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Abstract

Using a landmark based approach to Procrustes alignment neglects the
functional nature of outlines and surfaces. In order to re-introduce this
functional nature into the analysis we will consider alignment of shapes
with functional representations. First functional Procrustes analysis of
curve shapes is treated. Following this we will address the analysis of
surface shapes.

1 Introduction

In this paper we consider the representation and alignment of two dimensional
points sets, curves and surfaces. The curves and surfaces may arise as outlines
and areas delineated by outlines of two dimensional objects or cross sections
or projections of three dimensional objects. Intuitively and formalized in the
definition by Kendall (1977) an object’s shape is invariant under a Euclidean
similarity transformation. Often a set of curves delineates an area of interest.
In some of these cases it may then be appropriate to consider alignment with
respect to the interior of these objects instead of their outline or landmarks
on their outline. Prior to any modelling of shape we need to filter out these
nuissance parameters of a Euclidean similarity transformation from each object
in our data set. We define functional Procrustes analysis based on spline based
representations of outlines as well as spline based representations of regions.
Thus generalizing the method of generalized Procrustes analysis (GPA) based
on sets of labeled landmarks (Gower, 1975; ten Berge, 1977; Goodall, 1991).

2 Functional Generalized Procrustes Analysis

In the following two representations of shapes are considered, namely functional
curve and surface representations. A functional 2D curve shape consisting
of an open or closed continuous curve is represented by a continuous complex
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function y(s) : [0, l] → C. For closed curves y(i − 1) = y(i). In our ap-
plications we consider all such curves with the exception of curves for which
y(s) = const. for all s ∈ [0, l]. The centroid of a functional curve shape is given
by ȳ = 1

l

∫ l
0
y(s) ds A curve with centroid 0 is said to be centered. The centroid

size is S(y) =
{∫ l

0
|y(s)− ȳ|2 ds

}1/2

We may choose to use the natural pa-
rameterization of the curves. However, generally the correspondences between
outlines of biological and other objects are not given by the normalized distance
traversed along the outline. More often we assume that the correspondence be-
tween such outlines are given at sets of manually or (semi)-automatically identi-
fied anatomical and/or geometrical landmarks along the outlines, and natural or
other parameterizations are used to define correspondences between landmarks.
In other situations the correspondences have to be estimated directly from data.

A functional 2D surface shape consisting of a surface patch is represented
by a continuous complex function y(s) : Ω → C. In our application we will
consider such surface patches that are constrained to have non-zero area. The
centroid of a functional surface shape is given by ȳ = 1

|Ω|
∫

Ω
y(s) ds, where |Ω|

is the size(area) of the parameter space. A surface with centroid 0 is said to be
centered. The centroid size is S(y) =

{∫
Ω
|y(s)− ȳ|2 ds}1/2

2.1 Functional Curve Shapes

Let us consider two curves y(s), w(s) : [0, l]→ C. Without loss of generality we
assume that the curves have been centered, i.e.

∫ l
0
y(s) ds =

∫ l
0
w(s) ds = 0.

Definition 2.1 The full functional Procrustes fit of w onto y is wP (s) = â +
b̂w(s) where (â, b̂) is chosen to minimize

D2(y, w) =
∫ l

0

|y(s)− bw(s)− a|2 ds.

a ∈ C is a translation vector, β = mod (b) ∈ R+ is a scale parameter, and
0 ≤ θ = arg(b) < 2π is a rotation.

Result 2.1 The full functional Procrustes fit has matching parameters

â = 0 b̂ =

∫ l
0
w(s)∗y(s) ds

∫ l
0
w(s)∗w(s) ds

Proof: Omitted, follows from differentiation of the objective function.
To obtain a symmetric measure of shape distance we standardize the curve

shapes to unit size. The objective function then becomes

Definition 2.2 The full functional curve shape Procrustes distance be-
tween shapes y and w is given by

dCF (y, w) =

{
1−

∫ l
0
y(s)∗w(s) ds

∫ l
0
w(s)∗y(s) ds

∫ l
0
y(s)∗y(s) ds

∫ l
0
w(s)∗w(s) ds

}1/2

.



