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Abstract

The focus of this thesis is on Statistical and Numerical Approaches for solving ill-posed
deconvolution (or inverse) problems using the L-Curve for Tikhonov’s Regularization,
Maximum A Priori (MAP), Maximum Likelihood (both viewed in the context of Sta-

tistical Regularization), Evidence Framework for Bayesian Inference and Variational

Y

Bayesian Expected Maximization (VBEM) as an alternative method for optimizing the

parameters in the Bayesian Inference Framework.

Furthermore, concise treatments of Empirical Bayes, ML Expected Maximization al-
gorithm, Variational Bayes ML and Variational MAP are given.

The main aim and objective is to have a new look at Regularization schemes within the
Statistical and Numerical environment. We therefore compare and contrast existing and
new methods and based on the formulae given by the methods find their corresponding

estimates to see whether they exhibit some consistencies in results.
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Nomenclature

We used the following symbols and abbreviations.

J is the output of dimension n.

K discretized kernel matrix of dimension n x n.

by covariance matrix.

D diagonal matrix consisting of the singular values of K
U matrix consisting of the left singular vectors of K
V matrix consisting of the right singular vectors of K
Jis standard Least Squares estimator for true f.

d vector consisting of the singular values of K.

f is the n-vector to be found.

u; Left Singular Vector at i*" column.

v, Right Singular Vector at i*" column.

)‘315 numerical regularization parameter.

)‘zb empirical bayes regularization parameter.

)‘7277,1 statistical regularization parameter.

« equivalent to )‘72711-

I} precision parameter noise variance.

fmap%mz,ﬂ MAP posterior estimate for f.
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Introduction

The main purpose of data modelling is to design models that can capture the relevant in-
formation from a noisy observed data. This task have always drawn experts from various
fields of study into desgning systems or models with the goal of finding an explanation
to the underlying structure of the data at hand. However, this is not easy to achieve
since we base our decisions on the results of filtering or predictions or inferences about
the data we have in hand and possibly on what we expected to observe before the data
arrived.

It is often very difficult to know which aspects of the data are relevant for an inference
or filtering (or prediction) task and which part should be regarded as noise.

In this thesis, we exploit both Numerical and Statistical approaches to modelling an
inverse problem with emphasis on methods and estimates for a particular application.
We consider the standard model § = K f + € where it is assumed that K € R"*™ and of
rank n, f € R™ and € has mean zero and variance a scalar multiple of the identity matrix
1. We focus on the case where the Least Squares do not make sense when put into the
context of the Physics, Chemistry and engineering of the process which is generating the
data g.

The goal is to treat Tikhonov’s form of Regularization from both Numerical and Sta-
tistical viewpoints by comparing methods Numerically and Statistically and further use
the methods to estimate the parameters in the models to see whether consistencies exists
among the methods.

In order to enhance consistency in our work, we dealt with a particular problem and
maintained the same number of parameters throughout our work. We categorized the
whole thesis into the following Chapters:

Chapter 1 is devoted to only the simulation model. It treats the given problem as a
Fredholm integral equation of the first kind. Chapter 2 is about Numerical Least Squares
and Regularization and Chapter 3 handles the same problem using Stochastic Modelling
concepts within the Statististical environment. Chapter 4 follows with a 'Take Home’
message about some comparisons between the Numerical and Statistical Framework.
Chapter 5 is about Numerical and Statistical Estimation Theory and our contributions
with Chapter 6 showing results from the estimates based on the methods.



CHAPTER 1
Simulation Model

The model problem to be used in this thesis is a geomagnetic prospecting problem taken
from [1]. We will use it as our simulation model for deconvolution (or the inverse
problem). Figure (1.1) assumes a 1-D horizontal mass distribution at a depth h below a

given surface. It shows the geometry and the location of the s and t axes.

S

9(s)

f(t)

Figure 1.1: A geometrical illustration of a gravity surveying problem in 1 — dimension. The measured
signal g(s) is the vertical component of the gravity field due to a 1 — dimensional mass
distribution f(t) at a depth h.

1.0.1 Problem Formulation

Our objective is to determine or estimate the input f and at the same time minimize
some performance criterion. The formulation of the problem requires that we do the
following:

(i) Give a mathematical description of the overall system to be dealt with.

(73) Give a statement of constraints where necessary.

(791) Give a specification of a performance criterion.

1.0.2 Mathematical Model

From the measurements of the vertical component of the gravity field, denoted g(s), at
the surface, we want to compute the mass distribution, denoted f(¢), along the t-axis.
In the following, we derive below the necessary equations governing the model to be used

in this thesis.
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Given a small infinitesimal change dt of the mass distribution f(t¢), the corresponding
small change dg is given by

sin(o)
dg = =52 f(tyat (1.1)
and the distance between the two points on the s and ¢ axes is given by r = /h? + (s — t)2.
Using that sin () = h/r, we get
sin(o) h
- = 3 (1.2)
r 2

The total value of g for any s is

! h
o) = [ e 0 (13)

with the limit of integration constrained to lie within the unit line. Equation (1.3) leads

to a deconvolution problem for computing the latent variable f with kernel h /{h? +
(s — t)2}_%. The discretization of the continuous integral equation (1.3) together with
the measured output g is always contaminated with errors. Furthermore, numerical
computations often involve non-negligible rounding errors. Such inaccuracies always
lead to inevitably small perturbations which make the direct practical inversion process
of f highly unstable. For this problem, we let the quantity f be given by

f(t) = sin(wt) + 0.5sin(27t) (1.4)

and let T'(s,t) represent

h
T(s,t) = 2T (s 12} (1.5)

Equation (1.3), becomes

! h
0 = |, e

(sin(mﬁ) + 0.5sin(27t) ) dt
(1.6)

The above continuous integral is then expressed as a quadrature through an appropri-
ate quadrature method based on quadrature rules. This rule is used to sample equation
(1.6) at n — equally spaced abscissa’s s1, $3......, 8. The quadrature rule for computing
an approximation to any arbitrary definite integral (in general) takes the form

1 n
/ pt)dt = 3 w;elt)) (1.7)
0 P

Next, we apply the midpoint rule (or the trapezoidal rule for periodic functions) to
the problem using the formulae
_J—05

. 1
. . wi = =
J n ) J n
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The subsequent approximation to the continuous integral equation (1.6) then becomes

1 n i

/0 o (sd— t)Z]% {sin(nt) + 0.5sin(27t) }dt =~ ; w; T(s,t;) f(t;) 7=1,2,..,n
= P(s)

(1.8)

We let Ki,j = ij(Si,tj) ) g(Si) = 1/}(82) and fj = f(tj)'

The elements of f(tj) are the computed samples at discrete abscissa’s t1,t2,...,t,. It

is straight forward to conclude that the discretized function

¢(3z) = g(SZ) i1=1,2,...,n

For simplicity, we will always assume that the discretization of T" is square.



CHAPTER 2
Numerical Least Squares and Regularization

The mathematical description of the simulation model in Figure (1.1) satisfies the defi-
nition of a first order Fredholm integral equation of the form

o(s) = /Q T(s,0)f (1) dt (2.1)

where () defines the limit of integration in n—dimensional space and the notations 7T, f,
g are the same as mentioned in Chapter 1. Several methods for solving equations of the
first kind numerically have been proposed. One should view equation (2.1) as a linear
operator, operating on the function f(¢) to produce g(s). The nature of the operator
does not often allow it to have a bounded inverse !. For instance if we let f(t) be a
solution of equation (2.1) and define it as f(¢) = sin(2apt) p=1,2,....,.

Then for any integrable kernel, we have
g(s) = / T(s,t)sin (2npt)dt — 0 as p — 0 (2.2)
Q

Equation (2.2) implies that an infinitesimal small change dg in g can cause a corre-
sponding arbitrarily large change df in f. Hence, the ability to solve equation (2.1)
successfully depends largely on the accuracy of g(s) and the shape of T'(s, ).

Why Numerical Least Squares and Regularization

If a solution corresponding to equation (2.1) for g(s) exists, a slight perturbation of ¢(s)
may give rise to an arbitrarily large variation in the solution f(s). This results in an
equation which may be closely satisfied by a function that bears the same resemblance
to the true solution. However, there are some difficulties associated with this instability.
This is often due to the fact that in practice the specification of g(s) is usually inexact
because of the data at hand. Thus, the "true" or actual data g are corrupted with some
noisy samples at certain discrete abscissas s1, $o....., 5,. We can sometimes be confronted
with an ill-conditioned inverse problem in contrast to a well-conditioned inverse problem.
In either case, we state the problem as

9(s) = g(s) + €(s) (2.3)

where € is an arbitrary function referred to as measurement noise and it is measured
based on some condition about the size. The problem statement is often related to a
functional inequality | €| bounded above such that

le(s)| <M or /Qw(s) e2(s)ds < M; w(s) > 0

'Sometimes, the operator may not have an inverse at all. For simplicity, we will assume it has one.
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where w(s) are weights. For a moment, let us address the functional with weights w(s).

Instead of having a unique solution to equation (2.3), we obtain a family F of solu-
tions. Qur problem is then to pick out from the family of functions FF, the true solution
f. This is impossible to find if additional information about the problem represented
by equation (2.3) is not given. Here, we have made the assumption that, the functional
form of f is unknown, hence our inability to use a Least Square fit alone to find the best
fit to f. Moreover, we expect the function f to be reasonably smooth (which is often
the case). One probably has to choose from an entire family of functions say fs € T,
the best approximation to f which is smoothest in some sense. This calls for the need
of a regularizer. We will assume that, the functions f, g and 1" are all identically zero
outside the unit line (i.e the limit of integration 2 is confined to © C [0,1] for a 1-D
case).? Methods used in discretizing the continuous integral equation (2.1) coupled with
the associated ill-posed nature do welcome techniques in Numerical Linear Algebra for
solving inverse (or deconvolution) problems.

By applying the quadrature method(s) described in Chapter 1 to equation (2.1) we
get

n

S wiT(sit)f(t;) = g(si) 5 i.j=1,2...n (2.4)
1=0

where fj = f(t;), 3i = g(s:), & = e(si), w;T(si,t;) = K;; and w; are weighting coeffi-
cients whose values depend on the quadrature formula used.

The condition on the magnitude of € is defined by

n

E 2 2
Ej—E

=0

2

where € is a constant.

A convenient way to express equation (2.4) is
g=Kf+e€ (2.5)

The naive solution (which we shall denote f) of equation (2.5) often gives a poor
representation of the true solution and it is when € = 0. The solution have an oscillatory
feature which conflicts with our apriori knowledge. Figure (2.1) shows how the naive
solution can be very different from the true solution f. The elements of the computed
naive vector

F=K13 (2.6)
are, in principle, mere approximations to the desired solution. Thus, K f = g is infact
g = g+ € and the vector € also represents perturbation of the exact data. In other words,
a good representation of the true solution is only attainable when € is non-zero. To verify
this, just introduce the matrix notation

Kij = wikij and let Kigl = Vij

*For a square we have Q C [0,1] x [0,1] and Q C [0,1]; x [0, 1]z, ..... x [0,1], for unit hypercube in
n-dimensions.
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plot of g
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plot of fnaive
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Figure 2.1: plot of output § (top), naive f (middle) and true function f (bottom) versus the number
of components i (for i = 1,2, .....,60). The function f is obtained from the direct inversion,
K~1'§. However it should be noted from above Figure that the ’plot of ¢’ at the top refers
to g instead.

60
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Then it easy to see that
f=K1l9+ Kle (2.7)

which explains the reason why the behaviour of the weighted kernel K must also be
taken into consideration because f in equation (2.7) is a linear function of g and e.
Furthermore, by taking partial derivatives of f; with respect to either g; or €; gives the

inverse of the weighted kernel v;;;

ofi b ofi _
9, T 9,

i,j=1,2,...n (2.8)

In situations where the dimension is high, the matrix K may be rank deficient, hence
a stable inverse does not exist. By introducing a regularizer, it is possible to achieve a
reasonably smooth function say fy . which can be accepted as a good (or best) repre-
sentation of the exact function f.

Least Squares and Normal Equations
Given the problem of finding the vector f € R™ from
G- Kf (2.9)

where K € R™ " is the data matrix and g € R" is the output. Here we assume that
both K and g are available. Practically speaking, we do not expect systems of the form
of equation (2.9) to have solutions since the output vector g must be an element of the
range space of K which is a proper subspace of R".

Our objective is to minimize ||g — K f||, for a suitable choice of p . That is
min Hg - KfH (2.10)
f p

In contrast to the p-norm we choose p = 2 for two tractable reasons which are as follows:
(1)
1y . 2
o(f) = 3|3 - &7, (2.11)

is a differentiable function of f and so a minimizer of ¢ satisfies Vo(f) = 0. This
operation leads to the construction of a symmetric linear system (i.e by forcing any anti-
symmetric component of K to vanish) which is positive definite if K has full rank.

(74) The 2-norm is preserved under orthogonal transformation. That is,

I(UTK)f — UT§|l is easy to solve whilst it maintains the equivalent minimizer of

g — Kf||3. We shall see in subsection (2.2.2) that the length and angle are preserved
under an orthogonal transformation.

Differentiating ¢(f) of equation (2.11) with respect to f:
K" (G- Kfis) =0 (2.12)

shows that the minimum residual denoted €5 is orthogonal to Ran(K) in Figure (2.2).
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//\—"
?0) ' Ag_Kf
/
//
L/il/ﬁ_»___«l_,l R (K)
g=KJf o

Figure 2.2: A geometric illustration of Least Squares

The residual €;
€s = g — K fis (2'13)

is called the minimum residual vector. The corresponding size ||€;s]|2 given by

lewsll2 = 119 — K fisl2 (2.14)

is also referred to as the minimum residual of the Least Squares Problem. Equation
(2.12) is called the normal equations since V(f) = KT (§ — K fi5). The solution to
the normal equations is tantamount to solving the gradient equation V¢(f) = 0. Fur-

thermore, the 2-norm, ||g — K fis]|2 is a non-zero residual as could be seen from Figure
(2.2).

In short, we state the Least Squares problem in relation to the Gravity Model of Figure
(1.1):
Given
g=KFf
we seek

min [[§ — Kf |2
f
with solution to the normal equations given by

K"§ - Kfi) =0 (2.15)

2.2.1 Orthogonality and Orthonormality

Given the set of vectors {u;; u; € R"} for i = 1,2,....,n. If uJu = 0 for i # j, then the
set of vectors is said to be orthogonal. If on the other hand, uZTuj = 0;; then the set of
vectors is said to be orthonormal .

2.2.2 Singular Value Decomposition

If K is a real n x n matrix, then there exists orthogonal matrices

U = [ug,ug,....... ,u,] € R and V= [vy,va,....... ,vp] € R™"
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such that .
K =UDVT = Z w; d; v} (2.16)
=1

and
wu =vivi=26; oo U'U=V'V =1

where [ is the identity matrix and the set of pairs {u;,v;} are respectively called the
Left and Right Singular Vectors. Also

UTKV = diag(dy,ds, .......,d,) € R™™"
where di > dy >, ....... ,dn, > 0 are the singular values of K. Also Kv; = d;u;. Hence
IKv)|3 = (Kv)T(Kv;) = (dw)T (djwy) = d?ulv; i=1,2...n
and since the u}s form an orthonormal set we have
[Kvi)lla = di

The consequence of the orthogonal transformation property preserves the length (or
magnitude) of f and the angle between two vectors say f1 and fy. To see this, let

f=U"f

then
1715 = FFuu™s = |I£15
and
A h = fTUUT S = TS
That is, the effect of multiplication by an orthogonal matrix U7 is equivalent to a rigid
rotation of the coordinate system.

