
Static Validation of Voting
Protocols

Esben Heltoft Andersen
Christoffer Rosenkilde Nielsen

Kongens Lyngby 2005
IMM-THESIS-2005-55

Summary

Previous studies have shown that language based technologies can be used to
automatically validate classical protocols. In this thesis we shall apply these
methods to a different type of protocols; namely electronic voting protocols.

We shall study three voting protocols; FOO92, Sensus and E-vox. These are
modelled in the process calculus LYSA and validated using the corresponding
analysis. However, as the protocols utilise cryptographic operations which are
not incorporated into LYSA, we shall extend the calculus and the analysis. This
extension is proven sound with respect to the semantics and the corresponding
implementation is proven sound with respect to the analysis.

The difficulties concerning the modelling of the voting protocols in LYSA, stresses
the need for LYSAXP; a process calculus and a corresponding analysis, which we
present in the second part of the thesis. The analysis of LYSAXP is also proven
sound with respect to the semantics.

ii

Resumé

Tidligere studier har vist, at sprogbaserede metoder kan benyttes til at automa-
tisk validere designet af klassiske protokoller. I denne afhandling benytter vi
disse metoder til at validere designet af en anderledes type protokoller; elektro-
niske afstemningsprotokoller.

Vi behandler tre afstemingsprotokoller; FOO92, Sensus og E-Vox. Disse mod-
elleres i proceskalkylen LYSA og valideres ved hjælp af den tilhørende analyse.
Protokollerne benytter kryptografiske operationer der ikke er inkluderet i LYSA,
hvorfor kalkyle og analyse m̊a udvides. Udvidelsen af analysen bevises formelt
at være sund med hensyn til semantikken og implementeringen bevises sund
med hensyn til analysen.

Kompleksiteten i modelleringen af afstemningssystemerne i LYSA skaber mo-
tiv for LYSAXP , en proceskalkyle og analyse der er udviklet som anden del af
denne afhandling. Analysen er ligeledes bevist formelt sund med hensyn til
semantikken.

iv

Preface

This thesis is part of the work done for obtaining the M.Sc. degree. The
work has been carried out at the Department of Informatics and Mathematical
Modelling, Technical University of Denmark, under supervision of Professor
Hanne Riis Nielson. The project corresponds to 35 ECTS points and ran from
February to August, 2005.

Parts of this thesis has been published in the article Static Validation of a Voting
Protocol [30] which was recently presented in Lisbon, Portugal, at The Second
Workshop on Automated Reasoning for Security Protocol Analysis (ARSPA’05),
one of the satellite workshops of ICALP’05.

Acknowledgements

First of all we would like to thank Hanne Riis Nielson, our supervisor, for
encouragement and excellent guidance throughout the project.

We would also like to thank Mikael Buchholtz for tirelessly explaining practi-
cally every aspect of LYSA ; we think we got it now. Our thanks also go to
René Rydhof Hansen for his help on developing the analysis for LYSAXP , and
Flemming Nielson for explaining how to deal with infinities. Furthermore we
would like to thank the Language Based Technology group, in particular Hen-
rik Pilegaard and Terkel Kristian Tolstrup for reading and commenting on our

vi Contents

ARSPA’05 article. We would also like to thank the anonymous reviewers from
the ARSPA’05 workshop; almost all of their comments have been incorporated
in this thesis.

Special thanks to Christoffer’s brother; Johan Sebastian Rosenkilde Nielsen, for
spending three days reading and commenting the thesis. Finally we are grateful
for the support from our families and friends.

Esben Heltoft Andersen Christoffer Rosenkilde Nielsen

Kongens Lyngby, August 2005

Contents

1 Introduction 1

1.1 Protocol Narrations . 1

1.2 Framework . 2

1.3 Design Goals of Electronic Voting Systems 6

1.4 Electronic Voting Protocols . 7

1.5 Overview of the Thesis . 9

I LYSA 11

2 LYSA-Calculus with Blinding 13

2.1 Syntax . 13

2.2 Semantics . 15

2.3 Annotations . 17

3 Modelling Protocols in LYSA 19

3.1 Extended Protocol Narration . 20

3.2 LYSA Specification . 21

viii CONTENTS

4 Analysis of LYSA 23

4.1 Domain of the Analysis . 23

4.2 Dealing with Infinities . 24

4.3 Control Flow Analysis of LYSA with Blinding 25

4.4 Soundness of the Analysis . 27

5 The Attacker 35

5.1 Modelling the Attacker . 36

5.2 Correctness of the Attacker . 39

5.3 Crypto-based Authentication . 41

6 Implementation 43

6.1 Step 0 - The Initial Step . 44

6.2 Step 1 - From Flow Logic to Verbose 45

6.3 Step 2 - From Infinite to Finite 47

6.4 Step 3 - Removing Polyvariance 51

6.5 Step 4 - Generating ALFP . 52

6.6 Soundness of the Implementation 54

6.7 The Attacker . 61

6.8 The Extended LYSATool . 62

7 Analysing Protocols 65

7.1 Assumptions . 66

7.2 The FOO92 Voting Protocol . 67

7.3 The Sensus Voting Protocol . 72

7.4 The E-Vox Voting Protocol . 77

CONTENTS ix

8 Discussion of Part I 83

8.1 Privacy . 83

8.2 Assumptions . 84

II LYSAXP 87

9 Motivation for a new Calculus 89

10 LYSAXP-calculus 91

10.1 Design . 91

10.2 Syntax . 92

10.3 Semantics . 95

11 Modelling Protocols in LYSAXP 99

11.1 The FOO92 protocol . 99

12 Analysis of LYSAXP 103

12.1 Control Flow Analysis . 103

12.2 Soundness of the Analysis . 109

12.3 The Attacker . 115

13 Discussion of Part II 117

13.1 Accuracy of the Analysis . 118

13.2 The Tuple Type-Flaw Attack . 118

14 Conclusion 121

14.1 Related Work . 121

14.2 Perspectives . 122

x CONTENTS

14.3 Recapitulation . 123

A LYSA 125

A.1 Operational semantics for LYSA with blinding 127

A.2 Control flow analysis of LYSA with blinding 130

A.3 Extending the LYSATool . 132

B LYSAXP 133

B.1 Example of the analysis . 135

Chapter 1

Introduction

Due to the rapid growth in computer networks, most people nowadays have
access to the internet. This makes electronic voting a viable alternative to the
classic paper vote for governmental elections as well as small scale elections and
surveys. However, the use of electronic voting systems introduces new ways
to systematically disrupt the vote or falsify the result. If these systems are to
replace the classical way of voting, the communities that hold the elections,
should be convinced of their correctness.

The aim of this thesis is to identify what properties are to be fulfilled in an
electronic voting system and to provide a framework for validation of these
properties.

1.1 Protocol Narrations

In a computer network, as on the Internet, communication proceeds on a public
channel known as the ether. This communication is handled by communica-
tion protocols, which describe the rules two or more principals in the network
follow when they exchange messages. Communication protocols, which rely on
cryptographic operations to prevent tampering of the messages sent, are called
security protocols.

2 Introduction

Protocols are often described using protocol narrations, and as an example of
this, consider the following protocol narration for a version of the Wide Mouthed
Frog protocol (WMF) [3]:

1. A→S : A, encryptKA(B,K)
2. S→B : encryptKB (A,K)
3. A→B : encyptK(m1, · · · ,mk)

The protocol involves three principals; Alice (A), Bob (B) and a trusted server
(S), with whom Alice and Bob each share a secret key; respectively KA and KB .

The protocol proceeds in three stages; first Alice sends a message to the server
saying that she is A and a message encrypted under the key KA, saying that she
wants to communicate with B using the secret key K. The server responds by
sending a message to Bob encrypted under the key KB , stating that A wants to
exchange a message under encryption with the secret key K. In the last step,
Alice sends a tuple (m1, · · · ,mk) to Bob encrypted under the key K they now
share.

1.2 Framework

The main goal in this thesis is to automatically validate electronic voting pro-
tocols, and to do this we need some sort of strategy. Our strategy is illustrated
with the framework in Figure 1.1.

Narration

Protocol

Calculus

Process
Result

Attacker

Analysis

Figure 1.1: Framework

To formally validate a protocol, we need a mathematical model of the protocol
instead of the informal protocol narration. In our case we use process calculi
to model the protocol, and we use this mathematical model of the protocol to
formally validate it. The technique used for this validation is known as program
analysis [31].

1.2 Framework 3

In addition to a model of the protocol, we shall also model the environment
in which the protocol is evaluated. As mentioned above the communication
medium we consider, is a public channel; the ether. Our model of the environ-
ment must be realistic with respect to the actual behavior that could occur in
such a network, and thus malicious behavior of the environment is represented
as an attacker model.

As already presented in the narration for the WMF protocol, we shall model
cryptographic primitives as algebraic terms. This approach is widely used in
analyses of security protocols and implies the assumption of perfect cryptogra-
phy ; that encrypted terms can only be decrypted using the correct key.

The protocol narration in our framework was described above, and in the fol-
lowing we shall describe the remaining three elements of the framework; process
calculi, analysis technique and the attacker.

1.2.1 Process Calculi

Process calculi has been used over several decades to describe the concepts of
computational functions such as programs and protocols; Tony Hoare’s CSP
[22] and Robin Milner’s π-calculus [28] are examples of such calculi.

There are two issues one must consider when choosing or developing a calculus;
on one hand, the calculus must be expressive in a way, such that one is able
to model the precise intention of the program. On the other hand the calculus
must be simple in its syntax such that encoding programs can be done easily,
and simple in its semantics such that the analysis can be developed without an
unnecessary complexity.

A number of calculi for analysis of security protocols have been developed;
the applied pi calculus [2] and the Spi-calculus [3] are well-known calculi with
corresponding automatic tools ProVerif [6] and Cryptyc [15]. However the
LYSA-calculus [7, 8] with an automated analyses incorporated in the LYSATool
[26] is more suitable for our purpose, as we shall see in this thesis.

1.2.2 Analysis Technique

A protocol can be regarded as a small program, and in that respect we shall use
analysis techniques originally developed for programs, to analyse protocols.

4 Introduction

Program analysis [31] is used to obtain information about the behavior of pro-
grams. As this is a static technique, the approach of program analysis is re-
stricted to give approximate answers. This is illustrated in Figure 1.2, where
the dashed circle is the approximation of the program behavior, which is illus-
trated by the solid line; (a) over-approximation captures the entire behavior of
the program, (b) under-approximation ensures that the entire approximation is
within the possible behavior of the program, and (c) undecidable approximation
does not ensure that the program behavior is in the approximation, nor that
the approximation is within the possible behavior of the program, and hence we
cannot use an undecidable approximation.

(a) (b) (c)

Figure 1.2: (a) Over-approximation (b) Under-approximation (c) Undecidable
approximation

The aim of program analysis is to approximate answers and in our case we look
for conservative answers; ie. over-approximations. However, an over-approxi-
mation possibly also includes behaviors of the program that can never occur in
real-life, and if we study one specific behavior in the analysis result, we must be
aware that it can be a false-positive. Hence a design goal of the analysis is to
minimise the number of false-positives, while still maintaining the conservative
approximation in the analysis.

That the analysis ensures conservative answers is a result of it being semantics
based ; ie. the information obtained from the analysis can be proven sound with
respect to the semantics of the process calculi analysed.

Classical static analysis techniques [31] are normally divided into classes depend-
ing on whether they compute the flow of data in a program, the flow of control
in a program etc. As process calculi makes it harder to distinguish between flow
of control and data in the protocols we model, we refer to our static analysis
approach as control flow analysis, even though in reality it is a combination of
data flow and control flow analysis.

The specifications of the analyses in this thesis are presented using Flow Logics

1.2 Framework 5

[34, 35] which are rules of the form:

S |= P iff a logic formula holds

This means that the data-structure S, containing the components of the anal-
ysis, is an acceptable estimate of the behavior of a process P , if the logical
formula to the right of the iff is satisfied.

1.2.3 The Attacker

Previously we stated that malicious behavior in the environment of the protocol
can be modelled as an attacker.

Usually cryptography is used to prevent the attacker from learning any of the
secrets sent, but if the attacker knows the key, he can of course decrypt messages
as well he can create new encryptions of his own. Hence cryptography alone is
not enough to protect against attackers, which is why we need a more describing
model of the attackers capabilities.

Attackers are divided into two groups; passive and active. A passive attacker is
known as an eavesdropping attacker. This attacker does not send any message
or block any communications on the network, but merely collects information
flowing on the network. The active attacker on the other hand, can perform a
number of attacks in addition to collecting information; some of these attacks
are described in the following.

◦ Replay attack is when an attacker re-sends a message; eg. replaying mes-
sage 1 in WMF, could get the server to believe that Alice wanted to
communicate with Bob again, even though this was not the case. A spe-
cial kind of replay attack have its own name; namely Type-flaw attack. A
type-flaw attack is as a replay attack, but where the replayed message is
used in another part of the protocol.

◦ Modification attack is when the attacker intercepts a message eg. from A
to B and modifies the message before sending the message to B.

◦ Man-in-the-Middle attack is a combinating of a modification attack and a
replay attack with the attacker intercepting a message sent from A to B,
possibly altering it, before sending it to B thereby making B to believe
that the message actually was from A and not from the attacker.

◦ Deletion attack is an attack where the attacker deletes messages from
the protocol without the principals noticing it, and would normally lead

6 Introduction

to a halting protocol - this attack can usually be handled in a proper
implementation of the protocol, and in this thesis it is not considered.

◦ Insider attacks is interesting in the point of view of voting systems. An
insider attack is when one of the trusted authorities acts as a malicious
attacker on the network.

Obviously the active attacker is superior to the passive, and hence we consider
only an active attacker in this thesis.

1.3 Design Goals of Electronic Voting Systems

We will now turn to the specific area of interest in this thesis; electronic voting
systems.

There are various approaches in the construction of an electronic voting scheme,
but all of them, as well as ordinary paper-ballot elections, are in general divided
into the following tasks:

◦ Registration involves creation of a list with eligible voters.

◦ Validation involves checking eligibility of those attempting to vote and
validating the ballot for eligible voters.

◦ Voting proceeds on eligible voters sending their ballots which are collected
by the authority of the vote.

◦ Counting involves the authority counting the votes in the election.

Voting protocols need reasoning on the properties they have to satisfy. There
are properties concerning the environment of the protocol such as convenience
and flexibility, and properties concerning the security in the protocol. In this
thesis we will focus on the security properties, hence we need to identify what
security properties a voting protocol should satisfy. For ordinary protocols, the
security properties include authentication, integrity and non-repudiation, but
the security properties for electronic voting systems differ from those; in [14]
the security properties have been formalised into four main properties:

◦ Verifiability: A system is verifiable if the voters independently can verify
that their votes have been counted correctly.

1.4 Electronic Voting Protocols 7

◦ Accuracy: The accuracy of a voting system is divided into three parts:
(1) it is not possible for a vote to be altered, (2) a validated vote cannot be
eliminated from the final tally and (3) an invalid vote cannot be counted
in the final tally.

◦ Democracy: A system ensures democracy if (1) only eligible voters can
vote and (2) eligible voters can only vote once.

◦ Privacy: In a voting system the privacy is obtained if nobody can link
any vote to the voter who cast it.

Often a fifth property is added [4, 18]:

◦ Fairness: No early results from the vote can be obtained.

The study of proposed electronic voting protocols has revealed that security
properties are informally proved and argued to be satisfied.

Because security protocols are notoriously difficult to design and analyse, tech-
niques for formally validating the security properties are particular important.
Numerous examples of protocols which were thought to be correct, have been
shown to hold major flaws by means of formal validation. The most infamous
example of this is the Needham-Schroeder protocol [25]. This motivates the
automated analysis of the security properties presented in this thesis.

1.4 Electronic Voting Protocols

Protocols for electronic voting build on different cryptographic primitives, eg.
homomorphic encryption [5, 21] and mix-nets [23]. The work presented in this
thesis concentrates on protocols using blind signatures [18, 14, 20], but the tech-
niques used for validation could probably be adapted to the other approaches
as well.

Blinding [11, 12] is a mechanism allowing a message to be signed by another
party, without revealing any information about the message to the other party.
Assuming perfect cryptography, blinding is a cryptographic primitive obeying
the following two rules:

(Unblind 1) unblindb(blindb(msg)) = msg

(Unblind 2) unblindb(signs(blindb(msg))) = signs(msg)

8 Introduction

Here msg is a message, b is a cryptographic key known as the blinding factor
and s is a digital signature. The second rule is the most interesting one as
it expresses that a signed blinded message can be unblinded without disclosing
any information about the message itself; note that the signature of the message
is not destroyed. The first rule simply states that blinding acts as symmetric
encryption when no signature is present.

One of the first voting protocols using blind signatures was proposed by Fujioka,
Okamoto and Ohta [18] in 1992. This protocol is called the FOO92 protocol and
is often considered as the classic voting protocol. The FOO92 protocol, as we
present below, has served as basis for the two additional voting protocols that
we study later in the thesis; Sensus [14] and E-Vox [20] which are presented in
Chapter 7.

1.4.1 The FOO92 Voting Protocol

The FOO92 protocol [18] involves three kinds of principals: There are mul-
tiple voters V , one administrator A and one counter C. The administrator
ensures that only legitimate voters are allowed to vote and the counter collects,
publishes and counts the votes. In addition to digital signatures, encryption
and blinding, the FOO92 protocol incorporates another cryptographic primi-
tive, bit-commitment [29]. This is a method, by which the voter can commit a
vote without revealing what it is. Later the bit can be revealed by the voter, by
providing the commitment key. The protocol proceeds in five phases as shown
in Table 1.1 and is further explained below.

1. V → A : V, signV (blindb(commitr(v))) Preparation Phase
2. A → V : signA(blindb(commitr(v))) Administration Phase
3. (V) → C : signA(commitr(v)) Voting Phase
4. C → : l, signA(commitr(v)) Publishing Phase
5. (V) → C : l, r Opening Phase

Table 1.1: Protocol Narration for FOO92

In the preparation phase (1) the voter V selects vote v and computes the bit-
commitment x = commitr(v) using a random number r and the bit-commitment
function commit. The commitment is then blinded using the blinding factor b
and the resulting e = blindb(x), called the ballot, is signed s = signV (e) and
sent to the administrator A.

1.5 Overview of the Thesis 9

In the administration phase (2) A verifies that V has the right to vote, has not
applied for a signature yet and that s actually is V ’s signature of e. If this is
the case then A signs the ballot d = signA(e) and sends it back to V .

When V receives the ballot signed by A the voting phase (3) begins. V checks
that the signature on the ballot originates from A and unblinds the signed ballot
y = unblindb(d) thereby obtaining a signed version of the committed vote, that
is y = signA(x). The voter then sends the signed ballot y to the counter over
an anonymous communication channel, this is denoted by (V) as the sender in
the narration.

In the publishing phase (4) the counter receives y, checks the correctness of the
signature and enters (l, y) onto a list as the l-th item. After all votes are received
e.g. after a fixed deadline, C publishes the list with all entries.

In the last phase, the opening phase (5), the voter checks that his ballot x is in
the list and sends l together with the commitment key r to C on an anonymous
channel. When C receives r he is able to open the ballot and count the vote v.

1.5 Overview of the Thesis

The thesis is divided into two parts, each of these parts present an approach to
the framework for analysing voting protocols.

Part I. In Chapter 2 we present the LYSA-calculus extended with a construct
for blinding. We then describe how to model protocols using LYSA in Chapter 3,
in particular the FOO92 protocol will be specified. The analysis of LYSA with
blinding is presented in Chapter 4, whereas the attacker-model is presented
in Chapter 5. The implementation of the extensions to LYSA is described in
Chapter 6, and the result of applying the analysis to the three voting protocols
is presented in Chapter 7. Finally we discuss the first part of the thesis in
Chapter 8

Part II. The second approach to the framework is motivated in Chapter 9. In
Chapter 10 the syntax and semantics of LYSAXP is presented, this is followed by
Chapter 11 which contains the modelling of the FOO92 protocol in the LYSAXP

-calculus. We then present the analysis of LYSAXP in Chapter 12, and the second
part of the thesis is discussed in Chapter 13.

Chapter 14 concludes the thesis and discuss the perspectives in the two ap-
proaches we have presented.

10 Introduction

Part I

LYSA

Chapter 2

LYSA-Calculus with Blinding

In order to apply our analysis technique, we have to formalise the protocol
narration as a process in the LYSA-calculus. LYSA is a process calculus in the π-
calculus tradition [28] and uses ideas from the Spi-calculus [3] for incorporating
cryptographic operations. LYSA simplifies matters compared to other calculi
in that all messages are sent on a global network, the ether, instead of using
channels.

In this chapter we present the formal syntax for the LYSA-calculus, as well as
the semantics for the language, in form of a reduction relation.

2.1 Syntax

The original LYSA-calculus was established in [7, 8]. LYSA consists of terms
and processes, where terms are the basic building blocks used for describing
processes. However blinding is a special cryptographic construct, which is not
supported by the original calculus, so in order to analyse voting protocols that
utilises this primitive, we must extend the syntax for both terms and processes.
The resulting syntax for terms is given in Table 2.1 and consists of names,
variables and composite terms.

14 LYSA-Calculus with Blinding

E ::= x variable
n name
m+/m− public/private keypair
{E1, · · · , Ek}E0 symmetric encryption
{|E1, · · · , Ek|}E0

asymmetric encryption

[[E1, · · · , Ek]]E0
blinding

Table 2.1: Terms for LYSA with blinding

We use x to represent variables. The names n will be used to represent shared
keys, commitment keys as well as blinding factors whereas m+/m− is used to
represent keys for secret key encryptions and digital signatures. As usual digital
signatures are obtained using asymmetric encryption with a private key. The
special construct [[E1, · · · , Ek]]E0

is used for blinding the tuple E1, · · · , Ek of
terms with the blinding factor E0.

The syntax for processes, extended such that it respects the blinding construct,
is given in Table 2.2.

P ::= 0 terminated process
P1 | P2 parallel composition
!P replication
(ν n)P restriction (name)
(ν± m)P restriction (keypair)
〈E1, · · · , Ek〉.P output
(E1, · · · , Ej ; xj+1, · · · , xk).P input
decrypt E as {E1, · · · , Ej ; xj+1, · · · , xk}E0 inP symmetric decryption
decrypt E as {|E1, · · · , Ej ; xj+1, · · · , xk|}E0

inP asymmetric decryption

unblind E as [[E1, · · · , Ej ; xj+1, · · · , xk]]E0
inP unblinding

Table 2.2: Syntax for LYSA with blinding

In addition to the classical constructs for composition, replication and restric-
tion, LYSA contains an input construct with matching and the two decryption
constructs, and the construct for unblinding follows the same trend.

In the case of input the idea is that the pattern (E1, · · · , Ej ;xj+1, · · · , xk) must
be matched towards a tuple (E′

1, · · · , E′
k) of the same length and it only succeeds

if the j first components pairwise equals one another, i.e. E1 = E′
1, · · · , Ej = E′

j .
If this is the case the remaining terms E′

j+1, · · · , E′
k are bound to the variables

2.2 Semantics 15

xj+1, · · · , xk.

The idea behind the pattern matching of the constructs for symmetric and
asymmetric decryption is similar, with the only modification that in the case
of symmetric encryption the two keys must be equal whereas for asymmetric
encryption they must form a key pair.

Unblinding takes the form unblind E as [[E1, · · · , Ej ; xj+1, · · · , xk]]E0
in P . As

already explained in the introduction, the construct may act as an ordinary
decryption using the blinding factor as a symmetric key; rule (unblind 1). In
this case E must take the form [[E′

1, · · · , E′
k]]E′

0
in order for the construct to

succeed, and furthermore the conditions E0 = E′
0, E1 = E′

1, · · · , Ej = E′
j

must be fulfilled. When succeeding, the variables xj+1, · · · , xk will be bound to
E′

j+1, · · · , E′
k as explained above. The more interesting alternative arises when

E evaluates to a signed blinded value, i.e. has the form {|[[E′
1, · · · , E′

k′]]E′
0
|}Es

. In
this case the unblinding construct must take the form unblind E as [[; x]]E0

inP
and the match will succeed when E0 = E′

0. The variable x will then be bound
to the signed value {|E′

1, · · · , E′
k′ |}Es

as already illustrated by the rule (Unblind
2) in the introduction.

2.2 Semantics

Following the π-calculus tradition, the semantics of LYSA is given as a reduction
semantics that describes how a process evolves in a step-by-step fashion. This
is formalised in a binary relation called the reduction relation. The reduction
relation holds between a pair of processes, written P → P ′, precisely when P
can evolve into P ′.

Reduction relations typically require a process to be on a specific form to match
the rules. Therefore, in order to loosen up these rigid requirements, some syn-
tactic manipulations of processes must be introduced, before moving to the
reduction relation itself. These syntactic manipulations has been introduced in
a form of structural congruence, written P ≡ P ′. The idea of this relation is
that two processes are considered equal, when they only differ in syntactic as-
pects that are of no importance to the way the processes may evolve. Structural
congruence is defined as the smallest relation satisfying the rules in Table A.2
in the appendix. Structural congruence utilise a function fn(P) for finding free
names, which is also defined in the appendix in Table A.4.

The definition of structural congruence is somewhat trivial, except for one case.
Two processes P1 and P2 are considered structural congruent, if they are α-

16 LYSA-Calculus with Blinding

(UBli1) unblind [[V1, . . . , Vk]]V0
as [[V1, . . . , Vj ; xj+1, . . . , xk]]V0

inP →
P [xj+1 7→

α
Vj+1, . . . , xk 7→

α
Vk]

(UBli2) unblind {|[[V1, . . . , Vk]]V0
|}m− as [[; x]]V0

inP →
P [x 7→

α
{|V1, . . . , Vk|}m−]

Table 2.3: Reduction relation for blinding; P → P ′.

equivalent, written P1 ≡
α
P2. That two processes are α-equivalent means that

they are identical, except that they possibly differ in the naming of bound names.
The procedure of replacing all occurrences of a bound name in a process with
another name is called α-conversion, and does of course result in an α-equivalent
process.

The definition of α-equivalence is is given in Table A.3 in the appendix, and
it is important to notice that the substitution P [n1 7→ n2] only substitutes
free occurrences of n1 with n2 in P ; that is occurences of n1 that are not
restricted within the process. Also notice that α-equivalence only applies to
names, whereas renaming variables does not result in an α-equivalent process.
This choice is made because only α-conversion of free names is necessary for the
semantics to work satisfactory.

Returning to the reduction relation, a final ingredient is the substitution of
variables for values. Values V ∈ Val are simply terms without variables, and the
reduction relation is defined such that it substitutes a variable x for a value V
whenever x becomes bound to V . This substitution is denoted P [x 7→α V] and
substitutes the variable x for the value V in a process P . Again this substitution
only applies to free occurrences of x, and furthermore the substitution is capture
avoiding meaning that no names in V will be captured by a restriction of that
name. This is ensured by α-converting restricted names when necessary. For
example, assume x occurs free in P , then the substitution in ((ν n)P)[x 7→α n]
requires that n is α-converted before the substitution can be made to avoid
confusion between the name in the restriction and the name in the substitution.

We can now present the reduction relation; in Table 2.3, we formalise the func-
tionality of blinding in a reduction relation, as already explained intuitively in
Chapter 1 and in presentation of LYSA. The full reduction relation for LYSA

with blinding is listed in Table A.1 in the appendix. The rules (UBli1) and
(UBli2) models perfect blinding, as unblinding can only occur using the right
blinding factor V0. Again as earlier discussed the rule (UBli1) is identical to
the rule for symmetric encryption (SDec) in Table A.1 whereas in the reduction

2.3 Annotations 17

relation (UBli2) the variable x is bound to the signed value {|V1, · · · , Vk|}m− .

2.3 Annotations

To describe the intention of protocols, the terms and syntax of the cryptographic
primitives are decorated with labels ` called crypto-points and assertions of one
of two forms:

◦ each encryption and blinding is annotated with a crypto-point ` and an
assertion of the form [dest L] meaning that the corresponding decryption
or unblinding is intended to happen at one of the crypto-points mentioned
in the set L of crypto-points.

◦ each decryption and unblinding operation is annotated with a crypto-
point and an assertion of the form [orig L] meaning that the value being
decrypted or unblinded is intended to come from one of the crypto-points
of L.

The set L should of course be a subset of the entire set of crypto-points C oc-
curring in the protocol. The annotations will be used in the analysis which is
described in Chapter 4. It is important to note that the semantics of the anno-
tated LYSA ignores the annotations and is therfore analogues to the semantics
of LYSA without annotations as listed in Table A.1 in the appendix.

18 LYSA-Calculus with Blinding

Chapter 3

Modelling Protocols in LYSA

We are now ready to model protocols in LYSA; in particular we will model the
FOO92 voting protocol. The ordinary protocol narration as we presented in the
introduction is given in Table 3.1 now written with the notation from LYSA.

1. V → A : V, {|[[{v}r]]b|}K−
V

Preparation Phase

2. A → V : {|[[{v}r]]b|}K−
A

Administration Phase

3. (V) → C : {|{v}r|}K−
A

Voting Phase

4. C → : l, {|{v}r|}K−
A

Publishing Phase

5. (V) → C : l, r Opening Phase

Table 3.1: FOO92: Protocol narration

The translation from ordinary protocol narration into a LYSA process is done in
two stages: First we shall refine the ordinary protocol narration into an extended
protocol narration, which distinguishes between inputs and corresponding out-
puts and also makes clear which checks must be performed. In the second stage
the extended protocol narration is translated into LYSA (with blinding). A dis-
cussion on the need for extending the ordinary protocol narration can be found
in [1].

20 Modelling Protocols in LYSA

3.1 Extended Protocol Narration

The extended protocol narration is listed in Table 3.2 where we use the LYSA

terms and syntax for writing the cryptographic operations.

1. V→ : V,A, V, {|[[{v}r]]b|}K−
V

1′. →A : yV , yA, y
′
V , y1 [check yV = y′V and yA = A]

1′′. A : decrypt y1 as {|y2|}K+
yV

[check V ′s signature]

2. A→ : A, yV , {|y2|}K−
A

2′. →V : xA, xV , x1 [check xA = A and xV = V]
2′′. V : decrypt x1 as {|x2|}K+

A
[check x2 = [[{v}r]]b]

2′′′. V : unblind x1 as [[x3]]b
3. (V)→ : D,C, x3

3′. →C : zD, zC , z1 [check zC = C]
3′′. C : decrypt z1 as {|z2|}K+

A
[check A′s signature]

4. C→ : C,D, z1, l
4′. →V : xC , xD, x4, x5 [check x4 = x3, xC = C and xD = D]
5. (V)→ : D,C, x5, r
5′. →C : z′D, z

′
C , z3, z4 [check z3 = l and z′C = C]

5′′. C : decrypt z2 as {z}z4

Table 3.2: FOO92: Extended protocol narration

First observe that each message is extended with source and destination in-
formation along the lines of IPv4 and IPv6. Upon receipt of a message, the
principal will always check whether the message is intended for him; occasion-
ally he will also check that the sender is who he expected. Note that these
components of the message are sent in clear text and are therefore forgeable.

