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Abstract

This thesis is concerned with the topic of compensation algorithms for the nonlinearities in transducers
for use in hifi-loudspeaker. The thesis contains a examination of the general ideal loudspeaker model.
Furthermore, nonlinearities that influences the performance of the loudspeaker are described, and mea-
surement are done on what they does to the loudspeaker.

The loudspeaker model is from here transformed into the digital domain, in preparation for constructing
a control system later. In order to make this model complete, appropriate functions are fitted to the
nonlinearities and added to the model.

Furthermore, a text based toolbox for Matlab is made for simulations and evaluations of different prop-
erties in both the loudspeaker and in the upcoming compensation algorithm.

Finally, two interesting feedforward controller systems are presented. The first is the ”state space” com-
pensator and the second is the ”Mirror filter” derived by Wolfgang Klippel. Later research has shown
that they are of same controller type.
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Resumé

Denne rapport omhandler emnet kompenserings algoritmer for ikke-lineariteter i transducere til brug i
hi-fi højttalere. Rapporten indeholder en gennemgang af den generelle ideelle højttaler model. Yderligere
er ikke-lineariteterne der forringer ydelsen af højttaleren beskrevet og m̊alinger, omkring hvad det gør ved
denne, er foretaget.

Herfra overføres højttaler modellen til det digitale domæne med henblik p̊a senere at konstruere et regu-
lering system til denne. Og for at gøre modellen komplet i forhold til højttaleren, tilpasses en passende
funktion til ikke-lineariteterne s̊a disse kan inkluderes.

Desuden præsenteres en Matlab toolbox til hjælp med at simulere og evaluere de forskellige egenskaber i
b̊ade højttalere og ogs̊a i de senere kompenseringsalgoritmer.

Til sidst gennemg̊as to interessante prekompensering algoritmer. Den ene er ”state-space” kompensatoren
og den anden er Wolfgang Klippels ”Mirror filter”. Ved senere tids forskning har det dog vist sig, at disse
to er af samme type reguleringssystem.
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Chapter 1

Introduction

There exists clear division between people who are willing to pay a lot for hifi-systems and people who
are not.
The group which are willing to pay more do not compromise the performance in terms of the price, and
tend to spend a fortune on components which only slightly increase the performance. On the other hand
the second group consider the price more important than the performance.
The intension for doing this project was to challenge both of the two worlds by looking at the perspective
from a different point of view. This would be done by taking a cheap hifi-system, and then digitally
compensating for the distortion, only modestly increasing the price to the extent that the last of the two
groups would accept the increase in the price.
During thesis a symposium, that took place the December 2. at IMM-DTU in corporation with Oersted-
DTU, was arranged, where two experts within transducer linearization, Dr. Wolfgang Klippel and PhD.
Andrew Bright from Nokia, were invited. The symposium ended up in a panel discussion, where also
some among the industry joined. The topic was ”how far are we from commercial products?”. The overall
conclusion of the discussion was that in order to see commercial success, the implementation must be done
in a application where a DSP-processor already is available. Furthermore, the compensation algorithm
must be less complex than the rest of the DSP code.
In figure 1.1 two products, from respectively Sony and Pioneer, that are on the market are shown. The
interesting with these systems are that they include wireless speakers, which then leads to active speakers
with digital inputs. So the speaker in these systems already contain some kind of digital processing.
Furthermore, the amplifier in the Sony system is their digital one with S-master technology, which makes
the electronics in the Sony speaker completely digital.

Of other applications of interest to this thesis are mobile units in general, as mobile phones, hand held
computers and hearing aids.

1.1 History

The moving-coil transducer for audio reproduction was first described in 1874 by Ernst Werner Siemens.
But not until 1925 the transducer appeared as a loudspeaker as we know it today, developed by Chester
W. Rice and Edward W. Kellogg.
From the beginning research, on compensating the nonlinearities in a transducer, has been done, but not
until the last decade useable proposals have been made and furthermore, not until the last few years has
the proposals been realizable.
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(a) (b)

Figure 1.1: Commercial surround systems with wireless speakers (a) Sony HT SL900, (b) Pioneer DCS
515

1.2 Purpose of the thesis

The purpose of this thesis is to look into the theory of loudspeaker compensation and how to apply it
on existing loudspeakers, thus optimization of the loudspeaker design is not considered in here. As many
attempts have been done in the past, these must be studied and a short overview will be given.
The following short list describes the topics that need to be investigated:

• Transducers theory, how they are used in a loudspeaker and how they are modeled.

• Nonlinearities that must be added to the model, in order to describe it at large signals

• Attempts in the past to make control systems

• How to use loudspeaker compensation in applications

Furthermore, one or two algorithms must be investigated even further and be implemented in Matlab
with real transducer data. Of this reason a simple test loudspeaker must be constructed to achieve these
data.

1.3 Organization of the thesis

Chapter 1. Introduction

Chapter 2. Linear transducer model: Classical linear models of the loudspeaker are reviewed.
Furthermore, a test loudspeaker is constructed, where its parameters are used in later simulations.

Chapter 3. Nonlinearities in the transducer model: Nonlinearities in the transducer model are
discussed, and it is finally decided which ones of biggest importance. Furthermore, distortion in the test
loudspeaker is measured.
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Chapter 4. Modeling of nonlinearities: This chapter focusses on fitting models to the nonlinearities.
Different functions are applied and their advantages and disadvantages are discussed. Finally an idea for
adding soft clipping to the transducer is presented.

Chapter 5. Discrete nonlinear simulation: In this chapter the transducer model is transformed into
discrete time difference equations. From these general digital filters are derived, both linear and nonlinear
filters. Finally a Matlab toolbox for simulating loudspeakers and compensation systems, is presented.

Chapter 6. Control: Some general control theory are reviewed. Later two feedforward compensator
algorithms are presented and they are evaluated on the discrete nonlinear model.

Chapter 7. Future work: Based on the work done in this thesis, a schedule for how to carry on, is
given.

Chapter 8. Conclusions: Conclusions are drawn on active control of loudspeakers using feedforward
processing.

Appendix A. Data coefficients: Filter coefficients and other data are given in here.

Appendix B. Parameters of the test loudspeaker: Parameters for the drivers used in the loud-
speaker and the loudspeaker coefficient, are given.
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Chapter 2

Linear transducer model

In the this chapter the basic linear transducer model is described. The model, which can be written
as basic filters, was completed by Thiele [Thiele, 1961] and in a series of papers by Small [Small, 1971],
[Small, 1972], [Small, 1973a], [Small, 1973b], [Small, 1973c], [Small, 1973d] and [Small, 1973e]. Though
Thiele and Small’s papers gives a full description of the model, [Leach, 1999] and [Bright, 2002] have been
a great inspiration for the study of the linear transducer model.

At the end of this chapter, a vented-box loudspeaker is constructed. The parameters of the transducer
used in this, is used in Matlab simulations throughout this thesis and the loudspeaker is used for testing
the derived control systems.

2.1 Transducer construction

A typical construction of a moving-coil transducer is seen at figure 2.1. The transducer consists of three
circuits:

• The electrical circuit, which is a voice-coil and the resistance in the coil wire.

• The mechanical circuit, which is a single-degree-of-freedom (SDOF) mechanical oscillator.

• The acoustical circuit, which is the air loading both in front and in back of the diaphragm.

The sound is radiated by the diaphragm, which is the moving surface. The diaphragm is moved by the
voice-coil, which is a part of the electromagnetic network. The other part of the electromagnetic network
is the magnet and its circuit (pole pieces). If current is applied to the voice-coil in the magnetic field,
a force will move the voice-coil. If the current is reversed, the force is reversed too. The force on the
diaphragm is linearly related to the current in the voice-coil if the number of turns of wire in the magnetic
field does not change when the diaphragm moves. In figure 2.2, two methods of how this is achieved, is
seen. If the coil is overhung as in figure 2.2a, then as the coil moves in one direction, some turns leave the
gap while others enter it in the other end and the total number of turns of wire is kept constant. In 2.2b
the underhung method is seen, when the coil moves no turns of wire leave the gap and non enter, thus
keeping the number of turns constant.
If the transducer is pushed too far, the coil moves out of the gap decreasing the number of turns of wire,
and it becomes nonlinear.
An air vent is often used to prevent the air in the small cavity behind the dust cap from being nonlinear and
furthermore it increases the air convection which gives a much better cooling of the coil, see [Klippel, 2003].
The diaphragm is kept in place by the spider and the outer suspension. As here, two suspensions is often
used, but in micro-transducers only the outer suspension is used.
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Figure 2.1: Typical transducer construction

Figure 2.2: (a) Overhung voice-coil, (b) Underhung voice-coil
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Figure 2.3: Schematic of electric circuit of an transducer

2.2 Electrical circuit

The electrical circuit consists of the voice-coil, a electrical resistance in the wire and voltage applied on
the coil when moving in a magnet field. The schematic of the electrical circuit is seen in figure 2.3. u is
the input voltage and vc is the voltage on the voice-coil when moving in a magnet field, also called the
back electro magnetic force (back EMF). The value of the voltage is proportional to the velocity of the
voice-coil and thus becomes as a controlled voltage source in the electrical circuit. RE is the resistance in
the coil wire, LE is the inductance and ic is the current in the voice-coil. From this the voltage equation
can be written as:

u(t) = REic(t) + LE
dic(t)

dt
+ vc(t) (2.1)

All parameters in the equation are constant and it is therefore solved easily with the Laplace transform,
and thus the voltage equation can be written as:

u(s) = REic(s) + LEsic + vc(s) (2.2)

where s is the ’Laplace variable’ equal to −jω, ω = 2πf and f is the frequency hertz. And finally, grouping
RE and LE to a electrical impedance ZEB , which is the blocked electrical impedance as the electrical
impedance, caused by the movements of the diaphragm (see section 2.4), is left out:

u(s) = ZEB(s)ic + vc(s) (2.3)

2.3 Mechanical circuit

The mechanical SDOF network is the diaphragm with coil assembly and the two suspensions. A diagram
of this is seen in figure 2.4. MD is the mass of the diaphragm and coil assembly, RD is the loss in the
diaphragm suspension, CD is the compliance of the suspension and KD = 1/CD is the stiffness of the
suspension. Zrm is the mechanical-equivalent of the acoustical radiation impedance and is dealt with in
the next section. Each of these three components produce a force when the diaphragm is moving:

FMD(t) = MD
d2xD(t)

dt2
FRD(t) = RD

dxD(t)
dt

FCD(t) =
1

CD
xD(t) (2.4)

The first of the equations is Newton’s second law, where the second order derivative of the diaphragms
displacement is the acceleration. The second equation is the force occurring when a object is moving
with a certain speed and a resistance is applied on it; where the first order derivative of the diaphragms
displacement is the velocity of it. The force has the opposite direction as the velocity, stopping the di-
aphragm. The last equation is the spring equation. In this, the direction of the force is always towards
the rest position of the diaphragm.
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Figure 2.4: SDOF mechanical diagram for the transducer

Hereof the system can be described by the second-order inhomogeneous differential equation:

FD(t) = MDẍD(t) + RDẋD(t) +
1

CD
xD(t) + ZrmxD(t) (2.5)

where FD(t) is the force applied on the diaphragm and coil assembly when current flows in the coil. Taking
the Laplace transformation of it gives:

FD(s) = (MDs2 + RDs +
1

CD
+ Zrm)xD(s) (2.6)

If the acoustical loading is left out, the mechanical impedance can be found:

ZM0(s) =
FD(s)
uD(s)

∣∣∣∣
ic(s)=0

pD(s)=0

= MDs + RD +
1

CDs
(2.7)

where uD(s) = ẋD(s). Here the voice-coil is open circuited and there is no acoustical loading (pressure
difference from front to back of the diaphragm, pD, is zero).

With the electrical and mechanical circuit, the resonance frequency and total quality factor for the driver
in free air, is given by:

ωs = 2πfs =
1√

MtCD

(2.8)

QTS =
1

Bl2/RE + RD

√
Mt

CD
(2.9)

Mt is the mass of the diaphragm and mechanical equivalent of the acoustical loading given in section
2.5.1. The combination of the electrical and mechanical circuit is described in the following section.

2.4 Electro-mechanical transduction

The classical electrodynamic interaction of the line currents and static magnetic field causes a force applied
on the voice-coil. It is given by the effective length of the voice-coil wire in the magnetic field times the
magnetic force factor times the current in the electrical circuit:

FD(t) = Blic(t) (2.10)

This is also called the electro magnetic force (EMF). The two first products on the right hand side (RHS)
is referred to as the B · l product.
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The back EMF as given in the last term on the RHS in 2.1 applies a voltage on the voice-coil:

vc(t) = BluD(t) (2.11)

This shows that the speaker is a regressive network.

2.5 Acoustical circuit

The acoustical circuit is the load on the loudspeaker, both in back of the diaphragm Zradb
and in front of

it Zradf
. The load in front is the room and the load in back of the diaphragm is a fixed box. The most

commonly used types of rear loads is:

• Closed box.

• Vented box.

• Transmission line speaker.

• Dipole speaker.

• Infinite baffle.

• Horn loaded speaker.

The two first are the most commonly used constructions for amateur hifi and surround systems. The
remaining are more seldom and are often used by enthusiastic persons or, for public address (PA) equip-
ment. As this thesis aims at the cheap part of the amateur market, the first two are the ones dealt with
in this thesis.

The closed box loudspeaker has a certain volume and separates the front from the back of the diaphragm.
This is the most simple type of loudspeaker existing.
The vented box loudspeaker is a closed box loudspeaker with a vent and which forms a resonating circuit.
The advantage of vented box loudspeakers is, if properly designed, the lower cut off frequency would be
lower than with a properly designed closed box. The volume of the vented box would be bigger than it
would for the closed box, though the efficiency is the same.