2.2.3 Higher Dimensional Problems

In higher dimensions, it sometimes happen that the matrix K has many singular values of
different magnitude close to the origin; thus rendering K to have an ill-determined rank.
Therefore a Least Squares fit is not able to capture the relevant information contained
in the output g. The kernel K smooths out the high frequency components of the signal
which results in loss of information at high frequency components of f. Strictly speaking,
G = K f. See equation (2.6). Therefore,

Gg=Kf=g+e¢ (2.17)

An important consequence is the non-uniqueness of solution to the linear system of equa-
tion (2.17). Any solution subjected to the high frequency perturbations will fit the data,
g equally well. This makes the deconvolution problem of reconstructing (or recovering)
the signal ill-posed. This ill-posedness is accompanied by inevitable effects of instability
of the solutions. Small perturbations of the data may result in a completely different

solution.



CHAPTER 2. NUMERICAL LEAST SQUARES AND REGULARIZATION 11

Figure (2.3) is an example that illustrates one of the difficulties that can arise when
an inverse operation is performed in the frequency domain. The function K is a low-pass
filter designed to handle the smoothing operation in the frequency domain. The function
g is a 'clean’ speech signal which is free from any form of noise. The clean speech g is
then corrupted with additive white noise, € which is normally distributed with zero mean
and standard deviation o. The corrupted speech g is

g=g+te
The Discrete Fourier Transform, DFT'(g) is given by

g(w) = g(w) + e(w)

where g(w) = DFT(g) and e(w) = DFT(e). 3

Hence,

(2.18)

where f(w) = DFT(f), K(w) = DFT(K) in equation (2.18). Here, we have taken
cognizance of the fact that, in the Fourier (i.e frequency) domain, inverse operation in-
volving matrix-vector division is possible. Equation (2.18) shows that, the direct division
by K(w) unbounds the high frequency components of f due to the division of elements
in €(w) by insignificant (or very small) elements in K (w). See Figure (2.3) below.

The illustrated Figure example consists of a short sequence of 250 samples of a clean
speech signal. A low-pass filter with filter coeffiecients 0.5,1,1,1 and 0.5 is applied to
the speech example. A noise vector € is also generated from matlab through the bulit-in
m-file randn.m

¢ = 0.001 x randn(250,1)

We cannot solve these problems without making assumptions. In view of that we make
the following assumptions without going into the details surrounding the theoretical
concepts
1. The matrix K has full rank.

2. K is ill-conditioned with no significant gap in the singular value spectrum. (Problems
arise when the singular values d; are within the range 0 < d; << dy).

3. The true data g is corrupted with noise.

4. The discretization error caused by approximating the continuous operator is much
smaller than the noise.

5. The system satisfies the discrete Picard conditions which we informally deduce and
state in subsection (2.2.4).

3The symbol w here is different from the weights given in equation 2.4. Moreover w used in Chapter
1 is also different from both. We should however to note the differences. The same symbol was use due
to shortage of notations.
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DFT Speech Signal
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Figure 2.3: Power spectra of the various signals in a low-pass filtering with 5 filter coefficients. It

illustrates the power spectra of the clean speech signal g, corrupted signal g, filtered signal

f and the deconvolved signal f obtained from equation (2.18). As seen from above, the

high frequency components of the convolved signal are perturbed greatly especially around

the zeros of the low-pass filter. The effect renders inverse operation of DFT meaningless.

That is f = IDFT[§(w) © K(w)]

2.2.4 Discrete Picard Condition

From (2.3)
g = Kf+e
we have
f = Kl5- Kl
The SVD of the naive solution is
Fokg= Y (B0

The solution f follows from

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
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The singular values d; of K in equation (2.23) must neither approach zero nor be zero
or else || f||3 will be large or undefined. A consequence of this leads to loss of much of
the information about the system or it can happen that no information will be gained.

Especially, for normalized singular values d; (between 0 and 1) we do not expect d;
T

to decay faster than either ul (g —¢€) or ulg, otherwise in the neighbourhood where

either d; — 0 (or both u!'§ — 0 and d; — 0), the expression
Tis T~
WG9 ulg

d; d;

— oo for i— o0

Definition
A system is said to satisfy the discrete Picard condition if for large enough values of
the discretization parameter n, the sequence of true data values {ul (g —e€)} goes to zero
faster than the sequence of singular values {d;}. Thus for terms greater than or equal to

some parameter k, ul (§ —¢) ~ 0
Figures (2.4), (2.5) and (2.6) are picard plots of the Gravity Surveying Model problem
of Figure (1.1) with additive noise 02 = 0, 02 = 107 and 02 = 1073 respectively. They

Picard plot without additive noise
10 T T T

v 4
+ |wi| *
n * ol
Sﬁ ** *
10° i% ¥ * % b
*y,
++€§$*** 5 **
+ VIg Ry, ko K
+ N V. **** *
+ V. * * k¥
- ++ Vvv ****** x* ¥
107 an vy, gk b
e Yy
* Yy
* Yy
+ Vy.
+ Vo
10710k ++ VV i
+ Yy,
+ \Y
4, Ve,
+ Yo,
+ + VVV
T
. A Ver, + tit
107 * e LV e T
+ + RAUAYv.ve
v
10‘20 1 1 1 1 1
0 10 20 30 40 50 60

T ~
u; g

+2| of the Grav-
ity Surveying Model problem. The noise contribution comes from only rounding and

Figure 2.4: Singular values d; of matrix K and the computed quantities |u} §| and |

discretization errors.

T..
show plots of d;, [w; = |ul'g|] and [w;/d; = |ug'lig\ ] versus i. The quantity [ulg| in
each case decays faster than d; until it reaches a level set by the machine’s precision. At
u;-rg

locations where |ul'g| levels off, the quantity |=-Z| begins to increase steeply and in the

d;
u

T
neighbourhood where both |u! g| and d; approach zero, the ratio | Uill_g| becomes larger

and larger. Figure (2.4) illustrates how the naive solution

T~
u; g
Vi

d; "
i=1 "

Fe
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T~
is completely dominated by large values of \ué_g|. They come from components corre-

sponding to the smallest singular values. This explains why the plot "plot of fnaive"
f in Figure (2.1) appears as a high oscillatory solution. The norm of f is 6.1 x 105

Picard plot with additive noise of 10" 6
10 T T T

+ v & |F
1 + |w||
L+ L
W o ol |
Yy ]
10° £ *¥ o % ]
¥ ¥ - * %
107 + ¥ E
—_ é * * * * * E
= ’ L ety * % * ]
T 10°F v * 3
3 + v * 4 . El
3, - + v 1
—. 10 L v El
= * v E
w + v
5] ” v
» L i
g 10 4 v
© + v
> & N v ]
10°F - 1
+ v ]
_ N v
10°F + + L v + 3
+ v .
+ + Ty 1]
107E + v
v ]
N4
10’3 I I I I I +
0 5 10 15 20 25 30

Figure 2.5: Picard plot with an additive noise of 107°. The acute angle between the decaying regions
of [ul'g| and d; shrinks considerably as compared to Figure (2.4), thereby causing the
quantity |uiT§| to level off at lower indices i than without additive noise.

Also, Figures (2.5) and (2.6) illustrate the same problem but with additive noise o2 of
magnitudes 1076 and 1073. Their respective noise vectors e;9-s and €;p-3 are normally
distributed with zero mean and variance 0%0,6 fo,g.
the magnitude of the additive noise term the more information we lose. That is, the

and o It can be seen that the greater
quantity |ulg| starts to level off at a much lower indices of the index i. The larger the
smoothing effect of the function K, the faster d; decay. Moreover, small singular values
lead to solutions which fit the data well but result in large energy. In an act of trying to
find a stable meaningful solution pushes us to employ regularization schemes. We now
devote the rest of this Chapter to Numerical Regularization and it is the main subject
of this thesis.

Numerical Approach to Regularization

These are algorithmic techniques which can be used for stabilizing solutions so that
they become less sensitive to perturbations. Such algorithms are called Regularization
Algorithms. The method encourages smoother functional mappings by adding a penalty
term, say ® to the residual error function r. to give an implicit form;

I(f) = e + N20(f) (2.24)

where J is a functional called the standard residual error function and the parameter
A2 controls the effect of the penalty term ® on the form of solution. It comes in two
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Picard plot with additive noise of 10”3
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Figure 2.6: Picard plot with an additive noise of 107>, The acute angle between the decaying regions
of |ul'gl and d; shrinks much more compared to Figures (2.4) and (2.5). The quantity
[ul §| levels off at much lower indices i than the ones shown in Figures (2.4) and (2.4).

flavours; either by (i) truncating the matrix K or (i7) adding a regularizer.
We will first deal with the simplest approach to the smoothness problem called the
Truncated SVD.

2.3.1 Truncated Singular Value Decomposition

In a much more simple approach, the SVD of the matrix K € R™*" is computed. Thus,

we have

K =UDV" =" duv] (2.25)
=1

where U = U(1 : n,1:n) and n = rank(K). The singular values d; of the (n x n) diag-
onal matrix D are in decreasing order; d; > do >, ......d, >,..,dp—2 > dp—1 > dp, > 0.

Given an integer k < r, we partition the SVD according to

D, 0 T
K - U ,U V 7V
(U o)(o DO)(k 0)
where Dy, = diag(dy, ....,di) and Dy = diag(dgy1, ...., d,, ) are diagonal matrices consisting

of the k£ largest and (n-k) smallest singular values respectively. The matrix K}, defined
by
Ki = U DLV

is considered to be an approximation to the original matrix K with a corresponding
decrease in rank from n to k. This is the underlying concept of the truncated SVD.
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k=2 k=4 k=6
1.5 1.5 1.5
1 1 1
0.5 0.5 0.5
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Figure 2.7: The figure shows plots of fi of the Gravity Survey Model versus ¢ for varying k at constant
noise level 02 = 107 The exact solution or unpertuurbed solution f is shown at the
bottom ’true f .
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Then follows the question anybody would most likely ask about the truncated SVD!

QUESTION : If the parameter k forms the basis in determining a best approrima-
tion to our true solution f, How then do we choose an appriopriate k from the triplets

(u;,d;, v;) in order to capture the most relevant information in K?¢

The choice of k does not depend on any direct formula(e) in question and therefore
not fixed, rather it depends on the particular application. For instance, if in a particular
application, the noise level is given in the form of a threshold, say 7 then k is chosen so
as to make only the first d,,,d,_1, ..., d,_ which are strictly less than 7 to be discarded.
This leads to a numerical rank deficiency in K (or a singular subspace of K).

Alternatively, we can use the 'Brute force’ approach to compute the solution f for
each k using the formula of f and changing the summation interval for each choice of k.
By running this iteratively at regular steps among all choices of k, we opt for the one

that is smoothest in some sense. For each k we have

k
=S % 9., (2.26)
: d;
=1
An illustration of this is demonstrated in Figure (2.7) with the Gravity Example at a
noise level o2 = 107, It is an alternative procedure which can be used without any
restriction on the threshold 7, meanwhile it is equally good enough in abandoning the

irrelevant noise components. If K is symmetric, then we have
= UpD UL (2.27)

The simulation result of the computed solution f; of the Gravity Model with additive
noise, 02 = 1070 is illustrated in Figure (2.7). The actual plot of the function f is shown
at the bottom right corner.

For eack k, we used the formula

=1 i

SO

It can be seen that, the smoothness of the solution fj improves from k = 2 to about
k = 12. At k > 14, the noise components take over the true solution as a result of

large values of their corresponding norm. See how the "sickness" begins to crop up from
k = 14 and beyond.

2.3.2 Adding a Regularizer

The alternative form of smoothness is governed by how a given function say f, is con-
tinuously differentiable with respect to say s. Various forms of Regularizers have been
studied in connection with linear models but the one of interest to us here is the class of
Tikhonov Regularizers, ® which in general takes the functional form;

Z/ hi, dk dks (2.28)
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where s = (s1,52,....,8,) and {hy > 0 for £ = 0,1,..., R — 1} are weights such that
hr > 0 (Tikhonov and Arsenin, 1977).

The functional ® could be from a 1 — D space onto the real line R (i.e single-input
single output) or a higher dimensional space onto R (i.e multi-input single-output). We
view ® as a functional defined in terms of f with smoothness dependent on the function
f. If R =1, then it is obvious that, the derivative operator say L is the identity matrix,
1.

Generalized Functional Regularization

From the vector-norm sense, ¢ — Kf and Lf — fg are vectors which can be of same
or different dimensions. The sum of the two residual vectors is given by

(6 — Kf) + (Lf = fo)

Applying the triangle inequality, we have

I(Lf — fo) + (G — KO3 < |ILf — fol3 + lg — Kf|3 (2.29)

where the Left Hand Side is a lower bound on the right hand side with equality only
when the residuals ¢ — Kf and Lf — fy are at right angles to each other. The norm
of either residuals is non-zero, positive and finite;

0<|[[Lf = fol3<oo and 0<|§— Kf|3<oo

We try to attain a lower bound on the right hand side of inequality (2.29). This problem
can alternatively be identified as a Least Squares minimization problem with quadratic
equality constraint which is (more or less) equivalent to the Lagrange multiplier problem

of determining a real positive regularization parameter )\fls such that
K f J
)\rlsL )\rlst

where the solution to equation (2.30) is the total regularized minimum residual (which

= argmin |[§g — KfI5 + Ny I Lf — foll3
2

arg min

(2.30)

is also called the regularized squared error). In a sense, we view )‘%ls as an indicator of
sufficiency of the output g as examples that specify the form of solution fy . If A2 =1,

rls

we have inequality (2.29). We now find the asymptotic behaviour of equation (2.30).

For asymptotes, we write expression (2.30) in the explicit form

m}n {Arls{ )\Lug - Kf”g + )\TlSHLf - fOHg }} (231)

rls

The limiting case, A3 — 00;

1
)\rls

g — Kf|3—0 and M| Lf — fol3 — oo
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implies that the prior smoothness constraint imposed by the differential operator L is by
itself sufficient to specify the solution f) , and it is the same as saying that the output
g is unreliable. So

. 1 .
win { e {51 = KB + AL = ol } | = o0 (232)

rls
is said to violate (i) mon-zero residual of ﬁ\lg — Kf|j3 and (i) a non-large value
of the total regularized minimum residuals. In this case, the regularized solution f) ,_ is
given by the regularizer alone without taking the actual data into consideration thereby
neglecting the information about the data in question. Thus, the solution is said to be
independent of the data misfit.