2.2 Functional Procrustes Mean Curve Shape

Let a sample of n two dimensional curves given by wi(s) : [0, l] → (C) be
available from the pertubation model

wi(s) = ai + bi(µ(s) + εi(s)), i = 1, . . . , n,

where ai ∈ C are translation vectors, βi = mod (bi) ∈ R+ are scale parameters,
0 ≤ θi = arg(bi) < 2π are rotations, εi(s) : [0, l] ∈ C are independent zero mean
complex random error functions, and µ is the population mean curve. Under
this model it is possible to estimate the shape of µ, [µ].

Definition 2.3 The functional Procrustes estimate of mean shape [µ̂] is ob-
tained by minimization over µ of the sum of square functional Procrustes dis-
tances from each wi to a fixed size mean configuration µ, i.e.

[µ̂] = arg inf
µ

n∑

i=1

(dCF )2(wi, µ) (1)

2.3 Functional Curve Shape Representation

A convenient representation of curves is based on linear basis expansions in s

y(s) =
M∑
m=1

cmhm(s), s ∈ [0, l], (2)

where cm ∈ C, h(s) : [0, l]→ R. For closed curves y(0) = y(l). The parameter s
provides the correspondence between curves. A centered curve shape is obtained
by translating the linear basis function coefficients by wT c/wT1M , where w =∫ l

0
h(s) ds. Let two centered curves be given by linear combinations of the same

set of basis functions, i.e.

y(s) =
M∑
m=1

cmhm(s) = h(s)T c, w(s) =
M∑
m=1

dmhm(s) = h(s)Td,

where we have introduced a vector notation for the coefficients and basis func-
tions: c = (c1, . . . , cM )T , d = (d1, . . . , dM )T , and h(s) = (h1(s), . . . , hM (s))T .

Result 2.2 For the full functional Procrustes fit of the curve w onto the curve
y using the same set of basis functions h(s) the matching parameters are

â = 0 b̂ =
d∗Ac
d∗Ad

=
(Ld)∗(Lc)
(Ld)∗(Ld)

where A = LLT =
∫ l

0
h(s)h(s)T ds is a positive definite matrix, and L is the

lower triangular matrix resulting from a Cholesky decomposition of A



Proof: Follows directly from Result 2.1. � Let a sample of n centered curves

be given by

wi(s) =
M∑
m=1

dimhm(s) = h(s)Tdi, i = 1, . . . , n, di = (di1, . . . , diM )T

Result 2.3 The coefficients of the full functional Procrustes estimate of the
mean curve of the sample of curves wi are then e = L−1v, where v is the
eigenvector corresponding to the largest eigenvalue of the Hermitian complex
sum of squares and products matrix

C =
n∑

i=1

(Ldi)(Ldi)∗

(Ldi)∗(Ldi)
.

Proof: Obviously, the minimizing µ(s) must belong to the same linear subspace
as the sample of curves. Subject to S(µ) = 1 we seek the minimizer of

n∑

i=1

d2
F (µ,wi) =

n∑

i=1

{
1−

∫ l
0
µ(s)∗wi(s) ds

∫ l
0
wi(s)∗mu(s) ds

∫ l
0
µ(s)∗µ(s) ds

∫ l
0
wi(s)∗wi(s) ds

}

= n−
n∑

i=1

{
e∗Adid

∗
iAe

e∗Aed∗iAd
∗
i

}
= n− v

∗Cv
v∗v

,

where A = LLT =
∫ l

0
h(s)h(s)T ds is a positive definite matrix, L is the lower

triangular matrix resulting from a Cholesky decomposition of A, and v = Le.
Since

S(µ) =

√∫ l

0

µ(s)∗µ(s) ds =

√
e∗
∫ l

0

h(s)h(s)T dse =
√
e∗Ae = ‖Le‖

we have Lê = arg sup‖v‖=1 v
∗Cv and therefore ê = L−1v̂ �

Hence, µ̂ is given by the coefficients ê obtained as the complex eigenvector
corresponding to the largest eigenvalue of C. Again rotations of ê also yield
solutions, but all corresponding to the same curve shape.

