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tThe p/q-ACTIVE Un
apa
itated Fa
ility Lo
ation Problem is the prob-lem of lo
ating p out of n possible fa
ilities ea
h serving at least q out of mgiven 
lients at a minimum 
ost. The problem is an extension of the Un-
apa
itated Fa
ility Lo
ation Problem (UFL) also 
onsidering 
onstraintson the number of fa
ilities and their minimum a
tivity. An example ofthe use of this formulation 
ould be the opening of p new s
hools whereea
h must have at least q pupils. p/q-ACTIVE is NP-hard like the UFL.In this paper we present a thorough investigation of the p/q-ACTIVEUFL and propose a heuristi
 solution method. Di�erent geometri
 andrandom 
ost problem instan
es are 
onsidered. Experiments show that60% of the problems 
an be solved to optimality just by solving the 
or-responding LP-relaxation. Using a simple lo
al sear
h heuristi
, the ge-ometri
 problems are solved with an average gap of 0.1% to the lowerbound of the LP-relaxation. An e�ort is put into isolating problem typesthat are hard to solve. Problems with low p, pq 
lose to m 
ombined with
lustered 
lients or a low variation in the fa
ility opening 
ost are mostlikely to give results worse than average. Gaps up to 8% are observed inthe worst 
ases.Keywords: (p/q-ACTIVE, Un
apa
itated Fa
ility Lo
ation, Heuristi
Solution Methods, LP-relaxation, LP-�t, MIP-heuristi
s)1 Introdu
tionThe p/q-ACTIVE Un
apa
itated Fa
ility Lo
ation Problem (p/q-ACTIVE) is theproblem of lo
ating p out of n possible fa
ilities ea
h serving at least q out of
m given 
lients at the minimum total 
ost. The problem is a natural extensionto the UFL whi
h 
an be made p-ACTIVE by demanding that 
lients should beserved by exa
tly p fa
ilities. The open fa
ilities should serve at least one 
lient,making them a
tive. If the problem is to lo
ate s
hools in a 
ity area it does notseem desirable to open a s
hool serving only one pupil. Therefore, it is requiredthat an a
tive fa
ility serves at least q 
lients. The total 
ost of the solution isthe 
ost of opening the fa
ilities plus the 
ost of serving ea
h of the 
lients giventhe allo
ation of these. 1



In �gure 1, an example is shown with 50 sites to 
hoose from and 250 
lientsto serve. To the right the optimal solution to the problem is shown when
p = 5, q = 40, the 
ost of opening fa
ilities are randomly generated values and
lient 
osts are proportional to the distan
e.

Figure 1: Example of a p/q-ACTIVE (left) and its optimal solution (right). Clients aremarked with dots and possible fa
ility lo
ations are marked with 
ir
les. The valuesof p and q (p = 5, q = 40) are visible on the right map. Exa
tly 5 fa
ilities have beenopened and ea
h of these serves at least 40 
lients.The problem was formulated at a 
onferen
e by Krarup, Leopold-Wildburgerand Pisinger [3℄. M.S
. J. B. Wans
her is the only one who has published a
tualresear
h on p/q-ACTIVE [1℄. He developed a bran
h and bound algorithm withbounds generated by a dual as
ent heuristi
. The main fo
us of his work wasto produ
e good lower bounds.Our �rst goal was to �nd 
lose primal bounds to the problems 
reated byWans
her, using a metaheuristi
 approa
h. We found that all problems 
on-sidered were easily solved to 0.5% from a lower bound obtained by an LP-relaxation. The problems were 
onstru
ted at random with the Eu
lidean dis-tan
e as the 
ost measure between fa
ilities and 
lients. Fa
ilities and 
lientswere uniformly distributed on a square map. Moreover, it was shown that theLP-relaxation of problems with up to 300 sites and 3000 
lients often resultsin feasible solutions to the integer problem and that there is a strong 
onne
-tion between the probability of �nding IP-feasible solutions and the fra
tion pq

m
,denoted the 
overage.The main fo
us of this paper is to investigate many di�erent problem stru
-tures and �nd their properties with respe
t to the LP-relaxation. An algorithmthat bene�ts from the good lower bounds obtained by the LP-relaxation is pro-posed.In the next se
tion we give the formulation of p/q-ACTIVE. A de
ompositionof the model, whi
h will be used in our algorithm, is also proposed. In thesubsequent se
tion initial tests are performed. The goal of the initial tests is toexamine the 
hara
teristi
s of problems with di�erent 
ost stru
tures, su
h asuniform geometri
 distribution, geometri
 distan
es with 
lustered distributionand even 
ompletely random 
osts. Finally, we des
ribe the algorithm andtest it on a wide range of problems, in
luding random generated problems andproblems known from the OR-library [5℄ and the TSP-library [6℄.2



2 Mathemati
al Formulation2.1 p/q-ACTIVE Un
apa
itated Fa
ility Lo
ation Problem
p/q-ACTIVE 
an be des
ribed as UFL with additional 
onstraints.The followingis given: Let N = {1, . . . , n} be the set of potential fa
ilities (also referred to assites). Ea
h fa
ility j has an opening 
ost fj . Furthermore let M = {1, . . . , m}denote the set of 
lients where cij ≥ 0 is the 
ost of serving 
lient i from fa
ility
j. The two sets of binary variables yj and xij are de�ned as follows:

yj =

{

1 if fa
ility j is open
0 otherwise

xij =

{

1 if 
lient i is served by fa
ility j

0 otherwiseThe problem is to satisfy the demand of all 
lients at the least total 
ost giventhat p fa
ilities are opened and at least q 
ustomers are served from ea
h fa
ility.The p/q-ACTIVE model 
an hen
e be written as:
min

∑

i∈M

∑

j∈N

cijxij +
∑

j∈N

fjyj (1)
s.t.

