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Resumé
Denne afhandling presenterer en metode for behavioral syntese af asynkrone kred-sløb. Målet er at tilvejebringe et syntese �ow, som udnytter og overfører metoder frasynkrone kredsløb til asynkrone kredsløb. Ideen er at �ytte den synkrone behavioralsyntese abstration ind i det asynkrone handshake domæne ved hjælp af en beregn-ings model, som ligner den synkrone datavej og kontrolenheds struktur, men som erfuldstændig asynkron.Denne model indeholder muligheden for at isolerer enkelte eller alle beregningse-lementer ved at låse deres respektive inputs og outputs når beregningselementer erinaktivt. Dette reduerer unødvendig skifteaktivitet i de enkelte beregningselementerog derved energiforbruget af hele kredsløbet. En samling af behavioral syntese algo-ritmer er blevet udviklet, som tillader designeren at foretage design spae explorationbestemt af både power- og udførelsestids-krav. Datavej og kontrol arkitekturen bliverderefter udtrykt i Balsa-sproget, og syntaks styret oversættelse anvendes til at kon-strurere det tilhørende asynkrone handshake kredsløb (og evt. endeligt et layout).
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Abstrat
This thesis presents a method for behavioral synthesis of asynhronous iruits, whihaims at providing a synthesis �ow whih uses and tranfers methods from synhronousiruits to asynhronous iruits. We move the synhronous behavioral synthesisabstration into the asynhronous handshake domain by introduing a omputa-tion model, whih resembles the synhronous datapath and ontrol arhiteture, butwhih is ompletely asynhronous. The model ontains the possibility for isolatingsome or all of the funtional units by loking their respetive inputs and outputswhile the funtional unit is idle. This redues unneessary swithing ativity in theindividual funtional units and therefore the energy onsumption of the entire ir-uit. A olletion of behavioral synthesis algoritms have been developed allowingthe designer to perform time and power onstrained design spae exploration. Thedatapath and ontrol arhiteture is then expressed in the Balsa-language, and usingsyntax direted ompilation a orresponding handshake iruit implementation (andeventually a layout) is produed.
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C h a p t e r 1 Introdution
Today, a wide range of dediated real-time appliations are emerging. Examples ofthese are the next generation of mobile phones, smart-ards and more futureristiappliations as e-identi�ation, e-payment, e-key systems et. For suh portablewire-less appliations power is a limited resoure beause of restritions in batterysize or beause power is extrated from the environment (light, magneti �elds orheat et.). Furthermore, to meet the extreme size and weight requirements the entiresystem (input/output transduers, analog iruitry, futuristi-iruitry, power supplyand the digital system, onsisting of digital hardware and software) is implementedonto one single hip (�System on Chip�).The fous of this researh is the hardware part of the digital system, whih oper-ates under the following di�ult harateristis:Data Proessing The appliations are reative in nature with data arriving inbursts with long periods of waiting. In-between bursts ultra low-power op-eration is required, while during bursts heavy omputation, suh as enryptionfor seure data transmission, is required.Response Time For some appliations the time to respond to an external eventis ruial as otherwise data will be irrevoably lost, requiring a lose to zerotransition time from sleep mode into full-speed operation.Power Supply For battery-less appliations external power is provided spuriouslyby the environment and stored internally on large storage apaitors leading toa very limited power supply often of poor quality.Noise Level The presene of on-hip analog and RF-iruitry sets severe restritions



2 Introdutionfor the eletri-noise and eletromagneti-emission of the digital iruit suh asnot to disrupt input/output-interfaing or RF-ommuniation.Asynhronous design o�ers several advantages, ompared to synhronous design,for the design of these intelligent iruits. The asynhronous design methodologyspei�ally targets low-power operation (power is only used when proessing) and theself-timed nature leads to an immediate response time. Furthermore asynhronousiruits are inherently insensitive (and thus robust) to variations in temperature,proess parameters and supply voltage. The latter an be used advantageously sine,if the iruit has aess to external power, the supply voltage an be dereased allow-ing for ultra low-power operation. Finally, the asynhronous nature of the swithingativity auses the eletromagneti and eletri noise ontributions to evenly dis-tribute aross the frequeny spetrum (equivalent to white noise). This reduesspikes in the spetrum down to a level whih allows o-existene with analog andRF-iruitry. Typially only ritial subparts (with respet to operating harater-istis) of the digital system will be implemented asynhronously and the remainingpart synhronously.Currently, the lak of synthesis methods and tools whih are apable of diretlysynthesizing a working asynhronous iruit from a high-level spei�ation makes thedesign of large systems a tedious e�ort involving more design work than designinga orresponding synhronous iruit. The majority of existing synthesis tools inthis area are low-level and dediated to the generation of ontrol iruitry [24, 40,71, 86, 92℄. A few high-level synthesis tools exist, among those the Tangram silionompiler developed by Philips Researh Labs and the somewhat similar publi domainversion BALSA from Manhester University. These tools use speial asynhronoushardware desription languages dediated to asynhronous design, that does not �twell into existing VHDL/SystemC based design �ows and CAD-tools. Furthermore,the supported synthesis proess, syntax-direted ompilation, is haraterized by aone-to-one orrespondene between spei�ation and implementation.Let us begin by looking into the urrent status of synthesis �ows of synhronousand asynhronous iruits as illustrated by Figure 1.1. Synthesis of synhronous ir-uits, whih is illustrated in the left olumn of Figure 1.1, has sueeded in raisingthe level of abstration to that of speifying iruits at the behavioral level. Froma behavioral desription in a language like VHDL, Verilog or System-C some inter-mediate representation is extrated � often a ontrol data �ow graph (CDFG). Fromthe CDFG the lassi synthesis tasks [67℄ of sheduling, alloation, and binding isperformed resulting in a RTL level iruit desription whih is then synthesized intogate-level iruits and eventually a layout.Synthesis of asynhronous iruits is illustrated in the right olumn of Figure 1.1.It is less mature and several somewhat di�erent approahes is being pursued. Themost in�uential of the available synthesis tools fall in two ategories: (i) synthesisof large-sale RTL level iruits based on syntax-direted ompilation from CSP-likelanguages: Tangram [11, 100℄, OCCAM [17℄, Balsa [8℄, ACK [59℄ and TAST [85℄, and(ii) synthesis of small-sale sequential ontrol iruits [26, 41℄. The tools that per-form syntax direted ompilation target a library of so-alled handshake omponents.
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4 Introdution
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6 Introdutionan be implemented.Using this synthesis �ow we have produed layouts for a ouple of benhmarks andwe report on the area, speed and power �gures for these iruits. By building on topof syntax-direted ompilation, our synthesis approah works entirely in the domainof handshake hannels and handshake omponents. This has a number of signi�-ant impliations: Firstly it enables the use of a synthesis �ow whih is surprisinglysimilar to that used in synhronous design tools, and seondly it avoids altogetherthe omplex problem of speifying and synthesizing a ontroller. Our work is not inany way restrited to the use of Balsa or other syntax-direted methods, the usedapproah serves as a pratial demonstration of how to use the developed methodsand tehniques.For the behavioral synthesis part we have developed the following algorithm suite:(i) Power aware synhronous synthesis algorithm. This algorithm is a lique heuristialgorithm operating with a time and maximum power per time onstraint. Thisis useful for appliations having a power limit e.g. given by the maximum powerdelivered by a solar panel.(ii) Evolutionary synhronous synthesis algorithm and a simulated annealing syn-hronous synthesis algorithm. These are meta-heuristi algorithms operatingwith a maximum time onstraint.(iii) Simulated Annealing task level algorithm for handling the onditional parts ofthe CDFG. This last algorithm has not been implemented but the method isoutlined.These algorithms all operate in disrete time using time-slots. After the �nal shedulehas been obtained it is relaxed into an asynhronous shedule, keeping the order ofexeution events as a relative ordering.The ontribution of this thesis is the addition of behavioral synthesis to asyn-hronous iruit design in the form of automati resoure sharing and onstraintbased design spae exploration. In partiular our ontributions are: (1) an abstratevent based omputation model, (2) synthesis algorithms for sheduling, alloationand binding and (3) target implementation spei�ations. The thesis publiationsare [74, 75, 93℄.



1.2 Thesis outline and readers guide 71.2 Thesis outline and readers guideThis thesis is organized as follows:Chapter 1 Introdution Introdues this work, presents our ontributions and showsthis outline of the thesis.Chapter 2 Bakground Brie�y introdues the ideas behind behavioral synthesis,CDFGs and asynhronous iruits.Chapter 3 Related Work Gives a survey of related work.Chapter 4 Behavioral Synthesis for Asynhronous Ciruits Presents the on-ept whih allows us to adapt the tehniques from synhronous behavioral syn-thesis into behavioral synthesis of asynhronous design and desribes details ofdatapath design.Chapter 5 Implementation in Balsa The use of the Balsa-language to generateour iruits is presented in this hapter.Chapter 6 Algorithms for Behavioral Synthesis The algorithms developed forbehavioral synthesis used to generate the iruits are presented in this hapter.Chapter 7 Results The area, speed and power �gures for our layouts are presentedand disussed.Chapter 8 Conlusion ontains the onlusion of the thesis and presents dire-tions for future work.As a reading guide, the reader who is familiar with asynhronous iruit designand behavioral synthesis and not interested in related work an skip hapter 2 Bak-ground and hapter 3 Related Work, and proeed diretly to hapters 4 BehavioralSynthesis for Asynhronous Ciruits, 5 Implementation in Balsa and 6 Algorithms forBehavioral Synthesis whih presents the main ontribution of this thesis. More speif-ially the underlying onepts of this work are introdued in 4 Behavioral Synthesisfor Asynhronous Ciruits. The iruit implementation details and Balsa-templatesused to design the asynhronous iruits in the result setion are presented in hapter5 Implementation in Balsa. For the reader with an algorithmi interest hapter 6Algorithms for Behavioral Synthesis presents the behavioral synthesis algorithms de-veloped in this researh. Finally, the reader is enouraged to read hapter 7 Resultswhih explains and disusses the results.
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C h a p t e r 2 Bakground
This thesis brings together the domains of both behavioral synthesis and asyn-hronous iruit design. In order to be able to better understand the work presentedin this thesis, this hapter will give an introdution to some of the onepts and ideasof these domains. The reader should not onsider this to be a omplete referene,nor to be a tutorial.2.1 Synthesis �ow and CDFG formatA CDFG aptures only the ontrol and data dependenies that are inherent in theomputation. In this way it is not biased towards a ertain implementation.In this setion we introdue the CDFG format and an example CDFG whih willbe used throughout in this thesis to illustrate the synthesis �ow. The fous of thethesis is on the synthesis of asynhronous iruitry given a CDFG. The proess ofextrating the CDFG from a behavioral spei�ation in some hardware desriptionlanguage is well understood. It is an integral part of existing synhronous synthesissystems, and it is not addressed in this thesis.To illustrate the soure ode for our running example we will use the Balsa-language [7, 8, 6℄, augmented with a multipliation operator, as the Balsa languagedoes not yet inlude a multipliation operator. The aim in this thesis is not to advo-ate the use of Balsa, it should merely be seen as an illustration and in priniple mosthardware desription languages ould be used. For asynhronous iruit design it isonvenient if the language inludes hannel ommuniation primitives and statementlevel onurreny, and it is enouraging to see that suh features are being inluded,



10 Bakgroundimport [balsa.types.basi℄type word is 16 bitsproedure example(input X0,X1,X2:word;output Y0,Y1:word) isvariable x0,x1,x2,y1,y0:wordonstant a0= 255onstant a1= 255onstant a2= 255onstant a3= 255beginloopX0->x0 || X1->x1 || X2->x2 ;y0 := (((a0+x0)+(x0*x1)) - a1 as word) ||if x1>a2 theny1 := (a3*(x1+x2) as word)elsey1:= (x1-x2 as word)end ;Y0<-y0 || Y1<-y1endendFigure 2.1: An example Balsa desription.or at least proposed for inlusion in, suh languages as System-C and System-Verilogand an additional pakage for adding suh features to System-C is proposed in [13℄.The intended synthesis �ow involves the following steps: From the Balsa odethe CDFG is exated. The CDFG is then subjet to the synthesis steps explainedin this thesis and the resulting iruit struture (datapath and ontrol) is expressedas a Balsa program. The �nal step of the synthesis �ow is then to ompile theBalsa program into a netlist of handshake omponents and to produe a standardell implementation.Figure 2.1 shows our example asynhronous omponent spei�ed in Balsa andFigure 2.2 shows the orresponding CDFG whih will serve as the running examplein this paper. The elements of the CDFG and the struture are explained in thefollowing. The CDFG is a 1-bounded olored Petri net � the olors representingdata values. The edges in the CDFG ontain plaes (like in a STG) and the nodesare Petri net transitions. A node an be an operator or an represent onditionalsequening as the example CDFG shows. For a more formal de�nition the reader isreferred to [96, 33℄.The basi elements in our CDFG are shown in Figure 2.3 and are as follows:nodes Essential nodes represent atomi omputations e.g. arithmeti operations as
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Figure 2.3: A minimum and, for most ases, su�ient set of Control Data FlowGraph elements.in the strutural desription is in turn de�ned by its own (lower-level) behavioraldesription, for whih a mapping to silion hardware exists. The purpose of behav-ioral synthesis is two-fold: (i) Automate tedious parts of the design proess and thusimprove the turnaround time. (ii) To perform design spae exploration.Automating tedious parts of the design proess is beoming inreasingly impor-tant as designs inrease in size and omplexity, and the time alloted to onstrut thedesign beomes ever more tighter. Speifying the desription of an algorithm at ahigher level of abstration allows a designer to fous on implementing an improvedalgorithm. It is well-known, that work put to use at a high-level of abstration has alarger impat on the resulting performane harateristis, than work put to use at alower-level of abstration. Furthermore, the designer avoids spending time on detailsof the implementation e.g. transistor sizing, whih of ourse has an impat on theperformane but usually an order of magnitude less than improving the algorithm.Design spae exploration is also beoming inreasingly important as modern sys-tems are moving into System-on-Chip platforms where the design beomes part of agreater whole and thus needs to �t into ertain spei�ations. This might mean thatthe maximal speed of the iruit is required if our iruit is part of the ritial pathof an entire system. But it might also be that requirements are low and thus thereis no need to develop a large high-speed iruit.The output from a high-level synthesis system usually onsists of a datapathstruture at the register-transfer level (RTL) or an equivalent desription language,and a spei�ation of a �nite state mahine to ontrol the datapath. In our ase wewill use the Balsa language whih will translate into a set of asynhronous handshakeomponents for both the datapath and the ASFM. At the RT level or equivalent
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Figure 2.4: Algorithm statements and orresponding CDFG strutures.level, a datapath is omposed of a omputational part (funtional units e.g. ALUs,multipliers, and shifters et.), storage units (registers, lathes and memories) andinteronnetion units (e.g. busses, multiplexors and demultiplexors).As previously disussed the �rst step is to extrat a CDFG from the behavioralalgorithm, part of this involves a series of ompiler-like optimizations as ode motion,dead ode elimination, onstant propagation, ommon subexpression elimination, andloop unrolling. Following this omes the ore synthesis re�nement proess, of whihthere are two lasses:Resoure onstrained behavioral synthesis Here the goal is to �nd the fastestiruit given a set of resoure onstraints either in the form of a maximumallowable area for the iruit or a detailed desription of the maximal number



