has implemented a more elaborate
weighting scheme in MondoSearchTM that is able to give better estimates of a term’s importance
within a given document. The details of this scheme are confidential, but the main factors that
influence weighting are given in [Mon02]:

“... factors include the frequency of the word within a document (count); as well
as the context the words are placed in (bold, font size, title, description, keywords,
header tags [H1,H2,H3]) (weight); The frequency of the word within a document in
comparison to the total number of words within the document (density); the use
of keyword meta tags and titles; and the use of “rank word” and “rank document”
meta tags, which are specific tags for use with MondoSearch...”

5.4.2 Global Term Weighting

Since different empirical studies show different global weight functions as optimal for clustering,
we have chosen to implement the most common ones.

We have thus implemented global weight functions based on the following methods5:

• The unit function (used as baseline).

5See section 3.3.3 for a discussion of the different methods
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• The IDF function.

• The log-IDF function.

• The entropy function6.

• The log-entropy function.

With regard to normalisation, we have chosen to normalise the weighted document vectors
before performing SVD on them. However, this is done as part of our keyword extraction and
is therefore detailed in section 6.1.

5.5 Bigram Extraction

As we mentioned in section 3.3.4, using n-grams is a way of improving quality of clustering
algorithms by remedying the common problem of clustering algorithms only considering doc-
uments as “bags-of-words”. We have invented two novel approaches for n-gram extraction.
However, due to the limited time frame of this project, we have for now only implemented
extraction of bigrams. It is important to emphasise that both of the below methods could be
extended to also find trigrams or longer n-grams.

Both methods work directly on the term-document matrix and thus bypass post-crawl stop-
words, other kinds of filtering and stemming. This is necessary since a constituent word in a
relevant bigram might in itself be irrelevant. Furthermore, bigrams should not be stemmed since
the bigram has a meaning in itself, not dependent of the constituent words.

5.5.1 Scheme 1: Using Behaviour Tracking Data

The first extraction scheme relies on usage statistics from Mondosoft’s behaviour tracking sys-
tem. This method is thus somewhat specific to Mondosoft since other applications of clustering
might not be linked/combined with a search engine.

The scheme simply consists of extracting n-grams by identifying n-word queries performed by
users with a given minimum support (number of times the query has been performed). Each of
these candidate n-grams are then checked against the document collection and are only kept if
they have a given minimum support within the collection (either in terms of document frequency
or in terms of collection frequency).

The advantage of this approach is that the extracted n-grams are both domain-specific and at
the same time encompass n-grams that the users of the website find relevant. Our informal
testing shows that this method yields good results (see appendix G.1 for a demonstration of this
using the Harry Potter fansite MuggleNet7).

6In connection with entropy and log-entropy, the conditional probability, pt,d is calculated as L(t,d)∑
i

L(t,i)
to

accommodate for local weighting schemes other than term frequency. The distribution that we find the entropy of
is hence not necessarily the frequency distribution, but the “importance distribution” of the term in the document
collection.

7http://www.mugglenet.com/

http://www.mugglenet.com/
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5.5.2 Scheme 2: Using Frequent 2-itemsets

The second scheme relies on feedback from our lattice-based clustering methods to find keywords
that frequently occur together. These n-gram candidates are compared against the collection
as above to find which candidates have the required minimum support in the collection. In this
way, we utilise a kind of “feedback loop” where the results of the previous clustering are used to
extract bigrams for the current clustering. This is especially useful in connection with websites,
since we envision that the clustering is updated regularly (e.g. during the weekly crawl).

This method is somewhat more “brute-force”, but has the advantage of not requiring access
to behaviour tracking data on users’ search queries. If such information is not available, this
method is the only current option. This method yields acceptable results, but the quality of
the found n-grams is somewhat lower than with the above method. This is because some of
the bigrams are simply words frequently occurring together, but not necessarily relevant to the
users. However, since we only look at keywords, most of the extracted bigrams are still relevant
and quite good (see appendix G.2 for a demonstration of this using a 10,000-page subset of
Wikipedia).
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Chapter 6

Implemented Keyword Extraction
Algorithms

In this chapter, we will primarily discuss the LSA-based approach to keyword extraction that
we have designed (“Synergy”). At the end of the chapter, we will also briefly discuss a simpler
keyword extraction scheme based on truncation, which we have implemented as a baseline
reference to compare Synergy against.

6.1 Synergy - LSA Based Keyword Extraction

6.1.1 Description

The two-stage clustering approach outlined earlier relies heavily on a good keyword extraction
scheme. Good keywords that capture the main topic(s) of a given document are essential for
the success of the subsequent clustering stage. We have thus spent a considerable amount of
time researching different methods of keyword extraction.

However, we gradually realised that traditional keyword extraction schemes were not necessarily
designed to find keywords that are good for doing subsequent clustering. In this connection,
it is important to emphasise that the keywords we intend to extract are not merely keywords
in the ordinary sense. They should rather be understood as a form of index terms, document
categories or “core-terms” for the given document. But we use the term “keywords” since we
still think that this is the notion that comes closest in describing the terms we want to extract
– terms that both describe the essence/main topic of the document and at the same time are
general enough to ensure the overlap with keywords of other documents, necessary for clustering.
Our goal is to describe the entire document collection by a relatively small set of good keywords
that links related documents together and unlink unrelated documents.

Traditional keyword extraction techniques might thus not suffice in extracting the kinds of
keywords that we believe are necessary for clustering purposes. As a result we turned our
attention to one of the more promising technologies that we have encountered doing our research
into clustering techniques: Latent Semantic Analysis (LSA)1. We wanted to somehow harness

1See section 3.2.
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LSA’s interesting properties with regard to noise reduction, inference capabilities and dampening
of synonymity and polysemy to extract good keywords matching the above requirements.

Keyword extraction is in fact often mentioned as a possible application of LSA, however, we
have not, despite extensive research, been able to locate any references detailing how this can
be done. So inspired by the different papers detailing LSA’s properties (especially [LFL98]) we
have invented our own novel2 approach to keyword extraction using LSA.

The main idea behind our scheme is to utilise LSA to estimate the distance between terms
and documents based on a reconstruction (A′) of the original term-document matrix (A) from
the chosen number of leading singular triplets (the LSA-dimension D). The method exploits
that SVD/LSA represents each document and term via the D abstract dimensions. Combining
(by vector arithmetic) the vectors of a given term and a given document in A′, the “closeness”
between the document and the term is estimated from the abstract LSA-subspace [LFL98]. This
estimate is a good measure of how semantically close a given term and a given document are.
It has several interesting properties, that we take advantage of in our keyword extractor:

• Terms, not occurring in a given document, that are related to other terms in the document,
will be estimated to be close to the document. Keywords not present in the given document
can thus be inferred from other documents.

• Terms, occurring in a given document, that do not occur in any of the other documents
that share many of the same terms with the original document, will be estimated to be
less close to the document. “Noise terms” are thus dampened and less likely to become
keywords.

• Terms that only occur in very few documents are also dampened. Keyword overlap is thus
increased.

In this way, global information from the entire collection is used to improve the keywords ex-
tracted from a given document and to achieve the keyword overlap required for subsequent
clustering. The degree to which the above properties come into effect can be controlled through
the value of D (LSA-dimension). The fewer singular triplets (lower LSA-dimension D) the more
the above effects kick in, and the extracted keywords will as a result become more general and
less specific to the given document.

What’s in a name?

We have named our keyword extraction scheme “Synergy”, since it, as explained above. relies on
global information from the entire document collection, when assigning keywords to a particular
document. The documents considered together, thus possess more information than the mere
sum of the information present in the individual documents – considered together, the documents
form a synergy.

2We are not aware of other research using this exact technique for keyword extraction, however, we can of
course not rule out that such research might exist.
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Normalisation

As can be seen in the below outline of our keyword extraction algorithm, we normalise the term-
document matrix (A) before we perform (reduced) SVD on it. This is done since the document
vectors should be independent of the documents’ lengths to avoid that large documents dominate
the result. The distances between documents in term space should reflect semantic differences
in content and not differences in the lengths of the documents.

Originally we had not included the normalisation step in the algorithm, but our testing showed
that the keywords assigned to short documents often became very general (too much inference).
We realised that this was due to lack of normalisation – the higher term weights present in
large documents suppressed the lower term weights present in short documents when A′ was
constructed from the leading singular triplets. As a result we chose to normalise the document
vectors, by dividing them with their length.

6.1.2 Algorithm

Input:

• A M × N term-document sparse matrix A (terms as rows and documents as
columns) with z non-zero elements.

• The desired number of keywords per document k.

• The desired number of leading singular triplets to retrieve D (LSA-dimension).

Step 1: Normalise the document vectors (columns) of A by dividing the values of
each document vector with its length |aj |:

|aj | =

√√√√ M∑
i=0

a2
i,j (6.1)

j refers to the current column vector (document).

Step 2: Perform (reduced) SVD on sparse matrix A, requesting the D leading
singular triplets:

A ≈ U′Σ′V′T (6.2)

Step 3: Calculate the approximation (A′) to A, one column at a time, by mul-
tiplying the returned leading singular triplets together. For each column (document
vector), only save the row number and the value of the k largest values. These row
number/value pairs represent the found keywords and their “closeness” to the given
document (weight).

A ≈ A′ = U′Σ′V′T (6.3)
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The k largest values are found by a variant of insertion sort. The first k values are
inserted into an array of k length, which is kept sorted through normal insertion sort.
All subsequent values are compared to the values in the array in ascending order –
if the current value is less than the smallest value (in the array) it is thrown away
– if the current value is larger than the smallest value it is inserted at the proper
position in the array and the smallest value in the array is thrown away.

This approach substantially limits the memory usage of finding the k largest values
for each document vector. Whereas first calculating A′ and then finding the largest
values for each document vector would require O(MN) memory, which would be
unfeasible even for medium-sized document collections.

Returns: A table with k keywords (with corresponding weights) for each docu-
ment.

6.1.3 Time and Memory Complexity

Normalisation

Finding and dividing by the lengths of the vectors are linear in the number of non-zero entries z
in the sparse term-document matrix, so the computational complexity of this step is O(z). The
normalisation only requires enough memory to hold the term-document sparse matrix A, since
all operations are performed directly on this matrix. The memory complexity3 is as a result also
O(z).

SVD

The computational complexity of the (reduced) SVD algorithm is usually related to the number
of triplets calculated (LSA-dimension), since calculating the values of each singular triplet only
depends on the preceding triplet [Ler99].

The SVD implementation used in our experiments4 is a single-vector Lanczos method (LANSO).
This is considered to be one of the fastest methods available today. Its computational complexity
is O(3Dz) [LFL98] and it has a memory complexity equal to the size of the resulting matrices5

O((N +M)D) [Bra02]. In addition matrix A also needs to be in memory during the calculations,
so the real memory complexity is:

O(z) + O((N + M)D) = O(z + (N + M)D) (6.4)

3Normalisation could probably be done one column at a time in memory while keeping the rest of matrix A
on disk, thus resulting in an O(M) memory complexity.

4See implementation details below.
5Σ is stored as an array of length D and it does (as a result) not contribute significantly to the memory

complexity
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Keyword extraction

The computational complexity of this step is dominated by the matrix multiplications (U′Σ′V′T )
involved in constructing A′ one column at a time from the singular triplets.

U′Σ′ is done first and has a computational complexity of O(MD) (the number of values in
U′) due to the diagonal nature of Σ′ – the values of each column of U′ are multiplied by the
column’s corresponding singular value from Σ′.

Multiplying the result of the above (which is still an M×D matrix) with V′T has a computational
complexity of O(MND) (normal matrix multiplication).

The total computational complexity of this step is thus:

O(MND) + O(MD) = O(MND) (6.5)

Since the number of terms M is expected to gradually stabilise in large document collections
(with appropriate filtering for spelling mistakes and rare words etc.) and since the LSA-
dimension D is a constant value, the algorithm approaches linear computational complexity
in the number of documents.

The algorithm works on the result from the (reduced) SVD6, so the memory complexity is
O((N + M)D).

6.1.4 Advantages

Since our keyword extraction scheme is custom designed to meet the needs of keyword based
clustering, most of the advantages of the scheme have already been discussed in the above
introductory section. Suffice to say that the scheme inherits many of the interesting properties
of LSA and also ensures the required overlap of keywords that is needed to do subsequent
clustering.

In addition, our scheme is not dependent on any linguistic information and is (like LSA itself)
fully language independent. This is particularly important in connection with Mondosoft, since
their existing products are designed to work “out of the box” with a wide range of languages.

Finally, it is important to remember that the extracted keywords might have other interesting
applications than clustering. The scheme is by no means limited to clustering. The extracted
keywords could for instance be used in addition to a text snippet when communicating the
content of a page in a search result. One could also envision that the keywords might be used
to classify documents into a given taxonomy, by linking particular keywords and combinations
of keywords with each group in the taxonomy.

6The keywords and corresponding weights can easily be stored in a table on disk, so no memory is needed to
store them.
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6.1.5 Weaknesses

Our approach is based on a “bag-of-words” representation of documents and does as a result
not utilise word order and the structure of the document. However, our implemented scheme for
extracting bigram terms (discussed in the previous chapter) somewhat remedies this problem.

Another shortcoming of the above algorithm is that it returns a fixed number of keywords – it
does not take the keywords’ weight distribution into account. If the weights drastically drop
off at a certain point, it might be beneficial to consider not saving any more keywords. This
is especially an issue with clustering methods that do not take the weights of the keywords
into consideration (e.g. lattice-based methods). As will be discussed in the section concerning
implementation details below, we have chosen to implement a simple scheme that tries to remedy
this shortcoming.

Our experiments have shown that the steps that calculate the (reduced) SVD and construct A′

can be rather time consuming on large document collections (See section 9.2). However, the
calculation of the columns (document vectors) of A′ – which is the single most time consuming
task – could easily be done in parallel and thus gain a significant speedup on multiprocessor
machines.

In addition to the benefits of LSA, our approach also inherits some of the challenges of LSA
discussed earlier (in section 3.2). It is for instance quite difficult to fine-tune the optimal LSA-
dimension (number of singular triplets) and the approach is also quite sensitive to the prepro-
cessing that is performed.

Appendix A documents some early tests of our algorithm on the CISI collection7. The tests
illustrate how the LSA-dimension effects the extracted keywords. It can clearly be seen that the
lower the LSA-dimension, the more general the keywords tend to get and the more keywords are
inferred (even though they are not contained in the original document). The tests also show that
for this collection, the 300 dimension value suggested by [LFL98] in some cases seems to be a bit
too high – the keywords are very specific. However, we still believe that the 300 dimension value
represents a fairly good compromise between being too specific and being too general for larger
less homogeneous collections of real texts (not just abstracts). Later experiments on larger real
text collections that have been subjected to the prepossessing (outlined in the previous chapter)
seem to confirm this.

6.1.6 Implementation Details

We use Doug Rhode’s publicly available software package SVDLIBC8 to perform the (reduced)
SVD. This package is fast and includes a simple-to-use interface, which among other things sup-
ports importing sparse and dense matrices from a variety of binary and text-based file formats.
SVDLIBC is derived from Netlib’s popular SVDPACKC9 package, but offers a cleaned-up ver-
sion of the code. Its SVD implementation is, as hinted above, based on the single-vector Lanczos
method (LANSO). This method is among the fastest sparse matrix SVD methods available today.
However, it has the drawback that the low order singular values may be relatively imprecise.

7A collection of 1,460 information science abstracts that can be downloaded in matrix form from http://www.

cs.utk.edu/∼lsi/.
8http://tedlab.mit.edu/∼dr/SVDLIBC
9http://www.netlib.org/svdpack/

http://www.cs.utk.edu/~lsi/
http://www.cs.utk.edu/~lsi/
http://tedlab.mit.edu/~dr/SVDLIBC
http://www.netlib.org/svdpack/
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This is not really a concern to us, since we only need the D higher-order values and even in
these we can tolerate some small degree of imprecision.

The above library uses double precision arithmetic for calculating the (reduced) SVD. However,
we have created and tested a modified version of SVDLIBC that runs using single precision
arithmetic. This was done to try to reduce memory consumption during SVD calculation on large
matrices. Unfortunately, extensive testing showed that for certain very sparse input matrices,
single precision was not enough to stabilise the required number of singular triplets (300).

The most time consuming step is, as already mentioned, the calculation of U′V′T . We have
made heavy use of profiling to ensure that our code performs reasonably well10. Understanding
that matrix multiplication normally is a memory bandwidth bound problem, we have arranged
U′ and V′ in memory in such a way that the processor’s caches can be utilised in the best possible
way. This is done by ensuring that the critical inner part of the multiplication loop works on
values that lie in continuous segments of memory, thus utilising each cache-line optimally (see
[Mar04]).

Keyword Cutoff Scheme

To remedy the problem of outputting the same fixed number of keywords for all documents
regardless of the weight distribution of the documents’ keywords, we have implemented a simple
extension to the algorithm. The extension uses the weight distribution to determine how many
keywords to output. The scheme works as follows:

Input:

• The minimum number of keywords kmin that the algorithm should return for a
document. This minimum is included to ensure that all documents are assigned
enough keywords to allow meaningful clustering.

• The maximum number of keywords kmax that the algorithm should return for
a document.

• A cut-off ratio c (between 0 and 1). This value will be explained below.

Step 1: Perform the above outlined keyword extraction algorithm with the number
of keywords set to:

k =
kmax

c
(6.6)

10The profiling was done on our PowerPC-based Apple Powerbooks, since we did not have access to good
profiling tools on the development x86 PCs provided by Mondosoft. However, we assume that most of our
optimisations with regard to memory arrangement are more or less processor independent. Our code might still
benefit from further x86-specific optimisations (e.g. loop unrolling and loop alignment) to increase the overall
instruction throughput and avoid pipeline issue stalls. However, to properly evaluate the effects of such steps, a
good profiler for the target architecture (x86) should be used.
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Step 2: For each document; calculate the sum s of the k keywords’ weights. Add
the keywords with the highest weights to the table until kmin keywords have been
added. Then repeat adding the remaining keyword with the highest weight to the
table, until the accumulated sum of the added keywords’ weights’ is larger than c∗s.

Returns: A variable number of keywords between kmin and kmax for each docu-
ment, based on the weight distribution of the top k keywords.

This scheme is quite simple and better (more correct) solutions might exist, but the above
method achieves the aim in an easy way that does not alter the overall keyword extraction
algorithm’s time and memory complexity significantly. Our testing on real world documents
shows that the scheme works reasonably well in most cases with c = 0.5.

In appendix B the results of using our scheme (with c = 0.5 and kmin = 0) on different keyword
weight distributions are illustrated to give the reader an impression off how it works in practise.
kmax keywords are only returned if the weight distribution of the k keywords is more or less
uniform.

6.2 Pure Truncation

In addition to the elaborate LSA-based keyword extraction scheme detailed above, we have
also implemented a simple scheme based on truncation. This scheme is inspired by research
presented in [SS97] that shows that pure truncation of terms (based on frequency/weight), leads
to a dramatic reduction in clustering time without any significant reduction in cluster quality
compared with full-profile clustering. An important reason for implementing this scheme, is
that we need a baseline that can serve as a reference we can compare the LSA-based extractor
against.

The truncation extractor simply assigns keywords by means of a truncation of the terms in a
given document. This truncation is based on the frequencies/weights of the terms in such a
way that the terms that occur the most or have the highest weight are assigned as keywords
to a document. We also employ a cut-off scheme similar to the one used in the implemented
LSA-based extractor, to ensure that the potential keywords’ frequency/weight distribution is
taken into account, when deciding how many keywords is assigned to a given document.



Chapter 7

Implemented Clustering Algorithms

In this chapter, we will give a thorough discussion of each of the five clustering algorithms that
we have implemented. For each algorithm, we will first give a description of how and why the
algorithm works, then we will discuss the algorithm’s complexity, advantages and weaknesses.
Finally, we will present relevant implementation details.

7.1 K-Means

7.1.1 Description

For a long time, K-Means has been considered the standard within clustering and still remains a
very strong player in the field. The algorithm is very straightforward in that it simply partitions
the documents in the term space into K clusters, hence the name. The algorithm thus produces
a hard, non-hierarchical clustering. Typically, K-Means is used as an offline clustering algorithm
for term spaces containing many documents. K-Means is based on the Vector Model, considering
documents as vectors in multidimensional space.

In its most simple implementation, which is called Direct K-Means, K cluster prototypes are
randomly selected from the documents in the term space. Hereafter, all documents are assigned
to the cluster containing their closest centroid1. The cluster centroids are then calculated as the
centroids of the documents in their respective clusters. The process repeats itself until a preset
precision is achieved.

In order to achieve a hierarchical structure, we will demonstrate below how the algorithm is
augmented to be bisecting.

7.1.2 Algorithm

Formally, the algorithm looks like this2:
1The centroid of a cluster C is the same as the vector-sum of all vectors il in the cluster divided by the number

of vectors in the cluster - i.e. “the average document of the cluster”: ω =
∑

il∈C

il
|C| .

2Adapted from [dSdSBJS+04].
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function Direct-K-Means(k, D)
(where k is the number of desired clusters,
and D = {i1, ..., in} is the set of documents to cluster)
Initialise k prototypes (w1, ..., wk) such that wj = il, j ∈ {1, ..., k}, l ∈ {1, ..., n}
Each cluster Cj is associated with prototype wj

Repeat
for each input vector il, where l ∈ {1, ..., n},

do
Assign il to the cluster Cj∗ with nearest prototype wj∗

for each cluster Cj , where j ∈ {1, ..., k}
do

Update the prototype to be the centroid of all samples currently in Cj ,

so that ωj =
∑

il∈Cj

il
|Cj |

Compute the error function:

E =
k∑

j=1

∑
il∈Cj

|il − wj |2

Until E does not change significantly or cluster membership no longer changes.

7.1.3 Time and Memory Complexity

Looking at the above function, we see the following complexities:

1. The initialisation is O(k), where k is the number of desired clusters.

2. The main loop is repeated at most t times, where t is a set limit to prevent “live-locks”
(where a document continually flips from one cluster to the other).

3. For each document, all distances must be computed to all prototypes/centroids, which
gives us O(kn), where n is the number of documents in the document space.

4. For each cluster, the centroids must be calculated, but since this is a hard clustering, we
have only n documents to calculate this for and the complexity is thus O(n).

5. Finally, the error function is computed, and again, this is done for all documents, and we
arrive at O(n).

The running-time complexity of the Direct K-Means is thus:

O(k) + t(O(kn) + O(n) + O(n)) = O(tkn) (7.1)

K-Means has linear memory requirements, since we only need to store the documents, cluster
membership of the documents plus the cluster centroids.
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7.1.4 Advantages

The main advantage of K-Means and the reason for so many people advocating its use, is its
very definite and good upper running-time and its simplicity. K-Means is near-linear, since t
and k are nomally � n, which yields good performance in most applications.

7.1.5 Weaknesses

In spite of K-Means’ popularity, quite a few issues exist that limit the advantages of using
K-Means.

First of all, it is not at all clear how to determine the optimal number of clusters in a term-
document space. If too few clusters are requested, unrelated data might end up in the same
cluster, and conversely, if too many clusters are requested, the algorithm might split good clusters
and place related documents in different clusters.

Secondly, K-Means in its default version is not hierarchical, which among other things makes it
even more difficult to compensate for the problems caused by the cluster-number uncertainty.
This also limits the advantages of K-Means for information retrieval purposes, since information
will typically be expected to be organised in increasing complexity.

Furthermore, there is an uncertainty issue with regard to selection of the prototypes, the initial
cluster centers. There is no way to know whether two centers are placed in well-separated
clusters, or if they end up in the same cluster. This will of course result in clustering of poorer
quality - partly because “tight” clusters might be split and partly because unrelated clusters
might be combined. The turn-based centroid calculation will compensate for this to some extent,
but it is still a “blind” algorithm which does not verify the quality of the created clusters or
centers.

Finally, since K-Means is centroid-based in its cluster delegation, K-Means cannot be expected
to discover clusters of non-convex shapes (i.e. not round or ellipsoidal) if clusters are not well-
separated and at the same time comparatively dense or “tightly coupled”.

7.1.6 Implementation Details

The core algorithm is implemented as described above. However, we have designed a few modi-
fications to make the algorithm more practical for our purpose.

Bisecting K-Means

A common approach to making partition-based algorithms hierarchical is to make the algorithm
“bisecting” – instead of specifying the amount of clusters the core algorithm must generate,
the core algorithm is required to generate two clusters, which are then put in a set of clusters.
From this set, the largest cluster is chosen and two clusters are created from this using the core
algorithm. This process is repeated, always choosing the largest cluster in the growing hierarchy
of clusters, until the required amount of clusters is found. This also results in O(tkn) complexity,
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but the constant values are somewhat larger. This is a price that we are willing to pay to get
the hierarchy structure we need for the more-like-this functionality later on. We use a simple
binary tree to store the hierarchical information, which has a worst-case storage complexity of
O(n2) and a best-case storage requirement of nlogn, when we store the information about the
contained documents in every node.

Bisection has a few disadvantages, the most noteworthy of these is an issue, when bisecting
a low-dimensional space with dense clusters and relatively low inter-cluster distances. In this
case, actual clusters might be split into each part of a bisection, an example of this is shown in
appendix C (the colours represent distinct clusters). This should not have too great an impact
within our document space, since the document space is so sparse that unrelated clusters most
likely have ortholognal axes compared to the clusters being split.

Data Representation

As outlined earlier, the documents are represented by keywords, where each has a weight. Since
the keyword extraction removes most of the terms from each document, a document vector is
largely “empty” or sparse, composed almost entirely of zero-weight terms. Therefore, represent-
ing the vectors as sparse vectors, where only keywords and with non-zero weights are specified,
will save a lot of memory.

In the initial stage of the clustering algorithm, we have chosen to order the keywords of each indi-
vidual document vector in ascending order3. Although this requires running quicksort [CLRS01,
pp. 145] on every single vector, this will save billions of search operations, when the distances are
calculated between vectors later in the process. Since the data representation for documents can-
not be sorted using the ANSI C qsort implementation, we have made a custom implementation
of quicksort.

The clustering is (besides from being stored in a binary tree) mainly performed “in-place” in
an array of document references in order to quickly access the data and avoiding the penalty
from searching the binary tree for the largest leaf. Information about the cluster positions in
the array is stored separately.

Distance Measure

As seen in section 2.2.4, measuring distance in high-dimensional spaces by for instance the
Euclidean distance measure or the Manhattan distance measure, will often result in distances of
approximately the same length that will not be well-suited for clustering purposes. To slightly
amend this problem which is related to the curse of dimensionality, we have chosen to use the
Cosine distance measure, which measures the angular separation of documents as recommended
in [BG04]4, since only the directions of the document vectors and not their lengths are important.
Equation 7.2 demonstrates the simplicity of the cosine distance measure:

3In our system, every keyword/term is assigned a unique ID and we sort the vectors according to this.
4Furthermore, by using the cosine distance measure, we save a lot of calculations since the dot product of two

vectors in our very sparse keyword space will most often be zero.
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cos(A,B) =
A ·B
|A||B|

(7.2)

In order to be able to exchange the cosine distance measure with other measures, such as the
Euclidean, we calculate acos of the result to get the distance in radians. This will give us zero,
when the document vectors are parallel and the documents thus identical or highly similar and
π
2 when the documents have nothing in common5.

Since the vectors are sorted ascendingly according to the keyword id, we can implement the
cosine distance calculations between document A and document B in a very efficient manner:

function cos(A,B)
i = 0, j = 0, cos = 0.0
Repeat

if A.keywordID[i] == B.keywordID[j] do
cos = cos + A.weight[i] ∗B.weight[j]
i = i + 1, j = j + 1

else if A.keywordID[i] < B.keywordID[j] do
i = i + 1

else do (i.e. A.keywordID[i] > B.keywordID[j])
j = j + 1

Until i == A.length or j == B.length
Return acos(cos)

An algorithm following the same pattern can be made for the Euclidean distance measure as
well as others, if so desired.

Database Structures

Since we have a complete hierarchy of all performed bisections, we have each document not only
in its base (or, leaf) cluster, but also in the previous, larger clusters. Since we want to be able
to use various amounts of results, and since we cannot guarantee a specific size of the smallest
clusters, we have decided to store all the clusters from the hierarchy in the database.

This means that if the document A is in the base cluster 1, which was earlier split from cluster
2, we store references to both cluster 1 and cluster 2 in A’s database entry and, conversely, we
store both cluster 1 and cluster 2 in the database (and both have references to document A).
The structure of the database entries are shown in figure 7.1:

Future Improvements

Since the selection of cluster centers still isn’t quite optimal (i.e. randomised), RPCL [KL99], a
simpler clustering algorithm, which is especially practical and feasible when only requiring few

5Actually, some of the term weights for a given document could in rare cases be made negative from running
SVD in the keyword extraction phase, which could result in a cosine distance up to π. Our algorithm will also
function correctly in this interval.
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ClusterToDocument

DocumentID1
DocumentID2
DocumentID3

...

DocumentID List

DocumentToCluster

ClusterID1
ClusterID2
ClusterID3

...

ClusterID List

Figure 7.1: The structures used to save the clusters in the database.

clusters, could be used to find initial centers of higher quality. These initial centers are then
fed into the bisecting K-Means algorithm. This will either result in shorter running time (fewer
iterations of the core loop), fewer wrongful splits or both.

In order to make the algorithm practical for very large data sets (millions+ of documents), the
binary tree should be reconstructed so that it only stores document references in its leaves. This
will make its storage requirements linear, and the storage requirements of running the K-Means
algorithm will then be O(kn) in the worst case.

7.2 CURE

7.2.1 Description

CURE, Clustering Using REpresentatives, is a somewhat more complicated approach to a clus-
tering algorithm than K-Means. It is hierarchical and agglomerative (or “bottom-up”) by design,
which means that it basically works by joining smaller clusters to form larger clusters. The clus-
tering is “hard” in that a document is only present in a single cluster. CURE is often commended
for its ability to detect non-convex shapes as opposed to the more popular K-Means. As we
shall see, CURE is a very complex algorithm and we thus consider it an offline algorithm.

Upon initialisation, every document in the set is considered to be a cluster. The algorithm
determines the closest pair of clusters and joins these together forming a new cluster and repeats
this until the number of clusters is “low enough”. In order to save memory, computations and
to prevent the algorithm from being influenced by noise in the clustering process, at most c
representatives are used to represent a cluster. The default value for c is typically 10 as defined
in [GRS98]. These representatives are chosen as far from the center as possible as well as as
far from each other as possible. To prevent outliers from entering the cluster too early, the
representatives are then shrunk by the factor α towards the center. α is typically set between
0.2 and 0.7 as also recommended in [GRS98].

The distances between clusters A and B is defined to be the minimum distance between their
representatives6:

dist(A,B) = min{dist(p, q) : p ∈ u.rep, q ∈ v.rep} (7.3)

Figure 7.2 illustrates how CURE performs its clustering.
6This distance measure is also referred to as single-link or minimum-link [FBY92].
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Figure 7.2: The order in which CURE merges its cluster hierarchy.

7.2.2 Algorithm

Formally, the overall algorithm for CURE looks like this:

function cure(k, D)
(where k is the number of desired clusters,
and D is the set of documents to cluster)
T = build kd tree(D)
(T contains the representatives for each cluster)
Q = build heap(D)
(Q contains the actual clusters)
while size(Q) > k do

u = extract minimum(Q)
v = u.closest
delete(Q, v)
w = merge(u, v)
delete representatives(T, u); delete representatives(T, v)
insert representatives(T,w)
w.closest = x (x is an arbitrary cluster in Q)
for each x ∈ Q do

if dist(w, x) < dist(w,w.closest) do
w.closest = x

if x.closest is either u or v do
if dist(x, x.closest) < dist(x,w) do

x.closest = closest cluster(T, x, dist(x,w))
else do

x.closest = w
relocate(Q, x)

else do
if dist(x, x.closest) > dist(x,w) do

x.closest = w
relocate(Q, x)

insert(Q,w)
Return(Q)
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CURE uses two data structures, a heap (see below) Q and a KD-tree7 T that are first initialised
with the documents from D as clusters. Q is ordered according to the distance to the closest
cluster.

After forming the heap and the KD-tree, the algorithm enters its main loop. In the loop, the
closest pair of clusters, u and v, are extracted from Q and merged to form a new cluster, w. T
is then updated to reflect this change. Since any other cluster in Q may still have a reference
to either of the removed clusters, every cluster in Q must be checked and possibly updated
reflecting the change.

The KD-tree is used to find the closest cluster in the case where w is further from a cluster than
u and v were. Whenever x.closest is changed, Q is reordered to maintain the heap property of
Q.

