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Abstra
t
The fo
us of this thesis is on Statisti
al and Numeri
al Approa
hes for solving ill-posedde
onvolution (or inverse) problems using the L-Curve for Tikhonov's Regularization,Maximum A Priori (MAP), Maximum Likelihood (both viewed in the 
ontext of Sta-tisti
al Regularization), Eviden
e Framework for Bayesian Inferen
e and VariationalBayesian Expe
ted Maximization (VBEM) as an alternative method for optimizing theparameters in the Bayesian Inferen
e Framework.Furthermore, 
on
ise treatments of Empiri
al Bayes, ML Expe
ted Maximization al-gorithm, Variational Bayes ML and Variational MAP are given.The main aim and obje
tive is to have a new look at Regularization s
hemes within theStatisti
al and Numeri
al environment. We therefore 
ompare and 
ontrast existing andnew methods and based on the formulae given by the methods �nd their 
orrespondingestimates to see whether they exhibit some 
onsisten
ies in results.
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Nomen
lature
We used the following symbols and abbreviations.
g̃ is the output of dimension n.
K dis
retized kernel matrix of dimension n× n.
Σ 
ovarian
e matrix.
D diagonal matrix 
onsisting of the singular values of K
U matrix 
onsisting of the left singular ve
tors of K
V matrix 
onsisting of the right singular ve
tors of K
fls standard Least Squares estimator for true f .
d ve
tor 
onsisting of the singular values of K.
f is the n-ve
tor to be found.
ui Left Singular Ve
tor at ith 
olumn.
vi Right Singular Ve
tor at ith 
olumn.
λ2

rls numeri
al regularization parameter.
λ2

eb empiri
al bayes regularization parameter.
λ2

ml statisti
al regularization parameter.
α equivalent to λ2

ml.
β pre
ision parameter noise varian
e.
fmapλml,σ

MAP posterior estimate for f .viii
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Introdu
tion
The main purpose of data modelling is to design models that 
an 
apture the relevant in-formation from a noisy observed data. This task have always drawn experts from various�elds of study into desgning systems or models with the goal of �nding an explanationto the underlying stru
ture of the data at hand. However, this is not easy to a
hievesin
e we base our de
isions on the results of �ltering or predi
tions or inferen
es aboutthe data we have in hand and possibly on what we expe
ted to observe before the dataarrived.It is often very di�
ult to know whi
h aspe
ts of the data are relevant for an inferen
eor �ltering (or predi
tion) task and whi
h part should be regarded as noise.In this thesis, we exploit both Numeri
al and Statisti
al approa
hes to modelling aninverse problem with emphasis on methods and estimates for a parti
ular appli
ation.We 
onsider the standard model g̃ = Kf + ǫ where it is assumed that K ∈ Rn×n and ofrank n, f ∈ Rn and ǫ has mean zero and varian
e a s
alar multiple of the identity matrix
I. We fo
us on the 
ase where the Least Squares do not make sense when put into the
ontext of the Physi
s, Chemistry and engineering of the pro
ess whi
h is generating thedata g̃.The goal is to treat Tikhonov's form of Regularization from both Numeri
al and Sta-tisti
al viewpoints by 
omparing methods Numeri
ally and Statisti
ally and further usethe methods to estimate the parameters in the models to see whether 
onsisten
ies existsamong the methods.In order to enhan
e 
onsisten
y in our work, we dealt with a parti
ular problem andmaintained the same number of parameters throughout our work. We 
ategorized thewhole thesis into the following Chapters:Chapter 1 is devoted to only the simulation model. It treats the given problem as aFredholm integral equation of the �rst kind. Chapter 2 is about Numeri
al Least Squaresand Regularization and Chapter 3 handles the same problem using Sto
hasti
 Modelling
on
epts within the Statististi
al environment. Chapter 4 follows with a 'Take Home'message about some 
omparisons between the Numeri
al and Statisti
al Framework.Chapter 5 is about Numeri
al and Statisti
al Estimation Theory and our 
ontributionswith Chapter 6 showing results from the estimates based on the methods.1



CHAPTER  Simulation Model
The model problem to be used in this thesis is a geomagneti
 prospe
ting problem takenfrom [1℄. We will use it as our simulation model for de
onvolution (or the inverseproblem). Figure (1.1) assumes a 1-D horizontal mass distribution at a depth h below agiven surfa
e. It shows the geometry and the lo
ation of the s and t axes.

0 1

h

t

S

g(s)

f(t)
̺

Figure 1.1: A geometri
al illustration of a gravity surveying problem in 1− dimension. The measuredsignal g(s) is the verti
al 
omponent of the gravity �eld due to a 1 − dimensional massdistribution f(t) at a depth h.1.0.1 Problem FormulationOur obje
tive is to determine or estimate the input f and at the same time minimizesome performan
e 
riterion. The formulation of the problem requires that we do thefollowing:
(i) Give a mathemati
al des
ription of the overall system to be dealt with.
(ii) Give a statement of 
onstraints where ne
essary.
(iii) Give a spe
i�
ation of a performan
e 
riterion.1.0.2 Mathemati
al ModelFrom the measurements of the verti
al 
omponent of the gravity �eld, denoted g(s), atthe surfa
e, we want to 
ompute the mass distribution, denoted f(t), along the t-axis.In the following, we derive below the ne
essary equations governing the model to be usedin this thesis.

2



CHAPTER 1. SIMULATION MODEL 3Given a small in�nitesimal 
hange dt of the mass distribution f(t), the 
orrespondingsmall 
hange dg is given by
dg =

sin(̺)

r2
f(t)dt (1.1)and the distan
e between the two points on the s and t axes is given by r =

√

h2 + (s− t)2.Using that sin (̺) = h/r, we get
sin(̺)

r2
=

h

[h2 + (s− t)2] 3
2

(1.2)The total value of g for any s is
g(s) =

∫ 1

0

h

[h2 + (s− t)2] 3
2

f(t)dt (1.3)with the limit of integration 
onstrained to lie within the unit line. Equation (1.3) leadsto a de
onvolution problem for 
omputing the latent variable f with kernel h/ {h2 +

(s − t)2}− 3
2 . The dis
retization of the 
ontinuous integral equation (1.3) together withthe measured output g is always 
ontaminated with errors. Furthermore, numeri
al
omputations often involve non-negligible rounding errors. Su
h ina

ura
ies alwayslead to inevitably small perturbations whi
h make the dire
t pra
ti
al inversion pro
essof f highly unstable. For this problem, we let the quantity f be given by

f(t) = sin(πt) + 0.5 sin(2πt) (1.4)and let T (s, t) represent
T (s, t) =

h

{h2 + (s− t)2 }3/2
(1.5)Equation (1.3), be
omes

g(s) =

∫ 1

0

h

{h2 + (s − t)2 }3/2

( sin(πt) + 0.5 sin(2πt)
) dt (1.6)The above 
ontinuous integral is then expressed as a quadrature through an appropri-ate quadrature method based on quadrature rules. This rule is used to sample equation(1.6) at n − equally spa
ed abs
issa's s1, s2......, sn. The quadrature rule for 
omputingan approximation to any arbitrary de�nite integral (in general) takes the form

∫ 1

0
ϕ(t)dt =

n∑

j=1

wj ϕ(tj) (1.7)Next, we apply the midpoint rule (or the trapezoidal rule for periodi
 fun
tions) tothe problem using the formulae
tj =

j − 0.5

n
; wj =

1

n



CHAPTER 1. SIMULATION MODEL 4The subsequent approximation to the 
ontinuous integral equation (1.6) then be
omes
∫ 1

0

d

[d2 + (s − t)2] 3
2

{ sin(πt) + 0.5 sin(2πt) }dt ≈
n∑

j=1

wj T (s, tj) f̃(tj) j = 1, 2, .., n

= ψ(s) (1.8)We let Ki,j = wjT (si, tj) , g(si) = ψ(si) and fj = f̃(tj).The elements of f̃(tj) are the 
omputed samples at dis
rete abs
issa's t1, t2, ..., tn. Itis straight forward to 
on
lude that the dis
retized fun
tion
ψ(si) = g(si) i = 1, 2, ...., nFor simpli
ity, we will always assume that the dis
retization of T is square.



CHAPTER Numeri
al Least Squares and Regularization
The mathemati
al des
ription of the simulation model in Figure (1.1) satis�es the de�-nition of a �rst order Fredholm integral equation of the form

g(s) =

∫

Ω
T (s, t)f(t)dt (2.1)where Ω de�nes the limit of integration in n−dimensional spa
e and the notations T , f ,

g are the same as mentioned in Chapter 1. Several methods for solving equations of the�rst kind numeri
ally have been proposed. One should view equation (2.1) as a linearoperator, operating on the fun
tion f(t) to produ
e g(s). The nature of the operatordoes not often allow it to have a bounded inverse 1. For instan
e if we let f(t) be asolution of equation (2.1) and de�ne it as f(t) = sin(2πpt) p = 1, 2, ....,.Then for any integrable kernel, we have
g(s) =

∫

Ω
T (s, t) sin (2πpt)dt −→ 0 as p −→∞ (2.2)Equation (2.2) implies that an in�nitesimal small 
hange dg in g 
an 
ause a 
orre-sponding arbitrarily large 
hange df in f . Hen
e, the ability to solve equation (2.1)su

essfully depends largely on the a

ura
y of g(s) and the shape of T (s, t).2.1 Why Numeri
al Least Squares and RegularizationIf a solution 
orresponding to equation (2.1) for g(s) exists, a slight perturbation of g(s)may give rise to an arbitrarily large variation in the solution f(s). This results in anequation whi
h may be 
losely satis�ed by a fun
tion that bears the same resemblan
eto the true solution. However, there are some di�
ulties asso
iated with this instability.This is often due to the fa
t that in pra
ti
e the spe
i�
ation of g(s) is usually inexa
tbe
ause of the data at hand. Thus, the "true" or a
tual data g are 
orrupted with somenoisy samples at 
ertain dis
rete abs
issas s1, s2....., sn. We 
an sometimes be 
onfrontedwith an ill-
onditioned inverse problem in 
ontrast to a well-
onditioned inverse problem.In either 
ase, we state the problem as

g̃(s) = g(s) + ǫ(s) (2.3)where ǫ is an arbitrary fun
tion referred to as measurement noise and it is measuredbased on some 
ondition about the size. The problem statement is often related to afun
tional inequality | ǫ| bounded above su
h that
| ǫ(s)| ≤M or ∫

Ω
w(s) ǫ2(s)ds ≤ M̃ ; w(s) > 01Sometimes, the operator may not have an inverse at all. For simpli
ity, we will assume it has one.5



CHAPTER 2. NUMERICAL LEAST SQUARES AND REGULARIZATION 6where w(s) are weights. For a moment, let us address the fun
tional with weights w(s).Instead of having a unique solution to equation (2.3), we obtain a family F of solu-tions. Our problem is then to pi
k out from the family of fun
tions F, the true solution
f . This is impossible to �nd if additional information about the problem representedby equation (2.3) is not given. Here, we have made the assumption that, the fun
tionalform of f is unknown, hen
e our inability to use a Least Square �t alone to �nd the best�t to f . Moreover, we expe
t the fun
tion f to be reasonably smooth (whi
h is oftenthe 
ase). One probably has to 
hoose from an entire family of fun
tions say fs ∈ F,the best approximation to f whi
h is smoothest in some sense. This 
alls for the needof a regularizer. We will assume that, the fun
tions f , g and T are all identi
ally zerooutside the unit line (i.e the limit of integration Ω is 
on�ned to Ω ⊂ [0, 1] for a 1-D
ase).2 Methods used in dis
retizing the 
ontinuous integral equation (2.1) 
oupled withthe asso
iated ill-posed nature do wel
ome te
hniques in Numeri
al Linear Algebra forsolving inverse (or de
onvolution) problems.By applying the quadrature method(s) des
ribed in Chapter 1 to equation (2.1) weget

n∑

i=0

wjT (si, tj)f̃(tj) = g(si) ; i, j = 1, 2, ..., n (2.4)where f̃j = f̃(tj), g̃i = g(si), ǫi = ǫ(si), wjT (si, tj) = Ki,j and wj are weighting 
oe�-
ients whose values depend on the quadrature formula used.The 
ondition on the magnitude of ǫ is de�ned by
n∑

j=0

ǫ2j = ǫ2where ǫ2 is a 
onstant.A 
onvenient way to express equation (2.4) is
g̃ = Kf + ǫ (2.5)The naive solution (whi
h we shall denote f̃) of equation (2.5) often gives a poorrepresentation of the true solution and it is when ǫ = 0. The solution have an os
illatoryfeature whi
h 
on�i
ts with our apriori knowledge. Figure (2.1) shows how the naivesolution 
an be very di�erent from the true solution f . The elements of the 
omputednaive ve
tor
f̃ = K−1 g̃ (2.6)are, in prin
iple, mere approximations to the desired solution. Thus, Kf = g̃ is infa
t

g̃ = g+ ǫ and the ve
tor ǫ also represents perturbation of the exa
t data. In other words,a good representation of the true solution is only attainable when ǫ is non-zero. To verifythis, just introdu
e the matrix notation
Kij = wikij and let K−1

ij = νij2For a square we have Ω ⊂ [0, 1] × [0, 1] and Ω ⊂ [0, 1]1 × [0, 1]2, ..... × [0, 1]n for unit hyper
ube inn-dimensions.



CHAPTER 2. NUMERICAL LEAST SQUARES AND REGULARIZATION 7
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Figure 2.1: plot of output g̃ (top), naive f̃ (middle) and true fun
tion f (bottom) versus the numberof 
omponents i (for i = 1, 2, ....., 60). The fun
tion f̃ is obtained from the dire
t inversion,
K−1g̃. However it should be noted from above Figure that the 'plot of g' at the top refersto g̃ instead.



CHAPTER 2. NUMERICAL LEAST SQUARES AND REGULARIZATION 8Then it easy to see that
f = K−1g + K−1ǫ (2.7)whi
h explains the reason why the behaviour of the weighted kernel K must also betaken into 
onsideration be
ause f in equation (2.7) is a linear fun
tion of g and ǫ.Furthermore, by taking partial derivatives of fi with respe
t to either gj or ǫj gives theinverse of the weighted kernel νij;

∂fi

∂gj
= νij =

∂fi

∂ǫj
; i, j = 1, 2, .....n (2.8)In situations where the dimension is high, the matrix K may be rank de�
ient, hen
ea stable inverse does not exist. By introdu
ing a regularizer, it is possible to a
hieve areasonably smooth fun
tion say fλrls

whi
h 
an be a

epted as a good (or best) repre-sentation of the exa
t fun
tion f .2.2 Least Squares and Normal EquationsGiven the problem of �nding the ve
tor f ∈ Rn from
g̃ = K f (2.9)where K ∈ Rn×n is the data matrix and g̃ ∈ Rn is the output. Here we assume thatboth K and g̃ are available. Pra
ti
ally speaking, we do not expe
t systems of the formof equation (2.9) to have solutions sin
e the output ve
tor g̃ must be an element of therange spa
e of K whi
h is a proper subspa
e of Rn.Our obje
tive is to minimize ‖g̃ − Kf‖p for a suitable 
hoi
e of p . That is

min
f

∥
∥
∥g̃ − Kf

∥
∥
∥

p
(2.10)In 
ontrast to the p-norm we 
hoose p = 2 for two tra
table reasons whi
h are as follows:

(i)

φ(f) =
1

2

∥
∥
∥ g̃ − Kf

∥
∥
∥

2

2
(2.11)is a di�erentiable fun
tion of f and so a minimizer of φ satis�es ∇φ(f) = 0. Thisoperation leads to the 
onstru
tion of a symmetri
 linear system (i.e by for
ing any anti-symmetri
 
omponent of K to vanish) whi
h is positive de�nite if K has full rank.

(ii) The 2-norm is preserved under orthogonal transformation. That is,
‖(UTK)f − UT g̃‖2 is easy to solve whilst it maintains the equivalent minimizer of
‖g̃ − Kf‖22. We shall see in subse
tion (2.2.2) that the length and angle are preservedunder an orthogonal transformation.Di�erentiating φ(f) of equation (2.11) with respe
t to f :

KT (g̃ − Kfls) = 0 (2.12)shows that the minimum residual denoted ǫls is orthogonal to Ran(K) in Figure (2.2).
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g̃

g = Kf

g̃ −Kf

Ran(K)

ϑ

Figure 2.2: A geometri
 illustration of Least SquaresThe residual ǫls;
ǫls = g̃ − Kfls (2.13)is 
alled the minimum residual ve
tor. The 
orresponding size ‖ǫls‖2 given by

‖ǫls‖2 = ‖g̃ − Kfls‖2 (2.14)is also referred to as the minimum residual of the Least Squares Problem. Equation(2.12) is 
alled the normal equations sin
e ∇φ(f) = KT (g̃ − Kfls). The solution tothe normal equations is tantamount to solving the gradient equation ∇φ(f) = 0. Fur-thermore, the 2-norm, ‖g̃ − Kfls‖2 is a non-zero residual as 
ould be seen from Figure(2.2).In short, we state the Least Squares problem in relation to the Gravity Model of Figure(1.1):Given
g̃ = Kfwe seek

min
f
‖ g̃ − Kf ‖2with solution to the normal equations given by

KT (g̃ − Kfls) = 0 (2.15)2.2.1 Orthogonality and OrthonormalityGiven the set of ve
tors {ui ; ui ∈ Rn} for i = 1, 2, ...., n. If uT
i u = 0 for i 6= j, then theset of ve
tors is said to be orthogonal. If on the other hand, uT
i uj = δij then the set ofve
tors is said to be orthonormal .2.2.2 Singular Value De
ompositionIf K is a real n× n matrix, then there exists orthogonal matri
es

U = [u1,u2, .......,un] ∈ R
n×n and V = [v1,v2, .......,vn] ∈ R

n×n
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h that
K = U DV T =

n∑

i=1

ui di v
T
i (2.16)and

uT
i uj = vT

i vj = δij or UTU = V TV = Iwhere I is the identity matrix and the set of pairs {ui,vj} are respe
tively 
alled theLeft and Right Singular Ve
tors. Also
UTKV = diag(d1, d2, ......., dn) ∈ R

n×nwhere d1 ≥ d2 ≥, ......., dn ≥ 0 are the singular values of K. Also Kvi = diui. Hen
e
‖Kvi)‖22 = (Kvi)

T (Kvi) = (diui)
T (diui) = d2

i u
T
i ui i = 1, 2....nand sin
e the u′

is form an orthonormal set we have
‖Kvi)‖2 = diThe 
onsequen
e of the orthogonal transformation property preserves the length (ormagnitude) of f and the angle between two ve
tors say f1 and f2. To see this, let
f̀ = UT fthen

‖f̀‖22 = fTUUT f = ‖f‖22and
f̀1

T
f̀2 = fT

1 UU
T f2 = fT

1 f2That is, the e�e
t of multipli
ation by an orthogonal matrix UT is equivalent to a rigidrotation of the 
oordinate system.2.2.3 Higher Dimensional ProblemsIn higher dimensions, it sometimes happen that the matrixK has many singular values ofdi�erent magnitude 
lose to the origin; thus rendering K to have an ill-determined rank.Therefore a Least Squares �t is not able to 
apture the relevant information 
ontainedin the output g̃. The kernel K smooths out the high frequen
y 
omponents of the signalwhi
h results in loss of information at high frequen
y 
omponents of f . Stri
tly speaking,
g̃ = K f̃ . See equation (2.6). Therefore,

g̃ = K f̃ = g + ǫ (2.17)An important 
onsequen
e is the non-uniqueness of solution to the linear system of equa-tion (2.17). Any solution subje
ted to the high frequen
y perturbations will �t the data,
g̃ equally well. This makes the de
onvolution problem of re
onstru
ting (or re
overing)the signal ill-posed. This ill-posedness is a

ompanied by inevitable e�e
ts of instabilityof the solutions. Small perturbations of the data may result in a 
ompletely di�erentsolution.