14 Bakgroundand types of funtional units and the maximum memory available to the iruit.Time onstrained behavioral synthesis Here the goal is to �nd the smallest ir-uit (omputational area and memory) given a maximum exeution time on-straint.In addition to these there is the power onstraint whih omes into play by addingto the two other onstraints, reduing the solution spae. In this thesis we will on-sider time and power onstrained behavioral synthesis. The appliations our researhtargets are performane-intensive parts of an algorithm whih therefore require im-plementation in hardware, thus the onstraints are often in the form of a time re-quirement or a dataproessing frequeny to whih the smallest iruit needs to befound. However there is nothing preventing us from implementing resoure and poweronstrained behavioral synthesis.In general we distinguish between behavioral synthesis in ontinuous time andbehavioral synthesis in disrete time, but in general both approahes involve thesame three basi elements:Sheduling The operations in the CDFG need a start time. For ontinuous timethis is an absolute time or a relative ordering of operations. In disrete timethis denotes the start time-slot.Alloation A set of funtional units needs to be alloated. The funtional units arethe mahines on whih the operations are exeuted.Assignment The operations need to be bound to a spei� mahine to avoid on-�its for parallel operations.These elements are believed to be NP-hard problems and thus in general requireheuristi approahes to �nd solutions. These three tasks are losely interrelated andshould be solved simultaneously to arrive at an optimal solution. All the behavioralsynthesis algorithms presented in this thesis do this. There are in priniple threeapproahes to solve these problems:Integer Linear Programming (ILP) formulations whih solve the problem foroptimality but is only appliable for small problems.Heuristi methods that ome in two �avors: onstrutive approahes and itera-tive re�nement. There are many approahes for onstrutive sheduling, dif-fering with regard to the seletion riteria used to shedule the next operation.Heuristi approahes run e�iently for large designs, but does not produeoptimal iruits.Meta-heuristi Algorithms whih are apable of solving large ILP problems ef-fetively, although heuristially.Besides these fundamental elements of behavioral synthesis there are elements thatinvolve �nding the minimum amount of memory for the spei� shedule, alloation
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AckFigure 2.5: Four phase bundled data push handshake protool.and assignment, as well as �nding the best routing (the minimal set of multiplexing)of data between the funtional units. All of these elements of behavioral synthesisand datapath synthesis will be elaborated further in their respetive hapters.2.2.1 ASAP and ALAPNow, before trying to minimize the silion area, we �rst want to know if, given theCDFG and the time onstraint T , a feasible shedule an be onstruted at all ?(using unlimited silion area). Fortunately, there is a polynomial algorithm, O(n2),whih an give us that answer:ASAP (As Soon As Possible) Augment the CDFG with a soure node whih hasdireted ars to all the input nodes. Set Ssource = 0 for the soure node. Then�nding the Si for all other nodes vi (σi) beomes a matter of �nding the longestpath from the soure to that node. (Using the fastest FU for the job).If Starget ≤ T for the target node, it is possible to onstrut a feasible shedule.Furthermore Si is the earliest time an operator σi an be sheduled (again allowingfor unlimited silion area). The same algorithm an be applied �bakwards�:ALAP (As Late As Possible) Augment the CDFG with a sink node whih hasdireted ars from all the output nodes. Set Ltarget = T for the target node.Then �nding the Li for all other nodes vi (σi) beomes a matter of �nding thelongest path from that node to the target. (Using the fastest FU for the job).And the time-interval Si . . . Li spei�es the sheduling time interval in whih theoperator σi an be sheduled, given the time onstraint T and thus bounds thesolution spae, in whih we are going to searh for the optimal solution.2.3 Asynhronous iruit designIn this setion we disuss some of the properties of the asynhronous iruit designstyle used in this thesis. As the word asynhronous indiates, an asynhronous iruitdoes not have a global synhronization event in the form of a lok, but ratheris loally synhronized. In this thesis we use four-phase bundled data handshakeprotool as omponent synhronization protool. This means a signal ontains a 1
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Figure 2.6: Two types of hannel ommuniations: push and pull. Data �ows fromleft to right on the hannels.bit request and a 1 bit aknowledge wire additional to the data wires. One exampleof this the four-phase bundled data push early handshake protool as illustrated byFigure 2.5. In this protool the master ontrols the request and data signals and theslave ontrols the aknowledge, this also means data is transmitted from the masterto the slave. The protool operates by the master raising the request when the slaveis ready to proess data, indiated by the aknowledge being low, and the data signalsare valid. The slave sees this and reads the data. When data has been read the slaveaknowledges this by raising the aknowledge signal. The master then lowers therequest signal, removes data and starts preparing for the next transmission. Whenthe slave is ready for the next data the aknowledge signal is lowered. The hoieof the four-phase bundled data protool is an arbitrary hoie, our method an beimplemented with use of any handshake protool.There are two types of hannels: push and pull. In a push hannel data �owsfrom master to slave and in a pull hannel data �ows from slave to master. In generalthe terms master and slave are not used, instead the terms ative and passive areused to designate the ontrolling part of a hannel ommuniation and graphiallythis is illustrated by either a �lled (ative) or non-�lled irle (passive) at the soureor destination of a hannel, as illustrated on Figure 2.6. The soure and destinationi.e. the diretion of the data�ow is illustrated by the arrow on the hannel line.The asynhronous iruits designed in this thesis are built from a set of asyn-hronous building bloks alled handshake omponents. As the name implies theseomponents ommuniate using the handshake protools. These omponents are in-dependent omponents, usually designed using input/output-mode or Muller-C style[92℄. All omponents operate using the same protool, in this way one ould onsiderthis type of asynhronous iruit design as objet oriented hardware design. Asyn-hronous iruits and the iruits presented in this thesis are built from handshakeomponents whih implements the equivalent RTL operations as lathing data, mul-tiplexing data, addition et. Eah of these handshake omponents has its own loalasynhronous ontrol to ensure proper asynhronous funtionality and to handle theasynhronous handshake ommuniation protool [92℄. Besides these asynhronoushandshake omponents whih have their equivalent RTL ounter parts, there are thedemerge/demux omponents whih handle �datawire-forks�.Asynhronous handshake omponents where all outputs are ative and all inputsare passive are push-style; omponents where all outputs are passive and all inputs
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Figure 2.7: A minimum and, for most ases, su�ient set of handshake omponents.are ative are of pull-type; if all ports are passive the omponent is of passive-type;if all inputs are ative the omponent is of ative-type; others are of �mixed�-type.The basi set of building bloks are illustrated in Figure 2.7 in their push-form,where appliable, and an be divided into four groups:Lathes Data is stored in lathes and ould be onsidered the variables of the iruit.Furthermore with one ative input or output they implement the handshakingand support the token �ow. In their push form a data write and data readalways alternate. In their passive form they operate as the variables of theiruit where the surroundings an write and read data independently andto/from multiple soures and destinations.Funtional Units These are the asynhronous equivalents of ombinatorial iruits.We will primarily use the symbol on the left, but some tools will generate theright symbol. In their push form the operation is as follows: First all inputshave to be ready, then ompute the funtions and distribute the results on therespetive outputs. The funtional units should be onsidered transparent froma handshaking point of view, but also versions with input/output lathes willbe onsidered.
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2.3 Asynhronous iruit design 19tion. When ativated on input hannel a the transfer omponent moves datafrom hannel b to hannel c.Unonditional ontrol Here there are two omponents: The sequener whih foreah ativation exeutes a sequene, in order, of sub-operations, before omplet-ing the input handshake. The parallel exeutes all sub-operations in paralleland all have to omplete before ompleting the input handshake.Repetition In�nite repetition is handled by the repeater, whih sends an in�nitenumber of ativations to its outputs and never ompletes its input handshake.The while omponent implements onditional repetition and operates in thefollowing way: Upon ativation on input a, the while omponent inputs ondi-tion cond and if true output b is ativated and the while omponents repeatsthis behavior by inputing the next ondition cond. This ontinues until condis false then the while omponent ompletes its handshake with a.Conditional ontrol The hoie omponent implements a binary hoie by selet-ing on the input �ond� if equal to zero the �0� hannel is ativated otherwisethe �1� hannel is ativated. The Guard omponents is used for implementingmultiple seletions or guards. Here the omponent have two seletions andoperates as follows: when a is ativated the Guard omponent inputs all itsonditions, here cond1 and cond2. The onditions have to be mutually exlu-sive. If any of the onditions where true the number is returned on a otherwisezero is returned. When b is ativated with a positive data value, it is used toativate the operations, here either 1 or 2. The Guard omponent an have asmany seletions as required.Of these omponents the transfer plays is most important for this researh, as itplays the role of event synhronizer; ontrolling the omputation and is the ompo-nent onneting the ontrol dominant part of the asynhronous handshake networkwith the data dominant part of the asynhronous handshake network. Transfer om-ponents degenerate to simple wire onnetions ontaining no logi.As mentioned in the introdution, there is an apparent resemblane between airuit designed by a network of handshake protools and the CDFG desribing thebehavior of the same iruit. This suggests a simple one-to-one synthesis approahwhere the CDFG is diretly mapped into an asynhronous iruit, as shown in Figure2.9. Suh an approah was more extensively pursued in [73℄ and is further disussedin the following hapter.
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C h a p t e r 3 Related Work
This hapter has two purposes: (i) To present an overview of reent advanes inresearh in behavioral synthesis of low-power synhronous iruits and (ii) to presentand ompare related work with respet to behavioral synthesis of asynhronous ir-uits. In doing so, the desirable abilities and requirements for an asynhronousbehavioral synthesis approah are unovered.3.1 Low power behavioral synthesis, an overviewIn CMOS iruits, there are two primary soures of power dissipation [72℄: (i) Statidissipation originating from leakage urrent. (ii) Dynami dissipation originatingfrom swithing transient (short-iruit) urrent and from harging of load apai-tane. The total power dissipation beomes:

Pavg = Pswitching + Pshort−circuit + Pleakage (3.1)Of these omponents the �rst is the most dominant and is given by:
Pswitching = 〈α0→1〉tClV

2
dd (3.2)Where Vdd is the supply voltage and 〈α0→1〉t is the average number of swithing pertime unit, that a node with apaitane Cl will make a power onsuming transition(0 → 1). For a synhronous iruit 〈α0→1〉t = α0→1fclk, where α0→1 is the averagenumber of times the node swithes per lok yle and fclk is the lok frequeny.



22 Related WorkIt is well-known that resoure sharing destroys orrelation between inputs and theomputation and therefore inreases the power onsumption of the iruit. Further-more, there is usually an overhead assoiated with resoure sharing whih will lead toa larger power dissipation. On the other-hand reduing the area of the iruit leadsto a redution of Cl whih redues the power onsumption. For future deep submi-ron tehnologies leakage power will beome more dominant. Therefore as leakageurrent is proportional to area, resoure sharing has the potential to redue leakagepower dissipation. But as resoure sharing also have an impat on on-o� times forfuntional units and therefore leads to longer ativation times whih ounters thise�et.There are three dominant approahes for behavioral synthesis targeting redueddynami power dissipation:
• Low-power behavioral synthesis [44, 19, 57, 61, 94, 69, 70, 84, 45, 89℄ througharranging the omputation suh that the internal swithing ativity is mini-mized: P ∼ 〈α0→1〉t. The design goal is to �nd min(〈α0→1〉t).
• Low power behavioral synthesis through voltage saling [55, 27, 10, 80℄. Usuallylow-power designs operate at voltage-levels just above 2|Vt|, thus the bene�tfrom voltage saling lies in speeding up a few ritial omputations at a powerpenalty, whih is then more than aneled by hoosing slower low power fun-tional units at non-ritial plaes in the iruit.
• Power aware behavioral synthesis [102, 5, 1℄ haraterizes methods whih tar-gets the generation of a spei� power pro�le of the iruit. The goal is usuallya uniform �at power pro�le below a ertain power maximum whih orrespondsto a hard onstraint (e.g. maximum power delivered by a solar-panel). Themajority of these algorithms are either based on meta-heuristi algorithms, ortwo-step algorithms, where in step one a traditional time onstrained sheduleis onstruted and in step two the shedule is made �power-aware�.Usually there is an area penalty assoiated with these low-power tehniques om-pared to non-low-power tehniques and the di�erent methods have di�erent tradeo�sbetween area and power.In the following setions we fous on the �rst of these approahes. There are manyways to minimize 〈α0→1〉t, but the most dominant are those methods whih exploitorrelations in input-data as well as in the omputation. This body of work an bedivided into �ve groups whih we will present in the following. The �rst group fouseson providing aurate lower bounds on power onsumption for use in synthesis. Theseond group fouses on sheduling, alloation and assignment reduing the swithingativity of the funtional units, whih is the largest ontributor to power dissipation.The third group fouses on reduing swithing ativity at the CDFG level. Thefourth group fouses on proper register alloation for low power. And �nally thelast group of papers fouses on reduing the power onsumption of the interonnetbinding funtional units and registers together and the impat this has on sheduling,



3.1 Low power behavioral synthesis, an overview 23alloation and assignment. In the following we will present a non-exhaustive list ofsynthesis methods.3.1.1 Lower bounds on swithing ativityIn order to �nd optimal solutions through exhaustive searh based methods as branhand bound, it is neessary to bound the solution spae using a polynomial approah.This is also useful for measuring optimality of heuristi approahes as the optimalsolution is bounded by the heuristi solution and the lower bound. A branh andbound algorithm traes a deision tree whose leafs represent all possible solutions.Given a best solution found during exeution of the branh and bound algorithm, asubtree an be pruned if a lower bound estimate of the best solution from the sub-treeyields a larger ost.In [57, 94℄ the swithing ativity metri is de�ned as the Hamming distane ofonseutive input vetors to funtional units. Let wij de�ne the power ost for thevariables i and for eah operation type j present in the DFG. This is omputedbased on a representative set of input vetors to the iruit. The entral idea isto formulate the low power binding problem with resoure onstraints as a graphproblem by de�ning an ar-labeled direted graph. The optimization problem isthen to over all nodes with exatly m (node disjoint) yles with minimum totalost under the onstraint that eah yle ontains exatly one bakward ar. Thetotal ost is the sum of the ar weights of all yles. Eah yle of a solution to thisproblem represents one resoure, while the nodes of a yle are the operations boundto it. The authors prove that the following ILP problem provides a lower bound onthe low power binding problem with m resoures:
z = min

n∑

i,j=1

wijxij (3.3)subjet to
∑n

j=1 xij = 1 i = 1, ..., n∑n

i=1 xij = 1 j = 1, ..., n∑
i≥j xij = m

(3.4)with xij integer. In this formulation it is not guaranteed that preedene onstraints,speifying operation a has to start after operation b, are ful�lled, hene a solution ofthe ILP problem delivers only a lower bound on the swithing ativity. Furthermore,the problem is a relaxation of the optimization problem as there are no onstraintsforing eah yle to have exatly one bakward ar. Instead of solving the ILPproblem, a polynomial time bounded approah is proposed whih approximates theILP problem based on Lagrangian relaxation.
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4Figure 3.1: Optimizing shedule (from left to right) for reuse of input variables andredution of swithed apaitane. Operation 3 and 5 uses the same result from 2 insuessive steps.3.1.2 Reduing swithing ativity of funtional unitsThe redution of swithing ativity of funtional units an be aomplished bysheduling operations suh as to inrease the orrelation of the data presented to thefuntional unit. The �rst step in this diretion is to observe that the average swithingativity of any funtional unit is signi�antly redued if one of the operands remainsunhanged [69, 70℄. As operands are usually reused more than one in omputationson the same type of funtional unit, there is a basis for grouping operands together inthe sheduling and binding proess. The entral idea is to group reusable operandstogether on the same partiular funtional unit and to exeute these in suessivetime-slots/operation-groups. The idea is shown in Figure 3.1. In [69, 70℄ this is a-omplished by extending the List-sheduling [67℄ to a Low Power List-sheduling byadding more heuristis. The traditional List-sheduling operates by having a priorityqueue of all ready operations determined by urgeny, more preisely the di�erenethe ASAP-ALAP interval. In the Low Power List-sheduling operation that shareoperands are grouped into operand-sharing sets. One an operation has been shed-uled, the other operations in the group are moved up to top priority and are sheduledsuessively, until an operation outside the set gets urgeny zero, whih is then setfor immediate exeution.The next step is to generalize this observation into sheduling operations suh asto inrease the orrelation between onseutive inputs to a funtional unit [89, 45℄.Again the list-sheduling heuristi an be modi�ed to inlude this data orrela-tion [89℄ and to operate by, besides the set of operations Ukwhere all predeessorshave been sheduled, maintaining the set of most lately sheduled operations for eahfuntional unit Lk. At any point the algorithm tries to shedule the operations thatonsume less power. By sheduling operations in this way there are more andidatesin the ready set when power hungry operations are sheduled. For evaluation of thepriority for the sheduling a power metri is used. Multiplexer power is no onsideredin this sheme. Let cj be the swithed apaitane from sheduling operation j onfuntional unit k where operation i was exeuted previously i ∈ Lk. If the operationis ommutative, then operand swapping is tried to �nd the smallest swithed apa-



3.1 Low power behavioral synthesis, an overview 25itane. This information is stored for register binding. cj is normalized with respetto the total swithed apaitane of all operators in Uk of same type. The ost ofthe andidates are set to:
priority = ωcj + (1 − ω)tLj (3.5)where tLj is the ALAP time of operation j relative to the average ALAP time ofandidates in Uk of the same type. Parameter ω is the weight given to relate powerimportane to meet time-deadline importane.The Fore-Direted sheduling method an also be modi�ed for low power syn-thesis [45℄. The algorithm models the swithed apaitane of an sequene of twoonseutive operands to a funtional unit as the spring onstant k and the probabil-ity of seleting the orresponding sequene is modeled as the displaement x, in thefore equation F = kx. Thus, a fore is assoiated with eah feasible ombination offores whih is used to make a power-optimal sheduling deision. This metri is thenused in the Fore-Direted sheduling method [77℄ to solve the behavioral synthesisproblem for low power digital iruits.The low power binding problem for a �nite set of funtional units having a singleinstane type/single-arhiteture an be formulated as a min-ost �ow problem [31℄.This problem is solvable, unlike the generalized low power binding problem funtionalunits having multiple arhitetures whih is an ILP problem. In [31℄ two polynomialalgorithms are presented to heuristily solve the ILP problem. The �rst graph-basedmethod iteratively utilizes the single-arhiteture �ow formulation for arhitetureand then hooses the least power onsuming assignment from the set of andidates.Afterwards, the possible unassigned operations are assigned through a node overagealgorithms that follows another �ow formulation. The node overage algorithm runsiteratively until all operations are overed. The seond tehnique assigns the opera-tions to the funtional units of multiple arhitetures in inremental steps similar tothe left-edge algorithm.There are many other methods for addressing the low power synthesis problem[84, 61, 44℄ these methods involve speifying the problem as aution based non-ooperative �nite game, iterative optimizations and onstraint logi programming.3.1.3 Reduing swithing ativity at CDFG levelA di�erent more radial approah is to design omplex ustom low-power funtionalunits suh as FFTs and �lters and use these as buildings bloks for the iruit in ad-dition to simple funtional units as adders and multipliers [60℄. This requires for thesynthesis approah to be able to map groups of operators on these ustom funtionalunits, as shown in Figure 3.2. The method also provides tehniques for resynthesisof the funtional units to math the onstraints and tehniques for mapping multiplebehaviors onto the same omplex funtional unit. The meta-heuristi approah usedfor the design spae exploration is based on �nding a sequene of inremental moveswhere only the last move has to generate an improvement in the ost funtion (theintermediate steps are allowed to move to unoptimal state-spae solutions). The sets
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high cost arcsFigure 3.3: Generating the ompatibility graph and performing a minimum ostlique-partitioning, asumming the shown ars have a high swithing apaitane ost.of moves are: i) Simple and omplex funtional units are replaed by new modulesfrom the library. ii) Complex modules are resynthesized. iii) Simple operations areombined into omplex operations. vi) operations are split in to two separate opera-tions. A Tabu-searh [43℄ mehanism ensures solutions are not repeatedly traversed,this method is know as the variable depth searh.Addressing the low power synthesis problem diretly at the CDFG level has thepotential for large power savings [81, 82℄. The proposed CDFG-transformation teh-niques involve: i) Reduing the total number of operations to be performed by om-mon sub-expressions elimination, loop merging and distributivity. ii) Redution ofspurious swithing transitions due to �nite propagation delays from one logi blokto the next (dynami hazards). These extra transitions are a omplex funtion oflogi depth, input pattern and skew. To minimize these unwanted transitions, signalpath balaning and logi depth redution is handled. The sequene of optimizationmoves are handled by the use of a heuristi/probabilisti searh algorithm.3.1.4 Memory alloation for low-powerThe goal here is to �nd the appropriate number of registers and the assoiated bindingto minimize power onsumption in the registers.



