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Abstract

The p/q-ACTIVE Uncapacitated Facility Location Problem is the prob-
lem of locating p out of n possible facilities each serving at least g out of m
given clients at a minimum cost. The problem is an extension of the Un-
capacitated Facility Location Problem (UFL) also considering constraints
on the number of facilities and their minimum activity. An example of
the use of this formulation could be the opening of p new schools where
each must have at least ¢ pupils. p/g-ACTIVE is NP-hard like the UFL.

In this paper we present a thorough investigation of the p/¢-ACTIVE
UFL and propose a heuristic solution method. Different geometric and
random cost problem instances are considered. Experiments show that
60% of the problems can be solved to optimality just by solving the cor-
responding LP-relaxation. Using a simple local search heuristic, the ge-
ometric problems are solved with an average gap of 0.1% to the lower
bound of the LP-relaxation. An effort is put into isolating problem types
that are hard to solve. Problems with low p, pq close to m combined with
clustered clients or a low variation in the facility opening cost are most
likely to give results worse than average. Gaps up to 8% are observed in
the worst cases.

Keywords: (p/q-ACTIVE, Uncapacitated Facility Location, Heuristic
Solution Methods, LP-relazation, LP-fit, MIP-heuristics)

1 Introduction

The p/q-acTivE Uncapacitated Facility Location Problem (p/q-ACTIVE) is the
problem of locating p out of n possible facilities each serving at least ¢ out of
m given clients at the minimum total cost. The problem is a natural extension
to the UFL which can be made p-AcTIVE by demanding that clients should be
served by exactly p facilities. The open facilities should serve at least one client,
making them active. If the problem is to locate schools in a city area it does not
seem desirable to open a school serving only one pupil. Therefore, it is required
that an active facility serves at least ¢ clients. The total cost of the solution is
the cost of opening the facilities plus the cost of serving each of the clients given
the allocation of these.



In figure 1, an example is shown with 50 sites to choose from and 250 clients
to serve. To the right the optimal solution to the problem is shown when
p = 5,q = 40, the cost of opening facilities are randomly generated values and
client costs are proportional to the distance.

Figure 1: Example of a p/¢-ACTIVE (left) and its optimal solution (right). Clients are
marked with dots and possible facility locations are marked with circles. The values
of p and ¢ (p = 5,¢q = 40) are visible on the right map. Exactly 5 facilities have been
opened and each of these serves at least 40 clients.

The problem was formulated at a conference by Krarup, Leopold-Wildburger
and Pisinger [3]. M.Sc. J. B. Wanscher is the only one who has published actual
research on p/g-AcTIVE [1]. He developed a branch and bound algorithm with
bounds generated by a dual ascent heuristic. The main focus of his work was
to produce good lower bounds.

Our first goal was to find close primal bounds to the problems created by
Wanscher, using a metaheuristic approach. We found that all problems con-
sidered were easily solved to 0.5% from a lower bound obtained by an LP-
relaxation. The problems were constructed at random with the Euclidean dis-
tance as the cost measure between facilities and clients. Facilities and clients
were uniformly distributed on a square map. Moreover, it was shown that the
LP-relaxation of problems with up to 300 sites and 3000 clients often results
in feasible solutions to the integer problem and that there is a strong connec-
tion between the probability of finding TP-feasible solutions and the fraction 22,
denoted the coverage.

The main focus of this paper is to investigate many different problem struc-
tures and find their properties with respect to the LP-relaxation. An algorithm
that benefits from the good lower bounds obtained by the LP-relaxation is pro-
posed.

In the next section we give the formulation of p/¢-AcTIVE. A decomposition
of the model, which will be used in our algorithm, is also proposed. In the
subsequent section initial tests are performed. The goal of the initial tests is to
examine the characteristics of problems with different cost structures, such as
uniform geometric distribution, geometric distances with clustered distribution
and even completely random costs. Finally, we describe the algorithm and
test it on a wide range of problems, including random generated problems and
problems known from the OR-library [5] and the TSP-library [6].



2 Mathematical Formulation

2.1 p/q-ACTIVE Uncapacitated Facility Location Problem

p/q-ACTIVE can be described as UFL with additional constraints.The following
is given: Let N = {1,...,n} be the set of potential facilities (also referred to as
sites). Each facility j has an opening cost f;. Furthermore let M = {1,...,m}
denote the set of clients where ¢;; > 0 is the cost of serving client ¢ from facility
j. The two sets of binary variables y; and z;; are defined as follows:

. 1 if facility j is open
Yi 0 otherwise
{1 if client 7 is served by facility j
Lij =

0 otherwise

The problem is to satisfy the demand of all clients at the least total cost given
that p facilities are opened and at least g customers are served from each facility.
The p/g-AcTIVE model can hence be written as:

min Y iz + > fy; (1)

iEM jEN jEN
s.t.
oy =1 Vie M (2)
JEN
Tij < y; Vie M,VjeN (3)
Yy o= »p (4)
JEN
Z Tij > QY VieN (5)
1eEM
i) €{0,1} VieMVjeN (6)
Yj €{0,1} VjeN (7)

Here, (4) and (5) are the additional constraints, compared to UFL, regarding
the number of open facilities and the number of clients served from each facility.
We require that p > 1 and ¢ > 1. Furthermore it is obvious that p < n and
pg < m must hold. The coverage is defined as 2Z.
The UFL can be reduced to n p/¢-ACTIVEs in polynomial time. This is done
by setting ¢ = 1 and p = 1,...,n. The UFL is an NP-hard problem [8] and
consequentially p/g-AcTIvVE is NP-hard.