Finally, w is inserted into Q and the loop continues until k is reached.

CURE’s merge operation is not the same as simply making the union of two clusters, since we
use representative points for the clusters. The merge-operation looks like this:

function merge(u, v)
w = u ∪ v

w.mean = |u|u.mean+|v|v.mean
|u|+|v|

tmpSet = ∅
for i = 1 to c do

maxDist = 0
for each document p ∈ cluster w do

if i == 1 do
minDist = dist(p, w.mean)

else do
minDist = min{dist(p, q) : q ∈ tmpSet}

if minDist ≥ maxDist do
maxDist = minDist
maxPoint = p

tmpSet = tmpSet ∪ {maxPoint}
for each point p ∈ tmpSet do

w.rep = w.rep ∪ {p + α(w.mean− p)}
Return w

First, the document sets are joined. Hereafter, the mean is calculated for the new cluster. This
corresponds to calculating the centroid in K-Means, but the mean plays a smaller role in this
clustering scheme.

In the first iteration of the outer for-loop, the document with the longest distance from the mean
is selected as a representative. In subsequent iterations, the chosen representatives must have
the longest distance from the representatives already in tmpSet.

7A multidimensional search tree for points in a k-dimensional space. Levels of the tree are split along successive
dimensions at the points. Also see http://en.wikipedia.org/wiki/Kd-tree.

http://en.wikipedia.org/wiki/Kd-tree
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Finally, the representatives are “shrunk”, as outlined in the description, by the factor α towards
the mean and the new cluster is returned.

7.2.3 Time and Memory Complexity

Guha, Rastogi and Shim, the authors of the CURE algorithm, specify in [GRS98] that CURE’s
core algorithm has a worst-case complexity of O(n2logn) for high-dimensional spaces. To remedy
this, a sampling scheme and a partitioning scheme are suggested to decrease the complexity of
the problem.

First, a “good” random sample is taken from the total document set. The sample size can be
calculated using “Chernoff Bounds” [GRS98]. Hereafter, the sample is partitioned into large
sets using some standard partitioning algorithm for instance a simple K-Means partitioning.
The sets are then individually clustered using CURE until the final number of clusters in each
partition reaches n

pq , where n is the number of documents in the sample, p is the number of
partitions and q is a chosen constant larger than 1. Then the sets are joined and the clustering
is continued until the desired number of clusters is created. Finally, the remaining documents
(those that were not taken into the sample) are put into corresponding clusters based on their
proximity to the clusters’ representatives.

The effects of reducing the amount of documents to be clustered on the running-time are as
given above. Partitioning will according to [GRS98] provide a further improvement factor of
q−1
pq + 1

q2
8.

The heap and the KD-tree both have linear complexity when storing the documents or clusters.
Keeping track of the hierarchy requires an additional entry for every cluster merge in some data
structure, which will also have linear memory requirements.

7.2.4 Advantages

CURE offers some very interesting features such as the ability to actually cluster non-convex
shapes due to the way that the cluster representatives are chosen. Furthermore, the way the
clusters are generated seems like a more intelligent approach, since no degree of randomisation
is included in the actual clustering process9.

In addition, the shrinking scheme should help avoid the chaining situation10, which is an unfor-
tunate side-effect of using the single-link distance measure. Compared to the all-points approach
of Minimum Spanning Tree [ZHTY03], using representatives for clusters helps reduce the overall
running time of the algorithm.

As before mentioned, the clustering is hierarchical by design, so the structures generated by
CURE should be easily traversable.

8Unfortunately, when calculating the sample size and considering the fact that we need very small clusters for
our more-like-this system, we have concluded that it is not sensible to perform sampling or partitioning.

9Of course there is the very unlikely situation where a cluster has two or more closest clusters plus the situation
where more representatives of equal maximal distance exist.

10Described in section 3.1.2.
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7.2.5 Weaknesses

The worst-case running-time of CURE does not seem promising. Even with random sampling,
for a large document collection (100,000+) the Chernoff Bounds [GRS98] work out sample sizes
so large (see appendix D) that the running time is problematic.

Another problem is that a certain minimum size for clusters needs to be defined when using
sampling. This will inevitably result in more of the clusters being too large and covering more
than one concept when the sample clustering completes, than if we had not applied sampling.

7.2.6 Implementation Details

Since our test data sets are comparatively small [GRS98] and due to the problems with minimum
cluster size mentioned above, we have decided not to implement sampling and partitioning. The
distance measure applied is the same as that of K-Means, namely the cosine distance measure.

In CURE’s internal representation, we have implemented a heap (see below) that CURE uses
to extract the nodes to merge from. Each node in the heap is a cluster.

After run-time profiling the algorithm without first implementing the KD-tree, we determined
that the performance gain from implementing a KD-tree would only amount to 2-3% of the total
running time of CURE on the data sets that we used. So we decided to skip this data structure
and thus save the memory otherwise required for storing the KD-tree .

Heap

A heap node contains information about its distance to origo (to speed up distance calculations),
its representatives, a reference to its closest node, references to all documents contained in the
cluster and finally a binary tree representing the order in which documents were added to the
cluster.

For each iteration of CURE’s main loop, the cluster with the closest other cluster is extracted.
This operation is simple enough, since we have sorted the heap to have the cluster in the top.
However, later steps require us to relocate nodes in the heap. There is to our knowledge no
default method for relocating nodes in a heap, so we have designed an algorithm ourselves that
in linear time can remove and reinsert any node from a heap and preserve the heap property11.

The principle of the algorithm is fairly straightforward (we will use the term tree in this explan-
ation, to help the reader better understand the structure of the heap):

1. Locate and remove the desired node.

2. Take the right-most leaf from the lowest level of the tree and place it in the vacated spot
in the tree. Now, we can no longer be sure that the heap property is preserved for the tree

11The heap that we work on is a min-heap (lowest in the top). The min-heap property states that each node
in a tree has a key which is greater than or equal to the key of its parent. Also see http://www.nist.gov/dads/

HTML/minheapprop.html. Furthermore, we always want to fill the tree left-to-right, top-to-bottom and preserve
that structure. (i.e. no holes).

http://www.nist.gov/dads/HTML/minheapprop.html
http://www.nist.gov/dads/HTML/minheapprop.html
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below the new node, nor for the branch extending from the root to the node. Therefore,

3. Move the node up in the tree by swapping it with its parent until the node is greater than
its parent. If this could be done, we know that any nodes deeper in the tree will invariably
be greater than the node (since they were greater than their parents, who were greater
than the node).

4. However, if the node is not smaller than its initial parent, then either of the node’s children
may be smaller than the node, thus, the node is swapped with the smallest of its children
until the node is smaller than both of its children. Now the entire tree/heap has the heap
property.

Thus heap deletion at any place in the heap can be done with linear complexity. The complexity
is linear because the search for locating the node is executed in linear time. After the deletion
is done, reinsertion can quickly be performed to put the node in its proper place.

Database Structures

Since CURE also generates a hierarchical structure, we have decided to use the same structures
as K-Means (see section 7.1.6 - Database Structures) for storing the clusters in the database.

Future Improvements

Since we decided to skip sampling and partitioning, we haven’t been able to test the quality of
clustering using these techniques. However, according to the author of the original algorithm,
CURE still provides clusters of decent quality. It would therefore be interesting to try to
implement both of these to see if the speed-up gained is worth the quality lost. Furthermore,
outlier elimination should also be considered, since this could also improve cluster quality.

Since we get a performance penalty from reordering the heap, future improvements should also
focus on either choosing a different data structure or on changing the data representation to
make it possible simply to perform the reordering without first removing the node.

Even though CURE is agglomerative, it still tends to favor the hyper-spherical clusters due to the
centroid calculated when choosing the cluster representatives and the shrinking towards this. In
order to avoid this, a different shrinking scheme has been suggested in [QSW02]. Implementing
this would possibly yield clusters of higher precision.

7.3 PDDP

7.3.1 Description

Like our bisecting implementation of K-Means12, PDDP (Principal Direction Divisive Partition-
ing [Bol98]) is a hierarchical algorithm. But where K-Means was made hierarchical by bisection,

12See section 7.1.
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PDDP is hierarchical by design. The way the partitioning takes places differs by a lot, however.

PDDP uses a 1-dimensional singular value decomposition13 (SVD, see section 3.2.2) to determine
the principal direction of a document set, and thereafter splits the set into two subsets according
to their projection on the principal direction. The sets are placed in a simple binary tree and a
”scatter value” is calculated for each node in the tree as they are created in order to determine
which leaf the algorithm will split next. The algorithm terminates when enough clusters have
been formed in the tree.

Thus, the algorithm is hierarchical by design. Furthermore, as can be seen from above, this
algorithm only produces hard clusters like those of K-Means and CURE. Finally, whereas the
algorithm is intended to be used offline, it is fast enough for online clustering of small document
sets.

7.3.2 Algorithm

function PDDP(M,Cmax),
(where M is a matrix of document vectors and Cmax the number of desired clusters.)
root = initialise pddp tree(M)
while Cmax > 1 do

split = get most scattered(root)
create empty left child(split)
create empty right child(split)
ω = 1

size(split)

∑size(split)
i=1 split.documents[i] (the centroid of the node)

UΣV T = perform 1Dimensional SVD(split.documents)
µ = extract first column(U)
for i = 1 to split.size

σν = µT (split.documents[i]− ω) (where σ is a positive constant)
if ν ≤ 0

add(split.left, split.documents[i])
else

add(split.right, split.documents[i])
split.left.scattering = calculate scattering(split.left)
split.right.scattering = calculate scattering(split.right)

Return root

Note that Cmax actually means the number of desired leaves of the tree, but since we are
interested in all the levels of the tree, the actual number of clusters, we produce will be 2Cmax.

As we can see above, the core concept of the PDDP algorithm is determining ν, which is the
projection of the document on the principal direction. Since the vectors are “normalised” using
the centroid of the term space, we can easily tell in which of the new clusters the document
should be added by the projection’s relative position to origo.

The scattering measure of a cluster partition Mp (with centroid ω) is equal to the Frobenius
13In the original PDDP the leading eigenvector of the covariance matrix is used. However due to the compu-

tational complexity of this, we use a 1-dimensional SVD to estimate the eigenvector.
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norm of the corresponding matrix A = Mp − ωeT , where e = (1, 1, ..., 1)T and the length of e is
the same as the amount of documents in Mp. The square of the Frobenius norm is defined as
such:

‖A‖2
F =

∑
i,j

|ai,j |2 (7.4)

Thus, calculating the scattering value requires calculating the corresponding matrix, adding all
elements squared and taking the square root of the result.

The scatter value of the cluster reflects the distance of each document in the cluster to the
centroid of the cluster and is thus an efficient measure for determining the next cluster to split.
Note that the scatter value of the cluster is the only component of the algorithm which is based
on a distance measure [Bol98, GLY03] and different scattering measures could just as easily be
applied.

7.3.3 Time and Memory Complexity

Analysing the above function, we see the following complexities:

1. The main loop of the algorithm is executed Cmax times.

2. Searching the tree for the most scattered node requires at most n lookups where n is the
number of documents in the set.

3. Calculating ω requires n vector additions, where each vector has at most z non-zero ele-
ments.

4. The 1-dimensional SVD can be performed in O(nz) (see 3.2.2).

5. Finally the scattering of the two new clusters can also be calculated in O(nz) as seen
above.

Thus, the worst-case running time of the PDDP algorithm is:

Cmax(O(n) + O(nz) + O(nz) + O(nz)) = O(Cmaxnz) (7.5)

The storage requirements of the PDDP tree are the same as those of the binary tree used by
bisecting K-Means, namely O(n2) in the worst-case and nlogn in the best case.

7.3.4 Advantages

As can be seen above, PDDP has a better worst-case running time than K-Means, since z, the
number of non-zero elements in a given document vector, is typically a lot smaller than t, the
number of times the K-Means loop must execute before the precision is good enough.
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Furthermore, the scattering value enables us to more efficiently determine when the algorithm
should stop – it is pointless to split clusters that consist of almost-identical documents. Using
the scattering value, we can avoid splitting possibly large, but dense clusters, and at the same
time make sure to split small, but diverse clusters.

Since the PDDP algorithm already works on a tree, we get the benefits of the tree structure
without adding additional computational requirements.

7.3.5 Weaknesses

Calculating the scattering values makes the clustering algorithm very precision dependent, thus
we might expect some clusters that are not completely dense, but dense compared to the sur-
rounding term space to end in an unpartitioned cluster if the precision is not high enough to
detect a scattering.

Since we simply split the term space in the middle of the principal direction, it is unclear whether
the place we split will be in the middle of an otherwise dense cluster, or if it will be between
clusters as we desire.

7.3.6 Implementation Details

The PDDP algorithm is implemented as outlined above. Like both CURE and K-Means, PDDP
operates on sorted sparse keyword vectors with the exception that PDDP uses dense vectors
when working with the vectors ω, ν and µ.

SVD

In order to calculate the principal direction of the term space, we use the same SVD library
that we use for extracting keywords in section 6.1 (SVDLIBC). Since the algorithm it utilises is
iterative, we can calculate the principal direction in very few steps.

The problem with using SVDLIBC is that there is no default method of sequentially adding
vectors to a sparse matrix, and if we were to use dense matrices, the storage requirements could
quickly go above the 32-bit limit of modern computers or at the very least require immense
paging of data to and from the hard disk. In order to solve this, we have created a data structure
that ”wraps” around the default sparse matrix data structure with additional information about
memory allocation. This enables us to efficiently add sparse vectors to the matrix in such a way
that we don’t use reallocation operations all the time and nor do we waste extra space by using
dense matrices.

Database Structures

PDDP generates a hierarchical structure per default, and we have decided to use the same
structures as K-Means (see section 7.1.6) and CURE for storing the clusters in the database.
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Future Improvements

As is the case for K-Means – in order to make storage requirements of PDDP linear in the
number of documents in the term space, we could change the tree structure such that document
references are only kept in the leaf nodes of the tree. This will not have a performance penalty
when clustering, but may yield some difficulties when storing the clusters in a database.

In order to increase the quality of clusters, PDDP should be reimplemented using 64-bit pre-
cision, when computers supporting this become available. This will allow for splitting clusters
that are more dense than we are currently able to split.

Finally, the author of PDDP [Bol98] mentions that the document space may be split using other
criteria than simply whether ν ≤ 0, for instance origo could be translated to a least-dense part
of the term space in order to make splits of higher quality.

7.4 GALOIS

7.4.1 Description

GALOIS is a conceptual clustering method that generates soft clusters arranged in a lattice
structure. The algorithm automatically generates what is known as a Galois lattice from a
given set of objects – documents in our case – each with a set of attributes – keywords in our
case. It was invented by Carpineto and Romano and is detailed in [CR96] and [CR95]. However,
before we go into details with GALOIS, we will briefly provide an overview of the main ideas
and theory behind conceptual clustering methods.

Conceptual Clustering

Conceptual clustering methods are closely related to Formal Concept Analysis (FCA), an emer-
ging area that has many promising applications within data analysis, information retrieval and
knowledge discovery [KB02]. The central notions in FCA are formal context and formal concept.
A formal context K is modelled as a triple:

K := (G, M, I) (7.6)

Where G is a set of objects, M is a set of attributes and I constitutes a binary relation between
G and M (I ⊆ G×M). If an object g has attribute m then (g,m) ∈ I.

In the formal context (G, M, I) a formal concept is defined as a pair (A,B) with A ⊆ G and
B ⊆ M . A is called the extent of the formal concept and B the intent . The extent (A) of the
formal concept describes the subset of objects that belong to the concept, while the intent (B)
describes0 the common attributes that these objects share:

A := {g ∈ G | ∀m ∈ B : (g,m) ∈ I} (7.7)
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B := {m ∈ M | ∀g ∈ A : (g,m) ∈ I} (7.8)

The extent and the intent are thus dual notions each fully defining the formal concept. The
formal concepts can be ordered by applying the standard set inclusion to the intents (or dually to
the extents) naturally forming a partial order that defines the subconcept-superconcept relation:

(A1, B1) ≤ (A2, B2) :⇐⇒ A1 ⊆ A2 (⇐⇒ B2 ⊆ B1) (7.9)

A concept C1 is hence a subconcept of another concept C2 (C1 ≤ C2) if the objects (extent) of C1

are a subset of the objects (extent) of C2 and the attributes (intent) that define C2 are a subset
of the attributes (intent) that define C1. C2 is thus more general than C1, encompassing all the
objects (the extent) of C1, while C1 is more specific than C2, encompassing all the attributes
that define C2 (the intent of C2).

The set of all formal concepts in a formal context K with the partial order ≤ (as defined above)
forms a conceptual hierarchy. Mathematically, this hierarchy turns out to be a complete lattice.
This resulting lattice is often called a Galois lattice14 [HSS03]. A Galois lattice thus represents
a conceptual hierarchy of the objects in a given formal context, based on the object’s attributes
within that context. See figure 7.3 for an example of a Galois lattice. Orderings of concepts,
like the one represented by a Galois lattice, play a fundamental role in the process of organising
data, information and knowledge [NO02]. They are often used to represent latent conceptual
hierarchies that are implicitly present in the underlying data [KB02].

Intent:  Computer Science, IR, AI

Extent: Book 5

Book List
Book 1: Advanced Java Programming
Keywords: Computer Science, Programming, Java

Book 2: Artificial Intelligence: A Modern Approach
Keywords: Computer Science, AI

Book 3: The C Programming Language
Keywords: Computer Science, Programming, C

Book 4: Java & XML
Keywords: Computer Science, Java, XML

Book 5: AI-based Information Retrieval
Keywords: Computer Science, IR, AI

Intent:  Computer Science, Java, XML

Extent: Book 4

Intent:  Computer Science, Programming, C

Extent: Book 3

Intent:  Computer Science, AI

Extent: Book 2 & 5

Intent:  Computer Science, Programming, Java

Extent: Book 1

Intent:  Computer Science, Java

Extent: Book 1 & 4

Intent:  Computer Science, Programming

Extent: Book 1 & 3

Intent:  Computer Science

Extent: Book 1, 2, 3, 4 & 5

Figure 7.3: An example Galois lattice built from a small collection of books (with assigned
keywords)

14The lattice is sometimes also simply referred to as the concept lattice.
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Compared with other forms of hierarchical orderings (e.g. tree-like structures), lattices have
some distinct advantages. A lattice is a special kind of partial ordering that have some nice
algebraic properties. The connecting result (see [NO02]) states that any lattice can be conceived
of as either a partial order or as an algebra, or as both. These two ways of defining a lattice
can be used in an entirely interchangeable way, depending on which of them appears to be
more convenient for a particular purpose. When used in algebraic mode, Galois lattices allow
“calculations” with concepts in a strictly mathematical way [NO02]. One can for instance (in
an entirely algebraic way) find the least upper bound of 2 concepts15 as the intersection of the
concepts’ intents or the greatest lower bound that 2 concepts share16 as the union of the concepts’
intents.

Another advantage of lattices, compared with tree-like hierarchies, is that lattices permit multiple-
inheritance allowing a concept to be a subconcept of several other concepts. This, for instance,
enables us to model “lattice” as a subconcept of both “partial order” and “algebra”. For
clustering purposes, multiple-inheritance allows the cluster of documents related to “software
engineering” to be a sub-cluster of both the documents related to “software” and the documents
related to “engineering”.

GALOIS

As touched upon in the beginning of this section, GALOIS generates concepts (clusters of
objects) by automatically generating a Galois lattice (as defined above) from a set of objects
and their corresponding attributes. In the context of document clustering, the objects are
documents and the attributes are keywords (or index terms) assigned to these documents. The
clusters resulting from GALOIS are thus ordered in a lattice and characterised by both an
extensional description (i.e. the documents in the cluster) as well as an intentional (conceptual)
description (i.e the keywords that these documents share). A cluster’s extent consists of precisely
those documents that contain the cluster’s intent as a subset of their assigned keywords. Each
cluster is hence uniquely defined by either a set of documents (extent) or a set of keywords
(intent). Additionally, a cluster’s “parents” (if any) are always defined by a subset of the set of
keywords that defines the given cluster and always contain super-sets of the documents in the
given cluster.

The distance measure applied for document clustering using GALOIS is as a result simply the
inverse of the number of shared keywords (found using intersection). The more keywords two
documents share, the closer they are conceptually, since they will co-occur in the extents of more
specific concepts/clusters.

Besides GALOIS, there exist several other approaches to constructing a Galois lattice from a set
of objects and their corresponding attributes. [KB02] provides a good overview of some these
other approaches. However, we have chosen to implement GALOIS since it is relatively fast
compared with other common approaches and at the same time incremental - meaning that the
Galois lattice can be constructed one document at a time and later expanded as new documents
are found/created [CR96].

GALOIS defines the incremental step of adding a new document to an existing (possibly empty)
Galois lattice. The first thing we notice is that existing concepts are never removed from the

15Called supremum or join in lattice terminology.
16Called infimum or meet in lattice terminology.
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lattice – once formed, concepts (nodes in the lattice) are permanent and their intents remain
immutable. However, new objects (documents) might be added to existing concepts thus ex-
panding their extent. The addition of a new object might also give rise to the generation of new
concepts (lattice nodes). This happens when the intersection of the new object’s intent with the
intent of any existing set of objects, with which the new object shares a common description
(intent), is not already present as a concept in the lattice. When new concepts are generated
in this way, they have to be consistently linked into the existing lattice structure at the proper
place. This process might both generate new edges and remove edges between concepts. For
each new object introduced into the lattice, the 3 main tasks of the algorithm is thus to17:

1. Add the object to any existing concepts (nodes) where it belongs (i.e. the concept’s intent
(keywords) are a subset of the document’s).

2. Generate all new concepts in the lattice that the new object gives rise to, avoiding creating
concepts that are already present in the lattice

3. Update the linking structure (the edges) of the lattice to reflect the added concepts.

To obtain the new concepts that need to be created, it is sufficient to consider the intersections
of the new object’s intent with the intent of each concept currently in the lattice [CR96]. We
use the connecting result18 discussed earlier:

The intent of the least upper bound of two concepts is the intersection of the intents
of the two concepts.

This upper bound represent a generalisation that encompasses both concepts. In connection
with adding a new object (document), the intersection hence represents a concept where both
the new object and the objects of the existing concept belong. If this concept doesn’t already
exist it needs to be added.

The new object and the existing concepts are, however, not compared independently. To quote
[CR96]:

“Roughly, GALOIS compares the parents of each node [concept] to the intersection
(of intents) of the node and the new object. If there is a parent with an intent that
equals (=) the intersection, then the new concept is not created because it is already
present in the lattice. If there is a parent with an intent that is a proper superset
(⊂) of the intersection, then the new concept is not created since it will be generated
when we intersect the new object with that parent of the node.”

However, if all parents of a given concept (node) have intents that are proper subsets of the
intersection (of that concept and the new object) or if all parents are incomparable to the
intersection, a new concept is added into the lattice. We thus only have to consider the intent
of existing concepts and the intent of the new object (document) when we determine where to

17Adapted from [CR96]
18See [NO02]
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add the object and which new concepts (nodes) to create (if any). This makes the algorithm
quite simple since it mostly operates on intents.

Galois uses the link procedure outlined below to link new concepts into the lattice. link
operates on the lattice as it is at the time the new concept is added, also taking concepts
that have been created as part of inserting the current object into account. link works by
determining two boundary sets for the new concept (node):

1. The upper boundary set G that contains the most specific concepts that are more general
than the new concept.

2. The lower boundary set S that contains the most general concepts that are more specific
than the new concept

link then links the new concept (node) to all elements in S and G (As child of concepts in G
and as parent of concepts in S). link removes all edges between S and G. A formal proof of
the correctness of the GALOIS algorithm can be studied in [CR96].

7.4.2 Algorithm

Formally, the GALOIS algorithm for adding a new object (document) to the lattice looks like
this19:

function update-lattice(new object object, lattice lattice)
If not already present, add the concept corresponding to object to lattice
for each concept Ci in lattice,

do
Find intersection as Ci.intent

⋂
Object.keywords

unless
intersection = {empty set}, or
intersection = Ci, or
There is parent(Ci) = intersection, or
There is parent(Ci) ⊃ intersection

then
Create a new lattice node newnode
newnode.intent = intersection
newnode.extent = object ∪ Ci.extent
lattice = link(newnode, lattice)

if
intersection = Ci

then
Ci.extent = object ∪ Ci.extent

return the updated lattice

19Adapted from [CR96]
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function link(new node node, lattice lattice)
Find upper boundary set G of node in lattice
Find lower boundary set U of node in lattice
Add edges between node and each element in G
Add edges between node and each element in U
Eliminate edges between U and G
return the updated lattice

7.4.3 Time and Memory Complexity

The number of concepts C in the Galois lattice is central to both the computational complexity
and the memory complexity of adding a single document using the above algorithm. There is a
theoretical upper bound on the number of concepts present in a given lattice, which depends on
the number of documents and the size of the object description space (i.e. number of keywords
per document, total number of unique keywords assigned to the documents etc.). See the lengthy
discussion in [CR96]. However, this theoretical bound is extremely high and does as a result
have very little practical value. Empirical values of C are thus needed to estimate the actual
space requirement and running time of the algorithm.

[CR95] found empirical and theoretical evidence that the size of the lattice (number of con-
cepts C) on average grows almost linearly with the number of documents N . However, several
experiments carried out in [CR96], showed that the growth in the number of concepts varies
from linear to quadratic in the number of documents, but in some cases drops of as a result
of the domain starting to become saturated. Saturation in this connection implies that most
of the naturally occurring concepts within the domain are already present in the lattice. This
saturation effect thus depends on the conceptual span of the document collection.

According to our own tests, the LSA-dimension used to extract keywords very much influences
C as well (see appendix J.7.6). Very low LSA-dimension resulted in fast saturation and thus
small values of C due to the generalising effect of LSA, this meant that a relatively small set
of keywords were used to describe all documents. In the other end of the spectrum, high LSA-
dimension and pure truncation provided very little overlap of keywords and also resulted in
small values of C. For low LSA-dimensions marginally larger than the dimension achieving
saturation mentioned above, the values of C peaked, resulting in very large lattices for the
example collection. However, for LSA-dimensions around 300, we have found the number of
concepts to be very near linear (in the number documents) for larger collections spanning a
limited domain, provided that the number of keywords assigned to each document does not
exceed 15-20 (see appendix J.7.5).

The space requirements of the algorithm is near-linear in the number of concepts C. “Near”
because the size of each concept slowly grows as the average number of children and parents
increases when the lattice grows. The average number of documents connected with each node
(the average extent) might also grow as the number of documents increases. Combining this
with the above empirical value of C we get a space complexity somewhere between linear and
quadratic, depending on various properties of the domain (conceptual span, size etc.) and the
applied keyword extraction scheme (number of keywords per document, overlap of keywords,
LSA-dimension etc.).
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The computational complexity of adding a single document theoretically lies somewhere between
linear and quadratic in the number of concepts C, depending on how many times link is invoked.
However, experiments carried out in [CR96] surprisingly show that in practise, the run-time is
very near linear in C. The number of calls to link never exceeds a small fraction of the concepts
examined. Combined with the empirical results stating that C is almost linear in the number
of documents. This is expected, since only an almost fixed (slowly growing) number of new
concepts is added per document – all concepts are thus only examined a “pseudo constant
”number of times independent from C when adding a document.

So, if we consider the generation of the whole lattice, the computational complexity can thus
be estimated to be between quadratic and cubic in the number of documents N (since the
cost of adding a singe document turns out to be very near linear in C). However, our own
empirical results, showing almost linear growth in lattice size, point towards an actual empirical
complexity close to O(N2) (see section 9.6). For large collections the saturation effect discussed
above might20 reduce this to almost linear (with a large constant represented by the almost fixed
number of concepts in the lattice).

7.4.4 Advantages

Since GALOIS is incremental, the lattice (clustering) can be updated as documents are added
to the collection21. This is a great advantage in connection with websites since they are often
updated with new content, in some cases every hour, and it would thus be an advantage if the
clustering could be kept up to date easily without recalculation of the entire clustering.

Clustering into a Galois lattice has several interesting advantages compared with more traditional
clustering methods (e.g. K-Means, PDDP etc.). A Galois lattice for instance, contains a natural
description of the generated clusters (concepts) via the notion of intent. Labelling of clusters
thus becomes much easier and represents a “correct” definition of the clusters’ content (e.g.
this cluster contains all documents sharing “philosophy”, “logic” and“Aristotle” as common
keywords). The generated concepts (clusters) are in addition completely soft – a document will
be assigned to all concepts having an intent that is a subset of the document’s keywords. It
is as a result possible for a document to appear in several unrelated clusters (e.g. a document
containing information on Chinese medicine might both appear in clusters related to alternative
medicine and in clusters related to Chinese culture and tradition).

Finally, as was already discussed above, the lattice structure represents some advantages com-
pared with ordinary tree-based hierarchical structures when used to organise knowledge in a
domain. The dual algebraic definition of a lattice further allows interesting applications, such as
using algebraic operations to induce the least general concept (cluster) that covers a collection
of documents and hence create a kind of a multi-document “more-like-these”.

Compared with Apriori, which we will detail in the next section, GALOIS has the advantage
that it creates the entire Galois lattice by forming all possible concepts implicitly present in
the given document collection. Apriori on the other hand only creates the concepts that have a
supporting extent of a specified minimum size.

20It is difficult to predict when (and whether at all) saturation will occur for a given collection.
21This is not possible using the LSA keyword extraction scheme, since it, in its present implementation, is de-

pendent on global information to calculate the SVD. However, an incremental SVD-like decomposition is proposed
in [Bra02] and [Bra03] that might be used to overcome this limitation of standard SVD algorithms.
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7.4.5 Weaknesses

The greatest weakness of GALOIS is its uncertain computational complexity. Even with the
empirically determined estimates found above, one never knows how well the algorithm will
perform (speed and memory-wise) on a given collection. In addition, the algorithm carries (an
estimated) best case computational complexity that is quadratic which is quite prohibitive for
large collections. This might be amended somewhat by the discussed saturation effects, however,
these effects might never materialise if the collection spans a large or several knowledge domains.

Another weakness, is that clustering approaches based on formal conceptual analysis rely on
binary relations between objects and attributes. GALOIS thus doesn’t take the weights of the
keywords into account when clustering, it only works on the Boolean keyword space, considering
the relation between documents and keywords as strictly binary. It might thus miss subtle
differences between the documents which are only evident in the keyword weights (e.g. is a
document concerning Chinese medicine mostly related to “China” or to “medicine”, if it contains
both of these terms as keywords? The keyword weights might reveal that the document is more
about “medicine”).

Using the Boolean keyword space also requires a larger overlap of the keywords to find meaningful
clusters. Too small a degree of overlap will lead to a few, small and unrelated clusters. We thus
need LSA to compress the keywords of similar documents together. The time and memory
requirements of the algorithm are also very sensitive to the number of keywords assigned to
each page. The number of concepts grows more or less exponentially when this number is
increased. GALOIS thus heavily relies on the hypothesis that all documents in a collection can
be adequately described (for clustering purposes at least) by a relatively small number of central
core-terms/keywords assigned to each document.

7.4.6 Implementation Details

Lattice nodes (concepts) are contained in memory during the lattice building process to make
the process fast. The nodes consist of 4 vectors/sets: Intent, extent, children and parents – the
nodes are thus double-linked into the lattice structure. In addition, all nodes are stored in a
single vector allowing easy iteration over the nodes in the main loop of the algorithm. We also
store a top node (>) with all “orphan” nodes as children. However the orphan nodes do not
link to the top as parent, since this is redundant - if a node has no parents we know that top
is parent of this node. We do not store a bottom node (⊥) since we usually search the lattice
in top-down direction. However a bottom node could easily be added (with links to all childless
nodes) if needed.

Finding the upper boundary set G and the lower boundary set U is among the more com-
putationally demanding operations. In practise the 2 boundary sets are determined by only
considering a subset of the whole lattice. As the new node (we are adding) is an intersection of
an old concept and a new object, the concepts to which the new node should be linked must be
more general than the new object, or more general than the old concept. We thus only consider
the union between the ancestors of the node corresponding to the new object and the ancestors
of the old concept (that was used to form the intersection that led to the introduction of the
new node). However, when a new node is added to represent the intent of a new object, the
entire lattice needs to be searched to determine G and U . [CR96] claims that it is sufficient to
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determine either U or G and then derive the other set from the already calculated set. However,
it doesn’t specify how this is done most efficiently. We tried several ways of doing this (via the
lattice linking structure), but our testing showed that brute-force search in the lattice was in
most cases marginally faster22.

