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Abstrat
The fous of this thesis is on Statistial and Numerial Approahes for solving ill-poseddeonvolution (or inverse) problems using the L-Curve for Tikhonov's Regularization,Maximum A Priori (MAP), Maximum Likelihood (both viewed in the ontext of Sta-tistial Regularization), Evidene Framework for Bayesian Inferene and VariationalBayesian Expeted Maximization (VBEM) as an alternative method for optimizing theparameters in the Bayesian Inferene Framework.Furthermore, onise treatments of Empirial Bayes, ML Expeted Maximization al-gorithm, Variational Bayes ML and Variational MAP are given.The main aim and objetive is to have a new look at Regularization shemes within theStatistial and Numerial environment. We therefore ompare and ontrast existing andnew methods and based on the formulae given by the methods �nd their orrespondingestimates to see whether they exhibit some onsistenies in results.
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Nomenlature
We used the following symbols and abbreviations.
g̃ is the output of dimension n.
K disretized kernel matrix of dimension n× n.
Σ ovariane matrix.
D diagonal matrix onsisting of the singular values of K
U matrix onsisting of the left singular vetors of K
V matrix onsisting of the right singular vetors of K
fls standard Least Squares estimator for true f .
d vetor onsisting of the singular values of K.
f is the n-vetor to be found.
ui Left Singular Vetor at ith olumn.
vi Right Singular Vetor at ith olumn.
λ2

rls numerial regularization parameter.
λ2

eb empirial bayes regularization parameter.
λ2

ml statistial regularization parameter.
α equivalent to λ2

ml.
β preision parameter noise variane.
fmapλml,σ

MAP posterior estimate for f .viii
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Introdution
The main purpose of data modelling is to design models that an apture the relevant in-formation from a noisy observed data. This task have always drawn experts from various�elds of study into desgning systems or models with the goal of �nding an explanationto the underlying struture of the data at hand. However, this is not easy to ahievesine we base our deisions on the results of �ltering or preditions or inferenes aboutthe data we have in hand and possibly on what we expeted to observe before the dataarrived.It is often very di�ult to know whih aspets of the data are relevant for an infereneor �ltering (or predition) task and whih part should be regarded as noise.In this thesis, we exploit both Numerial and Statistial approahes to modelling aninverse problem with emphasis on methods and estimates for a partiular appliation.We onsider the standard model g̃ = Kf + ǫ where it is assumed that K ∈ Rn×n and ofrank n, f ∈ Rn and ǫ has mean zero and variane a salar multiple of the identity matrix
I. We fous on the ase where the Least Squares do not make sense when put into theontext of the Physis, Chemistry and engineering of the proess whih is generating thedata g̃.The goal is to treat Tikhonov's form of Regularization from both Numerial and Sta-tistial viewpoints by omparing methods Numerially and Statistially and further usethe methods to estimate the parameters in the models to see whether onsistenies existsamong the methods.In order to enhane onsisteny in our work, we dealt with a partiular problem andmaintained the same number of parameters throughout our work. We ategorized thewhole thesis into the following Chapters:Chapter 1 is devoted to only the simulation model. It treats the given problem as aFredholm integral equation of the �rst kind. Chapter 2 is about Numerial Least Squaresand Regularization and Chapter 3 handles the same problem using Stohasti Modellingonepts within the Statististial environment. Chapter 4 follows with a 'Take Home'message about some omparisons between the Numerial and Statistial Framework.Chapter 5 is about Numerial and Statistial Estimation Theory and our ontributionswith Chapter 6 showing results from the estimates based on the methods.1



CHAPTER  Simulation Model
The model problem to be used in this thesis is a geomagneti prospeting problem takenfrom [1℄. We will use it as our simulation model for deonvolution (or the inverseproblem). Figure (1.1) assumes a 1-D horizontal mass distribution at a depth h below agiven surfae. It shows the geometry and the loation of the s and t axes.

0 1

h

t

S

g(s)

f(t)
̺

Figure 1.1: A geometrial illustration of a gravity surveying problem in 1− dimension. The measuredsignal g(s) is the vertial omponent of the gravity �eld due to a 1 − dimensional massdistribution f(t) at a depth h.1.0.1 Problem FormulationOur objetive is to determine or estimate the input f and at the same time minimizesome performane riterion. The formulation of the problem requires that we do thefollowing:
(i) Give a mathematial desription of the overall system to be dealt with.
(ii) Give a statement of onstraints where neessary.
(iii) Give a spei�ation of a performane riterion.1.0.2 Mathematial ModelFrom the measurements of the vertial omponent of the gravity �eld, denoted g(s), atthe surfae, we want to ompute the mass distribution, denoted f(t), along the t-axis.In the following, we derive below the neessary equations governing the model to be usedin this thesis.
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CHAPTER 1. SIMULATION MODEL 3Given a small in�nitesimal hange dt of the mass distribution f(t), the orrespondingsmall hange dg is given by
dg =

sin(̺)

r2
f(t)dt (1.1)and the distane between the two points on the s and t axes is given by r =

√

h2 + (s− t)2.Using that sin (̺) = h/r, we get
sin(̺)

r2
=

h

[h2 + (s− t)2] 3
2

(1.2)The total value of g for any s is
g(s) =

∫ 1

0

h

[h2 + (s− t)2] 3
2

f(t)dt (1.3)with the limit of integration onstrained to lie within the unit line. Equation (1.3) leadsto a deonvolution problem for omputing the latent variable f with kernel h/ {h2 +

(s − t)2}− 3
2 . The disretization of the ontinuous integral equation (1.3) together withthe measured output g is always ontaminated with errors. Furthermore, numerialomputations often involve non-negligible rounding errors. Suh inauraies alwayslead to inevitably small perturbations whih make the diret pratial inversion proessof f highly unstable. For this problem, we let the quantity f be given by

f(t) = sin(πt) + 0.5 sin(2πt) (1.4)and let T (s, t) represent
T (s, t) =

h

{h2 + (s− t)2 }3/2
(1.5)Equation (1.3), beomes

g(s) =

∫ 1

0

h

{h2 + (s − t)2 }3/2

( sin(πt) + 0.5 sin(2πt)
) dt (1.6)The above ontinuous integral is then expressed as a quadrature through an appropri-ate quadrature method based on quadrature rules. This rule is used to sample equation(1.6) at n − equally spaed absissa's s1, s2......, sn. The quadrature rule for omputingan approximation to any arbitrary de�nite integral (in general) takes the form

∫ 1

0
ϕ(t)dt =

n∑

j=1

wj ϕ(tj) (1.7)Next, we apply the midpoint rule (or the trapezoidal rule for periodi funtions) tothe problem using the formulae
tj =

j − 0.5

n
; wj =

1

n



CHAPTER 1. SIMULATION MODEL 4The subsequent approximation to the ontinuous integral equation (1.6) then beomes
∫ 1

0

d

[d2 + (s − t)2] 3
2

{ sin(πt) + 0.5 sin(2πt) }dt ≈
n∑

j=1

wj T (s, tj) f̃(tj) j = 1, 2, .., n

= ψ(s) (1.8)We let Ki,j = wjT (si, tj) , g(si) = ψ(si) and fj = f̃(tj).The elements of f̃(tj) are the omputed samples at disrete absissa's t1, t2, ..., tn. Itis straight forward to onlude that the disretized funtion
ψ(si) = g(si) i = 1, 2, ...., nFor simpliity, we will always assume that the disretization of T is square.



CHAPTER Numerial Least Squares and Regularization
The mathematial desription of the simulation model in Figure (1.1) satis�es the de�-nition of a �rst order Fredholm integral equation of the form

g(s) =

∫

Ω
T (s, t)f(t)dt (2.1)where Ω de�nes the limit of integration in n−dimensional spae and the notations T , f ,

g are the same as mentioned in Chapter 1. Several methods for solving equations of the�rst kind numerially have been proposed. One should view equation (2.1) as a linearoperator, operating on the funtion f(t) to produe g(s). The nature of the operatordoes not often allow it to have a bounded inverse 1. For instane if we let f(t) be asolution of equation (2.1) and de�ne it as f(t) = sin(2πpt) p = 1, 2, ....,.Then for any integrable kernel, we have
g(s) =

∫

Ω
T (s, t) sin (2πpt)dt −→ 0 as p −→∞ (2.2)Equation (2.2) implies that an in�nitesimal small hange dg in g an ause a orre-sponding arbitrarily large hange df in f . Hene, the ability to solve equation (2.1)suessfully depends largely on the auray of g(s) and the shape of T (s, t).2.1 Why Numerial Least Squares and RegularizationIf a solution orresponding to equation (2.1) for g(s) exists, a slight perturbation of g(s)may give rise to an arbitrarily large variation in the solution f(s). This results in anequation whih may be losely satis�ed by a funtion that bears the same resemblaneto the true solution. However, there are some di�ulties assoiated with this instability.This is often due to the fat that in pratie the spei�ation of g(s) is usually inexatbeause of the data at hand. Thus, the "true" or atual data g are orrupted with somenoisy samples at ertain disrete absissas s1, s2....., sn. We an sometimes be onfrontedwith an ill-onditioned inverse problem in ontrast to a well-onditioned inverse problem.In either ase, we state the problem as

g̃(s) = g(s) + ǫ(s) (2.3)where ǫ is an arbitrary funtion referred to as measurement noise and it is measuredbased on some ondition about the size. The problem statement is often related to afuntional inequality | ǫ| bounded above suh that
| ǫ(s)| ≤M or ∫

Ω
w(s) ǫ2(s)ds ≤ M̃ ; w(s) > 01Sometimes, the operator may not have an inverse at all. For simpliity, we will assume it has one.5



CHAPTER 2. NUMERICAL LEAST SQUARES AND REGULARIZATION 6where w(s) are weights. For a moment, let us address the funtional with weights w(s).Instead of having a unique solution to equation (2.3), we obtain a family F of solu-tions. Our problem is then to pik out from the family of funtions F, the true solution
f . This is impossible to �nd if additional information about the problem representedby equation (2.3) is not given. Here, we have made the assumption that, the funtionalform of f is unknown, hene our inability to use a Least Square �t alone to �nd the best�t to f . Moreover, we expet the funtion f to be reasonably smooth (whih is oftenthe ase). One probably has to hoose from an entire family of funtions say fs ∈ F,the best approximation to f whih is smoothest in some sense. This alls for the needof a regularizer. We will assume that, the funtions f , g and T are all identially zerooutside the unit line (i.e the limit of integration Ω is on�ned to Ω ⊂ [0, 1] for a 1-Dase).2 Methods used in disretizing the ontinuous integral equation (2.1) oupled withthe assoiated ill-posed nature do welome tehniques in Numerial Linear Algebra forsolving inverse (or deonvolution) problems.By applying the quadrature method(s) desribed in Chapter 1 to equation (2.1) weget

n∑

i=0

wjT (si, tj)f̃(tj) = g(si) ; i, j = 1, 2, ..., n (2.4)where f̃j = f̃(tj), g̃i = g(si), ǫi = ǫ(si), wjT (si, tj) = Ki,j and wj are weighting oe�-ients whose values depend on the quadrature formula used.The ondition on the magnitude of ǫ is de�ned by
n∑

j=0

ǫ2j = ǫ2where ǫ2 is a onstant.A onvenient way to express equation (2.4) is
g̃ = Kf + ǫ (2.5)The naive solution (whih we shall denote f̃) of equation (2.5) often gives a poorrepresentation of the true solution and it is when ǫ = 0. The solution have an osillatoryfeature whih on�its with our apriori knowledge. Figure (2.1) shows how the naivesolution an be very di�erent from the true solution f . The elements of the omputednaive vetor
f̃ = K−1 g̃ (2.6)are, in priniple, mere approximations to the desired solution. Thus, Kf = g̃ is infat

g̃ = g+ ǫ and the vetor ǫ also represents perturbation of the exat data. In other words,a good representation of the true solution is only attainable when ǫ is non-zero. To verifythis, just introdue the matrix notation
Kij = wikij and let K−1

ij = νij2For a square we have Ω ⊂ [0, 1] × [0, 1] and Ω ⊂ [0, 1]1 × [0, 1]2, ..... × [0, 1]n for unit hyperube inn-dimensions.
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Figure 2.1: plot of output g̃ (top), naive f̃ (middle) and true funtion f (bottom) versus the numberof omponents i (for i = 1, 2, ....., 60). The funtion f̃ is obtained from the diret inversion,
K−1g̃. However it should be noted from above Figure that the 'plot of g' at the top refersto g̃ instead.



CHAPTER 2. NUMERICAL LEAST SQUARES AND REGULARIZATION 8Then it easy to see that
f = K−1g + K−1ǫ (2.7)whih explains the reason why the behaviour of the weighted kernel K must also betaken into onsideration beause f in equation (2.7) is a linear funtion of g and ǫ.Furthermore, by taking partial derivatives of fi with respet to either gj or ǫj gives theinverse of the weighted kernel νij;

∂fi

∂gj
= νij =

∂fi

∂ǫj
; i, j = 1, 2, .....n (2.8)In situations where the dimension is high, the matrix K may be rank de�ient, henea stable inverse does not exist. By introduing a regularizer, it is possible to ahieve areasonably smooth funtion say fλrls

whih an be aepted as a good (or best) repre-sentation of the exat funtion f .2.2 Least Squares and Normal EquationsGiven the problem of �nding the vetor f ∈ Rn from
g̃ = K f (2.9)where K ∈ Rn×n is the data matrix and g̃ ∈ Rn is the output. Here we assume thatboth K and g̃ are available. Pratially speaking, we do not expet systems of the formof equation (2.9) to have solutions sine the output vetor g̃ must be an element of therange spae of K whih is a proper subspae of Rn.Our objetive is to minimize ‖g̃ − Kf‖p for a suitable hoie of p . That is

min
f

∥
∥
∥g̃ − Kf

∥
∥
∥

p
(2.10)In ontrast to the p-norm we hoose p = 2 for two tratable reasons whih are as follows:

(i)

φ(f) =
1

2

∥
∥
∥ g̃ − Kf

∥
∥
∥

2

2
(2.11)is a di�erentiable funtion of f and so a minimizer of φ satis�es ∇φ(f) = 0. Thisoperation leads to the onstrution of a symmetri linear system (i.e by foring any anti-symmetri omponent of K to vanish) whih is positive de�nite if K has full rank.

(ii) The 2-norm is preserved under orthogonal transformation. That is,
‖(UTK)f − UT g̃‖2 is easy to solve whilst it maintains the equivalent minimizer of
‖g̃ − Kf‖22. We shall see in subsetion (2.2.2) that the length and angle are preservedunder an orthogonal transformation.Di�erentiating φ(f) of equation (2.11) with respet to f :

KT (g̃ − Kfls) = 0 (2.12)shows that the minimum residual denoted ǫls is orthogonal to Ran(K) in Figure (2.2).
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g̃

g = Kf

g̃ −Kf

Ran(K)

ϑ

Figure 2.2: A geometri illustration of Least SquaresThe residual ǫls;
ǫls = g̃ − Kfls (2.13)is alled the minimum residual vetor. The orresponding size ‖ǫls‖2 given by

‖ǫls‖2 = ‖g̃ − Kfls‖2 (2.14)is also referred to as the minimum residual of the Least Squares Problem. Equation(2.12) is alled the normal equations sine ∇φ(f) = KT (g̃ − Kfls). The solution tothe normal equations is tantamount to solving the gradient equation ∇φ(f) = 0. Fur-thermore, the 2-norm, ‖g̃ − Kfls‖2 is a non-zero residual as ould be seen from Figure(2.2).In short, we state the Least Squares problem in relation to the Gravity Model of Figure(1.1):Given
g̃ = Kfwe seek

min
f
‖ g̃ − Kf ‖2with solution to the normal equations given by

KT (g̃ − Kfls) = 0 (2.15)2.2.1 Orthogonality and OrthonormalityGiven the set of vetors {ui ; ui ∈ Rn} for i = 1, 2, ...., n. If uT
i u = 0 for i 6= j, then theset of vetors is said to be orthogonal. If on the other hand, uT
i uj = δij then the set ofvetors is said to be orthonormal .2.2.2 Singular Value DeompositionIf K is a real n× n matrix, then there exists orthogonal matries

U = [u1,u2, .......,un] ∈ R
n×n and V = [v1,v2, .......,vn] ∈ R

n×n
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K = U DV T =

n∑

i=1

ui di v
T
i (2.16)and

uT
i uj = vT

i vj = δij or UTU = V TV = Iwhere I is the identity matrix and the set of pairs {ui,vj} are respetively alled theLeft and Right Singular Vetors. Also
UTKV = diag(d1, d2, ......., dn) ∈ R

n×nwhere d1 ≥ d2 ≥, ......., dn ≥ 0 are the singular values of K. Also Kvi = diui. Hene
‖Kvi)‖22 = (Kvi)

T (Kvi) = (diui)
T (diui) = d2

i u
T
i ui i = 1, 2....nand sine the u′

is form an orthonormal set we have
‖Kvi)‖2 = diThe onsequene of the orthogonal transformation property preserves the length (ormagnitude) of f and the angle between two vetors say f1 and f2. To see this, let
f̀ = UT fthen

‖f̀‖22 = fTUUT f = ‖f‖22and
f̀1

T
f̀2 = fT

1 UU
T f2 = fT

1 f2That is, the e�et of multipliation by an orthogonal matrix UT is equivalent to a rigidrotation of the oordinate system.2.2.3 Higher Dimensional ProblemsIn higher dimensions, it sometimes happen that the matrixK has many singular values ofdi�erent magnitude lose to the origin; thus rendering K to have an ill-determined rank.Therefore a Least Squares �t is not able to apture the relevant information ontainedin the output g̃. The kernel K smooths out the high frequeny omponents of the signalwhih results in loss of information at high frequeny omponents of f . Stritly speaking,
g̃ = K f̃ . See equation (2.6). Therefore,

g̃ = K f̃ = g + ǫ (2.17)An important onsequene is the non-uniqueness of solution to the linear system of equa-tion (2.17). Any solution subjeted to the high frequeny perturbations will �t the data,
g̃ equally well. This makes the deonvolution problem of reonstruting (or reovering)the signal ill-posed. This ill-posedness is aompanied by inevitable e�ets of instabilityof the solutions. Small perturbations of the data may result in a ompletely di�erentsolution.