As mentioned earlier, we model bit commitment (message 1) as symmetric en-
cryption with the commitment key r. Digital signatures are modelled using
asymmetric encryption with the principals private key (messages 1 and 2) and
verification of a signature is then modelled using asymmetric decryption with
the corresponding public key (messages 1′′, 2′′ and 3′′). In addition to verify-
ing the administrators signature (message 2′′) the voter must also ensure that
the signed message was indeed his own ballot, unblinding of the signed ballot
(message 2′′′) will then result in a signed commitment of the vote in accordance
with the rule (Unblind 2).

Modelling the anonymous communication channel (messages 3 and 5) is done
by spoofing the source with a dummy name D. The publishing of the votes

3.2 LYSA Specification 21

is done by sending each vote on the list to everyone on the ether - again the
dummy D name can be used, now as the destination.

3.2 LYSA Specification

The extended narration can be translated into LYSA by dividing the narration
into 3 processes, one for each principal. The LYSA specification of the protocol
is given in Table 3.3. Notice that the checks in the extended narration are
represented by the pattern matchings on input and decryption.

As we shall see shortly the analysis of LYSA does not support rebinding of
variables and new variables can only be introduced by input, decryption and
unblinding. Therefore a small trick has to be used when a signature has to
be verified but not removed: The recipient of the message has to decrypt the
signature and then resign the content by using the same signature. This does
not compromise the analysis, as the signature of the message has already been
verified. The trick is used in the model of both the voter and the counter
(messages 3 and 4).

In the LYSA specification we add annotations to all cryptographic operations
as described earlier in Chapter 2. The sets of crypto-points for the destina-
tion/origin assertions depend of the property that should be analysed and we
shall come back to those in Chapter 7.

In order to ensure that we analyse against the hardest attacker, the attacker
should initially have knowledge of all the public keys. This is done in the LYSA

specification by sending these values in plain-text on the ether in parallel with
the principals in the protocol.

22 Modelling Protocols in LYSA

(ν± KV) (ν± KA)
((ν v) (ν r) (ν b) / ∗ Voter ∗ /

1. 〈V,A, V, {|[[{v}v1
r [destLv1]]]v2

b [destLv2]|}v3

K−
V

[destLv1]〉.
2′. (A, V ; x1).
2′′. decrypt x1 as {|; x2|}v4

K+
A

[origLv4] in

2′′′. unblind x2 as [[; x3]]
v5
b [origLv5] in

3. 〈D,C, {|x3|}v6

K−
A

[destLv6]〉.
4′. (C,D, {|x3|}v7

K−
A

[destLv7]; x4).

5. 〈D,C, x4, r〉.0

1′. | (V,A, V ; y1). / ∗ Administrator ∗ /
1′′. decrypt y1 as {|; y2|}a1

K+
V

[origLa1] in

2. 〈A, V, {|y2|}a2

K−
A

[destLa2]〉.0

| (ν l) / ∗ Counter ∗ /
3′. (D,C; z1).
3′′. decrypt z1 as {|; z2|}c1

K+
A

[origLc1] in

4. 〈C,D, {|z2|}c2

K−
A

[destLc2], l〉.
5′. (D,C, l; z3).
5′′. decrypt z2 as {; z4}c3

z3 [origLc3] in 0

| 〈K+
V ,K

+
A 〉.0 / ∗ Knowledge of the attacker ∗ /

)

Table 3.3: FOO92 in LYSA-calculus

Chapter 4

Analysis of LYSA

The original analysis of LYSA (without blinding) is specified as a Flow Logic
in [7, 8]. In this chapter we shall present this analysis, and extend it to also
include blinding.

4.1 Domain of the Analysis

The aim of the analysis is to give a safe over-approximation of all possible
messages communicated on the network, along with the possible value bindings
of the variables. Furthermore the analysis should record all violations that there
may be to the destination/origin annotations.

In the analysis we assume perfect cryptography, meaning that decryption can
only be done using the correct key, and similarly unblinding can only be done
using the correct blinding factor.

The analysis of each term E will determine a superset of the possible values it
may evaluate to. To do this we keep track of all potential value bindings to
variables in a global abstract environment ρ:

ρ : maps the variables to all values they may be bound to.

24 Analysis of LYSA

The judgement for terms then takes the form:

ρ |= E : ϑ

and expresses that ϑ is an acceptable estimate of the set of values that E may
evaluate to in the abstract environment ρ.

In the analysis of a process P we focus on which values may flow on the network.
In order to do this we keep track of all potential messages on the ether in the
network component κ:

κ : includes all message tuples that may flow on the network.

To obtain this information we make use of the abstract environment ρ, and the
judgement for processes has the form:

ρ, κ, ψ |= P

with the error component ψ:

ψ : holds an over-approximation of the origin/destination violations.

If (`, `′) ∈ ψ then something that was encrypted or blinded at crypto-point `
was unexpectedly decrypted or unblinded at `′.

4.2 Dealing with Infinities

A LYSA process may use a combination of restriction and replication to generate
an arbitrarily large number of names during an execution. Hence recording all
possible messages communicated on the network, would mean recording infinite
sets of names.

To deal with these infinite sets in an efficiently computable way, the set Val of
values, is partitioned into finitely many equivalence classes written bValc. This
partition is made purely for the efficiency of the analysis and it is important to
stress that they have no effect on the semantic behavior of a process.

Each of these equivalence classes are assigned a representative; a canonical value,
written bV c. Hence, as we shall formally prove later, the analysis can only distin-
guish two values V1 and V2 if these values belong to different equivalence classes,
i.e. if bV1c 6= bV2c. The analysis is constructed such that any ”mistakes” that
arise because it cannot distinguish two values, will lead to over-approximation.

4.3 Control Flow Analysis of LYSA with Blinding 25

4.3 Control Flow Analysis of LYSA with Blind-
ing

We are now ready to present the analysis. The clauses defining the judgements
for the original LYSA-calculus may be found in [7, 8], and in this section we shall
extend these to include the blinding construct. The extension to the control flow
analysis is presented in Table 4.1, however for the interested reader we have listed
the full analysis of LYSA with blinding in Table A.5 and A.6 in the appendix.

(ABli) ρ |= [[E1, · · · , Ek]]`E0
[destL] : ϑ

iff ∧k
i=0 ρ |= Ei : ϑi ∧

∀V0 ∈ ϑ0 . . . Vk ∈ ϑk : [[V1, · · · , Vk]]`V0
[destL] ∈ ϑ

(AUBli) ρ, κ, ψ |= unblind E as [[E1, · · · , Ej ; xj+1, · · · , xk]]`E0
[origL] inP

iff ρ |= E : ϑ ∧ ∧j
i=0 ρ |= Ei : ϑi ∧

(∀[[V1, · · · , Vk]]`
′

V0
[destL′] ∈ ϑ : ∧j

i=0 Vi Eϑi ⇒
∧k

i=j+1 Vi ∈ ρ(bxic) ∧ ρ, κ, ψ |= P ∧
(` /∈ L′ ∨ `′ /∈ L ⇒ (`′, `) ∈ ψ))

∧
(∀{|[[V1, · · · , Vk′]]

`′

V0
[destL′]|}`sig

V
sig
0

[destLsig] ∈ ϑ :

j = 0 ∧ k = 1 ∧ V0 Eϑ0 ⇒
{|V1, · · · , Vk′ |}`sig

V
sig
0

[destLsig] ∈ ρ(bx1c)∧
ρ, κ, ψ |= P ∧
(` /∈ L′ ∨ `′ /∈ L ⇒ (`′, `) ∈ ψ))

Table 4.1: Analysis of terms and processes for blinding; ρ |= E : ϑ and ρ, κ, ψ |=
P .

The rule for the blinding term is very straightforward and identical to that of
symmetric encryption. To produce the set ϑ, the rule for k-ary blinding finds
the set ϑi for each term Ei, collects all k-tuples of values (V0, · · · , Vk) taken
from ϑ0 × · · · × ϑk into values of the form [[V1, · · · , Vk]]`V0

[destL] and requires
these values to belong to ϑ.

The rule for the unblinding process consists of two parts, where the first part
is similar to the rule for symmetric decryption. The analysis evaluates the
sets ϑ and ϑi, and checks for each blinded value {|V1, · · · , Vk|}`

V0
[destL] ∈ ϑ

wether the values V0, · · · , Vj are pointwise included in ϑi; note that also the
blinding factor is checked this way. Here the faithful membership E for matching

26 Analysis of LYSA

ignores annotations. If the check succeeds, the values Vj+1, · · · , Vk are pointwise
ensured to be contained in xi, and the ψ-component must contain (`, `′) if the
destination/origin assertions might be violated.

The second part of the unblinding rule is used if the process has the form
unblind E as [[; x1]]

`
E0

[origL] inP . For each value that is signed and blinded; that

is for each {|[[V1, · · · , Vk′]]
`′

V0
[destL′]|}`sig

V sig
0

[destLsig] ∈ ϑ, it is checked whether
the value V0 is included into ϑ0, again the faithful membership E is used for
matching If the check is successful then the value {|V1, · · · , Vk′ |}`sig

V sig
0

[destLsig]
must be contained in x1, additionally the ψ-component must contain (`, `′) if
the destination/origin assertions might be violated.

The following example gives an idea of the workings of the analysis.

Example 4.1 Analysis of a protocol Consider the following simple protocol
with two principals A and B. In the protocol, A generates a fresh key K and
sends it in clear to B along with a message m which is symmetric encrypted
under the key K (at crypto-point `A). Upon receiving the messages xK and x,
B decrypts x with the key xK (at crypto-point `B).

((ν m) (ν K) 〈A,B,K, {m}`A

K [destLA]〉.0 / ∗A ∗ /
|
(A,B; xK , x). decrypt x as {; xm}`B

xK
[origLB] in 0) / ∗B ∗ /

The encryption at crypto-point `A is intended to be decrypted only at `B and
correspondingly the decryption at `B should originate from the encryption at `A,
hence we have the sets of crypto-points LA = {`B} and LB = {`A}.

Now the analysis of this protocol consists a conjunction of the analysis of the
two processes in parallel. The analysis of the first process gives 〈bAc, bBc, bKc,
{bmc}`A

bKc[destLA]〉 ∈ κ as this message is sent over the network. Since no
other messages are sent on the network in the protocol we have that κ = {〈bAc,
bBc, bKc, {bmc}`A

bKc[destLA]〉}.

The analysis of the second process yields the possible bindings of variables bKc ∈
ρ(xK) and {bmc}`A

bKc[destLA] ∈ ρ(x), and B can now decrypt x resulting in yet
another variable binding bmc ∈ ρ(xm). Since `B ∈ LA and `A ∈ LB, there will
be no violations to the assertions and hence we get that ψ = ∅. �

4.4 Soundness of the Analysis 27

4.4 Soundness of the Analysis

In this section we shall prove that our analysis respects the operational semantics
of LYSA, more precisely we shall show that ρ and κ indeed statically predicts
all possible variable bindings and all messages sent on the ether during any
execution of the protocol. In addition we show that an empty ψ component
guarantees that there can never be any violations to the annotations.

These results require that our analysis captures the entire behavior of the pro-
tocol, which we single out in a subject reduction lemma. Also a number of other
lemmata are presented, which gives perspective on the analysis, and serves as
foundation of the main results.

The following proofs utilise the fact that the semantics for the annotated LYSA

process, as described earlier, ignores the annotations, and are therefore analo-
gous to the semantics for LYSA without annotations.

We shall first present three invariance lemmata, which shows what the analy-
sis cannot distinguish between. The first lemma states that the analysis only
distinguish processes to the level of assignment of canonical names.

Lemma 4.1 (Invariance of canonical names) If ρ, κ, ψ |= P and bnc = bn′c
then ρ, κ, ψ |= P [n 7→ n′].

Proof The lemma is a direct consequence of the fact that the analysis only
records canonical names. The proof proceeds straightforward by induction in
the definition of the analysis with the only interesting case being the rule (AN)
though it too is straightforward as bnc = bn[n 7→ n′]c = bnc �

Similar lemmata can be shown about public and private keys and variables. As
previously discussed this result shows, that the analysis cannot tell values that
have different canonical representative apart.

The semantics of LYSA presented earlier allows free α-equivalence. However,
this also allows change of bound names, which again could mean change of
canonical representatives. As our analysis can only operate on a finite number
of canonical representatives, we shall use disciplined α-equivalence instead.

Definition 4.2 (Disciplined α-equivalence) Two processes P1 and P2 are
disciplined α-equivalent whenever P1 ≡

α
P2 using the rules in Table A.3 with

the extra requirement that bn1c = bn2c, bm−
1 c = bm−

2 c and bm+
1 c = bm+

2 c.

28 Analysis of LYSA

This is obviously a subrelation of ordinary α-equivalence, but since each canon-
ical name bnc represents an equivalence class with an infinite number of names,
disciplined α-equivalence is as expressive as α-equivalence. In the following, the
semantics using disciplined α-equivalence will be used.

Thus, we can now state the second invariance lemma.

Lemma 4.3 (Invariance of α-equivalence) If ρ, κ, ψ |= P and P is disci-
plined α-equivalent with P ′ then ρ, κ, ψ |= P ′.

Proof The proof proceeds by induction in the definition of α-equivalence in Ta-
ble A.3. The cases for the equivalence follow by the induction hypothesis. The
remaining cases follow from Lemma 4.1 remembering that substituted names
have the same canonical name as their substitute. �

Hence the analysis cannot distinguish two α-equivalent processes. α-equivalence
is used by structural congruence, and actually the analysis cannot tell two struc-
tural congruent processes apart either:

Lemma 4.4 (Invariance of structural congruence) If ρ, κ, ψ |= P and
P ≡ P ′ then ρ, κ, ψ |= P ′.

Proof The proof proceeds by induction in the definition of P ≡ P ′ defined in
Table A.2

Cases for equivalence and congruence follow by the induction hypothesis.

Cases for parallel composition follow because logical conjunction used in
the analysis is commutative and associative. Furthermore, logical conjunction
has true as a neutral element and true is equivalent to the analysis of 0, which
is the neutral element of parallel composition.

Case for replication Assume ρ, κ, ψ |= !P . Then the following calculation
justifies that also ρ, κ, ψ |= P | !P :

ρ, κ, ψ |= !P iff ρ, κ, ψ |= P (ARep)
iff ρ, κ, ψ |= P ∧ ρ, κ, ψ |= P
iff ρ, κ, ψ |= P ∧ ρ, κ, ψ |= !P (ARep)
iff ρ, κ, ψ |= P | !P (APar)

Cases for restriction are straightforward to check, using the fact that the
analysis ignores restriction.

Case for α-equivalence follows from Lemma 4.3. �

4.4 Soundness of the Analysis 29

These invariance results should serve as an insight into how the analysis is
restricted, such that it is efficiently computational.

It is now convenient to prove the following three lemmata. The first one shows,
that the estimates of terms the analysis finds, does in fact capture all values a
term may evaluate to. The next two show, that these estimates are also resistant
to substitution of values for variables, and that this holds for both terms and
processes.

Lemma 4.5 (Evaluation of values) The analysis ρ |= V : ϑ holds if and only
if bV c ∈ ϑ.

Proof The proof is by induction in the structure of values. Remembering that
the values, V , are terms without variables, the proof is straightforward. �

Hence we can now show that the estimates are resistant to substitution in terms.

Lemma 4.6 (Substitution in terms) If ρ |= E : ϑ and bV c ∈ ρ(bxc) then
ρ |= E[x 7→α V] : ϑ.

Proof The proof proceeds by structural induction over terms by regarding each
of the rules in the analysis. Whenever one has to do a proof that concerns sub-
stitution, the only interesting cases are the ones where the substitution modifies
something. In this proof the interesting case, thus, is (AVar). The remaining
cases are straightforward as e.g.

Case (AN). Assume that ρ |= n : ϑ, For arbitrary choices of x and V it holds
that n[x 7→α V] = n so it is immediate that also ρ |= n[x 7→α V] : ϑ.

Case (ANp), (ANm) are similar.

Case (AVar). Assume that ρ |= x′ : ϑ i.e. that ρ(bx′c) ⊆ ϑ. Then there are two
cases. Either x′ 6= x in which case x′[x 7→α V] = x′ so clearly ρ |= x′[x 7→α V] : ϑ.
Alternatively, x′ = x in which case x′[x 7→α V] = V . Furthermore assume that
bV c ∈ ρ(bx′c) and in which case bV c ∈ ϑ by the analysis. Finally, using Lemma
4.5 one may conclude that ρ |= V : ϑ as required.

Case (ASEnc), (AAEnc), (ABli) follow directly using the induction hypothesis.
�

The following Lemma shows that this also applies for processes.

30 Analysis of LYSA

Lemma 4.7 (Substitution in processes) If ρ, κ, ψ |= P and bV c ∈ ρ(bxc)
then ρ, κ, ψ |= P [x 7→α V].

Proof The proof is done by straightforward induction applying the induction
hypothesis on any subprocesses and Lemma 4.6 on any subterm. It relies on
Lemma 4.3 because the analysis is invariant under any disciplined α-renaming
that may occur due to capture avoiding substitution. �

We are now ready to present the subject reduction result. As already explained,
this lemma shows that the analysis captures any behavior of the protocol; that
is that if the analysis components are an acceptable estimate for a process P
then they are also an acceptable estimate for any process P ′ that P may evolve
into.

Lemma 4.8 (Subject Reduction) If ρ, κ, ψ |= P and P → P ′ then ρ, κ, ψ |=
P ′.

Proof The proof proceeds by structural induction in the reduction steps.

Case (Com). Let P = 〈V1, . . . , Vk〉.P1 | (V1, . . . , Vj ; xj+1, . . . , xk).P2 and P ′ =
P1 | P2[xj+1 7→

α
Vj+1, . . . , xk 7→

α
Vk] and assume that ρ, κ, ψ |= P and P → P ′

due to (Com). Expanding the analysis one gets

ρ, κ, ψ |= P iff ρ, κ, ψ |= 〈V1, . . . , Vk〉.P1 ∧
ρ, κ, ψ |= (V1, . . . , Vj ; xj+1, . . . , xk).P2

iff ∧k
i=1ρ |= Vi : ϑi ∧ ∀U1 ∈ ϑ1 . . . Uk ∈ ϑk : U1 . . . Uk ∈ κ∧

ρ, κ, ψ |= P1 ∧
∧j

i=1ρ |= Vi : ϑ′i ∧ ∀U ′
1 . . . U

′
k ∈ κ : ∧j

i=1U
′
i ∈ ϑ′i ⇒

(∧k
i=j+1 U

′
i ∈ ρ(bxic) ∧ ρ, κ, ψ |= P2)

From the analysis of output and Lemma 4.5 one may conclude that ρ, κ, ψ |= P1

and that κ contains bV1c . . . bVjcbVj+1c . . . bVkc. Using the latter, the analysis
of the input and Lemma 4.5 furthermore gives that bVic ∈ ρ(bxic) for i =
j+1, . . . , k and that ρ, κ, ψ |= P2. By repeatedly applying Lemma 4.7, one may
conclude that ρ, κ, ψ |= P2[xj+1 7→

α
Vj+1, . . . , xk 7→

α
Vk] i.e. that ρ, κ, ψ |= P ′ as

required.

Case (UBli1). Let

P = unblind [[V1, . . . , Vk]]`
′

V0
[destL′] as [[V1, . . . , Vj ; xj+1, . . . , xk]]`V0

[origL] inP ′′

and P ′ = P ′′[xj+1 7→
α
Vj+1, . . . , xk 7→

α
Vk]. Assume that ρ, κ, ψ |= P and that

P → P ′ because of (UBli1). From the definition of the analysis using the rule

4.4 Soundness of the Analysis 31

(ABli) and Lemma 4.5 it is clear that [[bV1c, . . . , bVkc]]`
′

bV0c[destL′] ∈ ϑ and that
bVic ∈ ϑi for i = 0, . . . , j. Thus, the analysis of pattern matching in the first part
(AUBli) succeeds and one may conclude that bVic ∈ ρ(bxic) for i = j + 1, . . . , k
and that ρ, κ, ψ |= P ′′. Lemma 4.7 then gives that also ρ, κ, ψ |= P ′

Case (UBli2). Let

P = unblind {|[[V1, · · · , Vk′]]
`′

V0
[destL′]|}`sig

m− [destLsig] as [[; x]]`V0
[origL] inP ′′

and P ′ = P ′′[x 7→α {|V1, . . . , Vk|}`sig

m− [destLsig]]. Assume that ρ, κ, ψ |= P and
that P → P ′ because of (UBli2). From rule (ABli) in the definition of the analysis
and Lemma 4.5 it is clear that {|[[bV1c, · · · , bVk′c]]`

′

bV0c[destL′]|}`sig

bm−c[destLsig] ∈
ϑ and that bV0c ∈ ϑ0. Thus, the analysis of pattern matching in the second part
(AUBli) succeeds and one may conclude that {|bV1c, . . . , bVkc|}`sig

bm−c[destLsig] ∈
ρ(bxc) and that ρ, κ, ψ |= P ′′. Lemma 4.7 then gives that also ρ, κ, ψ |= P ′

Case (SDec), (ADec), (ASig) are similar.

Case (New). Assume ρ, κ, ψ |= (ν n)P i.e. that ρ, κ, ψ |= P . Assume also
that (ν n)P → (ν n)P ′ using (New) because P → P ′. Then by the induction
hypothesis ρ, κ, ψ |= P ′, which by the analysis definition allows us to conclude
that ρ, κ, ψ |= (ν n)P ′.

Case (ANew) is similar.

Case (Par) Assume that ρ, κ, ψ |= P1 | P2 i.e. that ρ, κ, ψ |= P1 and ρ, κ, ψ |= P2.
Furthermore assume that P1 | P2 → P ′

1 | P2 by (Par) because P1 → P ′
1. Then

using the induction hypothesis also (Par) ρ, κ, ψ |= P ′
1. The analysis then allows

to conclude that ρ, κ, ψ |= P ′
1 | P2.

Case (Congr) is a direct consequence of the induction hypothesis and application
of Lemma 4.4. �

Using the subject reduction result, we can now present our main results. First we
show that any message that may flow on the network will be in κ if ρ, κ, ψ |= P .

Theorem 4.9 (Messages in κ) If ρ, κ, ψ |= P and P →∗ P ′ → P ′′ such that
the reduction P ′ → P ′′ is derived using (Com) on output 〈V1, . . . , Vk〉.P ′′

1 then
bV1c . . . bVkc ∈ κ.

Proof By induction in the length of the reduction sequence, Lemma 4.8 can
be used to conclude that ρ, κ, ψ |= P ′. Next the proof proceeds by induction in

32 Analysis of LYSA

the reduction rules used to derive P ′ → P ′′.

Case (Com) If this rule is applied, it will be a process of the form

〈V1, . . . , Vk〉.P ′′
1 | (V1, . . . , Vj ; xj+1, . . . , xk).P ′′

2

The analysis holds for this process meaning, in particular, that the analysis of
output holds for the communication of the k-tuple. Using Lemma 4.5 one can
check that then indeed bV1c . . . bVkc ∈ κ.

Case (SDec), (ADec), (ASig), (UBli1), (UBli2). Reductions that uses any of
these rules will not also use the rule (Com) and can therefore be disregarded.

Case (New), (ANew), (Par), (Congr) are all straightforward by applying the
induction hypothesis noting that the analysis also holds for any subprocesses.
�

And we present a similar result for all possible variable bindings ρ.

Theorem 4.10 (Values in ρ) If ρ, κ, ψ |= P and P →∗ P ′ → P ′′ such
that P ′′ is the result of a substitution of the variable x for the value V then
bV c ∈ ρ(bxc).

Proof The proof is similar to that of Theorem 4.9. �

Which leads us to our last main result; if there exist a κ and a ρ such that
ρ, κ, ∅ |= P for a protocol P , then we are certain that no evaluation of P will
ever lead to a violation of the annotations. This is shown by the following
lemma.

Theorem 4.11 (Analysis of authentication) If ρ, κ, ψ |= P and ψ = ∅
then P ensures destination and origin authentication.

Proof The theorem can be proven by showing an extended subject reduction
result that says if ρ, κ, ψ |= P and P → P ′ then ρ, κ, ψ |= P ′ and furthermore if
ψ = ∅ then P → P ′ does not violate the authentication property. An induction
in the length of the execution sequence then gives that P ensures authentication
for all executions.

The interesting part of the proof is the cases for decryption and unblinding.
One of these is given below; the others are analogous.

4.4 Soundness of the Analysis 33

Case (UBli1). Let P be the process

unblind [[V1, . . . , Vk]]`
′

V0
[destL′] as [[V1, . . . , Vj ; xj+1, . . . , xk]]`V0

[origL] inP ′′

and assume that ρ, κ, ψ |= P and that P → P ′ by (UBli1). The argument
that then also ρ, κ, ψ |= P ′ follows directly from Theorem 4.8. As the analysis
of the pattern matching succeeds, in particular for the encrypted value that is
decrypted in P , the analysis ρ, κ, ψ |= P ′ gives that

` /∈ L′ ∨ `′ /∈ L ⇒ (`′, `) ∈ ψ

holds. Next, assume that ψ = ∅. Then the above part of the analysis gives that
` /∈ L′ ∨ `′ /∈ L ⇒ false, which can only hold if

¬(` /∈ L′ ∨ `′ /∈ L)

This directly says that the authentication property will not be violated by the
reduction P → P ′. �

34 Analysis of LYSA

Chapter 5

The Attacker

Protocols that involve several principals who communicate on a network, are
vulnerable to attacks from other parties, that have access to the network. In
LYSA we have one global network; the ether, and in this setting any attacker
can be modelled by

P | P•

where P is the protocol and P• represents some arbitrary attacker. This attacker
can see all messages sent on the ether, but do not have access to any of the
internal values in the protocol; ie. restricted names. This essentially describes
the scenario of the attacker formalised by Dolev and Yao in 1981 [16].

Given a protocol P and a specific attacker P•, the analysis presented in Chapter
4 can account for the behavior of P under attack from P•. However, in order
to be sure that we analyse a protocol against any attacker, we need to capture
all the capabilities an attacker may have in our definition of the attacker. In
this chapter we will define such an attacker and establish the correctness of this
definition.

36 The Attacker

5.1 Modelling the Attacker

We aim at finding a formula FDY which characterises all attackers. This means
that if (ρ, κ, ψ) satisfies FDY, then ρ, κ, ψ |= P• for all attackers P•.

Our approach to finding such a formula, requires a few assumptions that benefit
the control flow analysis but have no semantic consequence. In [7] it is shown
that a process P can be typed to (Nf , Aκ, AEnc) whenever (1) it has no free
variables, (2) its free names are in Nf , (3) all arities used for sending or receiving
are in Aκ and (4) all the arities used for symmetric encryption or decryption
are in AEnc. In our analysis however, we also use asymmetric encryption and
blinding, so we extend this typing of a process to (Nf , Aκ, AEnc, AAEnc, ABli)
whenever (5) all the arities used for asymmetric encryption or decryption are in
AAEnc and (6) all the arities used for symmetric encryption or decryption are in
ABli. In order to avoid special cases we shall assume that Aκ, AEnc, AAEnc and
ABli all contain at least one integer, eg. 1.

Given a set AEnc we now define A+
Enc = AEnc ∪ k+

Enc where k+
Enc > 0 and

k+
Enc /∈ AEnc. Using an analogous definition of A+

AEnc and A+
Bli we now claim

that attackers can be typed as (Nf , Aκ, A+
Enc, A

+
AEnc, A

+
Bli) and that this typing

does not cause any loss of generality. In particular we claim the ability of the
attacker to use:

◦ additional free names, may be masked by restricting the names as to be-
come local within the attacker,

◦ k-ary communication for k /∈ Aκ does not increase his computational
power,

◦ symmetric or asymmetric encryption and decryption of k-ary sequences
where k /∈ A+

Enc or k /∈ A+
AEnc respectively, will not increase his computa-

tional power, and

◦ blinding or unblinding of k-ary sequences for k /∈ A+
Bli will not increase his

computational power.

An arbitrary attacker may use any canonical name or variable, but the formula
FDY needs to have only a finite set of canonical names and variables. We
therefore introduce canonical names n•, m+

• and m−
• in which all canonical

names, public keys and private keys of the attacker are coalesced into. Similarly
we introduce a canonical variable z• in which all variables of the attacker are
coalesced into.

5.1 Modelling the Attacker 37

A last aspect of the attacker is the annotations. In theory the attacker should
not have any annotations, as annotations should only express the intentions of
the protocol. However, as the syntax of LYSA enforces annotations, we replace
all crypto-points in the attacker by a crypto-point `• and annotate with the
trivial assertions [orig C] and [dest C], where the set C is the entire set of crypto-
points occurring in the protocol including the attackers own crypto-point `•.

We can now express the capabilities of the attacker. In the style of the Dolev-Yao
attacker [16], the attacker can perform the following actions:

◦ receive all messages sent on the ether,

◦ decrypt messages if he knows the key or unblind messages if he knows the
blinding factor,

◦ construct new encryptions or blindings from values he knows,

◦ send messages constructed from values he knows, and

◦ generate new values.

The definition of the formula FDY of type (Nf ,Aκ,A+
Enc,A

+
AEnc,A

+
Bli) for express-

ing the Dolev-Yao condition for the extended LYSA, is given as a conjunction
of the 10 components in Table 5.1.

The formula shows that the attacker initially has some knowledge (DY1), that
he will learn everything sent on the ether (DY2), that he can construct new com-
posite values from known values using encryption and blinding (DY3− DY5),
that he can decrypt using known keys (DY6,DY7), that he can unblind using
known blinding factors (DY8,DY9) and that he may forge new communications
(DY10). Note that, since ` ∈ C is always satisfied, (` /∈ C ∨ `• /∈ L ⇒ (`, `•) ∈ ψ)
can be written by the more compact (`• /∈ L ⇒ (`, `•) ∈ ψ).

Lets look at the protocol from Example 4.1 again, this gives an idea of how the
analysis works when we analyse a protocol in parallel with the attacker.

Example 5.1 Analysis of a protocol (Continued) Consider again the pro-
tocol from Example 4.1.

((ν m) (ν K) 〈A,B,K, {m}`A

K [destLA]〉.0 / ∗A ∗ /
|
(A,B; xK , x). decrypt x as {; xm}`B

xK
[origLB] in 0) / ∗B ∗ /

Where LA = {`B} and LB = {`A}.

