
Condition Monitoring and
Management from Acoustic

Emissions

Niels Henrik Pontoppidan

Kongens Lyngby 2005
IMM-PHD-2005-147



Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192



Summary

In the following, I will use technical terms without explanation as it gives the
freedom to describe the project in a shorter form for those who already know.

The thesis is about condition monitoring of large diesel engines from acoustic
emission signals. The experiments have been focused on a specific and severe
fault called scuffing. The fault is generally assumed to arise from increased
interaction between the piston and liner. For generating experimental data
destructive tests with no lubrication, oil has been carried out. Focus has been
on modeling the normal condition and detecting the increased interaction due
to the lack of lubrication as a deviation from the normal.

Linear instantaneous blind source separation is capable of picking out the rel-
evant hidden signals. Those hidden signals and the estimated noise level can
be used to model the normal-condition, and faults can be detected as outliers
in that model. Among the investigated methods the Mean field independent
component analysis with diagonal noise covariance matrix models is best at
modeling the observed signals. Nevertheless, this does not imply that this is the
best model to detect the outliers.

Another contribution of this work is the analysis of the angular position changes
of the engine related events such as fuel injection and valve openings, caused by
operational load changes. With inspiration from speech recognition and voice
effects the angular timing changes have been inverted with the event alignment
framework. With the event alignment framework it is shown that non-stationary
condition monitoring can be achieved.
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Resumé

Emnet i denne PhD afhandling er tilstandsoverv̊agning ved brug af ultralyd i
store diesel motorer, der bruges til skibe. Målet har været at kunne detektere
en specifik og alvorlig fejl kaldet: Scuffing. Idet menes at fejlen opst̊ar ved
kontakt mellem cylindervægen og stemplet er følgende eksperiment udført: Ved
afbrydelse af smøreolien til cylinderen er det forsøgt at fremprovokere Scuffing.
Efterfølgende er det forsøgt, at lade algoritmer trænet p̊a det normale lydbillede,
at detektere det ændrede lydbillede som følge af den manglende smøring.

Lineær instantan blind signal separation kan finde de relevante skjulte signaler.
Disse skjulte signaler kan bruges til at modellere normaltilstanden sammen med
det estimerede støj niveau. Fejl kan følgelig detekteres som afvigere fra denne
model. Blandt de undersøgte metoder er Mean field independent components
analysis, med diagonal støj kovarians matrice, den bedste til at modellere de
observerede signaler. Men det vises ogs̊a at det ikke nødvendigvis medfører at
dette er den bedste metode til fejl-detektion.

Vinkelforskydninger i motorens lydbillede, eksempelvis indsprøjtning og ventil
åbning, for̊arsaget af de operationelle tilstandsændringer er blevet analyseret og
modelleret med signal behandling inspireret af tale genkendelse og lydeffekter
til musik. Denne metode kaldet event alignment muliggør tilstandsoverv̊agning
med skiftende operationelle tilstande, dvs. under skiftende belastninger.
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Chapter 1

Condition Monitoring and
Management from Acoustic

Emissions

Condition monitoring is a truly multidisciplinary field that grasps much wider
than the signal analysis methods investigated in this thesis. Condition moni-
toring also include strategic, economical, mechanical, as well as social science
aspects. This chapter introduces the general condition monitoring task and puts
perspective on the expectations to such systems.

The remainder of the thesis more or less follows the information flow of the
algorithms, i.e., beginning close to sensors with preprocessing and ending with
the condition outputs. However, in order to understand and describe the steps in
this chain, everything has to be taken into consideration. E.g. the performance
evaluation of preprocessing methods include knowledge on how the signals are
processed afterwards.



2 Condition Monitoring and Management from Acoustic Emissions

1.1 Setting the stage

Condition monitoring is a well-known task to human beings - we scan the en-
vironment for changes continuously, even while performing other tasks. We are
alerted by unexpected sounds, movements, and even patterns in our environ-
ment. We compare what we observe to the knowledge of how it appeared 2
minutes, hours, or days ago. Abrupt changes such as unexpected sounds from
your child, car, bicycle, and CD player alerts you. Traditionally specialized
helpers such as dogs barking at approaching people, canaries in coalmines, con-
cealed wires connected to bells have been used. With gradual changes, the best
helper is sometimes just a pair of fresh eyes/ears that are not been accustomed
to the slow drift. In the mechanical world the condition monitoring task have
been performed by the skilled people that operate the machinery on a regular
basis. The engine operator will gradually learn how the engine sounds in differ-
ent operational settings. In addition, we are pursuing this capability with the
signal processing and learning framework.

1.1.1 Maintenance strategies

A main theme of the Condition Monitoring and Diagnostic Engineering Ma-
nagement (COMADEM) conferences that I attended in 2003 and 2004, was
profitability of condition based monitoring. Not all parts and faults are worthy
of a condition monitoring system; the simplest example is that you don’t need
a red light to tell you that a light bulb will break in 5 minutes - at least not at
home. However when running an airport, you need a system that monitors the
percentage and spatial distribution of broken bulbs in the runway system due to
requirements given by the International Air Transport Association. Essentially
the necessary monitoring level does not depend on the type of the part, but on
the impact of its failure.

Although the management strategies are not a part of this thesis, I will outline
my understanding of four such strategies. I will differ between failure based
maintenance, scheduled based maintenance, condition based maintenance and
Prescription based Health Management :

- No maintenance at all. The use until destroyed strategy is not that relevant
with large diesel engines.

a With a failure based maintenance strategy the machinery is operating until
the fault occurs. Then the fault is fixed and the machinery goes into operation
again, e.g., change the bulb and turn the light on again.
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b With a schedule based maintenance strategy the different parts are inspected
or even replaced after a specific number running hours, e.g., a bearing is
replaced after 3000 running hours even if it looks normal. The replacement
times differs from part to part, and is generally set very conservative such
that the number of components that do fail within the specified time interval
is very small. This strategy is for instance used within aviation industry, ship
propulsion, as well as cars: as the oil should be changed every 15.000 km or
year whatever comes first.

c With a condition based maintenance strategy, parts are replaced and repaired
when a fault is expected to happen within a near future based on the health
of the machine.

d With a prescription based health management system, the usage pattern and
expected usage pattern is taken into consideration when scheduling mainte-
nance. It is as computer war-games, e.g., each unit has an associated health
bar, and the commanders (you + computer AI) are considering: Can this
mission be fulfilled with that vehicle? Moreover, is it still usable afterwards?

The optimal strategy depends on a wide range of diverse and coupled parame-
ters, where I guess economic and safety issues has the greatest impact when
dealing with ship propulsion condition monitoring (CM). The common belief is
that increasing the level of CM constitutes an economic improvement, the first
by repairing, later preventing many failures with the scheduled replacement of
selected parts, that furthermore prevent the additional and often more severe
faults caused by the original fault. The third improvement is achieved by im-
proving the availability of the machinery, since maintenance is only scheduled
when actually required. However these improvements have an associated cost:
Strategy b require that the machine is taken out of service on a regular scale, and
before that the proper replacement intervals should be determined. Strategy c
require that the condition can be monitored in a reliable way, which most likely
requires sensors, acquisition boards and specialized signal processing as well as
knowledge on how the condition evolves. With strategy d the current condition
and the expected usage are combined to give allow for trade off between risk of
failure, success without recovery etc. Compared to the other strategies this also
require analysis of wear as function of usage.

1.1.2 Monitoring strategies

The core of this thesis is “How to turn the observed acoustic emission energy
(AEE) time series into a condition monitoring output”. Among the others we
need to select the type of output, again they are order by increased “complexity”
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1. Fault alarm, after the fault occurred

2. Late warning, just before it faults

3. Early warning, possibly with some failure time horizon

4. Wear level continuously monitored, more accurate failure time horizon

As with the maintenance strategies, systems that are more sophisticated are
required to reach a higher performance level. Obviously, the longer time before
the breakdown, the smaller are the deviations we are looking for and thus the
harder we must work with features and algorithms find them.

Another issue on whether the monitoring system should model the normal con-
dition and/or specific faults. In this thesis, only the normal condition is modeled
and deviations from the normal model are therefore just faults. In a previous
EC project Fog used neural networks trained on some specific faults to classify
other instances of those specific faults [Fog, 1998]. This relates to the difference
between unsupervised and supervised learning. On whether the model is given
examples with or without associated labels during training. The labels tell the
system that this is how the normal ones look like; and this is how the faulty
ones looks like - and then we ask what this is? Without the labels the system is
not told, but still expected to be discriminate between classes. It is like giving
apples and oranges to a child. If you first tell this is an apple, this is an orange
the child should get the idea. If you do not tell, the child might just say: fruit!
This thesis deals with giving the child apples with no labels, and then expect it
to say “not apple” when given an orange. But in this case we actually we don’t
know if the child is given both green and red apples to begin with. . .

As experiments conducted within the AEWATT project, have not been repro-
duced and scuffing has not been encountered, it is unlikely that an accurate
failure time horizon statistics can be achieved with those available data sets.
Simply our knowledge on how the fault emerges in the engine is not good enough.
Further, we cannot be sure if the way the fault is induced is also the way the
fault appears outside the laboratory.

In this thesis only the normal condition is considered for modeling, thus faults
will just be labeled as faults. It is possible to add new models and slowly build
a supervised system. This requires that the relevant data is saved when a fault
occur, and that this package forwarded to experts for diagnosing that could
lead to new models that diagnose this fault. If storage permits, also scheduled
acquisitions could be considered.



1.2 Condition monitoring of large diesel engines 5

1.2 Condition monitoring of large diesel engines

At the beginning of the project, it seemed that everybody used the same meth-
ods: feature extraction with principal component analysis (PCA) followed by
different neural network structures trained in a supervised manor to classify
normal condition against a few other conditions. Fog [1998] and Ypma [2001]
describe numerous ways to extract features, and how to build and train pat-
tern recognizer’s with good generalization. This includes simple regulariza-
tion schemes, complicated resampling methods as bootstrapping, and adaptive
structures. The group at Sheffield University used the traditional cylinder pres-
sure and vibration in similar supervised classification setups [Chandroth and
Sharkey, 1999, Chandroth et al., 1999a,b]. Another way to increase generaliza-
tion is using ensembles. Sharkey et al. [2000] created an ensemble by combining
neural networks into a majority voting system. Even though their ensembles
are created by random combination, the general idea is to combine precise and
diverse classifiers, here neural networks in a controlled way. The need for diver-
sity is apparent as additional information is gained from multiple but dependent
votes, e.g., they make the same false alarms and do not detect the same defects.
The diversity can be obtained by (a) using information from different types of
sensors and (b) reusing the data to create neural networks that differ in various
ways: bagging, boosting, resampling, etc. Precision can be obtained by applying
regularization etc.

Neill et al. [1998] showed that acoustic emission (AE) is superior to pressure- and
vibration information wrt. signal to noise ratio, and that the AE is sufficient in
a more realistic industrial like setting. This has also been reported by Fog et al.
[1999]. The reason is that distance damping of the stress waves increases with
frequency, thus with higher frequency AE signals the damping of surrounding
noise sources is increased compared to the vibration signal.

1.2.1 Modeling and classification

Previous experiments using artifical neural networks (ANN) for condition mon-
itoring of large diesel engines by Chandroth et al. [1999a,b], Fog et al. [1999],
Neill et al. [1998], and Sharkey et al. [2000] have been supervised, i.e., based on
training with known labels. An expert produced the labels and/or fault was
induced. In addition, the faults were induced several times to achieve good sta-
tistics, which is an obstacle when the interesting parts are the liner and piston
on large diesel engines.

The observations presented to algorithms during the learning procedure (called
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the training set) is a sampling of the true distribution of the machinery’s states,
hence we are not guarantied to obtain the full distribution. Further, the obser-
vations include a sampling of the noise distribution at the same position.

Consider a quite flexible model trained on relatively few observations with some
noise. If the model is able to adapt very well to the training set it is also possible
that it has adapted very well to the observed noise. If it also models the noise,
then this will not adapt that well to other samples from the same process.
This is called overfitting and is normally reduced by constraining the learning
process, so that it cannot adapt fully to the training set, either by resampling
(bootstrapping), regularization (weight decay), or optimization of architecture
(pruning).

Generalization can also be achieved by combining networks in ensembles. Sharkey
et al. [2000] have tried to generate ensembles that differ by either, a) combining
networks based on different sensors or feature sets. b) Randomizing the ini-
tial conditions (useful when you only have a limited number of examples). c)
Varying the architecture (e.g. pruning, regularization), d) Exposing the differ-
ent networks to different examples (resampling). Their conclusions was that the
best ensemble consisted of combinations of all of the above, i.e., both different
sensors, data resampling and different initial conditions – and by combining
the ensembles randomly. Combining the outputs of ensembles was further in-
vestigated with a more theoretic setup by Whitaker and Kuncheva [2000] wrt.
accuracy and diversity among the ensemble members. Simply ensembles are not
bound to work - for instance an ensemble of “football-experts” at our depart-
ment predicted that France would win the football world cup 2002. Obviously,
a strong bias towards Denmark was among the causes leading to increased un-
certainty.

1.3 This thesis

This thesis investigates some digital signal processing methods for the applica-
tion of a condition monitoring system aimed at large marine propulsion engines.
It deals with the signal processing that allows for upgrading the current restric-
tive schedule maintenance strategy to a condition based strategy.

Besides, from the benefit of a condition-based strategy, the system described
in this thesis could also contribute to decreasing the environmental cost. The
additives in the lube oil contribute considerably to the pollution. AEE is gener-
ated by friction, so the system considered can and do reveal the friction between
piston and liner as seen later in Figure 4.3. The condition output can be used to
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only inject the necessary amount of lube oil and thereby reduce the pollution.

Due to my background in speech and sound acoustics the applied methods draw
on knowledge and applications developed in that field, e.g., the idea that we
can hear and separate the sources and that we learn how an engine should
sound like. The framework has two independent contributions to the area of
condition monitoring: a) the application of blind source separation that incor-
porates knowledge about the domain of observations, and b) the application of
event alignment, which is a time stretch method that model known operational
changes and allows for non-stationary condition monitoring.

For the application of blind source separation methods, it was initially the idea
to put a sensor array on the cylinder. The array ended up being two sensors due
to the cost of each sensor, thus changing the scope of blind source separation to
separating hidden signals in repetitions instead in spatial distributed channels.
A combination would be possible by first separating the hidden sources from
the time synchronized channels, followed by separating the “additional” hidden
signals from the repetitions. This would require some grouping of the first
set of hidden signals, due to inherent permutation of estimated channels. The
additional knowledge that is applied in the blind separation problem is the non-
negativity of the observation signals. This knowledge can be implemented as a
constraint or as a source prior, that ensure that the estimated sources are also
non-negative.

The application of time stretch methods is based on the concept of time quanti-
zation and time stretching from digital signal processing for music production.
Such methods have previously also been applied to align spoken words for speech
recognition applications. The idea is that the engine cycle can be considered as a
musical measure with a repeated beat: dnk tssh dnk tssh. The angular position
of events is analogue to the position in the measure. Changing the tempo of a
rhythm require proportional scaling of all inter event time differences. Those
that do not scale proportional to the tempo change their rhythmical/angular
position, and the event alignment framework can compensate for that.

1.3.1 System overview

Figure 1.1 outlines a simplified version of the system considered in this thesis.
The simple form corresponds to the way new examples would face the system,
but omits all the information feedback on model sizes, classification thresholds
etc. In general this thesis deals with the three last boxes, as the choice of sensors
and signal conditioning was done by project partners.
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To prepare for the following chapters, a quick introduction to the 5 boxes in
Figure 1.1 follows.

Sensors, chapter 2
The sensors acquire ultrasonic stress waves on the outside of the cylinder
liner/cover. These stress waves are generated by micro cracking in the
material. The frequency range is 100 kHz - 1.25 MHz

Signal conditioning, chapter 2
The bandwidth of the signals are reduced to 10 kHz by root mean squaring.
The new signal is not the actual waveform but the energy envelope signal.

Preprocessing, chapter 2 and 3
The signals are transformed from time to crank angle domain. The timing
of engine related events can be aligned.

Modeling, chapter 4
A model is trained on preprocessed normal condition examples. The nor-
mal and faulty examples separates in a one-dimensional feature when the
model is applied to examples. E.g., the model knows the normal pat-
tern and as the faulty pattern gradually emerges, the deviation measure
gradually increases.

Detection, chapter 5
The property of the model output should be that the values for normal
and faulty examples should be separable. The simplest classifier, which is
the one considered here, the detecting the fault is a matter of detecting
that the one dimensional measure has crossed the threshold.

The more detailed Figure 1.2 also outline the information flow in the opposite
direction. Examples processed by some parameters are propagated through the
whole system, and the best set of parameters are selected and sent back to the
respective processing blocks (the red arrows). In that figure only two parameters
are considered, the size of the models and the classification threshold. The
same underlying approach extends to selecting model families, feature extraction
methods and even sensors types where decisions based on the whole application
are sent back to the blocks where it belong.

It should also be noted that some methods can be used in different ways in
different blocks, for instance can PCA be applied as a feature extraction prior
to other models that use the reduced feature subspace as their input. Or PCA
can be used as it is mainly used here as a generative model that describe the
observed data.
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Figure 1.1: The simplified information flow gives a general system overview. Sensors
are attached on the monitored specimen, the signals obtained are conditioned before
preprocessing, and finally detection based on the output of the modeling. This is only
the general structure, as some methods like the component analysis methods can do
both preprocessing and modeling at the same time.

Figure 1.2: A slightly more complicated information flow that show how some parame-
ters are obtained using independent training sets. The three first blocks of Figure 1.1
have been omitted for simplicity. The two example pools contain normal and faulty
examples. Two parameters, the size of the model and a classification threshold, in the
models are optimized by measuring the performance. The model is only trained on
the normal condition. Only the last row, the performance evaluators know the true
labels of the examples, the rest of the model only see the observed signals. When it
comes to applying the optimized model to new examples we are back to the simpler
straightforward system in Figure 1.1.
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Chapter 2

Acquisition and pre-processing

This chapter describe the data acquisition setup, and the acoustic emission (AE)
signals that are acquired with the system from the engine. Further I outline the
preprocessing that makes the AE signals computationally usable as input signals
to the condition monitoring system.

2.1 Experimental data

The experimental data used for illustrative purposes here is a destructive test
due to MAN B&W Diesel A/S. The data set consist of two three load condi-
tions, 25%, 50% and 75%. The fault condition is induced by obstructing the
application of lube oil inside the monitored cylinder while the engine was at
25% load. The other cylinders got lube oil during the whole the experiment,
and since the cylinders are connected through the bottom oil “bathtub” some
oil was sucked up in each cycle with the fresh air.

It was quickly discovered that the operational condition changes was problem-
atic. Initially only the period referred to as Experiment 1 in Figure 2.1 was
considered, since only one change occurs in this period - the shutdown of the
lube oil system. The period labeled Experiment 2 refers to an additional faulty
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Figure 2.1: Time line of main experiment conducted at MAN B&W Diesel

condition occurs while the lube oil system was turned off. This unintended fault
occurred in the attached water brake, which controls the loading of the engine.
Luckily, it was temporary during an otherwise stable condition and it revealed
interesting properties on model and sensor selection.

2.2 Acoustic emission signals

From ASTM E 610-8 [appliedinspection.com]

Acoustic Emission the class of phenomena whereby transient elastic waves
are generated by the rapid release of energy from a localized source or
sources within a material, or the transient elastic wave(s) so generated.

Acoustic Emission is the recommended term for general use. Other terms
that have been used in AE literature include (1) stress wave emission,
(2)micro-seismic activity, and (3) emission or acoustic emission with other
qualifying modifiers

The AE signals encountered on large diesel engines are mostly stress waves living
on the surface of specimens. They are generated due to rupture of internal
micro-bindings in the material. In popular words, it is the “oh-no’s” of the
internal bindings that we observe. Mechanical events that generate AE are crack



2.2 Acoustic emission signals 13

formation, friction, impact. In addition, fluid and gas flows generate AE. The
two type of sources separate in the frequency domain, such that needle impact
and fuel injection flow could be separated in the raw AE signals [Douglas et al.,
2004].

AE has been reported to be superior to vibration data acquired by Neill et al.
[1998]. For condition monitoring of large diesel engines the AE signals have
the nice property that the spatial damping is considerably larger than with
vibration data (in the range up to 20 kHz), and thus have a better signal to
noise ratio. This also means that the AE signals are far more localized, e.g.,
appearing virtually only on the cylinder where they are generated. However, the
damping is also so strong that the distance between the sensor and source should
be minimized. In addition, material interfaces along the signal path should be
taken into consideration, thus the different damping of the different sources is
important when considering the sensor locations. All those considerations was
taken into account when the number and position of sensors as was decided by
project partners and reported in the “Specification of preliminary sensor array”
[AEWATT Project Consortium, 2003b].

Considerably work on condition monitoring has taken place on smaller and
simpler structures than the large diesel engine, e.g.: Bearings [Mba, 2005, Neill
et al., 1998], pumps [Ypma, 2001], gear boxes [Randall, 1987, Tan et al., 2005],
compressors [Elhaj et al., 2003]. Initially condition monitoring (CM) was carried
out using vibration analysis and then in recent years the use of AE has gained
attention. The use of AE originates from analysis of relations between applied
forces and AE level for simple structures as beams, rods and cones conducted by
Kaiser in the 1950’s. Kaiser also revealed the property that the AE remembers
the force that was applied to it, since it takes a stronger force to generate AE
next time, this is called the Kaiser effect [appliedinspection.com]. The increased
use of AE follows the greater availability of reasonably priced equipment that
can handle and capture the very broadband AE signals. Less than a decade ago
acquisition of AE signals for longer periods was problematic [Reuben, 1998].
Further, virtually all theory and knowledge from vibration monitoring can be
applied to AE since the two signals are caused by the same events, thus many
of phenomenon’s that has been used for monitoring also appear in the AE but
with less noise – and noise has always been the large problem with vibration.

With more sensors and/or a much simpler geometry of the specimen, as opposed
to the complex structure of a 3 storage high diesel engine, additional information
can be inferred from the AE signals. Depending on the dispersive properties
of the material the arrival time of high and low frequency components differ
as a function of the traveled distance. Further the ratio between high and low
frequency peaks reveal the type and location of faults in composites [Dunegan,
2000].
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Another well-studied field is order analysis. Based on the geometry of bearings
and gearwheels the frequency where a specific fault will appear can be calcu-
lated [Randall and Antoni, 2003], moreover, the paper introduces a new way of
separating the pseudo stationary parts and the noise. In order to do so, a good
estimate of the spectrum has to be acquired by averaging over a few [Randall,
1987], or many cycles depending on the noise type and stationarity of the sig-
nals. This has not been considered here, as averaging over say 20 cycles would
give 9 examples of the normal condition when only 180 normal examples are
available.

As such the AE is very much like Vibration and in many cases events generate
both, e.g., impacts and rubs both leads to small movements of the structure
(vibration) and micro cracking inside the material (AE), and the magnitude of
signals are functions of the amplitude of forces and the wear.

2.3 Acquisition

The frequency range of the raw AE begin at 100 kHz and goes up. The acqui-
sition system for raw AE signals at MAN operate at 2.5 MHz. For the signal
processing techniques considered in this thesis, 2.5 MHz sampling rate is rather
high. So the bandwidth is lowered considerably through analogue root mean
square (RMS) processing to 20 kHz. That frequency was determined from the
maximal capabilities of the combination of data acquisition board and computer
at MAN B&W.

The MAN RMS systems has a time constant of 120µs corresponding to a cut-off
frequency around 8.3 kHz, which is just below than the Nyquist frequency 10
kHz upper frequency limit @ 20 kHz sampling.

RMS pre-processing turns the signals into acoustic emission energy (AEE) sig-
nals, containing the energy in the 120µs period (overlapping is 70µs). The
squaring of the signal corresponds to a convolution in the frequency domain
and the lowpass filtering is just an averaging process, thus with the RMS some
time resolution as well as frequency information is lost, however the energy is
not lost – the resolution is just decreased.

The data rate is not constant throughout a process. In speech and music the
information rate is lower than the necessary sampling rate, e.g., my word rate is
not 4 kHz, but since I want to communicate different messages bandwidth are
used to code such messages. In addition, after transmission the decoding reduces
the data stream to a sequence of that word at that time. Is this important -
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Figure 2.2: Sensor positions: Cylinder cover, upper liner, lower (on the upper liner).
Engine sketch due to Ryan Douglas, HWU.

yes because for the condition monitoring process it might be sufficient with
the “word-rate” rather than the full sampling rate and what we loose is the
ability to discriminate between different messages. If the frequency is used to,
code messages filter banks and pattern recognition might be applied as a decoder
step. Automatic music transcription is an attempt at such decoding, and a more
successful example is codebooks used with auto regressive processes estimation
and transmission in GSM telecommunication.

The link to the diesel engine signals is obvious. The AE stress waves appear in
the ultrasound domain; however the process that provokes the micro cracking
is related to the rotational speed of the engine which is 4-6 decades below.
Therefore, we seek information in a scale that reveals the individual engine
related events but not the individual cracks.

Within the AE-WATT project, the sensors have been placed on the cylinder
cover, high and low on the upper part of the liner. The sensors can be placed
on the cylinder cover and the upper part as Figure 2.2 show.
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2.4 Crank angle conversion

Chandroth and Sharkey [1999] state that all engine cycles regardless of running
speed have the same number of samples in the crank angle domain. What
they do not discuss is how to convert the signals from the time into the crank
angle domain. Sampling in the crank angle domain corresponds to sampling
with a constant angle displacement, e.g., at 1o, 2o and so on. In order to drive
such sampling a trigger signal is necessary – which can be generated using a
light source, photo-resistor, and “checkerboard tape” on the circumference of a
flywheel connected to the crankshaft. Such a system is sketched Figure 2.4.

In data sets available to me, all signals (including Top dead center, crank pulse
and AEE) have been sampled synchronously, i.e., we have the pulse signals on
the same timescale as the AEE signals as shown in Figure 2.5. The conversion to
the crank domain, is a matter of detecting the flanks in the crank pulse square
wave and detecting the beginning of each cycle from the Top Dead Center signal.
The remaining question is how to calculate the new samples. In our case, we
have had 1024 and 2048 crank angle pulses pr. revolution. With a rotational
speed of 60-120 revolutions per minute (rpm) it corresponds to varying the
sample rate (in time domain) between 1024 and 4096 Hz, somewhat lower than
the original 20 kHz. Therefore, the conversion is also a downsampling process.
The top dead center (TDC) marker is aligned for one particular cylinder, so for
the remaining cylinders the TDC the phase shift should be calculated depending
on number of cylinders and fire sequence. The fuel injection takes place around
TDC(both before and after) so splitting the signals into individual cycles is not
convenient, instead the splitting takes place at bottom dead center (BDC) (180o

out of phase) where less activity takes place. This means that each engine cycle
example consist of first the blow out of exhaust gases followed by injection,
combustion and expansion phase. This is also how HWU split the signals. The
path from the engine to the observation matrix is depicted in Figure 2.3.

2.4.1 Calculating Crank Samples

During the work with the event alignment, I became suspicious when the peak
amplitude of the combustion peaks dropped as a function of the load. Intuitively
it should rise as most engines emit more noise when the loading increases. I ap-
proached the mechanical engineers at HWU with this question and their answer
was does the total energy in the injection period also drop? This turned my
attention towards the problem of calculating the crank samples properly. An
analogue RMS module processed signals between sensors and acquisition system,
thus the signals were already non-negative – which in the following discussion
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Figure 2.3: Simplified crank angle domain setup. The sampling of the data is syn-
chronized with crankshaft position and the AE signal can be shown as in the middle
radar like plot. Each cycle going from −180o to 180o is considered a single example
with 1024/2048 features depending on the resolution of the angle encoder.

is a key property. Even though it turned out that the initial approach based
on a re-computation of the RMS (called RMS for the remainder of this sec-
tion) altered the energy ranking of the signals (as a function of load), it did not
influence the performance our experiments since each load was processed inde-
pendently. Further when several loads was considered, amplitude mismatches
was taken care of by the event alignment procedure (section 3.2). However, such
nice recoveries should not prevent us from doing it right.

The question is whether the conversion is a domain transformation or a resam-
pling process. Initially I believed the second. The difference between the two
approaches is displayed in Figure 2.6 that show that the RSS changes the am-
plitude of the signals (due to the compression of the domain). Let us look at the
simple math. x[n] is the AEE signal in the time-domain. The signal CRK[c]
holds the indices of the rising (or falling) edges in the crank pulse signal, i.e.
CRK[1] = 3 tells that the first crank pulse goes high for n = 3 as seen in Fig-
ure 2.5. The index c goes from 1 to the number of points per revolution (ppr)
in the acquisition system (here 2048 or 1024). It should also be noted that
using the time-domain samples between each crank pulse, violates the Nyquist-
criterion during the downsampling process (as seen in Figure 2.9). On the other
hand, fulfilling the Nyquist-criterion implies smearing in the angular domain,
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Figure 2.4: A disc with interleaved black and white squares on its circumference
generate a square wave signal similar to upper signal in Figure 2.5 - this is the Crank
Pulse Signal. Another such signal is the Top Dead Center pulse that emits a pulse
when the piston is at its uppermost position - this signal can be used to segment the
signal into cycles.

and only the samples between the crank pulses where used.