2.4 Functional Curve Shape Parameterization

We have not yet discussed the choice of curve parameterization. In some situa-
tions the parameterization may be given by the nature of the data at hand. In
other situations the natural parameterization of curve length is appropriate. In
many situations the correspondence between curves are given at finite series of
landmarks. These may be manually or automatically identified geometrical and
anatomical landmarks.



Let there be given n closed curves, yi, i = 1, . . . , n with the constraints
yi(ξ0) = yik, yi(ξj) = yij for j = 1, . . . , k, where 0 = ξ0 ≤ ξ1 ≤ · · · ≤ ξk = l. Let
the curve lengths between landmarks and the total length of the ith curve be

lij =
∫ ξj

ξj−1

|y′(s)| ds, Li =
∫ ξk

ξ0

|y′(s)| ds =
k∑

j=1

lij ,

then a parameterization s ∈ [0, l] based on normalized average curve length
between landmarks is given by

ξ0 = 0, ξj = ξj−1 +
l

n

n∑

i=1

lij/Li,

This parameterization is based on normalizing the curve segments lij with
respect to the length of each curve. Instead of these normalized curve segment
lengths we could use the average curve segment length from the Procrustes
aligned curves, lPij , i.e.

ξP0 = 0, ξPj = ξPj−1 + l

n∑

i=1

lPij/

n∑

i=1

LPi = ξPj−1 + l lµij/L
µ
i ,

lµij is the curve segment lengths for the Procrustes mean curve. However, because
parameterization precedes Procrustes alignment this has to be done iteratively.

Let us consider at set of outlines of hands, 10 images each of 4 individuals
were taken1. 56 landmarks are chosen as is shown in Figure 1(a). We will
compare Procrustes alignment based on landmark and functional approaches.

Given landmarks y = (y1, . . . , yk)T , k = 56, we employ a periodic linear
spline, y(s), ξ0 ≤ s ≤ ξk – i.e. a second order B-spline – to interpolate the points
(ξ0, yk), (ξ1, y1), . . . , (ξk, yk). The parameterization is based on the average curve
segment length in the Procrustes aligned curves, and is determined iteratively.

Let Bi,2(s) be the k+ 1 second order B-spline basis functions corresponding
to knots ξ (cf. (Nielsen, 1998). Then we have

hi(s) = B2,i+1(s) i = 1, . . . , k − 1; hk(s) = B2,1(s) +B2,k+1(s)

Fitting the data y(ξ0) = yk, y(ξj) = yj for j = 1, . . . , k yields a linear system
of equations to which the solution trivially is ĉi = yi, or in vector notation
ĉ = y. Now w =

∫ ξk
ξ0
h(s) ds and A =

∫ ξk
ξ0
h(s)h(s)T ds can be determined. For

arbitrary knot sequences ξ = {ξ0, . . . , ξk} with knot spacing di = ξi − ξi−1.

w =
1
2




d1+d2

d2+d3

·
dk−1+dk
dk+d1




A =
1
6




4(d1+d2) d2 d1

d2 4(d2+d3) d3

· · ·
dk−14(dk−1+dk) dk

d1 dk 4(dk+d1)




1The data are available from www.imm.dtu.dk/∼aam



(a) (b) (c)

Figure 1: (a) 56 landmarks on the outline of a hand. Landmark based (b) and
functional curve (c) Generalized Procrustes Alignment of hand images. The
scatter of the full Procrustes fits of the curves at each landmark is shown by a
contour ellipse at 1 standard deviation.

In Figure 1 the results of landmark based and functional generalized Pro-
crustes analysis of the hand data at shown. Segments where landmarks are
relatively more dispersed receive larger weight in the functional analysis, hence
the scatter becomes relatively smaller than compared with the landmark based
approach.

2.5 Surface Generalized Procrustes Analysis

For the alignment of surface patches, y(s), w(s) : Ω → C similar results as for
curve shapes exist. The only difference being that all integrals are over Ω instead
of [0, l]. As for the curve shapes a crucial element is the parameterization of the
surface shapes. Again we will discuss a parameterization derived from a finite
series of landmarks. Let there be given n surface shapes, yi, i = 1, . . . , n with
landmarks yi(ξj) = yij for j = 1, . . . , k, where ξj ∈ Ω is the surface parameter
for the jth landmark. Obtaining a parameterization is closely related to defining
a warp function between the shapes under consideration. A warp function is a
spatial transformation from one spatial configuration into another. Glasbey and
Mardia (1998) give a survey of warping methods. We will consider the simplest
construction of a warp by assuming a piece-wise affine function. We will base
this function on a mesh constructed by a Delaunay triangulation.