38 The Attacker

(DY1) {n•,m+
• ,m

−
• } ∪ bNfc ⊆ ρ(z•)

(DY2) ∧k∈Aκ ∀〈V1, · · · , Vk〉 ∈ κ : ∧k
i=1 Vi ∈ ρ(z•)

(DY3) ∧
k∈A+

Enc
∀V0, · · · , Vk : ∧k

i=0Vi ∈ ρ(z•) ⇒ {V1, · · · , Vk}`•
V0

[dest C] ∈ ρ(z•)

(DY4) ∧
k∈A+

AEnc
∀V0, · · · , Vk : ∧k

i=0Vi ∈ ρ(z•) ⇒ {|V1, · · · , Vk|}`•
V0

[dest C] ∈ ρ(z•)

(DY5) ∧
k∈A+

Bli
∀V0, · · · , Vk : ∧k

i=0Vi ∈ ρ(z•) ⇒ [[V1, · · · , Vk]]`•V0
[dest C] ∈ ρ(z•)

(DY6) ∧
k∈A+

Enc
∀{V1, · · · , Vk}`

V0 [destL] ∈ ρ(z•) : V0 E ρ(z•) ⇒
∧k

i=1Vi ∈ ρ(z•)∧
(`• /∈ L ⇒ (`, `•) ∈ ψ)

(DY7) ∧
k∈A+

AEnc
∀{|V1, · · · , Vk|}`

V0
[destL] ∈ ρ(z•) :

∀(m+,m−) : ∀V ′
0 E ρ(z•) : {V0, V

′
0} = {m+,m−} ⇒

∧k
i=1Vi ∈ ρ(z•)∧

(`• /∈ L ⇒ (`, `•) ∈ ψ)

(DY8) ∧
k∈A+

Bli
∀[[V1, · · · , Vk]]`V0

[destL] ∈ ρ(z•) : V0 E ρ(z•) ⇒
∧k

i=1Vi ∈ ρ(z•)∧
(`• /∈ L ⇒ (`, `•) ∈ ψ)

(DY9) ∧
k∈A+

Bli
∀{|[[V1, · · · , Vk]]`V0

[destL]|}`sig

V
sig
0

[destLsig] ∈ ρ(z•) : V0 E ρ(z•) ⇒

{|V1, · · · , Vk|}`sig

V
sig
0

[destLsig] ∈ ρ(z•)∧
(`• /∈ L ⇒ (`, `•) ∈ ψ)

(DY10) ∧k∈Aκ ∀V1, · · · , Vk : ∧k
i=1 Vi ∈ ρ(z•) ⇒ 〈V1, · · · , Vk〉 ∈ κ

Table 5.1: The Dolev-Yao attacker in extended LYSA.

The analysis of this protocol gives 〈bAc, bBc, bKc, {bmc}`A

bKc[destLA]〉 ∈ κ as
this message is sent over the network. Since the attacker learns everything sent
on the ether, the analysis also gives bKc ∈ ρ(z•) as well as {bmc}`A

bKc[destLA] ∈
ρ(z•). Since the attacker knows the key K, he can now decrypt the message
{m}`A

K [destLA] resulting in the violation to the annotations (`A, `•) ∈ ψ. The
analysis also gives the violation (`•, `B) ∈ ψ as B does not know the key in
advance, therefore the attacker can create a new key K• and a new message
m• and send the message 〈A,B,K•, {m•}K•〉 onto the ether, which would be
accepted by B. �

5.2 Correctness of the Attacker 39

5.2 Correctness of the Attacker

We will now establish the correctness of the Dolev-Yao condition, this is split
into a soundness and a completeness result. Soundness means that FDY captures
the capabilities of any attacker P• and completeness means that there indeed
exist an attacker as strong as the formula FDY.

That soundness is satisfied is captured by the following theorem:

Theorem 5.1 (Soundness of Dolev-Yao condition) If (ρ, κ, ψ) satisfies
FDY of type (Nf , Aκ, A+

Enc, A
+
AEnc, A

+
Bli) then ρ, κ, ψ |= P• for all processes P•

of type (Nf , Aκ, A+
Enc, A

+
AEnc, A

+
Bli).

Proof A process P• is said to have extended type (z•, {n•, m+
• , m

−
• } ∪ Nf , Aκ,

A+
Enc, A

+
AEnc, A

+
Bli) whenever the canonical variables are in {z•}, the canonical

names are in {n•,m+
• ,m

−
• }∪Nf , all arities for sending and receiving are in Aκ,

all arities used for symmetric and asymmetric encryption and decryption are in
A+

Enc and A+
AEnc respectively, and all arities used for blinding and unblinding are

in A+
Bli.

Now using structural induction we shall prove that

If (ρ, κ, ψ) satisfies FDY of type (Nf , Aκ, A+
Enc, A

+
AEnc, A

+
Bli) then

ρ, κ, ψ |= P• for all attackers P• of extended type (z•, {n•, m+
• ,

m−
• } ∪ Nf , Aκ, A+

Enc, A
+
AEnc, A

+
Bli).

The most interesting case is when the attacker P• is the process

unblind E as [[E1, · · · , Ej ; xj+1, · · · , xk]]`•
E0

[orig C] inP

and here we need to find ϑ and ϑ0, · · · , ϑj and show

(a) ρ |= E : ϑ ∧ ∧j
i=0 ρ |= Ei : ϑi

and (b) for all [[V1, · · · , Vk]]`V0
[destL] ∈ ϑ with ∧j

i=0 Vi Eϑi that:

(b1) ∧k
i=j+1 Vi ∈ ρ(bxic)

(b2) ρ, κ, ψ |= P
(b3) (` /∈ C ∨ `• /∈ L ⇒ (`, `•) ∈ ψ))

and (c) for all {|[[V1, · · · , Vk′]]
`
V0

[destL]|}`sig

V sig
0

[destLsig] ∈ ϑ with j = 0 ∧ k = 1

40 The Attacker

and V0 Eϑ0 that:

(c1) {|V1, · · · , Vk′ |}`sig

V sig
0

[destLsig] ∈ ρ(bx1c)
(c2) ρ, κ, ψ |= P
(c3) (` /∈ C ∨ `• /∈ L ⇒ (`, `•) ∈ ψ))

Choosing ϑ as the least set such that ρ |= E : ϑ, we show that it must be
the case that ϑ ⊆ ρ(z•); obviously, if E has free variables z1, · · · , zm then ϑ

consist of all values bE[z1 7→
α
V1, · · · , zm 7→α Vm]c where Vi ∈ ρ(z•). Now, since

this also applies for ϑ0, · · · , ϑj , we have that (a) is satisfied. Then assume that
[[V1, · · · , Vk]]`V0

[destL] ∈ ϑ and ∧j
i=0 Vi Eϑi. As for (a) we have that ∧j

i=0 ϑi ⊆
ρ(z•), and hence that ∧j

i=0 Vi E ρ(z•), and in particular that V0 E ρ(z•). Then
according to (DY8) in Table 5.1, it must be the case that ∧k

i=0Vi ∈ ρ(z•) and
(`• /∈ L ⇒ (`, `•) ∈ ψ). Since ` ∈ C is trivially true and as bxic = z• we have
that (b1) and (b3) are satisfied; furthermore since P also must have extended
type (z•, {n•, m+

• , m
−
• } ∪ Nf , Aκ, A+

Enc, A
+
AEnc, A

+
Bli) the induction hypothesis

gives us (b2) and hence we have shown that (b) is satisfied. The proof for (c) is
analogous to that of (b).

All remaining cases are similar. �

The next step is to show that there actually exists such an attacker, and that
we did not add any abilities that a real attacker could not posses. This can be
regarded as the completeness of the attacker and is captured by the following
theorem:

Theorem 5.2 (Completeness of Dolev-Yao condition) There exists an
attacker PHard of type (Nf , Aκ, A+

Enc, A
+
AEnc, A

+
Bli) such that the formula ρ, κ, ψ |=

PHard is equivalent to the formula FDY of type (Nf , Aκ, A+
Enc, A

+
AEnc, A

+
Bli).

Proof PHard is !(P1 | |k∈Aκ
P k

2 | |k∈A+
Enc
P k

3 | |k∈A+
AEnc
P k

4 | |k∈A+
Bli
P k

5 | |k∈A+
Enc
P k

6

| |k∈A+
AEnc
P k

7 | |k∈A+
Bli
P k

8 |P9 | |k∈Aκ
P k

10) where P k
i corresponds to the i-th com-

ponent of FDY in Table 5.1. Assuming that all variables z, z0, z1, · · · , have

5.3 Crypto-based Authentication 41

canonical representative z• and 1 ∈ Aκ as discussed above we have:

P1 = 〈n•〉.〈m+
• 〉.〈m−

• 〉.0 | |n∈Nf
〈n〉.0

P k
2 = (; z1, · · · , zk).0
P k

3 = (; z0). · · · (; zk).〈{z1, · · · , zk}`•
z0

[dest C]〉.0
P k

4 = (; z0). · · · (; zk).〈{|z1, · · · , zk|}`•
z0

[dest C]〉.0
P k

5 = (; z0). · · · (; zk).〈[[z1, · · · , zk]]`•z0
[dest C]〉.0

P k
6 = (; z).(; z0).decrypt z as {; z1, · · · , zk}`•

z0
[orig C] in 0

P k
7 = (; z).(; z0).decrypt z as {|; z1, · · · , zk|}`•

z0
[orig C] in 0

P k
8 = (; z).(; z0).unblind z as [[; z1, · · · , zk]]`•z0

[orig C] in 0

P9 = (; z).(; z0).unblind z as [[; z1]]
`•
z0

[orig C] in 0
P k

10 = (; z1). · · · (; zk).〈z1, · · · , zk〉.0

�

This also shows that the Dolev-Yao attacker is the so called hardest attacker
[32] and concludes the proof for the correctness of the attacker.

5.3 Crypto-based Authentication

The annotations of LYSA are designed to validate destination and origin authen-
tication. More formally, we say that a process P guarantees static authentication
if there exist ρ and κ such that ρ, κ, ∅ |= P and (ρ, κ, ∅) satisfies FDY. Now what
we actually want is to validate, is wether the process P guarantees dynamic au-
thentication; that P |P• ensures destination and origin authentication for any
attacker P•.

Hence we are now ready to state the main theorem:

Theorem 5.3 (Authentication) If P guarantees static authentication then
P guarantees dynamic authentication.

Proof If ρ, κ, ∅ |= P and (ρ, κ, ∅) satisfies FDY then, according to Theorem 4.11,
it must also be the case that ρ, κ, ∅ |= P• for any attacker P•. Now using the
rule (APar) in Table A.6 we get that ρ, κ, ∅ |= P | P• for any P•, which according
to Theorem 5.1 states that P |P• ensures destination and origin authentication
for any attacker P•. This concludes the proof. �

42 The Attacker

Chapter 6

Implementation

The aim of the implementation is to compute a least (ρ, κ, ψ) for any given LYSA

-process P , such that ρ, κ, ψ |= P . However, as the analysis components ρ, κ
and ψ are interpreted over an infinite universe of terms, this poses a termination
problem for the implementation. In LYSA this challenge is handled by encoding
sets of terms using tree grammars; thereby describing the infinite sets using a
finite number of grammar rules.

The implementation is carried out in two steps; first the analysis is encoded
using a suitable constraint language and then this constraint is solved using a
constraint solver. As developing a constraint solver is a challenging project by
itself, the easiest way to do this is using an already developed solver, and in
LYSA the choice of solver has been the Succinct Solver [33]. The input to the
Succinct Solver is a formula in Alternation-free Least Fixed Point logic (ALFP).
When the ALFP formula is interpreted over a finite, structured universe, the
Succinct Solver will compute the least interpretation of predicate symbols that
satisfy the formula and guarantee termination. This fits well with the encoding
of infinite sets as tree grammars.

The transformation from the initial LYSA process P to ALFP is done by trans-
forming the analysis presented in Chapter 4 into a generator function G for
ALFP. This transformation is done in a number of steps:

44 Implementation

Step 0 The initial step

Step 1 Transformation from Flow Logic to Verbose.

Step 2 From infinite to finite

Step 3 Removing polyvariance

Step 4 Generating ALFP

Each of these steps are described in detail for the original LYSA in [9], where
the implementation is also shown to be sound with respect to the analysis; that
is it produces a solution which is also a solution to the analysis.

In this section we will describe how the extension of blinding can be imple-
mented, following the same strategy, and then prove that this extension is
sound with respect to the analysis. Finally we will describe how the Dolev-
Yao attacker presented in Chapter 5 can be implemented as well, and show that
also this implementation is sound with respect to the definition of the attacker.

6.1 Step 0 - The Initial Step

The original analysis, called the succinct flow analysis [35], was presented in
Chapter 4. As a reminder the analysis of blinding is relisted in Table 6.2. This
analysis uses the the three components ρ, κ and ψ which are summarised in
Table 6.1.

ϑ ∈ ℘(V) Local term cache
ρ : bXc → ℘(V) Variable environment
κ ∈ ℘(V∗) Network component
ψ ∈ ℘(C × C) Error component

V ∈ V Values - terms without variables
x ∈ X Variables
` ∈ C Crypto-points

Table 6.1: Components used in the original analysis

In the rest of this chapter, this analysis will be transformed in order to provide
the ALFP formulae. To distinguish each step, the judgement symbol |= as
well as as some of the analysis components will be decorated with different
superscripts.

6.2 Step 1 - From Flow Logic to Verbose 45

(ABli) ρ |= [[E1, · · · , Ek]]`E0
[destL] : ϑ

iff ∧k
i=0 ρ |= Ei : ϑi ∧

∀V0 ∈ ϑ0 . . . Vk ∈ ϑk : [[V1, · · · , Vk]]`V0
[destL] ∈ ϑ

(AUBli) ρ, κ, ψ |= unblind E as [[E1, · · · , Ej ; xj+1, · · · , xk]]`E0
[origL] inP

iff ρ |= E : ϑ ∧ ∧j
i=0 ρ |= Ei : ϑi ∧

(∀[[V1, · · · , Vk]]`
′

V0
[destL′] ∈ ϑ : ∧j

i=0 Vi Eϑi ⇒
∧k

i=j+1 Vi ∈ ρ(bxic) ∧ ρ, κ, ψ |= P ∧
(` /∈ L′ ∨ `′ /∈ L ⇒ (`′, `) ∈ ψ))

∧
(∀{|[[V1, · · · , Vk′]]

`′

V0
[destL′]|}`sig

V
sig
0

[destLsig] ∈ ϑ :

j = 0 ∧ k = 1 ∧ V0 Eϑ0 ⇒
{|V1, · · · , Vk′ |}`sig

V
sig
0

[destLsig] ∈ ρ(bx1c)∧
ρ, κ, ψ |= P ∧
(` /∈ L′ ∨ `′ /∈ L ⇒ (`′, `) ∈ ψ))

Table 6.2: Step 0 - Annotated LYSA in succinct Flow Logic

6.2 Step 1 - From Flow Logic to Verbose

The analysis in Table 6.2 is called succinct because of the succinct element
ϑ. However, ALFP does not provide scoping mechanisms, and therefore the
analysis must be rewritten to use only global components. This can be achieved
by transforming the flow logic into verbose form [35], where all components are
placed on the left hand side of the iff.

Transforming a succinct flow logic into verbose is done in the standard way [35]:
We add labels to all places where succinct judgements are used and then replace
each succinct component with a global component which maps each label to the
corresponding succinct component. For the LYSA analysis this means adding
labels, l ∈ Lab, to terms, yielding the new syntax:

E ::= . . . |[[El1
1 , · · · , E

lk
k]]`

E
l0
0

[destL]l

P ::= . . . |unblind El as [[El1
1 , · · · , E

lj
j ; xj+1, · · · , xk]]`

E
l0
0

[origL] inP

The components for the verbose analysis are therefore similar to those of the
succinct analysis, except that we now have labels and the succinct element ϑ is

46 Implementation

replaced by a mapping ϑv from labels to the local cache. The components are
presented in Table 6.3.

ϑv : Lab→ ℘(V) Global term cache
ρ : bXc → ℘(V) Variable environment
κ ∈ ℘(V∗) Network component
ψ ∈ ℘(C × C) Error component

V ∈ V Values - terms without variables
x ∈ X Variables
` ∈ C Crypto-points
l ∈ Lab Labels on terms

Table 6.3: Components used in the verbose analysis

The resulting analysis from applying these modifications is listed in Table 6.4.

(VBli) ρ, ϑv |=v [[El1
1 , · · · , E

lk
k]]`

E
l0
0

[destL]l

iff ∧k
i=0 ρ, ϑ

v |=v Eli
i ∧

∀V0 ∈ ϑv(l0) . . . Vk ∈ ϑv(lk) : [[V1, · · · , Vk]]`V0
[destL] ∈ ϑv(l)

(VUBli) ρ, κ, ψ, ϑv |=v unblind El as [[El1
1 , · · · , E

lj
j ; xj+1, · · · , xk]]`

E
l0
0

[origL] inP

iff ρ, ϑv |=v El ∧ ∧j
i=0 ρ, ϑ

v |=v Eli
i ∧

(∀[[V1, · · · , Vk]]`
′

V0
[destL′] ∈ ϑv(l) : ∧j

i=0 Vi Eϑv(li) ⇒
∧k

i=j+1 Vi ∈ ρ(bxic) ∧ ρ, κ, ψ, ϑv |=v P ∧
(` /∈ L′ ∨ `′ /∈ L ⇒ (`′, `) ∈ ψ))

∧
(∀{|[[V1, · · · , Vk′]]

`′

V0
[destL′]|}`sig

V
sig
0

[destLsig] ∈ ϑv(l) :

j = 0 ∧ k = 1 ∧ V0 Eϑv(l0) ⇒
{|V1, · · · , Vk′ |}`sig

V
sig
0

[destLsig] ∈ ρ(bx1c)∧
ρ, κ, ψ, ϑv |=v P ∧
(` /∈ L′ ∨ `′ /∈ L ⇒ (`′, `) ∈ ψ))

Table 6.4: Step 1 - Verbose formulation of the analysis.

6.3 Step 2 - From Infinite to Finite 47

6.3 Step 2 - From Infinite to Finite

The analysis is specified over an infinite set of values, V, that contain infinitely
many terms built from encryption and blinding. However, as described above,
we can encode the infinite sets of terms into tree grammars using a finite number
of rules. To prepare the reader for this transformation, we will first present a
short introduction to some theory of tree grammars and how this is specifically
used in the analysis, before we present the finite analysis.

The following presentation of tree grammars is based on the introduction to the
subject in [9] and [13].

6.3.1 Tree Grammars

A tree grammar G is a finite structure (N,Σ, R, S), where N is the set of non-
terminals, Σ is called a signature, R is a finite mapping of rules and S ∈ N is a
start symbol.

The signature Σ is a finite set of function symbols each associated with a number,
its arity; eg. the signature {fi, gj , . . . , hk} contains the function symbols f
through h, where f has arity i, g has j, etc.

The terms are build by applying function symbols to other terms. Given a
signature Σ and a set of terms X, we define the inductively smallest set of
terms T (Σ, X) as

T (Σ, X) = X ∪ {f(t1, . . . , tk) | fk ∈ Σ ∧ ∧k
i=1 ti ∈ T (Σ, X)}

The function symbols with arity 0 are called constants, and if f is a constant the
element f() is often just written as f . A set of terms generated from an empty
set of terms T (Σ, ∅), that is a set generated only using constants, is called the set
of ground terms. These sets can be regarded as a formal languages over terms,
and as terms are often called trees, these languages are called tree languages.

Generally the rule mapping R maps terms over non-terminals into terms over
non-terminals. However, as we will only work with normalised regular tree
grammars, we require that R is a mapping from non-terminals into terms created
by applying function symbols purely to non-terminals. This means that R has
the functionality R : N → ℘(B(Σ, N)) where the set B is as defined below.

B(Σ, X) = {f(A1, . . . , Ak) | fk ∈ Σ ∧ ∧k
i=1Ai ∈ X}

48 Implementation

Note that B(Σ, X) is a subset of T (Σ, X) and that the set X is not included
in B(Σ, X). If an element u is in R(A), the pair (A, u) is called a rule in the
grammar, and we write that A is the head of the rule and u is the body of the
rule.

Given a (normalised regular) tree grammar G = (N,Σ, R, S) one can generate
a set of ground terms starting from a non-terminal A for which there is a rule
in the grammar (A, u). This set, denoted L(G,A), is defined as the smallest set
satisfying

L(G,A) = {f(t1, . . . , tk) | f(A1, . . . , Ak) ∈ R(A) ∧ ∧k
i=1 ti ∈ L(G,Ai)}

Note that also L(G,A) is a subset of T (Σ, ∅). Since the definition actually only
needs the rule mappings, L(G,A) is sometimes just written L(R,A). The tree
languages generated by the tree grammar G, is the set of ground terms generated
by starting at the start symbol S, hence

L(G) =
def

L(G,S)

As a final note about tree grammars, one may recall from tree automata theory
that languages generated by normalised regular tree grammars are equivalent
to recognisable tree languages, which are closed under union, intersection and
complementation [13].

6.3.2 Tree Grammars for the Analysis

In the analysis, the component ϑv : Lab → ℘(V) uses canonical values bV alc;
ie. sets of ground terms over a signature of canonical names and encrypted and
blinded values. Each of these sets constitute a tree language, and the idea is
to get a finite representation of these sets by using tree grammars. This means
that each set ϑv(l) will be represented by a unique tree grammar (Nl,Σl, Rl, Sl),
such that ϑv(l) = L((Nl,Σl, Rl, Sl), l). The components of this grammar are ex-
plained below.

Non-terminals. A specific tree grammar is used to describe all possible values
a specific term El can evaluate to, and it is therefore natural to let the set of
non-terminals be the set of labels; Lab.

Signature. Each term will be either a name, an encryption or a blinding.
Therefore we will regard names as constants and encryptions and blindings as
k-ary function symbols senc, aenc and bli representing symmetric encryptions,
asymmetric encryptions and blindings respectively. In order to make the signa-
ture finite we will only use arities used in analysis of a process P . Hence for a

6.3 Step 2 - From Infinite to Finite 49

specific process P we have the signature

ΣLYSA =
def {bnc0 |n is a name used in P} ∪

{senc`,Lk+1 | k is the arity of a symmetric encryption annotated
with ` and L in P} ∪

{aenc`,Lk+1 | k is the arity of a asymmetric encryption annotated
with ` and L in P} ∪

{bli`,Lk+1 | k is the arity of a blinding annotated with ` and L
in P}

Often the term bli`,Lk+1(A0, A1, . . . , Ak) will be written using the much more
familiar [[A1, . . . , Ak]]`A0

[destL] and the same style of notation will be used for
symmetric and asymmetric encryptions.

Rule mappings. We want L((Lab,ΣLYSA , Rl, Sl), l) to represent the set ϑv(l),
therefore the rule mappings will overlap. So instead of storing the rule mappings
of all labels in each grammar, we will use one common mapping component γ
to store all label mappings.

Start symbol. As we want L((Lab,ΣLYSA , Rl, Sl), l) to represent the set ϑv(l)
the start symbol will always be l.

All grammars will be on the form (Lab,ΣLYSA , Rl, l), which is often just referred
to as Rl as all other components can easily be derived from this rule mapping.
As all rule mappings are stored in one common component γ, all grammars will
often just be referred to as γ. With these changes the components of the finite
analysis are as presented in Table 6.5.

γ : Lab→ B(ΣLYSA , Lab) Rules in the tree grammars

ρf : bXc → ℘(Lab) Variable environment

κf ∈ ℘(Lab∗) Network component
ψ ∈ ℘(C × C) Error component

u ∈ B(ΣLYSA , Lab) Bodies of tree grammar rules
` ∈ C Crypto-points
l ∈ Lab Labels on terms / non-terminals

Table 6.5: Components used in the finite analysis

50 Implementation

6.3.3 The Finite Analysis

In the finite analysis we replace the evaluation of terms with the tree grammars
in γ. This yields the following predicates ρf , γ |=f El and ρf , κf , ψ, γ |=f P .
The finite analysis of blinding is presented in Table 6.6 and described in detail
below.

(FBli) ρf , γ |=f [[El1
1 , · · · , E

lk
k]]`

E
l0
0

[destL]l

iff ∧k
i=0 ρ

f , γ |=f Eli
i ∧ [[l1, · · · , lk]]`l0 [destL] ∈ γ(l)

(FUBli) ρf , κf , ψ, γ |=f unblind El as [[El1
1 , · · · , E

lj
j ; x

lj+1
j+1 , · · · , x

lk
k]]`

E
l0
0

[origL] inP

iff ρf , γ |=f El ∧ ∧j
i=0 ρ

f , γ |=f Eli
i ∧

(∀[[l′1, · · · , l′k]]`
′

l′0
[destL′] ∈ γ(l) : (∧j

i=0 L(γ, l′i)∩E L(γ, li) 6= ∅) ⇒
∧k

i=j+1 l
′
i ∈ ρf (bxic) ∧ ρf , κf , ψ, γ |=f P ∧

(` /∈ L′ ∨ `′ /∈ L ⇒ (`′, `) ∈ ψ))
∧
(∀{|lsig

1 |}`sig

l
sig
0

[destLsig] ∈ γ(l) : ∀[[l′1, · · · , l′k′]]
`′

l′0
[destL′] ∈ γ(lsig

1) :

j = 0 ∧ k = 1 ∧ (L(γ, l′0)∩E L(γ, l0) 6= ∅) ⇒
{|l′1, · · · , l′k′ |}

`sig

l
sig
0

[destLsig] ∈ γ(l1) ∧ l1 ∈ ρf (bx1c)∧
ρf , κf , ψ, γ |=f P ∧
(` /∈ L′ ∨ `′ /∈ L ⇒ (`′, `) ∈ ψ))

Table 6.6: Step 2 - The finite analysis

The analysis of the blinding term is is rather straightforward, note however
that the component ϑv is no longer part of the specification, but is implicitly
represented by γ. In the analysis of unblinding the pattern matching is changed
correspondingly. Two terms El1

1 and El2
2 may match if the intersection of the

set of values they may evaluate to is non-empty; that is L(γ, l1) ∩ L(γ, l2) 6= ∅.
In the verbose analysis this matching is done using the membership operator
E which ignores annotations, hence we now introduce an intersection operator
which ignores annotations as well. This operator is defined as follows1:

S1∩E S2 = {V ∈ S1 ∪ S2 |V ES1 ∧ V ES2}

In the second part of the analysis of unblinding, we need to divide the search for
signed blinded LYSA terms up into two parts. First we must find all labels of

1This definition is a corrected version of the one presented in [9], where it was defined as
S1∩E S2 = {V ∈ S1 ∪ S2 |V ∈ S1 ∧ V E S2}. Notice however, that the flawed version will not
introduce any flaws to the analysis, as long as it is only used to check for non-emptiness.

6.4 Step 3 - Removing Polyvariance 51

LYSA terms which are signed, then we must find all blinded sequences (of any
length) of labels for terms that belong to these labels. If the analysis finds any
LYSA terms which satisfies the conditions, a new unblinded (but still signed)
term is generated. This new term must be assigned to a fresh label, and the most
natural choice for this label would be a label l1 for the variable x1. Therefore
we extend the syntax of the unblinding process by adding labels to the variables
being bound as well. This yields the following new syntax

P ::= . . . |unblind El as [[El1
1 , · · · , E

lj
j ; xlj+1

j+1 , · · · , x
lk
k]]`

E
l0
0

[origL] inP

We also extend the analysis to ensure that ρf (bx1c) holds this label.

6.4 Step 3 - Removing Polyvariance

The analysis of unblind in step 2 is polyadic, meaning that it works on sequences
of terms of unspecified length. However predicate symbols for the Succinct
Solver needs to be of a fixed arity, so the analysis must be transformed to work
on families of predicates, where each family only contains members of the same
arity.

The number of families are obviously infinite, but in order to analyse a specific
process, only a finite number of families is needed. Recall from Chapter 5 that
a process P can be typed to (Nf ,Aκ,AEnc,AAEnc,ABli). Clearly these sets are
final, and only predicates based on the last four sets are needed to analyse P .

All values are, in the finite analysis, represented in the tree grammar rules of
γ. Since the bodies of these rules can contain polyadic encryptions or blindings,
they have to be sorted into families of relations. To do this we introduce such
a relation, βk, such that an element in βk is a blinded sequence of k terms.
This means that the blinded term [[El1

1 , · · · , E
lk
k]]`

E
l0
0

[destL]l can be encoded by
letting βk contain (l, l0, l1, · · · , lk, `,L). The first element l is a unique pointer
into βk, so now we can update the γ component to point to the unique pointer
instead of the blinding itself.

In the implementation of the original LYSA [9], polyvariance of symmetric and
asymmetric encryption was removed in a similar way to the one described above,
by introducing the relation σ for symmetric encryptions and α for asymmetric
encryptions. These relations are also added to the analysis.

One problem remains however, the set L. This must be encoded as well, so

52 Implementation

we add labels to these sets in the syntax, yielding the following syntax for the
blinding term and unblinding process:

E ::= . . . |[[El1
1 , · · · , E

lk
k]]`

E
l0
0

[destLls]l

P ::= . . . |unblind El as [[El1
1 , · · · , E

lj
j ; xlj+1

j+1 , · · · , x
lk
k]]`

E
l0
0

[origLls] inP

We can now describe the sets of crypto-points by using a cache δ to store each of
the labels in the sets, eg. for the set Lls we write ∧`∈L ` ∈ δ(ls). The resulting
components of the finite analysis are as listed in Table 6.7.

γp : Lab→ ℘(bNc ∪ Lab) Rules in the tree grammars

ρf : bXc → ℘(Lab) Variable environment

κp
k ∈ ℘(Labk) Network component
ψ ∈ ℘(C × C) Error component

σk ∈ ℘(Labk+2 × C × Lab) Symmetric encryptions

αk ∈ ℘(Labk+2 × C × Lab) Asymmetric encryptions

βk ∈ ℘(Labk+2 × C × Lab) Blindings
δ : Lab→ ℘(C) Sets of crypto-point

n ∈ N Names, public and private keys
` ∈ C Crypto-points
l ∈ Lab Labels on terms / non-terminals

Table 6.7: Components used in the non-polyvariant analysis

The non-polyvariant analysis of blinding is as listed in Table 6.8. Notice that
in the second part of the analysis of unblind, we do not know the length of the
sequence which is blinded. Hence we need to iterate over all arities used for
blinding or unblinding in the process, which is exactly the arities collected in
the set ABli.

6.5 Step 4 - Generating ALFP

The last step is to create the generator function, G, which takes a process as
argument and returns an ALFP formula. This is an easy task, as the analysis
in Table 6.8 uses analysis components over elements from a finite structured
universe.