We have made extensive use of profiling to identify hot spots in the code, this has let to several
significant optimisations, most notable:

• Flattening of recursions when calculating upper- and lower bounds for a new node. This
approximately yielded a 3− 4× speedup for the entire algorithm.

• Use of hashing to verify that insertions in large sets of nodes do not violate the set invariant
(a given node only appears once in the set). This was done to speed up the calculation of
the set of nodes that needs to be considered when searching for G and U . We use open
addressing (all nodes are kept in the same array) relying on double hashing23 to handle
collisions. This approximately yielded a 2× speedup for the entire algorithm.

• Use of ordered sets to represent the intents, allowing cross-merge and binary search24 to
speed up intersection and subset operations on intents. This approximately yielded a 1.5×
speedup for the entire algorithm.

In our implementation a Galois lattice is saved to disk using 3 separate tables:

1. The lattice core table, which contains intent and extent for every node (except >).

2. The lattice link table, which contains the parents and children of every node (including
>).

3. The page-to-node table, which for all pages contains the nodes that have the page as part
of their extent. This table is redundant, and is included to make look-up of nodes related
to one or more pages fast.

The reason for splitting the lattice into core and link tables is that when the lattice is loaded
(after it has been created and saved), the link structure of the lattice (the lattice link table) can
be kept in memory, while the lattice core table is kept on disk to save memory. In this way the
costly operations of converting lattice IDs (saved on disk) to pointers (in memory) is done once
and for all. In addition, the splitting of the lattice into core and link tables turned out to make
lattice generation using Apriori (detailed below) easier.

22However, this might not hold for very large lattices.
23The 2 hash functions that we applied (h1 and h2) are very fast and efficient. They are based on 32 bit mix

functions developed by Thomas Wang and Robert Jenkins and can be inspected in Appendix E.
24Binary search is only applied if the size of the set is larger than an empirically determined value, the overhead

of calling bsearch were found to be too expensive for smaller sets.
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Figure 7.4: The structures used to save a Galois lattice in the database.

7.5 Apriori-Based Lattice Generation

7.5.1 Description

In this section we will outline and discuss an extended version of the popular frequent itemset
mining algorithm Apriori that allows “pruned” Galois Lattices25 to be formed much faster than
the full Galois Lattices that can be generated with GALOIS. However, before we discuss the
extensions that we have made to Apriori, we will start out with an introduction to the Apriori
algorithm and the problem of finding frequent itemsets.

Background

Apriori and other approaches to frequent itemset mining originate from efforts to analyse and find
useful patterns in customers’ buying behaviour from large databases of customer transactions.
Today, the automatic discovery of frequent itemsets is considered one of the most important
areas in data mining, which is the emerging sub-field within statistics and pattern recognition,
concerned with finding patterns and connections between elements in large databases [Bod03].

A frequent itemset is a set of items that often (more than min supp times) occurs in the trans-
actions in a given database. [Bak04] relays the following popular example of frequent itemset
mining used to identify customer buying behaviour:

“A popular example in the literature (possibly apocryphal) is processing the super-
market transactions of working men with young children: When they go to the store
after work to pick up diapers, they tend to purchase beer at the same time. Thus, it
makes sense statistically, if not socially responsibly, to put a beer refrigerator in the
diaper aisle.”

The problem of finding frequent itemsets starts with a database of transactions T :

T := {t1, t2, ..., tn} (7.10)
25See the previous section for a detailed explanation of Galois lattices and the theory behind them.
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With each transaction ti being an itemset (ti ⊆ I). The support of an itemset l (∈ I) in T is
defined as the transactions that contain l as a subset and it is denoted in the following way:

suppT (l) = {tj ∈ T : l ⊆ tj} (7.11)

An itemset l is frequent if its support is greater than a given minimum support (|suppT (l)| ≥
min supp). An itemset with k elements that is frequent is called a frequent k-itemset [Bod03].

The problem is thus to find all frequent itemsets in a given database of transactions T . One
of the most important contributions to solving this problem in an efficient way is the Apriori
algorithm, which was proposed by Agrawal and Srikant in [AS94]. Apriori has quickly become
the “gold standard” that all other frequent itemset algorithms are measured against and today
the notion “Apriori” covers a whole family of algorithms based on the same basic ideas [Bod03].
However, the original Apriori algorithm will suffice for our purposes.

The Original Apriori Algorithm

In explaining Apriori we will utilise the following notation26:

• Lk is the set of frequent k-itemsets (those with min supp support), each member is rep-
resented by the itemset and the support count.

• Ck is the set of candidate k-itemsets (potentially frequent itemsets), each member is also
represented by the itemset and the support count.

In the following we assume that all itemsets are represented as ordered sets.

The Apriori algorithm is actually rather simple, Apriori exploits the basic fact that all subsets
of a frequent itemset are also frequent. The initial pass directly finds the frequent 1-itemsets
by counting items and finding the ones that are frequent (have min supp or higher support).
Subsequent passes (pass k) have 3 basic steps:

1. Candidate generation is the join step where Lk−1 is joined with itself to generate the
candidates in Ck, i.e. it is the feedback step were the frequent (k− 1)-itemsets are used to
generate possible candidates for the frequent k-itemsets. As can be seen in the algorithm
below, we only need to pair up itemsets from Lk−1 that differ in their final element (since
the itemsets are assumed ordered). This candidate building process is from where the name
Apriori derives – we use a priori information deduced from the last step to determine the
candidates that need to be examined in the current step.

2. Candidate pruning check that all k − 1 subsets of the candidates in Ck are frequent,
else the candidate is removed from Ck.

3. Candidate support determines the support of the candidates in T . All candidates with
less than min supp support are removed and not saved in Lk. This is the most data

26Adapted from [AS94]
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intensive part of the algorithm since we need to iterate through all transactions in the
database.

Candidate 
Generation

Candidate 
Pruning

Candidate 
Support 

Initial Frequent 
1-Itemsets

Figure 7.5: Process flow of the original Apriori algorithm

This progressive build-up is at the heart of Apriori and the feedback loop is repeated until no
more frequent itemsets are found (Lk−1 = ∅). The process flow of Apriori is illustrated on figure
7.527.

Our Extensions to Apriori

Our extensions to Apriori are inspired by [BEX02] that states:

“Due to the monotonicity property, the frequent term sets form a lattice structure:
All 1-subsets of frequent 2-sets are also frequent, all 2-subsets of frequent 3-sets are
also frequent etc. This property can be exploited to discover a hierarchical frequent
term-based clustering.”

Before we explain the extension we have made to Apriori, we will first show how the above
lattice of frequent itemsets is related to formal concepts and Galois lattices. Let us briefly recall
the definition of formal concept from the previous section (page 77): A formal concept is defined
as a pair (A,B). A is called the extent of the formal concept and B the intent. The extent (A)
of the formal concept describes the subset of objects (documents) that belong to the concept,
while the intent (B) describes the common attributes (keywords) that these objects share:

A := {g ∈ G | ∀m ∈ B : (g,m) ∈ I} (7.12)

B := {m ∈ M | ∀g ∈ A : (g,m) ∈ I} (7.13)

If we look at documents as transactions and the keywords assigned to these documents as items,
we quickly realise that an itemset (of keywords) fulfils the first part (equation 7.12) of this
definition, having the itemset itself (l) as intent (B) and the support of the itemset (suppT (l))
as extent (A)28. However, we do not fulfil the second part (equation 7.13) of the definition, since
a superset of the itemset l might have the same documents as support as l. In this case the
itemset l does not represent a concept in the formal sense, it is rather a kind of redundant (too
general) pseudo-concept . However, for our purposes these extra pseudo-concepts do not really

27Adapted from [Bak04].
28The database T is in this case the formal context (the document collection).
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pose a problem. But, if so desired, the pseudo-concepts could be removed during the below
outlined candidate linking step.

We further realise that the set of all frequent itemsets, which do not form pseudo-concepts,
is a subset of the concepts found with GALOIS. This subset consists of all the concepts from
GALOIS that have a minimum extent size of min supp. These concepts can thus be used to
construct a “pruned” sublattice of the Galois lattice (found with GALOIS), since any subset of
the nodes of a complete lattice also forms a (complete) lattice (the Galois lattice is always a
complete lattice). So the lattice formed by the frequent itemsets is hence this “pruned” Galois
lattice, possibly with the addition of some extra pseudo-concepts that are not concepts in the
strict formal sense.

Candidate 
Generation

Candidate 
Pruning

Candidate 
Support Lattice Linking Initial Frequent 

1-Itemsets

Figure 7.6: Process flow of the extended Apriori algorithm

We have extended the original Apriori algorithm so it returns the “pruned” Galois lattice dis-
cussed above (including additional pseudo-concepts). To do this we needed to make 2 changes
to the algorithm:

1. First we had to save the transactions (documents) that support the itemset (as extent
for the itemset) in the candidate support step. This was done by letting both Lk and Ck

contain the extent in addition to the support count.

2. Secondly, we had to link the generated frequent itemsets into a lattice. This was done
by adding a lattice linking step before terminating the algorithm (see figure 7.6). Each
node (frequent itemset) is linked into the lattice by linking it to all nodes with an intent
that is a (k − 1)-subset of the node’s intent. All frequent k-itemsets thus have k frequent
(k − 1)-itemsets as parents (with the exception of frequent 1-itemsets, that are linked to
the top node).

The distance measure applied is thus the same as in connection with GALOIS; the inverse of the
number of shared keywords. However, since the extended Apriori generates a “pruned” Galois
lattice, there are no guarantees that 2 documents that share some keywords will be clustered
together – it depends on whether the concepts that the 2 documents share have enough support
to be included in the lattice.

7.5.2 Algorithm

Formally our extended version of the Apriori algorithm looks like this29:

29Adapted and extended from [AS94].
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function apriori(transaction database T , support threshold min supp)
L1 = {frequent 1-itemsets in T }
for (k = 2;Lk−1 6= ∅; k++) do

Ck = candidate-generation(Lk−1) //Generate and prune candidates
for each transaction (document) t ∈ T do

Ct = {l ∈ Ck | l ⊆ t} //Candidates contained in t
for each candidate c ∈ Ct do

c.count++
add t to c.extent

Lk = {c ∈ Ck | c.count ≥ min supp}
return lattice-link(

⋃
k Lk) //Link frequent itemsets into a lattice

function candidate-generation(frequent (k − 1)-itemsets Lk−1)
//Begin SQL notation
insert into Ck

select p.item1, p.item2, ..., p.itemk−1, q.itemk−1

from Lk−1 p, Lk−1 q
where p.item1 = q.item1, ..., p.itemk−2 = q.itemk−2, p.itemk−1 < q.itemk−1

//End SQL notation
return candidate-pruning(Ck, Lk−1) //Prune candidates

function candidate-pruning(candidates Ck, frequent (k − 1)-itemsets Lk−1)
for each candidate c ∈ Ck do

for each (k − 1)-subset s of c do
if (s /∈ Lk−1) then

delete c from Ck

break
return Ck

function lattice-link(frequent itemsets L)
initialise lattice
add empty top-element to lattice
for each frequent itemset l ∈ L do

k = |l|
for each (k − 1)-subset s of l do

find frequent itemset lp = s
add l to lp.children
add lp to l.parents
add l to lattice

return lattice

7.5.3 Time and Memory Complexity

The basic idea behind using Apriori to generate a “pruned” Galois lattice is that the support
threshold (min supp) will significantly limit the number of generated concepts and thus result
in better performance both speed- and memory-wise compared to GALOIS.
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The theoretical computational complexity of Apriori is (as with GALOIS) very high and difficult
to estimate, since it depends on the number of found frequent itemsets in each pass30. Analogous
to GALOIS, these numbers in turn depend on the number of documents and the size of the object
description space (i.e. number of keywords per document, total number of unique keywords
assigned to the documents etc.). However, Apriori is designed for doing data mining on very
large databases and should in practise perform well on large document collections. Our own
tests seem to confirm this (see section 9.7).

The linking step that we have added at the end of the algorithm has a computational complexity
of O(Ck), C being the total number of frequent itemsets found and k being the maximum size
(number of items) of the frequent itemsets. This is because a frequent k-itemset always has k
(k − 1)-subsets that need to be linked to (as parents).

The memory complexity of our extended Apriori algorithm is in theory31 only determined by
the space needed to hold Ck and Lk−1 in memory, since Lk−1 can be saved on disk as soon as
it has been used to generate Ck. However, Ck might actually require a considerable amount of
memory since the number of candidates often far exceeds the number of frequent itemsets, and
since we need to store the (possibly large) extent of each candidate in the candidate support
step. However, Apriori is still expected to have lower memory requirements than GALOIS, which
needs to store the entire lattice in memory (including the extents) during the lattice building
process.

7.5.4 Advantages

As touched upon above, the main advantage of Apriori compared with GALOIS is that Apriori
is expected to perform much better speed- and memory-wise on large document collections.
This is a significant advantage since our tests show that GALOIS performs rather badly on
large collections (see section 9.6). Additionally, Apriori more or less inherits the advantages of
using a Galois lattice that was outlined in section 7.4.4 in connection with GALOIS. Apriori
thus represents a computationally faster and more feasible way of gaining these advantages.

7.5.5 Weaknesses

The main weakness of Apriori compared with GALOIS is, on the other hand, that the returned
Galois lattice is “pruned”. Itemsets with low support are left out, resulting in loss of the most
specific concepts that only encompass very few documents. This loss of small concepts can have
a negative effect on more-like-this and other applications that rely on specific clusters of few
documents.

As was the case for GALOIS, the complexity of Apriori is still difficult to estimate since it
depends on the conceptual span of the document collection. Apriori is in addition not an
incremental algorithm, and the whole clustering process thus has to be repeated every time one
wants to add new documents to the clustering.

30The time complexity of each pass depends on the number of candidates Ck and is thus dependent on the
number of frequent itemsets found in the previous step (Lk−1).

31Our current implementation require somewhat more memory, since all found frequent itemsets are kept in a
trie during all passes and since we build a page-to-node table in memory while finding the frequent itemsets.



92 Implemented Clustering Algorithms

Finally, the weaknesses of using conceptual clustering, which was discussed in section 7.4.5 in
connection with GALOIS, also apply to Apriori. I.e. Apriori only uses the Boolean keyword
space (it doesn’t take the keywords ’ weights into account) and also relies on sufficient overlap
of keywords to achieve good results.

7.5.6 Implementation Details

Our implementation of Apriori is based on a fast trie-based C++ implementation by Ferenc
Bodon32. We have extended this open source implementation to accommodate for lattice build-
ing as discussed above. The implementation uses ordered sets and a trie33 to find support for
candidate sets in a fast way. Experiments show34 that this trie-based approach is faster than
the hash-tree based approach originally proposed in [AS94].

Since all transactions in T are considered one by one in each pass (in the candidate support
step), the implementation is designed to optionally store T in memory. This allows fast access
to the transactions at the cost of increased memory consumption. To further speed up the
algorithm, the generation and support determination of 2-itemsets are done via a simple vector
approach, which for 2-itemsets is significantly faster than just using the trie (see [Bod03]). The
pruning of Ck is done during generation of Ck to save memory (before a k-sized candidate is
added to Ck, it is checked whether all its (k − 1)-subsets are frequent).

As the algorithms progresses, the lattice is saved one “level” at a time (corresponding to the
frequent (k − 1)-itemsets). When a level has been saved to disk, the extent information of that
level is deleted to save memory. The final lattice link stage is implemented as a depth-first tree
traversal, finding and linking the parents to each node as outlined in the algorithm above.

The lattice is saved in the same 3 tables that were used in connection with GALOIS (i.e. lattice
core, lattice link and page-to-node). The split of the lattice into the tables lattice core and lattice
link makes it easy to save the core one pass at a time during the main algorithm, while deferring
saving the linking information for each node until the final lattice link step.

Future Improvements

As briefly mentioned above, we currently build the page-to-node table directly in memory during
the execution of the main loop of the algorithm. To save memory while running the main loop,
the generation of the page-to-node table could be deferred to a later time. This could for instance
happen just before the lattice link step.

In addition, we believe that the current implementation, while fast, is not optimal partly due
to the overhead of using C++ and an object-oriented representation of the trie structure, and
partly because the support for lattice generation is currently “bolted” on top of a standard
Apriori implementation. A new custom made implementation in pure C (or FORTRAN), built
from scratch to support lattice building might yield better performance than the current imple-
mentation.

32Available at http://www.cs.bme.hu/∼bodon/en/apriori/
33Tries were discussed above in section 5.3.2.
34See discussion in [Bod03].

http://www.cs.bme.hu/~bodon/en/apriori/


Chapter 8

Implemented Postprocessing

In this chapter, we will first detail the implementation of similar pages (more-like-this) for both
of our cluster output formats; hierarchy-based and lattice-based. Thereafter, we will outline a
preliminary approach for search result clustering, working on top of our lattice-based clustering
algorithms. Finally, we briefly discuss the various small functions implemented for presentation
and evaluation purposes.

8.1 Finding Similar Documents (More-Like-This)

As we mentioned in section 3.4, More-Like-This is an important application for clustering tech-
nologies, and we have chosen to implement this for both the hierarchy-based and lattice-based
algorithms to test and demonstrate how this would work.

8.1.1 Hierarchy-based More-Like-This

K-Means, CURE and PDDP all operate in a term vector space as described earlier and are in
our implementation all hard hierarchical clustering algorithms. Because of these similarities, we
have stored the created cluster hierarchies in the same form in the database as described in the
previous sections.

This makes it easy to create one common more-like-this function for all three algorithms. The
general concept of this more-like-this function is to provide as many results as required (if
possible). The results will be taken from the smallest (most specific) cluster first, then from the
second smallest and upwards until enough results are provided. The results from each cluster
are ranked according to their distance to the original document.
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Algorithm

function MLT(DB, D, N)
(DB is the database, D is the original document and N the number of results)
MLT result = {}
clusters = get clusters(DB, D)
for each cluster C ∈ clusters do

rank and sort pages(C,D)
insert with rank(MLT results, C)

while size(MLT result) < N
Return MLT result

The rank and sort pages algorithm uses the cosine distance measure (using the documents’
keywords, not their full term sets) and the ANSI C qsort. Other distance measures and sorting
algorithms could easily be implemented. The rank and sort pages algorithm produces a number
representing the relevance1 of the document relative to the original document.

8.1.2 Lattice-based More-Like-This

For the lattice-based algorithms, GALOIS and extended Apriori, similar pages (more-like-this)
are calculated in much the same way as outlined above for the hierarchy-based algorithms.

First, all lattice nodes (clusters) containing the given page are located using the page-to-node
table. These clusters are then ranked (with regard to the original page) and sorted using a
ranking algorithm. This ranking is necessary, since the page might be contained in several lat-
tice nodes on the same level (due to the soft nature of lattice-based clustering). The ranking
algorithm compares the intent I of the given node with the assigned keywords K and corres-
ponding weights W of the original page:

rank =
∑

Q− E(Q) ∗
∑

Q (8.1)

Where E is the standard entropy function and Q the (set of) weights of the keywords that the
document and the node intent share:

Q = {wj ∈ W | kj ∈ (I ∩K)} (8.2)

This ranking algorithm fulfils 3 primary goals:

• For nodes with 1-word intents, it is the weights of that keyword in the document that
determines the rank.

• Nodes with greater intent have a larger chance of getting a higher rank (depending on the
sum of the weights of the keywords defining the node’s intent and their weight distribution).

1Here, relevance simply refers to the cosine distance of the documents - 1 for most relevant, 0 for least.
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• For 2 nodes having intents of equal length and equal (weight-)sum, the node with the most
uniform weight distribution (in Q) will be ranked the highest due to the entropy function.

The rest of the lattice-based similar page algorithm works more or less like the hierarchy-based
algorithm outlined earlier. The clusters/nodes are considered in descending rank order, all pages
in the given cluster not already added are added ranked according to the cosine distance to the
original document. This process repeats itself until the desired number of pages has been found.

In other words, the only difference between the two similar page algorithms is that the hierarchy-
based algorithm simply considers the clusters according to size2, whereas the lattice-based al-
gorithm considers them according to a pre-calculated page vs. cluster rank.

8.1.3 Data Representation

Data Representation

The more-like-this functions that we have implemented are light-weight enough to run online
for smaller databases, but for maximum performance and testing purposes, we have chosen to
pre-calculate and store more-like-this results for all pages in a table. The common data structure
used by both algorithms to store similar page information in the table is shown in figure 8.1.

More-Like-This Entry

Document List
DocumentID

...

Rank
DocumentID Rank
DocumentID Rank

...

Figure 8.1: The More-Like-This entry stored in the database.

8.2 Search Result Clustering

We have implemented a preliminary search result clustering system to try to assess the feasibility
of such a system when a clustering of the document collection is available. The preliminary
approach is based on our lattice-based clustering algorithms3. The algorithm that we have
implemented is designed to return a predefined number of categories (clusters) that cover the
search result. This is optimised in such a way that the maximum number of documents from
the search result are covered by the categories. The algorithm works like this:

1. Find all clusters/nodes containing documents from the search result (using the union of
the page-to-node entries).

2This is an acceptable simplification since all the hierarchical algorithms create hard clusters (on each level).
3Due to time constraints, we have not been able to implement a search result clustering working with the

hierarchy-based algorithms.



96 Implemented Postprocessing

2. Add the node having the most pages from the result set as a category.

3. Build a list of pages in the result set that is not covered by the former category.

4. Add the not yet added node that has the largest intersection with the list (of pages not
already covered).

5. Update the list of pages not already covered by the added categories.

6. Repeat from step 4 until the required number of “categories” has been found.

7. Finally, all pages not covered by a category are put in an artificial “misc.” category.

Before returning the result clustering, the added clusters can optionally be filtered to make their
extents only contain documents from the search result. We have made this optional, since some
applications of search result clustering might benefit from the full clusters, including documents
not matched by the original query. E.g. the clusters best covering a result could be added as
search results themselves, allowing the user to navigate into a cluster and see the content of the
entire cluster.

We use the keywords of the node intents as labels for the found categories. In most cases,
these labels work quite well in defining the common denominator for the pages in the cluster.
However, in some cases, the connection is not immediately clear.

We have also briefly investigated a more elaborate approach, where the sublattice covered by
the search result is returned. This could for instance be used as a basis for interactive navigation
and browsing of search results (for instance see [CR95]). However, for larger search results, the
sublattices involved proved to be rather large. This presented difficulties in determining how to
present these lattices to the user in a simple and comprehensible way. At this preliminary stage,
we therefore opted for the alternative approach as outlined above.

8.3 Evaluation and Presentation

We have implemented the presentation and evaluation utility functions as required in section
4.3.1 on page 46 to allow inspection and evaluation of the results produced by the various stages
of the clustering toolkit. We have thus been able to use the HTML output to manually inspect
and validate both keyword4 and more-like-this tables5, as well as the search result clustering6,
throughout the development process. In addition, we have also created small functions to inspect
the clusters found by the various algorithms. However, the primary output of our clustering
toolkit is the XML files detailing the similar pages for each page in the database, since these
form the basis of the user test performed in chapter 11.

Since most parameters of our system concern preprocessing settings, we have implemented the
ability to generate the following statistical information for a given keyword table:

• Number of unique keywords used (the dimension of the keyword space).
4See a sample of this in appendix H.
5See a sample of this in appendix I.
6See appendix K.
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• Average number of keywords assigned to each document.

• The percentage of keywords contained in the documents they are assigned to. This is used
in connection with Synergy, since this algorithm is able to infer keywords that are not
present in the document (see chapter 6).

The above statistics can, together with the statistics showing the difference between two keyword
tables, be used to assess the results of changing one or more parameters in the preprocessing
and keyword extraction stage.
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Chapter 9

Performance of the Implemented
Algorithms

This section is concerned with testing the time and memory performance of our implemented
algorithms. This is very important, since the scalability of the algorithms becomes critical as
the size of collections increases beyond small websites. It is also interesting to see whether the
theoretical complexities given for the algorithms is reflected in the actual running-time.

For the performance tests, we have chosen to use subsets of Wikipedia1 ranging in size from 1,000
pages (documents) to 100,000 pages. This collection is somewhat atypical since the number of
new terms introduced per document is expected to be higher than for collections only covering
few or a single domain. Wikipedia is thus more or less “worst-case” regarding the growth of the
number of terms compared with the number of pages. The test was carried out on a standard
PC containing a 3 GHz Pentium 4 with 1 GB RAM and running Windows XP.

The test was performed using the settings given in appendix J.1. Important to note is that we do
not extract bigrams, since the running-time and memory consumption of this step depends on the
number of bigram candidates generated by one of our proposed schemes and not necessarily on
the number of documents. For the interested reader, we can mention that the bigram extraction
process takes approximately 10 minutes for 100,000 documents using scheme 2.

Furthermore, for these tests, we have chosen to aim for smallest clusters of approximately size
10. To do this, we have set the minimum support of Apriori to 10. For K-Means and PDDP, we
have set the number of partitionings to 40 % of the number of documents, since our informal
testing shows that this produces smallest clusters of 10 or less. For CURE and GALOIS, there
is no way to limit the produced smallest clusters, since both algorithms are “agglomerative” and
begin with a separate cluster for each document.

First, we will test the running-time and memory requirements of the entire preprocessing stage
(excluding bigram extraction). Then we move on to testing the performance of the keyword
extraction based on Synergy2. Hereafter, we test the running-time and memory requirements of
the 5 implemented clustering algorithms. Finally, we have tested the construction of a similar
page table for all pages based on an Apriori-based clustering3. We have not tested our search

1Wikipedia is an online encyclopedia, see http://www.wikipedia.org/
2We have not tested truncation-based extraction since this is very fast and scales near-linearly with the number

of documents.
3We have not tested the similar page table construction connected with the hierarchy-based algorithm, since

http://www.wikipedia.org/
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result clustering, since our implementation is unoptimised and very preliminary4.

9.1 Preprocessing

The preprocessing stage consists of several substages, including data extraction5, filtering, stem-
ming and weighting. As can be seen in appendix J.2.1, the running-time is roughly linear and
ranges from approximately 9 seconds for 5,000 pages to approximately 200 seconds for our largest
test collection of 100,000 pages.

Similarly, the memory consumption scales linearly and ranges from 95 MB at 5,000 pages to 283
MB at 100,000 pages as can be seen in appendix J.2.2.

The total number of terms is growing degressively as the number of documents in the collection
increases (see appendix J.2.3). After stemming, the number of terms is reduced to a smaller
number of stem groups, but the amount of stem groups is still growing (as also seen in the
appendix). The reduction in terms after stemming is slowly decreasing from 34% at 5,000 pages
to 25% at 100,000 pages as can be seen in appendix J.2.4. The size of the reduction decreases
because the number of common words with several stems saturates earlier than special words
(like proper nouns) that end up in their own stem groups.

Finally, appendix J.2.5 shows that the average number of terms per document declines as the
collection grows. This ranges from 3 new words per document at 5,000 documents to below 1
new word per document for 100,000 documents. This development is natural since the most
commonly used words are quickly saturated, and after this, only rare words and a few proper
nouns are occasionally added. For algorithms with a complexity depending on the number of
terms, this is for obvious reasons good. One should also note that Wikipedia as mentioned
probably spans a much larger vocabulary than “normal” sites.

9.2 Synergy

The keyword extraction of Synergy takes place in two stages, first the Singular Value Decom-
position of the term-document matrix is performed, then the actual keywords are extracted
by constructing the approximated term-document matrix. For both the SVD part and the ac-
tual keyword extraction part of Synergy, the running-time and memory consumption can be
inspected in appendices J.3.1 and J.3.2, respectively.

9.2.1 SVD

According to section 6.1.3, the complexity of the SVD library we use, should (for a given
dimension) increase linearly with the number of non-zero elements (document-term relations) in

these algorithms (besides from an extra step in the lattice-based algorithms) are identical.
4For a collection size of 10,000 documents, the search result clustering is currently performed in “subsecond”

time.
5This is not strictly preprocessing according to our architecture, but in the performance test, we have chosen

to consider it as such.
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the matrix. As can be seen in appendix J.3.3, these grow more or less linearly with the number
of documents, ranging from 900,000 at 5,000 pages to almost 14 million at 100,000 pages. In
full accordance with the above complexity, the running-time of the SVD algorithm scales more
or less linearly with the number of documents, ranging from 35 seconds at 5,000 pages to 700
seconds at 100,000 pages.

With regard to memory consumption (for a given dimension), the theoretical complexity scales
linearly with the number of documents plus the number of terms. Our testing shows that the
memory consumption increases more or less linearly (slightly sublinearly) with the number of
documents, which is also in accordance with the theory, since the number of terms (as outlined
above) increases degressively with the number of documents in the tested range. Memory
consumption ranges from 95 MB at 5,000 documents to 974 MB at 100,000 documents.

9.2.2 Extraction

As we discussed in section 6.1.3, the worst-case running-time complexity of the extraction stage
is the number of terms times the number of documents for a given dimension. Our testing
shows that the running-time grows in full accordance with this, ranging from 36 seconds at
5,000 documents to 4,338 seconds at 100,000 documents. When the number of floating point
operations performed per second is calculated, it turns out that the algorithm performs the
matrix multiplications at approximately 850 Mflops6, which is not bad considering the different
“bookkeeping tasks” that are performed to find the keywords for each document at the same
time.

Theoretically, the memory consumption of this stage should (for a given dimension) also scale
with the number of documents plus the number of terms. Our experiments more or less verify
this, but due to the constants involved7, the memory consumption of this stage is several times
lower than that of the SVD stage. It ranges from 34 MB at 5,000 pages to 210 MB at 100,000
pages.

9.3 K-Means

Section 7.1.3 explains that the running-time of K-Means has a theoretical worst-case upper
bound of the number of documents times the number of clusters times the maximal number of
iterations. Since the maximum number of iterations is a constant and the number of clusters is
preset to 80 % of the number of documents8, the expected running-time should grow quadratic
with the number of documents. As seen in appendix J.4.1, this is more or less the case. However,
if we look at the average running time per document in appendix J.4.2, it is slightly degressive,
which indicates a slightly subquadratic actual running-time. The running-time ranges from 10
seconds for 5,000 documents to 1,189 seconds for 100,000 documents.

6Millions of floating point operations per second.
7The reason that the memory consumption is approximately 4 times lower is that the extraction stage stores

the values as floats, whereas the SVD stage stores the values as doubles and internally stores this twice in one
of the algorithmical steps.

8The total number of clusters in the hierarchy is always twice the number of bisections, which we have
predetermined to 40 % of the number of documents.
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Assuming a relatively balanced bisection tree, bisecting K-Means is near-linear (nlogn) in terms
of its memory consumption (see section 7.1.3). As seen in J.4.3, this is also more or less the
case. The memory consumption ranges from 23 MB for 5,000 documents to 164 MB for 100,000
documents.

9.4 CURE

As described in section 7.2.3, CURE has a superquadratic worst-case running-time. However, as
seen in appendix J.5.1, the algorithm actually scales quite close to quadratic9. Unfortunately, the
constants involved are fairly large, resulting in the worst running-time of any of the algorithms.
We had to stop testing after 20,000 documents, as the running-time in this case exceeded 3
hours. For 1,000 documents, CURE used 34 seconds, while it took 3,030 seconds (almost an
hour!) for 10,000 documents.

As we stated in section 7.2.3, the theoretical memory complexity of CURE is linear. Our tests
more or less confirm this as seen in appendix J.5.2, but because of our limited number of tests,
this should be taken with a grain of salt.

9.5 PDDP

In section 7.3.3, we showed that the computational complexity of PDDP scales with the number
of partitionings times the total number of non-zero elements in the keyword-document matrix.
Since the number of keywords per document is limited by a predefined maximum, the complexity
is quadratic in the number of documents, since the number of partitionings is predefined as 40%
of the number of documents. The actual running-time of PDDP is shown in appendix J.6.1,
where it ranges from 14 seconds at 5,000 pages to 1,624 seconds at 100,000 pages. As can be seen
in appendix J.6.2, the average running-time per document is increasing linearly, which confirms
that the algorithm runs in quadratic time.

As with the bisecting K-Means, the theoretical memory complexity of PDDP should be near-
linear assuming a fairly well-balanced partitioning tree. In appendix J.6.3, we see that the
memory consumption is somewhat linear, though unsteady. The memory consumption of PDDP
ranges from 17 MB at 5,000 pages to 85 MB at 100,000 pages, making PDDP the algorithm that
performs best with regard to memory consumption. The unsteady scaling is probably due to
the memory requirements of the SVD algorithm that we use to calculate the principal direction
that scales linearly in the number of documents plus the number of terms. This means that
the memory consumption of the SVD part should grow degressively until the number of terms
added per document has stabilised.