∑

j∈N

xij = 1 ∀i ∈ M (2)
xij ≤ yj ∀i ∈ M, ∀j ∈ N (3)
∑

j∈N

yj = p (4)
∑

i∈M

xij ≥ qyj ∀j ∈ N (5)
xij ∈ {0, 1} ∀i ∈ M, ∀j ∈ N (6)
yj ∈ {0, 1} ∀j ∈ N (7)Here, (4) and (5) are the additional 
onstraints, 
ompared to UFL, regardingthe number of open fa
ilities and the number of 
lients served from ea
h fa
ility.We require that p ≥ 1 and q ≥ 1. Furthermore it is obvious that p ≤ n and

pq ≤ m must hold. The 
overage is de�ned as pq
m
.The UFL 
an be redu
ed to n p/q-ACTIVEs in polynomial time. This is doneby setting q = 1 and p = 1, . . . , n. The UFL is an NP-hard problem [8℄ and
onsequentially p/q-ACTIVE is NP-hard.2.2 De
ompositionIf the lo
ations of the fa
ilities are known the allo
ation of the 
ustomers 
an befound in polynomial time, thus we may split p/q-ACTIVE into two problems: Amaster problem taking 
are of the lo
ation of the p fa
ilities giving the subset offa
ilities P ⊆ N , and a subproblem allo
ating the 
lients to the open fa
ilitiesin the least expensive way. So as soon as we have de
ided whi
h sites are a
tive,3



we only need to solve one subproblem. Mathemati
ally, the subproblem 
an beexpressed as:
min

∑

i∈M

∑

j∈P

cijxij (8)
s.t.

∑

j∈P

xij = 1 ∀i ∈ M (9)
∑

i∈M

xij ≥ q ∀j ∈ P (10)
xij ∈ {0, 1} ∀i ∈ M, ∀j ∈ P (11)This is a 
lassi
 transportation problem whi
h is easily solved as the 
onstraintmatrix is known to be totally unimodular. Thus, to this problem the LP-relaxation always yields integer solutions.2.3 A network formulationWhen solving the subproblem the LP-solver CPLEX 9.0 is used, and as shownin [2℄ it turns out, that there are 
omputational advantages of formulating thesubproblem as a network problem enabling CPLEX to use network simplex.

Figure 2: Network formulation of the subproblem.In Figure 2, the network is represented. Below the graph, the number ofnodes and ar
s are shown as well as the supply/demand in the nodes and the
osts and 
apa
ities of the ar
s. The aim is to �nd the 
heapest way to �send�the 
lients from the node s via a fa
ility and �home�. With the 
apa
ities anddemands shown, it is 
lear that this model is equivalent to the subproblem. Asshown on Figure 2 the total number of nodes in the network is p + m + 1 andthe total number of ar
s is p(m + 1). 4



3 The 
ost stru
tureIn the general formulation of the problem the stru
ture of the allo
ation 
osts,
cij and the lo
ation 
osts, fj are not spe
i�ed. These two measures de�ne the
ost stru
ture of the problem. To make a thorough investigation of p/q-ACTIVE,we investigate di�erent 
ost stru
ture s
enarios. For geometri
 problems the
ost cij of allo
ating a 
lient to a fa
ility is measured as the distan
e betweenthese multiplied by a weight assigned to the 
lient. The average 
ost of openinga fa
ility favg, is 
al
ulated as:

favg = Kcavg

m

pwhere cavg is the average allo
ation 
ost, m
p
is the average number of allo
ationsto an open fa
ility and K is a 
ost ratio between 
lients and fa
ilities, whi
h
an also be varied. The individual fa
ility 
osts are now 
hosen randomly froma uniform distribution between 1

2
favg and 3

2
favg.By varying cij and K, the following di�erent problem instan
e types areobtained:STD Standard problem stru
ture. Eu
lidian norm dis-tan
e, uniform distribution of 
lients and sites, K =

1 and unit weights on 
lients.CLU As STD but with the distribution of 
lients and sites
lustered. 15 di�erent 
lustered distributions are
onsidered, both varying size and density of 
lient-and site-
lusters. See se
tion 6.1.1 for details.RATIO As STD but with the 
ost ratio between site 
ostand 
lient 
ost varying. K = 0.001, 0.01, 0.1, 10, 100NORM As STD but with the type of norm varying, using:
ℓ1, ℓ1.5 and ℓ∞. 1WEIGHT As STD but with weights on the 
lients varying uni-formly between 1 and 1000.RAND Problems with a totally random 
lient 
ost matrixand K = 1.A thorough 
omputational investigation is now performed to reveal the in-�uen
e of instan
e type on the di�
ulty of p/q-ACTIVE.4 Initial tests with an LP-solverThe di�
ulty of the problem instan
es at hand is expe
ted to depend on the par-ti
ular 
ost stru
ture of the instan
e and we aim at revealing su
h dependen
iesin the tests. The instan
e types that are harder to solve will be identi�ed.4.1 IP-feasible solutions to the LP-relaxationTo get a lower bound for the solution value of an instan
e the integer 
onstraintsare relaxed. If the solution of the LP-relaxation is feasible for the integer prob-lem (IP-feasible), it is also optimal. The value is always a lower bound on the5



integer problem. The LP-relaxation is solved using the dual simplex method inCPLEX, sin
e this method in average has shown to be the fastest for p/q-ACTIVE.A test is made to examine the quality of the results from the LP-relaxation.First of all, it is interesting to �nd the number of solutions whi
h are integerfeasible and 
onsequently optimal. In Table 1 it is shown that this is a
tually alarge fra
tion of the solutions.STD CLU RATIO NORM WEIGHT RANDProblems 1440 1440 1440 1440 1440 1440IP-feasible 882 760 956 881 1.041 1.05261.3% 52.8% 66.4% 61.2% 72.3% 73.1%Table 1: Average IP-feasibility of p/q-ACTIVE.All the problems have a �xed number of sites equal to 100. As demonstratedlater the 
on
lusions do not depend on this 
hoi
e. In the tests the number of
lients, m, varies between 100 and 2500, p takes values in the interval between2 and 98 and q is 
hosen so the 
overage is in the interval between 5% and 95%.With a �xed number of sites a test is 
ondu
ted on STD-Problems revealinga 
lear relation between the 
overage and the pro
entage of IP-feasible problems(Figure 3 - left). A relation between p and the number of problems with IP-feasible optimum of the LP-relaxation is also observed (Figure 3 - right). Forsmall values of p a larger per
entage of the problems are IP-feasible. Datafor m = 100, 2500 show the same results. Taking the average of the data onthe right graph gives the relation shown on the left graph for m = 500. The
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overage and the pro
entage of IP-feasible STD-problems. The average of all p-values (left). Values for m = 500 (right).�u
tuations for m = 100 on Figure 3 (left) is a 
onsequen
e of the settings of pin the test.Similar test have been made for the other problem instan
e types de�ned.The 
on
lusions on the dependen
ies of 
overage and p are the same for all thegeometri
 problems as the ones stated above for the simple geometri
 problem.However looking at the RAND-Problems the IP-feasibility is almost indepen-dent of the 
overage. Now the dependen
y is solely on the value of p. For p > 20almost all problems are IP-feasible. This is demonstrated in Figure 4.6
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entage of IP-feasible100x500 RAND-Problems (right).4.2 Quality of non-optimal LP-relaxationsThe quality of the LP-relaxations are measured as the gap to the optimal integersolution. In the previous se
tion it was shown that for many problems the LP-relaxation yields feasible solutions to the original problem. In this se
tion theremaining LP-solutions will be 
ompared to the optimal IP-solution.
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t solution value for 100x500 STD-Problems.Figure 5 shows an ordinary box and whisker plot, where the upper and lowerlines of the �box� 
orresponds to the 25th and 75th per
entile of the gaps. Theline inside the box indi
ates the median. The whiskers are 
al
ulated as theminimum of 1.5 times the interquartile range2 and the distan
e to the pointfurthest away. Points outside this range indi
ate outliers. In Figure 5 the gapsize is observed to depend on both p and the 
overage. p has the major e�e
ton the gap as it is possible to get large gaps even when the 
overage is low aslong as p is small. The peaks on the right graph is a 
onsequen
e of this. The�gure shows that an instan
e with a relatively low p whi
h does not have anIP-feasible solution to the LP-relaxation (whi
h is seldom the 
ase as shown onFigure 3 - right) is more likely to have a solution with a large gap. The valuesfor 
overage equal to 5% 
alls for an explanation. In the relevant problem the2interquartile range: the distan
e between 25th and 75th per
entile7