The generator function for the blinding elements is given in Table 6.10. We

6.5 Step 4 - Generating ALFP 53

(PUBli) ρf , γp, σ, α, β, δ |=p [[El1
1 , · · · , E

lk
k]]`

E
l0
0

[destLls]l

iff ∧k
i=0 ρ

f , γp, σ, α, β, δ |=p Eli
i ∧ (l, l0, l1, · · · , lk, `, ls) ∈ βk ∧

l ∈ γp(l) ∧ ∧`′∈L `
′ ∈ δ(ls)

(PBli) ρf , κp, ψ, γp, σ, α, β, δ |=p

unblind El as [[El1
1 , · · · , E

lj
j ; x

lj+1
j+1 , · · · , x

lk
k]]`

E
l0
0

[origLls] inP

iff ρf , γp, σ, α, β, δ |=p El ∧ ∧`′∈L `
′ ∈ δ(ls)∧

∧j
i=0 ρ

f , γp, σ, α, β, δ |=p Eli
i ∧

(∀(l′, l′0, l′1, · · · , l′k, `′, l′s) ∈ βk : l′ ∈ γp(l) ⇒
∧j

i=0 L(γp, l′i)∩E L(γp, li) 6= ∅ ⇒
∧k

i=j+1 l
′
i ∈ ρf (bxic) ∧ ρf , κp, ψ, γp, σ, α, β, δ |=p P ∧

(` /∈ δ(l′s) ∨ `′ /∈ δ(ls) ⇒ (`′, `) ∈ ψ))
∧
(∀(lsig, lsig

0 , lsig
1 , `sig, lsig

s) ∈ α1 : lsig ∈ γp(l) ⇒
∀k′ ∈ ABli : ∀(l′, l′0, l′1, · · · , l′k′ , `′, l′s) ∈ βk′ : l′ ∈ γp(lsig

1) ⇒
j = 0 ∧ k = 1 ∧ (L(γp, l′0)∩E L(γp, l0) 6= ∅) ⇒

(l1, l
sig
0 , l′1, · · · , l′k′ , `sig, lsig

s) ∈ αk′ ∧
l1 ∈ ρf (bx1c) ∧ l1 ∈ γp(l1)∧
ρf , κp, ψ, γp, σ, α, β, δ |=p P ∧
(` /∈ δ(l′s) ∨ `′ /∈ δ(ls) ⇒ (`′, `) ∈ ψ))

Table 6.8: Step 3 - Removing polyvariance

use the convention that membership (a, b, c) ∈ R or a ∈ f(x, y, z) is written as
the predicates R(a, b, c) and f(x, y, z, a) respectively, and this also means that
quantifications like ∀x ∈ f(y) : · · · will be written as ∀x, y : f(y, x) ⇒ · · · . The
new domains for the analysis components have been given in Table 6.9.

A last note to the generator function is the predicate NEI, which is an ax-
iomatisation of non-emptiness of language intersections. This is defined in the
structure of values in the body of the grammar rules in γg, and recursively
checks all subcomponents except the crypto-points, as it follows the style of ∩E
and ignores annotations. In Table 6.10 we only show the extension of NEI
required for analysing blinding.

54 Implementation

γg ∈ ℘(Lab× (bNc ∪ Lab)) Rules in the tree grammars
ρg ∈ ℘(bXc × Lab) Variable environment

κp
k ∈ ℘(Labk) Network component
ψ ∈ ℘(C × C) Error component

σk ∈ ℘(Labk+2 × C × Lab) Symmetric encryptions

αk ∈ ℘(Labk+2 × C × Lab) Asymmetric encryptions

βk ∈ ℘(Labk+2 × C × Lab) Blindings
δg ∈ ℘(Lab× C) Sets of crypto-point

n ∈ N Names, public and private keys
` ∈ C Crypto-points
l ∈ Lab Labels on terms / non-terminals

Table 6.9: Components used in the ALFP formula generated

6.6 Soundness of the Implementation

That the implementation is sound means that the generator function in Table
6.10 is sound with respect to the original analysis in Table 6.2, which again
means that each step in the transformation is sound with respect to the previous.
That the implementation of the original LYSA is sound was established in [9],
so in this chapter we only need to show the soundness of the implementation of
the extension with blinding.

6.6.1 Step 0 - Step 1

The first step in the transformation is to transform the succinct analysis into
a verbose analysis, that this transformation is sound is shown by the following
lemma.

Lemma 6.1 (Succinct analysis to verbose analysis) The analysis |=v in
Table 6.4 is sound with respect to the original analysis |= in Table 6.2. That is

(1) if ρ, ϑv |=v El then ρ |= El : ϑv(l)
(2) if ρ, κ, ψ, ϑv |=v P then ρ, κ, ψ |= P

Proof The proof proceeds by structural induction in the definition of |=v.
Part (1). Let E = [[El1

1 , · · · , E
lk
k]]`

E
l0
0

[destL] and assume that ρ, ϑv |=v El then

6.6 Soundness of the Implementation 55

(GBli) G([[El1
1 , · · · , E

lk
k]]`

E
l0
0

[destLls]l)

= ∧k
i=0 G(Eli

i) ∧ βk(l, l0, l1, · · · , lk, `, ls)∧
γg(l, l) ∧ δg(ls, `

′)

(GUBli) G(unblind El as [[El1
1 , · · · , E

lj
j ; x

lj+1
j+1 , · · · , x

lk
k]]`

E
l0
0

[origLls] inP)

= G(El) ∧ ∧`′∈L δ
g(ls, `

′) ∧ ∧j
i=0 G(Eli

i)∧
(∀ l′, l′0, l′1, · · · , l′k, `′, l′s : βk(l′, l′0, l

′
1, · · · , l′k, `′, l′s) ∧ γg(l, l′) ⇒

∧j
i=0NEI(l

′
i, li) ⇒

∧k
i=j+1 ρ

g(bxic, l′i) ∧ G(P)∧
(¬δg(l′s, `) ∨ ¬δg(ls, `

′) ⇒ ψ(`′, `)))
∧
(∀ lsig, lsig

0 , lsig
1 , `sig, lsig

s : α1(l
sig, lsig

0 , lsig
1 , `sig, lsig

s) ∧ γg(l, lsig) ⇒
∧k′∈ABli

(∀ l′, l′0, l′1, · · · , l′k′ , `′, l′s : βk′(l
′, l′0, l

′
1, · · · , l′k, `′, l′s)∧

γg(lsig
1 , l′) ⇒
j = 0 ∧ k = 1 ∧NEI(l′0, l0) ⇒

αk′(l1, l
sig
0 , l′1, · · · , l′k′ , `sig, lsig

s)∧
ρg(bx1c, l1) ∧ γg(l1, l1) ∧ G(P)∧
(¬δg(l′s, `) ∨ ¬δg(ls, `

′) ⇒ ψ(`′, `))))

· · ·
∧∧k∈ABli

∀l1, l2 : (∃l′1, l10, · · · , l1k, `1, l1s, l
′
2, l20, · · · , l2k, `2, l2s :

βk(l′1, l10, · · · , l1k, `1, l1s)∧
βk(l′2, l20, · · · , l2k, `2, l2s)∧
NEI(l10, l20) ∧ . . . ∧NEI(l1k, l2k)∧
γg(l1, l

′
1) ∧ γg(l2, l

′
2))

⇒ NEI(l1, l2)

Table 6.10: Step 4 - Generating ALFP

from (VBli) we have the premisses:

(i)v ∧k
i=0 ρ, ϑ

v |=v Eli
i

(ii)v ∀V0 ∈ ϑv(l0) . . . Vk ∈ ϑv(lk) : [[V1, · · · , Vk]]`V0
[destL] ∈ ϑv(l)

Hence by the induction hypothesis

(i) ∧k
i=0 ρ |= Ei : ϑv(li)

and from (ABli) we can then conclude that ρ |= [[E1, · · · , Ek]]`E0
[destL] : ϑv(l).

56 Implementation

Part (2). Let P = unblind El as [[El1
1 , · · · , E

lj
j ; xj+1, · · · , xk]]`

E
l0
0

[origL] inP and
assume that ρ, κ, ψ, ϑv |=v P . From (VUBli) we have the four conjuncts for the
hypothesis in unblinding.

(i)v ρ, ϑv |=v El

(ii)v ∧j
i=0 ρ, ϑ

v |=v Eli
i

(iii)v ∀[[V1, · · · , Vk]]`
′

V0
[destL′] ∈ ϑv(l) : ∧j

i=0 Vi Eϑv(li) ⇒
∧k

i=j+1 Vi ∈ ρ(bxic) ∧ ρ, κ, ψ, ϑv |=v P ∧
(` /∈ L′ ∨ `′ /∈ L ⇒ (`′, `) ∈ ψ)

(iv)v ∀{|[[V1, · · · , Vk′]]
`′

V0
[destL′]|}`sig

V sig
0

[destLsig] ∈ ϑv(l) :
j = 0 ∧ k = 1 ∧ V0 Eϑv(l0) ⇒

{|V1, · · · , Vk′ |}`sig

V sig
0

[destLsig] ∈ ρ(bx1c)∧
ρ, κ, ψ, ϑv |=v P ∧
(` /∈ L′ ∨ `′ /∈ L ⇒ (`′, `) ∈ ψ)

for (i)v and (ii)v we get from the induction hypothesis that

(i) ρ |= El : ϑv(l)
(ii) ∧j

i=0ρ |= Eli
i : ϑv(li)

From the definition that ϑ =
def

ϑv(l) for a given term El we can directly conclude
that ρ, κ, ψ |= P , and hence that the verbose analysis is sound with respect to
the succinct analysis. �

6.6.2 Step 1 - Step 2

The second step in the transformation is to describe the infinite sets in the
analysis using tree languages, that this transformation is sound is shown by the
following lemma.

Lemma 6.2 The Analysis |=f in step 2 is sound with respect to the analysis
|=v in step 1. That is: For all l and x let

ϑv(l) = L(γ, l)
ρ(bxc) =

⋃
l′∈ρf (bxc) ϑ

v(l′)
κ = {〈V1, . . . , Vk〉 | 〈l1, . . . , lk〉 ∈ κf ∧ ∧k

i=0Vi ∈ ϑv(li)}
Then

(1) if ρf , γ |=f E then ρ, ϑv |= E
(2) if ρf , κf , ψ, γ |=f P then ρ, κ, ψ, ϑv |=v P

6.6 Soundness of the Implementation 57

Proof The proof proceeds by structural induction in the definition of |=f .
Part (1). Let E = [[El1

1 , · · · , E
lk
k]]`

E
l0
0

[destL] and assume that ρf , γ |=f El.
From (FBli) we have the premisses:

(i)f ∧k
i=0 ρ

f , γ |=f Eli
i

(ii)f [[l1, · · · , lk]]`l0 [destL] ∈ γ(l)

Then from the induction hypothesis we get

(i)v ∧k
i=0 ρ, ϑ

v |=v Eli
i

Using the definition of L(γ, l) and (ii)f we have that

{[[V1, . . . , Vk]]`V0
[destL] | ∧k

i=0 Vi ∈ L(γ, li)} ⊆ L(γ, l)

Which, according to the definition of ϑv, is equivalent to

{[[V1, . . . , Vk]]`V0
[destL] | ∧k

i=0 Vi ∈ ϑv(li)} ⊆ ϑv(l)
m

(ii)v ∀V0 ∈ ϑv(l0) . . .∀Vk ∈ ϑv(lk) : [[V1, . . . , Vk]]`V0
[destL] ∈ ϑv(l)

Hence we can now conclude from (VBli) that ρ, ϑv |=v El.

Part (2). Let P ′ = unblind E as [[El1
1 , · · · , E

lj
j ; xj+1, · · · , xk]]`

E
l0
0

[origL] inP and

assume that ρf , κf , ψ, γ |=f P ′. From (FUBli) we have the four conjuncts for
the hypothesis in unblinding.

(i)f ρf , γ |=f El

(ii)f ∧j
i=0 ρ

f , γ |=f Eli
i

(iii)f ∀[[l′1, · · · , l′k]]`
′

l′0
[destL′] ∈ γ(l) : (∧j

i=0 L(γ, l′i)∩E L(γ, li) 6= ∅) ⇒
∧k

i=j+1 l
′
i ∈ ρf (bxic) ∧ ρf , κf , ψ, γ |=f P ∧

(` /∈ L′ ∨ `′ /∈ L ⇒ (`′, `) ∈ ψ)
(iv)f ∀{|lsig

1 |}`sig

lsig
0

[destLsig] ∈ γ(l) : ∀[[l′1, · · · , l′k′]]
`′

l′0
[destL′] ∈ γ(lsig

1) :
j = 0 ∧ k = 1 ∧ (L(γ, l′0)∩E L(γ, l0) 6= ∅) ⇒

{|l′1, · · · , l′k′ |}
`sig

lsig
0

[destLsig] ∈ γ(l1)∧
l1 ∈ ρf (bx1c) ∧ ρf , κf , ψ, γ |=f P ∧
(` /∈ L′ ∨ `′ /∈ L ⇒ (`′, `) ∈ ψ)

From (i)f and (ii)f the induction hypothesis gives that

(i)v ρ, ϑv |=v El

(ii)v ∧j
i=0 ρ, ϑ

v |=v Eli
i

58 Implementation

and the definition of ∩E , L(γ, l) and ϑv for (iii)f and (iv)f gives us directly that

(iii)v ∀[[V1, · · · , Vk]]`
′

V0
[destL′] ∈ ϑv(l) : ∧j

i=0 Vi Eϑv(li) ⇒
∧k

i=j+1 Vi ∈ ρ(bxic) ∧ ρ, κ, ψ, ϑv |=v P ∧
(` /∈ L′ ∨ `′ /∈ L ⇒ (`′, `) ∈ ψ)

(iv)v ∀{|[[V1, · · · , Vk′]]
`′

V0
[destL′]|}`sig

V sig
0

[destLsig] ∈ ϑv(l) :
j = 0 ∧ k = 1 ∧ V0 Eϑv(l0) ⇒

{|V1, · · · , Vk′ |}`sig

V sig
0

[destLsig] ∈ ρ(bx1c)∧
ρ, κ, ψ, ϑv |=v P ∧
(` /∈ L′ ∨ `′ /∈ L ⇒ (`′, `) ∈ ψ)

and we can conclude ρ, κ, ψ, ϑv |=v P ′ and hence soundness of the analysis |=f

with respect to the analysis |=v. �

6.6.3 Step 2 - Step 3

The third step in the transformation is to remove polyvariance in the analysis,
that this transformation is sound is shown by the following lemma.

Lemma 6.3 The analysis |=p in step 3 is sound with respect to the analysis |=f

in step 2. For all l let

γ(l) = {bnc | bnc ∈ γp(l)}∪
{{l1, · · · , lk}`

l0
[destL] | l′ ∈ γp(l)∧

(l′, l0, · · · , lk, `, ls) ∈ σk ∧ L = δ(ls)}∪
{{|l1, · · · , lk|}`

l0
[destL] | l′ ∈ γp(l)∧

(l′, l0, · · · , lk, `, ls) ∈ αk ∧ L = δ(ls)}∪
{[[l1, · · · , lk]]`l0 [destL] | l′ ∈ γp(l)∧

(l′, l0, · · · , lk, `, ls) ∈ βk ∧ L = δ(ls)}
κf =

⋃
i∈N κ

p
i

Then

(1) if ρf , γp, σ, α, β, δ |=p E then ρf , γ |=f E
(2) if ρf , κp, ψ, γp, σ, α, β, δ |=p P then ρf , κf , ψ, γ |=f P

Proof The proof proceeds by structural induction in the definition of |=p.
Part (1). Let E = [[El1

1 , · · · , E
lk
k]]`

E
l0
0

[destLls] and assume ρf , γp, σ, α, β, δ |=p

6.6 Soundness of the Implementation 59

El. From (PBli) we have

(i)p ∧k
i=0 ρ

f , γp, σ, α, β, δ |=p Eli
i

(ii)p (l, l0, l1, · · · , lk, `, ls) ∈ βk

(iii)p l ∈ γp(l)
(iv)p ∧`′∈L `

′ ∈ δ(ls)

By the induction hypothesis we can conclude from (i)p that

(i)f ∧k
i=0 ρ

f , γ |=f Eli
i

From the definition of γ in the lemma 6.3 we get from (ii)p, (iii)p and (iv)p that

(ii)f [[l1, · · · , lk]]`l0 [destL] ∈ γ(l)

From (FBli) we can conclude that ρf , γ |=f E.

Part (2). Let P ′ = unblind El as [[El1
1 , · · · , E

lj
j ; xlj+1

j+1 , · · · , x
lk
k]]`

E
l0
0

[origLls] inP

and assume that ρf , κp, ψ, γp, σ, α, β, δ |=p P ′. By the definition of |=p we have
the five conjuncts for the hypothesis in unblinding.

(i)p ρf , γp, σ, α, β, δ |=p El

(ii)p ∧`′∈L `
′ ∈ δ(ls)

(iii)p ∧j
i=0 ρ

f , γp, σ, α, β, δ |=p Eli
i

(iv)p ∀(l′, l′0, l′1, · · · , l′k, `′, l′s) ∈ βk : l′ ∈ γp(l) ⇒
∧j

i=0 L(γp, l′i)∩E L(γp, li) 6= ∅ ⇒
∧k

i=j+1 l
′
i ∈ ρf (bxic) ∧ ρf , κp, ψ, γp, σ, α, β, δ |=p P ∧

(` /∈ δ(l′s) ∨ `′ /∈ δ(ls) ⇒ (`′, `) ∈ ψ)
(v)p ∀(lsig, lsig

0 , lsig
1 , `sig, lsig

s) ∈ α1 : lsig ∈ γp(l) ⇒
∀k′ ∈ ABli : ∀(l′, l′0, l′1, · · · , l′k′ , `′, l′s) ∈ βk′ : l′ ∈ γp(lsig

1) ⇒
j = 0 ∧ k = 1 ∧ (L(γp, l′0)∩E L(γp, l0) 6= ∅) ⇒

(l1, l
sig
0 , l′1, · · · , l′k′ , `sig, lsig

s) ∈ αk′ ∧
l1 ∈ ρf (bx1c) ∧ l1 ∈ γp(l1)∧
ρf , κp, ψ, γp, σ, α, β, δ |=p P ∧
(` /∈ δ(l′s) ∨ `′ /∈ δ(ls) ⇒ (`′, `) ∈ ψ)

for (i)p and (iii)p we have from the induction hypothesis that

(i)f ρf , γ |=f El

(ii)f ∧j
i=0 ρ

f , γ |=f Eli
i

With (ii)p and the definition of γ on on the precondition of the first implication
in (iv)p gives.

(iii)f

∀[[l′1, · · · , l′k]]`
′

l′0
[destL′] ∈ γ(l) :(∧j

i=0L(γ, l′i)∩E L(γ, li) 6= ∅) ⇒
∧k

i=j+1l
′
i ∈ ρ(bxic)∧

(` /∈ L′ ∨ `′ /∈ L ⇒ (`′, `) ∈ ψ)∧
ρ, κ, ψ, γ |=f P

60 Implementation

Using the same approach on the precondition of the first implication in (v)p

gives us (a) ∀{|lsig
1 |}`sig

lsig
0

[destLsig] ∈ γ(l). As ABli holds all arities of blindings
in the protocol, the precondition of the second implication is equivalent to (b)
∀[[l′1, · · · , l′k′]]

`′

l′0
[destL′] ∈ γ(lsig

1).

Now using the definition of γ on l1 ∈ γ(l1) and (l1, l
sig
0 , l′1, · · · , l′k′ , `sig, lsig

s) ∈ αk′

gives us (c) {|l′1, · · · , l′k′ |}
`sig

lsig
0

[destLsig] ∈ γ(l1). Hence from (a),(b) and (c) we
have

(iv)f ∀{|lsig
1 |}`sig

lsig
0

[destLsig] ∈ γ(l) : ∀[[l′1, · · · , l′k′]]
`′

l′0
[destL′] ∈ γ(lsig

1) :
j = 0 ∧ k = 1 ∧ (L(γ, l′0)∩E L(γ, l0) 6= ∅) ⇒

{|l′1, · · · , l′k′ |}
`sig

lsig
0

[destLsig] ∈ γ(l1)∧
l1 ∈ ρf (bx1c) ∧ ρf , κf , ψ, γ |=f P ∧
(` /∈ L′ ∨ `′ /∈ L ⇒ (`′, `) ∈ ψ))

and from (i)f ,(ii)f ,(iii)f and (iv)f we can conclude that ρf , κf , ψ, γ |=f P ′ and
that the analysis |=p is sound with respect to the analysis of |=f . �

6.6.4 Step 3 - Step 4

The last step in the transformation is to transform the non-polyvariant analysis
into a generator function for ALFP. The generator function only uses predicates,
but as three of the components in the analysis |=p are functions, a function

fun(R)(a) = {b |R(a, b)}

is needed to map between the two domains. We can now show that this last
step of the transformation is sound by the following lemma.

Lemma 6.4 The solution to the formula generated by G in step 4 is sound with
respect to the analysis |=p in step 3. Let

ρf = fun(ρg)
γp = fun(γg)
δ = fun(δg)

then

(1) If (ρg, γg, σ, α, β, δg) satisfies G(E) and NEI then ρf , γp, σ, α, β, δ |=p E
(2) If (ρg, κp, ψ, γg, σ, α, β, δg) satisfies G(P) and NEI then

ρf , κp, ψ, γp, σ, α, β, δ |=p P

6.7 The Attacker 61

Proof The proof follows directly from the definition of NEI, γg, ρg and δg

and simple rewriting of the formula. �

6.6.5 Conclusion

The soundness of the implementation can now be summarised as follows.

Theorem 6.5 The generation function is sound with respect to the original
analysis. That is,

(1) If (ρg, γg, σ, α, β, δg) satisfies G(E) and NEI then ρ, κ |= E : ϑ
(2) If (ρg, κp, ψ, γg, σ, α, β, δg) satisfies G(P) and NEI then ρ, κ, ψ |= P

Proof The theorem follows from Lemma 6.1 to 6.4. �

Hence it follows, that the implementation of the extension with blinding is sound
with respect to the analysis. Since this proof of soundness has followed the same
approach as the proof for soundness of the original implementation of LYSA,
this shows that the entire implementation of the extended LYSA is sound with
respect to the analysis. A similar proof exists for the soundness of Succinct
Solver [33], so we can now conclude, that a solution returned by solver to the
ALFP formula is also a solution to the complete analysis of LYSA with blinding
as listed in Table A.5 and A.6 in the appendix. This concludes the proof for
soundness.

6.7 The Attacker

In Chapter 5, the attacker was specified as a formula FDY, which described its
capabilities. The idea was that the analysis components should satisfy both the
complete analysis specified in Table A.5 and A.6 in the appendix and the the
formula for the attacker FDY as defined in Table 5.1.

62 Implementation

Now in order to implement this, we could transform the formula FDY into ALFP
using the same strategy as for the analysis, but this would be very cumbersome
and would require a lot of proofs. Instead we will use the hardest attacker PHard

as defined in Theorem 5.2, for which we already proved that ρ, κ, ψ |= PHard is
equivalent to the formula FDY given they both are of type (Nf , Aκ, A+

Enc, A
+
AEnc,

A+
Bli).

We can now find an ALFP formula equivalent to FDY, by applying the generator
function G to PHard. However, as G is defined on labelled LYSA, we must first
convert PHard into labelled LYSA by adding labels to terms and crypto-sets. We
do this by using two unique labels, l• and lC , the first for variables and names
and the second for the sets of crypto-points. This results in the following process

RHard =
def

!(R1 | |k∈Aκ
Rk

2 | |k∈A+
Enc
Rk

3 | |k∈A+
AEnc
Rk

4 | |k∈A+
Bli
Rk

5 | |k∈A+
Enc
Rk

6 |
|k∈A+

AEnc
Rk

7 | |k∈A+
Bli
Rk

8 | |R9 | |k∈Aκ
Rk

10)

where

R1 = 〈nl•
• 〉.〈m+

•
l•〉.〈m−

•
l•〉.0 | |n∈Nf

〈nl•〉.0
Rk

2 = (; z1, · · · , zk).0
Rk

3 = (; z0). · · · (; zk).〈{z1, · · · , zk}`•
z0

[dest ClC]l•〉.0
Rk

4 = (; z0). · · · (; zk).〈{|z1, · · · , zk|}`•
z0

[dest ClC]l•〉.0
Rk

5 = (; z0). · · · (; zk).〈[[z1, · · · , zk]]`•z0
[dest ClC]l•〉.0

Rk
6 = (; z).(; z0).decrypt zl• as {; z1, · · · , zk}`•

z0
[orig ClC] in 0

Rk
7 = (; z).(; z0).decrypt zl• as {|; z1, · · · , zk|}`•

z0
[orig ClC] in 0

Rk
8 = (; z).(; z0).unblind zl• as [[; zl•

1 , · · · , z
l•
k]]`•z0

[orig ClC] in 0

R9 = (; z).(; z0).unblind zl• as [[; zl•
1]]`•

zl•
0

[orig ClC] in 0

Rk
10 = (; z1). · · · (; zk).〈zl•

1 , · · · , z
l•
k 〉.0

Notice that also the variables being bound in the unblinding process needs labels,
as defined in Section 6.3. The reason that only two labels are needed, is that
the knowledge of the attacker does not need to be duplicated. This is obviously
also logically equivalent to a unique labelling, as all variables have the same
canonical representative z•.

6.8 The Extended LYSATool

The analysis is implemented in New Jersey ML [36] as an extension of the orig-
inal LYSATool. The original LYSATool was an implementation of the original
analysis of LYSA, and the new version of the LYSATool has the exact same func-
tionalities as the original one had; ie. it takes an annotated LYSA process P as

6.8 The Extended LYSATool 63

input and returns an ALFP formula which is a conjunction of G(P), G(Rhard)
and the formula for NEI as output. The resulting ALFP formula can then be
solved using the Succinct Solver.

In the actual implementation, the Succinct Solver is automatically used to com-
pute the smallest solution that satisfies the formula. The result is then parsed
and presented in a readable manner; ie. in a HTML document where each label
l is hyperlinked to its corresponding rule in the tree grammar γ(l). Additionally
the implementation outputs a pretty printing LATEXversion of the protocol P ,
which can easily be included in a document.

The implementation of the extension with blinding has followed the original
implementation of the LYSATool closely, and we have therefore been able to
restrict the changes to a minimum by reusing existing functions. The changes
from the implementation of the LYSATool into the extended LYSATool are
described in detail in Appendix A.3.

64 Implementation

Chapter 7

Analysing Protocols

In the previous chapters the distinct elements in our framework has been for-
malised with background in the LYSA-calculus. In the following we will describe
the analysis result using the LYSATool [26] for the FOO92 voting protocol [18],
as well as additional protocols in the FOO92 family; the Sensus voting protocol
[14] and the E-Vox voting protocol [20].

For the three protocols we shall discuss the properties of interest in turn. In
Section 1.3 we identified five properties a voting protocol should satisfy: Veri-
fiability, Accuracy, Democracy, Privacy and Fairness. The privacy property is
special, and we have not been able to use the analysis to validate this property,
however privacy is discussed in Chapter 8.

The three protocols have the same kinds of principals; voters, administrator
and counter, and the E-Vox protocol has an anonymiser as well. The FOO92
protocol is designed to run with only one administrator and one counter, while
the E-Vox and Sensus protocols can also be used in a setting with multiple
administrators.

The analysis provides means for analysing an arbitrarily large number rather
than than a fixed number of principals. Recall from Section 4.2 that the anal-
ysis uses equivalence classes for dealing with infinite sets, and thus an infinite
number of instances of one principal can be analysed by grouping these into one

66 Analysing Protocols

equivalence group. Hence we have grouped the instances of each principal of the
protocols into two groups, one that acts correct and one that is malicious, where
both of these groups represent an infinite number of instances of that principal.

For readability in the LYSA specifications in this chapter we have only one
instance of each of the principals in the protocol; voter, administrator, counter
and anonymiser. But the analysis has been run using an arbitrary large number
of voters and administrators. We have not used multiple counters, since the
hierarchical structure of the protocols dictates that multiple counters merely
implies multiple instances of votes, each with one counter.

In our scenarios, the attacker is also an eligible voter. If the security properties
are satisfied in this scenario they are obviously also satisfied if the attacker is
not allowed to vote.

7.1 Assumptions

In order to analyse the protocols, we have to make some specific assumptions.
These assumptions are described in or can be derived from the original protocol
descriptions [18, 14, 20]:

(Ass1) Bit-committed votes are unique, this can be seen as part of the
original perfect cryptography assumption,

(Ass2) The administrator only signs one vote for each eligible voter,
(Ass3) The counter C is a trusted party, ie. if the counter receives a vote

then it is also counted correctly in the final tally,
(Ass4) The counter must have received all votes in the voting phase before

commencing the publishing phase,
(Ass5) The vote is only accepted if the number of votes counted by the

counter equals the number of votes signed by the administrator,
and

(Ass6) The vote is only accepted if the counter in the opening phase receives
all the commitment keys for the votes published.

Together with the analysis result, the assumptions are used for validating the
security properties of the voting protocols.

7.2 The FOO92 Voting Protocol 67

7.2 The FOO92 Voting Protocol

The annotations in the LYSA specification of the FOO92 protocol from Chapter
3 was unspecified. The security properties of interest only need specifications
of the sets La1 and Lc1 of crypto-points, whereas the remaining are set to the
entire set of crypto-points C. The resulting LYSA specification of the protocol
is summarised in Table 7.1.

(ν± KV) (ν± KA)
((ν v) (ν r) (ν b) / ∗ Voter ∗ /

1. 〈V,A, V, {|[[{v}v1
r [dest C]]]v2

b [dest C]|}v3

K−
V

[dest C]〉.
2′. (A, V ; x1).
2′′. decrypt x1 as {|; x2|}v4

K+
A

[orig C] in

2′′′. unblind x2 as [[; x3]]
v5
b [orig C] in

3. 〈D,C, {|x3|}v6

K−
A

[dest C]〉.
4′. (C,D, {|x3|}v7

K−
A

[dest C]; x4).

5. 〈D,C, x4, r〉.0

1′. | (V,A, V ; y1). / ∗ Administrator ∗ /
1′′. decrypt y1 as {|; y2|}a1

K+
V

[origLa1] in

2. 〈A, V, {|y2|}a2

K−
A

[dest C]〉.0

| (ν l) / ∗ Counter ∗ /
3′. (D,C; z1).
3′′. decrypt z1 as {|; z2|}c1

K+
A

[origLc1] in

4. 〈C,D, {|z2|}c2

K−
A

[dest C], l〉.
5′. (D,C, l; z3).
5′′. decrypt z2 as {; z4}c3

z3 [orig C] in 0

| 〈K+
V ,K

+
A 〉.0 / ∗ Knowledge of the attacker ∗ /

)

Table 7.1: FOO92 in LYSA-calculus

For each property we shall write the assertions that describes the property, that
is we shall specify the sets La1 and Lc1 of crypto-points left unspecified in Table
7.1.

Verifiability. A system is verifiable if the voters independently can verify that
their vote has been counted correctly. A voter can be sure of this, when he is
certain that the counter has received the committed vote, due to the assumptions

68 Analysing Protocols

(Ass3) and (Ass6), namely that the counter is trusted and that the vote will
be dismissed if not all commitment keys for the votes published are received.
This means that the verifiability property concerns authentication of the list
published by the counter. The input (message 4’) in the LYSA specification must
originate from the counter but in LYSA we cannot add annotations to plaintext
messages. We can however encode this assertion by symmetric encryption of the
message from the counter with a key K, known also by the attacker, thereby not
restricting the analysis. This addition to the LYSA specification of the protocol
is done as follows:

4′. (C,D; x4). / ∗ Voter ∗ /
4′′. decrypt x4 as {{|x3|}v7

K−
A

[dest C]; x5}v8
K [origLv8] in

...
4. 〈C,D, {{|z2|}c2

K−
A

[dest C], l}c4
K [dest C]〉. / ∗ Counter ∗ /

...
| 〈K+

V ,K
+
A ,K〉.0 / ∗ Knowledge of the attacker ∗ /

By taking Lv8 = {c4} we require that the publication of the list must originate
from the counter. This specification has been analysed together with the re-
quirements that the sets La1 and Lc1 of crypt-points equal C, the complete set
of crypto-points. The analysis reports a potential attack, namely that publishing
of the list can originate from the attacker: (`•, v8) ∈ ψ.