2.5.1 Closed box

Figure 2.5 is a closed box speaker system. The box has the volume VC and the internal pressure pC(t). If
the wavelength is about five times greater than any of the box dimensions, λ >∼ 5 · (h, w, d), the pressure
is assumed to be constant throughout the cavity; the wavelength is found by λ = c/f , where c is the
velocity of sound and f is the frequency. SD is the cross area of the diaphragm.
The pressure difference between the front and the back of the diaphragm is given by:

pD(t) = UD(t)
(

MABs + RAB +
1

CABs

)
+ UD(t)(MA1s) (2.12)

where UD = SDuD is the volume velocity radiated by the diaphragm, MAB is the mass behind the
diaphragm, MA1 is the mass seen in front of the it, RAB is the resistance in the box and CAB is the
compliance of the box. The acoustical radiation impedance for both the front and the back is written as:

Zradb
= MABs + RAB +

1
CABs

Zradf
= MA1 (2.13)
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Figure 2.5: Speaker mounted in a closed-box enclosure (cavity)

Only the mass and compliance in Zradb
can be calculated, the resistance must be measured as it depends

on how much filling there is put into the box. The mass and compliance is calculated as:

MAB =
Bρ

πa
[kg/m4] CAB =

VAB

ρ0c2
[m5/N] (2.14)

where VAB is effective acoustic volume, ρ0 is the density of air, ρ is effective density of the combined air
and fiber filling in the box, B is the mass loading factor and a is the radius of the diaphragm. The effective
volume (volume seen by the loudspeaker) is increased when filled with uncompressed fiber material. This
is due to the fact that the filling fibers do not necessarily move with the same velocity as the air particles
and furthermore, the specific heat is different for the two. Sometimes it is assumed that the increase of
volume, when a closed box is used, is about 25%. With a vented box system the increase is less because
normally only the inside walls are covered with filling.
The mass loading factor given in [Leach, 1999] is defined by the dimension of the box:

B =
d
√

π

3
·
S

3/2
D

S2
B

+
8
3π

[
1− SD

SB

]
(2.15)

where d is the depth of the box and SB is the inside area of the wall in which the loudspeaker is mounted.
As mentioned the resistance RAB can not be calculated, thus it needs to be measured. The measurement
is not done in this thesis

The acoustical loading in front of the diaphragm is, despite the simple mass model MA1, very complex.
The impedance can be well approximated with a mass, but the mass depends on the dimensions of the
box or baffle it is mounted in. If the wavelength of sound is short (high frequencies) compared to the
dimensions of the baffle, then the mass is equal to the one when mounted in a infinite baffle. But at very
low frequencies where the wavelength is very long compared to the dimensions of the baffle, then the mass
of a point source might be used; the mass when mounted in a infinite baffle is two times bigger than the
mass seen by a point source. For both these cases, it is assumed that the sound is radiated as simple
spherical waves; for the infinite baffle in 2π space and for the point source in 4π space.
In [Leach, 1999]1 a third option is given, which is an alternative between the two. Here the driver is
mounted in the end of a long tube where the sound waves diffracts into the space behind the box, and
now simple spherical waves cannot be assumed. This model is considered to be the most optimal if the
speaker is placed away from the wall, else the infinite baffle will suite best as the wall can be considered
as a extension to the front of the speaker.
At high frequencies the infinite baffle would always be the optimal choice, but since the displacement
behaves as a low-pass filter, as shown later, the greatest displacements are exhibited at low frequencies,
thus the model that describes the low frequencies best must be chosen. Therefore the last described model
is used in this thesis and it is given by:

MA1 =
0.6133ρ0

πa
[kg/m4] (2.16)

1Page 67

10



Figure 2.6: Speaker mounted in a vented-box enclosure

The acoustical impedance is easily converted to a mechanical equivalent where it is added to the mechanical
impedance:

ZM = ZM0 + S2
D(Zradr

+ Zradf
) (2.17)

Now the three parameters in (2.5) are written as, Mt which is the total mass of the diaphragm with
assembly and air load, Rt which is the total resistance and Ct which is the total compliance of the
suspension and air in box.

2.5.2 Vented box

The vented box loudspeaker is seen in figure 2.6. Here MAP is the mass of the air in the vent and SP is
the cross-section of it.
Before the vented box circuit is written, the acoustic mass seen by the diaphragm must be converted to
a mechanical equivalent and added to the mechanical mass. Both the acoustical masses MAB and MA1

are defined for the vented box loudspeaker the same way as for the closed box and can be added to the
mechanical impedance in (2.7):

ZM1 = ZM0 + S2
D(MAB + MA1)s (2.18)

The compliance and resistance, can not directly be converted into a mechanical equivalent as for the closed
box system and thus a new acoustical impedance for the back of the diaphragm must be derived.
The total volume velocity emitted by the speaker U0 is:

U0(t) = UD(t) + UP (t) + UL(t) = −UB(t) (2.19)

where UD, UP and UL is the contribution from the diaphragm, port (vent) and losses, and UB is the
volume velocity emitted into the box. The losses are due to the fact that the box is not ideal and some of
the sound energy travels through the walls and air leaks. This is also the case for the closed box speaker,
but in contrast to here, the effect with respect to the displacement is very small. The losses affects the
displacement around the Helmholtz resonance.
Inserting the formulas in Laplace time for each volume velocity into (2.19) gives:

U0(s) = SDuD(s) +
pc(s)
MAP s

+
pc(s)
RAL

= −pc(s)CABs (2.20)

By calculating the Laplace transform to this and rewriting it, the impedance ZradV B
can be written:

ZradV B
(s) = − pc(s)

SDuD(s)
= − pc(s)

UD(s)
=

MAP RALs

MAP CABRALs2 + MAP s + RAL
(2.21)

The mass MAP and the compliance CAB forms a resonating circuit, with the resonance frequency, called
the Helmholtz frequency, given by:

ωB = 2πfB =
1√

MAP CAB

(2.22)

11



Here the diaphragm is short circuited and does not move (the loss causes it to move little), instead the
vent and box resonate resulting a sound pressure. Furthermore, the quality factor QL can be written as:

QL = RAL

√
CAB

MAP
(2.23)

The loss resistor RAL can not be calculated and can be very hard to measure. In [Leach, 1999] a thumb
of rule is given. If the volume of the box is around 55l to 85l, then QL = 7 is a good guess. If the volume
is bigger then QL must be less and vice versa.
The compliance is the same as for the closed box given in (2.14). The mass of the air in the vent is given
by:

MAP =
ρ0

SP
LP,eff (2.24)

where LP,eff is the effective length of the vent. The radiation impedance of a flanged tube with a radius
ap is:

Za,r =
ρ0c

Sp

(
1− J1(2ωap/c)

ωap/c
+ j

H1(2ωap/c)
ωap/c

)
(2.25)

where J1 is the Bessel function and H1 is the Struve function, both of first order; Their definition is given
in appendix A.2. A good approximation is found for frequencies below ωap/c < 0.5:

Za,r ≈
ρ0c

Sp

(
1
2
(ωap/c)2 + j

8
3π

ωap/c

)
(2.26)

The radiation impedance of an unflanged tube can be approximated as:

Za,r ≈
ρ0c

Sp

(
1
4
(ωap/c)2 + j0.61 · ωap/c

)
(2.27)

The last term in the brackets in both cases is the impedance of a acoustic mass corresponding to an
extension in the length of the tube equal to 8ap/3π and 0.61ap. The typical use of a vent mounted in a
box, one end is flanged and one is unflanged, gives the effective length of it:

LP,eff = LP,phy + ∆LP = LP,phy +
(

8
3π

+ 0.61
)

ap (2.28)

The magnitude and phase response for the true, the approximated and an acoustic mass respectively, is
shown in figure 2.7. As will be shown in section 2.5.4, the vent only contributes to the sound pressure
below about 200 Hz. Therefore the radiation impedance used throughout this thesis is the simple im-
pedance of a acoustic mass.

Now the acoustic impedance for the vented box can be added to (2.18):

ZM = ZM1 + S2
DZradV B

(s) (2.29)

Finally the transfer function for the volume velocity emitted from the vent can be written by combining
(2.19) and (2.20):

UP (s)
UD(s)

=
1

CABMAP s2 + MAP

RAL
+ 1

(2.30)

2.5.3 Acoustic response

The on-axis sound pressure radiated by a circular piston (diaphragm) can be written as a point monopole
source in free space if the shortest wavelength of sound considered is longer than any dimension of the
loudspeaker:

pr(s) = ρ0sUD(s)
e−jkr

4πr
(2.31)
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Figure 2.7: Acoustic radiation impedance and approximations to it

where UD = SDuD is the volume velocity, k = ω/c is the wave number and r is the distance from the
diaphragm to the observation point. The complex exponential represents the phase delay caused by the
propagation time delay from the diaphragm to the observation point. If the diaphragm is assumed to
be mounted in a baffle (the longest wavelength of sound considered is shorter than any dimension of the
loudspeaker), the term 4πr will be replaced by 2πr.
The observation point is from now on considered to be 1m from the diaphragm, and then the pressure
can be written as:

p1m(s) =
ρ0

4π
sUD(s) (2.32)

For the vented box system the sum of the volume velocities from the diaphragm and vent must be used:

p1m(s) =
ρ0

4π
s(UD(s) + UP (s)) (2.33)

2.5.4 Linear frequency responds

If the voltage equation (2.2) and the force equation (2.6) is combined and the electrical impedance ZEB

and mechanical impedance ZM are used, then the transfer function for the velocity with the voltage u
can be derived:

uD(s)
u(s)

=
Bl

ZE(s)ZM (s) + Bl2
(2.34)

And given that UD = SDuD the pressure transfer function is nearly derived.

Closed box response

In the actual pressure response derived here, the electrical inductance is left out and given in a simple first
order low-pass filter. This is often done, as it is the low frequencies there is of interest and the inductance
only has a effect at high frequencies. With this RE replaces ZE in (2.34) and inserting it in (2.32) and
rearranging it gives the pressure transfer function:

p1m(s) =
ρ0

4π

BlSDu(s)
REMt

(s/ωC)2

(s/ωC)2 + (1/QTC)(s/ωC) + 1
(2.35)
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(a) (b)

Figure 2.8: SPL at 1m for a closed box loudspeaker

where ωC is the closed box system resonance frequency and QTS is its quality factor, given by:

ωC =
1√

MtCt

(2.36)

QTC =
1

Rt + Bl2/RE

√
Mt

Ct
(2.37)

The low-pass properties of the driver due to the inductance, can be written as a simple first order low-pass
filter:

Tu1(s) =
1

1 + s/ωu1
(2.38)

where ωu1 is given by:

ωu1 =
REMt

LEMD
(2.39)

The sound pressure level and its phase is calculate and plotted in figure 2.8. The parameters for the
loudspeaker constructed in section 2.7 has been used; the vent is blocked so the loudspeaker is assumed to
be a closed box. As seen, the low frequency slope is 40dB/dec and the high frequency slope is 20dB/dec.
The upper cutoff frequency fu1 is at 1781Hz, which is much lower than shown in the datasheet. Actually
it is because the model does not fit well at high frequencies due to eddy currents, see section 2.6.2 and
diaphragm break up see section 3.1.2. In figure 2.9 the displacement response and its phase are plotted.
It can be seen that the displacement is a second order low-pass filter.

Vented box response

Again the electrical inductance is excluded and the pressure transfer function of a vented-box loudspeaker
is given by:

p1m(s) =
ρ0

4π

BlSDu(s)
REMt

GV (s) (2.40)

Where GV (s) is the unity gain pressure transfer function and given by:

GV (s) =
(s/ω0)4

(s/ω0)4 + a3(s/ω0)3 + a2(s/ω0)2 + a1(s/ω0)1 + 1
(2.41)
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(a) (b)

Figure 2.9: Displacement for a closed box loudspeaker, 0dB = 1mm

The coefficients are written as:

a1 =
1

QL

√
h

+

√
h

QTS
a2 =

α + 1
h

+ h +
1

QLQTS
a3 =

1
QTS

√
h

+

√
h

QL
(2.42)

where QTS is the quality factor of the driver in free air, see (2.9) and α and h is given by:

α =
VAS

VAB
h =

fB

fs
(2.43)

In figure 2.10 the sound pressure levels and phases for the diaphragm, vent and their summation, is shown
for a vented box system. As seen, at the Helmholtz resonance frequency, the diaphragm hardly moves
and the sound pressure is radiated from the vent. Subtracting the vent response from the diaphragm
response, gives the total pressure response. As they are in phase below the helmholtz frequency and in
inverse phase at and above it, and as the vent is subtracted from the diaphragm, they are in phase at fB

and above, but out of phase below. The displacement function and its phase is seen in figure 2.11. As
seen, the displacement is again a low-pass filter, but at fB it moves only a bit.

2.6 Extensions to the linear model

2.6.1 Temperature model

The variation of the temperature is relatively slow compared with the lowest frequency component used
in loudspeakers, thus the electro-mechanical model is considered as a linear but time-variant system; see
[Klippel, 2003].
The temperature of the voice-coil is important because firstly, high temperatures might damage the
loudspeaker and secondly, changes in the temperature changes the electrical resistance:

RE(Ta + ∆Tv) = RE(Ta)(1 + δ∆Tv) (2.44)

where Ta is the ambient temperature and ∆Tv is the temperature difference between the ambient and the
voice-coil. δ is the conductivity where δ = 0.0393K−1 for copper and δ = 0.0377K−1 for aluminium. The
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(a) (b)

Figure 2.10: SPL at 1m for a vented box loudspeaker

(a) (b)

Figure 2.11: Displacement for a vented box loudspeaker, 0dB = 1mm
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Figure 2.12: Linear thermal model

increased temperature causes power compression and lower efficiency/sensitivity, see ?? and ??.

So far two models have been presented, the integrator based model by [Henricksen, 1987] and a model by
Bang & Olufsen A/S [Chapman, 1998]. The former is the most common used in papers for documenta-
tion, but has not been implemented in any products on the market. The latter is the only one that is
implemented in a loudspeaker [Chapman, 2000]; the loudspeaker is the Bang & Olufsen Beolab 5. Despite
that it does not compensate for the nonlinearities given in chapter 3, it compensates for the temperature
changes and is actually the only loudspeaker on the market yet that compensates for unwanted properties
of the speaker.

Integrator based model

A thermal model of the loudspeaker is seen in figure 2.12. The thermal model describes the relationship
between the input power Pt dissipated into heat and voice-coil temperature Tv and is modeled with a
third-order integrator. The first integrator represents the heating of the coil by using the thermal re-
sistance Rtv and thermal capacity Ctv. The second integrator models the heating of the magnet using
Rtm and Ctm as thermal resistance and capacity and the third models the cabinet heating using Rtc and
Ctc. ∆Tv represent the increase of the voice-coil temperature ∆Tv = Tv − Ta, ∆Tm is the increase of the
magnet temperature and ∆Tc is the increase of the cabinet temperature. Often the third integrator is left
out besides when using a small sealed enclosure, as suggested by [Behler and Bernhard, 1998].

The input power is given by:

Pt =
u2

Zmin(Tv)
(2.45)

where Zmin(Tv) is the minimum impedance that is the DC resistance including additional resistance that
will generate heat, which is due to eddy currents in the magnet structure; [Button, 1992].

When applying a stimulus with constant power to the loudspeaker the thermal system will go into a
thermal equilibrium, given by:

∆Tvss = (Rtv + Rtm)Pt = RtPt (2.46)

for the voice-coil where ∆Tvss is the steady-state temperature. The steady-state magnet temperature is:

∆Tmss = RtmPt (2.47)
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Figure 2.13: Circuit of electrical part with eddy current loss

When switching on the input power, at time t = ts on, the observed variation of the temperature of the
magnet varies exponentially with:

∆Tm(t) = ∆Tmss(1− e−(t−tS on)/τm) (2.48)

towards the steady-state temperature ∆Tmss. The time constant of the magnet structure is:

τm = RtmCtm (2.49)

After switching off the input power, at time t = ts off , the temperature difference between the voice-coil
and magnet/frame is:

∆Tv(t)−∆Tm(t) = (∆Tvss −∆Tmss)e−(t−tS off )/τm (2.50)

with the time constant:
τv = RtvCtv (2.51)

2.6.2 Eddy currents

Eddy currents in the iron pole structure causes the electrical impedance to behave differently from the
normal series network of a resistance and a inductance. The effect was first described in [Thiele, 1961].