2.2 Decomposition

If the locations of the facilities are known the allocation of the customers can be
found in polynomial time, thus we may split p/g-ACTIVE into two problems: A
master problem taking care of the location of the p facilities giving the subset of
facilities P C N, and a subproblem allocating the clients to the open facilities
in the least expensive way. So as soon as we have decided which sites are active,



we only need to solve one subproblem. Mathematically, the subproblem can be
expressed as:

min Z Z CijLij (8)

iEM jEP
s.t.
Sy =1 Vie M (9)
JjeEP
eM
Ty e {0,1} VieMNjeP (11)

This is a classic transportation problem which is easily solved as the constraint
matrix is known to be totally unimodular. Thus, to this problem the LP-
relaxation always yields integer solutions.

2.3 A network formulation

When solving the subproblem the LP-solver CPLEX 9.0 is used, and as shown
in [2] it turns out, that there are computational advantages of formulating the
subproblem as a network problem enabling CPLEX to use network simplex.

Client i

Facility j

Quantity 1 o] P pm m
Supply m 0 0
Demand 0 0 1
Cost 0 i

Bounds [g;m-q-(p-1)] [0;1]

Figure 2: Network formulation of the subproblem.

In Figure 2, the network is represented. Below the graph, the number of
nodes and arcs are shown as well as the supply/demand in the nodes and the
costs and capacities of the arcs. The aim is to find the cheapest way to “send”
the clients from the node s via a facility and “home”. With the capacities and
demands shown, it is clear that this model is equivalent to the subproblem. As
shown on Figure 2 the total number of nodes in the network is p +m + 1 and
the total number of arcs is p(m + 1).



3 The cost structure

In the general formulation of the problem the structure of the allocation costs,
ci; and the location costs, f; are not specified. These two measures define the
cost structure of the problem. To make a thorough investigation of p/¢-ACTIVE,
we investigate different cost structure scenarios. For geometric problems the
cost ¢;; of allocating a client to a facility is measured as the distance between
these multiplied by a weight assigned to the client. The average cost of opening
a facility fqug, is calculated as:

m
Sfavg = Kcqug—
avg avg P

where c,,,4 is the average allocation cost, 2 is the average number of allocations
to an open facility and K is a cost ratio between clients and facilities, which
can also be varied. The individual facility costs are now chosen randomly from
a uniform distribution between 1 foug and 2 fa,.

By varying c¢;; and K, the following different problem instance types are
obtained:

STD Standard problem structure. FEuclidian norm dis-
tance, uniform distribution of clients and sites, K =
1 and unit weights on clients.

CLU As STD but with the distribution of clients and sites
clustered. 15 different clustered distributions are
considered, both varying size and density of client-
and site-clusters. See section 6.1.1 for details.

RATIO As STD but with the cost ratio between site cost
and client cost varying. K = 0.001,0.01,0.1,10, 100

NORM As STD but with the type of norm varying, using:
61, £1_5 and goo 1

WEIGHT As STD but with weights on the clients varying uni-
formly between 1 and 1000.

RAND Problems with a totally random client cost matrix
and K = 1.

A thorough computational investigation is now performed to reveal the in-
fluence of instance type on the difficulty of p/¢-AcTIVE.

4 Initial tests with an LP-solver

The difficulty of the problem instances at hand is expected to depend on the par-
ticular cost structure of the instance and we aim at revealing such dependencies
in the tests. The instance types that are harder to solve will be identified.

4.1 IP-feasible solutions to the LP-relaxation

To get a lower bound for the solution value of an instance the integer constraints
are relaxed. If the solution of the LP-relaxation is feasible for the integer prob-
lem (IP-feasible), it is also optimal. The value is always a lower bound on the



integer problem. The LP-relaxation is solved using the dual simplex method in
CPLEX, since this method in average has shown to be the fastest for p/g-AcTIVE.

A test is made to examine the quality of the results from the LP-relaxation.
First of all, it is interesting to find the number of solutions which are integer
feasible and consequently optimal. In Table 1 it is shown that this is actually a
large fraction of the solutions.

STD | CLU | RATIO | NORM | WEIGHT | RAND

Problems 1440 1440 1440 1440 1440 1440
IP-feasible 882 760 956 881 1.041 1.052
61.3% | 52.8% 66.4% 61.2% 72.3% 73.1%

Table 1: Average IP-feasibility of p/g-ACTIVE.

All the problems have a fixed number of sites equal to 100. As demonstrated
later the conclusions do not depend on this choice. In the tests the number of
clients, m, varies between 100 and 2500, p takes values in the interval between
2 and 98 and g is chosen so the coverage is in the interval between 5% and 95%.

With a fixed number of sites a test is conducted on STD-Problems revealing
a clear relation between the coverage and the procentage of IP-feasible problems
(Figure 3 - left). A relation between p and the number of problems with IP-
feasible optimum of the LP-relaxation is also observed (Figure 3 - right). For
small values of p a larger percentage of the problems are IP-feasible. Data
for m = 100, 2500 show the same results. Taking the average of the data on
the right graph gives the relation shown on the left graph for m = 500. The
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Figure 3: Relation between the coverage and the procentage of IP-feasible STD-
problems. The average of all p-values (left). Values for m = 500 (right).

fluctuations for m = 100 on Figure 3 (left) is a consequence of the settings of p
in the test.

Similar test have been made for the other problem instance types defined.
The conclusions on the dependencies of coverage and p are the same for all the
geometric problems as the ones stated above for the simple geometric problem.
However looking at the RAND-Problems the IP-feasibility is almost indepen-
dent, of the coverage. Now the dependency is solely on the value of p. For p > 20
almost all problems are IP-feasible. This is demonstrated in Figure 4.
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Figure 4: Relation between p and the procentage of IP-feasible problems for RAND-
Problems (left). Relation between the coverage and the procentage of IP-feasible
100x500 RAND-Problems (right).