The description of FOO92 [18] requires that the publication is accessible to
all voters, but it does not say anything about the authentication of the list. In
recent work [24] and in our interpretation of the protocol description, publication
of the list is modelled by sending it on the ether, but as the analysis shows, this
is not sufficient to guarantee verifiability.

This flaw has to the best of our knowledge not been reported in previous lit-
erature, but a simple amendment to the protocol can correct it. If the counter
signs the list before publishing, as shown below, it turns out that the protocol
is verifiable; that is, the analysis tool gives ψ = ∅. Note that the public key
K+

C of the counter is published on the ether in order to let the attacker know
it. The amendments of the protocol are:

4′. (C,D; x4). / ∗ Voter ∗ /
4′′. decrypt x4 as {|{|x3|}v7

K−
A

[dest C]; x5|}v8

K+
C

[origLv8] in

...
4. 〈C,D, {|{|z2|}c2

K−
A

[dest C], l|}c4

K−
C

[dest C]〉. / ∗ Counter ∗ /
...

| 〈K+
V ,K

+
A ,K

+
C 〉.0 / ∗ Knowledge of the attacker ∗ /

The remaining properties to be discussed below are validated for this version of
the protocol.

7.2 The FOO92 Voting Protocol 69

Accuracy. As mentioned in the introduction, accuracy of a voting protocol is
obtained when (1) it is not possible for a vote to be altered, (2) invalid votes
must not be counted in the final tally and (3) all validated votes must count in
the final tally.

We will begin with property (2). A valid vote is a committed vote signed by the
administrator, which is obtained by the voter after the unblinding at crypto-
point v6. In order for a vote to count in the final tally it has to be accepted
by the counter at crypto-point c1. Hence we shall take Lc1 = {v6} whereas the
other sets La1 and Lv8 of crypto-points are set to C.

Analysing the protocol yields a violation to the assertions: (a2, c1) ∈ ψ ie. the
blinded, signed ballots can be accepted by the counter without being unblinded
first. Inspecting the protocol shows that this is indeed possible because the
counter accepts any new ballot which is signed by the administrator without
being able to verify the content of the ballot, hence the counter is not able to
distinguish between a committed vote or a blinded committed vote. This means
that the attacker is able to get an arbitrarily large number n of ballots accepted
by the counter in the voting phase. He can do this by blinding his ballot n− 1
times before having it validated by the administrator and then unblinding the
signed result n − 1 times, thereby obtaining n unique values, all signed by the
administrator. He will of course only be able to supply the counter with a
commitment key for one of these values (the one unblinded n − 1 times) and
therefore this attack will not violate accuracy but only force the vote to be
disqualified.

Clearly the existence of this denial of service attack is not very satisfactory and
it can be avoided by extending the specification. As the header of an encrypted
value often contains information on the type of encryption used, we extend the
LYSA specification by adding a header BIT to the committed vote in the first
message:

1. 〈V,A, V, {|[[BIT, {v}v1
r [dest C]]]v2

b [dest C]|}v3

K−
V

[dest C]〉.

And then step 3′′ only succeeds when the received messages is an unblinded
message with BIT in the header:

3′′. decrypt z1 as {|BIT ; z2|}c1

K+
A

[origLc1] in

Additionally we let the attacker know the value BIT by sending it in plaintext
on the ether, as this value merely models a standard header.

Analysing the protocol in a scenario where the attacker is allowed to vote we
get the violations of the assertion; (a•2, c1) ∈ ψ and (c2, c1) ∈ ψ. The first vio-
lation (a•2, c1) ∈ ψ means that the attacker may get his validated vote accepted

70 Analysing Protocols

by the counter without unblinding it; this is equivalent to saying that the at-
tacker can get his vote validated by the administrator without blinding it. The
corresponding attack is as follows:

1. DY→A : V, signV (BIT, commitr(v))
2. A →DY : signA(BIT, commitr(v))
3. DY→C : signA(BIT, commitr(v))
4. C →DY : signC(l, signA(BIT, commitr(v)))
5. DY→C : l, r

This attack shows that the attacker can choose not to blind his committed vote
and hence be un-anonymous. However this does not violate that only valid
ballots can be accepted by the counter as the attacker still needs to get his
ballot validated by the administrator. Therefore we can extend the assertion
Lc1 to include a•2.

Turning to the violation (c2, c1) ∈ ψ we observe that the assumption, that the
counter must have received all votes in the voting phase before commencing the
publishing phase (Ass4), contradicts that something encrypted at crypto-point
c2 can be decrypted at c1 and hence we extend the assertion Lc1 to include
c2 as well. Now analysing the protocol with the sets La1 and Lv8 equal to C
and Lc1 = {v6, a•2, c2} we obtain an empty ψ-component which means that no
invalid votes can get accepted by the counter and therefore cannot count in the
final tally.

For part (1) of the accuracy property we note that, as we assume perfect cryp-
tography, it is not possible for a vote to be altered when it has been validated.
That the vote cannot be altered before validation can be observed from the
possible variable bindings of x3 in the analysis result, ρ(x3) = {{v}r}. Knowing
that the analysis is an over-approximation we can be certain that only the un-
altered vote can be validated and accepted by the voter, and we have that (1)
is satisfied.

That all validated votes are counted, as required by part (3) of the accuracy
property, relies on our assumptions and the previous parts. We know from
part (2) that invalid ballots cannot be counted in the final tally. With the
assumptions that the administrator only signs one ballot for each voter (Ass2),
that the number of accepted votes by the counter must be the same as the
number of validated votes by the administrator (Ass5) and that every accepted
ballot is unique(Ass1), we can conclude that all validated votes must be counted
in the final tally and thus that accuracy is satisfied.

Democracy. Democracy is obtained if (1) only eligible voters can vote and (2)
they can only vote once.

Being able to vote (1) has two issues in the FOO92 protocol. Firstly, if and

7.2 The FOO92 Voting Protocol 71

only if you are an eligible voter you must be able to get your ballot validated.
Secondly, only validated ballots and all validated ballots must be accepted by
the authority of the tallying, but this was already established by the validation
of accuracy.

That only eligible voters are able to vote is modelled by La1 = {v3}, meaning
that the vote being validated by the administrator does indeed originate from
the voter it is being validated for. Analysis of the protocol with this assertion
(and Lc1 and Lv8 equal to C) yields an empty ψ-component and hence the first
part of democracy holds.

That eligible voters are only allowed to vote once (2) can be validated if no replay
attacks can be made on the first two messages sent from the voter (messages 1
and 3). No replay attack on the first message ensures that each voter can only
get one valid vote, and no replay attack on the second message ensures that
validated votes are only accepted once. According to the taxonomy of replay
attacks [37] there are the following categories of replay attacks:

◦ From which session does the replayed message come from?

(1) Parallel/old/current session between same pair of players as in the
attacked session.

(2) Parallel/old session between a different pair of players.

◦ Who is the recipient of the replayed message?

(a) Intended recipient.

(b) Different recipient (sender of the message or third party).

◦ Is the message used as intended in the protocol?

(i) Replayed message is used with intended purpose.

(ii) Replayed message is used with different purpose (type-flaw attack).

A replay attack can be classified with triple from the set {1, 2}×{a, b}×{i, ii}. If
a protocol is annotated properly the analysis finds attacks of the types (2, ∗, ∗),
(∗, b, ∗) and (∗, ∗, ii) where the entries ∗ can be chosen arbitrarily [27]. The
only remaining replay attack is type (1, a, i), which is when a message is re-sent
to the intended recipient and used with intended purpose, in a parallel or new
session.

A type (1, a, i) replay attack on the validation from the administrator would
mean that the same voter had two or more votes validated by the administra-
tor, but this contradicts our assumptions. A type (1, a, i) replay attack on the

72 Analysing Protocols

counter would mean that the counter accepted the same vote twice, but again
this contradicts our assumption that all committed ballots are unique (Ass1)
and that the counter only accepts one of each (Ass3). Hence this type of replay
attack is not possible according to our assumptions in Section 7.1 and as the
analysis does not report any violations to our assertions we can conclude that
democracy is satisfied.

Fairness. A voting protocol is fair when early results from the vote cannot
be obtained; in the FOO92 specification [18] this is defined as being before the
opening phase. We shall model this by eliminating the opening phase in the
LYSA specification and claim that if the votes are then not in the knowledge of
the attacker, fairness is obtained. Running the analysis in this scenario (with
all L` equal to C) we do indeed observe that v /∈ ρ(z•) thereby validating the
fairness property.

It is interesting to note that the fairness property is still satisfied even when the
administrator and the counter conspire. This can be validated by letting the
attacker know the secret keys for both the administrator and the counter; in this
way he can act on behalf of both. As already mentioned we obtain v /∈ ρ(z•)
also in this scenario.

Summary. Table 7.2 contains the version of the FOO92 protocol that we have
successfully validated using the analysis. The sets La1 , Lc1 and Lv8 have been
selected individually to capture the property of interest as described in this
section.

7.3 The Sensus Voting Protocol

The Sensus voting protocol [14] builds on the FOO92 protocol and uses the
same special cryptographic operations; blinding and bit-commitment. Three
principals are involved in the protocol and the protocol proceeds in five phases
as shown in Table 7.3 which is explained below. We use the terms and syntax
from LYSA for writing the cryptographic operations. The Sensus voting protocol
differs from the FOO92 protocol in the way that encryptions are added to some
of the messages which was not encrypted in the FOO92 protocol. This is done
to keep the messages in the protocol secret, as the Sensus protocol has been
implemented to work in a hostile environment, but as we shall see this does not
impact on the properties specific for electronic voting.

Message 1 differs from FOO92 in the way that the voter uses the administrators

7.3 The Sensus Voting Protocol 73

(ν± KV) (ν± KA) (ν± KC) (ν BIT)
((ν v) (ν r) (ν b) / ∗ Voter ∗ /

1. 〈V,A, V, {|[[BIT, {v}v1
r [dest C]]]v2

b [dest C]|}v3

K−
V

[dest C]〉.
2′. (A, V ; x1).
2′′. decrypt x1 as {|; x2|}v4

K+
A

[orig C] in

2′′′. unblind x2 as [[; x3, x4]]
v5
b [orig C] in

3. 〈D,C, {|x3, x4|}v6

K−
A

[dest C]〉.
4′. (C,D; x5).
4′′. decrypt x5 as {|{|x3, x4|}v7

K−
A

[dest C]; x6|}v8

K+
C

[origLv8] in

5. 〈D,C, x6, r〉.0

1′. | (V,A, V ; y1). / ∗ Administrator ∗ /
1′′. decrypt y1 as {|; y2|}a1

K+
V

[origLa1] in

2. 〈A, V, {|y2|}a2

K−
A

[dest C]〉.0

| (ν l) / ∗ Counter ∗ /
3′. (D,C; z1).
3′′. decrypt z1 as {|BIT ; z2|}c1

K+
A

[origLc1] in

4. 〈C,D, {|{|BIT, z2|}c2

K−
A

[dest C], l|}c4

K−
C

[dest C]〉.
5′. (D,C, l; z3).
5′′. decrypt z2 as {; z4}c3

z3 [orig C] in 0

| 〈K+
V ,K

+
A ,K

+
C , BIT 〉.0 / ∗ Knowledge of the attacker ∗ /

)

Table 7.2: Amended FOO92 in LYSA-calculus

1. V → A : {|V, {|[[{v}r]]b|}K−
V
|}

K+
A

2. A → V : {|{|[[{v}r]]b|}K−
A
|}

K+
V

3. (V) → C : {|{|{v}r|}K−
A
|}

K+
C

4. C → : {|{v}r|}K−
C
, l

5. (V) → C : l, r

Table 7.3: Protocol Narration for Sensus

private key to encrypt the message, thereby ensuring that only the administrator
is able to read the message. The second and third message follows the same trend
where the message is encrypted with the public key of the intended recipient
of the message. When the counter publishes the list with votes in message 4,
the votes are signed by the counter. The fifth message is identical to the last

74 Analysing Protocols

message in FOO92.

7.3.1 Modelling Sensus in LYSA

As for the FOO92 protocol the translation from the ordinary protocol narration
into LYSA proceeds in two steps. First we shall refine the specification given
in Table 7.3 into an extended protocol narration which is listed in Table 7.4.
The second stage translates the extended protocol narration into LYSA (with

1. V→ : V,A, {|V, {|[[{v}r]]b|}K−
V
|}

K+
A

1′. →A : yV , yA, y1 [check yA = A]
1′′. A : decrypt y1 as {|y′V , y2|}K−

A

1′′′. A : decrypt y2 as {|y3|}K+
V

[check V ′s signature]

2. A→ : A, V, {|{|y3|}K−
A
|}

K+
V

2′. →V : xA, xV , x1 [check xV = V]
2′′. V : decrypt x1 as {|x2|}K−

V

2′′′. V : decrypt x2 as {|x3|}K+
A

[check x3 = [[{v}r]]b]

2′′′′. V : unblind x2 as[[x4]]b
3. (V)→ : D,C, {|x4|}K+

C

3′. →C : zD, zC , z1 [check zC = C]
3′′ C : decrypt z1 as {|z2|}K−

C

3′′′ C : decrypt z2 as {|z3|}K+
A

[check A′s signature]

4. C→ : C,D, {|z3|}K−
C
, l

4′. →V : xC , xD, x5, x6

4′′. V : decrypt x5 as {|x7|}K+
C

[check x7 = {v}r]

5. (V)→ : D,C, x6, r
5′. →C : zD, z

′
C , zl, zr [check z′C = C]

5′′. C : decrypt z3 as {zv}zr

Table 7.4: Sensus: Extended protocol narration

blinding) which can easily done by dividing the narration into 3 processes, one
for each principal. The LYSA specification of the protocol is given in Table 7.5.

Again we must use a small trick because rebinding of variables is not supported
in the current version of LYSA; the recipient of the message has to decrypt the
signature and then resign the content by using the same signature.

The sets of crypto-points of interest with respect to the properties we analyse
are La2 , Lv10 and Lc2 , whereas the remaining sets of crypto-points are C, the

7.3 The Sensus Voting Protocol 75

(ν± KC) (ν± KA)
((ν v) (ν r) (ν b) / ∗ Voter ∗ /

1. 〈V,A, {|V, {|[[{v}v1
r [dest C]]]v2

b [dest C]|}v3

K−
V

[dest C]|}v4

K+
A

[dest C]〉.
2′. (A, V ; x1).
2′′. decrypt x1 as {|; x2|}v5

K−
V

[orig C] in

2′′′. decrypt x2 as {|; x3|}v6

K+
A

[orig C] in

2′′′′. unblind x3 as [[; x4]]
v7
b [orig C] in

3. 〈D,C, {|{|x4|}v8

K−
A

[dest C]|}v9

K+
C

[dest C]〉.
4′. (C,D, {|x4|}v10

K−
C

[destLv10]; x5).

5. 〈D,C, x5, r〉.

1′. | (V,A; y1). / ∗ Administrator ∗ /
1′′. decrypt y1 as {|V ; y2|}a1

K−
A

[orig C] in

1′′′. decrypt y2 as {|; y3|}a2

K+
V

[origLa2] in

2. 〈A, V, {|{|y3|}a3

K−
A

[dest C]|}a4

K+
V

[dest C]〉.

| (ν l) / ∗ Counter ∗ /
3′. (D,C; z1).
3′′. decrypt z1 as {|; z2|}c1

K−
C

[orig C] in

3′′′. decrypt z2 as {|; z3|}c2

K+
A

[origLc2] in

4. 〈C,D, {|z3|}c3

K−
C

[dest C], l〉.
5′. (D,C, l; zr).
5′′. decrypt z3 as {; zv}c4

zr
[orig C] in

| 〈K+
C ,K

+
A ,K

+
V 〉.0 / ∗ Knowledge of the attacker ∗ /

)

Table 7.5: Sensus in LYSA-calculus

entire set of crypto-points.

7.3.2 Analysis of Sensus

Having modelled the Sensus protocol in LYSA we can now proceed with the
analysis. In the following we analyse each of the desired security properties in
turn. We use the unspecified crypto-points in Table 7.5 for this purpose.

Verifiability. A vote is counted correctly in the final tally when the voter can
verify that the committed ballot as well as the commitment key is in the hands
of the counter. In order to analyse this we need to rewrite message 4 in the

76 Analysing Protocols

LYSA specification as

4′. (C,D; x5 , x6).
4′′. decrypt x5 as {x4; }v10

K+
C

[origLv10] in

and require that the decryption in step 4′′ originates from the publication from
the counter. If we let Lv10 = {c3} an empty ψ-component implies that the voter
can verify that the counter has received the ballot. From the analysis result we
see that this is the case.

In the protocol specification the voter does not get any receipt when the counter
has received the commitment key and therefore as in FOO92 this requires the
assumption (Ass6) for the verifiability property to be satisfied.

Accuracy. Again we start with part (2) of the property, and proceed as we did
for the FOO92 protocol by annotating our specification such that the counter
only accepts valid ballots. Hence we set Lc2 = {v8} and from the analysis result
we discover the same vulnerability as in the FOO92 protocol, namely that voters
can get their ballots accepted without unblinding them first. As for FOO92, the
amendment consists of adding a header BIT such that the counter can check
whether a ballot is unblinded or not. The first step in the LYSA specification is
changed to the following:

1. 〈V,A, {|V, {|[[BIT, {v}v1
r [dest C]]]v2

b [dest C]|}v3

K−
V

[dest C]|}v4

K+
A

[dest C]〉

And the counter only accepts a ballot if it is unblinded first:

3′′′. decrypt z2 as {|BIT ; z3|}c2

K+
A

[origLc2] in

The analysis result yields one violation, namely (a•3, c2) ∈ ψ meaning that the
attacker can get his ballot validated by the administrator without blinding it
ie. acting non-anonymous in the protocol. But the result also ensures that only
valid ballots are accepted by the administrator and part (2) of the property is
satisfied.

Turning to part (1) of the accuracy property; due to the assumption of perfect
cryptography we know that the vote cannot be altered after it has been validated
by the administrator. Wether the vote can be altered before the validation, can
be seen from the possible variable bindings of x4. The analysis finds ρ(x4) =
{{v}r} as an over-approximation of the values that may be bound to x4, hence
we know that the vote cannot be altered.

Part (3) of the accuracy property relies on the assumptions from the beginning
of this chapter, more specific that the number of accepted ballots at the counter
must be the same as the number of validated ballots by the administrator (Ass5).
As we also know that accepted ballots are unique (Ass1) and from part (2) that
only valid ballots are accepted, we can conclude that all validated ballots are

7.4 The E-Vox Voting Protocol 77

accepted by the counter.

Democracy. Assume that the attacker is not an eligible voter. Then the first
part of democracy is satisfied if (1) the attacker is not able to get a ballot
validated by the administrator; ie. La2 = {v3}, (2) the attacker cannot get
anything accepted at the counter; ie. Lc2 = {v8}. The analysis of the protocol
with these assertions yields no violations, thus we can conclude that only eligible
voters can vote.

We turn to the second part of democracy; ie. that eligible voters can vote only
once. From the analysis of the FOO92 protocol we mentioned that the analysis
covers the eight different replay attacks from [37] except one, which due to our
assumptions ((Ass1), (Ass2) and (Ass3)) is not a possible attack. Analysing the
Sensus protocol with respect to replay attacks on the above annotations; namely
La2 = {v3} and Lc2 = {v8}, yields no violations, and we can conclude that the
Sensus protocol ensures democracy.

Fairness. As for FOO92 the Sensus protocol is divided into phases and the
fairness property is satisfied if no early result from the vote can be obtained. In
the Sensus protocol the result of a vote is considered early if it is obtained before
the opening of the votes; ie. before message 5. Hence we eliminate step 5. in the
specification and analyse for confidentiality of the votes v. From the analysis
result we see that the votes are held confidential, even in a scenario where the
administrator and the counter conspire, exactly as in the FOO92 analysis.

7.4 The E-Vox Voting Protocol

Another interesting voting protocol is the E-Vox voting protocol [17, 20]. This
is also a variant of the FOO92 protocol but it is slightly changed in that the
voters are not required to have a digital signature as they do in the two other
protocols mentioned here.

The E-Vox voting protocol employs four principals; there are multiple voters
V , multiple administrators A, one counter C and one anonymiser N providing
anonymous communication between the voters and the counter. The E-Vox
voting scheme has been proposed to also have multiple administrators. The
protocol narration for E-Vox, given in Table 7.6, is further explained below.

First the voter creates a fresh key KV A and sends it to the administrator en-
crypted under the administrators public key (message 1).

78 Analysing Protocols

1. V → A : {|KV A|}K+
A

2. V → A : {V, pwd, [[{v}r]]b}KV A

3. A → V : {|[[{v}r]]b|}K−
A

4. V → N : {|KV C |}K+
C
, {{|{v}r|}K−

A
, r}KV C

5. N → C : {|KV C |}K+
C
, {{|{v}r|}K−

A
, r}KV C

6. C → : {|{v}r|}K−
A
, r

Table 7.6: Protocol Narration for E-Vox

As in the FOO92 and Sensus protocols the voter selects a vote, bitcommits it
and blinds it. The blinded, committed ballot together with the voters name V
and a password pwd is sent to the administrator, encrypted under the freshly
created shared key KV A.

The password is used to identify the voter, replacing the voters signature in the
previous protocols. Upon receiving message 2, the administrator thus checks
that the password is valid for the voter. If this is the case, he signs the blinded,
committed vote and returns it to the voter; message 3 in the narration.

The voter verifies the administrators signature on the blinded, committed ballot
and then unblinds the it. In message 4 in the protocol narration the voter sends
two messages: a fresh symmetric key KV C encrypted under the counters public
key, and the valid ballot together with the commitment key encrypted under
the key KV C . The message is send to the anonymiser which in message 5 in
the protocol narration just forwards message 4, thereby not letting the counter
know the identity of the voter.

When the counter receives the message, he obtains the session key KV C by
decrypting with his private key. Then the validation of the ballot is checked
and if it succeeds, the counter uncommits the ballot and counts the vote. In
message 6 the counter publishes the valid ballots that has been counted together
with the corresponding commitment keys.

7.4.1 Modelling E-Vox in LYSA

We refine the protocol narration given in Table 7.6 into an extended protocol
narration which is given in Table 7.7. Again observe that each message is
extended with source and destination information.

7.4 The E-Vox Voting Protocol 79

1. V→ : V,A {|KV A|}K+
A

1′. →A : yV , yA, y1 [check yA = A]
1′′. A : decrypt y1 as {|yK |}K−

A

2. V→ : V,A {V, pwd, [[{v}r]]b}KV A

2′. →A : y′V , y
′
A, y2 [check y′A = A]

2′′. A : decrypt y2 as {y′′V , yp, y3}yK [check y′′V = V and yp = pwd]
3. A→ : A, V, {|y3|}K−

A

3′. →V : xA, xV , x1 [check xV = V]
3′′. V : decrypt x1 as {|x2|}K+

A
[check x2 = [[{v}r]]b]

3′′′. V : unblind x1 as [[x3]]b
4. V→ : V,N, {|KV C |}K+

C
, {x3, r}KV C

4′. →N : wV , wN , w1, w2 [check wN = N]
5. N→ : N,C,w1, w2

5′. →C : zN , zC , z1, z2 [check zC = C]
5′′. C : decrypt z1 as {|zK |}K−

C

5′′′. C : decrypt z2 as {z3, zr}zK

5′′′′. C : decrypt z3 as {|z4|}K+
A

[check A′s signature]

5′′′′′. C : decrypt z4 as {z5}zr

6. C→ : C,D, z3, zr

6′. →V : xC , xD, x4, x5 [check x5 = r]
6′′. V : decrypt x4 as {|x6|}K+

A
[check A′s signature]

6′′′. V : decrypt x6 as {xv}r [check xv = v]

Table 7.7: E-Vox: Extended protocol narration

The extended narration can easily be translated into LYSA by dividing the
narration into four processes. The LYSA specification of the protocol is given
in Table 7.8. Note that the trick for validating signatures

We follow the trend from FOO92 and Sensus and leave the sets of crypto-points
Lv9 , La2 and Lc3 unspecified, and the remaing are set to the entire set of crypto-
points, C.

7.4.2 Analysis of E-Vox

Analysis of the E-Vox voting protocol proceeds as for the FOO92 and Sensus
protocols where the unspecified crypto-points in Table 7.8 are specified for each
of the properties.

Verifiability. We keep in mind that a system is verifiable if the voters inde-

80 Analysing Protocols

(ν± KC) (ν± KA) (ν pwd)
((ν v) (ν r) (ν b) / ∗ Voter ∗ /

(ν KV A) (ν KV C)
1. 〈V,A, {|KV A|}v1

K+
A

[dest C]〉.
2. 〈{V, pwd, [[{v}v2

r [dest C]]]v3
b [dest C]}v4

KV A
[dest C]〉.

3′. (A, V ; x1).
3′′. decrypt x1 as {|; x2|}v5

K+
A

[orig C] in

3′′′. unblind x2 as [[; x3]]
v6
b [orig C] in

4. 〈V,N, {|KV C |}v7

K+
C

[dest C], {{|x3|}v8

K−
A

[dest C], r}v9
KV C

[destLv9]〉.
6′. (C,D, r; x4).

6′′. decrypt x4 as {|; x5|}v10

K+
A

[orig C] in

6′′′. decrypt x5 as {v; }v11
r [orig C] in

1′. | (V,A; y1). / ∗ Administrator ∗ /
1′′. decrypt y1 as {|; yK |}a1

K−
A

[orig C] in

2′. (V,A; y2).
2′′. decrypt y2 as {V, pwd; y3}a2

yK
[origLa2] in

3. 〈A, V, {|y3|}a3

K−
A

[dest C]〉.

4′. | (V,N ; w1, w2). / ∗ Anonymiser ∗ /
5. 〈N,C,w1, w2〉.

5′. | (N,C; z1, z2). / ∗ Counter ∗ /
5′′. decrypt z1 as {|; zK |}c1

K−
C

[orig C] in

5′′′. decrypt z2 as {; z3, zr}c2
zK

[orig C] in
5′′′′. decrypt z3 as {|; z4|}c3

K+
A

[origLc3] in

5′′′′′. decrypt z4 as {; z5}c4
zr

[orig C] in
6. 〈C,D, zr, z3〉.

| 〈K+
C ,K

+
A 〉.0 / ∗ Knowledge of the attacker ∗ /

)

Table 7.8: E-Vox in LYSA-calculus

pendently can verify that their votes has been counted correctly, and we use the
assumption that a vote is counted correctly when it is received by the counter
(Ass3). Focusing on who can receive the committed ballot and the commitment
key in step 4 in the LYSA specification we set Lv9 = {c2} such that only the
counter may receive the commitment key and thereby being the only able to
open the ballot.

The analysis result does not report any violations and hence only the voter and

7.4 The E-Vox Voting Protocol 81

the counter knows the commitment key. Therefore, if the voter sees a publi-
cation of this bitcommit ballot and commitment key, he can be sure that the
counter has received the vote, and that it has been counted correctly. Note that
the publication of the list does not need to be signed by the counter because
even if the publication is done by the attacker, the voter can verify that the
counter has received the ballot, and hence according to (Ass3) the vote must
also count in the final tally.

Accuracy. That only valid votes are counted in the final tally is checked analo-
gous to the FOO92 and Sensus protocols. Acceptance of a ballot by the counter
is done at crypto-point c3, and valid ballots are generated after unblinding the
ballot at crypto-point v8. We set Lc3 = {v8} and from the analysis result we get
no violations and therefore only valid votes are counted in the final tally which
concludes the second part of the accuracy property. Note that we do not need
to add the BIT header as the commitment key is sent along with the committed
ballot, and hence the counter can check the content of the commitment at once.

Turning to the first and third part of the property we can similar as for FOO92
and Sensus, argue for the properties that votes cannot be altered and all votes
are counted in the final tally.

Democracy. We do not allow the attacker to be a valid voter and we divide
analysis of the property into the two problems; getting a ballot validated by the
administrator and getting a valid ballot accepted by the counter. A ballot is
validated by the administrator if it is accepted ie. the voter has a valid password
pwd in the matching in the decryption at crypto-point a2. To validate this we set
La2 = {v4} in the LYSA specification and the analysis result yields no violations
and hence only eligible voters can get a valid ballot. A ballot is accepted by the
counter when it is valid which is checked at crypto-point c3 and the valid ballot
is obtained by the voter after unblinding the ballot at crypto-point v8 and hence
the annotation Lc3 = {v8}. The analysis does not yield any violations, and we
can conclude that only eligible voters can vote.

That voters can vote only once is investigated by analysis of replay attacks on
the issues above, namely validation of ballots and acceptance of valid ballots.
As for the previous protocols, LYSA covers 7 of the 8 types of replay attacks and
the last is covered by our assumptions. Hence, as the analysis does not report
any violations to the annotations, we can conclude that democracy is satisfied.

Fairness. The fairness property is clearly not satisfied as the counter is able to
uncommit a ballot as it has been received in step 5′ in the LYSA specification
and thereby get knowledge on the result as the voters are sending their ballots. If
we make an additional assumption the property can be satisfied; if the counter
does not uncommit or publish the ballots before all votes has been received,

82 Analysing Protocols

fairness is satisfied. This can be seen by excluding steps 5′′′′ and 6 from the
LYSA specification of the protocol and then analyse the protocol with respect
to confidentiality on the value v.

Chapter 8

Discussion of Part I

In Chapter 7 we have validated the four security properties; verifiability, accu-
racy, democracy and fairness of three different voting protocols. However, as
stated in Section 1.3, the design goals for voting protocols include an additional
security property; namely privacy. In this chapter we shall discuss the prob-
lems concerning validation of this property, and furthermore we shall discuss
the foundation of our analysis; the assumptions.

8.1 Privacy

In Section 1.3 we define privacy as satisfied if nobody can link any vote to the
voter who cast it. Usually this property is divided into two parts [14]; (1) neither
election authorities nor anyone else can link any vote to the voter who cast it,
and (2) no voter can prove that he or she voted in a particular way.

The analysis of LYSA, uses an over-approximation of all variable bindings and all
messages sent on the network to ensure destination and origin authentication.
This analysis gives us all values learned by the attacker; ie. all values in ρ(z•),
but not how he obtained this information. This means that when we analyse a
voting protocol in LYSA, even if the resulting ρ(z•) holds both all voters and all
their votes, we cannot know if the attacker can link these values together. This

84 Discussion of Part I

is the case for both FOO92 and Sensus, as at one point the name of the voter
but not the vote is sent in clear and at another point the opposite is done. Hence
we cannot use LYSA to validate privacy for voting protocols, unless the attacker
never learns either the name of the voter or the vote, and since he will always
learn both of these if he is in allegiance with the counter and the administrator,
we can never use LYSA to validate the privacy property.

Turning to related work, Kremer and Ryan [24] proved that the first part of
privacy was satisfied for the FOO92 protocol using equivalence theory. The
proof proceeds by taking two processes P1 and P2, where in P1 the voter V1 votes
vote1 and the voter V2 votes vote2 whereas in P2 the voter V1 votes vote2 and
V2 votes vote1, and then show that these processes are observational equivalent.
This proof could probably be used to prove the first part of privacy for E-Vox
and Sensus as well, however a more interesting aspect of Kremer and Ryans
work is that they too failed to use an automated tool to show this property and
in particular that they were not able to validate the second part of privacy at
all.