CHAPTER 2. NUMERICAL LEAST SQUARES AND REGULARIZATION 11Figure (2.3) is an example that illustrates one of the di�
ulties that 
an arise whenan inverse operation is performed in the frequen
y domain. The fun
tion K is a low-pass�lter designed to handle the smoothing operation in the frequen
y domain. The fun
tion
g is a '
lean' spee
h signal whi
h is free from any form of noise. The 
lean spee
h g isthen 
orrupted with additive white noise, ǫ whi
h is normally distributed with zero meanand standard deviation σǫ. The 
orrupted spee
h g̃ is

g̃ = g + ǫThe Dis
rete Fourier Transform, DFT (g̃) is given by
g̃(w) = g(w) + ǫ(w)where g(w) = DFT (g) and ǫ(w) = DFT (ǫ). 3Hen
e,

f̃(w) = g̃(w) ⊘K(w)

= g(w) ⊘K(w) + ǫ(w) ⊘ K(w) (2.18)where f(w) = DFT (f), K(w) = DFT (K) in equation (2.18). Here, we have taken
ognizan
e of the fa
t that, in the Fourier (i.e frequen
y) domain, inverse operation in-volving matrix-ve
tor division is possible. Equation (2.18) shows that, the dire
t divisionby K(w) unbounds the high frequen
y 
omponents of f̃ due to the division of elementsin ǫ(w) by insigni�
ant (or very small) elements in K(w). See Figure (2.3) below.The illustrated Figure example 
onsists of a short sequen
e of 250 samples of a 
leanspee
h signal. A low-pass �lter with �lter 
oe�e
ients 0.5, 1, 1, 1 and 0.5 is applied tothe spee
h example. A noise ve
tor ǫ is also generated from matlab through the bulit-inm-�le randn.m
ǫ = 0.001 × randn(250, 1)We 
annot solve these problems without making assumptions. In view of that we makethe following assumptions without going into the details surrounding the theoreti
al
on
epts1. The matrix K has full rank.2. K is ill-
onditioned with no signi�
ant gap in the singular value spe
trum. (Problemsarise when the singular values di are within the range 0 < di << d1).3. The true data g is 
orrupted with noise.4. The dis
retization error 
aused by approximating the 
ontinuous operator is mu
hsmaller than the noise.5. The system satis�es the dis
rete Pi
ard 
onditions whi
h we informally dedu
e andstate in subse
tion (2.2.4).3The symbol w here is di�erent from the weights given in equation 2.4. Moreover w used in Chapter

1 is also di�erent from both. We should however to note the di�eren
es. The same symbol was use dueto shortage of notations.
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Figure 2.3: Power spe
tra of the various signals in a low-pass �ltering with 5 �lter 
oe�
ients. Itillustrates the power spe
tra of the 
lean spee
h signal g, 
orrupted signal g̃, �ltered signal
f and the de
onvolved signal f̃ obtained from equation (2.18). As seen from above, thehigh frequen
y 
omponents of the 
onvolved signal are perturbed greatly espe
ially aroundthe zeros of the low-pass �lter. The e�e
t renders inverse operation of DFT meaningless.That is f̃ = IDFT [g̃(w) ⊘ K(w)]2.2.4 Dis
rete Pi
ard ConditionFrom (2.3)

g̃ = Kf + ǫ (2.19)we have
f = K−1g̃ − K−1ǫ (2.20)The SVD of the naive solution is

f̃ = K−1 g̃ =

n∑

i=1

(uT
i g̃

di

)

vi (2.21)The 
orresponding noise denoted f ǫ is
f ǫ =

n∑

i=1

(uT
i ǫ

di

)

vi (2.22)The solution f follows from
f = f̃ − f ǫ

=

n∑

i=1

uT
i (g̃ − ǫ)
di

vi (2.23)



CHAPTER 2. NUMERICAL LEAST SQUARES AND REGULARIZATION 13The singular values di of K in equation (2.23) must neither approa
h zero nor be zeroor else ‖ f‖22 will be large or unde�ned. A 
onsequen
e of this leads to loss of mu
h ofthe information about the system or it 
an happen that no information will be gained.Espe
ially, for normalized singular values di (between 0 and 1) we do not expe
t dito de
ay faster than either uT
i (g̃ − ǫ) or uT

i g̃, otherwise in the neighbourhood whereeither di → 0 (or both uT
i g̃ → 0 and di → 0), the expression

uT
i (g̃ − ǫ)
di

→∞ or uT
i g̃

di
→∞ for i→∞De�nitionA system is said to satisfy the dis
rete Pi
ard 
ondition if for large enough values ofthe dis
retization parameter n, the sequen
e of true data values {uT

i (g̃− ǫ)} goes to zerofaster than the sequen
e of singular values {di}. Thus for terms greater than or equal tosome parameter k, uT
i (g̃ − ǫ) ≈ 0Figures (2.4), (2.5) and (2.6) are pi
ard plots of the Gravity Surveying Model problemof Figure (1.1) with additive noise σ2

ǫ = 0, σ2
ǫ = 10−6 and σ2

ǫ = 10−3 respe
tively. They
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Figure 2.4: Singular values di of matrix K and the 
omputed quantities |uT
i g̃| and |

u
T
i g̃

di
| of the Grav-ity Surveying Model problem. The noise 
ontribution 
omes from only rounding anddis
retization errors.show plots of di , [ωi = |uT

i g̃| ] and [ωi/di = |u
T
i g̃
di
| ] versus i. The quantity |uT

i g̃| inea
h 
ase de
ays faster than di until it rea
hes a level set by the ma
hine's pre
ision. Atlo
ations where |uT
i g̃| levels o�, the quantity |uT

i g̃
di
| begins to in
rease steeply and in theneighbourhood where both |uT

i g̃| and di approa
h zero, the ratio |uT
i g
di
| be
omes largerand larger. Figure (2.4) illustrates how the naive solution

f̃ =

n∑

i=1

uT
i g̃

di
vi
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ompletely dominated by large values of |uT
i g̃
di
|. They 
ome from 
omponents 
orre-sponding to the smallest singular values. This explains why the plot "plot of fnaive"

f̃ in Figure (2.1) appears as a high os
illatory solution. The norm of f̃ is 6.1 × 1015.

0 5 10 15 20 25 30
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

i

Picard plot with additive noise of 10−6

va
lu

es
 o

f [
 d

i  |
ω

i| &
 |ω

i| /
 d

i ]

d
i

|ω
i
|

|ω
i
|/d

i

Figure 2.5: Pi
ard plot with an additive noise of 10−6. The a
ute angle between the de
aying regionsof |uT
i g̃| and di shrinks 
onsiderably as 
ompared to Figure (2.4), thereby 
ausing thequantity |uT

i g̃| to level o� at lower indi
es i than without additive noise.Also, Figures (2.5) and (2.6) illustrate the same problem but with additive noise σ2
ǫ ofmagnitudes 10−6 and 10−3. Their respe
tive noise ve
tors ǫ10−6 and ǫ10−3 are normallydistributed with zero mean and varian
e σ2

10−6 and σ2
10−3 . It 
an be seen that the greaterthe magnitude of the additive noise term the more information we lose. That is, thequantity |uT

i g̃| starts to level o� at a mu
h lower indi
es of the index i. The larger thesmoothing e�e
t of the fun
tion K, the faster di de
ay. Moreover, small singular valueslead to solutions whi
h �t the data well but result in large energy. In an a
t of trying to�nd a stable meaningful solution pushes us to employ regularization s
hemes. We nowdevote the rest of this Chapter to Numeri
al Regularization and it is the main subje
tof this thesis.2.3 Numeri
al Approa
h to RegularizationThese are algorithmi
 te
hniques whi
h 
an be used for stabilizing solutions so thatthey be
ome less sensitive to perturbations. Su
h algorithms are 
alled RegularizationAlgorithms. The method en
ourages smoother fun
tional mappings by adding a penaltyterm, say Φ to the residual error fun
tion rǫ to give an impli
it form;
(f)ג = rǫ + λ2Φ(f) (2.24)where ג is a fun
tional 
alled the standard residual error fun
tion and the parameter

λ2 
ontrols the e�e
t of the penalty term Φ on the form of solution. It 
omes in two
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Figure 2.6: Pi
ard plot with an additive noise of 10−3. The a
ute angle between the de
aying regionsof |uT
i g̃| and di shrinks mu
h more 
ompared to Figures (2.4) and (2.5). The quantity

|uT
i g̃| levels o� at mu
h lower indi
es i than the ones shown in Figures (2.4) and (2.4).�avours; either by (i) trun
ating the matrix K or (ii) adding a regularizer.We will �rst deal with the simplest approa
h to the smoothness problem 
alled theTrun
ated SVD.2.3.1 Trun
ated Singular Value De
ompositionIn a mu
h more simple approa
h, the SVD of the matrix K ∈ Rn×n is 
omputed. Thus,we have

K = U DV T =

n∑

i=1

diuiv
T
i (2.25)where U = U(1 : n, 1 : n) and n = rank(K). The singular values di of the (n× n) diag-onal matrix D are in de
reasing order; d1 ≥ d2 ≥, ....., dr ≥, .., dn−2 ≥ dn−1 ≥ dn > 0.Given an integer k ≤ r, we partition the SVD a

ording to

K = (Uk, U0)

(

Dk 0

0 D0

)

(Vk, V0)
TwhereDk = diag(d1, ...., dk) andD0 = diag(dk+1, ...., dn) are diagonal matri
es 
onsistingof the k largest and (n-k) smallest singular values respe
tively. The matrix Kk, de�nedby

Kk = UkDkV
T
kis 
onsidered to be an approximation to the original matrix K with a 
orrespondingde
rease in rank from n to k. This is the underlying 
on
ept of the trun
ated SVD.
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Figure 2.7: The �gure shows plots of fk of the Gravity Survey Model versus i for varying k at 
onstantnoise level σ2 = 10−6. The exa
t solution or unpertuurbed solution f is shown at thebottom 'true f '.



CHAPTER 2. NUMERICAL LEAST SQUARES AND REGULARIZATION 17Then follows the question anybody would most likely ask about the trun
ated SVD!QUESTION : If the parameter k forms the basis in determining a best approxima-tion to our true solution f , How then do we 
hoose an appriopriate k from the triplets
(ui, di,vi) in order to 
apture the most relevant information in K?The 
hoi
e of k does not depend on any dire
t formula(e) in question and thereforenot �xed, rather it depends on the parti
ular appli
ation. For instan
e, if in a parti
ularappli
ation, the noise level is given in the form of a threshold, say τ then k is 
hosen soas to make only the �rst dn, dn−1, ..., dn−k whi
h are stri
tly less than τ to be dis
arded.This leads to a numeri
al rank de�
ien
y in K (or a singular subspa
e of K).Alternatively, we 
an use the 'Brute for
e' approa
h to 
ompute the solution f forea
h k using the formula of f̃ and 
hanging the summation interval for ea
h 
hoi
e of k.By running this iteratively at regular steps among all 
hoi
es of k, we opt for the onethat is smoothest in some sense. For ea
h k we have

fk =

k∑

i=1

uT
i g̃

di
vi (2.26)An illustration of this is demonstrated in Figure (2.7) with the Gravity Example at anoise level σ2 = 10−6. It is an alternative pro
edure whi
h 
an be used without anyrestri
tion on the threshold τ , meanwhile it is equally good enough in abandoning theirrelevant noise 
omponents. If K is symmetri
, then we have

Kk = UkDkU
T
k (2.27)The simulation result of the 
omputed solution fk of the Gravity Model with additivenoise, σ2 = 10−6 is illustrated in Figure (2.7). The a
tual plot of the fun
tion f is shownat the bottom right 
orner.For ea
k k, we used the formula

fk =

k∑

i=1

uT
i g̃

di
viIt 
an be seen that, the smoothness of the solution fk improves from k = 2 to about

k = 12. At k ≥ 14, the noise 
omponents take over the true solution as a result oflarge values of their 
orresponding norm. See how the "si
kness" begins to 
rop up from
k = 14 and beyond.2.3.2 Adding a RegularizerThe alternative form of smoothness is governed by how a given fun
tion say f , is 
on-tinuously di�erentiable with respe
t to say s. Various forms of Regularizers have beenstudied in 
onne
tion with linear models but the one of interest to us here is the 
lass ofTikhonov Regularizers, Φ whi
h in general takes the fun
tional form;

Φ(f) =
1

2

R∑

k=0

∫

Ω
hk

(dkf

dsk

)2
dks (2.28)



CHAPTER 2. NUMERICAL LEAST SQUARES AND REGULARIZATION 18where s = (s1, s2, ...., sn) and {hk ≥ 0 for k = 0, 1, ..., R − 1} are weights su
h that
hR > 0 (Tikhonov and Arsenin, 1977).The fun
tional Φ 
ould be from a 1 − D spa
e onto the real line R (i.e single-inputsingle output) or a higher dimensional spa
e onto R (i.e multi-input single-output). Weview Φ as a fun
tional de�ned in terms of f with smoothness dependent on the fun
tion
f . If R = 1, then it is obvious that, the derivative operator say L is the identity matrix,
I.Generalized Fun
tional RegularizationFrom the ve
tor-norm sense, g̃ −Kf and Lf − f0 are ve
tors whi
h 
an be of sameor di�erent dimensions. The sum of the two residual ve
tors is given by

(g̃ − Kf) + (Lf − f0)Applying the triangle inequality, we have
‖(Lf − f0) + (g̃ − Kf)‖22 ≤ ‖Lf − f0‖22 + ‖g̃ − Kf‖22 (2.29)where the Left Hand Side is a lower bound on the right hand side with equality onlywhen the residuals g̃ −Kf and Lf − f0 are at right angles to ea
h other. The normof either residuals is non-zero, positive and �nite;

0 < ‖Lf − f0‖22 <∞ and 0 < ‖g̃ − Kf‖22 <∞We try to attain a lower bound on the right hand side of inequality (2.29). This problem
an alternatively be identi�ed as a Least Squares minimization problem with quadrati
equality 
onstraint whi
h is (more or less) equivalent to the Lagrange multiplier problemof determining a real positive regularization parameter λ2
rls su
h thatarg min ∥∥∥∥

∥

[

K

λrlsL

]

f −
[

g̃

λrlsf0

] ∥
∥
∥
∥
∥

2

= arg min ‖ g̃ − Kf ‖22 + λ2
rls ‖Lf − f0 ‖22(2.30)where the solution to equation (2.30) is the total regularized minimum residual (whi
his also 
alled the regularized squared error). In a sense, we view λ2

rls as an indi
ator ofsu�
ien
y of the output g̃ as examples that spe
ify the form of solution fλrls
. If λ2

rls = 1,we have inequality (2.29). We now �nd the asymptoti
 behaviour of equation (2.30).For asymptotes, we write expression (2.30) in the expli
it form
min

f

{

λrls

{
1

λrls
‖g̃ − Kf ‖22 + λrls‖Lf − f0‖22

}} (2.31)The limiting 
ase, λrls →∞;
1

λrls
‖g̃ − Kf ‖22 → 0 and λrls‖Lf − f0‖22 →∞
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onstraint imposed by the di�erential operator L is byitself su�
ient to spe
ify the solution fλrls
and it is the same as saying that the output

g̃ is unreliable. So
min

f

{

λrls

{ 1

λrls
‖g̃ − Kf ‖22 + λrls‖Lf − f0‖22

}
}

→∞ (2.32)is said to violate (i) non-zero residual of 1
λrls
‖g̃ − Kf ‖22 and (ii) a non-large valueof the total regularized minimum residuals. In this 
ase, the regularized solution fλrls

isgiven by the regularizer alone without taking the a
tual data into 
onsideration therebynegle
ting the information about the data in question. Thus, the solution is said to beindependent of the data mis�t.The other limiting 
ase, λrls → 0;
λrls ‖Lf − f0‖22 → 0 and 1

λrls
‖g̃ − Kf ‖22 →∞implies that the problem is un
onstrained with the solution fλrls


ompletely determinedfrom the examples. It therefore approa
hes the Least Squares problem formulation. So,we have
min

f

{

λrls

{ 1

λrls
‖g̃ − Kf ‖22 + λrls‖Lf − f0‖22

}
}

→∞ (2.33)whi
h also violates a (ii) non-zero regularized residual of λrls ‖Lf − f0‖22 and (ii)non-large total minimum residual. In this 
ase, the regularized solution fλrls
is givenby the residuals from the data alone whi
h is the same as saying that the solution isindependent of the reason for adding a regularizer.2.3.3 Tikhonov Fun
tional RegularizationA 
ombination of Tikhonov's Regularizer and S. Twomey's reformulation of Phillip'sexpression for a regularized f in normal equations settings is referred to as "RegularizedNormal Equations" with the purpose stated as follows:To �nd the fun
tion fλrls

that minimizes the Tikhonov fun
tional ρ(f)

ρ(f) = rǫ(f) + λ2
rlsΦ(f) (2.34)where rǫ(f) is the standard error term, Φ(f) is the regularizing term and λrls is thenumeri
al regularization parameter.The Numeri
al Framework fun
tional regularizer Φ is of the form

Φ (f) =
1

2
‖Lf ‖22 (2.35)wíth f0 = 0 if no a priori estimate of f is given.
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h we denote fλrls
that minimizes a weighted 
ombination of theresidual norm 4 and the added smoothness 
onstraint is

fλrls
= arg min{‖g̃ − Kf‖22 + λ2

rls‖Lf‖22
} (2.36)where L is a dis
rete derivative operator of some order. By taking partial derivativeswith respe
t to f of the expression in the 
urly bra
kets of equation (2.36) and settingto zero, we write

∇f

{

‖g̃ − Kf‖22 + λ2
rls‖Lf‖22

}

= 0 (2.37)The solution to equation (2.37) gives the regularized normal equations
(

KTK + λ2
rlsL

TL
)

fλrls
= KT g̃ (2.38)If L = I, equation (2.38) is said to be in its standard Tikhonov's form

KTKfλrls
+ λ2

rls fλrls
= KT g̃ (2.39)In this thesis, we 
hoose our derivative operator L to be the identity matrix I. Hen
e thestandard Tikhonov's solution is

fλrls
=

(

KTK + λ2
rlsI
)−1

KT g̃ (2.40)Figure (2.8) is the Tikhonov's solution fλrls
to the Gravity model problem of Figure(1.1) at n = 60, d = 0.25 and for di�erent values of the numeri
al regularization param-eter λ2

rls with additive noise σ2 = 10−6. We 
an see that the best values of λ2
rls whi
hgive good approximations to the true fun
tion is neither too big nor too small. Valuesof λ2

rls that are too small tend to over�t whereas values that are too large also give biasestimates. The 
hoi
e of λ2
rls is therefore a 
ompromise between the two extremes.