The effect is often modeled with a lossy inductor in the model, that is the inductor having a resistor in
parallel [Leach, 1999]. This model can be used to fit the impedance as well as necessary over an adequate
frequency range.
An extended version is often used, where a resistor R2 in parallel with an inductor L2 is put in series in
the electrical network, as seen at figure 2.13, [Klippel, 2003]. See appendix B for these values of the test
loudspeaker.
A third model is given in [Vanderkooy, 1989]. In here the inductance is said to be varying over frequency
with:

Im{ZE} ∝
√

f (2.52)

Vanderkooy shows that this model is better than the first one.

Notice, the eddy currents causes ωu1 in (2.39) to change, increasing the upper cutoff frequency.

2.6.3 Frequency modulation (Doppler effect)

Doppler distortion is caused by the moving diaphragm. Short-wavelength components (high frequen-
cies) are affected by resulting frequency modulation (doppler effect) of long-wavelength components,
[Moir, 1974] and [Beers and Belar, 1981].
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Using the assumption of linear plane wave propagating, an equation is found for the square root of the
ratio of the generated side band power to the total power, also known as distortion factor:

DF =

√
1−

[
J0

(
2π

x̂1

λ̂2

)]2

=
1√
2

(
2π

x̂1

λ̂2

)
(2.53)

where J0 is the Bessel function of the first kind, x̂1 is the amplitude of the low frequency cone excursion
and λ2 is the wavelength of the modulated frequency.
In [Klippel, 1992a] an algorithm for compensating the doppler distortion can be found.

2.7 Speaker construction

In the progress of this project a test loudspeaker has been developed. The linear and nonlinear (described
in chapter 3) parameters of the loudspeaker are used in computer simulations to approach the real world.
And at last the control systems are applied on the loudspeaker to support the computer simulations.
The test loudspeaker is a small 2-way vented-box speaker with the following drivers2:

• Vifa TC14WG49-08 bass/mid-tone

• Peerless 53 NDT ’811435’ tweeter

The linear parameter for the drivers, measured with the Klippel analyzer system, are found in appendix
[?]. Despite that only the bass/mid-tone speaker is going to linearized, a tweeter is included in the de-
sign for music playing; music without the high tones and only bass and mid, can be very tiring to listen too.

The tweeter is one of the cheapest from DST (41.90 Dkr + VAT, price at 10.000 pcs.) and therefore
it suits well in the concept of a low price loudspeakers with electronic compensation, though it is not
compensated here.
As well as the tweeter, also the bass/mid driver is a low cost one from DST (93.99 Dkr + VAT, price at
10.000 pcs.). Actually two bass/middle-tone loudspeakers have been bought; just in case if one is broken.
Cheaper drivers can be found made by other manufactures, but the supply of more precise information
about the drivers than available at their homepage, and the possibility for personal correspondence, would
be lost.

In this section the design of the test loudspeaker is presented. It is designed from the approach recom-
mended in [Leach, 1999], which uses the Thiele-Small parameters:

• fs, Resonance frequency

• RE , DC resistance

• QMS , Mechanical quality factor

• QES , Electrical quality factor

• QTS , Total quality factor

• VAS , Volume equivalent

The Thiele-Small parameters are measured for both of bass/mid drivers, but only the parameters from
one of them is used to design the speaker. Two methods have been used for measuring the Thiele-Small
parameters:

2See www.d-s-t.com
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(a) (b)

Figure 2.14: measured impedance and fitted impedance, (a) s1, (b) s2

• Approach given in [Leach, 1999], where the impedance is measured, and the parameters are found
by analyzing the result and fitting of the impedance transfer function to it.

• Automatic measurements with ”Klippel Analyzer System”. The driver is connected to a system
that measures and calculates the parameters automatically.

In order to evaluate the two results, the measured impedance were compared to the impedance calculated
from the results. It was found that the result measured with the ”Klippel Analyzer System” were best.
The calculated and measured impedance for both drivers are seen at figure 2.14 and the belonging para-
meters are given in table 2.1.

At low frequencies the voice-coil inductance LE is assumed to be short circuit and then the voice-coil
impedance, as given in [Leach, 1999], can be written as:

ZV C(j2πf) = RE + RES
j(1/QMS)(f/fs)

1− (f/fs)2 + j(1/QMS)(f/fs)
(2.54)

where RES = REQMS/QES . From the function it can be predicted that |ZV C(0)| = RE , |ZV C(j2πfs)| =
RE + RES and |ZV C(j2πf)| = RE for f � fs.
This equation excludes the voice-coil inductance LE as it is assumed to be short circuited at low frequen-
cies, where the Thiele-Small parameters are found. If this is the case the impedance function is flat at
higher frequencies, and not increasing as in figure 2.14, where the inductance is included. The figure is
automatically plotted by the Analyzer System software.

2.7.1 Loudspeaker alignment

The vented-box loudspeaker is designed by specifying an alignment. By defining a specific alignment, the
form of the pressure response can be specified. The alignment is adapted by changing the volume of the
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SI s1 s2 tweeter
RE Ω 5.54 5.57 3.57
fs Hz 50.1 45.8 1348
QMS N/A 2.77 2.49 2.94
QES N/A 0.57 0.50 3.95
QTS N/A 0.47 0.41 1.68
VAS l 10.6 12.99 -

Table 2.1: Linear parameters for the drivers used in the test loudspeaker

box and the dimension of the vent; length and cross area. Specifying the alignment is done in reference to
the magnitude-squared function defined by |GV (jω)|2. From (2.41) the magnitude-squared function can
be found:

|GV (j2πf)|2 =
(f/f0)8

(f/f0)8 + A3(f/f0)6 + A2(f/f0)4 + A1(f/f0)2 + 1
(2.55)

where the A coefficients are given by:

A3 = a2
3 − 2a2 A2 = 2 + a2

2 − 2a1a3 A1 = a2
1 − 2a2 (2.56)

and where a1, a2 and a3 are given in 2.42. One of the three alignments that are commonly used, depending
on QTS [Leach, 1999]:

• Butterworth B4 alignment (QTS = 0.4)

• Quasi-Butterworth QB3 alignment (QTS < 0.4)

• Chebyshev C4 alignment (QTS > 0.4)

As both drivers has a QTS above 0.4, the Chebyshev alignment is used. In this section the procedure for
calculating the C4 alignment, derived in [Leach, 1999], is given and used.

But before starting to derive the alignment, some predefined values are set:

• The volume of the box must be 9l. This volume is chosen because a small speaker is wanted and
given the measured values this seems reasonable.

• The vent chosen has a diameter equal to 4.3cm.

• Ql can not be calculated, but it is needed in order to make the alignment. In [Leach, 1999] a rule of
thumb is given. If the volume is between 55l and 85l a good choice would be Ql = 7, if the volume
is smaller it must be high and vice versa. Because the volume of this speaker is 9l, Ql = 15.

The C4 alignment has a magnitude-squared function given by:

|GV (j2πf)|2 =
1 + ε2

1 + ε2C2
4 (fn/f)

(2.57)

where ε is a parameter that specifies the amount of ripple and C4 is the fourth order Chebyshev polynomial
given by:

C4(fn/f) = 8(fn/f)4 − 8(fn/f)2 + 1 (2.58)

where fn is a normalization frequency the is related to the lower −3dB cutoff frequency fl by:

fn =
fl√
2

[
1 +

√
1 + 4

√
2 + 1/ε2

]1/2

(2.59)

21



SI Vented-box
VAB l 9
SP cm2 58.1
LP cm 16.7
fB Hz 49.25
fl Hz 48.4
Ql N/A 15
εdB dB 0.000009 ≈ 0
k N/A 0.9477

Table 2.2: Calculated box parameters in alignment

The amount of ripple peak to peak in [dB] can be specified with εdB and ε can be calculated:

ε =
√

10εdB/10 − 1 (2.60)

The a coefficients can be calculated by:

a1 =
k
√

4 + 2
√

2
D1/4

a2 =
1 + k2

(
1 +

√
2
)

D1/2
a3 =

a1

D1/2

(
1− 1− k2

2
√

2

)
(2.61)

where k and D are given by:

k = tanh
[
1
4

sinh−1 1
ε

]
D =

k4 + 6k2 + 1
8

(2.62)

If k = 1 then the alignment is equal to the Butterworth alignment and if k < 1 it is a chebyshev. Then
the following equation is solved for the positive real roots:

d4 −A3d
3 −A2d

2 −A1d− 1 = 0 (2.63)

And again for the next equation, it is solved for the positive real roots:

r4 − (a3QL)r3 − (a1QL)r − 1 = 0 (2.64)

And with the solutions for d and r, the Helmholtz resonance frequency fB and the lower −3dB cutoff
frequency can be calculated:

fB = r2fs fl = r
√

dfs (2.65)

In table 2.2 the resulting parameters for the C4 alignment is seen. With the predefined values a theoreti-
cally alignment with no ripple is achieved. Given the value of k, it can be concluded that the alignment
is close to be a B4 alignment.
At last, the length of the vent can be found by:

LP =
(

c

2πfB

)2
SP

VAB
− 1.463

√
SP

π
(2.66)

Where the last term is the end correction given in (2.28). The result is found in table 2.2.

2.7.2 Box construction and measurements

In figure 2.15 three drawings of the box, with inside dimensions, are seen, from the front, the side and
the top where a cross section half way down is shown. As seen, the two sides, the back and front plate
is angled so they are not in parallel with each other. This minimizes the possibility for standing waves
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Figure 2.15: Drawings of the loudspeaker box
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SI Vented-box
Vc l 9
SP cm2 58.1
LP cm 17
fB Hz 51
fl Hz 60

Table 2.3: Measured box parameters in alignment

inside the box. Standing waves occurs where i · λ, where i is an integer, is equal to the distance between
the two surfaces. They have a resonating effect that results in a deflection at the frequency. Only the top
and bottom plate are in parallel.
To suppress standing waves even further, all inside walls, except the front, are lightly covered with fiber
fill. The center of the box is not filled, as the air must able to travel between the bass/mid and the vent
without resistance.

In order for the air to travel freely from inside of the box into the vent and back, good space from the
back plate to the vent opening must be encountered. With the depth of the box in figure 2.15 and the
calculated vent length, this is achieved.

The fourth and last drawing in figure 2.15 displays the positions of the bass/mid, vent and tweeter on
the front plate. The outer black rectangle is the outside of the box, and the inner grey is the inside. The
vent and the bass/mid are placed closely together. This is due to the fact that when measuring with a
microphone, in front of the speaker, the radiated sound must sum up in the frequency range measured,
and they only do if they are in phase. From that it can be concluded that the distance between the center
of the bass/mid and the center of the vent, must be less than the length of half of the shortest wavelength
measured.
All sides are made of 16mm MDF.

As a volume velocity is emitted from each of the bass/mid, vent and leaks in the box (2.19), the summed
sound pressure can be difficult to measure outside of the box; they must all be measure individually and
then added together. If the sound pressure instead is measured inside the box, only one measurement must
be done as they are summed at low frequencies when the shortest wavelength of the sound is long compared
to the inside dimensions (2.19). When measuring inside a box, the resulting pressure is somewhat different
as if measure outside of the box. That is due to the fact that the impedance, for the sound radiated from
the front of the diaphragm, is a mass sMA1 and the impedance for the sound radiated in back of the
diaphragm is a compliance 1/sCAB . This affects the pressure response and in order to get the correct
response, the measured response must be differentiated two times, or equivalent, multiplying the response
with f2.
In figure 2.16 a measurement of the sound pressure inside the box, after it is corrected, is seen. In table
2.3 the measured box parameters are seen.
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(a) (b)

Figure 2.16: Measurements of box alignment, (a) corrected sound pressure insight of box, (b) electrical
impedance
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Chapter 3

Nonlinearities in the transducer
model

In chapter 2 the ideal transducer model was described. This model is only approximately true when small
input signals are applied to the transducer, at larger signals it becomes nonlinear with respect to the
displacement, thus the nonlinearities must be added to the model.
In this chapter nonlinear parameters are included in the ideal model, thus the model also is assumed to
be true when larger signals are applied. Figures of the nonlinearities are measurements of the ’s1’ driver
used for the test loudspeaker, see section 2.7.
First each nonlinearity is described and later the importance of each of them are discussed and compared,
and which nonlinearities that will be dealt with throughout this thesis is chosen.
Finally, the resulting distortion is explained. Note that investigation in improvements of transducer
designs is found in [Klippel, 2000].

3.1 Parametric non-uniformity

3.1.1 Electro-mechanical part

Magnetic force factor Bl

3.1.1 In section 2.2 and 2.4 the force factor Bl in the loudspeaker magnet system was described by a
constant; uniform in relation to the diaphragm displacement xD. This is in fact only true at very small
displacements. A measurement of the Bl product, for the test loudspeaker driver ’s1’, is seen in figure 3.1.
The force factor is highest around the rest position xD = 0 and decreases towards higher displacements.
Furthermore, the measurement shows a small asymmetry. From this the effective transduction coefficient
B(xD)l is calculated as:

B(xD)l =
∫ h/2

h/2

B(ξ − xD)dξ (3.1)

The effective length of the voice-coil l is constant and h is the height of it. The resulting nonlinear behavior
is caused by the fact that when the diaphragm moves out of or into the speaker box, it moves away from
the magnetic field.

Inductance

The inductance varies with the coil position. This is due to the fact that, as the coil moves away from the
magnetic system, less ferromagnetic material is ’seen’ by the magnetic field generated by the coil, causing
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Figure 3.1: Nonlinear force factor B(xD)l, and mirrored to get a better asymmetry view

Figure 3.2: Nonlinear inductance LE(xD) of the voice-coil

a lower electrical inductance. In figure 3.2 the voice-coil inductance with respect to the displacement is
seen. As it is seen, the curve is strongly asymmetric around the rest position for this specific transducer;
it is not always like this, for other loudspeakers it can have a shape like the one in figure 3.1 and 3.3, see
[Klippel, 2000].

Magnetic attraction force

The magnetic attraction force is a ’solenoid’ effect and was described first by [Cunningham, 1949]. It is
a result of the classical electrodynamic effect of the attractive force existing in a current-carrying wire,
on any ferromagnetic material in its vicinity. The coil will exhibit this force in the magnet and magnet
circuit. The force is related to the spatial derivative of the internal inductance of the coil and thus is
dependent on the non-uniformity in the electrical inductance:

Fma =
1
2
i2c(t)

dLE (xD(t))
dxD(t)

(3.2)

The magnetic attraction force problem is biggest in transducers with largely overhung voice-coils, thus
the effect is reduced if the ferromagnetic material in the magnet system is near or at magnetic saturation.
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Figure 3.3: Nonlinear compliance CD(xD), and mirrored to get a better asymmetry view

The forcing term Fma must be subtracted from the left-hand-side of (2.5).

Klippel states in [Klippel, 1998]1 that in most cases, the magnetic attraction force only has a minor
influence.