The second part of the privacy property is in [14] described as being of impor-
tance to prevent vote buying and extortion. However, they proceed in [14] by
claiming that this property could never be satisfied for electronic voting proto-
cols, unless voting booths were used, as voters could let another party observe
while they voted.

This is not a problem concerning the voting protocol, but more the voting
scenario in our opinion, but a much more critical problem arises when trying to
validate this property. In all voting protocols, the voter must have some kind of
secret; eg. a blinding factor or a cryptographic key, which protects his identity
or hides his vote during the vote. If he does not, then the attacker will be able to
link the voter and his vote together directly from the messages sent. This secret
can always be used as proof, that the voter is the one who cast a specific vote, at
least this applies to all voting protocols we have analysed. Thus we believe, that
this property can never be satisfied for an electronic voting protocol in presence
of the Dolev-Yao attacker, but a more formal proof of this is yet to be done.

8.2 Assumptions

The actual contribution of an analysis is always dependent of the assumptions
it is based on. Assumptions are critical for any analysis, yet too many or too
strong assumptions can result in the result being useless.

8.2 Assumptions 85

In Section 7.1 we state that our analysis is done under the following assumptions:

(Ass1) Bit-committed votes are unique;
(Ass2) The administrator only signs one vote for each eligible voter;
(Ass3) The counter C is a trusted party, ie. if the counter receives a vote

then it is also counted correctly in the final tally;
(Ass4) The counter must have received all votes in the voting phase before

commencing the publishing phase;
(Ass5) The vote is only accepted if the number of votes counted by the

counter equals the number of votes signed by the administrator;
and

(Ass6) The vote is only accepted if the counter in the opening phase receives
all the commitment keys for the votes published.

which are more or less derived directly from the protocol descriptions.

The first assumption (Ass1) is intuitively needed, but it is, as stated, covered
by perfect cryptography.

The next two assumptions (Ass2) and (Ass3) basically say that the administra-
tor and the counter need to be trusted. These assumptions are a weakening
point of the analysis, as we cannot always trust these parties. However, in
LYSA all messages are sent on the ether, which means that the attacker can see
all messages sent, but so can everyone else. Hence our analysis result is still
true, if each principal receives all messages sent, which again means that each
voter could check the result of the vote (act as a counter), and verify that the
administrator signed only one vote for each eligible voter. In essence, the two
assumptions (Ass2) and (Ass3) are not critical for the validation of the security
properties.

The fourth assumption (Ass4) is needed because of the protocol design, as shown
in the proof for first part of privacy in [24]. However, for the four security
properties we validate, this assumption is not needed.

The last two assumptions (Ass5) and (Ass6) are needed for several of the prop-
erties to be satisfied. These assumptions show that any eligible voter can force
the election to be disqualified. This is a result of the protocol design and should
be kept in mind, when using one of these voting protocols.

86 Discussion of Part I

Part II

LYSA
XP

Chapter 9

Motivation for a new Calculus

In this part of the thesis we shall present a new process calculus for specifying
protocols, and a corresponding control flow analysis to safely approximate the
behavior of a protocol. The process calculus presented in the following is in-
spired by the LYSA-calculus, and is therefore named LYSAXP ; we shall leave the
interpretation of the superscript XP up to the readers imagination. We begin
by describing the stimuli for this calculus and analysis.

The main objective of LYSA was that it should provide an easy way of trans-
lating ordinary protocol narrations into process calculus specifications, which
an analysis could be applied to. However, as discovered in the previous part
of this thesis, this translation is not always trivial. It is sometimes needed to
change the order of the elements in a message, and at some occasions it is even
necessary to make small hacks in the LYSA specification, to express the actual
intention of the protocol.

Changing the order of elements in a message concerns the pattern matching in
LYSA, and as an example consider message 4 in the FOO92 protocol:

4. C → (V) : l, {|{v}r|}K−
A

Upon receiving the message, the voter will pattern match on the second element
of the tuple, which should equal his own vote (committed and signed). Then,
if this pattern match succeeds, the first element should be bound to a variable.

90 Motivation for a new Calculus

Pattern matching in LYSA succeeds when the first j elements in the tuple match,
and the remaining k − j elements are then bound to variables, so in order to
specify message 4 in the LYSA-calculus we need to change the order in the tuple:

4. C → (V) : {|{v}r|}K−
A
, l

This change to the specification seems only minor but one could easily imagine
protocols with more messages and more elements, where these slight changes
could stress errors in the specification.

A more annoying limitation of LYSA is that it does not support rebinding of
variables. This was exemplified in the first part of the thesis, where we in the
specifications of FOO92, Sensus and E-Vox had to use a small hack; eg. this
was done in the FOO92 specification of messages 2 and 3:

2′. (A, V ; x1).
2′′. decrypt x1 as {|; x2|}v4

K+
A

[orig C] in
2′′′. unblind x2 as [[; x3]]

v5
b [orig C] in

3. 〈D,C, {|x3|}v6

K−
A

[dest C]〉.

The voter has to check the administrators signature, but the only way to describe
this in LYSA is to first decrypt the signature and then resign the message using
the same signature. This means that the voter has to use the administrators
private key in the specification.

A result of these limitations is that the general use of LYSA requires much insight
into the analysis, and that protocol specifications using LYSA often becomes very
hard to read. Additionally we find that the use of asymmetric encryption to
model digital signatures and the lack of a hashing construct is rather annoying.
This results in a strong motivation for developing a new calculus.

The remaining part of the thesis proceeds as follows: In Chapter 10 we present
the syntax and semantics LYSAXP. To show that this calculus accommodates the
requirements considered above, we show in Chapter 11 how to model protocols
in LYSAXP. Then in Chapter 12, we present the analysis of LYSAXP and a proof
for soundness of the analysis with respect to the semantics and additionally we
shall briefly describe how to specify the attacker. At last we will discuss some
aspects of the new calculus and the analysis in Chapter 13, before we present
the conclusion of the thesis in Chapter 14.

Chapter 10

LYSA
XP-calculus

The motivation for creating a new calculus was given in the previous chapter,
in this chapter we shall present the design of LYSAXP, and proceed by adding a
formal syntax and semantics of this new calculus.

The design of the LYSAXP-calculus is partly inspired by the LYSANS-calculus pre-
sented in [10]. However, as implementation of the analysis of LYSANS-calculus
has proved very challenging, a novelty of LYSAXP is the more efficiently imple-
mentable analysis presented in Chapter 12.

10.1 Design

In Chapter 9 we discussed some limitations of LYSA; the rigid pattern matching
and the lack of rebinding variables. To accommodate the first limitation, we
need to make a calculus, that in a flexible manner can pattern match. We do
this by introducing patterns. Using the notion that a value is a term without
variables, we require that pattern matching of a value v against a pattern p will
result in a boolean answer. The resulting syntax is as follows

match v as p. P ′

92 LYSAXP-calculus

for the process of matching a value v against a pattern p and only if the matching
succeeds, should the remainder P ′ be evaluated. The idea is that patterns should
have a syntax similar to that of terms, and continuing this idea of pattern
matching, these patterns must have some means to bind new variables. This
means that the syntax of patterns must include a construct for binding a value
to a variable x if value has been matched successfully against a pattern p:

p%x

Which would solve the problem in LYSA concerning rebinding of variables.

In the general design of LYSAXP, we shall make two levels of abstraction. First
we have the basic elements in the calculus; terms and patterns, as described
above. On top of these we build an object-level describing the principals in a
protocol; the processes.

10.2 Syntax

As described above, the syntax of LYSAXP is divided into two levels of abstrac-
tion. In this section we shall keep this distinction of the levels in the presentation
of the syntax and the semantics and describe the syntax for both of these levels.

10.2.1 Terms and Patterns

The basic building blocks used for modelling processes are terms and patterns.
The terms in LYSAXP are somewhat similar to those in LYSA, but in LYSAXP

we distinguish between digital signatures and symmetric encryptions, and we
introduce a special construct for hashing. Also a tuple construct has been added,
such that concatenation of terms is done separately. The terms in LYSAXP are
given in Table 10.1 and explained in the following.

Beside the names n and variables x, the terms of the calculus include a tuple
construct T(t1, · · · , tk) which is used to concatenate terms. Furthermore we
have terms for cryptographic operations such as symmetric encryption Et0(t) ,
asymmetric encryption Pt0(t) , digital signatures St0(t) and of course the blind-
ing construct Bt0(t) . It is important to notice the effect of the tuple construct,
a blinding of k values would in the original LYSA be specified as [[V1, · · · , Vk]]V0

whereas the blinding should be encoded as Ev0(T(v1, · · · , vk)) in the LYSAXP

-calculus. It might seem that the tuple construct unessentially increases the
complexity of the syntax, but this construct eases the analysis, as we shall

10.2 Syntax 93

t ::= n name
| x variable
| T(t1, · · · , tk) tuple
| H(t) hashing
| Et0(t) symmetric encryption
| Pt0(t) asymmetric encryption
| Bt0(t) blinding
| St0(t) signature

Table 10.1: Terms; t

see later. Additionally, it seems obvious to let a parser handle the tuple con-
struct, such that it becomes invisible to the user; eg. symmetric encryption of
a tuple T(t1, · · · , tk) with a key K would be written EK(t1, · · · , tk) instead of
EK(T(t1, · · · , tk)) .

In addition to the cryptographic operations from LYSA, LYSAXP also incorporates
a special construct for hashing; H(t) . Note that hashing does not need a key,
as it can never be decrypted.

The other basic element in LYSAXP is patterns. As mentioned in Chapter 9, pat-
terns are used to match on values and possibly bind these to variables. Hence
the syntax for patterns should follow the syntax for terms, except that it should
incorporate a construct for binding of variables. The resulting syntax for pat-
terns is given in Table 10.2. Beside matching of cryptographic operations the
basic patterns include binding of variables as we described in the introduction;
matching a value v against the pattern p%x, means matching v against p and if
this succeeds the variable x is bound to v. Notice the wildcard which matches
any value, this means that matching a value v against %x always succeeds and
binds x to v.

The syntax for pattern matching introduces two additional patterns; a construc-
tive pattern and a signature pattern. The constructive pattern is used for keys
and hashed terms, and hence this pattern does not allow wildcards or binding
of values. This means that one cannot decrypt a cryptographic term without
knowing the exact key, nor can one learn anything about the key of a crypto-
graphic term. The same pattern applies to hashed values, as one must know all
values used for a hashing in order to pattern match against it, and one cannot
learn anything about the values used to create the hashing.

The signature pattern is used when we want to verify a signatures, ie. matching
a term against the pattern Ssp0(p) . The signature pattern is either like the

94 LYSAXP-calculus

p ::= n matches name
| x matches value of variable
| matches anything
| p%x binds variable x when p matches
| T(p1, · · · , pk) matches tuple
| H(cp) matches hashed values
| Ecp(p) symmetric decryption
| Pcp(p) asymmetric decryption
| Bcp(p) unblinding
| Ssp(p) verify signature

cp ::= n | x | constructive pattern - as p
T(cp1, · · · , cpk) | . . . but no wildcard or binding of variables

sp ::= | cp signature pattern

Table 10.2: Patterns; p

constructive pattern or just a wildcard. This means that everybody can read
the signed content, but if one wants to verify the signature the exact key must
be known.

Notice that in LYSA digital signatures was modelled by asymmetric encryption
using ones private key. This however, is not a realistic model as digital signatures
do not provide any confidentiality, so one had to also ensure that the attacker
knew all public keys, so that he was able to decrypt all signed values. A much
nicer model is the one we have chosen in LYSAXP, where we distinguish between
encryptions and signatures. An attacker can then learn anything that is signed
even though he does not know the public key, but still he cannot learn anything
encrypted if he does not know the key.

10.2.2 Processes

Processes are build from patterns and terms using the grammar in Table 10.3.
We see that the syntax for processes in the LYSAXP-calculus are much alike the
syntax for processes in the LYSA-calculus.

Instead of the decryption operations in the LYSA-calculus, we use the matching
process as described in the Section 10.1:

match t as p. P ′

10.3 Semantics 95

P ::= 0 terminated process
| P1 | P2 parallel composition
| !P replication
| (νT m)P restriction
| 〈t〉.P output
| (p).P input
| match t as p. P pattern matching

T ::= ε general name
| ± public/private keypair

Table 10.3: Object-level processes; P

Which matches the term t against a pattern p and if this succeeds the remaining
computation P ′ continues; eg. decryption in a symmetric key crypto-system,
where the variable y should be decrypted with the secret key K and the de-
crypted content should be bound to the variable x, proceeds as follows:

match y as EK(%x) .

However, in general the pattern matching allows such decryptions to be done
already in the input process, and hence the above decryption could be done as
soon as the message was received.

(EK(%x)).

where the value received is matched, ie. decrypted and the variable x is bound
to the content. This example shows that the matching process should only be
needed, if a value received cannot be matched until later in the protocol.

Also notice that restriction of names and keys for asymmetric cryptography is
merged into one operation with a superscript T stating whether the restriction
is a general name; nε, or an asymmetric key-pair; n±.

10.3 Semantics

Having presented the formal syntax of LYSAXP we shall now employ a reduction
semantics. Following the design again, we shall begin with the semantics of basic
elements in the calculus and then explain the semantics of the object-level.

96 LYSAXP-calculus

10.3.1 Terms and Patterns

The semantics of terms will just be values ranged over v ∈ Val, which are terms
with no variables.

The semantics of pattern matching requires a bit more thought. Because of
the binding construct, we must produce an environment θ for recording the
variables bindings. We write [] for the empty environment and θ[x 7→ v] for the
environment that is as θ, except that it maps x to v. The semantics of pattern
matching is given in Table 10.4 and takes the form:

θ ` v . p : θ′

which should be read as follows; in the environment θ, which contains all map-
pings of variables to their values in the pattern p, a matching of a value v against
the pattern p produces the new environment θ′.

(NameXP) θ ` n . n : θ (SDecXP)
θ ` v0 . p0 : θ′ θ′ ` v . p : θ′′

θ ` Ev0(v) . Ep0(p) : θ′′

(VarXP) θ ` v . x : θ if v = θx (PDecXP)
θ ` m− . p0 : θ′ θ′ ` v . p : θ′′

θ ` Pm+(v) . Pp0(p) : θ′′

(WildXP) θ ` v . : θ (UBli1XP)
θ ` v0 . p0 : θ′ θ′ ` v . p : θ′′

θ ` Bv0(v) . Bp0(p) : θ′′

(BindXP)
θ ` v . p : θ′

θ ` v . p%x : θ′[x 7→ v]
(UBli2XP)

θ ` v0 . p0 : θ′ θ′ ` Sm−(v) . p : θ′′

θ ` Sm−(Bv0(v)) . Bp0(p) : θ′′

(HashXP)
θ ` v . p : θ′

θ ` H(v) . H(p) : θ′
(SignXP)

θ ` m+ . p0 : θ′ θ′ ` v . p : θ′′

θ ` Sm−(v) . Sp0(p) : θ′′

(TupXP)
∧k

i=1θi−1 ` vi . pi : θi

θ0 ` T(v1, · · · , vk) . T(p1, · · · , pk) : θk

Table 10.4: Semantics of pattern matching; θ ` v . p : θ′.

The semantics of pattern matching of names (NameXP) and wildcards (WildXP)
are trivial, while pattern matching a value v against a variable x succeeds only
if the value is in the environment of x; note that we write θx for the set of values

10.3 Semantics 97

x maps to in θ. The most interesting rule is (BindXP) where the environment
is updated; pattern matching a variable v against the pattern p%x in the en-
vironment θ succeeds if v matches p, hereby producing a new environment θ′,
where the variable x is bound to the value v. Cryptographic operations such
as symmetric and asymmetric encryption, require that the key is known before
matching the content of the encrypted value. .

10.3.2 Processes

The object-level semantics describes how a process P evolves to P ′ in a step by
step fashion, formalised by a reduction relation P → P ′. This is defined as the
smallest relation satisfying the rules in Table 10.5.

(ParXP)
P1 → P ′

1

P1 | P2 → P ′
1 | P2

(NewXP)
P1 → P ′

1

(νT m)P1 → (νT m)P ′
1

(ComXP)
∅ ` v . p : θ

〈v〉.P1 | (p).P2 → P1 | P2θ

(ConXP)
P ≡ Q Q→ Q′ Q′ ≡ P ′

P → P ′ (MatchXP)
∅ ` v . p : θ

match v as p. P → Pθ

Table 10.5: Reduction relation for processes; P → P ′.

In the reduction relation we require the processes to be in a specific form to
match the rules, and thus we shall use structural congruence (ConXP) to syn-
tactically manipulate the processes to be on this form. Structural congruence
is defined as the smallest relation satisfying the rules in Table 10.6.

The rules for the structural congruence are standard, and as for LYSA we also
use α-equivalence. The rules for α-equivalence are given in Table 10.7, and two
processes are α-equivalent if they only differ in the naming of bound names.
The procedure of replacing bound names in a process with another name is
again called α-conversion and is used in the object-level semantics. Note that
α-converting a name preserves the tag τ of the name. Substitutions are extended
homomorphically to terms, patterns and processes, for which we write Pθ for
a process P except that all free variables that are defined by θ are replaced by
their values.

98 LYSAXP-calculus

P ≡ P P1 | P2 ≡ P2 | P1

P1 ≡ P2 ⇒ P2 ≡ P1 (P1 | P2) | P3 ≡ P1 | (P2 | P3)
P1 ≡ P2 ∧ P2 ≡ P3 ⇒ P1 ≡ P3 P | 0 ≡ P
P1 ≡ P2 ⇒ P1 | P3 ≡ P2 | P3 !P ≡ P | !P
P1 ≡ P2 ⇒ (νT m)P1 ≡ (νT m)P2 P1 ≡ P2 ⇒ !P1 ≡ !P2

(νT m) 0 ≡ 0
(νT1 m1) (νT2 m2)P ≡ (νT2 m2) (νT1 m1)P
(νT m) (P1 | P2) ≡ P1 | (νT m)P2 if {mτ |τ ∈ T} ∩ fn(P1) = ∅
P1 ≡ P2 if P1 and P2 are α-equivalent

Table 10.6: Structural congruence for processes; P ≡ P ′.

P ≡
α
P

P1 ≡
α
P2 ⇒ P2 ≡

α
P1

P1 ≡
α
P2 ∧ P2 ≡

α
P3 ⇒ P1 ≡

α
P3

(νε n1)P ≡
α

(νε n2) (P [nε
1 7→ nε

2]) if nε
2 /∈ fn(P)

(ν± m1)P ≡
α

(ν± m2) (P [m+
1 7→ m+

2 ,m
−
1 7→ m−

2]) if m+
1 ,m

−
1 ,m

+
2 ,m

−
2 /∈ fn(P)

Table 10.7: α-equivalence; P ≡α P ′.

Turning back to the reduction relation rules in Table 10.5, we have four re-
maining rules. The (ComXP) rule states that if a process P ′

1 outputs a value v
on the ether, a parallel process P ′

2 can input v and match it against a pattern
p, update the environment with respect to the pattern matching and continue
computing P2. The rules for parallel processes (ParXP) and restriction (NewXP)
are straightforward whereas the rule for matching (MatchXP) is analogous to the
communication rule.

Chapter 11

Modelling Protocols in LYSA
XP

In Chapter 10 we presented the syntax and semantics for a new process calculus,
for which one of the goals was that specifying protocols should be easier. In
the following we will give the LYSAXP specification for the FOO92 protocol to
illustrate that this goal is obtained.

11.1 The FOO92 protocol

Using the LYSAXP-calculus we shall now model the FOO92 voting protocol. As
a reminder the protocol narration for FOO92, is relisted in Table 11.1 now using
the LYSAXP notation.

In the first part of the thesis, the translation from the ordinary protocol narra-
tion into a LYSA specification had an intermediate step, the extended protocol
narration. As the LYSAXP specification does not need any calculus specific en-
coding tricks, we can immediately translate the extended narration to a specifi-
cation of the FOO92 protocol. The LYSAXP specification of the FOO92 protocol
is given in Table 11.2.

The first message exchange is quite similar to the original LYSA specification,

100 Modelling Protocols in LYSAXP

1. V → A : V, SV −(Bb(Er(v))) Preparation Phase
2. A → V : S

K−
A

(Bb(Er(v))) Administration Phase

3. (V) → C : S
K−

A
(Er(v)) Voting Phase

4. C → : l, S
K−

A
(Er(v)) Publishing Phase

5. (V) → C : l, r Opening Phase

Table 11.1: Protocol Narration for FOO92

(ν± KV) (ν± KA)
((νε b) (νε r) (νε v) / ∗ Voter ∗ /

1. 〈T(V,A, V,S
K−

V
(Bb(Er(v)))) 〉.

2′. (T(A, V,S
K+

A
(Bb(Er(v)))%x1)).

2′′. match x1 as Bb(%x2) .
3. 〈T(D,C, x2) 〉.
4′. (T(C,D, %x3, x2)).
5. 〈T(D,C, x3, r) 〉.

|
1′. (T(V,A, V,S

K+
V

(%y))). / ∗ Administrator ∗ /
2. 〈T(A, V,S

K−
A

(y)) 〉.
|

(νε l) / ∗ Counter ∗ /
3′. (T(D,C,S

K+
A

(%z1)%z2)).

4. 〈T(C,D, l, z2) 〉.
5′. (T(D,C, l, %z3)).
5′′. match z1 as Ez3(%z4) .

)

Table 11.2: FOO92 in LYSAXP-calculus

except that the signature check is performed already on input in step 1′.

Message exchange 2 in the narration, was in the LYSA specification done using
a hack to specify the actual intention of the unblinding. In the LYSAXP speci-
fication, we shall divide this message exchange into three steps. The first step
(step 2) is identical to step 2 in the original LYSA specification; the adminis-
trator sends out the signed ballot. In the second step (step 2′), we utilise that
LYSAXP supports rebinding of variables, and hence we can check that the blinded
ballot received is signed by the administrator, without removing the signature.
In the last step (step 2′′), the variable x1, that the signed ballot is bound to,
is unblinded; thereby obtaining the valid ballot. Note that the voter does not

11.1 The FOO92 protocol 101

need to use the administrators secret key in this step, as he did in the LYSA

specification.

Message exchange 2 was divided into three steps to clarify that multiple checks
and operations was made by the voter, but we can in fact express steps 2′ and
2′′ in one step; 2∗, utilising the semantics of blinding:

2∗. (T(A, V,Bb(SK+
A
(Er(v))%x1))).

Observe that here the voter unblinds first, then pattern match on the signed
ballot before finally assigning it to the variable x1.

The third message exchange in the protocol is as in the LYSA specification, but
with signature check on the input to simplify the specification.

The specification of the fourth message exchange uses a strength of the LYSAXP

-calculus, that pattern matching is not restricted to the first j messages in a
tuple, and hence the order from the original protocol narration can be used.

Specification of message exchange 5 is similar to the original LYSA -calculus,
except that we use the match construct instead of decrypting.

Previously we suggested that in an implementation of the calculus, the tuple
construct could be internal of the analysis, and added in the parser. If we fur-
thermore use the compact form of the second message, the LYSAXP specification
of the FOO92 protocol could be as simple as showed in Table 11.3.

102 Modelling Protocols in LYSAXP

(ν± KV) (ν± KA)
((νε b) (νε r) (νε v) / ∗ Voter ∗ /

1. 〈V,A, V,S
K−

V
(Bb(Er(v))) 〉.

2∗. (A, V,Bb(SK+
A

(Er(v))%x1)).

3. 〈D,C, x2〉.
4′. (C,D, %x3, x2).
5. 〈D,C, x3, r〉.

|
1′. (V,A, V,S

K+
V

(%y)). / ∗ Administrator ∗ /
2. 〈A, V,S

K−
A

(y) 〉.
|

(νε l) / ∗ Counter ∗ /
3′. (D,C,S

K+
A

(%z1)%z2).

4. 〈C,D, l, z2〉.
5′. (D,C, l, %z3).
5′′. match z1 as Ez3(%z4) .

)

Table 11.3: FOO92 in LYSAXP-calculus with tuple-construct handled by parser

Chapter 12

Analysis of LYSA
XP

We have seen that specifying protocols in the LYSAXP-calculus makes the trans-
lation, from the ordinary protocol narration into a mathematical model of the
protocol, an easier task than it was with the original LYSA-calculus. This leads
us to the next step in our framework strategy; the analysis, which we present in
the following sections.

12.1 Control Flow Analysis

We specify the analysis using flow logics as we did in the analysis of LYSA .
The aim of the analysis is to give a safe over-approximation of all possible value
bindings of the variables, together with all the possible messages communicated
on the ether. In the presentation of the LYSAXP-calculus in the previous chapters,
we upheld the differentiation between the levels of description. Continuing this
approach, we shall begin by presenting the analyses of the basic elements, and
then use this as a basis for the analysis of processes.

In the analysis of the original LYSA-calculus, we employed environments to keep
track on potential variable bindings and all messages sent on the network. We
shall use the same idea for LYSAXP and introduce a global abstract environment

104 Analysis of LYSAXP

ρ for potential variable bindings, and the global network environment κ for
potential messages on the ether. These are similar to the environments used in
the analysis of LYSA, however instead of holding sequences of values, κ is just
defined as a set of values, as we have the tuple construct for sequences.

12.1.1 Terms and Patterns

We shall handle the infinities of the sets as we did in LYSA, by partitioning values
into equivalence classes. Each class is assigned a representative; a canonical
value, and hence the analysis of a term t without variables result in a singular
canonical value. However, when a term includes variables, it may describe a
larger set of canonical values. Therefore we need a way to evaluate the set
ρ[[t]] ⊆ bValc of canonical values that a term may represent in environment ρ.
The definition of this evaluation of a term is given in Table 12.1.

ρ[[n]] =
def

{bnc}

ρ[[x]] =
def

ρ(bxc)

ρ[[T(t1, · · · , tk)]] =
def

{T(v1, · · · , vk) |v1 ∈ ρ[[t1]], · · · , vk ∈ ρ[[tk]]}

ρ[[H(t)]] =
def

{H(v) |v ∈ ρ[[t]]}

ρ[[Et0(t)]] =
def

{Ev0(v) |v0 ∈ ρ[[t0]], v ∈ ρ[[t]]}

ρ[[Pt0(t)]] =
def

{Pv0(v) |v0 ∈ ρ[[t0]], v ∈ ρ[[t]]}

ρ[[Bt0(t)]] =
def

{Bv0(v) |v0 ∈ ρ[[t0]], v ∈ ρ[[t]]}

ρ[[St0(t)]] =
def

{Sv0(v) |v0 ∈ ρ[[t0]], v ∈ ρ[[t]]}

Table 12.1: Evaluating a term; ρ[[t]].

The definition is straightforward as names are evaluated to their canonical rep-
resentative and variables are evaluated to the set of canonical values they are
bound to in ρ. Evaluating a compound construct proceeds by recursively eval-
uating each of the terms in the construct.

Analysis of pattern matching can be divided into two issues; the first issue
concerns the possible variable bindings in the matching, and the second issue
concerns the actual pattern matching with respect to the variable bindings. The
general idea of the analysis is then, that each time a pattern matching is to be
made, the analysis should first ensure that the environment ρ holds all possible

12.1 Control Flow Analysis 105

variable bindings, before performing the actual pattern matching. Hence the
analysis of pattern matching is divided into two forms of judgements:

ρ |= v . p

which returns true if the pattern matching of a value v against a pattern p
succeeds and false otherwise, and

ρ |= v ∼ p

which returns true if and only if all possible variable bindings that may occur
during the matching of v against p, are in ρ. Note that the value v must be a
canonical value.

The analysis of pattern matching is given in Table 12.2 while the analysis of
bindings in patterns is presented in Table 12.3, and these are explained in detail
below.

(ANXP) ρ |= v . n iff v = bnc
(AVarXP) ρ |= v . x iff v ∈ ρ(bxc)
(AWildXP) ρ |= v . iff true
(ABindXP) ρ |= v . p%x iff ρ |= v . p

(ATupXP) ρ |= v . T(p1, · · · , pk) iff v = T(v1, · · · , vk) ∧ ∧k
i=1 ρ |= vi . pi

(AHashXP) ρ |= v . H(p) iff v = H(v′) ∧ ρ |= v′ . p

(AEncXP) ρ |= v . Ep0(p) iff v = Ev0(v
′) ∧ ρ |= v0 . p0 ∧ ρ |= v′ . p

(APubXP) ρ |= v . Pp0(p) iff v = Pm+(v′) ∧ ρ |= m− . p0 ∧ ρ |= v′ . p

(ABliXP) ρ |= v . Bp0(p) iff (v = Bv0(v
′) ∧ ρ |= v0 . p0 ∧ ρ |= v′ . p)

∨
(v = Sm−(Bv0(v

′)) ∧
ρ |= v0 . p0 ∧ ρ |= Sm−(v′) . p)

(ASignXP) ρ |= v . Sp0(p) iff v = Sm−(v′) ∧ ρ |= m+ . p0 ∧ ρ |= v′ . p

Table 12.2: Analysis of pattern matching; ρ |= v . p.

The analysis of pattern matching is straightforward. As binding of variables is
handled by the analysis ρ |= v ∼ p, this analysis merely concerns the matching
of a value v against the pattern p in the environment ρ. The case for matching
against a name n (ANXP) checks if the value v is the canonical name of n.
Similarly in the case for match against a variable (AVarXP) where the analysis
returns true, if v is in the set of canonical values that x evaluates to; ρ(bxc). The
rest of the cases are defined recursively in the structure of terms and requires
that all sub-terms must pattern match. Notice that in the case for blinding

106 Analysis of LYSAXP

(ABNXP) ρ |= v ∼ n iff true
(ABVarXP) ρ |= v ∼ x iff true
(ABWildXP) ρ |= v ∼ iff true
(ABBindXP) ρ |= v ∼ p%x iff ρ |= v ∼ p ∧ (ρ |= v . p⇒ v ∈ ρ(bxc))
(ABTupXP) ρ |= v ∼ T(p1, · · · , pk) iff v = T(v1, · · · , vk) ⇒

ρ |= v1 ∼ p1 ∧ (ρ |= v1 . p1 ⇒
ρ |= v2 ∼ p2 ∧ (ρ |= v2 . p2 ⇒
· · · ρ |= vk ∼ pk) · · ·)

(ABHashXP) ρ |= v ∼ H(p) iff true
(ABEncXP) ρ |= v ∼ Ep0(p) iff v = Ev0(v

′) ⇒ ρ |= v0 . p0 ⇒ ρ |= v′ ∼ p

(ABPubXP) ρ |= v ∼ Pp0(p) iff v = Pm+(v′) ⇒ ρ |= m+ . p0 ⇒ ρ |= v′ ∼ p

(ABBliXP) ρ |= v ∼ Bp0(p) iff (v = Bv0(v
′) ⇒ ρ |= v0 . p0 ⇒ ρ |= v′ ∼ p)

∨
(v = Sm−(Bv0(v

′)) ⇒
ρ |= v0 . p0 ⇒ ρ |= Sm−(v′) ∼ p)

(ABSignXP) ρ |= v ∼ Sp0(p) iff v = Sm−(v′) ⇒ ρ |= v0 . p0 ⇒ ρ |= v′ ∼ p

Table 12.3: Bindings in pattern matching; ρ |= v ∼ p.