CHAPTER 2. NUMERICAL LEAST SQUARES AND REGULARIZATION 11Figure (2.3) is an example that illustrates one of the di�ulties that an arise whenan inverse operation is performed in the frequeny domain. The funtion K is a low-pass�lter designed to handle the smoothing operation in the frequeny domain. The funtion
g is a 'lean' speeh signal whih is free from any form of noise. The lean speeh g isthen orrupted with additive white noise, ǫ whih is normally distributed with zero meanand standard deviation σǫ. The orrupted speeh g̃ is

g̃ = g + ǫThe Disrete Fourier Transform, DFT (g̃) is given by
g̃(w) = g(w) + ǫ(w)where g(w) = DFT (g) and ǫ(w) = DFT (ǫ). 3Hene,

f̃(w) = g̃(w) ⊘K(w)

= g(w) ⊘K(w) + ǫ(w) ⊘ K(w) (2.18)where f(w) = DFT (f), K(w) = DFT (K) in equation (2.18). Here, we have takenognizane of the fat that, in the Fourier (i.e frequeny) domain, inverse operation in-volving matrix-vetor division is possible. Equation (2.18) shows that, the diret divisionby K(w) unbounds the high frequeny omponents of f̃ due to the division of elementsin ǫ(w) by insigni�ant (or very small) elements in K(w). See Figure (2.3) below.The illustrated Figure example onsists of a short sequene of 250 samples of a leanspeeh signal. A low-pass �lter with �lter oe�eients 0.5, 1, 1, 1 and 0.5 is applied tothe speeh example. A noise vetor ǫ is also generated from matlab through the bulit-inm-�le randn.m
ǫ = 0.001 × randn(250, 1)We annot solve these problems without making assumptions. In view of that we makethe following assumptions without going into the details surrounding the theoretialonepts1. The matrix K has full rank.2. K is ill-onditioned with no signi�ant gap in the singular value spetrum. (Problemsarise when the singular values di are within the range 0 < di << d1).3. The true data g is orrupted with noise.4. The disretization error aused by approximating the ontinuous operator is muhsmaller than the noise.5. The system satis�es the disrete Piard onditions whih we informally dedue andstate in subsetion (2.2.4).3The symbol w here is di�erent from the weights given in equation 2.4. Moreover w used in Chapter

1 is also di�erent from both. We should however to note the di�erenes. The same symbol was use dueto shortage of notations.
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Figure 2.3: Power spetra of the various signals in a low-pass �ltering with 5 �lter oe�ients. Itillustrates the power spetra of the lean speeh signal g, orrupted signal g̃, �ltered signal
f and the deonvolved signal f̃ obtained from equation (2.18). As seen from above, thehigh frequeny omponents of the onvolved signal are perturbed greatly espeially aroundthe zeros of the low-pass �lter. The e�et renders inverse operation of DFT meaningless.That is f̃ = IDFT [g̃(w) ⊘ K(w)]2.2.4 Disrete Piard ConditionFrom (2.3)

g̃ = Kf + ǫ (2.19)we have
f = K−1g̃ − K−1ǫ (2.20)The SVD of the naive solution is

f̃ = K−1 g̃ =

n∑

i=1

(uT
i g̃

di

)

vi (2.21)The orresponding noise denoted f ǫ is
f ǫ =

n∑

i=1

(uT
i ǫ

di

)

vi (2.22)The solution f follows from
f = f̃ − f ǫ

=

n∑

i=1

uT
i (g̃ − ǫ)
di

vi (2.23)



CHAPTER 2. NUMERICAL LEAST SQUARES AND REGULARIZATION 13The singular values di of K in equation (2.23) must neither approah zero nor be zeroor else ‖ f‖22 will be large or unde�ned. A onsequene of this leads to loss of muh ofthe information about the system or it an happen that no information will be gained.Espeially, for normalized singular values di (between 0 and 1) we do not expet dito deay faster than either uT
i (g̃ − ǫ) or uT

i g̃, otherwise in the neighbourhood whereeither di → 0 (or both uT
i g̃ → 0 and di → 0), the expression

uT
i (g̃ − ǫ)
di

→∞ or uT
i g̃

di
→∞ for i→∞De�nitionA system is said to satisfy the disrete Piard ondition if for large enough values ofthe disretization parameter n, the sequene of true data values {uT

i (g̃− ǫ)} goes to zerofaster than the sequene of singular values {di}. Thus for terms greater than or equal tosome parameter k, uT
i (g̃ − ǫ) ≈ 0Figures (2.4), (2.5) and (2.6) are piard plots of the Gravity Surveying Model problemof Figure (1.1) with additive noise σ2

ǫ = 0, σ2
ǫ = 10−6 and σ2

ǫ = 10−3 respetively. They
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Figure 2.4: Singular values di of matrix K and the omputed quantities |uT
i g̃| and |

u
T
i g̃

di
| of the Grav-ity Surveying Model problem. The noise ontribution omes from only rounding anddisretization errors.show plots of di , [ωi = |uT

i g̃| ] and [ωi/di = |u
T
i g̃
di
| ] versus i. The quantity |uT

i g̃| ineah ase deays faster than di until it reahes a level set by the mahine's preision. Atloations where |uT
i g̃| levels o�, the quantity |uT

i g̃
di
| begins to inrease steeply and in theneighbourhood where both |uT

i g̃| and di approah zero, the ratio |uT
i g
di
| beomes largerand larger. Figure (2.4) illustrates how the naive solution

f̃ =

n∑

i=1

uT
i g̃

di
vi
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i g̃
di
|. They ome from omponents orre-sponding to the smallest singular values. This explains why the plot "plot of fnaive"

f̃ in Figure (2.1) appears as a high osillatory solution. The norm of f̃ is 6.1 × 1015.
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Figure 2.5: Piard plot with an additive noise of 10−6. The aute angle between the deaying regionsof |uT
i g̃| and di shrinks onsiderably as ompared to Figure (2.4), thereby ausing thequantity |uT

i g̃| to level o� at lower indies i than without additive noise.Also, Figures (2.5) and (2.6) illustrate the same problem but with additive noise σ2
ǫ ofmagnitudes 10−6 and 10−3. Their respetive noise vetors ǫ10−6 and ǫ10−3 are normallydistributed with zero mean and variane σ2

10−6 and σ2
10−3 . It an be seen that the greaterthe magnitude of the additive noise term the more information we lose. That is, thequantity |uT

i g̃| starts to level o� at a muh lower indies of the index i. The larger thesmoothing e�et of the funtion K, the faster di deay. Moreover, small singular valueslead to solutions whih �t the data well but result in large energy. In an at of trying to�nd a stable meaningful solution pushes us to employ regularization shemes. We nowdevote the rest of this Chapter to Numerial Regularization and it is the main subjetof this thesis.2.3 Numerial Approah to RegularizationThese are algorithmi tehniques whih an be used for stabilizing solutions so thatthey beome less sensitive to perturbations. Suh algorithms are alled RegularizationAlgorithms. The method enourages smoother funtional mappings by adding a penaltyterm, say Φ to the residual error funtion rǫ to give an impliit form;
(f)ג = rǫ + λ2Φ(f) (2.24)where ג is a funtional alled the standard residual error funtion and the parameter

λ2 ontrols the e�et of the penalty term Φ on the form of solution. It omes in two
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Figure 2.6: Piard plot with an additive noise of 10−3. The aute angle between the deaying regionsof |uT
i g̃| and di shrinks muh more ompared to Figures (2.4) and (2.5). The quantity

|uT
i g̃| levels o� at muh lower indies i than the ones shown in Figures (2.4) and (2.4).�avours; either by (i) trunating the matrix K or (ii) adding a regularizer.We will �rst deal with the simplest approah to the smoothness problem alled theTrunated SVD.2.3.1 Trunated Singular Value DeompositionIn a muh more simple approah, the SVD of the matrix K ∈ Rn×n is omputed. Thus,we have

K = U DV T =

n∑

i=1

diuiv
T
i (2.25)where U = U(1 : n, 1 : n) and n = rank(K). The singular values di of the (n× n) diag-onal matrix D are in dereasing order; d1 ≥ d2 ≥, ....., dr ≥, .., dn−2 ≥ dn−1 ≥ dn > 0.Given an integer k ≤ r, we partition the SVD aording to

K = (Uk, U0)

(

Dk 0

0 D0

)

(Vk, V0)
TwhereDk = diag(d1, ...., dk) andD0 = diag(dk+1, ...., dn) are diagonal matries onsistingof the k largest and (n-k) smallest singular values respetively. The matrix Kk, de�nedby

Kk = UkDkV
T
kis onsidered to be an approximation to the original matrix K with a orrespondingderease in rank from n to k. This is the underlying onept of the trunated SVD.
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Figure 2.7: The �gure shows plots of fk of the Gravity Survey Model versus i for varying k at onstantnoise level σ2 = 10−6. The exat solution or unpertuurbed solution f is shown at thebottom 'true f '.



CHAPTER 2. NUMERICAL LEAST SQUARES AND REGULARIZATION 17Then follows the question anybody would most likely ask about the trunated SVD!QUESTION : If the parameter k forms the basis in determining a best approxima-tion to our true solution f , How then do we hoose an appriopriate k from the triplets
(ui, di,vi) in order to apture the most relevant information in K?The hoie of k does not depend on any diret formula(e) in question and thereforenot �xed, rather it depends on the partiular appliation. For instane, if in a partiularappliation, the noise level is given in the form of a threshold, say τ then k is hosen soas to make only the �rst dn, dn−1, ..., dn−k whih are stritly less than τ to be disarded.This leads to a numerial rank de�ieny in K (or a singular subspae of K).Alternatively, we an use the 'Brute fore' approah to ompute the solution f foreah k using the formula of f̃ and hanging the summation interval for eah hoie of k.By running this iteratively at regular steps among all hoies of k, we opt for the onethat is smoothest in some sense. For eah k we have

fk =

k∑

i=1

uT
i g̃

di
vi (2.26)An illustration of this is demonstrated in Figure (2.7) with the Gravity Example at anoise level σ2 = 10−6. It is an alternative proedure whih an be used without anyrestrition on the threshold τ , meanwhile it is equally good enough in abandoning theirrelevant noise omponents. If K is symmetri, then we have

Kk = UkDkU
T
k (2.27)The simulation result of the omputed solution fk of the Gravity Model with additivenoise, σ2 = 10−6 is illustrated in Figure (2.7). The atual plot of the funtion f is shownat the bottom right orner.For eak k, we used the formula

fk =

k∑

i=1

uT
i g̃

di
viIt an be seen that, the smoothness of the solution fk improves from k = 2 to about

k = 12. At k ≥ 14, the noise omponents take over the true solution as a result oflarge values of their orresponding norm. See how the "sikness" begins to rop up from
k = 14 and beyond.2.3.2 Adding a RegularizerThe alternative form of smoothness is governed by how a given funtion say f , is on-tinuously di�erentiable with respet to say s. Various forms of Regularizers have beenstudied in onnetion with linear models but the one of interest to us here is the lass ofTikhonov Regularizers, Φ whih in general takes the funtional form;

Φ(f) =
1

2

R∑

k=0

∫

Ω
hk

(dkf

dsk

)2
dks (2.28)



CHAPTER 2. NUMERICAL LEAST SQUARES AND REGULARIZATION 18where s = (s1, s2, ...., sn) and {hk ≥ 0 for k = 0, 1, ..., R − 1} are weights suh that
hR > 0 (Tikhonov and Arsenin, 1977).The funtional Φ ould be from a 1 − D spae onto the real line R (i.e single-inputsingle output) or a higher dimensional spae onto R (i.e multi-input single-output). Weview Φ as a funtional de�ned in terms of f with smoothness dependent on the funtion
f . If R = 1, then it is obvious that, the derivative operator say L is the identity matrix,
I.Generalized Funtional RegularizationFrom the vetor-norm sense, g̃ −Kf and Lf − f0 are vetors whih an be of sameor di�erent dimensions. The sum of the two residual vetors is given by

(g̃ − Kf) + (Lf − f0)Applying the triangle inequality, we have
‖(Lf − f0) + (g̃ − Kf)‖22 ≤ ‖Lf − f0‖22 + ‖g̃ − Kf‖22 (2.29)where the Left Hand Side is a lower bound on the right hand side with equality onlywhen the residuals g̃ −Kf and Lf − f0 are at right angles to eah other. The normof either residuals is non-zero, positive and �nite;

0 < ‖Lf − f0‖22 <∞ and 0 < ‖g̃ − Kf‖22 <∞We try to attain a lower bound on the right hand side of inequality (2.29). This probleman alternatively be identi�ed as a Least Squares minimization problem with quadratiequality onstraint whih is (more or less) equivalent to the Lagrange multiplier problemof determining a real positive regularization parameter λ2
rls suh thatarg min ∥∥∥∥

∥

[

K

λrlsL

]

f −
[

g̃

λrlsf0

] ∥
∥
∥
∥
∥

2

= arg min ‖ g̃ − Kf ‖22 + λ2
rls ‖Lf − f0 ‖22(2.30)where the solution to equation (2.30) is the total regularized minimum residual (whihis also alled the regularized squared error). In a sense, we view λ2

rls as an indiator ofsu�ieny of the output g̃ as examples that speify the form of solution fλrls
. If λ2

rls = 1,we have inequality (2.29). We now �nd the asymptoti behaviour of equation (2.30).For asymptotes, we write expression (2.30) in the expliit form
min

f

{

λrls

{
1

λrls
‖g̃ − Kf ‖22 + λrls‖Lf − f0‖22

}} (2.31)The limiting ase, λrls →∞;
1

λrls
‖g̃ − Kf ‖22 → 0 and λrls‖Lf − f0‖22 →∞



CHAPTER 2. NUMERICAL LEAST SQUARES AND REGULARIZATION 19implies that the prior smoothness onstraint imposed by the di�erential operator L is byitself su�ient to speify the solution fλrls
and it is the same as saying that the output

g̃ is unreliable. So
min

f

{

λrls

{ 1

λrls
‖g̃ − Kf ‖22 + λrls‖Lf − f0‖22

}
}

→∞ (2.32)is said to violate (i) non-zero residual of 1
λrls
‖g̃ − Kf ‖22 and (ii) a non-large valueof the total regularized minimum residuals. In this ase, the regularized solution fλrls

isgiven by the regularizer alone without taking the atual data into onsideration therebynegleting the information about the data in question. Thus, the solution is said to beindependent of the data mis�t.The other limiting ase, λrls → 0;
λrls ‖Lf − f0‖22 → 0 and 1

λrls
‖g̃ − Kf ‖22 →∞implies that the problem is unonstrained with the solution fλrls

ompletely determinedfrom the examples. It therefore approahes the Least Squares problem formulation. So,we have
min

f

{

λrls

{ 1

λrls
‖g̃ − Kf ‖22 + λrls‖Lf − f0‖22

}
}

→∞ (2.33)whih also violates a (ii) non-zero regularized residual of λrls ‖Lf − f0‖22 and (ii)non-large total minimum residual. In this ase, the regularized solution fλrls
is givenby the residuals from the data alone whih is the same as saying that the solution isindependent of the reason for adding a regularizer.2.3.3 Tikhonov Funtional RegularizationA ombination of Tikhonov's Regularizer and S. Twomey's reformulation of Phillip'sexpression for a regularized f in normal equations settings is referred to as "RegularizedNormal Equations" with the purpose stated as follows:To �nd the funtion fλrls

that minimizes the Tikhonov funtional ρ(f)

ρ(f) = rǫ(f) + λ2
rlsΦ(f) (2.34)where rǫ(f) is the standard error term, Φ(f) is the regularizing term and λrls is thenumerial regularization parameter.The Numerial Framework funtional regularizer Φ is of the form

Φ (f) =
1

2
‖Lf ‖22 (2.35)wíth f0 = 0 if no a priori estimate of f is given.



CHAPTER 2. NUMERICAL LEAST SQUARES AND REGULARIZATION 20The solution whih we denote fλrls
that minimizes a weighted ombination of theresidual norm 4 and the added smoothness onstraint is

fλrls
= arg min{‖g̃ − Kf‖22 + λ2

rls‖Lf‖22
} (2.36)where L is a disrete derivative operator of some order. By taking partial derivativeswith respet to f of the expression in the urly brakets of equation (2.36) and settingto zero, we write

∇f

{

‖g̃ − Kf‖22 + λ2
rls‖Lf‖22

}

= 0 (2.37)The solution to equation (2.37) gives the regularized normal equations
(

KTK + λ2
rlsL

TL
)

fλrls
= KT g̃ (2.38)If L = I, equation (2.38) is said to be in its standard Tikhonov's form

KTKfλrls
+ λ2

rls fλrls
= KT g̃ (2.39)In this thesis, we hoose our derivative operator L to be the identity matrix I. Hene thestandard Tikhonov's solution is

fλrls
=

(

KTK + λ2
rlsI
)−1

KT g̃ (2.40)Figure (2.8) is the Tikhonov's solution fλrls
to the Gravity model problem of Figure(1.1) at n = 60, d = 0.25 and for di�erent values of the numerial regularization param-eter λ2

rls with additive noise σ2 = 10−6. We an see that the best values of λ2
rls whihgive good approximations to the true funtion is neither too big nor too small. Valuesof λ2

rls that are too small tend to over�t whereas values that are too large also give biasestimates. The hoie of λ2
rls is therefore a ompromise between the two extremes.

4standard error term is the same as the residual norm in most literature.
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Figure 2.8: Tikhonov's solution fλrls
to the Gravity surveying model problem for di�erent hoies ofthe regularization parameter λrls with noise σ2 = 10−6 for λ2

rls in the range 10−3 − 10plus the exat solution.



