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Abstract

A deformable template method for eye tracking
on full face images is presented. The strengths
of the method are that it is fast and retains accu-
racy independently of the resolution. We com-
pare the method with a state of the art active

contour approach, showing that the heuristic method

15 more accurate.

1 Introduction

Eye Tracking is the process of finding and track-
ing the eye of a human in a sequence of images.
Specifically finding and tracking the iris or pupil
can be used to infer the direction of interest of
the human subject, this is denoted gaze.

Gaze is very important for human communi-
cation and also plays an increasing role for hu-
man computer interaction. Gaze can play a role,
e.g., in understanding the emotional state for
humans [1, 2|, synthesizing emotions [5], and for
estimation of attentional state [16]. Specific ap-
plications include devices for the disabled, e.g.,
using gaze as a replacement for a computer mouse
and driver awareness monitoring to improve traf-
fic safety [8].

It has been noted that the high cost of good
gaze detection devices is a major road block for
broader application of gaze technology, hence,
there is a strong motivation for creating systems
that are simple, inexpensive, and robust [7].

Eye tracking is an active area of research.
COGAIN is a network of excellence on Com-
munication by Gaze Interaction, supported by
the European Commission’s IST 6th framework
program. COGAIN integrates cutting-edge ex-
pertise on interface technologies for the benefit
of users with disabilities. The network aims to
gather Furope’s leading expertise in eye track-

Figure 1: Examples of the dataset. The region sur-
rounding the eyes can be found in various ways. We use
a head tracking algorithm[8] based on Active Appear-
ance Models. A subimage is extracted and subsequently
processed by the eye tracking algorithms.

on assistive technologies for citizens with motor
impairments[3]. The authors of this paper are
members of this network, and it summarizes re-
search presented in|[11].

The paper is organized as follows. First a
brief review of some of the methods used for eye
tracking is given in section 2. Section 3 describes
the proposed deformable template method. Sec-
tion 4 describes the EM-contour method from
|7] with additional constraints on the model.
The two models are compared in section 5. Fi-
nally some concluding remarks are drawn in sec-
tion 6.

2 Recent Work

Detection of the human eye is a difficult task due
to a weak contrast between the eye and the sur-
rounding skin. As a consequence, many exist-
ing approaches uses close-up cameras to obtain
high-resolution images|7][19]. However, this im-
poses restrictions on head movements. The prob-

ing integration with computers in a research project lem can be overcome by use of a two camera



setup[18][20]. One camera covering the head
and controlling a second camera, which focuses
on one eye of the person. Matsumoto and Ze-
linsky[12] utilizes template and stereo matching.

In many existing approaches the shape of iris
is modeled as a circle [9][10][12][20]. Since the
shape and texture of the object is known, a tem-
plate model can be used with advantage[8][15].
J. Gracht et al.|17] utilizes an iris template gen-
erated by a series of wavelet filtering.

Wang et al.|18] detects the iris using thresh-
olding, morphology and vertical edge operators.
An ellipse is fitted to the resulting binary image.

A probabilistic formulation of eye trackers
has the attraction that uncertainty is handled
in a systematic fashion. Xie et al.[20] utilizes
a Kalman filter with purpose to track the eyes.
The eye region is detected by thresholding and
the center of an eye is used for motion com-
pensation. The center of this iris is chosen as
tracking parameter, while the gray level of the
circle modeled eye is chosen as measurement|21].
Hansen and Pece propose an active contour mo-
del combining local edges along the contour of
the iris|[7]. The contour model is utilized by a
particle filter.

A generative model explaining the variance
of the appearance of the eye is developed by
Moriyama et al.[13]. The system defines the
structures and motions of the eye. The structure
represents information regarding size and color
of iris, width and boldness of eyelid etc. The
motion is represented by the position of upper
and lower eyelids and 2D position of the iris.
Witzner et al. utilizes an Active Appearance
Model[6].

Based on the center of iris estimate, the gaze
direction can be computed utilizing various meth-
ods. Stiefelhagen et al.[15] utilizes a neural net-
work with the eye image as input. Witzner
et al.[6] uses a Gaussian process interpolation
method for inferring the mapping from image
coordinates to screen coordinates. Ishikawa et
al. [8] exploits a geometric head model, which
translates from 2D image coordinates to a di-
rection in space relative to the initial frame.