(ABliXP), the two rules for unblinding has been merged together and analysis
requires that the value v is either a blinded value or a signed blinded value.

The analysis of bindings in a pattern matching only concerns the possible bind-
ings of variables in the matching, and hence the cases for names, variables and
wildcards should just return true. The case where the bindings actually takes
place is (ABBindXP), which proceeds as follows; first all possible variable bind-
ings in the pattern matching of v against the pattern p should be made, then
if the pattern matching of v against p is successful in the updated environment
ρ, then ρ is also updated with the binding of the variable x to v. Notice that
also here the procedure of first ensuring that all variables are bound before
performing the pattern matching is used.

Another interesting case is the tuple construct (ABTupXP); here we make all
the possible bindings in the pattern matching from left to right. This means
that matching a tuple T(v1, v2, · · · , vk) against a pattern T(p1, p2, · · · , pk) will
first make all the possible bindings in pattern matching of v1 against p1 before
performing the pattern matching, and only if the pattern matching succeeds
we proceed with the next element in the tuple. The reason for this, is that
if the pattern does not match in the j-th element of the tuple, we need not
make any bindings in the remaining k − j pattern matchings. Also notice that
this ensures left-to-right association, which can be illustrated in the following
example; consider a pattern matching of a tuple of a key K and a symmetric

12.1 Control Flow Analysis 107

encryption EK(m) . If the values in the tuple are ordered as T(K,EK(m)) , it
can be matched against the pattern T(%x,Ex(%y)) because binding of K to
x updates the environment with [x 7→ K] which is required for decryption, ie.
matching EK(m) against Ex(%y) . If the order of the tuple and the correspond-
ing pattern is reversed; matching T(EK(m) ,K) against T(Ex(%y) , %x) , then
the matching is not successful.

The rest of the cases use the same approach, notice that we do not need to anal-
yse for variable bindings in keys and hashed terms, as the syntax of constructive
patterns and signature patterns, does not allow variable bindings.

12.1.2 Processes

The analysis of processes takes the form:

ρ, κ |= P

This means that the abstract environments ρ and κ are valid estimates for
the process P . The analysis of processes is defined in Table 12.4 and is fairly
straightforward.

(AParXP) ρ, κ |= P1 | P2 iff ρ, κ |= P1 ∧ ρ, κ |= P2

(ABangXP) ρ, κ |= !P iff ρ, κ |= P

(ANilXP) ρ, κ |= 0 iff true
(ANewXP) ρ, κ |= (νT m)P iff ρ, κ |= P

(AOutXP) ρ, κ |= 〈t〉.P iff ρ[[t]] ⊆ κ ∧ ρ, κ |= P

(AInXP) ρ, κ |= (p).P iff ∀v ∈ κ : ρ |= v ∼ p ∧ (
ρ |= v . p⇒ ρ, κ |= P)

(AMatXP) ρ, κ |= match t as p. P iff ∀v ∈ ρ[[t]] : ρ |= v ∼ p ∧ (
ρ |= v . p⇒ ρ, κ |= P)

Table 12.4: Analysis of processes; ρ, κ |= P .

The analysis of the (ANilXP) process always succeeds, and restrictions of names
are ignored by the analysis (ANewXP), as it was in the analysis of LYSA. Similarly
in the cases for replication (ABangXP) and parallel composition (AParXP) which
are also analogous to the analysis of LYSA.

Turning to the more interesting cases, the analysis of output (AOutXP) uses
the evaluation of terms, to ensure that all values the term t may evaluate to

108 Analysis of LYSAXP

are included in the analysis component κ, before continuing analysis of the
subsequent process P .

The case for input (AInXP) makes use of the analysis of variable bindings in
pattern matchings. For each value v on the ether; ie. in κ, the analysis ensures
that all variable bindings that may arise from the pattern matching of v against
p are added to the component ρ. Then the analysis pattern matches v against
p, and only if this pattern matching succeeds, the analysis proceeds with the
subsequent process P .

The rule for matching (AMatXP) is identical to the one for input, but instead of
matching all values on the ether, the analysis matches all values the term t may
evaluate to.

The following example shows how the analysis works. To ease readability we
have left out many of the computations, however the unabridged example can
be found in Appendix B.1.

Example 12.1 Analysis of a LYSAXP protocol Consider the following pro-
tocol in the LYSAXP-calculus

P ::= (νε B) (νε msg) / ∗ Client ∗ /
〈BB(msg) 〉.
(BB(%x)).
〈x〉.0

| (ν± KS) / ∗ Server ∗ /
(%y).
〈SK−

S
(y) 〉.0

The protocol proceeds as follows. First the client sends a blinded message to the
server, then the server receives a message from the ether and returns the message
with its signature. Next the client receives a message and if it is blinded with
his own blinding factor B, it is unblinded and the result is bound to the variable
x which is then sent back out on the ether.

The first step is to recursively apply the analysis of processes:

ρ, κ |= P iff (ρ[[BB(msg)]] ⊆ κ ∧ (
∀v ∈ κ : ρ |= v ∼ BB(%x) ∧ (
ρ |= v . BB(%x) ⇒ (
ρ[[x]] ⊆ κ ∧ true))))

∧
(∀v ∈ κ : ρ |= v ∼ %y ∧ (
ρ |= v . %y ⇒ (
ρ[[SK−

S
(y)]] ⊆ κ ∧ true)))

12.2 Soundness of the Analysis 109

We then apply the analysis of evaluation of terms, analysis of bindings and
pattern matching:

ρ, κ |= P iff ({BbBc(bmsgc) } ⊆ κ∧
(∀v ∈ κ :
((v = Bv0(v

′) ⇒ (v0 = bBc ⇒
(true ∧ (true ⇒ v′ ∈ ρ(x)))))∨

(v = Sm−(Bv0(v
′)) ⇒

(v0 = bBc ⇒ (true ∧ (true ⇒ Sm−(v′) ∈ ρ(x))))))∧
(((v = Bv0(v

′) ∧ v0 = bBc ∧ true)∨
(v = Sm−(Bv0(v

′)) ∧ v0 = bBc ∧ true)) ⇒
(ρ(bxc) ⊆ κ ∧ true))))

∧
(∀v ∈ κ : (true ∧ (true ⇒ v ∈ ρ(y)))∧

(true ⇒ ({SbK−
S c

(v) |v ∈ ρ(byc)} ⊆ κ ∧ true)))

By using simple logics we can reduce this rather complex constraint, thereby
obtaining the following constraint.

ρ, κ |= P iff {BbBc(bmsgc) } ⊆ κ∧
(∀v ∈ κ : (v = Bv0(v

′) ∧ v0 = bBc) ⇒
(v′ ∈ ρ(x) ∧ ρ(bxc) ⊆ κ))∧

(∀v ∈ κ : (v = Sm−(Bv0(v
′)) ∧ v0 = bBc) ⇒

(Sm−(v′) ∈ κκρ(x) ∧ ρ(bxc) ⊆ κ))∧
(κ ⊆ ρ(y))∧
({SbK−

S c
(v) |v ∈ ρ(byc)} ⊆ κ)

Which can relatively easy be seen to have the following smallest solution:

κ = {BbBc(bmsgc) } ∪ {SbK−
S c

(v) |v ∈ κ} ∪ ρ(x)
ρ(x) = {SbK−

S c
(bmsgc) , bmsgc}

ρ(y) = κ

Notice that κ holds a recursive element and is therefore an infinite set. �

12.2 Soundness of the Analysis

In this section we shall prove the soundness of the analysis of LYSAXP ; ie. the
analysis of processes from above correctly captures the formal semantics of Table
10.5.

110 Analysis of LYSAXP

Even though LYSAXP differs from LYSA in several ways, we can apply the same
proof technique here as the one we used for the analysis of LYSA in Chapter
4. This means that we shall prove a subject reduction lemma, which states
that the analysis ρ, κ |= P captures any behavior of the process P , and use
this result to show that the analysis components ρ and κ safely approximate all
variable bindings and all messages sent on the network respectively. We shall
also present a number of lemmata similar to those in the soundness proof for
LYSA, which illustrate that the analysis of LYSAXP has the same properties as
the analysis of LYSA.

The first lemma shows that the analysis can only distinguish names that belong
to different equivalence classes; ie. has different canonical representatives.

Lemma 12.1 (Invariance of canonical names) If ρ, κ |= P and bnc = bn′c
then ρ, κ |= P [n 7→ n′].

Proof The lemma is a direct consequence of the fact that the analysis only
records canonical names. The proof proceeds straightforward by induction in the
definition of the analysis, with the only interesting case being the rule (ANXP)
though it too is straightforward as bnc = bn[n 7→ n′]c = bnc �

Now following the proof technique used for LYSA, the next lemma shows that
the analysis cannot tell α-equivalent processes apart. As for LYSA we shall only
consider the semantics using disciplined α-equivalence, defined as follows:

Definition 12.2 (Disciplined α-equivalence) Two processes P1 and P2 are
disciplined α-equivalent whenever P1 ≡

α
P2 using the rules in Table 10.7 with

the extra requirement that bnε
1c = bnε

2c, bm−
1 c = bm−

2 c and bm+
1 c = bm+

2 c.

Which leads us to the invariance of α-equivalence result.

Lemma 12.3 (Invariance of α-equivalence) If ρ, κ |= P and P is disciplined
α-equivalent with P ′ then ρ, κ |= P ′.

Proof The proof proceeds by induction in the definition of α-equivalence in
Table 10.7. The cases for the equivalence follow by the induction hypothesis.
The remaining cases follow from Lemma 12.1 remembering that substituted
names have the same canonical name as the substitute. �

And at last we have the general result of invariance of structural congruence.

12.2 Soundness of the Analysis 111

Lemma 12.4 (Invariance of structural congruence) If ρ, κ |= P and P ≡
P ′ then ρ, κ |= P ′.

Proof The proof proceeds by induction in the definition of P ≡ P ′ defined in
Table 10.6

Cases for equivalence and congruence follow by the induction hypothesis.

Cases for parallel composition follow because logical conjunction used in
the analysis is commutative and associative. Furthermore, logical conjunction
has true as a neutral element and true is equivalent to the analysis of 0, which
is the neutral element of parallel composition.

Cases for replication Assume ρ, κ |= !P . Then the following calculation
justifies that also ρ, κ |= P |!P :

ρ, κ |= !P iff ρ, κ |= P (ABangXP)
iff ρ, κ |= P ∧ ρ, κ |= P
iff ρ, κ |= P ∧ ρ, κ |= !P (ABangXP)
iff ρ, κ |= P |!P (AParXP)

That P1 ≡ P2 implies !P1 ≡!P2 follows directly from (ABangXP).

Cases for restriction are straightforward to check using the fact that the
analysis ignores restriction.

Case for α-equivalence follows from Lemma 12.3. �

This shows that the analysis of LYSAXP uses the same technique as LYSA to
restrict the analysis, such that it is efficiently computable.

Proceeding to the more interesting part, we are now posed with a problem as
the analysis of pattern matching is separated into two analyses in LYSAXP. The
result we need is that if a value v may match a pattern p in the semantics, then
if the analysis of variable bindings in the pattern matching holds then it implies
that also the analysis of the matching holds. Or formally, that if ∅ ` v . p : θ
then it must be the case that ρ |= v ∼ p implies ρ |= v . p.

To prove this, we shall need two sub-results. First we need to prove that if v
may match p in the semantics and ρ holds all possible variable bindings created
in the match, then it must be the case that v matches p in the analysis. This is
captured by the following lemma.

Lemma 12.5 (Matching of values) If v ∈ bValc, ∅ ` v . p : θ and ∀x : v′ =
θx⇒ v′ ∈ ρ(bxc) then ρ |= v . p.

112 Analysis of LYSAXP

Proof The proof is done by structural induction in the semantics of pattern
matching as defined in Table 10.4, where each case follows directly from the
induction hypothesis. �

Next we need to show that if the matching v to p will lead to the variable
binding v′ = θx, then the analysis of variable bindings in patterns ρ |= v ∼ p
will lead to exactly this variable binding in ρ. In other words, that the analysis
of variable bindings in pattern matchings captures all possible variable bindings
in the semantics.

Lemma 12.6 (Binding of variables) If v ∈ bValc, ∅ ` v.p : θ and ρ |= v ∼ p
it follows that if v′ = θx then v′ ∈ ρ(bxc).

Proof The proof proceeds by structural induction in the semantics of pattern
matching as defined in Table 10.4. In this case the interesting case is (BindXP).

Case (NameXP), (VarXP), (WildXP) follows directly from the induction hypoth-
esis.

Case (TupXP), (HashXP), (SDecXP), (PDecXP), (UBli1XP), (UBli2XP), (SignXP)
follows directly from the induction hypothesis and the fact that the syntax does
not allow any bindings within hashings, in keys, in blinding factors or in signa-
tures.

Case (BindXP) Let v ∈ bValc, ∅ ` v . p%x : θ and ρ |= v ∼ p%x, hence we have
from (BindXP) that θx = v. Then by the induction hypothesis ρ |= v ∼ p which
from the analysis allows us to conclude v ∈ ρ(bxc). �

Now using these two lemmata, we are ready to present the result for pattern
matching.

Lemma 12.7 (Evaluation of pattern matchings) If v ∈ bValc, ∅ ` v . p : θ
and ρ |= v ∼ p then ρ |= v . p.

Proof The proof follows directly from Lemma 12.5 and Lemma 12.6. �

Proceeding as for the soundness proof for LYSA, we must show that the analysis
components are resistant to substitutions

Lemma 12.8 (Substitution in processes) If ρ, κ |= P and bvc ∈ ρ(bxc)
then ρ, κ |= P [x 7→α v].

12.2 Soundness of the Analysis 113

Proof The lemma follows from straightforward induction applying the induc-
tion hypothesis on any subprocesses. It relies on Lemma 12.3 because the anal-
ysis is invariant under any α-conversion that may occur due to capture avoiding
substitution. �

In the semantics a process is not updated by a substitution, but by an entire
environment. But this is analogue to multiple substitutions, hence we get the
following simple lemma.

Lemma 12.9 (General substitution in processes) If ρ, κ |= P , v ∈ bValc,
ρ |= v ∼ p and ∅ ` v . p : θ then ρ, κ |= Pθ.

Proof Since θ = [x1 7→ v1, · · · , xn 7→ vn] the Lemma is just the result of
repeatedly applying Lemma 12.8 to Lemma 12.6. �

We now only need a simple lemma before we can prove the subject reduction
lemma.

Lemma 12.10 (Evaluation of values) If v ∈ bValc then [[v]] = {v}.

Proof The lemma follows directly from the definition of evaluation of terms in
Table 12.1. �

We are now ready to present the subject reduction lemma, which shows that
our analysis correctly captures any behavior of the protocol.

Lemma 12.11 (Subject Reduction) If ρ, κ |= P and P → P ′ then ρ, κ |= P ′.

Proof The proof proceeds by structural induction in the reduction steps.

Case (ParXP) Assume that ρ, κ |= P1 | P2 i.e. that ρ, κ |= P1 and ρ, κ |= P2.
Furthermore assume that P1 | P2 → P ′

1 | P2 by (ParXP) because P1 → P ′
1.

Then using the induction hypothesis also ρ, κ |= P ′
1. The analysis then allows

to conclude that ρ, κ |= P ′
1 | P2.

Case (NewXP) Assume that ρ, κ |= (νT m)P i.e. that ρ, κ |= P . Assume also
that (νT m)P → (νT m)P ′ using (NewXP) because P → P ′. Then by the
induction hypothesis ρ, κ |= P ′ which by the analysis definition allows us to
conclude ρ, κ |= (νT m)P ′.

114 Analysis of LYSAXP

Case (ComXP) Let v ∈ bValc, P = 〈v〉.P1 | (p).P2 and P ′ = P1 | P2θ and assume
that ρ, κ |= P . Also assume that P → P ′ and and that ∅ ` v . p : θ due to
(ComXP). Expanding the analysis one gets

ρ, κ |= P iff ρ, κ |= 〈v〉.P1 | (p).P2

iff ρ, κ |= 〈v〉.P1 ∧ ρ, κ |= (p).P2

iff ρ[[v]] ⊆ κ ∧
ρ, κ |= P1 ∧
∀v′ ∈ κ : ρ |= v′ ∼ p ∧ (ρ |= v′ . p⇒ ρ, κ |= P2)

From the analysis of output and Lemma 12.10 one may conclude that ρ, κ |= P1

and v ∈ κ. Using the latter, the analysis of the input gives that ρ |= v ∼ p and
that ρ |= v . p⇒ ρ, κ |= P2. By applying Lemma 12.7 and since ∅ ` v . p : θ one
may conclude that ρ |= v . p and hence that ρ, κ |= P2. Finally from Lemma
12.9 one may conclude that ρ, κ |= P2θ which also means that ρ, κ |= P1 | P2θ
and thus ρ, κ |= P ′.

Case (ConXP) is a direct consequence of the induction hypothesis and applica-
tion of Lemma 12.4

Case (MatchXP) is similar to (ComXP). �

And again as for the soundness proof of the LYSA analysis, the subject reduc-
tion result can be used to show that the analysis components are safe estimates.
This is singled out by the following two theorems.

Theorem 12.12 (Messages in κ) If ρ, κ |= P and P →∗ P ′ → P ′′ such that
the reduction P ′ → P ′′ is derived using (ComXP) on output 〈v〉.P ′′

1 then bvc ∈ κ.

Proof By induction in the length of the reduction sequence, Lemma 12.11 can
be used to conclude that ρ, κ |= P ′. Next the proof proceeds by induction in
the reduction rules used to derive P ′ → P ′′.

Case (ComXP) If this rule is applied, it will be a process of the form

〈v〉.P ′′
1 | (v).P ′′

2

The analysis holds for this process meaning, in particular, that the analysis of
output holds for the communication of the value. Using Lemma 12.10 one can
check that then indeed bvc ∈ κ.

12.3 The Attacker 115

Case (MatchXP). Reductions that uses any of these rules will not also use the
rule (ComXP) and can therefore be disregarded.

Case (NewXP), (ParXP), (ConXP) are all straightforward by appliying the induc-
tion hypothesis noting that the analysis also holds for any subprocesses. �

and

Theorem 12.13 (Values in ρ) If ρ, κ |= P and P →∗ P ′ → P ′′ such that P ′′

is the result of a substitution of the variable x for the value v the bvc ∈ ρ(bxc).

Proof The proof is similar to that of Theorem 12.12. �

This shows that the analysis of LYSAXP is sound with respect to the operational
semantics, and that the analysis components ρ and κ hold all possible variable
bindings and all messages that may be sent on the ether, which is exactly the
result we wanted.

12.3 The Attacker

We will now briefly discuss how to model the attacker for the analysis. Following
the trend from LYSA, we want to specify an attacker process to be used by the
analysis in the setting

P | •

where P is the protocol being analysed and • is the attacker. The attacker for
LYSA was in Chapter 12 defined using the Dolev-Yao approach, and we shall
use the same approach in LYSAXP.

The analysis of the attacker process is given in Table 12.5, here we have used the
set N for all variables occurring free in P . The analysis shows that the attacker
initially has some knowledge (DY1XP), that he can create new values (DY2XP),
that he will learn everything sent on the ether (DY3XP), that he can construct
new composite values from known values using encryption and blinding (DY4XP),
that he can decrypt using known keys and unblind using known blinding factors
(DY5XP) and that he may forge new communication (DY6XP).

Note that the rule for input (DY3XP) and the rule for output (DY6XP) of the
attacker combined, will result in κ always equals ρ(x•). Hence κ could just be

116 Analysis of LYSAXP

ρ, κ |= • iff

N ⊆ ρ(x•)∧ (DY1XP)

{nε
•, n

+
• , n

−
• } ⊆ ρ(x•)∧ (DY2XP)

κ ⊆ ρ(x•)∧ (DY3XP)

∀k ≥ 1 : ∀v1 ∈ ρ(x•), · · · ,∀vk ∈ ρ(x•) : (DY4XP)
T(v1, · · · , vk) ∈ ρ(x•)∧

∀v0 ∈ ρ(x•),∀v1 ∈ ρ(x•) :
H(v1) ∈ ρ(x•)∧
Ev0(v1) ∈ ρ(x•)∧
Pv0(v1) ∈ ρ(x•)∧
Bv0(v1) ∈ ρ(x•)∧
Sv0(v1) ∈ ρ(x•)∧

∀v ∈ ρ(x•) : (DY5XP)
(∀k ≥ 1 : ∀v1, · · · , vk :

(v = T(v1, · · · , vk) ∈ ρ(x•) ⇒ ∧k
i=1vi ∈ ρ(x•))∧

∀v0, v1 :
((v = Ev0(v1) ∈ ρ(x•) ∧ v0 ∈ ρ(x•))∨
(v = Pm+(v1) ∈ ρ(x•) ∧ m− ∈ ρ(x•))∨
(v = Bv0(v1) ∈ ρ(x•) ∧ v0 ∈ ρ(x•))∨
v = Sv0(v1) ∈ ρ(x•))
⇒ v1 ∈ ρ(x•))∧

∀v0, v1, v′ :
((v = Sv′(Bv0(v1)) ∈ ρ(x•) ∧ v0 ∈ ρ(x•))
⇒ Sv′(v1) ∈ ρ(x•)))∧

ρ(x•) ⊆ κ (DY6XP)

Table 12.5: Analysis of the attacker; ρ, κ |=Γ,N •.

used as the attackers knowledge, easing computations. However, we have chosen
to keep x• in the description in order to explicitly represent his knowledge.

Chapter 13

Discussion of Part II

In the previous chapters, we have presented a new calculus for modelling proto-
cols; LYSAXP, and a corresponding analysis. The aim of the calculus is to specify
protocols in a clear and intuitive way, while still providing a sound and accurate
analysis.

That LYSAXP specifications of protocols are readable and intuitive is exemplified
by the optimised encoding of the FOO92 protocol in Table 11.3.

Additionally we have provided an analysis of LYSAXP and proved that this anal-
ysis is sound; ie. that the analysis components captures the entire behavior of
the process. The accuracy; that is how few false-positives the analysis produces,
has not been addressed previously and hence we shall discuss it in this chapter.

We have also described how to specify the attacker in LYSAXP, and the soundness
of this attacker can be proven analogous to the proof from LYSA in Chapter 5.

Furthermore we shall comment on a special kind of type-flaw attacks which
could not be caught by the analysis of LYSA , but will be by the analysis of
LYSAXP.

118 Discussion of Part II

13.1 Accuracy of the Analysis

The analysis of LYSAXP uses the same restriction technique as LYSA to make
it efficiently computable; ie. canonical names and disciplined α-equivalence.
However, the analysis of LYSAXP differs from LYSA on another point; the analysis
of pattern matchings. The analysis enforces, that all possible variable bindings
of the pattern matching are in ρ, before the pattern matching is performed. This
may result in an over-approximation; eg. if the value v = T(A,B) is matched
against the pattern p = T(%x,C) the analysis ρ |= v ∼ p would update ρ with
the variable binding of x to A, before the pattern matching ρ |= v .p would fail,
thus resulting in a variable binding that does not follow the semantics.

Whether over-approximations of this type will render the analysis unusable must
be answered empirically. We can however describe how to extend the analysis,
such that the accuracy is increased. We do this by extending the analysis with
an additional abstract environment for variable bindings; σ. The idea is then,
that given a value v, which should be matched against a pattern p, the analysis
should first update σ with all possible variable bindings in the matching and
then use σ to pattern match. Now only if the pattern matching using σ was
successful, should the analysis update ρ with possible variable bindings, and then
perform the pattern matching using ρ. This yields the following new analysis
for input and match processes, given that ∀x : ρ(x) ⊆ σ(x):

(AIn2XP) σ, ρ, κ |= (p).P iff
∀v ∈ κ : σ |= v ∼ p ∧ (
σ |= v . p⇒ (ρ |= v ∼ p ∧ (
ρ |= v . p⇒ ρ, κ |= P))

(AMat2XP) σ, ρ, κ |= match t as p. P iff
∀v ∈ σ[[t]] : σ |= v ∼ p ∧ (
σ |= v . p⇒ v ∈ ρ[[t]] ⇒ (
ρ |= v ∼ p ∧ (ρ |= v . p⇒ ρ, κ |= P))

which should drastically increase the accuracy of ρ. The only reason that we did
not use this analysis in the first place, is that it requires extra computations,
and should therefore only be employed if the analysis presented in Chapter 12
empirically proves not to be sufficient.

13.2 The Tuple Type-Flaw Attack

Originally the tuple construct was added to ease the analysis. However, when
considering the effect of this change, it becomes clear that it also increases the

13.2 The Tuple Type-Flaw Attack 119

strength of the analysis. Consider the following scenario:

P ::= (ν± KS) (
(SK+

S
(T(, %x))). / ∗ Client ∗ /

...
| (%y). / ∗ Server ∗ /

〈SK−
S

(y) 〉.0
)

Where we have the two principals; the server and the client. Now the server ac-
cepts any message and returns it signed whereas at some point the user receives
a message and ensures that this is a tuple signed by the server, before binding
the second element of the tuple to x.

In LYSAXP the attacker could get any tuple signed by the server, and thus get
them accepted by the client. If we wanted to find this attack in LYSA we would
have to extend the specification, such that the server also signed sequences of
length two; ie. we would have to know the attack in advance. In essence this
means that LYSAXP can find type-flaw attacks that LYSA cannot; namely attacks
where tuples are used as singular values.

120 Discussion of Part II

Chapter 14

Conclusion

14.1 Related Work

In previous work [7, 8, 19] static program analysis has proved to be a simple and
effective approach for validating confidentiality and authentication properties of
key exchange protocols. In this thesis we have successfully used the very same
approach for validating the somewhat different kind of security properties that
apply for electronic voting protocols; namely verifiability, accuracy, democracy
and fairness. We have studied one of the first voting protocols presented in the
literature; the FOO92 protocol [18], and applied the very same framework to
two newer voting protocols; Sensus [14] and E-Vox [20].

Automated validation of the security properties in a voting protocol was to
our knowledge not presented in the literature at the beginning of our thesis.
However during our thesis study, Kremer and Ryan published their work on the
FOO92 protocol in [24]. Here they verify the properties fairness and the first
part of democracy, by formalising the protocol in the applied π-calculus in order
to use automated analysis with the tool ProVerif [6]. An additional property,
privacy, is partly proved by hand using equivalence theory; that neither election
authorities nor anyone else can link any vote to the voter who cast it.

Kremer and Ryan used the same definition of security properties for voting

122 Conclusion

protocols as the one we presented in Section 1.3. However, as their analysis was
limited in several ways; eg. they could not distinguish the votes, they were not
able to validate the remaining security properties.

The validation of the security properties of the Sensus and the E-vox protocols
has in previous literature only relied on informal proofs [18, 14, 20].

14.2 Perspectives

The strategy for validating protocols is expressed by our framework in Figure
14.1 and we have made two approaches of this framework, described in each of
the two parts in the thesis.

Narration

Protocol

Calculus

Process
Result

Attacker

Analysis

Figure 14.1: Framework

The first approach, as described in Part I, used the already existing process
calculus LYSA, which was extended with a blinding construct for the purpose.
This extension is described thoroughly in Chapter 2, Chapter 4 and Chapter 5.
Additionally the analysis of the extended LYSA was implemented as described
in Chapter 6, such that it could be applied to the voting protocols of choice.

Using this framework, our initial analysis results for verifiability and accuracy
pinpoints flaws in the FOO92 and the Sensus protocols: We have identified a
denial of service attack which could force the counter to repeatedly disqualify
the voting process and we have identified a flaw which allows the attacker to
forge the publishing of votes. However for both of these protocols we proposed
an amendment, and the four security properties was subsequently validated for
the amended protocol.

The E-Vox protocol had a bit different design, and the above mentioned flaws
are not present in this protocol. However because of the protocol design, E-Vox

14.3 Recapitulation 123

cannot satisfy fairness.

During the work behind Part I, the development of a new framework was mo-
tivated by the difficulties we experienced with specifying protocols in LYSA .
Therefore we introduce the LYSAXP -calculus in Part II; both syntax and se-
mantics, and we proceed by presenting an analysis which we prove sound with
respect to the semantics. That LYSAXP has a more intuitive syntax than LYSA

should be obvious from the FOO92 specification we presented in Chapter 3.
However, further work on the LYSAXP -framework is required, before it can be
applied on protocols.

First of all LYSAXP does not incorporate annotations yet. However, these can be
added analogous to the annotations of LYSA, and since they have no semantic
consequence, the corresponding extension of the analysis is trivial.

The implementation of LYSAXP is a more interesting subject. As mentioned in
Chapter 9; one of the motivations behind LYSAXP is an article by Buchholtz
et al. [10], where they design a calculus with properties similar to LYSAXP .
They also propose an analysis of their calculus but experience has shown that
this analysis cannot be implemented easily. Hence we have taken an entirely
different approach to the analysis; in particular we have divided the analysis
of variable bindings and pattern matching up into two distinct analyses. The
resulting analysis produces constraints quite similar to the analysis of LYSA,
and therefore we believe that this analysis could be implemented using the
same technique as we presented in the implementation of LYSA in Chapter 6.

Another, perhaps more interesting approach, would be trying to use another
solver, such that some of the implementation steps would not be needed. Re-
cently a variant of the Succinct Solver has been presented, which work with
tree grammars, and hence does not require the transformation from infinite to
finite. It should be interesting to see, if this solver will ease the implementation
of LYSAXP .

14.3 Recapitulation

The contribution of this thesis is to the area of automated analysis of networking
systems. More specifically, this thesis presents a framework for automatically
validating the security properties of voting protocols. Our analysis covers four of
the five security properties for voting protocols, and as the analysis calculates an
over-approximation of the possible behavior of the protocols, we can be certain
that the validation is sound.

124 Conclusion

We have used this framework to validate three voting protocols; the FOO92
voting protocol, one of the most established voting protocols in the literature,
the Sensus voting protocol and the E-Vox voting protocol. Of these have, to the
best of our knowledge, only the FOO92 protocol been validated previously in
the literature, and that was only for some of the security properties. Thus this
thesis also contributes with validation of protocols previously not validated.

Two different approaches to our framework has been studied; the LYSA-calculus
with corresponding analysis and tool was extended in order for us to analyse
the voting protocols. The LYSAXP -calculus and a corresponding analysis was
motivated by the complexity of modelling protocols in LYSA, and we have seen
that LYSAXP provides more intuitive protocol specifications. We have addition-
ally proven the analysis to be sound with respect to the semantics, thus an
interesting future project is to implement the analysis for LYSAXP.