3.1.2 Mechanical part

Suspension stiffness/compliance

Again, the stiffness or compliance of the suspension is not constant as described in section 2.3. Three
types of nonuniformity are causing distortion, which are:

• Suspension exhibits as a smooth memory-less function of displacement.

• Suspension exhibits as a hysteretic function.

• Suspension exhibits as a discontinuous function.

• Suspension changes under high playing levels.

The gradual (smooth) variation in the suspension is also known in mechanics as a hardening spring. For
a typical transducer the compliance will decrease at higher displacements, as seen at figure 3.3. The
decreasing compliance causes the resonance frequency to increase, see (2.8).

Furthermore, the nonlinear suspension sometimes causes a hysteretic behavior in the displacement with
respect to the voice-coil current. An example here is not presented, as equipment for measuring this was
not available, but it is shown in greater detail in [Bright, 2002].

At some point at very high displacements a physical limit is reached. Either the suspension will no longer
become flexible or the voice-coil will contact the magnet and/or frame. At this point the suspension
compliance becomes zero, and no matter how much force applied, the diaphragm can not be moved any
further. Because of this, the compliance should be limited to a maximum allowed displacement, when it
is linearized.

1??
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Figure 3.4: Cross section of typical single roll suspension

High levels of sound causes the compliance of the suspension to increase, after a few minutes, and again
decreasing slowly when stopped. The compliance at rest position in figure 3.3 is just above 2[mm/N],
whereas it is measured to be 1.17[mm/N], see appendix B.1. This is due to the fact that when measur-
ing the linear parameters, only small input signals are applied, but when the nonlinear parameters are
measured, as in figure 3.3, then high level pink noise is used in several minutes. When measuring the
nonlinearities, the plots are update during the process, and here it can be seen how it slowly increases
over time.

Mass and Area

When the diaphragm is moving the suspension is stretched causing a change in the diaphragm area, as
shown in [Olsen and Thorborg, 1995] for single-roll suspensions, see figure 3.4. The change is due to how
the suspension moves, which seems to roll and bend and will divide it into a part that moves with the
diaphragm and a part that does not move. Furthermore, the changes is not necessarily the same when
the diaphragm moves forward as when it moves backward.
Changes in area is proportional to changes in the mechanical mass. It can be shown that they both are
well modeled with a first order polynomial expansion in xD:

MD(xD) =
1∑

n=0

Mnxn
D (3.3)

Above the resonance frequency of the system the mass and area nonlinearities will to some extend self-
compensate. At these frequencies the sound pressure is proportional to the ratio between the diaphragm
area and mass.

Diaphragm break up

Usually the diaphragm is considered as a piston, but at high frequencies this not true. In figure 3.5 a
measurement of this is seen for the driver used in the test loudspeaker. The impedance is inverted and
calculated in dB, and a offset is applied so that the top at 300Hz is equal to the sensitivity on the speaker
in 2π space. The sound pressure must follow the impedance if break up of the diaphragm does no happen.
But already below 1kHz the sound pressure begins to differ from the impedance, which is due to break
up.

As the diaphragm breaks up, the resulting response is extended to a much higher frequency than allowed
by the ideal model, see (2.38). This is an advantage for the loudspeaker designer as the working range of
the driver is increased, but an disadvantage when the driver must be compensated. When the diaphragm
breaks up, the hole diaphragm does not necessarily move. If only a part of it moves, then both the
acoustical and mechanical mass is different from the one expected, thus making it impossible to simulated
the velocity of it.
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Figure 3.5: Deviation of the sound pressure compared to the inverted impedance

3.1.3 Others

Temperature

As shown in [Klippel, 2003], the increase in the voice-coil temperature ∆Tv is dependent of the music
material. This is due to the fact that large low frequency signals cause convection cooling, decreasing the
temperature of the coil and the magnetic system. The thermal model in figure 2.12 does not include this
effect. A model that include the effect of convection cooling is found in [Klippel, 2003].

The magnet is dependent of the temperature. By increasing temperature causes reversible losses in the
magnet. Heating the magnet more might causing irreversible losses, thus re-magnetizing can restore this.
By increasing the temperature even more, changes in the structure on microscopic scale, that will make
the magnet lose its magnetism forever, is risked; [Janssen, 2004].
Two types of magnets are typically used in loudspeakers:

• Ferrite-magnets: Strontium-ferrite, Sr Fe12 O19 (Br = 0.4 T , Hcb = 190 kA/m)

• Neodymium-magnets: NdFeB, grade N35 (Br = 1.2 T , Hcb = 876 kA/m)

Br is the flux-density inside the magnet when the magnet is inside a fully closed system (no airgap) after
the magnet is fully saturated. This is a theoretical value (fully closed system has no practical uses) and
is independent of the size of the magnet.
HcB is the demagnetization field strength required for the flux-density inside the magnet (in a fully closed
system) to become zero. The value of the HcB depends on the Br, HcJ and the permeability of the
material. HcJ is the field strength of the demagnetization field at which the polarization reaches zero.
The permeability is the value which states how well the material ”conducts” magnetism (this value is
dependent on the applied field strength).

The grade of the magnets is not referred to anymore in this report, but when talking about magnets, the
grades meant is the ones that are given.

The typically temperature range2 for ferrite magnets is -40 to 225◦C and for Neodymium it is up to 80◦C.
Within these ranges no irreversible losses can happen.
Unfortunately it is not as simple as this. The diameter to height ratio of the magnet influences these

2For the manufacture http://www.goudsmit-magnetics.nl/
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range negatively, if the ratio is less than 0.7. Furthermore, the airgap also changes how the magnet reacts
on temperature, but in order to conclude anything a finite element program must be used.
In this thesis irreversible loss is assumed not to happen, as it then is considered to be damaged.

The reversible losses related to the temperature can be expressed as:

• Ferrite:

– Br: -0.2 %/◦C, related at 20 ◦C

– HcJ: +0.35%◦C (higher temp: higher resistance to demagnetizing)

• Neodymium (only from 20 to 100 ◦C; the decrease by temperature is not completely linear)

– Br: -0.11 %/◦C

– HcJ: -0.6%/◦C (higher temp: lower resistance to demagnetizing)

Ageing

The degradation of the parameters throughout ageing is a topic with very high uncertain, which varies
for each manufacture and even for each different transducer model of a given manufacture. This section
is based on [Smidth, 2004] from Danish Sound Technology (DST).

The suspension is the worst factor in what causes the loudspeaker to change throughout time. A com-
mon rule among the loudspeaker manufacturers is that the outer suspension makes up about 20% of the
common stiffness KD and the spider (inner suspension) makes up about 80%. Sometimes it can be 10%
to 90% or 30% to 70%.

Three types of materials are commonly used for the outer suspension:

• Rubber made of Styrol-Butadien basis which is an almost natural product. This is the most used
material for the outer suspension, because it does not change with time.

• Gum made of Polynorbomen basis. Not used very often, because some materials evaporates with
time and the gum becomes more stiff.

• Foam made of Poly-urethan on Ester basis. This material is not used very often because it starts
to crumble after ten to fifteen years.

The spider is made of PAC. Its RD value changes within the first couples of months of playing, and
afterwards it stabilizes. If it is heated up, i.e. by the sun, while the diaphragm is out of its rest position,
the rest position for the spider will change.
The material used by DST for the outer suspension is Rubber. This material is very soft and does not
influence the stiffness much except when it is stretched out. According to [Smidth, 2004] this material
does not change with time.

Variation in a batch

In a production the parameters have some variation among each driver. The variation is biggest when
the transducers are new, after a couple of months when the loudspeaker is run in the variation decreases
a bit. Furthermore, the resonance frequency drops with about 10% to 15% after it is run in.

According to [Janssen, 2004] there can be a variation of 15% on the magnetic properties, thus it is depend-
ing on which manufacture and the grade. Furthermore, the magnetic properties have a normal distribution
when produced a batch.
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According to [Smidth, 2004], the stiffness RD of the spider can be modeled with a gaussian distribution.

The tolerances on the parameters at DST, [Smidth, 2004], is:

• RE : +/- 0.15 ohm or +/- 2% (the maximum of the two is used)

• Bl: +/- 5%

• MD: +/- 5%

• fs: +/- 5% after the first couple of months (maybe up to 10% especially in many tweeters)

• SPL: max +/- 1dB (in the frequency range below the brake up of the diaphragm)

3.1.4 Analysis of importance of the nonlinearities

The parametric nonlinearities described in the present section causes distortion, see section 3.2, and there-
fore they must be linearized. But dependent of the given loudspeaker, and the amount of nonlinearity in
each parameter, some are more convenient to linearize than others.

The three parameters, force factor, electrical inductance and the mechanical compliance, are normally
assumed to be the most responsible for causing distortion.
The figures 3.1, 3.2 and 3.3 shows a need for linearizing these three parameters, as they exhibits a high
nonlinearity with respect to xD.
Due to the behavior of the suspension, the movement of the diaphragm exhibits a hysteretic movement.
In order to remove this problem a memory model is needed, and is thus not included in the compensa-
tion algorithm. Furthermore, it has not been possible to measure the effect, as such equipment was not
available.
Furthermore, if the physical limit in the suspension is linearized, a limit must be added in order not to
brake the loudspeaker.

According to [Olsen and Thorborg, 1995], The changes in mass and area will to some extend be self-
compensating above the resonance frequency. Of this reason the mass and area are not dealt with further
in this report.

The magnetic attraction force is the most simple one, as the amount of force is not related to a specific
loudspeaker. As it only influences the distortion very little, it is not dealt with in this report.

Changes in the temperature changes the electric resistance. This leads to a decreased sensitivity, an
increase in the resonance frequency fs and a higher total quality factor QTS , see 3.2.1. The temperature
change in the voice-coil must be dealt with. Notice, due to the fact that the temperature varies very slow,
a feedback control would automatically measure the electric resistance to the given temperature. The
temperature is then not to be considered; though in a feedforward control it must be included.
The temperature change in the magnetic circuit is much less than in the voice-coil, and it is not dealt with
any further, because it is assumed that the force factor only will vary very little of this reason. Notice,
in car hifi this would be different due the large variations in the ambient temperature, which also would
change the compliance in the suspension.

Ageing of the loudspeaker is very dependent of material and how it is treated during its lifetime, as written
in section 3.1.3. If the right materials are used, after the first couple of months the parameters will only
change a bit. If a feedback control is used these changes are automatically handled. In a feedforward
control it is not possible to deal with these changes as no model can be derived.
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(a) (b)

Figure 3.6: (a) Resonance frequency fs and (b) quality factor QTS , at different displacements

3.2 Evaluation of nonlinear loudspeakers

In this section the effects caused by the nonlinearities are evaluated, by measurement of the test loud-
speaker and by using the nonlinear plant model derived later in section 5.3; the results of the nonlinear
plant model is also evaluated in that section. Only measurements and simulation for the vented box
loudspeaker are presented.

3.2.1 Variation in filter characteristic

The resonance frequency (2.8) and quality factor (2.9) for the driver in free air, are affected by the varying
compliance and force factor. In figure 3.6 this is seen, where both have been plotted with respect to the
displacement. This leads to a transfer function which changes according to the displacement.
In the following, the consequences of this is investigated and plots of the vented box loudspeaker are
showed. Furthermore, the effect of changing temperature and varying inductance is investigated.
In figure 3.7 the normalized transfer function is plotted for different levels. As seen, not much happens
between a power of 0.1W and 1W on the input. But at 3W and even 5W, the curve starts to peak,
indicating an increasing quality factor. Furthermore, the lower −3dB cutoff frequency is increased.

3.2.2 DC offset

Equipment for measuring the DC offset on the loudspeaker has not been available, and thus it must be
simulated. In figure 3.8 such a simulation is seen. As seen only very little DC offset is occurring 0.3mm as
maximum value. Notice, this simulation is not considered to be true, as it is too small compared to that
shown in literature, [Klippel, 2001]. As seen in the paper by Klippel, his simulations were also doubtful
when comparing with his measurement. The reason why the DC offset is difficult to simulate, might be
that the hysteresis exhibited in the suspension is not included in the plant model.

3.2.3 Total harmonic distortion and Intermodulation distortion

In figure 3.9(a) measurements of the total harmonic distortion is seen. Here the five first harmonics are
used. As seen, the THD is high at low frequencies and low at high frequencies. This is what is expected
due to the displacement transfer function, which is a low-pass filter. Furthermore, at high levels around
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Figure 3.7: Normalized SPL at low frequencies, measured inside box

Figure 3.8: DC in diaphragm displacement at different driving levels
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(a) (b)

Figure 3.9: (a) Total harmonic distortion (b) Intermodulation distortion

the Helmholtz frequency, fB = 51Hz, a dip in the curve is seen, which is due to the fact that the diaphragm
hardly moves. furthermore, at a multiple of fB a small dip is seen at very high displacements.
In figure 3.9(b) measurements of the intermodulation distortion is seen. Here the three first harmonics on
each side of the high frequency tone is used. As seen, the distortion is increasing slightly towards higher
frequencies. This is due to the inductance shown below.
In the following three figure ??, ?? and ??, simulations have been done with the plant model, where only
one nonlinearity is included in each. As seen, the force factor and suspension compliance contributes a
lot to the THD distortion, while the inductance only has a minor influence. This is due to the fact that
the resistance is the most dominating component in the electrical impedance at low frequencies. At high
frequencies where the inductance is the most dominant, the diaphragm only moves very little and only
little distortion is resulted.
In the following three figure 3.13, 3.14 and 3.15 similar simulations have been done, but now with respect
to the intermodulation. Now the suspension compliance is the one that contributes very little to the
distortion, while the two others contributes much. As seen, the inductance result in the increasing
distortion, which is due to the fact that it becomes more and more dominant in the electrical impedance
at higher frequencies.

3.2.4 Summary

The following list sums up which distortion effects occurring at high levels:

• At large signal levels, filter characteristic of loudspeaker changes.

• A frequency DC offset occurring on the diaphragm.

• Nonlinear force faction causes high THD distortion at low frequencies and high IMD distortion at
all frequencies.

• Nonlinear suspension compliance causes high THD distortion at low frequencies.

• Nonlinear voice-coil inductance causes high IMD distortion increasing towards higher frequencies.

36



Figure 3.10: Simulated total harmonic distortion, only Bl nonlinearity

Figure 3.11: Simulated total harmonic distortion, only CD nonlinearity

Figure 3.12: Simulated total harmonic distortion, only LE nonlinearity
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Figure 3.13: Simulated intermodulation distortion, only Bl nonlinearity

Figure 3.14: Simulated intermodulation distortion, only CD nonlinearity

Figure 3.15: Simulated intermodulation distortion, only LE nonlinearity
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Chapter 4

Modeling of nonlinearities

In this chapter, the nonlinear parameter chosen in section 3.1.4 are modeled with respect to the displace-
ment. The nonlinear parameters are:

• Force factor Bl(xD)

• Coil inductance LE(xD)

• Suspension compliance CD(xD)

The coefficients found for the mathematical model in the present chapter are listed in appendix B.2.

4.1 Least Squares

The least squares method is used for fitting functions to the nonlinear parameters, and thus will be derived
first, [Weisstein, 1].