4.2 Quality of non-optimal LP-relaxations

The quality of the LP-relaxations are measured as the gap to the optimal integer
solution. In the previous section it was shown that for many problems the LP-
relaxation yields feasible solutions to the original problem. In this section the
remaining LP-solutions will be compared to the optimal IP-solution.
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Figure 5: Gaps between the LP-value and the exact solution value for 100x500 STD-
Problems.

Figure 5 shows an ordinary box and whisker plot, where the upper and lower
lines of the “box” corresponds to the 25th and 75th percentile of the gaps. The
line inside the box indicates the median. The whiskers are calculated as the
minimum of 1.5 times the interquartile range? and the distance to the point
furthest away. Points outside this range indicate outliers. In Figure 5 the gap
size is observed to depend on both p and the coverage. p has the major effect
on the gap as it is possible to get large gaps even when the coverage is low as
long as p is small. The peaks on the right graph is a consequence of this. The
figure shows that an instance with a relatively low p which does not have an
IP-feasible solution to the LP-relaxation (which is seldom the case as shown on
Figure 3 - right) is more likely to have a solution with a large gap. The values
for coverage equal to 5% calls for an explanation. In the relevant problem the

2interquartile range: the distance between 25th and 75th percentile



only way to get low coverages is to keep the value of p relatively small. In Figure
6 (page 11) this effect will also be present.

More importantly the range on the axis indicates that the gaps are in general
very small. The mean value for the STD-Problems observed on Figure 5 is
0.05%. The same behaviour is also observed for the other geometric types.
There are, however, in the different instance types some outliers which have
gaps up to 2%. This will be further investigated in section 6.1.

The initial tests give a strong indication that the solutions to the LP-
relaxation of the problem give very tight lower bounds. Actually, more than
60% of the LP-solutions were proven optimal. Advantage of this can be taken
when considering the feasible solutions (upper bounds).

5 A heuristic solution method

In this section a local search heuristic that fast and efficiently solves p/g-
ACTIVE is developed. In section 2.2 it was shown that the problem of allocating
clients can be solved in polynomial time when the facility locations are given.
Therefore the heuristic will only deal with the location of facilities. Whenever
we refer to a solution only by the facility locations the allocation of clients in
the solution is optimal with respect to the locations. This is achieved by solving
the subproblem whenever a solution to the master problem is considered.
When an initial solution is known, the heuristic searches part of the solution
space, the neighborhood, and by some criteria a new solution is chosen until a
stopping criteria has been reached. The first step is to define the solution space.

5.1 Solution space

The solution space S of the master problem can be described by the location
variables, and it is defined as the solutions where exactly p facilities have been
opened:

S = B" with the number of 1’s equal to p

The size of the solution space is then:

(Z) O n;?)!p!

5.2 Initial solution: LP-relaxation with integer fit

In the preceeding section it was demonstrated that the LP-relaxed problem often
yields integer solutions and if not, gives a good lower bound.

This gives rise to the idea of fitting the infeasible relaxed solution to the
feasible space and thereby hopefully find a good initial solution to the problem.
The most obvious way to find a feasible solution is to choose the p sites that have
the largest values of y;. As the process of choosing sites to the initial solution
based on the LP-solution is very fast, other selection strategies are considered
as well. Instead of just choosing the p sites with largest y; values, a site will
be chosen if the y; value is greater than or equal to a threshold § (0 < g < 1),
that is: A facility is chosen if y; > 3. The set of sites chosen by the selection
criteria above is called Prp. If this criterion is used there is no guarantee that



the correct number of facilities will be opened. Therefore strategies for choosing
extra sites and eliminating sites are necessary.
Three cases have to be considered:

e |Prp| = p. The right number of facilities has been chosen and the sub-
problem can be solved. This is the same as opening the p facilities with
largest y;-values as described above.

e |Prp| > p. Too many sites are opened. Now the problem is to determine
which of the sites in Prp to keep open. A greedy algorithm is used to
choose between the selected sites. Like the method to find initial solutions
discussed in [2], this greedy algorithm chooses the best of several solutions
based on either locating cheapest facility first, allocating the cheapest
costumers first or allocating expensive costumers first.

o |Prp| < p. Too few sites have been selected by the LP-fit and extra sites
should be added. This is done by using the same greedy algorithm as
above, but selecting from the sites in N \ Prp. If the greedy algorithm
is used without further changes, the extra sites that in the cheapest way
can service all clients will be chosen. Because the sites in Pr,p should also
serve some clients (probably most clients), the extra sites chosen by the
greedy algorithm do not have to serve all the clients. It is investigated
if it is a better strategy to disregard some of the clients when using the
greedy algorithm. It is not known which clients should be assigned to the
facilities in Prp. Therefore it is tested to exclude different fractions of the
clients. Disregarded clients are considered assigned to a facility in Prp.

The following disregarding strategies, Byype, that determines the number
of clients, m,;, available to the facilities in N \ Pr,p, are tested:

1. m 4. (p—I|Prpl)q
2. m—|PLplq 5. pq
3. (p—I|Prpl)m/p 6. m/2

To find out which clients to block they are sorted by their x;; values, where
j € Prp. Then the m — my; clients with the highest values are considered
as already allocated. This is done as they most likely will be assigned to
one of the facilities in Py, p.

Extensive tests are made both varying § and Byype strategy. The best com-
binations are chosen. The gap between the objective value and the lower bound
is used as a measure of the quality of the solution.

