

 i

Forward

This thesis presents the result of my master’s project entitled Dynamic feed-back
mechanisms in Trust-Based DSR, which is a five months project from Jan 31st to July 15th
2005 and corresponds to 30 ETCS points. Before that I have been studying the
international master’s program in Computer System Engineering at DTU and this is my
final project.

I would like to appreciate Christian Damsgaard Jensen, who suggested me to work on
this interesting project, supervised me in the thesis work and gave me a lot of inspirations.

I would also like to thank Lennart Conrad and Sonja Buchegger, who took time to reply
my questions and gave me precious suggestions.

Last but not least, I would like to thank my husband Ye Zhang, who takes over a lot of
housework so that I can concentrate on my thesis.

Shanshan Song
Lyngby, DTU, Room 105, July 15th, 2005

Date:

Signature:

 ii

Abstract

Mobile Ad Hoc Network (MANET) is a collection of wireless mobile nodes that
dynamically function as a network without the use of any existing infrastructure and
centralized administration. The mobile nodes must cooperate at the routing level in order
to forward packets to from source to the destination. Current ad hoc routing protocols
such as DSR assumes the network is benign and cannot cope with misbehavior, i.e., a
misbehavior node may drop packet silently to save battery power, etc.

Dynamic feedback mechanism has been recently introduced to mitigate the misbehavior
in MANET. The idea is to build the trust relationship between the mobile nodes in the
MANET and select routes based on the formed trust values. CONFIDANT is a dynamic
feedback mechanism in which mobile nodes monitor the behavior of their neighbors and
exchange first hand information about other nodes in the MANET. This allows other
nodes to change their reputation value accordingly and thus identify the misbehaved
nodes.

This thesis investigates dynamic feedback mechanisms as security solutions for MANET,
implements CONFIDANT protocol using ns2 as simulation environment, and evaluates
the performance of CONFIDANT fortified DSR in the MANET where misbehaved nodes
present.

 iii

Table of Contents

1 Introduction... 1
1.1 What is Mobile Ad Hoc Network? ... 1
1.2 Problem Statement and Motivation .. 2
1.3 Objective and Sub-tasks.. 3
1.4 Structure of the Report.. 4

2 Preliminary information.. 5
2.1 Mobile Ad Hoc Network Routing Protocols .. 5

2.1.1 Mode of Routing Operations .. 5
2.1.2 The Dynamic Source Routing Protocol (DSR)... 6

2.2 Bayesian Estimation and Beta Distribution .. 9
2.2.1 Bayesian Estimation.. 9
2.2.2 Beta Distribution... 10

2.3 Performance Analysis Techniques.. 11
2.3.1 Factors and Primary Factors ... 11
2.3.2 Data Measurement .. 11
2.3.3 Confidence Interval for the Mean ... 12

2.4 Network Simulators .. 13
2.4.1 Network Simulator – ns2 .. 13
2.4.2 GloMoSim... 13
2.4.3 OPNET Modeler ... 14
2.4.4 Comparison... 14

3 State of the Art .. 17
3.1 Security Issues in Mobile Ad Hoc Network ... 17
3.2 Payment Systems .. 18

3.2.1 Nuglets .. 19
3.2.2 Counter.. 19
3.2.3 Spirit.. 20
3.2.4 Discussion on the Payment Systems... 20

3.3 Reputation System .. 20
3.3.1 CONFIDANT ... 21
3.3.2 CORE.. 23
3.3.3 OCEAN... 24
3.3.4 LARS .. 25
3.3.5 Discussion on the Reputation Systems ... 25

3.4 Watchdog and Pathrater.. 26
3.5 Trust-based Routing.. 26
3.6 Cryptography .. 27

3.6.1 Ariadne.. 27
3.6.2 Key Management System -- Threshold Cryptography 27
3.6.3 Discussion on the Cryptography Systems... 28

3.7 Artificial Immune System – an Intrusion Detection System 28

 iv

3.8 Summary ... 28
4 Analysis... 31

4.1 Analysis of DSR Protocol... 31
4.1.1 The Importance of Route Redundant.. 31
4.1.2 Only Forwarding the First Route Request Messag 32
4.1.3 Caching Overheard Routing Information ... 33
4.1.4 Replying to Route Requests Using Cached Routes 33
4.1.5 Route Request Hop Limit ... 34
4.1.6 Packet salvaging.. 35
4.1.7 Automatic Route Shortening (Gratuitous Route Reply)........................... 35
4.1.8 DSR Flow State Extension.. 36
4.1.9 Other Features... 36

4.2 Analysis of CONFIDANT Protocol.. 36
4.2.1 States and Events .. 36
4.2.2 Detection of Misbehavior ... 37
4.2.3 Bearing Grudges ... 41
4.2.4 Data Representation .. 41
4.2.5 Overhead ... 44

4.3 Analysis of Network Simulator (ns2) ... 45
4.3.1 A Performance Problem.. 45
4.3.2 Packet Drop Reasons .. 46
4.3.3 Name Convention ... 47

4.4 Assumptions.. 47
4.4.1 Assumptions about Mobile Ad Hoc Network... 47
4.4.2 Assumptions about Misbehaved Nodes .. 48

4.5 Summary ... 49
5 Design ... 51

5.1 Framework and Modules .. 51
5.2 Data Structures.. 52

5.2.1 Monitor ... 53
5.2.2 ReputationSystem ... 54
5.2.3 TrustManager.. 55
5.2.4 PathManager ... 56
5.2.5 Existing DSR Components in ns-2 ... 56
5.2.6 Combining CONFIDANT and DSR... 58

5.3 Dynamic Behavior .. 59
5.3.1 Handle First Hand Information... 60
5.3.2 Publish First Hand Information .. 61
5.3.3 Handle Second Hand Information .. 62
5.3.4 Bear Grudge .. 63

5.4 Trace and Parser.. 64
5.5 Summary ... 65

6 Implementation and Tests ... 67
6.1 Using C++ Standard Template ... 67
6.2 Implementing Simulation Script ... 67
6.3 Simulation Batch File ... 68

 v

6.4 Test.. 68
6.5 Summary ... 68

7 Performance Analysis ... 69
7.1 Metrics .. 69
7.2 Simulation strategy ... 70
7.3 Simulation of Evil Nodes.. 71
7.4 Parameters... 71

7.4.1 Ns2 Related Parameters .. 72
7.4.2 DSR Related Parameters... 72
7.4.3 CONFIDANT Related Parameters ... 73

7.5 Estimation of Primary Factors .. 74
7.5.1 Estimation of Misbehaved Threshold ... 74
7.5.2 Estimation of Deviation Threshold... 78
7.5.3 Estimation of Publish Timeout ... 79
7.5.4 Estimation of Secondhand Information Weight 80
7.5.5 Estimation of PACK Timeout... 80
7.5.6 Estimation of Inactivity Timeout and Fading Factor................................ 81
7.5.7 Estimation of Trust Threshold .. 82

7.6 Performance Evaluation.. 83
7.6.1 Throughputs and Evil Drop Rate .. 84
7.6.2 Overhead ... 90
7.6.3 CONFIDANT with Path Re-ranking .. 90
7.6.4 CONFIDANT with Using Trust ... 92

7.7 Summary ... 93
8 Conclusion .. 95

8.1 Conclusion .. 95
8.2 Future Work .. 96

A Bibliography ... 97
B Acronyms.. 100
C List of Figures ... 101
D List of Tables .. 103
E List of Equations ... 104
F Average Mean Reputation Values .. 105
G Confidence Interval Comparison .. 107
H Command of Creating Random Files ... 108
I Simulation Results of Using Trust.. 109
J Content of CD... 111
K Source Code .. 112

K.1 Hdr_Confidant.h ... 112
K.2 Monitor.h .. 113
K.3 Monitor.cc... 114
K.4 Reputationsystem.h... 117
K.5 Reputationsystem.cc ... 119
K.6 Trustmanager.h ... 123
K.7 Trustmanager.cc.. 124
K.8 Pathmanager.cc ... 125

 vi

K.9 DSRParser.java ... 144
K.10 Runtestscript.tcl .. 155
K.11 Run.sh ... 158
K.12 Runsim.sh.. 159

 1

1 Introduction

1.1 What is Mobile Ad Hoc Network?

With rapid development of wireless technology, the Mobile Ad Hoc Network (MANET)
has emerged as a new type of wireless network. MANET is a collection of wireless
mobile nodes (e.g. laptops) that dynamically function as a network without the use of any
existing infrastructure and centralized administration. It is an autonomous system where
each node operates not only as an end system but also as a router to forward packets for
other nodes.

Since the nodes in MANET move around, the wireless links break and re-establish
frequently. Furthermore, most of mobile nodes are resource limited in computing
capability and battery power and therefore traditional computing content routing
protocols are not suitable for MANET. Several ad hoc routing protocols have been
proposed for each node acting as router and maintaining routing information.

Figure 1-1 shows an example of using MANET to hold conference meeting in a company.
A group of mobile device users set up a meeting outside their normal office environment
where the business network infrastructure is missing. The mobile devices automatically
construct a mobile ad hoc network through wireless links and communicate with one
another. The figure shows topology of the network and the available wireless links at a
certain time. Suppose Susan wants to send data to Jerry. According to the network
topology, Jerry’s PDA is not in the immediate radio transmission range of Susan’s laptop.
The routing software on Susan’s laptop finds a route Susan Tommy Jerry and sends
the data packets to Tommy’s laptop. Then Tommy’s laptop forwards the packets to the
destination, Jerry’s PDA. If the network topology changes and the wireless link between
Susan and Tommy becomes broken, the routing software on Susan’s laptop will try to
find anther route, e.g. Susan Mary Jerry.

Figure 1-1 Mobile Ad Hoc Network is used in conferencing

 Introduction

2

There are many other applications of MANET. For examples, MANET can be used to
provide emergency services when the network is impaired due to the damaging of
existing infrastructure [8]. Computer scientists have predicted a world of ubiquitous
computing in which computers will be all around us, constantly performing mundane
tasks to make our lives a little easier. These ubiquitous computers connect in mobile ad
hoc mode and change the environment or react to the change of the environment where
they are suited. MANET is also found useful in the so-called sensor dust network to
coordinate the activities and reports of a large collection of tiny sensor devices which
could offer detailed information about terrain or environmental dangerous conditions.

1.2 Problem Statement and Motivation

Most current ad hoc routing protocols assume that the wireless network is benign and
every node in the network strictly follows the routing behavior and is willing to forward
packets for other nodes. Most of these protocols cope well with the dynamically changing
topology. However, they do not address the problems when misbehavior nodes present in
the network.

A commonly observed misbehavior is packet dropping. In a practical MANET, most
devices have very limited computing and battery power while packet forwarding
consumes a lot of such resources. Thus some of the mobile devices would not like to
forward the packets for the benefit of others and they drop packets not destined to them.
On the other hand, they still make use of other nodes to forward packets that they
originate. These misbehaved nodes are very difficult to identify because we cannot tell
that whether the packets are dropped intentionally by the misbehaved nodes or dropped
due to the node having moved out of transmission range or other link error. Packet drop
significantly decreases the network performance.

Traditional security mechanisms are generally not suitable for MANET because:

1) The network lacks central infrastructure to apply traditional security mechanism
such as access control, authentication and trusted third party.

2) Limited bandwidth, battery lifetime, and computation power prohibits the
deployment of complex routing protocols or encryption algorithms. New security
models or mechanisms suitable for MANET must be found.

3) Network topologies and memberships are constantly changing. Thus new
intrusion detection system and entity recognition mechanisms that are suitable for
mobile ad hoc networks must be designed to avoid or mitigate the behavior to the
networks.

Trust management systems have been recently introduced as a security mechanism in
MANET. In a trust management system, a communicating entity collects evidence
regarding competence, honesty or security of other network participants with the purpose
of making assessment or decisions regarding their trust relationships [10]. Here trust

1.3 Objective and Sub-tasks

3

means the confidence of an entity on another entity based on the expectation that the
other entity will perform a particular action important to the trustor, irrespective of the
ability to monitor or control that other entity [9]. For example, a trust-based routing
protocol can collect the evidence of nodes misbehaving, form trust values of the nodes
and select safest routes based on the trust metrics.

Reputations systems are often seen as a derivation of trust management system. In the
reputation system, an entity forms its trust on another entity based not only on the self-
observed evidence but also on the second hand information from third parties. One of the
influential reputation systems is the CONFIDANT protocol [7].

In the trust management system, reputation system and other trust-based systems, route
selection is based on the sending node’s prior experience with other nodes in the network.
Its opinions about how other entities are honest are constantly changing. Thus, we call the
trust management systems and their derivations as dynamic feedback mechanisms. The
dynamic feedback mechanisms are usually applied on the current ad hoc routing
protocols to rate the trust about other nodes in the network and make routing decisions
based on the trust matrix, which is formed according to the evidence collected from
previous interactions. By incorporating the dynamic feedback mechanism in the routing
protocol, misbehaved nodes are identified and avoided to forward packets. In this way,
misbehavior can be mitigated.

1.3 Objective and Sub-tasks

The primary objective of this thesis is to

Investigate the state of the art of dynamic feedback mechanisms and protocols;
analyze, implement and evaluate CONFIDANT protocols to see how it
improves the network performance and what are the side effects of
introducing the mechanism to the mobile ad hoc network.

Following tasks must be done to achieve the primary objective.

1) Study the preliminary knowledge that is required to carry out the main tasks. For
example, to understand CONFIDANT protocol one must have some knowledge of
Bayesian analysis; to do performance analysis one must learn the methodologies of
conducting performance analysis and processing simulation data.

2) Investigate security issues of mobile ad hoc network and current dynamic feedback
mechanisms or protocols that are used to solve or mitigate the issues.

3) Investigate and learn how to use the network simulation tool. There are several
popular network simulation tools available and we need to choose the one that best
suits our needs. The selected network simulator should be studied so that we can use
it as platform to implement protocol and conduct simulations.

 Introduction

4

4) Analyze and implement the CONFIDANT protocol based on Dynamic Source
Routing protocol (DSR); evaluate the network performance.

1.4 Structure of the Report

Since we have almost gone through the chapter one, we only briefly present the content
of the subsequent chapters in this section.

Chapter 2 Preliminary Information introduces some preliminary information and
concepts that will be used in the thesis. Knowledge about DSR, Bayesian estimation,
simulation techniques and network simulators are introduced and explained.

Chapter 3 State of the Art presents current research in mobile ad hoc network securities
and main solutions. The chapter covers the security issues in mobile ad hoc network,
payment system, trust management system, reputation system and cryptographic system.

Chapter 4 Analysis presents the analysis of DSR protocol, CONFIDANT protocol and
ns2 network simulator. We also make some assumptions about misbehaved nodes and
define name conventions.

Chapter 5 Design first presents the overall framework of CONFIDANT fortified DSR in
the view of software architecture. Then more detailed design is explained, including class
diagrams and message sequences.

Chapter 6 Implementation and Tests explains the detailed language features and
methods used in the implementation. The test method and test cases are also discussed.

Chapter 7 Performance Analysis evaluates the network performance of CONFIDANT
fortified DSR. The simulation results are analyzed and compared with that of standard
DSR. Several improvements of the CONFIDANT are also discussed and their
performances are evaluated. Finally, the characteristics of CONFIDANT are summarized.

Chapter 8 Conclusion and Future Work presents the conclusion and contribution of
the thesis. The chapter also describes some work that we do not have time to complete in
this thesis but could be investigated in the future.

 5

2 Preliminary information

In chapter one, we have introduced the MANET. This chapter presents other preliminary
information and concepts that will be used in other parts of the thesis. Firstly four general
modes of routing operations are introduced and compared. The DSR protocol, which is
used as underlying routing protocol in the thesis, is explained in detail. Secondly
Bayesian estimation and Beta function are explained to pave the way for the analysis of
the reputation model of CONFIDANT in the chapter 4. Thirdly some techniques
regarding simulation and performance analysis are presented. Finally, several popular
network simulation tools are discussed and compared.

2.1 Mobile Ad Hoc Network Routing Protocols

Nowadays there are various routing protocols proposed for the MANET. The most
popular ones are DSDV (Destination-Sequenced Distance Vector), TORA (Temporally-
Ordered Routing Algorithm), DSR (Dynamic Source Routing) and AODV (Ad-hoc On
Demand Distance Vector). These routing protocols can be categorized in different routing
operation modes.

2.1.1 Mode of Routing Operations

Proactive vs. Reactive

These two modes concern whether or not nodes in an ad hoc network should keep track
of routes to all possible destinations, or instead keep track of only those destinations of
immediate interest [8].

Proactive protocols store route information even before it is needed. This kind of
protocols has advantage that communications with arbitrary destination experience
minimal delay. However it also suffers from the disadvantage that additional control
traffic is needed to continually update stale route information. This could significantly
increase routing overhead especially for the MANET where the links are often broken.

Reactive protocols, on the contrary, acquire routing information only when it is actually
needed. However, the latency of the communication increases tremendously especially
when a node communicates to another at the first time.

 Preliminary information

6

Source routing vs. Hop-by-hop routing
These two modes concern whether the source node decides the route for a packet to be
forwarded to the destination or the intermediate nodes are allowed to decide the next hop
until the packet arrives at the destination.

In the source routing protocols, the source node decides the route and puts the route
information in the packet header. All the intermediate nodes forward the packet along the
route faithfully. This kind of protocols has advantage that the intermediate nodes are not
required to maintain the routing information. But it suffers from the disadvantage that the
packet size grows because of source routing information carried in each packet.

In the hop-by-hop routing protocols, it is sufficient for the source to know only how to
get to the “next hop” and intermediate nodes find their own next-hops until the
destination. In contrast to source routing protocols, hop-by-hop routing protocols do not
increase packet size but they requires all the intermediate nodes to maintain routing
information.

Table 2-1 shows the classification of the routing protocols into the four operation modes
we have introduced.

 Reactive Proactive
Source routing DSR

Hop-by-hop routing TORA, AODV DSDV

Table 2-1 Categories of routing protocols

Josh Broch et al. has compared the performance of these four routing protocols [11]. The
results show that DSR has best throughput performance (above 95%) at all mobility rates
and movement speeds. Thus we will use DSR as basic routing protocol in this thesis.

2.1.2 The Dynamic Source Routing Protocol (DSR)

John et al. proposed the dynamic source routing protocol (DSR) [1] which is a routing
protocol for use in multi-hop wireless ad hoc networks of mobile nodes. DSR is an on-
demand protocol, in which route are only discovered when data need to be transmitted to
a node where no route has yet been discovered. The advantage of this on-demand routing
protocol is that there are not any periodic routing advertisement and reducing the routing
overhead. DSR is also a source routing protocol, allowing multiple routes to any
destination and allows each sender to select and control the routes used in routing the
packets.

DSR is composed of the two main mechanisms: “Route Discovery” and “Route
Maintenance” which are explained below.

 2.1 Mobile Ad Hoc Network Routing Protocols

7

Route Discovery
Route Discovery aims at finding routes from a source node to destination. Figure 2-1
illustrates the procedure of Route Discovery. When a source node S wants to send a data
packet to some destination node D, it first searches its route cache to find whether there is
a route to D. If there is no route to D, then S will initiate a Route Discovery and send out
Route Request message which is propagated to all the nodes within its transmission range.
At the mean time, it saves the data packet in its send buffer. The Route Request message
contains the addresses of source node and destination node, a unique route request
identifier and a route record which records all the intermediate nodes that this route
request packet has traveled through. S appends itself to the beginning of the route record
when it initiates the message.

S A B D
Route Request

S
Route Request

S, A
Route Request

S, A, B

Route Reply
S, A, B, D

Figure 2-1 Route Discovery

When a node receives the Route Request message, it compares the destination address in
the message with its own address to judge whether itself is the destination node. If it is
not, it will append its own address in the route record and propagate the message to other
nodes.

If the node is the destination node, it will send a Route Reply message to the source node
and the message contains the source route record which is accumulated when the Route
Request message is forwarded along its way to the destination. When the destination
sends the Route Reply, if it uses MAC protocols such as IEEE 802.11 that require a
bidirectional link, it just reverse the source route record and use it as route to send Route
Reply to the source node. Otherwise it should find the route by searching its route cache
or sending out a Route Request which piggybacks the Route Reply for the source node.

When the source node receives the Route Reply message, it puts the returned route into
its route cache. From then on all the packets destined to the same destination will use this
route until it is broken.

Route Maintenance
Since the ad hoc network is dynamic and the topology of the network changes frequently,
the existing routes maintained by nodes in their route cache are often broken. After
forwarding a packet, a node must attempt to confirm the reachability of the next-hop
node. If the node does not receive any confirmation from the next hop during a certain
period of time, it will retransmit the packet. If after a maximum number of retransmission

 Preliminary information

8

it still does not receive any confirmation, it will think the link to the next hop is broken
and will send a Route Error message to the source node.

DSR proposes three acknowledge mechanisms to confirm that data can flow over the link
from that node to the next hop:

 Link-layer acknowledgement which is provided by MAC layer protocol such as
IEEE 802.11.

 Passive acknowledgement in which a node hears the next-hop node forwarding
the packet and thus confirms the reachability of the link.

 Network-layer acknowledgement in which a node sends an explicit
acknowledgement request to its next-hop node.

Passive Acknowledgement
Passive Acknowledgement (PACK) is important in CONFIDANT protocol because it is
used to detect whether the next hop forwards the packet or drops it. We explain it in
detail in this section.

Passive acknowledgement is used with the assumption that:

 Network links operates bi- directionally.

 The network interface is in the “promiscuous mode”.

When a node taps a new packet in “promiscuous mode” after it originates or forwards a
packet, it consider it as an acknowledgement of the first packet if both of following check
success [1]:

 The Source Address, Destination Address, Protocol, Identification, and Fragment
Offset fields in the IP header of the two packets MUST match.

 If either packet contains a DSR Source Route header, both packets MUST contain
one, and the value in the Segments Left field in the DSR Source Route header of
the new packet MUST be less than that in the first packet.

If no matched packet is found during PACK timeout, the node will consider the link
between the next hop and itself is broken and will send Route Error message to the source
node.

Additional features
DSR has additional features such as replying to route requests using cached routes,
caching overheard routing information, packet salvaging and flow state extension and etc.
We will introduce them in section 4.1 and discuss how they will impact the performance
of network, how they will interact with CONFIDANT and whether they will be enabled
in our simulation.

 2.2 Bayesian Estimation and Beta Distribution

9

2.2 Bayesian Estimation and Beta Distribution

Bayesian estimation plays an important role in the CONFIDANT protocol. It is used to
model the reputation formation, estimate the behavior of network participants and make
decisions. We explain it in this section.

2.2.1 Bayesian Estimation

Bayesian estimation is a statistical procedure which endeavors to estimate parameters of
an underlying distribution based on the observed distribution [2]. Given a prior belief of
the probability of some event happens, information that is acquired at each observation is
update to reflect the added knowledge and to increase the precision of the belief.
Equation 2-1 shows the Baye’s theorem.

1

(|) ()(|)
(|) ()

i i
i n

i ii

P y PP y
P y P
θ θθ
θ θ

=

=
∑

Equation 2-1

Following example explains the meaning of the equation as well as illustrates how
Bayesian analysis is used in CONFIDANT to predict the probability whether a node
misbehaves or not.

Suppose in the MANET a node i has never met node j before. i has a hypothetic
prediction ()iP θ about the probability of whether node j will misbehave or not. Here iθ is
the model parameter representing a node misbehaves or behaves well. ()iP θ is the prior
distribution which means a probability of iθ before any data have been observed. After i
has communicated with j, i gets observed data y about j. Then we can know (|)ip y θ , a
probability of the data y given a know parameter iθ . However, what we want to estimate
is the probability of iθ given observed information y. It is called posterior distribution
and expressed as (|)ip yθ . With Equation 2-1, we can see that (|)ip yθ can be calculated
if ()iP θ and (|)ip y θ are known. After (|)ip yθ is calculated, it will be used as the prior
distribution in the next interaction. This approach of estimating a belief using Bayesian
analysis is illustrated in Figure 2-2.

 Preliminary information

10

Figure 2-2 Bayesian estimation of misbehavior

2.2.2 Beta Distribution

Given (|)ip y θ , if we want to calculate (|)ip yθ we still need to know ()iP θ . ()iP θ is the
prior which reflects node i’s opinion about j at the initial situation. CONFIDANT chooses
Beta function as the prior distribution. The Beta function can be expressed as follows

1 1()() Beta(,) (1)
() ()

 (1) (), (1) 1

f

x x x

α βα βθ α β θ θ
α β

− −Γ +
= = −

Γ Γ
Γ + = Γ Γ =

Equation 2-2

The advantage of using Beta function as prior distribution is that the posterior can also be
represented in Beta function. Let s represent the number of success and f represent the
number of failures, the posterior is updated at each observation according to Equation 2-3.

Beta(,) ' Beta(,)s fα β α β= + + Equation 2-3

The characteristic of the Beta function makes implementation easily since only

 and α β need to be stored to represent the belief. Furthermore, the mean and variance
of Beta function can be calculated very easily.

(Beat(,)) αα β
α β

Ε =
+

 Equation 2-4

2
2(Beat(,))

() (1)
αβδ α β

α β α β
=

+ + + Equation 2-5

 2.3 Performance Analysis Techniques

11

Equation 2-4 is widely used in CONFIDANT to conduct deviation test and decision
making which will be discussed in section 4.2

2.3 Performance Analysis Techniques

This section introduces the performance analysis techniques and methodologies that will
be used in the performance evaluation.

2.3.1 Factors and Primary Factors

There are many parameters that will influence the simulation results and need to be
carefully chosen in the simulations. Some parameters are chosen based on experience
values or the conditions of the network we want to simulate. Others need to be tuned to
optimize the network performance. We distinguish the two kinds of parameters as
follows:

 Factors are the variables that affect the simulation result and have several
alternatives. Normally they are decided based on experience.

 Primary factors are the factors whose effects need to be quantified. This kind of
factors usually needs to be adjusted through simulation.

2.3.2 Data Measurement

The key step of the network performance analysis is to interpret the simulation result and
summarize the characteristic of the network. To avoid the inaccurate simulation results
due to an extreme scenario, we usually run simulations on several different scenarios.
The data set of these simulations are called sample. A single number must be presented to
give the key characteristic of the sample and this single number is called an average of
the data.

There are three alternatives to summarize a sample [13]:

♦ Mean is obtained by taking the sum of all observations and dividing this sum by
the number of observations in the sample.

♦ Median is obtained by sorting the observations in an increasing order and taking
the observation that is in the middle of series. If the number of the observations is
even, the mean of the middle two values is used as a median.

♦ Mode is obtained by plotting a histogram and specifying the midpoint of the
bucket where the histogram peaks.

 Preliminary information

12

Following equations represent how mean, median and mode are calculated.

 1

n
ii

mean

y
A

n
== ∑ Equation 2-6

[]
[] []

/ 2 1 is odd
 / 2 + / 2 1

 is even
2

where is the acending sort of sample :

median

i i

Y n n
A Y n Y n

n

Y y Y y

⎧ +
⎪= ⎨ +
⎪⎩

=↑

 Equation 2-7

mod [(())]
where is the list of sample

e i

i

A Y Max Frenquency y
Y y
=

 Equation 2-8

Different types of sample should consider different ways to calculate average. If the
variable is categorical, the mode is the best way to describe the data. If the total of the all
data is of interest, mean is a proper index of central tendency. If the histogram is skewed,
the median is more representative of the observed data.

2.3.3 Confidence Interval for the Mean

In our performance evaluation, the main objective is to compare the simulation results of
CONFIDANT and Standard DSR to see whether there is any performance improvement.
However, most simulation results are random in some degree due to the particularity of
the node movement scenarios and we cannot tell whether the two systems are different.
One way to minimize the random effect is to repeat the simulations with different
scenarios as many times as possible and get a large sample space. Unfortunately, due to
the time limitation we cannot conduct many simulations. [13] points out that using
confidence interval we can tell whether the two systems are different with smaller sample
space. The confidence interval for the mean can be calculated using Equation 2-9.

()

1 / 2 1 / 2

1 / 2

* *,

where is confidence interval, is mean, is sample size
 is standard deviation, is 1 / 2 quantile

z s z sCI x x
n n

CI x n
s z

α α

α α

− −

−

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

− −

 Equation 2-9

If the confidence intervals of the simulation results of the two systems have no overlap,
then we can claim the two systems are different and one system is superior or inferior to
the other.

 2.4 Network Simulators

13

2.4 Network Simulators

Nowadays there are many network simulators that can simulate the MANET. In this
section we will introduce the most commonly used simulators. We will compare their
downsides and upsides and choose one to as platform to implement CONFIDANT
protocol and conduct simulations in this thesis.

2.4.1 Network Simulator – ns2

Ns2 is a discrete event simulator targeted at networking research [6]. It provides
substantial support for simulation of TCP, routing and multicast protocols over wired and
wireless networks. It consists of two simulation tools. The network simulator (ns)
contains all commonly used IP protocols. The network animator (nam) is use to visualize
the simulations. Ns2 fully simulates a layered network from the physical radio
transmission channel to high level applications.

Ns2 is an object oriented simulator written in C++ and OTcl. The simulator supports a
class hierarchy in C++ and a similar class hierarchy within the OTcl interpreter [29].
There is a one-to-one correspondence between a class in the interpreted hierarchy and
one in the compile hierarchy. The reason to use two different programming languages is
that OTcl is suitable for the programs and configurations that demands frequent and fast
change while C++ is suitable for the programs that have high demand in speed.

Ns2 is highly extensible. It not only supports most commonly used IP protocols but also
allows the users to extend or implement their own protocols. The latest ns2 version
supports the four ad hoc routing protocols introduced in section 2.1, including DSR. It
also provides powerful trace functionalities, which are very important in our project since
various information need to be logged for analysis. The full source code of ns2 can be
downloaded and compiled for multiple platforms such as Unix, Windows and Cygwin.

2.4.2 GloMoSim

GloMoSim is a scalable simulation environment for wired and wireless network systems.
Currently it only supports protocols for a purely wireless network [12]. It is also built in a
layered approach such as OSI seven layer network architecture.

GloMoSim is designed as a set of library modules, each of which simulates a specific
wireless communication protocol in the protocol statck. The library has been developed
using PARSEC, a C-based parallel simulation language. New protocols and modules can
be programmed and added to the library using this language. The latest version of
GloMoSim has implemented DSR.

 Preliminary information

14

GloMoSim’s source and binary code can be downloaded only by academic institutions
for research purposes. Commercial users must use QualNet, the commercial version of
GloMoSim.