The other limiting case, A\q;s — 0;

Mis ILF = fol3 — 0 and g — Kf|3— oo

>\rls

implies that the problem is unconstrained with the solution f) , completely determined
from the examples. It therefore approaches the Least Squares problem formulation. So,

we have

. .
win { A {51 = KB + AL = ol } | — o0 (2.33)

TS

which also violates a (i) non-zero reqularized residual of A\ ||Lf — fol3 and (ii)
non-large total minimum residual. In this case, the regularized solution f) , is given
by the residuals from the data alone which is the same as saying that the solution is
independent of the reason for adding a regularizer.

2.3.3 Tikhonov Functional Regularization

A combination of Tikhonov’s Regularizer and S. Twomey’s reformulation of Phillip’s
expression for a regularized f in normal equations settings is referred to as "Regularized
Normal Equations" with the purpose stated as follows:

To find the function fy . that minimizes the Tikhonov functional p(f)

p(f) = re(f) + Ny ®(f) (2.34)

where r(f) is the standard error term, ®(f) is the regularizing term and M. is the
numerical reqularization parameter.

The Numerical Framework functional regularizer ® is of the form

() = SILFI3 (2.3)

with fo = 0 if no a priori estimate of f is given.
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The solution which we denote f) , that minimizes a weighted combination of the
residual norm # and the added smoothness constraint is

fan, = arg min{ng _ KA+ A%zsuLfH%} (2.36)

where L is a discrete derivative operator of some order. By taking partial derivatives
with respect to f of the expression in the curly brackets of equation (2.36) and setting
to zero, we write

vi{lo - K718 + 2L | = o (237

The solution to equation (2.37) gives the regularized normal equations
(KTK + X4,LTL) fy,, = K7 (2.38)

If L =1, equation (2.38) is said to be in its standard Tikhonov’s form
KKy, + Ms P, = K3 (2.39)

In this thesis, we choose our derivative operator L to be the identity matriz I. Hence the
standard Tikhonov’s solution is

-1
P = (KTK +\3.0) K'§ (2.40)

Figure (2.8) is the Tikhonov’s solution f , to the Gravity model problem of Figure
(1.1) at n = 60, d = 0.25 and for different values of the numerical regularization param-
eter )‘12%5 with additive noise 02 = 1075, We can see that the best values of >\72“ls which
give good approximations to the true function is neither too big nor too small. Values
of A2, that are too small tend to overfit whereas values that are too large also give bias

rls
estimates. The choice of )‘%ls is therefore a compromise between the two extremes.

4standard error term is the same as the residual norm in most literature.
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CHAPTER 3
Stochastic Modelling

Filtering and Linear System Theory

Introduction

In this chapter, we develop some results which are required for the solution of the es-
timation problem under consideration. We will restrict ourselves to some properties of
conditional distributions of Gaussian random variables and then give a geometric inter-
pretation.

Like we begun in Chapter 2 with "Why Least Squares and Regularization" in the
Numerical Framework, we do the same in this Chapter by looking into Least Squares
from a Statistical viewpoint and further move on Statistical Regularization using both
the Maximum a Priori (MAP) and Maximum Likelihood (ML) principles to the same
Gravity problem. We will appeal to four theorems on multivariable Gaussian distribu-
tions. We will then see that these theorems have geometric interpretations with a strong
intuitive appeal.

In section (3.2), we formulate the problem of Filtering and Estimation for Discrete
Time Systems, state the Deconvolution problem in a Statistical environment and finish
up with Least Squares. Section (3.3) deals with the Statistical Approach to Regular-
ization; we explore exact approaches in relation to maximum apriori (MAP) method
and marginalization over continuous variables of the Maximum Likelihood principle by
performing integration. We follow up with the EM-Algorithmic principle where we will

round up with the difference between MAP and ML.

We shall continue to work under normality conditions.

Formulation of Filtering and Estimation Problems for
Discrete-Time Systems

We consider {g(s), s € T} and {e(s), s € T'} as two real stochastic processes which are
signal and noise respectively. We assume that the observation (output) or measurement
g(s) are given by

g(s) = g(s) + (s) (3.1)

22
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From equation (3.1), we mean that at time s, we have obtained a realization {g(7), s <
T < s} of the measured variable. Based on this realization, the best estimate of the value
of the signal at time s; can be determined. Here s; could be one or more of the following:
(a) s < s (which leads to a smoothing problem).

(b) sk = s (which leads to a filtering problem).

(¢) s > s (which leads to a prediction problem).

Define a notation for a realization, say g, by

9(8) = (Guy> Tsgs Tags -1 Js,) (3.2)

From equation (3.2) we have indicated explicitly that g depends on s. We let g € g
and g € g. An estimator (filter, predictor, interpolator) is a function which maps g into
g. The value of this function for a particular measurement or observation g is called an
estimate g. In this Chapter, we will describe filtering problems in relation to (3.1) by
specifying the following:

(7) the signal and noise processes.
(73) the criterion which defines the best estimate.
(797) the restriction on the admissible estimators.

3.2.1 The Inverse (Deconvolution) Problem

The signal and noise processes are characterized by covariance functions through a linear
equation of the form:
g=Kf+e (3.3)

where g = K f and € is a sequence of independent Gaussian random variables.
From above, we ask ourselves the question below!

Question : From a realization of the output g(7), s; <7 < s. How or by what means
can we estimate the input vector f in (3.3)7

This forms an estimation problem. The necessary skills we need to acquire for this
problem are discussed in subsections (3.2.2) through (3.3.4).

3.2.2 Statistical Modelling of the Loss Function

The statistical information which the observations give about the stochastic variables
g(s) is contained in the conditional distribution

Plgs, < 0lg(r) = @(7) 1 to <7 <t} = Flolp) (3.4)

In the left (most) hand side of equation (3.4), the parameter o symbolizes a deviation
conditioned on the output value g(7) = (7). The corresponding density of the distri-
bution (3.4) is denoted by p(o|p). We define a loss function [, which is a real function
with properties { > 0, [(0) = I(—¢) and [ non-decreasing for 6 > 0. The loss function
is then a stochastic variable [(g — g) with the best estimate g chosen to be the one that

minimizes the average loss (I(g — g))
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Theorem 1

This is based on the assumption that the conditional distribution of g given § = ¢ has
a density function which is symmetric around the conditional mean p = f op(ole)do
(where o is the standard deviation) and non-decreasing for (o > u). The loss function
l is considered to be symmetric and non-decreasing for positive arguments. The best

estimate is then given by the conditional mean

9= 99) = (ale) = [ ontole)do (35)
The proof is based on an elementary lemma on real function. For proof and more on
this see [43].
3.2.3 Multivariate Gaussian Distribution Theorems

The probability density function of a normal n-dimensional variable with mean pg and

covariance Ry is given by

p(@) = (2) " det (Ry) 2 exp — L{G— ) By G 1)} (36)

where we have made an assumption that the covariance matrix Ry is non-singular and
det (Rg) = | Rg |

is the determinant of R.

Theorem 2

f

If f and g are both n x 1 vectors and we make an assumption that [ ~
g

is Gaussian

R; Ry i
9 | then the vector ¢ given by
R;z Ry

=
-

with mean [

and covariance R =
Hg

¢ =f—nj— RpR;N (G — pg) (3.7)
is independent of g has zero mean and covariance
R; = Ry — Ri;R; 'Ry (3.8)

For proof and more on this see [43].

Theorem 3

If f and g are two vectors which are jointly Gaussian, then the conditional distribution

of f given ¢ is normal with mean
(f13) = pj+ RizR; (G — pg) (3.9)
and covariance

(=i -9} |a) = By~ RpR 'R = R (310)
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The stochastic variables § and [f — ( f|§)] are independent.
For proof and more on this see [43].

Theorem 4

(a) Linear functions (and therefore conditional expectations) on a Gaussian random
process are (Gaussian random variables.

(b) Orthogonal Gaussian random variables are independent.

(c) Given any random process with means (g(s)) and covariances (g(s) g(t)), there

exists a unique Gaussian random process with the same means and covariances.

Interpretation

The state estimation Theorem (1) implies that the best estimate is given by the condi-

tional mean: i.e
. L
(f1g) = nf + R Ry (3 — pg)
and the estimation error has the covariance

T\ __ 5 _ np—1 5
(¢’ 19) = Rf — Rj;R; 'Ry ; (3.11)

It further implies from Theorem (2) and Theorem (3) that, the estimation error

c=f—(fl3) = - nj— RpzR;'(5— pg) (3.12)

is independent of g.

3.2.4 Geometric Interpretation

The above multivariable Gaussian distribution theorems gives a strong intuitive appeal
when they are illustrated geometrically. See Figure (3.1). For simplicity, we illustrate
this by assumming that both variables, pg and 7 have zero mean (i.e puy = pg = 0).
We then represent the variables f and g as elements in the Euclidean Space with scalar

product defined by

(f 9 = (f"g) = cov(f=0,5-0) = cov(f, §) (3.13)

The norm is given by
1715 = (f /) = (F1 ) (3.14)
Define the two lines I; and [y which intersect at the origin. The angle G between the

lines is given by

08 = ~<fT§>~ _ v/ 9) (3.15)
[£ll2 - llgllz [[fll2 - [lgll2

The stochastic variable f is represented as a vector along I; with the length || f|lo =
1/ (f2> and the stochastic variable g is represented by a vector along ly with length
1912 = v/(3%)-
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Figure 3.1: Geometric illustration of the conditional mean values of normal random wvariables. The
conditional mean f = (f|g) is represented by the projection of f on g.

Recalling the assumption that f has zero mean, we find that Theorem 2 implies that
the stochastic variable defined by

— f _ p-ls
¢ = f— R;RG (3.16)
is independent of §. Hence
(c.9) = ("g) =0 (3.17)
Theorem (2) thus implies that ¢ is orthogonal to g and that the norm of ¢ is
2 -1 £112 (f)g)Z
2
The projection of f on g is
F g\ g _ (£.9)g S (Fls
Foido)ide = St = Ry R = (f19) (3.18)
( 191127 11gll2 13113 fo

where the equality in equation (3.17) follows from equations (3.13) and (3.14), and the
last equality follows from Theorem 3.

The variable f —¢ = ngRg_lg = (f|§) equals the best mean estimate of f based

on g and should be interpreted geometrically as the projection of f on g.
1

Statistical Approach to Regularization

Before we proceed we will use a different notation for the covariance matrix R. It shall

be replaced by .

'The symbol < used on this page is equivalent to error vector in Figure (3.1).
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3.3.1 Maximum Apriori Function and the Regularized Precision Ma-
trix

The linear model is our "old friend":

g = g-+e
= Kf+e (3.19)

where g, K, f and e represent the same notations used previously.
We now state our statistical model.

The conditional density (or noise model) is

Pt %) = Culolesn — {55 |9 - w7} (3.20)

where Cy(0) is a normalization factor given by

[ e,
XD —
202

is equivalent to the probability density of the noise contributions €, of zero mean and
2.

- nrar}

covariance o 1
plelo?) = Culo)exp| = llel] (3:21)

In Numerical Regularization, we chose a standard quadratic functional ® with a reg-
ularization parameter )‘%ls by setting the derivative operator L = I;

rls rls

N ®(f) = 3 A% 1B

We repeat it here by introducing a similar regularizer which we will define as the prior

probability in the ’Statistical Regularization’” Framework:

)\2
PUFNZL) = Cpmt)exp — [Z2L) £ 3] (3.22)

where Cp(Am1) is a normalization factor given by

A2 o
{/ exp — 2| £} df}

We wish to compute an estimate for f given §, o and the prior p(f|\2,). This is a
standard procedure by applying Bayes’ Rule.

From Bayes’ Rule, the posterior probability of f is

p(glf, o) p(£f1A%)

p(glo?, A%,)
where the denominator on the right hand side of equation (3.23) is also a normalization
factor defined by

p(f ‘ §7027 )‘gnl) =

(3.23)

p(§l0% A2y = / p(311,0%) p(f1A2) df
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and the densities p(g|f,o?) and p(f|A\2,) are their respective likelihood function and
prior probability.

Substituting equations (3.21) and (3.22) into equation (3.23) and taking the logarithm
of both sides gives

111

logp(f13.0%%%0) = = { lla — KAP + %272+ (20

where « is a constant defined by

Kk = log Ci(0) Co(N) (G | 0%, A2 !

We take the first partial derivatives of equation (3.24) with respect to f and solve for the
zeros of f to obtain the maximum apriori (MAP) estimate, which we denote by frap, -
Thus,

_ 1 _
Vilogp(f1g,0% Nu) = — KT (G Kf) = Xuf (3.25)
= 0

2 It is straight forward to write the zeros of equation (3.25) as
(K"K + 0 X2y1) finapy, = K" § (3.26)

which must be viewed as Normal Equations in the Statistical Framework sense. This
equation is of the same form as Equation (2.40) of Tikhonov’s Regularization in the
Numerical Framework. The parameter A,,; of the solution

fmaps., = (KTK + o*)2 1)  KTg (3.27)

should be considered as provision of a non-zero parameter which makes inversion of the
matrix (KT K + 0?2 1) possible.

A comparison of equation (3.26) with equation (2.38) for which LT L = I, shows that
there is a relation between the numerical regularization parameter \,;; and the statistical
regularization parameter A,,;;. The relation is

M= (0 \m)? (3.28)

rls

We finally take the second order partial derivatives of the log-posterior with respect to f
to obtain the curvature information. We denote a negation of the curvature information

by J(Ami, 0):

JAmi,0) = —Vilogp(flg, 0% A2))
KTK

?The maximum fmap,,, must lie on the stationary point satisfying:

Vilogp(fIK, G, 0, Xow) = 0
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It can be seen from equation (3.29) that, the Matrix J is independent of f. Hence, the
expectation of Matrix J with respect to the distribution of f gives

( J(Amlv J) > = J()‘mla J)
KTK
= — N T (3.30)

From now through the end of this thesis, we will let the notation X ¢ represent (J(Ap,0))

KTK
o= + A2, T (3.31)

The corresponding inverse matrix also called the Precision Matrix is

KTK
nol = ( A2 I) 3.32
f o2 + A ( )

The use of Bayes’ Rule exploits the capabilities of taking prior information into account.
It incorporates and maps 'the event space’ of our subjective beliefs onto the space R (of
real numbers) by expressing the ’degree of belief” as 'probability’. This is what we earlier

referred to it as prior probability in equation (3.22).

Furthermore, the stochastic variable g can be characterized by specifying its finite di-
mensional distribution p (§). With the first and second moments of p (¢) in hand, we can
(partially) answer all probabilistic questions about the joint probability density function
of g and f. This calls for a need to express the two moments in terms of the mean and

variance-covariance.

The standard deviation (which is the square root of the variance) is a measure that is
used to determine how far we are from our estimate, fmapk,g. The two moments when
put together can enable us construct error bars on our estimate. For a variable say i,
the error bars has the property:

fo = fmapy, *1/diag(Ey, ) (3.33)

where  /diag(3y, ) is the standard deviation and it is obtainable from taking the square
root of the diagonal elements of the variance-covariance matrix of X, =~ which we shall
re-visit shortly.