Given some measured data for a function to be fitted to:

{xD,i = [xD,1, · · · , xD,Ni
]T , yi = [y1, · · · , yNi

]T } (4.1)

where Ni is total amount of measurement points, xD,i is the i’th displacement measurement and yi is the
target at input xD,i.
The estimated result can be calculated from the basis-function:

ŷ(xD) =
Nl∑
l=0

ωlfl(xD) = f(xD)ω (4.2)

where ω is the coefficients of the linear network, fl is an arbitrary function used to fit, and Nl is the order
of the fitting function; l = 0 is often used as DC offset. The coefficients are found hereafter.
The sum of squares of the error is the cost function:

S(ω) =
Ni∑
i=1

(yi − f(xD,i)ω)2 = (y − Fω)T (y − Fω) (4.3)

The cost function describes how well the data is fitted and in order to get an optimal fit, it must be
minimized with respect to the coefficients:

S(ω) = arg min
ω

[(y − Fω)T (y − Fω)] (4.4)
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The solution is that the gradient of the cost function is 0:

∂S(ω)
∂ω

= 0 ↔ 2F T Fω − 2F T y = 0 (4.5)

And at last the Least squares solution

ω = (F T F )−1F T y (4.6)

4.2 Polynomial fit

Polynomial fitting is very popular when modeling the nonlinear parameters in a loudspeaker; [Klippel, 1992b],
[Bright, 2002] and [Schurer, 1997] are some among many which use this method.
Using Least squares, as described above, to fit a polynomial involves inserting the polynomial function
into fl from (4.2):

fl(xD) = xl
D (4.7)

And the coefficients are then found by solving (4.6); see [Weisstein, 2].
In order to find the most optimal order of the polynomial, the order has been varied over several simulations
and the sum of squares error is calculated for a comparison as seen in figure 4.1(a). Here the force factor
data is fitted. It can be seen that equal orders of the polynomial gives the best result, as the cost is
reduced much from an unequal order to an one step higher equal order, but only little when it is vice
versa. It is because of the shape of the data, which is like a negative parable (both slopes falls towards
minus infinity).
Fitting to the inverse of the data 1/yi is sometimes better, as seen at figure 4.1(b), [Bright, 2002]. It
is seen the that an optimal fit is achieved at the order equal to four, and by then, drops off much fast.
It results in a better fit and fewer calculations, because of the smaller polynomial order. Furthermore,
outside the data range of yi, the polynomial sometimes drops off to zero much more smoothly, when fitting
to the inverse data; it will be shown just below.
When fitting to the inverse, the basis function in (4.2) is rewritten as:

ŷ(xD) =
1

f(xD)ω
(4.8)

Force factor Bl(xD)

In figure 4.2(a) an eight order polynomial is fitted to the force factor data is seen. Within the data range
of Bl(xD), the fit is good, but outside the polynomial becomes negative, and by then, the polynomial is
useless outside of Bl(xD).
A fourth order polynomial fitted to the inverse data is seen in figure 4.2(b). Besides a lower sum of squares
error, the curve behaves much more realistic outside of the data range of Bl(xD).

Suspension compliance CD(xD)

As for the force factor the same procedure has been done for the compliance of the suspension. Again the
optimal order of polynomial that is found is eight for a normal fit and eight for a fit on the inverse data.
The result is seen in figures 4.3(a) and 4.3(b). The same conclusions can be made as for the force factor.

Coil inductance LE(xD)

Because of the shape of the coil inductance, two things result in a fit different form both the force factor
and the suspension compliance. First, the shape is no longer approximately like a parable, which is fitted
well with a equally order polynomial. But instead like an s-shape where an unequally polynomial fits
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(a) Fit on data (b) Fit on inverted data

Figure 4.1: Fit on data

(a) Fit on data (b) Fit on inverted data

Figure 4.2: Polynomial fit on force factor data data
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(a) Fit on data (b) Fit on inverted data

Figure 4.3: Polynomial fit on force factor data data

better. Second, fitting to the inverse data only worsen the behavior outside of LE(xD). At figure 4.4(a)
and 4.4(b) the results are seen; seven orders polynomials have been used for both fits. It is seen that the
normal fit gives the lowest sum of squares error and the that they both behaves poorly outside of LE(xD).

4.3 Exponential fit

The use of exponential functions to model the nonlinear parameters have not been done before in this
type of application. The advantage of the exponential functions, is that their behavior outside the data
range of yi can be affected to be more optimal.
Again, using Least squares as described above to fit the exponential functions involves inserting them into
fl from (4.2):

fl(xD) = exp
− 1

2σ2
l

(xD−xl)
2

f0(xD) = 1 (4.9)

where σ is the standard deviation for each function, xl is the center of each them and f0 can be used as
offset if wanted. The coefficients are again found by solving (4.6).
In order to do the most optimal fit with the exponential kernels, four things must be clear:

• Number of kernels used

• Distribution of kernel centers

• Standard deviation for exponentials

• Least squares coefficients (heights of exponentials)

The number of kernels used, is estimated in same manner as for the order of the polynomials. The
distribution is in this thesis always linear within a range found to be the most optimal.
The standard deviation is also estimated over a given range and evaluated with respect to the sum of
squares error. At last the coefficients are found with the Least squares solution (4.6).
In figure 4.5(a) the sum of squares error with respect to the number of kernels is seen. Here is the optimal
standard deviation for each number of Nl is used; the force factor data is used.
In figure 4.5(b) the sum of squares error is seen again, but here the number of kernels is fixed at seven
and the standard deviation is varied. It is seen that around the optimal value only very little happens,
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(a) Fit on data (b) Fit on inverted data

Figure 4.4: Polynomial fit on force factor data data

meaning that the sum of squares error only changes a bit if the standard deviation were varied between
two, three or four.
If the standard deviation is to small as in figure 4.6(a), then the exponentials becomes too narrow, which
results in a curve with ripple. But if it is too high, then the fit within the data range yi is good, but
outside of the range, problems like the ones with the polynomial fit occurs, as seen in figure 4.6(b).
The solution to these two problems, is to choose a optimal value between the two.

Force factor Bl(xD)

In figure 4.7 the resulting fit with exponential kernels on the force factor data is seen. And as seen, the
fit is good both inside and outside the data range of Bl(xD).

Suspension compliance CD(xD)

The resulting fit with exponential kernels on the compliance of the suspension data is seen in figure 4.8.
And as seen, the fit is good both inside and outside the data range of Cd(xD).

Coil inductance LE(xD)

Finally the fit on the coil inductance is shown in figure 4.9. Here an offset has been manually set equal
to LE(0). Again it is seen that a good result can be achieved both inside and outside the data range of
LE(xD).

4.4 Alternative functions

As seen above, the method for exponential fitting, resulted in fits that behave more appropriate outside
of the measured data range. But the fit on the voice-coil inductance, settling at the level equal to the one
at xD = 0, is not the most optimal. Instead a ’s’-function is better as it remains high and low in each of
the ends.
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(a) (b)

Figure 4.5: Sum of squares error

(a) (b)

Figure 4.6: Bad fits, (a) σl = 1, (b) σl = 4.5
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Figure 4.7: σ = 2.81, range of centers {−7mm; 7mm}, no offset

Figure 4.8: σ = 2.55, range of centers {−7mm; 7mm}, no offset

Figure 4.9: σ = 3, range of centers {−6mm; 6mm}, offset equal to Bl(0)
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It has been found that the sigmoid function works well [Bishop, 2000]1:

sigmoid(x) =
1

1 + exp−x
(4.10)

It can be shown that this function is the same as a tanh function, but with an offset so it is positive. Of
that reason it is more convenient to use the sigmoid function, as the inductance is always positive. Now,
adding an offset ω0, a scalar ω1 and two variables, one to change the slope of the ’s’-function a and one
to move is sideways x0:

f(xD) = ω1
1

1 + exp−(xD−x0)a
+ ω0 (4.11)

This function can not be fitted in one step, as the variable can not be separated and isolated, as above,
thus we need a iterative process, [Weisstein, 3].
The error of the present fit is given by:

dβ = yi − f(xi;ω0, ω1, x0, a) = y − f(ω0, ω1, x0, a) (4.12)

where y is the measured data. Now obtaining a linearized estimate for the changes dλj needed to reduce
dβi to 0:

dβi =
n∑

j=1

∂f

∂λj
dλj

∣∣∣∣∣∣
xi,λ

(4.13)

for i = 1, . . . ,m, where λ ≡ (ω0, ω1, x0, a). Written in component form it is given by:

dβi = Aijdλj (4.14)

The derivatives used to constructed matrix A are:

∂f

∂ω0
= 1

∂f

∂ω1
=

1
1 + exp−(xD−x0)a

(4.15)

∂f

∂x0
= − ω1a exp−(xD−x0)a(

1 + exp−(xD−x0)a
)2

∂f

∂a
= −ω1 (−xD + x0) exp−(xD−x0)a(

1 + exp−(xD−x0)a
)2

Writing (4.14) in matrix form gives:
Adλ = dβ (4.16)

and solving it with respect to dλ:
dλ = (AT A)−1AT β (4.17)

dλ is then added to λ, and the procedure is repeated until the error is minimized.

In figure 4.10(a) each iteration in fitting the inductance data is seen. Despite the naive guess, ω0 = 1,
ω1 = −1, x0 = 0 and a = 0.5 only four iterations are needed for the coefficients to be minimized. The
final result is seen in figure 4.10(b), as seen, the sigmoid function fits well. Though in each end it can be
seen that it does not follow the data completely, but it is still considered a better choice compared to the
results with the polynomial and exponential.

1page 82
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(a) (b)

Figure 4.10: Fit on inductance data with sigmoid function, (a) iterations in fit, (b) final result

If wanted, the fit can be improved by using a sum of sigmoid functions. In that case, the form of the
equation is similar to the one of a neural network. Later the continuous time differential equations in
chapter 2 are converted into discrete difference equations. In that case, if the three nonlinearities are
fitted with sigmoid functions, then it might be possible to write the complete equation for a loudspeaker
as a neural network. This has not been done in this thesis, but it could be a very interesting topic in
future work.

4.5 Fitting models with soft clipping

In order not to damage the loudspeaker when linearized, some kind of soft clipping must be added.
This means that a limit must added to the displacement, but in an appropriate way, such that the de-
acceleration near the limit, is low.
Here an idea is presented, but because of to lack of time, further investigations has not been possible.

If a fit to one of the three nonlinearities, force factor, suspension compliance and inductance, could be
used in order to not only model the nonlinearity, but also include some soft clipping, as no extra circuit
then has to be included to do the soft clipping.
As the force factor alone connects the electrical circuit with mechanical, it is the most optimal one.
Looking at the fit in figure 4.7, it can be seen that the force factor decreases when moving away from the
rest position, causing a need for increasing voltage for the diaphragm to remain its velocity. If instead the
linearizing system was ”told” that the force factor instead is increasing close to the wanted limit, then a
lower voltage would be applied, breaking and limiting the diaphragm.
Such a function must be found, though it is not done in here.

4.6 Summary

The polynomial fit has been shown to be good within the given data range, but very poor outside. Fur-
thermore, as stated in section 3.1.2, the offset of the compliance change during operation. If using the fit
found in figure 4.3(a), and the compliance offset changes to the value found in the linear measurement
CD = 1.17, then the polynomial would becomes as in figure 4.11. Here a part of the curve, within the

47



Figure 4.11: Polynomial fit on compliance data, where only offset is changed

measured range, becomes 0. This is fatal, and causes an unstable controller, which would not have happen
with the exponential fit; which may add distortion, but it does not become unstable.

Of course this does not conclude that it is not possible avoid such errors. It just shows that it can be a
problem if not taken care of, as in [Bright, 2002]; He only updates offset in the polynomial, the rest is
fitted before applying the controller.

In this thesis, exponential fitting is used for the force factor and compliance, and the sigmoid function is
used for the inductance.
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Chapter 5

Discrete nonlinear simulation

Despite that transducer control systems are implemented in a discrete time environment such as a DSP-
processor, so far all systems have been derived in continuous time, see [Schurer, 1997] [Klippel, 1992a] and
many others, with the exception of [Bright, 2002]. Hans Schurer’s solution is to simulate the continuous
time system in discrete time by integrating over small time steps. Wolfgang Klippel does not come up
with a solution in his papers, but it is assumed that he has a solution, taking in mind of his analyzer
system, which implements many of the topics considered in this thesis. Andrew Bright is the only one
that have derived the control system directly in discrete time, but his methods are simplified and do not
meet the requirements about which nonlinearities that must be compensated, put up in section 3.1.4.
In this thesis all control systems have been derived in discrete time, as it is considered as the most correct
method.

In this chapter the continuous time differential equations, from chapter 2, are transformed into corre-
sponding discrete time difference equations. From these difference equations, standard digital filter that
are used more than once times in this thesis, are derived.
Later the difference equations are rewritten as a state space model. This model is ideal for computer
simulations in the time domain. And finally a toolbox developed during this thesis, is described.

5.1 Discrete representation of differential equations

The discrete time difference equation corresponds to the continues time differential equation. A transfor-
mation from one to another most be done.

Looking at the difference equations in the z domain and at the differential equations in the laplace s
domain, then the relation is z = esTs . For a first order filter using this relationship, the result would be:

H(s) =
1

s− p1
⇒ H(z) =

1
(1/Ts)ln(z)− p1

(5.1)

Unfortunately the transfer function in the z domain, can not be converted into a difference equation. So
some other approach is needed.
Several methods for converting the continuous time differential equations into discrete time exists, such
as:

• Impulse invariant technique

• Bilinear transform

• Forward Euler method
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where the two first are given in [Denbigh, 1998]1 and the third is found in [Spiegel and Liu, 1999]2. At
low frequencies all three techniques give good results, but near the sample frequency fs the results differ a
great amount and each different from the true analog. Of this reason, the minimum sample frequency must
be decided in order to have a wanted frequency range, where the discrete time equations give equivalent
results to the continues time equations.

Impulse invariance

The impulse invariance technique performs a discrete time sampling of the impulse response of the contin-
uous time system. This requires a conversion of polynomial ratio in s to a partial fraction expansion, from
which the impulse response in continues time may be found by inverse Laplace transform. The discrete
time sampling of the impulse response is then z transformed. The conversion from the partial fraction
expansion in s domain to z domain can be written as:

r1

s− p1
+

r2

s− p2
. . . → Ts

r1

1− ep1Tsz−1
+ Ts

r2

1− ep2Tsz−1
. . . (5.2)

where pi are the poles and ri is the numerator coefficient of the partial fraction expansion. The resulting
partial fraction in z domain may be rewritten as a standard digital filter.

With this method a filter is first created in continuous time and then transformed into discrete time. But
what is wanted is, to transform the differential equations into discrete time and then rewrite them to
some filters. The reason for this is that it is easier to deal with when creating a state space model of the
system as in section 5.3. For this reason this is method is considered unsuitable for the applications in
this thesis.