2.4.3 OPNET Modeler

OPNET Modeler is commercial network simulation environment for network modeling
and simulation. It allows the users to design and study communication networks, devices,
protocols, and applications with flexibility and scalability [30]. It simulates the network
graphically and its graphical editors mirror the structure of actual networks and network
components. The users can design the network model visually.

The modeler uses object-oriented modeling approach. The nodes and protocols are
modeled as classes with inheritance and specialization. The development language is C.

2.4.4 Comparison

When choosing a network simulator, we normally consider the accuracy of the simulator.
Unfortunately there is no conclusion on which of the above three simulator is the most
accurate one. David Cavin et al. has conducted experiments to compare the accuracy of
the simulators and it finds out that the results are barely comparable [31]. Furthermore, it
warns that no standalone simulations can fit all the needs of the wireless developers. It is
more realistic to consider a hybrid approach in which only the lowest layers (MAC and
physical layers) and the mobility model are simulated and all the upper layers (from
transport to application layers) are executed on a dedicated hosts (e.g. cluster of
machines).

Although there is no definite conclusion about the accuracy of the three network
simulators, we have to choose one of them as our simulation environment. We compare
the simulators using some metrics and the results are summarized in Table 2-2.

 Free Open source Programming
language

DSR
implemented

NS-2 Yes Yes C++, TCL Yes
GloMoSim Limited Yes Parsec Yes
OPNET Modeler No No C Yes

Table 2-2 Comparison of the three simulators

After comparing the three simulators, we decide to choose ns2 as network simulator in
our thesis because

 Ns2 is open source free software. It can be easily downloaded and installed.

 2.4 Network Simulators

15

 The author of the thesis has used ns2 in another network related course and gotten
familiar with the simulation. Ns2 uses TCL and C++ as development languages
for which the author has some programming experience.

 The author of the CONFIDANT protocol has conducted simulation on GloMoSim
and gotten performance results. We want to do the simulation on a different
simulation to form comparison.

 17

3 State of the Art

In this chapter we will introduce the start of the art security solutions in MANET with
emphasis on dynamic feedback mechanisms. Firstly, we will present the general security
issues/requirements of MANET to pave the way for the future investigation. Then we
will discuss the state of the art security mechanisms for MANET such as payment system,
trust management system, reputation system, etc. Finally, we will summarize all the
security solutions we discussed in this chapter.

3.1 Security Issues in Mobile Ad Hoc Network

Due to lack of central infrastructural and wireless links susceptible to attacks, security in
ad hoc network has inherent weakness. In section 1.2 we have discussed the reasons why
mobile ad hoc network imposes security challenges that cannot be solved by traditional
security mechanisms. In this section, we present the general security properties required
by ad hoc network.

Following are general security properties regarding ad hoc network [7] [14] [15] [16].

 Confidentiality: The confdiantiality property is to protect certain information from

unauthorized disclosure. The information includes not only the application data that
send over the routing protocol, but also the routing information itself as well as
network topology and geographical location.

 Integrity: The integrity ensures that the transmitted message and other system asset

are modified only by authorized parties. In the routing level, it requires all nodes in
the network following correct routing procedure.

The main challenge of ensuring integrity is that without central infrastructure and
powerful computing capabilities, it is difficult to apply existing cryptography and key
management systems.

 Availability: The availability property requires that the services or devices are exempt

from denial of service, which is normally done by interruption, network or server
overload.

Typical examples or denial of service attack are radio jamming, in which a
misbehaved node transmit radio to interference other nodes’ communications, and
battery exhaustion, in which a misbehaved node interact with a node for no other
purpose than to consume its battery energy.

 State of the Art

18

 Authentication: The authentication property requires that the communication entity’s
identification is recognized and proved before communication starts.

 Access control: This property requires restricting resources, services or data to special

identities according to their access rights or group membership.

 Non-repudiation: This property ensures that when data are sent from sender to

receiver, the sender cannot deny that he has sent the data and the receiver cannot deny
that he has received the data.

Mobile nodes may conduct different misbehavior for different purposes. Po-Wah Yau
classifies the misbehaved nodes into following categories [15]:

♦ Failed nodes are simply those unable to perform an operation; this could be because
power failure and environmental events.

♦ Badly failed nodes exhibit features of failed nodes but they can also send false
routing messages which are a threat to the integrity of the network.

♦ Selfish nodes are typified by their unwillingness to cooperate as the protocol requires
whenever there is a personal cost involved. Packet dropping is the main attack by
selfish nodes.

♦ Malicious nodes aim to deliberately disrupt the correct operation of the routing
protocol, denying network service if possible.

These four types of misbehaved nodes actually can be categorized in two aspects:
whether their misbehaviors are intentional or unintentional, and the severity of the results.
Figure 3-1 illustrates the categories.

Figure 3-1 Categories of misbehaved nodes

3.2 Payment Systems

Payment systems provide economic incentives for the cooperation in MANET. They
consider that each node in MANET is its own authority and tries to maximize the benefits
it gets from the network. Thus each node tends to be selfish, dropping packets not
destined to them but make use of other nodes to forward their own packets. The purpose

Unintentional Intentional

Failed nodes Selfish nodes

Badly failed
nodes Malicious nodes

Severity of
the results

 3.2 Payment Systems

19

of payment systems is to encourage the cooperation within the MANET by economic
incentives. There are several variations of payment systems proposed.

3.2.1 Nuglets

Nuglets [17] is a virtual currency mechanism for charging (rewarding) server usage
(provision). Nodes that use a service must pay for it (in nuglets) to nodes that provide the
service. A typical service is packet forwarding which is provided by intermediate nodes
to the source and the destination of the packet. Therefore either the source or the
destination should pay for it.

There are two models for charging for the packet forwarding service: the Packet Purse
Model (PPM) and the Packet Trade Model (PTM).

In the Packet Purse Model, the sender pays for the packet. It loads the packet with a
number of nuglets when sending the packet. Each intermediate forwarding node acquires
some nuglets from the packet that covers its forwarding costs. If a packet does not have
enough nuglets to be forwarded, then it is discarded. If there are nuglets left in the packet
once it reaches destination, the nuglets are lost.

In the Packet Trade Model, the destination pays for the packet. Each intermediate node
“buys” the packet from previous one for some nuglets and “sells” it to the next one for
more nuglets until the destination “buys” it.

Either of the two models has advantages and disadvantages. While the Packet Purse
Model deters nodes from sending useless data and avoids the network overloading, the
Packet Trade Model can lead to an overload of the network and the destination receives
packets it does not want. On the other hand, in the Packet Purse Model it is difficult to
estimate the number of nuglets that are required to reach a given destination. But the
Packet Purse Model does not need to consider this problem.

To take advantages of the two models and avoid the disadvantages, a hybrid model is
suggested. In this model, the sender loads the packet with some nuglets before sending it.
The packet is handled according to the Packet Purse Model until it runs out of nuglets.
Then it is handled according to the Packet Trade Model until the destination buys it.

3.2.2 Counter

To address the problems encountered by the nuglets approach such as difficulty in
estimating pre-load nuglets and possible network overload, another payment approach
based on credit counter is suggested [18]. In this approach, the current state of each node
is described by two variables b and c, where b is the remaining battery power and c
stands for the value of its nuglet counter. More precisely, b is the number of packets that
the node can send using its remaining energy and c is the number of packets a node can
originate.

 State of the Art

20

A node can originate a number of packets N only when the condition c N≥ holds. When
a node forwards a packet, nuglet counter c is increased by one and b is reduced by one.
Thus in order to originate packets, each node must earn credits by forwarding packets.

The counter solution requires tamper resistant hardware security module.

3.2.3 Spirit

S. Zhong et al. proposed Sprite [19], a credit-based system for MANET. As opposed to
Nuglets or Counter they do not require tamper-proof hardware to prevent the fabrication
of payment units. Instead, they introduce a central Credit Clearance Service (CCS). The
basic scheme of the system is as follows. When a node receives a message the node keeps
a receipt of the message and reports to the CCS when the node has a fast connection to
Credit Clearance Service (CCS). The CCS then determines the charge and credits to each
node involved in the transmission of a message, depending on the reported receipts of a
message.

In this scheme, the sender charges money. A node that has forwarded a message is
compensated, but the credit that a node receives depends on whether or not its forwarding
action is successful. Forwarding is considered successful if and only if the next node on
the path reports a valid receipt to the CCS.

3.2.4 Discussion on the Payment Systems

The payment systems we describe in above sections either assumes a tamper resistant
hardware module is available to ensure that the behavior of the node is not modified or
requires a central authority server to determine the charge and credit to each node
involved in the transmission of a message. Tamper resistant hardware may not be
appropriate for most mobile devices because it demands advanced hardware solution and
increases the cost of the devices. Lacking of central authority server is right the inherent
property of MANET that causes security challenges so it is also not appropriate.

Furthermore, all the approaches described above suffer from locality problems [20] that
nodes in different locations of the network will have different chances for earning virtual
currency, which may not be fair for all nodes. Usually nodes at the periphery of the
network will have less chance to be rewarded.

3.3 Reputation System

Reputation systems have emerged as a way to reduce the risk entailed in interactions
among total strangers in electronic marketplace [21]. Centralized reputation systems have
been adopted by many on-line electronic auctions such as eBay to collect and store

 3.3 Reputation System

21

reputation ratings from feedback providers in a centralized reputation database.
Decentralized reputation systems used by MANET, on the other hand, do not use
centralized reputation database. Instead, in these reputation systems, each node keeps the
ratings about other node and updating the ratings by direct observation of the behaviors
of neighboring nodes or second hand information from other trusted nodes. [33] identifies
three goals for reputation systems:

 To provide information to distinguish between a trust-worthy principal and an
untrustworthy principals.

 To encourage principals to act in a trustworthy manner

 To discourage untrustworthy principals from participating in the service the
reputation mechanism is present to protect.

Most of the reputation systems in MANET are based on trust management system. Trust
is such a subjective and dynamic concept that different entities can hold different
opinions on it even while facing the same situation. Trust management system can work
without reputation system. For example, a mobile node can form opinion about other
nodes by direct experience with the nodes.

We can unify reputation system and trust management system to dynamic feedback
mechanisms. Former one is a global reputation system and mobile nodes share their own
experiences of interaction with other nodes. The later one is a local reputation system in
which mobile nodes rating the trustability of other nodes based on its own observation.

3.3.1 CONFIDANT

CONFIDANT is a reputation system aiming at coping with misbehavior in MANET [7]
[22] [23]. The idea is to detect the misbehaved nodes and isolate them from
communication by not using them for routing and forwarding and by not allowing the
misbehaved nodes to use itself to forward packets. CONFIDANT stands for Cooperation
Of Nodes: Fairness In Dynamic Ad-hoc Network. It usually works as an extension to on
demand routing protocols.

With CONFIDANT each node has four components: Monitor, Reputation System, Trust
Manager and Path Manager. These components interact with each other to provide and
process protocol information. Figure 3-2 illustrates the architecture of the CONFIDANT
components based on DSR protocol [7].

 State of the Art

22

Figure 3-2 CONFIDANT components

Monitor is responsible for gathering firsthand information about the behavior of other
nodes in the network. This is achieved by observing and detecting various attacks. A
typical misbehavior is packet dropping. The monitor detect it by an enhanced Passive
Acknowledge mechanism. The monitor can also detect other attacks such as message
modification and fabrication through overhearing the packets forwarded by next hop.

Reputation System is the core component of CONFIDANT. It is responsible for
maintaining reputation rating about other nodes in the network. The reputation rating
about other nodes is updated based on the firsthand information observed by the node or
the secondhand information published by other nodes. Reputation System decides
whether to accept secondhand information and how much the information is incorporated
to update reputation ratings. Based on reputation ratings, Reputation System identifies
misbehaved nodes.

Trust Manager maintains the trust rating about other nodes in the network. Trust rating
represents a node’s opinion about how honest another node is as an actor in the reputation
system. It is used as an alternative way to decide whether to accept second hand
information. The benefit of using trust is to speed up the detection of misbehaved nodes.

Path Manager performs actions once a misbehaved node is identified, e.g. deletion of
paths containing misbehaved nodes, action on receiving request for a rout containing a
misbehaved node in the source route, etc.

With CONFIDANT each node collects two major types of information about other nodes
which it has communicated or heard about in the network: first-hand information and
second-hand information. Based on the information the reputation rating is updated. To
have an accurate estimation of misbehavior, Bayesian estimation is employed to form
reputation ratings and making other decisions.

 3.3 Reputation System

23

CONFIDANT distinguishes trust from reputation. For each node, reputation rating
represents how well a node behaves while trust rating represents how honest a node is.
Reputation rating is used to decide whether the node is regular or misbehaved, while trust
rating is used to decide whether the node is trustworthy or not as a recommender.

Following description illustrates how CONFIDANT works to mitigate the misbehavior in
the network.

When a node sends a packet to its neighboring node which is supposed to forward the
packet, the node detects whether the neighboring node forwards the packets by listening
the packet in a promiscuous mode, which is called Passive Acknowledgement. If it hears
the packet is forwarded, it updates the first-hand information and increases the reputation
rating about the neighboring node. If it doesn’t hear the packet within a certain time, it
thinks the neighboring node misbehaves and decreases its reputation rating.

Whenever the reputation rating about another node is updated, the node will identify
whether it is misbehaved node or not by comparing the reputation rating with a
misbehaved threshold. The identified misbehaved nodes will be reported to Path Manager
which will take further actions.

Every node periodically spreads the firsthand information it has collected to its
neighboring nodes. If a node receives the published firsthand information and thinks the
source of the information is trustable, it will incorporate the information to update the
reputation ratings it keeps. It is very important to know that with CONFIDANT a node
only forwards or responds to nodes with good behavior. In this way, it isolates
misbehaved node by bearing grudges to it.

3.3.2 CORE

Similar to CONFIDANT, CORE (COllaborative REputation mechanism) also provides a
mechanism to enforce node cooperation based on a collaborative monitoring technique
[24]. However, CORE is different from CONFIDANT in reputation model and the way
to spread rumor. Three types of reputations are used in the CORE.

 Subjective reputation of a target node is the reputation calculated directly from a
subject’s observation of the target node’s behavior.

 Indirect reputation is evaluated only considering the direct interaction between a
subject and its neighbors.

 Function reputation is the subjective and indirect reputation calculated with respect
to different functions such as forwarding a data packet, reply route request.

The final reputation information is combined from the three reputations with different
weight associated to the functional reputation value.

 State of the Art

24

CORE consists of two basic components:

 Reputation Table (RT) is a data structure stored in each network entity, keeping the
reputation data pertaining to the nodes in the network.

 The Watchdog mechanism (WD) is used to detect misbehaved nodes.

With CORE only positive rating factors are distributed among the entities to avoid a
misbehaving entity to distribute false information about other entities in order to initiate a
denial of service (DoS) attack.

3.3.3 OCEAN

Both CONFIDANT and CORE use second-hand information which is subject to false
accusations and requires a node maintaining trust relationship with other nodes. On the
contrary, Sorav Bansal and Mary Baker proposed OCEAN (Observation-based
Cooperation Enforcement in Ad Hoc Networks) which only uses direct first-hand
observations of neighboring nodes’ behavior [25].

With OCEAN, each node has five components:

 NeighborWatch is used to observe the behavior of the neighboring nodes. It can
detect whether the next hop sends the packet successfully or not by Passive
Acknowledgement.

 RouteRanker maintains a rating for each of neighboring nodes. The rating is
initialized to neutral and is incremented or decremented on receiving positive or
negative events respectively from the NeighborWatch component. Once the rating of
a node falls below a threshold the node is put into a fault list and is avoided to be used
to forward packets.

 Rank-Based Routing applies the information from NeighborWatch in the actual
selection of routes. To avoid routes containing nodes in the faulty list, an avoid list is
added to DSR Route Request Packet (RREQ). On re-broadcasting the RREQ, each
node can add its own avoid list to the packet. The nodes receiving the RREQ will
check the avoid list in RREQ and decide whether to suppress the packet or reply with
Route Reply.

 Malicious Traffic Rejection rejects all the traffic from nodes it considers misleading
so that a node is not able to relay its own traffic under the guise of forwarding it on
somebody else’s behalf.

 Second Chance Mechanism allows nodes previously considered misleading to
become useful again since a node may “misbehave” due to accidental link error. The
misleading node is removed from the faulty list after a fix period of observed
inactivity.

 3.3 Reputation System

25

3.3.4 LARS

Jiangyi Hu proposed a simple reputation based scheme, called LARS (Locally Aware
Reputation System) to mitigate misbehavior and enforce cooperation [26]. Different from
global reputation based schemes, with LARS each node X only keeps the reputation
values of all its one-hop neighbors N(X). The reputation values are updated based on the
direct observation of the neighbors. If the reputation value of a neighbor node M is under
threshold, then M is considered by X as misbehaved node. X will notify its neighbors
about M’s misbehavior by initiating a warning message. To avoid false accusation,
conviction of the uncooperative node is co-signed by m different nodes, where m-1 is an
upper bound on the number of malicious nodes in the one-hop neighborhood. If the
warning message is verified, it is then broadcasted to the k-hop neighborhood and M’s k-
hop neighbors become aware of its misbehavior and refuse to serve for it.

3.3.5 Discussion on the Reputation Systems

Although different in reputation model and detailed implementation, all the reputation
systems we have introduced have three common parts:

 All the systems detect misbehavior using mechanisms similar to Passive
Acknowledgement.

 All the systems maintain reputation ratings about all or part of other nodes in the
network and identify misbehaved nodes.

 All the systems react to the misbehaved nodes.

Besides the systems introduced in this section, there are many other reputation systems
for MANET. Basically they can be classified into following categories:

 Global reputation system in which each node knows reputation value of every other
node in the network. This is achieved by exchange indirect reputation message among
the network. CONFIDANT and CORE are examples of global reputation system.

 Local reputation system in which each node only keeps the reputation value of its
neighboring nodes. Instead of distributing reputation value or information
periodically, the local reputation systems usually update reputation value based on its
own observation.

Jiangyi Hu [26] points out following disadvantages of global reputation systems

 Each node maintains reputation values of every other node, which costs a lot of
storage.

 Disseminate reputation information greatly increases the volume of network traffic.

 The decision and incorporating second hand information consumes addition
computation.

 The reputation information could be modified, replayed or accidentally lost during
transmission.

 State of the Art

26

Hu thinks that the global systems are unnecessary due to above disadvantages. Although
the reasons he analyzed may exist, the author of the thesis cannot totally agree with his
negative conclusion about the global reputation system. To judge whether a system is
good or not depends on how well it can mitigate misbehavior and improve the network
performance. If the system can identify the misbehaved node precisely and send the
packet successfully at the minimum tries, then the cost of above factors can be
compensated.

3.4 Watchdog and Pathrater

Marti et al proposes two techniques that improve throughput in an ad hoc network in the
present of misbehaved nodes [27].

The watchdog method is used for each node to detect misbehaving nodes in the network.
When a node sends a packet to next hop, it tries to overhear the packet forwarded by next
hop. If it hears that the packet is forwarded by next hop and the packet matches the
previous packet that it has sent itself, it considers the next hop behaves well. Otherwise it
considers the next hop misbehaves.

The pathrater uses the knowledge about misbehaving nodes acquired from watchdog to
pick the route that is most likely to be reliable. Each node maintains a trust rating for
every other node. When watchdog detects a node is misbehaving, the trust rating of the
node is updated in negative way. When a node wants to choose a safe route to send
packets, pathrater calculates a path metric by averaging the node ratings in the path.

Marti et al implemented the solutions on DSR protocol using ns2 as simulation
environment. The simulation result shows the throughput of the network could be
increased by up to 27% in a network where packet drop attack happens. However routing
overhead is also increased by up to 24%.

3.5 Trust-based Routing

In his master’s thesis, Lennart Conrad developed an improved trust-based routing DSR
[14]. With the trust-based routing DSR each node keeps the trust value of all other nodes.
Different from most reputation solutions which uses passive acknowledgement to detect
whether neighboring node has forwarded a packet or not, trust-based DSR uses an
explicit acknowledgement packet sent by the receiver to confirm that the packet has been
forwarded by all the nodes along the route successfully. If the sender receives the
acknowledgement packet within a timeout, it will increase the trust values of all the
nodes along the route. Otherwise it will decrease the trust values. Then a node will
choose a most trustful route when it has to send a packet. The main contribution of
Lennart’s solution is that he proposed alternative trust value updating and route selection

 3.6 Cryptography

27

strategies. The simulation results show significant improvement in throughput compared
to regular DSR.

3.6 Cryptography

Several cryptography based routing protocols have been proposed based on the
modification of existing ah hoc network routing protocols. Ariadne and Key Management
System are among them.

3.6.1 Ariadne

Ariadne [28] is a cryptographic based security solution for on-demand routing protocol,
for example, DSR. It prevents attacks of compromising routing information or Denial of
Service in ad hoc network. Instead of using traditional asymmetric protocols such as RSA,
Ariadne primarily uses the TESLA broadcast authentication protocol for authenticating
routing messages. The advantage of TESLA is that it is not computing intensive and it
only add a single message authentication code (MAC) to a message for broadcast
authentication, which is very important for resource limited mobile devices. Ariadne
mainly authenticates packets containing Route Request, Route Reply and Route Error to
prevent misbehaved nodes changing route information.

Ariadne’s authentication mechanisms only check whether the route information is
compromised but do not detect whether the messages are dropped. To thwarting such
routing misbehavior, it uses feedback about which packets were successfully delivered.
The feedback can be received either through an extra end-to-end network layer message,
or by exploiting properties of transport layer such as TCP. When there are multiple routes
to a single destination, Ariadne sends more fraction of packets along the route with better
overall feedback for the nodes in it.

Ariadne assumes

 Network link is bidirectional

 All nodes have loosely synchronized clocks

 One of following keys to be set up: TESLA, pairwise shared secret keys or digital
signatures.

3.6.2 Key Management System -- Threshold Cryptography

Using cryptographic schemes to protect routing information and data traffic usually
requires a key management service. Zhou et al proposes a key management system which
adopts a publish key infrastructure to distribute keys. They use a so-called (n, t + 1)

3 1n t≥ + threshold cryptography scheme which allows n servers to share the key
management responsibility operations, e.g. create a digital signature, so that any t + 1

 State of the Art

28

parties can perform this operation jointly but it is infeasible for at most t parties to do so,
even by collusion. With threshold cryptography, each server has a public/private key pair.
All nodes in the system know the public key of the service and trust any certificates
signed using corresponding private key. The scheme divides the private key k of the
service into n shares, assigning one share to each server. Then with t + 1 correct partial
signatures the combiner is able to compute the signature for the certificate. However
compromised servers cannot generate correctly signed certificates because there are at
most t of them.

3.6.3 Discussion on the Cryptography Systems

Comparing to other security mechanisms such as payment systems and reputation
systems, the cryptography systems has the advantage that it can cope well with Denial of
Service attack and any form of message modification and fabrication. However, the
cryptography by itself cannot effectively deal with packet drop attack. Furthermore, most
of the cryptography systems assumes key distribute system available, which is the
weakness of mobile ad hoc network.

3.7 Artificial Immune System – an Intrusion Detection System

Slavisa and Jean proposed an artificial immune system [14] [32], which analogs natural
Immune System (IS) of human, to detect misbehavior in MANET. The natural IS has two
components, innate IS and adaptive IS. The innate IS is hard-wired to detect and destroy
non-self cells that contain or do not contain specific patterns on their surface. Human skin
is an example of innate IS. The adaptive IS detects the non-self cells and “learns” the
patterns of the cells and thus can quickly response next time. The idea of the artificial
immune system is to map the natural IS elements to a detection system in MANET. For
examples, the body of the human is mapped to the entire mobile ad-hoc network; Self
cells are mapped to well behaving nodes and non-self cells are mapped to misbehaving
nodes; Antigen is mapped to a sequence of observed DSR protocol events recognized in
sequence of packet headers, i.e. “data packet sent”, “data packet received”, etc. The
simulation shows a good detection capability. However, it is premature to draw general
purpose conclusion about the performance of the AIS approach and more investigation
need to be done in this area.

3.8 Summary

This section has introduced the general security issues in the MANET and various
solutions that have been proposed. The solutions can be classified to several categories,
payment system, reputation system, trust-based system and cryptographic system. Each
system has its own advantages and disadvantages.

 3.8 Summary

29

Payment systems serve as an incentive to provide a well-defined service. They are easy to
understand and implement. However, to ensure the payment not to be modified by
misbehaved nodes, tamper-proof hardware and trusted third parties may have to be
required. Furthermore payment systems assume that every node forwards the packets and
they are not good at mitigating misbehavior.

Reputation systems aim at encouraging good behavior and punishing misbehaved nodes.
They can be further classified into global reputation systems and local reputation systems.
Global reputation systems use secondhand information and can speed up detecting the
misbehaved nodes. However, distributing the reputation information periodically
increases the network overhead. Local reputation systems do not publish the reputation
information and mostly use direct information about other participants in the network.
They are more lightweight but may be slow at detecting misbehaved nodes.

Trust-based systems are very similar to the local reputation systems in some aspects,
except that it only uses firsthand information it has learned in the previous interactions
with other misbehaved nodes. Furthermore, trust-based systems are different from local
reputation systems in that it never influences the other entities decision by its own
reputation ratings.

Cryptographic systems can detect attacks that the other three systems cannot do, e.g
denial of service (DoS). However, the systems assumes key distribute system available,
which is normally not available in mobile ad hoc network.

We also introduced an intrusion detection system, artificial immune system, which
simulates human’s immune system to detect attacks. The mechanism is still in the initial
stage and it is not clear whether it is efficient in a real or simulated system.

 31

4 Analysis

In this chapter, we analyze the most important features, models and existing problems in
the DSR protocol, CONFIDANT protocol and ns2. These features, models and problems
will impact the software design and performance evaluation. We also make assumptions
and define the name convention that will be used in the following chapters.

4.1 Analysis of DSR Protocol

Apart from the basic functions of DSR protocol that has been introduced in section 2.1,
we are also interested in some additional features of DSR. These features will impact the
network performance especially after the integration with CONFIDANT. We will
analyze these features and decide whether they will be enabled or not in our project.

In the following section, we call the DSR protocol as standard DSR and the
CONFIDANT fortified DSR protocol as CONFIDANT.

4.1.1 The Importance of Route Redundant

All the dynamical feedback mechanisms investigated in chapter 3 rely on inherent
redundancies – multiple routes available to a single destination. As long as there are
enough good nodes and alternative routes, packets can go around those misbehaved
nodes and arrive at a destination. Thus increasing the number of available routes to the
same destination is very important.

The route cache is used to store routes in the standard DSR. When a node gets a new
route, either by initiating a new route discovery or by overhearing a packet which
contains route information, it adds the route into the route cache. When the node wants to
send a packet to a destination node, it searches a shortest route to the destination in the
route cache. If no route is found, the node will send out a Route Request to find new
routes.

With standard DSR, a node selects a shortest route to the destination from the route cache.
In CONFIDANT, however, it works in different way. Rather than calculating the shortest
hops, a node selects the route which contains no misbehaved nodes. The more alternative
routes available in route cache, the more possibility that a node can find a qualified route.
Thus when we decide whether to enable a DSR optional feature or not, we use the
following criteria:

The additional feature should be enabled if it can increase the number
of routes discovered or cached. Otherwise it should be disabled.

 Analysis

32

4.1.2 Only Forwarding the First Route Request Messag

When a node initiates a Route Discovery, it broadcasts the Route Request message to all
its neighboring nodes and these neighboring nodes will append its address to the address
list of the message and propagate the copy of the message to their own neighbors. There
will be message flooding if the Route Request is forwarded unlimitedly. To mitigate the
problem, DSR protocol specifies that a node should only forward the first copy of the
same Route Request message it receives.

Figure 4-1 illustrates why the propagation of Route Request should be controlled. The
intermediate node A receives a Route Request message for the first time and forwards it
to B (see the dashed arrow). B forwards the Route Request to its neighboring nodes (see
the dashed-dotted arrow). A receives the Route Request a second time and drops it. If the
propagation of Route Request message is not controlled, A will forward the message
again to B (see the dotted arrow) and the message will be forwarded endlessly.

A B D1 3

2

2

4

Route Request message would be
forwarded by A if no control was
applied

Second copy of Route Request
message forwarded by A

Third copy of Route Request
message forwarded by B

First copy of Route Request
message received at A

2
3

4

4

2

1

3

4

Figure 4-1 Node A only forwards the first Route Request message

Figure 4-2 illustrates another scenario of Route Request propagation control. To discover
a route to the destination E, the source node S broadcasts a Route Request message to its
neighboring nodes A, B and C. The node D receives the three copies of Route Request
message from node A, B and C. (We assume D receives the first copy from B.) If D
forwards all the three copies of the Route Request to E, then the number of packets is
tripled compared with the case that D only forwards the Route Request it receives from B.
Thus in this case, DSR requires that D only forwards the first Route Request and discards
the other two.

 4.1 Analysis of DSR Protocol

33

Figure 4-2 Node D only forwards the first Route Request message

This feature, however, limits the number of routes found in each Route Discovery. It will
impact the performance of CONFIDANT as explained in the section 4.1.1. If B is a
misbehaved node, then the route S B C D will be discarded in route selection
and it turns out that S has to initiate another route discovery.

Thus the feature has two contradictory consequences in our project: enabling the feature
will increase the number of Route Discovery; disabling the feature will cause message
flooding. Since message flooding can cause much more serious problem we think it is
reasonable for the feature to be applied.

4.1.3 Caching Overheard Routing Information

In DSR a node overhearing a packet should add all usable routing information from that
packet to its own route cache. DSR specifies two ways for a node to overhear the routing
information:

1) One way is that when the node is participating in forwarding a packet containing
source route option or route error information, the node can update the information
into its own route cache. This is a mandatory DSR feature.

2) The other way is an optional feature. If a node is in promiscuous mode and can snoop
any packets sent by its neighbors, it will update the route information contained in the
snooped packets into the route cache.

The second way can increase the number of routes discovered. This becomes especially
important in a network where misbehaved nodes present because the more the routes are
available, the more possibilities there are safe routes. Thus we will enable this feature in
our implementation.

4.1.4 Replying to Route Requests Using Cached Routes

DSR allows a node receiving a Route Request for which it is not the target to reply with
the route found in its own route cache. In the Route Reply, this node appends the source
route to the target node obtained from its own route cache after a sequence of hops over

 Analysis

34

which the route request has been forwarded to it. After the node sends out the Route
Reply, it will not propagate the Route Request any further.