The present paper is inspired by the line of
thinking mentioned above. We focus on some
of the image processing issues. In particular we
propose a robust algorithm for swift eye tracking
in low-resolution video images. We compare this
algorithm with a proven method[7| and relate

the pixel-wise error to the precision of the gaze
determination.

3 Deformable Template Match-
ing

Modeling the iris as a circle is well-motivated
when the camera pose coincides with the opti-
cal axis of the eye. When the gaze is off the
optical axis, the circular iris is rotated in 3D
space, and appears as an ellipse in the image
plane. Thus, the shape of the contour changes
as a function of the gaze direction and the cam-
era pose. The objective is then to fit an ellipse
to the pupil contour, which is characterized by
a darker color compared to the iris. The ellipse
is parameterized,

X = (Czacya)\laA2>9)> (1)

where (cz, ¢y) is the ellipse centroid, A; and Ao
are the lengths of the major and minor axis re-
spectively. 6 is the orientation of the ellipse.
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Figure 2: The deformable template model. Region P
is the inner circle, and region B is the ring around it.

The model proposed here is based on the re-
lationship between pixel values in two regions,
see figure 2. The pupil region P is the part
of the image I spanned by the ellipse parame-
terized by x. The background region B is de-
fined as the pixels inside an ellipse, surround-
ing but not included in P, as seen in figure 2.
When region P contains the entire object, B
must be outside the object, and thus the differ-
ence in average pixel intensity is maximal. To
ensure equal weighting of the two regions, they
have the same area. The area of the inner el-
lipse P is Ap = wA1As. The shape parameters
of B should satisfy the constraint on the area
Ap/p—Ap = Ap. Asa consequence, the param-



eters is defined as xg = (cgc, Cy, V21, V29, 9),
while xp is defined as (1).

The pupil contour can now be estimated by
minimizing the cost function,

£ = Av(P) — Av(B), 2)

where Av(B) and Av(P) are the average pixel
intensities of the background - in this case the
iris - and pupil region respectively.

The model is deformed by Newton optimiza-
tion given an appropriate starting point. Due
to rapid eye movements|[14], the algorithm may
break down if one uses the previous state as ini-
tial guess of the current state, since the starting
point may be too far from the true state. As a
consequence, we use a simple ‘double threshold’
estimate of the pupil region as starting point.

Figure 3: The blue ellipse indicates the starting point
of the pupil contour. The template is iteratively de-
formed by an optimizer; one of the iterations is depicted
in green. The red ellipse indicates the resulting estimate
of the contour.

An example of the optimization of the de-
formable model is seen in figure 3.

3.1 Constraining the Deformation

Although a deformable template model is capa-
ble of catching changes in the pupil shape, there
are also some major drawbacks. Corneal reflec-
tions, caused by illumination, may confuse the
algorithm and cause it to deform unnaturally.
In the worst case, the shape may grow or shrink
until the algorithm collapses.

We propose to constrain the deformation of
the model in the optimization step by adding
a regularization term. Assume the parameters
defining an ellipse is normally distributed with
mean p and covariance Y. The prior distribu-

Cost Function p(x) E+K(1-p(x))
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Figure 4: Given an appropriate starting point x. The
pose and orientation are kept fixed, while the shape pa-
rameters are varied. Note that the surface plots are not
- as expected - smooth. This is due to rounding in the
interpolation when evaluating the image evidence of the
deformable template. (Left) The image confidence given
the state - warmer colors means more likely. (Middle)
The prior probability is a normal distribution with a
given mean value p and covariance X. (Right) Combin-
ing the image evidence and prior according to (4) yields
the constrained estimate.

tion of these parameters are then defined,

px) = N0 ) x xp (5= "5 x =) )
®)

where the normalization factor has been omit-
ted. The mean and covariance are estimated in
a training sequence. At last the optimization
of the deformable template matching method is
constrained by adding a regularization term,

E=Av(P)-Av(B)+ K(1-p(x)), (4)

where KC is the gain of the regularization term.