4standard error term is the same as the residual norm in most literature.
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Figure 2.8: Tikhonov's solution fλrls
to the Gravity surveying model problem for di�erent 
hoi
es ofthe regularization parameter λrls with noise σ2 = 10−6 for λ2

rls in the range 10−3 − 10plus the exa
t solution.



CHAPTER  Sto
hasti
 Modelling
3.1 Filtering and Linear System TheoryIntrodu
tionIn this 
hapter, we develop some results whi
h are required for the solution of the es-timation problem under 
onsideration. We will restri
t ourselves to some properties of
onditional distributions of Gaussian random variables and then give a geometri
 inter-pretation.Like we begun in Chapter 2 with "Why Least Squares and Regularization" in theNumeri
al Framework, we do the same in this Chapter by looking into Least Squaresfrom a Statisti
al viewpoint and further move on Statisti
al Regularization using boththe Maximum a Priori (MAP) and Maximum Likelihood (ML) prin
iples to the sameGravity problem. We will appeal to four theorems on multivariable Gaussian distribu-tions. We will then see that these theorems have geometri
 interpretations with a strongintuitive appeal.In se
tion (3.2), we formulate the problem of Filtering and Estimation for Dis
reteTime Systems, state the De
onvolution problem in a Statisti
al environment and �nishup with Least Squares. Se
tion (3.3) deals with the Statisti
al Approa
h to Regular-ization; we explore exa
t approa
hes in relation to maximum apriori (MAP) methodand marginalization over 
ontinuous variables of the Maximum Likelihood prin
iple byperforming integration. We follow up with the EM-Algorithmi
 prin
iple where we willround up with the di�eren
e between MAP and ML.We shall 
ontinue to work under normality 
onditions.
3.2 Formulation of Filtering and Estimation Problems forDis
rete-Time SystemsWe 
onsider {g(s), s ∈ T} and {ǫ(s), s ∈ T} as two real sto
hasti
 pro
esses whi
h aresignal and noise respe
tively. We assume that the observation (output) or measurement
g̃(s) are given by

g̃(s) = g(s) + ǫ(s) (3.1)22



CHAPTER 3. STOCHASTIC MODELLING 23From equation (3.1), we mean that at time s, we have obtained a realization {g̃(τ), sk <

τ < s} of the measured variable. Based on this realization, the best estimate of the valueof the signal at time sk 
an be determined. Here sk 
ould be one or more of the following:
(a) sk < s (whi
h leads to a smoothing problem).
(b) sk = s (whi
h leads to a �ltering problem).
(c) sk > s (whi
h leads to a predi
tion problem).De�ne a notation for a realization, say g̃, by

g̃(s) = (g̃T
s1
, g̃T

s2
, g̃T

s3
, ...., g̃T

sn
) (3.2)From equation (3.2) we have indi
ated expli
itly that g̃ depends on s. We let g̃ ∈ g̃and g ∈ g. An estimator (�lter, predi
tor, interpolator) is a fun
tion whi
h maps g̃ into

g. The value of this fun
tion for a parti
ular measurement or observation g̃ is 
alled anestimate g. In this Chapter, we will des
ribe �ltering problems in relation to (3.1) byspe
ifying the following:
(i) the signal and noise pro
esses.
(ii) the 
riterion whi
h de�nes the best estimate.
(iii) the restri
tion on the admissible estimators.3.2.1 The Inverse (De
onvolution) ProblemThe signal and noise pro
esses are 
hara
terized by 
ovarian
e fun
tions through a linearequation of the form:

g̃ = K f + ǫ (3.3)where g = Kf and ǫ is a sequen
e of independent Gaussian random variables.From above, we ask ourselves the question below!Question : From a realization of the output g̃(τ), s1 ≤ τ ≤ s. How or by what means
an we estimate the input ve
tor f in (3.3)?This forms an estimation problem. The ne
essary skills we need to a
quire for thisproblem are dis
ussed in subse
tions (3.2.2) through (3.3.4).3.2.2 Statisti
al Modelling of the Loss Fun
tionThe statisti
al information whi
h the observations give about the sto
hasti
 variables
g(s) is 
ontained in the 
onditional distribution

p{gsk
≤ σ|g̃(τ) = ϕ(τ) : t0 ≤ τ ≤ t} = F (σ|ϕ) (3.4)In the left (most) hand side of equation (3.4), the parameter σ symbolizes a deviation
onditioned on the output value g̃(τ) = ϕ(τ). The 
orresponding density of the distri-bution (3.4) is denoted by p(σ|ϕ). We de�ne a loss fun
tion l, whi
h is a real fun
tionwith properties l ≥ 0, l(δ) = l(−δ) and l non-de
reasing for δ ≥ 0. The loss fun
tionis then a sto
hasti
 variable l(g̃ − g) with the best estimate g 
hosen to be the one thatminimizes the average loss 〈 l(g̃ − g) 〉



CHAPTER 3. STOCHASTIC MODELLING 24Theorem 1This is based on the assumption that the 
onditional distribution of g given g̃ = ϕ hasa density fun
tion whi
h is symmetri
 around the 
onditional mean µ =
∫
σ p(σ|ϕ)dσ(where σ is the standard deviation) and non-de
reasing for (σ ≥ µ). The loss fun
tion

l is 
onsidered to be symmetri
 and non-de
reasing for positive arguments. The bestestimate is then given by the 
onditional mean
g = g(ϕ) = 〈 g̃ |ϕ 〉 =

∫

σ p(σ|ϕ)dσ (3.5)The proof is based on an elementary lemma on real fun
tion. For proof and more onthis see [43℄.3.2.3 Multivariate Gaussian Distribution TheoremsThe probability density fun
tion of a normal n-dimensional variable with mean µg̃ and
ovarian
e Rg̃ is given by
p(g̃) = (2π)−n/2 det (Rg̃ )−1/2 exp − 1

2
{(g̃ − µg̃)

TR−1
g̃ (g̃ − µg̃)} (3.6)where we have made an assumption that the 
ovarian
e matrix Rg̃ is non-singular anddet (Rg̃ ) = | Rg̃ |is the determinant of R.Theorem 2If f̃ and g̃ are both n × 1 ve
tors and we make an assumption that [ f̃

g̃

] is Gaussianwith mean [ µf̃

µg̃

] and 
ovarian
e R =

[

Rf̃ Rf̃ g̃

Rg̃f̃ Rg̃

] then the ve
tor ς given by
ς = f̃ − µf̃ − Rf̃ g̃R

−1
g̃ (g̃ − µg̃) (3.7)is independent of g̃ has zero mean and 
ovarian
e

Rς = Rf̃ − Rf̃ g̃R
−1
g̃ Rg̃f̃ (3.8)For proof and more on this see [43℄.Theorem 3If f̃ and g̃ are two ve
tors whi
h are jointly Gaussian, then the 
onditional distributionof f̃ given g̃ is normal with mean

〈 f̃ | g̃ 〉 = µf̃ + Rf̃ g̃R
−1
g̃ (g̃ − µg̃) (3.9)and 
ovarian
e

〈 {

f̃ − 〈 f̃ | g̃ 〉
}{

f̃ − 〈 f̃ | g̃ 〉
}T ∣∣

∣ g̃
〉

= Rf̃ − Rf̃ g̃R
−1
g̃ Rg̃f̃ = Rς (3.10)
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hasti
 variables g̃ and [f̃ − 〈 f̃ | g̃ 〉] are independent.For proof and more on this see [43℄.Theorem 4

(a) Linear fun
tions (and therefore 
onditional expe
tations) on a Gaussian randompro
ess are Gaussian random variables.
(b) Orthogonal Gaussian random variables are independent.
(c) Given any random pro
ess with means 〈 g̃(s) 〉 and 
ovarian
es 〈 g̃(s) g̃(t) 〉, thereexists a unique Gaussian random pro
ess with the same means and 
ovarian
es.InterpretationThe state estimation Theorem (1) implies that the best estimate is given by the 
ondi-tional mean: i.e

〈 f̃ | g̃ 〉 = µf̃ + Rf̃ g̃R
−1
g̃ (g̃ − µg̃)and the estimation error has the 
ovarian
e

〈 ς ςT | g̃ 〉 = Rf̃ − Rf̃ g̃R
−1
g̃ Rg̃f̃ (3.11)It further implies from Theorem (2) and Theorem (3) that, the estimation error

ς = f̃ − 〈 f̃ | g̃ 〉 = f̃ − µf̃ − Rf̃ g̃R
−1
g̃ (g̃ − µg̃) (3.12)is independent of g̃.3.2.4 Geometri
 InterpretationThe above multivariable Gaussian distribution theorems gives a strong intuitive appealwhen they are illustrated geometri
ally. See Figure (3.1). For simpli
ity, we illustratethis by assumming that both variables, µg̃ and µf̃ have zero mean (i.e µf̃ = µg̃ = 0).We then represent the variables f̃ and g̃ as elements in the Eu
lidean Spa
e with s
alarprodu
t de�ned by

(f̃ , g̃) = 〈 f̃T g̃ 〉 = 
ov(f̃ − 0 , g̃ − 0) = 
ov(f̃ , g̃) (3.13)The norm is given by
‖f̃‖22 = (f̃ , f̃) = 〈 f̃T f̃ 〉 (3.14)De�ne the two lines l1 and l2 whi
h interse
t at the origin. The angle ă between thelines is given by

cos ă =
〈 f̃T g̃ 〉

‖f̃‖2 · ‖g̃‖2
=


ov(f̃ , g̃)
‖f̃‖2 · ‖g̃‖2

(3.15)The sto
hasti
 variable f̃ is represented as a ve
tor along l1 with the length ‖f̃‖2 =
√

〈 f̃2 〉 and the sto
hasti
 variable g̃ is represented by a ve
tor along l2 with length
‖g̃‖2 =

√

〈 g̃2 〉.
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Figure 3.1: Geometri
 illustration of the 
onditional mean values of normal random variables. The
onditional mean f = 〈 f̃ | g̃ 〉 is represented by the proje
tion of f̃ on g̃.Re
alling the assumption that f̃ has zero mean, we �nd that Theorem 2 implies thatthe sto
hasti
 variable de�ned by
ς = f̃ − Rf̃ g̃R

−1
g̃ g̃ (3.16)is independent of g̃. Hen
e

(ς , g̃) = 〈 ςT g̃ 〉 = 0 (3.17)Theorem (2) thus implies that ς is orthogonal to g̃ and that the norm of ς is
‖ ς ‖22 = Rf̃ − Rf̃ g̃R

−1
g̃ Rf̃ g̃ = ‖f̃‖22 −

(f̃ , g̃)2

‖g̃‖22The proje
tion of f̃ on g̃ is
(

f̃ ,
g̃

‖g̃‖2

) g̃

‖g̃‖2
=

(f̃ , g̃)g̃

‖g̃‖22
= Rf̃ g̃R

−1
g̃ g̃ = 〈 f̃ | g̃ 〉 (3.18)where the equality in equation (3.17) follows from equations (3.13) and (3.14), and thelast equality follows from Theorem 3.The variable f̃ − ς = Rf̃ g̃R

−1
g̃ g̃ = 〈 f̃ | g̃〉 equals the best mean estimate of f̃ basedon g̃ and should be interpreted geometri
ally as the proje
tion of f̃ on g̃.13.3 Statisti
al Approa
h to RegularizationBefore we pro
eed we will use a di�erent notation for the 
ovarian
e matrix R. It shallbe repla
ed by Σ.1The symbol ς used on this page is equivalent to error ve
tor in Figure (3.1).
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tion and the Regularized Pre
ision Ma-trixThe linear model is our "old friend":̃
g = g + ǫ

= Kf + ǫ (3.19)where g̃, K, f and ǫ represent the same notations used previously.We now state our statisti
al model.The 
onditional density (or noise model) is
p(g̃|f, σ2) = Cl(σ)exp − { 1

2σ2

∥
∥
∥ g̃ − Kf

∥
∥
∥

2

2

} (3.20)where Cl(σ) is a normalization fa
tor given by
{
∫ exp − 1

2σ2

∥
∥
∥ g̃ − Kf

∥
∥
∥

2

2
df}−1is equivalent to the probability density of the noise 
ontributions ǫ, of zero mean and
ovarian
e σ2:

p(ǫ|σ2) = Cl(σ)exp[− 1

2σ2
‖ ǫ ‖22

] (3.21)In Numeri
al Regularization, we 
hose a standard quadrati
 fun
tional Φ with a reg-ularization parameter λ2
rls by setting the derivative operator L = I;

λ2
rls Φ(f) =

1

2
λ2

rls ‖f‖22We repeat it here by introdu
ing a similar regularizer whi
h we will de�ne as the priorprobability in the 'Statisti
al Regularization' Framework:
p(f |λ2

ml) = Cp(λml)exp− [λ2
ml

2
‖ f ‖22

] (3.22)where Cp(λml) is a normalization fa
tor given by
{
∫ exp − λ2

ml

2
‖ f ‖22 df}−1We wish to 
ompute an estimate for f given g̃, σ2 and the prior p(f |λ2

ml). This is astandard pro
edure by applying Bayes' Rule.From Bayes' Rule, the posterior probability of f is
p(f | g̃, σ2, λ2

ml) =
p(g̃|f, σ2) p(f |λ2

ml)

p(g̃|σ2, λ2
ml)

(3.23)where the denominator on the right hand side of equation (3.23) is also a normalizationfa
tor de�ned by
p(g̃|σ2, λ2

ml) =

∫

p(g̃|f, σ2) p(f |λ2
ml) df



CHAPTER 3. STOCHASTIC MODELLING 28and the densities p(g̃|f, σ2) and p(f |λ2
ml) are their respe
tive likelihood fun
tion andprior probability.Substituting equations (3.21) and (3.22) into equation (3.23) and taking the logarithmof both sides giveslog p(f | g̃, σ2, λ2

ml) = − 1

2

{
1

σ2
‖g̃ −Kf‖2 + λ2

ml‖ f ‖2
}

+ κ (3.24)where κ is a 
onstant de�ned by
κ = log Cl(σ)Cp(λml) [p(g̃ |σ2, λ2

ml)]
−1We take the �rst partial derivatives of equation (3.24) with respe
t to f and solve for thezeros of f to obtain the maximum apriori (MAP) estimate, whi
h we denote by fmapλ,σ

.Thus,
∇f log p(f | g̃, σ2, λ2

ml) =
1

σ2
KT (g̃ −Kf) − λ2

mlf (3.25)
= 02 It is straight forward to write the zeros of equation (3.25) as

(KTK + σ2 λ2
mlI) fmapλ,σ

= KT g̃ (3.26)whi
h must be viewed as Normal Equations in the Statisti
al Framework sense. Thisequation is of the same form as Equation (2.40) of Tikhonov's Regularization in theNumeri
al Framework. The parameter λml of the solution
fmapλ,σ

= (KTK + σ2λ2
mlI)

−1KT g̃ (3.27)should be 
onsidered as provision of a non-zero parameter whi
h makes inversion of thematrix (KTK + σ2λ2
mlI) possible.A 
omparison of equation (3.26) with equation (2.38) for whi
h LTL = I, shows thatthere is a relation between the numeri
al regularization parameter λrls and the statisti
alregularization parameter λml. The relation is

λ2
rls = (σ λml)

2 (3.28)We �nally take the se
ond order partial derivatives of the log-posterior with respe
t to fto obtain the 
urvature information. We denote a negation of the 
urvature informationby J(λml, σ):
J(λml, σ) = −∇2

f log p(f |g̃, σ2, λ2
ml)

=
KTK

σ2
+ λ2

ml I (3.29)2The maximum fmapλ,σ
must lie on the stationary point satisfying:

∇f log p(f |K, g̃, σ2, λ2
ml) = 0
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an be seen from equation (3.29) that, the Matrix J is independent of f . Hen
e, theexpe
tation of Matrix J with respe
t to the distribution of f gives
〈J(λml, σ) 〉 = J(λml, σ)

=
KTK

σ2
+ λ2

ml I (3.30)From now through the end of this thesis, we will let the notation Σf represent 〈J(λml, σ) 〉

Σf =
KTK

σ2
+ λ2

ml I (3.31)The 
orresponding inverse matrix also 
alled the Pre
ision Matrix is
Σ−1

f =
(KTK

σ2
+ λ2

ml I
)−1 (3.32)The use of Bayes' Rule exploits the 
apabilities of taking prior information into a

ount.It in
orporates and maps 'the event spa
e' of our subje
tive beliefs onto the spa
e R (ofreal numbers) by expressing the 'degree of belief' as 'probability'. This is what we earlierreferred to it as prior probability in equation (3.22).Furthermore, the sto
hasti
 variable g̃ 
an be 
hara
terized by spe
ifying its �nite di-mensional distribution p (g̃). With the �rst and se
ond moments of p (g̃) in hand, we 
an(partially) answer all probabilisti
 questions about the joint probability density fun
tionof g̃ and f . This 
alls for a need to express the two moments in terms of the mean andvarian
e-
ovarian
e.The standard deviation (whi
h is the square root of the varian
e) is a measure that isused to determine how far we are from our estimate, fmapλ,σ

. The two moments whenput together 
an enable us 
onstru
t error bars on our estimate. For a variable say µ̂,the error bars has the property:
µ̂ = fmapλ,σ

±
√diag(Σfλ,σ

) (3.33)where√diag(Σfλ,σ
) is the standard deviation and it is obtainable from taking the squareroot of the diagonal elements of the varian
e-
ovarian
e matrix of Σfλ,σ

whi
h we shallre-visit shortly.3.3.2 De
omposition of the Regularized Pre
ision Matrix by SVDIn general, the SVD of an inverse matrix of the form
(KTK

σ2
+ λ2

mlL
TL
)−1where L is a derivative operator are as follows:By beginning with the SVD of K, we have

K = UDV T
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orresponding SVD of (KTK) de
omposes into
KTK

σ2
= V

D2

σ2
V Twhere the matri
es U and V 
onsists of the eigenve
tors of K su
h that V TV = V V T = Iand UTU = UUT = I. As a result, V T = V −1 and UT = U−1. Moreover, the matrix

D2 
onsists of the singular values of KTK and their singular values are equal to theeigenvalues of KTK sin
e the matrix KTK is symmetri
. Hen
e,
(KTK

σ2
+ λ2

mlL
TL
)−1

=
(

V
D2

σ2
V T + λ2

ml L
TL
)−1

=
(

V
D2

σ2
V T + λ2

ml L
T V V T L

)−1 (3.34)We use the above properties of real symmetri
 matri
es to a

omplish our obje
tive byrepla
ing the general regularizer operator L with the identity matrix I.If L = I, we have
(KTK

σ2
+ λ2

mlI
)−1

=
(

V
D2

σ2
V T + λ2

ml V V T
)−1

= V
( D2

σ2
+ λ2

ml I
)−1

V T

=

n∑

i=1

vi

( σ2

d2
i + σ2 λ2

ml

)

vT
i (3.35)Equation (3.35) is a powerful analyti
al result whi
h serves as a tool for analysis of rankde�
ient and dis
rete ill-posed problems. The SVD allows the fa
torization of the n×n,square symmetri
 matrix Σ−1

f into orthogonal/orthonormal 
omponents. It is also quite
omputationally e�
ient for 
omputing inverses and determinants of smaller systems.We will suspend the importan
e and details of SVD here until we get to Chapter 5where it shall be used for analysis.3.3.3 Exa
t Computation of Σfλ,σWe dedu
e the error bars on the estimate fmapλ,σ
from the following:Let gλml