9.6 GALOIS

In section 7.4.3, we estimated the running-time of GALOIS to scale somewhere between quad-
ratic and cubic – hopefully closer to quadratic. The actual tests confirm that the running-time

9To emphasise this, we have added a quadratic function closely matching the running-time.
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is near-quadratic as seen in appendix J.7.110. However, the constants involved are fairly large,
resulting in the second worst running-time of any of the clustering algorithms. We stopped
testing after 30,000 documents, since the running-time in this case exceeded 1 hour. For 1,000
documents, GALOIS used only 2 seconds, while it took 1,914 seconds for 20,000 documents.

Assuming linear growth in lattice size, we estimated the memory requirements of GALOIS to be
near-linear, which is confirmed by our experiments in appendix J.7.2. The memory consumption
of GALOIS ranges from 15 MB at 1,000 documents to 200 MB at 20,000 documents, making
GALOIS the most memory-hungry algorithm. This is due to the lattice size that (for larger
collections) grows linearly with the number of documents (see appendix J.7.3). The lattice
size ranges from approximately 10,000 nodes at 1,000 pages to approximately 350,000 nodes at
20,000 pages.

The growth in lattice size is more easily visualised in the plot as seen in appendix J.7.4, showing
the average and differential growth in lattice size for each added document. The plot clearly
shows that, for larger collections, the number of new nodes per added document seems to stabilise
around 20. This linearity can probably be attributed to the use of Wikipedia as document
collection, since it is expected that Wikipedia articles should introduce new concepts at a steady
rate.

For a collection spanning a single knowledge domain, saturation might be achieved. This can be
seen in appendix J.7.5, where we have performed GALOIS on the CISI collection of information
science abstracts. For higher LSA-dimensions (150 and 600), the number of nodes added per
new document stabilises much earlier than was the case with Wikipedia. For a very low number
of LSA dimensions (5), we see a saturation effect already occurring around 400 documents.

In general, the lattice depends greatly on the LSA-dimension used in the keyword extractor (see
appendix J.7.6). For very low dimensions, saturation effects occur (as discussed above). For
high dimensions, the overlap between keywords decreases resulting in only few and small lattice
nodes (most documents are orthogonal). For moderately low dimensions, saturation no longer
occurs and we have maximum overlap resulting in maximum lattice size.

Another important factor determining lattice size is the average number of keywords assigned
per document. The lattice size grows very progressively as seen in appendix J.7.7. This severely
limits the average number of keywords that can be used with GALOIS without running into a
combinational explosion of lattice nodes.

9.7 Apriori-Based Lattice Generation

As discussed in section 7.5.3, the running-time of Apriori is expected to be lower than that of
GALOIS. As can be seen in appendix J.8.1, Apriori scales near-linearly for large collections,
ranging from 2 seconds at 5,000 documents to 226 seconds at 100,000, making it the fastest
of the clustering algorithms tested. If we look at the average running-time per document (see
appendix J.8.3), it more or less degressively increases slightly over the range.

As our current implemenation builds the page-to-node table in memory, it was expected that the
algorithm would consume quite a lot of memory and scale near-linearly with regard to memory.

10To emphasise this, we have added a quadratic function almost matching the running-time.
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In appendix J.8.2, the results confirm this, where memory consumption is seen to range from
21 MB at 5,000 pages to 625 MB at 100,000 pages. If we look at the average curve for memory
consumption, for large collections, it seems to increase degressively.

With regard to the size of the produced lattice, it was expected to grow more or less in the same
fashion as GALOIS, albeit with smaller constants. Our results in appendicies J.8.4 and J.8.5
confirm this, showing near-linear growth in lattice size for large collections. The size ranges
from approximately 20,000 nodes at 5,000 pages to approximately 1.3 million nodes at 100,000
pages. The average amount of nodes added per document seems to stabilise around 13.
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Figure 9.1: The running-time of the clustering algorithms.

9.8 Postprocessing: Finding Similar Pages

The time needed for constructing an Apriori-based similar page table containing entries for all
pages can be inspected in appendix J.9.1, where it grows more or less quadratically. This is
because similar pages are found for every page, and the time of this step is depending on the
number of cluster that the given page is in, which again depends on the number of documents in
the entire collection. This is also confirmed in appendix J.9.2 showing the average running-time
per page. The running-time ranges from 1 second for 5,000 documents to 179 seconds for 100,000
documents.

The memory consumption scales near-linearly due to caching of the underlying lattice tables
(see appendix J.9.3). The memory consumption ranges from 17 MB at 5,000 pages to 447 MB
at 100,000 pages.
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Clustering Algorithms - Memory

0

100

200

300

400

500

600

700

0 20000 40000 60000 80000 100000 120000

Documents

M
e
m

o
ry

 (
M

B
) K-Means memory

CURE memory

PDDP memory

GALOIS memory

Apriori memory

Figure 9.2: The memory requirements of the clustering algorithms.

9.9 Final Remarks

We have summed up the running-time of the clustering algorithms in figure 9.1 and the memory
consumption in figure 9.2. As can be clearly seen, GALOIS and CURE perform (especially with
regard to running-time) much worse than the other algorithms, and they are thus not feasible
in connection with large collections.

Both K-Means and PDDP scale quadratically with regard to running-time, since we increase
the number of partitionings with the size of the document collection. However, the constants
involved are rather small, and both algorithms are therefore feasible for collections of at least
100,000 documents. In addition, for both PDDP and K-Means, the quadratic complexity can
be transformed into linear complexity, if one is satisfied with a fixed number of partitionings
(and thus, clusters). Both algorithms scale excellently with regard to memory consumption.

Apriori performs near-linearly for large collections (and with low constants). However, memory
consumption might be an issue for large collections, but this might be improved if the page-to-
node table is not built directly in memory. In addition, Apriori can be made to perform even
better (both with regard to speed and memory), if a percentage of the document collection size
is used as minimum support instead of a fixed number of documents.

As a conclusion, to the tests we have performed, we have decided to continue investigating K-
Means, PDDP and Apriori. As for CURE and GALOIS, these have clearly shown that they (at
least in their current implementation) are not feasible for the sizes of websites Mondosoft would
like to apply clustering to.
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Chapter 10

Toolkit Evaluation

In this chapter, we outline some of the experiences that we have gained while developing and
using the clustering toolkit. First, we discuss some of the challenges that we have found in
connection with clustering webpages as opposed to pure text. Hereafter, we make a sensitivity
analysis showing the extracted keywords’ sensitivity to various algorithm parameters. Finally, we
provide 4 cases demonstrating how our preliminary search result clustering works in connection
with searching for ambiguous terms.

10.1 Difficulty of Clustering Web Pages

During our work with this project, we have realised that clustering webpages is connected with
several challenges and things to be aware of compared with clustering web pages and pure text
documents. These include:

• Pages with mixed content, for instance news pages where the content of different subsec-
tions of the page is unrelated. This presents a serious problem with regard to clustering,
since some subsections might be related to one set of pages and some subsections to others.
One of the worst examples of this is news archive pages, where the diversity of different
news entries might make the page similar to almost every other page on the site.

• Headers and navigation menus repeated on each page also present a challenge, since the
menus might include important keywords from the domain, which are thus present on
every page. The dilemma is that these words will either be so ubiquitous that the global
weighting scheme will more or less dilute their importance on pages where the words are
important, or the word will be present on just enough pages to make these pages cluster
around the word.

• Pages with low textual content (e.g. image galleries), are another problematic area. Here,
content present on all pages (see above) becomes an even larger problem, since the signal-
to-noise ratio will be low – i.e. the words related with the page contents are suppressed
by the relatively larger number of unrelated words on the page.

• Another challenge specific to websites is navigational pages (“index” and portal pages)
that often do not contain relevant content usable for clustering.
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• Alternating unrelated content (such as “recent news”, “tip-of-the-day” and polls) is often
part of the layout for pages. This confuses clustering algorithms since the main topic of
the page becomes obfuscated.

• Pages, where text is saved as images for layout purposes obviously present yet another
problem since this text is not indexed.

10.2 Sensitivity Analysis of Algorithm Parameters

In this section, we have attempted to establish the sensitivity of the various input parameters
to the preprocessing and keyword extraction modules. This is done as a series of 1-dimensional
tests, where only one parameter is changed and everything else is kept equal. We have used
the default settings outlined in appendix F as basis for the sensitivity analysis1. The test is
performed using a 5,000-page subset of Wikipedia2.

The result of changing a single parameter is evaluated through the various statistics generated
for the keyword entries. We also provide the percentage of common keywords that remain after
changing the variable. However, this statistic does not show whether the keywords assigned to
a given document have changed their weights and as a result, their mutual order.

10.2.1 Minimum Document Frequency

The below table shows the sensitivity when changing the minimum document frequency3:

Minimum DF Default (10) 1 20
Terms 10,484 97,360 6,269
Non-zero Elements 918,185 1,116,953 840,012
Assigned Keywords 55,777 56,690 55,130
Average Keywords per Page 11.16 11.34 11.03
Unique Keywords 2,276 2,657 1,889
Bigram Keywords 5.2% 7.7% 2.9%
Keywords from Page 84.1% 79.5% 86.9%
Common Keywords - 76.0% 81.0%

The first thing to notice is that the number of terms almost increases by an order of magnitude
when a minimum document frequency of 1 is specified. As a result, the (non-SVD part of the)
keyword extraction process will run almost 10 times slower. As for the bigrams, we see that
a low minimum frequency leads to relatively more bigram keywords, while a high minimum
frequency reduces the relative number of bigrams in the collection. This might be attributed to
the “rarity” of bigrams compared with normal terms.

1Please see section 11.2 below for an explanation of why these settings were selected as defaults.
2http://www.wikipedia.org/
3For both normal terms and bigrams.

http://www.wikipedia.org/
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Overall, the keyword extraction algorithm is somewhat sensitive to the minimum frequency,
since only approximately 80% of the original keywords remain after changing the settings in
either direction.

10.2.2 Maximum Document Frequency

The below table shows the sensitivity when changing the maximum document frequency:

Maximum DF Default (50%) 25% 100%
Terms 10,484 10,469 10,488
Non-zero Elements 918,185 883,332 950,749
Assigned Keywords 55,777 55,570 55,776
Average Keywords per Page 11.16 11.11 11.17
Unique Keywords 2,276 2,281 2,279
Bigram Keywords 5.2% 5.3% 5.2%
Keywords from Page 84.1% 83.5% 84.0%
Common Keywords - 95.2% 99.7%

The above table shows that, in general, the keyword extraction algorithm is not that sensitive
to the maximum document frequency. This is probably because the log-entropy weighting func-
tion already downscales the weight of frequent terms. However, having a maximum frequency
threshold decreases the number of non-zero elements slightly, leading to better performance in
the keyword extraction stage.

10.2.3 Filtering 1-Character Terms

The below table shows the sensitivity when disabling 1-character term filtering:

1-Character Filtering Default (ON) OFF
Terms 10,484 10,512
Non-zero Elements 918,185 928,040
Assigned Keywords 55,777 55,832
Average Keywords per Page 11.16 11.17
Unique Keywords 2,276 2,266
Bigram Keywords 5.2% 5.1%
Keywords from Page 84.1% 84.3%
Common Keywords - 94.2%

Overall, the keyword extraction algorithm is not that sensitive to 1-character term filtering,
since only a limited amount of 1-character terms are possible (all alpha-numeric characters).
However, 5% of the keywords change when the filtering is disabled, signifying that at least some
1-character terms are assigned as keywords. This is not desirable, since 1-character terms do
not carry much meaning (if any).
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10.2.4 Using Bigrams

The below table shows the sensitivity when disabling bigrams:

Find Bigrams Default (ON) OFF
Terms 10,484 10,077
Non-zero Elements 918,185 902,836
Assigned Keywords 55,777 55,727
Average Keywords per Page 11.16 11.15
Unique Keywords 2,276 2,252
Keywords from Page 84.1% 85.6%
Common Keywords - 81.59%

The above shows that even though bigrams only account for 5.1% of the assigned keywords with
the default setting, almost 20% of the assigned keywords change when bigrams are disabled.
This is probably due to the way that SVD works, and we must thus conclude that the keyword
extraction algorithm is sensitive (to whether bigrams are used or not) beyond the actual bigram
keywords.

10.2.5 Local Weighting

The below table shows the sensitivity when changing the local weighting function:

Local Weighting Function Default (Mondosoft’s Weight) Term Frequency
Assigned Keywords 55,777 56,301
Average Keywords per Page 11.16 11.26
Unique Keywords 2,276 2,291
Bigram Keywords 5.2% 5.1%
Keywords from Page 84.1% 87.3%
Common Keywords - 81.33%

The keyword extraction algorithm is sensitive to the chosen local weighting function, since
only around 80% of the keywords are the same after changing the local weighting function to
term frequency. However, the sensitivity is not as high as one could have imagined, taking the
difference between the two functions into account.

10.2.6 Global Weighting

The below table shows the sensitivity when changing the global weight function:
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Global Weight Function Log-Entropy One Log-IDF Entropy IDF
Assigned Keywords 55,777 55,530 56,892 54,579 61,810
Average Keywords per Page 11.16 11.11 11.38 10.91 12.36
Unique Keywords 2,276 1,359 2,337 952 3,886
Bigram Keywords 5.2% 0.1% 0.1% 6.8% 0.7%
Keywords from Page 84.1% 96.3% 86.8% 98.2% 46.1%
Common Keywords - 52.2% 78.5% 36.6% 16.9%

The above table clearly shows that the keyword extraction algorithm is very sensitive to the
applied global weight function. IDF, Log-IDF and the unit function (One) all significantly lower
the relative number of bigrams assigned as keywords. This is evidence that the found bigrams
have a different distribution in the document collection than “average” terms. As approximately
4% of the found terms are bigrams, the entropy-based algorithms apparently tend to favour this
kind of distribution, while the other algorithms tend to do the opposite.

IDF appears to assigning more assigned keywords per page than the other algorithms. Fur-
thermore, IDF also tends to favour inferred keywords (not in the page they are assigned to),
whereas entropy and the unit function (One) seem to favour keywords present in the given page.
However, the latter two functions also use a significantly lower number of keywords to describe
the entire document collection, whereas IDF uses significantly more unique keywords to describe
the collection.

Overall, the global weight function turns out to be the parameter that the keyword extraction
algorithm is the most sensitive to. Surprisingly, IDF and Log-Entropy are the most different
functions (they only have 16.9% of the keywords in common) even though both aim to promote
rare terms.

10.2.7 Synergy: LSA-Dimension

The below table shows the sensitivity when changing the LSA dimension:

LSA Dimension Default (300) 50 150 450 600
Assigned Keywords 55,777 61,825 57,078 55,336 55,003
Average Keywords per Page 11.16 12.36 11.41 11.07 11.00
Unique Keywords 2,276 602 1,360 3,110 3,729
Bigram Keywords 5.2% 2.3% 4.4% 5.4% 5.5%
Keywords from Page 84.1% 60.0% 75.8% 87.8% 90.1%
Common Keywords - 36.2% 65.2% 77.9% 67.2%

As expected, the keyword extraction algorithm is very sensitive to the LSA-dimension, as can
also be seen in appendix A. It is clearly seen that the number of unique keywords used to describe
the collection increases as the size of the LSA-dimension increases, which is of course expected.
Relatively, the number of bigram keywords also seems to increase as the LSA-dimension in-
creases. Finally, the number of inferred keywords increases as we lower the LSA-dimension in
full accordance with our experiments in appendix A.
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10.3 Search Result Clustering

We have designed 4 small cases demonstrating the capabilities of the implemented preliminary
search result clustering. Each case is designed as a 1-word search, where the search word has
two or more meanings. An example of this kind of search could be “jaguar”, where one might
both get results related to the animal and the vehicle of the same name.

Each case is focused on the information needs of a hypothetical user and a corresponding 1-word
search, where the word is ambiguous. As test data, we have used the same 10,000-page subset
of Wikipedia, which is also used by our user test (see chapter 11). We have used a clustering
that was made with Apriori using the settings in appendix F. We have chosen the following 4
search words as a basis of our demonstration:

• Bush could either be related to persons with this name (e.g. the two American presidents
etc.), a specific class of plants (e.g. sagebrush) or a general concept referring to an area in
nature (e.g. the “Australian Bush”). In this case, we have chosen the latter two meanings
as the areas, the user is interested in, since both are related to nature.

• Cd is a common abbreviation used for several things including “Compact Discs”, “Can-
dela” and “Cadmium”. In this case, we have chosen “Cadmium” as the user’s area of
interest.

• Cluster could either be related to astronomical clusters of stars and galaxies, clusters
within biology, clusters as in this report or clusters of interconnected computers used in
the area of high-performance computing. In this case, we have chosen high-performance
computing as the user’s area of interest.

• Dwarf could either refer to a biological definition of reduced growth or to astronomical
objects like “red dwarfs”. In this case, we have chosen astronomy as the user’s area of
interest.

For each case, we assess the results by locating the result clusters that are affiliated with the
user’s area of interest. We then calculate precision for each located cluster defined as the number
of relevant documents compared to the total number of documents in the cluster. We thereafter
calculate the combined recall of the clusters defined as the number of relevant documents found
in these clusters compared with the total number of relevant documents in the search result.

For each case, we have gone through the entire search result and identified the documents that
were relevant to the area of interest based on the way the search word was used in the document.
The result of this is a list of relevant and irrelevant pages with duplicates4 removed.

10.3.1 Case 1: Searching for “Bush”

In this case, a 1-word search for documents containing the word “Bush” yields 124 pages. We
have applied our preliminary result clustering on these pages in appendix K.15, where we also

4Duplicate pages exist due to the structure of Wikipedia, which contains many pages that are identical except
from their URL.

5The pages in the clusters are not ranked and in random order.
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show the compiled list of relevant and irrelevant pages in the search result. As mentioned above,
the user’s area of interest was nature, thus the only cluster with an interesting label is TREE.

TREE contains 7 pages, all part of the relevant set. The precision is thus 100%. The size of the
relevant set is 10 pages and the recall is thus 70%.

10.3.2 Case 2: Searching for “Cd”

In this case, a 1-word search for documents containing the word “Cd” yields 68 pages. We have
applied our preliminary result clustering on these pages in appendix K.2, where we also show
the compiled list of relevant and irrelevant pages in the search result. As mentioned above, the
user’s area of interest was chemistry, thus the clusters with interesting labels are TABLE, METAL
and ATOMIC.

TABLE contains 17 pages, where 16 are part of the relevant set. The precision is thus 94.1%.

METAL contains 14 pages, where 13 are part of the relevant set. The precision is thus 92.9%.

ATOMIC contains 5 pages, where 5 are part of the relevant set. The precision is thus 100%.

The size of the relevant set is 16 pages that are all covered by the above clusters. The recall is
thus 100%.

10.3.3 Case 3: Searching for “Cluster”

In this case, a 1-word search for documents containing the word “Cluster” yields 171 pages.
We have applied our preliminary result clustering on these pages in appendix K.3, where we
also show the compiled list of relevant and irrelevant pages in the search result. As mentioned
above, the user’s area of interest was high-performance computing, thus the only cluster with
an interesting label is CPU COMPUTER MACHINE.

CPU COMPUTER MACHINE contains 5 pages, all part of the relevant set. The precision is thus
100%. The size of the relevant set is 5 pages and thus the recall is also 100%.

10.3.4 Case 4: Searching for “Dwarf”

In this case, a 1-word search for documents containing the word “Dwarf” yields 98 pages. We
have applied our preliminary result clustering on these pages in appendix K.4, where we also
show the compiled list of relevant and irrelevant pages in the search result. As mentioned
above, the user’s area of interest was astronomy, thus the clusters with interesting labels are
WHITE_DWARF (as a bigram) and STAR.

WHITE_DWARF contains 32 pages, where 28 are part of the relevant set. The precision is thus
87.5%.

STAR contains 31 pages, where 29 are part of the relevant set. The precision is thus 93.5%.
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The size of the relevant set is 36 pages and 33 of these are covered by the above clusters. The
recall is thus 91.7%.

10.3.5 Final Remarks

In several of these cases, finding the relevant pages required browsing through almost the entire
search result. However with the search result clustering, the excellent recall and precision
numbers gained above is attainable by simply browsing a few clusters.

The above results indeed look very promising, both with regard to recall and precision. However,
in general, one has to expect that search result clustering might improve precision at the cost
of recall, since relevant documents might sometimes treat several areas and thus not end in the
right clusters.

It is also important to emphasise that the above results are based on words with two or more
separate meanings, and they are thus the ideal cases for using search result clustering. For
normal searches, relevant and irrelevant pages might be closer to each other and thus harder to
distinguish for the clustering algorithms.



Chapter 11

User Test

In this chapter we evaluate the quality of the similar pages found using the implemented clus-
tering algorithms by means of a user test. The overall purpose of this user test is to establish
how our algorithms compare to each other and how well they compare to a simpler search-based
similar page approach. Comparing the algorithms based on their ability to find similar pages is
also a good measure of how they compare based on the homogeneity of small clusters1.

To assess the feasibility of using clustering in general – and our algorithms in particular – for
finding similar pages, we have decided to test the algorithms against a simple, but effective
scheme based on search (that Mondosoft has also been considering). The scheme works by
performing a search for the 20 terms with the highest local weight in the given page. The idea
is that pages that rank high in the result of this search must be more or less similar to the
original page. Provided that the 20 query terms represent the content of the original page in
a sufficient way, this “truncation plus search” scheme actually makes quite a lot of sense. We
have thus chosen it as a baseline that can be used to assess whether our implemented clustering
algorithms (and clustering in general) produce comparable results.

In addition to testing the implemented clustering algorithms, we would also like to assess the
feasibility of our novel approach to keyword extraction (Synergy). More specifically, we would
like to evaluate whether (when used for clustering) it produces small clusters of higher quality
than those that can be obtained using truncation purely based on MondoSearch’s local weighting
(i.e. no filtering, no bigrams and no global weighting2). For larger clusters, our preliminary
testing have determined that using truncation only leads to few and small clusters, due to the
low overlap between keywords. While these small clusters might still be good for more-like-this,
they would be disastrous in connection with search result clustering, since they are not large
enough to cover a search result in a small number of large clusters – most search results would
hence end in the “misc.” category.

Our test thus has three objectives:

• Our main objective is to compare the quality of found similar pages for the three feasible
clustering algorithms (K-Means, PDDP and Apriori).

1Due to the way we have implemented the similar page algorithm, it mainly utilises small clusters in the
bottom part of the hierarchy/lattice.

2For technical reasons stemming could not easily be turned off, so stemming was still performed.
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• Our secondary objective is to compare the clustering algorithms with the search-based
similar page approach outlined above.

• Our tertiary objective is to compare Synergy’s and the simpler truncation approach’s
suitability for subsequent clustering.

We have chosen to test the above based on the opinions of users, since a truly objective measure
of the quality of found similar pages (and thus the underlying clustering) is difficult to provide.
In addition, we believe that it is the users’ (subjective) opinions and experiences that count, since
humans after all are the ones that determine the success of any information retrieval system.

Below we will outline the test methodology and explain the choices of algorithm parameters,
before finally presenting the results of the user test.

11.1 Methodology

11.1.1 Choice of Test Data

We have chosen a random 10,000 page subset of Wikipedia as our test collection, since Wikipedia
articles usually have one easily grasped main topic and, in addition, they provide an interesting
read. After clustering these, we have randomly selected 1,000 pages and found similar pages for
them using our three clustering algorithms and the search-based approach.

In addition, we have randomly selected 250 (other) pages for testing the keyword extraction.
Again, we have found similar pages for these, this time using Apriori3 with either keywords
generated by Synergy or by pure truncation.

Before performing the actual user test, we have removed ambiguous articles that have more than
one main topic from both sets, to prevent these from confusing the users and thus polluting the
user test.

11.1.2 Test Design

To reach the widest set of participants, we have used an electronic web-based4 user test that
presents the user with a page and two or four sets of similar page lists, each containing (in
ranked order) 10 similar pages found by a given algorithm. For the tests of the three clustering
algorithms and the search-based approach, 4 sets of similar pages are presented, while only 2
sets are presented for the tests concerning the keyword extraction methods. The idea is then
that the user should choose the set of similar pages that he/she feels best matches the original
page.

The different algorithms are presented in random order in order to make the test as “blind”
as possible. Furthermore, the pages to test are also presented in random order, and the user

3Since this algorithm (together with GALOIS) is the most sensitive to overlap between keywords.
4We would like to thank Allan Thræn and Michael Viehweg from Mondosoft for their help in setting up the

back-end needed to perform the web-based test.
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can continue testing until he/she chooses to end the test by choosing “stop test” or closing the
window. For screenshots of a test and the initial demographic questionnaire that the user is
presented with, see appendix M.

The initial demographic questionnaire classifies the users using the following criteria:

• Age

• Gender

• Experience level with information retrieval:

– Novice: Users that have little or no experience using search engines.

– Intermediate: Users that are using Google or equivalent (e.g. Yahoo) on a regular
basis.

– Expert: Users that have experience with multiple search engines, and know how to
perform advanced searches.

– Guru: Users that have participated in creating a search engine.

Test participants were invited using the email shown in appendix L that briefly explains the
objective of the test, and gives a small guide to participating in the test. The email was sent
to employees of Mondosoft, faculty of IMM5, friends and family. The recipients were invited to
participate in the test whenever it was convenient within a three-week period.

11.1.3 Test Evaluation

To statistically evaluate the results of the user test, we have used a binomial model6. Using this
model, we will be able to determine which statistically significant conclusions that can be drawn
from the participants’ choices.

11.2 Optimisation of Algorithm Parameters

Since the clustering algorithms as well as the preprocessing and the keyword extraction stages
all depend on several parameters (settings), we briefly motivate our choice of these below.

We have chosen to use a minimum document frequency of 10 for terms and bigrams, since our
sensitivity analysis shows that the number of terms decreases by an order of magnitude using
this setting compared with no minimum frequency, thus significantly speeding up our algorithms.
Choosing a higher minimum frequency does not make sense, since we need rare terms for the
small clusters that our similar page method requires. Finally, most of the words with a low
document frequency are either spelling mistakes, or words unsuited for clustering, since too few
other documents contain them.

5Informatics and Mathematical Modelling, the institute at the Technical University of Denmark that we are
associated with.

6We would like to thank our supervisor, Jan Larsen, for suggesting and providing this model.
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The maximum document frequency is set to 50%, since words having a document frequency this
high must be considered stop-words, especially for a collection like Wikipedia. We have also
chosen to filter out 1-character words and numbers with less than 4 digits, since these do not
make meaningful keywords.

Since research indicates that bigram terms improve clustering, we have enabled bigram extrac-
tion based on scheme 2, since we do not have behaviour tracking data (needed for scheme 1)
available for Wikipedia.

For weighting, we have used Mondosoft’s weighting as local weight function, since our informal
tests show that this more advanced scheme captures better keywords for the documents. For
global weighting, we have used log-entropy, since there seems to be some indication that LSA
works especially well with this method. The pseudo-weight assigned to bigram terms7 is op-
timised so that the percentage of bigrams assigned as keywords is the same as when using pure
term frequencies.

For Synergy, we have used an LSA dimension of 300, since this value is a good compromise
as discussed earlier (in section 3.2). We also normalise the document vectors to compensate
for the difference in length of Wikipedia articles before running Synergy. We have chosen to
extract a minimum of 10 keywords per page, to ensure sufficient overlap between pages to form
the needed small clusters. To reduce noise and to make computations efficient (especially for
Apriori), we have set a maximum number of 20 keywords per document. Finally, we have used a
keyword cutoff ratio of 0.5, since preliminary testing has shown that this produces good cutoffs
as discussed in section 6.1.6.

For K-Means and PDDP, the maximum number of partitionings is set to 90% of the document
collection size (i.e. in this case 9,000) to ensure that the desired small clusters are generated.
For Apriori, we have likewise set the minimum support to 5 to ensure small clusters. For both
PDDP and K-Means, Cosine is chosen as distance measure, due to the advantages of this measure
mentioned in section 7.1.6.

The above determined settings are listed in appendix F.

11.3 Results: Demographics

Given the relatively short time span of the user test, we were unfortunately not able to collect
enough data/samples for analysing the differences between the demographic groups. However,
the demographic data gives an impression of the kinds of test participants we had. All in all, 33
persons participated in the test, performing 158 cluster algorithm comparisons and 38 extraction
algorithm comparisons.

As can be see in the chart in figure 11.1, we have an over-representation of men in the test.
With regard to experience, the distribution (seen in figure 11.2) matches our expectations: Few
novices and gurus compared to more intermediates and experts. Finally, we also had an over-
representation of “young” people as can be seen in figure 11.3.

Since most users only evaluated a rather limited number of pages, it is difficult to determ-

7To compensate for the fact that MondoSearchTM does not provide a weight for bigrams.



11.3 Results: Demographics 119

18%

82%

Male Female

Figure 11.1: The gender distribution.
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Figure 11.2: The experience distribution.
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Figure 11.3: The age distribution.

ine whether the results contain any learning effects. For the few longs tests the participants
performed, we have not been able to identify any significant difference between the choice of
algorithms in the beginning and the choice of algorithms in the end.
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11.4 Results: Finding Similar Pages
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Figure 11.4: The results of the algorithm user test.

The results of the test concerning our three clustering algorithms and the search based approach
are shown in figure 11.4.

Applying the binomial model on the results, we can conclude the following:

• On a 4.4% significance level, there is evidence that the users preferred Apriori to the
search-based approach.

• On a 2.1% significance level, there is evidence that the users preferred Apriori to K-Means.

• On a 0.1% significance level, there is strong evidence that the users preferred the search-
based approach to PDDP.

• On a 0.3% significance level, there is strong evidence that the users preferred K-Means to
PDDP.

• We cannot reject (the null-hypothesis) that K-Means and the search-based approach find
similar pages of equal quality.

The implemented clustering algorithms’ ability to find similar pages can thus be ranked in the
following order:

1. Apriori

2. K-Means

3. PDDP

For the small clusters used in connection with search result clustering, Apriori hence seems to
perform the best. However, before discarding K-Means and PDDP, tests should also be made
to test how well the algorithms perform for larger clusters (e.g. in connection with search result
clustering).
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Also, two of our algorithms are as good as or better than the search-based approach, which
is a strong indicator that using clustering for finding similar pages is a feasible and promising
solution. Especially, if the clustering is already available because it is used for other purposes
(e.g. result clustering). On the other hand, the search-based approach did not perform that bad
either and since it is simpler to implement it should probably not be discarded yet. Research
should be undertaken to determine whether the search-based approach could be improved by
using better search-terms, selected with another algorithm than pure truncation based on local
weights8.

11.5 Results: Comparing Synergy and Pure Truncation

26%
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Synergy Truncation

Figure 11.5: The results of the keyword extraction user test.

The results of the test concerning Synergy and pure truncation are shown in figure 11.5. The
results clearly indicate that the more advanced LSA-based approach (including filtering, bigrams
and global weighting) also for small clusters yields better results than pure truncation based on
MondoSearch’s local weighting.

If we apply the binomial model on the results, we find strong statistical evidence that users
prefer Apriori using Synergy instead of pure truncation on a 0.1% significance level.

8It could be interesting to see how “Synergy plus search” would perform.
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Chapter 12

Conclusion and Future Work

12.1 Conclusion

The overall aim of this project was to help Mondosoft to evaluate the quality and feasibility
of using clustering to improve their information retrieval products. More specifically focusing
on applying offline clustering to find similar pages and, to a lesser extent, for clustering search
results. In order to achieve this objective, we have designed and implemented a clustering toolkit
based on the results of a comprehensive literature study and analysis. The analysis has focused
on research into both clustering and the information retrieval process that clustering is a part
of. Our main contributions thus consist of the implemented clustering toolkit – including several
novel ideas/approaches of our own – and the findings we have obtained using this toolkit.

Implemented Toolkit

Based on the above analysis, we chose to continue working with 5 promising clustering algorithms
spanning different classes of clustering methods. We further decided to use an unconventional
approach, spliting the clustering stage into two stages: Keyword extraction and keyword-based
clustering. This was done in order to filter out noise, to allow lattice based clustering and to
make clustering fast and thus feasible in connection with large websites.

We have designed the clustering toolkit to be both flexible and modular, allowing experiments
combining different algorithms and easy addition of additional (clustering) algorithms later. We
have also fulfilled the requirements of integration with Mondosoft’s products as specified in the
problem definition (see section 2.3.2).

The clustering toolkit incorporates the following major components covering the entire clustering
process from data extraction to postprocessing:

• Data extraction directly integrated with MondoSearchTM.