Figure 4-3 illustrates the scenario of replying to Route Request using cached routes.
Source node S initiates a Route Request to find routes to destination D. When B receives
the Route Request, it searches its route cache and finds a route B C D to the
destination D. Then B concatenates the route with the accumulated source route S A in
the Route Request and sends the Route Reply to source node S. Node B will not
broadcast the route request further in this case.

Figure 4-3 Replying to Route Requests using cached routes

This feature, however, will decrease the number of routes discovered. For example, if B
does not reply the route request with the cached routes and instead forwards the route
request to node C, E, and F. Then we can get two additional routes: S A B E
D, S A B F D. (As seen in Figure 4-3, the dashed lines indicates the routes
could be found). But with this feature we can only get one route. Thus, we will disable
this feature.

4.1.5 Route Request Hop Limit

In DSR, each Route Request message contains a “hop limit” that may be used to limit the
number of intermediate nodes allowed to forward the Route Request. DSR allows a ring
search feature to discover routes. In the ring search mode, the source node sends out a
Route Request with hop limit zero, which means only the neighboring nodes can receive
the Route Request. If no route was found in the first round of route discovery, the hop
limit will be increased to allow the Route Request to be forwarded to greater range of
nodes.

This feature can save the routing overhead in case the destination node is one of the
neighbors of the source node. However, it will also limit the number of the routes being
discovered and thus will be disable in our project.

 4.1 Analysis of DSR Protocol

35

4.1.6 Packet salvaging

When an intermediate node forwarding a packet detects that the next hop for that packet
is broken and if the node has another route to the destination in its route cache, the node
will salvage packet by using the new route instead of discard it. To avoid the packet to be
salvaged endlessly, a counter is maintained in the packet to count the number of times
that it has been salvaged.

The packet salvaging feature can increase the number of packets arriving at the
destination. However, since the node which salvages the packet changes the source route
header, we should be very careful when using passive acknowledgement to detect the
packet modification in CONFIDANT protocol. If a node receives a PACK packet and
finds the salvage value is changed, it should not compare the source route with the
original one.

4.1.7 Automatic Route Shortening (Gratuitous Route Reply)

DSR allows a source route to be automatically shortened if one or more intermediate
nodes become unnecessary. As shown in Figure 4-4, source node S sends a packet to
destination node D along the source route S A B C D. If C snoops the packet
forwarded by A and finds itself on the source route but it has not explicitly receives the
packet, C can confirm that node B is not necessary to participate in the forward and can
be deleted from the source route. Then C sends a gratuitous route reply to notify source
node S that there is a shortened route S A C D.

Packet with
source route:
S, A, B, C, D

Gratuitous Route Reply:
S, A, C, D

S A B C D

Figure 4-4 Automatic route shortening

The automatic route shortening feature can save the time for a packet to be delivered to a
destination. Particularly, in a network where misbehaved nodes present, the shorter route
means less possibility that the route contains misbehaved node. Thus we enable this
feature in our project.

 Analysis

36

4.1.8 DSR Flow State Extension

Since the draft version 9, DSR has added a new feature called “flow state” to allow the
routing of the most packets without an explicit source route header in the packet. In this
feature, when a sending node has discovered a source route, the node can establish a flow
along the route which allows each node along the route to forward the packet to the next
hop based on the node's own local knowledge of the flow along which this packet is
being routed.

The feature significantly reduces the overhead of the protocol because data packet need
not carry source route along the way. However, we will not enable this feature in our
project. The reason is that the flow state is a new feature and its impact on the
CONFIDANT is unknown. CONFIDANT has no specification about how to deal with it.
Furthermore we want to compare our simulation result with that of Sonja reported in her
Ph.D thesis [7] which does not support flow state.

4.1.9 Other Features

DSR provides other additional features to improve the performance of a MANET. For
examples, a node will handle the queued packets in Network Interface Queue and
Maintenance Buffer if it detects the next-hop link of the route of the packet is broken;
when a node receives a route error it usually spreads the message to other nodes by
piggybacking the route error information in the next route request packet. These features
have little impact on the performance of CONFIDANT and we will not discuss them in
detail.

4.2 Analysis of CONFIDANT Protocol

In this section we will analyze the state chart of CONFIDANT to pave the way for
software design. We will discuss the misbehavior detection and data representation that
affects the implementation. We will also discuss the network overhead introduced by
CONFIDANT which is one of the tasks of performance analysis.

4.2.1 States and Events

As introduced in section 3.3.1, there are five modules in CONFIDANT: DSR, Monitor,
Reputation system, Trust manager and Path manager. These modules are interrelated
together to provide and process all kinds of information. The modules also interact with
DSR to send and receive packets.

Figure 4-5 shows the interactions between the modules of CONFIDANT and DSR in
each node. The ovals within each module represent the most important states of the
module and the arrow lines indicate events or message between the states.

 4.2 Analysis of CONFIDANT Protocol

37

DSR

Reputation system Trust manager

Monitor

Path manager

Monitoring

Detecting

Receiving packetSeding packet

Evaluating
information

Update rating

Update rating

Managing path

Tapped packet arrived

Handle second-hand
info

Behavior observed

Publish first hand
info

Search route

Tolerance exceeded

Info. accepted

Figure 4-5 Finite state machine in each node

The dashed lines describe how the first hand information is collected. When a node i
receives a packet in the promiscuous mode from another node j within the DSR module,
it passes the tapped packet to the Monitor to detect whether it is the PACK packet. If it is,
the ratings about j will be updated. If the reputation rating is greater than misbehaved
threshold, it will inform Path manager to delete all the paths that contains the node j from
the route cache of node i.

The dotted lines describe how second hand information published by the other nodes is
handled. As seen in the figure, when node i receives published information it passes the
information to the Reputation system to decide whether it should be accepted. If the
information is accepted, the ratings about node j are updated. If the reputation rating after
updating exceeds tolerance threshold, all the paths that containing the node j will be
deleted from Path manager.

The dashed-dotted line describes that a node periodically publishes the reputation ratings
it has about other nodes in the network. As seen, reputation system periodically calls the
DSR to send out the firsthand information.

4.2.2 Detection of Misbehavior

Misbehavior detection is an important part of CONFIDANT. In this section we will
introduce how CONFIDANT detects various misbehaviors. We will also analyze what
kinds of misbehaviors cannot be detected by CONFIDANT.

 Analysis

38

4.2.2.1 Improved Passive Acknowledgement

Section 2.1.2 introduces the Passive Acknowledgement mechanism specified by DSR.
CONFIDANT protocol uses the Passive Acknowledgement not only for an indication of
the correct reception at the next hop but also to detect whether a node forwards packets
that it is supposed to forward or not. In CONFIDANT the passive acknowledgement is
improved so that it can have capability to detect more misbehavior types other than
dropping packets. When a node overhears a packet, it checks following fields to see
whether the packet matches the one it has sent previously.

 IP header: The TTL value must be decremented by one and only one.

 Route reply option: All fields

 Route error option: All fields

 Source route option: If the salvage value is unchanged, all fields except Segs Left;
If the salvage flag changed, we only check Type, Last Hop External, First Hop
External and Segs Left.

 Forged route error: a node can detect it, if the unreachable address in the route
error option is its own.

If any one of above fields does not match, the next hop node is considered misbehaved
and its reputation rating is updated in favor of misbehaving. Otherwise, reputation rating
is updated in favor of honest.

4.2.2.2 Detectable Misbehavior

Generally the misbehaved nodes can be classified into two categories. One is the selfish
nodes which drop packets only for the purposes of saving battery since transmission
consumes energy. The other is the evil nodes which may intentionally drop, modify or
fabricate packets. The later one could cause much more serious problems. For examples,
by modifying a data packet, incorrect information will be sent to destination; by sending
forged routing packets, an evil node can create a so-called black hole, a node where all
packets are discarded or lost.

Whatever the purposes of the attackers, CONFIDANT can effectively detect drop,
modification and fabrication attacks through the PACK mechanism. If a node does not
hear the next hop forwards its packet within PACK timeout, it knows the next hop drops
the packet. If the packet a node hears is different from the original one, it knows the next
hop modifies the packet. If a node hears a packet which indicating the node participated
to forward or originate but actually it does not, it know the next hop fabricates the packet.
Furthermore CONFIDANT can detect if a node tries to tell big lie by publishing
inaccurate information about other nodes. For example, when a node j publishes its first
hand information about node k, it may tell a big lie and publishes opposite information

 4.2 Analysis of CONFIDANT Protocol

39

which deviates from k’s actual behavior. CONFIDANT can detect this by performing
deviation test. When node i receives the published information from j, it compares the
information with the reputation rating it has about k. If the difference exceeds the
threshold, i thinks j is lying and reject the information. Furthermore, i updates the trust
rating of j in favor of untrustworthiness. In this way any dishonest will be detected.

In summary, CONFIDANT can effectively detect following types of attack: packet
dropping attack, modification attack, fabrication attack and big liars.

4.2.2.3 Undetectable Misbehavior

Although CONFIDANT is effective in detecting and mitigating the security problems
such as dropping packets and big liar, there are also some types of attacks that
CONFIDANT cannot efficiently cope with. Here we present some of these attacks.

Stealth attack

In the previous section we have discussed how CONFIDANT detects big liars. However,
node j can make so called stealth attack, in which j tells small lies about node k so that it
can pass the deviation test and gradually change the reputation rating of k kept by i.
CONFIDANT cannot effectively detect the stealth attack.

Collusion

In the network if a certain number of nodes collude and publish similar false information
about another node, then the node receiving the information cannot detect this. Figure 4-6
illustrates this. Suppose node i has no direct experience with k but receives published
information from neighborhoods A, B, and C. If the neighborhoods collude and tell false
information about k, then i will gradually believe what it is told and forms false opinion
about k. When i moves to a new place where new neighbors tells correct information
about k, i will not believe them.

k misbehaves

k misbehaves

i
move

k is good

Are they liars ?
i

K

A

B

C

E

D

F

Figure 4-6 Several nodes collude on publishing information about node k

 Analysis

40

Denial of service

If a node sends out a great number of packets to another node in a burst, that node will
keep busy with handling the packets so that it cannot send packets of its own. The
packets from other nodes also can not arrive at the node because they cannot get the
medium to transfer the packets. CONFIDANT cannot detect such kind of attack.

4.2.2.4 False Detection
As stated in section 4.2.2.1, CONFIDANT enhances the Passive Acknowledgement
mechanism to confirm the reception of the packet at the next hop and to detect if the next
hop fails to forward packets. However, the mechanism of Passive Acknowledge has
limitation and can cause false detection. That is, the next hop is regarded as misbehaving
because the previous hop fails to hear the next hop forwards the packet but actually it
does. The false detection may be caused by transmission collision or the limited
transmission range. Following two diagrams depict how the problems happen.

Figure 4-7 Transmission collision

Figure 4-7 illustrates the false detection caused by transmission collision. The node A has
sent a packet “a” to B and is expecting that B will forward the packet to C. When B
forwards the packet “a” to C, the transmission collides at A with another packet “x” from
node X. Then A can not hear the forwarded packet “a” and it thinks B drops the packet.

Figure 4-8 Limited transmission range

Figure 4-8 illustrates the false detection caused by limited transmission range. Node A
has sent a packet “a” to B and is expecting that B will forward the packet to C. At the
mean time A moves out of the transmission range of B. When B forwards the packet “a”,
C receives it but A can never hear it. Then A thinks B drops the packet.

B C

packet packet

move
A A

X

packet a packet apacket x

A B C

 4.2 Analysis of CONFIDANT Protocol

41

4.2.3 Bearing Grudges

One of the major features of CONFIDANT is to mitigate misbehavior by bearing grudges
to the nodes identified as misbehaved nodes. On the other hand bearing grudge can also
serve as incentive for nodes to behave well and thus improve network performance.

Following are the possible ways to bear grudge to the misbehaved nodes.

(1) Do not select a route containing misbehaved nodes to forward a packet.

(2) Do not forward data packets originated from misbehaved nodes.

(3) Alert the source node when finding a misbehaved node in the source route of the
packet that is forwarded.

(4) Do not forward or reply Route Requests originated from misbehaved nodes.

(5) Do not forward or reply Route Request when misbehaved node(s) are present in
the source route.

(6) Do not forward or accept Route Error, Gratuitous Route Reply or other routing
information originated from misbehaved nodes.

We think item (1), (2), (4), (6) are reasonable ways to bear grudge to misbehaved nodes.
However (3) and (5) will not be adopted because the node forwarding a packet should not
apply its own subject opinion in deciding whether the packet should be dropped. All the
nodes only publish firsthand information but not their opinions! On the other hand, if the
node does not forward the packet, it will be considered misbehaved by its previous hop.

4.2.4 Data Representation

According to CONFIDANT protocol, each node stores three types of data about any
other nodes it has communicated or heard about in the network. They are

 First hand information Fi,j: representing the node i’s view of node j’s behavior as
an actor in the network.

 Reputation rating R i,j: representing the opinion formed by node i about node j’s
behavior as an actor in the network.

 Trust rating T i,j: representing node i’s opinion about how honest node j is as an
actor in the reputation system.

At first glance, it seems that the three types of data are redundant. They are actually
different. First hand information only indicates direct observation about other nodes’
behavior while reputation rating is a node’s opinion of another node which is formed
based on first hand information or secondhand information. Furthermore, CONFIDANT
distinguishes reputation from trust. The former indicates a node’s opinion on how honest
another node is as a forwarder and the later indicates how honest another node is as a
recommender.

 Analysis

42

All the three types of data are represented in the form of Beta distribution (,)α β which
has been explained in section 2.2.2. They are initialized as (1, 1), which means in the
node i’s initial view about node j there are fifty percent possibility for j to misbehave or
tell a lie. The updating of the three types of data can be depicted by Figure 4-9:

Figure 4-9 The relations of information kept by each node

Updating Fi,j

The first hand information Fi,j is updated based on i’s direct observation about j’s
behavior after each i’s interaction with j (see the arrow line 1). Let u be the weight for
the past experience. Let s represent the direct observation. s = 1 if misbehavior has been
observed and s = 0 otherwise. Fi,j is updated according to Equation 4-1.

:
: (1)

u s
u s

α α
β β
= +⎧

⎨ = + −⎩
Equation 4-1

Updating R i,j
The reputation rating R i,j is updated upon two events:

(1) When the first hand information is updated (see the arrow line 2 in Figure 4-9).

(2) When the second hand information published by other nodes is accepted (see the
arrow line 3 in Figure 4-9).

 4.2 Analysis of CONFIDANT Protocol

43

In the situation (1), the updating of R i,j follows Equation 4-1. In the situation (2), a
deviation test is usually done to decide whether to accept the second hand information.
The purpose of the deviation test is to reject second hand information that deviates too
much from the node’s own opinion in case the node that publishes the information tells a
lie.

Let the reputation rating of i about j before updating be R i,j = (,)α β , the second hand
information be Fk,j = (,)F Fα β . The deviation test is expressed in Equation 4-2.

(Beta(,)) (Beta(,))F F dα β α βΕ −Ε ≥ Equation 4-2

where d is the deviation threshold.

If the result of the deviation test is positive, then the second hand information will be
accepted and the reputation rating will be updated according to Equation 4-3.

, , ,:i j i j k jR R wF= + Equation 4-3

where w is the weight given to the second hand information.

An alternative way to decide whether to accept the second hand information is to use the
trust rating Ti,k of node i about publisher k because trust rating represents a node’s
opinion about how honest another node is as an actor in the reputation system (see the
arrow line 4). Equation 4-4 is used to judge whether a node is trustworthy or not.

trustworthy if (Beta(,))
untrustworthy if (Beta(,))

t
t

γ δ
γ δ

Ε <⎧
⎨ Ε >=⎩

Equation 4-4

where t is the trustworthy tolerance. (,)γ δ is the Beta distribution form of T i,k.

Updating T i,k

Trust rating Ti,k is updated whenever the deviation test is done (see the arrow line 5 Figure
4-9). The updating follows Equation 4-1 and Equation 4-2 except that the meaning of s
changes. When updating Ti,k , s = 1 if the result of deviation test is positive, which means
node k may tell a lie because the information it publishes about j is inconsistency with
node i’s opinion about j. s = 0 if the result of the deviation test is negative.

Fading and redemption

Fading is introduced to put more emphasis on the recent behavior. Furthermore, fading
allows some nodes with bad reputation to redemption. For some nodes their reputations
are bad not because they are evil but because they have software or hardware deficiencies
so that they work improperly. After the problems are solved, they should be able to

 Analysis

44

improve their reputations by behaving as what route protocol specifies. So the three types
of data are faded periodically according to Equation 4-5.

:
:

u
u

α α
β β
=⎧

⎨ =⎩
Equation 4-5

where u is the fading factor and it can be different for three types of data.

Making decision

Each node stores a blacklist of the nodes that are considered misbehaving. A node judges
whether another node is misbehaving or not based on its reputation rating about that node.
The procedure of making decision is expressed in Equation 4-6. If the mean reputation
rating about another node is less than a misbehaved threshold, that node is considered
normal. Otherwise it is considered misbehaved.

normal if (Beta(,))
misbehaved if (Beta(,))

r
r

α β
α β

Ε <⎧
⎨ Ε >=⎩

Equation 4-6

Where r is the misbehaved threshold.

4.2.5 Overhead

CONFIDANT protocol causes overhead in three aspects: message overhead, storage
overhead and computation overhead.

Message overhead

With CONFIDANT protocol, a node publishes first hand information periodically with a
TTL of 1. The size of the overhead depends on the publishing timer that each node uses
as well as the size of the public rating option. The structure of the public rating option is
shown in Figure 4-10.

Figure 4-10 Publish rating option

CONFIDANT can cause other implicit routing overhead. Since CONFIDANT sends a
packet only when safe routes are found, a node may need to send more Route Requests to
discover safe routes.

Option type Opt Data Len Identification Address[1] Rating[1]

1 byte 1 byte 2 bytes 8*X bytes

 4.3 Analysis of Network Simulator (ns2)

45

Storage overhead

Each node stores three types of ratings: Ri,j, Fi,j, Tk,j. about other nodes that it has
communicated or heard about. Each of the rating consists of two parameters of Beta
function as well as the association to the node ID.

Computation overhead

Since the cost of internal computation in terms of energy consumption is negligible
compared to the cost of a transmission or storage, we will not discuss further here.

4.3 Analysis of Network Simulator (ns2)

In this section we will present a problem existing in ns2 and analyze the packet drop
reasons of DSR which are the basis of the performance evaluation.

4.3.1 A Performance Problem

The latest ns2 version 2.28 has a serious performance problem when testing with DSR.
Searching from the ns-2 email archive [5] shows that the throughput of ns2 after version
2.1b9+ is 10 times worse than that of the previous versions. The throughput is especially
bad when there are lots of messages in the network. Evaluation simulations have been
conducted for DSR at different packet rates.

The simulations run on ns-2.28 with 50 nodes in the area of 1000 ×1000 m2 at different
packet rate. Packet rate means how many packets are sent in one second time. For each
packet rate five scenarios were tested and the results are the mean of the throughputs of
the five scenarios. The network bandwidth is 2 Mb/s. The simulation results are shown in
Figure 4-11.

Throughput comparison for different packet rate

0
10
20
30
40
50
60
70
80
90

100

Packet rate

Th
ro

ug
hp

ut DSR with 2 packets per
second
DSR with 4 packets per
second

Figure 4-11 Throughput comparison for different packet rate

 Analysis

46

As seen, the throughput is more than 90% when the packet rate is 2 packets per second.
When the packet rate is increased to 4 packets per second, the throughput decreases to
less than 45%. By analyzing the trace file, we found that the reason why the throughput
deteriorates when packet rate increases is that there are so many packets in the network
that most of packets are dropped due to IFQ full. Normally IFQ is full because the
network is overloaded so that the link layer cannot grab the transmission medium to send
out the packets buffered in the queue. But in our tests the maximum data packets is 6.4k
(2 p/s × 64 bytes × 50 nodes) and it cannot exceed 2Mbs bandwidth even plus routing
overhead is counted. Currently no one could explain this and the investigation of the
reason is out of the scope of the project.

This performance problem could more seriously impact the throughput of CONFIDANT
because the protocol introduces overhead by publishing first hand information and send
additional routing packets as analyzed in section 4.2.5. Thus our compromised solution is
to use the lower packet rate to mitigate the impact.

4.3.2 Packet Drop Reasons

The main task of the performance analysis is not only to interpret the simulation results
but also to explain why throughputs are improved or decreases. In most cases we need to
investigate where and why packets are dropped. By investigating the ns2 documents, and
source code, we summarize the several types of packet drop that play important roles in
the simulation. These packet drop reasons are listed in Table 4-1.

Category Reason Description

Send buffer timeout

Every data packets are saved in the send buffer
before they’re sent out. If a packet has not been
sent out after certain timeout, it will be dropped.
In most cases, a packet is timeout because no
routes are found within the timeout.

No route
If a packet is undeliverable (e.g. due to link error)
and has been salvaged too many times, DSR will
consider there is no route available and drop it.

TTL reaches zero It the TTL value in a packet reaches zero, the
packet will be dropped.

Routing
layer drop

Drop by misbehaved
nodes

A misbehaved node could drop data packet, route
reply, route error.

IFQ full

Packets are buffered in a network interface queue
before they are sent out. If too many packets are
generated before previous ones are sent, packets
will be dropped. Link layer

drop

ARP full

Before a packet is sent, the MAC address of the
destination node must be searched by ARP. If the
ARP is full, the packets depending on those nodes
will be dropped.

 4.4 Assumptions

47

Others Simulation terminate
Packets that are saved in send buffer of routing
layer and IFQ will be dropped when the
simulation ends

Table 4-1 Packet drop reasons in ns2

4.3.3 Name Convention

In CONFIDANT protocol, a node classifies the other nodes in the network either as
misbehaving or honest based on its reputation rating about those nodes. The identified
misbehaved node may actually be a normal one. To avoid confusion when we describe
the nature of the nodes, we define following name conventions about the nodes in the
aspects of reality and opinion.

We define nodes in reality as follows:

 Evil node: a node that intentionally drops packet.

 Normal node: a node behaves as the routing protocol specifies.

We define nodes in the opinion of other nodes as follows:

 Misbehaved node: a node is considered misbehaving by another node. A misbehaved
node may be actually a normal node but is misidentified.

 Good node: a node is considered normal by another node. A good node may be
actually an evil node but is misidentified.

4.4 Assumptions

4.4.1 Assumptions about Mobile Ad Hoc Network

Since the CONFIDANT protocol relies on Passive Acknowledgement mechanism to
detect nodes that fail to forward packets, we assume following items about the mobile ad
hoc network.

 The wireless communication between any two nodes is bi-directional.

 The network interface of any node is in the promiscuous mode.

In this way, a node is able to find out whether the next node forwards the packet if both
of them are still in the transmission range of one each.

 Analysis

48

4.4.2 Assumptions about Misbehaved Nodes

As discussed in section 4.2.2.2, CONFIDANT can detect dropping attacks, modification
attacks and fabrication attacks. Due to the time limitation, we only simulate dropping
attacks in this project.

In the dropping attack, an evil node could drop all the packets it is supposed forward or
destined to itself. It could also be partial dropping, which is restricted to specific types,
e.g data packets or routing packets containing Route Error. When we simulate the evil
nodes, we want to maximize the bad effect of evil nodes in the network and see whether
CONFIDANT can mitigate the problems. Based on this guideline, we make following
assumptions about evil nodes.

 The primary interest for evil nodes is to drop data packet since dropping data packet
can have more serious consequence than dropping routing packets in general. The
purpose of the routing protocol is to enable the data packets exchange between any
communication ends in the network. Dropping data packets will also decrease the
network throughput significantly.

 Evil nodes drop Route Replies or Route Errors that are not destined to them.

 Evil nodes forward Route Requests. Dropping Route Requests is meaningless for evil
nodes if its main target is to drop the data packets. In the mobile ad hoc network
where dynamic routing protocol is used, the source node can often find alternative
routes to the destination. Thus blocking a route by dropping Route Request may lead
to opposite consequence: the data packets will be forwarded by safe routes. Figure
4-12 explains the scenario.

Figure 4-12 A misbehaved node drops Route Request

Node S wants to send data packet to destination node D. It initiates a Route Request
which is broadcast to its neighbors A and B. Suppose B is evil node. If B drops the
Route Request, the route S B D would never be returned to S. Instead route S

 B D will be used. Thus B will not have chances to receive data packets from S.
Since the primary interest for evil nodes is the data packet, we assume B should not
drop Route Request.

 Evil nodes reply Route Request destined to themselves because their aim is to drop
messages sent to other nodes but they don’t want to lose any message destined to
themselves.

S
A

B

D

 4.5 Summary

49

4.5 Summary

This chapter serves as the software requirement analysis in the view of software
development process. In the chapter we have analyzed DSR protocol, CONFIDANT
protocol and ns2 simulator regarding the problems that will impact our software design,
implementation and performance evaluation.

The analysis of DSR focuses on deciding whether to enable the additional features or not.
First of all a criteria is set saying that the enabled features should increase the cached
routes as much as possible. Then each additional feature is discussed based on the criteria.
Table 4-2 summarizes our analysis about the features.

Features Enabled/disabled
Only forwarding the first Route Request
message

Enabled

Caching overheard routing information Enabled
Replying to Route Requests using cached
routes

Disabled

Route request hop limits Disabled
Packet salvaging Enabled
Automatic route shortening Enabled
DSR flow state extension Disabled

Table 4-2 Summary of DSR additional features

We then analyzed the CONFIDANT protocol. A state machine is given to describe the
states and events in CONFIDANT components. The attack detection mechanism is
introduced and a discussion about what kinds of attack can be detected or cannot be
detected is elaborated. CONFIDANT maintains three types of information so we
analyzed the mathematical representation of the information.

Ns2 is the development and simulation environment of our project. We discussed the
potential problem existing in ns2 and proposed a solution. The packet drop reasons are
also investigated for future use.

Finally, we make some assumptions and name conventions which will be used in the
thesis.

 51

5 Design

This chapter presents the software design of the CONFIDANT forties DSR. First an
overall architecture is introduced. Then the class diagrams of CONFIDANT modules,
DSR modules and the combination of them are explained in detail. The class diagrams
present the static view of the software. We also use sequence chart to describe the
dynamic behavior of the modules. Finally we present the design of trace and parser which
serves as utility functions in the project.

5.1 Framework and Modules

CONFIDANT fortified DSR protocol is composed of several modules that interact with
one another to mitigate misbehavior and improve the network performance. We have
analyzed the state machine of the modules in section 4.2.1. Here we present an
architecture overview of the modules which gives better description of the component
layers of the software and the relationship between them.

Figure 5-1 shows the major modules of CONFIDANT fortified DSR.

Figure 5-1 Overview architecture of CONFIDANT

Monitor is responsible for registering packets which are sent by a node and supposed to
be forwarded by the next hop, detecting whether the PACK packet contains any form of
attack and whether next hop drops packet. It also reports the first hand information to
Reputation System.

Reputation System maintains the reputation ratings of other nodes based on the self-
observed first-hand information as well as second-hand information published by other

 Design

52

nodes. It is responsible for identifying the misbehaved nodes and reports them to Path
Manager.

Trust Manager maintains the trust ratings of other nodes and decide whether these
nodes are trustful when they act as recommenders in the network. It provides an
alternative way to decide whether to accept the incoming second-hand information.

Path manager is responsible for maintaining cached routes and selecting a safe route
which contains no misbehaved nodes. It also takes actions when misbehaved nodes are
identified, e.g. remove the routes containing misbehaved nodes from cache.

DSR is the underlying dynamic source routing protocol. It is responsible for discovering
the routes, sending and receiving packets in the routing level and tapping packets in the
promiscuous mode.

Trace & statistics are utility functions for logging and statistics. The logged information
is the simulation result that will be analyzed in performance evaluation.

5.2 Data Structures

Figure 5-2 is the class diagram of CONFIDANT which is designed based on the
architecture displayed in Figure 5-1. As seen, each module of CONFIDANT in Figure
5-1 corresponds to one or more classes in Figure 5-2. In the following sections we will
explain in details how the classes are designed for the functionalities of each module.

 5.2 Data Structures

53

Figure 5-2 Class diagram of CONFIDANT

5.2.1 Monitor

We divide Monitor into two sub-modules. One is the core monitor which serves as the
interface to DSR and controls the main logic within the module. The other one is the
detector which is responsible for detecting various attacks. As shown in Figure 5-3,
Detector class is an abstract class which provides the interface to detect attacks. It has
several inherited classes each of which detects different type of attacks.

 Design

54

Figure 5-3 Class diagram of monitor module

The classes work in following way. When the program starts, the core-monitor is
instantiated. Then instances of different detectors are registered at the core-monitor.
When a node sends a packet, it registers the packet in the core-monitor so that the
monitor knows that the node wants to verify whether next hop forwards the packet. When
the core-monitor receives a tapped packet, it checks whether it is a PACK packet. If it is,
the core-monitor calls the detectors to detect whether there are any forms of attack.

The advantage of creating polymorphic detector classes instead of using a single
comprehensive Detector class is to make the system extendable. Different types of attack
can be added easily without causing a lot of changes in the existing system.

Apart from handling tapped packets heard from next hops, Monitor also keeps a PACK
timeout for each registered sent packet and periodically checks whether next hops fail to
forward the packet. If no PACK data is heard within PACK timeout then the Monitor will
consider the next hop drops the packet and report this information to the Reputation
System.

In ns2, every packet is associated with a so-called uid, which is the abbreviation of
unique identification. We utilize the uid to judge whether a tapped packet is the PACK
packet that the node is waiting for. When a node sends a packet to its next hop, it
registers the packet in Monitor. When the node receives a packet from next hop, it
compares the uid of the received packet with that of the registered one. If the uids are the
same, it thinks the received packet is the PACK packet. Otherwise, it is not.

5.2.2 ReputationSystem

The class ReputationSystem corresponds to Reputation System module. The primary
function of the class is to handle the firsthand information given by Monitor and second
hand information published by other nodes. The class is also responsible for

 5.2 Data Structures

55

implementing mathematical models for firsthand information ratings, reputation ratings,
Bayesian mean and deviation test.

ReputationSystem handles two timeout events. One is the inactivity timeout event for
which firsthand information and reputation ratings are faded according to fading factor.
The other is the publishing timeout event for which the firsthand information is published.