Appendix A

LYSA

126 LYSA

A.1 Operational semantics for LYSA with blinding 127

A.1 Operational semantics for LYSA with blind-
ing

(Com) 〈V1, . . . , Vk〉.P1 | (V1, . . . , Vj ; xj+1, . . . , xk).P2 →
P1 | P2[xj+1 7→

α
Vj+1, . . . , xk 7→

α
Vk]

(SDec) decrypt {V1, . . . , Vk}V0 as {V1, . . . , Vj ; xj+1, . . . , xk}V0 inP →
P [xj+1 7→

α
Vj+1, . . . , xk 7→

α
Vk]

(ADec) decrypt {|V1, . . . , Vk|}m+ as {|V1, . . . , Vj ; xj+1, . . . , xk|}m− inP →
P [xj+1 7→

α
Vj+1, . . . , xk 7→

α
Vk]

(ASig) decrypt {|V1, . . . , Vk|}m− as {|V1, . . . , Vj ; xj+1, . . . , xk|}m+ inP →
P [xj+1 7→

α
Vj+1, . . . , xk 7→

α
Vk]

(UBli1) unblind [[V1, . . . , Vk]]V0
as [[V1, . . . , Vj ; xj+1, . . . , xk]]V0

inP →
P [xj+1 7→

α
Vj+1, . . . , xk 7→

α
Vk]

(UBli2) unblind {|[[V1, . . . , Vk]]V0
|}m− as [[; x]]V0

inP →
P [x 7→

α
{|V1, . . . , Vk|}m−]

(New)
P → P ′

(ν n)P → (ν n)P ′ (ANew)
P → P ′

(ν± m)P → (ν± m)P ′

(Par)
P1 → P ′

1

P1 | P2 → P ′
1 | P2

(Congr)
P ≡ P ′′ P ′′ → P ′′′ P ′′′ ≡ P ′

P → P ′

Table A.1: Reduction relation for processes; P → P ′.

128 LYSA

P ≡ P P | 0 ≡ P
P1 ≡ P2 ⇒ P2 ≡ P1 (ν n) 0 ≡ 0
P1 ≡ P2 ∧ P2 ≡ P3 ⇒ P1 ≡ P3 (ν± m) 0 ≡ 0
P1 ≡ P2 if P1 and P2 are α-equivalent (ν n1) (ν n2)P ≡ (ν n2) (ν n1)P
P1 ≡ P2 ⇒ P1 | P3 ≡ P2 | P3 (ν± m) (ν n)P ≡ (ν n) (ν± m)P
P1 | P2 ≡ P2 | P1 (ν± m1) (ν± m2)P ≡ (ν± m2) (ν± n1)P
(P1 | P2) | P3 ≡ P1 | (P2 | P3) P1 ≡ P2 ⇒ (ν n)P1 ≡ (ν n)P2

!P ≡ P | !P P1 ≡ P2 ⇒ (ν± m)P1 ≡ (ν± m)P2

P1 ≡ P2 ⇒ !P1 ≡ !P2

(ν n) (P1 | P2) ≡ P1 | (ν n)P2 if n /∈ fn(P1)
(ν± m) (P1 | P2) ≡ P1 | (ν± m)P2 if m+,m− /∈ fn(P1)

Table A.2: Structural congruence for processes; P ≡ P ′.

P ≡
α
P

P1 ≡
α
P2 ⇒ P2 ≡

α
P1

P1 ≡
α
P2 ∧ P2 ≡

α
P3 ⇒ P1 ≡

α
P3

(ν n1)P ≡
α

(ν n2) (P [n1 7→ n2]) if n2 /∈ fn(P)

(ν± m1)P ≡
α

(ν± m2) (P [m+
1 7→ m+

2 ,m
−
1 7→ m−

2]) if m+
1 ,m

−
1 ,m

+
2 ,m

−
2 /∈ fn(P)

Table A.3: α-equivalence; P ≡α P ′.

A.1 Operational semantics for LYSA with blinding 129

fn(n) =
def

{n}

fn(m+) =
def

{m+}

fn(m−) =
def

{m−}

fn(x) =
def

∅

fn({E1, . . . , Ek}E0) =
def

fn(E0) ∪ . . . ∪ fn(Ek)

fn({|E1, . . . , Ek|}E0
) =

def
fn(E0) ∪ . . . ∪ fn(Ek)

fn([[E1, . . . , Ek]]E0
) =

def
fn(E0) ∪ . . . ∪ fn(Ek)

fn(〈E1, . . . , Ek〉.P) =
def

fn(E1) ∪ . . . ∪ fn(Ek) ∪ fn(P)

fn((E1, . . . , Ej ; xj+1, . . . , xk).P) =
def

fn(E1) ∪ . . . ∪ fn(Ej) ∪ fn(P)
fn(decrypt E as {E1, . . . , Ej ; xj+1, . . . , xk}E0 inP)

=
def

fn(E) ∪ fn(E0) ∪ . . . ∪ fn(Ej) ∪ fn(P)
fn(decrypt E as {|E1, . . . , Ej ; xj+1, . . . , xk|}E0

inP)

=
def

fn(E) ∪ fn(E0) ∪ . . . ∪ fn(Ej) ∪ fn(P)
fn(unblind E as [[E1, . . . , Ej ; xj+1, . . . , xk]]E0

inP)

=
def

fn(E) ∪ fn(E0) ∪ . . . ∪ fn(Ej) ∪ fn(P)

fn((ν n)P) =
def

fn(P)\{n}

fn((ν± m)P) =
def

fn(P)\{m+,m−}

fn(P1 | P2) =
def

fn(P1) ∪ fn(P2)

fn(!P) =
def

fn(P)

fn(0) =
def

∅

Table A.4: Free names; fn(P).

130 LYSA

A.2 Control flow analysis of LYSA with blinding

(AN) ρ |= n : ϑ iff bnc ∈ ϑ

(ANp) ρ |= m+ : ϑ iff bm+c ∈ ϑ

(ANm) ρ |= m− : ϑ iff bm−c ∈ ϑ

(AVar) ρ |= x : ϑ iff ρ(bxc) ⊆ ϑ

(ASEnc) ρ |= {E1, · · · , Ek}`
E0 [destL] : ϑ

iff ∧k
i=0 ρ |= Ei : ϑi ∧

∀V0 ∈ ϑ0 . . . Vk ∈ ϑk : {V1, · · · , Vk}`
V0 [destL] ∈ ϑ

(AAEnc) ρ |= {|E1, · · · , Ek|}`
E0

[destL] : ϑ

iff ∧k
i=0 ρ |= Ei : ϑi ∧

∀V0 ∈ ϑ0 . . . Vk ∈ ϑk : {|V1, · · · , Vk|}`
V0

[destL] ∈ ϑ

(ABli) ρ |= [[E1, · · · , Ek]]`E0
[destL] : ϑ

iff ∧k
i=0 ρ |= Ei : ϑi ∧

∀V0 ∈ ϑ0 . . . Vk ∈ ϑk : [[V1, · · · , Vk]]`V0
[destL] ∈ ϑ

Table A.5: Analysis of LYSA terms; ρ |= E : ϑ.

A.2 Control flow analysis of LYSA with blinding 131

(AOut) ρ, κ, ψ |= 〈E1, · · · , Ek〉.P
iff ∧k

i=1 ρ |= Ei : ϑi ∧
∀V1 ∈ ϑ1 . . . Vk ∈ ϑk : V1 . . . Vk ∈ κ∧
ρ, κ, ψ |= P

(AInp) ρ, κ, ψ |= (E1, · · · , Ej ; xj+1, · · · , xk).P

iff ∧j
i=1 ρ |= Ei : ϑi ∧

∀V1 . . . Vk ∈ κ : ∧j
i=1 Vi Eϑi ⇒

∧k
i=j+1 Vi ∈ ρ(bxic) ∧ ρ, κ, ψ |= P

(ASDec) ρ, κ, ψ |= decrypt E as {E1, · · · , Ej ; xj+1, · · · , xk}`
E0 [origL] inP

iff ρ |= E : ϑ ∧ ∧j
i=0 ρ |= Ei : ϑi ∧

∀{V1, · · · , Vk}`′
V0 [destL′] ∈ ϑ : ∧j

i=0 Vi Eϑi ⇒
∧k

i=j+1 Vi ∈ ρ(bxic) ∧ ρ, κ, ψ |= P ∧
(` /∈ L′ ∨ `′ /∈ L ⇒ (`′, `) ∈ ψ)

(AADec) ρ, κ, ψ |= decrypt E as {|E1, · · · , Ej ; xj+1, · · · , xk|}`
E0

[origL] inP

iff ρ |= E : ϑ ∧ ∧j
i=0 ρ |= Ei : ϑi ∧

∀{|V1, · · · , Vk|}`′

V0
[destL′] ∈ ϑ :

∀V ′
0 ∈ ϑ0 : ∀ (bm+c, bm−c) :

{V0, V
′
0} = {bm+c, bm−c} ∧ ∧j

i=0 Vi Eϑi ⇒
∧k

i=j+1 Vi ∈ ρ(bxic) ∧ ρ, κ, ψ |= P ∧
(` /∈ L′ ∨ `′ /∈ L ⇒ (`′, `) ∈ ψ)

(AUBli) ρ, κ, ψ |= unblind E as [[E1, · · · , Ej ; xj+1, · · · , xk]]`E0
[origL] inP

iff ρ |= E : ϑ ∧ ∧j
i=0 ρ |= Ei : ϑi ∧

(∀[[V1, · · · , Vk]]`
′

V0
[destL′] ∈ ϑ : ∧j

i=0 Vi Eϑi ⇒
∧k

i=j+1 Vi ∈ ρ(bxic) ∧ ρ, κ, ψ |= P ∧
(` /∈ L′ ∨ `′ /∈ L ⇒ (`′, `) ∈ ψ))

∧
(∀{|[[V1, · · · , Vk′]]

`′

V0
[destL′]|}`sig

V
sig
0

[destLsig] ∈ ϑ :

j = 0 ∧ k = 1 ∧ V0 Eϑ0 ⇒
{|V1, · · · , Vk′ |}`sig

V
sig
0

[destLsig] ∈ ρ(bx1c)∧
ρ, κ, ψ |= P ∧
(` /∈ L′ ∨ `′ /∈ L ⇒ (`′, `) ∈ ψ))

(ANew) ρ, κ, ψ |= (ν n)P iff ρ, κ, ψ |= P

(AANew) ρ, κ, ψ |= (ν± m)P iff ρ, κ, ψ |= P

(ARep) ρ, κ, ψ |= !P iff ρ, κ, ψ |= P

(APar) ρ, κ, ψ |= P1 | P2 iff ρ, κ, ψ |= P1 ∧ ρ, κ, ψ |= P2

(ANil) ρ, κ, ψ |= 0 iff true

Table A.6: Analysis of LYSA processes; ρ, κ, ψ |= P .

132 LYSA

A.3 Extending the LYSATool

The following describes the changes we did to the LYSATool implementation.

◦ made an optimised version of the set implementation in set.sml, the orig-
inal one was very inefficient;

◦ added the following rule for unblinding to lysalexer.lex

<INITIAL> unblind => (Tokens.UNBLIND(!pos,!pos));

◦ added a rule for blinding to term in lysagrammar.grm:

| LSBRACKET BAR termlist BAR RSBRACKET COLON term dest

(let val (c,ol,ls) = dest

in MLLysa.BLI(termlist,term,c,ol,ls,newlab()) end)

◦ added a rule for unblinding to proc in lysagrammar.grm:

| UNBLIND term AS

LSBRACKET BAR termlist SEMICOLON varlist BAR RSBRACKET COLON term

orig IN proc

(let val (c,ol,ls) = orig

in MLLysa.UBLI(term1,termlist,varlist,term2,c,ol,ls,proc)

end)

◦ changed lysagrammar.grm so all variables also get unique labels, the orig-
inal implementation was not completely clear at this point as some opti-
misations had been added here;

◦ added several lines to mllysa.sml all marked by (* A *), these are the
changes to the syntax of LYSA;

◦ added several lines to lysaasciiio.sml, lysahtmlio.sml and lysalatexio.sml
all marked by (* A *), these are the files used for converting the internal
representation to different external representations;

◦ added e-lysa.sty, a latex style for the extended LYSA;

◦ added several lines to analysis2.sml all marked by (* A *), this is the
actual extension of the analysis as presented in Chapter 4.

Appendix B

LYSA
XP

134 LYSAXP

B.1 Example of the analysis 135

B.1 Example of the analysis

This appendix shows the full calculations of applying the analysis to the protocol
presented in Example 12.1.

P ::= (νε B) (νε msg) / ∗ Client ∗ /
〈BB(msg) 〉.
(BB(%x)).
〈x〉.0

| (ν± KS) / ∗ Server ∗ /
(%y).
〈S

K−
S

(y) 〉.0

The first step is to recursively apply the analysis of processes:

ρ, κ |= P iff ρ, κ |= (νε B) (νε msg) 〈BB(msg) 〉.(BB(%x)).〈x〉.0
∧
ρ, κ |= (ν± KS) (%y).〈S

K−
S

(y) 〉.0

iff ρ, κ |= 〈BB(msg) 〉.(BB(%x)).〈x〉.0
∧
ρ, κ |= (%y).〈S

K−
S

(y) 〉.0

iff (ρ[[BB(msg)]] ⊆ κ ∧ ρ, κ |= (BB(%x)).〈x〉.0)
∧
(∀v ∈ κ : ρ |= v ∼ %y ∧ (
ρ |= v . %y ⇒ ρ, κ |= 〈S

K−
S

(y) 〉.0))

iff (ρ[[BB(msg)]] ⊆ κ ∧ (
∀v ∈ κ : ρ |= v ∼ BB(%x) ∧ (
ρ |= v . BB(%x) ⇒ (
ρ[[x]] ⊆ κ ∧ ρ, κ |= 0))))

∧
(∀v ∈ κ : ρ |= v ∼ %y ∧ (
ρ |= v . %y ⇒ (
ρ[[S

K−
S

(y)]] ⊆ κ ∧ ρ, κ |= 0)))

iff (ρ[[BB(msg)]] ⊆ κ ∧ (
∀v ∈ κ : ρ |= v ∼ BB(%x) ∧ (
ρ |= v . BB(%x) ⇒ (
ρ[[x]] ⊆ κ ∧ true))))

∧
(∀v ∈ κ : ρ |= v ∼ %y ∧ (
ρ |= v . %y ⇒ (
ρ[[S

K−
S

(y)]] ⊆ κ ∧ true)))

We then apply the evaluation of terms, analysis of bindings and pattern match-
ing:

136 LYSAXP

ρ, κ |= P
iff (ρ[[BB(msg)]] ⊆ κ ∧ (

∀v ∈ κ : ρ |= v ∼ BB(%x) ∧ (
ρ |= v . BB(%x) ⇒ (
ρ[[x]] ⊆ κ ∧ true))))

∧
(∀v ∈ κ : ρ |= v ∼ %y ∧ (
ρ |= v . %y ⇒ (
ρ[[S

K−
S

(y)]] ⊆ κ ∧ true)))

iff ({BbBc(bmsgc) } ⊆ κ ∧ (
∀v ∈ κ : ρ |= v ∼ BB(%x) ∧ (
ρ |= v . BB(%x) ⇒ (
ρ(bxc) ⊆ κ ∧ true))))

∧
(∀v ∈ κ : ρ |= v ∼ %y ∧ (
ρ |= v . %y ⇒ (
{SbK−

S
c(v) |v ∈ ρ(byc)} ⊆ κ ∧ true)))

iff ({BbBc(bmsgc) } ⊆ κ ∧ (
∀v ∈ κ : (
(v = Bv0(v

′) ⇒
(ρ |= v0 . B ⇒ ρ |= v′ ∼ %x))∨

(v = Sm−(Bv0(v
′)) ⇒

(ρ |= v0 . B ⇒ ρ |= Sm−(v′) ∼ %x))) ∧ (
ρ |= v . BB(%x) ⇒ (
ρ(bxc) ⊆ κ ∧ true))))

∧
(∀v ∈ κ : ρ |= %y ∼ v ∧ (
ρ |= v . %y ⇒ (
{SbK−

S
c(v) |v ∈ ρ(byc)} ⊆ κ ∧ true)))

iff ({BbBc(bmsgc) } ⊆ κ ∧ (
∀v ∈ κ : (
(v = Bv0(v

′) ⇒
(ρ |= v0 . B ⇒ (true ∧ (true ⇒ v′ ∈ ρ(x)))))∨

(v = Sm−(Bv0(v
′)) ⇒

(ρ |= v0 . B ⇒
(true ∧ (true ⇒ Sm−(v′) ∈ ρ(x)))))) ∧ (
ρ |= v . BB(%x) ⇒ (
ρ(bxc) ⊆ κ ∧ true))))

∧
(∀v ∈ κ : (true ∧ (true ⇒ v ∈ ρ(y))) ∧ (
ρ |= v . %y ⇒ (
{SbK−

S
c(v) |v ∈ ρ(byc)} ⊆ κ ∧ true)))

B.1 Example of the analysis 137

iff ({BbBc(bmsgc) } ⊆ κ ∧ (
∀v ∈ κ : (
(v = Bv0(v

′) ⇒
(ρ |= v0 . B ⇒ (true ∧ (true ⇒ v′ ∈ ρ(x)))))∨

(v = Sm−(Bv0(v
′)) ⇒

(ρ |= v0 . B ⇒
(true ∧ (true ⇒ Sm−(v′) ∈ ρ(x)))))) ∧ (
((v = Bv0(v

′) ∧ ρ |= v0 . B ∧ ρ |= v′ . %x)∨
(v = Sm−(Bv0(v

′)) ∧ ρ |= v0 . B ∧ ρ |= Sm−(v′) . %x)) ⇒ (
ρ(bxc) ⊆ κ ∧ true))))

∧
(∀v ∈ κ : (true ∧ (true ⇒ v ∈ ρ(y))) ∧ (
ρ |= v . %y ⇒ (
{SbK−

S
c(v) |v ∈ ρ(byc)} ⊆ κ ∧ true)))

iff ({BbBc(bmsgc) } ⊆ κ ∧ (
∀v ∈ κ : (
(v = Bv0(v

′) ⇒
(v0 = bBc ⇒ (true ∧ (true ⇒ v′ ∈ ρ(x)))))∨

(v = Sm−(Bv0(v
′)) ⇒

(v0 = bBc ⇒ (true ∧ (true ⇒ Sm−(v′) ∈ ρ(x)))))) ∧ (
((v = Bv0(v

′) ∧ v0 = bBc ∧ true)∨
(v = Sm−(Bv0(v

′)) ∧ v0 = bBc ∧ true)) ⇒ (
ρ(bxc) ⊆ κ ∧ true))))

∧
(∀v ∈ κ : (true ∧ (true ⇒ v ∈ ρ(y))) ∧ (

true ⇒ (
{SbK−

S
c(v) |v ∈ ρ(byc)} ⊆ κ ∧ true)))

By using simple logics we can reduce this rather complex constraint.

ρ, κ |= P
iff ({BbBc(bmsgc) } ⊆ κ ∧ (

∀v ∈ κ : (
(v = Bv0(v

′) ⇒
(v0 = bBc ⇒ (true ∧ (true ⇒ v′ ∈ ρ(x)))))∨

(v = Sm−(Bv0(v
′)) ⇒

(v0 = bBc ⇒ (true ∧ (true ⇒ Sm−(v′) ∈ ρ(x)))))) ∧ (
((v = Bv0(v

′) ∧ v0 = bBc ∧ true)∨
(v = Sm−(Bv0(v

′)) ∧ v0 = bBc ∧ true)) ⇒ (
ρ(bxc) ⊆ κ ∧ true))))

∧
(∀v ∈ κ : (true ∧ (true ⇒ v ∈ ρ(y))) ∧ (

true ⇒ (
{SbK−

S
c(v) |v ∈ ρ(byc)} ⊆ κ ∧ true)))

138 LYSAXP

iff {BbBc(bmsgc) } ⊆ κ ∧ (
∀v ∈ κ : (
(v = Bv0(v

′) ⇒
(v0 = bBc ⇒ v′ ∈ ρ(x)))∨

(v = Sm−(Bv0(v
′)) ⇒

(v0 = bBc ⇒ Sm−(v′) ∈ ρ(x)))) ∧ (
((v = Bv0(v

′) ∧ v0 = bBc)∨
(v = Sm−(Bv0(v

′)) ∧ v0 = bBc)) ⇒ (
ρ(bxc) ⊆ κ)))

∧
(∀v ∈ κ : v ∈ ρ(y)) ∧ (
{SbK−

S
c(v) |v ∈ ρ(byc)} ⊆ κ))

iff {BbBc(bmsgc) } ⊆ κ∧
∀v ∈ κ : (

(v = Bv0(v
′) ⇒

(v0 = bBc ⇒ v′ ∈ ρ(x)))∨
(v = Sm−(Bv0(v

′)) ⇒
(v0 = bBc ⇒ Sm−(v′) ∈ ρ(x))))∧

(((v = Bv0(v
′) ∧ v0 = bBc)∨

(v = Sm−(Bv0(v
′)) ∧ v0 = bBc)) ⇒ (

ρ(bxc) ⊆ κ)))
∧
(κ ⊆ ρ(y))∧
({SbK−

S
c(v) |v ∈ ρ(byc)} ⊆ κ)

iff {BbBc(bmsgc) } ⊆ κ∧
∀v ∈ κ : (

(((v = Bv0(v
′) ∧ v0 = bBc) ⇒

(v′ ∈ ρ(x) ∧ ρ(bxc) ⊆ κ))∨
((v = Sm−(Bv0(v

′)) ∧ v0 = bBc) ⇒
(Sm−(v′) ∈ ρ(x) ∧ ρ(bxc) ⊆ κ))))

∧
(κ ⊆ ρ(y))∧
({SbK−

S
c(v) |v ∈ ρ(byc)} ⊆ κ)

iff {BbBc(bmsgc) } ⊆ κ∧
(∀v ∈ κ : (v = Bv0(v

′) ∧ v0 = bBc) ⇒
(v′ ∈ ρ(x) ∧ ρ(bxc) ⊆ κ))∧

(∀v ∈ κ : (v = Sm−(Bv0(v
′)) ∧ v0 = bBc) ⇒

(Sm−(v′) ∈ κρ(x) ∧ ρ(bxc) ⊆ κ))∧
(κ ⊆ ρ(y))∧
({SbK−

S
c(v) |v ∈ ρ(byc)} ⊆ κ)

B.1 Example of the analysis 139

Which can easily be seen to be solved with the following smallest solution:

κ = {BbBc(bmsgc) } ∪ {SbK−
S c

(v) |v ∈ κ} ∪ ρ(x)
ρ(x) = {SbK−

S c
(bmsgc) , bmsgc}

ρ(y) = κ

140 LYSAXP

Bibliography

[1] M. Abadi. Security protocols and specifications. In FoSSaCS ’99: Proceed-
ings of the Second International Conference on Foundations of Software
Science and Computation Structure, Held as Part of the European Joint
Conferences on the Theory and Practice of Software, ETAPS’99, pages 1–
13. Springer-Verlag, 1999.

[2] M. Abadi and C. Fournet. Mobile values, new names, and secure commu-
nication. In POPL ’01: Proceedings of the 28th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 104–115. ACM
Press, 2001.

[3] M. Abadi and A. D. Gordon. A Calculus for Cryptographic Protocols
The Spi Calculus. Research Report 149, SRC - Systems Research Center,
1998.

[4] T. Asano, T. Matsumoto, and H. Imai. A study on some schemes for
fair electronic secret voting. In The Proceedings of the 1991 Symposium
on Cryptography and Information Security, SCIS91-12A, Feb. 1991. (in
japanese).

[5] J. D. C. Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Yale
University, 1987.

[6] B. Blanchet. An efficient cryptographic protocol verifier based on prolog
rules. In CSFW ’01: Proceedings of the 14th IEEE Workshop on Com-
puter Security Foundations, page 82, Washington, DC, USA, 2001. IEEE
Computer Society.

[7] C. Bodei, M. Buchholtz, P. Degano, F. Nielson, and H. R. Nielson. Auto-
matic Validation of Protocol Narration. In CSFW, pages 126–140, 2003.

[8] C. Bodei, M. Buchholtz, P. Degano, H. R. Nielson, and F. Nielson. Static
Validation of Security Protocols. Journal of Computer Security, 2004.

142 BIBLIOGRAPHY

[9] M. Buchholtz. Implementing Control Flow Analysis for Security Protocols.
Technical Report WP6-IMM-I00-Int-003, DEGAS, 2004.

[10] M. Buchholtz, H. R. Nielson, and F. Nielson. A calculus for control flow
analysis of security protocols. Int. J. Inf. Sec., 2(3-4):145–167, 2004.

[11] D. Chaum. Blind Signatures for Untraceable Payments. Advances in Cryp-
tology Proceedings of Crypto 82, pages 199–203, 1982.

[12] D. Chaum. Security without Identification : Transaction Systems to Make
Big Brother Obsolete. Communications of the ACM, 28(10):1030–1044,
1985.

[13] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications, 1997.
http://www.grappa.univ-lille3.fr/tata.

[14] L. F. Cranor and R. K. Cytron. Design and Implementation of a Practical
Security-Conscious Electronic Polling System. Research Report WUCS-96-
02, Department of Computer Science, Washington University, 1996.

[15] http://www.cryptyc.org/, 2001. Webpage of Cryptyc.

[16] D. Dolev and A. Yao. On the Security of Public Key Protocols. Proc. 22th
IEEE Symposium on Foundations of Computer Science, pages 350–357,
1981.

[17] http://theory.lcs.mit.edu/˜cis/voting/voting.html, 1997. DARPA contract
DABT63-96-C-0018.

[18] A. Fujioka, T. Okamoto, and K. Ohta. A Practical Secret Voting Scheme
for Large Scale Elections. Lecture Notes in Computer Science: Advances
in Cryptology - AUSCRYPT ’92, 718:244–251, 1992.

[19] S. M. Hansen, J. Skriver, and H. R. Nielson. Using Static Analysis to
Validate the SAML Single Sign-On Protocol. In WITS ’05: Proceedings of
the 2005 workshop on Issues in the theory of security, pages 27–40. ACM
Press, 2005.

[20] M. A. Herschberg. Secure electronic voting over the world wide web. M.Sc.
thesis, Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, 1997.

[21] M. Hirt and K. Sako. Efficient receipt-free voting based on homomorphic
encryption. Lecture Notes in Computer Science, 1807:539+, 2000.

[22] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
26(1):100–106, 1983.

[23] J. Kilian and K. Sako. Receipt-free MIX-type voting scheme - a practi-
cal solution to the implementation of a voting booth. In Proceedings of
EUROCRYPT 1995. Springer-Verlag, 1995.

BIBLIOGRAPHY 143

[24] S. Kremer and M. D. Ryan. Analysis of an electronic voting protocol in
the applied pi-calculus. In Proceedings of the 14th European Symposium
on Programming (ESOP’05), volume 3444 of Lecture Notes in Computer
Science, pages 186–200, Edinburgh, U.K., 2005. Springer.

[25] G. Lowe. An attack on the needham-schroeder public-key authentication
protocol. Information Processing Letters, 56(3):131–133, 1995.

[26] LySaTool, 2004.

[27] M. Maidl. Finding Replay Attacks In LySa. Invited talk, LySa workshop,
Mar. 2005.

[28] R. Milner. Communicating and mobile systems: the π-calculus. Cambridge
University Press, fifth edition edition, 1999.

[29] M. Naor. Bit Commitment Using Pseudo-Randomness. In CRYPTO, pages
128–136, 1989.

[30] C. R. Nielsen, E. H. Andersen, and H. R. Nielson. Static validation of
a voting protocol. In P. Degano and L. Viganó, editors, Proc. ARSPA
2005, proceedings of the 2nd workshop on Automated Reasoning for Security
Protocol Analysis, pages 115–134. ENTCS 135(1), 2005.

[31] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[32] F. Nielson, H. R. Nielson, and R. R. Hansen. Validating firewalls using flow
logics. Theoretical Computer Science, 283(2):381–418, 2002.

[33] F. Nielson, H. R. Nielson, and H. Seidl. A succinct solver for ALFP. Nordic
Journal of Computing, 9:335–372, 2002.

[34] H. R. Nielson and F. Nielson. Flow logics for constraint based analysis. In
Proc. CC’98, number 1383 in Lecture Notes in Computer Science, pages
109–127. Springer, 1998.

[35] H. R. Nielson and F. Nielson. Flow Logic: a multi-paradigmatic approach
to static analysis. In The Essence of Computation: Complexity, Analysis,
Transformation., volume 2566 of Lecture Notes in Computer Science, pages
223–244. Springer, 2002.

[36] Standard ML of New Jersey. http://www.smlnj.org/.

[37] P. Syverson. A Taxonomy of Replay Attacks. In Proceedings of the 7th
IEEE Computer Security Foundations Workshop, pages 187–191, 1994.

	1 Introduction
	1.1 Protocol Narrations
	1.2 Framework
	1.3 Design Goals of Electronic Voting Systems
	1.4 Electronic Voting Protocols
	1.5 Overview of the Thesis

	I L[1.5]YS[1.5]A
	2 L[1.5]YS[1.5]A -Calculus with Blinding
	2.1 Syntax
	2.2 Semantics
	2.3 Annotations

	3 Modelling Protocols in L[1.5]YS[1.5]A
	3.1 Extended Protocol Narration
	3.2 L[1.5]YS[1.5]A Specification

	4 Analysis of L[1.5]YS[1.5]A
	4.1 Domain of the Analysis
	4.2 Dealing with Infinities
	4.3 Control Flow Analysis of L[1.5]YS[1.5]A with Blinding
	4.4 Soundness of the Analysis

	5 The Attacker
	5.1 Modelling the Attacker
	5.2 Correctness of the Attacker
	5.3 Crypto-based Authentication

	6 Implementation
	6.1 Step 0 - The Initial Step
	6.2 Step 1 - From Flow Logic to Verbose
	6.3 Step 2 - From Infinite to Finite
	6.4 Step 3 - Removing Polyvariance
	6.5 Step 4 - Generating ALFP
	6.6 Soundness of the Implementation
	6.7 The Attacker
	6.8 The Extended L[1.5]YS[1.5]ATool

	7 Analysing Protocols
	7.1 Assumptions
	7.2 The FOO92 Voting Protocol
	7.3 The Sensus Voting Protocol
	7.4 The E-Vox Voting Protocol

	8 Discussion of Part I
	8.1 Privacy
	8.2 Assumptions

	II L[1.5]YS[1.5]A[3]XP
	9 Motivation for a new Calculus
	10 L[1.5]YS[1.5]A[3]XP -calculus
	10.1 Design
	10.2 Syntax
	10.3 Semantics

	11 Modelling Protocols in L[1.5]YS[1.5]A[3]XP
	11.1 The FOO92 protocol

	12 Analysis of L[1.5]YS[1.5]A[3]XP
	12.1 Control Flow Analysis
	12.2 Soundness of the Analysis
	12.3 The Attacker

	13 Discussion of Part II
	13.1 Accuracy of the Analysis
	13.2 The Tuple Type-Flaw Attack

	14 Conclusion
	14.1 Related Work
	14.2 Perspectives
	14.3 Recapitulation

	A L[1.5]YS[1.5]A
	A.1 Operational semantics for L[1.5]YS[1.5]A with blinding
	A.2 Control flow analysis of L[1.5]YS[1.5]A with blinding
	A.3 Extending the L[1.5]YS[1.5]ATool

	B L[1.5]YS[1.5]A[3]XP
	B.1 Example of the analysis