CHAPTER  Stohasti Modelling
3.1 Filtering and Linear System TheoryIntrodutionIn this hapter, we develop some results whih are required for the solution of the es-timation problem under onsideration. We will restrit ourselves to some properties ofonditional distributions of Gaussian random variables and then give a geometri inter-pretation.Like we begun in Chapter 2 with "Why Least Squares and Regularization" in theNumerial Framework, we do the same in this Chapter by looking into Least Squaresfrom a Statistial viewpoint and further move on Statistial Regularization using boththe Maximum a Priori (MAP) and Maximum Likelihood (ML) priniples to the sameGravity problem. We will appeal to four theorems on multivariable Gaussian distribu-tions. We will then see that these theorems have geometri interpretations with a strongintuitive appeal.In setion (3.2), we formulate the problem of Filtering and Estimation for DisreteTime Systems, state the Deonvolution problem in a Statistial environment and �nishup with Least Squares. Setion (3.3) deals with the Statistial Approah to Regular-ization; we explore exat approahes in relation to maximum apriori (MAP) methodand marginalization over ontinuous variables of the Maximum Likelihood priniple byperforming integration. We follow up with the EM-Algorithmi priniple where we willround up with the di�erene between MAP and ML.We shall ontinue to work under normality onditions.
3.2 Formulation of Filtering and Estimation Problems forDisrete-Time SystemsWe onsider {g(s), s ∈ T} and {ǫ(s), s ∈ T} as two real stohasti proesses whih aresignal and noise respetively. We assume that the observation (output) or measurement
g̃(s) are given by

g̃(s) = g(s) + ǫ(s) (3.1)22



CHAPTER 3. STOCHASTIC MODELLING 23From equation (3.1), we mean that at time s, we have obtained a realization {g̃(τ), sk <

τ < s} of the measured variable. Based on this realization, the best estimate of the valueof the signal at time sk an be determined. Here sk ould be one or more of the following:
(a) sk < s (whih leads to a smoothing problem).
(b) sk = s (whih leads to a �ltering problem).
(c) sk > s (whih leads to a predition problem).De�ne a notation for a realization, say g̃, by

g̃(s) = (g̃T
s1
, g̃T

s2
, g̃T

s3
, ...., g̃T

sn
) (3.2)From equation (3.2) we have indiated expliitly that g̃ depends on s. We let g̃ ∈ g̃and g ∈ g. An estimator (�lter, preditor, interpolator) is a funtion whih maps g̃ into

g. The value of this funtion for a partiular measurement or observation g̃ is alled anestimate g. In this Chapter, we will desribe �ltering problems in relation to (3.1) byspeifying the following:
(i) the signal and noise proesses.
(ii) the riterion whih de�nes the best estimate.
(iii) the restrition on the admissible estimators.3.2.1 The Inverse (Deonvolution) ProblemThe signal and noise proesses are haraterized by ovariane funtions through a linearequation of the form:

g̃ = K f + ǫ (3.3)where g = Kf and ǫ is a sequene of independent Gaussian random variables.From above, we ask ourselves the question below!Question : From a realization of the output g̃(τ), s1 ≤ τ ≤ s. How or by what meansan we estimate the input vetor f in (3.3)?This forms an estimation problem. The neessary skills we need to aquire for thisproblem are disussed in subsetions (3.2.2) through (3.3.4).3.2.2 Statistial Modelling of the Loss FuntionThe statistial information whih the observations give about the stohasti variables
g(s) is ontained in the onditional distribution

p{gsk
≤ σ|g̃(τ) = ϕ(τ) : t0 ≤ τ ≤ t} = F (σ|ϕ) (3.4)In the left (most) hand side of equation (3.4), the parameter σ symbolizes a deviationonditioned on the output value g̃(τ) = ϕ(τ). The orresponding density of the distri-bution (3.4) is denoted by p(σ|ϕ). We de�ne a loss funtion l, whih is a real funtionwith properties l ≥ 0, l(δ) = l(−δ) and l non-dereasing for δ ≥ 0. The loss funtionis then a stohasti variable l(g̃ − g) with the best estimate g hosen to be the one thatminimizes the average loss 〈 l(g̃ − g) 〉



CHAPTER 3. STOCHASTIC MODELLING 24Theorem 1This is based on the assumption that the onditional distribution of g given g̃ = ϕ hasa density funtion whih is symmetri around the onditional mean µ =
∫
σ p(σ|ϕ)dσ(where σ is the standard deviation) and non-dereasing for (σ ≥ µ). The loss funtion

l is onsidered to be symmetri and non-dereasing for positive arguments. The bestestimate is then given by the onditional mean
g = g(ϕ) = 〈 g̃ |ϕ 〉 =

∫

σ p(σ|ϕ)dσ (3.5)The proof is based on an elementary lemma on real funtion. For proof and more onthis see [43℄.3.2.3 Multivariate Gaussian Distribution TheoremsThe probability density funtion of a normal n-dimensional variable with mean µg̃ andovariane Rg̃ is given by
p(g̃) = (2π)−n/2 det (Rg̃ )−1/2 exp − 1

2
{(g̃ − µg̃)

TR−1
g̃ (g̃ − µg̃)} (3.6)where we have made an assumption that the ovariane matrix Rg̃ is non-singular anddet (Rg̃ ) = | Rg̃ |is the determinant of R.Theorem 2If f̃ and g̃ are both n × 1 vetors and we make an assumption that [ f̃

g̃

] is Gaussianwith mean [ µf̃

µg̃

] and ovariane R =

[

Rf̃ Rf̃ g̃

Rg̃f̃ Rg̃

] then the vetor ς given by
ς = f̃ − µf̃ − Rf̃ g̃R

−1
g̃ (g̃ − µg̃) (3.7)is independent of g̃ has zero mean and ovariane

Rς = Rf̃ − Rf̃ g̃R
−1
g̃ Rg̃f̃ (3.8)For proof and more on this see [43℄.Theorem 3If f̃ and g̃ are two vetors whih are jointly Gaussian, then the onditional distributionof f̃ given g̃ is normal with mean

〈 f̃ | g̃ 〉 = µf̃ + Rf̃ g̃R
−1
g̃ (g̃ − µg̃) (3.9)and ovariane

〈 {

f̃ − 〈 f̃ | g̃ 〉
}{

f̃ − 〈 f̃ | g̃ 〉
}T ∣∣

∣ g̃
〉

= Rf̃ − Rf̃ g̃R
−1
g̃ Rg̃f̃ = Rς (3.10)



CHAPTER 3. STOCHASTIC MODELLING 25The stohasti variables g̃ and [f̃ − 〈 f̃ | g̃ 〉] are independent.For proof and more on this see [43℄.Theorem 4

(a) Linear funtions (and therefore onditional expetations) on a Gaussian randomproess are Gaussian random variables.
(b) Orthogonal Gaussian random variables are independent.
(c) Given any random proess with means 〈 g̃(s) 〉 and ovarianes 〈 g̃(s) g̃(t) 〉, thereexists a unique Gaussian random proess with the same means and ovarianes.InterpretationThe state estimation Theorem (1) implies that the best estimate is given by the ondi-tional mean: i.e

〈 f̃ | g̃ 〉 = µf̃ + Rf̃ g̃R
−1
g̃ (g̃ − µg̃)and the estimation error has the ovariane

〈 ς ςT | g̃ 〉 = Rf̃ − Rf̃ g̃R
−1
g̃ Rg̃f̃ (3.11)It further implies from Theorem (2) and Theorem (3) that, the estimation error

ς = f̃ − 〈 f̃ | g̃ 〉 = f̃ − µf̃ − Rf̃ g̃R
−1
g̃ (g̃ − µg̃) (3.12)is independent of g̃.3.2.4 Geometri InterpretationThe above multivariable Gaussian distribution theorems gives a strong intuitive appealwhen they are illustrated geometrially. See Figure (3.1). For simpliity, we illustratethis by assumming that both variables, µg̃ and µf̃ have zero mean (i.e µf̃ = µg̃ = 0).We then represent the variables f̃ and g̃ as elements in the Eulidean Spae with salarprodut de�ned by

(f̃ , g̃) = 〈 f̃T g̃ 〉 = ov(f̃ − 0 , g̃ − 0) = ov(f̃ , g̃) (3.13)The norm is given by
‖f̃‖22 = (f̃ , f̃) = 〈 f̃T f̃ 〉 (3.14)De�ne the two lines l1 and l2 whih interset at the origin. The angle ă between thelines is given by

cos ă =
〈 f̃T g̃ 〉

‖f̃‖2 · ‖g̃‖2
=

ov(f̃ , g̃)
‖f̃‖2 · ‖g̃‖2

(3.15)The stohasti variable f̃ is represented as a vetor along l1 with the length ‖f̃‖2 =
√

〈 f̃2 〉 and the stohasti variable g̃ is represented by a vetor along l2 with length
‖g̃‖2 =

√

〈 g̃2 〉.
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Figure 3.1: Geometri illustration of the onditional mean values of normal random variables. Theonditional mean f = 〈 f̃ | g̃ 〉 is represented by the projetion of f̃ on g̃.Realling the assumption that f̃ has zero mean, we �nd that Theorem 2 implies thatthe stohasti variable de�ned by
ς = f̃ − Rf̃ g̃R

−1
g̃ g̃ (3.16)is independent of g̃. Hene

(ς , g̃) = 〈 ςT g̃ 〉 = 0 (3.17)Theorem (2) thus implies that ς is orthogonal to g̃ and that the norm of ς is
‖ ς ‖22 = Rf̃ − Rf̃ g̃R

−1
g̃ Rf̃ g̃ = ‖f̃‖22 −

(f̃ , g̃)2

‖g̃‖22The projetion of f̃ on g̃ is
(

f̃ ,
g̃

‖g̃‖2

) g̃

‖g̃‖2
=

(f̃ , g̃)g̃

‖g̃‖22
= Rf̃ g̃R

−1
g̃ g̃ = 〈 f̃ | g̃ 〉 (3.18)where the equality in equation (3.17) follows from equations (3.13) and (3.14), and thelast equality follows from Theorem 3.The variable f̃ − ς = Rf̃ g̃R

−1
g̃ g̃ = 〈 f̃ | g̃〉 equals the best mean estimate of f̃ basedon g̃ and should be interpreted geometrially as the projetion of f̃ on g̃.13.3 Statistial Approah to RegularizationBefore we proeed we will use a di�erent notation for the ovariane matrix R. It shallbe replaed by Σ.1The symbol ς used on this page is equivalent to error vetor in Figure (3.1).



CHAPTER 3. STOCHASTIC MODELLING 273.3.1 Maximum Apriori Funtion and the Regularized Preision Ma-trixThe linear model is our "old friend":̃
g = g + ǫ

= Kf + ǫ (3.19)where g̃, K, f and ǫ represent the same notations used previously.We now state our statistial model.The onditional density (or noise model) is
p(g̃|f, σ2) = Cl(σ)exp − { 1

2σ2

∥
∥
∥ g̃ − Kf

∥
∥
∥

2

2

} (3.20)where Cl(σ) is a normalization fator given by
{
∫ exp − 1

2σ2

∥
∥
∥ g̃ − Kf

∥
∥
∥

2

2
df}−1is equivalent to the probability density of the noise ontributions ǫ, of zero mean andovariane σ2:

p(ǫ|σ2) = Cl(σ)exp[− 1

2σ2
‖ ǫ ‖22

] (3.21)In Numerial Regularization, we hose a standard quadrati funtional Φ with a reg-ularization parameter λ2
rls by setting the derivative operator L = I;

λ2
rls Φ(f) =

1

2
λ2

rls ‖f‖22We repeat it here by introduing a similar regularizer whih we will de�ne as the priorprobability in the 'Statistial Regularization' Framework:
p(f |λ2

ml) = Cp(λml)exp− [λ2
ml

2
‖ f ‖22

] (3.22)where Cp(λml) is a normalization fator given by
{
∫ exp − λ2

ml

2
‖ f ‖22 df}−1We wish to ompute an estimate for f given g̃, σ2 and the prior p(f |λ2

ml). This is astandard proedure by applying Bayes' Rule.From Bayes' Rule, the posterior probability of f is
p(f | g̃, σ2, λ2

ml) =
p(g̃|f, σ2) p(f |λ2

ml)

p(g̃|σ2, λ2
ml)

(3.23)where the denominator on the right hand side of equation (3.23) is also a normalizationfator de�ned by
p(g̃|σ2, λ2

ml) =

∫

p(g̃|f, σ2) p(f |λ2
ml) df



CHAPTER 3. STOCHASTIC MODELLING 28and the densities p(g̃|f, σ2) and p(f |λ2
ml) are their respetive likelihood funtion andprior probability.Substituting equations (3.21) and (3.22) into equation (3.23) and taking the logarithmof both sides giveslog p(f | g̃, σ2, λ2

ml) = − 1

2

{
1

σ2
‖g̃ −Kf‖2 + λ2

ml‖ f ‖2
}

+ κ (3.24)where κ is a onstant de�ned by
κ = log Cl(σ)Cp(λml) [p(g̃ |σ2, λ2

ml)]
−1We take the �rst partial derivatives of equation (3.24) with respet to f and solve for thezeros of f to obtain the maximum apriori (MAP) estimate, whih we denote by fmapλ,σ

.Thus,
∇f log p(f | g̃, σ2, λ2

ml) =
1

σ2
KT (g̃ −Kf) − λ2

mlf (3.25)
= 02 It is straight forward to write the zeros of equation (3.25) as

(KTK + σ2 λ2
mlI) fmapλ,σ

= KT g̃ (3.26)whih must be viewed as Normal Equations in the Statistial Framework sense. Thisequation is of the same form as Equation (2.40) of Tikhonov's Regularization in theNumerial Framework. The parameter λml of the solution
fmapλ,σ

= (KTK + σ2λ2
mlI)

−1KT g̃ (3.27)should be onsidered as provision of a non-zero parameter whih makes inversion of thematrix (KTK + σ2λ2
mlI) possible.A omparison of equation (3.26) with equation (2.38) for whih LTL = I, shows thatthere is a relation between the numerial regularization parameter λrls and the statistialregularization parameter λml. The relation is

λ2
rls = (σ λml)

2 (3.28)We �nally take the seond order partial derivatives of the log-posterior with respet to fto obtain the urvature information. We denote a negation of the urvature informationby J(λml, σ):
J(λml, σ) = −∇2

f log p(f |g̃, σ2, λ2
ml)

=
KTK

σ2
+ λ2

ml I (3.29)2The maximum fmapλ,σ
must lie on the stationary point satisfying:

∇f log p(f |K, g̃, σ2, λ2
ml) = 0



CHAPTER 3. STOCHASTIC MODELLING 29It an be seen from equation (3.29) that, the Matrix J is independent of f . Hene, theexpetation of Matrix J with respet to the distribution of f gives
〈J(λml, σ) 〉 = J(λml, σ)

=
KTK

σ2
+ λ2

ml I (3.30)From now through the end of this thesis, we will let the notation Σf represent 〈J(λml, σ) 〉

Σf =
KTK

σ2
+ λ2

ml I (3.31)The orresponding inverse matrix also alled the Preision Matrix is
Σ−1

f =
(KTK

σ2
+ λ2

ml I
)−1 (3.32)The use of Bayes' Rule exploits the apabilities of taking prior information into aount.It inorporates and maps 'the event spae' of our subjetive beliefs onto the spae R (ofreal numbers) by expressing the 'degree of belief' as 'probability'. This is what we earlierreferred to it as prior probability in equation (3.22).Furthermore, the stohasti variable g̃ an be haraterized by speifying its �nite di-mensional distribution p (g̃). With the �rst and seond moments of p (g̃) in hand, we an(partially) answer all probabilisti questions about the joint probability density funtionof g̃ and f . This alls for a need to express the two moments in terms of the mean andvariane-ovariane.The standard deviation (whih is the square root of the variane) is a measure that isused to determine how far we are from our estimate, fmapλ,σ

. The two moments whenput together an enable us onstrut error bars on our estimate. For a variable say µ̂,the error bars has the property:
µ̂ = fmapλ,σ

±
√diag(Σfλ,σ

) (3.33)where√diag(Σfλ,σ
) is the standard deviation and it is obtainable from taking the squareroot of the diagonal elements of the variane-ovariane matrix of Σfλ,σ

whih we shallre-visit shortly.3.3.2 Deomposition of the Regularized Preision Matrix by SVDIn general, the SVD of an inverse matrix of the form
(KTK

σ2
+ λ2

mlL
TL
)−1where L is a derivative operator are as follows:By beginning with the SVD of K, we have

K = UDV T



CHAPTER 3. STOCHASTIC MODELLING 30The orresponding SVD of (KTK) deomposes into
KTK

σ2
= V

D2

σ2
V Twhere the matries U and V onsists of the eigenvetors of K suh that V TV = V V T = Iand UTU = UUT = I. As a result, V T = V −1 and UT = U−1. Moreover, the matrix

D2 onsists of the singular values of KTK and their singular values are equal to theeigenvalues of KTK sine the matrix KTK is symmetri. Hene,
(KTK

σ2
+ λ2

mlL
TL
)−1

=
(

V
D2

σ2
V T + λ2

ml L
TL
)−1

=
(

V
D2

σ2
V T + λ2

ml L
T V V T L

)−1 (3.34)We use the above properties of real symmetri matries to aomplish our objetive byreplaing the general regularizer operator L with the identity matrix I.If L = I, we have
(KTK

σ2
+ λ2

mlI
)−1

=
(

V
D2

σ2
V T + λ2

ml V V T
)−1

= V
( D2

σ2
+ λ2

ml I
)−1

V T

=

n∑

i=1

vi

( σ2

d2
i + σ2 λ2

ml

)

vT
i (3.35)Equation (3.35) is a powerful analytial result whih serves as a tool for analysis of rankde�ient and disrete ill-posed problems. The SVD allows the fatorization of the n×n,square symmetri matrix Σ−1

f into orthogonal/orthonormal omponents. It is also quiteomputationally e�ient for omputing inverses and determinants of smaller systems.We will suspend the importane and details of SVD here until we get to Chapter 5where it shall be used for analysis.3.3.3 Exat Computation of Σfλ,σWe dedue the error bars on the estimate fmapλ,σ
from the following:Let gλml

= Kfλml
where gλml

and fλml
represents exat regularized output and input.We write the di�erene:

fmapλ,σ
− fλml

= (KTK + σ2λ2
mlI)

−1KT g̃ − fλml

=
{

(KTK + σ2λ2
mlI)

−1KT (Kfλml
+ ǫλml

) − (KTK + σ2λ2
mlI)

−1KT (Kfλml
)
}

= (KTK + σ2λ2
mlI)

−1KT ǫλml (3.36)where fλml
= (KTK + σ2λ2

mlI)
−1KTgλml

.