Root-Mean-Square (RMS)

rms[c] =

√√√√√ 1
CRK[c + 1]− CRK[c]− 1

CRK[c+1]−1∑
n=CRK[c]

x[n]2 (2.1)

Root-Sum-Square (RSS)

rss[c] =

√√√√√CRK[c+1]−1∑
n=CRK[c]

x[n]2 (2.2)
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Load
Number of Time samples
between crank samples

File numbers

25 % 7-8 001 - 150
50 % 5-7 150 - 275
75 % 4-6 275 - 344

Table 2.1: Number of time samples that are used to calculate the crank sample values

Calculating the total energy from the crank samples reveals the difference

Etotal =

√√√√√CRK[ppr+1]−1∑
n=CRK[1]

x[n]2 (2.3)

Erms =

√√√√ppr∑
c=1

rms[c]2 (2.4)

=

√√√√√ 1
CRK[2]− CRK[1]− 1

CRK[2]−1∑
n=CRK[1]

x[n]2 +
ppr∑
c=2

rms[c]2 (2.5)

Erss =

√√√√ppr∑
c=1

rss[c]2 (2.6)

=

√√√√√CRK[2]−1∑
n=CRK[1]

x[n]2 +
ppr∑
c=2

rms[c]2 (2.7)

Figure 2.7 show that the energy in the original RMS signal (labeled true) is lower
after file number 300 than in the beginning. This is not the case with the true
and the RSS signals. Thus, the RMS conversion alters the energy ranking of the
examples. In the end, I have settled on the Root-Sum-Square of time samples
between two crank pulses, as this conserve the total energy in a cycle, such that
two cycles with different running speeds can be compared. In addition, I settled
on using samples between two crank pulses to calculate the crank samples, i.e.,
prioritizing energy location at the expense of some aliasing. However, neither
the RSS nor RMS conversion can be used with the raw signals, as both methods
assume that the signals are non-negative to begin with.

The conclusion is that the conversion to crank angle domain, is not a resam-
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Figure 2.5: Simultaneous acquisition of crank pulse signals AEE signals. The crank
angle sampling is based on localizing the rising edges of the crank pulse signal. The
time between successive rising pulses as a function of the load is given in Table 2.1

pling/interpolation process but a transformation. Therefore, one should not
normalize with the (square root of) number of samples between each crank
pulse. However, this approach is only valid for already non-negative signals –
the open question remains: how to convert signals that contain both positive
and negative values. Perhaps multiplication of the interpolated value with the
number of (time) samples between the two crank trigger pulse was possible.
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Figure 2.6: Comparison of crank angle conversion schemes, RSS and RMS. The Crank
signal RSS converted using Equation 2.2 differ from the original RMS signal in the
time domain. The Crank signal RMS converted using Equation 2.1 does not differ
from the original RMS signal, although it is sampled at a lower rate. However, this is
not the whole picture, so Figure 2.7 show the total energy in each cycle instead.
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Figure 2.7: Engine cycle energy. This figure shows that summing the squared time
sample values instead of averaging preserves the amount of energy in the cycle, such
that when comparing the cycle energy, the RSS is similar to the time domain en-
ergy while RMS is not. Notice that the time domain energy (labeled true) was only
calculated for a subset of the time domain files.
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Figure 2.8: The squared ratio of energy in cycles converted with sum. The squared
ratio corresponds to the number of samples between each crank pulse as tabulated in
Table 2.1, the numbers in the table are 7-8, 5-7 and 4-6 for the three periods
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Figure 2.9: Using the sum or average of the 8 samples between two crank pulses is not
enough low-pass filtering for 8 times downsampling, since the first zero is at 2500 Hz,
when it should have been at 1250 Hz. Proper filtering is obtained using 16 samples,
i.e., the samples between three crank pulses – however this smears the location of
energy.



Chapter 3

Event alignment

Many publications on condition monitoring have been restricted to stationary
conditions, i.e., detecting a fault while nothing else changes. Under marine
operation, the settings are changing from time to time, due to navigation and/or
water current flow. In both cases the amount of power that the engine has to
deliver changes. Additional power can be produced with additional fuel (bigger
explosion) or quicker rotation (additional explosions). In both cases, the angular
timing of events can be optimized for combustion performance. The timing can
be changed with mechanical devices [Jensen, 1994] or electronically as in the
Intelligent Engine developed by MAN B&W. Such movement is observed in
Figure 3.1 just after 0 degrees. The peak is delayed around example 800 and
further around example 1600, both places where the load changes. The event at
130 degrees does not move, showing that the timing changes are not constant,
but changing as a function of angular position and the applied load.

From a condition monitoring, point of view an alarm generated from such timing
change is false and should be avoided, so the condition monitoring system has
to be invariant wrt. such changes. Where and how this invariance should be
build into the system depend on the application. Basically three ideas has been
considered:

1. Train the different models for different settings. Each operational setting
has its own model. This would be reasonable if only a relatively small
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Figure 3.1: The AE intensity for 25%, 50% and 75% load, the timing changes in the
signals are very pronounced just after 0o, i.e., in the combustion period. Around 135o

the piston passes the scavenge air holes; these holes are not movable so the event is
fixed in angular position. The load changes from 25% to 50% around example 800 and
from 50% to 75% around 1600.

subset of operational settings was widely used.

2. Train a single model on data from different settings. If a relatively small
subset of operational settings was used. Samples from all of them would
be combined into a model used all the time.

3. Train a single model on data from a single setting, and formulate a warp
model for the other settings with event alignment.

In a recent master thesis project, vibration signals were used for condition
monitoring (CM) of windmills in operation. As a preprocessing step, the ob-
served signals where grouped in power intervals, and new observations compared
to the models trained with that power setting [Jørgensen, 2003]. With data from
three load settings, all obtained from the test bed engine in Copenhagen, the
two first methods was outperformed by event alignment [Pontoppidan et al.
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[2005a] and Appendix C].

The event alignment as such is a pre-processing step that remove the variations
due to known timing changes in the acoustic emission (AE) signals. In image
and speech processing it is known as warping, and in other fields of research
such methods are known as functional data analysis, signal matching, and data
registration. Recently a similar method was applied to rail track condition data
obtained with a measurement vehicle [van de Touw and Veevers, 2003]. There
the observed changes were due to calibration errors and to the fact that the
locomotive could not maintain the same speed profile from measurement to
measurement.

The basic idea is that a warp model can be used to transform signals from one
setting into another setting; and when applied to deviations the transforma-
tion should fail to transform them into the reference condition. Graphically
the warping moves and scales a volume (an ellipsis in Figure 3.2) such that it
matches the reference volume. When applied to examples outside that volume
(faulty examples) the warping should miss the reference volume. In Figure 3.2
the crosses outside the upper left circle should be warped to positions outside
the upper right circle.

The timing of the different engine events, e.g., injection and valve operations,
are a part of the engine layout, the term for the control of the engine based on
parameters such as load, running speed and usage. The visible timing changes
in Figure 3.1 are the result of changing load changes under operation on the
propeller curve (a particular engine layout). This layout defines the running
speed and the timing of events as a function of the load under the normal
setting when run as a marine engine.

When the engine is run as a power plant, i.e., attached to a power generator
like the engines at Kos Island Power Plant, the running speed is kept constant
even though the load is changing. This layout is the generator curve [Jensen,
1994]. Some other operational layouts are mentioned in Table 3.1. In the
AEWATT project experiments have been conducted with the propeller and
generator curves, and the development and research of the event alignment
procedure is based on the properties of the propeller curve.

3.1 Time alignment

In Figure 3.1 we observe that some events are moving as a function of the load
while others stay at the same angular position regardless of load changes. Let



28 Event alignment

Figure 3.2: Basic idea of Gaussian warping, the upper left cluster is moved (1),
stretched (2), and moved again (3) to match the area of the upper right cluster.
Examples outside the dashed circle at the original location end up outside the dotted
circle at the end location. Converted into normal and faulty examples the faulty ex-
amples outside the acceptance original region are not moved into the final acceptance
region.

Propeller curve is for normal marine operation
Generator curve is for constant running speed independent of load
NOx curve is optimized for reduced NOx emission
Vibration curve is for harbor navigation, where running speed is close to

structural eigenfrequency

Table 3.1: Some engine layouts, see further Jensen [1994]. Data from propeller and
generator curve have been acquired during the AEWATT project

us assume that these changes can be inverted by distorting the time axis

y(t) = x(w(t)) (3.1)

where w(t) is the time warp function that inverts the timing changes. Now the
question is simply how the warping function should be obtained. Assuming that
the sequence of events is constant, e.g., the same events are observed in the same
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order regardless of load, we can think of some properties that the warp function
must fulfill.

• Monotonically increasing, the warp should not imply that something is
happening in reverse order, i.e., combustion before injection

• Continuous, such that events are not skipped

Additionally properties that regulate how much the warp function can devi-
ate from w(t) = t as well as limits on the local advancement speed dw(t)

t are
considered in the following sections.

If the sequence of events were not constant, the event alignment problem would
have to be addressed in a different manner by separating the events before indi-
vidual event alignment. In the simplest case, the two events could be spectrally
separable, such that a different warp function could be applied to the different
spectral components, but it has not been necessary and thus not investigated.
If the events were not separable in frequency, the traditional use of blind source
separation on simultaneous recorded channels could be used to split the events
prior to individual event alignment.

3.1.1 Automatic warp paths

The dynamic time warping (DTW) was developed in the context of speech
recognition, solving the problem that the length of each phoneme is varying
from observation to observation. When matching a sound against a reference,
the length of each phoneme could be adjusted to follow the reference [Ellis].
This is pretty close to the usage here. However due to the increased similarity
from cycle to cycle compared to repetitions of phonemes, the warp should be
learned for a group instead of for an example. Thus, the warp path should be
obtained from and applied to observations from the same condition, say 50%
load.

The warp paths are obtained by splitting the data into overlapping frames of
equal length from which the windowed short time fourier transform (STFT) is
normally calculated. Say we have F frames and two signals of same length we
now compare each frame in signal 1 with each frame in signal 2 – and obtain a
F ×F similarity matrix. The warp path is the optimal path from position (1,1)
to (F,F). The comparison is the standard angular difference between vectors.
Visualizing the similarity matrix as a landscape we select the route with the
lowest sum of heights, with respect to the constraint that we are not allowed
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Figure 3.3: Warp path obtained with Itakura-parallelogram (from Leonard et al.
[2000]). The warp path is non-decreasing, i.e., obviously the warp function should
not go back only forward in time.

moving back in any direction, i.e. monotonically increasing paths. Due to
the sum the height differences on the path do not matter. The warp path is
now a new sequence (with repetitions) of the original frames that matches the
reference.

Looking on the similarity measures (the gray scale coded images) in Figure 3.4
and 3.5 we see that the peaks/landmarks in the signals are easily identified
as “white” passes at the dark mountains, thus the similarity measure correctly
identify that the peaks should be aligned. Away from those passes the landscape
seems flat and as Figure 3.4 and 3.5 show it is here the DTW fails to find
a reasonable path. In this context the simplest warp path is w(t) = t, and
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complexity is due to curvature and slopes far from 1, i.e., vertical and horizontal
local warp paths.

3.1.1.1 Warp path constraints

The first set of constraints applied to the warp paths are local constraints, the
ones that tell which steps are possible. In the simplest case, only three steps are
allowed: (1,1), (0,1), and (1,0). These steps do not allow for skipping frames, but
two frames can be put on top of each other (that is played back simultaneously)
if (0,1) is chosen. Also the steps (1,2) and (2,1), that make frame skipping
possible, can be allowed (they are in Figure 3.3), but are not available in the
DTW code due to Ellis and have not been considered in this thesis.

The second set of constraints are more global and somewhat heuristic trying
to keep the warp paths within reasonable bounds, by putting limits on how
far the warp path can move away from the simplest warp path. The Itakura-
Parallelogram [Leonard et al., 2000] define a minimal and maximal progression
rate both with respect to the start and end point as seen in Figure 3.3. From
below the warp path is first constrained by the minimal progression rate and
later by the maximal progression towards the end, and in an opposite manner by
the upper bounds. The Sakoe-Chiba band on the other hand specify a narrow
or wide straight highway from start to end. In Figure 3.4 and 3.5 the Itakura-
Parallelogram are applied to the left side and Sakoe-Chiba band to the right side
plots. The obtained paths are a function of both local and global constraints,
however the constraints cannot save the DTW curves from being too complex.

3.1.1.2 Limits of dynamic time warping

Finding the warp paths from the available data is problematic, since we observe
both time and amplitude changes in the signals as a function of the load. This
leads the DTW-algorithm [Ellis] to propose warp paths that in general are more
complex than necessary, as they additionally try to solve the amplitude problem
as well, even though the angular vector comparison should take those differences
out.

Also, when no time warping is not necessary the DTW proposes a warp function
that is not w(t) = t as shown in Figure 3.4. Moreover, when time warping is
needed the complexity of the warp paths (compared to the simples warp path
w(t) = t is too high. For instance Figure 3.5 have very steep curves at the end
(100-120), due to the differences in the peak tails in Figure 3.7



32 Event alignment

Figure 3.4: Warp paths obtained with DTW from 25% load to 25% load, thus no
warping is necessary. The time DTW is based on aligning time samples, while the
Fourier DTW is based on aligning STFT of frames

3.1.2 Landmarks

From propeller curve acoustic emission energy (AEE) signals from the Man
B&W test bed engine, I defined a set of landmarks that should align the engine
events and thus the signals in angular domain. My landmarks also shown in
Figure 3.6 are solely based on the peaks in the signal, i.e., not using any me-
chanical engine knowledge at all. All peaks got a landmark, regardless of the
origination of the peak. This ensured that both moving events were aligned and
stable events kept aligned. The landmarks have been compared with a similar
analysis of the same date performed by Heriot-Watt University, UK (HWU) and
reported in AEWATT Deliverable 2 [AEWATT Project Consortium, 2003a]. In
their analysis, they focused on understanding and labeling of the events accord-
ing to their mechanical origin. Figure 3.6 show the consistency between their
findings and my landmarks, where the labels originate from their tables.

The AEE signals obtained from the engine are very similar across load settings;
the sequence of events seems constant. Therefore, the warping should be a
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Figure 3.5: Warp paths obtained with DTW from 50% load to 25% load. For the
STFT (denoted Fourier) warp paths, optimal window length and overlap was selected
(one for all load settings). The time warp paths use just a single point. For signal the
four warp paths are consistent, still for the single sample based methods. The dotted
lines in the plot indicate piecewise linear interpolation between the landmarks shown
in Figure 3.7

matter of stretching the duration and spacing of and in between the events. In
my model, each peak in the signal is an engine event. The notion landmarks
originates from image warping and are obviously objects that we can identify
independently in all observations. The landmarks provide information that can
be used to identify the underlying true timing map, and are the time indices
that describe the start, peak and end of each peak. Given a reference signal with
N landmarks at times: {L1}n the warp function w(t) is the one that transform
the other set of landmarks {L2}n into the reference.

w({L2}n) = {L1}n, n = 1, . . . , N (3.2)
{L25%}n = {1, 38, 47, . . . , 1845, 1858, 1890, 2048} (3.3)
{L50%}n = {1, 60, 76, . . . , 1847, 1861, 1920, 2048} (3.4)

Where each landmark is the crank angle sample number, starting with 1 at
−180o and ending with 2048 at (179.8)o. A warp from mapping events posi-
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Figure 3.6: The landmarks in radar view for propeller curve data from Man B&W
test bed. The thin blue lines indicate the landmarks that I obtained by hand, the
thicker (and fewer) arcs are based on the tables describing event positions in AEWATT
Deliverable 2 [AEWATT Project Consortium, 2003a].

tioned as at load 50% to 25% would be w({L50%}n) = {L25%}n.

3.1.3 Frequency preserving time stretching

One thing is obtaining the warp path, but it also has to be applied to the
signal. The Phase Vocoder that allows signals to be stretched in time without
moving the frequency components was first described by Flanagan and Golden
[1966]. Like the DTW it works with the STFT of the signals. The concept is
simple – by changing the number of samples between each (overlapping) signal
frame in the STFT the overall duration of the whole signal can be changed
without changing the time/frequency content in the individual frames. The
problem with applying the phase vocoder on condition monitoring data is that
while it preserves the overall frequency content; important peaks can either
be repeated or removed, and those dropped/spurious peaks would generate an
alarm. With that in mind overall frequency preservation as a requirement was
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Figure 3.7: Landmarks and signals for two load settings. Notice the 180o degree phase
shift on the axis (180 = TDC). The left figure show the signal with landmark indicators
before aligning. The time warp that aligns the landmarks also aligns the peaks in the
signals and this result is shown to the right.

dropped. Moreover, the distance between some of the engine events is so small
that good spectral measures of the individual peaks are not available.

3.1.4 Spline interpolation

A set of sequential landmarks identify some points on the warp path, but does
not tell what happens in between the landmarks. Two similar methods have
been investigated, piecewise linear interpolation and cubic spline interpolation.
The piecewise linear interpolation merely connects the landmarks with straight
lines, thus at the landmarks the slope of the warp path is discontinuous. With
cubic splines, the second derivative, the curvature, is continuous [Shampine
et al., 1997], and the abrupt slope changes at the landmarks are removed. How-
ever, the cost is a more wiggly warp path as seen in Figure 3.8 and Figure 3.9.
Moreover the cubic splines do not guarantee that a set of monotonically increas-
ing landmarks result in a monotonically increasing warp path. In Figure 3.8 the
cubic spline proposes a warp path that goes back in time around 5o, and thus
violates the monotonically increasing requirement.

3.1.4.1 Inverse warp paths

Now the warp paths obtained from two landmarks sequences is compared to the
warp path obtained when exchanging the two sequences. The two warp paths
should ideally be each others inverse – actually that is the whole idea with the
landmarks that they should invert the timing changes that have been applied
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Figure 3.8: The circles indicate the landmarks. The two dotted lines indicate the
piecewise linear and cubic spline interpolations of the landmarks. The solid wiggly
line is the actual warp path based on cubic spline interpolation. It is easily seen that
the warp path is just the landmark interpolation mirrored in the straight “no warp”
line. The figure to the right is a zoom in on the injection period one of the most
difficult periods. The landmarks are close and the slopes are changing. As Figure 3.1
also show the events under the 50% load condition happen after the 25% load.

to the AE signals. With the linear interpolation between landmarks this holds,
but not for the cubic splines. However since the difference is rather between the
two large it is worthwhile to consider both warp paths and select the best; and
obviously invert the warp path if necessary. Thus if one of them violates the
requirements we can use the other one, if both of them are valid we can choose
the one that is closest in some measure, say mean square, to the linear warp
path. In Figure 3.9 the green warp path - obtained from the inverse landmarks
and then inverted is considerably better than the warp path obtained directly.
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Figure 3.9: Warp paths, inverse warp paths

3.2 Amplitude alignment

Not all of the variation can be explained by the time stretching also an amplitude
mismatch as seen in Figure 3.7 has to be corrected.

Based on some independent samples of the reference (denoted x) and warp
(denoted y) condition, an amplitude alignment function can be estimated. Three
simple methods have been considered: Addition Equation 3.5, multiplication
Equation 3.6 and a combination Equation 3.7. As both mean and variance
differences where observed between loads the combined method was selected.
The mean and variance of the two set of samples are estimated and denoted
µx,y and σ2

x,y. All estimates are obtained from independent sets, i.e., learning
the whole event alignment requires three independent training sets from each
condition: landmarks, mean, and variance.

ỹ(t) = y(w(t))− µy(w(t)) + µx(t) (3.5)

ỹ(t) = y(w(t))
µx(t)

µy(w(t))
(3.6)

ỹ(t) = (y(w(t))− µy(w(t)))
σ2

x(t)
σ2

y(w(t))
+ µx(t) (3.7)

If the variance in the reference condition is larger than the variance in the
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Figure 3.10: Amplitude mismatch after time alignment. The figures show the mean of
a group of signals taken through the steps in the event alignment. For clarity, two of
the signals have been vertically flipped. We begin with the red signal that we want to
align with the dotted blue signal. The first step is the time alignment that results in
the green signal. Finally the amplitude alignment is applied which puts dashed black
signal on top of the reference signal.

warp condition, an amplification of the variance could cause the amplification
of measurement noise. To prevent this, the ratio σ2

x(t)
σ2

y(w(t)) is constrained by a
limit of 1.

However, by not scaling the variance up when necessary, it also makes the event
aligned examples supernormal since they are much closer to the load mean
signal as seen in Figure 3.11. Thus, the event alignment warp would make
faulty examples more like the normal and possibly prevent detection. It could
also lead to serious overfitting and false alarms if such examples are used to train
models or learn rejection thresholds, due to artificial smaller mode variance.
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Figure 3.11: Variation in the AEE signal in the injection period (180o degree phase
shift) after event alignment is applied. The variance in the signals at reference load
(25%) is higher than in the event aligned 50% signals. This is due to the constraints
on the variance scaling that protects against amplification of measurement noise, but
also introduce the risk of making the event-aligned signals super-normal.

3.3 Modeling the continuous warp functional

In the event alignment publications [Pontoppidan and Larsen, 2004, Pontopp-
idan and Douglas, 2004], it was demonstrated how event alignment could be
used for non-stationary change detection. The analysis with three different load
settings on the propeller curve indicated that it would be possible to formulate
a warp model that was continuous in the load parameter. The event alignment
framework considered in this chapter, require one warp function for each load.
A functional behavior was revealed by a visualization that preserves angular
and time information by displaying the data on circles where the circumference
is proportional to the cycle time. Figure 3.6 shows that relatively smooth non-
linear functions of load and angular position can be formulated in this domain.
From such figures one can also identify the events with constant time length
and other functions of dependence, e.g., square, log etc. . . ). From an engine
developer/manufacturers point of view, this analysis might not be necessary.
The adjustment of the events are computed by the engine control system, so
the information must reside somewhere in the system and the design. However,
information has not been available.



40 Event alignment

Since Figure 3.6 indicated that a functional behavior was able to explain the
movement of the events, i.e., describing the placement of the landmarks as a
function of the load, Dr. S. Sigurdsson is currently investigating if it is possible
for artifical neural networks (ANN) to learn this function. The warp path is
approximated by a positive mixture of tanh-functions. The tanh-function is
monotonically increasing, and so is a warp path consisting of tanh’s with positive
weights.

w(n, λ) =
K∑

k=1

ak tanh(bkn + dkλ + ck), ak, bk ≥ 0∀ k (3.8)

where n is the crank angle position, λ the load, and ak, bk, ck, and dk the
parameters of the ANN. Keeping ak, bk non-negative fulfils the monotonic
requirement, while dk model the load dependency and ck is just a translation.

The interpolation between known loads comes from considering the training in-
puts with targets (20, {L20}n), (40, {L40}n), so that a functional behavior for
{Lλ}n can be learnt. Moreover if this is successful additional input such as
engine layout curve (propeller, generator, vibration, NOX-curve) can be consid-
ered.

3.4 Downsampling - a crude approach to remov-
ing load changes

Finally as a simple alternative, it was investigated if the timing changes in the
AEE signals could be removed with downsampling. Comparing the upper and
lower panel of Figure 3.12 the timing changes in the upper panel was been re-
moved. While the downsampling removed the timing changes it did not remove
the amplitude changes, thus some load dependent processing would still be nec-
essary. Alternatively the AEE signals in the period could just be summed to
preserve energy. Still timing information for proper selection of intervals would
be necessary. With this setup the landmarks would just be used like crank
pulses in the crank angle conversion (section 2.4, i.e., that the observed crank
samples between each landmark was summed. This could be seen as a more
advanced usage of domain knowledge, compared to the work by Chandroth and
Sharkey [1999], where domain knowledge is applied by only considering the most
important part of the cycle.

A simple test was conducted where the necessary downsampling factor for the
whole cycle was roughly estimated from the obtained landmarks to around 50. In
the example in Figure 3.12 the downsampling factor is 96. Recall downsampling
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Figure 3.12: The timing differences has been downsampled away (factor 96).

with factor 96 results in lowpass filtering and selection of every 96’th sample.
The factor is higher as all events needs to be in the same 96 sample long block
regardless of load. An event that is moving from one block to another would
result in timing changes. However, some faults were removed in this way. The
faulty water brake resulted in unstable timing of the events [Pontoppidan and
Larsen, 2003], and downsampling with factor 8 lead to decreased fault detection
of that fault [Pontoppidan and Larsen, 2004].
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Chapter 4

Condition modeling

In this chapter, I outline the various methods that I have used to model the
engine condition in observed data. The methods share some important prop-
erties, namely being generative and capable of data reduction. The two main
equations in this chapter are

x = As + ν, ν ∼ N(0,Σ) (4.1)
X = AS + Γ, (4.2)

where x is the observation vector of size d × 1, A the mixing matrix of size
d × k, s the source signal of size k × 1 and ν the additive noise is also d × 1.
d is the number of features and k the number of components, and k � d.
The observation matrix X is generated by stacking several realizations of the
observation vectors. Here the different realizations comes from different engine
cycles acquired with the same sensor, i.e., they are not simultaneously recorded
as in the classical blind source separation problems [Bell and Sejnowski, 1995,
Molgedey and Schuster, 1994]. Similarly the source matrix S and the noise
matrix Γ comes from stacking the N source vectors and noise vectors.

X = {x1,x2, . . . ,xN} (4.3)
S = {s1, s2, . . . , sN} (4.4)
Γ = {ν1,ν2, . . . ,νN} (4.5)
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The assumption that the noise is Gaussian with zero mean does not hold
completely, as the sensor noise and the signal is added and squared in the
root mean square (RMS). Being uncorrelated they add as energy signals, i.e.
rms =

√
s2 + 2ns + n2, having s, n as signal and noise respectively. Since the

signal and noise is noise are uncorrelated the mean of the 2ns is zero, and further
since the overall noise level is low compared to the signals the non-zero mean
can be neglected.

Equation 4.1 describe how the k hidden signals in A are weighted by the co-
efficients in s to generate the observed signal x. In other words the A matrix
contain those signal parts that the observed signals can be made up from - it
acts like a basis for the normal condition. The idea is to learn this basis set from
a collection of normal condition data, making the model capable of generating
the different modes in the observed training data. By applying the component
analysis methods the orthogonal/independent directions in the observed data
should result in a basis, i.e., columns in the mixing matrix, that contains sig-
natures with the descriptive quality like source 3 (the third row of S) model
the amplitude of the injector event signal in column 3 of the mixing matrix. As
Figure 4.1 show, such clear descriptive quality is not always encountered, since
the columns of the mixing matrix seem to model parts of all events in the cycle.

In the introduction of the chapter, data reduction was stated as a property of
the models. Consider a group of observations as in Equation 4.2, and assume
that k < N ∧ k < d, then the Nd values of the observation matrix is modeled
by the much smaller k(d + N) values, e.g., each example x is modeled by the k
source values multiplied on the k core signals in the mixing matrix.

In addition, noise model assumptions can be made. In this thesis, two assump-
tions have been considered. Either Σ = σ2I, i.e., independent and identically
distributed (iid), which assume a constant noise level throughout the engine cy-
cle. Alternatively, the more advanced Σ = σ2I where the noise level is assumed
to be varying through out the engine cycle (see subsection 4.2.3).

Solely examples acquired under normal conditions have been modeled, but the
same procedure could be repeated on other important faulty conditions, as
this would enable the identification of these faults. This way the simple nor-
mal/faulty condition monitoring system could be expanded into a more full
diagnosis system.

The models describe signals originating from one sensor by already observed sig-
nals from that sensor. Conceptually the model knows how that engine normally
sounds with that sensor in that position. The knowledge of the normal sound
pattern is used to output the negative log-likelihood (NLL) for each example,
given the normal condition model and possibly the expected noise level. The
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Figure 4.1: Graphical explanation of matrix setup. Here an observation matrix with 2
examples is expressed by the weighted sum of the two columns of the mixing matrix.
The elements in the source matrix are the gains or activations of the core signals found
in observed data using the component analysis methods.

identification of a fault is performed by monitoring the NLL against a thresh-
old. Depending on the amount of data this threshold can be established by
comparing the NLL of known normal and faulty examples (supervised) or when
only normal examples are available by selecting an inherent rejection rate of the
normal examples. In chapter 5 the handling of the NLL values and thresholds
are described further.

4.1 Properties: Independent, orthogonal and un-
correlated

Prior to the description of the actual algorithms, some properties of variables
are considered. Columns vectors x and y are either orthogonal, uncorrelated
or statistically independent if one or more of the corresponding equations are
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fulfilled

Orthogonal if : x>y = 0 (4.6)

Uncorrelated if : (x− µx)>(y − µy) = 0 (4.7)

Statistically independent if :
∫ ∫

p(x,y) log
p(x,y)

p(x)p(y)
dx dy = 0 (4.8)

Statistically independence is that the joint distribution can be factorized by
the marginal distributions: p(x,y) = p(x)p(y), making the nominator and
denominator in Equation 4.8 equal.