= Kfλml
where gλml

and fλml
represents exa
t regularized output and input.We write the di�eren
e:

fmapλ,σ
− fλml

= (KTK + σ2λ2
mlI)

−1KT g̃ − fλml

=
{

(KTK + σ2λ2
mlI)

−1KT (Kfλml
+ ǫλml

) − (KTK + σ2λ2
mlI)

−1KT (Kfλml
)
}

= (KTK + σ2λ2
mlI)

−1KT ǫλml (3.36)where fλml
= (KTK + σ2λ2

mlI)
−1KTgλml

.
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e-
ovarian
e on the estimate fλml,σ is
Σfλ,σ

=
〈(

KTK + σ2λ2
mlI
)−1

KT ǫλml
ǫTλml

K
(
(KTK + σ2λ2

mlI
)−1}〉

=
(

KTK + σ2λ2
mlI
)−1

KT 〈 ǫλml
ǫTλml
〉 K

(

KTK + σ2λ2
mlI
)−1

= σ2
(

KTK + σ2λ2
mlI
)−1

KTK
(

KTK + σ2λ2
mlI
)−1 (3.37)where 〈 ǫλml

ǫTλml
〉 = σ2I.De
omposing equation (3.37) by SVD:

Σfλ,σ
= σ2

{

V
(

D2 + σ2λ2
mlI
)−1

D2
(

D2 + σ2λ2
mlI
)−1

V T
}

= σ2
n∑

i=1

vi

( di

d2
i + λ2

mlσ
2

)2
vT

i

=
n∑

i=1

vi Λ2
i vT

i (3.38)where
Λ =

D

σ

(D2

σ2
+ λ2

ml I
)−1

: σ 6= 0 (3.39)is the deviation from the estimate fmapλ,σ
. Equation (3.39) intuitively shows that theerror bars depends on the singular values of the Regularized Pre
ision matrix Σ−1

f andtherefore 
an be approximated by Σ−1
f . In subse
tion (3.3.4), we dedu
e how the ap-proximation Σ−1

f 
an be obtained from Taylor's expansion.3.3.4 An Approximation to Σfλ,σIt is 
ommon to summmarize the posterior distribution by fmapλ,σ
and 
onstru
t approx-imate error bars on the �t for that parti
ular values of λ2

ml and σ2. By Taylor expandingthe log-posterior up to the se
ond order (via Lapla
e approximation), we havelog p (f | g̃, σ2, λ2
ml) = log p(fmapλ,σ

| g̃, σ2, λ2
ml

)

+
1

2

(

f − fmapλ,σ

)T
Σf

(

f − fmapλ,σ

)(3.40)where
Σf = −∇2

f log p (f | g̃, σ2, λ2
ml)Hen
e

p
(

f | g̃, σ2, λ2
ml

)

= p
(

fmapλ,σ
| g̃, σ2, λ2

ml

) exp − 1

2

{(

f − fmapλ,σ

)T
Σf

(

f − fmapλ,σ

)}(3.41)From equation (3.41), the posterior 
an be lo
ally approximated as a Gaussian withpre
ision matrix (or error bars) Σ−1
f :

Σ−1
f =

(KTK

σ2
+ λ2

mlI
)−1 (3.42)
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Figure 3.2: Estimates of the MAP posterior at σ2 = 10−6. The value of λ2
ml for ea
h posterior fsatis�es the relation we established in of equation (3.28); λ2

ml = λ2
rls/σ2 . The shape ofthe subplots are repli
a of the subplots in Figure (2.8) ex
ept for a di�eren
e in the valuesof λ2

ml and λ2
rls as a result of the fa
tor σ2 whi
h is fa
tored into λ2

rls.s This tells us that,if the noise level σ2 and the regularization parameter λ2
rls are given, the parameter λ2

ml
an be obtained and vi
e-versa.



CHAPTER 3. STOCHASTIC MODELLING 33AnalysisEquation (3.42) is a good approximation to Σfλ,σ
of equation (3.38) for any given pairof hyperparameters λml and σ. This approximation holds for all quadrati
 fun
tionalregularizers (priors) and noise models that are assumed to be Gaussian. Therefore,analysis of Σfλ,σ

is tantamount to doing analysis on the approximation,
n∑

i=1

vi

(d2
i

σ2
+ λ2

ml

)−1
vT

i (3.43)for any given K and σ2 sin
e the ratio D/σ 
an viewed as some sort of s
aling. However,we note that (di/σ ; ∀ i) of equation (3.39) is known sin
e di 
omes from the singularvalues of the matrix K at the noise level σ2. For non-zero λ2
ml and σ2, we have Λi → 0if and only if di/σ → 0 . In this 
ase, the error bars depends on the SVD 
omponents(or singular values) of K having numeri
al values roughly equal to (or approa
hing) zero.Also from equation (3.38), we 
an easily see that when λml = 0 , we have

Σfλml,σ
= σ2

n∑

i=1

vi

( 1

d2
i

)

vT
i (3.44)whi
h 
orresponds to the varian
e-
ovarian
e of the Least Squares estimates.From above, it is enough to fo
us on the analysis of Σ−1

f :
Σ−1

f =

n∑

i=1

vi

(d2
i

σ2
+ λ2

ml

)−1
vT

i (3.45)For �xed σ2, (σ2 > 0):
(a) if λml << di for all i, we have

Σ−1
f ≃

n∑

i=1

vi

(σ2

d2
i

)

vT
i

(b) if λml >> di for all i, we have
Σ−1

f ≃
n∑

i=1

vi

( σ2

λ2
ml σ

2

)

vT
i =

n∑

i=1

vi

( 1

λ2
ml

)

vT
iFigures (3.2), (3.3) and (3.4) are the estimates, exa
t error bars using equation (3.38)and approximate error bars using equation (3.42) on the Gravity Problem for n = 60,

d = 0.25 and at a noise level of 10−3. In the 
ase of the exa
t error bars, we 
an see thee�e
t of small di/σ at the middle to the tail-ends of ea
h subplot for σ2 > 0.
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Figure 3.3: The exa
t Error bars on the estimates of the posterior for f of Figure (3.2) using theexpression for Σfλ,σ
at the same σ2 = 10−6.
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Figure 3.4: The error bars approximated by Σ−1
f .



CHAPTER 3. STOCHASTIC MODELLING 363.3.5 Appli
ation of the Maximum Likelihood Prin
ipleto the ProblemThe sto
hasti
 pro
ess g̃ is 
hara
terized by spe
ifying the �nite dimensional 
onditionaldistribution
p{g̃(s) |σ2, λ2

ml} = p{(g̃T
s1
, g̃T

s2
, g̃T

s3
, ...., g̃T

sn
) |σ2, λ2

ml}Bayes rule further allows us to re-
hara
terize the above �nite dimensional 
onditionaldistribution by spe
ifying the joint 
onditional density fun
tion through the marginaldistribution of g̃ given σ2 and λ2
ml. 3In general, the re-
hara
terization of the marginal distribution of g̃ given the parameterpair (σ2, λ2

ml) is de�ned by:
p(g̃|λ2

ml, σ
2) =

∫

p(g̃ | f, σ2, λ2
ml) p(f |λ2

ml, σ
2)df (3.46)where the sto
hasti
 input variable f and the parameter σ are assumed to be independentand the integrand is 
alled the joint 
onditional density. A fun
tional say l de�ned by

l(f, λ2
ml, σ

2) = p(g̃ | f, σ2, λ2
ml)is 
alled the 
onditional likelihood-fun
tion (
onditioned on f).From Bayes' rule we have

p(g̃ | f, σ2) p(f |λ2
ml) = p(g̃, f |λ2

ml, σ
2) (3.47)where p(g̃ | f, σ2) and p(f |λ2

ml) are the same as given in equations (3.21) and (3.22) andthe equivalen
e of their 
orresponding normalizing 
onstants Cl(σ) and Cp(λml) for thisproblem are
{
∫ exp − 1

2σ2
‖g̃ − Kf‖2 df}−1

= (2π σ2)−n/2 (3.48)and {
∫ exp[−λ2

ml

2
‖ f ‖2 df}−1

=
(λ2

ml

2π

)n/2 (3.49)The integrand of the 
onditional density p(g̃ |σ2, λ2
ml) is equivalent to the joint 
ondi-tional density of equation (3.47). Hen
e by substitution of equations (3.47), (3.48) and(3.49)

p(g̃, f |σ2, λ2
ml) =

(λ2
ml

2π

)n/2(

2π σ2
)−n/2 exp{ − 1

2σ2

∥
∥
∥ g̃ − Kf

∥
∥
∥

2

2
+

− λ2
ml

2

∥
∥
∥ f
∥
∥
∥

2

2

}

= C(λml, σ) exp{− 1

2σ2

[ ∥
∥
∥ g̃ − Kf

∥
∥
∥

2

2
+ σ2λ2

ml

∥
∥
∥ f
∥
∥
∥

2

2

]}(3.50)3The parameter λ2
ml is usually referred to as a hyperparameter. It 
ontrols the distribution of otherparameters in equation (3.46).



CHAPTER 3. STOCHASTIC MODELLING 37where C(λml, σ) = Cp(λml)Cl(σ). Also, the fun
tional p(g̃ |σ2, λ2
ml) is referred to as thelikelihood fun
tion and we shall denote it by L(θ) with θ = (λml, σ).Our obje
tive is then to �nd the pair say (λ2 ⋆

ml , σ
2 ⋆) from the set of parameters

{λml, σ} for whi
h L is maximum. If the above distributions are de�ned in terms of theexponential family of distributions, then it is usually advisable to take the logarithm of
L before we pro
eed to �nding the maximum. From the two 'hoods', likelihoods multiplyand log-likelihoods add.3.3.6 Expli
it Result for the Gaussian ModelHere we will make a general assumption about the mean and varian
e-
ovarian
e of thesto
hasti
 variables g̃ and f . We are 
onsidering the 
ase where the mean of g̃ is di�erentfrom zero. We state our assumptions as follows:

p(ǫ|σ2) ∼ N(0, σ2I) , p(f |λ2
ml) ∼ N(0, λ−2

ml I) and g̃ ∼ N(Kf,Σf )where the ve
tors ǫ and f are assumed to be independent.Sin
e the output g̃ and input f of the pro
ess are Gaussian, the de�nitions of their
onditional probability densities are equivalent to the previous ones. A repli
a of equation(3.46) to the model gives the following:
p(g̃ |λ2

ml, σ
2) = C(λml, σ)

∫ ∞

−∞

exp{− 1

2σ2

{

fT (KTK + λ2
mlσ

2I)f − 2g̃TKf

+ g̃T g̃
} df

= C(λml, σ) (2π)n/2
∣
∣
∣ Σf

∣
∣
∣

−1/2 exp 1
2

(

νT Σ−1
f ν

)exp 1
2 σ2 ‖ g̃ ‖2

(3.51)where
C(λml, σ) =

(λ2
ml

2π

)n/2 ( 1

2π σ2

)n/2 and νT =
g̃TK

σ2A de
omposition of the determinant ∣∣∣ Σf

∣
∣
∣ by SVD gives

∣
∣
∣Σf

∣
∣
∣ =

∣
∣
∣V
(D2

σ2
+ λ2

mlI
)

V T
∣
∣
∣

=
∣
∣
∣

(D2

σ2
+ λ2

mlI
)∣
∣
∣

=

n∏

i=1

( d2
i

σ2
+ λ2

ml

) (3.52)By substitution of equation (3.52) into equation (3.51):
p(g̃|λ2

ml, σ
2) =

( λ2
ml

2πσ2

)n/2
[

n∏

i=1

(d2
i

σ2
+ λ2

ml

)
]−1/2 exp 1

2

[

υT
i

(
d2

i

σ2 + λ2
ml

)−1
υi

]exp 1
2 σ2 ‖ g̃ ‖2 (3.53)
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i = νT vi = g̃T K

σ2 vi.Taking logarithms of both sides of equation (3.53) giveslog {p (g̃ |λ2
ml, σ

2)} =
n

2
log( λ2

ml

2πσ2

)

− 1

2

n∑

i=1

log(d2
i

σ2
+ λ2

ml

)

− 1

2σ2

n∑

i=1

g̃i
T g̃i +

1

2

{ n∑

i=1

υT
i

(d2
i

σ2
+ λ2

ml

)−1
υi

}(3.54)In general, equation (3.51) would have been a very di�
ult integral to perform ifthe prior was not Gaussian. Se
ondly, we 
an easily see from either equation (3.53)or (3.54) that the marginal distribution is non-linear in λ2
ml and σ2. Hen
e we 
annotjust di�erentiate the likelihood fun
tion with respe
t to the hyperparameters σ2 and λ2

ml(whi
h should have been the 
ase). We end here with the exa
t integration pro
edureabove. However, we will refer to some of the equations in this subse
tion when we get toBayesian Inferen
e methods. The above problem shall then be addressed to en
ompassNon-Gaussian priors that assumes an approximation to Gaussian distributions as well.
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Figure 3.5: log-likelihood 
ontours (top-row) and log-likelihood plots (bottom-row) for n = 30, d = 10(�rst-
olumn) and d = 1000 (se
ond 
olumn) of The Gravity Problem Model.Figures (3.5) and (3.6) are log-likelihood 
ontour plots, log-likelihoods plots and sur-fa
es of the log-likelihood. Figures (3.7) and (3.8) also shows likelihood 
ontour plots,likelihood plots and surfa
es of the likelihood. The set of values of λ2
ml and σ2 forall the plots were respe
tively generated from matlab using logspa
e(−6, 6, 500) andlogspa
e(−6, 0, 500) for n = 30 and at di�erent values of d; d = 10 for the �rst 
olumns
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Figure 3.6: log-likelihood w.r.t log(σ2) (top-row) and surfa
e of the log-likelihood (bottom-row) for
n = 30, d = 10 (�rst-
olumn) and d = 1000 (se
ond 
olumn) of the Gravity Model.
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Figure 3.7: likelihood 
ontours (top-row) and likelihood plots (bottom-row) for n = 30, d = 10 (�rst-
olumn) and d = 1000 (se
ond 
olumn) of the Gravity Model.



CHAPTER 3. STOCHASTIC MODELLING 40

Figure 3.8: likelihood w.r.t log(σ2) (top-row) and surfa
e of the likelihood (bottom-row) for n = 30,
d = 10 (�rst-
olumn) and d = 1000 (se
ond 
olumn) of the Gravity Model.and d = 1000 for the se
ond 
olumns of ea
h of the Figure.The most probable value of the pair of parameters (λ2 ⋆

ml , σ
2 ⋆) for ea
h 
olumn ismarked ⋆ in ea
h 
ontour plot and they have their respe
tive values shown on top.In subse
tion (3.3.7), we appeal to two di�erent set of assumptions for a simple 
asewhere the mean of g̃ is assumed to be zero and another 
ase where the mean of g̃ isdi�erent from zero and use the de�nition of probability density fun
tion of a normalmulti-dimensional variable of equation (3.6) on the same problem.3.3.7 Multivariate Gaussian Distribution Approa
h to the ModelThe alternative method to solving the same problem is to make a ta
it assumption aboutthe output g̃ whi
h 
an be either; g̃ 
omes from the sum of two Gaussians with meanzero or otherwise. We state our assumptions for the two 
ases as follows:(a) p(f |λ2

ml) ∼ N(0,
1

λ2
ml

I) , p(ǫ|σ2) ∼ N(0, σ2I) and g̃ ∼ N(0,Σg̃)(b) g̃ ∼ N(Kf, σ2I) , p(f |λ2
ml) ∼ N(0,

1

λ2
ml

I) and p(ǫ|σ2) ∼ N(0, σ2I)
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(a) Zero MeanUsing the assumption in (a), the 
ovarian
e of marginal for g̃ is obtainable from thefollowing.

Σg̃ = 〈 g̃g̃T 〉
= 〈 (Kf + ǫ)(Kf + ǫ)T 〉
= 〈KffTKT 〉 + 〈 ǫǫT 〉 (3.55)where
〈KfǫT 〉 = 〈 ǫfTKT 〉 = 0be
ause the ve
tors ǫ and f are assumed to be independent.A de
omposition of equation (3.55) by SVD results in

Σg̃ = [K
1

λ2
ml

KT ] + σ2I

= U
{D2

λ2
ml

+ σ2I
}

UT (3.56)Sin
e g̃ is asumed to be Gaussian, its normalized joint 
onditional probability density
p(g̃|σ2, λ2

ml) is
p(g̃|σ2, λ2

ml) =
( 1

2π

)n/2
| Σg̃ |−1/2 exp− { 1

2
g̃T Σ−1

g̃ g̃
} (3.57)Substituting the equivalent expressions of Σ−1

g̃ and |Σg̃ | into equation (3.58) above gives
p(g̃|σ2, λ2

ml) =
( 1

2π

)n/2 [
n∏

i=1

( d2
i

λ2
ml

+ σ2
)]−1/2 exp− 1

2

{
n∑

i=1

ωT
i

( d2
i

λ2
ml

+ σ2
)−1

ωi

}(3.58)where ωi = uT
i g̃ and we have made use of the initial assumption that the mean 〈 g̃ 〉 = 0.Taking the logarithm of both sides of equation (3.58) gives us another importantequation log p (g̃|σ2, λ2

ml)} = −n
2
log(2π) − 1

2

n∑

i=1

log{( d2
i

λ2
ml

+ σ2
)}

1

2

{
n∑

i=1

ωT
i

( d2
i

λ2
ml

+ σ2
)−1

ωi

} (3.59)
 We already know that the marginal distribution is non-linear in the parameters λ2
mland σ2 in the zero neighbourhood. So, a 
losed form ML prin
iple is intra
table. There-fore, a maximization of the log-likelihood through di�erentiation and solving for thezeros dire
tly is impossible. Interestingly, it is possible to �nd the best possible pair ofhyperparameters say (λ2 ⋆

ml , σ
2 ⋆) in equations (3.57) from a given set of hyperparameters

{λ2
ml, σ

2} but it is impossible to do the same for non-zero mean due to the presen
e of



CHAPTER 3. STOCHASTIC MODELLING 42the latent variable f and/or the assumptions made in (b).We present an iterative s
heme for estimating (λ2 ⋆
ml , σ

2 ⋆) using the ML EM Algorithmto the problem. This pro
edure is (more or less) a show
ase or test-bed for understandingthe Variational Bayesian EM Algorthm whi
h we will treat later. It will also make iteasy for us to see the di�eren
e between Regularization in MAP and ML.Appli
ation of EM Algorithm (Tikhonov EM Regularization)Before we stoop to this iterative algorithm, we shall let the symbols β = 1/σ2 and
α = λ2

ml. We are also dealing with a single data point in n-dimensions so there is noneed for a summation sign here.In this EM appli
ation, instead of maximizing the likelihood p(g̃ |β, α), 4 we ratherseek to maximize the joint likelihood p(g̃, f |β, α) of the unobserved random variables inthe model whi
h is a fun
tion of the latent variable f . 5 The quantity p(g̃, f |β, α) thenbe
omes a fun
tion of the unobserved random variables f . Hen
e we have
Lc(β, α) = p(g̃, f |β, α) (3.60)In using Bayes' rule, followed by taking logarithm of both sides and making use of thefa
t that f is independent on ǫ, we havelogLc(β, α) = log p(g̃ | f, β) + log p (f |α) (3.61)6 The 
omplete log-likelihood fun
tion, ( logLc ) of equation (3.61) redu
es tologLc(α, β) = − n log(2π) +

n

2
log β +

n

2
logα −

β

2

(

g̃ − K f
)T(

g̃ −K f
)

− α

2
fTf (3.62)The M Step of EMThe M step involves taking the expe
tation of the 
omplete log-likelihood and maximiz-ing it with respe
t to β.Di�erentiating with respe
t to β:d 〈 logLc(α, β) 〉d β =

n

2β
− 1

2

{〈(

g̃ −K f
)T(

g̃ −K f
)〉} (3.63)4p(g̃ |β, α) is also referred to as the In
omplete Data Likelihood5p(g̃, f |β, α) of the unobserved random variables in the model is also known as Complete DataLikelihood.6The se
ond term on the right hand side of equation (3.61) is independent on β. Therefore, �ndingthe most probable β simply means that we only need the �rst term on the right hand side of equation(3.61). On the otherhand, the �rst term on the right hand side of equation (3.61) is independent on α.Therefore, �nding the most probable α simply means that we only need the se
ond term on the righthand side of equation (3.61).