• A preprocessing module including filtering, stemming using tries, two novel methods for
bigram extraction (one of these utilising data from BehaviorTrackingTM) and various kinds
of weighting functions.
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• A keyword extraction module using our own novel approach based on Latent Semantic
Analysis.

• Modules implementing prototypes of the 5 promising clustering algorithms, namely: K-
Means, CURE, PDDP, GALOIS and a novel Apriori-based fast method for building Galois
lattices.

• A postprocessing module including functions for generating similar pages and a preliminary
approach for generating search result clustering.

Main Findings

Using the implemented toolkit, we have made an assessment of the performance of the different
algorithms with regard to running-time and memory consumption. We have found that the
implemented preprocessing module scales roughly linear (in the number of pages) both with
regard to running-time and memory.

We have also found evidence that the number of terms added after filtering seems to scale degress-
ively with the size of the document collection, even in wide-spanning collections like Wikipedia.
The average number of new terms per added document seems to stabilise at less than 1. Our
experiments also show that for large collections, stemming based on the implemented Porter
stemmer reduced the term space by more than 20%. It is unknown whether this percentage
will decrease for larger collections. This is unfortunately likely, since new terms added for large
collections will increasingly be proper nouns, spelling mistakes etc. that neither can nor should
be stemmed.

The implemented LSA-based keyword extraction approach (Synergy) consists of two computa-
tionally expensive processes: The Singular value decomposition of the term-document matrix,
and the extraction of keywords by constructing an approximated term-document matrix from
the leading singular values and vectors. For the SVD, we have found that the running-time scales
more or less linearly with the number of non-zero entries (i.e. the number of term-document
relations) in full accordance with the theory. We have determined that the extraction part scales
in very strict accordance with the theoretical complexity. It scales with the number of docu-
ments times the number of terms. This part of the extraction should benefit from the decreasing
number of new terms per document as the collection size grows beyond the size that we have
measured. For both parts of the Synergy keyword extraction scheme, the memory consumption
scales near-linearly.

The empirical evidence found during our testing strongly suggests that both CURE and GALOIS
are unfeasible in terms of running-time. Both algorithms scale quadratically and involve very
large constant factors. K-Means and PDDP also ran in quadratic time (as expected), but with
low constants. The running-time of these was quadratic, since we desire clusters of a fixed
minimum size and not a fixed number of clusters. Both K-Means and PDDP had excellent
memory performance scaling roughly linearly with the number of documents. The running-time
of Apriori is (as expected) remarkably good – it scales near-linearly with low constants when
using a fixed minimum support threshold. Apriori should run even faster if the minimum support
was to be given as a percentage of the collection size. However, Apriori has a relatively high
memory consumption, which is partly due to minor shortcomings in the current implementation.

For the lattice-based algorithms, we have found that for Wikipedia (which spans a very large
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knowledge domain) the lattice size seems to grow linearly with the size of the document collec-
tion. On the other hand, for a single-domain collection spanning information science abstracts
(CISI), we found that the number of lattice nodes added per new document stabilises much
earlier. For low LSA-dimensions (used during keyword extraction), we even found evidence of
saturation effects1 when clustering CISI.

We have also found evidence that the lattice size depends greatly on the LSA dimension used in
the keyword extraction stage. A high LSA-dimension yields small lattice sizes due to low overlap
between the keywords assigned to the individual documents. Surprisingly, a low dimension also
yields a small lattice, this time due to saturation effects. The maximum lattice is created
exactly when maximum keyword overlap is achieved and saturation effects avoided. Empirically
we found this to be at a relatively low dimension for the CISI collection. Finally, we have also
found that the lattice size depends on the average number of keywords assigned per document - it
scales quadratically or worse with the average number of keywords. The lattice-based algorithms
thus depend on a limited number of keywords to be feasible.

We have shown that our approach to finding similar pages scales linearly for a single page and
thus quadratically for the whole collection when constructing a table of similar pages.

During our work on implementing and experimenting with the clustering toolkit, we have dis-
covered that clustering webpages (contrary to clustering pure text documents) presents some
challenges due to the way typical webpages are made. These challenges mean that we have had
to make adjustments to the way we filter and extract data, specific to each of the sites that
we have tested, to gain maximum cluster quality. Because of this, we believe that it would be
difficult to make a product based on clustering that works optimally “out-of-the-box”, without
having to first fine-tune it to the given site.

The performed sensitivity analysis shows that the extracted keywords and thus the subsequent
clustering is quite sensitive to most preprocessing parameters. With regard to the choice of
LSA-dimension, we see the expected effect that the lower the chosen dimension is, the more
keywords are inferred (i.e. keywords not in the document that they are assigned to), and the
lower the size of the space spanned by the assigned keywords becomes. Furthermore, our tests
indicate that a minimum document frequency threshold of 10 reduces the number of terms by an
order of magnitude, and thus improves the running-time of the keyword extractor significantly.

To test the capabilities of the implemented algorithms2 with regard to finding similar pages,
we have conducted a web-based user test. This user test was to establish how our algorithms
performed compared to each other and how they performed compared to a simpler search-based
approach. In addition, the test should uncover how the elaborate LSA-based keyword extraction
approach performed in connection with subsequent clustering, compared with simple truncation
of words based on local weights. 33 persons participated in the user test, making a total of 196
evaluations of similar pages. Fortunately, this provided an adequate amount of data for making
statistically valid conclusions about the above.

On a statistically significant level, we have established that the tested algorithms rank in the
following order: Apriori, K-Means and PDDP. This indicates that the lattice-based approach
of Apriori seems to outperform (in terms of quality) the partition-based approaches used by K-
Means and PDDP. However, further studies should be conducted to establish whether Apriori

1I.e. the average number of nodes added per documents starts decreasing.
2The 3 feasible algorithms: K-Means, PDDP and CURE.
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is also better for larger clusters (for instance in connection with search result clustering).

We also found statistically significant evidence that Apriori performs better than the search-
based approach. However, based on the statistical analysis, we were not able to determine
whether the search-based approach or K-Means produce the best similar pages. Thus, two of
our algorithms currently seem to be as good as or better than the search-based approach, which
indicates that using clustering for finding similar pages is a both feasible and promising approach.
However, the search-based approach should not be discarded either, since it is much simpler to
implement and might be improved using another scheme for selecting the search terms.

With regard to Synergy, the LSA-based keyword extraction scheme, we have found strong evid-
ence that this scheme (when used for subsequent clustering) produces small clusters of far higher
quality3 than the simple truncation of terms based on local weight.

Finally, we have made a small test/demonstration of our preliminary search result clustering
approach. The results of this look very promising with high precision and recall for the relevant
clusters within the search results. However, further studies should be conducted to determ-
ine whether this (for words that are not as ambiguous as our samples) lead to better search
effectiveness, efficiency and experience.

All in all, we consider our implemented clustering toolkit and the findings we have made using
this a considerable success. A success that Mondosoft should be able to use as a foundation
for further work and studies within the field of clustering. Hopefully this will lead to actual
products, with notable benefits for their users and customers, down the road.

12.2 Recommendations to Mondosoft

Since we now approach the end of this project, it is time to “pass on the baton” to Mondosoft.
This section is therefore meant to assist Mondosoft in converting our work and research into
actual products and benefit for their customers.

12.2.1 Finding Similar Pages

With regard to finding similar pages, we recommend the following:

1. First, research should be carried out to assess the impact of using a more-like-this feature
in connection with Mondosoft’s existing search engine. How can it be used to best improve
the search efficiency, effectiveness and experience for the users (if at all)?

2. If it turns out that the above feature yields notable improvements, a decision should
be made whether to use clustering for this or the less complex search-based approach.
Our research shows that Apriori-based clustering is significantly superior to the simpler
approach. However, attempts might still be made to try to improve the quality of the
search-based approach using better search terms, since this approach is much simpler than
actual clustering.

3At least when the clustering is evaluated based on the similar pages that it is able to find for a given document.
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3. Finally, a prototype product should be implemented, and, if the decision to use clustering
is made, an optimised version of the Apriori clustering scheme should be utilised.

12.2.2 Search Result Clustering and Beyond

With regard to search result clustering, our preliminary experiments show that this is a very
promising approach for improving recall and precision at least in connection with ambiguous
searches. We recommend that the following steps are taken:

1. First, a more finished prototype based on our preliminary approach should be designed
and implemented (working with the three feasible clustering algorithms).

2. This prototype should be integrated with MondoSearchTM, and studies should be made to
determine if search result clustering generally improves the search efficiency, effectiveness
and experience. It should further be determined, both from a technical and a user-minded
standpoint, how this is best done.

3. The offline clustering-based approach discussed in this report should, if possible, also be
compared with online methods for directly creating search result clustering. This will help
establishing whether the online alternative (e.g. suffix-tree clustering), which is a more
direct approach, might yield comparable results.

In addition to search result clustering, some of the other promising areas for application of clus-
tering (see section 2.2.2) should also be considered in connection with improving and expanding
Mondosoft’s suite of products:

• Investigate how clustering can be used as an automatic alternative to manually building,
maintaining and updating a Yahoo-like information hierarchy.

• Investigate how our implemented lattice clustering can be used in connection with guided/interactive
searches, allowing users to browse through the information content of a site by adding or
removing recommended search terms (keywords) on-the-fly. E.g. an improved version of
what Gigablast4 currently is doing.

• Investigate if the keywords found using Synergy can be used for other applications than
clustering. E.g. auto-tagging documents with keywords.

• Investigate whether it is feasible to automatically classify documents based on a given
taxonomy utilising keywords that we have assigned using Synergy and some ideas from
clustering.

12.2.3 Recommended Enhancements

Due to the inherent limited time frame of this project, we have mainly focused on building exper-
imental prototypes and the current implementations should hence be enhanced and optimised
before they can form the basis of actual products.

4http://www.gigablast.com/

http://www.gigablast.com/
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Besides from improving data structures and optimising algorithms in general (especially in terms
of the memory consumption of Apriori), the stemming algorithm should be made multi-lingual,
since Mondosoft targets several languages. We hence recommend that a multi-language stemmer
is implemented that integrates with our implemented clustering. This could either be realised
using Porter-like stemmers designed for the target languages, or, using another, more language-
independent, approach. All other parts of our implemented modules are multi-lingual by design,
and should thus be ready to be integrated in multi-lingual products.

Another practical enhancement that we recommend for implemenation is a scheme to control
the keywords assigned to documents, where a “white-list” can be used to “boost” the weights
of some keywords and a “gray-list” to decrease the importance of others. In practice, this could
be a number between -1 and 1, assigned to chosen words, where -1 means that the word is never
assigned as keyword and 1 means that it is always assigned as keyword if it is present on the
page. Values between -1 and 0 should be used to relatively decrease the weight of the given
word, whereas values between 0 and 1 should be used to relatively boost the weight of the given
word.

12.3 Future Work

As well as passing on the “practical” baton to Mondosoft, the academic implications of our thesis
work lead to several interesting opportunities for future work and research. Below, we outline
some of these that naturally follow from our work and the conclusions that we have made:

• Further research should be done into how different keyword extraction schemes work with
the various clustering algorithms, in order to establish whether our LSA-based approach
is the best suited for clustering.

• Further studies should be made, investigating how our two-stage approach compares in
quality to clustering algorithms using the full term space (e.g. K-Means using full term
space vs. K-Means using keywords).

• Alternative and more automatic ways of evaluating the clusters generated by our al-
gorithms should be investigated as a complement to more user-focused methods like user-
tests, since this can be used as guidelines for the development. However, as already
touched upon, we strongly believe that the end result should be evaluated according to
the experiences, opinions and behaviour of actual users.

• A study comparing manually assigned keywords with the ones assigned by Synergy when
used in connection with lattice-based clustering5 (Apriori).

• The methods investigated in this report primarily consider documents as bags of words
(and bigrams). They should thus be compared with methods that utilise sentence struc-
ture and word order to a greater extent (e.g. suffix-trees and approaches using linguistic
knowledge).

5Manually assigned keywords cannot be directly used with clustering algorithms utilising the vector model,
since this model requires that each keyword-document relation is assigned a weight.
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• Further research should be carried out to establish the impact of using bigrams (and n-
grams in general) to see if bigrams are an advantage to clustering applications, and whether
the added benefits outweigh the disadvantage of a larger term space.

• Experiments should also be carried out using a lattice based approach (e.g. Apriori) to
cluster other features than keywords. This could for instance be queries that have led to
the user finding the document (and choosing it).

In addition, research into new methods of clustering that combine speed, low memory consump-
tion and quality in a feasible mix is still a relevant and interesting challenge.

12.4 Future Perspectives

Having worked intensively with information retrieval in general and clustering in particular, it
is our belief that clustering definitely has an important role to play in the future of information
retrieval. Clustering represents a way of discovering structure in the seemingly unstructured
data that comprises the vast web of information known as the Internet.

Since modern search engines, like Google and MSN, are operating near the current limits for
information retrieval in unstructured data, we believe that the next generation of information
retrieval tools are going to be increasingly based on automatically and manually detecting struc-
ture in online information. Such structure could take the form of categories (cf. Yahoo), clusters
(which, in a sense, are automatically detected categories) and other machine-readable metadata
(i.e. the much talked about Semantic Web).

The problems of low precision and “information overload” will continue to increase as the amount
of information available in electronic form on the Internet increases. To face up to this challenge,
new ways of increasing precision in connection with information retrieval should be sought, and
in this respect, clustering seems like a promising research area. Clustering offers an automatic
alternative to building, maintaining and updating an information hierarchy for a single site – or
the entire Internet – which can be used to improve and ease the information retrieval process.

In the future, everyone in our information-rich societies will increasingly be knowledge workers,
depending on finding and retrieving the right information at the right time. If clustering can be
harnessed to aid this process, it could be a part of the solution ensuring that the promises of the
Internet revolution turn into real benefits and not just the nightmare envisioned by Roussinov
and Chen in the quote from section 2.1:

“Our productivity in generating information has exceeded our ability to process it,
and the dream of creating an information-rich society has become a nightmare of
information overload.”
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Glossary

Affix An additional element placed at the beginning or end of a root, stem, or word, or in the
body of a word, to modify its meaning. [Oxford Dictionary]

Agglomerative clustering Agglomerative clustering methods start with an initial clustering
of the term space, where all documents are considered representing a separate cluster. The
closest clusters (using a given inter-cluster similarity measure) are then merged continuously
until only 1 cluster or a predefined number of clusters remain.

Apriori Apriori is a well-known data mining algorithm for discovering frequent itemsets in
a transaction database. We have implemented an extended version of this algorithm to do
lattice-based clustering.

BehaviorTracking(TM) Is an analytical reporting tool created by Mondosoft providing in-
formation on the search activity and visitor behaviour on a site using MondoSearch(TM).

Binary search In computer science, binary search is a fast search algorithm for searching a
set of sorted data for a particular value. [Wikipedia]

Bisecting K-Means The divisive version of K-Means we have chosen to implement.

Boolean algebra In formal logic, mathematics and computer science, Boolean algebras are
algebraic structures which “capture the essence” of the logical operations AND, OR and NOT as
well as the corresponding set-theoretic operations intersection, union and complement. [Wiki-
pedia]

Boolean model The Boolean model for information retrieval is a simple retrieval model based
on set theory and Boolean algebra. In its essence, the boolean representation of a document is
a set of terms, where the terms are words from the document. The term-document relations are
thus of binary nature.
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Chernoff bound In probability theory, the Chernoff bound gives a lower bound for the success
of majority agreement for n independent, equally likely events. Chernoff bounds are used in
connection with the sample-based version of CURE. [Wikipedia]

Cluster centroid The centroid of a cluster is the same as the vector-sum of all vectors in
the cluster divided by the number of vectors in the cluster – i.e. “the average document of the
cluster”.

Cluster hypothesis The cluster hypothesis states that relevant documents, to a given in-
formation need, tend to be more similar to each other than to non-relevant documents, and
therefore tend to appear in the same clusters.

Collection frequency See Global frequency.

Complete lattice In mathematics, a complete lattice is a partially ordered set in which all
subsets have both a supremum (join) and an infimum (meet). [Wikipedia]

Conflation The process of combining syntactic variations of words is known as conflation and
is a more general term for stemming.

Connecting result The connecting result states that any lattice can be conceived of as either
a partial order or as an algebra, or as both.

Core-terms Terms extracted from a document that capture the essence of the document’s
main topic/theme. Often we use the term “keywords” since we still think that this is the notion
that comes closest to describing the terms we want to extract.

Cosine distance measure This distance measure is often used in clustering and measures
the angular separation of documents.

Crawling Is the process where the links of a given set of websites are traversed to gather all
relevant pages for later indexing.

Crawl-time filtering Crawl-time filtering includes all filtering rules that can be set up before
actually crawling and indexing the data. This includes stop-lists, numbers not falling into specific
formats etc..

CURE CURE, Clustering Using REpresentatives, is an agglomerative hierarchical clustering
method that uses a single-link distance measure between clusters. It is one of the clustering
algorithms that we have implemented.
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Distance measure A distance measure (or, dually, similarity measure) lies at the heart of
document clustering. Several ways for measuring the distance between two documents exist,
some are based on the vector model (e.g. Cosine distance or Euclidean distance) while others
are based on the Boolean model (e.g. size of intersection between document term sets).

Divisive methods Divisive clustering methods start with a single cluster containing all doc-
uments. These methods continuously divide clusters until all documents are contained in their
own cluster or a predefined number of clusters are found.

Document classification Assigning documents into predefined groups/categories.

Document clustering We define clustering as the automatic discovery of document clusters/groups
in a document collection, where the formed clusters have a high degree of association between
members, whereas members from different clusters have a low degree of association.

Document frequency The number documents in which a given term occurs.

Entropy The basic concept of entropy in information theory has to do with how much ran-
domness there is in a signal or random event. An alternative way to look at this is to talk about
how much information is carried by the signal. [Wikipedia]

Euclidean distance measure This measure is based on the geometrical distance between
two documents in a Euclidean multidimensional space.

Extent The extent of a formal concept describes the subset of objects that belong to the
concept. A cluster’s extent consists of precisely those documents that contain the cluster’s
intent as a subset of their assigned keywords.

Features Are a generic notion used to describe terms or other information extracted from a
document with the intent of using it for clustering.

Filtering In clustering filtering of irrelevant words can reduce the size of the database as well
as serving the purpose of removing noise from the database.

Finding similar documents Finding similar documents is a popular way of enhancing the
search experience, allowing the user to identify pages containing desired information easier. This
is often implemented as a “similar pages” link next to each search result.

Flat clustering Clustering methods simply resulting in all the documents of the document
space ending in different clusters, without any hierarchy, are called flat clustering methods.
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Formal concept A formal concept is defined either by an intent or by an extent, or both.
The intent is a set of keywords that defines the concept and the extent is exactly the documents
that have these keywords in common.

Formal concept analysis (FCA) An emerging area that has many promising applications
within data analysis, information retrieval and knowledge discovery. The central notions in
formal concept analysis are formal context and formal concept.

Formal context Is a triple consisting of a set of object, a set of attributes and a binary
relation between the two former sets.

Frequent itemset A frequent itemset is a set of items that often (more than a given minimum
times) occur in the transactions in a given database.

Frobenius norm The Frobenius norm is a matrix norm of an m × n matrix defined as the
square root of the sum of the absolute squares of its elements. [MathWorld]

GALOIS GALOIS is a conceptual clustering method that generates soft clusters arranged
in a lattice structure. The algorithm solves the problem of automatically generating what is
known as a Galois lattice from a given set of objects – documents in our case – each with a
set of attributes – keywords in our case. GALOIS is one of the clustering algorithms we have
implemented.

Galois lattice A Galois lattice represents a conceptual hierarchy of the objects in a given
formal context, based on the object’s attributes within that context.

Global frequency The number of times that a given term occurs in the document collection.
This is sometimes also called collection frequency.

Global weight function A global weight function represents the weight of a term in the
entire document collection, and is a measure of how important the given term is as a descriptor
of documents in the given collection.

Hard clustering A clustering where clusters are non-intersecting. Also sometimes referred
to as a partitioning.

Heap In computer science a heap is a specialized tree-based data structure. Heaps must fulfil
a heap property (e.g. min-heap). Heaps are used to implement priority queues, sorting etc.



GLOSSARY 141

Hierarchical clustering Hierarchical clustering approaches attempt to create a hierarchical
decomposition of the given document collection thus achieving a hierarchical structure.

Incremental algorithm An algorithm producing results as the input is added one entry at
a time, allowing easy updating when new inputs are available.

Indexing In document clustering, indexing is responsible for building indexes of term/document
relations. Such indexes form the basis for the term-document matrix that is often the starting
point for the clustering process.

Infimum In mathematics the infimum of a subset of some set is the greatest element, not
necessarily in the subset, that is smaller than all other elements of the subset. Consequently the
term greatest lower bound is also commonly used. In lattice terminology this is found using the
meet operation.

Information Retrieval Information Retrieval (IR) is an emerging subfield of information
science concerning representation, storage, access and retrieval of information.

InformationManager(TM) Is a product from Mondosoft the utilises that data from Beha-
viorTracking(TM) to allow web managers to refine content and search experience when using
MondoSearch(TM).

Intent Formally, the intent is a set of attributes that defines a formal concept. In lattice-based
clustering the intent consists of exactly the keywords that the documents in the extent of the
cluster have in common.

Interactive search A form of search where the user drills down and finds the desired inform-
ation step-by-step by gradually refining the search.

KD-tree A multidimensional search tree for points in a multidimensional space. Levels of the
tree are split along successive dimensions at the points.

Keywords In this thesis keywords refer to the core-terms that we extract from documents to
capture the essence of their main topic/theme.

Keyword cutoff scheme Simple scheme implemented to ensure that the number of keywords
assigned to a given page is variable depending on the weight distribution of discovered keyword
candidates.
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K-Means A very straightforward clustering algorithm that partitions the documents in the
term space into K clusters, hence the name. The algorithm produces a hard, non-hierarchical
clustering. K-Means is one of the clustering algorithms that we have implemented.

Lanczos method A fast numerical methods for performing reduced SVD .

Learning effects A notion describing the situation where the answers of test participants to
the first questions/tests differ significantly from the ones later given – because the participants
gradually “learn” how they like to approach the test questions.

Local weight function The local weight function represents the weight of a given term in a
given document and is a measure of how related the term and document are.

LSA Is a statistical/mathematical method for indexing, retrieval and analysis of textual in-
formation. It is based on reduced SVD and the underlying dimensional reduction.

LSA-dimension Notion used to describe the number of leading singular triplets that is kept
when performing LSA.

LSA-subspace The latent subspace spanned by the leading singular vectors. This subspace
is of a lower dimension thatn the full term-document space.

Manhattan distance measure The Manhattan distance between two points in a Euclidean
space with a fixed Cartesian coordinate system is defined as the sum of the lengths of the
projections of the line segment between the points onto the coordinate axes.

Model-based clustering Model-based clustering is based on hypothesising models for clusters
in the document collection, and then for each document finding the cluster whose model the
document best fits.

MondoSearch(TM) Is Mondosoft’s multi-lingual search engine targeted at search within
individual (large) sites.

Mondosoft Mondosoft is a software company offering a suite of enterprise search, analytics
and site optimisation products.

More-like-this See finding similar documents.



GLOSSARY 143

Neural networks Neural networks are designed to emulate the internal functionings of the
human brain, more specifically, the neurons. Neural network-based methods rely on either
supervised or unsupervised learning to assigning multi-dimensional outputs to multi-dimensional
input.

Noise Irregular fluctuations and patterns that accompany data, but tend to obscure and not
contain meaningful data or other information. [Oxford Dictionary]

Offline clustering Creating and storing clusters in a fast database once and for all, and only
leaving simple operations to be performed when querying the database.

Online clustering Online clustering is performed on-the-fly when the clustering is needed.

Outlier Documents that are not particularly related to any other documents in the collection,
these documents can thus be considered as noise when performing document clustering.

Overstemming Overstemming is a common problem when using stemming algorithms and
occurs when two unrelated words such as “engineer” and “engine” are conflated.

Partial order In mathematics, a partially ordered set is a set equipped with a binary partial
order relation, formalising the intuitive concept of a (not necessarily total) ordering. [Wikipedia]

Partition-based clustering Partition-based clustering algorithms partition a document col-
lection into a number of hard clusters using a given distance measure.

PDDP PDDP, Principal Direction Divisive Partitioning, is a fast hierarchical clustering al-
gorithm that we have implemented.

Polysemy The coexistence of many possible meanings for a word or phrase. [Oxford Diction-
ary]

Post-crawl filtering Is filtering that is done after the crawling using the global to filter out
unwanted terms.

Postprocessing The actual applications of a document clustering to some purpose within
information retrieval is what we refer to as “postprocessing”.

Precision Refers to the common information retrieval metric defined as the number of relevant
documents in the result compared to the total number of documents in the result.



144 GLOSSARY

Prefix One or more characters in the beginning of a word.

Preprocessing Various subprocesses concerned with adapting the indexed document collec-
tion for clustering purposes are what we refer to as “preprocessing techniques”.

Pruned Galois lattice The Galois latice that is produced by our extended version of Apriori.
This lattice only contains the concepts that have a specified minimum extent size.

Quicksort Fast sorting algorithm that is often used.

Recall The common metric used in information retrieval. It is defined as the number of
relevant documents found compared with the total number of relevant documents.

Saturation effect The situation where the average number of lattice nodes added per new
document starts to decrease as a result of saturation of the conceptual domain spanned by the
document collection.

Search result clustering Using Document clustering to automatically categorise a search
result into topic groups (clusters).

Similarity measure Dual to distance measure.

Soft clustering A clustering where a single document might be placed in several clusters at
once – clusters might have intersections with each other.

Sparse matrix A matrix storage format where only the non-zero values in the matrix are
stored together with their positions in the matrix.

Stem group Term groups that record words that are conflated together during stemming and
a candidate word to represent the group.

Stemming Automatic conflation algorithms that conflate words that share the same word
stem.

Stop-list A list of stop-words, that should not be indexed.

Stop-words Words that do not convey any practical information and thus are irrelevant for
information retrieval.
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Suffix A number of characters added at the end of a word to form a derivative form of the
word.

Supremum In mathematics, the supremum of an ordered set is the least element that is
greater than or equal to each element of the set. Consequently, it is also referred to as the least
upper bound. In lattice terminology this is found using the join operation.

SVD Singular Value Decomposition (SVD) is the mathematical matrix decomposition tech-
nique that lies at the heart of LSA.

Synergy Synergy is our novel keyword extraction technique based on LSA.

Synonymy The coexistence of several possible words for a given meaning or concept.

Term A word or string of characters extracted from a document.

Term weighting The process of determining non-binary weights for term-document relations.

Term/feature space The multidimensional space spanned by all the terms or features ex-
tracted from a document collection. Each document is then represented as a vector in this
space.

Term-document matrix The matrix representing the weighted term-document relations.
Often a sparse matrix format is used to save storage space.

Trie A trie is a tree structure that stores strings in such a way that there is one (and only
one) node for every common prefix.

Two-stage approach The splitting up of the document clustering into two stages: Keyword
extraction and keyword-based clustering.

User test A test using the opinion, experience or behaviour of actual users to evaluate a
system.

Vector (space) model This information retrieval model uses non-binary term-document
weights as weights modelling the relation between documents and terms.

Weight function A mathematical function used to weight term-document relations.
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Wikipedia Wikipedia is a Web-based, multi-language, free-content encyclopedia written col-
laboratively by volunteers. See http://www.wikipedia.org.

http://www.wikipedia.org
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Preliminary Experiments with Synergy



Some Preliminary Tests of the "Synergy" Keyword Extractor
- Keywords in bold are inferred (i.e. not present in the original document)
- Keywords are presented in descending relevance order

Document 1:

Editions of the Dewey Decimal Classifications
The present study is a history of the DEWEY Decimal Classification.  The first edition of the DDC was
published in 1876, the eighteenth edition in 1971, and future editions will continue to appear as needed.
In spite of the DDC's long and healthy life, however, its full story has never been told.  There have been
biographies of Dewey that briefly describe his system, but this is the first attempt to provide a detailed
history of the work that more than any other has spurred the growth of librarianship in this country and
abroad.

Pure Truncation:
dewey, ddc, edition, biographies, decimal, told, story, 1876, abroad, spite

LSA600:
dewey, edition, decimal, history, ddc, 1876, full, country, classification, growth

LSA400:
dewey, edition, decimal, classification, history, 1876, librarianship, growth, full, attempt

LSA300:
dewey, decimal, edition, classification, history, librarianship, udc, 1876, growth, attempt

LSA200:
decimal, classification, dewey, edition, librarianship, history, udc, published, 1876, detailed

LSA150:
classification, decimal, dewey, edition, librarianship, udc, history, universal, published, present

LSA100:
classification, decimal, edition, dewey, librarianship, udc, history, published, universal, scheme

LSA50:
classification, decimal, edition, udc, scheme, history, subject, documentation, dewey, librarianship

LSA40:
classification, decimal, scheme, udc, edition, growth, dewey, special, subject, universal

LSA30:
classification, decimal, scheme, udc, edition, growth, knowledge, subject, general, universal

LSA20:
classification, subject, decimal, documentation, scheme, indexing, edition, udc, international,
cataloguing

LSA10:
classification, subject, x, library, catalog, theory, language, indexing, rules, general

LSA5:
library, classification, book, theory, study, research, librarians, subject, analysis, university

Note:  The Universal Decimal Classification (UDC) was originally derived from Dewey Decimal
Classification (DDC) and LSA has correctly identified the relationship between these two schemes.
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Document 9:

Access to Libraries in College
This study assumed that an additional use study held less promise than an analytical consideration of
concepts. The basic approach was a survey comparing traditional and current professional ideas on direct
access.  Principal data-gathering instruments were documentary analysis and opinion questionnaire.

Findings of the documentary analysis included the following: Research from 1890 to 1970 on the direct
shelf approach and browsing left the problems largely unresolved and evidently resistant to established
methods of use and user research.  The need for an exhaustive study of concepts was confirmed.

Open shelf libraries--organized through shelf classification and relative location--were meant to arouse
the intellectual, social, and political interest of the average citizen and affect this democratic self-
realization.

Definitions of "browsing" varied greatly: self-indulgence by the untutored in objectionable works;
beneficial self-education for the general reader; valuable guidance for the scholar in his research.

Pure Truncation:
shelf, browsing, documentary, realization, indulgence, arouse, confirmed, democratic, direct, promise

LSA600:
shelf, documentary, browsing, direct, democratic, political, concepts, arouse, access, citizen

LSA400:
shelf, documentary, direct, browsing, access, concepts, approach, political, democratic, works

LSA300:
shelf, access, direct, documentary, browsing, concepts, approach, works, reader, research

LSA200:
reader, access, shelf, direct, research, analysis, approach, libraries, gathering, study

LSA150:
research, access, approach, shelf, reader, libraries, concepts, survey, analysis, study

LSA100:
classification, method, research, libraries, concepts, study, college, approach, survey, area

LSA50:
classification, libraries, research, university, academic, data, problems, study, bases, survey

LSA40:
classification, libraries, university, research, data, academic, analysis, study, books, survey

LSA30:
classification, libraries, university, data, research, books, social, study, academic, survey

LSA20:
libraries, classification, research, university, data, books, services, academic, subject, survey

LSA10:
libraries, research, books, medical, information, science, librarians, study, classification, education

LSA5:
libraries, books, research, information, librarians, study, university, classification, public, problems
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Document 422:

On Some Clustering Techniques
The problem of organizing a large mass of data occurs frequently in  research.. Normally, some process
of generalization is used to compress the  data so that it can be analyzed more easily. A primitive step in
this process  is the "clustering" technique, which involves gathering together similar data  into a cluster to
permit a significant generalization.

This paper describes a number of methods which make use of IBM 7090 computer programs to do
clustering. A medical research problem is used to illustrate and compare these methods.

Pure Truncation:
clustering, generalization, primitive, clusters, occurs, involves, easily, mass, organizing, gathering

LSA600:
clustering, process, data, clusters, methods, generalization, gathering, step, large, problem

LSA400:
process, data, clustering, methods, large, problem, research, medical, clusters, programs

LSA300:
data, process, methods, research, problem, clustering, medical, large, technique, clusters

LSA200:
data, process, problem, research, large, medical, computer, methods, clusters, technique

LSA150:
data, problem, research, large, process, medical, computer, methods, clusters, programs

LSA100:
data, medical, research, large, process, methods, computer, automatic, problem, bases

LSA50:
data, computer, medical, automatic, document, large, research, bases, methods, technique

LSA40:
data, medical, document, large, automatic, methods, bases, computer, analysis, management

LSA30:
data, medical, automatic, research, computer, bases, project, words, large, process

LSA20:
data, automatic, computer, research, program, bases, system, information, methods, medical

LSA10:
system, information, chemical, data, retrieval, computer, system, search, index, services

LSA5:
information, data, system, retrieval, computer, chemical, search, science, index, bases
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Document 960:

Library Operations Research: A Process of Discovery and Justification
This article begins with a discussion of the broad role of operations research (O.R.) in a society
undergoing change. The nature of O.R. terms in a library environment is then considered. The function of
models in O.R. is analyzed, the development of a model being contrasted with its formal presentation.
Criteria for good models are suggested.. This article then focuses on storage models for libraries, first
considering the Dewey classification system from this  perspective and then summarizing more current
research carried out under the direction of the author with a grant from the National Science Foundation.