Last but not the least, after each updating of a node’s reputation rating, ReputationSystem
examines the mean reputation value of the node and determine whether it is misbehaving.
If any misbehavior node is identified or redampted, the information will be reported to
PathManager.

+handleFirsthandInfo(in address, in behavior)
+handleSecondhandInfo()
+inactivityTimeoutHandler()
+publishTimeoutHandler()
-isMisbehaviorNode()
+deviationTest()
+updateFirsthandRating()
+updateReputationRating()

-dsragent
-firsthandInfoTable
-reputationRatingTable
-pathmanager
-trustmanager

ReputationSystem

Figure 5-4 ReputationSystem class

5.2.3 TrustManager

The class TrustManager corresponds to TrustManager module. The primary function of
TrustManager is to provide an alternative way to decide whether to accept second hand
information. The class maintains trust ratings about other nodes. The rating indicates
whether a node is trustworthy to be a recommender.

The class works in following way. Whenever ReputationSystem conducts deviation test
about node i, TrustManager updates the trust rating of i. If the result is positive, the rating
is updated in favor of trustworthiness. Otherwise, it is updated in favor of
untrustworthiness. When node i receives secondhand information about node j,
ReputationSystem queries about whether j is trustworthy from TruatManager and then
decides whether to accept it.

Figure 5-5 TrustManager class

 Design

56

5.2.4 PathManager

The class PathManager corresponds to Path Manager module. It maintains the route
cache of DSR. It provides interface to ReputationSystem so that reputation system can
inform it when misbehaved nodes are identified or redempted. Since the Path Manager
deals with cached route very closely, we extend PathManager from RouteCache class
with additional methods (see Figure 5-6).

+addmMisbehavedNode()
+removeMisbehavedNode()
+isNodeSafe()
+isPathSafe()

-misbehavedNodeList
PathManager

+addRoute()
+findRoute()

RouteCache

Figure 5-6 PathManager class

CONFIDANT requires that when a misbehaved node is identified, Path Manager should
delete all the routes containing the misbehaved nodes. Instead of deleting routes
immediately, in our design we mark the routes and keep them in the cache until route
cache is full. When a node searches a route in the route cache, Path Manager only selects
safe routes which contains no misbehaved nodes.

5.2.5 Existing DSR Components in ns-2

The simulator version ns2.28 that we are going to use already contains the
implementation of DSR. The existing DSR components are expressed in Figure 5-7.

 5.2 Data Structures

57

Figure 5-7 Class diagram of DSR in ns-2

As shown in the Figure 5-7, the core class of the DSR module is DSRAgent class. Each
node has one instance of DSRAgent. The class inherits from two parent classes.

 The Agent class, through which the DSR is hocked to the ns-2 and runs as routing
protocol.

 The Tap class, through which DSR can receive the packets in the promiscuous
mode.

Each DSRAgent instance contains one instance of RouteCache. The RouteCache is an
abstract class from which various route cache classes inherit to apply different route
maintenance strategies. Mobicache is the default route cache of DSR.

Each DSRAgent instance also contains one instance of RequestTable. As we analyzed in
section 3.1, a node should only forwards the first copy of same Route Request message it
receives. The purpose of RequestTable is to judge whether the node has received the
same Route Request before. It records the Route Request packets that a node has
processed so that the same Route Request will not be forwarded many times.

Hdr_sr is a header file containing the definitions of all types of DSR option headers.

SRPacket wraps the structures of routing packets or data packets and provide easy access
method to get and set the source route.

 Design

58

5.2.6 Combining CONFIDANT and DSR

The combined class diagram of CONFIDANT and DSR can be seen in the Figure 5-8.
CONFIDANT interfaces with DSR in the following situations.

 When DSR sends out a packet, it registers the packet in Monitor by calling
Monitor->registerSentPacket(packet).

 When DSR taps a packet, it calls Monitor->handleTap(packet) which compares
the tapped packet with the ones that registered. The packets are uniquely
identified by the uid. If the uids of the two packets are the same the tapped packet
is considered a PACK packet and the original sent packet is removed from the
buffer. Monitor then further call Detectors to detect whether there are any forms
of misbehavior.

 When DSR receives a packet which contains first hand information published by
other nodes, it passes the information to ReputationSystem by calling
handleSecondhandInfo(info).

 When ReputationSystem wants to publish first hand information, it passes the
information to DSR. DSR then creates a packet containing the publishing header
option and sends out the packet.

 When DSR needs a route to send packet to destination, it calls PathManager-
>findRoute() which searches the route cache to find a route containing no
misbehaved node. If no safe route is available, DSR will initiate a Route
Discovery.

 5.3 Dynamic Behavior

59

+handleFirsthandInfo()
+handleSecondhandInfo()
+inactivityTimeoutHandler()
+publishTimeoutHandler()
-isMisbehaviorNode()
+deviationTest()

-dsragent
-firsthandInfoTable
-reputationRatingTable
-pathmanager
-trustmanager

ReputationSystem

+registDetector()
+registSentPacket()
+handleTap()
+packTimeoutHandler()

-packTable
-reputation_system

Monitor

+virtual detect()

Detector

1 1

*

1

+detect()

MatchingDetector

+addmMisbehavedNode()
+removeMisbehavedNode()
+isNodeSafe()
+isPathSafe()

-misbehavedNodeList
PathManager

1 1

hdr_confident

11

1

1

1

1

hdr_sr

1

1

+detect()

ModificationDetector

+detect()

FabricationDetector

+recv()
+tap()
-getRouteForPacket()
-sendOutPacketWithRoute()

-route_cache
-request_table
-net_id

DSRAgent

RequestTable

11

<<struct>>
SRPacket

1 1

1

*

+addRoute()
+findRoute()

RouteCache

1 1

+upateTrustRating()
+isNodeTrustworthy()

-trustRatingTable
TrustManager

1

1

Header files
hdr_sr defines the header
structs of DSR protocol
SRPacket provides easy
access to the source route

CONFIDENT header file
which defines the constants
and common struct.

+tap()

Tap

+recv()

Agent

1

1

DSR

CONFIDANT

Figure 5-8 Combined class diagram of CONFIDANT and DSR

5.3 Dynamic Behavior

In the CONFIDANT protocol, we concern about following major behaviors:

 Handle first hand information

 Publish first hand information

 Handle second hand information published by other nodes

 Bear grudge to misbehaved nodes

We will explain these scenarios using sequence chart in this section.

 Design

60

5.3.1 Handle First Hand Information

Figure 5-9 illustrates how the first hand information is collected. Three parts of message
sequences are involved in this scenario. They are:

 Register the packets sent

 Handle tapped packets

 Handle PACK timeout

 : dsr::DSRAgent

sendOutPacketWithRoute

 : dsr::CoreMonitor

registerSentPacket

recv(packet)

tap(packet)

handleTap(packet)

 : dsr::Detector

detect(packet)

behavior

 : dsr::ReputationSystem

handleFirsthandInfo(behavior)

updateFirsthandRating

updateReputationRating

packTimeoutHandler

handleFirsthandInfo

updateFirsthandRating

updateReputationRating

Register sent
packet

Tap a pecket

Handle PACK
timeout

Figure 5-9 Sequence diagram of handling first hand information

.

 5.3 Dynamic Behavior

61

Register the sent packets. When a node sends a packet, if it wants to check the passive
acknowledgement from the next hop, it registers the packet in the monitor by calling
Monitor->registerSentPacket(packet) so that the packet can be compared with the PACK
packet later.

Handle tapped packets. When a node taps a packet in the promiscuous mode, it calls
Monitor->handleTap(packet) to check whether it is a PACK packet that the node is
expecting. The Monitor searches the packTable and if it finds a packet with the same uid
as that of the tapped packet, it considers it as a PACK packet. It then calls Detector-
>detector(packet) to check whether the packet is modified maliciously and gets the
behavior of the next hop. Finally it calls the methods of ReputationSystem to update the
first hand information rating and reputation rating.

Handle PACK timeout. If the Monitor does not detect the PACK packet within certain
timeout, it will consider the next hop as misbehaved and call ReputationSystem to update
the first hand information and reputation rating.

5.3.2 Publish First Hand Information

Figure 5-10 illustrates the scenario of publishing first hand information.

Figure 5-10 Sequence diagram of publishing first hand information

 Design

62

In this scenario, each node periodically broadcasts its firsthand information about other
nodes to all the neighboring nodes. When PUBLISH_TIMEOUT expired, the
ReputationSystem call the DSRAgent to send out the publishing firsthand information
packet. The TTL of the packet is set 1 so that only the neighboring nodes can receive the
information and avoid flooding the packets to the whole network.

5.3.3 Handle Second Hand Information

Figure 5-11 illustrates the scenario of handling second hand information.

 : dsr::DSRAgent : dsr::ReputationSystem : dsr::TrustManager : dsr::PathManager

recv(packet)

isPublicPacket()

Yes

*handleSecondhandInfo(rating)

deviationTest()

Deviation
Pass

udpateTrustRating()

updateReputationRating

add/removeMisbehavedNode()

Deviation
Not Pass

isMisbehavedNode()

Yes

No

No

Figure 5-11 Sequence diagram of handling second hand information

When DSRAgent receives a public packet, it gets the firsthand information about several
other nodes. It calls ReputationSystem.handleSecondhandInfo(rating) several times to
handle each of the information. ReputationSystem first conducts deviationTest(). If the

 5.3 Dynamic Behavior

63

result of the deviation test is positive, the information will not be acceped. Otherwise, the
reputation rating of the node will be updated. Then the reputation mean value will be
compared with the misbehaving threshold to judge whether it is a misbehaved node. If it
is, the node will be added to the misbehaving list maintained by PathManager. Otherwise
it is removed from the misbehaving list. Whatever the result of the deviation test is, trust
rating of the node which publishes the information will be updated.

5.3.4 Bear Grudge

Figure 5-12 illustrates the scenario of bearing grudge towards misbehaved nodes.

 : dsr::DSRAgent

recv(packet)

Yes
No

isDataPacket and isSentByMisbehavedNode

dropPacket(packet)

isRouteRequest and isSentByMisbehavedNode

dropPacket(packet)

Yes
No

 : dsr::PathManager

isMisbehavedNode(packet.source)

result

Figure 5-12 Sequence diagram of bearing grudge towards misbehaved nodes

 Design

64

When DSRAgent receives a packet, it queries PathManager about whether the originator
of the packet is misbehaved by calling PathManager->isMisbehavedNode(packet.source).
If it is misbehaved, and it satisfies the condition of the bearing grudge policy analyzed in
section 4.2.3, then the packet will be dropped.

5.4 Trace and Parser

When running the simulations, some information about the mobile nodes must be logged
for the purpose of performance evaluation. For example, to analyze the good throughput,
we need to log how many data packets are sent from good nodes and how many are
received. To analyze the misbehaved node identification rate, we need to log how many
nodes are identified by each node during certain period of time and whether they are
identified correctly.

We use two different ways to log the information for different modules.

 Ns-2 trace function. DSRAgent uses ns-2 trace function to log packets that are sent,
received or dropped. The trace function also logs other detailed information such as
the originator and destination of the packets as well as the reason of packet dropping.

 C++ iostream function. All the CONFIDANT modules use C++ iostream to log the
information in text file.

As shown in Figure 5-13, DSRAgent logs the packet sending and receiving information
using ns2 trace function and CONFIDANT modules logs information using C++ iostream
functions. After the simulation finishes, DSRParser parses the log files and get statistic
data.

Figure 5-13 Trace and parser

The reason why ns2 trace function is not used by CONFIDANT modules is that to use the
ns2 trace function, the class must be extended from the Agent class which is not
necessary for CONFIDANT related classes.

 5.5 Summary

65

All the trace files are normal text files and can be parsed to give statistic results.
DSRParser is designed to parse the file and Figure 5-14 shows the class diagram.

Figure 5-14 Class diagram of DSRParser

The methods of DSRParser are explained as follows.

 parseTrace() – the method is used to parse the DSR trace file.

 parseRouteStats – the method is used to parse the trace file of the cached routes.

parseReputationMean() – the method is used to parse the trace file of reputation mean
value of nodes.

parseMisbehaviorIdentify() – the method is used to parse the trace file of identified
misbehaved nodes.

5.5 Summary

This chapter gives the design of the software from the high level architecture to the
detailed class design of the modules. The design covers following modules:

 The Monitor module handles attack detection and reports firsthand information.

 The Reputation System module maintains and updates the reputation rating based on
the reported firsthand information and secondhand information. It also distributes the
firsthand information periodically.

 The Trus tManager module maintains the trust rating and judges whether a node is
trustworthy or not.

 The Path Manager module maintains the route cache, responsible for selecting and
deleting routes.

Following major dynamic behaviors of CONFIDANT are described:

 Handle first hand information

 Publish first hand information

 Handle second hand information published by other nodes

 Bear grudge to misbehaved nodes

The chapter also presents the solution for trace and parser.

 67

6 Implementation and Tests

The CONFIDANT protocol, parsers and simulations script are developed in three
different computer languages of C++, Java and TCL. In this chapter, we briefly introduce
the special language features and methods employed in the implementation.

6.1 Using C++ Standard Template

The three types of ratings kept by each node are dynamic. The sizes of the ratings cannot
be decided at the compilation time but instead grow at run time. The rating of a node is
indexed and searched by its network ID. To support the dynamic, scalable and quickly
searchable features of ratings, the C++ Standard Template Library (STL) such as map,
list and iterator are used. Following pseudo code give an example of how to use map to
represent firsthand information.

map<nsaddr_t, Rating*> firsthandinfo_t; //define the firsthand
information table

map<nsaddr_t, Rating*>::iterator it; //create an iterator

it = firsthandinfo_t.find(address); //search the rating of a node

if (it != firsthandinfo_t.end()) //If the rating is found

{

 (it->second)->updateRating(alpha, 1-alpha); //update the rating

}

As seen in the above code, the firsthand information rating is defined as STL map class.
Each element in the map contains a (index, rating) pair. When we want to search the
rating of a node, the STL iterator class is used to find the rating corresponding to the
given network ID.

6.2 Implementing Simulation Script

The ns2 simulator is started with an Otcl script which configures all the simulator related
parameters such as the number of nodes, the routing protocol, the size of the simulated
network area, etc. The script is implemented by tailoring a template for the general
mobile ad hoc network. Please refer to Appendix K.10 for the source code.

 Implementation and Tests

68

6.3 Simulation Batch File

In our performance analysis, there are large number of simulations need to be done. Take
the example of the simulations for evaluating throughputs of CONFIDANT, we need to
test 5 different level percentages of evil nodes on 5 different scenarios each. If each
simulation takes about half an hour, then it takes 5 × 5 × 0.5h = 12.5 hours for the
simulations. It would be a tedious job if the developer monitors the computer for 12.5
hours and manually set up for each simulation. A better way is to implement a batch file
so that the simulations can be executed automatically even during night. For this purpose
shell batch files are developed which can be seen in the Appendix K.11 and K.12.

6.4 Test

We conducted following functional test for the system.

 The publish firsthand information are sent periodically and received correctly.

 Forwarding or dropping packets are detected.

 Firsthand information ratings, reputation ratings and trust ratings are updated in the
correct way.

 The evil nodes drop certain types of packets.

 Misbehaved nodes are identified and routes containing these nodes are avoided.

 Normal nodes bear grudge to the misbehaved nodes.

The output can be generated for verification when the CONFIDANTVERBOSE and
CONFIDANTDEBUG are set on in the hdr_confidant.h file.

The tests have been conducted with a simple network. For example, only six nodes are
presented in a network with range of 250m × 250m. The number of packets sent is
limited so that they can be easily tracked.

6.5 Summary

In this chapter we describe detailed implementation methods and language features by
illustrating examples. We also discussed the functional test cases and the test context we
used in testing. For detailed source code and configuration files please refer to Appendix
K.

 69

7 Performance Analysis

This chapter evaluates the performance of the CONFIDANT protocol. We first design the
metrics for the performance evaluation. Then we introduce the important factors related
to the network simulator, DSR and CONFIDANT. We conduct preliminary simulations
to optimize the primary factors of CONFIDANT. After that simulations with different
percentages of the evil nodes are conducted and the results are compared with that of
standard DSR. Finally we analyze the performance of some variations of CONFIDANT.

7.1 Metrics

Throughputs and evil drop rate

Throughput is the most important metrics in our performance evaluation. Since the
purpose of CONFIDANT is to improve the throughput for good nodes while bearing
grudges to evil nodes, we evaluate the throughputs of good nodes and evil nodes
separately. For simplicity, we call them good throughput and evil throughput. The goal
of the CONFIDANT protocol is to increase the good throughput while decrease the evil
throughput as much as possible.

The formula used to calculate the good throughput is expressed in Equation 7-1.

1

1

Received good packets

All good packets

where good packets are the packets orginiated by good nodes.

n

i
n

i

GT =

=

= ∑
∑ Equation 7-1

The formula for evil throughput is expressed in Equation 7-2.

1

1

Received evil packets

All evil packets

where evil packets are the packets orginiated by evil nodes.

n

i
n

i

ET =

=

= ∑
∑ Equation 7-2

We also use evil drop rate to evaluate how effective CONFIDANT is to mitigate packet
drop attack. Evil drop rate means how much packets are dropped by evil nodes compared
to the total number of packet dropped. Equation 7-3 is used to calculate the evil drop rate.

 Performance Analysis

70

1

1

Packets dropped by evil nodes

Total dropped packets

n

i
n

i

EDR =

=

= ∑
∑

Equation 7-3

Overhead

CONFIDANT introduces network overhead by publishing firsthand information
periodically. The quantity of the overhead depends on the publish timeout. CONFIDANT
may also increase Route Request message since it uses stricter route selection strategy.

There are two factors in calculating overhead, the number of packets and the size of an
individual packet. These two values cannot be simply multiplied since sending off a
packet and transmitting a packet have different cost. Due to the time limitation we only
consider the number of packets in our evaluation.

Misbehavior identification rate

In this performance analysis, we evaluate how much percentage of misbehaved nodes are
identified in the network. The rate reflects how effective CONFIDANT is in identifying
misbehaved nodes. To evaluate the identification rate, the average number of identified
misbehaved nodes should be calculated periodically.

False positive and negative

As analyzed in section 4.2.2.4, sometimes a good node will be considered as misbehaving.
We call this false positive. On the other hand, some evil nodes cannot be identified and
are considered as normal nodes. This is called false negative. The false positive rate and
false negative rate reflect how effective CONFIDANT is in identifying misbehaved
nodes.

7.2 Simulation strategy

To form the comparison, simulations are conducted for Standard DSR, CONFIDANT
and other modified versions of CONFIDANT. The outcomes of the simulations are
compared to see whether the CONFIDANT have improvement or deterioration over the
standard DSR in perspectives of the metrics, and whether the variations of CONFIDANT
has different impact on the network performance.

The most important factors that impact the simulation results are the topology and traffic
connections of the network. To dynamically simulate the network, following files are
generated randomly and automatically to get different topology and traffic pattern.

 Node-movement scenario – specify how mobile nodes move in the network. E.g.
the number of nodes participating in the network, the position of each node, the
maximum speed of the movement.

 7.3 Simulation of Evil Nodes

71

 Traffic pattern – specify how a node sends packets to another. E.g, the packet sent
rate, the application protocol and the size of packet.

Ns2 provides automation tools to generate the different node-movement scenario files
and the traffic pattern files. The commands that are used to generate the files can be
found in Appendix H. Once the files are generated, the topology and the traffic
connections are deterministic. That means, the results are the same for any simulations
that use the same pair of node-movement scenario and traffic pattern files.

To ensure that the simulation results are not gained by using an exaggerated positive
scenario, five different node-movement scenarios are used to do the simulations in
consecutive for each comparison. The result is obtained by calculating the mean of five
simulation results.

For each simulation, a certain percentage of the nodes participating in the network are
simulated as evil nodes. To form the comparison, these evil nodes are pre-defined instead
of randomly selected.

7.3 Simulation of Evil Nodes

Most of the simulations in this project are conducted with 50 mobile nodes in the network.
Among the 50 nodes, a minimum of 0% and maximum of 80% evil nodes are used. In the
simulations, every node is associated with a unique network ID which ranges from 0 to
49. The evil nodes are simulated in this way. 40 out of the 50 nodes are pre-defined as
candidate evil nodes. The network IDs of these 40 nodes are not contingent or sequential.
When a certain number of evil nodes are supposed to be present in the network, for
example 20 nodes, the first 20 nodes out of the 40 candidates are selected to act as evil
nodes. The rest of the nodes behave normally even they are candidate evil nodes.

Although there are various types of attacks on DSR, we concentrate on simulating packet
drop attack for the purpose of performance evaluation because its impact on the network
performance can be measured directly. The types of packets that are dropped by evil
nodes are specified in section 4.4.2.

7.4 Parameters

As discussed in section 2.3.1, there are two categories of parameters in the simulations,
factors and primary factors. Factors can be determined through theoretic analysis or
experience while primary factors have to be tested and tuned during simulations. This
section describes the factors and their values we have chosen. In the next section we will
explain how primary factors are decided by analyzing simulation results.

 Performance Analysis

72

7.4.1 Ns2 Related Parameters

Table 7-1 lists the most important ns2 related parameters and the values that will be used
in the simulations. Most of the values are the same with those Sonja used in her thesis [7]
so that the results of simulations can be compared. However the value of transmission
rate, packet size and maximum speed are different. The reason why these parameters are
chosen differently is explained in the section 4.3.1.

Parameter Value
Application traffic CBR
Radio Range 250 m
Packet Size 64 bytes
Transmission rate 2 packets/s
Pause time for nodes 100 s
Maximum speed 1 m/s
Simulation time 900 s
Number of nodes 50
Data connections 30
Area 1000 m × 1000 m
Available bandwidth 2 Mbps

Table 7-1 Ns-2 related parameters

As seen in the table, Constant Bit Rate (CBR) is chosen as the application protocol
because it is simple and it makes the results easier to analyze. 50 nodes are present in the
area of 1000× 1000 m2. Among the 50 nodes, 30 nodes are connected to send CBR
packets to one another. The simulation lasts 900s so that enough packets are sent to
eliminate any deviations. Normally two network bandwidths are available for wireless
network, 2 Mbps and 11 Mbps. Since the transmission rate is 2 packet/s and packet size is
64 byte, the traffic cannot exceed 2Mbps even routing overhead are counted. Thus 2
Mbps is chosen as available bandwidth.

7.4.2 DSR Related Parameters

Table 7-2 lists the most important parameters related to DSR protocol. The parameter
names are the same with those used in the source code. The reasons why certain values
are chosen for them have already analyzed in section 4.1.

 7.4 Parameters

73

Parameter Description Value
Snoop_source_routes Flag used to indicate if source routes

should be snooped.
True

Reply_only_to_first_
routereq

Flag used to indicate if a node should only
reply to the first route reply it receives.

False

Send_grat_replies Flag used to indicate if a node should send
out gratuitous replies to shorten routes.

False

Reply_from_cache_on
propagation

Flag used to indicate if a node should,
when receiving a route request, reply with a
route from its cache if possible.

False

Use_ring_search Flag used to indicate if a node should, use
ring search to discover new routes.

False

Dsragent_enable_flowstate Flag used to indicate whether to use flow
state extension feature

False

Table 7-2 DSR related parameters

7.4.3 CONFIDANT Related Parameters

Table 7-3 lists the parameters related to CONFIDANT protocol. The parameter names
are the same as those used in the source code. As shown in the table, all the parameters
have to be tested and determined in the simulations. The parameters in this table are very
important because they will directly impact the performance of CONFIDANT and even
slight variation will change the results of the evaluation. As introduced in section 2.3.1,
these parameters are called primary factors. We will tune these primary factors in the
following section.

Parameter Description Value

PACK_TIMEOUT
A time out value determines how
long a node wait for a passive
acknowledge package.

INACTIVITY_FADING The fading factor of first
information and reputation value
that a node stores when the time
goes on.

TRUST_FADING The fading factor of trust value that
a node stores when the time goes
on.

DEVIATION_THRESHOLD The threshold in the deviation test
SECONDHAND_INFO_WEIGHT The weight when secondhand

information is used to update the
reputation value that a node stores.

MISBEHAVIOR_TOLERANCE A threshold that a node uses to
determine whether another node is
misbehaved.

UNTRUST_TOLERANCE A threshold that a node uses to

 Performance Analysis

74

determine whether another node is
trustworthy.

INACTIVITY_TIMEOUT The timeout that a node updates
firsthand information and reputation
due to inactivity.

PUBLISHING_TIMEOUT The timeout that a node publishes
its firsthand information about other
nodes.

USING_TRUST Whether use trust to determine
whether accept second hand
information.

Table 7-3 CONFIDANT related parameters

7.5 Estimation of Primary Factors

As presented in the previous section, there are several very important factors of
CONFIDANT. The values of these factors should be adjusted to get the best network
performance. Through tuning the primary factors, we can also see how these factors
impact the performance.

In the subsequent sections, several reasonable values are chosen to be tested for each
factor. For each value, five simulations are executed consecutively for different scenarios
and the results are the mean of the outcome of the five simulations unless otherwise
specified.

7.5.1 Estimation of Misbehaved Threshold

The purpose of misbehaved threshold is to distinguish misbehaved nodes from good ones.
(Equation 4-6 describes the usage of the misbehaved threshold.) So the threshold should
be less than the mean reputation value of most evil nodes and higher than that of most
good nodes. The estimated values for other primary factors can be seen in the Table 7-4.

Parameter Value Parameter Value
Publish timeout 2 s Inactivity fading 0.9

Deviation threshold 0.75 Secondhand information
weight 0.2

Inactivity timeout 2 s Percentage of evil nodes 40%
PACK timeout 0.5s

Table 7-4 Parameters used when estimating misbehaved threshold

 7.5 Estimation of Primary Factors

75

To estimate the threshold value we take several steps to analyze the simulation results
and approximate the value to the best selection.

Step 1: Analyze average mean reputation value

We first conduct a simulation to analyze the mean reputation value of each node. This
step has following purposes.

1) Prove that there exists a misbehaved threshold that can distinguish misbehaved nodes
from normal nodes. It requires that the intervals of the mean reputation values of
misbehaved nodes and normal nodes do not overlap.

2) Select the range of misbehaved threshold so that the reasonable values will be tested
to get the best simulation result.

In CONFIDANT, each node keeps reputation rating about any other nodes that it has
communicated or heard about in the network. The mean reputation value is calculated
according to Equation 2-4 and it indicates whether a node misbehaves or not when
compared with misbehaved threshold. If the mean reputation value of a node is greater
than the misbehaved threshold, it is considered as misbehaved node. Otherwise it is
considered as normal node.

It is meaningless if we look at the mean reputation value of only a few nodes due to the
deviation. A better way is to analyze the average mean reputation value of any node
stored by all other 49 nodes. As discussed in section 2.3.2, there are three alternative
methods to calculate the average of sample data. Which one to use depends on the nature
of data set and what is of interest to the user. Before analyzing the data we don’t know
which one should be used. However if the reputation system works in a correct way, the
results of the three methods should look similar. Thus we calculate the average using all
three methods and compare them.

The results of the simulation are shown in Figure 7-1. Because of the space limitation,
here we only present the average mean reputation values of the first 20 nodes. The results
for all the 50 nodes can be seen in the Appendix F. As seen in the figures, the mean,
median and mode of the mean reputation values look very similar. That means any one of
the three kinds of values is meaningful to be used as the average. The modes for a few
nodes are missing in the figure because there are several possible values for each of the
modes and the word processing tool just doesn’t know how to display them. But after
checking the data source, those values are very similar to mean or median of the same
node.

 Performance Analysis

76

Average mean reputation value (node 0 ~ 19)

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Node ID

M
ea

n
re

pu
ta

tio
n

va
lu

e

Mean
Median
Mode

Figure 7-1 Average mean reputation value of mobile nodes in the network

As seen in the figure, the average mean reputation values of the misbehaved nodes are
mostly higher than 0.8 while the values of good nodes are lower than 0.5. In our
simulation the actual evil nodes in the simulation are 1, 3, 5, 7, 10, 11, 16, 19, etc. The
figure shows that the mean reputation values higher than 0.8 absolutely match the actual
evil nodes. This result proves the purpose 1) and also provides basis for choosing an
appropriate range to tune the misbehaved threshold further. After analyzing average mean
reputation values for more scenarios, we have found that the misbehaved threshold
should be a value greater than 0.8.

Step 2: Adjust misbehaved threshold

Having estimated a gross range, we conduct more simulations to choose the best
misbehaved threshold. Figure 7-2 shows the good throughput and evil throughput at
different misbehaved threshold. We can see that the lower the threshold, the lower both
the good and evil throughputs. Thresholds 0.85 and 0.9 are more favorable because the
evil throughputs are very low while good throughputs are medium.

Throughputs

15

25

35

45

55

65

0.8 0.85 0.9 0.95 0.98

misbehave threshold

Th
ro

ug
hp

ut

Good throughput
Evil throughput

Figure 7-2 Throughputs with different misbehaved threshold

 7.5 Estimation of Primary Factors

77

Step 3: Analyze the misbehaved identification rate and false negative rate

Now we have narrowed our selection within two values, 0.85 and 0.9. We further analyze
the misbehaved identification rate and false negative rate to decide which one to choose.

Figure 7-3 shows the misbehaved identification rate for different misbehaved threshold.
Figure 7-4 shows the false negative rate at different time. We can see that the
identification rate of threshold 0.9 is slightly higher than that of threshold 0.85. However,
in Figure 7-4, the threshold 0.9 has lower false negative rate. Thus we choose 0.9 as
misbehaved threshold.

Misbehaved nodes identification rate

0
10
20
30
40
50
60

10
0s

20
0s

30
0s

40
0s

50
0s

60
0s

70
0s

80
0s

90
0s

Time

Pe
rc

en
ta

ge Misbehaved
threshold 0.85
Misbehaved threshold
0.9

Figure 7-3 Misbehaved nodes identification rate

False negative rate

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

10
0s

20
0s

30
0s

40
0s

50
0s

60
0s

70
0s

80
0s

90
0s

Time

Pe
rc

en
ta

ge Misbehaved threshold
0.85
Misbehaved threshold
0.9

Figure 7-4 False negative rate

 Performance Analysis

78

Summary: Through the three-step analysis, we get a misbehaved threshold which results
in low evil throughput, medium good throughput and precise identification of
misbehaved nodes. Through the analysis we can see that sometimes throughput is not the
only criteria to select the value for a parameter. We should also consider the purpose of
the parameter and analyze other results that are directly affected by the parameter.