The relevance of constraining the deforma-
tion is visualized in figure 4. A suitable starting
point x is chosen. The pose and orientation are
kept fixed, while the shape parameters are var-
ied. In this case the true shape parameters A\;
and A9 are approximately eight. The image con-
fidence as a function of the shape parameters is
depicted to the left, while the prior distribution
is seen in the middle of figure 4. Combining
the image confidence with a prior according to
(4) yields the constrained estimate, which is de-
picted to the right in figure 4.

By use of the shape constraints, we incorpo-
rate prior knowledge to the solution. The ro-
bustness is increased considerably and the pa-
rameters are constrained to avoid the algorithm
to break down due to infinite increase or de-
crease of parameters.

The deformable template matching method
is seen applied with and without constraints in
figure 5. The constrained estimate is seen to be
less sensitive to noise due to reflections.



Figure 5: The deformable template matching method
applied without constraints is seen in green, while the
red ellipse depicts the constrained version . The con-
strained estimate is seen to be less sensitive to noise due
to reflections.

4 EM Contour Tracking

The iris is circular and characterized by a large
contrast to the sclera. Therefore, it seems ob-
vious to use a contour based tracker. Witzner
et al.[7] describe an algorithm for tracking using
active contours and particle filtering. A genera-
tive model is formulated which combines a dy-
namic model of state propagation and an obser-
vation model relating the contours to the image
data. The current state is then found recursively
by taking the sample mean of the estimated pos-
terior probability.

The proposed method in this paper is based
on |7], but extended with constraints and robust
statistics.

4.1 The Dynamic Model

The dynamic model describes how the iris moves
from frame to frame. Again, the iris is modeled
as an ellipse and the state vector x consist of the
five parameters defining an ellipse as defined in
equation 1.

To define the problem of tracking, consider
the evolution of the state sequence

xXtr1 = frpi{x, t € N}, (5)
of a target, given by
X1 = (%, Vi), (6)

where fiy1 is a possibly non-linear function of
the state x; and {v;,t € N} is an independent
identically distributed process noise sequence.

The objective of tracking is to recursively es-
timate x;41 from the measurements,

Mt+1 = ht+1 (Xt—l—h nt-l—l)a (7)

where hy, 1 is a possibly non-linear function and
{n441,t € N} is an i.i.d measurement noise se-
quence.

The pupil movements can be very rapid and
is therefore modeled as Brownian motions(AR(1)).
Thus the evolution of the state sequence (6) is
modeled,

X1 =X + Ve, v~ N(0,%), (8)

where X; is the time dependent covariance ma-
trix of the noise. The time dependency compen-
sates for scale changes, which affects the amount
of movement. Larger movements is expected
when the ellipse appears large, since the posi-
tion of the eye is nearer to the camera. Con-
trary, when the eye is farther from the camera,
smaller movements are expected. Hence, the
first two diagonal elements of 3; corresponding
to ¢; and ¢, are assumed to be linear dependent
on previous sample mean.

4.2 The Observation Model

The observation model consists of two parts;
a geometric component defining a probability
density function over image locations of con-
tours and a texture component defining a pdf
over pixel gray level differences given a contour
location. The geometric component models the
deformations of the iris by assuming Gaussian
distribution of all sample points along the con-
tour. The gray level information is gathered by
sampling a discrete set of points along the nor-
mals of all contour sampling points. Both com-
ponents are joined and marginalized to produce
a test of the hypothesis that there is a true con-
tour present. The contour maximizing the com-
bined hypotheses is chosen, see |7] for details.

4.3 Active Contour Tracking

The probabilistic formulation has the attraction
that uncertainty is handled in a systematic fash-
ion - Increased uncertainty results the particles
to be drawn from a wider distribution, while
increased confidence results the particles to be
drawn from a narrower distribution.