Pure Truncation:
models, summarizing, undergoing, focuses, contrasted, justification, begins, grant, discovery, direction

LSA600:
models, operations, article, dewey, storage, role, nature, change, considered, author

LSA400:
models, operations, article, formal, research, classification, terms, role, function, storage

LSA300:
models, operations, article, formal, research, classification, science, change, terms, author

LSA200:
models, operations, science, classification, formal, library, criteria, author, research, system

LSA150:
models, operations, classification, science, library, formal, research, article, criteria, nature

LSA100:
models, classification, library, project, science, operations, theory, communication, process, selection

LSA50:
theory, classification, models, library, process, communication, project, cost, network, research

LSA40:
theory, models, classification, project, cost, library, process, research, decision, communication

LSA30:
theory, models, cost, classification, project, library, research, scientific, decision, science

LSA20:
theory, research, library, language, models, decision, project, cost, analysis, development

LSA10:
library, theory, system, information, research, books, scientific, models, social, science

LSA5:
information, library, research, science, theory, system,  scientific, books, social, classification
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Document 989:

An Analysis of the Universal Decimal Classification as a Term System for
Nuclear Science and Technology
Explores the possibilities of merging the terminology of the Universal Decimal Classification System
with that of a term system - Engineers Point Council's Thesaurus - for nuclear science and technology.
Concludes, from the evidence presented, that UDC can be effectively used as a term system. Proposes
that the two systems coordinate the terms and merge a major thesaurus (EJC) with an effective
classification scheme of international scope (UDC) to provide a needed tool in the area of classification
and documentation.

Pure Truncation:
nuclear, udc, merge, decimal, universal, term, classification, proposes, explores, thesaurus

LSA600:
udc, decimal, classification, term, universal, thesaurus, technology, nuclear, scheme, documentation

LSA400:
udc, classification, decimal, universal, term, thesaurus, technology, documentation, scheme, nuclear

LSA300:
classification, udc, decimal, universal, term, thesaurus, technology, documentation, scheme, system

LSA200:
classification, udc, decimal, term, universal, thesaurus, scheme, technology, science, documentation

LSA150:
classification, decimal, udc, term, universal, thesaurus, documentation, technology, science, international

LSA100:
classification, decimal, udc, documentation, term, thesaurus, universal, science, scheme, international

LSA50:
classification, decimal, thesaurus, udc, term, scheme, science, documentation, information, retrieval

LSA40:
classification, decimal, thesaurus, udc, scheme, information, term, indexing, documentation, retrieval

LSA30:
classification, decimal, thesaurus, scheme, indexing, udc, information, retrieval, subject,
documentation

LSA20:
classification, indexing, subject, retrieval, decimal, scheme, term, documentation, information,
language

LSA10:
classification, indexing, language, automatic, theory, retrieval, subject, document, information, book

LSA5:
retrieval, classification, indexing, document, theory, system, automatic, language, term, information
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Appendix B

Illustrations of Keyword Cutoff Scheme
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B.1 Uniform Weight Distribution
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B.2 Linear Decreasing Weight Distribution
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B.3 Discontinuous Weight Distribution I
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Discontinuous Weight Distribution for the Top 20 Keywords I
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B.4 Discontinuous Weight Distribution II
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Discontinuous Weight Distribution for the Top 20 Keywords II
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Included
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Appendix C

Demonstration of Bisection

C.1 The Initial Document Set
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C.2 The Document Set After the First Partitioning

C.3 The Document Set After the Second Partitioning



Appendix D

Chernoff Bounds for CURE

In [GRS98], the following equation for calculating sample sizes is derived using Chernoff Bounds:

smin = ξkρ + kρ ∗ log(
1
δ
) + kρ

√
(log(

1
δ
)2 + 2ξlog(

1
δ
) (D.1)

smin is the minimum sample size we can make, while at the same time ensuring that no clusters
will be missed during clustering.

ξ is the number of data points that should represent the smallest cluster.

k is the number of clusters desired.

ρ is the inverse of the ratio between the smallest cluster and the average cluster (e.g. if ρ is 4,
then the size of the smallest cluster is 25% of the average cluster).

δ is the desired probability that the sample contains at least f |u| points from any cluster u,
where f = ξ

umin
.

Example, 10,000 documents:
If we assume the ideal case, where all clusters are dense and well-spread, and desire that all
clusters be of size 10 (because of more-like-this) when clustering completes, we thus need k =
10000

10 = 1000. We set ξ = 5 because we need a lot of data points to represent the cluster in a
multi-dimensional space (5 might even be too few). If we assume that all clusters naturally are
of approximately the same size, we can set ρ = 1. And finally, we set δ = 0.01, since we don’t
want to miss any clusters.

Inserting the numbers into the formula:

smin = 5∗1000∗1+1000∗1∗log(
1

0.01
)+1000∗1

√
(log(

1
0.01

)2 + 2 ∗ 10 ∗ log(
1

0.01
) = 13633 (D.2)

We see that if we want to use sampling, we actually need a sample larger than the amount of
available data points!
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Appendix E

Applied Hash Functions

E.1 h1 Based on Thomas Wang’s 32 bit Mix Function

unsigned int hash_h1(unsigned int key, unsigned int size) //Size should be power of 2

{

key += ~(key << 15); //Thomas Wang’s 32 bit Mix Function

key ^= (key >> 10);

key += (key << 3);

key ^= (key >> 6);

key += ~(key << 11);

key ^= (key >> 16);

return key % size;

}

E.2 h2 Based on Robert Jenkin’s 32 bit Mix Function

unsigned int hash_h2(unsigned int key, unsigned int size) //Size should be power of 2

{

key += (key << 12); //Robert Jenkins’ 32 bit Mix Function

key ^= (key >> 22);

key += (key << 4);

key ^= (key >> 9);

key += (key << 10);

key ^= (key >> 2);

key += (key << 7);

key ^= (key >> 12);

if((key % 2) == 0) //Always return an odd number, since size is even

return (key-1) % size;

if(key != 0)

return key % size;

else

return 1;

}
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Appendix F

Clustering Toolkit Settings

F.1 Filtering

• Minimum document frequency for terms: 10

• Maximum document frequency for terms: 50 %

• Remove 1-character terms

• Remove numbers with less than 4 digits

F.2 Bigram Extraction

• Extract bigrams using scheme 2 (based on previous lattice clustering)

• Minimum document frequency: 10

• Minimum global frequency: 10

F.3 Weighting

• Local weighting algorithm: Mondosoft’s weighting scheme

• Global weighting algorithm: Log-Entropy

• Bigram weights: 42

F.4 Keyword Extraction

• Keyword extraction algorithm: Synergy

• LSA dimension: 300

• Normalise document vectors

• Minimum keywords per page: 10

• Maximum keywords per page: 20

• Cut-off factor: 0.5
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F.5 Clustering Algorithm Specific Settings

• Apriori minimum support: 5

• Hierarchy-based algorithm distance measure: Cosine

• Number of partitionings for divisive algorithm: 90%



Appendix G

Extracted Bigrams

G.1 Scheme 1: Bigrams found for MuggleNet

ROBBIE FISCHER

ROBERT LANTO

HALF BLOOD

SEVERUS SNAPE

JULIA EISENBERG

VIKTOR KRUM

DEATH EATERS

JOSH SMITH

EISENBERG SPHAERA

FRED GEORGE

SAID SPANKY

ANDREW LEE

LORD VOLDEMORT

ALBUS DUMBLEDORE

EMMA RUPERT

RIDDLE TOM

TOM RIDDLE

JAMES SIRIUS

WIZARD WORLD

FAIRY TALE

PETER PETTIGREW

JAMES LILY

UNITED STATES

DANIEL RADCLIFFE

EMMA WATSON

CHO CHANG

HOGWARTS EXPRESS

GINNY WEASLEY

TOM FELTON

GARY OLDMAN

LEAKY CAULDRON

JASON ISAACS

LAVENDER BROWN

HARRY POTTER

QUIDDITCH GAME

TIME TURNER

SIRIUS BLACK

DEVON MURRAY

BOOK 6

PANSY PARKINSON

DRACO MALFOY

PARVATI PATIL

SEAN BIGGERSTAFF

ALAN RICKMAN

HERMIONE GRANGER

RUPERT GRINT

AUNT PETUNIA

CEDRIC DIGGORY

GILDEROY LOCKHART

NEWS ARCHIVE

SORTING HAT

TOP SITES

SIXTH BOOK

BOOK SIX

MIKE NEWELL

OLIVER PHELPS

POA TRAILER

DAN RADCLIFFE

BARTY CROUCH

FRED WEASLEY

OFFICIAL SITE

CHRISTIAN COULSON

REMUS LUPIN

HARRYPOTTER COM

MARCUS FLINT

NUMBER 12

BOOK 5

CAPTION CONTEST

RON WEASLEY

PART 3

RELEASE DATE

JAMES PHELPS

MAGGIE SMITH

MICHAEL GAMBON

RICHARD HARRIS

JULIE WALTERS

JOHN CLEESE

CHRIS COLUMBUS

WARWICK DAVIS

ROBBIE COLTRANE

RICHARD GRIFFITHS

HERMIONE RON

HARRY HERMIONE

FIONA SHAW

KENNETH BRANAGH

JAMES POTTER

VINCENT CRABBE

GREGORY GOYLE

BABY HARRY

STAR WARS

BOOK FIVE

BONNIE WRIGHT

MOVIE III

COME TOGETHER

MARK EVANS

FAN FICTION

OLIVER WOOD

EMAIL ADDRESS

DARK MARK

BOOK TROLLEY

SUSAN BONES

RON HERMIONE

PROFESSOR LUPIN

GALADRIEL WATERS

NAME ORIGINS

EMMA THOMPSON

MOANING MYRTLE

DIE RON

TERENCE HIGGS

PROFESSOR TRELAWNEY

QUIDDITCH CUP

MATTHEW LEWIS

LUNA LOVEGOOD

LEAVESDEN STUDIOS
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TRIWIZARD TOURNAMENT

CHRIS RANKIN

BELLATRIX LESTRANGE

LUCIUS MALFOY

MINERVA MCGONAGALL

FLEUR DELACOUR

DIAGON ALLEY

MADAME MAXIME

DEAN THOMAS

MUGGLENET INTERACTIVE

AVADA KEDAVRA

CAST MEMBERS

MESSAGE BOARDS

GEORGE WEASLEY

MAGICAL CREATURES

STAN SHUNPIKE

WHOMPING WILLOW

BOOK FOUR

BOOK 1

JK ROWLING

ARTHUR WEASLEY

BOOK 7

JUSTIN FINCHFLETCHLEY

HOGWARTS HOUSES

CHOCOLATE FROG

JOB OPENINGS

DAILY PROPHET

NYMPHADORA TONKS

ANGELINA JOHNSON

PROFESSOR SNAPE

FAN ART

MAD EYE

NARCISSA MALFOY

CHARACTER BIOGRAPHIES

NEXT BOOK

MIDDLE NAME

MAIN PAGE

HOUSE ELF

QUIDDITCH TEAMS

CBBC NEWSROUND

ENTIRE BOOK

REAL MAGIC

CHAPTER PICTURES

ARGUS FILCH

RONALD WEASLEY

FOURTH MOVIE

RELEASE DATES

NICHOLAS FLAMEL

MUGGLE WORLD

NICOLAS FLAMEL

LOOK LIKE

TIME TRAVEL

FAN CLUB

PROFESSOR BINNS

NEVILLE LONGBOTTOM

LILY POTTER

DARK FOREST

DUDLEY DURSLEY

BOOK 3

BOOK THREE

LEE JORDAN

PRIVET DRIVE

VERNON DURSLEY

HOUSE CUP

SHRIEKING SHACK

BOOK 4

LILY EVANS

GODRIC GRYFFINDOR

MUGGLENET CHAT

POTTER PROFILES

PROFESSOR FLITWICK

PROFESSOR QUIRRELL

WORLD CUP

LLOYD ALEXANDER

BOOK COVERS

MOVIE IV

TEASER TRAILER

ZOE WANAMAKER

KATIE BELL

FEEDBACK FORM

ALFONSO CUARON

YULE BALL

SEAMUS FINNIGAN

DAVID THEWLIS

AZKABAN MOVIE

BOOK SEVEN

PERCY WEASLEY

MOLLY WEASLEY

CHAPTER 1

LOVE TRIANGLE

MUNDUNGUS FLETCHER

DEATH CURSE

KNIGHT BUS

FAT LADY

INVISIBILITY CLOAK

DEATH EATER

MARAUDERS MAP

FLOO POWDER

LUDO BAGMAN

POLL RESULTS

WEASLEY TWINS

DUELING CLUB

NEWS ARCHIVES

JOKE SHOP

QUIDDITCH MATCH

LIGHTNING BOLT

HOUSE POINTS

PROFESSOR MCGONAGALL

OWL POST

RUBEUS HAGRID

SONG PARODIES

HOGWARTS CASTLE

NEWT SCAMANDER

ARABELLA FIGG

MRS WEASLEY

MAIN CHARACTER

COMMON ROOM

AUNT MARGE

SET REPORT

VIDEO GAMES

HOUSE ELVES

VICTOR KRUM

CHOCOLATE FROGS

GRYFFINDOR HOUSE

HP STORIES

RITA SKEETER

PROFESSOR DUMBLEDORE

FLYING CAR

HOGWARTS STUDENTS

HOGWARTS STAFF

MADEYE MOODY

WEASLEY FAMILY

FORD ANGLIA

DIANE DUANE

GREEK MYTHOLOGY

NORTH TOWER

HEAD BOY

KING ARTHUR

MRS NORRIS

OAK PARK

FOUR FOUNDERS

MOVIE CAST

GOLDEN SNITCH

PRIORI INCANTATEM

SALAZAR SLYTHERIN

FAN SITES

JAMIE WAYLETT

COS FORUMS

BOOK 2

ORDER MEMBERS

HOGWARTS SCHOOL

MAIN CHARACTERS

FIRST MOVIE

POLYJUICE POTION

PATRONUS CHARM

FIRST BOOK

WORLD WAR

MADAM MAXIME

FIFTH BOOK

ALICIA SPINNET

HARRY GINNY

HATE MAIL

BOOKMARK SITE

JOHN WILLIAMS

CHARACTER DEVELOPMENT

FORBIDDEN FOREST

FOURTH FILM

SORTING CEREMONY

RECENT UPDATES

QUIDDITCH PLAYERS

IMPERIOUS CURSE

CORNELIUS FUDGE

POTTER PROFILE

ONLINE CHAT

THIRD MOVIE

STEPHEN FRY

DOLORES UMBRIDGE

HARMIONE GRANGER

PHOTOSHOP FUN

TRADING CARD

DANRADCLIFFE COM

CHAPTER 13

PROFESSOR UMBRIDGE
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ERNIE MACMILLAN

GRYFFINDOR TOWER

PREVIOUS POLLS

FIRST TASK

SECOND TASK

POTTER HARRY

HP GALLERIES

STEVE KLOVES

PENELOPE CLEARWATER

MR OLLIVANDER

TRUE LOVE

TRIWIZARD CUP

5TH BOOK

DAVID HEYMAN

GREAT HALL

ALASTOR MOODY

SLYTHERIN HOUSE

FANTASTIC BEASTS

FAMILY TREE

PROFESSOR QUIRREL

DARK ARTS

FUTURE BOOKS

PUDDLEMERE UNITED

FOUR HOUSES

COLIN CREEVEY

HUFFLEPUFF HOUSE

MADAM POMFREY

BLOODY BARON

KNOCKTURN ALLEY

BOOK DAY

PROFESSOR SPROUT

CRYSTAL BALL

TEA LEAVES

WORLD BOOK

WARNER BROTHERS

JKR SAID

THREE BROOMSTICKS

FLOO NETWORK

MARY GRANDPRE

VIDEO GAME

HARRY CHO

CHAT TRANSCRIPT

USA TODAY

NO DOUBT

WANDLESS MAGIC

HUNGARIAN HORNTAIL

WARNER BROS

CLASSICAL MUSIC

THIRD BOOK

FUNNY EXCERPTS

CHESS GAME

AZKABAN PRISON

MR WEASLEY

SECRET KEEPER

FIDELIUS CHARM

MUGGLE STUDIES

QUIDDITCH PITCH

COMIC RELIEF

UNCLE VERNON

MRS FIGG

WITCHING HOUR

HERMIONE HARRY

PHINEAS NIGELLUS

DARK SIDE

LAST BOOK

RED HERRING

FOUR CHILDREN

UNFORGIVABLE CURSES

MR MASON

CARD GAME

SHRUNKEN HEAD

BAD PEOPLE

IMPERIUS CURSE

FIRST CHAPTER

BLACK FAMILY

MORAL FIBER

ENTERTAINMENT WEEKLY

GREEN EYES

GRIMMAULD PLACE

THIRD TASK

FORGOT PASSWORD

COMING SOON

HEADLESS NICK

PLAY QUIDDITCH

SEVENTH BOOK

LOST PROPHECY

MAGIC QUILL

JKROWLING COM

QUIDDITCH CAPTAIN

MAY 10

MAY 12

FANTASY WORLD

QUIDDITCH TEAM

HARRY LUNA

MUGGLENET COM

HARRY RON

PROF MCGONAGALL

FAT FRIAR

RAVENCLAW HOUSE

OFFICIAL WEBSITE

JO ROWLING

CONTACT DAN

VOLDEMORT GOBLET

J K

HOSPITAL WING

SPECIAL EFFECTS

CHANGELING HYPOTHESIS

GRYFFINDOR QUIDDITCH

PROFESSOR KETTLEBURN

SECOND WAR

JKR COM

WEIRD SISTERS

COVER ART

DAN EMMA

UNOFFICIAL GUIDE

RADCLIFFE INTERVIEW

H HR

FUN STUFF

BOOK TWO

SHORT STORIES

PETUNIA DURSLEY

HOLY GRAIL

ZACHARIAS SMITH

ATTEND HOGWARTS

PURE BLOOD

TV SHOWS

GOF PIC

POTIONS CLASS

LITTLE PEOPLE

FROG CARDS

DADA TEACHER

UNICORN BLOOD

FIRST YEARS

RON DIE

FRANK BRYCE

LEVEL NINE

DARK FORCES

ULTIMATE UNOFFICIAL

UNFORGIVABLE CURSE

HOGWARTS HOUSE

WEB SITE

DARK MAGIC

CONSTANT VIGILANCE

DIVINATION TEACHER

FAN SITE

LICENSE PLATES

BLOOD PRINCE

FOURTH BOOK

HALFBLOOD PRINCE

SS PS

TOO OLD

6 4

NITWIT BLUBBER

LOCKED DOOR

RIDDLE HOUSE

BAD GUYS

KILLING CURSE

AMERICAN VERSION

JOSHUA SMITH

SCARLET WOMAN

CLUES DISCUSSION

MRS DURSLEY

K ROWLING

COS MOVIE

WIZARDING WORLD

NEARLY HEADLESS

PRESS CONFERENCE

DARK WIZARDS

CROUCH JR

HBP RELEASE

DARK CREATURES

SIRIUS DIED

SIXTH YEAR

RED HEN

BERTHA JORKINS

EVIL PEOPLE

MUGGLENET STAFF

MALINE FREDN

DELUXE EDITION

SOMEONE ELSE

BOOK FESTIVAL

GOF VOLDEMORT

CHAPTER 29
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HAPPY BIRTHDAY

CHAPTER 12

10 MINUTES

GIANT SQUID

KILL HARRY

FUTURE BOOK

RON HARRY

JKR ROWLING

HOGWARTS STUDENT

MAGICAL ABILITY

PLOT THICKENS

MR CROUCH

QUESTION MARK

IMPOSTER MOODY

DADA TEACHERS

FIRST DAY

BOB SINDELDECKER

BROWN HAIR

BOOK SERIES

BRANDON FORD

PROF FLITWICK

LOST DAY

PROJECT LEGILIMENSIA

WORST MEMORY

HP MOVIES

WINDOWS MEDIA

UNDERGROUND LAKE

CHAPTER NINE

DARK HAIR

HOGWARTS INFORMATION

RED HAIR

CHAPTER 6

DANIELA TEO

CRUCIATUS CURSE

FUN LISTS

WELCOME BACK

PHOENIX FILES

GOF CLIPS

PS SS

STUPID ABOU

VISUAL EFFECTS

JULY 16

WHY SNAPE

HBP COVERS

LEAST FAVORITE

SCHOOL HOUSE

BOOKS 6

BEST FRIEND

FRONT PAGE

MESSENGER STUFF

LITTLE THINGS

AMAZON COM

MEMORY CHARMS

TERRY PRATCHETT

SCIENCE FICTION

DAN HOPPEL

HEY HARRY

BIG NEWS

NEXT MINISTER

STAR TREK

HAPPY ENDING

FAVORITE BOOK

ESSENCE DIVIDED

MEMORY CHARM

YOUNG WIZARDS

SCHOOL DAYS

LONDON UNDERGROUND

TEA COZY

FAVORITE QUOTES

SILVER HAND

PROMOTIONAL POSTER

BLACK PARK

TOM MARVOLO

RED HERRINGS

POTTER MOVIE

SPOILER WARNING

FINAL BATTLE

RIGHT HAND

HBP DELUXE

HP FAN

FIRST YEAR

INNER EYE

THRICE DEFIED

FULL MOON

CHAPTER 27

G.2 Scheme 2: Bigrams found for Wikipedia

SQUARE KILOMETRES

STATES DEPARTMENT

ALKALI METAL

KINETIC ENERGY

ISAAC NEWTON

ACETIC ACID

SPACECRAFT PROPULSION

HEAT CAPACITY

PLANCK’S CONSTANT

MOLAR VOLUME

BRONZE AGE

DANCE MUSIC

BYZANTINE EMPIRE

DEMAND CURVE

GREGORIAN CALENDAR

SOIL EROSION

RELIGIOUS FUNDAMENTALISTS

GEOCENTRIC MODEL

BINARY STAR

MISSISSIPPI RIVER

DIESEL ENGINE

SAN DIEGO

DIEGO CALIFORNIA

SUMMER SOLSTICE

FOOTBALL TEAM

LEAGUE TEAM

20TH CENTURY

CENTURY 20TH

PLANET VENUS

INTERSTELLAR MEDIUM

SEPTEMBER OCTOBER

5TH CENTURY

SEDIMENTARY ROCK

AEROSPACE ENGINEERING

NEOCLASSICAL ECONOMISTS

PHOTOGRAPHIC FILM

INFERIOR PLANET

CENTRAL BANK

TURING MACHINE

OX AC

AUSTRIAN SCHOOL

STATES FEDERAL

LAW JURISDICTIONS

SATELLITE NAVIGATION

TEMPERATE CLIMATE

XRAY CRYSTALLOGRAPHY

COVALENT BOND

CASE LAW

ATOMIC NUCLEUS

NITRIC ACID

NATIVE AMERICAN

1ST CENTURY

EASTERN EUROPE

1450S 1460S

MEDITERRANEAN SEA

INDIANA JONES

LEAP YEARS

MARS JUPITER

FM RADIO

FINANCE TOPICS

VASCULAR PLANTS

SIDEREAL TIME

MARGINAL UTILITY

VAPOR PRESSURE

GRAMPOSITIVE BACTERIA

COPYRIGHT PROTECTION

NUCLEAR FUSION

PEOPLE’S REPUBLIC

COMBUSTION ENGINE

MIGHT OTHERWISE

VARIABLE STAR

FREE TRADE

JEWISH BIBLE

CHRISTIAN BIBLE

PLATE TECTONICS

SPOKEN LANGUAGE

LANGUAGE SPOKEN

THOMAS JEFFERSON
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EUCLIDEAN GEOMETRY

SECONDARY EDUCATION

SECONDARY SCHOOL

SOUTHERN HEMISPHERE

COURT JUSTICE

HELIOCENTRIC MODEL

NUCLEAR FISSION

2ND MILLENNIUM

BC 2ND

2ND CENTURY

EMPEROR HIROHITO

NORTHERN HEMISPHERE

BASIC TOPICS

3RD MILLENNIUM

3RD CENTURY

LATIN WORD

YEARS AGO

PAUL II

POPE PAUL

HEALTH CARE

MEDICAL CARE

LOCAL FOOD

LOS ANGELES

CALIFORNIA LOS

DEVELOPMENTAL BIOLOGY

SUPERNOVA EXPLOSION

ASP BOOKID

BOOK ASP

KING JAMES

NEWTON’S LAW

EXTRATERRESTRIAL LIFE

INTERNATIONAL AGREEMENT

TRADE AGREEMENT

SIR WILLIAM

SIR JOHN

SUPREME COURT

REFORM MOVEMENT

AGRICULTURAL POLICY

1460S 1470S

CIMT DICTUNIT

GAIA HYPOTHESIS

MOTION PICTURE

NAZI GERMANY

NAZI WAR

1850S 1860S

MILLENNIUM BC

POTASSIUM NITRATE

PRICE ELASTICITY

AMERICAN TRIBES

SAMESEX MARRIAGE

SWEDEN PRIZE

JUNE JULY

FOOTBALL LEAGUE

TERTIARY EDUCATION

STEAM ENGINE

LINEAR ALGEBRA

RIGHT SIDE

MICROWAVE BACKGROUND

COSMIC BACKGROUND

BACKGROUND RADIATION

LIVING ORGANISMS

OZONE LAYER

EARTH’S ATMOSPHERE

OTTOMAN EMPIRE

CLIMATE CHANGE

CHEMICAL EQUILIBRIUM

SPACE PROBE

HTML HTTP

SOUTH POLE

NORTH POLE

RECREATIONAL DRUGS

ANGELES CALIFORNIA

MOLECULAR WEIGHT

ATOMIC WEIGHT

AC UK

UK HTTP

LUNAR ECLIPSE

SOLAR ECLIPSE

TELEPHONE SERVICE

TELEPHONE NETWORK

1470S 1480S

NAPOLEON BONAPARTE

GAMMA RAY

GAMMA RADIATION

APPARENT MAGNITUDE

STAR APPARENT

DEMOCRATIC PARTY

FIXED POINT

POPE PIUS

ABACCI COM

WWW ABACCI

ELECTROMAGNETIC SPECTRUM

ENERGY SPECTRUM

SPIRAL GALAXIES

CARBON DIOXIDE

COSMIC MICROWAVE

MICROWAVE RADIATION

ORTHODOX CHURCH

DIFFERENTIAL EQUATION

INTEREST RATE

SEXUAL REPRODUCTION

DARK MATTER

ELECTRON SHELL

DNA REPLICATION

GENDER ROLE

DE MEDICI

TAX TARIFF

FIRST DAY

FIRST PRESIDENT

FIRST UNITED

HUMAN ANATOMY

OCTOBER NOVEMBER

ENGLAND SCOTLAND

QUEBEC CITY

DIRECTOR WRITER

WRITER DIRECTOR

MOVIE DIRECTOR

FILM DIRECTOR

ACTOR DIRECTOR

INDIVIDUAL CAPITAL

RAIL TRANSPORT

CHARLES DARWIN’S

DARWIN’S THEORY

RUSSIAN REVOLUTION

SEXUAL BEHAVIOR

GROWTH HORMONE

WASTE WATER

SCIENCE RESEARCH

RACE CAR

GREEK ALPHABET

SALT LAKE

SALT WATER

GLOBAL CLIMATE

EVOLUTIONARY BIOLOGY

EVOLUTIONARY THEORY

ELECTRIC CURRENT

JESUS CHRIST

CHRIST CHURCH

TELEVISION SHOW

RADIO SHOW

SOUTH PACIFIC

PACIFIC OCEAN

IRON AGE

GREEK LETTER

GREAT BRITAIN

TERM USED

MIGHT WANT

1480S 1490S

MARKET SHARE

NUCLEAR REACTOR

HOMO SAPIENS

WESTERN EUROPE

WESTERN EUROPEAN

WESTERN COUNTRIES

WESTERN SOCIETY

WESTERN CULTURE

LABOR THEORY

1840S 1850S

WILLIAM HENRY

JOHN WILLIAM

KING WILLIAM

BERLIN WALL

BERLIN GERMANY

CONGO REPUBLIC

RED DWARF

WHITE DWARF

DWARF STAR

DNA STRANDS

18TH CENTURY

CENTURY 18TH

HUMAN EAR

COLLEGE CAMBRIDGE

CAMBRIDGE UNIVERSITY

MEXICO CITY

RADIOACTIVE DECAY

PLANET MARS

EARTH MARS

1820S 1830S

1830S 1840S

SAN FRANCISCO

FRANCISCO CALIFORNIA

COMMUNIST CHINA

SOVIET COMMUNIST
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COMMUNIST PARTY

COMMUNIST GOVERNMENT

TELEVISION STATION

RADIO STATION

LABOUR PARTY

NITROGEN OXYGEN

NERVE CELLS

1810S 1820S

DIGITAL SIGNAL

DIGITAL COMPUTER

BRIGHTEST STAR

LAND AREA

EUROPEAN COLONIZATION

TRADEMARK LAW

MARGINAL COST

HEALTH SCIENCE

EAST INDIA

SOUTH EAST

NORTH EAST

EAST AFRICA

1800S 1810S

1790S 1800S

MATH MATHBF

GERMAN ARMY

BRITISH ARMY

FRENCH ARMY

VECTOR FIELD

VECTOR SPACE

TELEVISION BROADCAST

RADIO BROADCAST

INFRARED SPECTROSCOPY

INFRARED RADIATION

INFRARED LIGHT

BIG BANG

BANG THEORY

REAL NUMBER

INDIA COMPANY

BRITISH INDIA

SOUTH AFRICAN

AFRICAN REPUBLIC

1490S 1500S

CLASSICAL LIBERAL

CLASSICAL GREEK

CLASSICAL MUSIC

COMMONWEALTH COUNTRIES

BRITISH COMMONWEALTH

SYMBOL NUMBER

NAME SYMBOL

RADIOACTIVE ISOTOPES

RADIOACTIVE ELEMENTS

DIVISION PLANTS

1630S 1640S

1620S 1630S

KING HENRY

SCIENCE FICTION

AIR BALLOON

AIR PRESSURE

AIR TRANSPORT

COSMIC RAY

1640S 1650S

SQUARE METRES

MATH FRAC

STOCK OPTION

1600S 1610S

1590S 1600S

1650S 1660S

1660S 1670S

RED ALGAE

GREEN ALGAE

ROAD TRANSPORT

1610S 1620S

INDUS VALLEY

INDUS RIVER

TELEVISION SERIES

1500S 1510S

1670S 1680S

DISAMBIGUATION PAGE

1580S 1590S

SKY OBJECTS

1680S 1690S

1690S 1700S

MEDIAN INCOME

MEDIAN AGE

RED COLOR

RED GREEN

RED BLOOD

RED LIGHT

GENUS HOMO

MEDICAL TREATMENT

CANCER TREATMENT

FOSSIL FUEL

1510S 1520S

1570S 1580S

PREFECTURE CAPITAL

MILITARY POWER

MILITARY HISTORY

HISTORY MILITARY

MILITARY FORCE

BIOLOGICAL WEAPONS

BIOLOGICAL EVOLUTION

BIOLOGICAL CELLS

FORMULA CH

CHEMICAL FORMULA

1720S 1730S

1710S 1720S

COGNITIVE PSYCHOLOGY

COGNITIVE SCIENCE

COPYRIGHT LAW

GENOME PROJECT

HUMAN GENOME

1550S 1560S

1540S 1550S

1520S 1530S

1560S 1570S

1770S 1780S

1780S 1790S

1760S 1770S

HUMAN BRAIN

KING LOUIS

LOUIS DE

STONE AGE

WORLD EUROPE

CENTURY EUROPE

1750S 1760S

1700S 1710S

SOLAR WIND

1740S 1750S

1730S 1740S

SPACE MISSION

SOLAR NEBULA

NORTH WEST

WEST GERMANY

PERSON MAY

1530S 1540S

CATHOLIC CHURCH

ROMAN CATHOLIC

AMINO ACID

15TH CENTURY

CENTURY 15TH

ELECTROMAGNETIC WAVE

ELECTROMAGNETIC RADIATION

ELECTROMAGNETIC FIELD

LIBERAL PARTY

ELECTRIC CHARGE

ELECTRON CHARGE

NUCLEAR WEAPONS

CHEMICAL WEAPONS

CHAIN REACTION

ANCIENT GREECE

STABLE ISOTOPES

ANCIENT EGYPTIAN

DE PARIS

PARIS FRANCE

WHITE BLOOD

WHITE LIGHT

BLACK HOLE

CHILD DEVELOPMENT

QUANTUM MECHANICS

COUNTY CALIFORNIA

CHARLES DARWIN

BRAND MANAGEMENT

BRAND NAME

MENTAL EVENTS

HEART DISEASE

MAIN ARTICLE

17TH CENTURY

CENTURY 17TH

DIGESTIVE SYSTEM

CHARLES II

II GERMANY

II KING

II GERMAN

II UNITED

WAR II

RIVER VALLEY

ROYAL COLLEGE

ROYAL SOCIETY

BRITISH ROYAL

ROYAL FAMILY

QUANTUM GRAVITY

NUCLEAR FUEL

EUROPEAN UNION

EUROPEAN COUNTRIES
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EUROPEAN COMMUNITY