3.3.2 Decomposition of the Regularized Precision Matrix by SVD

In general, the SVD of an inverse matrix of the form

(KTK

1
ot A;ILTL)

where L is a derivative operator are as follows:

By beginning with the SVD of K, we have

K = UDVT
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The corresponding SVD of (KT K) decomposes into

KTK D?
o2 o2

where the matrices U and V consists of the eigenvectors of K such that VIV = VVT =T
and UTU = UUT = 1. As aresult, VT = V~1 and UT = U~!. Moreover, the matrix
D? consists of the singular values of KT K and their singular values are equal to the
eigenvalues of KT K since the matrix K7 K is symmetric. Hence,

(KUTQK +)\72nlLTL>71 - (V Doyr g, (LTL)
_ (v = R N LTV VT L) - (3.34)

We use the above properties of real symmetric matrices to accomplish our objective by
replacing the general regularizer operator L with the identity matrix I.

If L =1, we have

(KTK+)\2 )1 _ ( D2

2

n
= ZWQW;%TW? (3.35)

=1

Equation (3.35) is a powerful analytical result which serves as a tool for analysis of rank
deficient and discrete ill-posed problems. The SVD allows the factorization of the n x n,
square symmetric matrix Z;l into orthogonal /orthonormal components. It is also quite
computationally efficient for computing inverses and determinants of smaller systems.
We will suspend the importance and details of SVD here until we get to Chapter 5
where it shall be used for analysis.

3.3.3 Exact Computation of Xy,

We deduce the error bars on the estimate fi,qp, , from the following:

Let gy, = K f\,,, where g\ , and f) , represents exact regularized output and input.
We write the difference:

fmaproe = fr = (KTK + A0 7TKT g — f,,

= {KTK + PN T KK f + o) = (KTK + XD KT (K ) )

= (KT'K + o®22, 1) ' K¢, ,

where f) , = (KTK + 0?X2,I)"* KTg, .

(3.36)
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The variance-covariance on the estimate fy ,  is

—1 —1
Yo = ((ETK +0220) KTe,, & K(KTK + o®2,1)  })
—1 —1
_ (KTK + O—QA;II) K" (e, & VK (KTK + a%?nlf)

-1
= o2 (KTK + 02)\%11[) KTK (KTK +o222,0) 7!

(3.37)
where (e er{ml ) =o%I.
Decomposing equation (3.37) by SVD:
-1 -1
S, = {v(D?+o0) DD+ e?N1) VT
n
A \2
- )
= o0 v v;
2 vlage)
n
= > vihIv] (3.38)
i=1
where )
D /D -1
A= ;(?Hgﬂ) . 0 #0 (3.39)

is the deviation from the estimate fp,qp, . Equation (3.39) intuitively shows that the
error bars depends on the singular values of the Regularized Precision matrix E;l and
therefore can be approximated by 2]71. In subsection (3.3.4), we deduce how the ap-

proximation E;l can be obtained from Taylor’s expansion.

3.3.4 An Approximation to Xy,

It is common to summmarize the posterior distribution by fy,4p, , and construct approx-
imate error bars on the fit for that particular values of )\?2%1 and 2. By Taylor expanding
the log-posterior up to the second order (via Laplace approximation), we have

- ~ 1 T
10gp (f13:0% Xot) = 108D (fmapsr 19:0%N0) + 5(f = Frnamnr ) S5 (F = Frmas. )

(3.40)
where
Sp = —Vilogp(f1§,0% \o)
Hence
N N 1 T
p<f|9702’)\72nl) = p(fmapx,g |9702?)‘72nl) exp — §{<f—fmam,a) Xy (f_fmam,g)}
(3.41)

From equation (3.41), the posterior can be locally approximated as a Gaussian with
precision matrix (or error bars) 2;1:

_ KTK -
o7t o= (S + L)

g

(3.42)
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Figure 3.2: Estimates of the MAP posterior at 02 = 107°. The value of A2, for each posterior f
satisfies the relation we established in of equation (3.28); A2, = A\%,/0® . The shape of
the subplots are replica of the subplots in Figure (2.8) except for a difference in the values
of \2,; and A2, as a result of the factor o which is factored into A2,,.s This tells us that,
if the noise level o2 and the regularization parameter A2, are given, the parameter A2,
can be obtained and vice-versa.
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Analysis

Equation (3.42) is a good approximation to Xy, = of equation (3.38) for any given pair
of hyperparameters \A,;; and o. This approximation holds for all quadratic functional
regularizers (priors) and noise models that are assumed to be Gaussian. Therefore,
analysis of Yy, is tantamount to doing analysis on the approximation,

n

2 —1
Z v; (% + )‘72nl) v;-f (3.43)
i=1

for any given K and o2 since the ratio D /o can viewed as some sort of scaling. However,
we note that (d;/o; Vi) of equation (3.39) is known since d; comes from the singular
values of the matrix K at the noise level o2. For non-zero )\gll and o2, we have A; — 0
if and only if d;/oc — 0 . In this case, the error bars depends on the SVD components
(or singular values) of K having numerical values roughly equal to (or approaching) zero.
Also from equation (3.38), we can easily see that when \,;; = 0 , we have

n
1
e = 0 vl (3.44)
=1 ?

which corresponds to the variance-covariance of the Least Squares estimates.

From above, it is enough to focus on the analysis of E;l :

n

d? —1
2]71 = Z Vi (J—g + )\le> vl (3.45)
i=1

For fixed o2, (02 > 0):

(a) if Ay << d; for all i, we have

-1 o\ 1
IR sz<ﬁ> v;
) 3

=1

(b) if A,y >> d; for all i, we have

n 2 n
-1 g T _ 1 T
D (7/\2 Uz)vi =D v (/\T) Vi
i=1 ml i=1 ml
Figures (3.2), (3.3) and (3.4) are the estimates, exact error bars using equation (3.38)
and approximate error bars using equation (3.42) on the Gravity Problem for n = 60,
d = 0.25 and at a noise level of 1073. In the case of the exact error bars, we can see the

effect of small d;/o at the middle to the tail-ends of each subplot for o2 > 0.
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Figure 3.3: The exact Error bars on the estimates of the posterior for f of Figure (3.2) using the

expression for 3y,  at the same o? =1075.
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Figure 3.4: The error bars approximated by 2;1.
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3.3.5 Application of the Maximum Likelihood Principle
to the Problem

The stochastic process g is characterized by specifying the finite dimensional conditional

distribution
~ 2 2 ~T ~T =T ST\ |2 42
p{g(s) |U ?)‘ml} = p{(gsl?gsygsy ""7gsn) ‘U 7)‘ml}
Bayes rule further allows us to re-characterize the above finite dimensional conditional

distribution by specifying the joint conditional density function through the marginal
distribution of § given 0% and A2 ,. 3

In general, the re-characterization of the marginal distribution of § given the parameter

pair (02,2 ) is defined by:

(G2 0%) = / p(@| 1,022 p(f | Nogs0®) df (3.46)

where the stochastic input variable f and the parameter ¢ are assumed to be independent
and the integrand is called the joint conditional density. A functional say [ defined by

l(f> )‘72711?02) = p(§|f?0—27)‘12nl)

is called the conditional likelihood-function (conditioned on f).

From Bayes’ rule we have

PGl f,0?)p(f 1 Aen) = p(G, | No %) (3.47)

where p(g| f,0?) and p(f | A2 ;) are the same as given in equations (3.21) and (3.22) and
the equivalence of their corresponding normalizing constants Cj(o) and Cp(Ay) for this

problem are
~1
1. _
{/ exp — 5—5llg — Kf|? df} = (27mo%) " (3.48)

and

A2 S INY
{ / exp[— 2L £ | df} = (5)"™" (3.49)

The integrand of the conditional density p(g|o?, A2,,) is equivalent to the joint condi-
tional density of equation (3.47). Hence by substitution of equations (3.47), (3.48) and
(3.49)

s = () e o] = o] -
2
|11
- O~ |-} i 1)

(3.50)

3The parameter A2, is usually referred to as a hyperparameter. It controls the distribution of other
parameters in equation (3.46).
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where C'(Ai,0) = Cp(Ap) Ci(0). Also, the functional p(g|o?, A2,,)) is referred to as the
likelihood function and we shall denote it by L(0) with 8 = (A, 0).

Our objective is then to find the pair say (A\2*,02*) from the set of parameters
{Ami, o} for which L is maximum. If the above distributions are defined in terms of the
exponential family of distributions, then it is usually advisable to take the logarithm of
L before we proceed to finding the maximum. From the two ’hoods’, likelihoods multiply

and log-likelihoods add.

3.3.6 Explicit Result for the Gaussian Model

Here we will make a general assumption about the mean and variance-covariance of the
stochastic variables g and f. We are considering the case where the mean of g is different

from zero. We state our assumptions as follows:
p(elo®) ~N(O,6%1) , p(fIN) ~N(O,A ) and g ~N(K[, %)

where the vectors € and f are assumed to be independent.

Since the output g and input f of the process are Gaussian, the definitions of their
conditional probability densities are equivalent to the previous ones. A replica of equation
(3.46) to the model gives the following:

PG| A\ 0?) = Chu,0) / exp{— %{ FTKETK + 22,01 f — 257K f

+37g | af

—1/2 exp % (I/T E;1V>

— OO, 0) (27)2 ‘ o) ( S (3.51)
€Xp 5= gl
where ) , , -
)‘ml n/2 1 n/2 T g K
= _— d ==
CQmi; ) ( 2 ) (27T 02) and v o2
A decomposition of the determinant ‘ Xy ‘ by SVD gives
=] = [v(Gr e )]
g 2
= |G+ )]
_ (ﬁ + )\?nl> (3.52)
i=1

By substitution of equation (3.52) into equation (3.51):

n —1/2 ) 1 T d -1 A
oy = () 1 (& )] "ALTE )
i=

expm g2

(3.53)
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~T
T _ T _ 3 K_.
g =V Vi = T Vi

where v
Taking logarithms of both sides of equation (3.53) gives

N n 22 1 — d?
log {p (31 Ay 0?)} = log(325) = 5> log( S5 + AL
=1
R d? -1
~ 50 i+ {2 (T + W) )
=1 =1

(3.54)

In general, equation (3.51) would have been a very difficult integral to perform if
the prior was not Gaussian. Secondly, we can easily see from either equation (3.53)
or (3.54) that the marginal distribution is non-linear in >\72nl and 2. Hence we cannot
just differentiate the likelihood function with respect to the hyperparameters o and >\72nl
(which should have been the case). We end here with the exact integration procedure
above. However, we will refer to some of the equations in this subsection when we get to
Bayesian Inference methods. The above problem shall then be addressed to encompass

Non-Gaussian priors that assumes an approximation to Gaussian distributions as well.

A2 =097269 o*” =0.0012382 A2=097269 o°" = 0.00063008
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Figure 3.5: log-likelihood contours (top-row) and log-likelihood plots (bottom-row) for n = 30, d = 10
(first-column) and d = 1000 (second column) of The Gravity Problem Model.

Figures (3.5) and (3.6) are log-likelihood contour plots, log-likelihoods plots and sur-
faces of the log-likelihood. Figures (3.7) and (3.8) also shows likelihood contour plots,
likelihood plots and surfaces of the likelihood. The set of values of )‘7277,1 and o? for
all the plots were respectively generated from matlab using logspace(—6,6,500) and
logspace(—6,0,500) for n = 30 and at different values of d; d = 10 for the first columns
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Figure 3.6: log-likelihood w.r.t log(c?) (top-row) and surface of the log-likelihood (bottom-row) for
n =30, d =10 (first-column) and d = 1000 (second column) of the Gravity Model.
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Figure 3.7: likelihood contours (top-row) and likelihood plots (bottom-row) for n = 30, d = 10 (first-
column) and d = 1000 (second column) of the Gravity Model.
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Figure 3.8: likelihood w.r.t log(c?) (top-row) and surface of the likelihood (bottom-row) for n = 30,
d = 10 (first-column) and d = 1000 (second column) of the Gravity Model.

and d = 1000 for the second columns of each of the Figure.

The most probable value of the pair of parameters (A?ﬂ?,aQ *) for each column is

marked x in each contour plot and they have their respective values shown on top.

In subsection (3.3.7), we appeal to two different set of assumptions for a simple case
where the mean of g is assumed to be zero and another case where the mean of g is
different from zero and use the definition of probability density function of a normal
multi-dimensional variable of equation (3.6) on the same problem.

3.3.7 Multivariate Gaussian Distribution Approach to the Model

The alternative method to solving the same problem is to make a tacit assumption about
the output ¢ which can be either; g comes from the sum of two Gaussians with mean
zero or otherwise. We state our assumptions for the two cases as follows:

1

,)\TI) ., plelo?) ~N(0,6%I) and G~ N(0,%;)
ml

() p(fIA7) ~ N(O

(b) §~N(Kfol) | p(flkibz)NN(Oa/\Tf) and  p(elo?) ~ N(0,0%1)

mi
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(a) Zero Mean

Using the assumption in (a), the covariance of marginal for g is obtainable from the

following.
S o= (g9")
(Kf +e(Kf+ o)
= (KffTKT) + (el (3.55)
where

(KfT) = (efTKT) = 0

because the vectors € and f are assumed to be independent.
A decomposition of equation (3.55) by SVD results in

1
Yy = [K}\TKT]+U2I
ml

D? 2 T
_ U{T to I}U (3.56)
A

ml
Since ¢ is asumed to be Gaussian, its normalized joint conditional probability density
p(§|027 )‘7271[) is
1

. /2 _ 1 po1-
p(9|02’)\72nz) = (g) | g | 12 exp — { §9nglg}

(3.57)

Substituting the equivalent expressions of Z;l and | 33 | into equation (3.58) above gives

ot m) = ()" (11 ( L) ey { S (e 02)@}

=1

where w; = ul § and we have made use of the initial assumption that the mean (g) = 0.

Taking the logarithm of both sides of equation (3.58) gives us another important

equation
n 2
~1 2 12 n 1 Z d; 5
logp (glo=, ALy = —§log(27r) ) i—1 10g{<)\%ﬂ +o )}
1 n d? -1
3 {Z wi (AS + 02) wz} (3.59)
i=1 ml

¢ We already know that the marginal distribution is non-linear in the parameters )\fnl
and o in the zero neighbourhood. So, a closed form ML principle is intractable. There-
fore, a maximization of the log-likelihood through differentiation and solving for the
zeros directly is impossible. Interestingly, it is possible to find the best possible pair of
hyperparameters say (A2 7,02 *) in equations (3.57) from a given set of hyperparameters

{)\?nl,O'Q} but it is impossible to do the same for non-zero mean due to the presence of
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the latent variable f and/or the assumptions made in (b).

We present an iterative scheme for estimating (A2 ¥, 0 *) using the ML EM Algorithm
to the problem. This procedure is (more or less) a showcase or test-bed for understanding
the Variational Bayesian EM Algorthm which we will treat later. It will also make it

easy for us to see the difference between Regularization in MAP and ML.

Application of EM Algorithm (Tikhonov EM Regularization)

Before we stoop to this iterative algorithm, we shall let the symbols 3 = 1/0? and
o= )\?2711. We are also dealing with a single data point in n-dimensions so there is no
need for a summation sign here.