Bilinear transform

As quoted earlier, using the relationship z = esTs results in z transfer function that can not be converted
into a difference equation. The bilinear transform modifies H(s) into a new function H(s′) which has a
different, but similar, frequency response and which gives a result with the relationship z = es′Ts that can
be converted into a difference equation.
By replacing s with 2fstanh(s′/2fs) a similar frequency response is achieved in most of the frequency
range. But moving close to the frequencies s = s′ = i · fs/2, where i is an integer, H(s′) begins to differ
from H(s) and at the frequencies H(s′) is singular.
Finally, using the relationship z = es′Ts , results in:

s → 2fs
1− z−1

1 + z−1
(5.3)

As seen, a difference equation is now achieved. Furthermore, this technique will increase the order of the
converted filter, unless the nominator and denominator has equally orders; the one with the lowest order
will increase to become of equally order to the other. Of this reason, this method increases the complexity
of the differential equations (2.1) and (2.5), and furthermore, this will lead to an increased number of
necessary states in the state-space model derived later in section 5.3.

The bilinear technique has the advantage that if used to transform a low-pas filter as i.e. (5.1), the singu-
larities become zeroes in the transfer function and aliasing effects are removed. As the transducer has the
properties that its transfer function for the displacement is a low-pass function and the sound pressure is
a band-pass function, a transformation from continuous time to discrete time is done without aliasing.

1page 403-411
2page 225
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(a) (b)

Figure 5.1: Transfer function of discrete derivatives, fs = 48kHz, (a) magnitude, (b) phase

On the other hand, the sample frequency must be high enough to leave the pass-band of the filter un-
changed.

In figure 5.1 the magnitude and phase for a continuous time differential equation and its bilinear transform
is seen, as in (5.3); here the sample frequency is 48kHz. The phase is equal to the phase of the continuous
time differential equation for all frequencies. For the magnitude the discrete time result is close to the
continuous time result up to about 10kHz, above it differs because of the singularity.

Forward Euler method

Of the three methods, the forward Euler method is the simplest and most straightforward method. The
principle is to rewrite the differential equation as a expansion series and then approximate it. The
expansion series is written as:

y(t + T )− y(t) =
dy(t)
dt

T +
d2y(t)
dt2

T 2

2
+ . . . +

dny(t)
dtn

Tn

n!
+ o(Tn) (5.4)

where y is the function that is about to be differentiated and T is a small time step. By removing all
higher order differentials and putting T equal to the sample time Ts, the expansion series is approximated
to something that is identical to a discrete difference equation:

dy(t)
dt

≈ 1
Ts

(y(t + Ts)− y(t)) ≡ 1
Ts

(y(n + 1)− y(n)) (5.5)

Or described by Laplace transformation and the z transformation:

s → 1
Ts

(z − 1) (5.6)

where n is the discrete time number. The magnitude and phase response of the continues time differential
equation compared with its discrete time version, where the forward Euler method has been used, is seen
in figure 5.1. As seen, the magnitude response agrees well with the true response, only at half the sample
frequency it differs a bit. Furthermore, it is seen that it performs better that the bilinear transform.
The phase response is plotted in figure 5.1(b), and as seen, the phase error increases when moving towards
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the half of the sample frequency. Of this reason, the lowest sample frequency that is allowed must be
decided in order to make the discrete time model fit well to the continues time model. If a second order
differential where converted, the phase error would be twice as big, and therefore the minimum allowed
sample frequency must be decided from the response of each of the two compensator systems dealt with
in this thesis.
But as the loudspeaker model describing the true loudspeaker is unprecise near its higher frequencies, the
sample frequency is not a problem. First, as the diaphragm is breaking up at relatively low frequencies
compared to its actual working range, the model is probably unprecise above 1kHz as its does not model
this effect, see section 3.1.2. Second, the eddy currents that changes the impedance at towards higher
frequencies, is also not included in the model, causing it to be even more un-precise. Of these two reasons,
compensation of distortion above 1kHz is not be achieved.
Third, the application, in this thesis, is hifi systems, where the sample frequency normally is 44.1kHz. With
this frequency, the phase is small at 1kHz some multiple of this (harmonics), and the sample frequency is
considered to be high enough.
Other applications or even other drivers, this might be different, and more optimal sample frequency must
be found. This must e done with simulation of the complete system, with compensation, as the phase
error is different for different systems.
The forward Euler method is used throughout this thesis, because it is the most simple, both in terms
of deriving the equations and in terms that it does not increase the order of the system as the bilinear
transform does.

5.1.1 Discrete difference

Now the technique, for converting the continuous time system into discrete time, has been derived, and
conversion must be done. Furthermore, the nonlinearities picked in section 3.1.4 are added.

The voltage equation (2.1) becomes:

u(n) = REic(n) + LE(xD(n))
1
Ts

(ic(n + 1)− ic(n)) + ic(n)
dLE(xD(n))

dxD(n)
1
Ts

(xD(n + 1)− xD(n))

+Bl(xD(n))
1
Ts

(xD(n + 1)− xD(n)) (5.7)

As seen, each differential term is simply replaced with the forward Euler equation (5.5). Furthermore, an
extra term is added. The reason for this is when the inductance becomes nonlinear and change with respect
to the displacement which change with respect to time, it can not be moved outside of the differential as
in (2.1), it must be differentiated with respect to time.

Closed box

The mechanical second order differential equation in (2.5), with the combined mechanical and acoustical
coefficient (2.17), is then written in discrete time as:

ic(n)Bl(xD(n)) = Mt
1

T 2
s

(xD(n + 2)− 2xD(n + 1) + xD(n)) + Rt
1
Ts

(xD(n + 1)− xD(n))

+
1

Ct(xD(n))
xD(n) (5.8)

Notice the second order difference term in first term on the right hand side, which is the difference equation
to (5.5).
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Vented box

The mechanical second order differential equation in (2.5) is added with the mechanical equivalent of the
acoustical mass in front and back of the diaphragm (2.18). Furthermore, the impedance of the mechanical
equivalent of the vented box (2.29) is added; this is the transfer function of the pressure inside the box
(2.21). The resulting difference equation is given by:

ic(n)Bl(xD(n)) = Mt
1

T 2
s

(xD(n + 2)− 2xD(n + 1) + xD(n)) + RD
1
Ts

(xD(n + 1)− xD(n))

+
1

CD(xD(n))
xD(n) + pc(n)SD (5.9)

In (2.19) UP is replaced by the equivalent term for pc in (2.20). By putting these two equal to each other
and then rewrite the equation, pc can be found with respect to UP :

pc(n) = MAP
1
Ts

(UP (n + 1)− UP (n)) (5.10)

And finally, rewriting (2.20) UP is given by:

UP (n) = SD
1
Ts

(xD(n + 1)− xD(n))− CAB
1
Ts

(pc(n + 1)− pc(n))− pc(n)
RAL

(5.11)

5.2 Digital filter description of transducer

During this thesis, some general filters will be used more than once and in different sections; they are
presented here and are:

• Linear movement of diaphragm: displacement, velocity and acceleration.

• Linear and nonlinear current flow through voice-coil.

• Acoustical circuit of vented box system.

As the displacement is going to be used, a filter must be derived with the voltage w(n) as input, where
w(n) is the input to the control system see section 6.1. Because the movement of the diaphragm is lin-
earized, this filter must be linear in relation with w(n).
Furthermore, the current flow through the voice-coil must be found and because the displacement is found
with a linear filter, the current must be found with a nonlinear filter. But actually, also the linear current
flow is needed, so the final filter is linear and then the nonlinearities are added afterwards.
At last two filters for the vented box system must be derived, one for the sound pressure inside the box
and one for the volume velocity in the vent. These are linear and with the displacement xD as input.

But before deriving these filters, three simple filters must be derived. As the forward Euler method is
non-causal, the displacement must be delayed with two samples in order for the resulting filters to become
causal. This can also be seen in (5.8) and (5.9), which is used later for calculating the current, the current
is given by samples in the future. Notice, if the backward Euler method was used, this would not be
necessary. The filters for the displacement, velocity and acceleration, each delayed two samples, are given
by:

HxD
(z) =

xD(z)
xD+2(z)

= z−2

HuD
(z) =

uD(z)
xD+2(z)

=
1
Ts

(z−1 − z−2) (5.12)

HaD
(z) =

aD(z)
xD+2(z)

=
1

T 2
s

(1− 2z−1 + z−2)

53



where xD+2 is the displacement before delayed, xD is the delayed displacement, uD is the diaphragm
velocity and aD is the acceleration of the diaphragm.

Closed box

Because the filter for extracting the linear displacement, in standard z transformation form, is very long,
it is moved to appendix A.1. Instead a more simple form of the filter is presented. It is derived from (5.7)
and (5.8):

HxD+2(z) =
xD+2(z)

w(z)
=

Bl(0)(
LE(0) 1

Ts
(z − 1) + RE

) (
Mt

1
T 2

s
(z2 − 2z + 1) + Rt

1
Ts

(z − 1) + 1
Ct(0)

) (5.13)

Instead of writing the filter for the linear current in normal difference form, it is calculated from the
displacement, velocity and acceleration in (5.12), which is inserted in (5.8):

ic,lin(n) =
Mt

Bl(0)
· aD(n) +

Rt

Bl(0)
· uD(n) +

1
Ct(0)Bl(0)

· xD(n) (5.14)

And adding the nonlinearities, again according to (5.8):

ic(n) =
Bl(0)

Bl(xD(n))

(
ic,lin(n) +

1
(Ct(xD(n))− Ct(0))Bl(0)

· xD(n)
)

(5.15)

Vented box

Again, the filter for extracting the linear displacement for a vented box system, is moved to appendix A.1.
The filter is derived from (5.7) and (5.9) and in a simple form written as:

HxD+2(z) =
xD+2(z)

u(z)
=

Bl(0)(
LE(0) 1

Ts
(z − 1) + RE

) (
Mt

1
T 2

s
(z2 − 2z + 1) + RD

1
Ts

(z − 1) + 1
CD(0) + SDpc(z)

)
(5.16)

where pc(z) is the sound pressure inside the box. The linear current flow in the voice-coil is derived from
(5.9) and given by:

ic,lin(n) =
Mt

Bl(0)
· aD(n) +

Rt

Bl(0)
· uD(n) +

1
Ct(0)Bl(0)

· xD(n) +
SD

Bl(0)
· pc(n) (5.17)

As no nonlinearities is present are the acoustical circuit for the vented box, (5.15) is used again for
calculating the nonlinear current flow, but with the new ic,lin(n) as entry.
Finally, the sound pressure inside the box and volume velocity in the vent, derived from (5.10) and (5.11),
are written as:

Hpc
(z) =

pc(z)
xD(z)

=
MAP SD

1
Ts
− 2MAP SD

1
Ts

z−1 + MAP SD
1
Ts

z−2

CABMAP
1
Ts

+
(
−2CABMAP

1
Ts

+ MAP

RAL

)
z−1 +

(
Ts + CABMAP

1
Ts
− MAP

RAL

)
z−2

(5.18)

HUp
(z) =

Up(z)
xD(z)

=
SDz−1 − SDz−2

CABMAP
1
Ts

+
(
−2CABMAP

1
Ts

+ MAP

RAL

)
z−1 +

(
Ts + CABMAP

1
Ts
− MAP

RAL

)
z−2

(5.19)
In a given application only one of either Hpc or HUp needs to be implemented as in (5.18) and (5.19), the
other one is simply found by (5.10) or (5.11); i.e. Hpa

is implemented and (5.10) is rearranged and used
for calculating Up.
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5.3 State space model of transducer

The state space model has the advantages that it is simple to implement a nonlinear system in time, for
computer simulations. The discrete state-space model is written as:

x(n + 1) = F(n)x(n) + g(n)u(n)
y(n) = hx(n) (5.20)

where n is a integer and the discrete time number, F is the time varying matrix, g is the time varying
input vector and h is the time invariant output vector.

5.3.1 Closed box

The discrete time states are defined as:

x(n) =

x1(n)
x2(n)
x3(n)

 =

 ic(n)
xD(n)

1
Ts

(xD(n + 1)− xD(n))

 (5.21)

According to the general state space model (5.20) and the definition of the states (5.21), the equation for
the following time sample of each state can be written. x1 is found from (5.7), x3 from (5.8) and given
x3, x2 can be found by using (5.5).
Finally the matrix F and vectors g and h in the state-space model for the closed-box loudspeaker can be
written as:

F(n) =

 − RE

LE(x2(n))Ts + 1 0 − z1(n)LEX(x2(n))
LE(x2(n)) − Bl(x2(n))

LE(x2(n))Ts

0 1 Ts
Bl(x2(n))

Mt
Ts + x1(n)LEX(x2(n))

2Mt
− 1

Ct(x2(n))Mt
Ts − Rt

Mt
Ts + 1

Ts


g(n) =

 Ts

LE(x2)

0
0

 (5.22)

h =
[
0 1 0

]

5.3.2 Vented box

The states in the state space model, for the vented box loudspeaker, are defined as:

x(n) =


x1(n)
x2(n)
x3(n)
x4(n)
x5(n)

 =


ic(n)
xD(n)

1
Ts

(xD(n + 1)− xD(n))
UP (n)
pc(n)

 (5.23)

x1 and x2 are calculated in same manor as for the closed box. x3 is found from (5.9), x4 from (5.10) and
x5 from (5.11).
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Finally the state-space model for the vented-box loudspeaker is given by:

F(n) =
− RE

LE(x2(n))Ts + 1 0 −x1(n)LEX(x2(n))
LE(x2(n)) − Bl(x2(n))

LE(x2(n))Ts 0 0
0 1 Ts 0 0

Bl(x2(n))
Mt

Ts − 1
CD(x2(n))Mt

Ts −RD

Mt
Ts + 1 0 −SD

Mt
Ts

0 0 0 1 1
Map

Ts

0 0 SD

CAB
Ts − Ts

CAB
− Ts

RALCAB
+ 1



g(n) =


Ts

LE(x2)

0
0
0
0

 (5.24)

h(n) =
[
0 1 0 0 0

]
where LEX denotes the first order derivative of LE .

h defines the output of the states space model and above xD is the output. If the diaphragm volume
velocity UD or the total volume velocity U0 is wanted instead, the vector must be defined as:

h(n) =
[
0 0 SD 0 0

]
h(n) =

[
0 0 SD −1 0

]
(5.25)

5.4 Matlab simulation toolbox

During this thesis a text based toolbox for Matlab has been made. With this it is easy and fast to
evaluated a loudspeaker and/or compensation algorithm, before implementing in hardware.
In figure 5.2 a flow diagram of the toolbox is seen. As seen, it is constructed of five layers, which each
handles a specific job.
In the following each layer is described. Finally simulations of the THD and IMD are done and compared
with the measured.

5.4.1 Layer 1: Settings

The text based user interface setups the simulation, and works by specifying the setting for the following
four layers.