FRANCE ITALY

PROJECT MANAGEMENT

PROJECT HTTP

OPTICAL FIBER

DNA RNA

WORLD COUNTRIES

WORLD HTTP

WORLD WAR

AMERICAN WRITER

BRITISH WRITER

FRENCH WRITER

ACTOR WRITER

MEDICAL DOCTOR

NATURAL RESOURCES

GENETIC RESOURCES

NATURAL SELECTION

DE LA

FRENCH DPARTEMENT

COM HTTP

RUSSIAN GOVERNMENT

MOLECULAR BIOLOGY

MOLECULAR EVOLUTION

MOLECULAR MASS

GRAVITATIONAL CONSTANT

GRAVITATIONAL FIELD

GRAVITATIONAL FORCE

16TH CENTURY

CENTURY 16TH

SKIN COLOR

SET THEORY

FINANCIAL MARKET

FINANCIAL CAPITAL

RADIO TELESCOPE

BODY CELLS

HUMAN BODY

RELIGIOUS BELIEF

RELIGIOUS MOVEMENT

RELIGIOUS LIFE

COLLEGE OXFORD

OXFORD UNIVERSITY

PHYSICAL ANTHROPOLOGY

PRODUCTION PROCESS

LONDON ENGLAND

ARTICLE GEOGRAPHY

ARTICLE TOPICS

ARTICLE ECONOMY

ARTICLE HISTORY

ARTICLE CULTURE

BRITISH MUSEUM

ENVIRONMENTAL MOVEMENT

SCIENTIFIC CLASSIFICATION

SCIENTIFIC METHOD

SCIENTIFIC THEORY

GAS CONSTANT

PHYSICAL CONSTANT

RADIO GALAXIES

HUMAN KNOWLEDGE

ARAB LEAGUE

SOLID LIQUID

CAUSE CANCER

LAND WATER

ETHNIC GROUP

APRIL MAY

MARCH APRIL

ELECTED GOVERNMENT

ELECTED PRESIDENT

PRESIDENT ELECTED

IONIZATION POTENTIAL

POTENTIAL ENERGY

HYDROGEN BOND

HYDROGEN GAS

SOUTH AMERICA

SOUTH AFRICA

SOUTH SEA

MORAL CODE

MORAL PHILOSOPHY

HUMAN SEXUAL

BLOOD PRESSURE

TEMPERATURE PRESSURE

ANCIENT EGYPT

ANCIENT GREEK

ANCIENT ROMAN

ANCIENT HISTORY

ANCIENT NAME

ANCIENT CITY

PHYLUM ANIMALS

DNA SEQUENCE

RADIO ASTRONOMY

ECOLOGY MOVEMENT

NATURAL ECOLOGY

SURFACE TEMPERATURE

SURFACE WATER

STOCK PRICE

STOCK MARKET

INCOME TAX

SHIP TRANSPORT

EMPEROR CHARLES

KING CHARLES

CHARLES DE

EMPEROR NAPOLEON

SKIN CANCER

HUMAN SKIN

SUN MOON

SYSTEM SUN

EXTINCT SPECIES

MEDICAL SCIENCE

INTERNATIONAL STANDARD

STANDARD MODEL

STATISTICAL ANALYSIS

MONEY MARKET

QUANTUM FIELD

QUANTUM THEORY

QUANTUM STATES

PRIME MINISTER

PRIME NUMBER

BRITISH PRIME

TELEVISION NETWORK

COMPUTER NETWORK

NETWORK HTTP

SOLAR POWER

SOLAR SYSTEM

KJ MOL

HEAT ENGINE

PHYSICAL UNIVERSE

NUCLEAR MAGNETIC

MAGNETIC FIELD

COMPUTER SECURITY

NATIONAL SECURITY

NORTH AMERICAN

NORTH AMERICA

NORTH AFRICA

NORTH SEA

BRITISH NORTH

RADIO SIGNAL

WAVE EQUATION

SPANISH CIVIL

SPANISH WORD

SPANISH LANGUAGE

LAKE CITY

ROCK BAND

MILLION YEARS

MILLION LIGHT

MATERIAL USED

NAME USED

SYSTEM USED

PATENT LAW

IONIZATION ENERGY

ENGLISH WORD

ENGLISH NAME

ENGLISH LANGUAGE

ENGLISH FRENCH

INTERNATIONAL UNION

SOVIET UNION

ECONOMIC ANALYSIS

UNIVERSITY LIBRARY

LIBRARY HTTP

ARAB REPUBLIC

UNITED ARAB

ARAB STATES

AMERICAN COLONIES

BRITISH COLONIES

FRENCH COLONIES

CANCER CELLS

CHINESE LANGUAGE

YEARS WAR

CHRISTIAN BELIEF

COLLEGE LONDON

SOFTWARE ARCHITECTURE

SOFTWARE ENGINEERING

SOFTWARE DEVELOPMENT

SOFTWARE DESIGN

COMPUTER SOFTWARE

GAS LIQUID

LIQUID WATER

RADIO FREQUENCY

DATA STRUCTURE

ATOMIC STRUCTURE

ACTOR MUSICIAN

SOIL WATER

AGRICULTURAL PRODUCTION

GREEN MOVEMENT

HUMAN RACE
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DNA MOLECULES

CHEMICAL BOND

PLANET EARTH

COMPUTER ARCHITECTURE

HUMAN EVOLUTION

PHYSICAL CHEMISTRY

OXIDATION NUMBER

CHEMICAL INDUSTRY

RADIO TELEVISION

TELEVISION PROGRAM

MARKET PRICE

NATURAL PHILOSOPHY

NATURAL CAPITAL

NATURAL NUMBER

NATURAL LAW

NATURAL SCIENCE

GREEN PARTY

NUCLEAR POWER

NUCLEAR TECHNOLOGY

NUCLEAR FORCE

NUCLEAR ENERGY

NUCLEAR WAR

GAS EQUATION

UNITED KINGDOM

ELECTRIC FIELD

FIELD THEORY

FRUIT TREE

CHRISTIAN CHURCH

CHRISTIAN RELIGION

BLOOD CELLS

HUMAN BLOOD

ROMAN CALENDAR

POPE JOHN

RIGHT MATH

CARBON COMPOUNDS

ROMAN EMPEROR

GERMAN EMPEROR

NOBEL PRIZE

INTERNATIONAL TRADE

INTERNATIONAL LAW

INTERNATIONAL SYSTEM

PRESIDENT JOHN

GENETIC ENGINEERING

COMPUTER ENGINEERING

SCIENCE ENGINEERING

ROCK MUSIC

ROCK GROUP

FAMILY TREE

GERMANY FRANCE

FRANCE GERMANY

PROTEIN MOLECULES

SOCIAL DEVELOPMENT

ECONOMIC DEVELOPMENT

HUMAN DEVELOPMENT

DEVELOPMENT THEORY

WWW NOBEL

CHEMICAL COMPOUNDS

AMERICAN CIVIL

AMERICAN SINGER

AMERICAN FILM

AMERICAN ACTRESS

AMERICAN CULTURE

AMERICAN PRESIDENT

AMERICAN ACTOR

AMERICAN WAR

AMERICAN STATES

COMPUTER GAME

GENETIC MATERIAL

CIVIL LAW

CIVIL WAR

GREEK MYTHOLOGY

ROMAN MYTHOLOGY

BUSINESS MODEL

CHEMICAL REACTION

MANAGEMENT TOPICS

GREEK WORD

GREEK GOD

GREEK PHILOSOPHY

GREEK LANGUAGE

SOVIET GOVERNMENT

WAR BATTLE

STUDY MEDICINE

MEDICINE HTTP

MANAGEMENT SYSTEM

TIME PERIOD

PHILOSOPHICAL SYSTEM

EARTH METAL

EARTH ORBIT

EARTH SCIENCE

MODEL ORGANISMS

ELECTRIC POWER

ELECTRIC LIGHT

MUSIC SINGER

SINGER ACTRESS

ACTRESS SINGER

SINGER ACTOR

ACTOR SINGER

SPACE PROGRAM

ATOMIC MASS

HEAT ENERGY

POLITICAL POWER

TRANSPORT SYSTEM

POLITICAL PARTY

INFORMATION TECHNOLOGY

CENTURY BC

UNIVERSITY COLLEGE

ART CULTURE

INFORMATION SCIENCE

INFORMATION HTTP

INFORMATION SYSTEM

INFORMATION THEORY

WATER MOLECULES

FRENCH KING

ROMAN EMPIRE

GERMAN EMPIRE

BRITISH EMPIRE

FRENCH EMPIRE

SOCIAL CLASS

SOCIAL CAPITAL

SOCIAL LIFE

SOCIAL POLITICAL

SOCIAL SCIENCE

SOCIAL THEORY

SOCIETY RELIGION

HUMAN SOCIETY

ROMAN REPUBLIC

FRENCH REPUBLIC

COMPUTER PROGRAM

ROMAN PERIOD

GROUP PERIOD

SEA WATER

MARKET ECONOMY

POLITICAL ECONOMY

LAW SCHOOL

GERMAN NATIONAL

GERMAN LANGUAGE

FRENCH GERMAN

GERMAN STATES

ECONOMIC COMMUNITY

POLITICAL HISTORY

HISTORY HTTP

STATES HISTORY

MARKET VALUE

ECONOMIC VALUE

VALUE THEORY

FILM ACTRESS

NATIONAL FILM

FILM PRODUCTION

FRENCH FILM

FILM ACTOR

PHYSICAL OBJECTS

PHYSICAL LAW

PHYSICAL SCIENCE

PHYSICAL SYSTEM

PHYSICAL THEORY

MARKET SYSTEM

POLITICAL PHILOSOPHY

SCIENCE PHILOSOPHY

PHILOSOPHY HTTP

CHEMICAL ENERGY

ATOMIC ENERGY

ENERGY HTTP

ENERGY STATES

CHEMICAL ELEMENTS

FOOD PRODUCTION

FOOD WATER

BRITISH GOVERNMENT

NATIONAL GOVERNMENT

FRENCH GOVERNMENT

GOVERNMENT HTTP

STATES GOVERNMENT

HUMAN CAPITAL

CAPITAL CITY

ECONOMIC POLITICAL

ECONOMIC SYSTEM

ECONOMIC THEORY

POLITICAL LIFE

FAMILY LIFE

HUMAN LIFE

LIFE HTTP

FEBRUARY MARCH

ATOMIC NUMBER

NUMBER SYSTEM
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NUMBER THEORY

BRITISH ACTOR

WAR BRITISH

HUMAN POPULATION

COMPUTER SCIENCE

COMPUTER SYSTEM

LAW SYSTEM

LAW STATES

JANUARY FEBRUARY

DE FRANCE

HTTP DE

PLANTS ANIMALS

NATIONAL DAY

STAR SYSTEM

NATIONAL LANGUAGE

NATIONAL SCIENCE

FRENCH NATIONAL

STATES NATIONAL

LANGUAGE CULTURE

HUMAN CULTURE

POLITICAL SCIENCE

POLITICAL SYSTEM

POLITICAL THEORY

FAMILY NAME

LANGUAGE FAMILY

HUMAN LANGUAGE

FRENCH LANGUAGE

HTTP WWW

GROUP HTTP

FRANCE HTTP

FRENCH PRESIDENT

STATES PRESIDENT

HUMAN SPECIES

SCIENCE HTTP

CENTURY FRENCH

UNIVERSITY HTTP

CITY STATES

SYSTEM HTTP

STATES HTTP

UNITED STATES



182 Extracted Bigrams



Appendix H

Sample Keyword Entries



Entry for doc 2: Agriculture - Wikipedia. 
Keywords: AGRICULTURAL (0.50) FARMING (0.34) FOOD (0.29) CROP (0.26) 
ANIMALS (0.21) PLANTS (0.19) AGRICULTURAL_POLICY (0.18) LOCAL_FOOD 
(0.16) GENETIC (0.14) PRODUCTION (0.13) 

Entry for doc 3: Anthropology - Wikipedia. 
Keywords: ANTHROPOLOGY (0.38) SOCIAL (0.31) PHYSICAL_ANTHROPOLOGY 
(0.27) LINGUISTICS (0.23) CULTURE (0.22) BASIC_TOPICS (0.20) STUDY (0.18) 
HUMAN (0.16) ANTHROPOLOGISTS (0.11) PHYSICAL (0.11)  

Entry for doc 4: Archaeology - Wikipedia. 
Keywords: ARCHAEOLOGY (1.09) ARCHAEOLOGISTS (0.26) EXCAVATIONS (0.17) 
SITE (0.14) CULTURE (0.11) RECONSTRUCTION (0.08) STUDY (0.07) ANALYSIS 
(0.07) METHOD (0.06) LEWIS (0.06) 

Entry for doc 6: Astronomy and astrophysics - Wikipedia. 
Keywords: ASTRONOMY (0.45) INFRARED (0.12) RADIO_ASTRONOMY (0.12) 
ASTRONOMICAL (0.11) OPTICAL (0.11) OBSERVATORY (0.10) TELESCOPE (0.10) 
OBSERVED (0.08) INTERSTELLAR_MEDIUM (0.08) UV (0.08) STELLAR (0.08) 
WAVELENGTH (0.08) 

Entry for doc 7: Biology - Wikipedia. 
Keywords: BIOLOGY (0.31) DEVELOPMENTAL_BIOLOGY (0.30) BASIC_TOPICS 
(0.15) ORGANISMS (0.15) MODEL_ORGANISMS (0.12) DEVELOPMENTAL (0.12) 
MOLECULAR (0.12) EVOLUTIONARY (0.12) PHYLOGENY (0.10) ONTOGENY 
(0.10) LIFE (0.09) 

Entry for doc 8: Business - Wikipedia. 
Keywords: BUSINESS (0.28) INDUSTRY (0.21) TOPICS (0.19) CORPORATION (0.17) 
ECONOMIC (0.17) LIST (0.16) SECTOR (0.11) INVESTMENT (0.09) ELECTRON (0.09) 
ACCOUNT (0.09) 

Entry for doc 9: Chemistry - Wikipedia. 
Keywords: CHEMISTRY (0.59) CHEMICAL (0.29) IONIZATION_ENERGY (0.22) 
COMPOUNDS (0.19) ACID (0.17) BASIC_TOPICS (0.15) REACTION (0.15) 
CHEMICAL_EQUILIBRIUM (0.12) PHYSICAL_CHEMISTRY (0.12) ELEMENTS (0.11) 

Entry for doc 10: Communication - Wikipedia. 
Keywords: COMMUNICATION (0.58) BASIC_TOPICS (0.20) NETWORK (0.17) 
TECHNOLOGY (0.16) MEDIA (0.11) INFORMATION (0.10) PEOPLE (0.10) 
LANGUAGE (0.09) FIELD (0.09) TOPICS (0.08) TELEPHONE (0.08) 

Entry for doc 11: Computer science - Wikipedia. 
Keywords: COMPUTER (0.73) SOFTWARE_ENGINEERING (0.38) SCIENCE (0.25) 
ENGINEERING (0.20) SOFTWARE (0.17) INFORMATION (0.12) MATHEMATICS 
(0.12) PATTERN (0.10) ALGORITHM (0.10) THEORY (0.09) 

Entry for doc 12: Earth science - Wikipedia. 
Keywords: SCIENCE (0.30) GEOGRAPHY (0.22) EARTH (0.14) ENVIRONMENTAL 
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(0.13) GEOLOGY (0.13) EARTH_SCIENCE (0.12) ROCK (0.10) STUDY (0.09) MAP 
(0.07) PHYSICAL (0.07) 
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Appendix I

Sample More-Like-This Entries



Entry for doc 2: Agriculture - Wikipedia.
• Agriculture - Wikipedia. (1000.00)
• Collective farming - Wikipedia. (999.21)
• Agricultural policy - Wikipedia. (999.00)
• Agricultural policy - Wikipedia. (998.99)
• Agricultural productivity - Wikipedia. (998.98)
• Monoculture - Wikipedia. (998.97)
• Local food - Wikipedia. (998.39)
• Local food - Wikipedia. (998.39)
• Genetically modified food - Wikipedia. (994.79)
• Agribusiness - Wikipedia. (989.58)

Entry for doc 3: Anthropology - Wikipedia.
• Cultural anthropology - Wikipedia. (1000.00)
• Ethnography - Wikipedia. (999.91)
• Cultural anthropology - Wikipedia. (999.79)
• Diffusion (anthropology) - Wikipedia. (997.22)
• Cultural evolution - Wikipedia. (997.06)
• Anthropology of religion - Wikipedia. (995.39)
• Medical anthropology - Wikipedia. (990.00)
• Claude LÃ©vi-Strauss - Wikipedia. (989.45)
• Physical anthropology - Wikipedia. (980.00)
• Linguistic anthropology - Wikipedia. (977.61)

Entry for doc 4: Archaeology - Wikipedia.
• Archaeology - Wikipedia. (1000.00)
• Archaeology - Wikipedia. (1000.00)
• Post-processualism - Wikipedia. (999.92)
• Lewis Binford - Wikipedia. (999.82)
• Processualism - Wikipedia. (999.70)
• Systems theory in Archaeology - Wikipedia. (997.71)
• Nautical archaeology - Wikipedia. (990.65)
• James Deetz - Wikipedia. (981.31)
• Reconstruction archaeology - Wikipedia. (971.96)
• Archaeological site - Wikipedia. (971.93)

Entry for doc 6: Astronomy and astrophysics - Wikipedia.
• Astronomy and astrophysics - Wikipedia. (1000.00)
• Astronomy and astrophysics - Wikipedia. (1000.00)
• Infrared astronomy - Wikipedia. (994.60)
• UKIRT - Wikipedia. (992.62)
• David Fabricius - Wikipedia. (987.18)
• Amateur astronomy - Wikipedia. (986.80)
• Kitt Peak National Observatory - Wikipedia. (984.83)
• Space observatory - Wikipedia. (984.32)
• Lowell Observatory - Wikipedia. (983.82)
• Clyde Tombaugh - Wikipedia. (982.89)

Entry for doc 7: Biology - Wikipedia.
• Biology - Wikipedia. (1000.00)
• Embryology - Wikipedia. (999.55)
• Ontogeny - Wikipedia. (999.54)
• Phenetics - Wikipedia. (999.47)
• Cell biology - Wikipedia. (998.89)
• Evolutionary developmental biology - Wikipedia. (979.66)
• Developmental biology - Wikipedia. (979.66)
• Xenopus laevis - Wikipedia. (979.49)
• Phylogeny - Wikipedia. (935.59)
• Teratology - Wikipedia. (928.81)

Entry for doc 8: Business - Wikipedia.
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• Business - Wikipedia. (1000.00)
• Asset - Wikipedia. (996.42)
• Business plan - Wikipedia. (993.41)
• Horizontal integration - Wikipedia. (992.52)
• Investment - Wikipedia. (986.30)
• Ecological model of competition - Wikipedia. (980.80)
• Venture capital - Wikipedia. (972.60)
• Annuity - Wikipedia. (972.44)
• Marketing myopia - Wikipedia. (958.90)
• Barter - Wikipedia. (945.21)

Entry for doc 9: Chemistry - Wikipedia.
• Nobel Prize in Chemistry - Wikipedia. (1000.00)
• Nobel Prize in Chemistry - Wikipedia. (1000.00)
• Antoine Lavoisier - Wikipedia. (998.51)
• Chemical synthesis - Wikipedia. (998.20)
• Antoine Jerome Balard - Wikipedia. (983.33)
• Organic compound - Wikipedia. (979.27)
• Biochemistry - Wikipedia. (978.08)
• Putrescine - Wikipedia. (976.89)
• Nuclear chemistry - Wikipedia. (966.67)
• Ferrocene - Wikipedia. (962.43)

Entry for doc 10: Communication - Wikipedia.
• Submarine communications cable - Wikipedia. (1000.00)
• Smartmob - Wikipedia. (997.96)
• Wireless network - Wikipedia. (995.64)
• Wireless network - Wikipedia. (995.59)
• Mobile phone - Wikipedia. (994.01)
• Metcalfe's law - Wikipedia. (991.71)
• World Wide Web - Wikipedia. (983.87)
• Internet - Wikipedia. (980.70)
• Persuasion technology - Wikipedia. (979.66)
• Spamming - Wikipedia. (978.49)

Entry for doc 11: Computer science - Wikipedia.
• Computer science - Wikipedia. (1000.00)
• Computer scientist - Wikipedia. (998.99)
• Ontology (computer science) - Wikipedia. (998.31)
• Interdisciplinarity - Wikipedia. (997.91)
• Frederick P. Brooks - Wikipedia. (982.30)
• Computer engineering - Wikipedia. (981.02)
• Computer programming - Wikipedia. (979.22)
• Computer programming - Wikipedia. (979.15)
• Atomic (computer science) - Wikipedia. (973.45)
• Foundation ontology - Wikipedia. (972.50)

Entry for doc 12: Earth science - Wikipedia.
• Earth science - Wikipedia. (1000.00)
• Geography - Wikipedia. (999.21)
• Geography - Wikipedia. (999.21)
• Geography - Wikipedia. (999.20)
• Hydrology - Wikipedia. (967.27)
• Geologist - Wikipedia. (927.27)
• Environmental geography - Wikipedia. (872.73)
• Geology - Wikipedia. (752.73)
• Environmental science - Wikipedia. (727.27)
• Regional science - Wikipedia. (727.20)
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Appendix J

Performance Test

J.1 Performance Test Settings

J.1.1 Filtering

• Minimum document frequency for terms: 10

• Maximum document frequency for terms: 50 %

• Remove 1-character terms

• Remove numbers with less than 4 digits

J.1.2 Bigram Extraction

• Do not extract bigrams

J.1.3 Weighting

• Local weighting algorithm: Mondosoft’s weighting scheme

• Global weighting algorithm: Log-Entropy

J.1.4 Keyword Extraction

• Keyword extraction algorithm: Synergy

• LSA dimension: 300

• Normalise document vectors

• Minimum keywords per page: 10

• Maximum keywords per page: 20

• Cut-off factor: 0.5

J.1.5 Clustering Algorithm Specific Settings

• Apriori minimum support: 10

• Hierarchy-based algorithm distance measure: Cosine
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• Divisive algorithm maximum cluster size: 10

• K-Means maximum iterations per bisection: 500

• K-Means maximum error stop condition: 0.1 %

• CURE maximum representatives: 10

• CURE shrinking factor (α): 0.5

J.2 Preprocessing

J.2.1 Preprocessing: Running-Time

Preprocessing Running-Time
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J.2.2 Preprocessing: Memory

Preprocessing - Memory
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J.2.3 Preprocessing: Terms before/after Stemming

Number of Terms Before/After Preprocessing
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J.2.4 Preprocessing: Stemming Reduction

Terms Removed by Stemming
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J.2.5 Preprocessing: Average New Term per Document

Average Number of Terms per Document
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J.3 Keyword Extraction

J.3.1 Keyword Extraction: Running-Time

Keyword Extraction Time
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J.3.2 Keyword Extraction: Memory
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J.3.3 Keyword Extraction: Document-Term Relations

Document-Term Relations After Preprocessing

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

0 20000 40000 60000 80000 100000 120000

Documents

N
o

n
-Z

e
ro

 E
n

tr
ie

s

J.4 K-Means

J.4.1 K-Means: Running-Time

K-Means Running-Time

0

200

400

600

800

1000

1200

1400

0 20000 40000 60000 80000 100000 120000

Documents

T
im

e
 (

se
c.

)



J.4 K-Means 197

J.4.2 K-Means: Average Running-Time
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J.5 CURE

J.5.1 CURE: Running-Time
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J.6 PDDP

J.6.1 PDDP: Running-Time
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J.6.3 PDDP: Memory
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J.7.2 GALOIS: Memory

GALOIS - Memory

0

50

100

150

200

250

300

350

0 5000 10000 15000 20000 25000 30000 35000

Documents

M
e
m

o
ry

 (
M

B
)

J.7.3 GALOIS: Lattice Size
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J.7.4 GALOIS: Lattice Growth
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J.7.6 GALOIS: Lattice Size vs LSA Dimension (CISI)
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J.8 Apriori

J.8.1 Apriori: Running-Time
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J.8.3 Apriori: Average Running-Time and Memory
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J.8.5 Apriori: Average Lattice Size
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J.9.2 Similar Pages: Average Construction Time
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Appendix K

Search Result Clustering Tests

K.1 Search Word: Bush

K.1.1 Clustering



PRESIDENT (36)
• 2003 - Wikipedia
• United States - Wikipedia
• 1980s - Wikipedia
• 1990s - Wikipedia
• 2000 - Wikipedia
• 1992 - Wikipedia
• United States - Wikipedia
• United States - Wikipedia
• 2002 - Wikipedia
• 2004 - Wikipedia
• Chile - Wikipedia
• United States - Wikipedia
• Supreme Court of the United States - Wikipedia
• 1988 - Wikipedia
• 1990 - Wikipedia
• 1993 - Wikipedia
• 2000s - Wikipedia
• February 27 - Wikipedia
• George H. W. Bush - Wikipedia
• March 14 - Wikipedia
• President of the United States of America - Wikipedia
• Ronald Reagan - Wikipedia
• January 20 - Wikipedia
• January 8 - Wikipedia
• United States Secretary of Defense - Wikipedia
• President - Wikipedia
• 2001 - Wikipedia
• Bill Clinton - Wikipedia
• Lech Walesa - Wikipedia
• Nelson Mandela - Wikipedia
• Robert Mugabe - Wikipedia
• Saddam Hussein - Wikipedia
• Vladimir Putin - Wikipedia
• Princeton University - Wikipedia
• March 11 - Wikipedia
• Government of the United States - Wikipedia

STATES (30)
• United States - Wikipedia
• United States - Wikipedia
• University of Michigan - Wikipedia
• Alaska - Wikipedia
• United States - Wikipedia
• January 1 - Wikipedia
• Cranberry - Wikipedia
• Kyoto Protocol - Wikipedia
• United States - Wikipedia
• 1890 - Wikipedia
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• Supreme Court of the United States - Wikipedia
• 1988 - Wikipedia
• Afghanistan - Wikipedia
• February 27 - Wikipedia
• Florida - Wikipedia
• George H. W. Bush - Wikipedia
• March 14 - Wikipedia
• President of the United States of America - Wikipedia
• January 20 - Wikipedia
• January 8 - Wikipedia
• March 28 - Wikipedia
• United States Secretary of Defense - Wikipedia
• President - Wikipedia
• Lech Walesa - Wikipedia
• Princeton University - Wikipedia
• March 11 - Wikipedia
• Aleutian Islands - Wikipedia
• Texas - Wikipedia
• Enron Corporation - Wikipedia
• Government of the United States - Wikipedia

HUMAN (9)
• Human cloning - Wikipedia
• Walking - Wikipedia
• Uneconomic growth - Wikipedia
• Mythical beast - Wikipedia
• Productivism - Wikipedia
• 21st century - Wikipedia
• Kennewick Man - Wikipedia
• 21st century - Wikipedia
• Nudity - Wikipedia

ACTOR (24)
• 1989 - Wikipedia
• 2003 - Wikipedia
• 2000 - Wikipedia
• 1992 - Wikipedia
• 2002 - Wikipedia
• January 1 - Wikipedia
• 1890 - Wikipedia
• 1988 - Wikipedia
• 1990 - Wikipedia
• 1993 - Wikipedia
• August 24 - Wikipedia
• February 27 - Wikipedia
• January 3 - Wikipedia
• March 14 - Wikipedia
• January 13 - Wikipedia
• January 20 - Wikipedia
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• January 6 - Wikipedia
• January 8 - Wikipedia
• March 28 - Wikipedia
• United States Secretary of Defense - Wikipedia
• 2001 - Wikipedia
• Audrey Hepburn - Wikipedia
• July 6 - Wikipedia
• March 11 - Wikipedia

TREE (7)
• Ecology of Africa - Wikipedia
• Gooseberry - Wikipedia
• Shrub - Wikipedia
• Olive - Wikipedia
• Elephant - Wikipedia
• Eucalyptus - Wikipedia
• Koala - Wikipedia

TAX (9)
• Biosafety protocol - Wikipedia
• Earth Summit 2002 - Wikipedia
• Kyoto Protocol - Wikipedia
• Florida - Wikipedia
• Ronald Reagan - Wikipedia
• Margaret Thatcher - Wikipedia
• Dividend tax - Wikipedia
• Taxation in the United States - Wikipedia
• Insurance of terrorism - Wikipedia

UNIVERSITY (11)
• Manhattan Project - Wikipedia
• George Lakoff - Wikipedia
• University of Michigan - Wikipedia
• Alaska - Wikipedia
• Billy Graham - Wikipedia
• Florida - Wikipedia
• George H. W. Bush - Wikipedia
• Nelson Mandela - Wikipedia
• Princeton University - Wikipedia
• Massachusetts Institute of Technology - Wikipedia
• Texas - Wikipedia

NATIONAL (15)
• Alaska - Wikipedia
• Earth Summit 2002 - Wikipedia
• Kyoto Protocol - Wikipedia
• Chile - Wikipedia
• Billy Graham - Wikipedia
• President - Wikipedia
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• Nickname - Wikipedia
• Lech Walesa - Wikipedia
• Nelson Mandela - Wikipedia
• Robert Mugabe - Wikipedia
• Saddam Hussein - Wikipedia
• Vladimir Putin - Wikipedia
• Audrey Hepburn - Wikipedia
• Government of the United States - Wikipedia
• Madrid Agreement - Wikipedia

PARTY (11)
• 1989 - Wikipedia
• Worldwide green parties - Wikipedia
• August 24 - Wikipedia
• George H. W. Bush - Wikipedia
• President of the United States of America - Wikipedia
• Ronald Reagan - Wikipedia
• President - Wikipedia
• Bill Clinton - Wikipedia
• Margaret Thatcher - Wikipedia
• Nelson Mandela - Wikipedia
• Wilhelm Reich - Wikipedia

Misc. (18)
• 1945 - Wikipedia
• Anti-globalization movement - Wikipedia
• Emu - Wikipedia
• Accounting scandals - Wikipedia
• Intellectual capital - Wikipedia
• Magic and religion - Wikipedia
• Magic and religion - Wikipedia
• Magic (paranormal) - Wikipedia
• Culture of Australia - Wikipedia
• Atheism - Wikipedia
• Alternative hip hop - Wikipedia
• The Simpsons - Wikipedia
• Smallpox - Wikipedia
• Australian Magpie - Wikipedia
• Behavioral finance - Wikipedia
• Consumerism - Wikipedia
• Monetarism - Wikipedia
• Magic (paranormal) - Wikipedia
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K.1.2 Relevant vs Irrelevant Pages



RELEVANT 
• Cranberry - Wikipedia
• Ecology of Africa - Wikipedia
• Gooseberry - Wikipedia
• Shrub - Wikipedia
• Olive - Wikipedia
• Elephant - Wikipedia
• Eucalyptus - Wikipedia
• Koala - Wikipedia
• Australian Magpie - Wikipedia
• Emu - Wikipedia