In this EM application, instead of maximizing the likelihood p(g|3,a), * we rather
seek to maximize the joint likelihood p(g, f |3, @) of the unobserved random variables in
the model which is a function of the latent variable f. ® The quantity p(g, f | 3,a) then
becomes a function of the unobserved random variables f. Hence we have

Le(B,a) = p(g, fIB,a) (3.60)

In using Bayes’ rule, followed by taking logarithm of both sides and making use of the
fact that f is independent on €, we have

log Le(B, ) = logp(g|f, B) + logp(f|a) (3.61)

6 The complete log-likelihood function, (log L. ) of equation (3.61) reduces to

log Lo, 8) = —nlog(2) + Flog + Sloga -

2o wa) () - 51

(3.62)

The M Step of EM

The M step involves taking the expectation of the complete log-likelihood and maximiz-
ing it with respect to 3.

Differentiating with respect to [:

B i U GO NG R

“p(§ |8, a) is also referred to as the Incomplete Data Likelihood

°n(g, f |8, a) of the unobserved random variables in the model is also known as Complete Data
Likelihood.

5The second term on the right hand side of equation (3.61) is independent on 3. Therefore, finding

the most probable 3 simply means that we only need the first term on the right hand side of equation
(3.61). On the otherhand, the first term on the right hand side of equation (3.61) is independent on «.
Therefore, finding the most probable a simply means that we only need the second term on the right
hand side of equation (3.61).
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Setting the derivative to zero and solving for 3 gives
n

() (7))

n

§g — (30/7) KT + THKTK (£ 7]}

6 =

(3.64)

where fT(KTK) f = Tr[KTK f fT] and we have used the relation 27 Az = Tr[Azz"].

At this point we are still left with the problem of determining the actual values of (f)
and (f fT). This is where the E-step comes in.

The E Step of EM

The E-step involves the maximization of the log-posterior p(f|g, 3, «). The analytical
form of the expectation for p(f|g, 3, «) can be obtained from Bayes’ rule

p(fl19,8,a) o p(g|f.B) p(fle) (3.65)

Taking logarithm of both sides and expanding gives

logp(f13.0,0) = —log2n + Togp —~ 2 (5-K75) (3-K7)}

— E10g27r — %fo +gloga+ Y

2

= i - 2 KT 5+ [Tl - KB +

2
(3.66)

where Y and Y’ are independent of f and we have assumed that the prior is a quadratic
functional given by p (f|a) = (a/27)"?exp — 2fTf. From equation (3.66), it is easy
to infer that

p(£13.8,0) ~N((£),27")

where 2;1:
;0 = (ol + BKTK)™
(3.67)
and (f) is
(f) = S7'K'8g
= fmir, (3.68)

where Z;l and ( f) are the variance-covariance and mean with a prior on f.

The corresponding (f fT) is

) = ST (3.69)
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If there is no prior on f or (a = 0) then we assume non-informative priors. In this case
(f)y = (BE"K)'K"8g = (KTK) 'K"g (3.70)

which gives the updates equation for the standard EM-Algorithm (and it is equal to the
Least Squares solution). The difference between equations (3.68) and (3.70) comes from
the addition of a prior. For quadratic functional priors, we view the conditional prior
p(f|A2,) as equivalent to an unconditional prior p(f) when A2, = 1.

3.3.8 Summary of Equations for the EM Algorithm

E Step
;' = (ol + BKTK)!
(f) = S7'K"85 = (ol +BK"K) '8
G = S (AT
(3.71)
where 3 = 02 in the above.
M Step
5 = n
((6-x1) (3-x1))
- n (3.72)

33" = (3(/7)) KT + THKTK (£ 7]}

The solutions to the equations above is sometimes called the solution to the mazimum
penalized likelihood (MPL). The penalty term that assessses the physical plausibility of
the solution is

1
171

The MPL solution is the same as the Tikhonov’s Regularized solution
fotr, = (KTK + o®X2, )" KTg
(3.73)

3.3.9 The Difference between MAP and Maximum Likelihood

We have so far seen that, differences in ML and MAP do not lie in the equation governing
the Bayesian posterior for the stochastic variable f because the same Bayes’ rule is used
for estimating f in either case. We will use the concept of exact marginalization over
continuous variables to find out whether difference(s) really exists.

From Bayes’ Rule we have

p(gvfa )‘3711?0—2) = p(g?f|)‘72nl?o—2)p()‘%11702) (374)
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Integrating out f

P20 02| 9)p(G) = p(A;l,02>/p@,f%,o?)df

= p(\.0?) p (Gl A0, 07) (3.75)
Hence
2 2
pO0200%5) = %p@/%,a%
x p(A2y,0%)p (G| A2y, 02) (3.76)

where p()\ml, 21g) is the MAP posterior of the parameters given the data § and
p(g|A2,,0%) is the likehood of the parameters.

With regards to equation (3.76), we view MAP as a substitute to maximizing the
likelihood p (§| A2, 0
set of parameters with the only difference arising from an introduction of a prior over

0?) by maximizing the Bayesian posterior probability density of the

the parameters we want to infer due to the knowledge we knew (or initial assumption we
made) about the distribution over the parameters. If the prior distribution of )\fnl and
o? are assumed to be independent then p(A\2,,0%) =p(A2,)p(c?) . In addition to the
independency, if both priors are assumed to be non-informative then estimates obtained
from ML and MAP should coincide otherwise we expect MAP to out-perform ML due

to the inclusion of priors.



CHAPTER 4
Take Home on Numerical and Statistical Regularization

Similarity in Equations Between Numerical and Statistical Regularization
(for Gaussian random variables)

In chapter (2), the measurables were of the form

i) = [ K00t = gls) + e(s)

and we explained that the equation above is often related to a functional inequality | €|
bounded above such that

le(s)] <M or /Q E(s)w(s)ds < M:  w(s) >0 (4.1)

Also from equation (3.46), the functional equation is given by the marginal distribution
of g given (or conditional on) o and A2,,. This is of the form

P(§1N2y, 02) = / p(@|£.0%) p(f |20 df (42)

Both €2(s) and p(g|f,0?) have the same quadratic functional forms and the corre-
sponding weights w(s) and p(f | A?) are also quadratic functional regularizers. Without
loss of generality, | p(g| f,o?)| also satisfies

PGl feH)|<M or /p<g|f,02>p<f|v>df <M

Sub-conclusion on Numerical and Statistical Framework

(a) The conditional mean in the Statistical framework/settings (i.e MAP) is the same as
that of Regularized Normal Equations in the Numerical Methods framework if we are deal-
ing with Multivariate Gaussian Distribution. We can consider the Regularized Normal
Equations in the Numerical Methods framework settings as a special case of Stochastic
Modelling theory when we are dealing with Gaussian Random Variables.

(b) The tuning parameter \.s in the Numerical Methods framework settings is a prod-
uct of the Statistical parameter \,; and the noise level o.

(c) Setting the reqularization parameter \p,; to zero for o < oo is the same as finding
a solution to a Least Squares problem.

46



CHAPTER §
Numerical and Statistical Estimation Theory

The aim of this Chapter is to compare and contrast equations and expressions which
leads to understanding the features and analysis of

(7) the L-Curve for Tikhonov Regularization in Numerical Ridge Regression.

(7i) the Emprical Bayes (Regularization) in Statistical (Bayesian) Ridge Regression

We already know from Chapters 2 and 3 that the standard Least Squares (LS) esti-
mate fj, is equivalent to the standard Maximum Likelihood estimate f,,;. Also, due to
ill-posedness which is beyond both the standard LS and ML estimates, we extended the
estimation procedure to be based on adding the small positive constant o = A%ll to the
singular values of the symmetric matrix K7 K/o? or KTK so that the inverse matrix

associated with fy  _or frap, Lo OF fmiy, o becomes non-singular.
: i mis

We now turn our attention to the problem of how optimal estimates for )‘12%57 )\%d and
2

o* can efficiently be determined. We shall continue to work under normality conditions.

The L-Curve for Tikhonov’s Numerical Regularization

5.1.1 SVD for Tikhonov’s Regularization

A decomposition of the standard regularized solution of equation (2.40) by SVD gives

n ~
di _\u/g
= ; 5.1
f)\rls ; <dl2 T )\%ZS) dz Vi ( )
which is of the form
P = Z Z; —ch Vi (5.2)
i=1 v
where
76@ Vi (5.3)
T; = ; i )
' dz2 + )\72"15

are called the Tikhonov’s filter factors and they satisfy the inequality 0 < z; < 1.

Another way of writing equation (5.3) is

d? 2
i -1 — rls 5.4
A o4
(a) If d; >> A5, then A% /(d? + N?,) — 0. Hence
d;
m ~ 1 (5.5)
(A TS

47
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(b) If d; << A5, then A2

rls

/(d? + N%,) — 1. Hence

rls

d?
d? + N2 (5:6)

rls

(¢) For a é-neighbourhood (d-small s.t § > 0), if d; = A5 £, then the filter factor x;
are in transition between the two extreme regions of (a) and (b) above. Hence,
d?
= 1-1/2=1/2 5.7

rls

The naive solution f is obtained when A.;; = 0 . The SVD components correspond-
ing to d; > A, contributes strength that is more than half of the naive case f For
case(s) where d; >> A5, it contributes with almost full strength to the solution fy ,. .
On the otherhand, the SVD components corresponding to singular values d; < A5 are

damped considerably and contribute very little to the solution f) . Hence, the trun-

2

715 given by dj ~ A.,. For more on this see

cation parameter k has a relation with A
[2].
5.1.2 Analysis of L-Curve for Tikhonov Regularization

The analysis to be presented here is due Hansen. We will not dwell much into the
surrounding details. For a thorough discussion on this, kindly see [2|. The analysis
starts by writing g as the sum of an exact unperturbed data g and noise ¢;

g = g+e€ and g=Kf (5.8)

where f = KTg. The Tikhonov solution is expressed as

f)‘rls = f_)\rls + f)ﬁ\rls (59)
where f,\m is the regularized version of the exact solution f and it is also given by

The Least Squares solution f = KTg to the unperturbed problem satisfies the discrete
picard condition and for that matter |v! f|=|ulg/d;| also decay. The residual norm

which is characterized by data misfit g§ .. is given by

n

2
135, 13 =13 = Kf 1 = > (0 = a)ulg) (5.11)

=1

The norm of the deviation f§ ~from the estimates is
TLs

n
_ dio 2
€ 2 2
|| f)‘rls H2 = H f)\'rls - f)"rls ||2 = Z (d? _I_Z )\2 )

i=1 rls

2
)

)
——
—
&=
~

)
+
(]
—
| &
~

)
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T
It follows from the solution norm || fx,, |3 = /% (@ “22)? that the norm of the

regularized version of the exact solution can be given by the approximation

| s B = i ChHEICH (513)

=1 =1

where the last n — k terms contribute very little to the sum. Hence
(i) if Aps — 00, and k— 0 we have f,, — 0 which implies that || fy,. |2 — 0.
(23) if Aps — 0, then || fa . ll2 = || f 2

The residual corresponding to f,\m then satisfies
~ 7 2 7-\?
lg - Kiv, 3 = > (ulg) (5.14)
i=k

Therefore, the L-Curve for the unperturbed problem is a flat curve at || fi . |2 ~ f

except for large values of the residual norm || g — K fy , |2 where the curve approaches

rls ||
the abscissa axis.

Finally, the first and second sum of || f5 l 3 in equation (5.12) are respectively dom-
inated by alk_2 = )‘r_li and all,f+1 R Azls and can be approximated by

H f)ﬁ\rls ||§ N WA, J/)\rls (515)

. . . . ¢ - .
where @), is a quantity that varies slowly with ;5. Hence, f)‘rls increases monotonoically
from 0 as \,;s decreases until

| KTels~ o || KT||p for Ays — 0 is attained.

The corresponding residuals satisfies

3

I 5, —al3 ~ 0% = (n—k)o’ (5.16)
i=k

Hence, [[K f —¢€la=o Vn —k is a slowly varying function of A\, which lies in the
range from 0 to |[ell2 = oy/n . Therefore the L-Curve for € is an overall very steep
curve located slightly to the left of || K f{ — €l[2~ [|€|l2, except for small values of
Ar1s Where it approaches the ordinate axis.

It is emphasized that the analysis is valid only when the L-Curve is plotted in log-log
scale and that it is a plot of $1In|| fr,. [|3 versus 1In| K fr, — §Gl|3. It is further
assumed that the noise is a scalar multiple of the identity matrix I. So the expected
values of the SVD coefficients of uiTe are independent of i;

((WFe)T (ul'e)) =0 ; i=1,2,...n (5.17)
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5.1.3 The L-Curve Method for Estimating the Parameter )\’

rls

The L-Curve is a log-log plot of the norm of the regularized solution || fy . ||2 versus the

norm of the corresponding residual norm || K fy , —g||2. Thus, from the set of parameter

rls

values {)\zls }, if we let n and p be represented respectively by

n=1rhl3 5 p=1Kf,—3al3 (5.18)
and let
n=1Inn ; p=1Inp (5.19)
Then
n=expf) = [ fa,l5 and p=expp=|Kfr, -3l (5.20)
Hence
i =l fy, 3 and p =[] Kf, -3l (5.21)

Hansen in [1] derived an expression for the curvature s of the L-Curve as a function of
Ar1s and had

L 2np Xu'p £ 2anp+ Ny

" (A2n2 + p2)3/2 (5.22)
where
4 & w?
A= >\rls s 77/ = T (1 - 332) sz d_z and Wi = uzTg
i=1 i

The strategy of choosing the best estimate for the regularization parameter 5\1245 lies at
the corner. The corner separates the flat and the vertical parts of the curve where the
solution is dominated by regularization and perturbation errors.

Empirical Bayes for Statistical Ridge Regression

Hoerl and Kennard (1970), were the first to propose the Ridge Regression estimator of
Jisi

o = (K'K +2D7'K"G A >0 (5.23)

where f) , is the regularized solution and )\gb is the regularization constant. ' They
further used the term instability to signify that ( sz1s> is too large or much larger than
| f113- We view the Ridge Estimate fy, in the above context as an extension of the
standard Least Squares or standard ML estimator when KT K have at least one sin-
gular value to be small. A small singular value d; (d; — 0) of K tends to make the
Least Squares estimator unstable in the sense that small changes in § may produce large
changes in fi,.

We now present the first of two types of Statistical Bayes Ridge Regression namely
Truncated SVD for Empirical Bayes Ridge Regression.

'the subcript eb stands for Empirical Bayes and ). is the empirical bayes regularization parameter.
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5.2.1 SVD for Empirical Bayes

We can re-write equation (5.23) in the following alternative forms.
fra = WKTg (5.24)

where W = (KTK + M4 1)~!. The alternative form of equation (5.24) is

—1
Do = |1+ BETE)T(KTR) KT

— Y (5.25)
where Y = |1 + Agb(KTK)—lrl
By further manipulating Y, we get
Y = [KTK + Agbl]ilKTK
= T - XKTK + 217" by simple long division arithmetic

= I - NW
(5.26)

We also let £(W) and £(Y) be singular values of W and Z such that

)y = 3 (5.27)

— d? + X2,
() = X Fi (5.28)
=1 €
The SVD of f_, of equation (5.24) is
- =W 5.29
f>\eb zz; v d2 +)\gb dl ( )

and it is comparatively of the same form as equation (5.1). The estimator fy , depends
on the choice of the corresponding precision parameter )\gb and it is generally not
guaranteed to be better than fjs in terms of risk under any quadratic loss. In view of
this, we seek to produce minimaz adaptive ridge-regression > that are uniformly better
than the Least Squares estimator.