In the test ¢ is varied between 0.05 — 1.00 with a step of 0.05 and for each
step all By, strategies are tested, to choose the best combinations of these
parameters. The test is made on 1187 problems. 64.8% of the problems are
best solved by simply choosing the p sites that have the largest y; values. These
are removed. This is done so that the methods will complement each other,
i.e. different methods find good solutions to different types of problems. Of the
remaining 418 problems, 256 are best solved by setting § = 0.15. In this case
too many sites are almost always selected and the Byyp. has minor relevance.
Of the 162 problems left, 55 are best solved by § = 1 and Byy,e = 4. In this



way the following 8 choices of parameters are made:

1. §=0.15, Biype =4 5. §=0.55, Biype =5
2. §=0.35, Byype =4 6. §=0.75, Biyp. =3
3. § =050, Bype =5 7. 9 =1.00, Byype =2
4. §=0.55, Biype = 4 8. § =100, Byype = 4

The Byype is only used when too few sites are selected. In the other case the
best of the selected sites are chosen, as described earlier. Using these 8 methods
only 37 of the 1187 problems can be solved better by applying a method not
already selected and the improvement is minimal.

5.3 Neighborhood

For a feasible solution s, the neighborhood N(s) is defined as the solutions
s’ € S, that can be constructed by closing a facility in s and opening one not in
st

N(s)={s":s € SADy(s,s") =2}

where Dy (s,s’) is the Hamming-distance between the two solutions. The size
of the neighborhood is p(n — p) as there are p possibilities of choosing an open
facility and n — p possibilities of choosing a closed facility.

5.4 First Better Admaissible search

With the initial solution and the neighborhood defined, a local search can be
performed. As shown in [2] the steepest decent approach produces good and
often optimal solutions but it is also very time consuming due to the size of the
neighborhood and the solution time of the subproblem. To reduce the solution
time, a First Better Admissible (FBA) search is used. This strategy is a mod-
ification of the steepest descent algorithm, where instead of searching through
the entire neighborhood to find the best solution, the first better solution found
in the neighborhood is chosen. This means that more neighborhoods will be
searched in the same amount of time, but of course each neighborhood is not
investigated completely. A local minimum has been reached when the whole
neighborhood has been searched without improvements, just as for the steepest
descent.

6 Test of the algorithm

The proposed algorithm is tested on a wide range of different problem types,
covering all of the specified structures (section 3). In the following only problems
that are not IP-feasible are used, bearing in mind that this is less than 40% of
all the problems generated. Also the gaps to the LP-relaxation and not to an
exact solution are considered.

In Table 2 the mean gaps for the problems listed in Table 1 (section 4) are
shown. Only the problems that were not IP-feasible are considered and gaps for
both the LP-fitter alone and with the FBA-search are calculated. In this way
the calculated means are rather pessimistic measures as they do not take all the
instances in the test into account.
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Type STD | CLU | RATIO | NORM | WEIGHT | RAND
Problems 1440 1440 1440 1440 1440 1440
IPfensible 832 760 956 886 1.041 1.052

61.3% | 52.8% | 66.4% 61.5% 72.3% 731%
Gap of FIT | 0.083% | 0.061% | 0.413% | 0.080% 0.045% 3.884%
Gap of FBA | 0.070% | 0.055% | 0.178% | 0.068% 0.029% 3.705%
Std deviation | 1000, | 0.332% | 0.240% | 0.134% 0.058% 1.822%
FBA-gap

Table 2: The mean gap for the LP-fitter alone and with the FBA improvement.
Standard deviation of FBA-gap.

From Table 1 it is observed that the average gaps for all the geometric
problem types are around 0.1%. It is also clear that the FBA-search improves the
fitted solution. Thus, the fitter does not always give locally minimal solutions.
The completely randomized problems yield higher gaps than the other problem

types.
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Figure 6: 100x500 STD-Problems. The relation between p and the gaps (left). The
relation between the coverage and the gaps (right).

If we take a closer look at the STD-Problem, Figure 6 shows that there is
a clear connection between the gaps and the value of p. The link between the
coverage and the gaps is also evident. Large gaps are encountered when p is low
or the coverage is close to 100%. This is evident for all the 6 different problem
types. Remembering that the same connection was observed between the exact
solution and the lower bound obtained by the LP-relaxation (Figure 5 page 7),

11



this may indicate that the deviation between the gaps solely originates from the
lower bounds. When comparing to exact solutions this is seen not to be the
case. A part of the gap of course is from the lower bound, but the gap from the
primal value to the exact solution does have the same dependency as what can
been interpreted from Figure 6.

6.1 The hard problems

In the following the different problem instance types are considered one at a
time in a search for instances that yield worse results than the average case
shown in Table 2.

6.1.1 CLU - Clustered problems

Regarding clustered problems we introduce the settings used for the tests. The
clusters can be either small or large and the number of clients/facilities in each
cluster is varied so that they are either dense or sparse from the following defi-
nition:

- Small: Having a width and a height in the interval [
width and height.

%6; %] of the total

(O Large: Having a width and a height in the interval [i; %} of the total
width and height.

[0 Sparse: Each cluster contains a fraction of the clients/facilities chosen

randomly in the interval [1—16, é]

B Dense: Each cluster contains a fraction of the clients/facilities chosen
randomly in the interval [i; %}

The height and width of clusters are drawn at random from the same interval
giving the clusters an almost quadratic shape. In Table 3 all the problem types
constructed from the above definition are illustrated. The problems with large
and sparse clusters for both clients and facilities are omitted because this setting
produces problems much like the STD-Problem.

| JoJ1J2[3]4]5]6]7][8]9]10]11][12]13]14]
Clients "BECEE BE BEEEE BECEE BECEE BECEE BEERE BEE

OlOTOTOTOTOTOT - . . . . . . .
e s BE BESEE S BECEECEE BN BECEECEE BE BEOEES

Table 3: The defined cluster types.

Among the clustered problems created, the problems differing the most from
the STD-Problem are the ones with small and dense clusters.