3.1 Low power behavioral synthesis, an overview 27The register binding problem an be formulated as a minimum ost lique overingproblem [19℄. The power onsumption is omputed based on statistial informationderived from assumptions on probabilisti input distributions. The power dissipa-tion model is based on the Hamming distane and the apaitane of the registersare modeled as a �xed load for a given library. The paper [19℄ de�nes the ompat-ibility graph G(V,A) as the graph where the nodes are variable intervals and thedireted ars A between two variables if their variable life times are non-overlappingand end-life-time of the soure variable is less than the start-life-time of the tar-get. Eah ar represents a possible assignment and arries the swithed apaitanedi�erene between the two variables. The register assignment problem is then for-mulated as a minimum ost lique partitioning problem of that graph. They showthat the unoriented ompatibility graph for the data values in a sheduled data�owgraph without yles and branhes (a DFG fragment) is a omparability graph (ortransitively orientable graph) whih is a perfet graph. This is a useful property aslique partitioning problems an be solved in polynomial time for perfet graphs,through a max-ost �ow reformulation of the problem, giving the minimum totalpower onsumption on the registers in the iruit.The memory alloation for low-power problem an also be formulated as a network�ow problem [18℄. This work fouses on solving the problem of rapidly resolving theproblem to optimality for an inremental hange of the shedule for use in low powersheduling methods. This is a two-step proess: i) A max-�ow omputation involvinga valid �ow solution while retaining the previous solution as muh as possible andii) a min-ost omputation whih inrementally re�nes the found �ow solution, usingthe onept of �nding a negative ost yle in the residual graph for the �ow.3.1.5 Interonnet design for low-powerOne way to redue the swithing ativity in the interonnet onneting registers tothe funtional units is to isolate/signal guard parts of the interonnet [110℄. Forinteronnet, in this ase built by a multiplexing network, it is not justi�able to in-sert lathes through-out the routing network, when ompared to the power overheadintrodued by suh a method. In addition to make use of data-orrelations, it is pro-posed to freeze the inputs of the multiplexors to a �xed (hardwired) value, denotedthe �ller value. The probabilities for the di�erent swithing harateristis are om-puted by simulating the CDFG in whih the binding and sheduling information isbak-annotated. The algorithm for omputing the �ller values is a simple polynomialalgorithm running through omputing the most probable value. The power redutionof the interonnet is then built into an iterative behavioral synthesis algorithm forsheduling and binding to �nd the optimal low-power iruit. The meta-heuristiapproah used for this is based on �nding a sequene of moves where only the lastmove has to generate an improvement in the ost funtion (the intermediate stepsare allowed to move to unoptimal state-spae solutions), a tabu-searh mehanismensures solutions are not repeatedly traversed.For bus-based miro arhitetures, redution of swithing ativity an be aom-



28 Related Workplished in two ways [29, 30, 28℄: (i) Through multiplexing the signals onto the busesin the orret order. (ii) And hoosing the optimal set of busses and their onnetionbetween funtional units and registers. For design of the buses, the average signalswithing ativity for all nodes in, and inputs to, the CDFG are omputed by repeatedsimulation using a representative set of input vetors. Using this data the swithingativity matrix SAk
ij , for suessive data transmissions i → j for bus k, for a givenbus on�guration is omputed and the lowest energy is seleted. Simulated annealingis used to handle the omplete synthesis proess inluding bus on�guration design.3.2 Asynhronous behavioral synthesis, an overviewSynthesis of asynhronous iruits falls mainly in two ategories: (i) synthesis ofsmall-sale sequential ontrol iruits [26, 41, 106℄ and, (ii) synthesis of large-saleiruits based on syntax-direted ompilation from CSP-like languages: Tangram[11, 100℄, OCCAM [17℄, Balsa [8, 36℄ and ACK [59℄. Several tools exist (in the publidomain) in these areas, and these tools have been used to design industrial saleiruits.Synthesis methods for generating small-sale sequential ontrol iruits are low-level logi synthesis methods for the design of asynhronous logi, the asynhronousequivalent to synhronous ontrol logi synthesis. syntax-direted synthesis is a lineof high-level synthesis where there is a one-to-one orrespondene between the high-level programming language speifying the iruit and the iruit itself.Besides those two main lines of researh there are a number of other attempts.One of the most promising is desynhronization [14, 25℄ whih relies on synhronousbehavioral synthesis and then in the low-level logi synthesis phase substitutes thelok and the synhronization with asynhronous handshaking and ontrol.We illustrate the design �ows of the di�erent synthesis methods urrently devel-oped for asynhronous iruit design and indiate the di�erent levels of abstrationin the synthesis proess. The position inside eah level is unimportant and does notsignify any further degree of abstration. The levels of abstration are:Abstrat This is the level where the behavior is expressed only by essential opera-tions and their essential dependenies.Behavior The level where the behavior is spei�ed in the form of a programminglanguage and as suh may ontain restritions in expression form, whih mayorrespond to non-essential behavior.Arhiteture In this level the behavior is spei�ed by arhitetural informationonsisting of larger-sale omponents implementing a prede�ned behavior.Gate/Logi At this level the behavior is expressed in the form of an arhiteturaldesign built by logi gates.Physial This level represents behavior in physial form either as a layout or as aphysial model of a layout.



3.3 Asynhronous logi synthesis 29Not all details will be indiated in the �gures desribing the di�erent synthesis �ows,only those whih are of speial nature or original to the method in question.In the following we present a non-exhaustive list of synthesis methods, groupedtogether as to how their synthesis �ows relates to eah other.3.3 Asynhronous logi synthesisAsynhronous logi synthesis is the building method behind asynhronous synthesisas these methods are used to generate the asynhronous logi. This area has beenand still is, the fous of a majority of the researh in asynhronous iruit synthesis.Asynhronous logi synthesis an largely be divided into two groups: (i) Synthesis ofsmall-sale sequential input/output-mode ontrol iruits or handshake omponents[26, 41, 107, 108℄. This is usually done through tools like Petrify [24, 26℄. Thebehavior of the asynhronous iruit together with its environment is spei�ed usinga 1-bounded 1 olor petri-net alled a Signal Transition Graph (STG). The approahis limed by the NP-hardness of the synthesis problem with several improvementsimplemented through: Reduing the searh spae using heuristis [76℄. Series ofloal graph transformations [91℄. Furthermore the problem ontains the importantsubproblem of onsistent state oding (CSC), whih is also the subjet for extensiveresearh [63, 65℄. The design of GasP iruits [35, 97℄ fall under the same ategoryof logi synthesis but employ a di�erent handshake protool.The other group is synthesis of larger-sale ontrollers operating in fundamentalmode/Burst mode [40, 41, 107, 108, 109℄. These are rae-free asynhronous ombi-natorial iruits with restritions on both type of operation and the timing of howthe environment interats with the iruit. This synthesis problem is likewise anNP-hard problem whih limits the size of the ontrollers possible to synthesize, butusually larger iruits than for the input/output-mode iruits an be synthesized.Again heuristis are employed to improve on the method [9, 98℄.Theseus logi has developed a Synopsys bak-end. Here the low-level logi syn-thesis of ontrol and datapath is implemented using a NCL logi-synthesis leadingto an asynhronous iruit. The tool is integrated into Synopsys through the use ofspeial libraries and ompile ommands [38, 90℄.3.4 Asynhronous behavioral synthesisA number of papers have presented work on behavioral synthesis of asynhronousiruits from DFG or CDFG representations, but they are surprisingly few and theyhave a di�erent and/or more limited sope [3, 4, 22, 23, 54℄. The �rst paper limitsitself to DFGs and fous mostly on a synthesis algorithm and its runtime. Theremaining papers address synthesis from a CDFG representation and they targetsolutions where a entralized ontroller or a distributed struture of ontrollers arespei�ed at the level of individual signal transitions (in the form of signal transitiongraphs or burst-mode state graphs).
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Figure 3.4: Synthesis �ow for Ahilles, the Bahman approah, ACK andBalsa/TangramThe synthesis tool Ahilles [4, 22, 23℄ and the synthesis tool by Bahman et al.[3℄ both represent �pure� asynhronous behavioral synthesis.Ahilles starts from a ontrol data �ow graph and uses a modi�ed list-shedulingto generate a shedule in ontinuous time. The target arhiteture is a set of in-dependent mahines orresponding to eah of the funtional units in the iruit, asillustrated on Figure 3.5. Eah independent FU then implements the appropriatepart of the shedule, has its own memory and handles ommuniation with the otherFUs. Using this method, there is a possible ommuniation overhead and memoryoverhead when omparing to a method using a single ontroller and datapath. Theontroller of eah FU is spei�ed as a Petri-net and synthesized using Petrify. Theomplete synthesis �ow is illustrated in Figure 3.4 (a).The synthesis tool by Bahman, utilizes a method designated as resoure-edgesheduling, whih is a form of sheduling where the additional ordering imposed bysheduling is represented as additional graph-dependenies added to the data �owgraph, as illustrated in Figure 3.6. It is unlear from their work whether the startingpoint is a DFG or if they have inluded DFG extration from VHDL/Verilog. Thesynthesis �ow is illustrated in Figure 3.4 (b). The fous in their work is on arhite-tural sheduling and series of algorithms have been developed, inluding shedulingand a ontinuous left-edge algorithm with the target arhiteture being a entralontroller and datapath. They primarily address the runtime and omplexity of thedeveloped algorithms.
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34 Related Worktions, but again there is a one-to-one orrespondene between a spei�ation and theresulting iruit.3.4.3 Synthesis of Asynhronous Ciruits
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• Deterministi resoure sharing. Operators that have a deterministi relationi.e. a �xed order of exeution an be established, an be resoure-shared tothe same operator. The exeution order is then ontrolled by a sequeneromponent. The method is illustrated on Figure 3.10.After these optimizations a orresponding iruit implementation is generated.The method utilizes the fat that there is a lose orrespondene between a CDFG[33, 67, 96℄ and an asynhronous iruit: The edges in a CDFG an be seen ashandshake hannels and the nodes in a CDFG an be seen as handshake omponents� omponents that are quite similar to the handshake omponents used in syntax-direted ompilation. In this way a simple one-to-one mapping of the CDFG to anetwork of asynhronous handshake omponents is performed.The graph transformations makes this di�erent from the syntax-direted ompi-lation of large-sale asynhronous iruits from non-standard languages. The �ow isillustrated in Figure 3.8 (b).This work represents our initial e�ort to implement asynhronous behavioral syn-thesis. The method was disontinued as we found there was a power overhead asso-iated with this method of synthesis. Researh into a non-one-to-one orrespondenebetween a CDFG and a handshake iruit might alleviate this.3.4.4 DesynhronizationCommon for these methods is the use of existing synhronous methods and toolsas part of the proess for generating an asynhronous iruit. In some way thesemethods represent the opposite of the �pure� asynhronous behavioral synthesis, asall these methods use synhronous behavioral synthesis to perform arhitetural syn-thesis before employing asynhronous logi synthesis to generate the �nal iruit.Desynhronization [14, 16, 25℄ makes use of existing synhronous methods andtools to synthesize a synhronous iruit down to gate-level and then replae the syn-hronous ontrol logi and the lok by asynhronous ontrol logi and asynhronoushandshaking. The synthesis �ow is illustrated on Figure 3.8 (). Two diretions existfor generating the asynhronous ontrol logi:Synthesis [25℄ Infer the overall behavior from the synhronous behavior, this in-volves onstrution of a STG desription or a burst-mode desription and thensynthesizing the entral ontroller. This approah is limited to smaller-sizeontrol iruits, limited by logi synthesis apabilities.Substitution [14℄ Systematially replae synhronous omponents by loal hand-shake omponents through a transparent one-to-one orrespondene. This ap-proah generates less optimal solutions than the former, but an be used forlarger-sale synthesis.
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3.5 Summary 373.5 SummaryCurrently researh in behavioral synthesis of asynhronous iruits is primarily fo-used on syntax-direted synthesis and desynhronization. Besides there is a multi-tude of more or less suessful attempts for high-level synthesis.There are three aspets we would like our asynhronous behavioral synthesis toontain:
• Ability to onstrut systems operating in ontinuous time and using methodsfrom behavioral synthesis and Operations Researh in ontinuous time. Desyn-hronization methods are limited by their use of a disrete time-evolution to�nd the optimal shedule.
• Ability to use existing behavioral synthesis methods developed for synhronoussynthesis, suh as the methods for low-power behavioral synthesis reviewed inthe beginning of this hapter. Leveraging on existing tehniques that are wellproven both in theory and pratie will prove very bene�ial.
• Use of handshake omponents both for ontroller synthesis and datapath syn-thesis to failitate onstrutions of large sale designs. For an asynhronousbehavioral synthesis to be e�etive it has to be able to synthesize industry-sale designs.The researh presented in this thesis tries to implement these aspets by introdu-ing a omputation model allowing the use of both synthesis methods of synhronousdisrete time and methods for ontinuous time and targets asynhronous handshakeomponents both for datapath and ontroller synthesis. As an implementation weurrently build upon the balsa language, but this is not a restrition our work ouldeasily be extended to target other languages or design approahes.
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C h a p t e r 4Behavioral Synthesis forAsynhronous Ciruits
Synhronous iruit synthesis utilizes a simple model for implementing synhronousomputation and this method has proven to be highly suessful. Therefore, ratherthan to invent a di�erent omputation model, we adapt the existing omputationmodel for asynhronous iruit synthesis. This has the added advantage of openingup for the use of many of the existing methods from synhronous behavioral synthesisin asynhronous iruit synthesis. In this hapter we address this in detail.4.1 From synhronous to asynhronous behavioralsynthesisLet us �rst review and analyze the elements of synhronous behavioral synthesis.Based on the CDFG, synhronous behavioral synthesis involves three sets of trans-formations in order to reate a suitable hardware arhiteture;

• Sheduling, in whih operator nodes of the CDFG are grouped into operation-groups or time-slots, and where the exeution of the next operation-group ishandled by a synhronization event, Ei, where i stritly orders the events intime. In the ase of synhronous behavioral synthesis Ei is ontrolled by thesystem lok.
• Alloation, in whih the minimum hardware resoures/ funtional units (FUs),required for exeution of the operation-groups are determined.