Another definition of independent is

E{g1(p(yi))g2(p(yj))} − E{g1(p(yi))}E{g2(p(yj))} = 0, i 6= j (4.9)

However, it is not very convenient as it requires trying all measurable functions
g1 and g2 [Hyvärinen, 1999]. Nevertheless, it show what statistical indepen-
dence is really about - that there should be absolutely no way of linking the
observations in yi with those in yj .

For joint Gaussian distributions independent and uncorrelated is equivalent
[Hyvärinen, 1999]. Since the covariance matrix becomes diagonal and the dis-
tribution factorizes in the two marginal distributions. For zero mean signals un-
correlated and orthogonal is equivalent; and joined these two properties imply
that zero mean orthogonal Gaussians variables are independent. However, this
is not good as the independent components analysis (ICA) algorithms require
that none/or at most one source is Gaussian to recover the mixing matrix direc-
tions. This is due to the summation property of the alpha-stable distributions
where Cauchy and Gaussian is the most common. The Cauchy distribution,
which has heavier tails than the Gaussian, was considered as source prior for
monaural ICA in my Masters Thesis [Dyrholm and Pontoppidan, 2002]. The
summation property is that adding two independently drawn numbers from a
Gaussian (or Cauchy) results in a sum that follows a Gaussian (or Cauchy) dis-
tribution with changed parameters [Conradsen, 1995]. Another way of looking
the summation property is that, convolving two alpha-stable distributions of
same family results in a new distribution of that family, i.e., it only changes
parameter values. In contrary, adding two uniform stochastic variables results
in a triangular distribution and thus the family changes. For deeper insight on
alpha-stable distributions see Kidmose [2001].

In order to investigate what statistical independence and orthogonallity con-
strains imply for the source separation and identification problem a small ex-
ample with synthetic data is conducted. Figure 4.2 show the results of little
experiment with two classes of data, where ICA is capable of discriminating the
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two classes while principal component analysis (PCA) is not. PCA is crippled
by its requirement that the estimated sources should be orthogonal, which also
imply that the direction classes in data should be orthogonal. The ICA only
requires the direction of the classes to be linearly independent. So while this is
an example where ICA works and PCA does not, there is no guarantee that the
PCA will not work on data available, as this is solely governed by the proper-
ties of the data. The example did reflect one assumption of how the acoustic
emission energy (AEE) signals in normal and faulty examples differ. Simply
we might have a strong event as combustion where the increased wear between
piston and liner “drown” in the combustion mode variance. However, at an-
other angular position with no prominent events the increased wear will show
up. In the two dimensional case where all points are in one quadrant (not as
Figure 4.2) subtraction of the mean (centering before PCA) will save the day
for PCA, as the normal and faulty end up on each side of the origo. However
when the mean is already zero as in Figure 4.2 the centering does not help PCA.

The ability to distinguish between the two synthetic classes can also be trans-
ferred to real data acquired on the MAN test bed engine. The whole data set
outlined in Figure 2.1 basically have 5 different conditions: 25% load with and
without oil, 50% load without oil and 75% load without and with oil. The tem-
porary fault in the waterbrake at 50% load is ignored, since it is not as stable as
the other faults. The mean field independent component analysis (MFICA) and
unsupervised Gaussian mixtures (UGM) methods are capable of grouping the
examples based on load and oil level without any prior knowledge on the form
and time of the changes, essentially like a human expert. Figure 4.8 show the
estimated directions describing the individual loads and the oil on/off (as # 3)
core signals. Especially the MFICA provide an oil on/off source that is grad-
ually increasing and drops to the baseline after the lube oil is restored. With
sufficient examples, a trigger threshold on the independent component could be
established, which would imply the specific fault (modeled by the independent
direction) had occurred. This is a standardized way to achieve fault detection
with other models, e.g., Gaussians [Basseville and Nikiforov, 1993] and State
Space Models [Gustafsson, 2001]. Unfortunately, the setup is not economically
feasible for detecting increased liner-piston interaction or scuffing, as destroying
numerous liners and pistons for large diesel engines is too costly.

4.2 Mean field independent component analysis

In the mean field independent component analysis (MFICA), the method for
estimating the sources is derived from physics. The posterior distribution of the
sources is approximated by a Gaussian - and the “optimal” estimate is the mean
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Figure 4.2: Two linearly independent classes are separated using PCA and ICA. The
left figures show the data and the estimated directions. The middle figures show
the estimated sources as time series (the two zeros indicate the zero level for each
component). The scatter plots of the estimated components to the right show the ICA
separation of the two directions in the observed data into two statistically independent
components, while the PCA has just rotated the observed signals. The ICA scatter
plots of the estimated components to the right display the independence as most
examples are very close to one of the axes, i.e., p(x, y) = p(x)p(y).

of that Gaussian. The MFICA algorithm due to Højen-Sørensen et al. [2002] is
implemented in a Matlab toolbox developed at DTU [Kolenda et al., 2002].

The MFICA allows for specifying the source distribution and constraints on the
mixing matrix. When handling the non-negative AEE signals, it makes sense
to specify an instantaneous non-negative mixing of non-negative signals, i.e.,
having non-negative elements in both source and mixing matrix. If the raw
acoustic emission (AE) signals where used the non-negativity constraint should
not be applied, since those signals take on both negative and positive values.
In the toolbox the setting prior.method=’positive’ sets up a non-negative
constraint on the elements of the mixing matrix using a Lagrange multiplier and
the source prior becomes an exponential distribution (with scaling β = 1).

For Gaussian observation noise the mean field approximation to the poste-
rior distribution for component k ∈ [1,K] is the prior (Equation 4.10) times
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MFICA PCA

INFOMAX UGM

Figure 4.3: MFICA, PCA, INFOMAX and UGM applied to the data set with 3 loads
and lube oil on/off outlined in Figure 2.1. The vertical lines indicate the condition
changes, e.g., oil and load changes. For MFICA, PCA, and INFOMAX the four
sources are plotted as time series (rows of S). The UGM shows the classification of
the same examples into three classes. The UGM and INFOMAX are applied to the 4-
dimensional PCA subspace. Especially the MFICA result is good, as the oil off period
is modeled by source 1 that is increasing while the oil is off, and drops to zero as the
oil is put back on. In addition, the UGM with 3 classes, detect the oil change and put
the first and last examples in the same class. The PCA and INFOMAX components
also change at the oil changes, but not in as clear and systematic way as with the
MFICA and UGM.

a Gaussian with mean field parameters γk and λk.

Pq(sk) =
{ 1

β exp− 1
β sk , sk > 0

0 , sk ≤ 0
(4.10)

P (sk) ∝ exp {−λks2
k − γksk} (4.11)

log
∫

P (sk)Pq(sk)ds = log

−√πβ exp (β−γk)2

2λk

(
erf
(

β−γk√
2λk

)
+ 1
)

√
2λk

 (4.12)
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The first and second derivatives wrt. the mean field parameter γ give the Equa-
tion 44 and 45 in Højen-Sørensen et al. [2002], that are used in the mean field
algorithm [Kolenda et al., 2002].

In order to understand what we get from the MFICA, recall the two-dimensional
example in Figure 4.2, and remember that the size of the matrices in Equa-
tion 4.2 are X: d × N , A: d × k, and S: k × N . What we obtain is that
the statistically independent components, the rows of S can be interpreted as
activations (coordinates) of the linearly independent directions in the observed
data, i.e., the columns of A.

Since the mixing matrix is not partial of an unitary matrix as with PCA, and
the rows of the source matrix should follow specific distributions, the application
of the model to new examples require iterative solutions similar to the training
procedure, whilst keeping all but the source values to the values obtained from
the training process.

The current available implementation of the MFICA algorithm uses an expec-
tation Maximization (EM) algorithm to update and learn its parameters. The
EM algorithm is a “coordinate” descent algorithm, in the way that the set of
parameters are split in two groups. The algorithm switches between optimiz-
ing the parameters of the two groups with the other group of fixed parameters
fixed to their previously optimized values. It can be proved [Bishop, 1995] that
none of the steps will increase the bound. However, it also known that the con-
vergence speed is slower compared to some other methods that also converge
[Olsson et al., 2005].

4.2.1 Priors

When investigating the histograms of the estimated sources I noticed that, with
small number of components the source estimates seemed to follow a gamma-
distribution instead of the exponential prior-distribution. Obviously selecting
an exponential source distribution does not necessarily result in exponential
distributed sources estimates as they depend more on the observed data than
the prior if enough information is available. However, the prior in this case
influences the source estimates since they are not negative.

In other settings, with independent prior distributions having the maximal den-
sity at 0, the estimated sources normally lie on or very close to the axes, see
for instance Figure 4.2 (lower to the right). But here the source estimates are
out in the field, so to speak, which comply quite well with independent gamma-
distributions with shape parameter k > 1. I guess the reason that the source
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estimates are not one the axes, is that on the axis tells that the corresponding
hidden signal is not used, and for a proper fit to the observed data, with few
components, the algorithm needs virtually all hidden signals to model the ob-
served data. While it is a speculative conclusion to draw, this could improve
classification as the exponential source prior tells the algorithm to select low
value sources if it is not well justified by data. This could help when applying
the model to new examples, since the model is pushed towards modeling new
examples as noise. However this is not investigated, and deliberately selecting
a wrong prior is not that good Bayesian style.

4.2.1.1 Gamma source distribution

Eventually the gamma distribution was considered as a source prior candidate
within the mean field framework. The paper by Højen-Sørensen et al. [2002]
gives the calculations that needs to be carried out in order to have the update
formulas in the EM algorithm. Therefore, the straightforward idea was: Would
classification improve, if the independent components (the sources) followed a
gamma distribution.

The calculations in Appendix I deals with the Expectation step of the EM
algorithm, i.e., how to get to the update formulas with source mean and co-
variance parameters that define the source signals, whilst keeping the noise
variance and the mixing matrix fixed as described in the EM algorithm.

Unfortunately, the analytic result (given in Equation I.2) is not applicable since
the Laguerre terms results in numeric overflow. It is not known whether this
is due to missing normalization terms, bad approximations somewhere, or the
results are just small differences between (ridiculously) huge numbers. However,
it is observed that the analytic simplification that happens for β = 1, where the
Gamma distribution becomes an exponential distribution leads to numerically
stable update formulas given in Equation 4.12. This indicates that it is not the
full, but the temporary results that are overflowing, which does not help as the
result we are looking is most likely buried way under the noise level of a sum of
four 10100000 numbers.

4.2.1.2 Positively constrained Gaussian source distribution

In an attempt to verify that it is the temporary results in the computation
with the gamma distribution, the positively constrained Gaussian distribution
is considered. The computations with this prior, where the analytic calculations



52 Condition modeling

Figure 4.4: The similarity of a certain Gamma distribution and a normal distribution
with a positive mean value

giving the f, df terms have already been done in Højen-Sørensen et al. [2002].
The mean and variance was fixed to mimic a gamma distribution as shown in
Figure 4.4. Due to the current limitations in the implementation of the MFICA
algorithm, this mean and variance are not optimized, and further selecting a
lower mean value result in that the optimization diverge and stops. As shown
in Figure 4.5 the NLL on independent test examples obtained with this source
prior is not as stable as with the exponential distribution.

4.2.2 The transposed problem

The setup given in Equation 4.2 does not result in statistically independent
AEE components. Instead statistically independent activations of linearly in-
dependent AEE signals are obtained. With this setup, the size of the mixing
matrix does not depend on the number of examples, moreover the likelihood
that is obtained from the MFICA algorithm is calculated pr. column in S, i.e.
pr. example in the normal setup.
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Figure 4.5: Negative Log Likelihood with Positively constrained Gaussian source dis-
tribution. The NLL is obtained from an independent test set, and is generally bet-
ter (lower) with the exponential source prior than with the positively constrained
Gaussian.

Figure 4.6: ROC curves obtained on an independent test set. Also the ROC show that
the results with the exponential distribution are more stable for varying model sizes.
The better performance seen here for the exponential distribution is not significant.
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Figure 4.7: ICA in its two transposed forms

Still it is interesting to search for the statistically independent AEE signals, so
the transposed problem is considered. Now X is N × d, A: N × k and S:
k × d, the independent components (the rows of S) are AEE signals and the
rows of A are the mixing of those components for each example. In the general
case in this thesis with many more features than examples and components,
i.e., d � N > K, the proportionality of the matrices change considerably as in
Figure 4.7. In the normal case the observation and mixing matrix are tall and
thin d to K which is in the order of hundreds, while the source matrix is broad
and low, K to N which is in the order 1/5 to 1/40. For the transposed case the
two ratios are just exchanged such that the mixing matrix is still tall thin, but
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Figure 4.8: Applying MFICA to the transposed problem. Besides from the two in-
herent ambiguities with ICA scaling and permutation, the result is more or less an
exchange of the mixing and source matrix, i.e., X = AS and X> = S>A>. The
scaling and permutation has been fixed manually. In the upper figure the columns of
the normal mixing matrix is shown together with the independent components of the
transposed problem. Moreover, the lower figure shows the independent components of
the normal problem and the mixing matrix of the transposed problem.

with the lower ratio of 1 to 5−40, and now the source matrix become very long
and low. The size differences are easily seen in Figure 4.7, the figures assume
that d � N > K.

Does the transpose influence the results? First, the almost square problem
with 2048 features (the crank angle samples pr. cycle) and 2227 examples
is considered assuming 4 components. This is a repetition of the experiment
conducted earlier, which revealed the three load classes + the additional oil
on/off class. Figure 4.8 show the result of applying the MFICA to the transposed
observation matrix compared to the experiment shown in Figure 4.3. ICA has
an inherent scaling and permutation ambiguity, which has been manually fixed
by normalizing the numerical range to ±1 and alignment of the components.
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Figure 4.9: Comparing the signals (to the left) and NLL values (to the right) obtained
with the normal and transposed form. While there is no difference in the recovered
signals on an independent training set, the mean of the NLL values differ, with the
normal form as the best.

Besides from these ambiguities the two versions give nearly transposed results,
where the mixing and source matrices are just exchanged and transposed.

X = An = Sn (4.13)

X> = AtSt (4.14)

= A>
n S>n (4.15)

The noise levels and mean square residuals are on the same scale ∼ 3 · 10−4. In
addition, the transposed problem has a slightly better NLL.

With 80 examples in the training set and 80 in the test set as in Figure 4.9, the
performance of the normal problem is much better than the transposed. The
transposed model requires that the size of the new observation matrix is equal
to observation matrix used to train the model (otherwise, the matrix setup does
not hold). The MFICA algorithm runs faster for the normal problem, just as the
optimization diverges when solving the transposed problem. This is for instance
why there is no NLL with 10 and 11 components for the transposed setup in
Figure 4.9.

For the normal problem the size of A does not involve N , so that particular ma-
trix setup ensure that a model obtained from a training set of some N examples
can be used directly on observation matrices with M 6= N examples.
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Figure 4.10: Comparing the mean residuals of normal and faulty test examples

4.2.3 Covariance structure

In the MFICA algorithm the structure of the covariance is assumed to be either
isotropic (same noise variance for all d samples), or diagonal (independent noise
variance for all d samples). While the later give d− 1 additional parameters it
also allows for modeling that the noise variance is not constant through out a
cycle, but varying as a function of angular position. Moreover, as Figure 4.10
indicate the obtained residuals with both noise models vary considerably with
the angular position. The diagonal noise variance leads directly to that some of
the peaks in the residual becomes higher (also seen in Figure 4.10), and further
this happens with both the normal and faulty test examples from experiment 1.
In Figure 4.11 we see that the covariance structure has influence on the ability
to detect faults, the separation of normal and faulty examples is better with the
diagonal than both with the isotropic noise and for the PCA.

4.3 Principal component analysis

The PCA is a simple (at least when compared to ICA) and yet powerful method
that finds the orthogonal directions in the observations with the highest vari-



58 Condition modeling

Figure 4.11: Comparing NLL values obtained with isotropic and diagonal noise covari-
ance. The example numbers are arbitrary. The diagonal covariance allows for better
performance as there is fewer of the normal examples that exceed the threshold.

ance. If a singular value decomposition (SVD) is applied to the observed data,
i.e., X = UDV >, then the mixing matrix A = U and the source matrix
S = DV > in Equation 4.2. The directions found in observed data with PCA
are orthogonal/uncorrelated, which is a harsher but numerically simpler con-
straint than the linear independence required by ICA. Additionally, the PCA
mixing matrix in it full size is a unitary matrix, such that A−1 = A>, for
the economically sized SVD the pseudo inverse inherit that property so that:
A† = A>. This makes the PCA models easily applicable to new examples as
snew = A>xnew. When only a subset of the principal directions is used, the
noise ν in Equation 4.2 is modeled by the discarded subspace.

The further difference between independent, orthogonal and uncorrelated is out-
lined section 4.1 and some implications are encountered for the constrained PCA
in subsection 4.3.1.

There is no likelihood model connected to the SVD algorithm, however since
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the PCA is based on ranked subspaces, the discarded subspaces will span the
residual, and a likelihood model of that can easily be obtained. The likelihood
model given in Hansen and Larsen [1996] is adapted here. The noise is modeled
by a white Gaussian noise source with variance equal to the sum of the variance
in the remaining subspaces.

4.3.1 Positive PCA

Since the observed data is already positive, it could be interesting to try varia-
tions of PCA where the elements of the matrices are assumed non-negative. If
we can specify PCA as a (constrained) optimization problem we could add the
non-negativity constraint to obtain a special case of the PCA algorithm. First
we need to analyze PCA to find those normal constraints.

The principal components are found along those pair wise orthogonal directions
(columns in W ) that explains most variance in the observed data X. If we want
to pursue that as an optimization problem, then

W pca = argW max{WXX>W>}, s.t. W>W = I (4.16)

Without additional constraints W pca is equal to the eigenvectors of the sample
covariance matrix XX>.

In positive PCA we also require that all elements in W are non-negative, and
this is problematic! Imagine some points in a three-dimensional space (x, y, z).
Having selected the first positive principal direction as (1/2, 0, 3/4), now the
second positive principal has to be (0, 1, 0) since non-zero elements in x or z
dimension would break the orthogonallity.

In general the non-negativity along with the orthogonallity imply that only one
principal direction can have energy in a feature, thus only one element in each
row of W can be is non-zero. Therefore, while it is possible to specify and find
a set of positive principal components, the combination of the two constraints is
indeed problematic. The orthogonallity constraint prevents the principal com-
ponents from sharing dimensions, and prevent reasonable situations where the
variance of one feature is connected to two other non-connected features can-
not be modeled. A positive PCA algorithm was implemented in Matlab using
the constrained minimizer fmincon with the given constraints but showed very
small usability due to the above issues.

The non-negative matrix factorization (NMF) due to Lee and Seung [1999] esti-
mates something that is similar to “positive” PCA, but it is not positive PCA as
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such since it does not obey the orthogonallity constraint. It has been much more
successful than its “correct cousin” and achieved much attention. Given X, the
NMF estimates WLH = X where the sizes of the three matrices are equal
to PCA, and the columns of W and rows of H have unit length and the ele-
ments are non-negative - however the columns are not orthogonal. Besides from
not having an associated likelihood function, Donoho and Stodden [2003] have
shown that NMF has problems when some parts are repeated throughout all
examples, which is problematic with the highly repetitive engine cycles. They
referred to problems with the repeated torso in matchstick swimmer figures.
Hansen et al. [2005] states the repetition makes the components non-unique.
The data that Lee and Seung [1999] initially presented NMF with was hand-
written digits 0-9. Moreover, a subdivision of the parts in the digits 0-9 does
not result in one part that is always on, especially not with handwritten digits.
In Højen-Sørensen et al. [2002] the parts of handwritten examples of the digit
3 is extracted using the MFICA algorithm with same mixing matrix constraint
and source prior as used here with the diesel engine signals.

4.4 Information maximization independent com-
ponent analysis

The information maximization independent component analysis (INFOMAX)
algorithm due to Bell and Sejnowski [1995] was not the first blind source sepa-
ration algorithm, as similar methods had already been developed by Molgedey
and Schuster [1994] and by Cardoso, Jutten, Herault, and Comon. The INFO-
MAX algorithm is based on estimating a transformation of the observed data
that minimizes the redundancy between its outputs, which is equivalent to max-
imizing amount of information in the outputs. When the INFOMAX algorithm
recovers the sources from the observed data it uses the inverse of the mixing
matrix, and consequently it requires a quadratic mixing matrix, thus the num-
ber of sources and observations has to be equal. PCA is widely used to reduce
the dimensionality before INFOMAX, and in this way the true mixing matrix is
factorized into a non-square feature reduction part estimated with PCA (U) and
a square part (A) obtained with INFOMAX. This result in slight modifications
of Equation 4.1:

x = UAs + ν, ν ∼ N(0,Σ) (4.17)

where U is the k component mixing matrix obtained with PCA, size d×k, A is
k×k is the quadratic mixing matrix obtained by the INFOMAX algorithm, s is
the INFOMAX source matrix, k×1. Although the INFOMAX is noise-free, the
observation noise is modeled the remaining components of the PCA. Further,
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the noise spanned by the remaining components is necessary when comparing
models of different sizes, e.g., when using algebraic penalty functions as Bayesian
information criterion (BIC).

The quadratic constraint originates from the need of the inverted mixing matrix
A−1, has been lifted and the framework extended to the non-quadratic case by
among others [Lee et al., 1998, Lewicki and Sejnowski, 2000].

4.5 Unsupervised Gaussian mixtures

The UGM model [Larsen et al., 2002, 2001] is very different from the component
analysis methods mainly considered in this thesis. Instead of finding linearly
independent directions in the observed data, it looks for clusters of examples
in the feature domain. Each cluster is represented by a mean value vector and
a covariance matrix, the mean of the clusters is used to generate the signature
AEE signals, and in that sense the UGM can also be seen as a generative model.
In most cases the UGM is used after that PCA (or possibly ICA) has reduced the
number of features (similar to the use with INFOMAX), due to computational
performance. Initially it was tested if the unsupervised Gaussian mixture model
could discriminate between the different conditions - it could as shown in the
beginning of this chapter.

The UGM has previously been reported to be able to discriminate between
different classes of mail - including spam [Larsen et al., 2002]. Moreover, it
is capable of handling data sets with both labeled and unlabeled examples,
i.e., a hybrid unsupervised-supervised setup. In this way, the labels on the
possible few examples act as guidelines for the automatic discrimination of the
remaining examples. In popular words, the algorithm group the examples based
on their position, and then obtain the labels from labeled examples in the group.
Furthermore if two classes are somewhat overlapping the labeled examples can
be used to select a more optimal threshold, by balancing the width of the two
clusters to the actual position of the examples with labels. Another important
aspect of the UGM is the hierarchical clustering principle also reported in Larsen
et al. [2002, 2001]. Initially, the two clusters with most overlapping probability
densities are linked together, now they can be thought of as being one. Next,
the two second-most overlapping clusters (regarding the new cluster as one)
are linked. Besides, from allowing more advanced decision boundaries between
classes, the hierarchical clustering also acts as taxonomy, since an example can
be traced from its highest level to the very narrow description. E.g., {spam,
money, Nigerian Scam} and {not spam, paper call, conference}.
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With the available engine data, that assumingly consist of 5 classes (25% ± oil,
50% - oil and 75% ± oil), the hierarchical clustering could initially connect the
classes based on the load or the oil setting. In the experimental results shown
in Figure 4.3, the UGM is the only model besides from MFICA that put the
two periods with lube oil into the same class.

The Gaussian mixture model could also be used as more advanced classification
scheme compared to the one-dimensional threshold considered in this thesis.
In that experiment only the principal components where considered as inputs,
but also the PCA-NLL (or from ICA) could be used. With the relatively good
performance achieved with the simple thresholds, it has not seemed beneficial
to go further with the UGM in that sense.

4.6 Simpler methods

For the detection of increased friction between liner and piston, the mean value
ought to be a good measure. If the friction increases the Overall level increases,
then the mean increases. Goodman [2004] describe how the baseline level can
be used to dose the lube oil for a bearing. If the level is 8 dB above the
established baseline, the bearing needs lube oil. When the level is back at the
baseline, no more lube oil should be applied. Over-lubrication can cause to
increased pressure, heat, stresses etc. all leading to failures [Goodman, 2004]. A
similar idea was proposed by MAN B&W as a means to decrease pollution by
minimizing the amount of lube oil based on the condition monitoring output.
Most likely the effect of over-lubrication is not quite as severe with the large
diesel engine as with the smaller bearings.

The classification performance reported Table 4.1 was calculated from resam-
pled data sets, consisting of several loads where with both normal and faulty
data. The fault was induced by shutting down the lube oil supply to the cylin-
der. The thresholds and the models were only obtained from normal examples
without labels, and then applied to other examples with and without lube oil. In
the stationary case, where each load is modeled independently, the mean-value
model is performing better than the PCA and ICA models. This is also the
case when the observed signals are preprocessed with the full event alignment,
i.e., when the variations due to load changes are removed. However, when all
load settings are used to train a single model the performance of the mean-value
classifier drops considerably.

When deciding on using PCA/ICA or mean-value one has to chose between an
approach where you model the load changes followed by a simple model (the
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Load dependent All loads Time alignment Event alignment
MEAN 0.98 0.71 0.71 0.98
PCA 0.97 0.89 0.95 0.96
MFICA 0.95 0.90 0.94 0.95

Table 4.1: AUC performance measures reported in Pontoppidan et al. [2005a]. The
first column reports the performance when handling different loads independently, i.e.,
one model/threshold for each load. In the second column, the load is not used, so it
is one big model for all loads. In the third column, the timing of the events has been
aligned, and in the fourth column, the amplitudes have been adjusted too. With the
event alignment, the performance is very close to handling the loads independently.

mean value), or apply a more advanced model to the bulk of data. In this
case, the best performance is obtained using some modeling of the load setting
(either different models or event alignment) and then a simple mean value model
before classification. The next question is how does this work with other types
of faults? It depends on the fault type. If the new fault type does not give
rise to an overall increase, the mean-value will not work. The faulty water
brake, labeled “Experiment 2” in Figure 2.1, is an example of a fault that the
mean-value model cannot detect.

4.7 Regions of acceptance on synthetic data

In order to test some assumptions on the behavior of the PCA and MFICA
models a synthetic data set with following parameters is created d = 2048,K =
2, N = 40, σ = 1/100. The two columns of the mixing matrix are linearly
independent and non-negative. The two sources are drawn from statistically
independent gamma distributions and finally iid Gaussian with variance 10−4

is added. This constitutes the training set, which are used to train one MFICA
and PCA model with 2 components each. With those two models 400 examples
are generated in the same way, and the 95% percentile of the NLL with the two
models is calculated. An example is accepted if its NLL is not exceeding the
95% percentile.

With the two models and rejection thresholds, it was tested which synthetic
combinations in the parameter space s1, s2, σ

2 where 6 out of 10 examples are
accepted. A cube with a 70× 70 linear spaced grid from (0, 0) to (2, 2), and 70
values of noise variance on a logarithmic scale from 10−8 to 4·10−4 is considered.
At each of the 3.5 million points, ten example signals are generated. The point
belongs to the acceptance region if at least 6 of the 10 signals are accepted.
The regions of acceptance as functions of the sources and noise variance are
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Figure 4.12: Synthetic data set used to train one PCA and MFICA with 2 components
each. The first row displays the two columns of the mixing matrix, the second row
show the 40 source examples, and a scatter plot of the two independent sources. The
last row show the 40 observations (each consisting of 2048 samples) as one long time
series.

displayed in figure Figure 4.13.

The characteristics of the acceptance regions in Table 4.2 are as expected. When
the noise level is below the model noise level larger deviations in the source
locations are accepted, as the model allows observation noise with variance
similar to the training data. As the noise level, increases the acceptance region
diminishes, and finally vanishes as the noise level exceed the model noise level
by some factor.

Test set noise variance Acceptance region
below model level larger than training data
similar to model level similar to training data
above model level lesser than training data, vanishing

Table 4.2: Characteristics of acceptance regions as a function of noise level. The
acceptance regions for noise level equal to the model noise level is shown in Figure 4.14,
all three regions are seen in Figure 4.13.

The experiment show that two scenarios, that could indicate faults, leads to
higher NLL values. When the sources move away from their normal area, it
resemble faults where a known source becomes louder and louder. The other



4.7 Regions of acceptance on synthetic data 65

Figure 4.13: Acceptance regions for PCA (green) and MFICA (blue) as a function of
the sources and noise level σ2. The two shells are the contours of accepting at least 6
out of the 10 realizations. The points in the x, y plane are the source locations used to
generate the 95% percentile classification boundary on the NLL (the added noise had
variance 10−4). The figure show that both methods reject examples that are noisier
and those with source locations away from the normal area

scenario is when the noise level increases, possibly due to an almost constant
friction source, or because a peak appears where nothing used to happen.
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Figure 4.14: Acceptance region for data with same noise variance as the training data
(a slice of Figure 4.13). The acceptance region for the MFICA looks like a rotated
ellipsis while the acceptance region for the PCA is circular. The Epileptic form for the
MFICA is suited at accepting the occasional points with both sources active.