CHAPTER 3. STOCHASTIC MODELLING 43Setting the derivative to zero and solving for β gives
β =

n
〈(

g̃ −K f
)T(

g̃ −K f
)〉

=
n

g̃T g̃ −
(

g̃ 〈 fT 〉
)

KT + Tr[KTK 〈f fT 〉]
} (3.64)where fT (KTK) f = Tr[KTK f fT ] and we have used the relation xTAx = Tr[AxxT ].At this point we are still left with the problem of determining the a
tual values of 〈f〉and 〈f fT 〉. This is where the E-step 
omes in.The E Step of EMThe E-step involves the maximization of the log-posterior p(f | g̃, β, α). The analyti
alform of the expe
tation for p(f | g̃, β, α) 
an be obtained from Bayes' rule

p (f | g̃, β, α) ∝ p(g̃ | f, β) p (f |α) (3.65)Taking logarithm of both sides and expanding giveslog p(f | g̃, β, α) = −n
2
log 2π +

n

2
log β − β

2

{(

g̃ −K f
)T(

g̃ −K f
)}

− n

2
log 2π − α

2
fT f +

n

2
logα+ g

= −1

2

{

g̃Tβg̃ − 2fTKT βg̃ + fT (α I +KTβK )f
}

+ g
′(3.66)where g and g

′ are independent of f and we have assumed that the prior is a quadrati
fun
tional given by p (f |α) = (α/2π)n/2 exp − α
2 f

Tf . From equation (3.66), it is easyto infer that
p (f | g̃, β, α) ∼ N

(

〈f〉,Σ−1
f

)where Σ−1
f :

Σ−1
f = (α I + β KTK)−1 (3.67)and 〈 f 〉 is
〈f〉 = Σ−1

f KTβ g̃

= fmlλ,σ
(3.68)where Σ−1

f and 〈 f 〉 are the varian
e-
ovarian
e and mean with a prior on f .The 
orresponding 〈f fT 〉 is
〈f fT 〉 = Σ−1

f + 〈 f 〉〈 f 〉T (3.69)



CHAPTER 3. STOCHASTIC MODELLING 44If there is no prior on f or (α = 0) then we assume non-informative priors. In this 
ase
〈 f〉 = (β KTK)−1KTβ g̃ = (KTK)−1KT g̃ (3.70)whi
h gives the updates equation for the standard EM-Algorithm (and it is equal to theLeast Squares solution). The di�eren
e between equations (3.68) and (3.70) 
omes fromthe addition of a prior. For quadrati
 fun
tional priors, we view the 
onditional prior

p (f |λ2
ml) as equivalent to an un
onditional prior p(f) when λ2

ml = 1.3.3.8 Summary of Equations for the EM AlgorithmE Step
Σ−1

f = (α I + β KTK)−1

〈f〉 = Σ−1
f KTβ g̃ = (α I + β KTK)−1β g̃

〈f fT 〉 = Σ−1
f + 〈f〉 〈f〉T (3.71)where β = σ−2 in the above.M Step

β =
n

〈(

g̃ −K f
)T(

g̃ −K f
)〉

=
n

g̃ g̃T −
(

g̃ 〈 fT 〉
)

KT + Tr[KTK 〈f fT 〉]
} (3.72)The solutions to the equations above is sometimes 
alled the solution to the maximumpenalized likelihood (MPL). The penalty term that assessses the physi
al plausibility ofthe solution is

1

σ2
‖ f ‖22The MPL solution is the same as the Tikhonov's Regularized solution

fmlλ,σ
= (KTK + σ2λ2

mlI)
−1KT g (3.73)3.3.9 The Di�eren
e between MAP and Maximum LikelihoodWe have so far seen that, di�eren
es in ML and MAP do not lie in the equation governingthe Bayesian posterior for the sto
hasti
 variable f be
ause the same Bayes' rule is usedfor estimating f in either 
ase. We will use the 
on
ept of exa
t marginalization over
ontinuous variables to �nd out whether di�eren
e(s) really exists.From Bayes' Rule we have

p(g̃, f, λ2
ml, σ

2) = p (g̃, f |λ2
ml, σ

2) p (λ2
ml, σ

2) (3.74)
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p(λ2

ml, σ
2 | g̃) p (g̃) = p (λ2

ml, σ
2)

∫

p (g̃, f |λ2
ml, σ

2)df
= p (λ2

ml, σ
2) p (g̃ |λ2

ml, σ
2) (3.75)Hen
e

p(λ2
ml, σ

2 | g̃) =
p (λ2

ml, σ
2)

p (g̃)
p (g̃ |λ2

ml, σ
2)

∝ p (λ2
ml, σ

2) p (g̃ |λ2
ml, σ

2) (3.76)where p(λ2
ml, σ

2 | g̃) is the MAP posterior of the parameters given the data g̃ and
p (g̃ |λ2

ml, σ
2) is the likehood of the parameters.With regards to equation (3.76), we view MAP as a substitute to maximizing thelikelihood p (g̃ |λ2

ml, σ
2) by maximizing the Bayesian posterior probability density of theset of parameters with the only di�eren
e arising from an introdu
tion of a prior overthe parameters we want to infer due to the knowledge we knew (or initial assumption wemade) about the distribution over the parameters. If the prior distribution of λ2

ml and
σ2 are assumed to be independent then p (λ2

ml, σ
2) = p (λ2

ml) p (σ2) . In addition to theindependen
y, if both priors are assumed to be non-informative then estimates obtainedfrom ML and MAP should 
oin
ide otherwise we expe
t MAP to out-perform ML dueto the in
lusion of priors.



CHAPTER Take Home on Numeri
al and Statisti
al Regularization
Similarity in Equations Between Numeri
al and Statisti
al Regularization(for Gaussian random variables)In 
hapter (2), the measurables were of the form

g̃(s) =

∫

Ω
K(s, t)f(t)dt = g(s) + ǫ(s)and we explained that the equation above is often related to a fun
tional inequality | ǫ |bounded above su
h that

| ǫ(s)| ≤M or ∫

Ω
ǫ2(s)w(s)ds ≤ M̃ : w(s) > 0 (4.1)Also from equation (3.46), the fun
tional equation is given by the marginal distributionof g̃ given (or 
onditional on) σ2 and λ2

ml. This is of the form
p(g̃|λ2

ml, σ
2) =

∫

p(g̃ | f, σ2) p(f |λ2
ml)df (4.2)Both ǫ2(s) and p(g̃ | f, σ2) have the same quadrati
 fun
tional forms and the 
orre-sponding weights w(s) and p(f |λ2) are also quadrati
 fun
tional regularizers. Withoutloss of generality, | p(g̃ | f, σ2) | also satis�es

| p(g̃ | f, σ2) |≤ M̂ or ∫

p(g̃ | f, σ2) p(f |λ2)df ≤ ˆ̃
MSub-
on
lusion on Numeri
al and Statisti
al Framework

(a) The 
onditional mean in the Statisti
al framework/settings (i.e MAP) is the same asthat of Regularized Normal Equations in the Numeri
al Methods framework if we are deal-ing with Multivariate Gaussian Distribution. We 
an 
onsider the Regularized NormalEquations in the Numeri
al Methods framework settings as a spe
ial 
ase of Sto
hasti
Modelling theory when we are dealing with Gaussian Random Variables.
(b) The tuning parameter λrls in the Numeri
al Methods framework settings is a prod-u
t of the Statisti
al parameter λml and the noise level σ.
(c) Setting the regularization parameter λml to zero for σ <∞ is the same as �ndinga solution to a Least Squares problem. 46



CHAPTER Numeri
al and Statisti
al Estimation Theory
The aim of this Chapter is to 
ompare and 
ontrast equations and expressions whi
hleads to understanding the features and analysis of
(i) the L-Curve for Tikhonov Regularization in Numeri
al Ridge Regression.
(ii) the Empri
al Bayes (Regularization) in Statisti
al (Bayesian) Ridge RegressionWe already know from Chapters 2 and 3 that the standard Least Squares (LS) esti-mate fls is equivalent to the standard Maximum Likelihood estimate fml. Also, due toill-posedness whi
h is beyond both the standard LS and ML estimates, we extended theestimation pro
edure to be based on adding the small positive 
onstant α = λ2

ml to thesingular values of the symmetri
 matrix KTK/σ2 or KTK so that the inverse matrixasso
iated with fλrls
or fmapλml,σ

or fmlλml,σ
be
omes non-singular.We now turn our attention to the problem of how optimal estimates for λ2

rls, λ2
ml and

σ2 
an e�
iently be determined. We shall 
ontinue to work under normality 
onditions.5.1 The L-Curve for Tikhonov's Numeri
al Regularization5.1.1 SVD for Tikhonov's RegularizationA de
omposition of the standard regularized solution of equation (2.40) by SVD gives
fλrls

=

n∑

i=1

( d2
i

d2
i + λ2

rls

)uT
i g̃

di
vi (5.1)whi
h is of the form

fλrls
=

n∑

i=1

xi
uT

i g̃

di
vi (5.2)where

xi =
d2

i

d2
i + λ2

rls

; ∀ i (5.3)are 
alled the Tikhonov's �lter fa
tors and they satisfy the inequality 0 < xi < 1.Another way of writing equation (5.3) is
d2

i

d2
i + λ2

rls

= 1 − λ2
rls

d2
i + λ2

rls

(5.4)
(a) If di >> λrls, then λ2

rls/(d
2
i + λ2

rls) → 0. Hen
e
d2

i

d2
i + λ2

rls

≈ 1 (5.5)47
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(b) If di << λrls, then λ2

rls/(d
2
i + λ2

rls) → 1. Hen
e
d2

i

d2
i + λ2

rls

≈ 1 − 1 = 0 (5.6)
(c) For a δ-neighbourhood (δ-small s.t δ > 0), if di = λrls ± δ, then the �lter fa
tor xiare in transition between the two extreme regions of (a) and (b) above. Hen
e,

d2
i

d2
i + λ2

rls

≈ 1 − 1/2 = 1/2 (5.7)The naive solution f̃ is obtained when λrls = 0 . The SVD 
omponents 
orrespond-ing to di > λrls 
ontributes strength that is more than half of the naive 
ase f̃ . For
ase(s) where di >> λrls, it 
ontributes with almost full strength to the solution fλrls
.On the otherhand, the SVD 
omponents 
orresponding to singular values di < λrls aredamped 
onsiderably and 
ontribute very little to the solution fλrls

. Hen
e, the trun-
ation parameter k has a relation with λ2
rls given by dk ≈ λrls. For more on this see[2℄.5.1.2 Analysis of L-Curve for Tikhonov RegularizationThe analysis to be presented here is due Hansen. We will not dwell mu
h into thesurrounding details. For a thorough dis
ussion on this, kindly see [2℄. The analysisstarts by writing g̃ as the sum of an exa
t unperturbed data ḡ and noise ǫ;

g̃ = ḡ + ǫ and ḡ = Kf̄ (5.8)where f̄ = K†ḡ. The Tikhonov solution is expressed as
fλrls

= f̄λrls
+ f ǫ

λrls
(5.9)where f̄λrls

is the regularized version of the exa
t solution f̄ and it is also given by
f̄λrls

= (KTK + λ2
rlsI)

−1KT ḡ (5.10)The Least Squares solution f̄ = K†ḡ to the unperturbed problem satis�es the dis
retepi
ard 
ondition and for that matter |vT
i f̄ |= |uT

i ḡ/di | also de
ay. The residual normwhi
h is 
hara
terized by data mis�t g̃ǫ
λrls

is given by
‖ g̃ǫ

λrls
‖22 = ‖ g̃ − Kfλrls

‖22 =
n∑

i=1

(

(1 − xi)u
T
i g̃
)2 (5.11)The norm of the deviation f ǫ

λrls
from the estimates is

‖ f ǫ
λrls
‖22 = ‖ f̄λrls

− fλrls
‖22 =

n∑

i=1

( diσ

d2
i + λ2

rls

)2

≈ σ2

{
k∑

i=1

( 1

di

)2
+

n∑

i=k+1

( di

λ2
rls

)2
} (5.12)



CHAPTER 5. NUMERICAL AND STATISTICAL ESTIMATION THEORY 49It follows from the solution norm ‖ fλrls
‖22 =

∑m
i=1(xi

u
T
i g
di

)2 that the norm of theregularized version of the exa
t solution 
an be given by the approximation
‖ f̄λrls

‖22 ≈
k∑

i=1

(

vT
i f̄
)2
≈

n∑

i=1

(

vT
i f̄
)2

= ‖ f̄ ‖22 (5.13)where the last n− k terms 
ontribute very little to the sum. Hen
e
(i) if λrls →∞ , and k → 0 we have f̄λrls

→ 0 whi
h implies that ‖ f̄λrls
‖2 → 0 .

(ii) if λrls → 0 , then ‖ f̄λrls
‖2 → ‖ f̄ ‖2The residual 
orresponding to f̄λrls

then satis�es
‖ ḡ − Kf̄λrls

‖22 =

n∑

i=k

(

uT
i ḡ
)2 (5.14)Therefore, the L-Curve for the unperturbed problem is a �at 
urve at ‖ f̄λrls

‖2 ≈ f̄ex
ept for large values of the residual norm ‖ ḡ − Kf̄λrls
‖2 where the 
urve approa
hesthe abs
issa axis.Finally, the �rst and se
ond sum of ‖ f ǫ

λrls
‖22 in equation (5.12) are respe
tively dom-inated by d −2

k ≈ λ−2
rls and d 2

k+1 ≈ λ2
rls and 
an be approximated by

‖ f ǫ
λrls
‖22 ≈ ̟λrls

σ/λrls (5.15)where̟λrls
is a quantity that varies slowly with λrls. Hen
e, f ǫ

λrls
in
reases monotonoi
allyfrom 0 as λrls de
reases until

‖K†ǫ ‖2 ≈ σ ‖K† ‖F for λrls → 0 is attained.The 
orresponding residuals satis�es
‖K f ǫ

λrls
− g̃ ‖22 ≈

n∑

i=k

σ2 = (n− k)σ2 (5.16)Hen
e, ‖K f ǫ
λrls
− ǫ ‖2 ≈ σ

√
n− k is a slowly varying fun
tion of λrls whi
h lies in therange from 0 to ‖ ǫ ‖2 ≈ σ
√
n . Therefore the L-Curve for ǫ is an overall very steep
urve lo
ated slightly to the left of ‖K f ǫ

λrls
− ǫ ‖2 ≈ ‖ ǫ ‖2 , ex
ept for small values of

λrls where it approa
hes the ordinate axis.It is emphasized that the analysis is valid only when the L-Curve is plotted in log-logs
ale and that it is a plot of 1
2 ln‖ fλrls

‖22 versus 1
2 ln ‖K fλrls

− g̃ ‖22 . It is furtherassumed that the noise is a s
alar multiple of the identity matrix I. So the expe
tedvalues of the SVD 
oe�
ients of uT
i ǫ are independent of i;

〈 (uT
i ǫ)

T (uT
i ǫ) 〉 = σ2 ; i = 1, 2, ..., n (5.17)



CHAPTER 5. NUMERICAL AND STATISTICAL ESTIMATION THEORY 505.1.3 The L-Curve Method for Estimating the Parameter λ2
rlsThe L-Curve is a log-log plot of the norm of the regularized solution ‖ fλrls
‖2 versus thenorm of the 
orresponding residual norm ‖Kfλrls

− g̃ ‖2. Thus, from the set of parametervalues {λ2
rls }, if we let η and ρ be represented respe
tively by

η = ‖ fλrls
‖22 ; ρ = ‖Kfλrls

− g̃ ‖22 (5.18)and let
η̂ = ln η ; ρ̂ = ln ρ (5.19)Then

η = exp η̂ = ‖ fλrls
‖22 and ρ = exp ρ̂ = ‖Kfλrls

− g̃ ‖22 (5.20)Hen
e
η̂ = ln ‖ fλrls

‖22 and ρ̂ = ln ‖Kfλrls
− g̃ ‖22 (5.21)Hansen in [1℄ derived an expression for the 
urvature κ of the L-Curve as a fun
tion of

λrls and had
κ =

2 η ρ

η′
λ2 η′ ρ + 2λ η ρ+ λ4η η′

(λ2η2 + ρ2)3/2
(5.22)where

λ = λrls , η′ =
−4

λ

n∑

i=1

(1 − xi)x
2
i

ω2
i

d 2
i

and ωi = uT
i g̃The strategy of 
hoosing the best estimate for the regularization parameter λ̂2

rls lies atthe 
orner. The 
orner separates the �at and the verti
al parts of the 
urve where thesolution is dominated by regularization and perturbation errors.5.2 Empiri
al Bayes for Statisti
al Ridge RegressionHoerl and Kennard (1970), were the �rst to propose the Ridge Regression estimator of
fls;

fλeb
= (KTK + λ2

ebI)
−1KT g̃ λeb > 0 (5.23)where fλeb

is the regularized solution and λ2
eb is the regularization 
onstant. 1 Theyfurther used the term instability to signify that 〈 fT

lsfls 〉 is too large or mu
h larger than
‖ f ‖22. We view the Ridge Estimate fλrls

in the above 
ontext as an extension of thestandard Least Squares or standard ML estimator when KTK have at least one sin-gular value to be small. A small singular value di (di → 0) of K tends to make theLeast Squares estimator unstable in the sense that small 
hanges in g̃ may produ
e large
hanges in fls.We now present the �rst of two types of Statisti
al Bayes Ridge Regression namelyTrun
ated SVD for Empiri
al Bayes Ridge Regression.1the sub
ript eb stands for Empiri
al Bayes and λeb is the empiri
al bayes regularization parameter.
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al BayesWe 
an re-write equation (5.23) in the following alternative forms.
fλeb

= WKT g̃ (5.24)where W = (KTK + λ2
ebI)

−1. The alternative form of equation (5.24) is
fλeb

=
[

I + λ2
eb(K

TK)−1
]−1

(KTK)−1KT g̃

= Y fls (5.25)where Y =
[

I + λ2
eb(K

TK)−1
]−1By further manipulating Y , we get

Y =
[

KTK + λ2
ebI
]−1

KTK

= I − λ2
eb[K

TK + λ2
ebI]