In Figure 7 the results from the test are illustrated. From the right graph
it is seen that the cluster types causing larger gaps than the STD-Problem
are types: 3, 4, 5 and 13. The common property for these problems is that
they all have small client clusters. In type 3, 5 and 13 where the results differ

12
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Figure 7: Quality of the heuristic solution for different cluster types. Connection
between cluster types and IP-feasibility (left) / FBA-search gaps (right).

the most from the STD-Problem the client clusters are small and dense. This
test indicates that the most difficult cluster problems are the ones that have
small and dense clusters of clients and a spread out distribution of facilities.
It is important to notice that these conclusions are based on the outliers in
the graph. When generating problems randomly, a large part of the problems
will not differ from the STD-Problem and one have to look for the problems
standing out. In particular, the 500 client problem giving the worst result was
captured during the test. This problem was the second worst problem plotted
in Figure 7 (of cluster type 5). In Figure 8 the problem is shown. As discussed
in connection with Figure 6, the highest gaps are obtained when p is low and
if the coverage is high. This is also the case in the problem shown on Figure 8,
where p =5 and the g = 95 resulting in a coverage of 95%.

Figure 8: Randomly generated clustered 100x500 problems. Client clusters are small
and dense while the facility clusters are large and sparse. p = 5,q = 95, Gap = 6.28%.

Figure 7 also demonstrates that it is not the same types that are performing
poorly concerning IP-feasibility as the ones giving the large gaps. Types 6 and
14 are significantly less IP-feasible than the STD-Problem. An interesting point
about the IP-feasibility is that the “contrary” problem types to type 6 and 14
are the types 7 and 0 respectively. These two types reveal some of the best
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results regarding IP-feasibility, indicating that problems with a large number of
small clusters are harder to solve by LP-relaxation.

6.1.2 RATIO - Variation in the cost ratio between clients and faci-
lities

As it was observed in the beginning of this section the problems where the ratio is
varied seems harder to solve than the STD-Problem. We now examine whether
some settings are worse than others. Figure 9 shows that the dependency on
the factor K is very high. If K is large the chance of IP-feasibility increases,
and for the problems that are not IP-feasible the heuristic reveals small gaps.
This means that if the facilities are much more expensive to place than it is to
assign the clients the problem is easy. It has the natural explanation that if it
is really expensive to open facilities, it is just a matter of opening the cheaper
ones and then worry about the clients afterwards.
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Figure 9: Quality of the heuristic solution for different cost ratios.

6.1.3 NORM - Different norms

The test of the various norms shows that there is no difference between the
tested norms, neither on the LP-feasibility nor the gaps obtained from the FBA-
solution. This is illustrated on Figure 10.
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Figure 10: Quality of the heuristic solution for different norms.
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6.1.4 WEIGHT - Weighted clients

Table 2 indicates, that this structure “helps” the solver and the results for the
weighted problems are better. More problems are IP-feasible and those that
are not yield smaller gaps. This result is connected to the findings from the
RATIO-Problems, that clearly indicate that if some facilities are very expensive
the problem is easy. If the clients are weighted, the very heavy clients are the
ones to be assigned first; all others can be dealt with afterwards.

6.1.5 RAND - Completely random cost matrix

It can be seen in Table 2 that the RAND-Problems are IP-feasible more often
than the STD-Problems. However the RAND-Problems that are not solved
to optimality by the LP-relaxation yield a much higher gap than the STD-
Problems. It is known from section 4.1 that only problems with small p-values
are interesting. If p is large it is almost certain that the LP-solution will be
feasible for the original problem.

6.1.6 Test summary

The overall result of the tests is that small gaps are found for almost all prob-
lems. For special structures there may however be large gaps, particularly if the
problem has a low p and a high coverage combined with clustered clients or a
low facility opening cost. The conclusion of the test is that the problems are in
general easy to solve and yield small gaps, but there are nonetheless outliers.

Preliminary tests have shown that if the settings yielding large gaps in each
of the instance types above are combined, the gaps increase dramatically.

6.2 Other problem sizes

To inspect the effect of the number of sites, n, a test is conducted with n = 200
and m = 200, 1000. p and ¢ are set to vary in the same way as in the previous
tests. Table 4 shows the tendency. Having a larger number of sites seems to
affect the results in a slightly negative direction. The various dependencies of
problem structure and parameters discovered earlier in this section still hold
for these new problems, but it is worth noting that there are slightly fewer IP-
feasible problems. The gaps have not changed significantly, which is also an
important result.

Type STD | CLU | RATIO | NORM | WEIGHT | RAND
IP-feasible 51.9% | 38.0% 58.7% 51.5% 67.3% 76.0%
Gap of FIT | 0.09% | 0.13% 0.62% 0.11% 0.06% 4.27%
Gap of FBA | 0.06% | 0.11% 0.17% 0.08% 0.04% 3.95%

Table 4: Test of problems with 200 sites.

6.3 Solution time

A very important aspect that we have neglected in the preceding sections is the
solution time. There is actually two parts of the solution time. First the time
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it takes to solve the LP-relaxation, which in many cases is enough to solve the
original problem. If a non-feasible solution is found, the time it takes to perform
the LP-fit with FBA-search is also of interest.

6.3.1 LP-solver

In our experiments a state-of-the-art LP-solver is used as described earlier, and
this limits the possibility of lowering the solution time. It is however interesting
to examine how the problem types and the p/q settings affect the solution time
for the LP-solver. We look initially at the STD-Problem. As shown in Figure
11 there is a strong correlation between p and the solution time. The connection
to the coverage is also evident. The combination of a low p and a high coverage
leads to higher computational times.
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Figure 11: Solution times for the LP-solver for the 100x500 STD-Problem.

The number of variables also has a high impact on the solution times. Look-
ing at the values on the y-axis of Figure 12 it is clear that solution times increase
dramatically when the number of clients is increased. This is a natural conse-
quence as the number of variables increase with the number of clients.
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Figure 12: Solution times for the LP-solver for the 100x100 problems (left) / 100x2500
problems (right).