The prediction stage involves using the sys-
tem model (6) to obtain the prior pdf of the
state at time t + 1,

p(Xt41| M) = /p(xt+1|xt)P(Xt\Mt)dXt (9)

The observation M; is independent of the

previous state x;_1 and previous observation M;_1

given the current state x;. At time step t + 1 a
measurement M;y; becomes available. This is
used to update the prior via Bayes’ rule,

P(Xet1|Mig1) o< (Mg |xe)p(Xeq1|My). (10)

With this in mind, the tracking problem is
stated as a Bayesian inference problem by use
of (9) and (10).

Particle filtering is used with the purpose to
estimate the filtering distribution p(x:|M;) re-

cursively. This is done through a random weighted

sample set S¥ = {(xP,71)}, where n is the
™ sample of a state at time t weighted by
m'. The samples are drawn from the predic-
tion prior distribution p(x¢+1|M}). The samples
are weighted proportionally to the observation
likelihood p(M;|x;) given by the contour hy-
potheses. This sample set propagates into a new
sample set Sﬁl, which represents the posterior
probability distribution function p(x¢+1|Mey1)
at time ¢ + 1.

4.4 Constraining the Hypotheses

Corneal reflections, caused by illumination, may
confuse the algorithm to weigh some of the hy-
potheses unreasonably high compared to others.
This issue is illustrated left in figure 6, where
the relative normalized weighting is colored in
a temperature scale - Blue indicates low, while
red high scores. By using robust statistics, these
hypotheses are treated as outliers and therefore
rejected.

The contour algorithm may fit to the sclera
rather than the iris. This is due to the gen-
eral formulation of absolute gray level differ-
ences AM|[4], which seeks to detect contours in
a general sense. An example is depicted in fig-
ure 7, where the image evidence of the contour
surrounding the sclera is greater than the one
around the iris. It turns out that for a large
number of particles, the maximum likelihood
estimate prefers the contour around the white
sclera when the gaze is turned towards the sides.

Figure 6: The relative normalized weighting of the hy-
potheses regarding one particle are colored in a temper-
ature scale - Blue indicates low, while red high scores.
(Left) Corneal reflections cause very distinct edges. Thus
some hypotheses are weighted unreasonable high, which
may confuse the algorithm. (Right) By use of robust
statistics outliers are rejected. This results in a better
and more robust estimate of the hypotheses regarding
the contour.

Figure 7: This figure illustrates the importance of the
gray level constraint. Due to the general formulation of
absolute gray level differences, the right contour has a
greater likelihood, and the algorithm may thus fit to the
sclera. Note the low contrast between iris and skin.

As a consequence, we propose to constrain
the hypotheses. Intuitively, the average inten-
sity value of the inner ellipse could be compared
to some defined outer region as seen in expres-
sion (2). This is a poor constraint due to corneal
reflection causing white blobs in the pupil area.
The robustness of the active contour algorithm
is increased by weighing the belief of hypotheses
and utilizing robust statistics to reject outliers.

We propose to weigh the hypotheses through
a sigmoid function, applied on the measurement

line M, defined as,

W= (1-|—exp (“ia_w“"»_l (11)

where o, adjust the slope of weighting func-
tion, p; and p, are the mean values of the inner
and outer sides of the contour respectively. The
function is exemplified in figure 8. This has the
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Figure 8: (Left) The two lines depicts the gray level
intensity of two measurement lines - The blue one where
the inner part of the ellipse is dark, and the red in the
reverse case. (Middle) The shifted hyperbolic tangents is
utilized as weighting function. Note, the limit values are
in range [—255; 255]. (Right) The cyan bars indicates the
hypothesis value before weighting, while the pink is after.
Measurement ! - The blue line - is nearly unchanged,
while 2 - the red line - is suppressed.

effect of decreasing the evidence when the inner
part of the ellipse is brighter than the surround-
ings. In addition, this relaxes the importance
of the hypotheses along the contour around the
eyelids, which improves the fit.

4.5 Maximum a Posteriori Formula-
tion

The dynamic model may, in certain outlier cases,
grow or shrink the contour to a degree, from
where the algorithm gets lost. As a consequence,
we propose to constrain on the shape of the el-
lipse in analogy to section 3.1. The parameters
defining an ellipse is assumed normal distributed
with mean p and covariance 3. The prior dis-
tribution of these parameters are then defined,

p(x) = M1, 5) ox exp (—;x TS k- m) ,

(12)
where the normalization factor has been omit-
ted. The mean and covariance are estimated in
a training sequence.