Chapter 5

Performance measures and
model selection

Given some data, we can come up with all kinds of models explaining it: Simple,
complex, small, large, correct, good, bad etc. The question is: how do we
robustly find the model that generalizes well, and what is the best model anyway.

The last question is the easy one: The right model is the true model that
generated data, and we do not normally know it. In most cases, we will have
to settle on the best model, and that question can be partially answered, as we
can choose the best model among the available.

Model selection is making decisions on several levels, e.g.:

• Input parameters, e.g. Original, derived, time-domain, spectral, wavelets,
crank-angle domain

• Model families, e.g. ICA, PCA, UGM, ANN

• Set sizes, e.g. Number of components, number of clusters, and number of
training examples

• Noise models, e.g. Gaussian, isotropic, diagonal, free, no-noise

• Parameter values, including hyper parameters
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The decisions on each level do not have to be of the type: select the best.
Additionally, selecting the best group is much more complicated. Actually, it is
a complicated to select the best overall team, i.e., combining the decisions from
the individual levels. Further the decision can be constrained such that trade-offs
between performance and say computational complexity, memory consumption
has to be taken into accounts.

An easily understood aspect of model selection is tuning the order of an in-
terpolating polynomial. Let us assume that a polynomial of some order is a
reasonable approximation. Polynomials of lesser order do not capture the full
structure of the data; this misfit can be labeled as bias. Polynomials of higher
order do capture the structure of the data, but also the noise, the misfit due
to the noise can be labeled variance. If we examine the residual of some other
points drawn from the same model, we will first encounter the bias regime where
the residual decreases as the order increases. At some point the residuals will
rise again - this is the variance regime. Selecting the optimal order is a trade-off
between the bias and variance, and is the setting that gives the lowest residual
on some other points from the same model. The effect that the model also
learns the noise is called overfitting. A very similar example is given on page
12 in Bishop [1995]: The true signal is one period of a sine with added white
Gaussian noise. It is best represented by a 3’rd degree polynomial. Those with
higher order than 3, capture too much of the noise.

Over-fitting also has some easily understood properties in condition monitoring.
When trying to detect deviations from the normal condition, an overfitted model
requires the observed data to be exactly like the training data, i.e., with identical
noise. Otherwise, we get false alarms. In applications where the fault obser-
vations are also available for training (supervised systems) the similar problem
exist; simply to recognize a fault we need exactly the same noise signals as in the
training data, i.e., it will perform poorly on test data. Overfitting is poison for
the condition monitoring system in a real world setup; because if we look upon
the end users as being probabilistic learning machines, numerous false alarms
will automatically lower their confidence in the system - to the extend where
it is ignored, as in the tale of Peter and the Wolf. At MFPT’59 Galpin et al.
[2005] presented examples on systems in service, that had been alarming for
10-15 months prior to breakdown - without end user interaction! Although un-
justified ignorance is most likely to blame in this example, it show the existence
of prior anti-belief working against such systems.

In the following sections, some methods for selecting the models are considered.
First, some based on the residual errors, followed by methods based on classi-
fication performance. Although I have not added new concepts, models in this
field, it is very important and necessary tool for reliable condition monitoring.
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5.1 Learning paradigms

How do we learn? How do models learn? It is commonly stated that one
should learn from one’s faults. That is not particularly wrong for models either,
since many parameter update formulas differentiate the mean square error with
respect to model parameters to find hopefully global minima’s. In addition,
the models learn the parameters given the examples. Learning also comes from
knowledge transfer, that you tell me that this is signal component is the fuel
injection process. When the component changes I might also learn to differ
between the normal and faulty sound profiles, possibly by someone telling me
the difference. This is the difference between the unsupervised and supervised
learning paradigms. In unsupervised setups, the model has to figure out the
underlying group structure on its own. As the example given earlier, a bowl of
fruit can be labeled as fruit or divided into apples and bananas. If we on the
other hand tell the model that this is an apple and this is a banana, the model
would adopt that classification. If the model is not told on which detail level we
want the answers - it does not know. An interesting hybrid is pursued in Larsen
et al. [2001], there only a fragment of the examples used for training are given
labels, i.e., a mixture of unsupervised and supervised learning. Besides telling
the algorithm, which detail level it should use, it also allows for cost savings
since the labels are often hand labeled by experts and thus costly.

The challenge is that we are learning models from examples, and while we want
to squeeze so much information on the true distributions or functions out of each
example as possible, we don’t want to learn the example it self. The learning
paradigm is deeply connected to how the learning is evaluated. If the models
are evaluated on the same examples as they were trained, there is a high risk of
ranking an overfitted model above models that generalize well on independent
test examples, and therefore we use the test sets.

5.2 Generalization error

Given a set of trained models and a test set independent of the training set,
we will select the model that performs best on the test set. For a given model-
family of increasing complexity, the ability to explain data will increase, i.e., the
models underfit but become increasingly better, until the optimal complexity is
reached. For models with greater complexity than this, the ability to explain
the test decreases again, since the trained model has over-fitted to the training
examples. Figure 5.1 show this phenomenon, which is often called the bias-
variance trade off [Bishop, 1995]
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Figure 5.1: Generalization error, clear indication of the optimal model size - and the
bias-variance trade off

5.2.1 Learning curves

Learning curves is a powerful concept that allows us to investigate the influence
of the training set size on the performance. It is similar to model size estimation,
where the performance as a function of training set size is investigated instead
of the model size. Sometimes the learning curves possible reveal that with
small training set size the simplest model win, and then when the training set
size is increased a more complex model win. What happens is that the more
complex model needs more data to learn its parameter values correctly. At
some point (unless other things happen), the learning curve should level out,
since the model does not gain additional information from the extra examples.
Unfortunately, we have so few examples that it does not really happen. In the
year 2000 data, there are 200 examples with normal conditions, whereas the
2005 data have 400 examples with normal conditions. With the old data, the
learning curves have not really leveled out yet, although the improvements do
decrease. It is best seen in the PCA curves as the MFICA algorithm needs
excessive computational time to converge to eps tolerance. I hope that the
convergence speed of the MFICA algorithm is improved in the future, such that
better learning curves can be obtained. The ranking of the learning curves is
clear, MFICA with diagonal covariance structure is consistently better than the
MFICA with isotropic covariance and PCA. In 3 out of the 4 cases the MFICA
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? MFICA, diagonal covariance. ◦ MFICA isotropic covariance. x PCA

Figure 5.2: Learning curves for upper Liner and Cylinder cover signals in old and
new dataset. The learning curves reveal the ranking of the methods when considering
the modeling of the normal condition. The normal condition is best modeled by the
mixing and source matrices obtained with MFICA and diagonal covariance. In the old
data set (to the left), the MFICA with isotropic covariance is better than the PCA.
However, with the newly obtained examples the PCA is better for the liner channel.

with isotropic covariance is better than the PCA, but not for the upper liner
signal in the new data set. As a comparison the learning curves for classification
performance is given in subsection 5.4.4 – and they tell a different story.

5.3 Penalty methods

Estimating the generalization error from the training error by adding a penalty
term that grows with the complexity of the model has also been heavily inves-
tigated. Among the best-established methods is the Laplacian [Minka, 2001],
and Bayesian information criterion (BIC) [Schwarz, 1978]. Also the Akaike’s
information criterion (AIC) due to Akaike should be mentioned here.

The idea is to approximate the generalization error by adding a term to the log
likelihood that scales with some function of the model complexity. The number
of parameters might not be equal to the number of elements. For principal com-
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Method Penalty (pr. set of size N) Normalized penalty (pr. example)
AIC dim(Θ) dim(Θ)/N
BIC dim(Θ) log N/2 dim(Θ) log N/(2N)

Table 5.1: Penalties for AIC and BIC where N is the number of training examples, Θ
is the full set of parameters in the model. The penalty is added to the negative log
likelihood and subtracted from the (positive) log likelihood.

ponent analysis (PCA) it is not number of elements in the estimated covariance
matrix but the number of free parameters – when respecting that the covariance
matrix is symmetric [Hansen and Larsen, 1996], eqv. to that the transformation
matrix lives on a Steifel manifold [Minka, 2001].

5.3.1 Bayesian information criterion

The Bayesian information criterion (BIC) approximates the Laplacian approx-
imation, where only terms that grow with N are kept [Minka, 2001]. The BIC
can be used with models that are associated with a likelihood function that can
be compared across model sizes. In this thesis framework, that is PCA, unsuper-
vised Gaussian mixtures (UGM) and independent components analysis (ICA)
models:information maximization independent component analysis (INFOMAX)
Molgedey-Schuster’s ICA, and mean field independent component analysis (MFICA).
BIC has previously been successfully applied to model selection with ICA [Hansen
et al., 2001], and with PCA [Hansen and Larsen, 1996]. Further, Minka [2001]
show that BIC is a suboptimal estimator of the model size with PCA, when
the number of examples is not much larger than the number of features. In the
following section I show that BIC with very few training examples suffer from
a gross underestimate of the noise variance. The PCA model becomes over
confident, such that the stepwise improvement in the negative log likelihood as
model size increases, outperforms the BIC penalty and forces to it to select too
large models.

As Table 5.1 show the AIC is similar to BIC but generally favors larger models
as the penalty is smaller than BIC when the number of parameters dim(Θ)
exceeds e2 ∼ 8.
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5.3.2 Model selection with Ill-posed principal component
analysis

In this section I will repeat the ill-posed experiment conducted in Minka [2001],
where the number of examples (N = 20) is much less than the number of
features d = 1024. Further I will expand it by also allowing the BIC to be
used with an estimate of the noise level obtained from an independent test
set. The experimental data are the usual normal condition acoustic emission
energy (AEE) from the MAN test bed with 25% load. This expanded experiment
was conducted after some debate, on how to calculate the noise level estimate
in Equation 5.1 with K components. λn contains the N squared diagonal of the
SVD eigenvalue matrix divided by the number of features.

σ̂2
K =

1
M − k

N∑
k+1

λk (5.1)

In Hansen and Larsen [1996] M is the number of observed features d and in
Sigurdsson [2003] M is the number of examples N - and M = d is correct! The
use of σ̂2

KN results in a BIC curve with a local minima, before it increases and
eventually drops again. The last drop is due to the last very small eigenvalues.
With σ̂2

Kd (the lower curve) the BIC curve never increases as the fit gets so good
that the algebraic penalty cannot balance that out. With the more accurate
noise level estimate obtained from an independent test set, the expected BIC
curve with a global minimum is obtained - we will return to that shortly. The
negative log-likelihood (NLL) for a test set (i.e., generalization error) using the
three noise level estimates is shown as lower left figure in Figure 5.3. The
estimates using the test error and the overestimated noise level leads to wrong
conclusions, only using the underestimated noise level to calculate the NLL leads
to model size comparable to the other estimates. Simply the generalization error
show how the estimates from the training set works on the independent test set,
and if additional information from another independent test set is provided, i.e.
better noise level estimate, then we are not able to detect the overfitting any
longer.

With additional training examples the problem persists and in Figure 5.4 with
80 training examples the BIC selects to few components with the overestimated
noise level, too many with the underestimated noise level. The closest estimate
to the generalization error is the BIC with the noise level estimate from the in-
dependent test set. However if an independent test set is necessary for obtaining
a proper noise level estimate in order to select the model size, the generalization
error which is not an approximation and also uses a test set should be preferred.
In either of the cases does the more accurate Laplacian model selection scheme
[Minka, 2001] give better estimates than the generalization error and the test
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Figure 5.3: Model selection with fewer examples than features (d = 2048, N = 20).
The selected model sizes are given below. In all figures green curves are using the
overestimate σ2

N , blue using the underestimate σ2
d and red the test estimate σ2

test of
the model noise variance. In the upper left figure bσ2 for M = {d, N} as well as the
mean square test and train error as a function of the model size k is shown. The barely
noticeable cyan curve is another test estimate of the noise variance. The underestimate
bσ2

d follows the training error (as expected), whilst none of the estimates follow the test
error (in the middle). The upper right figure repeat the same curvature for the NLL
using the two noise level estimates from the training set as well as the test noise
level estimate. The NLL for a test set is shown in the lower left figure show that
the generalization error only increases as it should when the using the underestimated
noise level. Finally, the lower right figure display the BIC curves. The estimated model
sizes are given in Table 5.2

BIC. The example carried out in Figure 5.4 show that the breakdown of the
BIC with PCA can sometimes be prevented by selecting the model size as the
first local minimum. However, this is not always working as seen in Figure 5.3.
Thus, we already knew BIC is not an appropriate model selection scheme for
PCA, when the number of examples is much less than the number of features.
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Model size estimates
Noise level Estimator BIC Generalization error
underestimated σ̂2

d 18 3
accurate σ̂2

test 4 18
overestimated σ̂2

N 4 18

The laplace_pca code due to Minka selects 7 components.

Table 5.2: Model size estimates for d = 2048, N = 20.

Figure 5.4: Same experiment as in Figure 5.3 but with more training examples: d =
2048, N = 80. In all figures green curves are using the overestimate σ2

N , blue using
the underestimate σ2

d and red the test estimate σ2
test of the model noise variance. Still

a better noise estimate is needed for the BIC to select a reasonable model size while.
The BIC using the noise estimate from the training set as a local minima at k = 27,
after a small increase it drops as the estimated noise variance approaches zero and the
model collapses. The estimated model sizes are given in Table 5.3.

Model size estimates
Noise level Estimator BIC Generalization error
underestimated σ̂2

d 27/78 18
accurate σ̂2

test 21 77
overestimated σ̂2

N 13 77

The laplace_pca code due to Minka selects 32 components .

Table 5.3: Model size estimates for d = 2048, N = 80.
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5.4 Supervised classification performance mea-
sures

Instead of measuring the residual on an independent test set, the classification
performance, e.g., the false alarm and detection rate on an independent test
set is considered. Since both normal and faulty examples are available and
the models are given the distributions of the normal and faulty examples, the
classification is supervised.

If one uses the log likelihood from generative model with a noise assumption,
there is a close link between the residual through the log likelihood to the
classification performance. Conceptually we are looking for models that have a
low false alarm rate and high detection rate. Supervised classification is very well
studied, the literature is rich and the theoretic results on separating two types
with some specified distributions, can be obtained from sections on hypothesis
testing or test theory from a standard statistics book, e.g. Conradsen [1995].

Hypothesis testing is a framework that addresses the two types of error in the
two-class confusion matrix (anti-diagonal in Table 5.4). The rejection of a true
hypothesis is called the Type I error, while the acceptance of a false hypothesis
is called Type II error. Often the distributions of faulty and normal examples
are overlapping, thus all thresholds will result in that some of the normal will
be labeled as faulty (Type II) and vice versa (Type I). With some assumptions
on the distribution type and parameters on the two classes, we can predict the
number of false alarms and missed alarms as a function of the threshold. That
also allow us to optimize the threshold wrt. our specific needs, i.e., if one of
the types of error has greater economic, safety or environmental cost. In marine
transportation and especially in aviation, the operation time threshold is put on
the safe side. That means that after so many hours the component is considered
faulty, thus the probability of a missed alarm is very low and consequently the
false alarm rate, causing the replacement of healthy components, is very high.

5.4.1 Receiver operator characteristics

With both normal and faulty examples available, we can establish a relation
between false alarm and detection rate. The receiver operator characteristics
curve (ROC) displays the coupling of the false alarm rate and the detection
rate as a function of the threshold and model for the two-class problem (nor-
mal/faulty). The worst class of classification models and thresholds are the ones
where the false alarm and detection rate is equal, i.e., from reject to accept all
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Hypothesis is true Hypothesis is false
E.g. cases with fault E.g. cases with no fault

Accept a, TruePositive (TP) b, FalsePositive (FP)
hypothesis Type II error
“Faulty” False alarm
Reject c, FalseNegative (FN) d, TrueNegative (TN)
hypothesis Type I error
“Normal” Missed alarm

Table 5.4: Two class confusion matrix. The elements Cij in the confusion matrix
represent the number (or probability, then accuracy formula Equation 5.4 is invalid)
of attaching label i to an element belonging to class j. The a, b, c, d indicate the
variable names that is commonly used with calculations with the confusion matrix for
the two class problem.

modes. While the end points correspond to very badly selected thresholds, the
ones in between would be the result of identical distributions for the normal and
faulty examples. In Figure 5.5 this is the straight line between lower left corner
(marked ◦) and upper right corner (marked ?).

The perfectly selected model and threshold discriminates accurately between
normal and faulty examples thus the false alarm rate is 0 and the detection rate
is 1, indicated by the � in the upper left corner of Figure 5.5. If the ROC is below
the straight line that resembles pure guessing the reversed classifier should be
used, simply the rejected examples should be accepted and vice versa. However
if it was the output of some modeling based on assumptions - better check those
assumptions!

Generally, we will take a collection of examples with known classification, and
test whether the classifier outputs the known labels, those results can be re-
ported in the Confusion matrix (see Table 5.4). The elements of the confusion
matrix Cij holds the number of examples classified as class i, but really belong-
ing to class j, e.g. Cf,n = 7 normal examples where labeled faulty. The From
the confusion matrix the some relevant metrics can be calculated.

Detection probability: PD =
a

a + c
(5.2)

False alarm probability: PFA =
b

b + d
(5.3)

Accuracy: (does not hold for probability rates) A =
a + d

a + b + c + d
(5.4)

Given a confusion matrix (size 2 by 2) obtained from two independent classifiers
opposed to a single classifier vs. ground truth, the Cij element of the confusion
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Figure 5.5: ROC curve sketch. The curves describe the coupling of false alarm rate
and detection rate for 4 models. The blue is the best one, while the red is as the
random guess. If the curves where mirrored in the diagonal it would indicate that the
dual classifier should be used, i.e., accept the rejected and vice versa.

matrix holds the number of examples that classifier 1 put in class i and classifier
2 put in class j. In such matrix, the measures related to diversity and consensus
can be calculated from the probabilities a to d [Whitaker and Kuncheva, 2000].
Further, Equation 5.4 only holds for probabilities if the number of faulty and
normal examples are equal, otherwise the class with the fewest examples are
weighted too much in that measure. With the detection and false alarm proba-
bility, the number of examples in nominator and denominator cancel each other

b
b+d = b/Nf

b/Nf +d/Nf
.

5.4.2 Threshold optimization

In the following F (τ) and D(τ) denotes the false alarm and detection rate
as functions of the threshold τ . The threshold is the value that we use to
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Figure 5.6: Two examples separation between two classes. The two columns differ on
the overlap between the two classes. The upper panels show the densities, and the
middle panels the cumulated densities, whilst the lower panels show the ROCs curves.
The vertical bars indicate the thresholds found with the tree types of threshold selec-
tion methods: Newman-Pearson, Maximal separation and Minimal distance. As the
separation of the two classes is increased in the right panels, the three threshold be-
come almost identical (the right ROC is zoomed!). The straight lines are the contours
of the maximal separation measure, while the arcs are the contours of the minimal
distance measure. Notice that the thresholds might be close to the points where the
two distributions intersect, but not exactly on.

discriminate between normal and faulty specimens. Here it is assumed that
normal values have lower values than the faulty ones.

5.4.2.1 Newman-Pearson criterion

The Newman-Pearson criterion states that we should select the model with the
highest detection rate, whilst the false alarm rate is not exceeding α [Scott and
Silverman, 2004], as a constrained optimization problem it is

τNP = argτ max D(τ) such that F (τ) ≤ α (5.5)
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The Newman-Pearson criterion does not take into account how the false alarm
rate and detection rate evolve as a function of the threshold. Imagine that D(τ)
is almost constant, but never the less increasing, while F (τ) increases (more than
the detection threshold) from 0 to α. The Newman-Pearson criterion chooses
the point (α, β), then virtually identical detection could have been achieved
with a lower false alarm rate, thus the overall performance has dropped. The
two following sections cast threshold selection as an optimization problem with
some additional measures, such that an optimal threshold in that respect can
be obtained.

5.4.2.2 Maximal separation

The threshold that maximizes the separation between two classes, is easily iden-
tified in the middle panel of Figure 5.6, as the point where the cumulated density
function (CDF) of the normal and faulty examples (solid and dotted curves) are
furthest apart, i.e., the distance between D(τ) and F (τ) is maximal. This is also
equivalent to minimizing the total amount of faults, which is 1− (D(τ)−F (τ)).

τMaxSep = argτ max{D(τ)− F (τ)} (5.6)

The contours of this measure are straight lines parallel with the pure guessing
line.

5.4.2.3 Minimal distance

One issue with the Maximal separation optimization is that it does not select
thresholds that are near the optimal classification (0,1). Anywhere on the con-
tour lines is equally good.

τMinDist = argτ min
√

F (τ)2 + (1−D(τ))2 (5.7)

The arcs in the lower panels of Figure 5.6 indicate the equidistant points on the
ROC wrt. the optimal classification point. This measure favors thresholds that
that in general has equal number of false and missed alarms, and allows slightly
more faults than the max-sep thresholds.

In the end the methods could be combined, allowing the customer to get the
optimal performance within the specified requirements. It has not been tested
but it would look like e.g.:

τCMB = = argτ max{D(τ)− F (τ)} such that F (τ) ≤ α (5.8)
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It is also seen in Figure 5.6 that the classification method must be quite good in,
before it is allowed to do something “better” than the Newman-Pearson criterion
in Equation 5.8. However thresholds obtained with the maximal separation on
the engine data have had lower false alarm rate than 5%, so it would be relevant
to consider this combination.

5.4.3 Area under ROC curve

The area under the ROC (AUC) is also a direct measure of performance, since
it is equivalent to the probability of identifying the faulty example when given
one normal and one faulty [Cortes and Mohri, 2004, Hanley and McNeil, 1982,
1983]. In Figure 5.6 the distributions in the right column are more separated
than those in the left column are, and accordingly the area under the ROC
curve is higher (0.98 vs. 0.8). In order to see the variation in the AUC measures
200 points were drawn from each of the two densities used in the left column of
Figure 5.6. From those 200+200 examples the ROC was calculated, and for the
200 pairs the number of times where the faulty example had a higher value than
the normal example was counted. The experiment was repeated 400 times, the
results reported in Figure 5.7, and showed that 95% of the measures are in the
interval 0.8± 0.05. Further this allows for evaluation of the confidence intervals
given in Cortes and Mohri [2004] with real data, that shows the confidence
interval obtained with their method underestimates the variance in the AUC
slightly, since the histogram of the ranking measures has slightly heavier tails.

5.4.4 Learning curves for ROC statistics

In subsection 5.2.1 the influence on the ability to model the normal condition
was investigated, here the ability to discriminate in a semi-supervised setup is
considered. Only normal condition data has been used to train the models, and
both known normal and faulty examples have been used to select the threshold
that provides maximal separation between normal and faulty examples. Com-
pared to the generalization error learning curves, the learning curve in Figure 5.8
some interesting observations can be made. First on the liner signals the addi-
tional training examples cannot improve on something that is already virtually
perfect, what we see is just more or less random noise. Moreover, we can see
that this classification noise is slightly larger in the new data set, which comply
nicely with the fact that this fault is only reduced oil and not oil shutdown. On
the signals acquired on the cylinder cover, the models benefit from additional
examples in the training set and better performance is achieved with the diag-
onal MFICA, followed by PCA. It should also be noted that in the mean, the
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Figure 5.7: Confidence intervals on area under ROC curve. The vertical green lines
indicate the 95% spread in ranking performance. The vertical red lines indicate the
95% confidence interval due to Cortes and Mohri [2004]. The (darker) green histogram
and curve describe the density and cumulated density for the 400 calculations of the
Area under the ROC. The blue histogram and curve describe the density and cumu-
lated density for the ranking error rate calculated on the same data set. The Ranking
error rate has slightly heavier tails and thus larger variance compared to the AUC.

ranking of the methods on the liner is PCA, isotropic and diagonal MFICA.
However, that is only in the mean.

5.5 Unsupervised classification

If only normal condition examples are available, the model selection is solely
based on false alarm rates, as the detection rate require access to faulty exam-
ples. Conceptually, this is similar to measuring the generalization error on an
independent test set with normal examples.
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? MFICA, diagonal covariance. ◦ MFICA isotropic covariance. x PCA

Figure 5.8: Learning curve with the maximal separation ROC measure.

Moreover, with an unsupervised system, all fault conditions are classified wrt.
the same class, the normal condition class. Examples that are not normal are
faulty and not identified as being either: Injection valve failure, increased pis-
ton/liner wear etc. Due to the nature of the data available in the AEWATT
project consortium, unsupervised classification is of primary interest. It was
believed that current methodology would not allow models to be transferred
from engine to engine. For instance, the engines manufactured by MAN (or
under licenses) are virtually unique, even though they might have same cylinder
diameter, number of cylinders etc. Thus even two engines of the same type the
acoustic emission (AE) signals would presumably not be identical, and further-
more Frances et al. [2003] have reported considerable variance from cylinders
on the same engine. Therefore, an individual model is required for all combi-
nations of engine, cylinder, and conditions. Thus for a real supervised setup all
the faults that we want to identify should be induced on all engines of interest.

So without any faulty data examples, we will resort to train the models on
training examples, obtain the NLL values from another set of training examples.
Finally, use the say 95% or 99% percentile from yet another test set as the
rejection threshold; with that model, we virtually set the sail! With such an
approach, classification accuracy on known faulty and normal examples of 97%
was achieved Table 4.1. Here we should also apply the existing knowledge
on combining classification outputs, e.g., majority voting systems using PCA
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and MFICA and data resampling. Since many have gone in that direction an
alternative, approach is outlined in the next section.

5.5.1 Hypothesis testing

When a threshold on the NLL value is determined from the cumulated density
function (or also from a ROC), we also know the percentile that we select also
define the inherent false alarm rate with that threshold, i.e. we know that the
x % of the normal examples exceed the threshold. Therefore, we add another
modeling-layer, a binomial hypothesis test [Conradsen, 1995]. With this test,
a new threshold, on the number of threshold crossings in a given window, can
be calculated. For a window of 78 examples (as reported in Pontoppidan et al.
[2005b]) and a 5% false alarm rate we would expect 4 false alarms. Setting the
counting threshold to 10, meaning that 10 examples out of the 78 have to exceed
the NLL threshold to generate an alarm on the next level, lowers the false alarm
rate to 1% as seen in Figure 5.9. Obviously, setting the alarm threshold higher
causes additional false alarms. Is this achieved without costs? No, this way we
move the detection threshold towards the faulty examples; but we do not know
how close or far they are from the normal examples. With an inherent false
alarm rate of 5% we know that the NLL threshold is near the normal condition,
and by allowing some false alarms the decision boundary becomes more elastic.

Also and this is important and has been seen that with signals from the test bed
in Copenhagen, when the faulty occurs we are not in doubt, the alarm rate easily
exceeds to 10 alarms in the 78 example window as seen in Figure 5.10. Further
we loose the ability to detect small deviations, e.g., if the overall rejection rate
rises to 6%. If we want to detect those slowly drifts we should also consider
longer windows (in parallel to the short), as they estimate current rejection rate
more accurate, and thus smaller deviations can be detected. Overall using the
binomial hypothesis test allows for minimizing the false alarms, mostly at the
expense of delayed detection of faults.
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Figure 5.9: Cumulated binomial density for hit rate 5% and 78 examples in each
window
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Figure 5.10: Rejection rates in normal and faulty examples acquired on the Copen-
hagen test bed engine, processed with 5 components MFICA. The rejection rate for
the faulty examples clearly exceeds the threshold of 10 examples.



Chapter 6

Discussion and conclusion

First, let us sum up the important conclusions from the previous chapters. The
way the crank conversion takes place is important – is it an interpolation or a
transformation. For the RMS signals I have settled on that it is a transforma-
tion, and ended up with summing the square of the time RMS signals between
neighboring crank pulses, as this preserves the energy ranking of cycles. Since
the crank conversion does not align all engine events on the same angular po-
sitions, a method that aligns them is developed. The method addresses both
angular and amplitude changes, and provides a basis for non-stationary condi-
tion monitoring.

For modeling it is shown that ICA is superior to PCA, both when comparing
what the methods extract and how on good they model the observed signals.
However, it is also shown that this does not necessarily imply that leads to
superior classification performance – albeit this is in the case where perfect
classification is already achieved. However, for cylinder the cover signals, that
are less suited for the detection of the interaction component due to the struc-
tural damping, the better modeling also results in better classification as shown
in the learning curves.

While it is apparent that simpler models than the PCA and ICA can detect the
increased interaction, it is also my belief that the fault induced in the old data
set is too easy to detect, and simply the deviation from the normal condition
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is too large. Instead focus has been on modeling the normal condition and it’s
known changes due to operational condition changes, i.e., no assumptions on
the size of the error has been made. This comes with the prices that the model
does not know at which error level it blows up.