5.2.2 Truncated SVD for Empirical Bayes

The inverse of the matrix K7 K is of concern to us here since the solution depends on
it. The singular values of (K7 K)~! is obtainable from

VI(KTK)"'V = D72 (5.30)

?The term minimax is used to refer to an estimator that is uniformly better than the Least Squares
estimator and the word adaptive indicates that the ridge constant is estimated from data.
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where D72 = diag(d,;?,d,?,,d, 2y, ....;d;?) and d;2 > d 2 > d; %y >, .., > d) 2

n o n—1"n—-2»

We partition V such that

V = (V1,V,) where Vj € R™k and V€ R %) for some k. (5.31)
We write
F=vvi = W) + WV f
= Vice + V27 (5.32)

where ¢, corresponds to the smaller singular values of K7K.

It is desirable to impose the constraint

[=Vay (5.33)

We construct ridge-type regression estimators using the information about which singular

values are smaller in some sense. This we do by

VI(KTK)V = D? = diag(d? d?,d3,....,d>?)

n

2
_ ( - ) 53

where D} = diag(d;®, df, d, ..., d? ;) and D isan (n—k+1)x (n—k+1)
diagonal matrix consisting of the smaller singular values. Since ¢ of equation (5.32)
corresponds to small singular values and for this reason must not be included in the
model, we shrink f;; towards the linear constraints

Hy : f = Voy ryeR"F (5.35)

Using the decompositions given in equations (5.31) and (5.34), the estimate of ~ is
¥ =V fis (5.36)

The truncated SVD (or principal component) regression estimator of f is given by

¢ = vl (5.37)
o

Also from equations (5.36) and (5.37) we have
oy = f7° (5.38)
By conveniently treating them in canonical form, we can choose to let z = V7 f;;. Then

z ~ NUVTf o?D?) (5.39)
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5.2.3 Analysis of Empirical Bayes Estimators
Let &(Y) be the i'" —diagonal singular value of equation (5.28). For A\ > 0, we have

max §(Y) = FREYA
&

<1 (5.40)

where d;? is the largest singular value of KT K and that equation (5.40) equals 1 if and
only if Ay, = 0. Hence

IHa 3 < Il fisll3 (5.41)

Also from equations (5.28) and (5.26)

= 0 (5.42)

That is, when A\, — oo, the largest singular value d;?> becomes insignificant and the
solution fy_, is independent on 7. Hence the truncation parameter k also approaches
zero (k — 0) and the corresponding norm of the regularized solution is also zero.

Method of Estimating the Parameter )\gb

This estimator shrinks the Least Squares estimator towards the principal components.
The Bayes estimator f) , is

1

Prw = Jis — (I + A—QbKTK) _l(fzs - Vw) (5.43)

with the estimate of v given by the weighted Least Squares estimator
—1
i = (WETK V) VKK fi (5.44)
where 4 is obtainable from the minimization of the weighted squared loss
Tor
(fis = Vev) KTK(fis = Vi) (5.45)
The best variable estimate which we denote by f,\eb is
. -1
P = fis= I+ K"K) (fis = ££°) (5.46)
and

1/02, = max(1/2%,1/72) (5.47)

e

where )\gg is given by the root of the equation

(fls - ZI:C)T<(KTK)_1 + LI>71<fls - zlsjc) = w{(ﬁ_Kfls)T<§_Kfls)}

ME n+ 2

(5.48)
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where flfc = fPC and ) is also the root of the equation

k _ _
2 (i) 2 = (dpyr) 2

(dn—i) 2 + (1/X0)?

(k—1)/2 (5.49)
=1

The above estimator f , incorporates both methods of Ridge Regression and truncated
SVD. This should however be viewed as an extension of truncated SVD. For more on
this see an example in [38].

Bayesian Inference for Statistical Bayes Ridge Regression

In general, the statistical information envisaged in parameter estimation (like we have §)
gives some evidence concerning some hypothesis say Hy, Hs,,,. (since H might be the
statement that its parameter(s) lies within an interval) and we make inferences about
them solely from what we observe. The very act of choosing a model by sampling dis-
tribution conditional on H is considered as a means of expressing some kind of prior
knowledge about the existence and nature of H and its observable effects.

In effect, we see it as a rule for constructing informative priors when we have partial
prior information that restricts the possibility significantly but not completely. In con-
trast to Bayesian Inference, D. C Mackay in his book "Information Theory, Inference
and Learning Algorithms" [6]| argues

"Once we have made explicit all our assumptions about the model and the data, our
inferences are mechanical. Whatever question we wish to pose, the rules of probability the-
ory give a unique answer which consistently takes into account all the given information”

Nevertheless, Bayesian Inference tends to imitate both Sampling theory and even
Numerical Methods in that it incorporates little or no prior information beyond the
choice of the model and so seeks "non-informative" priors, otherwise it is expected to
out-perform Sampling Methods only when the latter faces a problem like insufficient (or
small) data.

5.3.1 The Evidence Framework and Occam Razor

The Framework (due techniques developed by Gull and Skilling), integrates over the
precision model parameters a = )\fnl and 3 = 1/0? and the resulting evidence maximized
over the hyperparameters. The hyperparameters are then used to define a Gaussian
approximation to the posterior distribution. The Bayesian Adaptive learning begins

with the probability of everything;

p(§7f7auﬂ):p(g7qu’i) (550)

where H; = {«, 3} is a sub-model of the hypothetical space H. Two levels of inference
are involved in the Ridge Regression task;
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(i) Model fitting where we infer f by obtaining a compact representation for model H;

likelihood prior

———

p@lf.B8)p(fle)
p(gla,pB)
evidence

p@lf Hi)p(f|Hi)
p(9]H;)

p(flg,a,p)

(5.51)

The error bars are obtainable from Taylor expanding the log-posterior about the most
probable furp:

P13 H) ~ e |5 Hexw — 500 = fur) S, (= fup)  (5.52)

(7i) Given a collection of models of H;, we wish to find our initial beliefs about the
relative plausibilities in terms of a list of quatified p(H;) such that

o pH) = 1 (5.53)
%
We use Bayes’ rule to update our belief in the models in the light of g. We do model
comparison using the relation

p(g | H;) p(H;)

= pgle.B)pla,B) 5 Vi

(5.54)

The denominator
p(@ = > p(G|H)p(H)) (5.55)
%
makes our final beliefs p(H; | g) adds up to 1. In the light of g, the relative plausibility
of any two alternatives say H; and Hs is obtainable from

p(H1lg) _  p@|H1)p(H)
p(Hz|g) p(g| H2) p(Ha2)

Their normalizing constants are the same so they cancel out. The ratio p(Hy|g)/p(H2|g)

(5.56)

measures how our initial beliefs favour H; over Hs. The ratio p(H;)/p(Hz2) will also
cancel out if we have no reason to assign different priors for p(H;) and p(Hsz). Finally,
the ratio p(g| H1)/p(g| H2) expresses how well g is predicted by H; compared to Ho.

Figure (5.1) is a schematic diagram of the marginal likelihoods for a complex, too
simple and "just ok" models. The more complex models are able to describe a greater
range of a given data set. However, for a given data g, the "just ok" model has a greater
evidence than either the too simple model or the too complex model. Thus, model
complexity is governed by Occam Razor which tends to favour neither too simple nor
too complex models.
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___toosimple
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: too complex
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\

g
All possible data sets

Figure 5.1: A schematic diagram taken from [Zoubin, Mackay, Bishop| with an adjustment to suit
the explanation to the evidence Framework descibed above. It is a plot of the marginal
likelihood versus g. It shows for a given g, the corresponding marginal likelihood p(g | H;)
for a too simple model, too complex model and ’just right’. The more complex model is
able to describe a greater range of data set and vice-versa for a too simple one.

5.3.2 Evaluation of the Evidence and Occam Factor

The evidence ? is the normalizing constant at the first level of inference and it is given
by

(3]0, B) = / p(@1 1. 8)p(f | a)df (5.57)

The posterior p(f | g, «, 3) is proportional to the integrand p(g| f, 3) p(f | @) of equation
(5.57). In the ML principle, the distribution of p(g|«, () is sharply peaked around the
most probable variable fy;p. Hence the evidence can be approximated by

p(gla,B) =~ p(glfup.B)p(fupla)Af (5.58)

where Af is the width and p(farp | @) is the prior which can be imagined to be uniform
on some large interval. Therefore,

1

p(fupla) = NJ; (5.59)

with the Occam factor given by
Af/AY (5.60)

The n-dimensional posterior distribution is well approximated by a Gaussian with the
corresponding Occam factor obtained from the determinant of the Gaussian covariance

matrix:

p(@le.B) =~ p@lfup.B) p(fup|a)@m) |8y 2 (5.61)

best fit likelihood Occam factor

3The evidence is the same as the marginal likelihood of equation (3.51) except that the parameters
have been defined in terms of the precision parameters o and g.
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The evidence is approximately evaluated from the following: Let

Z3(0) = @n /) Zp(0) = @nfo)"? s By = slg-KfI3: By =gl f1B

(5.62)
and also let
M(f,o,8) = BE; + aEf (5.63)
Then we can write equation (5.57) as
Z , QL
p(d|a, B) sz(fo(éfzg(ﬂﬁ)) (5.64)
where
Zu(fa8) = [ e~ {M(708)} (5.65)
Taylor expanding M about fysp to second order gives
M = M(fup) + %(f— fup) 4 (f = faep) (5.66)
Substituting into equation (5.65) and solving gives
Zu(foonB) = 2m)"?|Sp| 72 exp — M(furp) (5.67)

The general form of writing the log-marginal likelihood of equation (5.64) to embody

non-quadratic regularizer functional using a Gaussian approximation is

1
Inp(gla, ) = —InZa) = aBYT — S n|Ss|+ S (2m)
— In Zz(B) — BEMT (5.68)
with ﬁEéV[P representing the misfit of the interpolant (or filter) to g and aE]]cV[P mea-

suring how far fysp is from its null value. The Occam factor is

Af  @mn/2 |52
AOf Zs(a)

(5.69)

5.3.3 Analysis and Method of Estimating « and [

From the evidence approximation of equation (5.68), we can now differentiate the log-

Y

evidence to get optimal estimates for a and (.

Differentiating with respect to «

d 1 dx n
4y ~ _ _pgMP _ 1 ( -1 _f) n
1 n
_ _pmp 1 1
- g 2Tr<2f ) + 5 (5.70)

Setting the derivatives to zero, it is straight forward that the maximum satisfies

U =2aE/" = n-aTry;! (5.71)
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Solving for « from equation (5.71) gives

n/2
a - —
sTr(Z7) + EMP
n

- 5.72
Te (271 + | farp |13 o7

with EJMP equivalent to its corresponding expression of equation (5.62). The quantity
VU is a dimensionless measure which can be interpreted as some sort of x 4 for f since

it can be written in the form;

1
xr = =l fuprl3 = 20 E}'P (5.73)
Iy

where O'J% = 1/« is the variance of f from the null value of the fitted parameters. Another
way of expressing ¥ of equation (5.71) is

n
e}
U = — e
! Z BdZ + a
- 3 s
N Gd2 + a
(5.74)
with A%, =a/B =72, 0?
Differentiating with respect to 3.
2 3 = —E! ——T(Z —) .
1 n
_ MP —1 3T
EMP §Tr<KEf K ) 35 (5.75)
Setting equation (5.75) to zero and manipulating gives
MP zn: d;’
= =23F; = n-—p L
g — Bd? + a
- 2
=1 de +a
(5.76)
Solving for § from equation (5.75) gives
5 = n/2
EMP 4+ STr (KX KT)
- n (5.77)

1§ — Kfupll3 + Tr (K27 KT)

where we have substituted the equivalence of Eéwp in equation (5.62).

*For N independent Gaussian variables with mean p and standard deviation o, the statistic xy =
2
> (I;g) is a measure of misfit.
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5.3.4 Analytical Interpretation

The quantity ¥ = n — a'Tr Z;l of equation (5.71) is the number of good parameter
measurements and has value between 0 and n. The quantity o measures how strongly
the parameters are determined by the prior. Thus, (Vi and a >0) Bd?2/(3d? + «)
is a number between 0 and 1 which measures the strength of the data relative to the prior

5 is small

in the ¢ direction. A direction in parameter space for which d;23 (or d,;?/c?)
compared to a does not contribute to the number of good parameter measurements. As

a/f — 0, xy increases from 0 to n.

Variational Inference Methods

This is a technique one can employ whenever a complex or complicated distribution is en-
countered in a statistical data modelling task. It evolves around Gibbs inequality method
and is often associated with the Kullback and Leibler divergence theorem [Dgr(Q | P)]
between two probability distribution say Q(X) and P(X). Mathematically, Dxr(Q || P)

(also called Relative Entropy) over the same alphabet say A xis defined as

palP) = [ @uomPidax
o L PX)
_ /Q(X)l a0 X
= -F@Q)
(5.78)
where PX)
f:/Q(X)lnde (5.79)

Equation (5.78) satisfies
Drr(Q| P) =0

with equality if and only if Q = P. ©

Variational Inference in its own world (from Statistical Physics) attempts to approx-
imate an integrand until the integral becomes tractable. The idea is to either bound
the integrand from above or below so that the integral can be reduced to an optimiza-
tion problem. No parameter estimation is required and the quantity of the integral is
optimized directly. It further allows flexibility in specifying the prior and makes provi-
sion for attaining bounds on the value of the evidence. See Figure (5.2) for an illustration.

The methods to be presented in this section is due Hinton and van Camp.

"We recall that d;?8 = d;?/o” is the scaling factor of the exact expression for Y\, in equation
(3.38)
°In general Dicr(Q || P) # Drr(P || Q)
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Q(0)

Figure 5.2: An illustration to show that Variational Methods is a coordinate ascent algorithm in F

5.4.1 Variational ML and MAP

The incomplete log-likelihood function of a given parameter say ¢ for g is

L) = In / p(.f10)df (5.80)

By introducing the simpler dsitribution @ (f) and maximizing L (¢) with respect to ¢

we have

InL(¢) = ln/Q g’f”’) df

97f|¢>)
> /Qf L ar

= (Inp(@, flo))ay) + Yo
= F(Q(f):9)
(5.81)

where T y) is the entropy of the distribution Q(f) and we have made use of Jensen’s
inequality which makes use of the fact that the logarithmic function is concave.