only way to get low 
overages is to keep the value of p relatively small. In Figure6 (page 11) this e�e
t will also be present.More importantly the range on the axis indi
ates that the gaps are in generalvery small. The mean value for the STD-Problems observed on Figure 5 is0.05%. The same behaviour is also observed for the other geometri
 types.There are, however, in the di�erent instan
e types some outliers whi
h havegaps up to 2%. This will be further investigated in se
tion 6.1.The initial tests give a strong indi
ation that the solutions to the LP-relaxation of the problem give very tight lower bounds. A
tually, more than60% of the LP-solutions were proven optimal. Advantage of this 
an be takenwhen 
onsidering the feasible solutions (upper bounds).5 A heuristi
 solution methodIn this se
tion a lo
al sear
h heuristi
 that fast and e�
iently solves p/q-ACTIVE is developed. In se
tion 2.2 it was shown that the problem of allo
ating
lients 
an be solved in polynomial time when the fa
ility lo
ations are given.Therefore the heuristi
 will only deal with the lo
ation of fa
ilities. Wheneverwe refer to a solution only by the fa
ility lo
ations the allo
ation of 
lients inthe solution is optimal with respe
t to the lo
ations. This is a
hieved by solvingthe subproblem whenever a solution to the master problem is 
onsidered.When an initial solution is known, the heuristi
 sear
hes part of the solutionspa
e, the neighborhood, and by some 
riteria a new solution is 
hosen until astopping 
riteria has been rea
hed. The �rst step is to de�ne the solution spa
e.5.1 Solution spa
eThe solution spa
e S of the master problem 
an be des
ribed by the lo
ationvariables, and it is de�ned as the solutions where exa
tly p fa
ilities have beenopened:
S = B

n with the number of 1's equal to pThe size of the solution spa
e is then:
(

n

p

)

=
n!

(n − p)!p!5.2 Initial solution: LP-relaxation with integer �tIn the pre
eeding se
tion it was demonstrated that the LP-relaxed problem oftenyields integer solutions and if not, gives a good lower bound.This gives rise to the idea of �tting the infeasible relaxed solution to thefeasible spa
e and thereby hopefully �nd a good initial solution to the problem.The most obvious way to �nd a feasible solution is to 
hoose the p sites that havethe largest values of yj . As the pro
ess of 
hoosing sites to the initial solutionbased on the LP-solution is very fast, other sele
tion strategies are 
onsideredas well. Instead of just 
hoosing the p sites with largest yj values, a site willbe 
hosen if the yj value is greater than or equal to a threshold ŷ (0 < ŷ ≤ 1),that is: A fa
ility is 
hosen if yj ≥ ŷ. The set of sites 
hosen by the sele
tion
riteria above is 
alled PLP . If this 
riterion is used there is no guarantee that8



the 
orre
t number of fa
ilities will be opened. Therefore strategies for 
hoosingextra sites and eliminating sites are ne
essary.Three 
ases have to be 
onsidered:
• |PLP | = p. The right number of fa
ilities has been 
hosen and the sub-problem 
an be solved. This is the same as opening the p fa
ilities withlargest yj-values as des
ribed above.
• |PLP | > p. Too many sites are opened. Now the problem is to determinewhi
h of the sites in PLP to keep open. A greedy algorithm is used to
hoose between the sele
ted sites. Like the method to �nd initial solutionsdis
ussed in [2℄, this greedy algorithm 
hooses the best of several solutionsbased on either lo
ating 
heapest fa
ility �rst, allo
ating the 
heapest
ostumers �rst or allo
ating expensive 
ostumers �rst.
• |PLP | < p. Too few sites have been sele
ted by the LP-�t and extra sitesshould be added. This is done by using the same greedy algorithm asabove, but sele
ting from the sites in N \ PLP . If the greedy algorithmis used without further 
hanges, the extra sites that in the 
heapest way
an servi
e all 
lients will be 
hosen. Be
ause the sites in PLP should alsoserve some 
lients (probably most 
lients), the extra sites 
hosen by thegreedy algorithm do not have to serve all the 
lients. It is investigatedif it is a better strategy to disregard some of the 
lients when using thegreedy algorithm. It is not known whi
h 
lients should be assigned to thefa
ilities in PLP . Therefore it is tested to ex
lude di�erent fra
tions of the
lients. Disregarded 
lients are 
onsidered assigned to a fa
ility in PLP .The following disregarding strategies, Btype, that determines the numberof 
lients, mnb, available to the fa
ilities in N \ PLP , are tested:

1. m 4. (p − |PLP |)q
2. m − |PLP |q 5. pq
3. (p − |PLP |)m/p 6. m/2To �nd out whi
h 
lients to blo
k they are sorted by their xij values, where

j ∈ PLP . Then the m−mnb 
lients with the highest values are 
onsideredas already allo
ated. This is done as they most likely will be assigned toone of the fa
ilities in PLP .Extensive tests are made both varying ŷ and Btype strategy. The best 
om-binations are 
hosen. The gap between the obje
tive value and the lower boundis used as a measure of the quality of the solution.In the test ŷ is varied between 0.05 − 1.00 with a step of 0.05 and for ea
hstep all Btype strategies are tested, to 
hoose the best 
ombinations of theseparameters. The test is made on 1187 problems. 64.8% of the problems arebest solved by simply 
hoosing the p sites that have the largest yj values. Theseare removed. This is done so that the methods will 
omplement ea
h other,i.e. di�erent methods �nd good solutions to di�erent types of problems. Of theremaining 418 problems, 256 are best solved by setting ŷ = 0.15. In this 
asetoo many sites are almost always sele
ted and the Btype has minor relevan
e.Of the 162 problems left, 55 are best solved by ŷ = 1 and Btype = 4. In this9



way the following 8 
hoi
es of parameters are made:
1. ŷ = 0.15, Btype = 4 5. ŷ = 0.55, Btype = 5
2. ŷ = 0.35, Btype = 4 6. ŷ = 0.75, Btype = 3
3. ŷ = 0.50, Btype = 5 7. ŷ = 1.00, Btype = 2
4. ŷ = 0.55, Btype = 4 8. ŷ = 1.00, Btype = 4The Btype is only used when too few sites are sele
ted. In the other 
ase thebest of the sele
ted sites are 
hosen, as des
ribed earlier. Using these 8 methodsonly 37 of the 1187 problems 
an be solved better by applying a method notalready sele
ted and the improvement is minimal.5.3 NeighborhoodFor a feasible solution s, the neighborhood N(s) is de�ned as the solutions

s′ ∈ S, that 
an be 
onstru
ted by 
losing a fa
ility in s and opening one not in
s:

N(s) = {s′ : s′ ∈ S ∧ DH(s, s′) = 2}where DH(s, s′) is the Hamming-distan
e between the two solutions. The sizeof the neighborhood is p(n − p) as there are p possibilities of 
hoosing an openfa
ility and n − p possibilities of 
hoosing a 
losed fa
ility.5.4 First Better Admissible sear
hWith the initial solution and the neighborhood de�ned, a lo
al sear
h 
an beperformed. As shown in [2℄ the steepest de
ent approa
h produ
es good andoften optimal solutions but it is also very time 
onsuming due to the size of theneighborhood and the solution time of the subproblem. To redu
e the solutiontime, a First Better Admissible (FBA) sear
h is used. This strategy is a mod-i�
ation of the steepest des
ent algorithm, where instead of sear
hing throughthe entire neighborhood to �nd the best solution, the �rst better solution foundin the neighborhood is 
hosen. This means that more neighborhoods will besear
hed in the same amount of time, but of 
ourse ea
h neighborhood is notinvestigated 
ompletely. A lo
al minimum has been rea
hed when the wholeneighborhood has been sear
hed without improvements, just as for the steepestdes
ent.6 Test of the algorithmThe proposed algorithm is tested on a wide range of di�erent problem types,
overing all of the spe
i�ed stru
tures (se
tion 3). In the following only problemsthat are not IP-feasible are used, bearing in mind that this is less than 40% ofall the problems generated. Also the gaps to the LP-relaxation and not to anexa
t solution are 
onsidered.In Table 2 the mean gaps for the problems listed in Table 1 (se
tion 4) areshown. Only the problems that were not IP-feasible are 
onsidered and gaps forboth the LP-�tter alone and with the FBA-sear
h are 
al
ulated. In this waythe 
al
ulated means are rather pessimisti
 measures as they do not take all theinstan
es in the test into a

ount. 10



Type STD CLU RATIO NORM WEIGHT RANDProblems 1440 1440 1440 1440 1440 1440IP-feasible 882 760 956 886 1.041 1.05261.3% 52.8% 66.4% 61.5% 72.3% 73.1%Gap of FIT 0.083% 0.061% 0.413% 0.080% 0.045% 3.884%Gap of FBA 0.070% 0.055% 0.178% 0.068% 0.029% 3.705%Std deviation 0.120% 0.332% 0.240% 0.134% 0.058% 1.822%FBA-gapTable 2: The mean gap for the LP-�tter alone and with the FBA improvement.Standard deviation of FBA-gap.From Table 1 it is observed that the average gaps for all the geometri
problem types are around 0.1%. It is also 
lear that the FBA-sear
h improves the�tted solution. Thus, the �tter does not always give lo
ally minimal solutions.The 
ompletely randomized problems yield higher gaps than the other problemtypes. We also observe that RATIO-Problems yields higher gaps than theSTD-Problem.
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CoverageFigure 6: 100x500 STD-Problems. The relation between p and the gaps (left). Therelation between the 
overage and the gaps (right).If we take a 
loser look at the STD-Problem, Figure 6 shows that there isa 
lear 
onne
tion between the gaps and the value of p. The link between the
overage and the gaps is also evident. Large gaps are en
ountered when p is lowor the 
overage is 
lose to 100%. This is evident for all the 6 di�erent problemtypes. Remembering that the same 
onne
tion was observed between the exa
tsolution and the lower bound obtained by the LP-relaxation (Figure 5 page 7),11



this may indi
ate that the deviation between the gaps solely originates from thelower bounds. When 
omparing to exa
t solutions this is seen not to be the
ase. A part of the gap of 
ourse is from the lower bound, but the gap from theprimal value to the exa
t solution does have the same dependen
y as what 
anbeen interpreted from Figure 6.6.1 The hard problemsIn the following the di�erent problem instan
e types are 
onsidered one at atime in a sear
h for instan
es that yield worse results than the average 
aseshown in Table 2.6.1.1 CLU - Clustered problemsRegarding 
lustered problems we introdu
e the settings used for the tests. The
lusters 
an be either small or large and the number of 
lients/fa
ilities in ea
h
luster is varied so that they are either dense or sparse from the following de�-nition:
· Small: Having a width and a height in the interval [

1

16
; 1

8

] of the totalwidth and height.
© Large: Having a width and a height in the interval [

1

4
; 1

2

] of the totalwidth and height.
⊡ Sparse: Ea
h 
luster 
ontains a fra
tion of the 
lients/fa
ilities 
hosenrandomly in the interval [