Turning to the other problem types considered in this article one significant
difference is observed. The completely randomized problems are much more time
consuming for the LP-solver. Table 5 presents an overview. For each problem
type the average and median solution time for problems of size 100x500 has
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been calculated. The difference between these two numbers is small for the
randomized problems, showing that the problems in general use the average
For all the geometric problems the average is much higher than the

time.

median, indicating some outliers with very high solution time.

Type GEO | CLU | RATIO | NORM | WEIGHT | RAND
Average [s] 13.4 5.0 15.7 10.8 9.9 130.5
Median [s] 3.2 3.2 7.1 2.2 4.0 108.2

Table 5: Average and median of the solution times for 100x500 problems.

6.3.2 FBA-search

The time used to make an FBA-search depends on three things. The size of
the neighborhood, the number of neighborhoods searched in total and the so-
lution time of the individual problems in the neighborhood. In Figure 13 the
dependencies on p and the coverage are shown (100x500 STD-Problem). The
left graph has a curved shape with a maximum around p = 65. This is not
surprising as the neighborhood is largest for p = § = 50. The FBA-search
however is slower for p-values slightly larger than the p = 50. This is due to the
fact that the subproblem grows as p increases and thus is more time consuming
to solve.

There is a clear dependency on the coverage as well. The solution time
increases with the coverage. The explanation here should be found in Figure
6 (page 11) where it is seen that a higher coverage yields larger gaps for the
LP-fit. The higher gaps potentially lead to a higher number of neighborhoods
to search before reaching a local minimum and the search hence requires more

time.
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Figure 13: Solution times for the FBA-heuristic for the 100x500 STD-Problems.

When considering the quality of the heuristic, it is also relevant to investigate
the distribution of the time used on the different segments of the algorithm. The
left graph of Figure 14 shows that the major part of the solution time in general
is used on the FBA search. On average it is 10 times slower than the LP-
relaxation. It is also seen that the LP-relaxation time has many outliers with
very high solution time. The picture is even clearer for the larger problems on
the graph to the right. Again, in general the LP-solver is fast but in the worst
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cases even the most time consuming FBA-search uses less time than the LP-
solver. The test displayed on Figure 11 and 13 shows that the LP-solver uses
most time for small p but the FBA-search uses most time when p is slightly
more than 7. Hence slow LP-relaxations will often be linked to fast FBA-
searches. Not much time is used to LP-fit compared to the other parts, but

further optimization of the data structures can reduce the fit-time even more.
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50

Figure 14: Solution times distributed on LP-relaxation, LP-FIT and FBA-Search.
100x500 STD-Problems (left) / 100x2500 STD-Problems (right).
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7 Final tests

After the exhaustive testing it is interesting to try the heuristic on a number
of problems described in the literature. Some of the data sets are derived from
real life data. As mentioned earlier there has not been much research on p/g-
ACTIVE, but the UFL problems in the OR-library [5] can be given values of p
and ¢ and solved as p/g-AcTIVE. Some TSP-problems from the TSP-library [6]
have also been tested. Besides the parameters p and ¢ it is also necessary to
split the nodes in two: one group representing clients and one representing sites.
This is done for n = 100 and the nodes chosen as sites (at random) has been
saved for each of the problems®. All these test problems have been solved by
the FBA-heuristic. For the OR-library problems, if the LP-relaxation is not
IP-feasible, the optimal solution has been found by standard tools in CPLEX.

7.1 OR-library

Three problems have been tested (there are only three large UFL problems in
the OR-library). All three problems have n = 100, m = 1000. The test has
been carried out with p taking the values p = 2,5,8,15,25,65 and ¢ having
values giving a coverage of 10%, 50%, 80%, 90%, 95%. Hence 6-5 = 30 problems
are tested for each of the three problems in the OR-library. In Table 6 the
results from the tests of the OR-library problems are displayed. To save space
all problems having IP-feasible solution to the LP-relaxation have been omitted.
This leaves only 38 of the 90 problems. From the number of IP-feasible solutions
it is clear that the observation about the high quality of the LP-solution is still
sound.

The table shows that all of the problems having p = 2 are IP-feasible. On
the other hand having p = 5 gives the largest gaps for the LP-solver for both
problem capa and capc. These findings correspond well to what was concluded
from the preliminary tests. For coverage close to 100% less IP-feasible LP-
solutions are found, but the FBA-heuristic still finds very good solutions each
time. As seen in this test, even when optimality cannot be guaranteed, it is
often the optimal solution that has been found. Only 11 of the 90 results of the
FBA are not optimal and these have an average gap of 0.19% to the optimal
solution.

3For further work on these UFL problems the site numbers can be downloaded from the
website: http://www.student.dtu.dk/~s011566/
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UFL GAP TP - GAP exact - Time [s]