IRRELEVANT 
• 2003 - Wikipedia
• United States - Wikipedia
• 1980s - Wikipedia
• 1990s - Wikipedia
• 2000 - Wikipedia
• 1992 - Wikipedia
• 2002 - Wikipedia
• 2004 - Wikipedia
• Chile - Wikipedia
• Walking - Wikipedia
• Supreme Court of the United States - Wikipedia
• 1988 - Wikipedia
• 1990 - Wikipedia
• 1993 - Wikipedia
• Mythical beast - Wikipedia
• 2000s - Wikipedia
• Aleutian Islands - Wikipedia
• February 27 - Wikipedia
• George H. W. Bush - Wikipedia
• March 14 - Wikipedia
• Alaska - Wikipedia
• President of the United States of America - Wikipedia
• Ronald Reagan - Wikipedia
• January 20 - Wikipedia
• January 8 - Wikipedia
• United States Secretary of Defense - Wikipedia
• President - Wikipedia
• 2001 - Wikipedia
• Bill Clinton - Wikipedia
• Lech Walesa - Wikipedia
• Nelson Mandela - Wikipedia
• Robert Mugabe - Wikipedia
• Saddam Hussein - Wikipedia
• Vladimir Putin - Wikipedia
• Princeton University - Wikipedia
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• March 11 - Wikipedia
• Government of the United States - Wikipedia
• University of Michigan - Wikipedia
• January 1 - Wikipedia
• Kyoto Protocol - Wikipedia
• 1890 - Wikipedia
• Afghanistan - Wikipedia
• Florida - Wikipedia
• March 28 - Wikipedia
• Texas - Wikipedia
• Enron Corporation - Wikipedia
• Human cloning - Wikipedia
• Walking - Wikipedia
• Uneconomic growth - Wikipedia
• Productivism - Wikipedia
• 21st century - Wikipedia
• Kennewick Man - Wikipedia
• Nudity - Wikipedia
• 1989 - Wikipedia
• August 24 - Wikipedia
• January 3 - Wikipedia
• January 13 - Wikipedia
• January 6 - Wikipedia
• Audrey Hepburn - Wikipedia
• July 6 - Wikipedia
• Biosafety protocol - Wikipedia
• Earth Summit 2002 - Wikipedia
• Margaret Thatcher - Wikipedia
• Dividend tax - Wikipedia
• Taxation in the United States - Wikipedia
• Insurance of terrorism - Wikipedia
• Manhattan Project - Wikipedia
• George Lakoff - Wikipedia
• Billy Graham - Wikipedia
• Massachusetts Institute of Technology - Wikipedia
• Nickname - Wikipedia
• Lech Walesa - Wikipedia
• Madrid Agreement - Wikipedia
• Worldwide green parties - Wikipedia
• Wilhelm Reich - Wikipedia
• 1945 - Wikipedia
• Anti-globalization movement - Wikipedia
• Accounting scandals - Wikipedia
• Intellectual capital - Wikipedia
• Magic and religion - Wikipedia
• Magic (paranormal) - Wikipedia
• Culture of Australia - Wikipedia
• Atheism - Wikipedia
• Alternative hip hop - Wikipedia
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• The Simpsons - Wikipedia
• Smallpox - Wikipedia
• Behavioral finance - Wikipedia
• Consumerism - Wikipedia
• Monetarism - Wikipedia
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K.2 Search Word: Cd

K.2.1 Clustering



RECORD (17)
• Pink Floyd - Wikipedia
• Information science glossary of terms - Wikipedia
• The Scorpions - Wikipedia
• Cassette culture - Wikipedia
• Boy - Wikipedia
• Fletcher Henderson - Wikipedia
• 3 Feet High and Rising - Wikipedia
• The Beatles - Wikipedia
• Jimi Hendrix - Wikipedia
• The Beatles - Wikipedia
• Tom Waits - Wikipedia
• Yes - Wikipedia
• Compact disc - Wikipedia
• Spike Jones - Wikipedia
• Progressive rock - Wikipedia
• Album - Wikipedia
• CD-R - Wikipedia

TABLE (17)
• Electron affinity - Wikipedia
• Electronegativity - Wikipedia
• Periodic table - Wikipedia
• Electronegativity - Wikipedia
• Periodic table/Standard Table - Wikipedia
• ISO 3166-2 - Wikipedia
• Electronegativity - Wikipedia
• Periodic table/Electron configurations - Wikipedia
• Isotope table (complete) - Wikipedia
• Isotope table (divided) - Wikipedia
• Period 5 element - Wikipedia
• Extended periodic table - Wikipedia
• Periodic table/Alternate Table - Wikipedia
• Periodic table/Big Table - Wikipedia
• Periodic table/Huge Table - Wikipedia
• Periodic table/Metals and Non Metals - Wikipedia
• Periodic table/Wide Table - Wikipedia

SYSTEM (7)
• Functional decomposition - Wikipedia
• 21st century - Wikipedia
• Radar - Wikipedia
• 21st century - Wikipedia
• Federal Standard 1037C - Wikipedia
• Roman numerals - Wikipedia
• Roman numerals - Wikipedia

RIGHT (4)
• Copyright - Wikipedia
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• Railroad switch - Wikipedia
• Wikipedia:History standards - Wikipedia
• Copy protection - Wikipedia

METAL (14)
• Electron affinity - Wikipedia
• Periodic table - Wikipedia
• Periodic table/Standard Table - Wikipedia
• Zinc - Wikipedia
• CD-R - Wikipedia
• Transition metal - Wikipedia
• Periodic table/Electron configurations - Wikipedia
• Cadmium - Wikipedia
• Period 5 element - Wikipedia
• Periodic table/Alternate Table - Wikipedia
• Periodic table/Big Table - Wikipedia
• Periodic table/Huge Table - Wikipedia
• Periodic table/Metals and Non Metals - Wikipedia
• Periodic table/Wide Table - Wikipedia

OPTICAL (5)
• Compact disc - Wikipedia
• Laser - Wikipedia
• Circular dichroism - Wikipedia
• Magnetic Circular Dichroism - Wikipedia
• CD-R - Wikipedia

BOOK (4)
• Oxford English Dictionary - Wikipedia
• Information science glossary of terms - Wikipedia
• The Lord of the Rings - Wikipedia
• British Library - Wikipedia

STANDARD (6)
• Wikipedia:History standards - Wikipedia
• Periodic table/Standard Table - Wikipedia
• ISO 3166-2 - Wikipedia
• Credit card - Wikipedia
• Federal Standard 1037C - Wikipedia
• ISO 3166-1 - Wikipedia

ATOMIC (5)
• Periodic table - Wikipedia
• SI base unit - Wikipedia
• Transition metal - Wikipedia
• Periodic table/Electron configurations - Wikipedia
• Cadmium - Wikipedia

Misc. (5)
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• SI derived unit - Wikipedia
• Democratic Republic of the Congo - Wikipedia
• Romania - Wikipedia
• Candela - Wikipedia
• Star catalogue - Wikipedia
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K.2.2 Relevant vs Irrelevant Pages



RELEVANT
• Electron affinity - Wikipedia
• Electronegativity - Wikipedia
• Periodic table - Wikipedia
• Periodic table/Standard Table - Wikipedia
• Periodic table/Electron configurations - Wikipedia
• Isotope table (complete) - Wikipedia
• Isotope table (divided) - Wikipedia
• Period 5 element - Wikipedia
• Periodic table/Alternate Table - Wikipedia
• Periodic table/Big Table - Wikipedia
• Periodic table/Huge Table - Wikipedia
• Periodic table/Metals and Non Metals - Wikipedia
• Periodic table/Wide Table - Wikipedia
• Zinc - Wikipedia
• Transition metal - Wikipedia
• Periodic table/Electron configurations - Wikipedia
• Cadmium - Wikipedia

IRRELEVANT 
• Pink Floyd - Wikipedia
• Information science glossary of terms - Wikipedia
• The Scorpions - Wikipedia
• Cassette culture - Wikipedia
• Boy - Wikipedia
• Fletcher Henderson - Wikipedia
• 3 Feet High and Rising - Wikipedia
• The Beatles - Wikipedia
• Jimi Hendrix - Wikipedia
• Tom Waits - Wikipedia
• Yes - Wikipedia
• Compact disc - Wikipedia
• Spike Jones - Wikipedia
• Progressive rock - Wikipedia
• Album - Wikipedia
• CD-R - Wikipedia
• ISO 3166-2 - Wikipedia
• Functional decomposition - Wikipedia
• 21st century - Wikipedia
• Radar - Wikipedia
• Federal Standard 1037C - Wikipedia
• Roman numerals - Wikipedia
• Copyright - Wikipedia
• Railroad switch - Wikipedia
• Wikipedia:History standards - Wikipedia
• Copy protection - Wikipedia
• Laser - Wikipedia
• Circular dichroism - Wikipedia
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• Oxford English Dictionary - Wikipedia
• The Lord of the Rings - Wikipedia
• British Library - Wikipedia
• Credit card - Wikipedia
• ISO 3166-1 - Wikipedia
• SI base unit - Wikipedia
• SI derived unit - Wikipedia
• Democratic Republic of the Congo - Wikipedia
• Romania - Wikipedia
• Candela - Wikipedia
• Star catalogue - Wikipedia
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K.3 Search Word: Cluster

K.3.1 Clustering



GALAXIES (31)
• Galaxy formation and evolution - Wikipedia
• Timeline of knowledge about galaxies, clusters of galaxies, and large-scale structure - 

Wikipedia
• X-ray astronomy - Wikipedia
• Dark matter - Wikipedia
• Modified Newtonian dynamics - Wikipedia
• Computer cluster - Wikipedia
• New General Catalogue - Wikipedia
• Comoving distance - Wikipedia
• Dark matter - Wikipedia
• Large-scale structure of the cosmos - Wikipedia
• Lynx (constellation) - Wikipedia
• Virgo - Wikipedia
• Messier object - Wikipedia
• Globular cluster - Wikipedia
• Groups and clusters of galaxies - Wikipedia
• Supercluster - Wikipedia
• Triangulum Galaxy - Wikipedia
• Virgo Supercluster - Wikipedia
• Open cluster - Wikipedia
• 1 E23 m - Wikipedia
• Local Group - Wikipedia
• Virgo Supercluster - Wikipedia
• Active galaxy - Wikipedia
• Active galaxy - Wikipedia
• Drake equation - Wikipedia
• Active galaxy - Wikipedia
• Groups and clusters of galaxies - Wikipedia
• Large-scale structure of the cosmos - Wikipedia
• M87 - Wikipedia
• M87 - Wikipedia
• Virgo cluster - Wikipedia

STAR (25)
• X-ray astronomy - Wikipedia
• Modified Newtonian dynamics - Wikipedia
• Ursa Major - Wikipedia
• Stellar classification - Wikipedia
• Ara - Wikipedia
• Bayer designation - Wikipedia
• Ursa Major - Wikipedia
• Cancer (constellation) - Wikipedia
• Canis Major - Wikipedia
• Centaurus - Wikipedia
• Coma Berenices - Wikipedia
• Gemini - Wikipedia
• Monoceros - Wikipedia
• Scorpius - Wikipedia
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• Serpens - Wikipedia
• Taurus - Wikipedia
• Virgo - Wikipedia
• Vulpecula - Wikipedia
• Protostar - Wikipedia
• Globular cluster - Wikipedia
• Open cluster - Wikipedia
• Drake equation - Wikipedia
• Blue straggler - Wikipedia
• Stellar classification - Wikipedia
• SETI - Wikipedia

CELLS (8)
• Pregnancy - Wikipedia
• Choanoflagellate - Wikipedia
• Genome - Wikipedia
• Morphogenesis - Wikipedia
• Streptococcus - Wikipedia
• MHC - Wikipedia
• MHC - Wikipedia
• Proteinoid - Wikipedia

TEST (6)
• Parapsychology - Wikipedia
• Race and intelligence - Wikipedia
• Stratified sampling - Wikipedia
• Survey sampling - Wikipedia
• Parapsychology - Wikipedia
• Severe acute respiratory syndrome - Wikipedia

VALUE (6)
• Argument - Wikipedia
• Gold - Wikipedia
• Drake equation - Wikipedia
• Seaweed - Wikipedia
• Market segment - Wikipedia
• Accuracy - Wikipedia

COMPUTER CPU MACHINE (5)
• Computer architecture - Wikipedia
• Distributed computing - Wikipedia
• Computer cluster - Wikipedia
• Non-Uniform Memory Access - Wikipedia
• Supercomputer - Wikipedia

MOLECULES (6)
• Lipid - Wikipedia
• Photosynthesis - Wikipedia
• Protostar - Wikipedia
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• MHC - Wikipedia
• MHC - Wikipedia
• Hydrophobe - Wikipedia

MASS (13)
• Archipelago - Wikipedia
• Protostar - Wikipedia
• Groups and clusters of galaxies - Wikipedia
• Supercluster - Wikipedia
• Virgo Supercluster - Wikipedia
• Open cluster - Wikipedia
• Virgo Supercluster - Wikipedia
• Blue straggler - Wikipedia
• Groups and clusters of galaxies - Wikipedia
• M87 - Wikipedia
• M87 - Wikipedia
• Virgo cluster - Wikipedia
• Ion implantation - Wikipedia

FAMILY (5)
• Yarrow - Wikipedia
• Rambutan - Wikipedia
• MHC - Wikipedia
• MHC - Wikipedia
• Market segment - Wikipedia

Misc. (14)
• Weapon - Wikipedia
• Gender - Wikipedia
• Economies of agglomeration - Wikipedia
• Transistor - Wikipedia
• Weapon - Wikipedia
• Nord - Wikipedia
• Claude LÃ©vi-Strauss - Wikipedia
• Vietnam War - Wikipedia
• Milos - Wikipedia
• Cosmogony - Wikipedia
• Very Large Telescope - Wikipedia
• Very Large Telescope - Wikipedia
• Very Large Telescope - Wikipedia
• Crystallographic defects - Wikipedia
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K.3.2 Relevant vs Irrelevant Pages



RELEVANT
• Computer cluster - Wikipedia
• Computer architecture - Wikipedia
• Distributed computing - Wikipedia
• Non-Uniform Memory Access - Wikipedia
• Supercomputer - Wikipedia

IRRELEVANT 
• Galaxy formation and evolution - Wikipedia
• Timeline of knowledge about galaxies, clusters of galaxies, and large-scale structure - 

Wikipedia
• X-ray astronomy - Wikipedia
• Dark matter - Wikipedia
• Modified Newtonian dynamics - Wikipedia
• New General Catalogue - Wikipedia
• Comoving distance - Wikipedia
• Large-scale structure of the cosmos - Wikipedia
• Lynx (constellation) - Wikipedia
• Virgo - Wikipedia
• Messier object - Wikipedia
• Globular cluster - Wikipedia
• Groups and clusters of galaxies - Wikipedia
• Supercluster - Wikipedia
• Triangulum Galaxy - Wikipedia
• Virgo Supercluster - Wikipedia
• Open cluster - Wikipedia
• 1 E23 m - Wikipedia
• Local Group - Wikipedia
• Active galaxy - Wikipedia
• Drake equation - Wikipedia
• M87 - Wikipedia
• Virgo cluster - Wikipedia
• Ursa Major - Wikipedia
• Stellar classification - Wikipedia
• Ara - Wikipedia
• Bayer designation - Wikipedia
• Cancer (constellation) - Wikipedia
• Canis Major - Wikipedia
• Centaurus - Wikipedia
• Coma Berenices - Wikipedia
• Gemini - Wikipedia
• Monoceros - Wikipedia
• Scorpius - Wikipedia
• Serpens - Wikipedia
• Taurus - Wikipedia
• Vulpecula - Wikipedia
• Protostar - Wikipedia
• Blue straggler - Wikipedia
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• SETI - Wikipedia
• Pregnancy - Wikipedia
• Choanoflagellate - Wikipedia
• Genome - Wikipedia
• Morphogenesis - Wikipedia
• Streptococcus - Wikipedia
• MHC - Wikipedia
• Proteinoid - Wikipedia
• Parapsychology - Wikipedia
• Race and intelligence - Wikipedia
• Stratified sampling - Wikipedia
• Survey sampling - Wikipedia
• Severe acute respiratory syndrome - Wikipedia
• Argument - Wikipedia
• Gold - Wikipedia
• Seaweed - Wikipedia
• Market segment - Wikipedia
• Accuracy - Wikipedia
• Lipid - Wikipedia
• Photosynthesis - Wikipedia
• Hydrophobe - Wikipedia
• Archipelago - Wikipedia
• Ion implantation - Wikipedia
• Yarrow - Wikipedia
• Rambutan - Wikipedia
• Weapon - Wikipedia
• Gender - Wikipedia
• Economies of agglomeration - Wikipedia
• Transistor - Wikipedia
• Nord - Wikipedia
• Claude Levi-Strauss - Wikipedia
• Vietnam War - Wikipedia
• Milos - Wikipedia
• Cosmogony - Wikipedia
• Very Large Telescope - Wikipedia
• Crystallographic defects - Wikipedia
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K.4 Search Word: Dwarf

K.4.1 Clustering



WHITE_DWARF (32)
• Stellar evolution - Wikipedia
• Stellar evolution - Wikipedia
• Timeline of white dwarfs, neutron stars, and supernovae - Wikipedia
• X-ray astronomy - Wikipedia
• Goat - Wikipedia
• Dwarf - Wikipedia
• Pygmy mythology - Wikipedia
• Role-playing bestiary - Wikipedia
• Supernova - Wikipedia
• Red dwarf - Wikipedia
• Sirius - Wikipedia
• 1 E7 m - Wikipedia
• Centaurus - Wikipedia
• Magellanic Clouds - Wikipedia
• Local Group - Wikipedia
• Supernova remnant - Wikipedia
• Supernova 1987a - Wikipedia
• Supernova remnant - Wikipedia
• Black dwarf - Wikipedia
• Brown dwarf - Wikipedia
• Degenerate matter - Wikipedia
• Pauli exclusion principle - Wikipedia
• Planetary nebula - Wikipedia
• White dwarf - Wikipedia
• Proxima Centauri - Wikipedia
• Large Magellanic Cloud - Wikipedia
• Cataclysmic variable star - Wikipedia
• Roche limit - Wikipedia
• Nova - Wikipedia
• Mira - Wikipedia
• Procyon - Wikipedia
• Fermi gas - Wikipedia

STAR (31)
• Star - Wikipedia
• Stellar evolution - Wikipedia
• Stellar evolution - Wikipedia
• Timeline of white dwarfs, neutron stars, and supernovae - Wikipedia
• X-ray astronomy - Wikipedia
• Modified Newtonian dynamics - Wikipedia
• Dwarf - Wikipedia
• Pygmy mythology - Wikipedia
• Supernova - Wikipedia
• Red dwarf - Wikipedia
• Sirius - Wikipedia
• Stellar classification - Wikipedia
• Alpha Centauri - Wikipedia
• Centaurus - Wikipedia
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• Supernova remnant - Wikipedia
• Extrasolar planet - Wikipedia
• Gas giant - Wikipedia
• Nemesis (star) - Wikipedia
• Supernova remnant - Wikipedia
• Black dwarf - Wikipedia
• Brown dwarf - Wikipedia
• Planetary nebula - Wikipedia
• White dwarf - Wikipedia
• Proxima Centauri - Wikipedia
• Stellar classification - Wikipedia
• Cataclysmic variable star - Wikipedia
• Roche limit - Wikipedia
• Nova - Wikipedia
• Mira - Wikipedia
• Procyon - Wikipedia
• Fermi gas - Wikipedia

SPECIES (9)
• Wheat - Wikipedia
• Zoology - Wikipedia
• Goat - Wikipedia
• Hippocampus (fish) - Wikipedia
• Whale - Wikipedia
• Bilberry - Wikipedia
• Crocodile - Wikipedia
• Zoology - Wikipedia
• Cuckoo - Wikipedia

HUMAN (8)
• Dwarf - Wikipedia
• Mythical beast - Wikipedia
• Pygmy mythology - Wikipedia
• Role-playing bestiary - Wikipedia
• Zulu mythology - Wikipedia
• Primate - Wikipedia
• Primate - Wikipedia
• English plural - Wikipedia

FRUIT (6)
• Rabbit - Wikipedia
• Apple - Wikipedia
• Bilberry - Wikipedia
• Mango - Wikipedia
• Olive - Wikipedia
• Specific replant disease - Wikipedia

AFRICA (5)
• History of Africa - Wikipedia
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• History of Africa - Wikipedia
• Zulu mythology - Wikipedia
• Crocodile - Wikipedia
• History of Africa - Wikipedia

ORDER (8)
• Whale - Wikipedia
• Crocodile - Wikipedia
• Primate - Wikipedia
• Primate - Wikipedia
• 1 E17 s - Wikipedia
• 1 E7 m - Wikipedia
• 1 E20 m - Wikipedia
• Cuckoo - Wikipedia

FISH (5)
• Hippocampus (fish) - Wikipedia
• Crocodile - Wikipedia
• Sport - Wikipedia
• English plural - Wikipedia
• Sport - Wikipedia

STATES (4)
• California - Wikipedia
• Degenerate matter - Wikipedia
• Pauli exclusion principle - Wikipedia
• April 20 - Wikipedia

Misc. (4)
• Mythology - Wikipedia
• Galaxy formation and evolution - Wikipedia
• Elizabeth I of England - Wikipedia
• Pablo Picasso - Wikipedia
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RELEVANT
• Stellar evolution - Wikipedia
• Timeline of white dwarfs, neutron stars, and supernovae - Wikipedia
• X-ray astronomy - Wikipedia
• Supernova - Wikipedia
• Red dwarf - Wikipedia
• Sirius - Wikipedia
• 1 E7 m - Wikipedia
• Centaurus - Wikipedia
• Magellanic Clouds - Wikipedia
• Local Group - Wikipedia
• Supernova remnant - Wikipedia
• Supernova 1987a - Wikipedia
• Black dwarf - Wikipedia
• Brown dwarf - Wikipedia
• Degenerate matter - Wikipedia
• Pauli exclusion principle - Wikipedia
• Planetary nebula - Wikipedia
• White dwarf - Wikipedia
• Proxima Centauri - Wikipedia
• Large Magellanic Cloud - Wikipedia
• Cataclysmic variable star - Wikipedia
• Roche limit - Wikipedia
• Nova - Wikipedia
• Mira - Wikipedia
• Procyon - Wikipedia
• Fermi gas - Wikipedia
• Star - Wikipedia
• Modified Newtonian dynamics - Wikipedia
• Stellar classification - Wikipedia
• Alpha Centauri - Wikipedia
• Extrasolar planet - Wikipedia
• Gas giant - Wikipedia
• Nemesis (star) - Wikipedia
• 1 E17 s - Wikipedia
• 1 E20 m - Wikipedia
• Galaxy formation and evolution - Wikipedia

IRRELEVANT 
• Goat - Wikipedia
• Dwarf - Wikipedia
• Pygmy mythology - Wikipedia
• Role-playing bestiary - Wikipedia
• Wheat - Wikipedia
• Zoology - Wikipedia
• Hippocampus (fish) - Wikipedia
• Whale - Wikipedia
• Bilberry - Wikipedia
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• Crocodile - Wikipedia
• Cuckoo - Wikipedia
• Mythical beast - Wikipedia
• Zulu mythology - Wikipedia
• Primate - Wikipedia
• English plural - Wikipedia
• Rabbit - Wikipedia
• Apple - Wikipedia
• Mango - Wikipedia
• Olive - Wikipedia
• Specific replant disease - Wikipedia
• History of Africa - Wikipedia
• Sport - Wikipedia
• California - Wikipedia
• April 20 - Wikipedia
• Mythology - Wikipedia
• Elizabeth I of England - Wikipedia
• Pablo Picasso - Wikipedia
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Appendix L

E-Mail to Test Participants



Dear Friends
 
You are invited to participate in a user test of our “similar page categorisation” 
that we have been working on for Mondosoft for the past months as part of 
our master thesis. The duration of the test is up to you – you can end the test 
at any time, and even just a few inputs will help us a lot. You can also 
participate in the test several times if you are only able to spare 10 minutes 
now and then. Should you decide to participate in the test, please do so 
before July 15.
 
The test is about choosing which result group seems to be the most similar 
for a given page, which is presented to you. It is of course up to you to define 
for yourself what is similar and what is not, but the intention with the similar 
page system is to return links to pages that best seem to be in the same 
category as the original page. Using your input, we can hopefully prove that 
our system outperforms regular categorisation methods.
 
The test is located at http://clustering.mondosoft.com/
 
If you decide to participate, please follow the above link.
 
When asked to log in, enter knm_a as username and behaviortracking as 
password. This is also demonstrated in the below figure:
 

 
 
 
Hereafter, you are taken to a page, where you are asked to provide a little bit 
of information about yourself for demographic analysis.

The Information Retrieval experience falls into the following categories:
Novice:             You have little or no experience using search engines (e.g. 
google)
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Intermediate:    You are using google or equivalent (e.g. yahoo) on a regular 
basis.
Expert:             You have experience with multiple search engines, ability to 
perform advanced searches.
Guru:               You have participated in creating a search engine.

 
Then, finally, you are presented with the actual test. As you can see in the 
below figure, the main page is in the middle of the window. Please take a 
moment to make sure that you understand what the article or page is about, 
and then look at the links in the groups below it.
 
When you click a link in any of the groups, the page corresponding to the link 
pops up and you can study it to see if you think it resembles the main page. 
(If you don’t see/get any pop-ups, you might need to enable pop-ups for this 
site.) When you have decided which group is the better one, please click the 
“Best!” button for the best group. If you are not sure which group to choose – 
just choose a random group.
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To end the test, simply click the “Stop Test” button in the top corner.
 
If you experience any difficulties or bugs while testing, don’t hesitate to 
contact us (klv@mondosoft.com / martiny@mac.com) – we appreciate any 
form of feedback J
 
 
Thanks in advance,
 
Moses Claus Martiny
M.Sc. Student
Email: martiny@mac.com
Phone: +45 3990 8494
 
Kenneth Lolk Vester
M.Sc. Student
Email: klv@mondosoft.com
Phone: +45 2834 2432
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Appendix M

Online User Test Screenshots

M.1 Initial Demographic Questionnaire



244 Online User Test Screenshots

M.2 Actual Test


	I Main Report
	Introduction
	Structure of the Report

	Background and Scope
	A Brief Introduction to Information Retrieval
	The Boolean Model
	The Vector Model
	Other Models

	Document Clustering
	The Cluster Hypothesis
	Applications of Document Clustering
	A Taxonomy of Clustering Methods
	Challenges in Document Clustering

	Scope of the Project
	Introduction to Mondosoft
	Problem Definition


	Analysis and Literature Study
	Common Clustering Methods
	Partition-based Clustering
	Hierarchical Clustering
	Keyword-based Clustering
	Model-based Clustering
	Other Clustering Methods

	Using Latent Semantic Analysis (LSA) to Improve Clustering
	Introduction to LSA
	Singular Value Decomposition (SVD)
	Using LSA in Connection with Document Clustering

	Commonly Used Preprocessing Techniques
	Stop Words and Other Kinds of Term Filtering
	Stemming
	Term Weighting
	Usage of N-Grams

	Postprocessing
	Finding Similar Documents (More-Like-This)
	Search Result Clustering


	Chosen Approach
	Using Core-Terms/Keywords to Represent Documents
	Chosen Algorithms
	Toolkit Architecture
	A Modular Design
	Internal Data Representation


	Implemented Preprocessing
	Extraction of Data from MondoSearchTM
	Filtering of Terms
	Stemming
	Porter Stemmer
	Data Structures: Trie
	Data Structures: Stem Group
	Modifications to the Porter Stemmer

	Term Weighting
	Local Term Weighting
	Global Term Weighting

	Bigram Extraction
	Scheme 1: Using Behaviour Tracking Data
	Scheme 2: Using Frequent 2-itemsets


	Implemented Keyword Extraction Algorithms
	Synergy - LSA Based Keyword Extraction
	Description
	Algorithm
	Time and Memory Complexity
	Advantages
	Weaknesses
	Implementation Details

	Pure Truncation

	Implemented Clustering Algorithms
	K-Means
	Description
	Algorithm
	Time and Memory Complexity
	Advantages
	Weaknesses
	Implementation Details

	CURE
	Description
	Algorithm
	Time and Memory Complexity
	Advantages
	Weaknesses
	Implementation Details

	PDDP
	Description
	Algorithm
	Time and Memory Complexity
	Advantages
	Weaknesses
	Implementation Details

	GALOIS
	Description
	Algorithm
	Time and Memory Complexity
	Advantages
	Weaknesses
	Implementation Details

	Apriori-Based Lattice Generation
	Description
	Algorithm
	Time and Memory Complexity
	Advantages
	Weaknesses
	Implementation Details


	Implemented Postprocessing
	Finding Similar Documents (More-Like-This)
	Hierarchy-based More-Like-This
	Lattice-based More-Like-This
	Data Representation

	Search Result Clustering
	Evaluation and Presentation

	Performance of the Implemented Algorithms
	Preprocessing
	Synergy
	SVD
	Extraction

	K-Means
	CURE
	PDDP
	GALOIS
	Apriori-Based Lattice Generation
	Postprocessing: Finding Similar Pages
	Final Remarks

	Toolkit Evaluation
	Difficulty of Clustering Web Pages
	Sensitivity Analysis of Algorithm Parameters
	Minimum Document Frequency
	Maximum Document Frequency
	Filtering 1-Character Terms
	Using Bigrams
	Local Weighting
	Global Weighting
	Synergy: LSA-Dimension

	Search Result Clustering
	Case 1: Searching for ``Bush''
	Case 2: Searching for ``Cd''
	Case 3: Searching for ``Cluster''
	Case 4: Searching for ``Dwarf''
	Final Remarks


	User Test
	Methodology
	Choice of Test Data
	Test Design
	Test Evaluation

	Optimisation of Algorithm Parameters
	Results: Demographics
	Results: Finding Similar Pages
	Results: Comparing Synergy and Pure Truncation

	Conclusion and Future Work
	Conclusion
	Recommendations to Mondosoft
	Finding Similar Pages
	Search Result Clustering and Beyond
	Recommended Enhancements

	Future Work
	Future Perspectives

	Bibliography
	Glossary
	Index

	II Appendix
	Preliminary Experiments with Synergy
	Illustrations of Keyword Cutoff Scheme
	Uniform Weight Distribution
	Linear Decreasing Weight Distribution
	Discontinuous Weight Distribution I
	Discontinuous Weight Distribution II

	Demonstration of Bisection
	The Initial Document Set
	The Document Set After the First Partitioning
	The Document Set After the Second Partitioning

	Chernoff Bounds for CURE
	Applied Hash Functions
	h1 Based on Thomas Wang's 32 bit Mix Function
	h2 Based on Robert Jenkin's 32 bit Mix Function

	Clustering Toolkit Settings
	Filtering
	Bigram Extraction
	Weighting
	Keyword Extraction
	Clustering Algorithm Specific Settings

	Extracted Bigrams
	Scheme 1: Bigrams found for MuggleNet
	Scheme 2: Bigrams found for Wikipedia

	Sample Keyword Entries
	Sample More-Like-This Entries
	Performance Test
	Performance Test Settings
	Filtering
	Bigram Extraction
	Weighting
	Keyword Extraction
	Clustering Algorithm Specific Settings

	Preprocessing
	Preprocessing: Running-Time
	Preprocessing: Memory
	Preprocessing: Terms before/after Stemming
	Preprocessing: Stemming Reduction
	Preprocessing: Average New Term per Document

	Keyword Extraction
	Keyword Extraction: Running-Time
	Keyword Extraction: Memory
	Keyword Extraction: Document-Term Relations

	K-Means
	K-Means: Running-Time
	K-Means: Average Running-Time
	K-Means: Memory

	CURE
	CURE: Running-Time
	CURE: Memory

	PDDP
	PDDP: Running-Time
	PDDP: Average Running-Time
	PDDP: Memory

	GALOIS
	GALOIS: Running-Time
	GALOIS: Memory
	GALOIS: Lattice Size
	GALOIS: Lattice Growth
	GALOIS: Lattice Size (CISI)
	GALOIS: Lattice Size vs LSA Dimension (CISI)
	GALOIS: Lattice Size vs Number of Keywords (CISI)

	Apriori
	Apriori: Running-Time
	Apriori: Memory
	Apriori: Average Running-Time and Memory
	Apriori: Lattice Size
	Apriori: Average Lattice Size

	Similar Pages
	Similar Pages: Construction Time
	Similar Pages: Average Construction Time
	Similar Pages: Memory


	Search Result Clustering Tests
	Search Word: Bush
	Clustering
	Relevant vs Irrelevant Pages

	Search Word: Cd
	Clustering
	Relevant vs Irrelevant Pages

	Search Word: Cluster
	Clustering
	Relevant vs Irrelevant Pages

	Search Word: Dwarf
	Clustering
	Relevant vs Irrelevant Pages


	E-Mail to Test Participants
	Online User Test Screenshots
	Initial Demographic Questionnaire
	Actual Test