1

16
; 1

8

].
� Dense: Ea
h 
luster 
ontains a fra
tion of the 
lients/fa
ilities 
hosenrandomly in the interval [

1

4
; 1

2

].The height and width of 
lusters are drawn at random from the same intervalgiving the 
lusters an almost quadrati
 shape. In Table 3 all the problem types
onstru
ted from the above de�nition are illustrated. The problems with largeand sparse 
lusters for both 
lients and fa
ilities are omitted be
ause this settingprodu
es problems mu
h like the STD-Problem.0 1 2 3 4 5 6 7 8 9 10 11 12 13 14Clients © © © · · · · © © © © · · · ·

� ⊡ � � ⊡ � ⊡ � ⊡ � ⊡ � ⊡ � ⊡Fa
ilities © © © © © © © · · · · · · · ·

� � ⊡ � � ⊡ ⊡ � � ⊡ ⊡ � � ⊡ ⊡Table 3: The de�ned 
luster types.Among the 
lustered problems 
reated, the problems di�ering the most fromthe STD-Problem are the ones with small and dense 
lusters.In Figure 7 the results from the test are illustrated. From the right graphit is seen that the 
luster types 
ausing larger gaps than the STD-Problemare types: 3, 4, 5 and 13. The 
ommon property for these problems is thatthey all have small 
lient 
lusters. In type 3, 5 and 13 where the results di�er12
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Figure 7: Quality of the heuristi
 solution for di�erent 
luster types. Conne
tionbetween 
luster types and IP-feasibility (left) / FBA-sear
h gaps (right).the most from the STD-Problem the 
lient 
lusters are small and dense. Thistest indi
ates that the most di�
ult 
luster problems are the ones that havesmall and dense 
lusters of 
lients and a spread out distribution of fa
ilities.It is important to noti
e that these 
on
lusions are based on the outliers inthe graph. When generating problems randomly, a large part of the problemswill not di�er from the STD-Problem and one have to look for the problemsstanding out. In parti
ular, the 500 
lient problem giving the worst result was
aptured during the test. This problem was the se
ond worst problem plottedin Figure 7 (of 
luster type 5). In Figure 8 the problem is shown. As dis
ussedin 
onne
tion with Figure 6, the highest gaps are obtained when p is low andif the 
overage is high. This is also the 
ase in the problem shown on Figure 8,where p = 5 and the q = 95 resulting in a 
overage of 95%.

Figure 8: Randomly generated 
lustered 100x500 problems. Client 
lusters are smalland dense while the fa
ility 
lusters are large and sparse. p = 5, q = 95, Gap = 6.28%.Figure 7 also demonstrates that it is not the same types that are performingpoorly 
on
erning IP-feasibility as the ones giving the large gaps. Types 6 and14 are signi�
antly less IP-feasible than the STD-Problem. An interesting pointabout the IP-feasibility is that the �
ontrary� problem types to type 6 and 14are the types 7 and 0 respe
tively. These two types reveal some of the best13



results regarding IP-feasibility, indi
ating that problems with a large number ofsmall 
lusters are harder to solve by LP-relaxation.6.1.2 RATIO - Variation in the 
ost ratio between 
lients and fa
i-litiesAs it was observed in the beginning of this se
tion the problems where the ratio isvaried seems harder to solve than the STD-Problem. We now examine whethersome settings are worse than others. Figure 9 shows that the dependen
y onthe fa
tor K is very high. If K is large the 
han
e of IP-feasibility in
reases,and for the problems that are not IP-feasible the heuristi
 reveals small gaps.This means that if the fa
ilities are mu
h more expensive to pla
e than it is toassign the 
lients the problem is easy. It has the natural explanation that if itis really expensive to open fa
ilities, it is just a matter of opening the 
heaperones and then worry about the 
lients afterwards.
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Figure 9: Quality of the heuristi
 solution for di�erent 
ost ratios.6.1.3 NORM - Di�erent normsThe test of the various norms shows that there is no di�eren
e between thetested norms, neither on the LP-feasibility nor the gaps obtained from the FBA-solution. This is illustrated on Figure 10.
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Figure 10: Quality of the heuristi
 solution for di�erent norms.14



6.1.4 WEIGHT - Weighted 
lientsTable 2 indi
ates, that this stru
ture �helps� the solver and the results for theweighted problems are better. More problems are IP-feasible and those thatare not yield smaller gaps. This result is 
onne
ted to the �ndings from theRATIO-Problems, that 
learly indi
ate that if some fa
ilities are very expensivethe problem is easy. If the 
lients are weighted, the very heavy 
lients are theones to be assigned �rst; all others 
an be dealt with afterwards.6.1.5 RAND - Completely random 
ost matrixIt 
an be seen in Table 2 that the RAND-Problems are IP-feasible more oftenthan the STD-Problems. However the RAND-Problems that are not solvedto optimality by the LP-relaxation yield a mu
h higher gap than the STD-Problems. It is known from se
tion 4.1 that only problems with small p-valuesare interesting. If p is large it is almost 
ertain that the LP-solution will befeasible for the original problem.6.1.6 Test summaryThe overall result of the tests is that small gaps are found for almost all prob-lems. For spe
ial stru
tures there may however be large gaps, parti
ularly if theproblem has a low p and a high 
overage 
ombined with 
lustered 
lients or alow fa
ility opening 
ost. The 
on
lusion of the test is that the problems are ingeneral easy to solve and yield small gaps, but there are nonetheless outliers.Preliminary tests have shown that if the settings yielding large gaps in ea
hof the instan
e types above are 
ombined, the gaps in
rease dramati
ally.6.2 Other problem sizesTo inspe
t the e�e
t of the number of sites, n, a test is 
ondu
ted with n = 200and m = 200, 1000. p and q are set to vary in the same way as in the previoustests. Table 4 shows the tenden
y. Having a larger number of sites seems toa�e
t the results in a slightly negative dire
tion. The various dependen
ies ofproblem stru
ture and parameters dis
overed earlier in this se
tion still holdfor these new problems, but it is worth noting that there are slightly fewer IP-feasible problems. The gaps have not 
hanged signi�
antly, whi
h is also animportant result.Type STD CLU RATIO NORM WEIGHT RANDIP-feasible 51.9% 38.0% 58.7% 51.5% 67.3% 76.0%Gap of FIT 0.09% 0.13% 0.62% 0.11% 0.06% 4.27%Gap of FBA 0.06% 0.11% 0.17% 0.08% 0.04% 3.95%Table 4: Test of problems with 200 sites.6.3 Solution timeA very important aspe
t that we have negle
ted in the pre
eding se
tions is thesolution time. There is a
tually two parts of the solution time. First the time15