H Prob ‘ p ‘ q ‘ Cov. ‘ Fit FBA LP FBA LP Fit FBA H
capa 5 20 | 10.0% | 0.32% | 0.30% | -0.30% 0 59.97 2.79 1.7
capa 5 | 100 | 50.0% | 0.32% | 0.30% | -0.30% 0 73.53 7.16 2.15
capa 5 | 160 | 80.0% | 0.31% | 0.31% | -0.30% | 0.01% | 358.39 | 10.92 2.47
capa 5 | 180 | 90.0% | 0.36% | 0.36% | -0.25% | 0.11% | 126.31 11 3.2
capa 5 | 190 | 95.0% | 0.80% | 0.53% | -0.19% | 0.35% | 197.23 | 11.98 4.41
capa 8 | 100 | 80.0% | 0.00% | 0.00% 0.00% 0 | 258.64 5.06 3.94
capa 8 | 112 | 89.6% | 0.01% | 0.01% | -0.01% 0 | 451.19 4.09 4.95
capa 8 | 118 | 94.4% | 0.06% | 0.06% | -0.06% 0 | 514.52 5.96 5.56
capa | 15 60 | 90.0% | 0.01% | 0.01% | -0.01% 0 43.14 0.6 19.73
capa | 15 63 | 94.5% | 0.05% | 0.05% | -0.05% 0 61.42 5.05 21.4
capa | 25 36 | 90.0% | 0.02% | 0.02% | -0.02% 0 17.49 4.11 51.27
capa | 25 38 | 95.0% | 0.05% | 0.05% | -0.05% 0 16.37 8.17 97.08
capa | 65 14 | 91.0% | 0.00% | 0.00% 0.00% 0 4.4 | 17.57 | 155.71
capb 8 | 100 | 80.0% | 1.06% | 0.41% | -0.01% | 0.40% | 208.51 5.91 6.35
capb 8 | 112 | 89.6% | 1.57% | 0.12% | -0.12% 0 | 119.54 | 12.62 4.87
capb 8 | 118 | 94.4% | 1.17% | 0.43% | -0.29% | 0.14% | 691.37 | 12.92 5.59
capb | 15 53 | 79.5% | 0.01% | 0.01% | -0.01% 0 36.18 2.12 15.12
capb | 15 60 | 90.0% | 0.09% | 0.09% | -0.07% | 0.02% 74.58 9.09 17.36
capb | 15 63 | 94.5% | 0.12% | 0.11% | -0.11% 0 78.71 8.77 24.45

capb | 25 32 | 80.0% | 0.02% | 0.02% | -0.02% 0
capb | 25 36 | 90.0% | 0.03% | 0.03% | -0.03% 0
capb | 25 38 | 95.0% | 0.06% | 0.06% | -0.06% 0 37.47 | 10.07 49.35
capb | 65 12 | 78.0% | 0.00% | 0.00% 0.00% 0
capb | 65 13 | 84.5% | 0.00% | 0.00% 0.00% 0

capb | 65 14 | 91.0% | 0.00% | 0.00% 0.00% 0 4.91 | 24.96 | 147.04
capc 5 20 | 10.0% | 0.36% | 0.36% | -0.10% | 0.25% | 142.94 1.97 1.06
capc 5 | 100 | 50.0% | 0.52% | 0.36% | -0.10% | 0.25% | 155.33 5.07 1.76
capc 5 | 160 | 80.0% | 0.35% | 0.35% | -0.10% | 0.26% | 122.16 7.33 2.63
capc 5 | 180 | 90.0% | 0.31% | 0.31% | -0.10% | 0.20% | 172.61 8.35 3.34
capc 5 | 190 | 95.0% | 0.45% | 0.25% | -0.18% | 0.06% | 259.04 8.81 5.3
capc 8 | 100 | 80.0% | 0.00% | 0.00% 0.00% 0 97.67 0.39 4.13
capc 8 | 112 | 89.6% | 0.01% | 0.01% | -0.01% 430.67 0.97 4.97

0

capc 8 118 94.4% 0.01% 0.01% -0.01% 0 91.32 0.9 5.81
capc 15 60 90.0% 0.04% 0.04% -0.04% 0 51.74 1.92 19.21
capc 15 63 94.5% 0.16% 0.16% -0.16% 0 64.2 3.8 20.61
capc 25 32 80.0% 0.03% 0.03% -0.03% 0 17.58 6.02 39.97
capc 25 36 90.0% 0.06% 0.06% -0.06% 0 24.95 10.64 45.53
capc 25 38 95.0% 0.09% 0.07% -0.07% 0 28.15 12.76 97.69

Table 6: Results for the OR-library tests. n = 100, m = 1000. All problems having
an IP-feasible solution have been omitted.
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7.2 TSP-library

Finally, problems from the TSP-library are tested - this time with four different
combinations of p and ¢. Because of the large size of some of the problems,
no optimal values have been calculated. The results from the test are given in
Table 7. These results are very interesting. The gaps found are significantly
larger than expected. One gap is close to 8%, which is more than what was
observed in any of the preliminary tests. This gap is found in the solution of
problem f11577. The other setting of p for problem 11577 still having a coverage
close to 100% also yields a rather large gap of approximately 4%. It is notable
that not only do the solutions to this problem get better with a low coverage,
they are actually both optimal.

GAP LP - Time [s]

H Prob ‘ m ‘ p ‘ q ‘ Cov. ‘ Fit FBA LP Fit FBA H
dsj1000 900 5 90 50.0% 0 0 77.3 - -
dsj1000 900 5 171 95.0% 2.61% 1.66% 263.13 3.01 6.12
dsj1000 900 25 18 50.0% 0 0 9.19 - -
dsj1000 900 25 34 94.4% 2.19% 2.19% 41.25 4.36 46.76
pcb3038 2938 5 293 49.9% 0 0 1861.31 - -
pcb3038 2938 5 558 95.0% 0 0 3638.85 - -
pcb3038 2938 25 58 | 49.4% 1.67% 0.42% 427.91 27.44 550.57
pcb3038 2938 25 111 94.5% 0.44% 0.44% 3565.23 52.89 614.86
gra31l 331 5 33 | 49.8% 0.01% 0.01% 15.95 0.33 0.25
gr431 331 5 62 93.7% 0.26% 0.26% 40.99 0.41 0.41
gr431 331 25 6 45.3% 0.79% 0.65% 6.72 0.78 3.48
gr431 331 25 12 90.6% 0.45% 0.17% 7.54 1.52 10.84
11400 1300 5 130 50.0% 0 0 68.84 - -
fl1400 1300 5 247 95.0% 0.64% 0.64% 436.08 1.76 4.58
11400 1300 25 26 50.0% 0 0 26.89 - -
11400 1300 25 49 94.2% 2.44% 1.88% 65.61 9.35 225.98
1577 1477 5 147 49.8% 0 0 168.11 - -
11577 1477 5 280 94.8% 3.57% 3.57% 1363.74 6.42 8.09
11577 1477 25 29 49.1% 0 0 52.44 - -
1577 1477 25 56 94.8% 10.69% 7.89% 141.26 12.98 308.63
13795 3695 5 369 49.9% 0 0 1551.16 - -
13795 3695 5 702 95.0% 0.15% 0.07% 22333.96 55.91 332.63
13795 3695 25 73 | 49.4% 0 0 577.39 - -
13795 3695 25 140 94.7% 3.11% 1.51% 1422.1 44 1531.55
1417 317 5 31 48.9% 0 0 5.01 - -
fl417 317 5 60 94.6% 1.89% 1.67% 25.47 0.45 0.62
fl417 317 25 6 47.3% 1.66% 1.66% 2.69 0.76 1.95
fl417 317 25 12 94.6% 6.59% 4.02% 3.65 1.12 6.89
fnl4461 4361 5 436 50.0% 0 0 2845.03 - -
fnl4461 4361 5 828 94.9% 0 0 13680.38 22.86 68.48
fnl4461 4361 25 87 | 49.9% 0.52% 0.12% 1541.88 57.07 721.97
fnl4461 4361 25 165 94.6% 0.86% 0.45% 5927.34 100.86 1550.09