Exact Optimization of Variational ML using the EM principle

The E-step involves optimizing the posterior Q(f);

F(Q( /Q g,f\)<b)df

(5.82)
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IfQ(f)=p(f|3g,¢) in equation (5.82) we arrive at the following:

FQ():¢) = /p(f|§,¢)lnp(fl‘j}¢‘));$|¢) af
= »(@lo) [ p(f13.00s
= »@3l9)
(5.83)
subject to a normalizing equality constraint
[ewa = s

Thus, the functional F of equation (5.83) becomes independent of f whenever @ (f)
equals p(f|g,). This signifies some kind of tight bounds at the E-step. By introducing

a Lagrange multiplier o, (o > 0), the new functional say F, 4 becomes

Fasl@0) = FQULE) +a[-1+ [ apar]

B L pU18.0)p@19)
- /p<f'§”¢)1 2 (f13.9)

df + a[ 1y / Q(f)df]
(5.85)

By re-substituting p (f|g,¢) with its original simpler distribution Q(f) into equation
(5.85) and taking functional derivatives of F, 4 with respect to Q(f) gives

0
o T @0 = Wple.fl) ~1-MQ() +a (380

Setting the functional derivative to zero and solving for Q(f) gives the updates equation

for the posterior:

Q™ (f) — expla—1)p(f.gle")
= p(flg¢"
(5.87)

The parameter a can also be expressed in terms of the normalization constant to give

a=1- [ p@f16)af (5.89)
The M-step involves the optimization of F of equation (5.80) with respect to ¢;

FQU)6) = / a7 Q) ln%

- / af Q) Inp @ f16) - / aF Q) Q(f)
(5.89)

The entropy Q(f) is independent of ¢. Hence optimizing F with respect to ¢ is re-
stricted to the first integral on the right hand side of equation (5.89). This is because



CHAPTER 5. NUMERICAL AND STATISTICAL ESTIMATION THEORY 62

the parameter ¢! associated with Q(f) in equation (5.87) is/are the previous estimates
obtained from the #*"-iterate of an M-step and this was used in computing for the current
(t 4+ 1)th-iterate of Q. Therefore the hyperparameter ¢ associated with @Q in equation
(5.89) is held fixed whilst optimizing F at the M-step.

By taking functional derivatives of F of equation (5.89) with respect to ¢ and solving
for the zero of ¢ gives the updates

$H  arg, max / af p(f 13,6 np (@, f| &) (5.90)

where the optimization is over the second ¢.

Exact Optimization of Variational MAP using the EM principle

From similar lines, the M-step of Variational MAP have updates given by

ot agymax {lnp(o) + [afp(f1a.6mp @110} (69

If in equation (5.91), the prior p(¢) is non-informative, then the expression for the
updates is approximately given by equation (5.90). 7

5.4.2 Summary of Update Equations for Variational ML and MAP
EM-Algorthm

For ML we have the following updates
E-Step:

QM (f) — expla—1)p(f,3le") (5.92)
M-Step:

#H — arg, max / fp(f15.4)np @, 11 6) (5.93)

For MAP, we have the following updates
E-Step:

QM (f) — expla—1)p(f,3l0") (5.94)
M-Step:

ot argymax {1l p(o) + [ a7 p (713,690 (0.710)} (5.95)

"Recall, that the posterior for f in MAP and ML have the same equation but difference exist in
the estimation of parameters. The difference is due to the introduction of a prior distribution over the
parameters for the MAP. So that if the prior is non-informative the two becomes the same.
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What we failed to do and why?

If anything at all, we have been able to extend Variational Learning methods to ML and
MAP. However, we did not apply the method to the Gravity problem since our main
objective here is to use MAP and ML as platforms for understanding the underlying
theory and concepts within the Variational Methods Framework. Despite the fact that
we have not implemented the algorithm to obtain « and 3, we have been able to at least
capitalize on the free form optimization and EM-like algorithmic technique associated
with the objective function F. Therefore, we end ML and MAP here and focus on
Variational Learning Algorithms for Bayesian Methods.

5.4.3 Variational Learning for Bayesian Methods

For convenience, we let the Variational Bayesian model be

p(9, [, B) = p(9,[,0) (5.96)

where the hyperparameter (or parameters) o and 3 still maintains o = >\72nl7 B =1/0?and
6 = {a, B}. Recall; the precision hyperparameter 3 defines a noise variance 0? = 1/3 and
the precision hyperparameter « is the regularization constant. In following the footsteps
of the Bayesian Inference paradigm, we begin with the two levels of inference;

(i) Model fitting where we infer f by obtaining a compact representation of p (f|g,0)
for a given value of 6;

_p@lf,0)p(f16)

P g,0) = — 5.97
(f1g,90) v @10 (5.97)
(7i) infer § by maximizing the evidence p (g|6) of equation (5.97) in (i);
_ glo)p (0
p(e‘g):p(g\ )~p() (5.98)
p(9)

For o and (;

We assume here that we have no knowledge about « and § so we wish to construct an
appropriate prior that embodies our ignorance. This is where the concept of conjugate
priors is really needed. 8 We shall therefore not assign random values to a and f3 like
we did previously by generating values using logspace. Rather we assume in addition
to the likelihood of equation (5.98) a Gamma prior distribution over o and a Gamma
prior distribution over 8. To be realistic, we cannot place a Gaussian distribution over
« and [ since they are both non-negative. The Gamma distribution for o and 3 are
respectively defined by

p(a|aaaba) = F(a;aaaba)

an—1

exp —(bp) ; 0<a<o (5.99)
and

p(Bleg,dg) = T(B;cp,ds)
s

- I‘(ﬂcﬁ) B exp —(dgB) ;3 0<f <o (5.100)

8Conjugate priors are priors whose functional forms belongs to the same family of distribution as the
likelihood.
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where I‘(aa)/dﬂcﬁ and I‘(c,g)/dﬁcﬁ are normalizing factors defined by [ a1 exp —(by @) dev
and fooo B~ exp —(dgB)dB3 respectively and the constants a,, ba, cs and dg are
called hyper-hyperparameters. Their respective mean and variance are a,/b, and
an /b2 for aand cg/ds and Cg/d% for f3.

5.4.4 Bounds for the Marginal Likelihood

We lower bound the log-marginal likelihood of g for model H by introducing a distribu-
tion @ over both f and 6. Thus,

lp(G) = ln/p@,f,e)dedf

p (g, f,0)
| @ ot aas

(Inp (9, £,9))oi0) + Yoo
= FlQO)]

v

(5.101)

where © = {f, o, 8} and Yq(s) is the entropy for @ and the inequality was possible
through the usual appeal to Jensen’s inequality.

Exact Optimization of Variational Bayesian using the EM principle

The learning rules also follows the Bayesian paradigm by integrating out nuisance pa-

rameters/variables.

We derive the E-step and M-step for any arbitrary distribution Q. First, we let

From inequality (5.101), we have

p (. f, . B)
Flae)l = [ arasmigrtd ajias

(5.102)

The distributions of a and § are assumed to be independent, so their joint distribution
Q(a, B) assumes the separable form

Qla, f) = Q) = Qala) Qp(B) (5.103)

However, there is a problem with the separable form of the joint distribution of Q(f, c, 3)
since there exists some stochastic dependencies between f and 6 (i.e between f and «
to be precise). That is,

QS 0) = Q(f,a,0) = Q(f|a) Q) Q(B) (5.104)

Maximizing the lower bound of inequality (5.101) with respect to Q(©) to attain equality
demands that the free distribution:

Q(f.0) = p(f,019)
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To achieve tight bounds requires that we know the normalizing constant, the marginal
likelihood if an exact posterior is to be evaluated. We can go around this problem
provided the distribution of Q(f,a, 3) is separable. At this point, the best we can do
is to assume and accept that we can (no matter what ever circumstance pertains to the
stochastic dependency between f and «), constrain the posterior to a simple factorized

form for the distribution ) to an approximation

Q(f, . B) = Q(f) Q) Q(P) (5.105)
Inserting approximation (5.105) into equation (5.102) gives
_ p(.fo0 B H)
FIQ®)] = [ QU Q) St af dads
= (Inp(9,0))qe) + Toe) (5.106)

Using calculus of variation (shown in appendix A), the solution for maximizing the
functional F[Q(O)] with respect to each of the individual @ distribution is of the form

exp (Inp(7,0))qQ,,

QlO) = T (17 (3.6) 0,06,

(5.107)

or

InQ; (©) = exp(p(9,0))q,., + constant (5.108)

where (®);-; denotes the expectation with respect to every distribution other than

Qi(©:).

Equation (5.108) embodies both the E-step and M-step of the Variational Bayesian
EM-Algorithm.

5.4.5 Application of Variational Bayesian EM (VBEM) to the Gravity
Problem

We now apply the above equations to the Gravity Problem. Figure (5.3) is a schematic
diagram of the Graphical model for VBEM. From probability of everything,

Figure 5.3: A graphical model of the Variational Bayesian approach

p(g, [, BIH) = p(g|f,8,H)p(fa, H)p(a|H)p(B|H) (5.109)
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The log-probabilities of each of the expressions on the right hand side of equation (5.109)
are as follows:

Inp(a) = Inp(afaa,ba)

= (ta—Dlna —bya + ¢f (5.110)
Inp(B8) = Inp(B|cs,dp)

= (p—1)IpB —dsgf + ¢" (5.111)

where the @ and " are constants given by the log of their normalization factors
I'(aq)/b> and I’(c,g)/dﬂcﬁ respectively.

Inp(fla) = —%fo + glna + " (5.112)
mp@If.0) = amp-LE-KNTG-KD+¢"  (5113)

where " = " = — % In (27).

Substituting equations (5.110), (5.111)
p(g, f,a,B| H) in equation (5.109) gives us

(5.112) and (5.113) into the logarithm of

Y

np(@ Lo B H) = g - D@ KpTG- KD+

a n
_@ ™
2f f+ 5 Ina
+ (ao —1)Ina — by«
+ (eg—1)InpB —dgp + C
(5.114)

where C' = ¢ + ¢" + """ + """ is the overall constant and we have made the hyper-
hyperparameters aq, b, cg and dg explicit with respect to o and 3.

Optimization of Q,(«)

As a distribution of Q,(a), we take expectations of equation (5.114) with respect to
the distribution of Q¢(f) Qg(3) with all other terms indepedent of a put together and
considered as a normalizing constant (of the distribution of «).

Thus, using equations (5.108) and (5.114), the logarithm of Q,(«) gives

mQa(a) = (Inp(3,0))q,) Qs
= <1np(§7f7a7ﬁ)>Qf(f)QB(:6)

_ _%<fo> + glna + (aq —1)Ina — by + C(f,B)

= {(g—{—aa) —1}lna - {%(fo> +ba}a+ C(f,B)
(5.115)
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where C(f, 3) is a constant expression given by all terms on the right hand side of equa-
tion (5.114) not containing a.

Comparing coefficients of Ina and « of equations (5.115) and (5.110), we can easily
infer that the optimal for Qu(cr) denoted Q% (cv) satisfies the Gamma distribution

Q¥ (a) = T(a;4,b) (5.116)
with update equations
o o=
a = 5 +aa
~ 1 T
b = 5 (f f> + ba
(5.117)

The mean and variance of Q%*(a) are given by a/b and oAL/bA2 respectively. We are
still left with an expression for { f7 f) of equation (5.117) which can be obtained from

Qr(f)-

Optimization of Q¢ (f)

In the optimization of Q(f), we take expectations of equation (5.114) with respect to
the distribution of Qq(a) Qg(5):

mQr(f) = (Inp(3,0))qQu(a) Qs

= (Inp(9,f,2.0))Qu(e) Qs

1

= —5{d"(B3 - 2/ K"(8)3

+ {1 (KT(B)K + (o)1) f} + C(a,8)
(5.118)

where C(a, 3) is a constant given by all other expressions independent of f. The op-
timizing distribution Q;pt(f) is a Gaussian identical to the posterior distribution for

particular values of o« = & = (a) and 8 = § = (8). Thus

QF'(f) = »(f13.4,8) ~ N (f'Mpdﬁ, 2;1) (5.119)

with update equations

(1) = T + fae,, fur,
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Optimization of Q3(5)

By following the previous steps, we take expectations with respect to the distribution

Qf(f) and Qn ().

nQs(B) = (9:0))Qale) Qs (1)

np
np(gvaavﬁ)>Qa(a)Qf(f)
wp— {Sa-K(G-

(1

(1

g /) >Qa(a) Qr(f)

+ (cg—1)Inp — dgB + C(f, )

= {(5res) ~1fwp—{ds+ 3 {G-KN"G-KD)}
_I_

C(f, )
(5.120)

where C(a, f) is a constant given by all other expressions independent of /.

Comparing the coefficients of (In /) and 8 in equations (5.120) and (5.111), we can
easily infer that the optimal for Q3(3) denoted QOpt (B) satisfies the Gamma distribution

Q¥ (B) = T(B;¢,d) (5.121)

with update equations

(o

i
= —+c
5 e

i = ds+ o (G-K)"G-KD)
(5.122)

The mean and variance of QOpt( ) are given by ¢/d and c/cl2 respectively. We are

still left with an expression for <(g KT (g-Kf) > of equation (5.122) and it can be
obtained as follows:

(G-KENTG-KN) = 1313 - 25" K (f) + (K NHT(K]))
= 1313 - 25" K fup + (K far)T(K furp)) + Tr (K S7KT)
= 11§ - K fupl + Tr (K $;'KT) (5.123)

9 where furp and Z;l are from equation (5.120).

Finally, from equations (5.117), (5.119), (5.120) and (5.120), the mean & for the
optimized Gamma distribution becomes

. n/2 + aq
& = - -
T (5,0 + L e, I3 + b

(5.124)

9For a stochastic vector x with mean m, covariance M and central moments { (z —m)")

((A2)T (Az)) = Tr (AM AT) + (Am)"(Am)
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A special case of equation (5.124) is when the prior on a becomes non-informative (that

is ao, — 0 and b, — 0). We obtain
& = s - (5.125)
Tr(37) + | fup, 4 Il

Also from equations (5.119),(5.121) and (5.122), we have

. 2
B = — _ 2”/ ;rcﬁ —— (5.126)
§||9_KfMPH2+§Tr(KZf K') + dg

A special case of equation (5.126) is when the prior on 3 becomes non-informative (that
is c3 — 0 and dg — 0). We obtain

A~ n
B = - - — (5.127)
1§ — K fupl3 + Tr(KX KT

The optimal & and 3 of equations (5.125) and (5.127) are the same as the optimal
obtained in the Evidence Framework for o and 3. Hence any optimum of the evidence
approximation also correspond to the optimum of Variational Bayes.

Comparison between L-Curve for Tikhonov and Bayesian
Inference

The main analysis tool of the L-Curve is the Truncated SVD. The flat regions (regions
almost parallel to the abscissa and ordinate axes) are residuals. The solution lies within
the truncated region with the best estimate (optimal parameter) given by the value of
)\%ls at utmost corner. The flat regions gives no information since they are made up of
residuals and therefore does not contribute to the Regularized solution.

Analysis in the Bayesian Inference Framework, is governed by an expression which is
equivalent to the filter factors in the Numerical Framework if the relation )‘%ls =a/f =

)\?2711 o2 is substituted into the expressions for ¥ and Z. It is straight forward to see this
from equations (5.74) and (5.76). Thus;

n d.2
o= Zd-Q—i-aaQ

and

n d2
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The expression for ¥, is equal to z; (i.e ¥; = x;) of equation (5.3). The difference
=Z; = 1—U; are the corresponding SVD components of the residuals which characterizes
data misfit. Moreover, analysis in Emprical Bayes of equations (5.40), (5.41) and (5.42)
stands the same as the analysis of the L-Curve of equations (5.12) and (5.13).