it takes to solve the LP-relaxation, whi
h in many 
ases is enough to solve theoriginal problem. If a non-feasible solution is found, the time it takes to performthe LP-�t with FBA-sear
h is also of interest.6.3.1 LP-solverIn our experiments a state-of-the-art LP-solver is used as des
ribed earlier, andthis limits the possibility of lowering the solution time. It is however interestingto examine how the problem types and the p/q settings a�e
t the solution timefor the LP-solver. We look initially at the STD-Problem. As shown in Figure11 there is a strong 
orrelation between p and the solution time. The 
onne
tionto the 
overage is also evident. The 
ombination of a low p and a high 
overageleads to higher 
omputational times.
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CoverageFigure 11: Solution times for the LP-solver for the 100x500 STD-Problem.The number of variables also has a high impa
t on the solution times. Look-ing at the values on the y-axis of Figure 12 it is 
lear that solution times in
reasedramati
ally when the number of 
lients is in
reased. This is a natural 
onse-quen
e as the number of variables in
rease with the number of 
lients.
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Figure 12: Solution times for the LP-solver for the 100x100 problems (left) / 100x2500problems (right).Turning to the other problem types 
onsidered in this arti
le one signi�
antdi�eren
e is observed. The 
ompletely randomized problems are mu
h more time
onsuming for the LP-solver. Table 5 presents an overview. For ea
h problemtype the average and median solution time for problems of size 100x500 has16



been 
al
ulated. The di�eren
e between these two numbers is small for therandomized problems, showing that the problems in general use the averagetime. For all the geometri
 problems the average is mu
h higher than themedian, indi
ating some outliers with very high solution time.Type GEO CLU RATIO NORM WEIGHT RANDAverage [s℄ 13.4 5.0 15.7 10.8 9.9 130.5Median [s℄ 3.2 3.2 7.1 2.2 4.0 108.2Table 5: Average and median of the solution times for 100x500 problems.6.3.2 FBA-sear
hThe time used to make an FBA-sear
h depends on three things. The size ofthe neighborhood, the number of neighborhoods sear
hed in total and the so-lution time of the individual problems in the neighborhood. In Figure 13 thedependen
ies on p and the 
overage are shown (100x500 STD-Problem). Theleft graph has a 
urved shape with a maximum around p = 65. This is notsurprising as the neighborhood is largest for p = n
2

= 50. The FBA-sear
hhowever is slower for p-values slightly larger than the p = 50. This is due to thefa
t that the subproblem grows as p in
reases and thus is more time 
onsumingto solve.There is a 
lear dependen
y on the 
overage as well. The solution timein
reases with the 
overage. The explanation here should be found in Figure6 (page 11) where it is seen that a higher 
overage yields larger gaps for theLP-�t. The higher gaps potentially lead to a higher number of neighborhoodsto sear
h before rea
hing a lo
al minimum and the sear
h hen
e requires moretime.
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 for the 100x500 STD-Problems.When 
onsidering the quality of the heuristi
, it is also relevant to investigatethe distribution of the time used on the di�erent segments of the algorithm. Theleft graph of Figure 14 shows that the major part of the solution time in generalis used on the FBA sear
h. On average it is 10 times slower than the LP-relaxation. It is also seen that the LP-relaxation time has many outliers withvery high solution time. The pi
ture is even 
learer for the larger problems onthe graph to the right. Again, in general the LP-solver is fast but in the worst17




ases even the most time 
onsuming FBA-sear
h uses less time than the LP-solver. The test displayed on Figure 11 and 13 shows that the LP-solver usesmost time for small p but the FBA-sear
h uses most time when p is slightlymore than n
2
. Hen
e slow LP-relaxations will often be linked to fast FBA-sear
hes. Not mu
h time is used to LP-�t 
ompared to the other parts, butfurther optimization of the data stru
tures 
an redu
e the �t-time even more.
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7 Final testsAfter the exhaustive testing it is interesting to try the heuristi
 on a numberof problems des
ribed in the literature. Some of the data sets are derived fromreal life data. As mentioned earlier there has not been mu
h resear
h on p/q-ACTIVE, but the UFL problems in the OR-library [5℄ 
an be given values of pand q and solved as p/q-ACTIVE. Some TSP-problems from the TSP-library [6℄have also been tested. Besides the parameters p and q it is also ne
essary tosplit the nodes in two: one group representing 
lients and one representing sites.This is done for n = 100 and the nodes 
hosen as sites (at random) has beensaved for ea
h of the problems3. All these test problems have been solved bythe FBA-heuristi
. For the OR-library problems, if the LP-relaxation is notIP-feasible, the optimal solution has been found by standard tools in CPLEX.7.1 OR-libraryThree problems have been tested (there are only three large UFL problems inthe OR-library). All three problems have n = 100, m = 1000. The test hasbeen 
arried out with p taking the values p = 2, 5, 8, 15, 25, 65 and q havingvalues giving a 
overage of 10%, 50%, 80%, 90%, 95%. Hen
e 6 ·5 = 30 problemsare tested for ea
h of the three problems in the OR-library. In Table 6 theresults from the tests of the OR-library problems are displayed. To save spa
eall problems having IP-feasible solution to the LP-relaxation have been omitted.This leaves only 38 of the 90 problems. From the number of IP-feasible solutionsit is 
lear that the observation about the high quality of the LP-solution is stillsound.The table shows that all of the problems having p = 2 are IP-feasible. Onthe other hand having p = 5 gives the largest gaps for the LP-solver for bothproblem 
apa and 
ap
. These �ndings 
orrespond well to what was 
on
ludedfrom the preliminary tests. For 
overage 
lose to 100% less IP-feasible LP-solutions are found, but the FBA-heuristi
 still �nds very good solutions ea
htime. As seen in this test, even when optimality 
annot be guaranteed, it isoften the optimal solution that has been found. Only 11 of the 90 results of theFBA are not optimal and these have an average gap of 0.19% to the optimalsolution.