5.4.2 Layer 2: Signal generation

In this layer all signals are generated specific to the settings in layer 1. The available signals are:

• Single-tone sinusoid: This signal is used in many simulations. First, it is used in THD simulations
where several sinusoids are made and run through the system in a for loop. Second, it is also used
for simulating the frequency depend DC offset, in the same manner as the THD simulation. Third,
it can be used in FFT plots. Fourth, it can be used for simulating a nonlinear transfer function that
changes with respect to the signal level. Fifth, it can be saved to a wave file and played back on a
loudspeaker for measuring the compensator influence on the loudspeaker.

• Two-tone sinusoidal: This signal is only used in two types of simulation. First, it is used for
simulating IMD. And second, it can be saved in a wave file and played back on a loudspeaker in
order to compensate IMD.
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Figure 5.2: Block diagram of loudspeaker compensation toolbox in Matlab
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• Multi-tone signal: This signal is for simulating nonlinear transfer functions and generating FFT
plots.

• Music (loads a wave-file): Is used for compensating the distortion added when played on a loud-
speaker.

5.4.3 Layer 3: Simulation

Layer 3 simply simulates the loudspeaker, represented as the plant model derived in section 5.3 with the
nonlinearities given in 4, and the compensators, that are found in chapter 6.2 and 6.3. It is possible both
to by pass the controller but also the plant if wanted.

Further more, both the plant model and the compensator has been implemented in c language, in order
to optimize the simulation time. Furthermore, this has the advantage that if processed on a long music
signal for listening impressions, it can be done within reasonable time.

5.4.4 Layer 4: Signal processing

In this layer the output of either the plant model or controller is processed.

When calculating the amplitude of tone from a frequency response, as with THD, IMD and nonlinear
transfer function simulations, the sum of the bins at and a few around that specific frequency are taken.
This is due to the fact that when applying a window to the time signal, the energy of a frequency is
spread out over a narrow frequency range, rather than being concentrated to the frequency. Though, if
the amplitude of the tone is close to the noise floor, then it may affect the result as some energy of the
noise floor are added and influences the result; the user must be aware of this as normally a few extra
bins are used rather than not enough. The number of bins used is setup in layer 1.

Furthermore, in this layer, the simulated signal can be saved in wave file.

5.4.5 Layer 5: plotting

Finally the last layer plot the results achieved in the four first layers. These results are plotted specific to
the given simulation:

• Nonlinear tf and transfer function: Plotted in dB both for the sound pressure, but also for the
displacement response.

• THD and IMD: plotted in percent with respect to the frequency.

• DC offset: plotted in millimeters with respect to the frequency.

• FFT. Normally frequency plot in dB.

5.5 THD and IMD evaluation of nonlinear plant model

In figure 5.3 THD simulations compared with corresponding measurements, is seen. At high frequencies the
results achieved in the simulations are too low; This is expected as only the most significant nonlinearities
are included in the model, resulting in a false image at low distortions. Furthermore, the Helmholtz
resonance is much more significant in the simulation. When simulating, the overall pressure response is
used in the calculation. But when measuring the THD, the microphone is placed closed to the diaphragm
(less than 20cm) and not as close to the vent, then the sound pressure from the diaphragm and vent do
not necessary contributes equally at the point of the microphone.
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Figure 5.3: THD simulation plotted along with belonging measurements

From 70Hz to 200Hz the simulations and measurements are comparable, but differs a bit. Though the
measurement where 1W input signal is applied, differs much from the simulations.
In figure 5.3 simulations and measurements of intermodulation distortion are compared. As seen, the
amount of distortion in the simulation differs from the measured, but the increasing from are very com-
parable.

New measurements, in order to validate the ones presented, would have appreciable, but because of time
lack, this has not been done.
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Figure 5.4: IMD simulation plotted along with belonging measurements
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Chapter 6

Controllers

Before a compensator is made, some general control theory is presented. In this chapter the three most
commonly used controllers are presented, as well as practical issues about applying the controllers to a
transducer.

Next, two compensator algorithms are presented. So far, these are the two most popular method; the first
is the state-space compensator and finally, the second is Klippel’s mirror filter.

6.1 Controller theory

The three controller systems that are dealt with in this thesis are:

• Feed-forward controller (or open-loop)

• Feedback controller (or closed-loop)

• Adaptive feed-forward controller

Feed-forward controller

The feed-forward controller is seen in figure 6.1a. This is the simplest and cheapest control design. It
compensates for the unwanted nonlinearities in the plant by changing the input w(t) to u(t) by adding the
inverse of the nonlinearities, and the wanted output y(t) is then achieved. Its disadvantage is, however,
if the dynamics of the plant model changes with age, temperature and other factors, then it might fail to
do the job.

Feedback controller

Another control method is the feedback model, or servo controller, as seen in figure 6.1b. Closed-loop
feedback systems feed the plant output back to the controller. The plant output that is feed back, is some
kind of information on how the loudspeaker is reproducing the audio input signal.
The advantage of this method is that it is very robust to changes in the plant as the output of it is measured
ym(t) all the time. So any changing nonlinearity as the compliance, would be recognized immediately.
The disadvantage of the feedback controller, is that the output is impractical to obtain, see [Bright, 2002]1,
which is explained as why no type of closed-loop controller for a loudspeaker system has seen much
commercial success, despite the big interest in loudspeaker linearization.
Even more problematic is it that delay introduced in the feedback link, might cause the feedback system
to fail the Nyquist stability criteria.

1Page 25
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Figure 6.1: Three types of controller systems, (a) feed-forward, (b) feedback, (c) adaptive feed-forward
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Adaptive feed-forward controller

The third method is the adaptive feedforward model, which is a combination of the two first, as seen in
figure 6.1c. Here a feedforward controller is applied where its states are updated once in a while. The
update is done by a feedback to a system identification block, which finds the state of the loudspeaker
and applies it to the feedforward model. The advantages is that the Nyquist stability criteria does not
have to be achieved, but still the changes caused by age, temperature and many other things is adapted
by the controller.

6.1.1 Plant measurement

The feedback used in two of the controllers, can be done in the following ways:

• The sound pressure is measured with a microphone and with the signal the diaphragm displacement
and velocity is possible to find.

• The motion of the diaphragm is recorded directly.

• The voltage and current are measured and hereof the states in the loudspeaker are found.

Sound pressure

On first hand it might be most convenient to measure the sound pressure and use it as feedback. But
actually it is the most problematic method, as the sound field changes with the microphone position. One
could say that the most obvious position for the microphone would be at the listeners, but as the far-field
response is changed because of the room response (wall reflections that are frequency dependent), a false
picture of the loudspeaker would be achieved.
Close to the loudspeaker, where the wavelength is big compared to the distance between the microphone
and the loudspeaker, it will be the dominant and the effect of the room can be neglected.
Another disadvantage is that it has to be calibrated once in a while.

The sound pressure can be used in two ways. Either the expected sound pressure can be calculated and
compared with the true, or the true acceleration can be calculated from the measured sound pressure and
then compared with the calculated acceleration. The sound pressure is defined in section 2.5.3.

Motional feedback

The first publication describing what is more commonly thought of as motional feedback appeared in
1927. Since several attempt has been made with different kinds of plant measurements:

• An accelerometer mounted on the diaphragm.

• Secondary magnet circuit and voice-coil.

• Conducting voice-coil former as a secondary winding.

• Laser that measures the displacement.

The accelerometer is a good choice when the mass of the diaphragm with assembly is big compared with
the mass of the accelerometer. If not it will change the properties of the loudspeaker, which is not wanted.
If a closed box loudspeaker is considered, then the measured acceleration will be proportional to the sound
pressure. Unfortunately, the high price makes it less interesting.

If a secondary magnet circuit and voice-coil is used, the voltage created by the back EMF can be measured
and the velocity of the diaphragm can be derived. But because the magnet is the most expensive part of
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the loudspeaker, the price would increase dramatically. A less expensive strategy is to add a secondary
winding to the primary coil, or if a conducting voice-coil former is used, then use it as a secondary winding
[Poulsen, 2004]2. Although a conducting voice-coil former increases the eddy currents, see section 2.6.2.

Voltage and current

The voltage is always known as the amplifier considered is a constant voltage amplifier. The current is
measured by adding a small resistor in series with the loudspeaker, and then measuring the voltage drop.
The current flow in the resistor, which is equal to the flow in the loudspeaker, can then be calculated.
The voltage and current measurement can be used to identify the state of the loudspeaker.
This method is the cheapest of them all because of the low cost Delta-Sigma A/D-converters, and is
therefore often used.

2Page 138
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Figure 6.2: State-space compensator

6.2 State-space compensator

The state space compensation is in fact a feedback linearization system, wherein the state space notation
is used. Feedback linearization is a general, abstract, complete formal theory for the control of nonlinear
dynamic systems. The method uses elements of feedforward control, in that it utilizes a complete model
of the system’s dynamics, and feedback control, as it uses a measurement of the system state. So although
the word ’feedback’ forms a part of its name, it is not a pure feedback control system.
The compensator is first derived in general form, with a state feedback from the plant. Later the system
is changed to estimate the states with a state observer, and finally it is shown that the states can be
estimated in a pure feedforward form.

6.2.1 Inverse dynamics

The first who applied feedback linearization to loudspeakers was [Johan Suykens and Ginderdeuren, 1992],
wherein an inverse dynamics processor uses feedback signals from a model of the loudspeaker to create a
feedforward distortion compensator. Later both [Schurer, 1997] and [Bright, 2002] have done the same;
all as continuous time formulations.

If considering the state space model from section 5.3, then the basic goal is to create a linear relationship
between input signal u(n) and the output y(n).
The essential feature of feedback linearization, is that by taking a sufficient number of time intervals n+1
of the output y(n), given certain conditions, one will eventually arrive at an expression that depends
exactly on the input. Such an expression can be inverted by simple algebraic expressions. The resulting
expression can then be used as a controller, which compensates the nonlinearities in the system.
Theory about applying feedback linearization in discrete time, is given in [Bright, 2002], but only applied
in a more simple form where certain nonlinearities are excluded.
In figure 6.2 a diagram of the principle is seen. The nonlinear system is the loudspeaker, modeled by the
state space model in section 5.3. The nonlinear compensator consist both of the inverse dynamic system
(ID) and the a linear dynamic system (LD). The inverse dynamics not only compensates the nonlinearities
but also the linear system, and of that reason the linear dynamic block must be included.

If considering the system output at time interval n + 1:

y(n + 1) = h(x(n + 1))
= h(F(x(n)) + g(x(n))u(n)) (6.1)

Then if the derivative of the right hand side with respect to the input u(n) is not zero:

∂y(n + 1)
∂u(n)

6= 0 (6.2)

an input-output link is established, and the output can be solved in terms of the input. If this derivative
is zero, then it is necessary to take the next output sample in same manor as (6.1). This procedure is
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repeated until one finds the derivative of the rth composition with respect to the input to not be zero,
represented as:

y(n + r) = hr ◦ (F,gu(n)) (6.3)

When the input-output link is established and the output y(n + r) depends directly on the input u(t),
the expression is inverted to form a compensator in terms of the inverse dynamics. This controller will
process the signal v(n) according to the inverse of (6.3), and feed this to the input to the plant. The
compensator will create a linear relationship between the input v(n) and the output y(n) as so:

y(n + r) = v(n)
z{}
⇒

y(z)
v(z)

=
1
zr

(6.4)

where r is the relative degree of the system, defined above. As seen, a delay through the controller and
the plant of r samples is happening.

Linear dynamics

As the linear dynamics are compensated in the inverse dynamics, it must be reintroduced by filtering the
input to the inverse-dynamics controller v(n) by a linear filter with the frequency response of the linear
dynamics of the system. As the output is set to the displacement y(n) = xD(n), see (5.22) or (5.24), the
linear filter in (5.13) or (5.16) is used with w(n) as input and v(n) as output, see figure 6.2.

Closed box

For the nonlinear system defined in (5.22), the above theory about taking the next output sample n + 1,
see 6.3, results in:
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As seen, with a relative degree of the system r = 3 depends directly on the input u(n). The expression is
easily inverted into a controller and y(n) replaced with v(n) (though it has been done, the result is not
shown here because of its size), and the relationship between v(n) and y(n) can be established:

y(n + 3) = v(n)
z{}
⇒

y(z)
v(z)

=
1
z3

(6.6)
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Vented box

Again for the nonlinear system in (5.24), the above theory results in:
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where at the relative degree of the system is r = 3. Again a similar relationship can be found:

y(n + 3) = v(n)
z{}
⇒

y(z)
v(z)

=
1
z3

(6.8)

6.2.2 State observer

The state space compensator developed above suffers from the same problem as traditional feedback
processors described in section 6.1, namely that the controller requires states measurement of the state
vector x(n).
A solution to this can be to make a partial state measurement, i.e. to measure one state, and simulated the
others by using a state observer. One example is Beerling et al. [Marcel A. H. Beerling and Hermann, 1998],
which presented a system with an accelerometer mounted on the diaphragm, and from that he calculated
the velocity, displacement and current.

Schurer et al. presented in [Hans Schurer, 1997] a feedback linearization controller that employed a state
observer which made no measurement on the plant. In the system, the input to the state observer was
the output from the controller u(n). This is theoretically possible with an accurate plant model, and the
resulting controller is a pure feed forward type.
A diagram of the system is seen in figure 6.3, and the state observer is the state space plant model in
(5.20). The states in the model are read and fed back to the compensator.

One disadvantage with this approach is that is might become unstable, as a feedback loop is created
between u(n) and x̂(n), see [Bright, 2002].

6.2.3 Pre-estimation of states assuming ideal alignment

As a result of (6.4), stating that the rth next sample output is given by the input to the nonlinear controller
v(n), the states can be simulated from the input to the compensator, in a more simple manner than using
the state observer.
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Figure 6.3: State-space compensator with state observer

Figure 6.4: State-space compensator with pre-simulated states

In figure 6.3 this principle is seen. Here the delays are added to fulfill (6.4), whereafter the states are
estimated. As the displacement is calculated in the linear dynamics (LD) block, see section 6.2.1, and
given in the input to the inverse dynamics v(n), it only needs to be delayed with three time samples. If
applying (5.12), but with an extra delay (multiplying with z−1), state x2 and x3 are found. The estimation
of the last states are different for the closed box and vented box loudspeaker.

Closed box

As the system is nonlinear, and as the displacement states x2 is calculated by its linear filter, the current
must be nonlinear in order to describe the nonlinear system.
First the linear current filter is used (5.14) and then the nonlinearities are added (5.15).

Now all three states are estimated, and the compensator for the closed box is complete.

Vented box

For the application of the vented box speaker, the estimated current must be with a nonlinear filter. The
linear filter used first is (5.17) and then the nonlinearities added are the as for the closed box case (5.15).

Furthermore the two states for both the inside box pressure and the volume velocity in the vent is esti-
mated. It can be done respectively with (5.18) and (5.19), although computations would be saved if the
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(a) (b)

Figure 6.5: THD and IMD simulations at different driving levels, (a) THD, (b) IMD

pressure inside the box first is calculated (5.18), and then rewriting (5.10) to calculate the volume velocity.

The feedforward compensator the vented box loudspeaker is now complete.