CHAPTER 3. STOCHASTIC MODELLING 31The variane-ovariane on the estimate fλml,σ is
Σfλ,σ

=
〈(

KTK + σ2λ2
mlI
)−1

KT ǫλml
ǫTλml

K
(
(KTK + σ2λ2

mlI
)−1}〉

=
(

KTK + σ2λ2
mlI
)−1

KT 〈 ǫλml
ǫTλml
〉 K

(

KTK + σ2λ2
mlI
)−1

= σ2
(

KTK + σ2λ2
mlI
)−1

KTK
(

KTK + σ2λ2
mlI
)−1 (3.37)where 〈 ǫλml

ǫTλml
〉 = σ2I.Deomposing equation (3.37) by SVD:

Σfλ,σ
= σ2

{

V
(

D2 + σ2λ2
mlI
)−1

D2
(

D2 + σ2λ2
mlI
)−1

V T
}

= σ2
n∑

i=1

vi

( di

d2
i + λ2

mlσ
2

)2
vT

i

=
n∑

i=1

vi Λ2
i vT

i (3.38)where
Λ =

D

σ

(D2

σ2
+ λ2

ml I
)−1

: σ 6= 0 (3.39)is the deviation from the estimate fmapλ,σ
. Equation (3.39) intuitively shows that theerror bars depends on the singular values of the Regularized Preision matrix Σ−1

f andtherefore an be approximated by Σ−1
f . In subsetion (3.3.4), we dedue how the ap-proximation Σ−1

f an be obtained from Taylor's expansion.3.3.4 An Approximation to Σfλ,σIt is ommon to summmarize the posterior distribution by fmapλ,σ
and onstrut approx-imate error bars on the �t for that partiular values of λ2

ml and σ2. By Taylor expandingthe log-posterior up to the seond order (via Laplae approximation), we havelog p (f | g̃, σ2, λ2
ml) = log p(fmapλ,σ

| g̃, σ2, λ2
ml

)

+
1

2

(

f − fmapλ,σ

)T
Σf

(

f − fmapλ,σ

)(3.40)where
Σf = −∇2

f log p (f | g̃, σ2, λ2
ml)Hene

p
(

f | g̃, σ2, λ2
ml

)

= p
(

fmapλ,σ
| g̃, σ2, λ2

ml

) exp − 1

2

{(

f − fmapλ,σ

)T
Σf

(

f − fmapλ,σ

)}(3.41)From equation (3.41), the posterior an be loally approximated as a Gaussian withpreision matrix (or error bars) Σ−1
f :

Σ−1
f =

(KTK

σ2
+ λ2

mlI
)−1 (3.42)
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Figure 3.2: Estimates of the MAP posterior at σ2 = 10−6. The value of λ2
ml for eah posterior fsatis�es the relation we established in of equation (3.28); λ2

ml = λ2
rls/σ2 . The shape ofthe subplots are replia of the subplots in Figure (2.8) exept for a di�erene in the valuesof λ2

ml and λ2
rls as a result of the fator σ2 whih is fatored into λ2

rls.s This tells us that,if the noise level σ2 and the regularization parameter λ2
rls are given, the parameter λ2

mlan be obtained and vie-versa.



CHAPTER 3. STOCHASTIC MODELLING 33AnalysisEquation (3.42) is a good approximation to Σfλ,σ
of equation (3.38) for any given pairof hyperparameters λml and σ. This approximation holds for all quadrati funtionalregularizers (priors) and noise models that are assumed to be Gaussian. Therefore,analysis of Σfλ,σ

is tantamount to doing analysis on the approximation,
n∑

i=1

vi

(d2
i

σ2
+ λ2

ml

)−1
vT

i (3.43)for any given K and σ2 sine the ratio D/σ an viewed as some sort of saling. However,we note that (di/σ ; ∀ i) of equation (3.39) is known sine di omes from the singularvalues of the matrix K at the noise level σ2. For non-zero λ2
ml and σ2, we have Λi → 0if and only if di/σ → 0 . In this ase, the error bars depends on the SVD omponents(or singular values) of K having numerial values roughly equal to (or approahing) zero.Also from equation (3.38), we an easily see that when λml = 0 , we have

Σfλml,σ
= σ2

n∑

i=1

vi

( 1

d2
i

)

vT
i (3.44)whih orresponds to the variane-ovariane of the Least Squares estimates.From above, it is enough to fous on the analysis of Σ−1

f :
Σ−1

f =

n∑

i=1

vi

(d2
i

σ2
+ λ2

ml

)−1
vT

i (3.45)For �xed σ2, (σ2 > 0):
(a) if λml << di for all i, we have

Σ−1
f ≃

n∑

i=1

vi

(σ2

d2
i

)

vT
i

(b) if λml >> di for all i, we have
Σ−1

f ≃
n∑

i=1

vi

( σ2

λ2
ml σ

2

)

vT
i =

n∑

i=1

vi

( 1

λ2
ml

)

vT
iFigures (3.2), (3.3) and (3.4) are the estimates, exat error bars using equation (3.38)and approximate error bars using equation (3.42) on the Gravity Problem for n = 60,

d = 0.25 and at a noise level of 10−3. In the ase of the exat error bars, we an see thee�et of small di/σ at the middle to the tail-ends of eah subplot for σ2 > 0.
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Figure 3.3: The exat Error bars on the estimates of the posterior for f of Figure (3.2) using theexpression for Σfλ,σ
at the same σ2 = 10−6.
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Figure 3.4: The error bars approximated by Σ−1
f .



CHAPTER 3. STOCHASTIC MODELLING 363.3.5 Appliation of the Maximum Likelihood Prinipleto the ProblemThe stohasti proess g̃ is haraterized by speifying the �nite dimensional onditionaldistribution
p{g̃(s) |σ2, λ2

ml} = p{(g̃T
s1
, g̃T

s2
, g̃T

s3
, ...., g̃T

sn
) |σ2, λ2

ml}Bayes rule further allows us to re-haraterize the above �nite dimensional onditionaldistribution by speifying the joint onditional density funtion through the marginaldistribution of g̃ given σ2 and λ2
ml. 3In general, the re-haraterization of the marginal distribution of g̃ given the parameterpair (σ2, λ2

ml) is de�ned by:
p(g̃|λ2

ml, σ
2) =

∫

p(g̃ | f, σ2, λ2
ml) p(f |λ2

ml, σ
2)df (3.46)where the stohasti input variable f and the parameter σ are assumed to be independentand the integrand is alled the joint onditional density. A funtional say l de�ned by

l(f, λ2
ml, σ

2) = p(g̃ | f, σ2, λ2
ml)is alled the onditional likelihood-funtion (onditioned on f).From Bayes' rule we have

p(g̃ | f, σ2) p(f |λ2
ml) = p(g̃, f |λ2

ml, σ
2) (3.47)where p(g̃ | f, σ2) and p(f |λ2

ml) are the same as given in equations (3.21) and (3.22) andthe equivalene of their orresponding normalizing onstants Cl(σ) and Cp(λml) for thisproblem are
{
∫ exp − 1

2σ2
‖g̃ − Kf‖2 df}−1

= (2π σ2)−n/2 (3.48)and {
∫ exp[−λ2

ml

2
‖ f ‖2 df}−1

=
(λ2

ml

2π

)n/2 (3.49)The integrand of the onditional density p(g̃ |σ2, λ2
ml) is equivalent to the joint ondi-tional density of equation (3.47). Hene by substitution of equations (3.47), (3.48) and(3.49)

p(g̃, f |σ2, λ2
ml) =

(λ2
ml

2π

)n/2(

2π σ2
)−n/2 exp{ − 1

2σ2

∥
∥
∥ g̃ − Kf

∥
∥
∥

2

2
+

− λ2
ml

2

∥
∥
∥ f
∥
∥
∥

2

2

}

= C(λml, σ) exp{− 1

2σ2

[ ∥
∥
∥ g̃ − Kf

∥
∥
∥

2

2
+ σ2λ2

ml

∥
∥
∥ f
∥
∥
∥

2

2

]}(3.50)3The parameter λ2
ml is usually referred to as a hyperparameter. It ontrols the distribution of otherparameters in equation (3.46).



CHAPTER 3. STOCHASTIC MODELLING 37where C(λml, σ) = Cp(λml)Cl(σ). Also, the funtional p(g̃ |σ2, λ2
ml) is referred to as thelikelihood funtion and we shall denote it by L(θ) with θ = (λml, σ).Our objetive is then to �nd the pair say (λ2 ⋆

ml , σ
2 ⋆) from the set of parameters

{λml, σ} for whih L is maximum. If the above distributions are de�ned in terms of theexponential family of distributions, then it is usually advisable to take the logarithm of
L before we proeed to �nding the maximum. From the two 'hoods', likelihoods multiplyand log-likelihoods add.3.3.6 Expliit Result for the Gaussian ModelHere we will make a general assumption about the mean and variane-ovariane of thestohasti variables g̃ and f . We are onsidering the ase where the mean of g̃ is di�erentfrom zero. We state our assumptions as follows:

p(ǫ|σ2) ∼ N(0, σ2I) , p(f |λ2
ml) ∼ N(0, λ−2

ml I) and g̃ ∼ N(Kf,Σf )where the vetors ǫ and f are assumed to be independent.Sine the output g̃ and input f of the proess are Gaussian, the de�nitions of theironditional probability densities are equivalent to the previous ones. A replia of equation(3.46) to the model gives the following:
p(g̃ |λ2

ml, σ
2) = C(λml, σ)

∫ ∞

−∞

exp{− 1

2σ2

{

fT (KTK + λ2
mlσ

2I)f − 2g̃TKf

+ g̃T g̃
} df

= C(λml, σ) (2π)n/2
∣
∣
∣ Σf

∣
∣
∣

−1/2 exp 1
2

(

νT Σ−1
f ν

)exp 1
2 σ2 ‖ g̃ ‖2

(3.51)where
C(λml, σ) =

(λ2
ml

2π

)n/2 ( 1

2π σ2

)n/2 and νT =
g̃TK

σ2A deomposition of the determinant ∣∣∣ Σf

∣
∣
∣ by SVD gives

∣
∣
∣Σf

∣
∣
∣ =

∣
∣
∣V
(D2

σ2
+ λ2

mlI
)

V T
∣
∣
∣

=
∣
∣
∣

(D2

σ2
+ λ2

mlI
)∣
∣
∣

=

n∏

i=1

( d2
i

σ2
+ λ2

ml

) (3.52)By substitution of equation (3.52) into equation (3.51):
p(g̃|λ2

ml, σ
2) =

( λ2
ml

2πσ2

)n/2
[

n∏

i=1

(d2
i

σ2
+ λ2

ml

)
]−1/2 exp 1

2

[

υT
i

(
d2

i

σ2 + λ2
ml

)−1
υi

]exp 1
2 σ2 ‖ g̃ ‖2 (3.53)
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i = νT vi = g̃T K

σ2 vi.Taking logarithms of both sides of equation (3.53) giveslog {p (g̃ |λ2
ml, σ

2)} =
n

2
log( λ2

ml

2πσ2

)

− 1

2

n∑

i=1

log(d2
i

σ2
+ λ2

ml

)

− 1

2σ2

n∑

i=1

g̃i
T g̃i +

1

2

{ n∑

i=1

υT
i

(d2
i

σ2
+ λ2

ml

)−1
υi

}(3.54)In general, equation (3.51) would have been a very di�ult integral to perform ifthe prior was not Gaussian. Seondly, we an easily see from either equation (3.53)or (3.54) that the marginal distribution is non-linear in λ2
ml and σ2. Hene we annotjust di�erentiate the likelihood funtion with respet to the hyperparameters σ2 and λ2

ml(whih should have been the ase). We end here with the exat integration proedureabove. However, we will refer to some of the equations in this subsetion when we get toBayesian Inferene methods. The above problem shall then be addressed to enompassNon-Gaussian priors that assumes an approximation to Gaussian distributions as well.
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Figure 3.5: log-likelihood ontours (top-row) and log-likelihood plots (bottom-row) for n = 30, d = 10(�rst-olumn) and d = 1000 (seond olumn) of The Gravity Problem Model.Figures (3.5) and (3.6) are log-likelihood ontour plots, log-likelihoods plots and sur-faes of the log-likelihood. Figures (3.7) and (3.8) also shows likelihood ontour plots,likelihood plots and surfaes of the likelihood. The set of values of λ2
ml and σ2 forall the plots were respetively generated from matlab using logspae(−6, 6, 500) andlogspae(−6, 0, 500) for n = 30 and at di�erent values of d; d = 10 for the �rst olumns
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Figure 3.6: log-likelihood w.r.t log(σ2) (top-row) and surfae of the log-likelihood (bottom-row) for
n = 30, d = 10 (�rst-olumn) and d = 1000 (seond olumn) of the Gravity Model.
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Figure 3.7: likelihood ontours (top-row) and likelihood plots (bottom-row) for n = 30, d = 10 (�rst-olumn) and d = 1000 (seond olumn) of the Gravity Model.
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Figure 3.8: likelihood w.r.t log(σ2) (top-row) and surfae of the likelihood (bottom-row) for n = 30,
d = 10 (�rst-olumn) and d = 1000 (seond olumn) of the Gravity Model.and d = 1000 for the seond olumns of eah of the Figure.The most probable value of the pair of parameters (λ2 ⋆

ml , σ
2 ⋆) for eah olumn ismarked ⋆ in eah ontour plot and they have their respetive values shown on top.In subsetion (3.3.7), we appeal to two di�erent set of assumptions for a simple asewhere the mean of g̃ is assumed to be zero and another ase where the mean of g̃ isdi�erent from zero and use the de�nition of probability density funtion of a normalmulti-dimensional variable of equation (3.6) on the same problem.3.3.7 Multivariate Gaussian Distribution Approah to the ModelThe alternative method to solving the same problem is to make a tait assumption aboutthe output g̃ whih an be either; g̃ omes from the sum of two Gaussians with meanzero or otherwise. We state our assumptions for the two ases as follows:(a) p(f |λ2

ml) ∼ N(0,
1

λ2
ml

I) , p(ǫ|σ2) ∼ N(0, σ2I) and g̃ ∼ N(0,Σg̃)(b) g̃ ∼ N(Kf, σ2I) , p(f |λ2
ml) ∼ N(0,

1

λ2
ml

I) and p(ǫ|σ2) ∼ N(0, σ2I)
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(a) Zero MeanUsing the assumption in (a), the ovariane of marginal for g̃ is obtainable from thefollowing.

Σg̃ = 〈 g̃g̃T 〉
= 〈 (Kf + ǫ)(Kf + ǫ)T 〉
= 〈KffTKT 〉 + 〈 ǫǫT 〉 (3.55)where
〈KfǫT 〉 = 〈 ǫfTKT 〉 = 0beause the vetors ǫ and f are assumed to be independent.A deomposition of equation (3.55) by SVD results in

Σg̃ = [K
1

λ2
ml

KT ] + σ2I

= U
{D2

λ2
ml

+ σ2I
}

UT (3.56)Sine g̃ is asumed to be Gaussian, its normalized joint onditional probability density
p(g̃|σ2, λ2

ml) is
p(g̃|σ2, λ2

ml) =
( 1

2π

)n/2
| Σg̃ |−1/2 exp− { 1

2
g̃T Σ−1

g̃ g̃
} (3.57)Substituting the equivalent expressions of Σ−1

g̃ and |Σg̃ | into equation (3.58) above gives
p(g̃|σ2, λ2

ml) =
( 1

2π

)n/2 [
n∏

i=1

( d2
i

λ2
ml

+ σ2
)]−1/2 exp− 1

2

{
n∑

i=1

ωT
i

( d2
i

λ2
ml

+ σ2
)−1

ωi

}(3.58)where ωi = uT
i g̃ and we have made use of the initial assumption that the mean 〈 g̃ 〉 = 0.Taking the logarithm of both sides of equation (3.58) gives us another importantequation log p (g̃|σ2, λ2

ml)} = −n
2
log(2π) − 1

2

n∑

i=1

log{( d2
i

λ2
ml

+ σ2
)}

1

2

{
n∑

i=1

ωT
i

( d2
i

λ2
ml

+ σ2
)−1

ωi

} (3.59) We already know that the marginal distribution is non-linear in the parameters λ2
mland σ2 in the zero neighbourhood. So, a losed form ML priniple is intratable. There-fore, a maximization of the log-likelihood through di�erentiation and solving for thezeros diretly is impossible. Interestingly, it is possible to �nd the best possible pair ofhyperparameters say (λ2 ⋆

ml , σ
2 ⋆) in equations (3.57) from a given set of hyperparameters

{λ2
ml, σ

2} but it is impossible to do the same for non-zero mean due to the presene of



CHAPTER 3. STOCHASTIC MODELLING 42the latent variable f and/or the assumptions made in (b).We present an iterative sheme for estimating (λ2 ⋆
ml , σ

2 ⋆) using the ML EM Algorithmto the problem. This proedure is (more or less) a showase or test-bed for understandingthe Variational Bayesian EM Algorthm whih we will treat later. It will also make iteasy for us to see the di�erene between Regularization in MAP and ML.Appliation of EM Algorithm (Tikhonov EM Regularization)Before we stoop to this iterative algorithm, we shall let the symbols β = 1/σ2 and
α = λ2

ml. We are also dealing with a single data point in n-dimensions so there is noneed for a summation sign here.In this EM appliation, instead of maximizing the likelihood p(g̃ |β, α), 4 we ratherseek to maximize the joint likelihood p(g̃, f |β, α) of the unobserved random variables inthe model whih is a funtion of the latent variable f . 5 The quantity p(g̃, f |β, α) thenbeomes a funtion of the unobserved random variables f . Hene we have
Lc(β, α) = p(g̃, f |β, α) (3.60)In using Bayes' rule, followed by taking logarithm of both sides and making use of thefat that f is independent on ǫ, we havelogLc(β, α) = log p(g̃ | f, β) + log p (f |α) (3.61)6 The omplete log-likelihood funtion, ( logLc ) of equation (3.61) redues tologLc(α, β) = − n log(2π) +

n

2
log β +

n

2
logα −

β

2

(

g̃ − K f
)T(

g̃ −K f
)

− α

2
fTf (3.62)The M Step of EMThe M step involves taking the expetation of the omplete log-likelihood and maximiz-ing it with respet to β.Di�erentiating with respet to β:d 〈 logLc(α, β) 〉d β =

n

2β
− 1

2

{〈(

g̃ −K f
)T(

g̃ −K f
)〉} (3.63)4p(g̃ |β, α) is also referred to as the Inomplete Data Likelihood5p(g̃, f |β, α) of the unobserved random variables in the model is also known as Complete DataLikelihood.6The seond term on the right hand side of equation (3.61) is independent on β. Therefore, �ndingthe most probable β simply means that we only need the �rst term on the right hand side of equation(3.61). On the otherhand, the �rst term on the right hand side of equation (3.61) is independent on α.Therefore, �nding the most probable α simply means that we only need the seond term on the righthand side of equation (3.61).