While the research have resulted in methods providing non-stationary condition
monitoring system of large diesel engines, long term testing of the methods is
still necessary in order to demonstrate a proof of concept. I think the remaining
issues are more related to the false alarm rate than the detection of faults.
With the limited data available we still do not know the true variability of the
AEE signals. Obviously, this also influences the strength of ranking among
approaches, since we do not know where we really are on the learning curves
when considering the unknown long-term variations.

Since the new destructive experiment was carried out so late, it did not really
influence the research. On the other hand, it provides a truly independent test
case. Unfortunately there are some dramatic changes in the new AEE signals,
when compared to the old data set, which is the data set considered in the thesis.
The AEE signals are much noisier, possibly due to a) changes in the engine or b)
that the new sensors are more sensitive to noise. In the period between the two
experiments the injection valves have been updated, the engine control programs
have been updated, such that the engine is delivering more power today than
then. Determining whether the changes are due to engine changes or acquisition
changes is going to be very important, as the quality of the data acquisition is
one of the most important factors contributing the overall performance.

What we have seen is that the landmarks defined from the peaks in the AEE
signals are much more fluctuating and do have the same smooth structure as a
function of load as before. One of the reasons for this could be the increased
crosstalk between cylinders. This means that the timing changes occurring on
the other cylinders, i.e., 90, 180 and 270 degrees out of phase, mix with the
timing changes on the cylinder in question. This leads to situations where
simultaneously occurring events (in angular domain) are pulling the apparent
landmark in opposite directions, and possibly change the sequence of the engine
events. Imagine, the engine control program delays an engine event a few degrees
such that it passes a fixed event heard through cross talk - indeed possible.
The additional crosstalk could arise from a couple of things. Either that the
sensors is just more sensitive, thus picking up more signal. Alternatively, the
sensor location compared to the old location provides lower damping wrt. other
cylinders. Recall the damping of the AEE signals is increasing with frequency,
thus lowering the high pass cutoff also lowers the damping wrt. crosstalk, thus
the lowered high pass cut off1 in the sensor picks up crosstalk that always were

1due to broader frequency range of the sensor it self – not to confuse with the pre-amplifier
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there. The new data set raises an important question on how to continue with
condition monitoring of large diesel engines. The question remains: Are we
going to focus on detecting increased wear or continue to detect deviations from
the normal condition?

If the modeling the normal condition option is selected, the level of sophistica-
tion should also be determined. Should it be a model localized in time, that
continuously learns and updates the current condition, and consequently results
in “false” alarms when operational changes occur. The false alarms could be
minimized by comparing with ongoing operational changes - we’ll know that the
probability of a false alarm given a operational change is high, and thus with
that knowledge in mind, the probability, that the alarm was caused by a fault,
is much less, i.e., explaining away theory [MacKay, 2003].

On the other hand, should it continuation of the path set out in this thesis, where
the different operational modes of the normal condition are modeled. This way
the condition monitoring system become invariant to the known operational
changes, and the false alarms due to those changes are removed. This path
requires more work than the first, as we need to learn those changes, which
requires an investigation on how events move as a function of the load. Further
how this affects the amplitude. This investigation is necessary for each engine
layout considered. On the other hand, this information ought to be available in
house for an engine manufacturer. I will also argue that a better understanding
on how the AEE signals change on larger time scales is necessary.

With plenty resources possibly the supervised path could also be considered.
Repeated experiments of the path to scuffing could allow for trending and pos-
sibly failure time horizons. Nevertheless, it requires that scuffing is achieved,
and that the experiment is repeated a sufficient number of times. Still the vari-
ation of the normal condition, when moving to another engine or engine type
should be investigated.

What unfortunately remains a question is how scuffing looks like? How does
the engine behave prior to scuffing? Oil manufactures claim that wrong or no
oil eventually leads to scuffing. In addition, it makes sense that the problems
with lubrication leads to increased interaction, thus causing wear and damage
where the piston and liner interacts. However, it remains uncertain if there are
there other similar small faults that lead to this fault.

During the new destructive experiment, the AEWATTtoolbox was running on-
line, processing measurements as they appeared. So the system presented in
subsection 1.3.1 have been developed. The experiment revealed variations in

cut-off frequency
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the AEE with constant load, which we had not observed before. The changes
are just small angular movements of some of the events, and those changes must
be addressed before the system can be applied online. Two methods can be
proposed: One is to acquire normal condition data over a longer period, so the
models can learn the true variation of the normal condition. The other method
require the same amount of observations, but instead the variation could be
handled by the allowing the event alignment procedure to adjust the locations
of the landmarks (within bounds observed from the new large data set). Since
it allows for ±1 sample movements a simple test was conducted by considering
a MFICA model with tri-Diagonal noise covariance matrix, (diagonal copy in
the two sidebands). With that setup NLL of normal day 3, data approached
the normal day 1 data, while preserving the distance (still in NLL values) to the
faulty examples. While the test provided easily demonstrated what is necessary
the approach is computationally costly and thus not interesting.

Even though it is just given as an example in the beginning of chapter 4, the
separation of signal components and automatic grouping the whole data set
with the MFICA algorithm is important. Such expert like grouping can be
referred to as cognitive components analysis and ICA has recently been reported
to be able at that in other settings [Feng et al., 2005, Hansen et al., 2005].
When implementing future condition monitoring systems, the usage of such
clear components that follow the expected behavior of the engine could make
the systems appear less black box in the eyes of the end users. They would know
what the system is “looking” for.

The friction component obtained in that experiment is interesting on its own.
The experiment also demonstrates the superiority of the MFICA to the INFO-
MAX and PCA in such settings. As experiment with the other methods show:
all models can detect that there are changes at same points; but only the MFICA
result in four components that we can attach to the friction, 25%, 50% and 75%
load. The experiment shows the strength of the MFICA algorithm, that it can
separate the signatures that are independent of load and those that change with
the load.

Looking forward I foresee the combination of some of the approaches. As we
have become more confident with the properties of the large diesel engines, it is
clear that the event alignment with one reference load is going to be problematic.
During the design of the engine layout, a few points on the propeller curve are
selected and the timing and etc. is optimized in those points. Accordingly, the
event alignment could use those points as references and transform the signals
into nearest optimization point. That would limit how much the warp should
move the signals. Moreover, the condition modeling should benefit from the
multiple loads as the MFICA in general work better when the signal parts are
independent. This is clearly seen in the two examples given in the beginning of
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chapter 4, where the model is able to separate parts out that depend on having
a specific load and those that are fully independent of the load. Also for the
future directions, inspiration from Air Canada should be considered. For several
years, Air Canada been making a single recording of some hundred parameters
during every take off and landing on their Airbus A320 fleet. By applying text
mining on the maintenance logs, they were able to select the times where a
system should have raised an alarm. From engine data collected the following
year that kind of faults where foreseen with fair success, when compared to the
actual replacement of parts reported in the maintenance logs [Letourneau et al.,
2005]. Their success should be transferable to the marine propulsion application,
and hints towards how the current acquisition system and proposed framework
for condition monitoring could be integrated in a continuously updated health
management system.
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Abstract

This paper analyses acoustic emission energy signals acquired under mixed load

conditions with one induced fault. With Mean field independent components

analysis is applied to an observation matrix build from successive acoustic emis-

sion energy revolution signals. The paper presents novel results that provide

remarkable automatic grouping of the observed signals equivalent to the group-

ing obtained by human experts. It is assumed that the observed signals are

a non-negative mixture of the hidden (non-observable) non-negative acoustic

energy source signals. The mean field independent component analysis incorpo-

rates those constraints and the estimates of the hidden signals are meaningful

compared to the known conditions and changes in the experiment. Most im-

portant is the estimate of the load independent wear profile due to the induced

fault. The strength of this signature increases as the load progress and disap-

pear as the induced fault is removed – this result has not been achieved with

classical independent components analysis or principal components analysis.



1 Introduction

In the last two decades blind source separation by independent components

analysis (ICA) have gained a lot of attention. ICA has been reported to sepa-

rate speakers in mixtures [1], spotting topics in chat rooms [6], finding activation

patterns in functional neuroimages [9] just to mention a few applications. Re-

cently ICA was reported to provide cognitive groupings from observed signals

without any prior knowledge of the true groupings. There Cognitive component

analysis (COCA) is defined as the process of unsupervised grouping of data such

that the ensuing group structure is well-aligned with that resulting from human

cognitive activity [4, 2]. In this paper I show how similar results can be obtained

from applying the mean field independent components analysis (MFICA) algo-

rithm, due to Højen-Sørensen et al. [5], to acoustic emission (AE) energy signals

obtained from a large diesel engine. The experiments show that the MFICA al-

gorithm is capable of extracting a signal profile describing an induced fault and

its development, which is not the case for the Information maximization ICA

[1] and Principal component analysis. In this paper no performance numbers

are given, instead the raw output of the ICA algorithms are provided as they

speak for themselves.

2 Experimental data

Acoustic emission signals were acquired from the two stroke MAN B&W test

bed engine in Copenhagen. The signals were sampled at 20 KHz after analogue

RMS filtering (τ = 120µs) had been applied. Also the Top Dead Center and

angle encoder signals were obtained, and the AE RMS signals were segmented

into single revolutions (at bottom dead center) before domain was changed to

crank angle. This results in signals with 2048 points pr. revolution as seen in

1



Figure 1: Signals sampled in crank angle domain

Figure 1. In this domain the engine related events are more or less appear

at the same position in every cycle. At COMADEM 2003 signal processing

removing those changes were introduced by the author [11], but that approach

is not considered in this paper. During the experiment outlined in Figure 2

the operational conditions were changed by increasing the load on the propeller

curve. Also after 180 revolutions at the lowest load the lubrication for the

monitored cylinder was shut off, and in the end the lubrication oil was restored.

Even though actual scuffing did not occur contact marks inside the cylinder

liner was observed by inspection afterwards [3].

3 Modeling

x = As + ν, ν ∼ N(0, σ2I) (1)

X = AS + Γ, (2)

where x is the observation vector of size d × 1, A the mixing matrix of size

d × k, s the source signal of size k × 1 and ν is the additive (independent and

2



Figure 2: Time line for destructive experiment carried out with MAN B&W’s
test bed engine

identically distributed) i.i.d. Gaussian noise with variance σ2 also of size d× 1.

d is the number of features and k the number of components, and k � d. The

noise is assumed to be i.i.d. Gaussian even though the RMS conditioning turns

an uncorrelated zero mean additive noise component into a strictly non-negative

noise component. However such noise model is not currently available with the

MFICA algorithm. The MFICA algorithm differs from other ICA algorithms

by allowing a broad range of source priors and mixing matrix constraints. For

more information on the MFICA algorithm refer to [5] and [7].

The observation matrix X is generated by stacking several realizations of

the observation vectors. Here the different realizations come from different

engine revolutions acquired with the same sensor. Simultaneously should be

understood as at same angular position in this setup, and not as simultaneously

recorded as the case in the classical blind source separation problems [1, 8].

Similarly the source matrix S and the noise matrix Γ comes from stacking the

3



N source vectors and noise vectors.

X = {x1,x2, . . . ,xN} (3)

S = {s1, s2, . . . , sN} (4)

Γ = {ν1,ν2, . . . ,νN} (5)

Equation 1 describe how the k hidden signals in A are weighted by the co-

efficients in s to generate the observed signal x. In other words the A matrix

contain those signal parts that the observed signals can be made up from - it

acts like a basis for the normal condition. The idea is to learn this basis set from

a collection of normal condition data, making the model capable of generating

the different modes in the observed training data. By applying the component

analysis methods the orthogonal/independent directions in the observed data

should result in a basis, i.e., columns in the mixing matrix, that contains signa-

tures with the descriptive quality like source 3 (the third row of S) model the

amplitude of the injector event signal in column 3 of the mixing matrix.

In Figure 3 the modeling of a normal and a faulty example (both at 25%

load) is given. The source matrix reveals that the 2nd hidden signal models

the normal condition part, while the 1st hidden signal models the additional

part arising from the fault condition. However the two hidden signals are quite

similar. The mixing matrix with the independent directions was estimated

from 25% normal and faulty examples. We will later see much more difference

between the hidden signals when two additional loads

3.1 Principal Components Analysis

The Principal components are obtained from the Singular Value Decomposition

of the observation matrix X = UDV >. The 4 component mixing matrix is
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Figure 3: Data matrix setup. The first example is normal and the second faulty.
The mixing matrix was obtained from observations at 25% load only

estimated as the four first columns of the left hand side matrix U . The four

source components are estimated as four first columns of the left hand side

matrix V weighted by the four largest singular values (and transposed). The

method and matrix setup is further described in [10].

3.2 Information maximization ICA

The Information maximization ICA (IMICA) due to [1] require that the mixing

matrix is A square as the source estimates are obtained from Ŝ = A−1X. This

implies that the number of sources and observations should be equal, in this

case 2227 sources! Often PCA is used reduce the dimensionality, such that

Ŝ = A−1UX so actually the input to the IMICA is the 4 principal components

shown in Figure 7. The method and matrix setup is further described in [10].
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Figure 4: The full data set. The amplitude is color coded, i.e., the stronger the
signal the darker the color.

Figure 5: The independent components. Source 1 models the increased wear
due to the removed oil. Source 2, 3, and 4 model the 25%, 50% and 75%
load respectively. Changes in the source signals comply with the occurrence of
operational changes given in Figure 2

6



Figure 6: The hidden signals (columns of the mixing matrix A). The first one
picks up the increased friction profile while the remaining model the normal
condition at 25%, 50% and 75% load

4 Finding the increased wear signature

Now we consider the full data set shown in Figure 4 and apply the MFICA

algorithm to estimate the hidden signals and the independent activations of

those hidden signals. The only knowledge that the algorithm is given is that it is

non-negative mixing of four independent non-negative sources. No information

is given on the operational changes and the induced faulty - thus the separation

is unsupervised.

The results in Figure 5 are impressive: Source 1 model the wear due to

increased friction between piston and liner. It suddenly appears just after the

oil was shut down, increases throughout the experiment until the lube oil system

is restored. The remaining sources model the load changes, with only slight

problems of separating the 50% and 75% loads fully. It is fair to conclude that

the MFICA resulted in a highly informative clustering of the observed signals,

directly in line how we group the observations, and thus an example of the
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powerful cognitive properties of the independent components as reported in [4].

Also the hidden signals shown in Figure 5 are remarkable. The first signal

clearly picks up the more or less constant noise from the increased friction; it is

lower in the beginning and in the end possibly due to the fact that the cylinder

sucked up oil from the outer cylinders from the bottom tub. The signal also

contains the quite severe component that is generated when the piston passes

the scavenge air holes in the downstroke. The remaining components model

the changes in the normal condition signals as a function of the load, e.g., the

movement of the peaks in the injection period right after TDC. The hidden

signals shown in Figure 3 were obtained from normal and faulty examples at

25% load. When comparing those to the ones obtained with the additional

examples from 50% and 75% load, the MFICA algorithm was able to provide a

much better estimate of the signal component modeling the increased friction

between piston and liner. With the multiple loads the independence of the

increased friction signal and the normal engine events become more apparent

for the algorithm.

For comparison the source estimates using PCA are IMICA are shown as an

reference. As Figure 7 and Figure 8 clearly the methods capture the changes,

i.e., the sources change when the condition changes. However, the result is not

comparable to the cognitive grouping provided by the MFICA, we would also

expect that the hidden signals obtained with those two methods contain parts

from all conditions, e.g., not like the hidden signals in Figure 6.

5 Conclusion

This paper provides new insight on the use of independent components analysis

for condition monitoring. It has been a goal throughout the whole AEWATT
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project to find a signal component that picks up the increased friction between

piston and liner regardless of the operational condition. The accurate grouping

of the examples obtained without telling the algorithm what to look for was

remarkable and fully aligned with the experimental setup. We believe that this

this provides new and promising opportunities in field of condition monitoring.
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Abstract

We discuss condition monitoring based on mean field independent components
analysis of acoustic emission energy signals. Within this framework it is possible
to formulate a generative model that explains the sources, their mixing and also
the noise statistics of the observed signals. By using a novelty approach we may
detect unseen faulty signals as indeed faulty with high precision, even though the
model learns only from normal signals. This is done by evaluating the likelihood
that the model generated the signals and adapting a simple threshold for decision.
Acoustic emission energy signals from a large diesel engine is used to demonstrate
this approach. The results show that mean field independent components analysis
gives a better detection of fault compared to principal components analysis, while
at the same time selecting a more compact model.

Key words: Mean Field Independent Components Analysis, Condition
Monitoring, Unsupervised learning

1 Introduction

In this paper we apply mean field independent component analysis (MFICA)
to condition monitoring of a large two-stroke diesel engine. The setup is as
follows: from a collection of examples gathered under normal running condi-
tions we learn the underlying sources of the signal and how they are mixed
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together. Given a new collection of observed signals we test if the obtained
model explains the data equally well as it did with the known normal ones; if
not the condition is faulty.

The interesting result is that condition monitoring can be achieved with a
single feature by a simple threshold comparison, and further where model and
threshold is derived from normal condition data only. Still we obtain a system
capable of detecting several types of faults, however the different faults are
not directly identified by the system. This setup is highly relevant as we are
facing a problem where specific modeling of specific faults is not economically
feasible.

We will introduce MFICA and apply it to a collection of labeled normal and
faulty examples and show how the two classes separate by looking at the un-
derlying hidden signals and the independent components. We compare this to
a setup where only normal examples are available for training. This compari-
son show that we can separate the two classes with a model build from normal
examples only, while obtaining good detection of faulty examples. Whit this
in mind we outline our unsupervised method and its results.

1.1 Data setup

We are working with real Acoustic Emission energy (AEE) signals acquired
on the liner on the two-stroke test bed engine at MAN B&W Diesel in Copen-
hagen. The AEE signals are sampled in the crank angular domain and par-
titioned such that a single example represents the AEE during a single en-
gine cycle. The engine cycle for a two-stroke engine is one revolution of the
camshaft, so each sample corresponds to the AEE at a certain angular po-
sition of the camshaft and piston. Figure 1 show the engine with piston and
camshaft (left), a AEE “radar-plot” where the AEE amplitude is shown as dis-
tance from the center (middle), and finally the AEE signal in the linear crank
angle domain (right). Each observation consist of 2048 AEE samples in the
crank angle domain from −180o to 180o, i.e. one revolution of the camshaft.
The peaks in the AEE signals are the results of engine related events, e.g., the
peak around 0◦ is the combustion and fuel-injection operation.

In the crank angular domain all observations signals have same length regard-
less of running speed[1]. However, many engine designs, including the MAN
B&W Diesel test bed engine in Copenhagen, optimize performance by moving
the angular position of certain events as a function of load and speed settings.
For instance by advancing the fuel injection in order to inject more fuel. In
this paper we will focus on a single running condition, and refer to our ongo-
ing research on event alignment[2] for handling the non-stationary case under
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Fig. 1. Crank Angle domain sampling of acoustic emission energy signals. The two
arrows point at the data points as a position of the camshaft wrt. 0◦ aka. Top Dead
Center (TDC) where the combustion takes place.

multiple running conditions.

We denote an observation of the AEE signal in an engine cycle by x being
a d × 1 vector of non-negative elements. From a set of from N such vector
cycles we build the training matrix X = [x1,x2, . . . ,xN ] as seen in Figure 2 to
the left. In the blind source separation (BSS) framework we assume that the
training matrix is generated by a linear mixing of K underlying non-negative
AEE signals plus white Gaussian noise given by

X = AS + Γ, (1)

where A is a d×K mixing matrix, S is K ×N source matrix and Γ is d×N
noise matrix.

As Figure 2 show, the columns of A contain the underlying hidden AEE
signals. A column in S contain the gain factors for each of the hidden AEE
signals in the mixing matrix that are used to generate an observation, e.g.
x1:d,1 = A1:d,1 · S1,1 + A1:d,2 · S2,1 + Γ1:d,1.

2 Mean field independent components analysis

In a condition monitoring framework using the MFICA, the columns of the
mixing matrix A may be interpreted as underlying AEE signals, generated
by specific events. For instance, these sources could be the results of specific
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Fig. 2. X = AS+Γ, Matrix setup for blind source separation with two observations
and components. X, A, S and Γ are observation, mixing, source and noise matrix
respectively. Each observation signal x is generated by mixing the columns in the
mixing matrix A weighted by the corresponding set of gain factors (as a column)
in the source matrix S by the corresponding column in the Guassian noise matrix
Γ.

engine impacts and scratching. As the AEE signals are inherently nonnegative,
it is appropriate to assume that the various energy sources are additive and
no source is able to extracting energy from the system. This implies that both
the elements of the mixing matrix and source matrix are nonnegative.

2.1 Training

Recently, the ICA was extended with a Bayesian framework using an ad-
vanced mean field training [3], making it possible to incorporate constraints
on the source and mixing matrix. The MFICA accomplishes this by defining
an appropriate prior distribution over the sources. Given the noise model in
Equation 1, the likelihood for the parameters and sources of the MFICA may
be written as

p(X|A,Σ,S) = (det(2πΣ))−N/2 exp
(
−1

2
Tr{(X−AS)>Σ−1(X−AS)}

)
(2)

where noise has zero mean and Σ is the noise covariance matrix. The aim
of MFICA is to estimate the unknown quantities, the sources S, the mixing
matrix A and the noise covariance Σ from the observed data. For the condition
monitoring problem we need to characterize the unknown parameters, the
noise is simplified to an isotropic Gaussian distribution where Σ = σ2I, the

4



sources are assumed exponential distributed, given by the prior distribution
p(S) = η exp(−ηS) where η > 0, and the mixing matrix is assured nonnegative
elements by combining Lagrange multipliers to the mean field training. The
parameter estimation is done in a Bayesian manner, by integrating out the
hidden variable S, i.e.,

p(X|A,Σ) =
∫

p(X|A,Σ,S)p(S) dS (3)

and using this new likelihood to optimize the parameters. Unfortunately, this
integral is intractable to solve analytically. Instead, equation (3) is approxi-
mated using the so-called adaptive Thouless-Anderson-Palmer mean field ap-
proach [4]. For details on the MFICA we refer to [3] and also to the freely
available Matlab toolbox [5].

While the parameters may be estimated with MFICA, we still need to de-
termine the number of components K. This corresponds to a model selection
problem where we are interested in finding a model that fits the data well in
the face of limited data, i.e., has good generalization capabilities on unseen
data. If the K is selected too small compared to the optimal K, we get a too
simple model that does not capture the underlying function generating data,
i.e., the sources and mixing matrix. On the other hand, selecting a K that is
too large gives a too complex model that fits to the additive noise. Various
methods for model selection have been proposed, e.g., empirically with cross-
validation resampling schemes [6] that we use here and algebraically, e.g. using
Bayesian information criterion [7].

2.2 Using the trained model on a new example

Given a new example x and a model defined by A and Σ we redo a par-
tial BSS problem, i.e., solve for s in x = As + Σ whilst keeping A and Σ
fixed. Due the constraints on s the solution is obtained using the same mean
field optimizer that was used for the training. The output of this optimiza-
tion is the components s and the corresponding negative log likelihood (NLL)
− log p(x|A, s,Σ). We have previously showed[8] how the log likelihood (NB
not negative) dropped significantly just after a condition change, and further
how it regained its usual level after a temporary fault in the water brake disap-
peared. Effectively for classification purpose we can reduce the dimensionality
from 2048 (original data dimension) to NLL with MFICA.
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2.3 Classification with the negative log likelihood

The MFICA does a good job on separating the normal and faulty examples in
the NLL-domain. A simple but effective classification method is to set an NLL
threshold to separate the faulty examples from the normal. This is related to
novelty detection [9]. The threshold is obtained from an empirical cumulated
density function build from another set of known normal examples. From the
the cumulated density function we can derive a threshold with an inherent
rejection rate of say 5%. Even with an inherent rejection rate of 0% we could
still face false alarms, however both settings can be taken care of with binomial
hypothesis testing against the inherent rejection rate (see further [10]).

3 Comparing two and one class training

In this section we will compare the results obtained when solving two different
BSS problems. We take 140 known normal and 140 known faulty examples and
split them into two sets of 40 (for training) and 100 (for testing) examples.
We will call the first problem two class as the observation matrix is build from
the 80 labeled training examples. In the second problem, the one class, we will
only use the 40 normal examples. We will solve the two class problem assuming
two independent components and compare this result with the result that we
obtain when solving the one class problem assuming only a single component.
It is expected that one of the columns in the two class mixing matrix should
resemble the column in the one class mixing matrix. Further the the classes
should separate in component domain. Figure 3 show the two columns of the
two class mixing matrix to the right and further the panel to the left show
that 200 labeled test points separate in component domain. The two columns
of the two class mixing matrix are repeated in Figure 4 to the right, where
we see that the second column resembles the column of the one class mixing
matrix shown above the two. Furthermore the left panels of Figure 4 show
that the 200 labeled test points also separate in the single component domain
– although not as good as in the two class case.

4 Unsupervised condition monitoring

Due to economic figures the supervised setup is not an option for our applica-
tion. It is simply to expensive to conduct the experiments for a wide range of
faults and therefore we aim for a unsupervised setup where the system consist
of a model of the normal condition so that derivations from the normal con-
dition can be detected. The setup can later be turned into a semi supervised
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Fig. 3. The normal and faulty examples separate in source domain, the faulty ex-
amples tend to contain more of the 1st hidden signal. Further we add that the 2nd
hidden signal looks very normal when we compare to the single component obtained
from normal examples only in Figure 4.

setup by having additional models for specific faults in parallel to the normal
model.

In the one class example we assumed one independent component, but as the
following results show, more than one component can give a better classifi-
cation performance. This could very well be controlled by the variation and
number of independent modes in the normal condition. We have recently fol-
lowed that idea, and trained a unsupervised model on a collection of examples
acquired under multiple normal load settings. However it turned out that the
performance was inferior to our event alignment method[10].

4.1 Experimental setup

The experiment was conducted by acquiring the AEE signals before and after
a fault condition was induced by closing lubricating oil system attached to the
monitored cylinder. This resulted in increased friction and wear that possibly
could lead to a severe fault called scuffing. In this paper we only used the first
two hours of data, so what we detect is an early warning. Visual inspection
after 6 hours of running without lubricating oil revealed contact marks on the
upper rings inside the cylinder.

• 70 repetitions with resampling of both training and evaluation examples
• 20 examples in training matrix
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Fig. 4. The observation matrix consist of normal examples only, this is one class,
single component MFICA. The two panels to the right show the empirical densities
and cumulated densities for the sources of normal and faulty data. The lower panel
show that s ≤ 0.36 for 95% of the normal examples whilst s > 0.36 for virtually
all faulty examples. To three panels to the right show the single hidden signal from
the “unsupervised” mixing matrix, that can be compared to the two hidden signals
obtained from the two class setup in Figure 3. Clearly the second hidden signal
resembles the single hidden signal better than the first thereby being the “normal”
hidden signal.

• Testing for 1-12 components
• Set rejection rate 5%
• NLL threshold learning set with 70 normal examples
• Evaluation set containing 70 examples with known labels, whereas 30-40

are normal

4.2 Results

We will compare the performance of MFICA to a very similar Principal Com-
ponents Analysis method, described in [11], that does not obey the non-
negativity constraints on A and S. For each of the 67 experiments we compare
the best MFICA and PCA model. The model with lowest false alarm rate
and highest detection rate (as a squared distance from the optimal Receiver-
Operator-Characteristics point) is the best model. Of the 70 experiments
MFICA is better than PCA in 47 (∼ 67%), in 18 experiments (∼ 26%) the two
methods have equal performance. PCA is only better than MFICA in 5 of the
experiments (∼ 7%). If we compare the number of components in the “best”
models (for MFICA the 65 experiments and PCA the 23 experiments), we see
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MFICA performs better Equal performance PCA performs better

47 times 18 times 5 times
Table 1
Performance statistics on the 70 runs

Fig. 5. Normalized histograms for best number of components. The histograms
called best MFICA/PCA are from all experiments, whereas the MFICA/PCA best
are build from the experiments where MFICA or PCA is at least as good as the
other model, i.e. MFICA best is build from 65 examples and PCA best from 23.

in Figure 5 that the PCA best histogram is peaked around 6 components. The
MFICA best histogram is flatter and with a peak at only one component.