7.5.2 Estimation of Deviation Threshold

The deviation threshold is used in deviation test to decide whether to accept second hand
information or not. If the difference between the second hand information and the
reputation rating about a certain node is greater than the deviation threshold, the second
hand information will be discarded. Otherwise it will be accepted and updated into the
reputation rating. Table 7-5 shows the factors and their values we used to do the
simulations.

Parameter Value Parameter Value
Publish timeout 2 s Inactivity fading 0.9

Misbehaved threshold 0.9 Secondhand information
weight 0.2

Inactivity timeout 2 s Percentage of evil nodes 40%
PACK timeout 0.5s

Table 7-5 Factors used when estimating deviation threshold

The simulation results are presented in Figure 7-5. As seen, the highest good throughput
is about 46% when the deviation threshold is 0.5. Although the evil throughput at that
time is about 27% which is not the lowest, it is the point where high good throughput and
relatively low evil throughput are achieved. Thus we choose 0.5 as the deviation
threshold.

Figure 7-5 Estimation of deviation threshold

Estmation of deviation threshold

20
25
30
35
40
45
50

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
65 0.

7

0.
75 0.

8

Deviation threshold

Th
ro

ug
hp

ut

Good throughput
Evil throughput

 7.5 Estimation of Primary Factors

79

7.5.3 Estimation of Publish Timeout

The publish timeout determines how often a node publishes its own first hand
information about other nodes. Since a node sends packets every 0.5 s in our simulation,
it is supposed to update firsthand experience about other nodes every 0.5 s. Thus the
publish timeout should be at least 0.5 s. The more frequent a node publishes information,
the more precisely the other nodes know about their environment. In this sense, it is
better for a node to publish information frequently. However, more publish packets
means more network overhead which could deteriorate the network performance. So the
publish timeout need to be balanced. Table 7-6 shows the factors and their values we
used to do the simulations.

Parameter Value Parameter Value

Deviation threshold 0.5 Inactivity fading 0.9

Misbehaved threshold 0.9 Secondhand information
weight 0.2

Inactivity timeout 2 s Percentage of evil nodes 40%
PACK timeout 0.5s

Table 7-6 Parameters used when estimating publish timeout

The results of the simulation are presented in Figure 7-6. As seen, the highest good
throughput is about 48% when the publish timeout is 3 s. Although the evil throughput of
other publish timeout, e.g. 0.5 s and 1 s, are also on the similar level, 3 s is more
reasonable because its evil throughput is much lower. Sometimes it is hard to choose
between 2 s and 3 s because their throughputs are similar. However, publish timeout 2 s
introduces more network overhead. Thus we choose 3 s as the publish timeout.

Figure 7-6 Estimation of publish timeout

Estmation of publish timeout

20

25

30

35

40

45

50

0.5s 0.7s 1s 2s 3s 4s

Publish timeout

Th
ro

ug
hp

ut

Good throughput
Evil throughput

 Performance Analysis

80

7.5.4 Estimation of Secondhand Information Weight

The secondhand information weight is used to decide how much second hand information
is taken to update the reputation rating. The higher the weight, the more the reputation
rating is influenced by recommendation. Table 7-7 shows the other factors and their
values we used to do the simulations.

Parameter Value Parameter Value
Deviation threshold 0.5 Inactivity fading 0.9
Misbehaved threshold 0.9 Publish timeout 3 s
Inactivity timeout 2 s Percentage of evil nodes 40%
PACK timeout 0.5 s

Table 7-7 Factors used when estimating secondhand information weight

The results of the simulation are presented in Figure 7-7. As seen, the network gets the
highest good throughput about 47% when the secondhand information weight is 0.2 or
0.4. However, the throughput for evil node at 0.2 is lower than that of 0.4. Thus we
choose 0.2 as optimized secondhand information weight.

Estmation of secondhand info. weight

20

25

30

35

40

45

50

0.1 0.2 0.3 0.4 0.5

Secondhand information weight

Th
ro

ug
hp

ut

Good throughput
Evil throughput

Figure 7-7 Estimation of secondhand information weight

7.5.5 Estimation of PACK Timeout

PACK timeout is used for a node to judge whether its next hop forwards the packet
successfully or not. If no PACK packet is received during the timeout, the next hop is
considered misbehaved. Usually PACK timeout should be less than 0.5 second in our
simulation because the data packets are sent at about every 0.5 second and it would be
more effective to let a node know whether its next hop misbehaved before the node sends

 7.5 Estimation of Primary Factors

81

the following packets. However, since in real implementation each node sends data
packets at (0.5 + random) seconds, we also test the PACK timeout a little bit greater than
0.5 seconds. Table 7-8 shows the other factors and their values we used to do the
simulations.

Parameter Value Parameter Value
Deviation threshold 0.5 Inactivity fading 0.9
Misbehaved threshold 0.9 Publish timeout 3 s
Inactivity timeout 2 s Percentage of evil nodes 40%
Secondhand info. weight 0.2

Table 7-8 Factors used when estimating PACK timeout

The results of the simulation are presented in Figure 7-8. As seen, when the PACK
timeout is 0.5 s, we get relatively high throughput which is about 48% and relatively low
throughput which is about 27%. However, we can see that the throughputs of PACK
timeout 0.7 s also look good. Actually, more simulations show that PACK timeout 0.5 s
and 0.7 s have similar impact on the throughput. Either 0.5 s or 0.7 s can be chosen. We
pick 0.5 as PACK timeout.

Estmation of PACK timeout

15
20
25
30
35
40
45
50

0.1 0.2 0.3 0.4 0.5 0.6 0.7
PACK timeout

Th
ro

ug
hp

ut

Good throughput
Evil throughput

Figure 7-8 Estimation of PACK timeout

7.5.6 Estimation of Inactivity Timeout and Fading Factor

Inactivity timeout and fading factor work together to make discount to the past
experience and put more emphasis on the recent experience about another node. The two
parameters are so interrelated that they should be considered at the same time. Take the
fading of reputation rating as an example, when the inactivity timeout decreases or the
fading factor increases, the reputation rating fades faster. That means, decreasing
inactivity timeout and increasing fading factor have similar impact on the throughputs.
Thus, we only adjust inactivity timeout to optimize the performance. Table 7-9 shows the
factors and their values we used to do the simulations.

 Performance Analysis

82

Parameter Value Parameter Value

Deviation threshold 0.5 Inactivity fading 0.9
Misbehaved threshold 0.9 Publish timeout 3 s
Secondhand info. weight 0.2 Percentage of evil nodes 40%
PACK timeout 0.5 s

Table 7-9 Factors used when estimating inactivity timeout

The results of the simulation are presented in Figure 7-9. As seen, when inactivity
timeout is 2 second, we can get relatively high good throughput which is about %48 and
low evil throughput which is about 27%. Thus we choose 2 seconds as inactivity timeout.

Figure 7-9 Estimation of inactivity timeout

7.5.7 Estimation of Trust Threshold

Trust threshold is used to judge whether a node is trustworthy or not as a recommender in
the network. If a node is trustworthy then secondhand information published by that node
will be accept. Otherwise the information will be discarded. Table 7-10 shows the other
factors and their values we used to do the simulations.

Parameter Value Parameter Value
Deviation threshold 0.5 Inactivity fading 0.9
Misbehaved threshold 0.9 Publish timeout 3 s
Secondhand info. weight 0.2 Percentage of evil nodes 40%
PACK timeout 0.5 s Inactivity timeout 2 s

Table 7-10 Factors used when estimating thrust threshold

Estmation of inactivity timeout

15
20
25
30
35
40
45
50

0.5s 0.7s 1s 2s 3s 4s
Inactivity timeout

Th
ro

ug
hp

ut

Good throughput
Evil throughput

 7.6 Performance Evaluation

83

The results of the simulation are presented in Figure 7-10. As seen, the good throughputs
for all four thresholds are almost same. However, lower evil throughput is achieved when
the threshold is 0.95. Thus we choose 0.95 as trust threshold.

.

Estmation of trust threshold

15
20
25
30
35
40
45
50
55

0.8 0.85 0.9 0.95
Trust threshold

Th
ro

ug
hp

ut

Good throughput
Evil throughput

Figure 7-10 Estimation of trust threshold

7.6 Performance Evaluation

In this section, we will evaluate the performance of CONFIDANT protocol when
different percentages of evil nodes are present in the network. Since we have estimated
the values of primary factors in the previous section, the values in Table 7-10 except
percentage of evil nodes will be used to do all the simulations in this section.

Apart from evaluating the performance of the classic CONFIDANT protocol proposed in
[7], we will also analyze two variations of CONFIDANT, Path Re-ranking and Using
Trust, to see how they will impact the performance of the network and whether they have
advantages over the classic CONFIDANT. During the evaluation, we use following name
conventions for different variations of CONFIDANT protocol.

 Standard DSR – the DSR protocol specified in [1].

 CONFIDANT – the classic CONFIDANT protocol specified in [7].

 Path Re-ranking – the CONFIDANT protocol with path re-ranking as route selection
strategy.

 Using trust – the CONFIDANT protocol which uses trust value to decide whether to
accept second hand information.

 Performance Analysis

84

7.6.1 Throughputs and Evil Drop Rate

We conducted the simulation with different percentages of evil nodes 0, 20%, 40%, 60%
and 80%. The results are compared with those of standard DSR when the same
percentages of evil nodes are present in the network.

7.6.1.1 Good Throughput

Figure 7-11 presents the good throughputs of CONFIDANT and standard DSR. It is
surprised to see that the good throughput of CONFIDANT does not show any
improvement over that of standard DSR, whereas according to [7] CONFIDANT can
improve good throughput by two times. Our result does not fulfill the goal of
CONFIDANT that the throughput of the network should be increased by discouraging
misbehavior.

Comparison of Good Throughput

0

20

40

60

80

100

0 20 40 60 80
Percentage of Evil Nodes

Th
ro

ug
hp

ut

Standard DSR
CONFIDANT

Figure 7-11 Comparison of good throughput

In section 7.6.1.4 we will further investigate the reasons why good throughput is not
improved in our simulations.

7.6.1.2 Evil Throughput

Figure 7-12 presents the evil throughputs of CONFIDANT and standard DSR. As seen,
the evil throughput of CONFIDANT significantly decreases up to 50% compared to that
of standard DSR. This result fulfills the goal of CONFIDANT that the evil throughput
should be suppressed. In the figure, the throughput at zero percentage of evil nodes is
empty because we cannot calculate the evil throughput when there are no evil nodes in
the network.

 7.6 Performance Evaluation

85

Comparison of Evil Throughput

0

20

40

60

80

100

0 20 40 60 80
Percentage of Evil Nodes

Th
ro

ug
hp

ut

Standard DSR
CONFIDANT

Figure 7-12 Comparison of evil throughput

The figures in Appendix G show the confidence intervals of CONFIDANT and Standard
DSR regarding good throughput and evil throughput. The comparison confirms that
CONFIDANT is more effective in decreasing evil throughput than Standard DSR is.

7.6.1.3 Evil Drop Rate
The evil drop rate is the percentage of packets dropped by evil nodes in all the dropped
packets. It reflects how much the evil drop contributes in overall packet drop compared to
other drop reasons. Equation 7-3 is used to calculate the evil drop rate. Figure 7-13 shows
the evil drop rates of CONFIDANT and standard DSR. As seen in the figure, the evil
drop rate of CONFIDANT is significantly lower than that of standard DSR for all
percentages of evil nodes. It is kept under 6%. This means that fewer packets are routed
by evil nodes. This result fulfills the purpose of CONFIDANT that the misbehaved nodes
should be avoided in forwarding packets.

Evil drop rate

0

20

40

60

80

0 20 40 60 80
Percentage of Evil Nodes

Ev
il

dr
op

/T
ot

al
 d

ro
p

Standard DSR

CONFIDANT

Figure 7-13 Comparison of evil drop rate

 Performance Analysis

86

7.6.1.4 Investigate the Reason of Low Good Throughput

Since the evil drop rate is reduced significantly for CONFIDANT, why do we still get
lower good throughput? We take following steps to investigate the reason.

Step 1: analyze other packet drop reasons

The first reason we can think of is that there may be other packet drop reasons that
overturn the effect of evil drop. Figure 7-14 shows the major packet drop reasons of
CONFIDANT and their percentage in the total packet drop. The result is based on the
40% of evil nodes. In the figure “drop evil source” indicates the packets dropped due to
bearing grudge to evil nodes. “Send buff drop” indicates packets dropped in the send
buffer of DSR. “Terminate” indicates the packet drop due to the termination of
simulation.

Packet drop reasons of CONFIDANT

6%
10%

77%

4%

3%

Evil drop
Drop evil source
Send buffer drop
Terminate
Others

Figure 7-14 Packet drop reasons of CONFIDANT

As seen in the figure, the most influential packet drop reason is send buffer drop, which
counts 77% of the total drop, whereas evil drop rate only counts 10% and has much less
effect in the whole packet drop.

Figure 7-15 shows the send buffer drop rate comparison of CONFIDANT and standard
DSR. As seen in the figure, CONFIDANT has generally much higher send buffer drop
rate than standard DSR. The high send buffer drop rate cancels out the low evil drop rate
so that the overall good throughput remains low.

 7.6 Performance Evaluation

87

Figure 7-15 Comparison of send buffer drop rate

Note: The rate of Standard DSR at zero evil nodes should be ignored since it is abnormal.
The reason why it is exceptionally high is that when there are no evil nodes present in the
network, other types of packet drop are almost zero and the send buffer drop is
comparatively large. For the similar reason, the statistics at zero percentage evil nodes
will be neglected in the subsequent analysis.

Step 2: investigate the root cause of high send buffer drop rate

By far we have known that high send buffer drop rate is the main reason why the good
throughput of CONFIDANT is not improved. However, send buffer drop is not the root
cause. We must investigate why the send buffer drop rate increases significantly for
CONFIDANT.

The send buffer of DSR works in this way. All data packets are saved in the send buffer
before they’re sent out. If a packet has not been sent out after certain timeout, it will be
dropped. In most cases, a packet is dropped because no routes are found within the
timeout.

There are three possible cases when CONFIDANT cannot find routes within timeout.

 Only bad routes exist in the route cache and they are discarded. A bad route is the
route containing misbehaved nodes.

 No routes exist in the route cache at all.

 Good routes exist in the route cache but they are misjudged as the bad route and
discarded.

The first two cases are related to the network topology. If most of the packets are dropped
due to the first two cases, then it means there are no enough good routes in the network
and CONFIDANT can do little to help. The third case is related to the CONFIDANT

Send buffer drop rate

0

20

40

60

80

100

0 20 40 60 80
Percentage of Evil Nodes

S
en

d
bu

ffe
r d

ro
p/

To
ta

l
dr

op Standard DSR
CONFIDANT

 Performance Analysis

88

protocol. If a lot of packets are dropped due to the third case then we can argue that
CONFIDANT should be blamed for not increasing good throughput.

Figure 7-16 illustrates the number of send buffer drop due to the first two different cases.
As seen in the figure, majority of the packets (60% – 40%) are dropped in the send buffer
because there are only bad routes which contain misbehaved nodes. However, about 20%
– 40% of packets are dropped due to no routes available at all.

Send buffer drop reasons

0

20

40

60

80

100

20 40 60 80

Percentage of evil nodes

dr
op

/S
sb

 d
ro

p

drop due to only
bad routes
drop due to no
routes

Figure 7-16 Send buffer drop reasons

Among the number of category “drop due to only bad routes” some routes identified as
bad are actually good. These routes belong to third case. Figure 7-17 shows the
percentage of packets that are dropped due to misjudgment in the whole send buffer drop.

Send buffer drop due to misjudgement

0

5

10

15

20

25

20 40 60 80

Percentage of evil nodes

fa
ls

e
ba

d
ro

ut
es

d/
to

ta
l b

ad

ro
ut

es drop with false bad
routes

Figure 7-17 Percentage of send buffer drop due to misjudgment

 7.6 Performance Evaluation

89

As seen in the figure, the send buffer drop due to misjudgment of misbehaved nodes is
very low except at the 20% evil nodes. That means in most cases CONFIDANT can
correctly identify the bad routes and discard them.

So far we have seen that a great number of packets are dropped in the send buffer of DSR
because no good routes can be found within the send buffer timeout. Furthermore, our
test simulation shows that increasing the timeout does not help in finding good routes.
Thus we think it is the problem of the simulator that there are not enough good routes
available in the network.

Step 3: strengthen the conclusion

To avoid the possibility that the conclusion we got in step 2 is the result of inaccuracy of
our implementation of CONFIDANT, we have devised an Ideal CONFIDANT which can
100% identify misbehaved nodes. All the behaviors of the Ideal CONFIDANT are the
same with that of the classic CONFIDANT except that we let each node know which
nodes are actually evil so that the evil nodes are all identified. Figure 7-18 shows the
good throughput of Ideal CONFIDANT comparing to that of classic CONFIDANT and
standard DSR.

Comparison of Good Throughput

0

20

40

60

80

100

0 20 40 60 80
Percentage of Evil Nodes

Th
ro

ug
hp

ut Standard DSR
CONFIDANT
Ideal CONFIDANT

Figure 7-18 Ideal CONFIDANT

As seen, the good throughput of Ideal CONFIDANT is also lower than that of standard
DSR. With the evil node percentage increasing, the good throughput of Ideal
CONFIDANT decreases fast and even lower than the good throughput of Classic
CONFIDANT. Majority of the packet are dropped due to the send buffer timeout because
there is no enough routes available in the network.

Summary: The simulation results of classic CONFIDANT shows significant decrease in
evil throughput and evil drop rate compared to standard DSR. These results fulfill the
objective of the CONFIDANT. However, the good throughput of CONFIDANT does not
improve as claimed in [7]. The reason is that there are no enough good routes available in

 Performance Analysis

90

the simulated network and most of the packets are dropped in the send buffer. The
premise of CONFIDANT is that there are route redundant in the network. Without the
route redundant CONFIDANT cannot work properly. Thus the performance of the
CONFIDANT heavily depends on the simulator.

7.6.2 Overhead

As stated in section 7.1, CONFIDANT increases the network overhead by publishing
firsthand information. It may also increase Route Request and Route Reply since it uses
stricter route selection strategy and initiate more Route Discovery to find safe routes.

Figure 7-19 shows the network overhead of CONFIDANT and standard DSR. The
overhead is divided into two categories, publish information and routing overhead. Only
Route Request and Route Reply are calculated for routing overhead because we think
CONFIDANT increases these two kinds of messages most. As seen, CONFIDANT
significantly increases the routing overhead compared to standard DSR. The increase of
routing overhead is also partly due to no enough good routes in the network. DSR keeps
sending Route Request to discover new routes.

Network Overhead

0

20000

40000

60000
80000

100000

120000

140000

CONFIDANT standard DSR

N
um

be
r o

f p
ac

ke
ts

Publish information

Routing overhead

Figure 7-19 Network overhead evaluation

7.6.3 CONFIDANT with Path Re-ranking

An alternative route selection strategy is path re-ranking. With classic CONFIDANT, the
Path manager only selects a route containing no misbehaved nodes, whereas with Path re-
ranking the Path manager selects a route based on the reputation metrics of the route. In
our implementation, we use a simple reputation metrics which is the average of the mean
reputation values of all the nodes along the route. The advantage of Path re-ranking is
that the packets will be sent out as long as there exists a route to the destination. Thus the
send buffer drop rate would be decreased. However, Path re-ranking may have higher

 7.6 Performance Evaluation

91

evil drop rate compared to the classic CONFIDANT since the selected route may
contains misbehaved nodes.

The comparison of the good throughput, evil throughput and evil drop rate for path re-
ranking and other protocols are shown in Figure 7-20, Figure 1-1 and Figure 7-22
separately.

Comparison of Good Throughput

0

20

40

60

80

100

0 20 40 60 80
Percentage of Evil Nodes

Th
ro

ug
hp

ut Standard DSR

CONFIDANT

Path Reranking

Figure 7-20 Good throughput of Path re-ranking

Comparison of Evil Throughput

0

20

40

60

80

100

0 20 40 60 80
Percentage of Evil Nodes

Th
ro

ug
hp

ut Standard DSR
CONFIDANT
Path Reranking

Figure 7-21 Evil throughput of Path re-ranking

 Performance Analysis

92

Evil drop rate

0

20

40

60

80

0 20 40 60 80
Percentage of Evil Nodes

Ev
il

dr
op

/T
ot

al
 d

ro
p

Standard DSR
CONFIDANT
Path Rerank

Figure 7-22 Evil drop rate of Path re-ranking

As seen in the figures, the good throughput, evil throughput and evil drop rate of Path re-
ranking lie between those of standard DSR and classic CONFIDANT. Although Path re-
ranking has slightly higher good throughput than classic CONFIDANT, it is not very
effective at deterring evil nodes from misbehaving because the evil throughput and the
evil drop rate remain high. Thus we get the conclusion that the classic CONFIDANT can
better cope with misbehavior than Path re-ranking does.

7.6.4 CONFIDANT with Using Trust

Sonja [7] suggests using trust rating as an alternative way to accept the secondhand
information. With classic CONFIDANT when a node receives secondhand information
about other nodes, it conducts deviation test to decide whether to accept the information.
The information that deviates too much from its own opinion is discarded. At the mean
time, trust rating about the publisher is updated. Otherwise the information is accepted to
update the reputation value.

When trust rating is used, the node accepts the secondhand information if it thinks the
publisher is trustworthy, no matter whether the secondhand information deviates too
much from its own opinion. Using trust can speed up detecting the misbehaved nodes
because all the received secondhand information is used to influence the reputation rating
directly or indirectly.

Figure 7-23 shows the misbehavior identification rate of using Trust and its comparison
with classic CONFIDANT. It is surprised to see that instead of speeding up detection
time, using trust actually slows down the detection than classic CONFIDANT does. Due
to the time limitation, we do not investigate further why it happens. It could be a future
work.

 7.7 Summary

93

Misbehaved nodes identification rate

0

10

20

30

40

50

60

100s 200s 300s 400s 500s 600s 700s 800s 900s

Time

Pe
rc

en
ta

ge

CONFIDANT
Using Trust

Figure 7-23 Misbehavior identification rate of Using trust

7.7 Summary

In this chapter we have evaluated the network performance of CONFIDANT fortified
DSR. We first designed performance metrics and strategies which are the basis of the
subsequent evaluations. Various performance metrics are defined: Good and evil
throughput, evil drop rate, overhead, misbehavior identification rate and false
negative/positive rate.

A large number of preliminary simulations have been conducted to adjust the
CONFIDANT related parameters to achieve the best network performance. Apart from
good/evil throughput, other metrics such as misbehavior identification rate and false
negative rate are also used as criteria to select most appropriate values. Especially a
method of step-by-step inference is employed to adjust some particular parameter.

In the main body of the chapter, CONFIDANT and standard DSR have been compared in
aspects of good/evil throughput, evil drop rate and overhead. The results show that
CONFIDANT has great improvement in evil throughput and evil drop rate. However,
CONFIDANT does not increase the good throughput due to no enough good routes in the
network. Furthermore, CONFIDANT increases routing overhead significantly.

We have also compared CONFIDANT with two other variations, Path re-ranking and
Using trust. The results show that CONFIDANT is better at coping with misbehavior
than Path re-ranking does. However, Using trust does not speed up the detection of
misbehavior as expected. Due to the time limitation, we did not investigate the reason
further.

 95

8 Conclusion

This chapter concludes the thesis work in relation to the project of Dynamic feed-back
mechanisms in Trust-Based DSR. In the conclusion we review the objective of thesis and
summarize the main contribution of the thesis. During the thesis we also encountered
some interesting problems that we do not have time to investigate. These problems are
stated in the future work section.

8.1 Conclusion

In section 1.3 we have stated that the objective of the thesis is to investigate the dynamic
feedback mechanisms as security solutions of Mobile Ad Hoc Network, to implement
one of the mechanisms and evaluate its performance. To achieve this objective we
designed several sub-tasks. This thesis has carried out the sub-tasks and completed the
objective. The contribution of the thesis is as follows.

We have prepared preliminary information about the Mobile Ad Hoc Network routing
protocols, Bayesian analysis and other miscellaneous technologies that one must know to
understand the thesis work.

An investigation has been conducted on the state of the art technologies dealing with
security issues in Mobile Ad Hoc Network. As a result, the general security
issues/requirement of Mobile Ad Hoc Network has been summarized. The investigation
also covers the security solutions of payment system, reputation system, trust-based
system and a new intrusion diction system. We have compared the advantage and
disadvantages of these systems.

Detailed analyses have been presented about DSR protocol, CONFIDANT protocol and
network simulator. DSR has many additional features that will impact CONFIDANT and
influence the network performance. We designed criteria and discussed each feature to
decide whether it should be enabled or not. We described the details of CONFIDANT
since it is the basis of implementing the protocol. We also discovered a problem of ns2
which has significant impact on the project and worked out a solution.

A large amount of simulations have been conducted to evaluate the performance of
CONFIDANT fortified DSR. The simulation results show that CONFIDANT
significantly decreases the evil throughput and evil drop rate by up to more than 50%. It
proves that CONFIDANT can effectively mitigate misbehavior in the network. However
CONFIDANT does not improve the good throughput due to the large increase of send
buffer drop, which is caused because there are not enough good routes in the network.

 Conclusion

96

It is worth to mention that during the performance analysis we developed step-by-step
inference methods to address the problems. For example, it was used when we was
estimating the value of misbehaved threshold and when we was investigating the reason
why CONFIDANT had low good throughput.

We also evaluated the performance of two variations of CONFIDANT, Path re-ranking
and Using trust. The simulation result shows that CONFIDANT is better at coping with
misbehavior compared to Path re-ranking. However, Using trust does not speed up the
detection of misbehavior as expected. We did not investigate the reason due to the time
limitation.

8.2 Future Work

We have implemented and evaluated the performance of the CONFIDANT protocol
based on DSR. During the thesis work we observed some results that are out of our
expectation. We also encountered some problems that we feel worth to investigate but
just have no time to complete. In this section we illustrate some of the topics that could
be explored in future.

 Investigate the impact of DSR flow state on CONFIDANT. Flow state extension is a

recent feature of DSR. CONFIDANT does not specify how to deal with it. However
flow state extension could impact CONFIDANT since it allows the intermediate
nodes to change the route based on their local knowledge of the network. That means
the Passive Acknowledgement mechanism that CONFIDANT used to detect
misbehavior may not work. In our thesis the feature is simply disabled. But it is
worthwhile to investigate whether CONFIDANT could incorporate the feature since
it is said the feature can improve the network throughput effectively.

 Investigate the performance of Using trust. Using trust to accept secondhand

information is said to be able to speed up the misbehavior detection time. However,
our simulation results show that using trust actually slows down the detection. More
investigation about why the detection time of using trust is slow could be done.

 Investigate ns2 simulator regarding wireless links. The reason why we get very low

good throughput for CONFIDANT is that there are not enough good routes available
in the network. The ns2 could be investigated further about why there are few
wireless links. If the wireless links could be increased then the good throughput of the
CONFIDANT could be re-evaluated.

 Evaluate the network overhead of CONFIDANT considering the size of packet. In

our thesis we only consider the number of the increased routing packet for overhead.
However, the published information packets are usually much larger than other
normal routing packets. Furthermore, the number of packets introduces different cost
than the size of packets. Thus a better method could be designed to evaluate the
network overhead.

Bibliography

97

A Bibliography

[1] David B. Johnson, David A. Maltz and Yih-Chun Hu. The Dynamic Source
Routing Protocol for Mobile Ad Hoc Networks (DSR) for Mobile Ad Hoc
Networks (DSR), draft version 10.

[2] Sean R Eddy. What is Bayesian Statistics.

[3] Bayesian analysis. http://mathworld.wolfram.com/BayesianAnalysis.html

[4] Bayesian logic.
http://whatis.techtarget.com/definition/0,,sid9_gci548993,00.html

[5] [ns] DSR performance is too bad in Ns2, why? Ns-2 email archive.
http://mailman.isi.edu/pipermail/ns-users/2004-March/040579.html

[6] The Network Simulator – ns2 homepage.
http://www.isi.edu/nsnam/ns/index.html

[7] Sonja Buchegger. Coping with Misbehavior in Mobile Ad-hoc Networks.
February, 2004.

[8] Charles E. Perkins. Ad Hoc Network.

[9] Z.Yan and P. Cofta. Methodology to Bridge Different Domains of Trust. Trust
management first international conference, iTrust 2003

[10] A. Josang, S.Hird, E.Faccer. Simulating the Effect of Reputation System. Trust
management first international conference, iTrust 2003

[11] Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, Jorjeta Jetcheva.
A Performance Comparison of Multi-Hop Wireless Ad Hoc Nework Routing
Protocols.

[12] GloMoSim Global Mobile Information Systems Simulation Library homepage.
http://pcl.cs.ucla.edu/projects/glomosim/

[13] Raj Jain. The art of computer systems performance analysis: techniques for
experimental design, measurement, simulation, and modeling.

[14] Lennart Conrad. M.Sc. Thesis Secure Routing in Mobile Ad Hoc Networks.

Bibliography

98

[15] Po-Wah Yau and Chris J.Mitchell. Security Vulnerabilities in Ad Hoc
Networks.

[16] Frank Stajano and Ross Anderson . The Resurrecting Duckling: Security Issues
for Ad-hoc Wireless Networks.

[17] Levente Buttyan and Jean-Pierre Hubaux. Nuglets: a Virtual Currency to
Stimulate Cooperation in Self-Organized Mobile Ad Hoc Networks.

[18] Levente Buttyan and Jean-Pierre Hubaux. Stimulating Cooperation in Self-
Organizing Mobile Ad Hoc Networks.

[19] Sheng Zhong, Jiang Chen, Yang Richard Yang: Sprite: A Simple, Cheat-Proof,
Credit-based System for Ad-Hoc Networks.

[20] Yongwei Wang, Venkata C. Giruka, Mukesh Singhal. A Fair Distributed
Solution for Selfish Nodes Problem in Wireless Ad Hoc Networks

[21] Giorgos Zacharia, Alexandros Moukas and Pattie Maes. Collaborative
Reputation Mechanisms in Electronic Marketplaces

[22] Sonja Buchegger, Jean-Yves Le Boudec. Nodes Bearing Grudges: Towards
Routing Security, Fairness and Robustness in Mobile Ad Hoc Networks.

[23] Sonja Buchegger, Jean-Yves Le Boudec. The Effect of Rumor Spreading in
Reputation Systems for Mobile Ad-hoc Networks.