40 Behavioral Synthesis for Asynhronous Ciruits
k

r,j

Ew,j

E

1

0

0
w,i

Ew,k

Er,k

k

0

2

j

Ew,i

Er,j

Ew,j

Relaxation

E2

E1

E0

−1E

Er,k

Ew,k

i

j

i

t

E

Figure 4.1: Adapting synhronous synthesis (left) into the asynhronous handshakedomain (right).
MUX

M
I

FU

L

M
I

FU

M
II

E     w,i

Er,i

R0 R1

M II

clk

MUX

INPUT

MUX

OUTPUT

FU

REG LATCH

LATCH

TRANSFER

TRANSFER

Master

SlaveL

FU

MUXFigure 4.2: First step in adapting the synhronous omputation model into the asyn-hronous domain.
• Binding (or assignment), where individual operator nodes are tied to spei�hardware resoures.The synhronization events determine (i) the beginning of exeuting an operation(ii) writing the result of an operation.The CDFG extrated in the synhronous behavioral synthesis is a 1-bounded ol-ored Petri net, where olors represent data values, edges represent plaes, and nodesrepresent transitions. Interestingly, the Petri net model is based on an asynhronousexeution semantis whih should make it an obvious model for asynhronous syn-thesis as well. In the synhronous synthesis, Figure 4.1 (left), operations are orderedaording to a global synhronization event, Ei, i.e., read events (Er,j) for operator

j happens at the same point in time as the write events (Ew,i) for operator i in theprevious operation-group: E0
w,i = E0

r,j = E0, and furthermore all operations in anoperation-group are exeuted simultaneously: E0
r,j = E0

r,k = E0.
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, Tf1
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, Tg) and the total area is given by
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C h a p t e r 5Implementation in Balsa
This hapter presents the Balsa implementation templates for generating our asyn-hronous iruits for all of the omputation models. In the previous hapter we haveonneted traditional behavioral synthesis with asynhronous iruits using our om-putation model. This hapter deals with the pratial implementation of this model,the bak-end of our synthesis tool. Figure 5.2 shows the Balsa handshake iruitequivalent to our datapath from Figure 4.22.5.1 Program strutureThe Balsa handshake iruit struture orresponding to our general datapath stru-ture is shown in Figure 5.1. Suh a Balsa handshake iruit is built from handshakeomponents whih implement the equivalent RTL operations as lathing data, mul-tiplexing data, addition et. Eah of these handshake omponents has its own loalasynhronous ontrol to ensure proper asynhronous funtionality and to handle theasynhronous handshake ommuniation protool [92℄.Besides these asynhronous handshake omponents whih have their equivalentRTL ounter parts, there are the demux omponents whih handles �wire-forks�, andmore importantly the transfer handshake omponents onneting the asynhronousontroller with the datapath; the latter play the role of event synhronizers, refer toFigure 1.4, ontrolling the omputation. These extra omponents augments the muxlayers with sublayers of demux and transfer omponents. Notie the mux omponentsimplement a merge funtionality and is not diretly onneted to the ontroller, nei-ther are the lathes, demuxes or FUs (exept the opr ontrol signal), only the transferomponents are onneted to the ontroller. The FUs are autonomous omponents
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Figure 5.2: Ciruit struture using Balsa/Tangram handshake omponents, orre-sponding to our datapath (beta) struture.The FUs are implemented using the following Balsa-program strutures:proedure FUalpha(inputs a,b,..;output z) isbeginloopselet a,b,.... thenz<-F(a,b,...)endendendproedure FUbeta(inputs a,b,..;output z) isvariable A,B,Z,...beginloopa->A || b->B || ...;Z:=F(A,B,...) ;z<-Zendendwhere F implements the omputation.



60 Implementation in BalsaThe design of the iruits follows the following Balsa-program struture:input [FU_library℄proedure Ciruit(inputs X0,X1,...;output Y0,Y1,...) isvariable L0,L1,..,Lnhannel FU0_a,FU0_b,....,FUm_zbeginFUj(FUj_a,FUj_b,FUj_z) ||... ||[Arhiteture(X0,X1,..,FUj_a,FUj_b,FUj_z,..,Y0,Y1,...)℄end5.2 Events: using funtional unitsAs an example of how the datapath is onstruted using the Balsa-language onsiderthe assignment of a subtration operator to an ALU designated FU1. This subtra-tion operator has inputs w0 w1 and output w2 (w2 = w0 −w1), assigned to variablesL0 L1 and L2 respetively. Starting the omputation is performed by exeuting thefollowing parallel Balsa-statement:FU1_opr<-ALU_sub || FU1_a<-L0 || FU1_b<-L1This set of parallel hannel assignment statements tells FU1 to perform a subtration,and to use the data of L0 and L1. The result w2 of the omputation is written to L2using the following Balsa-statement:FU1_z->L2Both statements will synhronize the ontroller with the ALU using the transferomponents and implements the proess illustrated on Figure 4.9. For the alphatype FU, the read and write events need to happen in the same statement:FU1_opr<-ALU_sub || FU1_a<-L0 || FU1_b<-L1 || FU1_z->L2meaning parallel events need to happen in parallel threads. For the beta type FU,the read and write events does not need to happen in the same statement, but anhappen at separate time-positions:FU1_opr<-ALU_sub || FU1_a<-L0 || FU1_b<-L1 ;...;FU1_z->L2in fat parallelism an be implemented in a single thread.The reading of input X0 to internal variables L0 and plaing of results in internalvariables L3 on output hannels Y0 is exeuted in a similar way:
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if L0=0 thenFigure 5.3: Shedule showing all the di�erent types of relative synhronization events.X0->L0 || Y0<-L3These Balsa-statements: i) starting a omputation, ii) writing the result of ompu-tation or iii) ommuniating with the outside world, implement the events desribedin setion 4.1.5.3 Implementing a sheduleA shedule onsists of a series of suh time ordered events and the arhiteture partis a series of orresponding Balsa-statements. Consider the example shedule inFigure 5.3, whih is di�erent from the running CDFG example. It is illustratingall the di�erent types of relative synhronization events required to implement anyshedule. For the onstrution of the shedule we need to distinguish between theFU types:alpha The handshakes are ative for the duration of the omputation on the fun-tional units.beta The handshakes are ative only for the points in time where data is moved toand from the funtional units.Let us begin with the beta type, as it is the simplest. Consider events E0..E7, inFigure 5.3 the non-onditional part. These form a sequene of events with E0 and E1in parallel and the rest ordered E2,..,E7, whih an be implemented by the followingprogram fragment:loopE0 || E1 ; E2 ; E3 ; E4 ; E5 ; E6 ; E7endThis program fragment is a repetitive exeution of the shedule. When we inludethe onditional exeution of the operator on FU2 represented by events: E8 and E9,the Balsa-program fragment beomes:



62 Implementation in BalsaloopE0 || E1 ; E2 ; E3 ; if L0=0 then E8 end ;E4 ; E5 ; E6 ; if L0=0 then E9 end ; E7endNotie the single thread of event statements implement the parallel shedule of Figure5.3.Next, we will ontinue with the alpha type. As the handshakes now over dura-tions the single sequene of ordered events only apply to a single thread on a singlefuntional unit. In priniple this means there need to be as many parallel threadsas there are funtional units, ommuniating to eah other using hannels. Howeverusually, and so is the ase for our example, it is possible to merge some threads,elliminating ommuniation overhead. Here the threads of FU0 and FU1 an bemerged, leaving only a separate thread for FU2, the onditional part. Lets start withthe unonditional part:loop[ E0 || E2 ; E3 || E4 ℄ || [E1 || E5℄ ; E6 ; E7endThe parallel operator is here used to merge the �rst part of the thread for FU0: [ E0|| E2 ; E3 || E4 ℄ with the thread for FU1: [E1 || E5℄ , after these the thread for FU0is ontinued.To inlude the onditional part, in the form of a separate thread, we also need toimplement the transfer of the intermediate data in Li over a hannel w to Lj, where
Li is used exlusively in the thread orresponding to FU0 and Lj is used exlusivelyin the thread orresponding to FU2. The omplete shedule beomes:loop[[ E0 || E2 ; Li->w || E3 || E4 ℄ || [E1 || E5℄ ; E6 ; E7 ℄ ||[ w->Lj ; if L0=0 then E8 || E9℄endChannel ommuniation represents an area- and time-overhead and as the merging ofthreads saves hannel ommuniations between them, this overhead is redued. Theparallel nature also requires the exlusiveness for variables, if this annot be guaran-teed by the variable to lath assignment, synhronizer hannels between threads arerequired to introdue this exlusiveness.The ondition for parts of two threads to be merged, is if the one part (thesequene of events) is fully inlosed by or exeuted in serial by the read and writeevents of the other part. We will denote the read and write events of exeutingan operation on a FU for an exeute interval: IFU,number . In Figure 5.4 is shownthe threads of the FUs and below the intervals are labelled: I0,0, I0,1 . . . I2,0. If wegenerate a thread graph (I, S,D) where the nodes are the exeute intervals IFU,numberand where the direted ars (X → Y between two nodes are: (i) if interval X an befully inlosed in interval Y . These ars are shown as solid ars and (ii) if two intervals
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Figure 5.4: Generation of threads: (Left) sequene of events for all FUs and labellingof intervalls. (Right) Clique-partitioning of thread-graph. Eah lique beomes athread.are fully disjoint and Y is exeuted after X . These ars are shown as dotted ars.Then the optimal merging of all the threads is a lique partitioning of this graph.The thread graphs and the lique partitioning of this graph is shown in Figure 5.4.We use a simple greedy approah for lique partitioning of the thread graph. Theresulting partitioning orresponds to our example.The gamma model is treated �rst as the alpha model for the funtional unitsfollowing that model. Then the events for the funtional units following the betamodel are inserted into the appropriate positions.5.4 Implementing the arhitetureLet us look at the datapath being generated by this approah. Consider the followingsequene:L0->FU0_a; -- E0...;L1->FU0_a -- E1giving rise to the iruit shown in Figure 5.5. Eah of these events will lead to atransfer omponent ativated by E0 and E1 respetively, followed by a merge om-ponent on the input of FU0_a, i.e., implementing a multiplexing of the wires fromL0 and L1 to FU0_a, the same goes in the reverse diretion.The arhiteture part of the program onsists of two parts: (i) shared funtions (ii)shedule. The shared funtions implements the event of the shedule whih appearin the shedule more than one. In the shedule below:proedure Arhiteture(..) isbegin -- sheduleloop...;
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5.4 Implementing the arhiteture 65FU1_opr<-ALU_sub || S0() || S1()endbegin -- sheduleloop...;FU1_opr<-ALU_add || S0() || FU1_b<-L2 || FU1_z->L1 ;S2() || FU1_z->L2 ;S2() || FU1_z->L3 ;...endendit only appears one and the same for every other assignment. Shown in the formof the S0,S1,S2 onstruts. The one-to-one syntax direted ompilation approahemployed by balsa means that in the �rst iruit there are three assignments fromthe same lath to the same port of FU1, as shown on Figure 5.6 (left) but by usingthe shared onstrut we an �reuse� the hardware and implement the iruit shownon Figure 5.6(right). This saves hardware as the ontrol handshakes are one bit wide,where as the datapath handshake omponents are N bit wide. This an be extendedto inlude reduing the ontrol iruit, as shown in the program as the S2 sharedonstrut whih implements a group of events, whih are used several times.The struture of balsa iruit implementing the shedule with these shared on-struts represents a three, with the loop-body omponent as the root and the events/transferomponents as leafs and with some of the leafs merged together [51℄.The full Balsa program (beta) of our running example, is shown here:import [balsa.types.basi℄import [FU_types℄import [FU_lib℄proedure EX(input X0,X1,X2:word;output Y0,Y1:word) isvariable L0,L1,L2,L3:wordhannel FU0_a,FU0_b,FU0_z:wordhannel FU1_a,FU1_b,FU1_z:wordhannel FU1_opr:ALU_operationonstant a0= 255onstant a1= 255onstant a2= 255onstant a3= 255proedure Ex_arhiteture(input X0,X1,X2:word;input FU0_z,FU1_z:word;output FU0_a,FU0_b,FU1_a,FU1_b:word;output FU1_opr:ALU_operation;



66 Implementation in Balsaoutput Y0,Y1:word) isshared S0 isbeginFU0_b<-L1endshared S1 isbeginFU1_a<-L0endshared S2 isbeginFU1_opr<-ALU_addendshared S3 isbeginFU1_z->L0endshared S4 isbeginFU1_a<-L1endshared S5 isbeginFU1_b<-L2endshared S6 isbeginFU1_opr<-ALU_subendshared S7 isbeginS1() || S2()endshared S8 isbeginS4() || S5()endbegin -- shedule



5.5 Optimizations 67loopX0->L0 || X1->L1 || X2->L2 ;FU0_a<-L0 || S0() || S7() || FU1_b<-a0 ;S3() || S4() || FU1_b<-a2 || FU1_opr<-ALU_les ;FU1_z->L3 ;if L3=0 then S8() || S2()else S8() || S6() end ;FU0_z->L2 || FU1_z->L1 ;if L3=0 then FU0_a<-a3 || S0()end || S5() || S7() ;S3() ;S1() || FU1_b<-a1 || S6() ;if L3=0 then FU0_z->L1end || S3() ;Y0<-L0 || Y1<-L1endendbeginmult(FU0_a,FU0_b,FU0_z) ||ALU(FU1_opr,FU1_a,FU1_b,FU1_z) ||EX_arhiteture(X0,X1,X2,FU0_z,FU1_z,FU0_a,FU0_b,FU1_a,FU1_b,FU1_opr,Y0,Y1)endThe balsa-iruit generates the datapath shown in Figure 5.1 and the ontrollershown in Figure 5.7.5.5 OptimizationsFor the alpha model it is possible to take advantage of the memory in the funtionalunits to optimize the omputation. In the situation where a temporary variable,
ti, in a CDFG, is used diretly after it is produed and not required to be storedfor later use, we an implement a diret feed-forward from FUi to {FUj...FUk}, asshown in Figure 5.8. If FUi has to start another omputation immediately afterproduing ti then this optimization should only be implemented if all the target FUs{FUj...FUk} are ready to start when ti is produed, otherwise FUi will be stalled.Similar feed-forward an be implemented from inputs and/or to outputs of the iruit.The purpose of this optimization is to ahieve a redution in the number of variablelathes and iruit speed-up.In the datapath synthesis algorithm these assignments are identi�ed in the vari-able lifetime omputation and separated from the variable lath assignment. In ourexample omputation no lath redution is possible using this method. Implementingthis optimization in Balsa is straightforward. If the value is used by one FU or toone output only, we get:FU to FU: FUi_z->FUj_a
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5.6 Summary 71The Balsa language an be onsidered a general high-level boundary to the asyn-hronous world. There is nothing preventing the implementation of other styles ofasynhronous iruits, i.e. Burstmode iruits, using the Balsa-language as desrip-tion language. In fat researh of this nature is urrently underway. This means theuse of the Balsa-language as a bak-end represents a variety of implementation styles.However as our templates targets the urrent one-to-one ompilation to handshake-omponent implementation of Balsa, the �weights� and possibly parts of the imple-mentation templates should be modi�ed to ensure optimal iruit implementationfor other implementation styles.
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C h a p t e r 6Algorithms for BehavioralSynthesis
This hapter deals with the fundamental parts of high-level behavioral synthesis:operator sheduling, funtional unit alloation and operator to funtional unit as-signment. We are given a Control Data Flow Graph (CDFG) speifying the behav-ior/omputation whih we want to implement onto an Integrated Ciruit and weare given a maximum time frame T within whih the Integrated Ciruit has to per-form this omputation (e.g.. aused by new data arriving at a frequeny of 1/T , ex.sampled from a sound soure).We will onsider behavioral synthesis algorithms targeting a disrete time evolu-tion, for whih solutions are relaxed into ontinuous time. The following algorithmsuite have been developed:

• Power aware synhronous synthesis algorithm. This algorithm is a lique heuris-ti algorithm operating with a time and maximum power per time onstraint.This is useful for appliations having a power limit e.g. generated by a solarpanel. This sheduling algorithm handles CDFG's without repetitive stru-tures.
• Evolutionary synhronous synthesis algorithm and a simulated annealing syn-hronous synthesis algorithm. These are meta-heuristi algorithms operatingwith a maximum time onstraint. These algorithms only handle DFG graphs.
• Simulated annealing task synthesis algorithm. This algorithm is used to shed-ule the CDFG where the DFG fragments are sheduled using one of the two
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System Power ProfileFigure 6.1: Task shedule and the system power pro�le.previously mentioned algorithms. This algorithm has not been implementedbut the method is outlined.6.1 Power-aware shedulingPortable embedded systems fae inreasing performane demands while running onless power. Therefore, to e�iently use the power available from the power soure,task sheduling mehanisms have to take the system power pro�le into aount.Figure 6.1 illustrates a set of sheduled tasks and the resulting system power pro�le.In low-power or power-aware task sheduling one usually assumes a uniform powerpro�le of the individual tasks, however in reality these individual tasks might havea very irregular power pro�le. So using the average task power �gure in the tasksheduling only leads to average system power pro�le, and the system might have anaumulation of power peaks whih would severely violate system power onstraints.On the other-hand using the peak power �gure would lead to an over-onservativeshedule whih would omply to the system onstraints but would be an ine�ientuse of system resoures.Another related issue is the non-linear hemial to eletrial energy e�ieny ratioof batteries whih depends strongly on the urrent pro�le of the appliation [102, 5℄.Here there are two ontributing fators: (1) If the peak-urrent exeeds a maximum-threshold the life-time starts dropping dramatially. (2) A large urrent variationalso leads to redution in battery life-time. These fators are more dominant onbatteries of low quality. Furthermore there might be a maximum power available tothe task restrited by e.g. a solar panel providing the power to the iruit.Altogether our goal is to synthesize these ritial tasks as digital iruits, witha stati shedule having an uniform power pro�le. In this setion we present aheuristi synthesis algorithm whih solves: (i) sheduling, (ii) alloation and (iii)assignment simultaneously under both a time and power onstraint. These 3 tasksare traditionally solved separately whih is suboptimal as these typially interferewith eah-other.