We attribute differences to come from the fact that, the Evidence Framework (Bayesian)
has a well defined functional approximation for evaluating o and § whereas the L-Curve

for Tikhonov’s Regularization is heuristic.

Finally, a search in parameter space of {\?} for which the functional Jo e2(s)w(s)ds
as a function of )\fls is optimal is comparable to the ML principle discussed if we are
dealing with Gaussianity. Hence, [, €*(s)w(s)ds can be viewed as a likelihood func-
tion of )\%ls such that )\fls = o2 )‘%u- The most probable parameter in this case is also

)\2*

rls-



CHAPTER 0
|7 Simulation Results

The Ill-Posed Inverse Problem Competition using the Gravity
Model Example

In this Chapter, we compare estimates obtained for the inverse problem using the meth-
ods described in the previous Chapters namely; standard ML (or LS), Bayesian Infer-
ence Method (BIM), Variational Bayes EM (VBEM), Regularized Maximum Likelihood
Method(MLM) and the L-Curve Method (LCM). We denote the estimated parameters
of BIM by (@im, Bpim), VBEM by (wpm, Bvbm ), MLM by (mim, Bmim) and LCM by
Qe = )\gls. The kernel K and f are the same as used previously. We shall first con-
sider the case with additive noise 02 = 107% and o2 = 10~3 using the matlab built-in
function

€10-6 = 1/(1076) x randn(n,1) and €;p-3 = 1/(1076) x randn(n, 1)

respectively. The depth h is still maintained at 0.25.

Figures (6.1) through (6.6) has values of n set to 50 in their first columns and 100 in
their second columns. The higher the value of n, the more the system’s matrix K has a
lot of its singular values to be very small. Figure (6.1) are subplots of the true function
f in the first row and corrupted output § at the second and third rows with ¢? = 1076
and 02 = 1073 respectively. Figures (6.2) through (6.6) have § corrupted at a noise level
02 =107 in their first rows and 02 = 1073 for the second rows.

With respect to Figures (6.3) through (6.6), the optimal values, qnethods Bmethod for
each method is located on top of the Figure with the ratio cest/Best = A\24 X 02, . Our
interest here is to find whether the ratios show some consistency for different values of
n and o2. Each subplot of Figures (6.3) through (6.6) consists of the true input f and

the estimated (or reconstructed) input.

In each of Figures (6.7) through (6.12), we have all the reconstructed (estimated)
input f.g for n = 50, n = 100 and 02 = 1075, 0> = 1073. The value of n tally with
the last value of 7 at the abscissa axis. The norm of the difference in f.q and true f
(i.e || f — fest ||2) for each method is also calculated for each n and 2. In the remaining
Figures we plotted || f — fest |2 versus n in steps of 10 to 200 for noise levels o2 = 1075,

02=10"°02=10"% 02=10"3,02=10"2 and 02 = 107 L.

1 . . . . .
02, is different from noise level o2. Here, o2, is the reciprocal of fes:.
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true input f at n= 50 true input f at n = 100
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8 8
6 6
4 4
2 2
0 0

0 10 20 30 40 50 0 20 40 60 80 100

Figure 6.1: First Row : The true input f when n =50 (left) and n =100 (right).
Second Row : Output § with an additive noise of 107° for n = 50 (left) and n = 100
(right).
Third Row : Qutput §j with an additive noise of 1072 for n = 50 (left) and n = 100 (right).
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Figure 6.2: Least Squares Estimates illustrating large norm || fis [|l2. The true curve is seen to be flat
due to large values on the ordinate azis. || fis ||2 is large even at low noise level.
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Figure 6.3: First Row : Estimates of amim and Bmim and the ratio qmim /Bmim using the Mazimum,
Likelihood method at 0® =107 for n = 50 (left) and n = 100 (right).
Second Row : Estimates of tmim and Bmim and the 1atio Qmim/Bmim at o2 =103 for
n =50 (left) and n = 100 (right).
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Figure 6.4: First Row : Estimates of awim and Byim and the ratio cwim/Bpim using the Bayesian
Inference method at 0> = 107 for n = 50 (left) and n = 100 (right).
Second Row : Estimates of qpim and Buim and the ratio Quim/Brim at o2 =103 for
n =50 (left) and n =100 (right).
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Figure 6.5: First Row : Estimates of qiem = N2, using the L-Curve method for Tikhonov’s Regular-
ization at 0® = 107° for n = 50 (left) and n = 100 (right).
Second Row : Estimates of duem = A2y at o2of = 1072 for n = 50 (left) and n = 100
(right).
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Figure 6.6: First Row : Estimates of Qybm and Bobm and the tatio qypm/Bubm using the Variational

Bayesian EM algorithm at 0® = 107 for n = 50 (left) and n = 100 (right) for 500
iterations.

Second Row : Estimates of cwpm and Bopm and the ratio cwbm/Bubm ot o2 =103 for
n =150 (left) and n =100 (right) at the same number of iterations.
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Figure 6.7: The estimated fess using the methods described and root of squared deviations of fese from
fato? =107° for n = 50. BIM gives the smallest || f — fest ||2 followed by VBEM followed
by MLM and LCM.
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size, n =100 and additive noise, 0% = 1e-06
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Figure 6.8: The estimated fos; using the methods described and root of squared deviations of fese from f
at 02 = 1075 for n = 100. BIM gives the smallest || f — fest ||2 followed by VBEM followed
by MLM and LCM.
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size,n=50 and additive noise, 02 =0.001
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Figure 6.9: The estimated fess using the methods described and root of squared deviations of fese from
fato? =102 for n = 50. BIM gives the smallest || f — fest |2 followed by VBEM followed
by MLM and LCM. But estimates from LCM has improved considerably.
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Figure 6.10: The estimated fes: using the methods described and root of squared deviations of fest
from f at 0® = 1073 for n = 100. BIM gives the smallest || f — fest ||2 followed by VBEM
followed by MLM and LCM.
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Figure 6.11: VBEM gives the smallest || f — fest ||2 followed by MLM followed by BIM and LCM. at
0% =10"" for n = 50.
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Figure 6.12: MLM gives the smallest || f — fest ||2 followed by BIM followed by VBEM and LCM at

02 =10"" for n = 100.
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Figure 6.13: || f — fest ||2 at varying n at o2 =10"9.
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Figure 6.14: || f — fest ||2 at varying n at 02 = 1075,
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Figure 6.15: || f — fest ||2 at varying n at o2 =10""%.
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Figure 6.16: || f — fest |2 at varying n at o2 =10"3.

200



CHAPTER 6. SIMULATION RESULTS 87

norm of deviation from true f at varying n for 0?=0.01

45 T T T T T T T T |
—— BIM
—— LCM
4k — MLM |
-6 VBEM
3.5F .
3 3 .
>
g
o
= 25+ B
c
o
kS
>
© 2r 7]
S
£
2 15 -
1 - -
0.5F .
0
0 20 40 60 80 100 120 140 160 180 200

size n

Figure 6.17: || f — fest ||2 at varying n at 02 = 1072,
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From the simulation results, BIM looks more sensitive to high noise than ML, VBEM
and LCM. The results from the plots show that for large values of the discretization
parameter n, || f — fest ||2 increases as well. At higher noise level LCM is more robust
followed by VBEM and MLM with BIM as worst. At a given noise level of say ¢ < 1073
BIM is better. On the average, I will go in for VBEM since it is quite robust, computes
quite faster and it is able to handle intractable problems which the Bayesian Inference
finds difficult to handle.



Contributions

. Came out with two important sub-conclusions.

. VBEM optimization algorithm have been derived for the inverse (deconvolution)
problem.

. Shown that any optimum of the Bayesian also corresponds to an optimum of Vari-
ational Bayes.

. Justified that Bayesian can also be viewed as an extension of ML from a Regular-
ization viewpoint (for an acceptable noise-level, o2).

. Shown that for non-informative priors; differences which arise between ML and
Bayesian Inference is due to the correction term Tr(KZ;lKT) .

. Shown from the Gravity Example that estimates obtained using Statistical Meth-
ods are better than the L-Curve for Tikhonov Regularization.

. On heuristic grounds; any optimum of the L-Curve approximation in the Numerical

Framework can be used as an estimate in the Statistical Framework.

. Seen that [, €?(s)w(s)ds can be viewed as a likelihood function of A2, with its

2 %

most probable parameter also given by A7

. Proposed a method which incorporated the method of truncated SVD into Ridge
Regression.
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CHAPTER 7
Conclusion

The work in this thesis focussed on methods within the Statistical and Numerical Frame-
work by using the Gravity Model as our ’yard stick’. We viewed Tikhonov’s Regulariza-
tion from a Statistical viewpoint using ML and MAP. We extended the Tikhonov’s func-
tional ML using the Evidence Framework for Bayesian Inference and also estimated the
parameters using Variational Bayesian EM Algorithm and we arrived at the same equa-
tions which the Evidence Framework gave for the parameters « and ( if non-informative
priors are assigned. We also saw from Chapter 4 that the Regularization parameter
)\2

rls
individual differences lie on the criterion for estimating the parameters.

= )‘72711 02 . All the methods followed some similar analytical path. Their main

In using the Gravity Model example at varying dimensions, we found that Statistical
Methods consistently out-performed the L-Curve estimates at all noise levels considered.
The Evidence Framework was better in terms of Root of Square Deviations from true f.

At 02 = 0.1, VBEM, ML were little better than the Evidence Framework with the
L-Curve as the worst in terms of Root of Squared Deviations from the true f. In all, the
[L-Curve was not as consistent as the Evidence Framework, neither was it as consistent as
ML (Regularized) nor VBEM. This may be due to the fact that the L-Curve estimation
procedure is not built on any well-defined functional form like that given by Statistical
methods. This may account for its robustness and ability to handle perturbations con-
sisting of correlated noise.

With respect to the Gravity problem example, we will prefer VBEM to all since
it is able to manage well and compute faster too. Moreover, estimates obtained using
Statistical Methods have all proven to be better than the L-Curve in terms of smoothness
in relation to the reconstruction of input and the norm of Squared Deviations of the

reconstructed input and the true input f.
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CHAPTER A
|7 Appendix

A.0.1 SVD Asymptotic Analysis of the Explicit Likelihood Function

We have at the back of our minds that the matrix K has some of its singular values d;
to be very small.

st ()| (Zr oot o { T v (o) v}

2o

Asymptotes of the Likelihood Function

(a) asymptotes of p(§|\2,,0%) when \,; — co and 0< o < o

mi 9

1 \» 1
P20 = A () expom

/\ml /\,2711
n 1
=~ ml ()\—m) exp 0
oo (A1)

(b) behaviour of p(§|\2 ,,0%) when )\,;; — 0 and 0 < o < 00

mir @

In this case, we have the constraint;

Say, Dy >0 I fixed small, such that 3 \,; < Dy, ,, for which

P2 0%) =~ XL {H;;l(d%)}expi"—2

1=

~ 0 (A.2)

QL

if and only if two of the three expressions on the right hand side of the approximation
n (A.2) satifies;

{ ?:1<§)}<oo and exp2—<oo

7

1Dn,n is the last or smallest singular value.
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otherwise

we are kind of doubtful about the likelihood function. Thus
(|22, 0%) — 0 xlarge x large for some d; — 0 (A.3)

In the case of (A.3), the exponential term increases faster than the determinant term.
Hence, taking logarithm of the likelihood function will not make the problem go away
since it is unlikely, it can nullify the effect of the positive sign on the exponent.

(c) asymptotes of p(§|A\2,,0%) when o — co and 0 < Ay < 0

PNne?) = (2) (=) e 0

o ml
— 0 (A.4)
(d) behaviour of p(§|A\%,,0%) when ¢ — 0 and 0 < A\, < o0
p(g|A\2,;,0%) — oo ie become undefined (A.5)

A.0.2 Variational Bayesian Factorial Approximation

We consider the lower bound of the log evidence defined in terms of &;

2)
F = / Q@ ) do (A.6)

for say some @ = {@, J9, T3}

Maximizing the functional F (&) over the space of probability distribution Q(2) begins
with an assumption about the factorization of (&) which can be written in a separable

form:
Q(2) = I, Qi(@:) = Q1(21) Q2(D2) Q3(3)
Hence
_ p(g,2)
_ / Qu(2) Qa(22) Qs(23) n s RN 401 dzde  (AT)

From calculus of variation, a maximization of the functional F(Q) with respect to Q(2)
constrains equation (A.7) to satisfy

/Q(@)d@ =1 (A.8)
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The integrand of equation (A.8) was 'dribbled around’ the differential equation

¢ = Q)
= dz = Q(©)do

before initial conditions were applied to obtain an idefinite integral on the left hand side
to give the value, 1 on the right hand side. With this notion in mind, we therefore define
a new function z(@) as follows:

22) = [ Qi) @uleh) @u(el) dz) azh e (A9)
which gives rise to the differential constraint:
2= 0Q10Q2Q3 =0 (A.10)
with the initial conditions (end points) constrained to be z(—o0) = 0 and z(c0) = 1.

Let the integrand of equation (A.7) be defined by

p(9,9)
Q1(21) Q2(92) Q3(93)

Introducing a Lagrange multiplier say « to the constraint of equation (A.10) and adding

h(Q1,Q2,Q3,92) = Q1(1) Q2(D2) Q3(@3)In (A.11)

to equation (A.11) gives

- . p(9.9)
hi(Q1,Q2,@3,9) = Q1(21) Q2(92) @3(23)1 Q1(91) Q2(22) Q3(23)

+ a2 - Q1Q2Q3) (A.12)

The integrand of the integral equation (A.7) then takes the form of equation (A.12).
Maximizing the functional F(Q) with respect to each distribution Q; is tantamount to

solving the set of Euler-Lagrange equations;

dhy, d (Ohy

- — . = Al
0Q); d@(aQZ) 0 (A.13)
dhy, d /Ohy
— = — (== = A.14
0z d@( 0% ) 0 ( )

where ¢ = dQ/d@.

From equation (A.12), Ohr/0Z = «. Substituting into (A.14), we get

da

da A5
2z = ° (A.15)

which shows that « is independent of @. Similarly, differentiating hz, of equation (A.12)
with respect to say ()1 and solving for the zero results

Q2 Q3{1Hp(§’@) —In@Q1 — InQ2 Q3} — Q203 — a@Q2Q3 =0 (A.16)
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Integrating the above with respect to @, and @3 is equivalent to the mean ( or expecta-
tion) under the distributions of Q(@2) and Q(23). Thus we obtain

<1np(§,@)>Q2Q3 — anl — /QQ Qg angQg dgsdds — 1 —a =0 (Al?)
and solving for )1, we get

B exp (Inp (9, 9)) @25 A
@ = exp (1+a+ [ Q2Q31nQ2Q3 ATy do3) 1Y

From equation (A.15) and our assumption about the factorized form;
Qo) = 1LQi(2;)

we can see that the denominator of equation (A.18) is independent of @7 and so it can be
considered as a normalization constant. Hence, we can generally express the solution for
the individual @; that maximizes the functional F(Q) under the assumed factorization

for each i as ~
exp (hlp (g’ @) >Qk¢i

= A19
exp (Inp(g,9) >Qk¢i dg; ( )

Qi =
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