[24] Pietro Michiardi and Refik Molva. CORE: A Collaborative Reputation
Mechanism to enforce node cooperation in Mobile Ad hoc Networks.

[25] Sorav Bansal and Mary Baker. Observation-based Cooperation Enforcement in
Ad hoc Networks.

[26] Jiangyi Hu Cooperation in Mobile Ad Hoc Networks

[27] Sergio Marti, T.J. Giuli, Kevin Lai, and Mary Baker. Mitigating Routing
Misbehavior in Mobile Ad Hoc Networks.

[28] Yih-Chun Hu, Adrian Perrig, David B. Johnson: Ariadne: A Secure On-
Demand Routing Protocol for Ad Hoc Networks.

[29] Kevin Fall, Kannan Varadhan. The ns Manual.

[30] OPNET Modeler. http://www.opnet.com/products/modeler/home.html

Bibliography

99

[31] David Cavin, Yoadv Sasson and Andre Schiper. On the Accuracy of MANET
Simulators

[32] Slavisa Sarafijanovic and Jean/Yves le Boudec. An Artificial Immune System
for Misbehavior Detection in Mobile Ad Hoc Networks with both Innate, Adaptive
Subsystems and with Danger signal.

[33] P. Resnick and R. Zeckhauser. Trust among strangers in internet transactions:
Empirical analysis of ebay’s reputation system.

Acronyms

100

B Acronyms

CBR Constant Bit Rate

CONFIDANT Cooperation Of Nodes: Fairness In Dynamic Ad-hoc Network

CORE COllaborative REputation mechanism

DSR Dynamic Source Routing

DoS Denial of Service

LARS Locally Aware Reputation System

MAC Medium Access Control

MANET Mobile Ad Hoc Network

NS Network Simulator

OCEAN Observation-based Cooperation Enforcement in Ad Hoc Networks

PACK Passive Acknowledgement

List of Figures

101

C List of Figures

Figure 1-1 Mobile Ad Hoc Network is used in conferencing... 1
Figure 2-1 Route Discovery.. 7
Figure 2-2 Bayesian estimation of misbehavior ... 10
Figure 3-1 Categories of misbehaved nodes... 18
Figure 3-2 CONFIDANT components ... 22
Figure 4-1 Node A only forwards the first Route Request message................................. 32
Figure 4-2 Node D only forwards the first Route Request message................................. 33
Figure 4-3 Replying to Route Requests using cached routes ... 34
Figure 4-4 Automatic route shortening... 35
Figure 4-5 Finite state machine in each node ... 37
Figure 4-6 Several nodes collude on publishing information about node k 39
Figure 4-7 Transmission collision .. 40
Figure 4-8 Limited transmission range ... 40
Figure 4-9 The relations of information kept by each node.. 42
Figure 4-10 Publish rating option ... 44
Figure 4-11 Throughput comparison for different packet rate ... 45
Figure 4-12 A misbehaved node drops Route Request... 48
Figure 5-1 Overview architecture of CONFIDANT... 51
Figure 5-2 Class diagram of CONFIDANT.. 53
Figure 5-3 Class diagram of monitor module ... 54
Figure 5-4 ReputationSystem class... 55
Figure 5-5 TrustManager class ... 55
Figure 5-6 PathManager class... 56
Figure 5-7 Class diagram of DSR in ns-2... 57
Figure 5-8 Combined class diagram of CONFIDANT and DSR 59
Figure 5-9 Sequence diagram of handling first hand information.................................... 60
Figure 5-10 Sequence diagram of publishing first hand information 61
Figure 5-11 Sequence diagram of handling second hand information 62
Figure 5-12 Sequence diagram of bearing grudge towards misbehaved nodes................ 63
Figure 5-13 Trace and parser .. 64
Figure 5-14 Class diagram of DSRParser... 65
Figure 7-1 Average mean reputation value of mobile nodes in the network.................... 76
Figure 7-2 Throughputs with different misbehaved threshold ... 76
Figure 7-3 Misbehaved nodes identification rate.. 77
Figure 7-4 False negative rate... 77
Figure 7-5 Estimation of deviation threshold ... 78
Figure 7-6 Estimation of publish timeout ... 79
Figure 7-7 Estimation of secondhand information weight ... 80
Figure 7-8 Estimation of PACK timeout .. 81
Figure 7-9 Estimation of inactivity timeout.. 82
Figure 7-10 Estimation of trust threshold ... 83

List of Figures

102

Figure 7-11 Comparison of good throughput ... 84
Figure 7-12 Comparison of evil throughput ... 85
Figure 7-13 Comparison of evil drop rate... 85
Figure 7-14 Packet drop reasons of CONFIDANT .. 86
Figure 7-15 Comparison of send buffer drop rate .. 87
Figure 7-16 Send buffer drop reasons... 88
Figure 7-17 Percentage of send buffer drop due to misjudgment..................................... 88
Figure 7-18 Ideal CONFIDANT... 89
Figure 7-19 Network overhead evaluation ... 90
Figure 7-20 Good throughput of Path re-ranking ... 91
Figure 7-21 Evil throughput of Path re-ranking ... 91
Figure 7-22 Evil drop rate of Path re-ranking... 92
Figure 7-23 Misbehavior identification rate of Using trust .. 93

List of Tables

103

D List of Tables

Table 2-1 Categories of routing protocols .. 6
Table 2-2 Comparison of the three simulators.. 14
Table 4-1 Packet drop reasons in ns2 ... 47
Table 4-2 Summary of DSR additional features... 49
Table 7-1 Ns-2 related parameters.. 72
Table 7-2 DSR related parameters.. 73
Table 7-3 CONFIDANT related parameters... 74
Table 7-4 Parameters used when estimating misbehaved threshold................................. 74
Table 7-5 Factors used when estimating deviation threshold... 78
Table 7-6 Parameters used when estimating publish timeout... 79
Table 7-7 Factors used when estimating secondhand information weight 80
Table 7-8 Factors used when estimating PACK timeout.. 81
Table 7-9 Factors used when estimating inactivity timeout ... 82
Table 7-10 Factors used when estimating thrust threshold... 82

List of Equations

104

E List of Equations

Equation 2-1.. 9
Equation 2-2.. 10
Equation 2-3.. 10
Equation 2-4.. 10
Equation 2-5.. 10
Equation 2-6.. 12
Equation 2-7.. 12
Equation 2-8.. 12
Equation 2-9.. 12
Equation 4-1.. 42
Equation 4-2.. 43
Equation 4-3.. 43
Equation 4-4.. 43
Equation 4-5.. 44
Equation 4-6.. 44
Equation 7-1.. 69
Equation 7-2.. 69
Equation 7-3.. 70

Average Mean Reputation Values

105

F Average Mean Reputation Values

Following figures present the average mean reputation values about all the fifty nodes in
the MANET. Three methods are used to calculate the average and the results show that
the average mean reputation values are similar for these three methods. Thus each of the
methods can be used to calculate the average.

Average mean reputation value (node 0 ~ 19)

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Node ID

M
ea

n
re

pu
ta

tio
n

va
lu

e

Mean
Median
Mode

Appendix Figure 1 Average mean reputation value of node 0 ~ 19

Average mean reputation value (node 20 ~ 34)

0

0.2

0.4

0.6

0.8

1

1.2

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Node ID

M
ea

n
re

pu
ta

tio
n

va
lu

e

Mean
Median
Mode

Appendix Figure 2 Average mean reputation value of node 20 ~ 34

Average Mean Reputation Values

106

Average mean reputation value (node 35 ~ 49)

0

0.2

0.4

0.6

0.8

1

1.2

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

Node ID

M
ea

n
re

pu
ta

tio
n

va
lu

e

Mean
Median
Mode

Appendix Figure 3 Average mean reputation value of node 35 ~ 49

Confidence Interval Comparison

107

G Confidence Interval Comparison

Following figures present the Confidence Interval of good throughput and evil
throughput. The results show that the Confidence Intervals of good throughput for
CONFIDANT and standard DSR have overlap. Thus CONFIDANT does not show any
improvement over standard DSR (see Appendix Figure 4). However, CONFIDANT
decreases evil throughput since its confidence interval is lower than that of standard DSR
and does not overlap (see Appendix Figure 5).

Appendix Figure 4 CONFIDENCE interval of good throughput

Appendix Figure 5 CONFIDENCE interval of evil throughput

0

20

40

60

80

100

120

0 20 40 60 80

CONFIDANT

CONFIDANT 95+

CONFIDANT 95 --

CONFIDENCE Interval of Good Throughput

0

20

40

60

80

100

120

0 20 40 60 80

Percentage of Evil Nodes

G
oo

d
Th

ro
ug

hp
ut

Standard DSR

Standard DSR 95+

Standard DSR 95 -

0

20

40

60

80

100

0 20 40 60 80

CONFIDANT

CONFIDANT 95+

CONFIDANT 95 --

CONFIDENCE Interval of Evil Throughput

0

20

40

60

80

100

0 20 40 60 80

Percentage of Evil Nodes

Ev
il

Th
ro

ug
hp

ut

Standard DSR
Standard DSR 95+
Standard DSR 95 -

Command of Creating Random Files

108

H Command of Creating Random Files

Command Used to Create Node-Movement Files:

setdest -n 25 -p 60.0 -M 10 -t 500 -x 1000 -y 1000 > scen-
25-conf1

Command Used to Create Traffic Pattern Files:

ns cbrgen.tcl -type cbr -nn 25 -seed 1.0 -mc 20 -rate 4.0 >
cbr-25-conf

Simulation Results of Using Trust

109

I Simulation Results of Using Trust

Following figures present the simulation results of using trust comparing with
CONFIDANT and standard DSR. The results show that using trust does not improve the
performance.

Comparison of Good Throughput

0

20

40

60

80

100

0 20 40 60 80
Percentage of Evil Nodes

Th
ro

ug
hp

ut Standard DSR
CONFIDANT
Using Trust

Appendix Figure 6 Comparison of good throughput

Comparison of Evil Throughput

0

20

40

60

80

100

0 20 40 60 80
Percentage of Evil Nodes

Th
ro

ug
hp

ut Standard DSR
CONFIDANT
Using Trust

Appendix Figure 7 Comparison of evil throughput

Simulation Results of Using Trust

110

Evil drop rate

0

20

40

60

80

0 20 40 60 80
Percentage of Evil Nodes

Ev
il

dr
op

/T
ot

al
 d

ro
p

Standard DSR
CONFIDANT
Using Trust

Appendix Figure 8 Comparison of evil drop rate

Content of CD

111

J Content of CD

A CD containing all the material related to the project has been submitted with this thesis.
Following screen shot presents the folder structure of the CD. The detailed installation
guide can be seen in the README.txt file on the CD.

Appendix Figure 9 Folder structure of the CD

Source Code

112

K Source Code

K.1 Hdr_Confidant.h

#ifndef _hdr_confdiant
#define _hdr_confdiant
#include "path.h"
#include <map>

#define NROFTOTALNODES 50
#define NROFEVILNODES 0
#define BEARGRUDGE 1
#define CONFIDANTVERBOSE 1
#define CONFIDANTDEBUG 0

/*** constants for monitor ***/
#define PACK_TIMEOUT 0.5
#define LOG_TIMEOUT 100

/*** constants for reputation system ***/
#define INACTIVITY_FADING 0.9
#define TRUST_FADING 0.9
#define DEVIATION_THRESHOLD 0.5
#define SECONDHAND_INFO_WEIGHT 0.2
#define MISBEHAVIOR_TOLERANCE 0.9
#define UNTRUST_TOLERANCE 0.95
#define INACTIVITY_TIMEOUT 2
#define PUBLISHING_TIMEOUT 3
#define USING_TRUST 1

enum Behavior {NOMATCH, GOOD, NOTFORWARDING};

class Rating
{
 public:
 Rating() { alpha = 1.0; beta = 1.0;}
 Rating(double a, double b) { alpha = a; beta = b; last_t =
Scheduler::instance().clock();}
 void updateRating(double a, double b, double fading, double weight);
 inline double getAlpha() { return alpha; }
 inline double getBeta() { return beta; }
 inline Time getTime() { return last_t; }
 private:
 //the rating of misbehavior
 double alpha;
 //the rating of good behavior
 double beta;
 //last updated time
 Time last_t;
};

Source Code

113

class PackData {
 public:
 PackData();
 PackData(Packet* packet, Time t);
 Packet* packet;
 Time t;
};

typedef map<nsaddr_t, Rating*> RatingTable;
typedef map<int, PackData*> PackTable;

#endif

K.2 Monitor.h

#ifndef _monitor_h
#define _monitor_h

#include "dsragent.h"
#include "detector.h"
#include "hdr_confdiant.h"
#include "reputationsystem.h"
#include "routecache.h"
#include <map>

class DSRAgent;
class Detector;
class ReputationSystem;

class PackTableTimer : public TimerHandler {
public:
 PackTableTimer(Monitor *a) : TimerHandler() { a_ = a;}
 void expire(Event *e);
protected:
 Monitor *a_;
};

class Monitor {

public:
 Monitor();
 Monitor(DSRAgent* agent);
 void handleTap(const Packet* packet);
 //handle the tapped packet in promiscious mode. The function
 //will check whether the packet has been modified malicously
 //and report to Reputation System.
 void handlePublishInfo(nsaddr_t src, double identification, int count,
rating* ratings);
 //handle the first hand information packet sent by other nodes
 void handlePacketSent(Packet* packet);
 //the function insert the sent packet into the PACKTable and
 //associate the packet with a timout.
 void publishInfo(map<nsaddr_t, Rating*> ratings);

Source Code

114

 //Reputation System call this function to send the first hand
 //information to neighboring nodes.
 void setNetID(nsaddr_t netid);
 nsaddr_t getNetID();
 void setReputationSystem(ReputationSystem* rep_system);
 bool isPACK(int uid);
 void Terminate();

private:
 void packTableCheck();
 map<nsaddr_t, double> published_ids;
 PackTable pack_t;
 DSRAgent* dsragent;
 Detector* detector;
 ReputationSystem* reputation_system;
 nsaddr_t net_id;
 PackTableTimer* pack_table_timer;
 friend class PackTableTimer;

};

#endif //_monitor_h

K.3 Monitor.cc

#include "monitor.h"
#include <scheduler.h>
#include <random.h>
#include <iostream>
#include <fstream>

ofstream monitorlog("monitorlog.txt");

void
PackTableTimer::expire(Event *e)
{
 a_->packTableCheck();
 resched(PACK_TIMEOUT + PACK_TIMEOUT * Random::uniform(1.0));
}

/***
 **** Public functions of Monitor class *****
 ***/
Monitor::Monitor(DSRAgent* agent)
{
 this->dsragent = agent;
 this->detector = new Detector(this);
 pack_table_timer = new PackTableTimer(this);
 pack_table_timer->sched(PACK_TIMEOUT
 + PACK_TIMEOUT * Random::uniform(1.0));
}

void Monitor::handleTap(const Packet* packet)
{
 Behavior behavior;

Source Code

115

 hdr_sr *srh = hdr_sr::access(packet);
 hdr_ip *iph = hdr_ip::access(packet);
 hdr_cmn *cmh = hdr_cmn::access(packet);

 ID cur_hop(srh->addrs()[srh->cur_addr()-1]);
 nsaddr_t cur_addr = cur_hop.getNSAddr_t();

 int uid = cmh->uid();
 map<int, PackData*>::iterator it;

 it = pack_t.find(uid);
 if (!(it == pack_t.end()))
 {
 //pass to Detector to check
 behavior = detector->detect(packet, pack_t[uid]);
 if (CONFIDANTDEBUG)
 {
 monitorlog <<"Node " << net_id << " handleTap uid " << uid << "
address " << cur_addr;
 monitorlog << "'s behavior " << behavior << endl;
 }
 reputation_system->handleFirstHandInfo(cur_addr, behavior);
 //is correct???
 pack_t.erase(it);

 }
 else
 {
 if (CONFIDANTDEBUG)
 monitorlog << "Node " << net_id << " handleTap cannot find uid " <<
uid << " in pack_t" << endl;
 }
 return;
}

void Monitor::handlePublishInfo(nsaddr_t from, double identification,
int count, rating* ratings)
{
 //handle duplicate identification here
 //...
 /*
 map<nsaddr_t, double>::iterator it;
 it = published_ids.find(from);
 if (it != published_ids.end() && (it->second == identification))
 {
 return;
 }*/
 if (CONFIDANTDEBUG)
 {
 monitorlog << "Node " << net_id << " receive publish info from " <<
from;
 monitorlog << " identification: " << identification << " count " <<
count;
 }

 for (int i = 0; i < count ; i ++, ratings ++)
 {

Source Code

116

 if (CONFIDANTDEBUG)
 {
 monitorlog << " address " << ratings->addr << " alpha " <<
ratings->alpha;
 monitorlog << " beta " << ratings->beta << ", ";
 }
 if (ratings->addr != net_id)
 reputation_system->handleSecondHandInfo(from, ratings->addr,
ratings->alpha, ratings->beta);
 }
 if (CONFIDANTDEBUG)
 monitorlog << endl;
}

void Monitor::handlePacketSent(Packet* packet)
{
 Packet* copy_packet = packet->copy();

 hdr_cmn *cmh = hdr_cmn::access(copy_packet);
 hdr_sr *srh = hdr_sr::access(copy_packet);
 hdr_ip *iph = hdr_ip::access(copy_packet);

 int uid = cmh->uid();

 map<int, PackData*>::iterator it;
 it = pack_t.find(uid);
 if (it != pack_t.end())
 {
 if (CONFIDANTDEBUG)
 monitorlog << "Node _" << net_id << "_ Big Error: The same packet
is sent again!" << endl;
 //pack_t.erase(it);
 return;
 }

 if (srh->route_request() || srh->publish_info() || (cmh->next_hop()
== iph->daddr()))
 return;
 if (CONFIDANTDEBUG)
 monitorlog << "Node _" << net_id << "_ add packet uid " << uid << "
into pack_t" << endl;
 pack_t[uid] = new PackData(copy_packet,
Scheduler::instance().clock());
}

void Monitor::setNetID(nsaddr_t netid)
{
 this->net_id = netid;
}

nsaddr_t Monitor::getNetID()
{
 return this->net_id;
}

bool Monitor::isPACK(int uid)
{

Source Code

117

 map<int, PackData*>::iterator it;
 it = pack_t.find(uid);//if id doesn't exist it returns iterator to
the end
 bool result = !(it == pack_t.end());
 return result;
}

void Monitor::publishInfo(map<nsaddr_t, Rating*> ratings)
{
 dsragent->publishInfo(ratings);
}

void Monitor::setReputationSystem(ReputationSystem* rep_system)
{
 reputation_system = rep_system;
}

void Monitor::Terminate()
{
}

/***
 **** Private functions of Monitor class *****
 ***/
void Monitor::packTableCheck()
{
 map<int, PackData*>::iterator it;
 for(it = pack_t.begin();it!=pack_t.end();it++)
 {
 if ((Scheduler::instance().clock() -(it->second)->t)>PACK_TIMEOUT)
 {
 hdr_cmn *cmh = hdr_cmn::access(it->second->packet);
 //nsaddr_t pre_hop = cmh->prev_hop_;
 nsaddr_t next_hop = cmh->next_hop();
 if (CONFIDANTDEBUG || CONFIDANTVERBOSE)
 {
 monitorlog <<"Node " << net_id << " packTableCheck " << next_hop;
 monitorlog << " not forward packet uid " << it->first << endl;
 }
 reputation_system->handleFirstHandInfo(next_hop, NOTFORWARDING);
 pack_t.erase(it);
 }
 }
}

K.4 Reputationsystem.h

#ifndef _reputation_system
#define _reputation_system

#include "monitor.h"
#include "trustmanager.h"
#include "hdr_confdiant.h"
#include "dsragent.h"
#include <map>

Source Code

118

class ReputationSystem;
class DSRAgent;

class InactivityTimer : public TimerHandler {
 public:
 InactivityTimer(ReputationSystem *a) : TimerHandler() { a_ = a;}
 void expire(Event *e);
 protected:
 ReputationSystem *a_;
};

class PublishingTimer : public TimerHandler {
 public:
 PublishingTimer(ReputationSystem *a) : TimerHandler() { a_ = a;}
 void expire(Event *e);
 protected:
 ReputationSystem *a_;
};

class ReputationSystem
{
 public:
 /****** functions ******/
 ReputationSystem(DSRAgent* agent);
 //constructor
 void handleFirstHandInfo(nsaddr_t& address, Behavior behavior);
 //Handle firsthand oberserved information
 void handleSecondHandInfo(nsaddr_t from, nsaddr_t address, double
alpha, double beta);
 //Handle secondhand information published by neighbor node
 void setPathManager(RouteCache* pathmanager);
 void setNetID(nsaddr_t address);
 void Terminate();

 private:

 /****** functions ******/
 void handlePublishingTimeout();
 void handleInactivityTimeout();

 Rating* initNewRating(double alpha, double beta, double fading);
 void updateReputation(nsaddr_t address, double alpha, double beta,
double fading, double weight);
 bool deviationTest(nsaddr_t address, double alpha1, double beta1,
double alpha2, double beta2);
 bool isMisbehavedNode(nsaddr_t address);
 double BayeMean(double alpha, double beta);

 /****** variables ******/
 DSRAgent* dsragent;
 RouteCache* path_manager;
 TrustManager trust_manager;
 map<nsaddr_t, Rating*> firsthandinfo_t;
 RatingTable reputation_t;
 InactivityTimer* inactivity_timer;

Source Code

119

 PublishingTimer* publishing_timer;
 friend class InactivityTimer;
 friend class PublishingTimer;
 nsaddr_t net_id;
};
#endif

K.5 Reputationsystem.cc

#include "reputationsystem.h"
#include <scheduler.h>
#include <random.h>
#include <iostream>
#include <math.h>
#include <fstream>

ofstream reputationlog("reputationlog.txt");

void InactivityTimer::expire(Event * e)
{
 a_->handleInactivityTimeout();
 resched(INACTIVITY_TIMEOUT + INACTIVITY_TIMEOUT *
Random::uniform(1.0));
}

void PublishingTimer::expire(Event * e)
{
 a_->handlePublishingTimeout();
 resched(PUBLISHING_TIMEOUT + PUBLISHING_TIMEOUT *
Random::uniform(1.0));
}

/**
 **** Public functions of ReputationSystem class ****
 **/
ReputationSystem::ReputationSystem(DSRAgent* agent)
{
 this->dsragent = agent;
 this->inactivity_timer = new InactivityTimer(this);
 inactivity_timer->sched(INACTIVITY_TIMEOUT
 + INACTIVITY_TIMEOUT * Random::uniform(1.0));
 this->publishing_timer = new PublishingTimer(this);
 publishing_timer->sched(PUBLISHING_TIMEOUT
 + PUBLISHING_TIMEOUT * Random::uniform(1.0));
}

void ReputationSystem::handleFirstHandInfo(nsaddr_t& address, Behavior
behavior)
{
 short alpha = (behavior == GOOD) ? 0 : 1;
 map<nsaddr_t, Rating*>::iterator it;
 it = firsthandinfo_t.find(address);
 if (it == firsthandinfo_t.end())
 {
 if(CONFIDANTDEBUG)

Source Code

120

 {
 reputationlog << "Node " << net_id << " add new address " <<
address;
 reputationlog << " to firsthandinfo table" << endl;
 }
 firsthandinfo_t[address] = initNewRating(alpha, 1-alpha, 1);
 }
 else
 {
 (it->second)->updateRating(alpha, 1-alpha, INACTIVITY_FADING, 1);
 }
 if(CONFIDANTDEBUG)
 {
 reputationlog << "Node " << net_id << " handle firsthand info from
";
 reputationlog << address << " alpha " << alpha << " beta " << 1-
alpha << endl;
 }
 updateReputation(address, alpha, 1-alpha, INACTIVITY_FADING, 1);
 return;
}

void ReputationSystem::handleSecondHandInfo(nsaddr_t from, nsaddr_t
address, double alpha1, double beta1)
{
 map<nsaddr_t, Rating*>::iterator it;
 it = reputation_t.find(address);
 if (it == reputation_t.end())
 {
 reputation_t[address] = new Rating(1.0, 1.0);
 }

 double alpha2 = reputation_t[address]->getAlpha();
 double beta2 = reputation_t[address]->getBeta();
 bool isPass = deviationTest(address, alpha1, beta1, alpha2, beta2);
 if (((USING_TRUST == 1) && isPass) ||
 ((USING_TRUST == 1) && trust_manager.isTrustworthy(from)))
 {
 if(CONFIDANTDEBUG)
 {
 reputationlog << "Node " << net_id << " handle secondhand info
from ";
 reputationlog << from << ":" << address << " [" << alpha1 << ","
<< beta1 << "] ";
 reputationlog << " [" << alpha2 << "," << beta2 << "] " << endl;
 }
 updateReputation(address, alpha1, beta1, 1, SECONDHAND_INFO_WEIGHT);
 }
 double alpha = isPass ? 0 : 1;
 trust_manager.updateTrust(address, alpha, 1-alpha);
 return;
}

void ReputationSystem::setNetID(nsaddr_t address)
{
 net_id = address;
}

Source Code

121

void ReputationSystem::setPathManager(RouteCache* pathmanager)
{
 this->path_manager = pathmanager;
}

void ReputationSystem::Terminate()
{
 map<nsaddr_t, Rating*>::iterator it;
 for (it = reputation_t.begin(); it != reputation_t.end(); it ++)
 {
 reputationlog << "_" <<net_id << "_ Reputation values [" << it-
>first << ", alpha:";
 reputationlog << it->second->getAlpha() << ", beta:" << it->second-
>getBeta() << "] ";
 reputationlog << "mean: " << BayeMean(it->second->getAlpha(), it-
>second->getBeta()) << endl;
 }
 path_manager->Terminate(net_id);
}

/***
 **** Private functions of ReputationSystem class ****
 ***/
Rating* ReputationSystem::initNewRating(double alpha, double beta,
double fading)
{
 Rating* rating = new Rating(1.0, 1.0);
 rating->updateRating(alpha, beta, fading, 1);
 return rating;
}

void ReputationSystem::updateReputation(nsaddr_t address, double alpha,
double beta, double fading, double weight)
{
 map<nsaddr_t, Rating*>::iterator it;
 it = reputation_t.find(address);
 if (it == reputation_t.end())
 {
 reputation_t[address] = initNewRating(alpha, beta, 1);
 }
 else
 {
 if (CONFIDANTDEBUG)
 {
 reputationlog << "Before updating: ";
 reputationlog << "_" << net_id <<"_ node "<<address <<": [";
 reputationlog << (it->second)->getAlpha() <<","<<(it->second)-
>getBeta()<<"]"<<endl;
 }
 (it->second)->updateRating(alpha, beta, fading, weight);
 }
 it = reputation_t.find(address);
 if (CONFIDANTDEBUG)
 {
 reputationlog << "After updating: ";

Source Code

122

 reputationlog << "_" << net_id <<"_ node "<<address <<" reputation
updated: [";
 reputationlog << (it->second)->getAlpha() <<","<<(it->second)-
>getBeta()<<"]"<<endl;
 }
 if (isMisbehavedNode(address))
 {
 if (CONFIDANTDEBUG)
 reputationlog << "Node " << address << " is put into _" << net_id
<< "_ misbehaved list" << endl;
 path_manager->addMisbehavedNode(address);
 }
 else
 {
 path_manager->removeMisbehavedNode(address);
 }
 return;
}

void ReputationSystem::handleInactivityTimeout()
{
 map<nsaddr_t, Rating*>::iterator it;
 for (it = firsthandinfo_t.begin(); it != firsthandinfo_t.end(); it ++)
 {
 if ((Scheduler::instance().clock() - (it->second)->getTime()) >
INACTIVITY_TIMEOUT)
 (it->second)->updateRating(0, 0, INACTIVITY_FADING, 1);
 }

 map<nsaddr_t, Rating*>::iterator it2;
 for (it2 = reputation_t.begin(); it2 != reputation_t.end(); it2 ++)
 {
 if ((Scheduler::instance().clock() - (it2->second)->getTime()) >
INACTIVITY_TIMEOUT)
 (it2->second)->updateRating(0, 0, INACTIVITY_FADING, 1);
 }

 trust_manager.handleInactivityTimeout();
}

void ReputationSystem::handlePublishingTimeout()
{
 if (firsthandinfo_t.empty())
 return;

 if(CONFIDANTDEBUG)
 {
 map<nsaddr_t, Rating*>::iterator it;
 it = firsthandinfo_t.begin();
 reputationlog << "Node " << net_id << " at ";
 reputationlog << Scheduler::instance().clock() << "publish time out
";

 while (it != firsthandinfo_t.end())
 {
 double alpha = (it->second)->getAlpha();
 double beta = (it->second)->getBeta();

Source Code

123

 reputationlog << "[" << it->first << ": " << alpha << "," << beta
<<"]";
 it ++;
 }
 reputationlog << endl;
 }

 dsragent->publishInfo(firsthandinfo_t);
}

bool ReputationSystem::deviationTest(nsaddr_t address, double alpha1,
double beta1, double alpha2, double beta2)
{
 if ((alpha1 + beta1) == 0)
 cout << "Big error! The rading of address " << address << "is zero";
 double d = (double) (alpha1/(alpha1+beta1)) -(double)
(alpha2/(alpha2+beta2));
 double dev = fabs(d);
 return (dev > DEVIATION_THRESHOLD) ? false:true;
}

double ReputationSystem::BayeMean(double alpha, double beta)
{
 return alpha/(alpha+beta);
}

bool ReputationSystem::isMisbehavedNode(nsaddr_t address)
{
 map<nsaddr_t, Rating*>::iterator it;
 it = reputation_t.find(address);
 if (it != reputation_t.end())
 {
 double alpha = (it->second)->getAlpha();
 double beta = (it->second)->getBeta();
 double dev = alpha/(alpha+beta);
 bool rlt = (dev >= MISBEHAVIOR_TOLERANCE) ? true:false;
 if (CONFIDANTDEBUG && rlt)
 {
 reputationlog << "Node " << address << " ["<<alpha << "," <<
beta << ",";
 reputationlog << dev << "] is misbehaved node" << endl;
 }
 return rlt;
 }
 else
 {
 if (CONFIDANTDEBUG)
 reputationlog << "Cannot find node " << address << endl;
 return false;
 }
}

K.6 Trustmanager.h

#ifndef _TRUST_MANAGER

Source Code

124

#include "hdr_confdiant.h"
#include <map>

class TrustManager
{
 public:
 void updateTrust(nsaddr_t address, double alpha, double beta);
 bool isTrustworthy(nsaddr_t from);
 void handleInactivityTimeout();

 private:
 Rating* initNewRating(double alpha, double beta, double fading);
 map<nsaddr_t, Rating*> trust_t;
};
#endif

K.7 Trustmanager.cc

#include "trustmanager.h"

/**
 **** Public functions of TrustManager class ****
 **/
void TrustManager::updateTrust(nsaddr_t address, double alpha, double
beta)
{
 map<nsaddr_t, Rating*>::iterator it;
 it = trust_t.find(address);
 if (it == trust_t.end())
 {
 trust_t[address] = initNewRating(alpha, beta, 1);
 }
 else
 {
 (it->second)->updateRating(alpha, beta, TRUST_FADING, 1);
 }
}

bool TrustManager::isTrustworthy(nsaddr_t from)
{
 map<nsaddr_t, Rating*>::iterator it;
 it = trust_t.find(from);
 if (it != trust_t.end())
 {
 double alpha = (it->second)->getAlpha();
 double beta = (it->second)->getBeta();
 double dev = alpha/(alpha+beta);
 return (dev >= UNTRUST_TOLERANCE) ? false:true;
 }
 else
 return true;
}

Source Code

125

void TrustManager::handleInactivityTimeout()
{
 map<nsaddr_t, Rating*>::iterator it;
 for (it = trust_t.begin(); it != trust_t.end(); it ++)
 {
 if ((Scheduler::instance().clock() - (it->second)->getTime()) >
INACTIVITY_TIMEOUT)
 (it->second)->updateRating(0, 0, TRUST_FADING, 1);
 }
}

/***
 **** Private functions of TrustManager class ****
 ***/
Rating* TrustManager::initNewRating(double alpha, double beta, double
fading)
{
 Rating* rating = new Rating(1.0, 1.0);
 rating->updateRating(alpha, beta, fading, 1);
 return rating;
}

K.8 Pathmanager.cc

extern "C" {
#include <stdio.h>
#include <stdarg.h>
};

#undef DEBUG

#include <scheduler.h>
#include <random.h>
#include <god.h>
#include "path.h"
#include "routecache.h"
#include "hdr_confdiant.h"
#ifdef DSR_CACHE_STATS
#include "cache_stats.h"
#endif
#include <iostream>
#include <set>
#include <fstream>

#define fout stdout

static const int verbose = 0;
static const int verbose_debug = 0;

ofstream pathmanagerlog("pathmanagerlog.txt");
ofstream misbehavenodeslog("misbehavenodeslog.txt");

/*===
 function selectors

Source Code

126

---*/
bool cache_ignore_hints = false; // ignore all hints?
bool cache_use_overheard_routes = true;
// if we are A, and we over hear a rt Z Y (X) W V U, do we add route
// A X W V U to the cache?