CHAPTER 3. STOCHASTIC MODELLING 43Setting the derivative to zero and solving for β gives
β =

n
〈(

g̃ −K f
)T(

g̃ −K f
)〉

=
n

g̃T g̃ −
(

g̃ 〈 fT 〉
)

KT + Tr[KTK 〈f fT 〉]
} (3.64)where fT (KTK) f = Tr[KTK f fT ] and we have used the relation xTAx = Tr[AxxT ].At this point we are still left with the problem of determining the atual values of 〈f〉and 〈f fT 〉. This is where the E-step omes in.The E Step of EMThe E-step involves the maximization of the log-posterior p(f | g̃, β, α). The analytialform of the expetation for p(f | g̃, β, α) an be obtained from Bayes' rule

p (f | g̃, β, α) ∝ p(g̃ | f, β) p (f |α) (3.65)Taking logarithm of both sides and expanding giveslog p(f | g̃, β, α) = −n
2
log 2π +

n

2
log β − β

2

{(

g̃ −K f
)T(

g̃ −K f
)}

− n

2
log 2π − α

2
fT f +

n

2
logα+ g

= −1

2

{

g̃Tβg̃ − 2fTKT βg̃ + fT (α I +KTβK )f
}

+ g
′(3.66)where g and g

′ are independent of f and we have assumed that the prior is a quadratifuntional given by p (f |α) = (α/2π)n/2 exp − α
2 f

Tf . From equation (3.66), it is easyto infer that
p (f | g̃, β, α) ∼ N

(

〈f〉,Σ−1
f

)where Σ−1
f :

Σ−1
f = (α I + β KTK)−1 (3.67)and 〈 f 〉 is
〈f〉 = Σ−1

f KTβ g̃

= fmlλ,σ
(3.68)where Σ−1

f and 〈 f 〉 are the variane-ovariane and mean with a prior on f .The orresponding 〈f fT 〉 is
〈f fT 〉 = Σ−1

f + 〈 f 〉〈 f 〉T (3.69)



CHAPTER 3. STOCHASTIC MODELLING 44If there is no prior on f or (α = 0) then we assume non-informative priors. In this ase
〈 f〉 = (β KTK)−1KTβ g̃ = (KTK)−1KT g̃ (3.70)whih gives the updates equation for the standard EM-Algorithm (and it is equal to theLeast Squares solution). The di�erene between equations (3.68) and (3.70) omes fromthe addition of a prior. For quadrati funtional priors, we view the onditional prior

p (f |λ2
ml) as equivalent to an unonditional prior p(f) when λ2

ml = 1.3.3.8 Summary of Equations for the EM AlgorithmE Step
Σ−1

f = (α I + β KTK)−1

〈f〉 = Σ−1
f KTβ g̃ = (α I + β KTK)−1β g̃

〈f fT 〉 = Σ−1
f + 〈f〉 〈f〉T (3.71)where β = σ−2 in the above.M Step

β =
n

〈(

g̃ −K f
)T(

g̃ −K f
)〉

=
n

g̃ g̃T −
(

g̃ 〈 fT 〉
)

KT + Tr[KTK 〈f fT 〉]
} (3.72)The solutions to the equations above is sometimes alled the solution to the maximumpenalized likelihood (MPL). The penalty term that assessses the physial plausibility ofthe solution is

1

σ2
‖ f ‖22The MPL solution is the same as the Tikhonov's Regularized solution

fmlλ,σ
= (KTK + σ2λ2

mlI)
−1KT g (3.73)3.3.9 The Di�erene between MAP and Maximum LikelihoodWe have so far seen that, di�erenes in ML and MAP do not lie in the equation governingthe Bayesian posterior for the stohasti variable f beause the same Bayes' rule is usedfor estimating f in either ase. We will use the onept of exat marginalization overontinuous variables to �nd out whether di�erene(s) really exists.From Bayes' Rule we have

p(g̃, f, λ2
ml, σ

2) = p (g̃, f |λ2
ml, σ

2) p (λ2
ml, σ

2) (3.74)
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p(λ2

ml, σ
2 | g̃) p (g̃) = p (λ2

ml, σ
2)

∫

p (g̃, f |λ2
ml, σ

2)df
= p (λ2

ml, σ
2) p (g̃ |λ2

ml, σ
2) (3.75)Hene

p(λ2
ml, σ

2 | g̃) =
p (λ2

ml, σ
2)

p (g̃)
p (g̃ |λ2

ml, σ
2)

∝ p (λ2
ml, σ

2) p (g̃ |λ2
ml, σ

2) (3.76)where p(λ2
ml, σ

2 | g̃) is the MAP posterior of the parameters given the data g̃ and
p (g̃ |λ2

ml, σ
2) is the likehood of the parameters.With regards to equation (3.76), we view MAP as a substitute to maximizing thelikelihood p (g̃ |λ2

ml, σ
2) by maximizing the Bayesian posterior probability density of theset of parameters with the only di�erene arising from an introdution of a prior overthe parameters we want to infer due to the knowledge we knew (or initial assumption wemade) about the distribution over the parameters. If the prior distribution of λ2

ml and
σ2 are assumed to be independent then p (λ2

ml, σ
2) = p (λ2

ml) p (σ2) . In addition to theindependeny, if both priors are assumed to be non-informative then estimates obtainedfrom ML and MAP should oinide otherwise we expet MAP to out-perform ML dueto the inlusion of priors.



CHAPTER Take Home on Numerial and Statistial Regularization
Similarity in Equations Between Numerial and Statistial Regularization(for Gaussian random variables)In hapter (2), the measurables were of the form

g̃(s) =

∫

Ω
K(s, t)f(t)dt = g(s) + ǫ(s)and we explained that the equation above is often related to a funtional inequality | ǫ |bounded above suh that

| ǫ(s)| ≤M or ∫

Ω
ǫ2(s)w(s)ds ≤ M̃ : w(s) > 0 (4.1)Also from equation (3.46), the funtional equation is given by the marginal distributionof g̃ given (or onditional on) σ2 and λ2

ml. This is of the form
p(g̃|λ2

ml, σ
2) =

∫

p(g̃ | f, σ2) p(f |λ2
ml)df (4.2)Both ǫ2(s) and p(g̃ | f, σ2) have the same quadrati funtional forms and the orre-sponding weights w(s) and p(f |λ2) are also quadrati funtional regularizers. Withoutloss of generality, | p(g̃ | f, σ2) | also satis�es

| p(g̃ | f, σ2) |≤ M̂ or ∫

p(g̃ | f, σ2) p(f |λ2)df ≤ ˆ̃
MSub-onlusion on Numerial and Statistial Framework

(a) The onditional mean in the Statistial framework/settings (i.e MAP) is the same asthat of Regularized Normal Equations in the Numerial Methods framework if we are deal-ing with Multivariate Gaussian Distribution. We an onsider the Regularized NormalEquations in the Numerial Methods framework settings as a speial ase of StohastiModelling theory when we are dealing with Gaussian Random Variables.
(b) The tuning parameter λrls in the Numerial Methods framework settings is a prod-ut of the Statistial parameter λml and the noise level σ.
(c) Setting the regularization parameter λml to zero for σ <∞ is the same as �ndinga solution to a Least Squares problem. 46



CHAPTER Numerial and Statistial Estimation Theory
The aim of this Chapter is to ompare and ontrast equations and expressions whihleads to understanding the features and analysis of
(i) the L-Curve for Tikhonov Regularization in Numerial Ridge Regression.
(ii) the Emprial Bayes (Regularization) in Statistial (Bayesian) Ridge RegressionWe already know from Chapters 2 and 3 that the standard Least Squares (LS) esti-mate fls is equivalent to the standard Maximum Likelihood estimate fml. Also, due toill-posedness whih is beyond both the standard LS and ML estimates, we extended theestimation proedure to be based on adding the small positive onstant α = λ2

ml to thesingular values of the symmetri matrix KTK/σ2 or KTK so that the inverse matrixassoiated with fλrls
or fmapλml,σ

or fmlλml,σ
beomes non-singular.We now turn our attention to the problem of how optimal estimates for λ2

rls, λ2
ml and

σ2 an e�iently be determined. We shall ontinue to work under normality onditions.5.1 The L-Curve for Tikhonov's Numerial Regularization5.1.1 SVD for Tikhonov's RegularizationA deomposition of the standard regularized solution of equation (2.40) by SVD gives
fλrls

=

n∑

i=1

( d2
i

d2
i + λ2

rls

)uT
i g̃

di
vi (5.1)whih is of the form

fλrls
=

n∑

i=1

xi
uT

i g̃

di
vi (5.2)where

xi =
d2

i

d2
i + λ2

rls

; ∀ i (5.3)are alled the Tikhonov's �lter fators and they satisfy the inequality 0 < xi < 1.Another way of writing equation (5.3) is
d2

i

d2
i + λ2

rls

= 1 − λ2
rls

d2
i + λ2

rls

(5.4)
(a) If di >> λrls, then λ2

rls/(d
2
i + λ2

rls) → 0. Hene
d2

i

d2
i + λ2

rls

≈ 1 (5.5)47



CHAPTER 5. NUMERICAL AND STATISTICAL ESTIMATION THEORY 48
(b) If di << λrls, then λ2

rls/(d
2
i + λ2

rls) → 1. Hene
d2

i

d2
i + λ2

rls

≈ 1 − 1 = 0 (5.6)
(c) For a δ-neighbourhood (δ-small s.t δ > 0), if di = λrls ± δ, then the �lter fator xiare in transition between the two extreme regions of (a) and (b) above. Hene,

d2
i

d2
i + λ2

rls

≈ 1 − 1/2 = 1/2 (5.7)The naive solution f̃ is obtained when λrls = 0 . The SVD omponents orrespond-ing to di > λrls ontributes strength that is more than half of the naive ase f̃ . Forase(s) where di >> λrls, it ontributes with almost full strength to the solution fλrls
.On the otherhand, the SVD omponents orresponding to singular values di < λrls aredamped onsiderably and ontribute very little to the solution fλrls

. Hene, the trun-ation parameter k has a relation with λ2
rls given by dk ≈ λrls. For more on this see[2℄.5.1.2 Analysis of L-Curve for Tikhonov RegularizationThe analysis to be presented here is due Hansen. We will not dwell muh into thesurrounding details. For a thorough disussion on this, kindly see [2℄. The analysisstarts by writing g̃ as the sum of an exat unperturbed data ḡ and noise ǫ;

g̃ = ḡ + ǫ and ḡ = Kf̄ (5.8)where f̄ = K†ḡ. The Tikhonov solution is expressed as
fλrls

= f̄λrls
+ f ǫ

λrls
(5.9)where f̄λrls

is the regularized version of the exat solution f̄ and it is also given by
f̄λrls

= (KTK + λ2
rlsI)

−1KT ḡ (5.10)The Least Squares solution f̄ = K†ḡ to the unperturbed problem satis�es the disretepiard ondition and for that matter |vT
i f̄ |= |uT

i ḡ/di | also deay. The residual normwhih is haraterized by data mis�t g̃ǫ
λrls

is given by
‖ g̃ǫ

λrls
‖22 = ‖ g̃ − Kfλrls

‖22 =
n∑

i=1

(

(1 − xi)u
T
i g̃
)2 (5.11)The norm of the deviation f ǫ

λrls
from the estimates is

‖ f ǫ
λrls
‖22 = ‖ f̄λrls

− fλrls
‖22 =

n∑

i=1

( diσ

d2
i + λ2

rls

)2

≈ σ2

{
k∑

i=1

( 1

di

)2
+

n∑

i=k+1

( di

λ2
rls

)2
} (5.12)
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‖22 =

∑m
i=1(xi

u
T
i g
di

)2 that the norm of theregularized version of the exat solution an be given by the approximation
‖ f̄λrls

‖22 ≈
k∑

i=1

(

vT
i f̄
)2
≈

n∑

i=1

(

vT
i f̄
)2

= ‖ f̄ ‖22 (5.13)where the last n− k terms ontribute very little to the sum. Hene
(i) if λrls →∞ , and k → 0 we have f̄λrls

→ 0 whih implies that ‖ f̄λrls
‖2 → 0 .

(ii) if λrls → 0 , then ‖ f̄λrls
‖2 → ‖ f̄ ‖2The residual orresponding to f̄λrls

then satis�es
‖ ḡ − Kf̄λrls

‖22 =

n∑

i=k

(

uT
i ḡ
)2 (5.14)Therefore, the L-Curve for the unperturbed problem is a �at urve at ‖ f̄λrls

‖2 ≈ f̄exept for large values of the residual norm ‖ ḡ − Kf̄λrls
‖2 where the urve approahesthe absissa axis.Finally, the �rst and seond sum of ‖ f ǫ

λrls
‖22 in equation (5.12) are respetively dom-inated by d −2

k ≈ λ−2
rls and d 2

k+1 ≈ λ2
rls and an be approximated by

‖ f ǫ
λrls
‖22 ≈ ̟λrls

σ/λrls (5.15)where̟λrls
is a quantity that varies slowly with λrls. Hene, f ǫ

λrls
inreases monotonoiallyfrom 0 as λrls dereases until

‖K†ǫ ‖2 ≈ σ ‖K† ‖F for λrls → 0 is attained.The orresponding residuals satis�es
‖K f ǫ

λrls
− g̃ ‖22 ≈

n∑

i=k

σ2 = (n− k)σ2 (5.16)Hene, ‖K f ǫ
λrls
− ǫ ‖2 ≈ σ

√
n− k is a slowly varying funtion of λrls whih lies in therange from 0 to ‖ ǫ ‖2 ≈ σ
√
n . Therefore the L-Curve for ǫ is an overall very steepurve loated slightly to the left of ‖K f ǫ

λrls
− ǫ ‖2 ≈ ‖ ǫ ‖2 , exept for small values of

λrls where it approahes the ordinate axis.It is emphasized that the analysis is valid only when the L-Curve is plotted in log-logsale and that it is a plot of 1
2 ln‖ fλrls

‖22 versus 1
2 ln ‖K fλrls

− g̃ ‖22 . It is furtherassumed that the noise is a salar multiple of the identity matrix I. So the expetedvalues of the SVD oe�ients of uT
i ǫ are independent of i;

〈 (uT
i ǫ)

T (uT
i ǫ) 〉 = σ2 ; i = 1, 2, ..., n (5.17)
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rlsThe L-Curve is a log-log plot of the norm of the regularized solution ‖ fλrls
‖2 versus thenorm of the orresponding residual norm ‖Kfλrls

− g̃ ‖2. Thus, from the set of parametervalues {λ2
rls }, if we let η and ρ be represented respetively by

η = ‖ fλrls
‖22 ; ρ = ‖Kfλrls

− g̃ ‖22 (5.18)and let
η̂ = ln η ; ρ̂ = ln ρ (5.19)Then

η = exp η̂ = ‖ fλrls
‖22 and ρ = exp ρ̂ = ‖Kfλrls

− g̃ ‖22 (5.20)Hene
η̂ = ln ‖ fλrls

‖22 and ρ̂ = ln ‖Kfλrls
− g̃ ‖22 (5.21)Hansen in [1℄ derived an expression for the urvature κ of the L-Curve as a funtion of

λrls and had
κ =

2 η ρ

η′
λ2 η′ ρ + 2λ η ρ+ λ4η η′

(λ2η2 + ρ2)3/2
(5.22)where

λ = λrls , η′ =
−4

λ

n∑

i=1

(1 − xi)x
2
i

ω2
i

d 2
i

and ωi = uT
i g̃The strategy of hoosing the best estimate for the regularization parameter λ̂2

rls lies atthe orner. The orner separates the �at and the vertial parts of the urve where thesolution is dominated by regularization and perturbation errors.5.2 Empirial Bayes for Statistial Ridge RegressionHoerl and Kennard (1970), were the �rst to propose the Ridge Regression estimator of
fls;

fλeb
= (KTK + λ2

ebI)
−1KT g̃ λeb > 0 (5.23)where fλeb

is the regularized solution and λ2
eb is the regularization onstant. 1 Theyfurther used the term instability to signify that 〈 fT

lsfls 〉 is too large or muh larger than
‖ f ‖22. We view the Ridge Estimate fλrls

in the above ontext as an extension of thestandard Least Squares or standard ML estimator when KTK have at least one sin-gular value to be small. A small singular value di (di → 0) of K tends to make theLeast Squares estimator unstable in the sense that small hanges in g̃ may produe largehanges in fls.We now present the �rst of two types of Statistial Bayes Ridge Regression namelyTrunated SVD for Empirial Bayes Ridge Regression.1the subript eb stands for Empirial Bayes and λeb is the empirial bayes regularization parameter.