3For further work on these UFL problems the site numbers 
an be downloaded from thewebsite: http://www.student.dtu.dk/∼s011566/19



UFL GAP LP - GAP exa
t - Time [s℄Prob p q Cov. Fit FBA LP FBA LP Fit FBA
apa 5 20 10.0% 0.32% 0.30% -0.30% 0 59.97 2.79 1.7
apa 5 100 50.0% 0.32% 0.30% -0.30% 0 73.53 7.16 2.15
apa 5 160 80.0% 0.31% 0.31% -0.30% 0.01% 358.39 10.92 2.47
apa 5 180 90.0% 0.36% 0.36% -0.25% 0.11% 126.31 11 3.2
apa 5 190 95.0% 0.80% 0.53% -0.19% 0.35% 197.23 11.98 4.41
apa 8 100 80.0% 0.00% 0.00% 0.00% 0 258.64 5.06 3.94
apa 8 112 89.6% 0.01% 0.01% -0.01% 0 451.19 4.09 4.95
apa 8 118 94.4% 0.06% 0.06% -0.06% 0 514.52 5.96 5.56
apa 15 60 90.0% 0.01% 0.01% -0.01% 0 43.14 0.6 19.73
apa 15 63 94.5% 0.05% 0.05% -0.05% 0 61.42 5.05 21.4
apa 25 36 90.0% 0.02% 0.02% -0.02% 0 17.49 4.11 51.27
apa 25 38 95.0% 0.05% 0.05% -0.05% 0 16.37 8.17 97.08
apa 65 14 91.0% 0.00% 0.00% 0.00% 0 4.4 17.57 155.71
apb 8 100 80.0% 1.06% 0.41% -0.01% 0.40% 208.51 5.91 6.35
apb 8 112 89.6% 1.57% 0.12% -0.12% 0 119.54 12.62 4.87
apb 8 118 94.4% 1.17% 0.43% -0.29% 0.14% 691.37 12.92 5.59
apb 15 53 79.5% 0.01% 0.01% -0.01% 0 36.18 2.12 15.12
apb 15 60 90.0% 0.09% 0.09% -0.07% 0.02% 74.58 9.09 17.36
apb 15 63 94.5% 0.12% 0.11% -0.11% 0 78.71 8.77 24.45
apb 25 32 80.0% 0.02% 0.02% -0.02% 0 22.38 6.2 39.51
apb 25 36 90.0% 0.03% 0.03% -0.03% 0 34.61 6.84 47.22
apb 25 38 95.0% 0.06% 0.06% -0.06% 0 37.47 10.07 49.35
apb 65 12 78.0% 0.00% 0.00% 0.00% 0 2.65 8.75 120.91
apb 65 13 84.5% 0.00% 0.00% 0.00% 0 2.68 9.08 132.36
apb 65 14 91.0% 0.00% 0.00% 0.00% 0 4.91 24.96 147.04
ap
 5 20 10.0% 0.36% 0.36% -0.10% 0.25% 142.94 1.97 1.06
ap
 5 100 50.0% 0.52% 0.36% -0.10% 0.25% 155.33 5.07 1.76
ap
 5 160 80.0% 0.35% 0.35% -0.10% 0.26% 122.16 7.33 2.63
ap
 5 180 90.0% 0.31% 0.31% -0.10% 0.20% 172.61 8.35 3.34
ap
 5 190 95.0% 0.45% 0.25% -0.18% 0.06% 259.04 8.81 5.3
ap
 8 100 80.0% 0.00% 0.00% 0.00% 0 97.67 0.39 4.13
ap
 8 112 89.6% 0.01% 0.01% -0.01% 0 430.67 0.97 4.97
ap
 8 118 94.4% 0.01% 0.01% -0.01% 0 91.32 0.9 5.81
ap
 15 60 90.0% 0.04% 0.04% -0.04% 0 51.74 1.92 19.21
ap
 15 63 94.5% 0.16% 0.16% -0.16% 0 64.2 3.8 20.61
ap
 25 32 80.0% 0.03% 0.03% -0.03% 0 17.58 6.02 39.97
ap
 25 36 90.0% 0.06% 0.06% -0.06% 0 24.95 10.64 45.53
ap
 25 38 95.0% 0.09% 0.07% -0.07% 0 28.15 12.76 97.69Table 6: Results for the OR-library tests. n = 100, m = 1000. All problems havingan IP-feasible solution have been omitted.
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7.2 TSP-libraryFinally, problems from the TSP-library are tested - this time with four di�erent
ombinations of p and q. Be
ause of the large size of some of the problems,no optimal values have been 
al
ulated. The results from the test are given inTable 7. These results are very interesting. The gaps found are signi�
antlylarger than expe
ted. One gap is 
lose to 8%, whi
h is more than what wasobserved in any of the preliminary tests. This gap is found in the solution ofproblem �1577. The other setting of p for problem �1577 still having a 
overage
lose to 100% also yields a rather large gap of approximately 4%. It is notablethat not only do the solutions to this problem get better with a low 
overage,they are a
tually both optimal. GAP LP - Time [s℄Prob m p q Cov. Fit FBA LP Fit FBAdsj1000 900 5 90 50.0% 0 0 77.3 - -dsj1000 900 5 171 95.0% 2.61% 1.66% 263.13 3.01 6.12dsj1000 900 25 18 50.0% 0 0 9.19 - -dsj1000 900 25 34 94.4% 2.19% 2.19% 41.25 4.36 46.76p
b3038 2938 5 293 49.9% 0 0 1861.31 - -p
b3038 2938 5 558 95.0% 0 0 3638.85 - -p
b3038 2938 25 58 49.4% 1.67% 0.42% 427.91 27.44 550.57p
b3038 2938 25 111 94.5% 0.44% 0.44% 3565.23 52.89 614.86gr431 331 5 33 49.8% 0.01% 0.01% 15.95 0.33 0.25gr431 331 5 62 93.7% 0.26% 0.26% 40.99 0.41 0.41gr431 331 25 6 45.3% 0.79% 0.65% 6.72 0.78 3.48gr431 331 25 12 90.6% 0.45% 0.17% 7.54 1.52 10.84�1400 1300 5 130 50.0% 0 0 68.84 - -�1400 1300 5 247 95.0% 0.64% 0.64% 436.08 1.76 4.58�1400 1300 25 26 50.0% 0 0 26.89 - -�1400 1300 25 49 94.2% 2.44% 1.88% 65.61 9.35 225.98�1577 1477 5 147 49.8% 0 0 168.11 - -�1577 1477 5 280 94.8% 3.57% 3.57% 1363.74 6.42 8.09�1577 1477 25 29 49.1% 0 0 52.44 - -�1577 1477 25 56 94.8% 10.69% 7.89% 141.26 12.98 308.63�3795 3695 5 369 49.9% 0 0 1551.16 - -�3795 3695 5 702 95.0% 0.15% 0.07% 22333.96 55.91 332.63�3795 3695 25 73 49.4% 0 0 577.39 - -�3795 3695 25 140 94.7% 3.11% 1.51% 1422.1 44 1531.55�417 317 5 31 48.9% 0 0 5.01 - -�417 317 5 60 94.6% 1.89% 1.67% 25.47 0.45 0.62�417 317 25 6 47.3% 1.66% 1.66% 2.69 0.76 1.95�417 317 25 12 94.6% 6.59% 4.02% 3.65 1.12 6.89fnl4461 4361 5 436 50.0% 0 0 2845.03 - -fnl4461 4361 5 828 94.9% 0 0 13680.38 22.86 68.48fnl4461 4361 25 87 49.9% 0.52% 0.12% 1541.88 57.07 721.97fnl4461 4361 25 165 94.6% 0.86% 0.45% 5927.34 100.86 1550.09Table 7: Results for the TSP-library tests. n = 100.Solving problem �417 in the test also seems to 
ause some problems. Toanalyze this further, visualizations of the two problems have been 
reated toinvestigate the problem stru
ture. In Figure 15 the two problems mentioned arevisualized. It is seen that these problems have a stru
ture whi
h is not found inany of our problem stru
ture de�nitions des
ribed in se
tion 3. They do haveall 
lients and fa
ilities 
lustered, but these 
lusters are not like the ones de�nedearlier. The 
lusters are very dense and with a very �at re
tangular shape.The important 
on
lusion to be drawn from this test is that even thoughnumerous problems with many di�erent settings and stru
tures have been testedin this work, it is still possible to 
reate spe
i�
 problems with large gaps.21