Table 7: Results for the TSP-library tests. n = 100.

Solving problem fl417 in the test also seems to cause some problems. To
analyze this further, visualizations of the two problems have been created to
investigate the problem structure. In Figure 15 the two problems mentioned are
visualized. It is seen that these problems have a structure which is not found in
any of our problem structure definitions described in section 3. They do have
all clients and facilities clustered, but these clusters are not like the ones defined
earlier. The clusters are very dense and with a very flat rectangular shape.

The important conclusion to be drawn from this test is that even though
numerous problems with many different settings and structures have been tested
in this work, it is still possible to create specific problems with large gaps.
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Figure 15: Problem fl1577 (left) and problem fl417 (right) from the TSP-library. The
partition of facilities and clients was not specified in the TSP-library.
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8 Possible enhancements

During our work with p/g-AcTIVE we have focused on examining the solution
qualities when looking at different problem structures and characteristics. Fur-
ther research could be focused on the following areas.

e The basis of our heuristic is the solution to the LP-relaxed problem. The
tests have shown that in a limited number of cases the LP-solver uses a
lot more time than in the average case. This can lead to that no solution
is found in the time given. To make sure that a solution is always found
a mechanism that stops the LP-solver after a certain amount of time can
be implemented. When the LP-solver stops, the non-optimal LP-solution
can be fitted to an initial feasible solution. In our case we can use the
value found by the LP-solver at the time of the break as lower bound,
as we are using the dual simplex algorithm. If using primal simplex the
non-optimal solution to the relaxed problem could be fitted just as it is
done with the optimal solution.

e The neighborhood structure and the chosen decomposition lead to heavy
calculations in each neighborhood. Another neighborhood structure can
ease the computations and be used as a basis for other heuristics. An
example is a reversed neighborhood structure, defined by a fixed number
of client-to-facility reallocations. This definition leads to a larger neigh-
borhood, but the calculations in each neighborhood is faster.

e Due to the many calculations needed in the local search heuristic, it can
gain in speed if the less promising solutions in the solution space (and
thereby in the neighborhood) are excluded. An exclusion can be done
with respect to the LP-solutions. If a site is not used in the LP-solution
(y; = 0) it is also left out in the primal solution space. This leaves only
facilities that in the LP-solution have a fractional y; or y; = 1. The
solution space can be reduced even further if the sites having y; = 1 are
fixed as well.

e The idea of using the primal and dual solution in combination can also
be used as a guideline to the LP-solver which then resolves the problem
a number of times. The ideas of Local Branching [11] and Relaxation
Induced Neighborhood Search (RINS) [12] can be applied as the LP-solver
usually reveal near-optimal solutions even without any altering.

e When solving the problem, CPLEX has been used for solving the decom-
posed transportation problem. To reduce computation time in this part a
dedicated algorithm for the subproblem can be implemented.

e The algorithm used is designed to work well on p/g-ACTIVE in general. If
the focus is on a real life problem or problems with a specific structure, a
heuristic can be tailored taking advantage of problem dependent features.
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9 Conclusion

More than 60% of the problems tested can be solved to optimality just by
solving the corresponding LP-relaxation. This is the case for all the geometric
problem types tested. The number of IP-feasible problems are very dependent
on the coverage. Almost all problems with a low coverage are IP-feasible and
the number decreases to almost 0 as the coverage increases. The remaining
problems have LP-solution values that yield very tight bounds (around 0.05%
to optimum).

A heuristic is introduced and tested on a wide range of problems. In general
the heuristic is very effective, yielding an average gap for the geometric problems
of less than 0.1%. The hardest problems to solve are found to be problems with
one or more of the following characteristics: They either have a totally random
cost matrix or they have a geometric structure with small and dense clusters
of clients and the opening cost of facilities have a relatively small variation. In
any case the value of p is small and the coverage is close to 100%.

Finally the heuristic is tested on a number of reference problems from the
OR-library and the TSP-library. An important observation here is that it is
possible to find problems that are hard to solve, but they must have a unique
structure and even in that case most problems will be easy. We have encountered
gaps up to 8% in the worst case.

In general the results from the proposed heuristic are very good and the
optimal solutions are found in most cases. In more than 60% of the test problems
optimality can even be proven. We conclude that the p/g-AcTIVE Uncapacitated
Facility Location Problem is easy. Only in rare cases solutions far from optimum
are encountered.
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