CHAPTER 5. NUMERICAL AND STATISTICAL ESTIMATION THEORY 515.2.1 SVD for Empirial BayesWe an re-write equation (5.23) in the following alternative forms.
fλeb

= WKT g̃ (5.24)where W = (KTK + λ2
ebI)

−1. The alternative form of equation (5.24) is
fλeb

=
[

I + λ2
eb(K

TK)−1
]−1

(KTK)−1KT g̃

= Y fls (5.25)where Y =
[

I + λ2
eb(K

TK)−1
]−1By further manipulating Y , we get

Y =
[

KTK + λ2
ebI
]−1

KTK

= I − λ2
eb[K

TK + λ2
ebI]

−1 by simple long division arithmeti
= I − λ2

ebW (5.26)We also let ξ(W ) and ξ(Y ) be singular values of W and Z suh that
ξ(W ) =

n∑

i=1

1

d2
i + λ2

eb

(5.27)
ξ(Y ) =

n∑

i=1

d2
i

d2 + λ2
eb

(5.28)The SVD of fλeb
of equation (5.24) is

fλeb
=

n∑

i=1

vi
d2

i

d2 + λ2
eb

uT
i g̃

di
(5.29)and it is omparatively of the same form as equation (5.1). The estimator fλeb

dependson the hoie of the orresponding preision parameter λ2
eb and it is generally notguaranteed to be better than fls in terms of risk under any quadrati loss. In view ofthis, we seek to produe minimax adaptive ridge-regression 2 that are uniformly betterthan the Least Squares estimator.5.2.2 Trunated SVD for Empirial BayesThe inverse of the matrix KTK is of onern to us here sine the solution depends onit. The singular values of (KTK)−1 is obtainable from

V T (KTK)−1V = D−2 (5.30)2The term minimax is used to refer to an estimator that is uniformly better than the Least Squaresestimator and the word adaptive indiates that the ridge onstant is estimated from data.
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n , d−2

n−1, d
−2
n−2, ...., d

−2
1 ) and d−2

n > d−2
n−1 > d−2

n−2 >, ...., > d−2
1 .We partition V suh that

V = (V1, V2) where V1 ∈ R
n×k and V2 ∈ R

n×(n−k) for some k. (5.31)We write
f = V V T f = V1V

T
1 (f) + V2V

T
2 f

= V1 ςeb + V2 γ (5.32)where ςeb orresponds to the smaller singular values of KTK.It is desirable to impose the onstraint
f = V2γ (5.33)We onstrut ridge-type regression estimators using the information about whih singularvalues are smaller in some sense. This we do by

V T (KTK)V = D2 = diag(d 2
1 , d

2
2 , d

2
3 , ...., d

2
n )

=

(

D2
1 0

0 D2
2

) (5.34)where D2
1 = diag(d 2

1 , d
2

2 , d
2

3 , ..., d
2

n−k) and D 2
2 is an (n − k + 1) × (n − k + 1)diagonal matrix onsisting of the smaller singular values. Sine ςeb of equation (5.32)orresponds to small singular values and for this reason must not be inluded in themodel, we shrink fls towards the linear onstraints

H0 : f = V2γ γ ∈ R
n−k (5.35)Using the deompositions given in equations (5.31) and (5.34), the estimate of γ is

γ̂ = V T
2 fls (5.36)The trunated SVD (or prinipal omponent) regression estimator of f is given by

fPC = V2 V
T
2 fls
︸ ︷︷ ︸

γ̂

(5.37)Also from equations (5.36) and (5.37) we have
V2γ̂ = fPC (5.38)By onveniently treating them in anonial form, we an hoose to let z = V T fls. Then

z ∼ N(V T f, σ2D−2) (5.39)



CHAPTER 5. NUMERICAL AND STATISTICAL ESTIMATION THEORY 535.2.3 Analysis of Empirial Bayes EstimatorsLet ξi(Y ) be the ith−diagonal singular value of equation (5.28). For λeb > 0, we have
max

i
ξi(Y ) =

d 2
1

d 2
1 + λ2

eb

< 1 (5.40)where d 2
1 is the largest singular value of KTK and that equation (5.40) equals 1 if andonly if λeb = 0. Hene

‖ fλeb
‖22 < ‖ fls ‖22 (5.41)Also from equations (5.28) and (5.26)

lim
λeb→∞

d 2
i

d 2
i + λ2

eb

= lim
λeb→∞

1 − λ2
eb

d 2
i + λ2

eb

; ∀ i

= 0 (5.42)That is, when λeb → ∞, the largest singular value d 2
1 beomes insigni�ant and thesolution fλeb

is independent on i. Hene the trunation parameter k also approaheszero (k → 0) and the orresponding norm of the regularized solution is also zero.Method of Estimating the Parameter λ2
ebThis estimator shrinks the Least Squares estimator towards the prinipal omponents.The Bayes estimator fλeb

is
fλeb

= fls −
(

I +
1

λ2
eb

KTK
)−1(

fls − V2γ
) (5.43)with the estimate of γ given by the weighted Least Squares estimator

γ̂ =
(

V T
2 K

TK V2

)−1
V T

2 K
TK fls (5.44)where γ̂ is obtainable from the minimization of the weighted squared loss

(

fls − V2γ
)T
KTK

(

fls − V2γ
) (5.45)The best variable estimate whih we denote by f̂λeb

is
f̂λeb

= fls −
(

I +
1

λ2
eb

KTK
)−1(

fls − fPC
ls

) (5.46)and
1/λ̂2

eb = max(1/λ2⋆
eb , 1/λ

2
0) (5.47)where λ2⋆

eb is given by the root of the equation
(

fls − fPC
ls

)T(

(KTK)−1 +
1

λ2⋆
eb

I
)−1(

fls − fPC
ls

)

=
(n− k − 2)

n+ 2

{(

g̃ −Kfls

)T(

g̃ −Kfls

)}(5.48)
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ls = fPC and λ0 is also the root of the equation

k+1∑

i=1

(dn−i)
−2 − (dk+1)

−2

(dn−i) −2 + (1/λ0) 2
= (k − 1)/2 (5.49)The above estimator fλeb

inorporates both methods of Ridge Regression and trunatedSVD. This should however be viewed as an extension of trunated SVD. For more onthis see an example in [38℄.5.3 Bayesian Inferene for Statistial Bayes Ridge RegressionIn general, the statistial information envisaged in parameter estimation (like we have g̃)gives some evidene onerning some hypothesis say H1,H2, , , . (sine H might be thestatement that its parameter(s) lies within an interval) and we make inferenes aboutthem solely from what we observe. The very at of hoosing a model by sampling dis-tribution onditional on H is onsidered as a means of expressing some kind of priorknowledge about the existene and nature of H and its observable e�ets.In e�et, we see it as a rule for onstruting informative priors when we have partialprior information that restrits the possibility signi�antly but not ompletely. In on-trast to Bayesian Inferene, D. C Makay in his book "Information Theory, Infereneand Learning Algorithms" [6℄ argues"One we have made expliit all our assumptions about the model and the data, ourinferenes are mehanial. Whatever question we wish to pose, the rules of probability the-ory give a unique answer whih onsistently takes into aount all the given information"Nevertheless, Bayesian Inferene tends to imitate both Sampling theory and evenNumerial Methods in that it inorporates little or no prior information beyond thehoie of the model and so seeks "non-informative" priors, otherwise it is expeted toout-perform Sampling Methods only when the latter faes a problem like insu�ient (orsmall) data.5.3.1 The Evidene Framework and Oam RazorThe Framework (due tehniques developed by Gull and Skilling), integrates over thepreision model parameters α = λ2
ml and β = 1/σ2 and the resulting evidene maximizedover the hyperparameters. The hyperparameters are then used to de�ne a Gaussianapproximation to the posterior distribution. The Bayesian Adaptive learning beginswith the probability of everything;

p(g̃ , f , α , β) = p(g̃ , f , Hi ) (5.50)where Hi = {α, β} is a sub-model of the hypothetial spae H. Two levels of infereneare involved in the Ridge Regression task;
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(i) Model �tting where we infer f by obtaining a ompat representation for model Hi

p(f | g̃ , α , β) =

likelihood
︷ ︸︸ ︷

p (g̃ | f , β)

prior
︷ ︸︸ ︷

p (f |α)

p (g̃ |α, β
︸ ︷︷ ︸

evidence

)

=
p (g̃ | f ,Hi) p (f |Hi)

p (g̃ |Hi) (5.51)The error bars are obtainable from Taylor expanding the log-posterior about the mostprobable fMP :
p(f | g̃,Hi) ≈ p(fMP | g̃,Hi)exp − 1

2
(f − fMP )T Σf (f − fMP ) (5.52)

(ii) Given a olletion of models of Hi, we wish to �nd our initial beliefs about therelative plausibilities in terms of a list of quati�ed p(Hi) suh that
∑

i

p(Hi) = 1 (5.53)We use Bayes' rule to update our belief in the models in the light of g̃. We do modelomparison using the relation
p(Hi | g̃) = p(α, β | g̃) =

p(g̃ |Hi) p(Hi)

p(g̃)
∝ p(g̃ |Hi) p(Hi)

= p(g̃ |α, β) p(α, β) ; ∀ i (5.54)The denominator
p(g̃) =

∑

i

p(g̃ |Hi) p(Hi) (5.55)makes our �nal beliefs p(Hi | g̃) adds up to 1. In the light of g̃, the relative plausibilityof any two alternatives say H1 and H2 is obtainable from
p(H1 | g̃)
p(H2 | g̃)

=
p(g̃ |H1) p(H1)

p(g̃ |H2) p(H2)
(5.56)Their normalizing onstants are the same so they anel out. The ratio p(H1 | g̃)/p(H2 | g̃)measures how our initial beliefs favour H1 over H2. The ratio p (H1)/p (H2) will alsoanel out if we have no reason to assign di�erent priors for p(H1) and p(H2). Finally,the ratio p(g̃ |H1)/p(g̃ |H2) expresses how well g̃ is predited by H1 ompared to H2.Figure (5.1) is a shemati diagram of the marginal likelihoods for a omplex, toosimple and "just ok" models. The more omplex models are able to desribe a greaterrange of a given data set. However, for a given data g̃, the "just ok" model has a greaterevidene than either the too simple model or the too omplex model. Thus, modelomplexity is governed by Oam Razor whih tends to favour neither too simple nortoo omplex models.
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too complex
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Figure 5.1: A shemati diagram taken from [Zoubin, Makay, Bishop℄ with an adjustment to suitthe explanation to the evidene Framework desibed above. It is a plot of the marginallikelihood versus g̃. It shows for a given g̃, the orresponding marginal likelihood p(g̃ |Hi)for a too simple model, too omplex model and 'just right'. The more omplex model isable to desribe a greater range of data set and vie-versa for a too simple one.5.3.2 Evaluation of the Evidene and Oam FatorThe evidene 3 is the normalizing onstant at the �rst level of inferene and it is givenby
p(g̃ |α, β) =

∫

p(g̃ | f, β) p(f |α)df (5.57)The posterior p(f | g̃, α, β) is proportional to the integrand p(g̃ | f, β) p(f |α) of equation(5.57). In the ML priniple, the distribution of p(g̃ |α, β) is sharply peaked around themost probable variable fMP . Hene the evidene an be approximated by
p(g̃ |α, β) ≈ p(g̃ | fMP , β) p(fMP |α)∆f (5.58)where ∆f is the width and p(fMP |α) is the prior whih an be imagined to be uniformon some large interval. Therefore,

p(fMP |α) =
1

∆0f
(5.59)with the Oam fator given by

∆f/∆0 (5.60)The n-dimensional posterior distribution is well approximated by a Gaussian with theorresponding Oam fator obtained from the determinant of the Gaussian ovarianematrix:
p(g̃ |α, β) ≈ p(g̃ | fMP , β)

︸ ︷︷ ︸

best fit likelihood

p(fMP |α) (2π)n/2 |Σf |−1/2

︸ ︷︷ ︸

Occamfactor

(5.61)3The evidene is the same as the marginal likelihood of equation (3.51) exept that the parametershave been de�ned in terms of the preision parameters α and β.



CHAPTER 5. NUMERICAL AND STATISTICAL ESTIMATION THEORY 57The evidene is approximately evaluated from the following: Let
Zg̃(β) = (2π/β)n/2 ; Zf (α) = (2π/α)n/2 ; Eg̃ =

1

2
‖ g̃ −Kf ‖22 ; Ef =

1

2
‖ f ‖22(5.62)and also let

M(f, α, β) = β Eg̃ + αEf (5.63)Then we an write equation (5.57) as
p(g̃ |α, β) =

ZM (f, α, β)

Zf (α)Zg̃(β)
(5.64)where

ZM (f, α, β) =

∫ exp − {M(f, α, β)
} (5.65)Taylor expanding M about fMP to seond order gives

M = M(fMP ) +
1

2
(f − fMP )T Σf (f − fMP ) (5.66)Substituting into equation (5.65) and solving gives

ZM (f, α, β) = (2π)n/2 |Σf |−1/2 exp −M(fMP ) (5.67)The general form of writing the log-marginal likelihood of equation (5.64) to embodynon-quadrati regularizer funtional using a Gaussian approximation isln p(g̃ |α, β) = − ln Zf (α) − αEMP
f − 1

2
ln |Σf |+

n

2
ln (2π)

− ln Zg̃(β) − β EMP
g̃ (5.68)with βEMP

g̃ representing the mis�t of the interpolant (or �lter) to g̃ and αEMP
f mea-suring how far fMP is from its null value. The Oam fator is

∆f

∆0f
=

(2π)n/2 |Σf |−1/2

Zf (α)
(5.69)5.3.3 Analysis and Method of Estimating α and βFrom the evidene approximation of equation (5.68), we an now di�erentiate the log-evidene to get optimal estimates for α and β .Di�erentiating with respet to α

d

dα
ln p (g̃ |α, β) = −EMP

f − 1

2
Tr(Σ−1

f

dΣf

dα

)

+
n

2α

= −EMP
f − 1

2
Tr(Σ−1

f

)

+
n

2α
(5.70)Setting the derivatives to zero, it is straight forward that the maximum satis�es

Ψ = 2αEMP
f = n − αTrΣ−1

f (5.71)
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α =

n/2
1
2 Tr (Σ−1

f ) + EMP
f

=
nTr (Σ−1

f ) + ‖ fMP ‖22
(5.72)with EMP

f equivalent to its orresponding expression of equation (5.62). The quantity
Ψ is a dimensionless measure whih an be interpreted as some sort of χf

4 for f sineit an be written in the form;
χf =

1

σ2
f

‖ fMP ‖22 = 2αEMP
f (5.73)where σ2

f = 1/α is the variane of f from the null value of the �tted parameters. Anotherway of expressing Ψ of equation (5.71) is
Ψ = n − n∑

i=1

α

β d 2
i + α

=

n∑

i=1

β d 2
i

β d 2
i + α (5.74)with λ2

rls = α/β = λ2
ml σ

2.Di�erentiating with respet to β.
d

dβ
ln p (g̃ |α, β) = −EMP

g̃ − 1

2
Tr(Σ−1

f

dΣf

dβ

)

+
n

2β

= −EMP
g̃ − 1

2
Tr(K Σ−1

f KT
)

+
n

2β
(5.75)Setting equation (5.75) to zero and manipulating gives

Ξ = 2β EMP
g̃ = n − β

n∑

i=1

d 2
i

β d 2
i + α

=

n∑

i=1

1 − β d 2
i

β d 2
i + α (5.76)Solving for β from equation (5.75) gives

β =
n/2

EMP
g̃ + 1

2 Tr (K Σ−1
f KT )

=
n

‖ g̃ − KfMP ‖22 + Tr (K Σ−1
f KT )

(5.77)where we have substituted the equivalene of EMP
g̃ in equation (5.62).4For N independent Gaussian variables with mean µ and standard deviation σ, the statisti χ =

P (x−µ)2

σ2
is a measure of mis�t.



CHAPTER 5. NUMERICAL AND STATISTICAL ESTIMATION THEORY 595.3.4 Analytial InterpretationThe quantity Ψ = n − αTrΣ−1
f of equation (5.71) is the number of good parametermeasurements and has value between 0 and n. The quantity α measures how stronglythe parameters are determined by the prior. Thus, (∀ i and α > 0) β d 2

i /(β d
2

i + α)is a number between 0 and 1 whih measures the strength of the data relative to the priorin the i diretion. A diretion in parameter spae for whih d 2
i β (or d 2

i /σ
2) 5 is smallompared to α does not ontribute to the number of good parameter measurements. As

α/β → 0, χf inreases from 0 to n.5.4 Variational Inferene MethodsThis is a tehnique one an employ whenever a omplex or ompliated distribution is en-ountered in a statistial data modelling task. It evolves around Gibbs inequality methodand is often assoiated with the Kullbak and Leibler divergene theorem [DKL(Q ‖P ) ]between two probability distribution sayQ(X) and P (X). Mathematially, DKL(Q ‖P )(also alled Relative Entropy) over the same alphabet say AX is de�ned as
DKL(Q ‖P ) =

∫

Q(X) lnQ(X)

P (X)
dX

= −
∫

Q(X) lnP (X)

Q(X)
dX

= −F(Q) (5.78)where
F =

∫

Q(X) lnP (X)

Q(X)
dX (5.79)Equation (5.78) satis�es

DKL(Q ‖P ) ≥ 0with equality if and only if Q = P . 6Variational Inferene in its own world (from Statistial Physis) attempts to approx-imate an integrand until the integral beomes tratable. The idea is to either boundthe integrand from above or below so that the integral an be redued to an optimiza-tion problem. No parameter estimation is required and the quantity of the integral isoptimized diretly. It further allows �exibility in speifying the prior and makes provi-sion for attaining bounds on the value of the evidene. See Figure (5.2) for an illustration.The methods to be presented in this setion is due Hinton and van Camp.5We reall that d 2
i β = d 2

i /σ2 is the saling fator of the exat expression for Σfλ,σ
in equation(3.38)6In general DKL(Q ‖P ) 6= DKL(P ‖Q)
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Start

Q(θ)

Q
(f

)

F(Q(f), Q(θ))

Figure 5.2: An illustration to show that Variational Methods is a oordinate asent algorithm in F5.4.1 Variational ML and MAPThe inomplete log-likelihood funtion of a given parameter say φ for g̃ islnL(φ) = ln ∫ p (g̃, f |φ)df (5.80)By introduing the simpler dsitribution Q (f) and maximizing L (φ) with respet to φwe have lnL(φ) = ln ∫ Q(f)
p (g̃, f |φ)

Q(f)
df

≥
∫

Q(f) ln p (g̃, f |φ)

Q(f)
df

= 〈 ln p (g̃, f |φ) 〉Q(f) + ΥQ(f)

= F (Q(f), φ) (5.81)where ΥQ(f) is the entropy of the distribution Q(f) and we have made use of Jensen'sinequality whih makes use of the fat that the logarithmi funtion is onave.Exat Optimization of Variational ML using the EM prinipleThe E-step involves optimizing the posterior Q(f);
F(Q(f), φ) =

∫

Q(f) lnp (g̃, f |φ)

Q(f)
df (5.82)



CHAPTER 5. NUMERICAL AND STATISTICAL ESTIMATION THEORY 61If Q(f) = p (f | g̃, φ) in equation (5.82) we arrive at the following:
F(Q(f), φ) =

∫

p (f | g̃, φ)ln p (f | g̃, φ) p (g̃ |φ)

p (f | g̃, φ)
df

= p (g̃ |φ)