−1 by simple long division arithmeti

= I − λ2

ebW (5.26)We also let ξ(W ) and ξ(Y ) be singular values of W and Z su
h that
ξ(W ) =

n∑

i=1

1

d2
i + λ2

eb

(5.27)
ξ(Y ) =

n∑

i=1

d2
i

d2 + λ2
eb

(5.28)The SVD of fλeb
of equation (5.24) is

fλeb
=

n∑

i=1

vi
d2

i

d2 + λ2
eb

uT
i g̃

di
(5.29)and it is 
omparatively of the same form as equation (5.1). The estimator fλeb

dependson the 
hoi
e of the 
orresponding pre
ision parameter λ2
eb and it is generally notguaranteed to be better than fls in terms of risk under any quadrati
 loss. In view ofthis, we seek to produ
e minimax adaptive ridge-regression 2 that are uniformly betterthan the Least Squares estimator.5.2.2 Trun
ated SVD for Empiri
al BayesThe inverse of the matrix KTK is of 
on
ern to us here sin
e the solution depends onit. The singular values of (KTK)−1 is obtainable from

V T (KTK)−1V = D−2 (5.30)2The term minimax is used to refer to an estimator that is uniformly better than the Least Squaresestimator and the word adaptive indi
ates that the ridge 
onstant is estimated from data.
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n , d−2

n−1, d
−2
n−2, ...., d

−2
1 ) and d−2

n > d−2
n−1 > d−2

n−2 >, ...., > d−2
1 .We partition V su
h that

V = (V1, V2) where V1 ∈ R
n×k and V2 ∈ R

n×(n−k) for some k. (5.31)We write
f = V V T f = V1V

T
1 (f) + V2V

T
2 f

= V1 ςeb + V2 γ (5.32)where ςeb 
orresponds to the smaller singular values of KTK.It is desirable to impose the 
onstraint
f = V2γ (5.33)We 
onstru
t ridge-type regression estimators using the information about whi
h singularvalues are smaller in some sense. This we do by

V T (KTK)V = D2 = diag(d 2
1 , d

2
2 , d

2
3 , ...., d

2
n )

=

(

D2
1 0

0 D2
2

) (5.34)where D2
1 = diag(d 2

1 , d
2

2 , d
2

3 , ..., d
2

n−k) and D 2
2 is an (n − k + 1) × (n − k + 1)diagonal matrix 
onsisting of the smaller singular values. Sin
e ςeb of equation (5.32)
orresponds to small singular values and for this reason must not be in
luded in themodel, we shrink fls towards the linear 
onstraints

H0 : f = V2γ γ ∈ R
n−k (5.35)Using the de
ompositions given in equations (5.31) and (5.34), the estimate of γ is

γ̂ = V T
2 fls (5.36)The trun
ated SVD (or prin
ipal 
omponent) regression estimator of f is given by

fPC = V2 V
T
2 fls
︸ ︷︷ ︸

γ̂

(5.37)Also from equations (5.36) and (5.37) we have
V2γ̂ = fPC (5.38)By 
onveniently treating them in 
anoni
al form, we 
an 
hoose to let z = V T fls. Then

z ∼ N(V T f, σ2D−2) (5.39)
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al Bayes EstimatorsLet ξi(Y ) be the ith−diagonal singular value of equation (5.28). For λeb > 0, we have
max

i
ξi(Y ) =

d 2
1

d 2
1 + λ2

eb

< 1 (5.40)where d 2
1 is the largest singular value of KTK and that equation (5.40) equals 1 if andonly if λeb = 0. Hen
e

‖ fλeb
‖22 < ‖ fls ‖22 (5.41)Also from equations (5.28) and (5.26)

lim
λeb→∞

d 2
i

d 2
i + λ2

eb

= lim
λeb→∞

1 − λ2
eb

d 2
i + λ2

eb

; ∀ i

= 0 (5.42)That is, when λeb → ∞, the largest singular value d 2
1 be
omes insigni�
ant and thesolution fλeb

is independent on i. Hen
e the trun
ation parameter k also approa
heszero (k → 0) and the 
orresponding norm of the regularized solution is also zero.Method of Estimating the Parameter λ2
ebThis estimator shrinks the Least Squares estimator towards the prin
ipal 
omponents.The Bayes estimator fλeb

is
fλeb

= fls −
(

I +
1

λ2
eb

KTK
)−1(

fls − V2γ
) (5.43)with the estimate of γ given by the weighted Least Squares estimator

γ̂ =
(

V T
2 K

TK V2

)−1
V T

2 K
TK fls (5.44)where γ̂ is obtainable from the minimization of the weighted squared loss

(

fls − V2γ
)T
KTK

(

fls − V2γ
) (5.45)The best variable estimate whi
h we denote by f̂λeb

is
f̂λeb

= fls −
(

I +
1

λ2
eb

KTK
)−1(

fls − fPC
ls

) (5.46)and
1/λ̂2

eb = max(1/λ2⋆
eb , 1/λ

2
0) (5.47)where λ2⋆

eb is given by the root of the equation
(

fls − fPC
ls

)T(

(KTK)−1 +
1

λ2⋆
eb

I
)−1(

fls − fPC
ls

)

=
(n− k − 2)

n+ 2

{(

g̃ −Kfls

)T(

g̃ −Kfls

)}(5.48)
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ls = fPC and λ0 is also the root of the equation

k+1∑

i=1

(dn−i)
−2 − (dk+1)

−2

(dn−i) −2 + (1/λ0) 2
= (k − 1)/2 (5.49)The above estimator fλeb

in
orporates both methods of Ridge Regression and trun
atedSVD. This should however be viewed as an extension of trun
ated SVD. For more onthis see an example in [38℄.5.3 Bayesian Inferen
e for Statisti
al Bayes Ridge RegressionIn general, the statisti
al information envisaged in parameter estimation (like we have g̃)gives some eviden
e 
on
erning some hypothesis say H1,H2, , , . (sin
e H might be thestatement that its parameter(s) lies within an interval) and we make inferen
es aboutthem solely from what we observe. The very a
t of 
hoosing a model by sampling dis-tribution 
onditional on H is 
onsidered as a means of expressing some kind of priorknowledge about the existen
e and nature of H and its observable e�e
ts.In e�e
t, we see it as a rule for 
onstru
ting informative priors when we have partialprior information that restri
ts the possibility signi�
antly but not 
ompletely. In 
on-trast to Bayesian Inferen
e, D. C Ma
kay in his book "Information Theory, Inferen
eand Learning Algorithms" [6℄ argues"On
e we have made expli
it all our assumptions about the model and the data, ourinferen
es are me
hani
al. Whatever question we wish to pose, the rules of probability the-ory give a unique answer whi
h 
onsistently takes into a

ount all the given information"Nevertheless, Bayesian Inferen
e tends to imitate both Sampling theory and evenNumeri
al Methods in that it in
orporates little or no prior information beyond the
hoi
e of the model and so seeks "non-informative" priors, otherwise it is expe
ted toout-perform Sampling Methods only when the latter fa
es a problem like insu�
ient (orsmall) data.5.3.1 The Eviden
e Framework and O

am RazorThe Framework (due te
hniques developed by Gull and Skilling), integrates over thepre
ision model parameters α = λ2
ml and β = 1/σ2 and the resulting eviden
e maximizedover the hyperparameters. The hyperparameters are then used to de�ne a Gaussianapproximation to the posterior distribution. The Bayesian Adaptive learning beginswith the probability of everything;

p(g̃ , f , α , β) = p(g̃ , f , Hi ) (5.50)where Hi = {α, β} is a sub-model of the hypotheti
al spa
e H. Two levels of inferen
eare involved in the Ridge Regression task;
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(i) Model �tting where we infer f by obtaining a 
ompa
t representation for model Hi

p(f | g̃ , α , β) =

likelihood
︷ ︸︸ ︷

p (g̃ | f , β)

prior
︷ ︸︸ ︷

p (f |α)

p (g̃ |α, β
︸ ︷︷ ︸

evidence

)

=
p (g̃ | f ,Hi) p (f |Hi)

p (g̃ |Hi) (5.51)The error bars are obtainable from Taylor expanding the log-posterior about the mostprobable fMP :
p(f | g̃,Hi) ≈ p(fMP | g̃,Hi)exp − 1

2
(f − fMP )T Σf (f − fMP ) (5.52)

(ii) Given a 
olle
tion of models of Hi, we wish to �nd our initial beliefs about therelative plausibilities in terms of a list of quati�ed p(Hi) su
h that
∑

i

p(Hi) = 1 (5.53)We use Bayes' rule to update our belief in the models in the light of g̃. We do model
omparison using the relation
p(Hi | g̃) = p(α, β | g̃) =

p(g̃ |Hi) p(Hi)

p(g̃)
∝ p(g̃ |Hi) p(Hi)

= p(g̃ |α, β) p(α, β) ; ∀ i (5.54)The denominator
p(g̃) =

∑

i

p(g̃ |Hi) p(Hi) (5.55)makes our �nal beliefs p(Hi | g̃) adds up to 1. In the light of g̃, the relative plausibilityof any two alternatives say H1 and H2 is obtainable from
p(H1 | g̃)
p(H2 | g̃)

=
p(g̃ |H1) p(H1)

p(g̃ |H2) p(H2)
(5.56)Their normalizing 
onstants are the same so they 
an
el out. The ratio p(H1 | g̃)/p(H2 | g̃)measures how our initial beliefs favour H1 over H2. The ratio p (H1)/p (H2) will also
an
el out if we have no reason to assign di�erent priors for p(H1) and p(H2). Finally,the ratio p(g̃ |H1)/p(g̃ |H2) expresses how well g̃ is predi
ted by H1 
ompared to H2.Figure (5.1) is a s
hemati
 diagram of the marginal likelihoods for a 
omplex, toosimple and "just ok" models. The more 
omplex models are able to des
ribe a greaterrange of a given data set. However, for a given data g̃, the "just ok" model has a greatereviden
e than either the too simple model or the too 
omplex model. Thus, model
omplexity is governed by O

am Razor whi
h tends to favour neither too simple nortoo 
omplex models.
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too complex

too simple

"just right"

All possible data sets

g̃
p
(g̃
|H

i)

Figure 5.1: A s
hemati
 diagram taken from [Zoubin, Ma
kay, Bishop℄ with an adjustment to suitthe explanation to the eviden
e Framework des
ibed above. It is a plot of the marginallikelihood versus g̃. It shows for a given g̃, the 
orresponding marginal likelihood p(g̃ |Hi)for a too simple model, too 
omplex model and 'just right'. The more 
omplex model isable to des
ribe a greater range of data set and vi
e-versa for a too simple one.5.3.2 Evaluation of the Eviden
e and O

am Fa
torThe eviden
e 3 is the normalizing 
onstant at the �rst level of inferen
e and it is givenby
p(g̃ |α, β) =

∫

p(g̃ | f, β) p(f |α)df (5.57)The posterior p(f | g̃, α, β) is proportional to the integrand p(g̃ | f, β) p(f |α) of equation(5.57). In the ML prin
iple, the distribution of p(g̃ |α, β) is sharply peaked around themost probable variable fMP . Hen
e the eviden
e 
an be approximated by
p(g̃ |α, β) ≈ p(g̃ | fMP , β) p(fMP |α)∆f (5.58)where ∆f is the width and p(fMP |α) is the prior whi
h 
an be imagined to be uniformon some large interval. Therefore,

p(fMP |α) =
1

∆0f
(5.59)with the O

am fa
tor given by

∆f/∆0 (5.60)The n-dimensional posterior distribution is well approximated by a Gaussian with the
orresponding O

am fa
tor obtained from the determinant of the Gaussian 
ovarian
ematrix:
p(g̃ |α, β) ≈ p(g̃ | fMP , β)

︸ ︷︷ ︸

best fit likelihood

p(fMP |α) (2π)n/2 |Σf |−1/2

︸ ︷︷ ︸

Occamfactor

(5.61)3The eviden
e is the same as the marginal likelihood of equation (3.51) ex
ept that the parametershave been de�ned in terms of the pre
ision parameters α and β.
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e is approximately evaluated from the following: Let
Zg̃(β) = (2π/β)n/2 ; Zf (α) = (2π/α)n/2 ; Eg̃ =

1

2
‖ g̃ −Kf ‖22 ; Ef =

1

2
‖ f ‖22(5.62)and also let

M(f, α, β) = β Eg̃ + αEf (5.63)Then we 
an write equation (5.57) as
p(g̃ |α, β) =

ZM (f, α, β)

Zf (α)Zg̃(β)
(5.64)where

ZM (f, α, β) =

∫ exp − {M(f, α, β)
} (5.65)Taylor expanding M about fMP to se
ond order gives

M = M(fMP ) +
1

2
(f − fMP )T Σf (f − fMP ) (5.66)Substituting into equation (5.65) and solving gives

ZM (f, α, β) = (2π)n/2 |Σf |−1/2 exp −M(fMP ) (5.67)The general form of writing the log-marginal likelihood of equation (5.64) to embodynon-quadrati
 regularizer fun
tional using a Gaussian approximation isln p(g̃ |α, β) = − ln Zf (α) − αEMP
f − 1

2
ln |Σf |+

n

2
ln (2π)

− ln Zg̃(β) − β EMP
g̃ (5.68)with βEMP

g̃ representing the mis�t of the interpolant (or �lter) to g̃ and αEMP
f mea-suring how far fMP is from its null value. The O

am fa
tor is

∆f

∆0f
=

(2π)n/2 |Σf |−1/2

Zf (α)
(5.69)5.3.3 Analysis and Method of Estimating α and βFrom the eviden
e approximation of equation (5.68), we 
an now di�erentiate the log-eviden
e to get optimal estimates for α and β .Di�erentiating with respe
t to α

d

dα
ln p (g̃ |α, β) = −EMP

f − 1

2
Tr(Σ−1

f

dΣf

dα

)

+
n

2α

= −EMP
f − 1

2
Tr(Σ−1

f

)

+
n

2α
(5.70)Setting the derivatives to zero, it is straight forward that the maximum satis�es

Ψ = 2αEMP
f = n − αTrΣ−1

f (5.71)
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α =

n/2
1
2 Tr (Σ−1

f ) + EMP
f

=
nTr (Σ−1

f ) + ‖ fMP ‖22
(5.72)with EMP

f equivalent to its 
orresponding expression of equation (5.62). The quantity
Ψ is a dimensionless measure whi
h 
an be interpreted as some sort of χf

4 for f sin
eit 
an be written in the form;
χf =

1

σ2
f

‖ fMP ‖22 = 2αEMP
f (5.73)where σ2

f = 1/α is the varian
e of f from the null value of the �tted parameters. Anotherway of expressing Ψ of equation (5.71) is
Ψ = n − n∑

i=1

α

β d 2
i + α

=

n∑

i=1

β d 2
i

β d 2
i + α (5.74)with λ2

rls = α/β = λ2
ml σ

2.Di�erentiating with respe
t to β.
d

dβ
ln p (g̃ |α, β) = −EMP

g̃ − 1

2
Tr(Σ−1

f

dΣf

dβ

)

+
n

2β

= −EMP
g̃ − 1

2
Tr(K Σ−1

f KT
)

+
n

2β
(5.75)Setting equation (5.75) to zero and manipulating gives

Ξ = 2β EMP
g̃ = n − β

n∑

i=1

d 2
i

β d 2
i + α

=

n∑

i=1

1 − β d 2
i

β d 2
i + α (5.76)Solving for β from equation (5.75) gives

β =
n/2

EMP
g̃ + 1

2 Tr (K Σ−1
f KT )

=
n

‖ g̃ − KfMP ‖22 + Tr (K Σ−1
f KT )

(5.77)where we have substituted the equivalen
e of EMP
g̃ in equation (5.62).4For N independent Gaussian variables with mean µ and standard deviation σ, the statisti
 χ =

P (x−µ)2

σ2
is a measure of mis�t.
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al InterpretationThe quantity Ψ = n − αTrΣ−1
f of equation (5.71) is the number of good parametermeasurements and has value between 0 and n. The quantity α measures how stronglythe parameters are determined by the prior. Thus, (∀ i and α > 0) β d 2

i /(β d
2

i + α)is a number between 0 and 1 whi
h measures the strength of the data relative to the priorin the i dire
tion. A dire
tion in parameter spa
e for whi
h d 2
i β (or d 2

i /σ
2) 5 is small
ompared to α does not 
ontribute to the number of good parameter measurements. As

α/β → 0, χf in
reases from 0 to n.5.4 Variational Inferen
e MethodsThis is a te
hnique one 
an employ whenever a 
omplex or 
ompli
ated distribution is en-
ountered in a statisti
al data modelling task. It evolves around Gibbs inequality methodand is often asso
iated with the Kullba
k and Leibler divergen
e theorem [DKL(Q ‖P ) ]between two probability distribution sayQ(X) and P (X). Mathemati
ally, DKL(Q ‖P )(also 
alled Relative Entropy) over the same alphabet say AX is de�ned as
DKL(Q ‖P ) =

∫

Q(X) lnQ(X)

P (X)
dX

= −
∫

Q(X) lnP (X)

Q(X)
dX

= −F(Q) (5.78)where
F =

∫

Q(X) lnP (X)

Q(X)
dX (5.79)Equation (5.78) satis�es

DKL(Q ‖P ) ≥ 0with equality if and only if Q = P . 6Variational Inferen
e in its own world (from Statisti
al Physi
s) attempts to approx-imate an integrand until the integral be
omes tra
table. The idea is to either boundthe integrand from above or below so that the integral 
an be redu
ed to an optimiza-tion problem. No parameter estimation is required and the quantity of the integral isoptimized dire
tly. It further allows �exibility in spe
ifying the prior and makes provi-sion for attaining bounds on the value of the eviden
e. See Figure (5.2) for an illustration.The methods to be presented in this se
tion is due Hinton and van Camp.5We re
all that d 2
i β = d 2

i /σ2 is the s
aling fa
tor of the exa
t expression for Σfλ,σ
in equation(3.38)6In general DKL(Q ‖P ) 6= DKL(P ‖Q)
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Start

Q(θ)

Q
(f

)

F(Q(f), Q(θ))

Figure 5.2: An illustration to show that Variational Methods is a 
oordinate as
ent algorithm in F5.4.1 Variational ML and MAPThe in
omplete log-likelihood fun
tion of a given parameter say φ for g̃ islnL(φ) = ln ∫ p (g̃, f |φ)df (5.80)By introdu
ing the simpler dsitribution Q (f) and maximizing L (φ) with respe
t to φwe have lnL(φ) = ln ∫ Q(f)
p (g̃, f |φ)

Q(f)
df

≥
∫

Q(f) ln p (g̃, f |φ)

Q(f)
df

= 〈 ln p (g̃, f |φ) 〉Q(f) + ΥQ(f)

= F (Q(f), φ) (5.81)where ΥQ(f) is the entropy of the distribution Q(f) and we have made use of Jensen'sinequality whi
h makes use of the fa
t that the logarithmi
 fun
tion is 
on
ave.Exa
t Optimization of Variational ML using the EM prin
ipleThe E-step involves optimizing the posterior Q(f);
F(Q(f), φ) =

∫

Q(f) lnp (g̃, f |φ)

Q(f)
df (5.82)



CHAPTER 5. NUMERICAL AND STATISTICAL ESTIMATION THEORY 61If Q(f) = p (f | g̃, φ) in equation (5.82) we arrive at the following:
F(Q(f), φ) =

∫

p (f | g̃, φ)ln p (f | g̃, φ) p (g̃ |φ)

p (f | g̃, φ)
df

= p (g̃ |φ)