6.1 Power-aware sheduling 75
6.1.1 Problem formulationThe hardware behavioral (time-onstrained and power-onstrained) synthesis prob-lem, given a non-repetitive CDFG, time onstraint T and a maximum energy pertime-slot onstraint E<, onsists of the following subproblems:Sheduling Determine the shedule φ speifying the start time ki for eah operation

vi (ki = φ(vi)) suh that: (i) no preedene onstraint is violated: ki ≥ tr +
dr, tr = φ(vr), ∀i, r : (vi, vr), whih are onneted in the CDFG, suh that alloperations are ompleted within the time frame T . (ii) no power onstraint isviolated: Ek ≤ E<, ∀k = [0..T ], where Ek =

∑
ei, ∀i : (vi) whih are exeutingin ontrol-step k.Alloation Speify whih j and how many Nj funtional unit instanes are requiredseleting from the provided hardware library R.Assignment (Operator Binding) Provide a mapping α : V → R, from eah oper-ation vi to a spei� funtional unit α(vi) = j ∈ R. The assignment spei�esthe exeution delay of the operator δ(vi) = di and the energy onsumption pertime-slot of the operator ǫ(vi) = ei.We will solve these subproblems simultaneously targeting minimimal the areaost (6.1):

costφ =
∑

j∈R

[ω(j) ×Nj(σ)] , (6.1)where ω(j) is the area ost of FU j, Nj(σ) the required number of these for theshedule.6.1.2 Power heuristi shedulingIn traditional time onstrained synthesis the two heuristi low omplexity algorithms;ASAP and ALAP are used to bound the solution spae. In Figure 6.2 is shownan example CDFG and its orresponding ASAP shedule, where we have assumedall operations, without loss of generality, are exeuted in one time-slot. In thissetion we use a di�erent example CDFG, than our running example 2.2, as thisnew simpler CDFG exempli�es the power variation we want to emphasize for thissynthesis method, unlike our familiar CDFG used elsewhere in this thesis.In the following we present a heuristi algorithm, PASAP, whih given a poweronstraint generates a shedule. This algorithm plays the same role as ASAP and isbeing used in our main algorithm to heuristially bound the minimum time separa-tion between two operators, ensuring all CDFG preedene onstraints are satis�ed



76 Algorithms for Behavioral SynthesisFU σ Delay Area Energy/time-slotadd {+} 1 1 1ALU {+,−, >} 1 1.5 1mul {∗} 1 4 3Table 6.1: Simple example FU library, used for the example only.
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Figure 6.2: Example CDFG and its ASAP sheduletogether with the power onstraint. The PASAP shedule is a�strethed� ASAPshedule. �Strethed� to �t the power onstraint i.e. the operators are sheduled asfast as possible, but only if there is power available meaning some operators will bedelayed additional time-slots.PASAP (E<):Initialize: Shedule soure start-time to zero and initialize the exeution o�set oi(time-steps) to zero for all operators.step 1: Pik an unsheduled operator vistep 2: If vi has unsheduled predeessors, goto 4.step 3: If there is power available in the exeution time interval [(ti + oi)..(ti + oi +
di)], where di is the exeution delay of vi and ti = max{tj + dj} ∀vj → vi, isthe earliest start time, otherwise inrease oi by one.step 4: If unsheduled operators, goto step 1.For onstrution of our PASAP shedule we use the simplisti funtional unit(FU) library shown in table 6.1. In Figure 6.3 is shown the PASAP shedule for ourexample CDFG, here we have set a power limit of E< = 3, whih we keep for thisexample. The algorithm starts in time-slot one and tries to �ll it up with operations:
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Figure 6.3: The PASAP and PALAP shedules of our example CDFG, both withE<=3.we start by sheduling v1, whih prevents us from sheduling v2 as this would violatethe power onstraint. But we an ontinue to shedule v3 and v4. In the next time-slot we have v2 ready, whih is the only one for whih there is power available andthe algorithm ontinues. The total PASAP shedule takes 5 time-slots to ompleteas opposed to only 3 time-slots of the ASAP shedule. The same algorithm an runbakwards whih we denote PALAP.Obviously there are many ways of seleting whih operators to �pak� into time-slots and it is a hard problem to �nd the optimal ombination i.e.. the solutionthat results in the shedule using the least amount of time. Here we have simplyhosen the order of whih they appear in the CDFG. In this way PASAP annot beompared to ASAP.6.1.3 Power and time onstrained synthesisIn Figure 6.4 we have re-shown our example CDFG as well as a non-power onstrainedshedule with a time onstraint of T=5 time-slots. Here the partial lique partitioningalgorithm in [58℄ is apable of onstruting a shedule and an FU alloation using onlyone ALU and one mul (the minimal FU-alloation to exeute this CDFG no-matterhow muh time we have available) using a total area ost of 5.5 units. Besides theshedules is shown the total energy onsumption for the respetive time-slots. Herewe note two things: (i) This shedule violates the energy onstraint of E< = 3 andfurthermore (ii) it is very spiky (time-slots 1 and 3). For a power onstrained shedulewe wish to stay under our onstraint and �smoothen-out� the shedule.As mentioned, our power onstrained synthesis algorithm builds upon this algo-rithm and as in [58℄ we onstrut the time-extended ompatibility graph, V 1: Eahvertex Aijk represents a possible sheduling, alloation and assignment of operation
i on FU type j starting in time-steps k. Eah edge < Aijk, Arjt > represents thesimultaneously sheduling, alloation and assignment of operator i and r on the sameFU instane of type j at times k and t, respetively. We have extended the formu-lation of a valid V 1 graph to inlude power onstraints. Thus our allowed verties(Aijk) are:



78 Algorithms for Behavioral Synthesisi: All operators in the CDFG.j: The set of FUs where operator i an be exeuted.k: The time interval given by {tPASAP, tPALAP}, when operator i is exeuted onFU j and all other operators are sheduled using delay information from thefastest FU type and power information from the most power hungry FU type.And the allowed edges,< Aijk, Arjt >, are those where there is a dependeny in theCDFG, vi → vr, and the exeution time of the two operators does not overlap whensheduled on FUj, as well as it is possible to �nd a valid PASAP shedule with viand vr sheduled on FUj at times k and t respetively.A subgraph of V 1 whih is ompletely onneted by ompatibility edges in V 1(lique) an be mapped to one FU instane. Then the solution to the synthesisproblem with the minimum area and using least interonnet is the problem of �ndingthe Partial minimal ost lique partitioning of V 1 whih does not violatethe power onstraint, where partial refers to a over ontaining one-and-only-onevertex for eah operator i.
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Figure 6.4: CDFG and a non-power shedule with T=5, using only one ALU andone mul with a total area of 5.5.As in [58℄ we heuristially solve the lique partitioning problem, through a greedyapproah i.e.. evaluate the V 1 graph and pik a �best� deision whih is thensheduled, alloated and assigned. Then this proess is repeated until no oper-ators are left. To this end we onstrut the Mixed-vertex Compatibility Graph(MCG = (V 1, V 2, E)): The V 1 graph, extended with super-verties Sj,n ∈ V 2.The super-vertexes Sj,n ontain the sheduled, alloated and assigned operators onFU of type j instane n. Initially |V 2| = 0.In priniple, our algorithm starts with a power and time valid region then aggres-sively redues area ensuring the sheduling region stays valid. Our algorithm is asfollows:Initial Build the MCG. Here PASAP and PALAP are used to build the set ofallowed verties and allowed edges, under the power and time onstraint.Step 1 Pik the best deision. We selet aording to maximum lique i.e. �ndthe largest lique Aijk is ontained in (a double searh of the entire graph) and



6.1 Power-aware sheduling 79
111

110

100

101
220 221

311

310

404

403

400401

402
410

411
412

413
414522

714

613603Figure 6.5: Partial-Clique partitioning. Shown are a set of V1 verties, grouped (bythe dotted lines) in operators. The only edges shown are those whih are in themaximal lique not violating the power onstraint .ompute costAi,j,k
= sum of FU area for maximum lique(Ai,j,k). The seletedvertex is merged into an existing super-vertex if it is onneted to a super-vertex, otherwise it is made into a new super-vertex.Step 2 Transform the MCG in aordane with the deision. The deision of theprevious step has e�ets on both time and power, again PASAP and PALAPare used to maintain validity i.e.. ensure the V 1 graph only ontains the set ofallowed verties and allowed edges re�eting the urrent situation. Furthermorewe need to preserve the liques and disonnet those whih no longer form one,refer to [58℄ for a detailed desription.Step 3 Ensuring feasibility. As PASAP and PALAP are heuristi algorithms theydepend on what operators have been sheduled, therefore a sequene of assign-ments might ause the of deletion unsheduled operators, ausing an invalidshedule. The solution is to baktrak one step and lok the start time of allunsheduled operators to the PASAP shedule (whih was valid) and then on-tinue, reduing our algorithm to a pure assignment and alloation algorithmfrom that point on.Step 4 If any verties left in V 1, goto step 1.A omment to step 3, in most ases step 3 will not take e�et and the algorithmwill ontinue to the end, however it is possible to onstrut CDFGs whih togetherwith spei� onstraints auses the algorithm to exeute this step. But even if itdoes, the algorithm has been allowed to operate for some time, during whih it hassigni�antly redued area in omparison with the starting PASAP shedule.In Figure 6.6 we illustrate the onstrution of a power-onstrained shedule usingour algorithm and the example CDFG. We use the same time onstraint T=5 andpower onstraint E< = 3 as in Figure 6.3. The onset of the algorithm is the onstru-tion of the PASAP and PALAP shedules, shown in Figure 6.3 and requiring atleast 5 time-steps for our power onstraint, whih generates the sheduling intervals



80 Algorithms for Behavioral Synthesis
404

403
402
401

400

603

100
101

ALU MultAdd

ALU MultAdd

220

522
404

401

603 403

101

411

413
414

311

613

714

111

714

310 311

110

111

410
411
412

413
414613

V1:

220

522

221

V1’:

Figure 6.6: CDFG and the onstrution of the power onstrained solution (T=5,E<=3).for our operators. Using the sheduling intervals and our FU-library, shown in table6.1, we generate the V 1 graph, shown in Figure 6.6. Initially the algorithms reatesa super-vertex of the multiplier operation v2 sheduled on Mul in time-slot 0, then itmerges v5 sheduled on Mul in time-slot 2 in to it, these are shown enlosed in thedotted ellipse.The seletion of v2 sheduled on Mul in time-step 0 has onsequenes in the formof the PASAP and PALAP algorithms deleting the nodes:{100, 400, 110, 310, 410}to maintain the V1 graph in a feasible state. Operation {221} is deleted as v2 nowhas been sheduled. Merging v5 sheduled on Mul in time-slot 2, similarly removesoperations {402, 412} and we arrive at the V 1′ graph shown in Figure 6.6, with thesuper-vertex enlosed in the solid ellipse.As it turns out the V 1′ graph no-longer ontains verties (i.e.. liques) whihtogether with the super-verties an violate the power onstraint. Meaning the sub-sequent exeution of the PASAP and PALAP algorithms in priniple redues toexeution of the ASAP and ALAP algorithms i.e.. the remaining part of the algo-rithms exeutes as the original algorithm in [58℄.The �nal shedule, alloation and assignment orresponding is shown in Figure6.7, requiring one add, one ALU and one mul, using a total area ost of 6.5 units.Alongside the shedule is shown the power onsumption in eah time-slot, where wenow no-longer have a power violation as well as less spikes. We notie the prie forthe power onstrained shedule ompared with the non-power onstrained shedule(using the same time-frame) is an extra adder, a relative area inrease of 18 perent.
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Figure 6.8: Creating multi-yle operations from single-yle operations maintainingthe global time-line, whih prohibits operation �sliding�.6.2 Implementing synhronous power aware shed-ules in asynhronous iruitsThere is a potential danger of violating the power onstraint when relaxing a syn-hronous power aware shedule to ontinous time and implementing it in an asyn-hronous iruit, as the synhronous synhronization is removed.If we restrit our selves to iruits generated by the beta model without the opti-mizations. Or restrit our selves to the iruits generated by the alpha model whosethreads an be merged into a single main thread. Then we will show there is no poweronstraint violation relaxing synhronous power aware shedules in asynhronous ir-uits using our templates.Let us assume a shedule onsisting of single-yle operations. Then in eahontrol-step there is a set of parallel read events for all operations starting in thisyle, sequened by, a set of parallel write events for the same operations. Thisis sequened by the next yle. Therefore if the synhronous shedule upholds thepower onstraint in eah yle, so does this asynhronous iruit.For multi-yle operations the piture is a little more ompliated, however the



82 Algorithms for Behavioral Synthesissame priniple applies. First onsider the multiyle operation as a sequene of single-yle operations, as shown in Figure 6.8 (left), the �rst ase. In this piture thereis no power onstraint violation. Removing the middle synhronization events doesnot hange anything as the start and end of the multi-yle operation, in the seondase, is sequened now by a series of single yle operations in between. And in the�nal ase the start and end of all operations is loked on to the global time-line. Ifwe assume a operation has �slided� into violating the power onstraint it would haveviolated the global time-line-sequening of operations. With respet to the globaltime-line-sequening, the alpha model, whose threads an be merged into a singlemain thread, behaves identially as the beta model.6.3 Simulated annealing and evolutionary algorithmIn this setion we investigate two meta-heuristi algorithms for solving the behavioralsynthesis problem: (i) Simulated annealing and (ii) evolutionary algorithms [78, 42,79, 66, 43, 32, 52℄. Meta-heuristi algorithms are interesting in this ontext as largeDFGs an be sheduled with fast run-times. Furthermore they are easily be stoppedif the optimal solution is not required to be found, but just a solution whih fallswithin the area requirement. The power-onstraint has not yet been implementedinto these algorithms.For these algorithms we target DFG fragments to be sheduled and a time-onstraint whih spei�es the maximum amount of ontrol steps allowed for theexeution of the DFG fragment. The DFGs onsidered here are ayli diretedgraph with verties σi, representing the operators to be exeuted, and edges σi → σl,speifying the order in whih they have to be exeuted for the omputation to beorret (σi has to be exeuted before σl). The DFG is augmented with a soure (on-neting to inputs, I) and a target vertex (onneting from outputs, O). To exeuteoperations we use the same resoure library of funtional units, de�ned in table 6.2.With the hard time frame onstraint we need to �nd shedule in whih to exeutethe operations in the DFG onto some FUs suh that we �nish all operators before thetime frame T (without violating their dependenies) and at the same time minimizethe area. This involves trade-o�s between sheduling e.g. many {+,−, >} operationsin parallel (requiring more �heap� ALUs), to serialize more {∗} operations (requiringfewer �expensive� mul1), as well as tradeo�s between di�erent �subtypes� of FUs (fastor slow). All this depends strongly on the spei� DFG and the time frame T wehave available.6.3.1 Problem formulationFirst, we formulate the behavioral synthesis problem as an ILP problem. We havea DFG with operators σi i = 1 . . . n and dependenies σi → σl, a resoure librarywith funtional units of type FUj j = 1 . . .m having a silion area wj . And atime interval k = 1 . . . T giving for eah operator σi a time interval where it an be