∫

p (f | g̃, φ)df
= p (g̃ |φ) (5.83)subjet to a normalizing equality onstraint
∫

Q (f) df = 1 (5.84)Thus, the funtional F of equation (5.83) beomes independent of f whenever Q (f)equals p (f | g̃, φ). This signi�es some kind of tight bounds at the E-step. By introduinga Lagrange multiplier α, (α > 0), the new funtional say Fα,φ beomes
Fα,φ(Q(f), φ) = F(Q(f), φ) + α

[

− 1 +

∫

Q(f)df ]
=

∫

p (f | g̃, φ)ln p (f | g̃, φ) p (g̃ |φ)

p (f | g̃, φ)
df + α

[

− 1 +

∫

Q(f)df ](5.85)By re-substituting p (f | g̃, φ) with its original simpler distribution Q(f) into equation(5.85) and taking funtional derivatives of Fα,φ with respet to Q(f) gives
∂

∂ Q(f)
Fα,φ(Q(f), φ) = ln p(g, f |φ) − 1 − lnQ (f) + α (5.86)Setting the funtional derivative to zero and solving for Q(f) gives the updates equationfor the posterior:

Qt+1 (f) ←− exp (α− 1) p (f, g̃ |φt)

= p (f | g̃, φt) (5.87)The parameter α an also be expressed in terms of the normalization onstant to give
α = 1 − ln ∫ p (g̃, f |φt) df (5.88)The M-step involves the optimization of F of equation (5.80) with respet to φ;

F(Q(f), φ) =

∫ df Q(f) ln p (g̃, f |φ)

Q(f)

=

∫ df Q(f) ln p (g̃, f |φ) −
∫ df Q(f) lnQ(f) (5.89)The entropy Q(f) is independent of φ. Hene optimizing F with respet to φ is re-strited to the �rst integral on the right hand side of equation (5.89). This is beause



CHAPTER 5. NUMERICAL AND STATISTICAL ESTIMATION THEORY 62the parameter φt assoiated with Q(f) in equation (5.87) is/are the previous estimatesobtained from the tth-iterate of an M-step and this was used in omputing for the urrent
(t + 1)th-iterate of Q. Therefore the hyperparameter φt assoiated with Q in equation(5.89) is held �xed whilst optimizing F at the M-step.By taking funtional derivatives of F of equation (5.89) with respet to φ and solvingfor the zero of φ gives the updates

φt+1 ←− argφ max

∫ df p (f | g̃, φt) ln p (g̃, f |φ) (5.90)where the optimization is over the seond φ.Exat Optimization of Variational MAP using the EM prinipleFrom similar lines, the M-step of Variational MAP have updates given by
φt+1 ←− argφ max

{

ln p(φ) +

∫ df p (f | g̃, φt) ln p (g̃, f |φ)
} (5.91)If in equation (5.91), the prior p (φ) is non-informative, then the expression for theupdates is approximately given by equation (5.90). 75.4.2 Summary of Update Equations for Variational ML and MAPEM-AlgorthmFor ML we have the following updatesE-Step:

Qt+1 (f) ←− exp (α− 1) p (f, g̃ |φt) (5.92)M-Step:
φt+1 ←− argφ max

∫ df p (f | g̃, φt) ln p (g̃, f |φ) (5.93)For MAP, we have the following updatesE-Step:
Qt+1 (f) ←− exp (α− 1) p (f, g̃ |φt) (5.94)M-Step:

φt+1 ←− argφ max
{

ln p(φ) +

∫ df p (f | g̃, φt) ln p (g̃, f |φ)
} (5.95)

7Reall, that the posterior for f in MAP and ML have the same equation but di�erene exist inthe estimation of parameters. The di�erene is due to the introdution of a prior distribution over theparameters for the MAP. So that if the prior is non-informative the two beomes the same.



CHAPTER 5. NUMERICAL AND STATISTICAL ESTIMATION THEORY 63What we failed to do and why?If anything at all, we have been able to extend Variational Learning methods to ML andMAP. However, we did not apply the method to the Gravity problem sine our mainobjetive here is to use MAP and ML as platforms for understanding the underlyingtheory and onepts within the Variational Methods Framework. Despite the fat thatwe have not implemented the algorithm to obtain α and β, we have been able to at leastapitalize on the free form optimization and EM-like algorithmi tehnique assoiatedwith the objetive funtion F . Therefore, we end ML and MAP here and fous onVariational Learning Algorithms for Bayesian Methods.5.4.3 Variational Learning for Bayesian MethodsFor onveniene, we let the Variational Bayesian model be
p (g̃, f, α, β) = p (g̃, f, θ) (5.96)where the hyperparameter (or parameters) α and β still maintains α = λ2

ml, β = 1/σ2 and
θ = {α, β}. Reall; the preision hyperparameter β de�nes a noise variane σ2 = 1/β andthe preision hyperparameter α is the regularization onstant. In following the footstepsof the Bayesian Inferene paradigm, we begin with the two levels of inferene;
(i) Model �tting where we infer f by obtaining a ompat representation of p (f | g̃, θ)for a given value of θ;

p (f | g̃, θ) =
p (g̃ | f, θ) p (f | θ)

p (g̃ | θ) (5.97)
(ii) infer θ by maximizing the evidene p (g̃ | θ) of equation (5.97) in (i);

p (θ | g̃) =
p (g̃ | θ) p (θ)

p (g̃)
(5.98)For α and β;We assume here that we have no knowledge about α and β so we wish to onstrut anappropriate prior that embodies our ignorane. This is where the onept of onjugatepriors is really needed. 8 We shall therefore not assign random values to α and β likewe did previously by generating values using logspae. Rather we assume in additionto the likelihood of equation (5.98) a Gamma prior distribution over α and a Gammaprior distribution over β. To be realisti, we annot plae a Gaussian distribution over

α and β sine they are both non-negative. The Gamma distribution for α and β arerespetively de�ned by
p (α | aα, bα) = Γ(α; aα, bα)

=
b aα
α

Γ(aα)
αaα−1 exp −(bα α) ; 0 ≤ α <∞ (5.99)and

p (β | cβ , dβ) = Γ(β; cβ , dβ)

=
d

cβ

β

Γ(cβ)
βcβ−1 exp −(dβ β) ; 0 ≤ β <∞ (5.100)8Conjugate priors are priors whose funtional forms belongs to the same family of distribution as thelikelihood.
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cβ

β and Γ(cβ)/d
cβ

β are normalizing fators de�ned by ∫∞

0 αaα−1 exp −(bα α)dαand ∫∞

0 βcβ−1 exp −(dβ β)dβ respetively and the onstants aα, bα, cβ and dβ arealled hyper-hyperparameters. Their respetive mean and variane are aα/bα and
aα/b

2
α for α and cβ/dβ and cβ/d

2
β for β.5.4.4 Bounds for the Marginal LikelihoodWe lower bound the log-marginal likelihood of g̃ for model H by introduing a distribu-tion Q over both f and θ. Thus,ln p (g̃) = ln ∫ p (g̃, f, θ )dθ df

≥
∫

Q(f, θ) ln p (g̃, f, θ)

Q(f, θ)
dθ df

= 〈 ln p (g̃, f, θ) 〉Q(f,θ) + ΥQ(f,θ)

= F [Q(Θ) ] (5.101)where Θ = {f, α, β} and ΥQ(f,θ) is the entropy for Q and the inequality was possiblethrough the usual appeal to Jensen's inequality.Exat Optimization of Variational Bayesian using the EM prinipleThe learning rules also follows the Bayesian paradigm by integrating out nuisane pa-rameters/variables.We derive the E-step and M-step for any arbitrary distribution Q. First, we let
Q(Θ) = Q(f, θ) = Q(f, α, β)From inequality (5.101), we have

F [Q(Θ) ] =

∫

Q(f, α, β)ln p (g̃, f, α, β)

Q(f, α, β)
df dα dβ (5.102)The distributions of α and β are assumed to be independent, so their joint distribution

Q(α, β) assumes the separable form
Q(α, β) = Q(θ) = Qα(α) Qβ(β) (5.103)However, there is a problem with the separable form of the joint distribution of Q(f, α, β)sine there exists some stohasti dependenies between f and θ (i.e between f and αto be preise). That is,

Q(f, θ) = Q(f, α, β) = Q(f |α)Q(α)Q(β) (5.104)Maximizing the lower bound of inequality (5.101) with respet to Q(Θ) to attain equalitydemands that the free distribution:
Q(f, θ) = p(f, θ | g̃)



CHAPTER 5. NUMERICAL AND STATISTICAL ESTIMATION THEORY 65To ahieve tight bounds requires that we know the normalizing onstant, the marginallikelihood if an exat posterior is to be evaluated. We an go around this problemprovided the distribution of Q(f, α, β) is separable. At this point, the best we an dois to assume and aept that we an (no matter what ever irumstane pertains to thestohasti dependeny between f and α), onstrain the posterior to a simple fatorizedform for the distribution Q to an approximation
Q(f, α, β) ≈ Q(f)Q(α)Q(β) (5.105)Inserting approximation (5.105) into equation (5.102) gives

F [Q(Θ) ] =

∫

Q(f)Q(α)Q(β) ln p (g̃, f, α, β |H)

Q(f)Q(α)Q(β)
df dα dβ

= 〈 ln p (g̃,Θ) 〉Q(Θ) + ΥQ(Θ) (5.106)Using alulus of variation (shown in appendix A), the solution for maximizing thefuntional F [Q(Θ) ] with respet to eah of the individual Q distribution is of the form
Qi (Θ ) =

exp 〈 ln p (g̃,Θ)〉Qk 6=i
∫ exp 〈 ln p (g̃,Θ) 〉Qk 6=i

dΘi
(5.107)or lnQi (Θ ) = exp 〈 p (g̃,Θ)〉Qk 6=i

+ onstant (5.108)where 〈 • 〉k 6=i denotes the expetation with respet to every distribution other than
Qi(Θi).Equation (5.108) embodies both the E-step and M-step of the Variational BayesianEM-Algorithm.5.4.5 Appliation of Variational Bayesian EM (VBEM) to the GravityProblemWe now apply the above equations to the Gravity Problem. Figure (5.3) is a shematidiagram of the Graphial model for VBEM. From probability of everything,

K

α

cβ

dβ

f

bα

aα

g̃β

Figure 5.3: A graphial model of the Variational Bayesian approah
p (g̃, f, α, β |H) = p (g̃ | f, β,H) p (f |α,H) p (α |H) p(β |H) (5.109)



CHAPTER 5. NUMERICAL AND STATISTICAL ESTIMATION THEORY 66The log-probabilities of eah of the expressions on the right hand side of equation (5.109)are as follows: ln p (α) = ln p(α | aα, bα)

= (aα − 1) lnα − bα α + ℘′ (5.110)ln p (β) = ln p(β | cβ , dβ)

= (cβ − 1) ln β − dβ β + ℘′′ (5.111)where the ℘′ and ℘′′ are onstants given by the log of their normalization fators
Γ(aα)/b aα

α and Γ(cβ)/d
cβ

β respetively.ln p (f |α) = −α
2
fT f +

n

2
lnα + ℘′′′ (5.112)ln p (g̃ | f, β) =

n

2
ln β − β

2
(g̃ −Kf)T (g̃ −Kf) + ℘′′′′ (5.113)where ℘′′′ = ℘′′′′ = −n

2 ln (2π).Substituting equations (5.110), (5.111), (5.112) and (5.113) into the logarithm of
p (g̃, f, α, β |H) in equation (5.109) gives usln p (g̃, f, α, β |H) =

n

2
lnβ − β

2
(g̃ −Kf)T (g̃ −Kf) +

− α

2
fT f +

n

2
lnα

+ (aα − 1) lnα − bα α

+ (cβ − 1) ln β − dβ β + C (5.114)where C = ℘′ + ℘′′ + ℘′′′ + ℘′′′′ is the overall onstant and we have made the hyper-hyperparameters aα, bα, cβ and dβ expliit with respet to α and β.Optimization of Qα(α)As a distribution of Qα(α), we take expetations of equation (5.114) with respet tothe distribution of Qf (f)Qβ(β) with all other terms indepedent of α put together andonsidered as a normalizing onstant (of the distribution of α).Thus, using equations (5.108) and (5.114), the logarithm of Qα(α) giveslnQα(α) = 〈 ln p (g̃,Θ) 〉Qf (f) Qβ(β)

= 〈 ln p (g̃, f, α, β) 〉Qf (f) Qβ(β)

= −α
2
〈 fT f 〉 +

n

2
lnα + (aα − 1) lnα − bα α + C(f, β)

=
{(n

2
+ aα

)

− 1
} lnα − { 1

2
〈 fT f 〉 + bα

}

α + C(f, β) (5.115)



CHAPTER 5. NUMERICAL AND STATISTICAL ESTIMATION THEORY 67where C(f, β) is a onstant expression given by all terms on the right hand side of equa-tion (5.114) not ontaining α.Comparing oe�ients of lnα and α of equations (5.115) and (5.110), we an easilyinfer that the optimal for Qα(α) denoted Qopt
α (α) satis�es the Gamma distribution

Qopt
α (α) = Γ(α; â, b̂) (5.116)with update equations

â =
n

2
+ aα

b̂ =
1

2
〈 fT f 〉 + bα (5.117)The mean and variane of Qopt

α (α) are given by â/b̂ and â/b̂2 respetively. We arestill left with an expression for 〈 fT f 〉 of equation (5.117) whih an be obtained from
Qf (f).Optimization of Qf (f)In the optimization of Qf (f), we take expetations of equation (5.114) with respet tothe distribution of Qα(α)Qβ(β):lnQf (f) = 〈 ln p (g̃,Θ) 〉Qα(α) Qβ(β)

= 〈 ln p (g̃, f, α, β) 〉Qα(α) Qβ(β)

= −1

2

{

g̃T 〈β 〉g̃ − 2 fTKT 〈β 〉 g̃

+ fT
(

KT 〈β 〉K + 〈α 〉 I
)

f
}

+ C(α, β) (5.118)where C(α, β) is a onstant given by all other expressions independent of f . The op-timizing distribution Qopt
f (f) is a Gaussian idential to the posterior distribution forpartiular values of α = α̂ = 〈α〉 and β = β̂ = 〈β〉. Thus

Qopt
f (f) = p (f | g̃, α̂, β̂) ∼ N

(

f̂MP
α̂,β̂

, Σ̂−1
f

) (5.119)with update equations
Σ̂−1

f =
(

KT β̂ K + α̂I
)−1

f̂MP
α̂,β̂

= 〈 f 〉 = Σ̂−1
f KT β̂ g̃

=
(

KT β̂ K + α̂I
)−1

KT β̂ g̃

〈 fT f 〉 = Tr (Σ̂−1
f ) + f̂T

MP
α̂,β̂

f̂MP
α̂,β̂

= Tr (Σ̂−1
f ) + ‖ f̂MP

α̂,β̂
‖22



CHAPTER 5. NUMERICAL AND STATISTICAL ESTIMATION THEORY 68Optimization of Qβ(β)By following the previous steps, we take expetations with respet to the distribution
Qf (f) and Qα(α).lnQβ(β) = 〈 ln p (g̃,Θ) 〉Qα(α) Qf (f)

= 〈 ln p (g̃, f, α, β) 〉Qα(α) Qf (f)

=
n

2
lnβ − 〈 β

2
(g̃ −Kf)T (g̃ −Kf)

〉

Qα(α) Qf (f)

+ (cβ − 1) ln β − dβ β + C(f, α)

=
{(n

2
+ cβ

)

− 1
} ln β − {dβ +

1

2

〈

(g̃ −Kf)T (g̃ −Kf)
〉}

β

+ C(f, α) (5.120)where C(α, f) is a onstant given by all other expressions independent of β.Comparing the oe�ients of (lnβ) and β in equations (5.120) and (5.111), we aneasily infer that the optimal for Qβ(β) denoted Qopt
β (β) satis�es the Gamma distribution

Qopt
β (β) = Γ(β; ĉ, d̂) (5.121)with update equations

ĉ =
n

2
+ cβ

d̂ = dβ +
1

2

〈

(g̃ −Kf)T (g̃ −Kf)
〉 (5.122)The mean and variane of Qopt

β (β) are given by ĉ/d̂ and ĉ/d̂2 respetively. We arestill left with an expression for 〈 (g̃−Kf)T (g̃−Kf)
〉 of equation (5.122) and it an beobtained as follows:

〈

(g̃ −Kf)T (g̃ −Kf)
〉

= ‖ g̃ ‖22 − 2 g̃T K 〈 f 〉 + 〈 (K f)T (K f) 〉

= ‖ g̃ ‖22 − 2 g̃T K f̂MP +
(

(K f̂MP )T (K f̂MP )
)

+ Tr (K Σ̂−1
f KT )

= ‖ g̃ − K f̂MP ‖22 + Tr (K Σ̂−1
f KT ) (5.123)9 where f̂MP and Σ−1

f are from equation (5.120).Finally, from equations (5.117), (5.119), (5.120) and (5.120), the mean α̂ for theoptimized Gamma distribution beomes
α̂ =

n/2 + aα

1
2 Tr (Σ̂−1

f ) + 1
2 ‖ f̂MP

α̂,β̂
‖22 + bα

(5.124)9For a stohasti vetor x with mean m, ovariane M and entral moments 〈 (x − m)r〉

〈 (A x)T (A x)〉 = Tr (AM AT ) + (Am)T (Am)



CHAPTER 5. NUMERICAL AND STATISTICAL ESTIMATION THEORY 69A speial ase of equation (5.124) is when the prior on α beomes non-informative (thatis aα → 0 and bα → 0). We obtain
α̂ =

nTr (Σ̂−1
f ) + ‖ f̂MP

α̂,β̂
‖22

(5.125)Also from equations (5.119),(5.121) and (5.122), we have
β̂ =

n/2 + cβ
1
2 ‖ g̃ − K f̂MP ‖22 + 1

2 Tr (K Σ̂−1
f KT ) + dβ

(5.126)A speial ase of equation (5.126) is when the prior on β beomes non-informative (thatis cβ → 0 and dβ → 0). We obtain
β̂ =

n

‖ g̃ − K f̂MP ‖22 + Tr (K Σ̂−1
f KT )

(5.127)The optimal α̂ and β̂ of equations (5.125) and (5.127) are the same as the optimalobtained in the Evidene Framework for α and β. Hene any optimum of the evideneapproximation also orrespond to the optimum of Variational Bayes.5.5 Comparison between L-Curve for Tikhonov and BayesianInfereneThe main analysis tool of the L-Curve is the Trunated SVD. The �at regions (regionsalmost parallel to the absissa and ordinate axes) are residuals. The solution lies withinthe trunated region with the best estimate (optimal parameter) given by the value of
λ2

rls at utmost orner. The �at regions gives no information sine they are made up ofresiduals and therefore does not ontribute to the Regularized solution.Analysis in the Bayesian Inferene Framework, is governed by an expression whih isequivalent to the �lter fators in the Numerial Framework if the relation λ2
rls = α/β =

λ2
ml σ

2 is substituted into the expressions for Ψ and Ξ. It is straight forward to see thisfrom equations (5.74) and (5.76). Thus;
Ψ =

n∑

i=1

d 2
i

d 2
i + ασ2

=
n∑

i=1

d 2
i

d 2
i + λ2

rlsand
Ξ = 2β EMP

g̃ = n − β

n∑

i=1

d 2
i

β d 2
i + α

=

n∑

i=1

λ2
mlσ

2

d 2
i + λ2

mlσ
2

=
n∑

i=1

λ2
rls

d 2
i + λ2

rls



CHAPTER 5. NUMERICAL AND STATISTICAL ESTIMATION THEORY 70The expression for Ψi is equal to xi (i.e Ψi = xi) of equation (5.3). The di�erene
Ξi = 1−Ψi are the orresponding SVD omponents of the residuals whih haraterizesdata mis�t. Moreover, analysis in Emprial Bayes of equations (5.40), (5.41) and (5.42)stands the same as the analysis of the L-Curve of equations (5.12) and (5.13).We attribute di�erenes to ome from the fat that, the Evidene Framework (Bayesian)has a well de�ned funtional approximation for evaluating α and β whereas the L-Curvefor Tikhonov's Regularization is heuristi.Finally, a searh in parameter spae of {λ2

rls} for whih the funtional ∫Ω ǫ2(s)w(s)dsas a funtion of λ2
rls is optimal is omparable to the ML priniple disussed if we aredealing with Gaussianity. Hene, ∫Ω ǫ2(s)w(s)ds an be viewed as a likelihood fun-tion of λ2

rls suh that λ2
rls = σ2 λ2

ml. The most probable parameter in this ase is also
λ2 ⋆

rls .