∫

p (f | g̃, φ)df
= p (g̃ |φ) (5.83)subje
t to a normalizing equality 
onstraint
∫

Q (f) df = 1 (5.84)Thus, the fun
tional F of equation (5.83) be
omes independent of f whenever Q (f)equals p (f | g̃, φ). This signi�es some kind of tight bounds at the E-step. By introdu
inga Lagrange multiplier α, (α > 0), the new fun
tional say Fα,φ be
omes
Fα,φ(Q(f), φ) = F(Q(f), φ) + α

[

− 1 +

∫

Q(f)df ]
=

∫

p (f | g̃, φ)ln p (f | g̃, φ) p (g̃ |φ)

p (f | g̃, φ)
df + α

[

− 1 +

∫

Q(f)df ](5.85)By re-substituting p (f | g̃, φ) with its original simpler distribution Q(f) into equation(5.85) and taking fun
tional derivatives of Fα,φ with respe
t to Q(f) gives
∂

∂ Q(f)
Fα,φ(Q(f), φ) = ln p(g, f |φ) − 1 − lnQ (f) + α (5.86)Setting the fun
tional derivative to zero and solving for Q(f) gives the updates equationfor the posterior:

Qt+1 (f) ←− exp (α− 1) p (f, g̃ |φt)

= p (f | g̃, φt) (5.87)The parameter α 
an also be expressed in terms of the normalization 
onstant to give
α = 1 − ln ∫ p (g̃, f |φt) df (5.88)The M-step involves the optimization of F of equation (5.80) with respe
t to φ;

F(Q(f), φ) =

∫ df Q(f) ln p (g̃, f |φ)

Q(f)

=

∫ df Q(f) ln p (g̃, f |φ) −
∫ df Q(f) lnQ(f) (5.89)The entropy Q(f) is independent of φ. Hen
e optimizing F with respe
t to φ is re-stri
ted to the �rst integral on the right hand side of equation (5.89). This is be
ause
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iated with Q(f) in equation (5.87) is/are the previous estimatesobtained from the tth-iterate of an M-step and this was used in 
omputing for the 
urrent
(t + 1)th-iterate of Q. Therefore the hyperparameter φt asso
iated with Q in equation(5.89) is held �xed whilst optimizing F at the M-step.By taking fun
tional derivatives of F of equation (5.89) with respe
t to φ and solvingfor the zero of φ gives the updates

φt+1 ←− argφ max

∫ df p (f | g̃, φt) ln p (g̃, f |φ) (5.90)where the optimization is over the se
ond φ.Exa
t Optimization of Variational MAP using the EM prin
ipleFrom similar lines, the M-step of Variational MAP have updates given by
φt+1 ←− argφ max

{

ln p(φ) +

∫ df p (f | g̃, φt) ln p (g̃, f |φ)
} (5.91)If in equation (5.91), the prior p (φ) is non-informative, then the expression for theupdates is approximately given by equation (5.90). 75.4.2 Summary of Update Equations for Variational ML and MAPEM-AlgorthmFor ML we have the following updatesE-Step:

Qt+1 (f) ←− exp (α− 1) p (f, g̃ |φt) (5.92)M-Step:
φt+1 ←− argφ max

∫ df p (f | g̃, φt) ln p (g̃, f |φ) (5.93)For MAP, we have the following updatesE-Step:
Qt+1 (f) ←− exp (α− 1) p (f, g̃ |φt) (5.94)M-Step:

φt+1 ←− argφ max
{

ln p(φ) +

∫ df p (f | g̃, φt) ln p (g̃, f |φ)
} (5.95)

7Re
all, that the posterior for f in MAP and ML have the same equation but di�eren
e exist inthe estimation of parameters. The di�eren
e is due to the introdu
tion of a prior distribution over theparameters for the MAP. So that if the prior is non-informative the two be
omes the same.



CHAPTER 5. NUMERICAL AND STATISTICAL ESTIMATION THEORY 63What we failed to do and why?If anything at all, we have been able to extend Variational Learning methods to ML andMAP. However, we did not apply the method to the Gravity problem sin
e our mainobje
tive here is to use MAP and ML as platforms for understanding the underlyingtheory and 
on
epts within the Variational Methods Framework. Despite the fa
t thatwe have not implemented the algorithm to obtain α and β, we have been able to at least
apitalize on the free form optimization and EM-like algorithmi
 te
hnique asso
iatedwith the obje
tive fun
tion F . Therefore, we end ML and MAP here and fo
us onVariational Learning Algorithms for Bayesian Methods.5.4.3 Variational Learning for Bayesian MethodsFor 
onvenien
e, we let the Variational Bayesian model be
p (g̃, f, α, β) = p (g̃, f, θ) (5.96)where the hyperparameter (or parameters) α and β still maintains α = λ2

ml, β = 1/σ2 and
θ = {α, β}. Re
all; the pre
ision hyperparameter β de�nes a noise varian
e σ2 = 1/β andthe pre
ision hyperparameter α is the regularization 
onstant. In following the footstepsof the Bayesian Inferen
e paradigm, we begin with the two levels of inferen
e;
(i) Model �tting where we infer f by obtaining a 
ompa
t representation of p (f | g̃, θ)for a given value of θ;

p (f | g̃, θ) =
p (g̃ | f, θ) p (f | θ)

p (g̃ | θ) (5.97)
(ii) infer θ by maximizing the eviden
e p (g̃ | θ) of equation (5.97) in (i);

p (θ | g̃) =
p (g̃ | θ) p (θ)

p (g̃)
(5.98)For α and β;We assume here that we have no knowledge about α and β so we wish to 
onstru
t anappropriate prior that embodies our ignoran
e. This is where the 
on
ept of 
onjugatepriors is really needed. 8 We shall therefore not assign random values to α and β likewe did previously by generating values using logspa
e. Rather we assume in additionto the likelihood of equation (5.98) a Gamma prior distribution over α and a Gammaprior distribution over β. To be realisti
, we 
annot pla
e a Gaussian distribution over

α and β sin
e they are both non-negative. The Gamma distribution for α and β arerespe
tively de�ned by
p (α | aα, bα) = Γ(α; aα, bα)

=
b aα
α

Γ(aα)
αaα−1 exp −(bα α) ; 0 ≤ α <∞ (5.99)and

p (β | cβ , dβ) = Γ(β; cβ , dβ)

=
d

cβ

β

Γ(cβ)
βcβ−1 exp −(dβ β) ; 0 ≤ β <∞ (5.100)8Conjugate priors are priors whose fun
tional forms belongs to the same family of distribution as thelikelihood.
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cβ

β and Γ(cβ)/d
cβ

β are normalizing fa
tors de�ned by ∫∞

0 αaα−1 exp −(bα α)dαand ∫∞

0 βcβ−1 exp −(dβ β)dβ respe
tively and the 
onstants aα, bα, cβ and dβ are
alled hyper-hyperparameters. Their respe
tive mean and varian
e are aα/bα and
aα/b

2
α for α and cβ/dβ and cβ/d

2
β for β.5.4.4 Bounds for the Marginal LikelihoodWe lower bound the log-marginal likelihood of g̃ for model H by introdu
ing a distribu-tion Q over both f and θ. Thus,ln p (g̃) = ln ∫ p (g̃, f, θ )dθ df

≥
∫

Q(f, θ) ln p (g̃, f, θ)

Q(f, θ)
dθ df

= 〈 ln p (g̃, f, θ) 〉Q(f,θ) + ΥQ(f,θ)

= F [Q(Θ) ] (5.101)where Θ = {f, α, β} and ΥQ(f,θ) is the entropy for Q and the inequality was possiblethrough the usual appeal to Jensen's inequality.Exa
t Optimization of Variational Bayesian using the EM prin
ipleThe learning rules also follows the Bayesian paradigm by integrating out nuisan
e pa-rameters/variables.We derive the E-step and M-step for any arbitrary distribution Q. First, we let
Q(Θ) = Q(f, θ) = Q(f, α, β)From inequality (5.101), we have

F [Q(Θ) ] =

∫

Q(f, α, β)ln p (g̃, f, α, β)

Q(f, α, β)
df dα dβ (5.102)The distributions of α and β are assumed to be independent, so their joint distribution

Q(α, β) assumes the separable form
Q(α, β) = Q(θ) = Qα(α) Qβ(β) (5.103)However, there is a problem with the separable form of the joint distribution of Q(f, α, β)sin
e there exists some sto
hasti
 dependen
ies between f and θ (i.e between f and αto be pre
ise). That is,

Q(f, θ) = Q(f, α, β) = Q(f |α)Q(α)Q(β) (5.104)Maximizing the lower bound of inequality (5.101) with respe
t to Q(Θ) to attain equalitydemands that the free distribution:
Q(f, θ) = p(f, θ | g̃)
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hieve tight bounds requires that we know the normalizing 
onstant, the marginallikelihood if an exa
t posterior is to be evaluated. We 
an go around this problemprovided the distribution of Q(f, α, β) is separable. At this point, the best we 
an dois to assume and a

ept that we 
an (no matter what ever 
ir
umstan
e pertains to thesto
hasti
 dependen
y between f and α), 
onstrain the posterior to a simple fa
torizedform for the distribution Q to an approximation
Q(f, α, β) ≈ Q(f)Q(α)Q(β) (5.105)Inserting approximation (5.105) into equation (5.102) gives

F [Q(Θ) ] =

∫

Q(f)Q(α)Q(β) ln p (g̃, f, α, β |H)

Q(f)Q(α)Q(β)
df dα dβ

= 〈 ln p (g̃,Θ) 〉Q(Θ) + ΥQ(Θ) (5.106)Using 
al
ulus of variation (shown in appendix A), the solution for maximizing thefun
tional F [Q(Θ) ] with respe
t to ea
h of the individual Q distribution is of the form
Qi (Θ ) =

exp 〈 ln p (g̃,Θ)〉Qk 6=i
∫ exp 〈 ln p (g̃,Θ) 〉Qk 6=i

dΘi
(5.107)or lnQi (Θ ) = exp 〈 p (g̃,Θ)〉Qk 6=i

+ 
onstant (5.108)where 〈 • 〉k 6=i denotes the expe
tation with respe
t to every distribution other than
Qi(Θi).Equation (5.108) embodies both the E-step and M-step of the Variational BayesianEM-Algorithm.5.4.5 Appli
ation of Variational Bayesian EM (VBEM) to the GravityProblemWe now apply the above equations to the Gravity Problem. Figure (5.3) is a s
hemati
diagram of the Graphi
al model for VBEM. From probability of everything,

K

α

cβ

dβ

f

bα

aα

g̃β

Figure 5.3: A graphi
al model of the Variational Bayesian approa
h
p (g̃, f, α, β |H) = p (g̃ | f, β,H) p (f |α,H) p (α |H) p(β |H) (5.109)
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h of the expressions on the right hand side of equation (5.109)are as follows: ln p (α) = ln p(α | aα, bα)

= (aα − 1) lnα − bα α + ℘′ (5.110)ln p (β) = ln p(β | cβ , dβ)

= (cβ − 1) ln β − dβ β + ℘′′ (5.111)where the ℘′ and ℘′′ are 
onstants given by the log of their normalization fa
tors
Γ(aα)/b aα

α and Γ(cβ)/d
cβ

β respe
tively.ln p (f |α) = −α
2
fT f +

n

2
lnα + ℘′′′ (5.112)ln p (g̃ | f, β) =

n

2
ln β − β

2
(g̃ −Kf)T (g̃ −Kf) + ℘′′′′ (5.113)where ℘′′′ = ℘′′′′ = −n

2 ln (2π).Substituting equations (5.110), (5.111), (5.112) and (5.113) into the logarithm of
p (g̃, f, α, β |H) in equation (5.109) gives usln p (g̃, f, α, β |H) =

n

2
lnβ − β

2
(g̃ −Kf)T (g̃ −Kf) +

− α

2
fT f +

n

2
lnα

+ (aα − 1) lnα − bα α

+ (cβ − 1) ln β − dβ β + C (5.114)where C = ℘′ + ℘′′ + ℘′′′ + ℘′′′′ is the overall 
onstant and we have made the hyper-hyperparameters aα, bα, cβ and dβ expli
it with respe
t to α and β.Optimization of Qα(α)As a distribution of Qα(α), we take expe
tations of equation (5.114) with respe
t tothe distribution of Qf (f)Qβ(β) with all other terms indepedent of α put together and
onsidered as a normalizing 
onstant (of the distribution of α).Thus, using equations (5.108) and (5.114), the logarithm of Qα(α) giveslnQα(α) = 〈 ln p (g̃,Θ) 〉Qf (f) Qβ(β)

= 〈 ln p (g̃, f, α, β) 〉Qf (f) Qβ(β)

= −α
2
〈 fT f 〉 +

n

2
lnα + (aα − 1) lnα − bα α + C(f, β)

=
{(n

2
+ aα

)

− 1
} lnα − { 1

2
〈 fT f 〉 + bα

}

α + C(f, β) (5.115)



CHAPTER 5. NUMERICAL AND STATISTICAL ESTIMATION THEORY 67where C(f, β) is a 
onstant expression given by all terms on the right hand side of equa-tion (5.114) not 
ontaining α.Comparing 
oe�
ients of lnα and α of equations (5.115) and (5.110), we 
an easilyinfer that the optimal for Qα(α) denoted Qopt
α (α) satis�es the Gamma distribution

Qopt
α (α) = Γ(α; â, b̂) (5.116)with update equations

â =
n

2
+ aα

b̂ =
1

2
〈 fT f 〉 + bα (5.117)The mean and varian
e of Qopt

α (α) are given by â/b̂ and â/b̂2 respe
tively. We arestill left with an expression for 〈 fT f 〉 of equation (5.117) whi
h 
an be obtained from
Qf (f).Optimization of Qf (f)In the optimization of Qf (f), we take expe
tations of equation (5.114) with respe
t tothe distribution of Qα(α)Qβ(β):lnQf (f) = 〈 ln p (g̃,Θ) 〉Qα(α) Qβ(β)

= 〈 ln p (g̃, f, α, β) 〉Qα(α) Qβ(β)

= −1

2

{

g̃T 〈β 〉g̃ − 2 fTKT 〈β 〉 g̃

+ fT
(

KT 〈β 〉K + 〈α 〉 I
)

f
}

+ C(α, β) (5.118)where C(α, β) is a 
onstant given by all other expressions independent of f . The op-timizing distribution Qopt
f (f) is a Gaussian identi
al to the posterior distribution forparti
ular values of α = α̂ = 〈α〉 and β = β̂ = 〈β〉. Thus

Qopt
f (f) = p (f | g̃, α̂, β̂) ∼ N

(

f̂MP
α̂,β̂

, Σ̂−1
f

) (5.119)with update equations
Σ̂−1

f =
(

KT β̂ K + α̂I
)−1

f̂MP
α̂,β̂

= 〈 f 〉 = Σ̂−1
f KT β̂ g̃

=
(

KT β̂ K + α̂I
)−1

KT β̂ g̃

〈 fT f 〉 = Tr (Σ̂−1
f ) + f̂T

MP
α̂,β̂

f̂MP
α̂,β̂

= Tr (Σ̂−1
f ) + ‖ f̂MP

α̂,β̂
‖22



CHAPTER 5. NUMERICAL AND STATISTICAL ESTIMATION THEORY 68Optimization of Qβ(β)By following the previous steps, we take expe
tations with respe
t to the distribution
Qf (f) and Qα(α).lnQβ(β) = 〈 ln p (g̃,Θ) 〉Qα(α) Qf (f)

= 〈 ln p (g̃, f, α, β) 〉Qα(α) Qf (f)

=
n

2
lnβ − 〈 β

2
(g̃ −Kf)T (g̃ −Kf)

〉

Qα(α) Qf (f)

+ (cβ − 1) ln β − dβ β + C(f, α)

=
{(n

2
+ cβ

)

− 1
} ln β − {dβ +

1

2

〈

(g̃ −Kf)T (g̃ −Kf)
〉}

β

+ C(f, α) (5.120)where C(α, f) is a 
onstant given by all other expressions independent of β.Comparing the 
oe�
ients of (lnβ) and β in equations (5.120) and (5.111), we 
aneasily infer that the optimal for Qβ(β) denoted Qopt
β (β) satis�es the Gamma distribution

Qopt
β (β) = Γ(β; ĉ, d̂) (5.121)with update equations

ĉ =
n

2
+ cβ

d̂ = dβ +
1

2

〈

(g̃ −Kf)T (g̃ −Kf)
〉 (5.122)The mean and varian
e of Qopt

β (β) are given by ĉ/d̂ and ĉ/d̂2 respe
tively. We arestill left with an expression for 〈 (g̃−Kf)T (g̃−Kf)
〉 of equation (5.122) and it 
an beobtained as follows:

〈

(g̃ −Kf)T (g̃ −Kf)
〉

= ‖ g̃ ‖22 − 2 g̃T K 〈 f 〉 + 〈 (K f)T (K f) 〉

= ‖ g̃ ‖22 − 2 g̃T K f̂MP +
(

(K f̂MP )T (K f̂MP )
)

+ Tr (K Σ̂−1
f KT )

= ‖ g̃ − K f̂MP ‖22 + Tr (K Σ̂−1
f KT ) (5.123)9 where f̂MP and Σ−1

f are from equation (5.120).Finally, from equations (5.117), (5.119), (5.120) and (5.120), the mean α̂ for theoptimized Gamma distribution be
omes
α̂ =

n/2 + aα

1
2 Tr (Σ̂−1

f ) + 1
2 ‖ f̂MP

α̂,β̂
‖22 + bα

(5.124)9For a sto
hasti
 ve
tor x with mean m, 
ovarian
e M and 
entral moments 〈 (x − m)r〉

〈 (A x)T (A x)〉 = Tr (AM AT ) + (Am)T (Am)
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ial 
ase of equation (5.124) is when the prior on α be
omes non-informative (thatis aα → 0 and bα → 0). We obtain
α̂ =

nTr (Σ̂−1
f ) + ‖ f̂MP

α̂,β̂
‖22

(5.125)Also from equations (5.119),(5.121) and (5.122), we have
β̂ =

n/2 + cβ
1
2 ‖ g̃ − K f̂MP ‖22 + 1

2 Tr (K Σ̂−1
f KT ) + dβ

(5.126)A spe
ial 
ase of equation (5.126) is when the prior on β be
omes non-informative (thatis cβ → 0 and dβ → 0). We obtain
β̂ =

n

‖ g̃ − K f̂MP ‖22 + Tr (K Σ̂−1
f KT )

(5.127)The optimal α̂ and β̂ of equations (5.125) and (5.127) are the same as the optimalobtained in the Eviden
e Framework for α and β. Hen
e any optimum of the eviden
eapproximation also 
orrespond to the optimum of Variational Bayes.5.5 Comparison between L-Curve for Tikhonov and BayesianInferen
eThe main analysis tool of the L-Curve is the Trun
ated SVD. The �at regions (regionsalmost parallel to the abs
issa and ordinate axes) are residuals. The solution lies withinthe trun
ated region with the best estimate (optimal parameter) given by the value of
λ2

rls at utmost 
orner. The �at regions gives no information sin
e they are made up ofresiduals and therefore does not 
ontribute to the Regularized solution.Analysis in the Bayesian Inferen
e Framework, is governed by an expression whi
h isequivalent to the �lter fa
tors in the Numeri
al Framework if the relation λ2
rls = α/β =

λ2
ml σ

2 is substituted into the expressions for Ψ and Ξ. It is straight forward to see thisfrom equations (5.74) and (5.76). Thus;
Ψ =

n∑

i=1

d 2
i

d 2
i + ασ2

=
n∑

i=1

d 2
i

d 2
i + λ2

rlsand
Ξ = 2β EMP

g̃ = n − β

n∑

i=1

d 2
i

β d 2
i + α

=

n∑

i=1

λ2
mlσ

2

d 2
i + λ2

mlσ
2

=
n∑

i=1

λ2
rls

d 2
i + λ2

rls



CHAPTER 5. NUMERICAL AND STATISTICAL ESTIMATION THEORY 70The expression for Ψi is equal to xi (i.e Ψi = xi) of equation (5.3). The di�eren
e
Ξi = 1−Ψi are the 
orresponding SVD 
omponents of the residuals whi
h 
hara
terizesdata mis�t. Moreover, analysis in Empri
al Bayes of equations (5.40), (5.41) and (5.42)stands the same as the analysis of the L-Curve of equations (5.12) and (5.13).We attribute di�eren
es to 
ome from the fa
t that, the Eviden
e Framework (Bayesian)has a well de�ned fun
tional approximation for evaluating α and β whereas the L-Curvefor Tikhonov's Regularization is heuristi
.Finally, a sear
h in parameter spa
e of {λ2

rls} for whi
h the fun
tional ∫Ω ǫ2(s)w(s)dsas a fun
tion of λ2
rls is optimal is 
omparable to the ML prin
iple dis
ussed if we aredealing with Gaussianity. Hen
e, ∫Ω ǫ2(s)w(s)ds 
an be viewed as a likelihood fun
-tion of λ2

rls su
h that λ2
rls = σ2 λ2

ml. The most probable parameter in this 
ase is also
λ2 ⋆

rls .