Combining the priors - presented in this sec-
tion - with the likelihood, results in the Maz-
imum a Posteriori formulation (MAP), where
the goal is to maximize,

p(x|M) o< p(M[x)p(x). (13)

By incorporation of prior knowledge about
the shape, with the prediction prior and obser-
vation likelihood (10), the robustness increases
considerably and the parameters are constrained
to avoid the algorithm to break down due to in-
finite increase or decrease of parameters.
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Figure 9: The error of the algorithms as a function of
the number of particles for the high resolution data.

5 Results

A number of experiments have been performed
with the proposed methods. We wish to in-
vestigate the importance of image resolution.
Therefore the algorithms are evaluated on two
datasets. One containing close up images, and
one containing a down-sampled version hereof.

The algorithms estimate the center of the
pupil. For each frame the error is recorded as
the difference between a hand annotated ground
truth and the output of the algorithms. This
may lead to a biased result due to annotation er-
ror. However, this bias applies to all algorithms
and a fair comparison can still be made.

Figure 9 and 10 depicts the error as a func-
tion of the number of particles used, for low
resolution and high resolution images respec-
tively. The errors for three different active con-
tour (AC) algorithms are shows; basic, with EM
refinement, with deformable template (DT) re-
finement. The error of the deformable template
(DT) algorithm, initialized by double threshold,
is inserted into the plot.

It can be seen that the proposed constraints
on the active contour generally improves the ac-
curacy of the fit. The refinement by the de-
formable template performs better than the EM
method. The cost is an increased number of
computations, which is resolution dependent. No-
netheless, the deformable template method, ini-
tialized by double thresholding, is seen to out-
perform all active contour algorithms.

The table in figure 5 lists the mean error in
accuracy in centimeters and degrees. Also listed
is the computation time in frames per section of
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Figure 10: The error of the algorithms as a function
of the number of particles for the low resolution data.

Hi-res E(z,y)lmm] | E(0) | [frame/s]|
AC 0.9 4.1 0.54
AC w/EM 0.8 3.7 0.49
AC w/DT 0.5 2.3 0.25
DT 0.3 1.4 2.2
Lo-res E(z,y)[mm] | E(0) | [frame/s]
AC 1.5 7.3 0.57
AC w/EM 1.5 6.9 0.55
AC w/DT 0.8 3.7 0.49
DT 0.5 2.3 8.4

Table 1: Speed and precision comparison of the algo-
rithms. The active contour uses 200 particles.

a Matlab implementation run on a 2.4Ghz PC.
In general, the accuracy improves with high res-
olution as seen in table 5. However, the methods
utilizing deformable template matching are less
sensitive. The computation time for the basic
active contour and EM refinement methods are
independent of resolution. A significant increase
in speed is noticed for the deformable template
methods.

6 Conclusion

In this paper we have presented heuristics for
improvement of the active contour method pro-
posed by [7]. We have shown increased perfor-
mance by using the prior knowledge that the iris
is darker than its surroundings. This prevents
the algorithm from fitting to the sclera as seen
in figure 7.

Also presented is a novel approach to eye
tracking based on a deformable template initial-
ized by a simple heuristic. This enables the al-
gorithm to overcome rapid eye movements. The
active contour method handles these by broad-

Figure 11: The resulting fit on two frames from a se-
quence - the red contour indicates the basic active con-
tour, green indicates the EM refinement and the cyan in-
dicates the deformable template initialized by the heuris-
tic method. The top figure illustrates the benefit fitting
to the pupil rather than the iris. Using robust statistic
the influences from corneal reflections on the deformable
template fit are ignored as depicted in the bottom image.

ening the state distribution and thus recovering
the fit in a few frames. Furthermore, the accu-
racy is increased by fitting to the pupil rather
than iris. This is particularly the case when a
part of the iris is occluded as seen in figure 11.

It is shown that the deformable template
model is accurate independent of resolution and
it is very fast for low resolution images. This
makes it useful for head pose independent eye
tracking.
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