In ?? we show the improvement in the ROC domain for the 47 experiments
where MFICA is better than PCA. In 38 of those the improved false alarm rate
is achieved without decreasing the detection rate. The mean improvement is
-0.045 (from 0.0752 to 0.03) on the false alarms and -0.0057 (from 1 to 0.9943)
on the detection rate. So although PCA already gives good classification per-
formance, MFICA is capable of improving on that.
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Fig. 6. Improvement with MFICA. The arrows point from the PCA to the MFICA
ROC point for the experiments where MFICA is better. Only 9 of the 47 arrows
point downwards, the rest show reduced false alarm rates without decreased detec-
tion rate

5 Conclusion

We have described how the advanced blind source separation technique, Mean
field independent components analysis, can be applied to a realistic condition
monitoring problem. The experiments show how this method performs better
than a similar method based using Principal Components Analysis. We have
planed improved experiments where the lubricating oil level is reduced over
time, to induce even more subtle faults.
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Abstract: We are developing a specialized toolbox for non-stationary condition 
monitoring of large 2-stroke diesel engines based on acoustic emission measurements. 
The main contribution of this toolbox has so far been the utilization of adaptive linear 
models such as Principal and Independent Component Analysis, as combined modeling 
and feature reduction methods. These models describe the, say 1024 or 2048, acoustic 
emission samples per engine revolution, i.e. data are in the crank angle domain. In this 
framework we have applied unsupervised learning using only one feature – the log-
likelihood of an example given the trained linear model. The setup is semi unsupervised, 
as model parameters are learnt from normal condition data only, thus the system is not 
directly capable of error identification. However, it should be noticed that the adaptive 
linear models allow for some diagnosis based on the angular location of residual energy. 
Also, the framework can be extended, for instance by post modeling of repeated faults. 
Furthermore, we have investigated the problem of non-stationary condition monitoring 
when operational changes induce angular timing changes in the observed signals. Our 
contribution, the inversion of those angular timing changes called “event alignment”, has 
allowed for condition monitoring across operation load settings, successfully enabling a 
single model to be used with realistic data under varying operational conditions. 
 
 
Key Words: Component analysis; Condition monitoring; Event alignment; Non-
stationarity; Unsupervised learning  
 
Introduction: We are working on condition monitoring with acoustic emission 
measurements from large 2-stroke diesel engines used for ship propulsion and power 
generation. The acoustic emission allows for non-intrusive monitoring as the sensors can 
be attached on the outside of the cylinder. The AEWATT toolbox is developed for the 
detection of increased friction between piston and liner, a problem that eventually lead to 
a severe fault: Scuffing. In recent publications we have suggested and analyzed a 
collection of algorithms capable of non-stationary condition monitoring. In [9] and [10] 
we outlined the use of adaptive linear models for stationary condition monitoring and in 
[11] and [12] we added the event alignment that adds the non-stationarity to the system. 
The data is non-stationary as the engine control optimizes performance by advancing and 
delaying events, e.g. prolonging fuel injection time when the load increases. In this paper 
we apply the event alignment algorithm to experimental data, not used for the develop-
ment of the system, and show that we obtain the same performance using event alignment 
as if we had handled each load setting with an independent model. One experiment was 
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conducted by MAN B&W Diesel A/S on their test bed engine in Copenhagen – 
experimental data used for development of the toolbox was acquired on this engine as 
well. Additionally we have obtained normal condition data from an in service engine used 
for power generation by Public Power Corporation on Kos island, Greece. 
 
Data setup and pre-processing: Although it is not directly a part of the AEWATT 
toolbox we will describe the data acquisition setup as design choices in the toolbox are 
based on the properties of the acquisition. The engine is equipped with acoustic emission 
sensors (ultrasonic, 100 kHz – 1 MHz). Further the engine is equipped with tachometer 
that allows for sampling in the crank angular domain with a resolution of 1024 / 2048 
samples per revolution (ppr) depending on the actual system (several systems have been 
used). Also, the sample-rate is considerably lowered from 2MHz to 20 kHz, by use of 
analogue root mean squaring, thus the data becomes non-negative. 
 
The crank angle sampling is performed indirectly using two 20 kHz signals containing 
the top dead center and crank pulses. The flanks in these two signals indicate when a new 
cycle begins and when a new crank sample should be calculated. With a running speed of 
1-2 Hz and 2048 ppr, the new sample rate does not exceed 4 kHz thus the conversion 
from time to crank angular domain is also a downsampling. The toolbox default is to re-
calculate the RMS; taking the square root of the mean of the squared values between two 
crank pulses. When the conversion has taken place, each engine cycle is represented as 
vector of length D with non-negative elements. Stacking N such cycles gives an 
observation matrix X that is later used for training of the linear models (x: Dx1, X: DxN). 

[ ]NxxxX K21=  (1) 
As the experiments are very expensive to conduct, we are faced with limited data, so in 
order to test our models and hypotheses, data resampling is utilized, meaning that X does 
not have to be constructed from N consecutive cycles. The data obtained from the test bed 
engine in Copenhagen has different known load settings – contrary to the data acquired 
on the Kos engine where such control information is not available. The engine at Kos was 
monitored by acquiring a few cycles every hour for 9 hours – and in this context we 
regard those data to be acquired under a stationary normal condition. 
 
Non-stationary data alignment:  After data preprocessing we have transformed the data 
into the crank angle domain, where each pattern is a single engine cycle, showing 
different events occurring. These patterns have usually high dimensionality, e.g. the AE 
RMS signals used for the experiments have 1024 and 2048 dimensions, depending on the 
angle encoder resolution. Under different running conditions with engine load changes, 
these patterns become highly non-stationary as both the timing and amplitude of different 
events changes dramatically. This makes it impossible to directly compare the patterns in 
the crank angle domain. Thus, the patterns need to be alignment prior to feature 
extraction and detection. Figure 1 illustrates the event time changes during an injection 
period of a diesel engine. AE RMS signals at 25%, 60% and 90% are shown. The points 
indicate the landmarks, indicating the time positions that should be aligned. Note that the 
individual events are in the same order, regardless of load. 
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Figure 1: The AE RMS signals during the injection period with different load setting. The 
markers are the landmarks, indicating the time positions that should be aligned. 
 
Automatically aligning the events of the patterns by means of, e.g., dynamic time 
warping, have shown poor results, as the patterns are very complex. Instead, we have 
relied on manually constructing landmarks from the data and used spline-interpolation to 
align the events [11][12]. All patterns are aligned to a selected reference patterns. 
Currently, the AEWATT toolbox implements first (piece-wise linear) and third order 
(cubic) spline-interpolation for event alignment. The left panel in Figure 2 illustrates the 
event alignment of a single AE RMS pattern using the piece-wise linear alignment. 
 
On top of the event alignment, an amplitude alignment should take place. A scaling of the 
amplitude of the data has been shown to work well. The scaling is the ratio between the 
reference pattern and the average pattern at a constant load. The reference pattern is the 
average of the AE RMS patterns at 25% load. The right panel in Figure 2 shows the 
results after amplitude and event alignment. 

     
 
Figure 2: The left panel shows the AE signals at 25% and 60% load from Figure 1 after 
event aligning the signal at 60% load with the signal at 25% load, using a piece-wise 
linear spline-interpolation. The right panel shows the results after event and amplitude 
alignment. 



Preprint, accepted for MFPT59, Virginia Beach, USA, April 2005. 
www.mfpt.org 

Pontoppidan, Larsen & Sigurdsson: Non-Stationary Condition Monitoring with the AEWATT toolbox 4/9 

 
Feature extraction:  Feature extraction aims at extracting relevant information from the 
measured/preprocessed data. This is extremely important when the size of the measured 
data is large. The patterns of the AE data considered here have 1024 and 2048 dimensions 
and condition monitoring of such large and complex signals is very difficult. By 
extracting the relevant information, the dimension may be reduced by orders of 
magnitude or even to a single feature. 
 
Simple single feature can easily be extracted from the patterns, e.g., empirical average or 
maximum value. The problem with these types of features is that they do not take into 
account more general changes in the patterns, e.g., changes that do not influence the 
average or maximum value. For instance, a fault that would cause a time shift in the 
patterns will not be detected with these simple features. It is important that feature 
extraction methods detect such changes, to be able to cover a wider range of engine 
faults. 
 
An important property of a feature extraction method is to be able to learn the difference 
between normal and faulty conditions using only normal patterns. It is extremely time 
consuming and expensive to induce all possible faults in an engine to obtain faulty 
measurements. Feature extraction methods that only learn from normal data may be 
considered as semi unsupervised learning models and have great advantage compared to 
models applying supervised learning. 
 
In the AEWATT toolbox we have focused on feature extraction based on linear 
transformation or components analysis of the measured patterns, using only normal 
patterns. We assume that each pattern x  with size 1×D  is generated from the noise 
model ε+= Asx , where s  is a 1×K  source signal, A  is a KD× mixing matrix and ε  is 
a 1×D  additive noise variable. Further, we assume that the dimension of the source 
signal is much lower than the measured data x , i.e. DK << . A common way of 
extracting features is to estimate the source signal s , thus reducing the dimensionality 
from D  to K  dimensions.  
 
There exist a number of methods for estimating the system ε+= Asx . Here we will 
mention two data adaptive methods in the AEWATT toolbox, principal components 
analysis (PCA) and independent components analysis (ICA). Both models can be 
formulated in a probabilistic way, which opens for the possibility to apply a very 
effective way of extracting features, by using the so-called likelihood function. The 
negative log-likelihood values for patterns that are similar to the training set patterns, 
which are normal, will have lower values compared to patterns that are different, e.g. 
faulty patterns. 
 
The main goal of PCA is to retain as much variance of the original data as possible. 
Moreover, the columns of A  are constrained to be orthogonal. This may be done by 
applying singular value decomposition, given by TUDVX = , where X is a ND × matrix 
of N measured patterns, U is a ND × orthonormal matrix, V is a NN × orthonormal 
matrix and D  is an NN ×  diagonal matrix of singular values, where the elements, in 
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ascending order, corresponding to the standard deviation of the data. The matrix A  is 
then estimated by retaining the first K columns of U . Previously, the PCA has been 
modeled in a probabilistic framework [4], by assuming x  to be a multivariate Gaussian 
variable withε as isotropic Gaussian noise. The left panel of Figure 3 illustrates the use of 
PCA for feature extraction with two dimensional toy patterns. 

       
Figure 3: The left panel illustrates the negative log-likelihood results in 2-D input space 
for the PCA and the right panel for the ICA.  The dots are the measured normal patterns, 
the solid lines are contours of the negative log-likelihood surface and the dashed line is a 
threshold found by computing the 5% fractal of the normal patterns.  Measured patterns 
that lie outside the area marked with the dashed lines would be detected as faulty. Note 
the difference between the negative log-likelihood contours of these two methods. The 
PCA is optimal if the patterns are Gaussian distributed, while the ICA is better at 
arbitrary distributions.  
 
The ICA method has recently gained popularity in data analysis. The method assumes 
that the source signals s are statistically independent. ICA was introduced as information 
maximization [1] and separation [8], and has recently been extended in a Bayesian 
framework [5] that allows for specification of certain prior assumptions. For instance, the 
AE RMS signals are positive and may be considered as positive addition of positive 
sources, which constrains the elements of A  to be non-negative. This is possible to 
obtain with the Mean Field ICA algorithm developed at DTU [5][7], which is 
incorporated into the AEWATT toolbox. As with the PCA, the likelihood function of the 
ICA acts as a feature extraction for the data. The right panel of Figure 3 illustrates the use 
of ICA for feature extraction with two dimensional toy patterns. 
 
For both PCA and ICA we need to estimate the number of components K . With too few 
components the underlying structure of the data is not captured, while too many 
components will result in a noisy estimate. An optimal number of components keeps the 
most important components, while disregarding the less important and noisy components. 
Selecting the optimal number of components is not trivial and many different methods 
exist. In the toolbox we have focused on the Bayesian Information criterion [4] and well 
established partitioning schemes, e.g. cross-validation [3], [13]. 
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Note that it is possible to consider both the PCA and ICA as dimension reduction 
methods. By estimating the source signals s , the dimension of the data is reduced from D  
to K , thus obtaining K  features. Further modeling may then be done with, e.g., density 
models like the Gaussian mixture model, which is also included in the toolbox. Although 
we have not experienced increased performance applying this scheme to AE signals, it 
may be beneficial for other applications. 
 
Classification: We have adopted a semi unsupervised, single feature, fault detection 
based on single cycle examples. Its semi unsupervised since parameters are learned from 
normal condition data only. The combined feature extraction and modeling schemes are 
trained using a subset of the known normal examples. From another subset of known 
normal examples we build the histogram and cumulated density function for our selected 
feature: the negative log-likelihood (NLL).  Thus no known faulty examples are used 
during model training and threshold estimation. As we expect that normal examples have 
lower NLL-value than faulty, so the classification boundary becomes a maximal 
acceptable NLL-value, e.g. a rejection level. A very similar approach was successfully 
applied to (truly) unsupervised classification of emails by Szymkowiak et al. [13]. We 
enforce a tight boundary by aiming for a rejection rate of normal examples in a test set of 
say 5%. Unfortunately, this also corresponds to a (design) false alarm rate of 5%. Figure 
4 display two NLL-feature time series obtained with data from the Kos engine. For this 
example 4 of 70 examples in the training set and 5 of 78 in the test set were rejected. The 
cumulated density functions in Figure 5 show that it is impossible to select a threshold 
that separates the training and test set; this is good as both sets contain normal condition 
data. This also shows how the rejection rate is converted to a false alarm rate. One well 
known way of reducing the false alarm rate is through multiple independent classifiers 
combined with majority vote system.  
 

 
Figure 4: Negative Log-likelihood for 
training and test set of known normal 
examples (2 components MFICA) 

Figure 5: Empirical cumulated density 
function of NLL values in Figure 4. The 
two CDF’s are very similar. 

 
Binomial hypothesis test: A 5% false alarm rate is way too high for condition monitoring 
of large diesel engines. Even with a 0% rejection level on an independent validation set, 
we could still encounter false alarms since the model and threshold is learned from only a 
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subset of data. The intuitive way to deal with the false alarms is to monitor the rejection 
rate and only react when the rate of alarms gets high enough. This corresponds to 
binomial hypothesis testing [1]. We can use a binomial hypothesis test to address the 
inherent false alarms, as well as reduce the false alarm rate by considering a number of 
successive engine cycles as a whole. We treat the normal/faulty classification of each 
engine cycle as an independent binomial experiment (normal=0, faulty=1). If the 
observed binomial sequence can be accepted, with a given confidence level, as being 
drawn from a binomial process with hit rate equal to the set rejection rate, the 
classification of the set as a whole is normal.  
 
From an engine producing power at Kos we have acquired a few cycles every hour under 
assumed normal conditions. PCA and MFICA models were trained on a subset of 
examples (not in time order) and the target rejection rate was 5%. The critical value for 
the binomial hypothesis test was calculated with confidence level of 0.01 on 78 normal 
examples to be 10 [2]. 80 such resampled data sets (with 78 examples) where accepted as 
being normal regardless of model and number of components. The binomial cumulated 
density function for B(5%,78) is shown in Figure 6. To the right in Figure 7 two binomial 
sequences generated from the test bed engine at MAN B&W in Copenhagen show that 
the rejection rate under faulty conditions is much larger than under normal conditions. 
Actually, they were close to 1 and therefore would this sequence as a whole be classified 
as faulty. 

Figure 6: Binomial hypothesis testing with 
Kos engine data. Target rejection rate 5%, 
confidence level 1% on 78 examples give 
new threshold 10 (10/78=13%) 

Figure 7: Binomial sequence using 
MFICA with 5 components on data from 
Copenhagen test bed. The number of 
rejected examples rises at the condition 
change (NB examples not in time order). 

 
Alignment validation:  The event alignment is validated using the area under the 
receiver operation curve (AUC) performance metric. By using the AUC it is possible to 
evaluate the quality of the feature extraction without making any assumptions on the 
classification system. The following section will look into the performance of the 
classification. The AUC may be considered as the probability that the feature value of a 
faulty pattern is higher then the value of a normal pattern. This gives the highest AUC 
value as 1, indicating that the two classes may be completely separated using correct 
threshold for classification. A feature that does not discriminate between classes has the 
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AUC value of 0.5, indicating that the feature values for the classes are completely 
overlapping and give random results. 
 
The data used to validate the event alignment is composed of AE RMS signals where 
scuffing is induced at three different loads, obtained from the cylinder liner of the 
electronically controlled 2-stroke engine at MAN B&W Research Copenhagen. The loads 
are at 25%, 60% and 90%. Due to load difference, the data is highly non-stationary. The 
data is preprocessed by converting the AE RMS signal to angle domain, giving patterns 
having 2048 dimensions. We considered three methods for feature extraction; the 
empirical average (MEAN), PCA and MFICA. Note that MEAN is very good feature for 
detecting scuffing, while has shown poor performance at detecting other faults. We apply 
4 different preprocessing schemes; (1) weighted average of models trained on data at 
each load, (2) models trained on all data without alignment, (3) models trained on all data 
with event alignment, (4) models trained on all data with event and amplitude alignment. 
Note that preprocessing (1) corresponds to a stationary condition at each load. The results 
are shown in Table 1. 
 
 (1) Average of 

stationary 
(2) No event 
alignment 

(3) Event 
alignment 

(4) Event/ampli-
tude alignment 

MEAN 0.977 0.709 0.714 0.980 
PCA 0.966 0.894 0.946 0.957 
MFICA 0.954 0.899 0.940 0.947 

 
Table 1: The AUC for three methods; empirical average (MEAN), PCA and MFICA, 
using different data preprocessing; (1) weighted average of models trained on data at each 
load, (2) trained on all data without alignment, (3) trained on all data with event 
alignment, (4) trained on all data with event and amplitude alignment. The results show 
that it is possible to obtain the similar performance using event/amplitude alignment as 
training models at each load. 
 
The results show that by applying event/amplitude alignment it is possible to obtain 
similar performance as training models at each load. Without event alignment the 
performance of all methods decreases significantly. Using only event alignment improves 
the performance of PCA and MFICA dramatically, obtaining almost the same 
performance as stationary modeling. This shows that event alignment is the most 
important alignment for the advanced methods. On the other hand, event and amplitude 
alignment is necessary to improve the performance of simple methods on non-stationary 
data, while the improvement is marginal for PCA and ICA.  
 
Summary: We have demonstrated some key components for non-stationary condition 
monitoring with the AEWATT toolbox and showed how these components can be 
utilized to decrease the number of false alarms significantly. Especially, the results 
obtained with event alignment are promising, as we cannot learn PCA and MFICA 
parameters for all possible load settings. Furthermore, we are currently investigating 
interpolation between known load models within the event alignment framework. 
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Abstract: We have analyzed simple data fusion and preprocessing methods on Acoustic
Emission measurements of prosthetic feets made of carbon fiber reinforced composites.
This paper presents the initial research steps; aiming at reducing the time spent on the fa-
tigue test. With a simple single feature probabilistic scheme we have showed that these
methods can lead to increased classification performance. We conclude that: the derived
features of the TTL count leads to increased classification under supervised conditions.
The probabilistic classification scheme was founded on the histogram, however different
approaches can readily be investigated using the improved features, possibly improving the
performance using multiple feature classifiers, e.g., Voting systems; Support Vector Ma-
chines and Gaussian Mixtures.

Key Words: Acoustic Emission; Carbon fibres; Data fusion; Fatigue testing; Probabilistic
classification; Supervised learning

Introduction: During the design phase of a prosthetic carbon fiber foot at Össur hf., pro-
totype models are built, evaluated, and improved to meet the design criteria. For evaluation
several testing methods are used; visual tests, stiffness measurements and fatigue testing.
Feet are mainly subjected to dynamic loading, which sometimes requires low loads to ini-
tiate and propagate faults [16]. Because of this fatigue testing is extremely important part
of the design process. Fatigue tests of composites can take very long time, up to several
weeks. It is therefore valuable for an engineer, that wants to test a prototype, to be able to
see if it will fail early during the test. Considerable time can be saved by this. By short-
ening the test time, feet can be; designed and developed in less time and at a lower cost
than previously possible. During the fatigue testing of an prosthetic feet, the stiffness is
monitored and visual tests are also performed regularly. However, visual tests can only
detect faults that extend to the surface of a foot or affect it in some way. In order to be able
to predict the fatigue strength of a foot undergoing fatigue testing, other NDT methods can
be used for obtaining data.



When microstructural changes occur in composites, energy is released and transient stress
waves are generated. These stress waves are called called Acoustic Emissions (AE) [16].
The stress waves travel through the composite and when they reach the surface it will
vibrate. The small surface displacements generated by the vibration of the composite can be
detected by using appropriate sensors. According to Duesling [3] piezoelectric sensors are
most popular. AE can be generated by several types of damage that occurs in the material,
e.g. fibre breakage, matrix cracking, delamination etc. Because microstructural damage
generates AE the method has the potential of detecting damage in its early stages, much
earlier than possible by monitoring deflection or performing visual inspection. Therefore
a microstructural damage that starts to formate in the last cycles of a fatigue test can be
detected, a damage that would pass undetected by the other two previously mentioned
methods.

AE signals are not only generated by damage, they can also come from other sources,
such as; the testing machine [16], electrical disturbances [16, 5], friction due to rubbing of
parts [12] and the friction generated by opening and closing of matrix cracks [13]. Accord-
ing to Hamstad [7] AE is also generated under loading because of the different material
properties of the fibers and the matrix.

Friction generated AE can provide important information about the condition of an com-
posite [1]. Some researchers have attempted to filter the AE signal generated by friction
from the total signal in order to better detect AE from damage, but this can be difficult [15].
The fact that a damage only emits AE once but friction many times suggests that approaches
based on friction will be more robust.

An AE parameter analysis is the conventional way of performing an AE monitoring. The
results from using standard AE parameters, especially amplitude, are contradicting in the
literature [5, 2, 8, 3]. Amplitude suffers from attenuation. The main reasons for the attenua-
tion are; geometric spreading, dispersion, internal friction and scattering [11]. Also, Prosser
et al. [10] reported that the same type of damage doesn’t always produce AE with the same
amplitude. This indicates that amplitude is not a very good feature. Godin et al. [6] claimed
that conventional AE analysis cannot distinguish between different AE sources and sug-
gested that more advanced methods, such as multivariate analysis and classifiers, should
be used. Similar comments were made by Tsamtsakis et al. [15]. They suggested that new
parameters, like force or displacement, should be added.

This paper reports the results of using several methods to extract information from conven-
tional AE features. The features were obtained using a commercial AE acquisition system
(AESmart 2000 from DECI Inc) and consist of a fixed set of standard AE features. The
emphasis was put on generating features which could be used for fast and reliable detection
of damage onset. It was also considered important for the detection method to be robust.
Robustness was believed to be obtained by basing the features on friction based AE.

The outline of the remaining of the paper is as follows: First the setup of the acquisition
system is explained then the methodology is explained. It starts with explaining how new
features are derived from the available feature set by both applying sensor fusion and using
moving window second order moment. The section ends with a description a simple clas-
sification system based on the assumption that faulty specimens have inhibit greater AE



activity than normal ones, thus threshold on the features can be used for classification. We
compare classification properties of the different features by using using receiver-operator
characteristics (ROC) curves. The features are compared and discussed – identifying the
useful features. Finally the concluding remarks are made and future work is outlined.

System Setup: The fatigue test specimens were two types of prosthetic feet differing
slightly in stiffness and size. Foot no. 1 is stiffer and smaller than foot no 2. The con-
struction of both feet is the same, they are made from unidirectional carbon fiber reinforced
epoxy and woven mats are used for the top and bottom layers for nicer look. The test was
performed according to ISO 10328 specifications, with a “Foot/Limb” test system at Ös-
sur’s testing facilities. During the fatigue test, two actuators were used to flex the foot for
2 × 106 cycles at 1.5 Hz. The maximum load for each actuator was kept constant and the
deflection was monitored. No change in maximum deflection was measured, which means
that no stiffness reduction was observed during the tests. For data collection SE9125-MI
data transducers and the AESmart 2000 AE acquisition system, from from DECI Inc., was
used.

According to Dunegan [4] the system splits the AE signal into low frequency (LF) and high
frequency (HF) signals. The LF signal contains frequencies between 20 to 60 kHz and the
HF signal contains frequencies between 100 to 500 kHz. Data is only collected from one
sensor at a time, each time the system switches between the sensors it stores the data in
an Excel file. The data that is stored is not the actual AE signal but instead the following
features that the system extracts from this signal; time of the recorded event, HF counts
above threshold (TTL counts), HF peak amplitude, LF peak amplitude, ratio of the HF/LF
peak amplitudes, event count, time difference between HF and LF signals. Other features
are also stored by the system but, they are irrelevant to the test.

The system was set up to switch between the two sensors, i.e. one on each foot, using 6
second dwell time. The monitoring was performed twice a day for 4 to 6 hours each time.
The gain for both the LF and HF gain was set to 60 dB. The threshold setting for the LH
and HF was set to 200 mV. The time interval for counting the TTL counts was set to 1 ms.

Data preprocessing: During data acquisition each foot was monitored for periods of six
seconds, before the system switched started monitoring the other foot. Each entry in the
data file is the result of the following events

1. AE signal crosses the trigger threshold
2. Acquisition board computes the set of features from a 1 ms analysis window
3. Acquisition board goes back to detecting threshold crossing in AE signal. Further

the system might also change foot if the 6 s period has ended

Moving window second order moment: We compute the second order moment over a fixed
number of consecutive data entries, move the window and repeat. This gives the moving
window second order moment that peaks when the local mean value change, and also when



the local variance increase. So this is just a simple “amplification” of changes in a time
series. Besides from giving a different measure (variance instead of values) this method
also performs filtering since a number of consecutive samples are used for each value.

µ̌(n) =
1

N

N−1∑
n′=0

x(n− n′) (1)

σ̌2(n) =
1

N − 1

N−1∑
n′=0

(x(n− n′)− µ̂(n))
2 (2)

Time normalization: Each data entry comes from a 1 ms analysis window triggered by a
threshold crossing. So we can imagine several regimes (explaining the data entries in the 6
s periods where the system monitors each foot).

1. few data entries with a few high readings – occasional low activity
2. many data entries with a few high readings – steady low activity
3. few data entries with many high readings – occasional high activity
4. many data entries with many high readings – steady high activity

This means that if we omit the time information and look at the feature values, we cannot
differ between the occasional and steady activity. Instead we fuse the features in each 6 s
period. We deliberately use the term fuse, even though most features are just summed up
during the period. But for the time entry we take the earliest value, for the event count we
take the maximum, and for the ratio we recalculate; since the original ratio computation
was constrained. Another benefit of time normalization is reduction of data size as several
events are combined into one.

We can also apply the moving window second order moment to the time normalized data
in order to further enhance changes.

Energy normalization: In the LF/HF peak amplitude we have the peak amplitudes, we
already have the number of TTL counts in a 6 s period. Multiplying those two quantities
and sum over the events in the period gives an upper bound estimate of the “energy”.

E =
∑

i

TTLiPi (3)

Filtering: One way of decreasing feature variance is low-pass filtering, essentially this
forces the classification system to evaluate the feature value for consecutive examples. This
smears out occasional high values, but also the sudden steps in the feature, thus this delays
the significant changes. Further notice that this is related to the post classification process-
ing described last in the following section.

Feature processing: We adopt a very simple setup for supervised single feature classifica-
tion of the specimen condition. Assuming that a damaged specimen generate a “loud” AE



signal, it will also generate many TTL counts with high peak amplitudes and many event
counts. Thus as a rule of thumb: The feature value in a faulty specimen should be larger
than the normal. In order to compute the feature thresholds, we compute the histograms of
each feature on two sets of data, a normal and a faulty. Histograms are not directly well
suited for classification tasks, so instead we use the normalized cumulated sum of the his-
togram, corresponding to a sample of the true cumulated density function (CDF). The CDF
gives the probability that the feature is less or equal to τ .

P (x ≤ τ) =

∫ τ

x=−∞
p(x) (4)

A good feature for classification will behave such that Pnormal(x ≤ τ) � Pfaulty(x ≤ τ) is
fulfilled, not everywhere but in an interval. Actually Pnormal(x ≤ τ) = X, X ∈ [0; 1] says
that X of the normal examples have a feature value x less or equal to τ . Obviously this
means that thresholding with this value of τ corresponds to 1 − X false alarms, and that
1− Pfaulty(x ≤ τ) of the faulty specimens is correctly detected (see further [14]). Varying
τ from the smallest to the largest observed value whilst tabulating 1− Pnormal(x ≤ τ) and
1− Pfaulty(x ≤ τ) gives the Reciever Operator Characteristics (ROC) shown in Figure 1.

Figure 1: ROC-curves for the TTL count and the three derived features. The o’s and
stars on the curves indicate the performance of the two optimal thresholds. Notice the
consensus between the different optimality criterions wrt. ranking of the features – also
the Neyman-Pearson criterion at 5% agrees. The figure also show our conclusion, that the
time normalization (data fusion) and moving window variance (processing) increase the
performance of the system.

Detection rate D(τ) = 1− Pfaulty(x ≤ τ)s (5)
False alarm rate F (τ) = 1− Pnormal(x ≤ τ) (6)



This approach with a single dimension classifier is very simple, with multiple dimensions,
like using several of the obtained features, either pattern recognition or voting systems
should be explored.

We adopt two rules for obtaining the optimal threshold:

1. Maximize the difference between the detection rate and false alarm rate
2. Minimize the absolute distance to the optimal point (100% detection, 0% false alarm)

Also applicable is the Neyman-Pearson Criterion[14], where the best classifier/threshold is
the one with the highest detection rate given a set false alarm rate, say 5%.