CHAPTER  Simulation Results
6.1 The Ill-Posed Inverse Problem Competition using the GravityModel ExampleIn this Chapter, we 
ompare estimates obtained for the inverse problem using the meth-ods des
ribed in the previous Chapters namely; standard ML (or LS), Bayesian Infer-en
e Method (BIM), Variational Bayes EM (VBEM), Regularized Maximum LikelihoodMethod(MLM) and the L-Curve Method (LCM). We denote the estimated parametersof BIM by (αbim, βbim), VBEM by (αvbm, βvbm), MLM by (αmlm, βmlm) and LCM by
αlcm = λ2

rls. The kernel K and f are the same as used previously. We shall �rst 
on-sider the 
ase with additive noise σ2 = 10−6 and σ2 = 10−3 using the matlab built-infun
tion
ǫ10−6 =

√

(10−6)× randn(n, 1) and ǫ10−3 =
√

(10−6)× randn(n, 1)respe
tively. The depth h is still maintained at 0.25.Figures (6.1) through (6.6) has values of n set to 50 in their �rst 
olumns and 100 intheir se
ond 
olumns. The higher the value of n, the more the system's matrix K has alot of its singular values to be very small. Figure (6.1) are subplots of the true fun
tion
f in the �rst row and 
orrupted output g̃ at the se
ond and third rows with σ2 = 10−6and σ2 = 10−3 respe
tively. Figures (6.2) through (6.6) have g̃ 
orrupted at a noise level
σ2 = 10−6 in their �rst rows and σ2 = 10−3 for the se
ond rows.With respe
t to Figures (6.3) through (6.6), the optimal values, αmethod, βmethod forea
h method is lo
ated on top of the Figure with the ratio αest/βest = λ2

est×σ2
est

1 . Ourinterest here is to �nd whether the ratios show some 
onsisten
y for di�erent values of
n and σ2. Ea
h subplot of Figures (6.3) through (6.6) 
onsists of the true input f andthe estimated (or re
onstru
ted) input.In ea
h of Figures (6.7) through (6.12), we have all the re
onstru
ted (estimated)input fest for n = 50, n = 100 and σ2 = 10−6, σ2 = 10−3. The value of n tally withthe last value of i at the abs
issa axis. The norm of the di�eren
e in fest and true f(i.e ‖ f − fest ‖2) for ea
h method is also 
al
ulated for ea
h n and σ2. In the remainingFigures we plotted ‖ f − fest ‖2 versus n in steps of 10 to 200 for noise levels σ2 = 10−6,
σ2 = 10−5, σ2 = 10−4, σ2 = 10−3, σ2 = 10−2 and σ2 = 10−1.1σ2

est is di�erent from noise level σ2. Here, σ2
est is the re
ipro
al of βest.71
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Figure 6.1: First Row : The true input f when n = 50 (left) and n = 100 (right).Se
ond Row : Output g̃ with an additive noise of 10−6 for n = 50 (left) and n = 100(right).Third Row : Output g̃ with an additive noise of 10−3 for n = 50 (left) and n = 100 (right).
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Figure 6.2: Least Squares Estimates illustrating large norm ‖ fls ‖2. The true 
urve is seen to be �atdue to large values on the ordinate axis. ‖ fls ‖2 is large even at low noise level.
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Figure 6.3: First Row : Estimates of αmlm and βmlm and the ratio αmlm/βmlm using the MaximumLikelihood method at σ2 = 10−6 for n = 50 (left) and n = 100 (right).Se
ond Row : Estimates of αmlm and βmlm and the ratio αmlm/βmlm at σ2 = 10−3 for
n = 50 (left) and n = 100 (right).
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Figure 6.4: First Row : Estimates of αbim and βbim and the ratio αbim/βbim using the BayesianInferen
e method at σ2 = 10−6 for n = 50 (left) and n = 100 (right).Se
ond Row : Estimates of αbim and βbim and the ratio αbim/βbim at σ2 = 10−3 for
n = 50 (left) and n = 100 (right).
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Figure 6.5: First Row : Estimates of αlcm = λ2
rls using the L-Curve method for Tikhonov's Regular-ization at σ2 = 10−6 for n = 50 (left) and n = 100 (right).Se
ond Row : Estimates of αlcm = λ2

rls at σ2of = 10−3 for n = 50 (left) and n = 100(right).



CHAPTER 6. SIMULATION RESULTS 76

0 10 20 30 40 50
0

0.5

1

1.5

i

  α
vbm

 = 0.15316   β
vbm

  = 0.30535    α
vbm

/β
vbm

 = 0.046767

true 
 VBEM 

0 20 40 60 80 100
0

0.5

1

1.5

i

  α
vbm

 = 0.080159   β
vbm

  = 0.22159    α
vbm

/β
vbm

 = 0.017763

true 
 VBEM 

0 10 20 30 40 50
0

0.5

1

1.5

i

  α
vbm

 = 0.15312   β
vbm

  = 0.30556    α
vbm

/β
vbm

 = 0.04679

true 
 VBEM 

0 20 40 60 80 100
0

0.5

1

1.5

i

  α
vbm

 = 0.080174   β
vbm

  = 0.22226    α
vbm

/β
vbm

 = 0.017819

true 
 VBEM 

Figure 6.6: First Row : Estimates of αvbm and βvbm and the ratio αvbm/βvbm using the VariationalBayesian EM algorithm at σ2 = 10−6 for n = 50 (left) and n = 100 (right) for 500iterations.Se
ond Row : Estimates of αvbm and βvbm and the ratio αvbm/βvbm at σ2 = 10−3 for
n = 50 (left) and n = 100 (right) at the same number of iterations.
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Figure 6.7: The estimated fest using the methods des
ribed and root of squared deviations of fest fromf at σ2 = 10−6 for n = 50. BIM gives the smallest ‖ f −fest ‖2 followed by VBEM followedby MLM and LCM.
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Figure 6.8: The estimated fest using the methods des
ribed and root of squared deviations of fest from fat σ2 = 10−6 for n = 100. BIM gives the smallest ‖ f − fest ‖2 followed by VBEM followedby MLM and LCM.
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Figure 6.9: The estimated fest using the methods des
ribed and root of squared deviations of fest fromf at σ2 = 10−3 for n = 50. BIM gives the smallest ‖ f −fest ‖2 followed by VBEM followedby MLM and LCM. But estimates from LCM has improved 
onsiderably.
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Figure 6.10: The estimated fest using the methods des
ribed and root of squared deviations of festfrom f at σ2 = 10−3 for n = 100. BIM gives the smallest ‖ f − fest ‖2 followed by VBEMfollowed by MLM and LCM.
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Figure 6.11: VBEM gives the smallest ‖ f − fest ‖2 followed by MLM followed by BIM and LCM. at
σ2 = 10−1 for n = 50.
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Figure 6.12: MLM gives the smallest ‖ f − fest ‖2 followed by BIM followed by VBEM and LCM at
σ2 = 10−1 for n = 100.
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Figure 6.13: ‖ f − fest ‖2 at varying n at σ2 = 10−6.
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Figure 6.14: ‖ f − fest ‖2 at varying n at σ2 = 10−5.
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Figure 6.15: ‖ f − fest ‖2 at varying n at σ2 = 10−4.
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Figure 6.16: ‖ f − fest ‖2 at varying n at σ2 = 10−3.
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Figure 6.17: ‖ f − fest ‖2 at varying n at σ2 = 10−2.
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Figure 6.18: ‖ f − fest ‖2 at varying n at σ2 = 10−1.



CHAPTER 6. SIMULATION RESULTS 89From the simulation results, BIM looks more sensitive to high noise than ML, VBEMand LCM. The results from the plots show that for large values of the dis
retizationparameter n, ‖ f − fest ‖2 in
reases as well. At higher noise level LCM is more robustfollowed by VBEM and MLMwith BIM as worst. At a given noise level of say σ2 ≤ 10−3BIM is better. On the average, I will go in for VBEM sin
e it is quite robust, 
omputesquite faster and it is able to handle intra
table problems whi
h the Bayesian Inferen
e�nds di�
ult to handle.



Contributions
1. Came out with two important sub-
on
lusions.2. VBEM optimization algorithm have been derived for the inverse (de
onvolution)problem.3. Shown that any optimum of the Bayesian also 
orresponds to an optimum of Vari-ational Bayes.4. Justi�ed that Bayesian 
an also be viewed as an extension of ML from a Regular-ization viewpoint (for an a

eptable noise-level, σ2).5. Shown that for non-informative priors; di�eren
es whi
h arise between ML andBayesian Inferen
e is due to the 
orre
tion term Tr(KΣ−1

f KT ) .6. Shown from the Gravity Example that estimates obtained using Statisti
al Meth-ods are better than the L-Curve for Tikhonov Regularization.7. On heuristi
 grounds; any optimum of the L-Curve approximation in the Numeri
alFramework 
an be used as an estimate in the Statisti
al Framework.8. Seen that ∫Ω ǫ2(s)w(s)ds 
an be viewed as a likelihood fun
tion of λ2
rls with itsmost probable parameter also given by λ2 ⋆

rls .9. Proposed a method whi
h in
orporated the method of trun
ated SVD into RidgeRegression.
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CHAPTER  Con
lusion
The work in this thesis fo
ussed on methods within the Statisti
al and Numeri
al Frame-work by using the Gravity Model as our 'yard sti
k'. We viewed Tikhonov's Regulariza-tion from a Statisti
al viewpoint using ML and MAP. We extended the Tikhonov's fun
-tional ML using the Eviden
e Framework for Bayesian Inferen
e and also estimated theparameters using Variational Bayesian EM Algorithm and we arrived at the same equa-tions whi
h the Eviden
e Framework gave for the parameters α and β if non-informativepriors are assigned. We also saw from Chapter 4 that the Regularization parameter
λ2

rls = λ2
ml σ

2 . All the methods followed some similar analyti
al path. Their mainindividual di�eren
es lie on the 
riterion for estimating the parameters.In using the Gravity Model example at varying dimensions, we found that Statisti
alMethods 
onsistently out-performed the L-Curve estimates at all noise levels 
onsidered.The Eviden
e Framework was better in terms of Root of Square Deviations from true f .At σ2 = 0.1, VBEM, ML were little better than the Eviden
e Framework with theL-Curve as the worst in terms of Root of Squared Deviations from the true f . In all, theL-Curve was not as 
onsistent as the Eviden
e Framework, neither was it as 
onsistent asML (Regularized) nor VBEM. This may be due to the fa
t that the L-Curve estimationpro
edure is not built on any well-de�ned fun
tional form like that given by Statisti
almethods. This may a

ount for its robustness and ability to handle perturbations 
on-sisting of 
orrelated noise.With respe
t to the Gravity problem example, we will prefer VBEM to all sin
eit is able to manage well and 
ompute faster too. Moreover, estimates obtained usingStatisti
al Methods have all proven to be better than the L-Curve in terms of smoothnessin relation to the re
onstru
tion of input and the norm of Squared Deviations of there
onstru
ted input and the true input f .
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CHAPTER A Appendix
A.0.1 SVD Asymptoti
 Analysis of the Expli
it Likelihood Fun
tionWe have at the ba
k of our minds that the matrix K has some of its singular values dito be very small.
p(g̃|λ2

ml, σ
2) ∝

( λ2
ml

2πσ2

)n/2 ∣∣
∣

(D2

σ2
+λ2

mlI
)∣
∣
∣

−1/2 exp 1

2

{

g̃TK

σ2

{

V
(D2

σ2
+λ2

mlI
)−1

V T
} KT g̃

σ2

}

Asymptotes of the Likelihood Fun
tion
(a) asymptotes of p(g̃|λ2

ml, σ
2) when λml →∞ and 0 < σ <∞

p(g̃|λ2
ml, σ

2) ≃ λn
ml

( 1

λml

)n exp 1

λ2
ml

≃ λn
ml

( 1

λml

)n exp 0

→ 1 (A.1)
(b) behaviour of p(g̃|λ2

ml, σ
2) when λml → 0 and 0 < σ <∞In this 
ase, we have the 
onstraint;Say, Dn,n > 0 1 �xed small, su
h that ∃ λml < Dn,n for whi
h

p(g̃|λ2
ml, σ

2) ≃ λn
ml

{

Πn
i=1

( σ

di

)} exp n∑

i=1

σ2

d2
i

→ 0 (A.2)if and only if two of the three expressions on the right hand side of the approximationin (A.2) sati�es;
{

Πn
i=1

( σ

di

)}

<∞ and exp n∑

i=1

σ2

d2
i

<∞1Dn,n is the last or smallest singular value. 92



APPENDIX A. APPENDIX 93
otherwisewe are kind of doubtful about the likelihood fun
tion. Thus

p(g̃|λ2
ml, σ

2) → 0× large× large for some di → 0 (A.3)In the 
ase of (A.3), the exponential term in
reases faster than the determinant term.Hen
e, taking logarithm of the likelihood fun
tion will not make the problem go awaysin
e it is unlikely, it 
an nullify the e�e
t of the positive sign on the exponent.
(c) asymptotes of p(g̃|λ2

ml, σ
2) when σ →∞ and 0 < λml <∞

p(g̃|λ2
ml, σ

2) ≃
( 1

σ

)n ( 1

λml

)n exp 0

→ 0 (A.4)
(d) behaviour of p(g̃|λ2

ml, σ
2) when σ → 0 and 0 < λml <∞

p(g̃|λ2
ml, σ

2) → ∞ ie be
ome unde�ned (A.5)
A.0.2 Variational Bayesian Fa
torial ApproximationWe 
onsider the lower bound of the log eviden
e de�ned in terms of ∅;

F =

∫

Q(∅) ln p(g̃,∅)

Q(∅)
d∅ (A.6)for say some ∅ = {∅1,∅2,∅3}.Maximizing the fun
tional F(∅) over the spa
e of probability distribution Q(∅) beginswith an assumption about the fa
torization of Q(∅) whi
h 
an be written in a separableform:

Q(∅) = Π3
i=1Qi(∅i) = Q1(∅1)Q2(∅2)Q3(∅3)Hen
e

F(Q) =

∫

Q1(∅1)Q2(∅2)Q3(∅3) ln p(g̃,∅)

Q1(∅1)Q2(∅2)Q3(∅3)
d∅1 d∅2 d∅3 (A.7)From 
al
ulus of variation, a maximization of the fun
tional F(Q) with respe
t to Q(∅)
onstrains equation (A.7) to satisfy

∫

Q(∅)d∅ = 1 (A.8)



APPENDIX A. APPENDIX 94The integrand of equation (A.8) was 'dribbled around' the di�erential equation
ż = Q(∅)

⇒ dz = Q(∅)d∅before initial 
onditions were applied to obtain an ide�nite integral on the left hand sideto give the value, 1 on the right hand side. With this notion in mind, we therefore de�nea new fun
tion z(∅) as follows:
z(∅) =

∫
∅

−∞

Q1(∅
′
1)Q2(∅

′
2)Q3(∅

′
3) d∅

′
1 d∅

′
2 d∅

′
3 (A.9)whi
h gives rise to the di�erential 
onstraint:

ż − Q1Q2Q3 = 0 (A.10)with the initial 
onditions (end points) 
onstrained to be z(−∞) = 0 and z(∞) = 1.Let the integrand of equation (A.7) be de�ned by
h(Q1, Q2, Q3,∅) = Q1(∅1)Q2(∅2)Q3(∅3) ln p(g̃,∅)

Q1(∅1)Q2(∅2)Q3(∅3)
(A.11)Introdu
ing a Lagrange multiplier say α to the 
onstraint of equation (A.10) and addingto equation (A.11) gives

hL(Q1, Q2, Q3,∅) = Q1(∅1)Q2(∅2)Q3(∅3) ln p(g̃,∅)

Q1(∅1)Q2(∅2)Q3(∅3)

+ α (ż − Q1Q2Q3 ) (A.12)The integrand of the integral equation (A.7) then takes the form of equation (A.12).Maximizing the fun
tional F(Q) with respe
t to ea
h distribution Qi is tantamount tosolving the set of Euler-Lagrange equations;
∂ hL

∂Qi
− d

d∅

(∂ hL

∂Q̇i

)

= 0 (A.13)
∂ hL

∂z
− d

d∅

(∂ hL

∂ż

)

= 0 (A.14)where q̇ = dQ/d∅.From equation (A.12), ∂hL/∂ż = α. Substituting into (A.14), we get
dα

d∅
= 0 (A.15)whi
h shows that α is independent of ∅. Similarly, di�erentiating hL of equation (A.12)with respe
t to say Q1 and solving for the zero results

Q2Q3

{ln p (g̃,∅) − lnQ1 − lnQ2Q3

}

− Q2Q3 − αQ2Q3 = 0 (A.16)



APPENDIX A. APPENDIX 95Integrating the above with respe
t to ∅2 and ∅3 is equivalent to the mean ( or expe
ta-tion) under the distributions of Q(∅2) and Q(∅3). Thus we obtain
〈 ln p (g̃,∅)〉Q2Q3 − lnQ1 −

∫

Q2Q3 lnQ2Q3 d∅2 d∅3 − 1 − α = 0 (A.17)and solving for Q1, we get
Q1 =

exp 〈 ln p (g̃,∅)〉Q2Q3exp (1 + α+
∫
Q2Q3 lnQ2Q3 d∅2 d∅3)

(A.18)From equation (A.15) and our assumption about the fa
torized form;
Q(∅) = ΠiQi(∅i)we 
an see that the denominator of equation (A.18) is independent of ∅1 and so it 
an be
onsidered as a normalization 
onstant. Hen
e, we 
an generally express the solution forthe individual Qi that maximizes the fun
tional F(Q) under the assumed fa
torizationfor ea
h i as

Qi =
exp 〈 ln p (g̃,∅) 〉Qk 6=iexp 〈 ln p (g̃,∅) 〉Qk 6=i

d∅i
(A.19)
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