Figure 15: Problem �1577 (left) and problem �417 (right) from the TSP-library. Thepartition of fa
ilities and 
lients was not spe
i�ed in the TSP-library.
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8 Possible enhan
ementsDuring our work with p/q-ACTIVE we have fo
used on examining the solutionqualities when looking at di�erent problem stru
tures and 
hara
teristi
s. Fur-ther resear
h 
ould be fo
used on the following areas.
• The basis of our heuristi
 is the solution to the LP-relaxed problem. Thetests have shown that in a limited number of 
ases the LP-solver uses alot more time than in the average 
ase. This 
an lead to that no solutionis found in the time given. To make sure that a solution is always founda me
hanism that stops the LP-solver after a 
ertain amount of time 
anbe implemented. When the LP-solver stops, the non-optimal LP-solution
an be �tted to an initial feasible solution. In our 
ase we 
an use thevalue found by the LP-solver at the time of the break as lower bound,as we are using the dual simplex algorithm. If using primal simplex thenon-optimal solution to the relaxed problem 
ould be �tted just as it isdone with the optimal solution.
• The neighborhood stru
ture and the 
hosen de
omposition lead to heavy
al
ulations in ea
h neighborhood. Another neighborhood stru
ture 
anease the 
omputations and be used as a basis for other heuristi
s. Anexample is a reversed neighborhood stru
ture, de�ned by a �xed numberof 
lient-to-fa
ility reallo
ations. This de�nition leads to a larger neigh-borhood, but the 
al
ulations in ea
h neighborhood is faster.
• Due to the many 
al
ulations needed in the lo
al sear
h heuristi
, it 
angain in speed if the less promising solutions in the solution spa
e (andthereby in the neighborhood) are ex
luded. An ex
lusion 
an be donewith respe
t to the LP-solutions. If a site is not used in the LP-solution(yj = 0) it is also left out in the primal solution spa
e. This leaves onlyfa
ilities that in the LP-solution have a fra
tional yj or yj = 1. Thesolution spa
e 
an be redu
ed even further if the sites having yj = 1 are�xed as well.
• The idea of using the primal and dual solution in 
ombination 
an alsobe used as a guideline to the LP-solver whi
h then resolves the problema number of times. The ideas of Lo
al Bran
hing [11℄ and RelaxationIndu
ed Neighborhood Sear
h (RINS) [12℄ 
an be applied as the LP-solverusually reveal near-optimal solutions even without any altering.
• When solving the problem, CPLEX has been used for solving the de
om-posed transportation problem. To redu
e 
omputation time in this part adedi
ated algorithm for the subproblem 
an be implemented.
• The algorithm used is designed to work well on p/q-ACTIVE in general. Ifthe fo
us is on a real life problem or problems with a spe
i�
 stru
ture, aheuristi
 
an be tailored taking advantage of problem dependent features.
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9 Con
lusionMore than 60% of the problems tested 
an be solved to optimality just bysolving the 
orresponding LP-relaxation. This is the 
ase for all the geometri
problem types tested. The number of IP-feasible problems are very dependenton the 
overage. Almost all problems with a low 
overage are IP-feasible andthe number de
reases to almost 0 as the 
overage in
reases. The remainingproblems have LP-solution values that yield very tight bounds (around 0.05%to optimum).A heuristi
 is introdu
ed and tested on a wide range of problems. In generalthe heuristi
 is very e�e
tive, yielding an average gap for the geometri
 problemsof less than 0.1%. The hardest problems to solve are found to be problems withone or more of the following 
hara
teristi
s: They either have a totally random
ost matrix or they have a geometri
 stru
ture with small and dense 
lustersof 
lients and the opening 
ost of fa
ilities have a relatively small variation. Inany 
ase the value of p is small and the 
overage is 
lose to 100%.Finally the heuristi
 is tested on a number of referen
e problems from theOR-library and the TSP-library. An important observation here is that it ispossible to �nd problems that are hard to solve, but they must have a uniquestru
ture and even in that 
ase most problems will be easy. We have en
ounteredgaps up to 8% in the worst 
ase.In general the results from the proposed heuristi
 are very good and theoptimal solutions are found in most 
ases. In more than 60% of the test problemsoptimality 
an even be proven. We 
on
lude that the p/q-ACTIVE Un
apa
itatedFa
ility Lo
ation Problem is easy. Only in rare 
ases solutions far from optimumare en
ountered.A
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