CHAPTER  Simulation Results
6.1 The Ill-Posed Inverse Problem Competition using the GravityModel ExampleIn this Chapter, we ompare estimates obtained for the inverse problem using the meth-ods desribed in the previous Chapters namely; standard ML (or LS), Bayesian Infer-ene Method (BIM), Variational Bayes EM (VBEM), Regularized Maximum LikelihoodMethod(MLM) and the L-Curve Method (LCM). We denote the estimated parametersof BIM by (αbim, βbim), VBEM by (αvbm, βvbm), MLM by (αmlm, βmlm) and LCM by
αlcm = λ2

rls. The kernel K and f are the same as used previously. We shall �rst on-sider the ase with additive noise σ2 = 10−6 and σ2 = 10−3 using the matlab built-infuntion
ǫ10−6 =

√

(10−6)× randn(n, 1) and ǫ10−3 =
√

(10−6)× randn(n, 1)respetively. The depth h is still maintained at 0.25.Figures (6.1) through (6.6) has values of n set to 50 in their �rst olumns and 100 intheir seond olumns. The higher the value of n, the more the system's matrix K has alot of its singular values to be very small. Figure (6.1) are subplots of the true funtion
f in the �rst row and orrupted output g̃ at the seond and third rows with σ2 = 10−6and σ2 = 10−3 respetively. Figures (6.2) through (6.6) have g̃ orrupted at a noise level
σ2 = 10−6 in their �rst rows and σ2 = 10−3 for the seond rows.With respet to Figures (6.3) through (6.6), the optimal values, αmethod, βmethod foreah method is loated on top of the Figure with the ratio αest/βest = λ2

est×σ2
est

1 . Ourinterest here is to �nd whether the ratios show some onsisteny for di�erent values of
n and σ2. Eah subplot of Figures (6.3) through (6.6) onsists of the true input f andthe estimated (or reonstruted) input.In eah of Figures (6.7) through (6.12), we have all the reonstruted (estimated)input fest for n = 50, n = 100 and σ2 = 10−6, σ2 = 10−3. The value of n tally withthe last value of i at the absissa axis. The norm of the di�erene in fest and true f(i.e ‖ f − fest ‖2) for eah method is also alulated for eah n and σ2. In the remainingFigures we plotted ‖ f − fest ‖2 versus n in steps of 10 to 200 for noise levels σ2 = 10−6,
σ2 = 10−5, σ2 = 10−4, σ2 = 10−3, σ2 = 10−2 and σ2 = 10−1.1σ2

est is di�erent from noise level σ2. Here, σ2
est is the reiproal of βest.71



CHAPTER 6. SIMULATION RESULTS 72
0 10 20 30 40 50

0

0.5

1

1.5

i

true  input  f  at  n =  50

0 20 40 60 80 100
0

0.5

1

1.5

i

true  input  f  at  n  =  100

0 10 20 30 40 50
0

2

4

6

8

i

corrupted  output  at  σ2 = 1e−06

0 20 40 60 80 100
0

2

4

6

8

i

corrupted  output  at  σ2 = 1e−06

0 10 20 30 40 50
0

2

4

6

8

i

corrupted  output  at  σ2 = 0.001

0 20 40 60 80 100
0

2

4

6

8

i

corrupted  output  at  σ2 = 0.001

Figure 6.1: First Row : The true input f when n = 50 (left) and n = 100 (right).Seond Row : Output g̃ with an additive noise of 10−6 for n = 50 (left) and n = 100(right).Third Row : Output g̃ with an additive noise of 10−3 for n = 50 (left) and n = 100 (right).
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Figure 6.2: Least Squares Estimates illustrating large norm ‖ fls ‖2. The true urve is seen to be �atdue to large values on the ordinate axis. ‖ fls ‖2 is large even at low noise level.
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Figure 6.3: First Row : Estimates of αmlm and βmlm and the ratio αmlm/βmlm using the MaximumLikelihood method at σ2 = 10−6 for n = 50 (left) and n = 100 (right).Seond Row : Estimates of αmlm and βmlm and the ratio αmlm/βmlm at σ2 = 10−3 for
n = 50 (left) and n = 100 (right).
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Figure 6.4: First Row : Estimates of αbim and βbim and the ratio αbim/βbim using the BayesianInferene method at σ2 = 10−6 for n = 50 (left) and n = 100 (right).Seond Row : Estimates of αbim and βbim and the ratio αbim/βbim at σ2 = 10−3 for
n = 50 (left) and n = 100 (right).
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Figure 6.5: First Row : Estimates of αlcm = λ2
rls using the L-Curve method for Tikhonov's Regular-ization at σ2 = 10−6 for n = 50 (left) and n = 100 (right).Seond Row : Estimates of αlcm = λ2

rls at σ2of = 10−3 for n = 50 (left) and n = 100(right).
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Figure 6.6: First Row : Estimates of αvbm and βvbm and the ratio αvbm/βvbm using the VariationalBayesian EM algorithm at σ2 = 10−6 for n = 50 (left) and n = 100 (right) for 500iterations.Seond Row : Estimates of αvbm and βvbm and the ratio αvbm/βvbm at σ2 = 10−3 for
n = 50 (left) and n = 100 (right) at the same number of iterations.
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Figure 6.7: The estimated fest using the methods desribed and root of squared deviations of fest fromf at σ2 = 10−6 for n = 50. BIM gives the smallest ‖ f −fest ‖2 followed by VBEM followedby MLM and LCM.
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Figure 6.8: The estimated fest using the methods desribed and root of squared deviations of fest from fat σ2 = 10−6 for n = 100. BIM gives the smallest ‖ f − fest ‖2 followed by VBEM followedby MLM and LCM.
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Figure 6.9: The estimated fest using the methods desribed and root of squared deviations of fest fromf at σ2 = 10−3 for n = 50. BIM gives the smallest ‖ f −fest ‖2 followed by VBEM followedby MLM and LCM. But estimates from LCM has improved onsiderably.
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Figure 6.10: The estimated fest using the methods desribed and root of squared deviations of festfrom f at σ2 = 10−3 for n = 100. BIM gives the smallest ‖ f − fest ‖2 followed by VBEMfollowed by MLM and LCM.
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Figure 6.11: VBEM gives the smallest ‖ f − fest ‖2 followed by MLM followed by BIM and LCM. at
σ2 = 10−1 for n = 50.
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Figure 6.12: MLM gives the smallest ‖ f − fest ‖2 followed by BIM followed by VBEM and LCM at
σ2 = 10−1 for n = 100.
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Figure 6.13: ‖ f − fest ‖2 at varying n at σ2 = 10−6.
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Figure 6.14: ‖ f − fest ‖2 at varying n at σ2 = 10−5.
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Figure 6.15: ‖ f − fest ‖2 at varying n at σ2 = 10−4.
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Figure 6.16: ‖ f − fest ‖2 at varying n at σ2 = 10−3.
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Figure 6.17: ‖ f − fest ‖2 at varying n at σ2 = 10−2.
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Figure 6.18: ‖ f − fest ‖2 at varying n at σ2 = 10−1.



CHAPTER 6. SIMULATION RESULTS 89From the simulation results, BIM looks more sensitive to high noise than ML, VBEMand LCM. The results from the plots show that for large values of the disretizationparameter n, ‖ f − fest ‖2 inreases as well. At higher noise level LCM is more robustfollowed by VBEM and MLMwith BIM as worst. At a given noise level of say σ2 ≤ 10−3BIM is better. On the average, I will go in for VBEM sine it is quite robust, omputesquite faster and it is able to handle intratable problems whih the Bayesian Inferene�nds di�ult to handle.



Contributions
1. Came out with two important sub-onlusions.2. VBEM optimization algorithm have been derived for the inverse (deonvolution)problem.3. Shown that any optimum of the Bayesian also orresponds to an optimum of Vari-ational Bayes.4. Justi�ed that Bayesian an also be viewed as an extension of ML from a Regular-ization viewpoint (for an aeptable noise-level, σ2).5. Shown that for non-informative priors; di�erenes whih arise between ML andBayesian Inferene is due to the orretion term Tr(KΣ−1

f KT ) .6. Shown from the Gravity Example that estimates obtained using Statistial Meth-ods are better than the L-Curve for Tikhonov Regularization.7. On heuristi grounds; any optimum of the L-Curve approximation in the NumerialFramework an be used as an estimate in the Statistial Framework.8. Seen that ∫Ω ǫ2(s)w(s)ds an be viewed as a likelihood funtion of λ2
rls with itsmost probable parameter also given by λ2 ⋆

rls .9. Proposed a method whih inorporated the method of trunated SVD into RidgeRegression.
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CHAPTER  Conlusion
The work in this thesis foussed on methods within the Statistial and Numerial Frame-work by using the Gravity Model as our 'yard stik'. We viewed Tikhonov's Regulariza-tion from a Statistial viewpoint using ML and MAP. We extended the Tikhonov's fun-tional ML using the Evidene Framework for Bayesian Inferene and also estimated theparameters using Variational Bayesian EM Algorithm and we arrived at the same equa-tions whih the Evidene Framework gave for the parameters α and β if non-informativepriors are assigned. We also saw from Chapter 4 that the Regularization parameter
λ2

rls = λ2
ml σ

2 . All the methods followed some similar analytial path. Their mainindividual di�erenes lie on the riterion for estimating the parameters.In using the Gravity Model example at varying dimensions, we found that StatistialMethods onsistently out-performed the L-Curve estimates at all noise levels onsidered.The Evidene Framework was better in terms of Root of Square Deviations from true f .At σ2 = 0.1, VBEM, ML were little better than the Evidene Framework with theL-Curve as the worst in terms of Root of Squared Deviations from the true f . In all, theL-Curve was not as onsistent as the Evidene Framework, neither was it as onsistent asML (Regularized) nor VBEM. This may be due to the fat that the L-Curve estimationproedure is not built on any well-de�ned funtional form like that given by Statistialmethods. This may aount for its robustness and ability to handle perturbations on-sisting of orrelated noise.With respet to the Gravity problem example, we will prefer VBEM to all sineit is able to manage well and ompute faster too. Moreover, estimates obtained usingStatistial Methods have all proven to be better than the L-Curve in terms of smoothnessin relation to the reonstrution of input and the norm of Squared Deviations of thereonstruted input and the true input f .
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CHAPTER A Appendix
A.0.1 SVD Asymptoti Analysis of the Expliit Likelihood FuntionWe have at the bak of our minds that the matrix K has some of its singular values dito be very small.
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Asymptotes of the Likelihood Funtion
(a) asymptotes of p(g̃|λ2
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(b) behaviour of p(g̃|λ2

ml, σ
2) when λml → 0 and 0 < σ <∞In this ase, we have the onstraint;Say, Dn,n > 0 1 �xed small, suh that ∃ λml < Dn,n for whih
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→ 0 (A.2)if and only if two of the three expressions on the right hand side of the approximationin (A.2) sati�es;
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<∞1Dn,n is the last or smallest singular value. 92
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otherwisewe are kind of doubtful about the likelihood funtion. Thus

p(g̃|λ2
ml, σ

2) → 0× large× large for some di → 0 (A.3)In the ase of (A.3), the exponential term inreases faster than the determinant term.Hene, taking logarithm of the likelihood funtion will not make the problem go awaysine it is unlikely, it an nullify the e�et of the positive sign on the exponent.
(c) asymptotes of p(g̃|λ2

ml, σ
2) when σ →∞ and 0 < λml <∞
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2) ≃
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)n exp 0

→ 0 (A.4)
(d) behaviour of p(g̃|λ2

ml, σ
2) when σ → 0 and 0 < λml <∞

p(g̃|λ2
ml, σ

2) → ∞ ie beome unde�ned (A.5)
A.0.2 Variational Bayesian Fatorial ApproximationWe onsider the lower bound of the log evidene de�ned in terms of ∅;

F =

∫

Q(∅) ln p(g̃,∅)

Q(∅)
d∅ (A.6)for say some ∅ = {∅1,∅2,∅3}.Maximizing the funtional F(∅) over the spae of probability distribution Q(∅) beginswith an assumption about the fatorization of Q(∅) whih an be written in a separableform:

Q(∅) = Π3
i=1Qi(∅i) = Q1(∅1)Q2(∅2)Q3(∅3)Hene

F(Q) =

∫

Q1(∅1)Q2(∅2)Q3(∅3) ln p(g̃,∅)

Q1(∅1)Q2(∅2)Q3(∅3)
d∅1 d∅2 d∅3 (A.7)From alulus of variation, a maximization of the funtional F(Q) with respet to Q(∅)onstrains equation (A.7) to satisfy

∫

Q(∅)d∅ = 1 (A.8)



APPENDIX A. APPENDIX 94The integrand of equation (A.8) was 'dribbled around' the di�erential equation
ż = Q(∅)

⇒ dz = Q(∅)d∅before initial onditions were applied to obtain an ide�nite integral on the left hand sideto give the value, 1 on the right hand side. With this notion in mind, we therefore de�nea new funtion z(∅) as follows:
z(∅) =

∫
∅

−∞

Q1(∅
′
1)Q2(∅

′
2)Q3(∅

′
3) d∅

′
1 d∅

′
2 d∅

′
3 (A.9)whih gives rise to the di�erential onstraint:

ż − Q1Q2Q3 = 0 (A.10)with the initial onditions (end points) onstrained to be z(−∞) = 0 and z(∞) = 1.Let the integrand of equation (A.7) be de�ned by
h(Q1, Q2, Q3,∅) = Q1(∅1)Q2(∅2)Q3(∅3) ln p(g̃,∅)

Q1(∅1)Q2(∅2)Q3(∅3)
(A.11)Introduing a Lagrange multiplier say α to the onstraint of equation (A.10) and addingto equation (A.11) gives

hL(Q1, Q2, Q3,∅) = Q1(∅1)Q2(∅2)Q3(∅3) ln p(g̃,∅)

Q1(∅1)Q2(∅2)Q3(∅3)

+ α (ż − Q1Q2Q3 ) (A.12)The integrand of the integral equation (A.7) then takes the form of equation (A.12).Maximizing the funtional F(Q) with respet to eah distribution Qi is tantamount tosolving the set of Euler-Lagrange equations;
∂ hL

∂Qi
− d

d∅

(∂ hL

∂Q̇i

)

= 0 (A.13)
∂ hL

∂z
− d

d∅

(∂ hL

∂ż

)

= 0 (A.14)where q̇ = dQ/d∅.From equation (A.12), ∂hL/∂ż = α. Substituting into (A.14), we get
dα

d∅
= 0 (A.15)whih shows that α is independent of ∅. Similarly, di�erentiating hL of equation (A.12)with respet to say Q1 and solving for the zero results

Q2Q3

{ln p (g̃,∅) − lnQ1 − lnQ2Q3

}

− Q2Q3 − αQ2Q3 = 0 (A.16)



APPENDIX A. APPENDIX 95Integrating the above with respet to ∅2 and ∅3 is equivalent to the mean ( or expeta-tion) under the distributions of Q(∅2) and Q(∅3). Thus we obtain
〈 ln p (g̃,∅)〉Q2Q3 − lnQ1 −

∫

Q2Q3 lnQ2Q3 d∅2 d∅3 − 1 − α = 0 (A.17)and solving for Q1, we get
Q1 =

exp 〈 ln p (g̃,∅)〉Q2Q3exp (1 + α+
∫
Q2Q3 lnQ2Q3 d∅2 d∅3)

(A.18)From equation (A.15) and our assumption about the fatorized form;
Q(∅) = ΠiQi(∅i)we an see that the denominator of equation (A.18) is independent of ∅1 and so it an beonsidered as a normalization onstant. Hene, we an generally express the solution forthe individual Qi that maximizes the funtional F(Q) under the assumed fatorizationfor eah i as

Qi =
exp 〈 ln p (g̃,∅) 〉Qk 6=iexp 〈 ln p (g̃,∅) 〉Qk 6=i

d∅i
(A.19)
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