6.3 Simulated annealing and evolutionary algorithm 83sheduled: Si . . . Li. We want to minimize the used silion area. Let us start byintroduing the variables in our formulation:x : Let xi,j,k be a 0, 1 integer variable assoiated with the operator σi: xi,j,k = 1 if
σi is sheduled to start in time-step k assigned to exeute on FUj and xi,j,k = 0otherwise.N : Let Nj be an integer variable whih denotes the number of funtional units oftype FUj we will alloate on our IC.The objetive funtion is:minimize A =

m∑

j=1

wj ∗Nj (6.2)Subjet to
Li∑

k=Si

m∑

j=1

xi,j,k = 1, for all i (6.3)
Ll∑

k=Sl

m∑

j=1

k × xl,j,k −

Li∑

k=Si

m∑

j=1

(k − dj) × xi,j,k ≥ 0, for all σi → σl (6.4)
Nj −

n∑

i=1

dj−1∑

p=0

xi,j,k−p ≥ 0, for all j, k (6.5)
E< −

n∑

i=1

m∑

j=1

dj−1∑

p=0

ejxi,j,k−p ≥ 0, for all k (6.6)The objetive funtion (equ. 6.2) states we want to minimize the total usedsilion area and sums over all funtional unit types and for eah multiplies its areaby the number required for the shedule. The �rst onstraint (equ. 6.3) simply statesthat all operators must be sheduled to start in some time step and on some FUj.The seond onstraint (equ. 6.4) spei�es that for eah DFG dependeny σi → σloperator l an only start after operator i �nishes tl ≥ dj + ti (whih depends onwhih FU i is sheduled on). The thierd onstraint (equ. 6.5) states a FU an onlyexeute one operation at a time. The �nal onstraint (equ. 6.6) ensures that therenowhere is used more power than availeble. This last onstraint will be ignored inthe following.
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Figure 6.9: Crossing from one island of the solution spae to another by keeping theinfeasible solutions, when the perturbation is smaller than the minimum requireddistane. The sequene of φj 's indiated by the dots are the atual solutions and thesequene of F(φj) = Aj indiated by the rosses, orrespond to the feasible solutionsthe ost area funtion is omputed from.6.3.2 Representation and feasibilityWe use a solution vetor ontaining n tuples (one for eah operator), onsisting ofthe pair (ki, ji) where ki is the time step, where operator i starts and ji is the FUtype to exeute it on (ki ∈ Si . . . Li and j : σi ∈ FUj). Let the shedule be de�nedby:
φ = [(k1, j1), (k2, j2), . . . , (kn, jn)]In both simulated annealing and evolutionary algorithms we will likely produe(and start with) solutions whih are infeasible. Where infeasible means we are vio-lating DFG dependenies, therefore we need to make the solution feasible φ→ φ′.We also use this feasibility algorithm to allow for easy rossing over regions ofinfeasible solutions, as illustrated on Figure 6.9. We keep the infeasible solutionbut ompute the ost of this infeasible solution by making the solution feasible andthen ompute the ost of this solution. This requires however that the feasibilityalgorithm is deterministi, suh that the best solution (feasible) an be regeneratedfrom a possible infeasible best solution. This is a better solution than working witha penalty funtion or removing the infeasible solutions.First, let us revisit the ASAP algorithm. Before the algorithm starts assume weassign an operator σi to time step within ti ∈ Si . . . Li and with ji equal to the fastest

FUj. The output is the earliest time S′
l the other operators σl an be sheduled with

σi is sheduled in time step ki. Only suessors to σi are a�eted Sl ≤ S′
l .Critial for this to be of any use is S′

l ≤ Ll ∀ l : Assume we at some point get
S′

l > Ll after assigning operator r to time step tr (∈ Sr . . . Lr, Sr ≤ Lr). Let pbe the longest path σr → σl and q the longest path σl → σr (going 'bakwards'):
S′

l ≥ tr + |p| and Lr ≤ Ll − |q|. Sine the DFG is ayli |p| = |q|, so S′
l ≥ tr + |p|



6.3 Simulated annealing and evolutionary algorithm 85and Lr + |p| ≤ Ll, therefore if S′
l > Ll ⇔ tr + |p| > Lr + |p| or tr > Lr, whih is aontradition.The same applies to the ALAP algorithm and by running both algorithms insuession, we redue the time intervals for all other operators σl: kl ∈ S′

l . . . L
′
l,

Sl ≤ S′
l , S

′
l ≤ L′

l, L
′
l ≤ Ll.Up until now we have assumed ji was assigned onto the fastest FU. The availabledelay is the minimal L′

l time for its suessors σl minus the start time: delayi =
min{L′

l} − ki. So any FUj with dj ≤ delayi an be hosen.The algorithm for feasibility is as follows:Initial set φ′ empty.Step 1 Pik an unsheduled operator σr in φ.Step 2 Shedule σr in time step: φ′.kr = φ.kr.Step 3 Compute delayr = min{L′
l} − krStep 4 If φ.jr ≤ delayr: φ′.jr = φ.jr else assign : φ′.jr = j (j is the one with theslowest allowable exeution) where σr ∈ FUj and dj ≤ delayr.Step 5 ASAP (update Sl → S′

l)Step 6 ALAP (update Ll → L′
l)Step 7 For all unsheduled operators σl in φ: if φ.kl < S′

l set φ.kl = S′
l and if

φ.kl > L′
l set φ.kl = L′

l.Step 8 If any unsheduled operators in φ goto step 1.The algorithm works by iteratively sheduling operators one at a time and eahtime running ASAP and ALAP reduing the valid time intervals for unsheduledoperators and a feasible shedule an be obtained. The algorithm is deterministiand has omplexity O(n2).6.3.3 Simulated annealingThe simulated annealing algorithm is a meta-heuristi algorithm for solving ILPproblems whih borrows from the physial model of near adiabati rystallization i.e.the formation of a perfet rystal lattie.Simulated annealing algorithm:Initial Generate initial feasible solution vetor → φ and ompute its area ost AStep 1 Perturb φ, by randomly moving an operator in time and hanging its FUassignment → φ′.Step 2 Generate a feasible solution from the perturbed solution vetor F(φ′) →
φ′feasible



86 Algorithms for Behavioral SynthesisStep 3 Compute the area ost of φ′feasible → A′.Step 3 If the new ost is smaller than the existing solution (A′ < A) aept thenew solution φ′, otherwise onditionally aept φ′ depending if exp(−(A′ −
A)/Temp) > random(1) is true.Step 4 Update the solution spae (φ′, A′, T emp′) → (φ,A, T emp) and while notthermal equilibrium goto step 1.Step 5 Redue the temperature exponentially Temp′ = αTemp, with 0 < α < 1.Step 6 If the temperature Temp′ is larger than Tempcrystal (the stopping temper-ature) and A′ is larger than Aaccept goto step 1.In the iteration step a random operator σi is hosen and random (aeptable)values are inserted for both ki and ji. Then the shedule is made feasible starting withsheduling σi and then sheduling the rest. In this way we ensure the perturbationsurvives the feasibility proess. Then depending on the ost and the temperaturewe aept this new shedule or not. The fundamental di�erene between simulatedannealing and loal searh lies in the ability at �high� temperatures to move �uphill�i.e. aept solutions whih are less optimal (as well as always move �downhill� i.e.aept more optimal solutions). This is handled by the aept funtion maintainingthe Boltzmann distribution from statistial mehanis. Initially the algorithm isstarted with an random solution whih is made feasible. The thermal equilibriumondition repeats the inner-loop a ertain amount, this is determined in the followinghapter. Tempcrystal stops the algorithm if the temperature omes down to 1. It anbe shown mathematially that by seleting the orret temperature funtion spei�to the problem, the simulated annealing algorithm will �nd the optimal solution.However the time spent on �nding the optimal solution an be shown to be equal toor larger than the time to perform an exhaustive searh. We set the start temperatureto 10000 and it an be shown that a adiabati ool-o� in temperature orresponds toan exponential temperature deay i.e. the new temperature is generated by Temp′ =

αTemp with 0 < α < 1. We determine the appropriate value for α in the followinghapter.6.3.4 Evolutionary algorithmThe evolutionary algorithm approah is a meta-heuristi algorithm for solving ILPproblems whih is biologially inspired and implements the onept of �survival ofthe �ttest�.Evolutionary algorithm:Initial Generate initial set of feasible solution vetors → Φ = {φ}, the population,and ompute their respetive area osts A = {A} and set the generation ountto zero G = 0.



6.3 Simulated annealing and evolutionary algorithm 87Step 1 Remove the half part of the population Φ with the lowest area ost → Φ 1

2and set Φ′ = ∅.Step 2 Selet two elements from Φ 1

2

→ {φa, φb}, the parent solution vetors, andremove the elements from the set Φ 1

2

\{φa, φb} → Φ′
1

2

.Step 3 Selet a random rossover position and form two new solution vetors
{φa, φb} → {ψ, ϕ}, the hild solution vetors.Step 4 Mutate {ψ, ϕ}, by randomly moving an operator in time and hanging itsFU assignment → {ψ′, ϕ′} using a low probability χ for mutating the solutionvetors.Step 5 Add the parent and the the hild solution vetors to the new population
Φ′ + {φa, φb, ψ

′, ϕ′} → Φ′′.Step 6 Update the solution sets(Φ′
1

2

,Φ′′) → (Φ 1

2

,Φ′) and if Φ 1

2

is non-empty gotostep 2.Step 7 Generate feasible solutions from the perturbed solution vetors in
Φ′:F(Φ′

perturbed) → Φ′
feasible.Step 8 Compute the area ost of Φ′

feasible → A′
feasible.Step 9 Inrement the generation ount G and update the solution spae (Φ′, A′) →

(Φ, A).Step 10 If the best solution Abest is larger than Aaccept and the generation G is lessthan Gstop goto Step 1.The algorithm works by �rst deleting the most un�t half of the population. Thenfor two survivor pairs we selet a random rosspoint and perform the rossoverthereby produing two new hildren. Then we randomly sometimes add a muta-tion to the hildren. Then the hildren are made feasible (in the same way as forthe simulated annealing) and the ost funtions are evaluated and they are put intothe new population. The fundamental di�erene between the loal searh/simulatedannealing and the evolutionary algorithm is the use of a population of solutions inthe latter. The deletion of the most un�t half in priniple works as the �downhill�moving part and with the ross-over and mutation as the potential �downhill/uphill�moving part. Initially the algorithm is started with set of random solutions, madefeasible and evaluated. The mutation rate is inluded in the evolutionary algorithmsto prevent the entire population from onverging to a single olletion of similar so-lutions. The mutation rate should not be the prinipal solution spae explorationmethod of the algorithm and should be very low; we hose χ = 0.01. The generationount terminates the main loop if more than Gstop generations has passed. In thefollowing hapter we determine both the population size and the Gstop parameter.



88 Algorithms for Behavioral SynthesisModule Oprs Area Time-slots E/time-slot [nJ℄add {+} 2032.75 1 0.0266sub {−} 2032.75 1 0.0266omp {>} 2032.75 1 0.0266ALU {+,−, >} 2965.00 1 0.0266mul1 {∗} 41978, 50 3 0.1046mul2 {∗} 28414.50 6 0.0523mul3 {∗} 14638.75 17 0.0319input i 43.00 1 0.0output o 43.00 1 0.0Table 6.2: 16 bit funtional unit library based on balsa-ost numbers, available tothe synthesis algorithm.
CDFG1

* 2

a
1

0
y

a
2

a
0

0
x x

1
x

2

3
w

0 1

−7

0 1 0 1

a
3

y
1

7
w

5
w

6
w

DFG1 DFG2

CDFG1

DFG0

CDFG0

1

+ 3

+

−
> 4

5

1

2

4

0

w

w

w
w

DFG0

CDFG0

DFG2

*

+ 6

8

DFG1

Figure 6.10: (Left) Partition of our CDFG into DFG fragments. (Right) The orre-sponding task graph to the partition of the CDFG.6.4 Control data �ow graph synthesisFor synthesis of ontrol data �ow graphs a basi blok synthesis proedure is used.Thus repetitive and onditional segments of the CDFG are sheduled as independentparts or independent tasks i.e. the synthesis problem of the CDFG is redued to asynthesis problem of a set of DFG's [64, 103℄, as we have presented in the previoussetions i.e. this algorithm builds on top of these algorithm.The partition of the CDFG into basis bloks follows a hierarhial deent into theCDFG where the DFG-fragments are identi�ed as the largest sets of deterministiallyrelated operators in the CDFG. The largest set of deterministially related operatorsis de�ned as the largest group of operators for whih a stati exeution order an befound.Having partitioned the CDFG into basi bloks a hierarhial task graph on-
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Figure 6.11: Sheduling of the DFG fragments: DFG0, DFG1, DFG2.taining the relationships between the di�erent DFG fragments is generated. This isillustrated on Figure 6.10 for our example CDFG. For our example the largest groupof deterministily related operators in CDFG0 are operators:{1, 2, 3, 4, 5} , whih isdenoted DFG0. Besides that there exists a branh-setion whih we denote CDFG1.The proedure is then repeated for CDFG1, whih ontains two sets of determinis-tily related operators DFG1={6, 8} and DFG2={7}. Eah of these DFG fragmentsare nodes in the orresponding task graph. The task graph has a single dependenybetween DFG0 and CDFG1, whih originates from the exeution of the onditionalhoie, operator {4} whih is omputed in DFG0 and used in CDFG1.To keep trak of the urrent solution the algorithm is working on, we introduea solution vetor φ ontaining n tuples (one for eah DFGi fragment), onsistingof the pair (ti, di) where ti is the start time-step for DFGi and di is the synthesisdelay onstraint for this DFGi fragment i.e. the maximally allowed exeution timefor DFGi. Let the shedule be de�ned by:
φ = [(t1, d1), (t2, d2), . . . , (tn, dn)]The time-steps ti are bound by the ASAP and ALAP times for the task graph,where it is assumed all the DFGi fragments are exeuted using their ASAP shed-ules. The individual synthesis delay onstraints range from the ASAP time of theDFGi fragment to the ALAP time of the DFGi fragment omputed where all otherDFG fragments are exeuted using their ASAP times and all predeessor DFGi aresheduled at ASAP start-time intervals and all suessors are sheduled using theirALAP time intervals. This spei�es the maximally allowed time interval for thatDFG fragment.The main synthesis algorithm operates in �two-levels�: The prinipal level shed-ules the DFG fragments (task-sheduling) using the {ti} start-times and the sublevelor innerloop reshedules a single DFGi fragment using its di synthesis delay on-straint.CDFG sheduling:



90 Algorithms for Behavioral SynthesisInitial Generate the task-graph by desending hierarhially into the CDFG dividingdeterministi sets into DFGi whih are nodes in the task graph. Generate theinitial solution vetor by setting the set of start times {ti} to the ASAP start-time for the task-graph. And set the set of synthesis time-onstraints {di} tothe length of the ASAP shedules for the {DFGi}.Step 1 Perturb φ, by randomly seleting a tuple i and randomly move the start time
ti and hange the synthesis onstraint di → φ′. All has to be seleted withintheir respetive ASAP-ALAP intervals.Step 2 [Innerloop:℄ Reshedule the seleted DFGi using one of the methods pre-sented in the previous setions, using the orresponding onstraint di.Step 3 Shedule the task graph using the task solution vetor and alloate usinggroups of FUs from the DFG fragments. For CDFG fragments ontaininghoies between several DFG's use the worst-ase time-delay and area usage.For onditional repetitive CDFG fragments assume a single exeution. Theresulting funtional unit alloation is the maximal onurrent use of eah typeof FU.Step 4 Loally optimize the resulting ombined shedule, by taking advantage ofthe slak but without alloation more funtional units than alloated in theurrent iteration. Compute the area ost of φ′ → A′ from the funtional unitalloation.Step 5 If the resulting shedule violates the system time onstraint T add a largepenalty area to the area ost: A′ + P → A′.Step 6 If the new ost is smaller than the existing solution (A′ < A) aept thenew solution φ′, otherwise onditionally aept φ′ depending if exp(−(A′ −
A)/Temp) > random(1) is true.Step 7 Update the solution spae (φ′, A′, T emp′) → (φ,A, T emp) and while notthermal equilibrium goto step 1.Step 8 Redue the temperature exponentially Temp′ = αTemp, with 0 < α < 1.Step 9 If the temperature Temp′ is larger than Tempcrystal (the stopping temper-ature) and A′ is larger than Aaccept goto step 1.The algorithm operates similar to the simulated annealing synthesis algorithm insubsetion 6.3.3, the prinipal di�erene is in step 2, the innerloop, where a DFGfragment is sheduled. Here a penalty ost is used for infeasible solutions as no goodfeasibility algorithm has been found yet.The sheduling of the di�erent DFG fragments are shown in Figure 6.11. For oursimple example task-graph there is, beause of the dependeny between DFG0 andCDFG1, only one possible task shedule, whih is shown in Figure 6.12 (left). Theorresponding shedule at operator level is shown following thereafter, this shedule
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Figure 6.12: Synhronous task-sheduling and the orresponding shedule of opera-tors. Slak exploitation leads to the optimized shedule, whih is �nally relaxed intoan asynhronous shedule.ontains a lot of slak stemming from the individual sheduling of the DFGS andnot the CDFG as a hole. In this and other ases the shedule an be ompressedfollowing a ��rst ome �rst serve� priniple where operators are moved upwards intime to empty time slots, preserving the relative sheduling of the operators in DFGand their relative dependene between the DFGs. The resulting shedule for ex-ample is shown on the same �gure. Finally the time-slot restritions are removed,shortening the exeution time of the multiply operation and relaxing the sheduleinto an asynhronous shedule. The resulting shedule has been used through-outin this thesis. This shedule is not optimal when ompared to the optimal shedulegenerated through a ontinuous time exhaustive-searh method, but the di�erene ismarginal.For the power aware sheduling algorithm onsidered in the �rst setion, thebasi blok is extended to inlude the onditional setions of the CDFG, but notrepetitive strutures. This means our entire example is one basi blok for thatalgorithm. The power aware sheduling is a lique based algorithm whih operatesusing operator disjuntiveness. There are two types of disjuntiveness to haraterizethe relationship between two operators. The operators an be:Path disjuntive For operators to be path disjuntive, there should exist a de-pendene relation between them i.e. there should exist a path in the CDFGonneting the two operators together and preventing the operators from hav-ing overlapped exeution times.Branh disjuntive For operators to be branh disjuntive eah operator shouldsemantially exlude the exeution of the other i.e. if eah operator belong to



92 Algorithms for Behavioral Synthesisdi�erent branhes in a branh onstrution only one of the operators an beexeuted and therefore no overlapping exeution an our.Operators that are disjuntive will only take up one exeution slot on a funtionalunit and thus an be advantageously sheduled onto the same funtional unit.A power-onstraint ould be inluded alongside the task exeution-time onstraint
di and thus be used to power onstraint the sheduling of the DFGs. The systempower onstraint ould then be handled by a penalty funtion, similar to the penaltyintrodued by violating the system time onstraint T .6.5 SummaryIn this hapter we have presented a set of behavioral synthesis algorithms: A power-aware synthesis algorithm for CDFGs without repetative strutures, whih we haveimplemented. A simulated annealing algorithm and an evolutionary algorithm forsynthesis of DFG fragments and we have developed a feasibility algorithm whihenables the possibility of easy rossing between areas of feasible solutions in thesolution spae for these meta-heuristi algorithms. All of whih we have implemented.Finally we have outlined a behavioral synthesis algorithm for synthesis of CDFGs.In the following hapter we ompare the implemented algorithms.