We begin by choosing a reference shape. This reference shape may be the
landmark based Procrustes mean shape estimated from the set of landmarks on
all shapes. We approximate the outline of the surface area of the reference shape
by linear splines of (some of) the landmarks. Having done this we can partition
the surface area by the set of triangles of a Delaunay triangulation that reside
inside the outline of the surface area. The Delaunay triangulation partitions the
convex hull of the landmarks. However, we only retain those triangles inside



the outline of the surface area. Knowing the order of vertices of the surface area
outline it is easily determined by inspection of the triangle vertices order if a
triangle is inside the surface area.

Now, a crucial assumption is that by applying the reference shape Delaunay
triangulation to each of the n shapes of the data set we will obtain a one-to-one
mapping. This will generally not be true. However, for shape sets with low
variability this is not an unreasonable condition and it can easily be tested by
examining triangle normals. Let Ω be the surface patch of the complex plane
corresponding to the reference surface shape, and let the parameterization of
the shape data set be given by affinely warping the Delaunay triangles of the
reference shape to the corresponding triangles of each of the surface shapes.

This procedure is realized by choosing a representation in based on M = k
pyramidal basis functions. Each function is centered at a landmark where it has
value 1; it is only non-zero in the Delaunay triangles in which that landmark is
a vertex; it varies linearly within each triangle, and has value 0 at the 2 other
vertices. In Figure 2(b) one basis function spanning in this case 4 Delaunay
triangles is shown. The optimal coefficients in Equation (2) are trivially equal
to the landmark coordinates. In order to determine the weight matrix, A we
partition the surface shape, Ω into mutually exclusive patches given by the
Delaunay triangles, Ωt, t = 1, . . . , T i.e.

A=
∫

Ω

h(s)hT (s) ds =
T∑

i=1

∫

Ωi

h(s)hT (s) ds

Let φi : B → C be an affine function that maps B : 0 ≤ u ≤ 1, 0 ≤ v ≤ u to the
i’th Delaunay triangle. Then with this Delaunay triangle the basis functions
that are non-zero here are equal to one of these element functions

f1(φi(u, v))= u
f2(φi(u, v))= v
f3(φi(u, v))=1− u− v



 for 0 ≤ u ≤ 1, 0 ≤ v ≤ u

For those pairs of basis functions (j, k) that are non-zero within the ith Delaunay
triangle, let τij , τik ∈ {1, 2, 3} identify which elementar function the jth and kth
basis functions consist of. Then we have∫

Ωi

hj(s)hk(s) ds=
{

Ar(Ωi)/6 for j = k
Ar(Ωi)/12 for j 6= k

Now within each Delaunay triangle 3 basis functions are non-zero. We can
compute their contributions from Equation (3) and update A accordingly.

In Figure 2(a) based on the landmarks shown in Figure 1(a) the triangles of
the Delaunay triangulation that belong to the interior of the hand are shown.
The Delaunay triangulation is determined from a landmark based Procrustes
mean of the hand data set. Following the procedure described above we arrive
at the surface shape Procrustes alignment illustrated in Figure 2(c). Compared
to the landmark based and curve shape based alignments shown in Figure 1 we
obtain an even better alignment of the bulk of the hand. The major part of the
variation is transferred to the fingers/fingertips.



(a) (b) (c)

Figure 2: (a) Annotated hand with Delaunay triangulation of landmarks; (c)
mth basis function; (c) Surface based functional Procrustes alignment of the
hand images. he scatter of the full Procrustes fits of the curves at each landmark
is shown by a contour ellipse at 1 standard deviation. Compare Figure 1

3 Conclusion

We have derived procrustes methods for the alignment of curve and surface
shapes based on functional representations using arbitrary parameterizations.
In particular we have examined natural curve parameterizations. We have
demonstrated that functional representations based on natural parameteriza-
tions and functional procrustes methods result in more intuitive alignment of
sets of shapes.
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