/*===
 Class declaration
---*/
class PathManager;

class Cache {
friend class PathManager;

public:
 Cache(char *name, int size, PathManager *rtcache);
 ~Cache();

 int pickVictim(int exclude = -1);
 // returns the index of a suitable victim in the cache
 // will spare the life of exclude
 bool searchRoute(const ID& dest, int& i, Path &path, int &index);
 // look for dest in cache, starting at index,
 //if found, rtn true with path s.t. cache[index] == path && path[i]
== dest
 Path* addRoute(Path &route, int &prefix_len);
 // rtns a pointer the path in the cache that we added
 void noticeDeadLink(const ID&from, const ID& to);
 // the link from->to isn't working anymore, purge routes containing
 // it from the cache

private:
 Path *cache;
 int size;
 int victim_ptr; // next victim for eviction
 PathManager *routecache;
 char *name;
};

///class
LogTimer : public TimerHandler {
 public:
 LogTimer(PathManager *a) : TimerHandler() { a_ = a;}
 void expire(Event *e);
 protected:
 PathManager *a_;
};

///
class PathManager: public RouteCache
{
friend class Cache;
friend class MobiHandler;

public:

Source Code

127

 PathManager(const ID& MAC_id, const ID& net_id, int psize = 30,int
ssize = 34);
 PathManager();
 ~PathManager();
 void noticeDeadLink(const ID&from, const ID& to, Time t);
 // the link from->to isn't working anymore, purge routes containing
 // it from the cache
 void noticeRouteUsed(const Path& route, Time t,
 const ID& who_from);
 // tell the cache about a route we saw being used
 void addRoute(const Path& route, Time t, const ID& who_from);
 // add this route to the cache (presumably we did a route request
 // to find this route and don't want to lose it)
 bool findRoute(ID dest, Path& route, int for_use = 0);
 // if there is a cached path from us to dest returns true and fills
in
 // the route accordingly. returns false otherwise
 // if for_use, then we assume that the node really wants to keep
 // the returned route so it will be promoted to primary storage if
not there
 // already
 int command(int argc, const char*const* argv);
 //CONFIDANT
 void addMisbehavedNode(nsaddr_t address);
 //add a misbehaved node to the misbehaved node list. This function is
called
 // by reputation manager.
 void removeMisbehavedNode(nsaddr_t address);
 //remove a node to the misbehaved node list. This function is called
 // by reputation manager.
 bool isNodeSafe(nsaddr_t address);
 // Is a node safe from the opinion of current node?
 bool isPathSafe(const Path& path);
 // Is a path safe from the opinion of current node?
 void checkDropReason(ID dest);
 // Check the reason why packets are dropped from send buffer. The
reason
 // could be no route in the route cache or only bad routes. This
function
 // is called by dsragent::dropSendBuff
 void Terminate(nsaddr_t id);
 // Do the clean up work when the simulation terminiate.

protected:
 Cache *primary_cache; /* routes that we are using, or that we have
reason
 to believe we really want to hold on to */
 Cache *secondary_cache; /* routes we've learned via a speculative
process
 that might not pan out */

#ifdef DSR_CACHE_STATS
 void periodic_checkCache(void);
 void checkRoute(Path *p, int action, int prefix_len);
 void checkRoute(Path &p, int&, int&, double&, int&, int&, double &);
#endif

Source Code

128

private:
 void handleLogTimeout();
 bool isNodeEvil(nsaddr_t id); //is the node actually evil?
 bool isPathEvil(const Path& path); //does the path actually contain
evil node?
 multiset<nsaddr_t> misbehavednode_list;
 LogTimer* log_timer;
 friend class LogTimer;
};

RouteCache *
makeRouteCache()
{
 return new PathManager();
}

/*===
 OTcl definition
---*/
static class PathManagerClass : public TclClass {
public:
 PathManagerClass() : TclClass("PathManager") {}
 TclObject* create(int, const char*const*) {
 return (new PathManager);
 }
} class_PathManager;

/*===
 Constructors
---*/
PathManager::PathManager(): RouteCache()
{
 primary_cache = new Cache("primary", 60, this);
 secondary_cache = new Cache("secondary", 128, this);
 //secondary_cache = new Cache("secondary", 10000, this);
 assert(primary_cache != NULL && secondary_cache != NULL);
#ifdef DSR_CACHE_STATS
 stat.reset();
#endif
 this->log_timer = new LogTimer(this);
 log_timer->sched(LOG_TIMEOUT);
}

PathManager::~PathManager()
{
 delete primary_cache;
 delete secondary_cache;
}

int
PathManager::command(int argc, const char*const* argv)
{
 if(argc == 2 && strcasecmp(argv[1], "startdsr") == 0)
 {
 if (ID(1,::IP) == net_id)

Source Code

129

 trace("Sconfig %.5f using PathManager",
Scheduler::instance().clock());
 // FALL-THROUGH
 }
 return RouteCache::command(argc, argv);
}

#ifdef DSR_CACHE_STATS

void
PathManager::periodic_checkCache()
{
 int c;
 int route_count = 0;
 int route_bad_count = 0;
 int subroute_count = 0;
 int subroute_bad_count = 0;
 int link_bad_count = 0;
 double link_bad_time = 0.0;
 int link_bad_tested = 0;
 int link_good_tested = 0;

 for(c = 0; c < primary_cache->size; c++)
 {
 int x = 0;

 if (primary_cache->cache[c].length() == 0) continue;

 checkRoute(primary_cache->cache[c],
 x,
 link_bad_count,
 link_bad_time,
 link_bad_tested,
 link_good_tested,
 stat.link_good_time);

 route_count += 1;
 route_bad_count += x ? 1 : 0;

 subroute_count += primary_cache->cache[c].length() - 1;
 subroute_bad_count += x;
 }
 for(c = 0; c < secondary_cache->size; c++)
 {
 int x = 0;

 if (secondary_cache->cache[c].length() == 0) continue;

 checkRoute(secondary_cache->cache[c],
 x,
 link_bad_count,
 link_bad_time,
 link_bad_tested,
 link_good_tested,
 stat.link_good_time);

 route_count += 1;

Source Code

130

 route_bad_count += x ? 1 : 0;

 subroute_count += secondary_cache->cache[c].length() - 1;
 subroute_bad_count += x;
 }

 // lifetime of good link is (total time) / (total num links - num bad
links)
 stat.link_good_time = stat.link_good_time / (subroute_count -
link_bad_count);

 trace("SRC %.9f _%s_ cache-summary %d %d %d %d | %d %.9f %d %d | %d
%d %d %d %d | %d %d %d %d %d | %d %d %d %d %d %d %.9f",
 Scheduler::instance().clock(), net_id.dump(),
 route_count,
 route_bad_count,
 subroute_count,
 subroute_bad_count,

 link_bad_count,
 link_bad_count ? link_bad_time/link_bad_count : 0.0,
 link_bad_tested,
 link_good_tested,

 stat.route_add_count,
 stat.route_add_bad_count,
 stat.subroute_add_count,
 stat.subroute_add_bad_count,
 stat.link_add_tested,

 stat.route_notice_count,
 stat.route_notice_bad_count,
 stat.subroute_notice_count,
 stat.subroute_notice_bad_count,
 stat.link_notice_tested,

 stat.route_find_count,
 stat.route_find_for_me,
 stat.route_find_bad_count,
 stat.route_find_miss_count,
 stat.subroute_find_count,
 stat.subroute_find_bad_count,

 stat.link_good_time);
 stat.reset();
}

#endif /* DSR_CACHE_STATS */

/*===
 member functions
---*/

void
PathManager::addRoute(const Path& route, Time t, const ID& who_from)
// add this route to the cache (presumably we did a route request
// to find this route and don't want to lose it)

Source Code

131

// who_from is the id of the routes provider
{
 Path rt;

 if(pre_addRoute(route, rt, t, who_from) == 0)
 return;

 // must call addRoute before checkRoute
 int prefix_len = 0;

#ifdef DSR_CACHE_STATS
 Path *p = primary_cache->addRoute(rt, prefix_len);
 checkRoute(p, ACTION_ADD_ROUTE, prefix_len);
#else
 (void) primary_cache->addRoute(rt, prefix_len);
#endif
}

void
PathManager::noticeDeadLink(const ID&from, const ID& to, Time)
 // the link from->to isn't working anymore, purge routes containing
 // it from the cache
{
 if(verbose_debug)
 trace("SRC %.9f _%s_ dead link %s->%s",
 Scheduler::instance().clock(), net_id.dump(),
 from.dump(), to.dump());

 primary_cache->noticeDeadLink(from, to);
 secondary_cache->noticeDeadLink(from, to);
 return;
}

void
PathManager::noticeRouteUsed(const Path& p, Time t, const ID& who_from)
// tell the cache about a route we saw being used
{
 Path stub;
 if(pre_noticeRouteUsed(p, stub, t, who_from) == 0)
 return;

 int prefix_len = 0;

#ifdef DSR_CACHE_STATS
 Path *p0 = secondary_cache->addRoute(stub, prefix_len);
 checkRoute(p0, ACTION_NOTICE_ROUTE, prefix_len);
#else
 (void) secondary_cache->addRoute(stub, prefix_len);
#endif
}

bool
PathManager::findRoute(ID dest, Path& route, int for_me)
// if there is a cached path from us to dest returns true and fills in
// the route accordingly. returns false otherwise
// if for_me, then we assume that the node really wants to keep

Source Code

132

// the returned route so it will be promoted to primary storage if not
there
// already
{
 Path path;
 int min_index = -1;
 int min_length = MAX_SR_LEN + 1;
 int min_cache = 0; // 2 == primary, 1 = secondary
 int index;
 int len;
 bool falseBad = false; //whether false bad route exists

 assert(!(net_id == invalid_addr));

 index = 0;
 while (primary_cache->searchRoute(dest, len, path, index))
 {
 bool isSafe = isPathSafe(path);
 bool isEvil = isPathEvil(path);
 //CONFIDANT the node thinks the route is not safe but actually it
is good
 //and discarded by mistake
 if (!isSafe && !isEvil)
 falseBad = true;
 //CONFIDANT do not return routes containing evil nodes
 if (isSafe)
 {
 if (len < min_length)
 {
 min_cache = 2;
 min_length = len;
 route = path;
 }
 }
 index++;
 }

 index = 0;
 while (secondary_cache->searchRoute(dest, len, path, index))
 {
 bool isSafe = isPathSafe(path);
 bool isEvil = isPathEvil(path);
 //CONFIDANT the node thinks the route is not safe but actually it
is good
 //and discarded by mistake
 if (!isSafe && !isEvil)
 falseBad = true;
 //CONFIDANT do not return routes containing evil nodes
 if (isSafe)
 {
 if (len < min_length)
 {
 min_index = index;
 min_cache = 1;
 min_length = len;
 route = path;
 }

Source Code

133

 }
 index++;
 }

 if (min_cache == 1 && for_me)
 { // promote the found route to the primary cache
 int prefix_len;

 primary_cache->addRoute(secondary_cache->cache[min_index],
prefix_len);

 // no need to run checkRoute over the Path* returned from
 // addRoute() because whatever was added was already in
 // the cache.

 // prefix_len = 0
 // - victim was selected in primary cache
 // - data should be "silently" migrated from primary to
the
 // secondary cache
 // prefix_len > 0
 // - there were two copies of the first prefix_len routes
 // in the cache, but after the migration, there will be
 // only one.
 // - log the first prefix_len bytes of the secondary cache
 // entry as "evicted"
 if(prefix_len > 0)
 {
 secondary_cache->cache[min_index].setLength(prefix_len);
#ifdef DSR_CACHE_STATS
 checkRoute_logall(&secondary_cache->cache[min_index],
 ACTION_EVICT, 0);
#endif
 }
 secondary_cache->cache[min_index].setLength(0); // kill route
 }

 if (min_cache)
 {
 route.setLength(min_length + 1);
 if (verbose_debug)
 trace("SRC %.9f _%s_ $hit for %s in %s %s",
 Scheduler::instance().clock(), net_id.dump(),
 dest.dump(), min_cache == 1 ? "secondary" : "primary",
 route.dump());
#ifdef DSR_CACHE_STATS
 int bad = checkRoute_logall(&route, ACTION_FIND_ROUTE, 0);
 stat.route_find_count += 1;
 if (for_me) stat.route_find_for_me += 1;
 stat.route_find_bad_count += bad ? 1 : 0;
 stat.subroute_find_count += route.length() - 1;
 stat.subroute_find_bad_count += bad;
#endif
 //CONFIDANT statistic only
 if (isPathEvil(route))
 {
 //evil path selected

Source Code

134

 pathmanagerlog << "NotOK: " << route[0].getNSAddr_t()<<" -->
"<<dest.getNSAddr_t()<< " Route: " << route.dump() <<endl;
 if (falseBad)
 {
 //good path discarded. Instead a evil path is selected.
 pathmanagerlog << "GD: " << route[0].getNSAddr_t()<<" -->
"<<dest.getNSAddr_t()<< " Route: " << route.dump() <<endl;
 }
 }
 else
 {
 //good path selected
 pathmanagerlog << "OK: " << route[0].getNSAddr_t()<<" -->
"<<dest.getNSAddr_t()<< " Route: " << route.dump() <<endl;
 }

 return true;
 }
 else
 {
 if (verbose_debug)
 trace("SRC %.9f _%s_ find-route [%d] %s->%s miss %d %.9f",
 Scheduler::instance().clock(), net_id.dump(),
 0, net_id.dump(), dest.dump(), 0, 0.0);
#ifdef DSR_CACHE_STATS
 stat.route_find_count += 1;
 if (for_me) stat.route_find_for_me += 1;
 stat.route_find_miss_count += 1;
#endif
 return false;
 }
}

/*===
 class Cache routines
---*/

Cache::Cache(char *name, int size, PathManager *rtcache)
{
 this->name = name;
 this->size = size;
 cache = new Path[size];
 routecache = rtcache;
 victim_ptr = 0;
}

Cache::~Cache()
{
 delete[] cache;
}

bool
Cache::searchRoute(const ID& dest, int& i, Path &path, int &index)
 // look for dest in cache, starting at index,
 //if found, return true with path s.t. cache[index] == path && path[i]
== dest
{

Source Code

135

 for (; index < size; index++)
 for (int n = 0 ; n < cache[index].length(); n++)
 if (cache[index][n] == dest)
 {
 i = n;
 path = cache[index];
 return true;
 }
 return false;
}

Path*
Cache::addRoute(Path & path, int &common_prefix_len)
{
 int index, m, n;
 int victim;

 // see if this route is already in the cache
 for (index = 0 ; index < size ; index++)
 { // for all paths in the cache
 for (n = 0 ; n < cache[index].length() ; n ++)
 { // for all nodes in the path
 if (n >= path.length()) break;
 if (cache[index][n] != path[n]) break;
 }
 if (n == cache[index].length())
 { // new rt completely contains cache[index] (or cache[index] is
empty)
 common_prefix_len = n;
 for (; n < path.length() ; n++)
 cache[index].appendToPath(path[n]);
 if (verbose_debug)
 routecache->trace("SRC %.9f _%s_ %s suffix-rule (len %d/%d)
%s",
 Scheduler::instance().clock(), routecache->net_id.dump(),
 name, n, path.length(), path.dump());
 goto done;
 }
 else if (n == path.length())
 { // new route already contained in the cache
 common_prefix_len = n;
 if (verbose_debug)
 routecache->trace("SRC %.9f _%s_ %s prefix-rule (len %d/%d)
%s",
 Scheduler::instance().clock(), routecache->net_id.dump(),
 name, n, cache[index].length(), cache[index].dump());
 goto done;
 }
 else
 { // keep looking at the rest of the cache
 }
 }

 // there are some new goodies in the new route
 victim = pickVictim();
 if(verbose_debug) {
 routecache->trace("SRC %.9f _%s_ %s evicting %s",

Source Code

136

 Scheduler::instance().clock(), routecache-
>net_id.dump(),
 name, cache[victim].dump());
 routecache->trace("SRC %.9f _%s_ while adding %s",
 Scheduler::instance().clock(), routecache-
>net_id.dump(),
 path.dump());
 }
 cache[victim].reset();
 CopyIntoPath(cache[victim], path, 0, path.length() - 1);
 common_prefix_len = 0;
 index = victim; // remember which cache line we stuck the path into

done:

#ifdef DEBUG
 {
 Path &p = path;
 int c;
 char buf[1000];
 char *ptr = buf;
 ptr += sprintf(buf,"Sdebug %.9f _%s_ adding ",
 Scheduler::instance().clock(), routecache-
>net_id.dump());
 for (c = 0 ; c < p.length(); c++)
 ptr += sprintf(ptr,"%s [%d %.9f] ",p[c].dump(), p[c].link_type,
p[c].t);
 routecache->trace(buf);
 }
#endif //DEBUG

 // freshen all the timestamps on the links in the cache
 for (m = 0 ; m < size ; m++)
 { // for all paths in the cache

#ifdef DEBUG
 {
 if (cache[m].length() == 0) continue;

 Path &p = cache[m];
 int c;
 char buf[1000];
 char *ptr = buf;
 ptr += sprintf(buf,"Sdebug %.9f _%s_ checking ",
 Scheduler::instance().clock(), routecache-
>net_id.dump());
 for (c = 0 ; c < p.length(); c++)
 ptr += sprintf(ptr,"%s [%d %.9f] ",p[c].dump(), p[c].link_type,
p[c].t);
 routecache->trace(buf);
 }
#endif //DEBUG

 for (n = 0 ; n < cache[m].length() - 1 ; n ++)
 { // for all nodes in the path
 if (n >= path.length() - 1) break;
 if (cache[m][n] != path[n]) break;

Source Code

137

 if (cache[m][n+1] == path[n+1])
 { // freshen the timestamps and type of the link

#ifdef DEBUG
routecache->trace("Sdebug %.9f _%s_ freshening %s->%s to %d %.9f",
 Scheduler::instance().clock(), routecache->net_id.dump(),
 path[n].dump(), path[n+1].dump(), path[n].link_type,
 path[n].t);
#endif //DEBUG

 cache[m][n].t = path[n].t;
 cache[m][n].link_type = path[n].link_type;
 /* NOTE: we don't check to see if we're turning a TESTED
 into an UNTESTED link. Last change made rules -dam
5/19/98 */
 }
 }
 }
 return &cache[index];
}

void
Cache::noticeDeadLink(const ID&from, const ID& to)
 // the link from->to isn't working anymore, purge routes containing
 // it from the cache
{
 for (int p = 0 ; p < size ; p++)
 { // for all paths in the cache
 for (int n = 0 ; n < (cache[p].length()-1) ; n ++)
 { // for all nodes in the path
 if (cache[p][n] == from && cache[p][n+1] == to)
 {
 if(verbose_debug)
 routecache->trace("SRC %.9f _%s_ %s truncating %s %s",
 Scheduler::instance().clock(),
 routecache->net_id.dump(),
 name, cache[p].dump(),
 cache[p].owner().dump());
#ifdef DSR_CACHE_STATS
 routecache->checkRoute(&cache[p], ACTION_CHECK_CACHE, 0);
 routecache->checkRoute_logall(&cache[p], ACTION_DEAD_LINK,
n);
#endif
 if (n == 0)
 cache[p].reset(); // kill the whole path
 else {
 cache[p].setLength(n+1); // truncate the path here
 cache[p][n].log_stat = LS_UNLOGGED;
 }

 if(verbose_debug)
 routecache->trace("SRC %.9f _%s_ to %s %s",
 Scheduler::instance().clock(), routecache-
>net_id.dump(),
 cache[p].dump(), cache[p].owner().dump());

Source Code

138

 break;
 } // end if this is a dead link
 } // end for all nodes
 } // end for all paths
 return;
}

int
Cache::pickVictim(int exclude)
// returns the index of a suitable victim in the cache
// never return exclude as the victim, but rather spare their life
{
 for(int c = 0; c < size ; c++)
 //CONFIDANT select a bad route as victim
 if ((cache[c].length() == 0) || !routecache->isPathSafe(cache[c]))
 return c;

 int victim = victim_ptr;
 while (victim == exclude)
 {
 victim_ptr = (victim_ptr+1 == size) ? 0 : victim_ptr+1;
 victim = victim_ptr;
 }
 victim_ptr = (victim_ptr+1 == size) ? 0 : victim_ptr+1;

#ifdef DSR_CACHE_STATS
 routecache->checkRoute(&cache[victim], ACTION_CHECK_CACHE, 0);
 int bad = routecache->checkRoute_logall(&cache[victim], ACTION_EVICT,
0);
 routecache->trace("SRC %.9f _%s_ evicting %d %d %s",
 Scheduler::instance().clock(), routecache-
>net_id.dump(),
 cache[victim].length() - 1, bad, name);
#endif
 return victim;
}

#ifdef DSR_CACHE_STATS

/*
 * Called only for the once-per-second cache check.
 */
void
PathManager::checkRoute(Path & p,
 int & subroute_bad_count,
 int & link_bad_count,
 double & link_bad_time,
 int & link_bad_tested,
 int & link_good_tested,
 double & link_good_time)
{
 int c;
 int flag = 0;

 if(p.length() == 0)
 return;
 assert(p.length() >= 2);

Source Code

139

 for (c = 0; c < p.length() - 1; c++)
 {
 assert(LS_UNLOGGED == p[c].log_stat || LS_LOGGED ==
p[c].log_stat);
 if (God::instance()->hops(p[c].getNSAddr_t(),
p[c+1].getNSAddr_t()) != 1)
 { // the link's dead
 if(p[c].log_stat == LS_UNLOGGED)
 {
 trace("SRC %.9f _%s_ check-cache [%d %d] %s->%s dead %d
%.9f",
 Scheduler::instance().clock(), net_id.dump(),
 p.length(), c, p[c].dump(), p[c+1].dump(),
 p[c].link_type, p[c].t);
 p[c].log_stat = LS_LOGGED;
 }
 if(flag == 0)
 {
 subroute_bad_count += p.length() - c - 1;
 flag = 1;
 }
 link_bad_count += 1;
 link_bad_time += Scheduler::instance().clock() - p[c].t;
 link_bad_tested += (p[c].link_type == LT_TESTED) ? 1 : 0;
 }
 else
 {

 link_good_time += Scheduler::instance().clock() - p[c].t;

 if(p[c].log_stat == LS_LOGGED)
 {
 trace("SRC %.9f _%s_ resurrected-link [%d %d] %s->%s dead
%d %.9f",
 Scheduler::instance().clock(), net_id.dump(),
 p.length(), c, p[c].dump(), p[c+1].dump(),
 p[c].link_type, p[c].t);
 p[c].log_stat = LS_UNLOGGED;
 }
 link_good_tested += (p[c].link_type == LT_TESTED) ? 1 : 0;
 }
 }
}

void
PathManager::checkRoute(Path *p, int action, int prefix_len)
{
 int c;
 int subroute_bad_count = 0;
 int tested = 0;

 if(p->length() == 0)
 return;
 assert(p->length() >= 2);

 assert(action == ACTION_ADD_ROUTE ||

Source Code

140

 action == ACTION_CHECK_CACHE ||
 action == ACTION_NOTICE_ROUTE);

 for (c = 0; c < p->length() - 1; c++)
 {
 if (God::instance()->hops((*p)[c].getNSAddr_t(),
 (*p)[c+1].getNSAddr_t()) != 1)
 { // the link's dead
 if((*p)[c].log_stat == LS_UNLOGGED)
 {
 trace("SRC %.9f _%s_ %s [%d %d] %s->%s dead %d %.9f",
 Scheduler::instance().clock(), net_id.dump(),
 action_name[action], p->length(), c,
 (*p)[c].dump(), (*p)[c+1].dump(),
 (*p)[c].link_type, (*p)[c].t);

 (*p)[c].log_stat = LS_LOGGED;
 }

 if(subroute_bad_count == 0)
 subroute_bad_count = p->length() - c - 1;
 }
 else
 {
 if((*p)[c].log_stat == LS_LOGGED)
 {
 trace("SRC %.9f _%s_ resurrected-link [%d %d] %s->%s dead
%d %.9f",
 Scheduler::instance().clock(), net_id.dump(),
 p->length(), c, (*p)[c].dump(), (*p)[c+1].dump(),
 (*p)[c].link_type, (*p)[c].t);
 (*p)[c].log_stat = LS_UNLOGGED;
 }
 }
 tested += (*p)[c].link_type == LT_TESTED ? 1 : 0;
 }

 /*
 * Add Route or Notice Route actually did something
 */
 if(prefix_len < p->length())
 {
 switch(action)
 {
 case ACTION_ADD_ROUTE:
 stat.route_add_count += 1;
 stat.route_add_bad_count += subroute_bad_count ? 1 : 0;
 stat.subroute_add_count += p->length() - prefix_len - 1;
 stat.subroute_add_bad_count += subroute_bad_count;
 stat.link_add_tested += tested;
 break;

 case ACTION_NOTICE_ROUTE:
 stat.route_notice_count += 1;
 stat.route_notice_bad_count += subroute_bad_count ? 1 : 0;
 stat.subroute_notice_count += p->length() - prefix_len - 1;
 stat.subroute_notice_bad_count += subroute_bad_count;

Source Code

141

 stat.link_notice_tested += tested;
 break;
 }
 }
}
#endif /* DSR_CACHE_STATS */

void PathManager::addMisbehavedNode(nsaddr_t address)
{
 if (misbehavednode_list.find(address) == misbehavednode_list.end())
 {
 //cout << "*****node " << address << " is put in misbehaved list";
 misbehavednode_list.insert(misbehavednode_list.begin(), address);
 }
}

void PathManager::removeMisbehavedNode(nsaddr_t address)
{
 multiset<nsaddr_t>::iterator mit;
 mit = misbehavednode_list.find(address);
 if (mit != misbehavednode_list.end())
 {
 //cout << "*****node " << address << " is removed from misbehaved
list";
 misbehavednode_list.erase(mit);
 }
}

bool PathManager::isNodeSafe(nsaddr_t address)
{
 return (misbehavednode_list.find(address) ==
misbehavednode_list.end());
}

bool PathManager::isPathSafe(const Path& path)
{
 Path mypath = path.copy();
 mypath.resetIterator();

 while (mypath.index() < mypath.length())
 {
 ID id = mypath.next();
 if (misbehavednode_list.find(id.getNSAddr_t()) !=
misbehavednode_list.end())
 return false;
 }
 return true;
}

void PathManager::checkDropReason(ID dest)
{
 Path path;
 int index;
 int len;
 bool goodRoute = false;
 bool badRoute = false;
 bool falseBad = false;

Source Code

142

 assert(!(net_id == invalid_addr));

 index = 0;
 while (primary_cache->searchRoute(dest, len, path, index))
 {
 if (isPathSafe(path))
 {
 goodRoute = true;
 break;
 }
 else
 {
 badRoute = true;
 if (!isPathEvil(path))
 {
 falseBad = true;
 }
 }
 index++;
 }
 if (!goodRoute)
 {
 index = 0;
 while (secondary_cache->searchRoute(dest, len, path, index))
 {
 if (isPathSafe(path))
 {
 goodRoute = true;
 break;
 }
 else
 {
 badRoute = true;
 if (!isPathEvil(path))
 {
 falseBad = true;
 }
 }
 index++;
 }
 }

 if (goodRoute)
 {
 pathmanagerlog << "DROP_GOOD_ROUTE: " << net_id.getNSAddr_t() << "
-- " << dest.getNSAddr_t() << endl;
 }
 else if (! (goodRoute || badRoute))
 {
 pathmanagerlog << "DROP_NO_ROUTE: " << net_id.getNSAddr_t() << " --
" << dest.getNSAddr_t() << endl;
 }
 else if (!goodRoute && badRoute)
 {
 pathmanagerlog << "DROP_BAD_ROUTE " << net_id.getNSAddr_t() << " --
" << dest.getNSAddr_t() << endl;