6.2.4 Simulation

In order to evaluate how well the state space compensator in theory, compensates for the total harmonic
distortion and intermodulation distortion, it is applied on the nonlinear plant model derived in section
5.3 for the vented box loudspeaker.

In figure 6.5(a) the THD measurement is seen at different driving levels. Notice, below the helmholtz
resonance frequency fB = 51Hz the distortion is very high. This is due to the fact that the sound from the
diaphragm is close to being in inverse phase with the sound from the vent, see figure 2.10, thus producing
very low sound pressure at large displacement. At and above the Helmholtz resonance, the distortion is
very low, even at the highest input level the distortion is below 0.1%. The distortion for the low level
signal, is lower than the noise floor.
In figure 6.5(b) the IMD measurement is seen at different driving levels. Nearly the same conclusions can
be drawn as for the THD measurement, though the distortion for the highest level, increases slightly, and
is thus still low.
As seen, in theory the state space compensator compensates for the distortion very well.
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6.3 Mirror filter

In this section the Mirror filter is presented. The Mirror filter is a feed-forward controller system for
compensation of nonlinearities in transducers. It was developed and patented by Klippel [Klippel, 1992c]
and applied to a loudspeaker [Klippel, 1992a]. Later in [Klippel, 1998] Klippel finally recognized that the
mirror filter is simply a feedforward case of the integrator decoupled form of feedback linearization. Herein
the system states are determined by processing the input to the compensator, instead of by a observer
model processing the output of the compensator.

Notice, the mirror filter normally includes a term for compensating the magnetic attraction force, section
3.1.1. In this thesis this is left out, because it was concluded in section 3.1.4 that this nonlinearity only
contributes very little to the overall distortion.

6.3.1 Algorithm

The mirror filter algorithm is very simple and is derived by subtracting the desired linear dynamics from
the nonlinear dynamics.
First the nonlinear dynamics equation is written by combining and z transforming (5.7) and (5.9):

Bl(xD(z))u(z) = RE

(
Mt

1
T 2

s

(z2 − 2z + 1) + RD
1
Ts

(z − 1) + Za

)
xD(z) + RE

1
CD(xD(z))

xD(z) (6.9)

+Bl(xD(z))LE(xD(z))
1
Ts

(z − 1)ic(z) + Bl(xD(z))LEX(xD(z))
1
Ts

(z − 1)ic(z)xD(z)

+Bl(xD(z))2
1
Ts

(z − 1)x(z) (6.10)

Notice the notation of the mechanical parameters. Only the mechanical equivalent of the acoustic mass
is added to the mechanical mass. The Za is the acoustic radiation impedance, where both the closed box
and vented box acoustic impedance can be inserted. The vented box impedance is given in (2.21) and the
closed box impedance in (2.13), where the mass is not included for the last one. The acoustic impedances
are continuous time equations, but as shown below they are canceled out.
The desired dynamics of the overall system is found by rewriting the linear filter (5.16):

Bl(0)w(z) = RE

(
Mt

1
T 2

s

(z2 − 2z + 1) + RD
1
Ts

(z − 1) + Za

)
xD(z) + RE

1
CD(0)

xD(z) (6.11)

+Bl(0)LE(0)
1
Ts

(z − 1)ic,lin(z) + Bl(0)LEX(0)
1
Ts

(z − 1)ic,lin(z)xD(z) + Bl(0)2
1
Ts

(z − 1)x(z)

Again it can be seen that both the closed box and the vented box can be used. And finally the control
law is derived by subtracting (6.11) from (6.9):

u(z) =
[
w(z) +

(
1

CD(xD(z))
− 1

CD(0)

)
RE

Bl(0)
xD(z) +

(
Bl(xD(z))2

Bl(0)
−Bl(0)

)
1
Ts

(z − 1)xD(z) (6.12)

−LE(0)
1
Ts

(z − 1)ic,lin(z)
]
· Bl0
Bl(xD(z))

+ LE(xD(z))
1
Ts

(z − 1)ic(z) + ic(z)
dLE(xD(z))

dxD(z)
1
Ts

(z − 1)xD(z)

As seen, no acoustical parameters are left, and the only mechanical parameter is the compliance of the
suspension.
The states that are inputs to the mirror compensator, are calculated from w(n) as a feedforward form.

• The displacement, velocity and acceleration of the diaphragm are calculated from (5.12).

• The linear current is calculated from (5.14) for the closed box and from (5.17) for the vented box.

70



(a) (b)

Figure 6.6: THD and IMD simulations at different driving levels, (a) THD, (b) IMD

• (5.15) is used in order to calculated the nonlinear current.

As seen, only the calculation of the current differs from the closed box to the vented box loudspeaker.
Though if the vented box is used, (5.18) must be used before calculating the current.

6.3.2 Simulation

In figure 6.6(a) and 6.6(b), THD and IMD simulations for the mirror filter is seen at different driving
levels. When comparing to figure 6.5 it can be seen that the compensators nearly performs equally, thus
the same conclusions can be drawn with the mirror filter
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Chapter 7

Future work

During this thesis many topics have been investigated, but because of a limited time schedule, many
remain untouched. In this chapter it is discussed how to continue on this thesis. The topics are written
in the order that they must be done.

Many of the acoustic measurements must be done one more times, in order to validate the ones which are
already given. This was originally planned, but failed due to bad luck with the loudspeaker. Simulations
have shown that both the compensation algorithms worked with in this thesis, compensate the plant
model, which they are derived from, perfectly well. But in order to get a true image of the performance,
they must be applied on the test loudspeaker; all work for this has been done within the Matlab toolbox,
it only needs to be applied.

Afterwards some listening tests with several persons with different relations to hifi must be established.
This is very important as the improvement in the subjective listening pleasure must be estimated.

An idea of where to implement soft clipping was given, but how it is done must be further investigated.

As already indicated, in a batch, feedforward compensators are impractical as every transducer is different
and as they change during operation. Of this reason investigation on system identification must be done
for a later implementation of a adaptive feedforward compensator.

Finally the evaluation of the performance must be done again, both by measurements and by listening
tests.

Another direction could be done by investigating the opportunity to rewrite the difference equations for
the transducer into a neural network. This is a hole new way of looking at compensation algorithms as
normally physical model are used.
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Chapter 8

Conclusion

For now the investigation, on compensation of nonlinearities in loudspeakers is over, and the following
conclusions can be drawn.
As shown in figure 3.5, break up in the diaphragm, for the driver used in the test loudspeaker, occurs at
relatively low frequencies when taking in mind that its working range is somewhat higher. Furthermore,
eddy currents causing the electric impedance to behave differently than a coil at high frequencies. These
two issues are making the plant model inaccurate at high frequencies. Looking at the distortion caused by
the inductance in section 3.2.3, it can be seen that its main contribution, is intermodulation distortion at
high frequencies. A plant model that is unprecise in that area, might cause problems when compensating
for the nonlinearity in the inductance.
During the thesis, no compensation algorithm studied, include break up in the diaphragm or eddy cur-
rents, but all models compensates the nonlinear inductance.

Next it was shown in chapter 4 that polynomials for modeling the nonlinearities as commonly used, can
causes some problems, an even worse, the system can become unstable. Exponential functions were pro-
posed instead, which have been shown to always be stable and behave more appropriately outside of the
measured data. But also the sigmoid function is used when modeling the inductance, due to its special
’s’ form. Finally, the given section, an idea to implement a soft clipping system with respect to the dis-
placement, was given.

A toolbox in Matlab was made to simulated both closed box and vented box loudspeaker. In the toolbox
compensation algorithms could be applied, simulated and evaluated, see section 5.4.

In general all proposes so far, with the exception of the one from Andrew Bright, are derived in continuous
time for later to be implemented in discrete time. During this thesis the two most popular compensators
have been derived from scratch with the intension on discrete time from the start. The compensators
are the state space compensator, see section 6.2 and Klippel’s mirror filter, see section 6.3. It is believed
that it is much more appropriate to work in the domain which the application is to be used. To do this,
methods for describing the nonlinear transducers in discrete time were used, see chapter 5.

Finally, the two compensators were evaluated, and in theory, both of them are close to being ideal, but in
real world applications they will fail as they in this thesis, only are considered as feedforward controllers.
They must be adaptive, including a system identification block for updating the feedforward controller.
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Appendix A

Data coefficients

A.1 Digital filters

A.1.1 Closed box

HxD+2(z) =
xD+2(z)

u(z)
= S0

bx(2)z−2

ax(0) + ax(1)z−1 + ax(2)z−2
(A.1)

where:

S0,xD
=

CtBl

RE

bxD,CB(2) =
1

CtMt
T 2

s

axD,CB(0) = 1

axD,CB(1) = −2 +
Rt

Mt
Ts +

Bl2

REMt
Ts

axD,CB(2) = 1− Rt

Mt
Ts +

1
CtMt

T 2
s −

Bl2

REMt
Ts

A.1.2 Vented box

HxD+2(z) =
xD+2(z)

u(z)
= S0

bxD,V B(2)z−2 + bxD,V B(3)z−3 + bxD,V B(4)z−4

axD,V B(0) + axD,V B(1)z−1 + axD,V B(2)z−2 + axD,V B(3)z−3 + axD,V B(4)z−4

(A.2)
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where:

S0,xD
=

CtBl

RE

bxD,V B(2) = MAP CAB
1

T 2
s

bxD,V B(3) = −2MAP CAB
1

T 2
s

+
MAP

RALTs

bxD,V B(4) = CAB
1

T 2
s

− MAP

RALTs
+ 1

axD,V B(0) = CDMt
1

T 2
s

MAP CAB
1

T 2
s

axD,V B(1) = CDMt
1

T 2
s

(
−2MAP CAB

1
T 2

s

+
MAP

RALTs

)
+

(
−2CDMt

1
T 2

s

+ CDRD
1
Ts

+
CDBl2

Re ∗ Ts

)
MAP CAB

1
T 2

s

axD,V B(2) = CDMt
1

T 2
s

(
CAB

1
T 2

s

− MAP

RALTs
+ 1

)
+

(
−2CDMt

1
T 2

s

+ CDRD
1
Ts

+
CDBl2

Re ∗ Ts
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−2MAP CAB

1
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CDMt

1
T 2
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− CDRD
1
Ts
− CDBl2
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+ 1
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MAP CAB
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T 2
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+CDSDMAP SD
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T 2
s
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−2CDMt

1
T 2
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+ CDRD
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+
CDBl2
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− CDRD
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−2MAP CAB
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+
MAP

RALTs

)
− 2CDS2
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T 2
s
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(

CDMt
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T 2
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− CDRD
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A.2 Bessel and Struve functions

Bessel function of first kind:

J1(x) =
x

2
− x3

22 · 4
+

x5

22 · 42 · 6
− · · · (A.3)

Struve function of order one:

H1(x) =
2
π

[
x2

3
− x4

32 · 5
+

x6

32 · 52 · 7
− · · ·

]
(A.4)
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Appendix B

Parameters of the test loudspeaker

B.1 Linear parameters

SI s1 s2 tweeter
Electrical Parameters
RE Ω 5.54 5.57 3.57
LE mH 0.337 0.346 0.1
R2 Ω 3.02 -
L2 mH 0.482 -
fs Hz 50.1 45.8 1348

Mechanical Parameters
Mt g 8.629 8.439 0.3
MD g 8.22 8.03 -
RD kg/s 0.979 0.973 0.93
CD mm/N 1.17 1.43 0.05
KD N/mm 0.85 0.70 -
Bl N/A 5.13 5.21 2
Sd cm2 80.00 80.00 6.2

Loss factors
QM N/A 2.77 2.49 2.94
QE N/A 0.57 0.5 3.95
QTS N/A 0.47 0.41 1.68

VAS l 10.6 12.99 -
η0 % 0.224 0.241 -
Lm dB 85.70 86.02 90.1
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B.2 Nonlinear coefficients

B.2.1 Polynomial fit

Bl CD LE

(0) 5.132 1.999 5.367e− 1
(1) −8.231e− 2 6.533e− 2 −9.897e− 2
(2) −5.429e− 2 −8.370e− 2 6.387e− 3
(3) −1.638e− 3 −4.166e− 3 3.638e− 3
(4) −4.101e− 3 2.627e− 3 −2.757e− 4
(5) 1.544e− 4 1.121e− 4 −9.789e− 5
(6) 1.31e− 4 −4.965e− 5 7.088e− 6
(7) −2.034e− 6 −1.094e− 6 1.022e− 6
(8) −1.171e− 6 3.924e− 7 −6.626e− 8

B.2.2 Exponential fit

Bl

Nl = 5
σ = sqrt5

xl = [−5;−2.5; 0; 2.5; 5]
ωopt = [1.5131; 2.6684; 2.1999; 2.4490; 1.0571]

CD

Nl = 5
σ = sqrt7

xl = [−7;−3.5; 0; 3.5; 7]
ωopt = [0.3746; 0.3421; 1.5851; 0.5998; 0.2997]

LE

Nl = 6
σ = sqrt7

xl = [−6;−3.6;−1.2; 1.2; 3.6; 6]
ωopt = [0.4517;−0.2731; 0.5095;−0.5164; 0.2274;−0.2689]

ω0 = 0.5513
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B.2.3 Sigmoid fit

LE

ω1 = −0.5776
ω0 = 0.9102
a = 0.7145

x0 = −0.9131

85


	Introduction
	History
	Purpose of the thesis
	Organization of the thesis

	Linear transducer model
	Transducer construction
	Electrical circuit
	Mechanical circuit
	Electro-mechanical transduction
	Acoustical circuit
	Closed box
	Vented box
	Acoustic response
	Linear frequency responds

	Extensions to the linear model
	Temperature model
	Eddy currents
	Frequency modulation (Doppler effect)

	Speaker construction
	Loudspeaker alignment
	Box construction and measurements


	Nonlinearities in the transducer model
	Parametric non-uniformity
	Electro-mechanical part
	Mechanical part
	Others
	Analysis of importance of the nonlinearities

	Evaluation of nonlinear loudspeakers
	Variation in filter characteristic
	DC offset
	Total harmonic distortion and Intermodulation distortion
	Summary


	Modeling of nonlinearities
	Least Squares
	Polynomial fit
	Exponential fit
	Alternative functions
	Fitting models with soft clipping
	Summary

	Discrete nonlinear simulation
	Discrete representation of differential equations
	Discrete difference

	Digital filter description of transducer
	State space model of transducer
	Closed box
	Vented box

	Matlab simulation toolbox
	Layer 1: Settings
	Layer 2: Signal generation
	Layer 3: Simulation
	Layer 4: Signal processing
	Layer 5: plotting

	THD and IMD evaluation of nonlinear plant model

	Controllers
	Controller theory
	Plant measurement

	State-space compensator
	Inverse dynamics
	State observer
	Pre-estimation of states assuming ideal alignment
	Simulation

	Mirror filter
	Algorithm
	Simulation


	Future work
	Conclusion
	Bibliography
	Data coefficients
	Digital filters
	Closed box
	Vented box

	Bessel and Struve functions

	Parameters of the test loudspeaker
	Linear parameters
	Nonlinear coefficients
	Polynomial fit
	Exponential fit
	Sigmoid fit