Having decided on a threshold we also have knowledge of the false alarm rate of the classi-
fier under normal conditions. In many cases occasional false alarms will occur, an we could
filter out with a moving average low pass filter. The length of the filter and the significant
number of alarms for the filtered signal can be obtained through the Binomial hypothesis
testing (this is further described for a unsupervised setting in [9]).

In short we can vary the threshold in order to balance the rate of false alarms versus de-
tection, however it is a trade-off. Direct improvement is only available through a better
classifier. Another available trade-off is between classification accuracy and delay. If we
know that the false alarm rate is 5 out of 100, we could wait until 12 out of 100 was
classified as faulty; however this will introduce a delay since we need to gather enough
fault-classifications.

Results and Discussion: Table 1 shows the statistical parameters for the ROC curves cor-
responding to the original features, i.e. those provided by the acquisition system.

Feature false 1 detect 1 false 2 detect 2 Area
TTL count 3 24 37 54 0.55
HF amp 3 10 18 15 0.15
LF amp 0 2 25 8 0.07

Table 1: Original data

None of these features are able to discriminate well between normal and faulty signals
under the assumption that faulty signals are louder. The LF amp with the assumption that
normal signals are loud works quite well (area under ROC-curve 0.93), this could fit the
“steady low amplitude” regime descried under time normalization.

Applying a moving window variance on the original features the classification perfor-
mances is considerably improved. Now take a look at the features generated by taking
a moving window variance of the original data, shown in Table 2, then we have features
with considerably better detection performance.

This increase in performance is in some cases followed by increased false detection rate.
However, these features are generally better suited for classifying as indicated by the much
larger area under the ROC curves. The performance of the time normalized data is shown
in Table 3.



Feature false 1 detect 1 false 2 detect 2 Area
TTL count 4 84 4 84 0.91
HF amp 16 87 16 87 0.84
LF amp 36 79 36 79 0.67

Table 2: Moving Window Variance of Original data

Feature false 1 detect 1 false 2 detect 2 Area
TTL count 4 72 13 79 0.87
HF amp 11 49 22 56 0.60
LF amp 3 8 48 45 0.31
Event count 43 91 26 73 0.78

Table 3: Time Normalized data

These features result in better classification than with the original features (Table 1), how-
ever not as good as with the moving window variance. However the combination, by
applying moving window variance on those features we hoped for similar improvement as
was observed for the original data. Table 4 lists the ROC performance of the new set of
features.

Feature false 1 detect 1 false 2 detect 2 Area
TTL count 1 93 6 96 0.99
HF amp 13 93 13 93 0.92
LF amp 23 84 23 84 0.81
Event count 83 100 54 55 0.52

Table 4: Moving Window Variance of Time Normalized data

According to the Moving window variance of the normalized TTL counts is definitely a
good feature.

Feature false 1 detect 1 false 2 detect 2 Area
TTLxHF 13 56 13 56 0.54
TTLxLF 5 19 40 35 0.29
TTLx(HF+LF) 5 29 42 51 0.43

Table 5: Energy Normalized data

In order to see if the classification performance of the feature created by applying moving
window variance on the normalized TTL counts could be improved further, a filtering was
applied. As Table 6 shows that the filtering improved the false alarm rate compared to
Table 4, but the area below the curve is slightly decreased as the detection rate is also
decreased. Figure 2 shows the time series of both features derived from the TTL count
as well as their respective classification. The various preprocessing steps reduce the local
variance of the classification.



Feature false 1 detect 1 false 2 detect 2 Area
NTTL variance 0 95 0 95 0.98

Table 6: Filtered moving window variance of the normalized TTL counts

Figure 2: The time series of the TTL count and three derived features. Each entry in the
features has been classified; this binary output is plotted just below the feature (the lower
value is faulty, upper is normal). It is believed that the specimen turns faulty after 4 · 105s.
The uncertainty using the original TTL count is clearly visible during under both normal
and faulty conditions, as the classification switches all the time.

Conclusion: We have analyzed simple data fusion and preprocessing methods on Acoustic
Emission measurements of prosthetic feets made of carbon fiber reinforced composites.
This paper presents the initial research steps; aiming at reducing the time spent on the fa-
tigue test. With a simple single feature probabilistic scheme we have showed that these
methods can lead to increased classification performance. We conclude that: the derived
features of the TTL count leads to improved classification and damage detection in a su-
pervised setup.

The probabilistic classification scheme was founded on the histogram, however different
approaches can readily be investigated using the improved features, possibly improving
the performance using multiple features classifiers, e.g., Support Vector Machines and
Gaussian Mixtures.
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Abstract. We present an event alignment framework which en-
ables change detection in non-stationary signals. change detection.
Classical condition monitoring frameworks have been restrained to
laboratory settings with stationary operating conditions, which are
not resembling real world operation. In this paper we apply the
technique for non-stationary condition monitoring of large diesel
engines based on acoustical emission sensor signals. The perfor-
mance of the event alignment is analyzed in an unsupervised prob-
abilistic detection framework based on outlier detection with either
Principal Component Analysis or Gaussian Processes modeling.
We are especially interested in the true performance of the con-
dition monitoring performance with mixed aligned and unaligned
data, e.g. detection of fault condition of unaligned examples versus
false alarms of aligned normal condition data. Further, we expect
that the non-stationary model can be used for wear trending due
to longer and continuous monitoring across operating condition
changes.

INTRODUCTION

We pursue Condition Monitoring (CM) systems which are capable of detect-
ing faults in large diesel engines used for propulsion and power generation.
Such operation involves frequent changes in either load or speed. The cur-
rent problem is that those trivial changes result in false alarms that cannot
be separated from alarms originating from real faults.

MAN B&W Diesel has conducted experiments simulating realistic ma-
rine operation with multiple loads. Faults resembling scuffing was induced
by means of shutting the lubricating oil system off after the engine was started
Scuffing is a severe fault that with time evolves into damaging contact be-
tween cylinder piston and liner. In the acquired data set we have have identi-



Figure 1: System overview. The figure outlines the flow of information during the
experiments.

fied a stable functional dependency between signals from different operational
conditions. We propose a novel method that builds invariance into the Con-
dition Monitoring System (CMS) by inverting those functional changes prior
to outlier detection. The traditional approach of sampling of data in the
crank angular domain [1] is not enough to remove those changes. Further the
available Dynamic Time Warp algorithm [3, 9] was discarded since repeated
time frames produced fault-like signals.

We have previously cast unsupervised condition monitoring as an out-
lier detection problem with generative models [10]. The generative models
allows for localization of large deviations that indicates the origin of the
fault. With this setup we have successfully detected induced scuffing (piston
rubbing against the liner) and externally generated faults under stationary
conditions. However, we were not able to distinguish between alarms due to
faults or operational changes under non-stationary conditions. Also, other
recent monitoring applications [2, 5] have been limited to fixed operating
conditions.

MODELING

The following section presents the data setup and the describe the use of
Principal Component Analysis and Gaussian Processes for modeling in a
condition monitoring framework.

Data setup. Data was acquired on MAN B&W Diesel’s two-stroke test bed
engine, under controlled varying conditions. The acquired ultrasonic acous-
tic emission signals were preprocessed by short time root mean square and
converted from time domain into the crank angular domain using a crank



Figure 2: Data partitioning for Event alignment and Change detection. Different
sizes of partions are allowed. We use different sets of data to learn the warping
parameters (µ and σ2-signals), rejection threshold. Further we also learn the model
parameters from a set of data from the reference condition. Finally we use unused
examples for validation of the performance.

angle tachometer. Further the signals were downsampled to enable Gaussian
Process modeling. The properties of each RMS AE signal, x, is: d non-
negative elements sampled at specific angular positions at constant angular
sample rate regardless of engine operating conditions. Figure 1 show the sys-
tem overview explained in this section. We center data (denoted x̃) before
modeling by subtracting the mean obtained across a subset of Normal Con-
dition (NC) examples. Throughout the experiments we estimate parameters
in a step-wise manner using resampling. As shown in Figure 2 a specific
data subset used to learn a parameter is only used one time. Two modeling
schemes for the analysis of the performance of the event alignment are de-
ployed. The approach is a mixture of supervised and unsupervised learning.
Unsupervised modeling is used to model NC data by training a set of param-
eters θ in Principal Component Analysis (PCA) and Gaussian Process (GP)
models described below. The log-likelihood of the NC model is used as a
measure of how much an example belongs to a model, and the log-likelihood
density of NC and Faulty Condition (FC) examples in general separates. A
rejection threshold is obtained in a supervised manner by finding selecting
an optimal point on the Receiver Operator Characteristics Curve from a set
of labeled NC and FC examples.

Principal Component Analysis Model. From a set of N centered
normal examples x̃ (size d× 1) we build the training matrix XT by stacking
(size d×N). XT = [x̃1, x̃2, · · · , x̃N ]. From this training matrix we estimate
a principal component matrix PC (size N ×N), and a projection matrix U
(size d×N) through the Singular Value Decomposition (SVD) XT = UΛV >.
The number of principal components k is controlled by using the first k
columns of U and (k) rows of PC.

PC = ΛV >



Figure 3: Application of the event alignment. The normal condition signal is
displayed with negative sign. Normal and faulty condition 75% load data were
event aligned using the warp for normal condition 75% load data. Since the faulty
condition 75% load does not comply with this model, the aligned faulty condition
examples display deviation around 100-150 degrees.

When applying the PCA model to new examples we multiply with the first
k transposed columns of U from the left and obtain sk plus the noise ε, as
the remaining d − k components that span a Gaussian noise space [8, 10].

sk = U>
k x̃ (1)

x̃ = Uksk + ε (2)

It follows directly from the properties of the SVD and (2) that the principal
components of NC examples follow a multivariate zero mean Gaussian with
covariance Λk (using the first k columns and rows of Λ). Let θ denote all
estimated parameters [8, 10], then p(x|θ, k) = p(sk|θ)p(ε|θ) and the log-
likelihood is L = log p(sk|θ) + log p(ε|θ)

Gaussian Process Model. As an alternative to the PCA subspace model
we can perform modeling directly in the observed domain. Through Gaussian
Process (GP) modeling we obtain a measure of how much an example deviates
from the reference condition. From Gibbs and MacKay [7] we have (with
interchanged t and x relative to Gibbs MacKay notation)

Q(ti, tj) = θ2
2 exp

(
− (ti − tj)2

2θ2
1

)
+ θ2

3δ(ti, tj) (3)

p(x̃|Q, t) =
1
Z

exp
{
−1

2
x̃>Q−1x̃

}
, (4)



Figure 4: Examples and landmarks during injection period. The upper figure dis-
plays the mean signals and landmarks for the two conditions. The middle figure
display the landmarks. In the beginning they are almost equal and the warp condi-
tion evolves slower than the reference condition. The lower figure display the mean
signal before amplitude warp, and the mean signal of the fully event aligned. The
mean signals are shown before, during and after event alignment. Notice that the
event alignment results in equal mean signals.

where t is the vector of crank positions, and x̃ is the corresponding observed
centered values. The covariance matrix Q is a function of the index vector
t and the parameters θ. The last term of Equation 3 is the noise part. The
negative log-likelihood for the example x̃ given the parameters theta defining
the covariance matrix Q is

L =
1
2

log |Q| + 1
2
x̃>Q−1x̃ (5)

For each training examples x̃nθ
, nθ ∈ Nθ we train an independent GP with

parameters {θnθ
} through minimization of L using minimize.m [11]. Finally

we perform average over the parameters obtained from different training ex-
amples to obtain the final model parameters.

θ̂nθ
= arg min

θ

{
1
2

log |Q| + 1
2
x̃>nθ

Q−1x̃nθ

}
(6)

θ̂ = log

(
1

card(Nθ)

∑
nθ∈Nθ

exp
(
θ̂nθ

))
(7)

In order to ensure positive parameters without enforcing constraints minimize.m
uses reparameterization, hence, the averaging takes place in the natural pa-
rameter space and explains the exp and log in (7). The original implementa-
tion of the Gaussian Processes was due to Carl Rasmussen [11], but the we



have customized the input/output structure to fulfill our needs, e.g., allowing
the training and use of the Q matrix.

DETECTION

Outlier detection with log-likelihood is based that NC and FC examples sep-
arate in log-likelihood space. For instance we expect that the number and/or
characteristics of the underlying hidden sources are changed when entering
the FC, thus examples acquired from a FC are poorly described by a model
trained on NC examples. We expect that combinations of increased noise
or increased strength of certain acoustical sources results in a lowver log-
likelihood value. ¿From a set of labeled preprocessed examples we build the
accumulated densities for the features p(LNC ≤ τ) and p(LFC ≤ τ). Each
value of τ corresponds to a true detection / false alarm ratio, and we choose
the optimal rejection threshold τ̂ that is closest in distance to 100% detection
and 0% false alarms. The threshold can also be obtained in other manners,
e.g., selecting the threshold that detects most faults with a constant false
alarm rate.

EVENT ALIGNMENT (WARPING)

We present event alignment as a novel tool for non-stationary Condition
Monitoring (CM) of large marine diesel engines. The tool is necessary since
the current CMSs are not invariant to certain known operational changes -
in particular load/speed changes. Given two different NC, the event align-
ment transforms examples from one condition into the other condition, thus
facilitating a CMS trained on the reference system to correctly detect devia-
tions under both conditions. The result is that the CMS becomes invariant
to changes between the two NC’s. With more NC’s we expect that interpo-
lation between a few warps is possible. Non-stationary condition monitoring
is important when considering diesel engines since the operating conditions
change frequently. Under normal marine conditions Frances et al. [6] have
observed large variability. In our data sets we have found that such vari-
ability is largely described by the changing operation conditions, indicating
that unwanted false alarms could be suppressed by adopting to the changes
invoked by the operating conditions. It should also be noted that application
of the same model on a continuous flow of data could allow for trending of
wear, that is not necessarily possible with multiple models, as models might
focus on different properties of the condition modes.

Obviously one should take care that examples which do not originate
from the warp condition are not transformed into the reference condition.
For instance the event alignment should try to preserve the same variations
as in the reference condition, as this prevents the event aligned examples
of becoming super-normal. Furthermore it prevents examples from other



conditions of being transformed into the reference condition. Overfitting
with event alignment is still an open issue which needs further research.

Dynamic Time Warp based on phase vocoder techniques [4] described by
Ellis [3] and Keough [9] performs the time-warp while keeping the frequency
content unchanged. The phase vocoder is based on short time Fourier trans-
formation and accomplishes the time-warp by interchanging the number of
samples between overlapping time frames at playback time, e.g., moving the
overlapping windows further apart in order to stretch the signal. Dynamic
Time Warping is uninteresting for CM in the time domain, as it repeats or
drops time frames if necessary, possible duplicating peaks or removing fault
signatures. Instead we decide on time-warps that keep the waveform struc-
ture or envelope unaltered, e.g. spline interpolation. Also piece-wise linear
interpolation was tried, but in the present case the cubic splines provided
better results.

Event alignment model

The event alignment consists of two non-linear warps, the first performs time-
alignment and the second performs amplitude mapping. Definitions (also see
Figure 2)

L The landmark vector defines the angular position of the important events.
Most events are described by three landmarks: begin, peak and end.

µ the vector containing the mean signal (across examples for each angular
position)

σ2 the vector containing the variation around µ.

The landmarks were picked by hand, and are very specific for the applica-
tion. Even changing a sensor position would change the landmarks. Thus,
automatic identification of landmarks is to be addressed in future studies.
The event alignment transforms warp condition examples xW described by
µW ,σ2

W and landmarks LW into aligned examples xA resembling the refer-
ence condition µR,σ2

R and LR. f(·) is an interpolating function that per-
forms the time alignment of events based on the two set of landmarks. The
vector g is a sample-wise constrained re-scaling factor that accounts for com-
pression of variance when the variance in the warp condition is larger than
in the reference condition.

xA = (f(xW ,LR,LW ) − µW ) . ∗ g + µR, (8)
µW = 〈f(xW ,LR,LW )〉 (9)

gi =
{

1 , σiR > σWi

σRi/σWi , σRi > σWi
, i = 1, 2, . . . , d (10)

where .∗ denoting Hadamard matrix multiplication. The constraint prevents
amplification of measurement noise. Unconstrained re-scaling can lead to
negative values that do not correspond to the non-negative RMS signals.



In some cases this constraint leads to overfitting, as the aligned examples
become “more” normal that the un-aligned examples. In the following section
we encounter this problem in experiment 5 for Gaussian Process modeling.

EXPERIMENTS AND RESULTS

We create pseudo-realistic data sets in order to compensate for lack of data
by resampling of examples within periods of stable conditions. Examples are
resampled by drawing random examples from pools of data and only used
once. That is, examples used to learn the model, warp or threshold are
not used during performance evaluation. Resampling of examples facilitates
evaluation and analysis of the models at the expense that condition changes
become more abrupt, thus analysis of alarm time and trending is not possible.

We measure the performance of event alignment on its ability to correctly
separate FC and NC examples during changing operational conditions.

All experiments (see Table 1) where conducted using a model trained
on random examples drawn from the 25% load NC. Table 2 reports the
obtained detection rates using the two different modeling schemes. For PCA
only the performance with the optimal number of components is reported.
Experiment 1 shows the performance of the stationary system on stationary
data. Applying the stationary system to non-stationary data would label
all normal conditions as faulty since the CMS cannot discriminate between
normal variations and true faults, thus the resembling the non-stationary
conditions is indeed promising.

Experiment 2 and 3 demonstrate the ability to align other NC with the
reference condition while the event alignment of FC examples using the same
model are correctly labeled as faulty. In experiment 2 we obtain the same
performance as the stationary system, but in experiment 3 the performance
is degraded. This is due to the downsampling of examples. The original AE
RMS vectors had d = 2048 samples per revolution, and since the training
of the Gaussian Process model involves inversion of d × d square matrix, all
examples have been downsampled with a factor 8. The fault leads to unstable
timing of events and the downsampling smears out these changes. We notice
that the PCA preprocessing suffers more from downsampling than the GP
model, however, without any downsampling, PCA also yields 80-90% detec-
tion rate and 15-20% false alarm rate (similar to the GP with downsampled
data). As expected, the overall performance is reduced in comparison with
the stationary experiment.

Experiment 4 demonstrates how the non-stationary system is able to dis-
criminate between aligned NC data and un-aligned FC data. The result is
similar to that of the stationary system.

In experiment 5 we test the CMS w.r.t. overfitting. We cheat the system
and take examples warped into the normal condition as normal and un-
warped NC data as “faulty”. The overfitting in the event alignment, i.e.,
the examples are warped into being super-normal, is detected with the GP



Exp Normal data Faulty data
1 25 % load, lube oil on 25 % load, lube oil off
2 75 % load, lube oil on 75 % load, lube oil off
3 50 % load, lube oil “on” 50% load, unstable speed
4 75 % load, lube oil on 25 % load, lube oil off
5 50 % load, lube oil “on” 25 % load, lube oil on
6 Mixed loads, lube oil on Mixed loads, lube oil off

Table 1: List of experiments. During experiment 3 and 5 examples acquired
without lube oil was warped into the reference condition with lube oil.

Exp PCA Detec/False # Comp GP Detec/False
1 95/ 5 2 95/ 5
2 95/ 5 2 95/ 5
3 60-65/20-30 3 80-90/15-20
4 95/ 5 2 95/ 5
5 50-60/65-80 36 80-95/ 0-15
6 95/ 5 2 95/ 5

Table 2: Condition Monitoring Performance. Detec/False denotes detection versus
false alarms rate in percentage.

modeling, that incorrectly label 80-95% of the NC examples as FC. However,
using PCA modeling the overfitting disappears, even though the PCA uses
much more components than usually, indicating that it is looking for very
small changes.

In experiment 6 we collect both aligned and un-aligned examples from
experiment 1,2 and 4 in order to demonstrate that the system is capable of
performing non-stationary condition monitoring with the same performance
as in the individual experiments. This demonstrates that the obtained opti-
mal rejection thresholds are stable in the three experiments 1,2, and 4.

CONCLUSION

The experiments show that non-stationary condition monitoring is indeed
possible. It is important to notice that the event alignment does not de-
crease the overall condition monitoring performance as the results obtained
in experiment 2 and 4 are equal to the stationary results in experiment 1. Fur-
thermore, the performance obtained using both mixed aligned and original
data in experiment 6 is the same as in the individual experiments, indicating
that the optimal rejection thresholds are fairly constant even with several
warp conditions each having its own set of event alignment parameters. The
conclusion is that non-stationary CM indeed can be obtained by extending a
stationary CMS with event alignment.

Future work will concentrate on refining the method to handle a larger
range operation conditions, automatic detection of landmarks, and further



investigations related to overfitting. In addition, we will evaluate whether the
framework will allow for wear trending, which of course calls for new exper-
iments involving much larger time scales. We will also pursue fast Gaussian
Processes in order to avoid signal downsampling.
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ABSTRACT 

We are pursuing a system that monitors the engine condition under multiple load settings, i.e. under 
non-stationary operating conditions. We have obtained data from the electronically controlled 2-stroke 
engine at MAN B&W Research Copenhagen. The running speed when data acquired under simulated 
marine conditions (different load settings on the propeller curve) was in the range from 60 to 120 
rotations per minute; furthermore the running speed was stable within periods of fixed load.  
Electronically controlled engines can change the angular timing of certain events, such as fuel injection 
in order to optimize its performance. However this behaviour inhibits our framework presented in 
COMADEM 2003 from detecting condition changes across those load changes. 
This paper evaluates different methods that align acoustic emission signals observed under different 
load settings. We evaluate the methods on data from the fuel injection period where the largest 
deviations in timing occur. 
The idea is that we, given aligned data, can use the already developed component analysis framework 
for non-stationary monitoring of condition changes.  It should further be noticed that the proposed 
warp framework also enables alignment across cylinders and engines. 

KEYWORDS 

Event alignment, signal processing, non-stationary condition monitoring, acoustic emission. 

INTRODUCTION 

We have obtained acoustic emission (AE) RMS signals from the cylinder liner and cover of the 
electronically controlled 2-stroke at MAN B&W Research Copenhagen. During the acquisition the 
running speed was in the range 60-120 rotations per minute. Further the running speed was virtually 
constant during periods of constant load settings.  
Up to now research has mainly focused on condition monitoring under fixed operational conditions, 
see further [1], [2] and [3]. We are currently pursuing non-stationary condition monitoring, i.e. 
condition monitoring under different load settings that should resemble realistic marine conditions. 
Electronically controlled engines can change the angular timing of certain events, such as fuel injection 
in order to optimize its performance. However this behaviour inhibits our framework presented in 
COMADEM 2003 [1] from detecting condition changes across those load changes. The result is a false 
alarm triggered by the condition change. Also mechanically controlled engines display such 
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variations[4], due to the fact that some events have fixed length in time and some in angular “time”, 
thus it is not sufficient to use the crank angular domain as described in [5] to overcome this problem.   
Joint research in the AE-WATT project has revealed a stable functional dependence in the observed 
AE signals w.r.t. running speed/load, which this paper exploits in order to compare AE signals 
observed under different load settings. We expect to add this novel tool to our component analysis 
framework [1] enabling non-stationary condition monitoring. 

Timing changes during injection period 
The three events depicted in Figure 1 are believed to arise from mechanical interaction between the 
injector spindles and their respective stops within the injector, with fuel delivery occurring between the 
region encompassing the first and second peaks and the last peak. The process is partly mechanically 
controlled by pre-set spring pressures and partly electronically controlled since the fuel flow to the 
injector is electronically governed. 
In order to meet an increased load the engine response is to inject more fuel.  This is achieved by 
prolonging the fuel delivery period with consequential retarded closure of the injector.  Since the AE 
directly reflects the mechanical operations within the injector the increased fuel injection duration is 
readily identifiable. 
Just as the engine changes the timing of the events, we are going to undo those changes. Figure 1 
shows the mean injection period signals at three different loads on the propeller curve. All loads have 
been annotated with a set of event landmarks. The following sections describe the applied method and 
the result is the alignment of the 50% and 25% load data. 

 
Figure 1: Mean Acoustic emission signals during injection period with different load settings. The 

markers show the time position of the landmarks that should be aligned. Notice that the TDC referrers 
to another cylinder 180˚ degrees out of phase. 
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METHODOLOGY 

 
Figure 2: Outline of event alignment algorithm 

Equation 1 and 2 define the warping of the observed signal x2[n] into the aligned signal xA[n]. The first 
step is applying the time-warp function f(), i.e.,  a function that aligns the landmarks and events of the 
two conditions in time. This possibly leaves amplitude mismatch which is resolved by subtracting the 
“other condition” mean µ2[n], followed by compression of variance g[n], ending with addition of the 
reference mean µR[n] (see step 1-3 in figure 2). 
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We use data to learn the parameters of the event alignment. In order to ensure generability of the 
algorithm we obtain individual subsets for the learning of each function, i.e. we randomly select some 
examples that we learn the respective landmarks from, another set for the respective mean-signals and 
yet another set for the variance. 

Warp path 
The function f() describes the warp-path[6], i.e. a time-stretching function. An example of a warp path 
is shown in Figure 3. The local slopes correspond to the necessary local (reciprocal) time-stretching. 
Depending on how the warp path is obtained a set of constraints can be defined, e.g. not allowing 
negative slope etc. The dark rhomb in the figure is the Itakura-parallelogram[7], which is one of 
normally applied constraints. We have applied another constraint namely the landmarks, which we 
obtain from analysing the engine. Simply if f() aligns the landmarks it also aligns the signals.. 
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Figure 3: A warp path. Figure due to Leonard et al. [6]. The local slopes correspond to the necessary 

local (reciprocal) time-stretching.  

Dynamic Time Warping based on Phase Vocoder Techniques 

Dynamic Time Warping (DTW) has successfully been applied to alignment of speech segments [8]. In 
DTW the actual time alignment is performed using Phase Vocoders [9]. The Phase Vocoder (PV) 
alters the time duration of a sequence whilst keeping the frequency information literally 
unchanged[10], i.e., playing speech at a faster rate without the well known chip-monk effect. However 
for alignment of signals in a component analysis based framework as ours, the artefact of spurious 
peaks is problematic. What happens is that the PV in some cases repeats or skips frames of observed 
signal, possibly removing or repeating the, for us important events. Thus using DTW for the functional 
form of f() in Eqn. (1) was abandoned. 

Spline interpolation in time domain 

By allowing changes in the frequency content can use spline-interpolation in the time-domain. We 
have tested 2 types of splines, piecewise linear (1st order) and cubic (3rd  order) splines. In many cases 
the cubic interpolation is better, as the derivatives of the warp-path are continuous. This means that the 
time-stretch at the landmarks is smoother. Sometimes, especially if landmarks are close to each other, 
cubic interpolation can lead to negative slope. This is an issue that we will have to investigate further, 
most likely ending up with a constrained regression scheme. 

Amplitude warp 
The function g[n] is only allowed to compress variance, since we cannot determine the source of the 
observed variance. Is the observed variance due to mode variation or measurement noise? Indeed 
amplification of measurement noise would be wrong. In experiments with unconstrained g[n] we 
observed that amplification of measurement noise lead to negative values – remember the observed 
signals are non-negative RMS signals. On the other side the constraint also keep the variance after 
alignment lower or equal to the variance in the un-aligned data, thus the aligned examples seem more 
“normal” than the un-aligned; this is called over-fitting an important issue that we will investigate 
further. 
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Figure 4: Example of amplitude warp. Samples from a two-dimensional i.i.d. Gaussian are translated, 

scaled and translated, i.e., removing mode mean, re-scaling variance and adding reference mean. 

Example of event alignment 
Figure 5, Figure 6 and Figure 7 show how 50% load data is event alignment into resembling 25% load 
data. Figure 5 show the data after time-stretching, as expected the landmarks, peaks and valleys are 
aligned but we notice the prominent amplitude mismatch. Figure 6 shows the data means after 
amplitude warp – they are identical. Notice that this is even though another set of examples was used 
to learn the parameters as Figure 2 indicate. Figure 7 displays the result of applying the event 
alignment to a set of 50% load examples, again another set of examples was used to learn the 
parameters.   
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Figure 5: Amplitude mismatch after time warp. The two displayed signals are meaned over 30 cycles. 
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Figure 6: The event alignment provides a perfect match of the mean signals of 25% load data and 

aligned 50% data. 
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Figure 7: Examples of negated 25% load data and 50% load data. Notice the lesser amount of variance 

around 182˚ in the aligned data. 
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CONCLUSION 

We have demonstrated how knowledge of engine evens can be used to turn data acquired under one 
operational condition into resembling another also known condition. We believe that this approach 
enables condition monitoring across known condition changes and thus enables non-stationary 
condition monitoring. Non-stationarity is a key component in our research for reliable condition 
monitoring under marine conditions, and we will continue this research and conduct the necessary 
experiments with full cycle data that demonstrate the non-stationary behaviour of the whole condition 
monitoring system. Another line of work is automatic identification of events where our research 
indicates that other sensor positions, namely close to the injector could provide better resolution w.r.t. 
events.  
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Abstract. This paper presents a new method for unsupervised
change detection which combines independent component model-
ing and probabilistic outlier detection. The method further pro-
vides a compact data representation, which is amenable to inter-
pretation, i.e., the detected condition changes can be investigated
further. The method is successfully applied to unsupervised condi-
tion change detection in large diesel engines from acoustical emis-
sion sensor signal and compared to more classical techniques based
on principal component analysis and Gaussian mixture models.