Source Code

143

 if (falseBad)
 pathmanagerlog << "DROP_FALSE_BAD_ROUTE " << net_id.getNSAddr_t()
<< " -- " << dest.getNSAddr_t() << endl;
 }
 else
 {
 pathmanagerlog << "DROP_UNKNOWN " << net_id.getNSAddr_t() << " -- "
<< dest.getNSAddr_t();
 pathmanagerlog << " [" << goodRoute << "," << badRoute << "," <<
falseBad << "]" << endl;
 }
}

void PathManager::Terminate(nsaddr_t id)
{
 multiset<nsaddr_t>::iterator it;
 misbehavenodeslog << "_" << id << "_ at "
<<Scheduler::instance().clock()<< " Misbehaved nodes are: ";
 for (it = misbehavednode_list.begin(); it !=
misbehavednode_list.end(); it ++)
 {
 misbehavenodeslog << *it << ", ";
 }
 misbehavenodeslog << endl;
}

bool PathManager::isNodeEvil(nsaddr_t id)
{
 //evil nodes id are in this array
 //for now they are hardcoded but they should be read from a file
 nsaddr_t* evilnodes;

 if (NROFTOTALNODES == 50)
 {
 nsaddr_t nodes[] = {1,3,7,11,16,21,27,34,43,45,
 5,10,19,23,29,31,35,39,41,49,
 2,8,13,17,25,26,32,37,42,47,
 0,9,12,14,20,24,30,33,40,48};//max of 40
 evilnodes = nodes;
 }
 else if (NROFTOTALNODES == 40)
 {
 nsaddr_t nodes[] =
{1,3,7,10,13,16,17,19,23,26,29,30,33,36,37,39};//max of 16
 evilnodes = nodes;
 }
 else if (NROFTOTALNODES == 30)
 {
 nsaddr_t nodes[] = {1,3,7,10,13,16,17,19,23,26,29,30};//max of
12
 evilnodes = nodes;
 }

 for(int i = 0; i<NROFEVILNODES;evilnodes++, i++)
 {
 if(id == *evilnodes)
 {

Source Code

144

 //cerr<< "Node :"<< id << " is evil in Trust DSR"
<<endl;
 return true;
 }
 }
 return false;
}

bool PathManager::isPathEvil(const Path& path)
{
 Path mypath = path.copy();
 mypath.resetIterator();
 while (mypath.index() < mypath.length())
 {
 ID id = mypath.next();
 if (isNodeEvil(id.getNSAddr_t()))
 return true;
 }
 return false;
}
void PathManager::handleLogTimeout()
{
 Terminate(net_id.getNSAddr_t());
}
void LogTimer::expire(Event * e)
{
 a_->handleLogTimeout();
 resched(LOG_TIMEOUT);
}

//#endif

K.9 DSRParser.java

import java.io.*;
import java.util.*;
import java.util.regex.PatternSyntaxException;

//Used to parse Trace files
public class DSRParser {
 public static int NROFNODES = 0;
 public static int NROFEVILNODES = 0;

 public DSRParser(){
 }

 /*
 ** THe methods reads from the file given as argument
 */
 public void parseTrace(String filename) {
 try
 {
 FileReader in = new FileReader(filename);
 BufferedReader reader = new BufferedReader(in);
 String line;
 int i = 0; //nr of lines

Source Code

145

 int s = 0; //number of sent data packets
 int r =0; //number of received data packets
 int D = 0; //drop old format
 int SRReq = 0; //number of route request sent
 int SRRly = 0; //number of route reply sent
 int ERRly = 0; //evil drop of route reply
 int EDATA = 0; //number of evil drop of data packet
 int ERE = 0; //evil drop of route error
 int ED = 0; //other evil drop
 int RRR = 0; //receive route reply
 int DEVIL = 0; //drop data packets from evil nodes
 int DXMIT = 0; //drop data packets due to link error
 int Ssb = 0; //send buffer drop
 int ES = 0; //send data packet from evil nodes
 int GS = 0; //send data packet from good nodes
 int ER = 0; //receive data packet from evil nodes
 int GR = 0; //receive data packet from good nodes
 int SRR = 0; //send route reply
 int S = 0;//Send DSR

 int D_RTR_NRTE = 0; //drop due to no route
 int D_RTR_TOUT = 0; //drop due to packet time out
 int D_RTR_SAL = 0; //drop due to salvage
 int D_RTR_CBK = 0; //drop due to mac callback
 int D_RTR_TTL = 0;
 int D_RTR_ROUTE_LOOP = 0;
 int D_RTR_END = 0; //drop due to termination
 int D_IFQ_IFQ = 0; //drop due to ifq full
 int D_IFQ_ARP = 0; //drop due to arp
 int D_IFQ_END = 0; //drop due to ifq termination
 int DDATA = 0; //drop of data packet

 int nodedrop[] = new int[NROFNODES];

 for (int j = 0; j < nodedrop.length; j ++)
 nodedrop[j] = 0;

 line = reader.readLine();
 while(line != null) {
 line = line.trim();
 if (!line.equals("")) {
 StringTokenizer st = new StringTokenizer(line);
 String value = st.nextToken(" ");

 if(value.equals("D")) {
 //old format D
 //several drops can occur when the simulation ends
 //and these are not counted
 D++;
 String[] strs = line.split(" ");
 if ((strs.length > 5) && line.indexOf("cbr") > 0) {
 if (strs[3].equals("RTR") && strs[4].equals("NRTE")) {
 D_RTR_NRTE ++;
 DDATA ++;
 } else if (strs[3].equals("RTR") &&
strs[4].equals("TOUT")) {
 D_RTR_TOUT ++;

Source Code

146

 DDATA ++;
 } else if (strs[3].equals("RTR") &&
strs[5].equals("SAL")) {
 D_RTR_SAL ++;
 DDATA ++;
 } else if (strs[3].equals("RTR") &&
strs[5].equals("CBK")) {
 D_RTR_CBK ++;
 DDATA ++;
 } else if (strs[3].equals("RTR") &&
strs[5].equals("TTL")) {
 D_RTR_TTL ++;
 DDATA ++;
 } else if (strs[3].equals("RTR") &&
strs[5].equals("END")) {
 D_RTR_END ++;
 DDATA ++;
 } else if (strs[3].equals("RTR") &&
strs[5].equals("LOOP")) {
 D_RTR_ROUTE_LOOP ++;
 DDATA ++;
 } else if (strs[3].equals("IFQ") &&
strs[5].equals("IFQ")) {
 D_IFQ_IFQ ++;
 DDATA ++;
 } else if (strs[3].equals("IFQ") &&
strs[5].equals("ARP")) {
 D_IFQ_ARP ++;
 DDATA ++;
 } else if (strs[3].equals("IFQ") &&
strs[5].equals("END")) {
 D_IFQ_END ++;
 DDATA ++;
 }
 }
 } else if(value.equals("EDATA")) {
 EDATA++;
 String[] data = line.split(" ");
 String str = data[2].substring(1);
 String str2 = str.substring(0, str.length()-1);
 int nodenr = Integer.parseInt(str2);
 nodedrop[nodenr]++;
 } else if(value.equals("ED")) {
 ED++;
 } else if(value.equals("SRReq")) {
 SRReq++;
 } else if(value.equals("SRRly")) {
 SRRly++;
 } else if(value.equals("ERRly")) {
 ERRly++;
 } else if(value.equals("RRR")) {
 RRR++;
 } else if(value.equals("ERE")) {
 ERE++;
 } else if(value.equals("DEVIL")) {
 DEVIL++;
 } else if(value.equals("DXMIT")) {

Source Code

147

 DXMIT++;
 } else if(value.equals("Ssb")) {
 Ssb++;
 } else if(value.equals("ESend")) {
 ES++;
 } else if(value.equals("GSend")) {
 GS++;
 } else if(value.equals("ERecv")) {
 ER++;
 } else if(value.equals("GRecv")) {
 GR++;
 } else if(value.equals("SRR")) {
 SRR++;
 } else if(value.equals("s")) {
 s++;
 } else if(value.equals("S")) {
 S++;
 } else if(value.equals("r")) {
 r++;
 } else {
 }
 }
 i++;//we read 1 more line
 line = reader.readLine();
 }

 System.out.println("Read: " + i + " lines");
 System.out.println("D (old format): " + D + " ");
 System.out.println("s: " + s + " ");
 System.out.println("r: " + r + " ");
 System.out.println("SRReq: " + SRReq + " ");
 System.out.println("SRRly: " + SRRly + " ");
 System.out.println("ERRly: " + ERRly + " ");
 System.out.println("EDATA: "+ EDATA + " ");
 System.out.println("ERE: " + ERE + " ");
 System.out.println("ED: " + ED + " ");
 System.out.println("RRR: " + RRR + " ");
 System.out.println("DEVIL: " + DEVIL + " ");
 System.out.println("DXMIT: " + DXMIT + " ");
 System.out.println("Ssb: " + Ssb + " ");
 System.out.println("SRR: " + SRR);
 System.out.println("ESend: " + ES + " ");
 System.out.println("GSend: " + GS + " ");
 System.out.println("ERecv: " + ER + " ");
 System.out.println("GRecv: " + GR + " ");
 System.out.println("DDATA: " + DDATA + " ");
 System.out.println("D_RTR_NRTE: " + D_RTR_NRTE + " ");
 System.out.println("D_RTR_TOUT: " + D_RTR_TOUT + " ");
 System.out.println("D_RTR_SAL: " + D_RTR_SAL + " ");
 System.out.println("D_RTR_CBK: " + D_RTR_CBK + " ");
 System.out.println("D_RTR_TTL: " + D_RTR_TTL + " ");
 System.out.println("D_RTR_ROUTE_LOOP: " + D_RTR_ROUTE_LOOP + " ");
 System.out.println("D_RTR_END: " + D_RTR_END + " ");
 System.out.println("D_IFQ_IFQ: " + D_IFQ_IFQ + " ");
 System.out.println("D_IFQ_ARP: " + D_IFQ_ARP + " ");
 System.out.println("D_IFQ_END: " + D_IFQ_END + " ");

Source Code

148

 double percent = ((s-r)*100)/s;
 System.out.println("Percentage dropped of send: "+percent+" ");
 if (GS != 0)
 System.out.println("Good node throughput: "+ GR*100/GS);
 if (ES != 0)
 System.out.println("Evil node throughput: "+ ER*100/ES);

 System.out.println("");
 System.out.println("Nodes dropped packets: ");
 for (int k = 0; k < nodedrop.length; k ++) {
 System.out.println("node " + k + ": " + nodedrop[k]);
 }

 reader.close();
 }
 catch(IOException ie)
 {
 System.out.println("Usage: DSRParser trace filename");
 //System.out.println(ie.getMessage());
 }
 }

 public void parseRouteStats(String fileName) {
 try {
 FileReader in = new FileReader(fileName);
 BufferedReader reader = new BufferedReader(in);
 String line = "";
 int count = 0;
 //the resson of ssb drop
 int drop_total = 0;
 int drop_good_route = 0;
 int drop_no_route = 0;
 int drop_bad_route = 0;
 int drop_false_bad_route = 0;
 int drop_unknown = 0;
 //statistics of route selection
 int good_route_selected = 0;
 int good_route_discarded = 0;
 int false_good_selected = 0;

 line = reader.readLine();
 while(line != null) {
 line = line.trim();
 if (!line.equals("")) {
 count ++;
 StringTokenizer st = new StringTokenizer(line);
 String value = st.nextToken(": ");
 if (value.equals("DROP_GOOD_ROUTE")) {
 drop_good_route ++;
 drop_total ++;
 } else if (value.equals("DROP_NO_ROUTE")) {
 drop_no_route ++;
 drop_total ++;
 } else if (value.equals("DROP_BAD_ROUTE")) {
 drop_bad_route ++;
 drop_total ++;
 } else if (value.equals("DROP_FALSE_BAD_ROUTE")) {

Source Code

149

 drop_false_bad_route ++;
 } else if (value.equals("DROP_UNKNOWN")) {
 drop_unknown ++;
 drop_total ++;
 } else if (value.equals("OK")) {
 good_route_selected ++;
 } else if (value.equals("NotOK")) {
 false_good_selected ++;
 } else if (value.equals("GD")) {
 good_route_discarded ++;
 }
 }
 line = reader.readLine();
 }
 System.out.println("DROP_GOOD_ROUTE: " + drop_good_route);
 System.out.println("DROP_NO_ROUTE: " + drop_no_route);
 System.out.println("DROP_BAD_ROUTE: " + drop_bad_route);
 System.out.println("DROP_FALSE_BAD_ROUTE: " +
drop_false_bad_route);
 System.out.println("DROP_UNKNOWN: " + drop_unknown);
 System.out.println("Total drop: " + drop_total);
 System.out.println();
 System.out.println("Good route selected: " +
good_route_selected);
 System.out.println("Bad route selected: " +
false_good_selected);
 System.out.println("Good route discarded: " +
good_route_discarded);
 int total_selection = good_route_selected + false_good_selected;
 System.out.println("Total selection: " + total_selection);
 System.out.println();
 System.out.println(count + " lines are parsed.");

 reader.close();
 } catch(IOException ie) {
 System.out.println("Usage: DSRParser routestats filename");
 //System.out.println(ie.getMessage());
 }
 }

 public void parseReputationMean(String fileName) {
 try {
 FileReader in = new FileReader(fileName);
 BufferedReader reader = new BufferedReader(in);
 String line = "";
 int count = 0;
 int nomatch = 0;
 double[][] reputations = new double[NROFNODES][NROFNODES];
 double[] averageMean = new double[NROFNODES];
 double[] median = new double[NROFNODES];
 double[] mode = new double[NROFNODES];

 //init reputation mean values
 for (int i = 0; i < NROFNODES; i ++) {
 for (int j = 0; j < NROFNODES; j ++) {
 reputations[i][j] = -1.0;
 }

Source Code

150

 averageMean[i] = -1.0;
 }

 String fnumber = "([0-9])+.?([0-9])*[e,E]?([+,-])?([0-9])*";
 String pattern = "_([0-9])+_ Reputation values \\p{Punct}([0-
9])+\\p{Punct} alpha:" + fnumber +
 "\\p{Punct} beta:" + fnumber + "\\p{Punct} mean: " +
fnumber;

 line = reader.readLine();
 while(line != null) {
 count ++;
 line = line.trim();
 if (!line.matches(pattern)) {
 //System.out.println("Strings not match! " + "line " +
count + ":" + line);
 nomatch ++;
 line = reader.readLine();
 continue;
 }

 int hostNode;
 int custNode;
 double mean;
 int leftSquare;
 int meanStart;

 hostNode = Integer.parseInt(line.substring(1,line.indexOf("_",
1)));
 leftSquare = line.indexOf("[");
 custNode = Integer.parseInt(line.substring(leftSquare+1,
line.indexOf(",", leftSquare)));
 meanStart = line.indexOf("mean: ") + 6;
 mean = Double.parseDouble(line.substring(meanStart));

 if (hostNode > NROFNODES || custNode > NROFNODES)
 throw new Exception("Node number out of range!");

 reputations[hostNode][custNode] = mean;
 line = reader.readLine();
 }
 System.out.println("Average mean reputation of each node:");
 for (int j = 0; j < NROFNODES; j ++) {
 int n = 0;
 double total = 0;
 for (int i = 0; i < NROFNODES; i ++) {
 if (reputations[i][j] < 0) {
 continue;
 }
 n ++;
 total += reputations[i][j];
 }
 averageMean[j] = total/n;
 //System.out.println("Node " + j + ": " + averageMean[j]);
 System.out.println(averageMean[j]);
 }

Source Code

151

 System.out.println("\nMedian mean reputation of each node:");
 for (int j = 0; j < NROFNODES; j ++) {
 double[] sorted = sort(reputations, j);
 int n = 0;
 for (int i = 0; i < NROFNODES; i ++) {
 if (reputations[i][j] < 0) {
 continue;
 }
 n ++;
 }

 if ((n != 0) && (n%2 == 0)) {
 int n2 = n/2;
 median[j] = (sorted[n2-1]+sorted[n2])/2;
 } else {
 median[j] = sorted[n/2];
 }
 System.out.println(median[j]);
 }

 System.out.println("\nMode mean reputation of each node:");
 for (int j = 0; j < NROFNODES; j ++) {
 Object[] modelist = mode(reputations, j);
 for (int i = 0; i < modelist.length; i ++) {
 if (i != 0) {
 System.out.print(",");
 }
 System.out.print(((Double)modelist[i]).doubleValue());
 }
 System.out.println();
 }

 System.out.println();
 System.out.println("Detailed mean reputation of a node saved in
each node:");
 for (int j = 0; j < NROFNODES; j ++) {
 System.out.println("<<<Node " + j + ">>>");
 for (int i = 0; i < NROFNODES; i ++) {
 if (reputations[i][j] < 0) {
 System.out.println("X");
 } else {
 System.out.println(reputations[i][j]);
 }
 }
 System.out.println();
 }
 } catch(IOException ie) {
 System.out.println("Usage: DSRParser reputation filename");
 //System.out.println(ie.getMessage());
 } catch (PatternSyntaxException pe){
 pe.printStackTrace();
 } catch (Exception e){
 e.printStackTrace();
 }
 }

 public void parseMisbihaviorIdentify(String fileName) {

Source Code

152

 try {
 FileReader in = new FileReader(fileName);
 BufferedReader reader = new BufferedReader(in);
 String line = "";
 int count = 0;
 int nomatch = 0;
 double[] correctPercent = new double[9];
 double[] wrongPercent = new double[9];
 int correctCount = 0;
 int wrongCount = 0;
 int curTime = 1;

 for (int i = 0; i < 9; i ++) {
 correctPercent[i] = 0.0;
 wrongPercent[i] = 0.0;
 }

 String pattern = "_([0-9])+_ at ([0-9])+ Misbehaved nodes are:
(([0-9])+,)*";
 line = reader.readLine();
 while(line != null) {
 count ++;
 //line = line.trim();
 if (!line.matches(pattern)) {
 System.out.println("Strings not match! " + "line " + count
+ ":" + line);
 nomatch ++;
 line = reader.readLine();
 continue;
 }

 int timeStart;
 int timeEnd;
 int time;
 int evilNodesStart;
 String[] evilNodes;
 timeStart = line.indexOf("at ") + 3;
 timeEnd = line.indexOf(" ", timeStart);
 time = Integer.parseInt(line.substring(timeStart, timeEnd));
 if (time > curTime*100) {
 //Record percentage of correct/wrong identify at a specific
time
 //Then reset the counters.
 correctPercent[curTime-1] =
((correctCount*100)/NROFNODES)/NROFEVILNODES;
 wrongPercent[curTime-1] =
((wrongCount*100)/NROFNODES)/NROFEVILNODES;
 correctCount = 0;
 wrongCount = 0;
 curTime = time/100;
 }

 if (time <= curTime*100) {
 evilNodesStart = line.indexOf("Misbehaved nodes are: ") +
22;
 String str = line.substring(evilNodesStart);
 evilNodes = str.split(",");

Source Code

153

 for (int i = 0; i < evilNodes.length; i ++) {
 evilNodes[i] = evilNodes[i].trim();
 if (!evilNodes[i].equals("")) {
 int nr = Integer.parseInt(evilNodes[i]);
 if (isEvil(nr, NROFEVILNODES)) {
 correctCount ++;
 } else if (nr < NROFNODES) {
 wrongCount ++;
 }
 }
 }
 }
 line = reader.readLine();
 }

 correctPercent[curTime-1] =
((correctCount*100)/NROFNODES)/NROFEVILNODES;
 wrongPercent[curTime-1] =
((wrongCount*100)/NROFNODES)/NROFEVILNODES;
 correctCount = 0;
 wrongCount = 0;

 for (int i = 0; i < 9; i ++) {
 int time = (i + 1) * 100;
 System.out.println("Identify rate at " + time + " is:");
 System.out.println("Correct: " + correctPercent[i]);
 System.out.println("Wrong: " + wrongPercent[i]);
 }
 System.out.println();
 System.out.println("Total line number is " + count);
 System.out.println("Not matched line number is " + nomatch);

 } catch(IOException ie) {
 System.out.println("Usage: DSRParser reputation filename");
 //System.out.println(ie.getMessage());
 }
 }

 /* a sort algorithm. After sort the largest value is at the
beginning
 * of the sorted array and smallest value is at the end.
 */
 private double[] sort(double[][] originValues, int column) {
 double[] sorted = new double[NROFNODES];
 for (int i = 0; i < NROFNODES; i ++) {
 sorted[i] = originValues[i][column];
 }
 for (int i = 0; i < NROFNODES -1; i ++) {
 for (int j = 0; j < NROFNODES -1 - i; j ++) {
 double temp;
 if (sorted[j] < sorted[j+1]) {
 temp = sorted[j];
 sorted[j] = sorted[j+1];
 sorted[j+1] = temp;
 }
 }
 }

Source Code

154

 return sorted;
 }

 private Object[] mode(double[][] originValues, int column) {
 ArrayList modes = new ArrayList();
 int[][] newValues = new int[NROFNODES][2];
 for (int i = 0; i < NROFNODES; i ++) {
 newValues[i][0] = (int)(originValues[i][column]*100);
 newValues[i][1] = -1; //mark
 }

 for (int i = 0; i < NROFNODES; i ++) {
 //skip those have the mean value of -1.0 or have been
calculated
 if ((newValues[i][0] == -100) || (newValues[i][1] != -1)) {
 continue;
 }
 int value = newValues[i][0];
 int count = 0;
 for (int j = 0; j < NROFNODES; j ++) {
 if (value == newValues[j][0]) {
 count ++;
 newValues[j][1] = 0; // marked as haven being calculated
 }
 }
 newValues[i][1] = count;
 }
 int max = 0;
 for (int i = 0; i < NROFNODES; i ++) {
 if (newValues[i][1] > max) {
 max = newValues[i][1];
 }
 }
 for (int i = 0; i < NROFNODES; i ++) {
 if (newValues[i][1] == max) {
 modes.add(new Double((double)newValues[i][0]/100.0));
 }
 }
 return modes.toArray();
 }

 private boolean isEvil(int id, int NROFEVILNODES) {
 //int[] evilnodes = {1,2,7,10,16,19,23,13,24,5};//max of 10

 int[] evilnodes = {1,3,7,11,16,21,27,34,43,45,
 5,10,19,23,29,31,35,39,41,49,
 2,8,13,17,25,26,32,37,42,47,
 0,9,12,14,20,24,30,33,40,48};//max of 40

 for(int i = 0; i<NROFEVILNODES;i++) {
 if(id == evilnodes[i]) {
 return true;
 }
 }
 return false;
 }

Source Code

155

 private int getEvilPos(int id, int NROFEVILNODES) {
 int[] evilnodes = {1,3,7,11,16,21,27,34,43,45,
 5,10,19,23,29,31,35,39,41,49,
 2,8,13,17,25,26,32,37,42,47,
 0,9,12,14,20,24,30,33,40,48};//max of 40

 for(int i = 0; i<NROFEVILNODES;i++) {
 if(id == evilnodes[i]) {
 return i;
 }
 }
 return -1;
 }

 public static void main(String args[]) throws Exception
 {
 System.out.println("DSRParser!");
 if (args.length < 4) {
 throw new Exception("Wrong parameters! Please use command " +
 "java DSRParser [parse type] [file name] [totl
nodes] [evil nodes]\n" +
 "parse type: trace, routestats, reputation,
misbehave\n");

 }

 NROFNODES = Integer.parseInt(args[2]);
 NROFEVILNODES = Integer.parseInt(args[3]);

 String filename = args[1];
 DSRParser dsr = new DSRParser();
 if (args[0].equals("trace"))
 dsr.parseTrace(filename);
 else if (args[0].equals("routestats"))
 dsr.parseRouteStats(filename);
 else if (args[0].equals("reputation"))
 dsr.parseReputationMean(filename);
 else if (args[0].equals("misbehave")) {
 dsr.parseMisbihaviorIdentify(filename);
 }
 else {
 System.out.println("Wrong parameters! Please use command "+
 "java DSRParser [parse type] [file name] [nr of evil
nodes]");
 System.out.println("parse type: trace, routestats, reputation,
misbehave");
 }
 }
}

K.10 Runtestscript.tcl

#LC tcl file for trust simulations with DSR

#==
Define options

Source Code

156

#==
set val(chan) Channel/WirelessChannel ;# channel type
set val(prop) Propagation/TwoRayGround ;# radio-propagation
model
set val(netif) Phy/WirelessPhy ;# network interface
type
set val(mac) Mac/802_11 ;# MAC type
#set val(ifq) Queue/DropTail/PriQueue ;# interface queue
type
set val(ll) LL ;# link layer type
set val(ant) Antenna/OmniAntenna ;# antenna model
set val(ifqlen) 1000 ;# max packet in
ifq
set val(rp) DSR ;# routing protocol
set val(seed) 1.0 ;#
if { $val(rp) == "DSR" } {
 set val(ifq) CMUPriQueue
} else {
 set val(ifq) Queue/DropTail/PriQueue
}

------------------- simulation with 25 nodes ------------
set val(nn) 50 ;# number of mobilenodes
set val(x) 1000 ;# X dimension of the topography
set val(y) 1000 ;# Y dimension of the
topography
set val(stop) 900.0 ;# simulation time
set val(path) /home/s031001/projects/NetSim/ns-allinone-
2.28/ns-2.28

#The cbr pattern is defined in this file and assiociated with cb
#30 connections
set val(cp) "$val(path)/tcl/ex/confdiant/50nodes/cbr-50-r2";

#The scenario (nodes movement and connections) is defined in this file
and assiociated with sc
set val(sc) "$val(path)/tcl/ex/confdiant/50nodes/scen-50-
m1-1";

#==
Agent/Null set sport_ 0
Agent/Null set dport_ 0

Agent/CBR set sport_ 0
Agent/CBR set dport_ 0

unity gain, omni-directional antennas
set up the antennas to be centered in the node and 1.5 meters above
it
Antenna/OmniAntenna set X_ 0
Antenna/OmniAntenna set Y_ 0
Antenna/OmniAntenna set Z_ 1.5
Antenna/OmniAntenna set Gt_ 1.0
Antenna/OmniAntenna set Gr_ 1.0

the above parameters result in a nominal range of 250m
set nominal_range 250.0

Source Code

157

set configured_range -1.0
set configured_raw_bitrate -1.0

#Phy/WirelessPhy set bandwidth_ 11e6
#Mac/802_11 set basicRate_ 0
#Mac/802_11 set dataRate_ 0
#Mac/802_11 set bandwidth_ 11e6 ;
#Mac/802_11 set PLCPDataRate_ 11e6;

#==
Main Program
#==
#Create a simulator object
set ns_ [new Simulator]

#Open the trace file
set tracefd [open conf-out-tdsr.tr w]
$ns_ trace-all $tracefd
#$ns_ use-newtrace

set the new channel interface.
#set chan [new $val(chan)]

#Open the nam file
set namtrace [open confout.nam w]
$ns_ namtrace-all-wireless $namtrace $val(x) $val(y)

#Set up topography object to keep track of movement of nodes
set topo [new Topography]

#Provide topography object with coordinates
$topo load_flatgrid $val(x) $val(y)

Create God
create-god $val(nn)

#Configure the nodes
 $ns_ node-config -adhocRouting $val(rp) \
 -llType $val(ll) \
 -macType $val(mac) \
 -ifqType $val(ifq) \
 -ifqLen $val(ifqlen) \
 -antType $val(ant) \
 -propType $val(prop) \
 -phyType $val(netif) \
 -channelType $val(chan)\
 -topoInstance $topo \
 -agentTrace ON \
 -routerTrace OFF \
 -macTrace OFF \
 -movementTrace ON
 #-channel $chan

#Create the specified number of mobilenodes [$val(nn)] and "attach"
them

Source Code

158

#to the channel.

 for {set i 0} {$i < $val(nn) } {incr i} {
 puts "i: $i"
 set node_($i) [$ns_ node]

 $node_($i) random-motion 0 ;# disable random
motion
 }

#Define node movement model

puts "Loading connection pattern..."
source $val(cp)

#Define traffic model
puts "Loading scenario file..."
source $val(sc)

Define node initial position in nam
for {set i 0} {$i < $val(nn)} {incr i} {

 # 25 defines the node size in nam, must adjust it according to your
scenario
 # The function must be called after mobility model is defined

 $ns_ initial_node_pos $node_($i) 50
}

#Tell nodes when the simulation ends
for {set i 0} {$i < $val(nn) } {incr i} {
 $ns_ at $val(stop).0 "$node_($i) reset";
}

$ns_ at $val(stop).0002 "puts \"NS EXITING...\" ; $ns_ halt"

puts $tracefd "Confidant Wrote this!"
puts $tracefd "M 0.0 nn $val(nn) x $val(x) y $val(y) rp $val(rp)"
puts $tracefd "M 0.0 sc $val(sc) cp $val(cp) seed $val(seed)"
puts $tracefd "M 0.0 prop $val(prop) ant $val(ant)"

puts "Starting Simulation..."

$ns_ run

K.11 Run.sh

#!/bin/sh

export CLASSPATH=.

for i in "1" "2" "3" "4" "5"
do

Source Code

159

 echo "running simulation $i..."
 cd ns-allinone-2.28/ns-2.28
 ./ns simscripts/$1nodes/rundsrscript$i.tcl
 mv conf-out-tdsr.tr ../../parser
 mv monitorlog.txt ../../parser/r2/evil$2/scen$i
 mv reputationlog.txt ../../parser/r2/evil$2/scen$i
 mv pathmanagerlog.txt ../../parser/r2/evil$2/scen$i
 mv misbehavenodeslog.txt ../../parser/r2/evil$2/scen$i
 cd ../../parser
 java DSRParser trace conf-out-tdsr.tr $1 $2 >
r2/evil$2/scen$i/scen-r2-$i.txt
 java DSRParser routestats r2/evil$2/scen$i/pathmanagerlog.txt $1 $2
>> r2/evil$2/scen$i/scen-r2-$i.txt
 cd ..
done

K.12 Runsim.sh

#!/bin/sh

export CLASSPATH=.

#./run1.sh

for i in "0" "10" "20" "30" "40"
do
 echo "Simulating evil nodes no. $i ..."
 cp params/50nodes/hdr_confdiant.hevil$i ns-allinone-2.28/ns-
2.28/dsr/hdr_confdiant.h
 cd ns-allinone-2.28/ns-2.28
 rm dsr/*.o
 make
 cd ../..
 ./run.sh 50 $i
done