C h a p t e r 7
Results

This hapter presents an evaluation of the e�ieny of the omputation model andour methods. The purpose here is not to ompare asynhronous vs. synhronous,as eah have their own appliation domains and ats as supplements. Neither isdiret omparison with other asynhronous synthesis methods attempted, as thisinvolves omparing di�erent tehnologies and implementation styles whih rendersany omparisons debatable/inonlusive.We benhmark our algorithms on a representative set of problems from the las-sial set of synthesis benhmark CDFGs: FIR is a eight-tap FIR �lter. HAL is aniterative Euler integration of a di�erential equation. ELLIPTIC is a �fth order ellip-ti wave �lter. COSINE is a part of the DCT algorithm. Throughout in this hapterwe will use the FU library shown in Figure 6.2. This FU library onsist of �balsa-ost� numbers of orresponding balsa-programs that implement the funtionality ofthe funtional units.We begin with presenting the results of the behavioral synthesis algorithms wherewe are interested in their run-time. For these we only onsider the area of funtionalunits. Then we proeed by investigating the iruit implementation method presentedin this thesis; we use our method on the GCD algorithm, whih we ompare againsta manually optimized design. For these results we use the full iruit area. Then weimplement the benhmark set and investigate the overhead of implementing resoure-sharing using this method. Finally we look at the iruit harateristis at layoutlevel.



94 ResultsModule Oprs Area Time-slots E/time-slot [nJ℄add {+} 2032.75 1 0.0266sub {−} 2032.75 1 0.0266omp {>} 2032.75 1 0.0266ALU {+,−, >} 2965.00 1 0.0266mul1 {∗} 41978, 50 3 0.1046mul2 {∗} 28414.50 6 0.0523mul3 {∗} 14638.75 17 0.0319input i 43.00 1 0.0output o 43.00 1 0.0Table 7.1: 16 bit funtional unit library based on balsa-ost numbers, available tothe synthesis algorithm.
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Figure 7.1: CDFG for the HAL omputation, where I and O are the input and outputnodes.7.1 Results for power aware shedulingWe have benhmarked the algorithm on a set of CDFGs, using our FU library shownin table 7.1, all performed on a 200MHz Pentium II, with 96 MB memory. We do nottake an eventual orrelation among input data in to aount and assume worst-asepower measures for omputations in the di�erent FU omponents. The �rst test is ofthe PASAP algorithm where we investigate the required time delay of the CDFGs,as a funtion of the power onstraint. The results are shown in table 7.2. The seondtest is of the main lique-partitioning algorithm where we investigate the area of theresulting iruits as a funtion of the power onstraint, with a onstant time frame.We perform this test for a few di�erent time-frames. The results are shown in Figure7.2. Finally some di�erent power and time onstraints and the iruit area and theCPU time to �nd the solutions is shown in table 7.3.As shown in Figure 7.2 (eg. ELLIPTIC with T=30 and COSINE with T=15)using a global synthesis algorithm we an trade in area to obtain a solution whih�ts our power requirements. The average area penalty ranges in the region of 20



7.2 Results for simulated annealing and evolutionary algorithm 95HAL, verties=21, edges=25
E<[nJ ] inf 0.500 0.400 0.300 0.250 0.200 0.150 0.125
TPASAP 9 9 11 12 12 20 20 22FIR, verties=24, edges=24
E<[nJ ] inf 1.00 0.600 0.400 0.300 0.200 0.150 0.125
TPASAP 8 8 10 13 16 28 27 29ELLIPTIC, verties=49, edges=43
E<[nJ ] inf 0.500 0.400 0.300 0.250 0.200 0.150 0.125
TPASAP 21 21 23 23 24 31 32 38COSINE, verties=57, edges=77
E<[nJ ] inf 1.00 0.800 0.500 0.300 0.200 0.150 0.125
TPASAP 11 11 14 17 27 51 54 56Table 7.2: Time vs. power using the PASAP sheduling for the set of benhmarks.

E<[nJ ] T A TCPU [s]

inf 11 440,499 15.82
0.500 17 314,485 46.75
0.400 26 138,310 118.29
0.300 32 96,289 160.22
0.300 37 95,289 297.03
0.200 56 96,289 442.36
0.125 66 56,386 193.79
0.125 71 56,386 357.58Table 7.3: Di�erent power and time onstraints generated by the main synthesisalgorithm, the resulting area and the CPU synthesis time for COSINE.

perent whih is an aeptable penalty, as power is the ritial parameter here.An interesting aspet is that with a large time and power onstraint, the algorithmmight �nd a worse solution with respet to area, than when the power onstraintis tight. The reason for this lies in the greedy approah whih might make a baddeision early on. With the tight power onstraint this is prevented (no need toalloate many FUs in parallel if only one or two is used at a time), an example ofthis is COSINE T=25 and T=20.
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Figure 7.3: Tightly onstrained power-aware shedule for the HAL omputation,T=13, E=0.210nJ . Requiring 2 inputs, 2 mults (fast), 1 add, 1 sub, 1 les and 4outputs, with a total area of 90311.7.2 Results for simulated annealing and evolution-ary algorithmFor the meta-heuristi algorithm we �rst need to adjust the meta heuristi parametersfor the algorithms. This is in many ases more of an art, than a siene. In thefollowing we will experimentally �nd the best parameter setting. The test ase weuse to adjust the parameters from, is the HAL omputation with a time frame of
T = 20. This is an arbitrary ase, and there is no guarantee this will lead to the
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Figure 7.6: Shedule, FU alloation and operator assignment generated by simulatedannealing for HAL with T = 20 onstraint, giving a total �balsa-ost� area of 59700.small example where to the exat optimum is known is good test for narrowing downthe parameter setting.We begin with simulated annealing, where we need to �nd the temperature hangeoe�ient α and the �thermal equilibrium� number N . In Figure 7.4 we have shownseveral runs of the algorithm for various parameter settings and plotted the solutionthe algorithm �nds. Eah point represents an entirely new run. As an be seen thesimulated algorithm is rather unstable apable of getting stuk at a loal minimum.However for N = 500 and larger, the algorithm tends to beome more stable andprodue good solutions (atually the optimal solution) at every run. The best pa-rameter setting for α seems to be α = 1.250 for larger α the algorithm does notprodue better solutions, only taking exponentially more time to omplete. Thesesetting also seem to produe good solutions for the other problems in the benhmarkset.Next is the evolutionary algorithm, where we need to �nd the Gstop generationount and the N population ount. In Figure 7.5 we have shown several runs ofthe algorithm for various parameter settings and plotted the solution the algorithm�nds. Again eah point represents an entirely new run. As an be seen the simulatedalgorithm is rather stable apable of produing reliable results. Another fator isthe high-dependeny on the population size. With a population around 512 thealgorithm starts onverging towards the global optimum with the fast onvergeneand hoosing a large population size does not inrease the onvergene. The bestvalue for the maximum generation ount Gstop seems to be around in the rangefrom 320 to 640. To be on the safe side we hose 640 generations. Again theseparameters settings seems to produe good solutions for the other algorithms in thebenhmark set exept for COSINE, for whih the algorithm have problems �nding



7.3 Results for asynhronous behavioral synthesis 99some partiular solutions.We have benhmarked the algorithms on two DFGs: HAL (TASAP = 10) andCOSINE (TASAP = 11). We are interested in the CPU-time i.e.. the amount of timeit takes running the algorithms to get a solution satisfying our area requirements. Forthe two DFGs we apply the two meta-heuristi algorithms, giving us four primarytest ases (shown in table 7.4). For eah test ase we set �ve silion area requirementsand six time frame requirements T = dt + TASAP , (the blanks are where the meta-heuristi-algorithms fail to �nd a solution either beause there is no optimal solutionsatisfying the requirement or in border ases beause the algorithms are heuristi).Again, all tests are performed on a 200MHz Pentium II, with 96 MB memory andall numbers re�et a statistial average of running the algorithms 500 times on eahproblem instane.In general the simulated annealing out-performs the evolutionary algorithm interms of CPU time required to �nd a solution for large problems (i.e. COSINE). Theprimary reason stems from the evolutionary algorithm working on a large popula-tion, whih in every iteration has to be made feasible and ost evaluated, whereas thesimulated annealing only works with one problem instane. On the other-hand theevolutionary algorithm seems to perform more �stable�, unlike simulated annealingwhih is apable of getting �stuk� in loal-minimums for some runs. Comparingthe evolutionary algorithm with the simulated annealing the evolutionary algorithmtakes signi�antly longer time to run and does �nd just as good solutions as simu-lated annealing. In partiular in the COSINE ase the evolutionary algorithm hasproblems. This does not mean the evolutionary algorithm annot �nd the solutionseg. if run free the evolutionary algorithm is apable of �nding a solution for CO-SINE, T = 107, below the area requirement of 49200, however it took 25857.4s orapproximately 7.18 hours. The evolutionary algorithm does not however have similarproblems for FIR or ELLIPTIC.A property of the proposed CDFG synthesis algorithm is that one of these al-gorithms will be run for the DFG fragments, until the main synthesis algorithmonverges, it is therefore important that these algorithms generate the solutions fast.This favours the simulated annealing over the two other algorithms.Finally in Figure 7.6 is shown the optimal shedule generated by the meta-heuristi algorithms in the parameter investigation.7.3 Results for asynhronous behavioral synthesisIn order to demonstrate the feasibility of the proposed approah and in order toevaluate the e�ieny of the proposed implementation template. We begin in sub-setion 7.3.1 with applying our approah on the GCD algorithm and then ontinuein subsetion 7.3.2 to our benhmark iruits and �nally for FIR and HAL we haveprodued layouts and in subsetion 7.3.3 we report on the area, speed and power�gures.But �rst we report on the area ost of our running example. The original Balsa-



100 ResultsSimulated Annealing (HAL)
T Area requirement

140, 000 120, 000 90, 000 75, 000 60, 000 46, 000
10 0.165
13 0.012 0.270 2.418
16 0.000 0.092 0.220
18 0.000 0.056 0.165 4.505
20 0.000 0.010 0.07 3.576 23.91
22 0.000 0.000 0.35 1.202 11.43 18.86Simulated Annealing (COSINE)
T Area requirement

350, 000 160, 000 110, 000 92, 000 78, 000 49, 200
13 189.9
21 0.165 195.6
32 0.070 1.593 202.6
35 0.110 0.659 42.03 205.6
86 0.0505 0.440 3.077 8.846 55.54

107 0.210 0.385 2.418 10.33 39.23 259.1Evolutionary Algorithm (HAL)
T Area requirement

140, 000 120, 000 90, 000 75, 000 60, 000 46, 000
10 0.275
13 0.210 0.330 0.934
16 0.000 0.270 0.275
18 0.000 0.165 0.261 10.934
20 0.000 0.015 0.031 2.582 40.01
22 0.000 0.002 0.011 2.637 6.593 30.49Evolutionary Algorithm (COSINE)
T Area requirement

350, 000 160, 000 110, 000 92, 000 78, 000 68, 000
13 22.253
21 0.031 369.0
32 0.00 1.923
35 0.000 1.978 302.2
86 0.0201 0.771 2.253 167.5 271.8

107 0.000 0.010 2.410 2.363 204.0 804.1Table 7.4: Run-times (TCPU [s]) for two CDFGs (HAL and COSINE) by simulatedannealing and evolutionary algorithm.ode in Figure 2.1 would have a Balsa-ost of 96, 787.5 (using the numbers from ourmultiplier), whereas the resulting synthesized Balsa-ode shown on pages 65-67 have



7.3 Results for asynhronous behavioral synthesis 101import [balsa.types.basi℄type word is 16 bitsproedure gd(input a,b: word ; output : word) isvariable ai,bi : wordbeginloopa -> ai || b -> bi ;while ai/=bi thenif ai>bi thenai:=(ai-bi as word)elsebi:=(bi-ai as word)endend ;<-aiendend Figure 7.7: The GCD-algorithm.a balsa-ost of 60, 037.5. Representing an area redution of 38%.7.3.1 GCDIn [53, setion 13.2.3℄ the proess of syntax direted and optimizations at the soureode level (using Tangram) is illustrated using GCD as an example. Figure 7.7shows the well known algorithm expressed in Balsa ode. The problem is that thesoure ode ontains 4 operator symbols, and that the orresponding iruit have 4funtional units as well. In order to optimize the area the designer has to rewritethe ode. Figure 7.8 shows one suh optimized design. It is slightly di�erent fromthe Tangram ode in [92℄ as Balsa does not support exatly the same onstruts asTangram, but the ideas underlying the optimization are the same. Even this simpleexample hints that the proess of optimizing the iruit and exploring alternativesan be tedious. In behavioral synthesis one would take the basi ode in Figure 7.7and synthesize it with area minimization as the onstraint. The work presented heredoes exatly this, i.e. from a CDFG extrated from the basi ode in Figure 7.7we automatially synthesize a iruit ontaining two ompares and one subtrationoperator. Table 7.5 shows the area estimates (�balsa-ost�) reported by Balsa for thedi�erent versions of the iruit. It is seen that behavioral synthesis in this exampleatually outperforms the manually optimized design.The important message here is that the overhead introdued by our method is sosmall the resulting area ost is in the same region as a manually optimized iruit.



102 ResultsProgram balsa-ostgd_basi 7435.25gd_opt 7161.75gd_synt 6846.00Table 7.5: Comparison of the plain GCD, the optimized GCD and the synthesizedGCD. �balsa-ost� is an area measure reported by the Balsa tool.import [balsa.types.basi℄type word is 16 bitstype twoword is reorda,b:wordendproedure gd(input ab: twoword ; output : word) isvariable data : twowordbeginloopab->data ;while data.a/=data.b thenif data.a>data.b thendata:=(twoword {((data.a-data.b) as word),data.b as word)})elsedata:=(twoword {data.b,data.a})endend ;<-data.aendend Figure 7.8: An optimized version of GCD.7.3.2 BenhmarksUsing our behavioral synthesis methods, more preisely simulated annealing, togetherwith our omputation model and our implementation templates, we have synthesizedthe range of benhmarks as shown in table 7.6. Again the area is expressed in termsof the �ost� reported by Balsa. As seen, it is possible to automatially synthesize im-plementations with a range of onstraints. The table is divided into six groups: The�rst group shows the balsa implementation as a designer would implement them with-out resoure sharing. The seond group shows the area of the synthesized versionsas produed diretly from the simulated annealing algorithm before lath assignment



7.3 Results for asynhronous behavioral synthesis 103import [balsa.types.basi℄type word is 16 bitsproedure gd(input a,b: word ; output : word) ishannel FU0_a,FU0_b,FU0_z:wordproedure FU0_sub(intput FU0_a,FU0_b:word;output FU0_z:word) isbeginloopselet FU0_a,FU0_b thenFU0_z<-(FU0_a-FU0_b as word)endendendproedure gd_arhiteture(input a,b,FU0_z:word;output FU0_a,FU0_b,:word)variable L0,L1,L2 : wordhannel L2:wordbeginloopa -> L0 || b -> L1 ;while L0/=L1 thenif L0>L1 thenFU0_a<-L0 || FU0_b<-L1;L2->L0elseFU0_a<-L1 || FU0_b<-L0;L2->L1end ||[ FU0_z->L2 ; L2<-L2 ℄end ;<-L0endendbeginFU0_sub(FU0_a,FU0_b,FU0_z) ||gd_arhiteture(a,b,FU0_z,FU0_a,FU0_b,)endFigure 7.9: The synthesized version based on the basi algorithm in Figure 7.7.i.e. only the pure FU area is reported. The third (3a) and fourth (3b) group showsto the seond group orresponding balsa-implementation using the alpha and betatemplates respetively, but without using the ontrol and mux-optimizing algorithm.