INTRODUCTION

Identification of engine conditions and faults is important for automatic mon-
itoring of critical failures in large marine diesel engines and stationary power
plants. The possibility of early detecting small defects prior to evolving into
serious breakdowns often reduce the costs for repair significantly. While the
long term objective is to classify engine conditions into known fault types,
this work focuses merely on the detection of condition changes.

The literature suggests that monitoring based on acoustical emission (AE)
offers advantages over sensor techniques such as pressure and vibration [19,
20]. The signal-to-noise ratio is typically better for AE sensor signals, and
further a system based on AE is more suitable from an operational point
of view. Previous work on adaptive signal processing and machine learn-
ing [4, 5, 7, 6, 13, 21, 22] has mainly focused on supervised learning from
sensor data and known faults. This paper focuses on unsupervised learning
for significant detection of changes in measured AE signals, that is, model-
ing the probability density of the AE signal. Since AE data are abundant
we focus on models, which also offers compact data representation, such as
the Independent Component Analysis (ICA), Principal Component Analysis
(PCA) and Unsupervised Gaussian Mixture (UGM) models in combination
with PCA. The probability density associated with the trained ICA, PCA



and UGM models [9, 18, 16, 12, 15] can be used to identify events which do
not conform to the model assumptions [15, 3] and thus represent a significant
change in engine condition.

The next section presents the modeling framework and a novel change
detection algorithm based on ICA and/or PCA models. The results of a
comparative analysis using Bayesian Information Criterion (BIC) and Re-
ciever Operator Characteristics (ROC) is followed by the description of data
acquisition, experimental setup, ending with the concluding remarks.

MODELING FRAMEWORK

Feature vectors from N examples (revolutions) are assembled into a training
data matrix XT of size d×N XT = [x1,x2, · · · ,xN ]. Unsupervised modeling
considers modeling the probability density p(x,θ), where θ is a parameter
vector. The model parameters estimated from available training data XT
are denoted by θ̂.

Principal Component Analysis Model (PCA)

Since d is typically larger than N we will invoke the PCA model [9, 18], which
considers a K dimensional K � d signal space with rank K ≤ min(d, N)
covariance, and an additive isotropic noise, x̃ = s + v, p(x̃|θ) ∼ N (0,Σx),
where x̃ = x − E{x} and N (0,Σx) is the zero mean Gaussian distribution
with covariance matrix Σx = Σs + σ2

εI, Σs has rank K.
The model is estimated from data using a singular value decomposition

of centered data X̃T , x̃n = xn − µ̂x and µ̂x = N−1
∑N

n=1 xn. Assuming
d ≥ N , the SVD is given as X̃T = UDV >, where U is d × N and V
N ×N are left and right eigenvectors and D is the N ×N diagonal matrix
of decreasing singular values. Define Ũ as the first K columns of U , then for
specific choice K

Σ̂s =
Ũdiag(D2

1 − σ̂2
ε , · · · , D2

K − σ̂2
ε)Ũ

>

N
, σ̂2

ε =
1

N(d−K)

N∑
i=K+1

D2
i . (1)

In order to estimate the optimal model complexity, Kopt, we use the Bayesian
information criterion (BIC) [17, 10, 18]. BIC is an estimate of model evidence
given by

p(X̃|K) ≈ p(X̃|θ̂) · p(θ̂) · (2π/N)dim(θ)/2 (2)

Here p(X̃|θ̂) is the likelihood on training data and p(θ̂) is the prior on
parameters. When no explicit prior is available, we use an inproper uni-
form prior. In the case of the PCA model the parameter vector is θ =
(µ, Ũ , σ2

ε , D1, · · · , DK). That is, dim(θ) = d + K(2d−K + 1)/2 + 1 + K.



The PCA model can also be written as

p(x|θ) = p(y|θ) · p(ε|θ) (3)

where y = Ũ
>

x is K dimensional signal space and ε = U>
ε x is the d − K

dimensional noise space with diagonal covariance structure σ2
εI. Here U ε are

the last d−K columns of U . Under the model, x̃ is estimated by Ũy. That
is, the columns of Ũ can be interpreted as K AE signatures which describe
the H0 condition. The principal components (sources) y express the strength
of each signature.

Noise Free Independent Component Analysis Model (ICA-BS)

Assume the noise free ICA model [16] x̃ = As, where A is a d ×K mixing
matrix and s the K dimensional source vector with statistically independent
components. The non-quadratic noise free ICA can be performed in two steps
by decomposing A = ŨΦ, where Ũ is d ×K projection matrix onto the K
subspace spanned by the sources, and Φ is K × K mixing matrix. If the
source space is K-dimensional and second order moments of x̃ exist, then
the projection matrix can be obtained from an SVD projection as described
in the previous subsection.

We will use the Infomax algorithm [2] with classical tanh(·) nonlinearity1.
The deployed implementation of the algorithm can be obtained from ICA-ML
DTU:toolbox [14].

For model selection we will use BIC Eq. (2) with the assumption of inde-
pendent signal and noise spaces as in Eq. (3), i.e. p(x|θ) = p(y|Φ) · p(ε|σ2

ε),
where p(y|Φ) is the Infomax likelihood [16]

p(y|Φ) = |det(Φ)|−1 · ps(Φ−1Ũ
>

x) (4)

with ps(s) =
∏

i 1/π cosh(si). The noise likelihood function is [10, Eq. (12)]

p(E|σ̂2
ε) = (2πσ̂2

ε)−N(d−K)/2 · exp(−N(d−K)/2) (5)

Since θ = (µ, Ũ , σ2
ε ,Φ), the total number of parameters are dim(θ) = d +

K(2d−K + 1)/2 + 1 + K2.

Noisy Independent Component Analysis Model (ICA-MF)

An advanced Bayesian ICA using mean field training [12] enables the training
of an ICA model with noise, x = As + e, under flexible source distributions
and possible priors on the mixing matrix. The noise is assumed Gaussian,
independent of the sources, and with diagonal covariance matrix. The pre-
processing SVD projection step is not exact in the case of noise, i.e., the
estimation procedure estimates the d×K mixing matrix A directly.

1Corresponding to identical source priors psi (si) = 1/π cosh(si).



As described above, the columns of A correspond to AE RMS signatures
associated with individual sources, which consequently are non-negative. We
therefore invoke a non-negativity prior constraint on the mixing matrix. The
activation of these signatures should also be non negative, i.e., source should
be non-negative and consequently we use an exponential prior source distribu-
tion. The noisy ICA model is estimated using the the ICA-MF DTU:toolbox
code [14].

The number of sources is also in this case estimated using BIC, Eq. (2).

Unsupervised Gaussian Mixture Model (UGM)

For comparison we also consider the Gaussian mixture model with SVD
signal space preprocessing [11]. Thus as in Eq. (3) we assume p(x|θ) =
p(y|θ) · p(ε|σ2

ε), where p(y|θ) is the Gaussian mixture density p(y|θ) =∑C
c=1 P (c)p(x|c,θc), with p(x|k,θc) = N (µc,Σc), and θ = {P (c),µc,Σc}

consists of mixing proportions P (c) as well as means µc and covariances Σc

of the Gaussian components. The model is estimated using the generalizable
Gaussian mixture algorithm [15] and the subspace dimension K and number
of components C are selecting using the BIC criterion, Eq. (2).

Novelty detection

A general treatment of change detection is presented in e.g., [1, 8]. Here we
suggest to deploy the novelty detection method proposed in [15, 3], which
makes it possible to evaluate whether new examples conform to the trained
model p(x, θ̂). A test sample x conforming with the trained model will have
high log-likelihood whereas a sample from another condition will have low
log-likelihood value. In order to perform a formal comparison, we consider
the cumulative density of the log-likelihood values.

Q(t) = Prob(log p(x|θ̂) < t) (6)

Q(t) can be interpreted as the empirical estimate of the probability that the
example x (with log likelihood t) belongs to the model given ny the parame-
ters θ̂, i.e. the model that generated the training set.2Using a threshold, e.g.,
tmin = 5%, new examples where Q(t) < tmin are rejected under H0 at a 5%
significance level. See further figure 1.

EXPERIMENTAL RESULTS

We consider data from three experiments described in the following section,
however we only show results from the first experiment, in which the lubri-

2For a Gaussian density Q(t) is χ2 distributed. In general, we can only compute this
from samples, e.g., by generating an arbitrarily large sample from the generative model
p(x|θ̂).
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Figure 1: Cumulative log-likelihood density, Q(t), from experiment 1 using ICA-
MF with 6 components for training set, test set 1 and test set 2. training set and
test set 1 are very close which means that if we use a 5% threshold on training set
curve only very few example will be falsely detected. On the other hand, 99% of
the examples in test set 2 will be detected as novel, i.e., as a new condition.

cating oil is shut off. The other experiments gives similar performance results
besides from changes in the optimal number of components.

The Q(t) function of the trained models are computed from the training
set. Choosing a specific threshold tmin then the false alarm rate can be
estimated as the fraction of examples in test set 1 (belonging toH0) for which
log-likelihood log p(x|θ̂) < tmin. Similarly the true detection probability is
estimated as the fraction of examples on test set 2 (belonging to H1) for
which log-likelihood smaller than tmin. By varying tmin the so-called receiver
operation characteristics (ROC) curves are formed, which is shown in figure 3.
Larger area under the ROC curve implies higher true detection for a given
false alarm. Clearly ICA-MF shows best true performance. In order to
interpret the nature of the changed condition we can evaluate the difference
between a test feature vector x and its estimate under the model. For ICA-
MF we first estimate the source ŝ and then compute the estimate under the
model x̂ = Âŝ. The interpretation is shown in figure 5.

EXPERIMENTAL SETUP

The data set consists of acoustical emission (AE) root-mean squared (RMS)
signals acquired with four AE sensors. In this work we will use a single sen-
sor placed on the liner (cylinder casing). Data was recorded for 10 seconds
followed by a pause of 60 seconds as a simple compression scheme. Data
was originally sampled at 2.5 MHz using the RMS time constant 50 µs. The
signal is resampled into crank angle domain using a crank encoder. This par-
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Figure 3: ROC curves from experiment 1 (shutting off lubrication) shows proba-
bility of false alarm versus true detection. Clearly the noisy ICA model (ICA-MF)
provides best performance.

tially compensates for variations in rotation speed and establish the relation
between AE signal expression and mechanical events during the combustion
cycle. Define the d = 2048 dimensional feature vector

xn = [xn(1), · · · , xn(i), · · · , xn(2048)]>, (7)

where xn(i) is the RMS AE signal for cycle n at angle (i − 1) · 360/2048◦.
0◦ corresponds to the top position as indicated by top pulse signal. 21 other



Figure 4: Time line of experiment. The curve shows the increasing load as func-
tion of time. The numbered boxes refer to the three experiments described in the
experimental setup section. The two vertical lines indicate when lubricating was
turned off and on.

channels (including top and crank-pulses) were acquired from the cylinder
at MAN B&W Diesel’s Research Engine3 in Copenhagen. These additional
signals can be used to interpret the results of AE signal analysis.

During the experiment, the engine load was changed from 25% to 75%.
In the middle of the 25% load period the cylinder lubrication was turned
off, and in the middle of the 75% load period lubrication was re-established.
Figure 4 shows the actual timing of these events.

From the entire data set we have selected periods where the engine dis-
plays non-trivial abrupt condition changes. Thus we are not interested in
detecting that the load changes but e.g., that lubrication is turned on or off.

Knowledge about condition changes is obtained from manual annotations
by MAN B&W and from additional 21 sensor channels. This information is
not directly passed to the algorithms, but is used in order to design relevant
data periods and for performance evaluation.

We consider three experiments indicated in Figure 4.

Experiment 1: Shutting Off Lubrication After turning on the engine,
the load stabilized at 25% on the propeller curve. After a while the
lubrication to the cylinder is turned off. The objective is to detect this
operation condition change.

Experiment 2: Unstable Revolution Speed The engine is running at
50% load with the lubrication system turned off. Inspection of the
revolution speed obtained from timing signal indicates that the engine
condition undergoes sudden changes in the middle of this period, which
is probably caused by engine load fluctuations. We aim to detect the
start and end of this period.

Experiment 3: Re-establishment of lubrication The engine is running
at 75% load without lubrication. After 30 minutes lubrication is re-

3Test bed, 4 cylinders, 500mm bore, 10.000 BHP.



established, possibly lowering the wear rate. We aim to detect this
change.

In order to validate the performance of the detection we consider a null-
hypothesis H0, the current normal condition, and a new condition, H1. The
data from each experiment are divided into:

Training set contains examples from the current engine operation condi-
tion H0.

Test set 1 contains examples from current condition, H0, and is used for
model validation.

Test set 2 contains examples that we based on annotations believe come
from the the new condition, H1.

CONCLUSION

This paper presented a novel probabilistic change detection framework based
on independent component analysis (ICA) modeling. The method was suc-
cessfully applied to unsupervised condition change detection in large diesel
engines using acoustical emission sensors. The overdetermined noisy ICA
model using mean-field Bayesian learning showed best performance.
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Figure 5: Interpretation of examples which ICA-MF detected as belonging to H0 or
H1. The upper panel shows x and the (negative) estimate x̂ = As, and the lower
panel the relative error 100% · |(x− x̂)/x̂|. Under H0 the relative error typically is
around 10% while the example under H1 possesses very high error around 1500%
for crank angle position close to 240◦. Knowledge about the engine combustion
cycle at crank angel position 240◦, can then be used to identify the nature and
impact of detected condition change.
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ABSTRACT 
 
Automatic detection and classification of operation conditions in large diesel engines is of significant 
importance. This paper investigates an independent component analysis (ICA) framework for 
unsupervised detection of changes in and possibly classification of operation conditions such as 
lubrication changes and increased wear based on acoustical emission (AE) sensor signals. 
The probabilistic formulation of ICA enables a statistical detection of novel events which do not conform 
to the current ICA model, thus indicating significant changes in operation conditions. Novelty of an 
observation is measured through the likelihood that the model has produced that observation. Evaluation 
of likelihood ratios allows the framework to also handle multiple models, thus enabling classification of 
operation conditions; furthermore the likelihood also serves as a link to traditional change detection.  
The framework is evaluated on measured AE signals in an experiment where the operational condition 
varies. In particular, we compare the performance of mean field ICA, information-maximization ICA, and 
Principal Component Analysis. For detection of changes the performance is also compared to standard 
methods, e.g. mean value step detection. 
 
 
INTRODUCTION 
 
Identification of engine conditions and faults is important for automatic monitoring of critical failures in 
large marine diesel engines and stationary power plants. Early detection of small defects prior to evolving 
into serious breakdowns often reduces the costs for repair significantly. 
The literature suggests that monitoring based on acoustical emission (AE) offer advantages over sensor 
techniques such as pressure and vibration [1, 2]. The signal-to-noise ratio is typically better for AE sensor 
signals, and further a system based on AE is more feasible from an operational point of view. Previous 
work on adaptive signal processing and machine learning [3, 4, 5, 6, 7, 8, 9] has mainly been focusing on 
supervised learning from sensor data and known faults. This paper focuses on unsupervised learning for 
significant detection of changes in measured AE signals, that is, modelling the probability density of the 
AE signal. Since we measure many samples of the AE signal we suggest a model, which also offers a 
compact data representation, such as the Independent Component Analysis (ICA) and Principal 



Component Analysis (PCA) models. The probability density associated with the trained ICA and PCA 
models [10, 11, 12, 13] can be used to identify events which do not conform to the model assumptions 
[14, 15] and thus represent a significant change in engine condition. 
In section 2 the data acquisition and experimental setup is described. Section 3 presents the modelling 
framework and a novel change detection algorithm based on ICA or PCA models. A comparative analysis 
and discussion using the suggested method is provided in section 4, and finally, section 5 state the 
conclusions. 
 
Throughout vectors and matrices are identified by lowercase bold and uppercase bold letters respectively, 
i.e. the vector x and matrix X. 
 
 
EXPERIMENTAL SETUP 
 
The data set consist of two acoustic emission (AE) energy (RMS) signals y1(t), y2(t) acquired at 20 kHz 
with two very sensitive Physical Acoustics Corporation sensors placed on the cylinder liner and cover, 
respectively. The signals are resampled into the crank angle domain to provide 2048 samples per engine 
revolution. Further the two signals are stacked into the d=4096 dimensional feature (row) vector x. 
 
 [ ]1 1 2 2(1), , (2048), (1), , (2048)y y y y Τ=x … …  (1) 
 
In addition, 21 other channels, including top and crank-pulses were acquired from the cylinder at MAN 
B&W Diesel’s Research Engine1 in Copenhagen. 
For each experiment, we consider three data sets: 

• A Training set containing stationary examples under the current engine operation condition H0. 
• Test set 1 containing examples under the same condition as in the training set, H0, which is used 

for model validation. 
• Test set 2 containing examples that are investigated for changed in engine condition, H1. 

 
Thus we are able to check against false rejection of H0 and to some extent also false accept of H1. 
During the experiment, the engine load was changed from 25% to 75%. In the middle of the 25% load 
period the cylinder lubrication was turned off, and in the middle of the 75% load period this system was 
turned on again.  
 
Experiment 1: Shutting Off Lubrication 
 
Initially the engine is stabilized at 25% load. After a while the lubrication to the cylinder is turned off. 
The objective is to detect this change in operation condition shortly after it occurred. 
 
Experiment 2: Unstable Revolution Speed 
 
The engine is running at 50% load and the lubrication system is turned off. Inspection of the revolution 
speed obtained from timing signal indicated that the engine undergo some sudden changes in the middle 
of this period. This is possibly caused by engine load fluctuations. We aim to detect the start and end of 
this period. 
 
 
Experiment 3: Increased wear and re-establishment of lubrication 
 
                                                 
1Test bed, 4 cylinders, 500 mm. bore, 10.000 BHP. 
 



The engine is running at 75 % load without lubrication. After 30 minutes lubrication is re-established, 
lowering the wear rate. We aim to detect this change of AE activity. 
 

 
Figure 1, Time line of experiment. The stair like curve shows the increasing load 
as function of time. The numbered boxes refer to the three experiments described 
in the previous sections. The two vertical lines indicate when the lubricating 
system was turned off and on. 

 
 
MODELING FRAMEWORK 
 
Novelty detection 
 
A general treatment of change detection is presented in e.g., [16, 17] here we deploy the novelty detection 
method proposed in [14, 15] which makes it possible to evaluate whether new examples conform to the 
model trained on the training set T . The novelty detection is based on input density  of the 
trained model. Consider the cumulative distribution of density values over the training set for all 
thresholds t. By selecting a low threshold Q  identifying the corresponding t Q , 

novel events are detected as those where Q(t) is less than , see further figure 2. 

( |p x T)

arg min
tmin min min( )t= ≥Q

mint
 ( ) ( ), { : ( | )Q t P R R p t= ∈ = <x x x T)  (2) 
So Q(t) is the probability that the example x is under the same condition H0 as examples in the training 
set. The presented method assumes that examples, x, in the training set, i.e. drawn from the normal 
condition model H0, share underlying hidden sources, and that we are able to identify those (or linear 
combinations) correctly. As usual, we are faced with the problem of over fitting, where too many sources 
allow the model to adapt to the noise in the training examples, and too few sources prohibits the model in 
learning the different variations. With test set 1 we are able to detect over fitting, as it contains examples 
that should be accepted as H0, like the training set. 
For an example x in the training set with mixing matrix A and corresponding source vector s the log-
likelihood2 is given by 
  log ( | ) log ( | , , ) log ( | , , , ) ( )p p pΣ = Σ p d∫ε s ε sx x A Σ x A Σ s sT s

                                                

 (3) 

 
2 The probability density of x given the estimated model parameters. 
 



Where   is the covariance of the residuals from the training set, and s is the covariance of the sources 
estimated from the training set. 
Define { }1, , N=X x x… as the set of N examples3 and the number of used sources/components, K. 

 
Figure 2, Cumulated log-likelihood densities, Q(t), from experiment 2 using ICA 
with 2 components. The solid (and smooth) line shows the cumulated density for 
the training examples. The dotted line show the cumulated density for test set 1 
and is close to the training set. The dash-dotted line show the cumulated density 
for test set 2 and is above the training set curve, showing that many of these 
examples are rejected. The vertical (dashed) line show the threshold tmin together 
with the corresponding (horizontal) lines at the different rejection levels. 

 
3.2. PCA 
 
 =X UDV  (4) 
Where X is d×N, U is d×d, D is d×N, and V is N×N. We identify the mixing matrix as the K first columns 
of U, A = UK, and the source matrix SK as the first K principal components DKVK. Given a new example 
x we get the corresponding source s = Ax, and the residual ε= x-As. We assume that the residual is 
Gaussian with diagonal covariance, and that the source distribution p(s) can be approximated by a 
Gaussian with zero mean and known diagonal covariance given by DK. Under these assumptions Eqn. (3) 
is analytically tractable [10, 11] and is given by 

 ( )1 1 11 1log ( | , , ) (log log log ) log 2
2 2

p 1
2

πΤ − − −= − − − + −ε s ε s ε ε εx A Σ Σ Σ Σ Σ x Σ Σ AΣAΣ x  (5) 

Where 
 ( ) 11 1 −Τ − −= ε sΣ A Σ A + Σ  (6) 
 
 
Information-maximization ICA (IM ICA) 
 

                                                 
3 Each example corresponds to one revolution of the engine, for which two AE signature waveforms of 2048 samples are 
acquired. 



Using PCA as a pre-processing dimensionality reduction step onto K dimensions, we can the apply 
Infomax ICA with square mixing matrix [18, 12]. 
  (7) KX = U AS
Where X is d×N, U is d×K, A is K×K and S is K×N. We use the ICA-ML DTU:toolbox [19] for training 
 
Mean Field ICA with Positive Constraints on Source and Mixing Matrices (MF ICA) 
 
An advanced Bayesian ICA using mean field training [13] enables the possibility of avoiding PCA as a 
pre-processing step as well as imposing priors on the sources and mixing matrix. 
The AE signals is the observable result of an additive process combining energy from various sources in 
the cylinder. If we want to model this, both source- and mixer matrix must only contain non-negative 
elements. We estimate a positive source matrix S, where the elements of each column are exponential 
distributed, and a mixer matrix A having non-negative elements using the ICA-ADATAP DTU:toolbox 
[19]. 
 =X AS  (8) 
X is d×N, A is d×K and S is K×N. Given a new example and the trained model the code provides 
estimates of sources and the associated log-likelihood. The returned log-likelihood (as well as the 
sources) is a mean field approximation to Eqn. (3) obtained by minimizing a Kullback-Leibler divergence 
[13]. 
 
 
RESULTS 
 
We have selected the number of components that reject the expected number of examples from test set 2 
while still accepting examples from test set 1. The following tables show these results and the obtained 
performance. Figures 3-6 show Q(t) for individual examples in different experiments using the 
algorithms. Looking at these figures, the condition changes are easily spotted. 
Generally mean field ICA and PCA works best, which is due to the fact that their log-likelihood also 
depends on the noise. These algorithms are both able to detect that the sources are changing and/or the 
yielding those examples is evaluated using both the sources and the residuals. 
 
 PCA IM ICA MF ICA
Test set 1 10 % 13 % 10 % 
Test set 2 93 % 80 % 89 % 
No. of components 3 27 3 

Table 1, Experiment 1: detecting oil off. The expected rejection rate of test set 2 is 93%. 

 
 PCA IM ICA MF ICA
Test set 1 6 % 4 % 5 % 
Test set 2 35 % 31 % 33 % 
No. of components 5 12 2 

Table 2, Experiment 2: Detecting temporary external condition change. The expected rejection rate of test 
set 2 is 34 %. 

 
 PCA IM ICA MF ICA
Test set 1 13 % 5 % 10 % 
Test set 2 98 % 94 % 98 % 
No. of components 97 12 1 

Table 3, Experiment 3: Detecting oil on. The expected rejection rate of test set 2 is 100% 



Figure 3, Q(t) for each example using PCA in experiment 1. The probability of 
coming from the normal condition clearly drops after the oil was cut off.  

 

 
Figure 4, Q(t) for each example using mean field ICA in experiment 1. The 
probability of coming from the normal condition clearly drops after the oil was cut 
off. 

 



 
Figure 5, Q(t) for each example using Infomax ICA in experiment 2. The 
probability of coming from the normal condition clearly drops and returns thus 
indicating that the engine return to the previous condition. 

 

Figure 6, Q(t) for each example using mean field ICA in experiment 3. The 
probability of coming from the normal condition clearly drops after the oil was 
put back. 

 
 



Simpler schemes 
 
With ICA and PCA we are able to detect the changes. Experiments with the CUSUM algorithm [16] and 
Bayesian step detection [20] using means of the revolutions4, show that simpler schemes also detect some 
of these condition changes. In settings where the amount of data is too large, these simples schemes can 
be used to pre-select time-windows for further analysis.  
 
 
CONCLUSION 
 
We have demonstrated the ability to detect changes in the operating parameters, including some 
parameters that where not monitored, for instance an external parameter. Furthermore we detect transitory 
condition changes, where the engine quickly returns to the previous condition.  
In future we’ll exploit this fact and extend the method aiming for classification, based on likelihood 
ratios. This should fix the apparent problems with only detecting changes namely, indication of causes as 
well as verification of fixes – when the condition returns after repair. Given vast amounts of data, 
segmented by simpler schemes our extended method should also be able to classify and group the 
segments. 
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Appendix I

Calculations with Mean field
independent component

analysis

This appendix just serves to capture the calculations that lead to the analytic,
nevertheless useless result with Gamma distribution as source prior. For a single
component s that follows a gamma distribution with parameters k, and β, and
the mean field approximation is a normal distribution with parameters λ and γ:

Pq(s) =

{
Sk−1 exp− s

β

Γkβk , s > 0
0 , s ≤ 0

(I.1)
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∫
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, where LagL (n, a, x) denotes the generalized Laguerre function which is a poly-
nomial function of order n, solution to a certain differential equation. For a
constant a the Laguerre polynomials LagL({i, j}, a, x) = f{i,j}(x) are orthogo-
nal on the interval [0,∞[ with respect to the weight function w(x) [Weisstein,
Wolfram Research, 2004]∫ ∞

0

w(x)fi(x)fj(x)dx = 0, i, j ∈ N (I.4)

w(x) = xae−x (I.5)

When n is not a non-negative integer, the analytic extension of the Laguerre
polynomials is a polynomial of infinite order, where the coefficients are given by
functions of the Gamma-function.

LagL(n, a, x) =
Pochhammer(a + 1, n)

n! 1F1(−n, a + 1, x) (I.6)

Pochhammer(x, n) =
Γ(x + n)

Γ(x)
(I.7)

1F1(a, b, x) =
∞∑

k=0

Pochhammer(a, k)
Pochhammer(b, k)

xk

k!
(I.8)

LagL(n, a, x) =
Γ(a + 1 + n)
Γ(a + 1)n! 1F1(−n, a + 1, x) (I.9)

=
Γ(a + 1 + n)
Γ(a + 1)n!

∞∑
k=0

Γ(−n + k)Γ(a + 1)
Γ(−n)Γ(a + 1 + k)

xk

k!
(I.10)

=
Γ(a + 1 + n)

Γ(−n)n!
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k=0

Γ(−n + k)
Γ(a + 1 + k)

xk

k!
(I.11)



Appendix J

Abbreviations

AE acoustic emission

AEE acoustic emission energy

AIC Akaike’s information criterion

ATDC after top dead center

ANN artifical neural networks

AUC area under the receiver operator characteristics curve (ROC)
and is equivalent to the probability of correctly selecting the
faulty specimen when given a normal and a faulty specimen

BDC bottom dead center is the opposite position of the piston to top
dead center (TDC). Often used as split points when observed
signals are segmented into cycles

BIC Bayesian information criterion

COMADEM Condition Monitoring and Diagnostic Engineering Management

CDF cumulated density function

CM condition monitoring

DTU Technical University of Denmark
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DTW dynamic time warping

EM expectation Maximization

HWU Heriot-Watt University, UK

ICA independent components analysis

iid independent and identically distributed

INFOMAX information maximization independent component analysis

MFICA mean field independent component analysis

NLL negative log-likelihood

NMF non-negative matrix factorization

PCA principal component analysis

ppr points per revolution

RMS root mean square

ROC receiver operator characteristics curve

rpm revolutions per minute

STFT short time fourier transform

SVD singular value decomposition

TDC top dead center is the point where piston is at its top position
and the vertical speed is zero. Often used as a reference point.
With angular encoding a marker is placed at TDC for a given
cylinder so that all positions are with respect to this TDC –
denoted after top dead center (ATDC).

UGM unsupervised Gaussian mixtures
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