104 ResultsFor the �fth (4a) and sixth (4b) groups these optimizations have been inluded.Thus the di�erene between items of the seond group and the third or fourth groupis the implementation overhead of using these approahes and the overhead of theimplementation templates proposed by this thesis.The �rst observation is that again there is a large area saving when applyingresoure-sharing. Seondly, the overhead of implementing the iruits, onsisting ofontroller area, lath area and multiplexor/-demultiplexor area is around 40% of thetotal area of the iruits and the funtional units make up around 60%. This is not-unexpeted as these additional area ontributions are signi�ant also in synhronousbehavioral synthesis, and for digital iruit design in general. Finally, there is theomparison between the two omputation models, should there be power guardinginput/output-lathes around funtional units or not with respet to area? The areadi�erene between the two is very little and for the four benhmarks here there is twoases where the input/output lath is smaller than the input/output-lath iruit, onease where there is almost equality and one ase the non-input/output-lath iruit issmaller than the input/output-lath iruit. In general the non-input/output-lathiruits have a smaller total lath ount, however there is usually a larger mux-depth assoiated with these iruits, whih ounters this e�et. Based on the urrentobservations, we believe it to be appliation dependent whih type of omputationmodel that have the smallest area.The next question is how e�ient these implementations are. To answer thisquestion we have produed and simulated layouts for FIR and HAL.7.3.3 Layout resultsFor the benhmarks FIR and HAL in beta-style, we have used the bak-end part ofthe Balsa tools and atually produed a layout targeting handshake omponents usingthe single-rail 4-phase early protool. We have used the existing synthesis �ow atManhester University, whih is based upon a 0.18µm STM standard-ell tehnology,whih have been augmented with standard ell omponents for implementing variousspeial asynhronous omponents suh as Muller C-elements.Simulation results are obtained by simulating the post plae-and-route Verilognetlist together with extrated layout information in NanoSim. We simulate 200omputations, using random numbers with out any orrelation. All the iruits areimplemented using 16-bit variables and are simulated at 1.8V and at a temperatureof 25oC.It is important to stress the results do not represent an attempt to evaluate theasynhronous implementations against orresponding synhronous ones; our fous ison the e�ieny of the automated resoure sharing within the asynhronous domain.The benhmark results are shown in table 7.7, where t is the average time todo one omputation, A is the layout area and E is the average energy onsumptionper omputation. In a similar way we have haraterized the ALU and multiplieroperators, see table 7.8. The speed �gures in table 7.8 have been used in alulatingthe shedules.



7.4 Summary 105Implementations 1 and 3 in table 7.7 are the diret non-resoure-shared iruitimplementations of the omputations. These have also been designed using lathes onthe input and output of the multipliers. Although this gives an extra area overheadit is insigni�ant ompared to the area of the multiplier. The important fat isthat it redues the ombinatorial depth of the iruit and thus redues the poweronsumption, whih leads to a more fair omparison. The speed �gures in table 7.7inludes a 20ns handshake delay in the testbenh used to simulate the layouts.The results in table 7.7 shows that resoure sharing saves area at the expense ofredued speed. This is as ould be expeted. Conerning energy onsumption it isinteresting to note that it remains onstant. Given that resoure sharing leads tomore ontrol iruitry for the same omputation, an inrease in energy onsumptionould be expeted. It seems that the smaller size of the layout and the reduedwire length, whih results from this leads to a power saving whih orresponds to theinrease aused by the added ontrol.A visual omparison of the layouts for implementation 3 and 4 is shown in Figure7.10, illustrating the area redution ahieved by resoure sharing.

Figure 7.10: Visual layout omparison of the non-resoure shared HAL omputation(left) and the maximally resoure shared HAL omputation (right).7.4 SummaryIn this hapter we have presented results for our behavioral synthesis algorithms.We have applied the power aware synthesis algorithm on several examples and in-vestigated di�erent regions in the time-power-onstraint spae. The algorithm isapable of �nding low area solutions ful�lling the onstraints and for the hosen sili-



106 Resultson library we �nd the power onstraint in the worst ase adds an inrease in silionarea of roughly 20 perent. Furthermore we have implemented two meta-heuristialgorithms for solving high-level behavioral synthesis: Simulated Annealing and Evo-lutionary Algorithm. In general the Simulated Annealing performs faster and �ndsbetter solutions to the problem, however the Evolutionary Algorithm is more stable.Both methods �nd better solutions than the power-aware synthesis algorithm within�nite power onstraint. As the CDFG synthesis algorithm will require several it-erations for eah individual task (DFG problem) it is important the DFG synthesisalgorithm is fast. Therefore based on the e�etiveness of the simulated annealing wereommend that solution.Then we have demonstrated that for a small design with few opportunities forresoure sharing (i.e. where the overhead of an automated method is high) ourapproah is doing very well. Finally, for a benhmark suite we have implemented andshown the resoure sharing behaves as we predit and that there is no unexpetedpenalty, like exess power onsumption.



7.4 Summary 107(1) Original odeProgram T add sub les ALU mul1 mul2 mul3 lt ostFIR - 7 0 0 0 8 0 0 0 459,749.25HAL - 2 2 1 0 6 0 0 0 348,093.75ELLIPTIC - 26 0 0 0 8 0 0 7 518,017.75COSINE - 13 13 0 0 16 0 0 0 964,470.25(2) Synthesized funtional units onlyProgram T add sub les ALU mul1 mul2 mul3 lt ostFIR 11 1 0 0 0 2 0 0 - 85,989.75HAL 7 0 0 0 1 2 0 0 - 86,922.75ELLIPTIC 18 2 0 0 0 2 0 0 - 88,022.50COSINE 18 2 2 0 0 2 0 0 - 92,088.00(3a) Synthesized ode in/output lath no trl. optimizationProgram T add sub les ALU mul1 mul2 mul3 lt ostFIR 11 1 0 0 0 2 0 0 21 142,539.25HAL 7 0 0 0 1 2 0 0 16 135,218.50ELLIPTIC 18 2 0 0 0 2 0 0 23 163,014.75COSINE 18 2 2 0 0 2 0 0 32 170,984.00(3b) Synthesized ode no in/output lath no trl. optimizationProgram T add sub les ALU mul1 mul2 mul3 lt ostFIR 11 1 0 0 0 2 0 0 12 140,535.00HAL 7 0 0 0 1 2 0 0 9 135,214.50ELLIPTIC 18 2 0 0 0 2 0 0 19 168,873.50COSINE 18 2 2 0 0 2 0 0 17 161,792.25(4a) Synthesized ode in/output lath with trl. optimizationProgram T add sub les ALU mul1 mul2 mul3 lt ostFIR 11 1 0 0 0 2 0 0 21 128,893.25HAL 7 0 0 0 1 2 0 0 16 133,586.50ELLIPTIC 18 2 0 0 0 2 0 0 23 143,248.75COSINE 18 2 2 0 0 2 0 0 32 160,889.50(4b) Synthesized ode no in/output lath with trl. optimizationProgram T add sub les ALU mul1 mul2 mul3 lt ostFIR 11 1 0 0 0 2 0 0 12 131,598.25HAL 7 0 0 0 1 2 0 0 9 133,664.25ELLIPTIC 18 2 0 0 0 2 0 0 19 150,256.00COSINE 18 2 2 0 0 2 0 0 17 155,626.75Table 7.6: Benhmark results generated by simulated annealing. Column T is thetime-onstraint given to the synthesis tool. Columns add, sub, les, ALU, mul.. andlt lists the number of adders, subtrators et. in the iruits. Cost is �balsa-ost�, anarea measure reported by the Balsa tool.



108 Results
id Alg. ∗ ALU t [ns] A [mm2] E [nJ ]1 FIR 8 7 124.7 0.877 2.952 FIR 2 1 284.8 0.282 2.803 HAL 5 5 171.2 0.667 2.034 HAL 2 1 309.6 0.260 1.895 HAL 1 1 397.4 0.151 2.01Table 7.7: Layout results (beta-style).

FU σ t[ns] A [mm2] E [nJ ]ALU {+,−, >} 25.5 0.0112 0.0266Mult {∗} 56.3 0.105 0.314Table 7.8: FU library (16-bit) based on layout in 0.18µm tehnology, used by oursynthesis algorithm.



C h a p t e r 8 Conlusion
This thesis presented a novel approah for behavioral synthesis of asynhronous ir-uits. The proposed approah seeks to merge the domains of traditional behavioralsynthesis and asynhronous iruits. This is aomplished by providing a ompu-tation model, that is based upon asynhronous handshake omponents and whihallows us to use the transformations and optimizations used in synhronous synthe-sis diretly in asynhronous iruits. Furthermore the same model allows the use ofthe transformations and optimizations developed for ontinuous time.The entral elements in this thesis evolves around the onnetion between thesynhronization events used in traditional tehniques of behavioral synthesis and thetransition handshake omponent loally ontrolling the beginning of an operationand writing the result of an operation. This is bound together by our hardwarearhiteture onsisting of a datapath with the transition handshake omponent anda ontroller determining these events. This omputation model relaxes the stritordering of the synhronous iruit and the synhronous shedule into the ontinuoustime domain, the shedule for the asynhronous iruit.We have aomplished the following: (i) a method for synthesizing a CDFG to aBalsa-desription has been developed using a methodology losely related to, but notrestrited to, traditional synhronous behavioral synthesis. This allows us to use ex-isting tehniques for design spae exploration and resoure sharing by adding physialonstraints to the iruit. (ii) A series of behavioral synthesis algorithms has beendeveloped for this purpose. The �rst is a power-aware synthesis algorithm, whihtargets a power pro�le below a ertain threshold. Here we have shown it is possibleto trade-in area to obtain this power pro�le. We have also shown that even thoughthe power pro�le diretly leads to a restrition on the number of multipliers in the



110 Conlusioniruit, the other smaller ontributor operations still have a signi�ant impat and arevery important for �nding the optimal shedule. Then we have implemented a moreonventional resoure sharing synthesis algorithm based on the meta-heuristi algo-rithms; simulated annealing and evolutionary algorithm. For these we have shownthe simulated annealing algorithm outperforms the evolutionary algorithm with re-spet to run-time. We have also shown the meta-heuristi algorithms outperform the�rst power-aware algorithm with respet to run-time. (iii) We have developed dif-ferent omputation models depending on the requirement to isolate funtional unitswhen they are idle and developed the assoiated variable-lifetime algorithms. (iv) Wehave shown our approah to be e�ient even for small iruits and that the overheadof implementing our approah is small ompared to the area saving ahieved usingour method. (v) Using this method and the Balsa and Cadene design tools severallayouts have been designed and simulated. The results show that it is possible to dotradeo�s between area and iruit delay and to do so without any inrease in poweronsumption for asynhronous iruits. This gives us proof of onept. Furthermorewe have an indiation that signi�ant resoure sharing leads to a redution of theaverage load apaitane and thus a redution of the power onsumption.The rest of this hapter will present the advantages of the proposed approah,put the method in perspetive and disuss future diretions.8.1 Advantages of the approahThere are several advantages of our approah to behavioral synthesis of asynhronousiruits:Traditional datapath and ontroller The fat that our target omputation modelis the asynhronous equivalent to the synhronous omputation model allowsus the use of existing traditional behavioral synthesis approahes. This enablesan entire range of behavioral synthesis algorithms to beome available.Continuous time Our omputation model diretly targets shedules generated thro-ugh the use of ontinuous time synthesis methods, this inludes methods fromoperations researh.Only handshake omponents Our approah builds entirely on asynhronous han-nels and handshake omponents, inluding the ontroller part. This avoids theoften omplex task of synthesizing an asynhronous ontroller and allows forasynhronous iruits of any size to be easily onstruted.Building upon syntax direted synthesis Our approah targets a high-level syn-tax direted hardware desription language whih spei�ally targets asyn-hronous iruits. This has the advantage that we do not need to keep upwith tehnology hange and maintaining a working silion bak-end.One an also onsider suh a high-level language as an interfae to the asyn-hronous world. Therefore several bak-ends are available as target, ranging



8.2 Perspetive on the approah 111from simple variations in handshake protools and iruit implementation stylesto entirely di�erent operations harateristis as Burstmode iruits.The fat that we target a high-level hardware desription language built fordesign of asynhronous iruits, means that the designer, if unhappy with partsof the design generated by the behavioral synthesis tool, an either replaethese parts with his own designs or diretly modify these parts to improve theharateristis of the resulting iruit.Low power datapaths Our approah targets the generation of low-power datap-aths, where omputational intensive funtional units with large ombinatorialdepths or that have a large load apaitane through a large number of outputonnetion, an be isolated by the use of non-transparent lathes.8.2 Perspetive on the approahOver the last deade asynhronous design has slowly but surely moved into industrysale designs and has found its way into ommerial appliations by two primarydriving fores:Appliation domain There are a number of appliations for whih one or more ofthe properties of asynhronous design is a requirement. Examples are; ontroliruits on analog iruitry, where the lok would introdue noise to the analogiruitry, and smartards where the iruit only has aess to power when usedand often in very unreliable form. Most of these iruits are urrently smalland are manageable for the designer to optimize manually. However as wehave seen our synthesized iruits either outperforms or performs equally wellto small ustomized iruits i.e. the GCD algorithm. Furthermore for theseappliation domains the iruit delay onstraint is usually easy to meet, leavinga large room for resoure sharing. As the size and omputational demandsof these iruits inrease beyond what an be handled by small ustomizedasynhronous hardware and asynhronous proessors, there will be a strongappliation for our approah here.The loking problem Large digital iruits designed using the System on Chipparadigm fae large problems when it omes to managing the lok in the �nallayout generation phase. A solution to this problem is the Globally Asyn-hronous Loally Synhronous (GALS) approah [56, 34℄, where the interon-netion struture is asynhronous and the omputation takes plae on smallsynhronous islands. For the interonnetion itself there is usually little om-putation taking plae and a ustom designed datapaket routing network willprobably outperform a synthesized version, unless the routing-protool and -algorithm have a su�iently high omplexity. However in the future, it willnot be unlikely that some of these synhronous islands will be replaed by fullyasynhronous iruit variants. These asynhronous iruits will beome thetarget for the work presented in this thesis.



112 Conlusion8.3 Future diretionsThe benhmark set, upon whih we have applied our methods, is a small set ofsynthesis problems. The next step is to apply our method to a larger �real� iruitand ompare with a manually designed asynhronous iruit. A possibility ould bea low-power 3D-graphis render engine appliation for portable devies. The renderproess is a rather inhomogeneous appliation inwhih harateristis depend highlyon the triangle set upon whih it operates [47℄.As we have seen the meta-heuristi algorithms are very e�etive, therefore aninteresting diretion would be the implementation of a power-aware meta-heuristisimulated annealing algorithm. In partiular, this only involves �nding a new fea-sibility algorithm, whih fast an generate a power- and time-onstrained shedulefrom a infeasible solution [78, 32℄ If this is impossible one ould simply use the exist-ing feasibility algorithm and add a heuristi ost penalty for those shedules whihviolate the power onstraint. This heuristi ould simply be based on �nding themaximal violation and look at how many operations violate the onstraint and thenonvert these into the area required to implement these, orresponding to exeutingthem at another point in time.The next improvement onerns the ost funtion, whih we use to ompute thearea ost during design spae exploration. Currently only the FU area is aounted forand we need to make a better modeling of the target iruit inluding the lath area,interonnet (multiplexor, demultiplexor) area and the area required to implementthe ontroller [68, 37℄.Asynhronous iruits operate in ontinuous time and it would be natural to applysome of the ontinuous time sheduling algorithms, and ompare with the shedulesfrom disrete time. This will investigate if there is a need to inlude suh algorithmsand whih are the most appropriate for asynhronous iruit design [4, 3℄.For ertain ritial sub-algorithms a spei� manual design e�ort will lead to asigni�ant performane advantage. If suh a sub-algorithm is su�iently ommon towarrant the design e�ort it ould be made available to the target resoure library.These more �omplex� operators will be able to enter into our task-level CDFGsynthesis algorithm as a DFG fragment. It would be neessary to be able to identifythese speial fragments in the CDFG [60℄.Many of the algorithms, whih with advantage an be implemented as asyn-hronous iruits, are very dynami in nature. The one-to-one mapping of theCDFG to an asynhronous iruit resembles this as it is a very �elasti� omputation.Whereas the shedules produes by the behavioral synthesis algorithms onsideredin this thesis are stati. These algorithm operate by �nding the near global optimumby the information available at ompile time. However a lot of information is notavailable at ompile time; the path through the onditional parts of the algorithmand onditionally repetitive parts. One approah would be to take advantage of theasynhronous nature and look into methods for making the ontrol of the iruitmore dynami, perhaps even a primitive form of dynami sheduling.
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