
Hierarchical Network Design

Tommy Thomadsen

Kongens Lyngby 2005
IMM-PHD-2005-149

Technical University of Denmark
Informatics and Mathematical Modelling
Building 321, DK-2800 Kongens Lyngby, Denmark
Phone +45 45253351, Fax +45 45882673
reception@imm.dtu.dk
www.imm.dtu.dk

IMM-PHD: ISSN 0909-3192

Summary

Communication networks are immensely important today, since both companies
and individuals use numerous services that rely on them. This thesis considers
the design of hierarchical (communication) networks. Hierarchical networks
consist of layers of networks and are well-suited for coping with changing and
increasing demands. Two-layer networks consist of one backbone network, which
interconnects cluster networks. The clusters consist of nodes and links, which
connect the nodes. One node in each cluster is a hub node, and the backbone
interconnects the hub nodes of each cluster and thus the clusters. The design
of hierarchical networks involves clustering of nodes, hub selection, and network
design, i.e. selection of links and routing of flows.

Hierarchical networks have been in use for decades, but integrated design of
these networks has only been considered for very special types of networks. The
thesis investigates models for hierarchical network design and methods used to
design such networks. In addition, ring network design is considered, since ring
networks commonly appear in the design of hierarchical networks.

The thesis introduces hierarchical networks, including a classification scheme of
different types of hierarchical networks. This is supplemented by a review of
ring network design problems and a presentation of a model allowing for model-
ing most hierarchical networks. We use methods based on linear programming
to design the hierarchical networks. Thus, a brief introduction to the various
linear programming based methods is included. The thesis is thus suitable as a
foundation for study of design of hierarchical networks.

The major contribution of the thesis consists of seven papers which are included

ii

in the appendix. The papers address hierarchical network design and/or ring
network design. The papers have all been submitted for journals, and except
for two papers, are awaiting review. The papers are mostly concerned with
optimal methods and, in a few cases, heuristics for designing hierarchical and
ring networks. All papers develop bounds which are used in the optimal methods
and for comparison. Finally, computational results are reported.

Resumé

Kommunikationsnetværk har enorm betydning i dag, da enkeltpersoner og virk-
somheder anvender utallige tjenester, som afhænger af kommunikationsnetværk-
ene. Denne afhandling omhandler design af hierarkiske (kommunikations-) net-
værk. Hierarkiske netværk er lagdelte og er velegnede til at h̊andtere ændringer
og øgede i krav til b̊andbredde. Netværk med to niveauer best̊ar af et back-
bone netværk som forbinder klynger af netværksknuder. Klyngerne best̊ar af
netværksknuder og forbindelser mellem netværksknuderne internt i klyngen. I
hver klynge er en af netværksknuderne udpeget som hoved-netværksknuden,
dvs. den har forbindelse til backbone netværket. Backbone netværket forbinder
hoved-netværksknuderne og dermed klyngerne. For at designe et hierarkisk
netværk, skal der tages stilling til hvilke netværksknuder der er i hvilken klynge,
hoved-netværksknuderne skal udvælges, netværksknuderne skal forbindes b̊ade
i klyngerne og i backbone netværket, og trafik skal rutes i netværket.

Hierarkiske netværk har været anvendt i årtier, men design af disse netværk er
kun blevet undersøgt for specielle netværkstyper. Denne afhandling undersøger
modeller til design af hierarkiske netværk og metoder der kan anvendes til at de-
signe hierarkiske netværk. Derudover undersøges ring netværk, da ring netværk
ofte forekommer i design af hierarkiske netværk.

Afhandlingen introducerer hierarkiske netværk, inklusive et klassifikationsskema
af de forskellige typer af hierarkiske netværk. Dette bliver suppleret med en
gennemgang af ring netværk problemer og en præsentation af en generel model,
der tillader modellering af de fleste hierarkiske netværk. Metoder baseret p̊a
lineær programmering introduceres, idet de anvendes til design af hierarkiske
netværk. Afhandlingen kan s̊aledes danne grundlag for et studie af design af
hierarkiske netværk.

iv

Afhandlings vigtigste bidrag best̊ar af syv artikler, der er inkluderet i appendiks.
Artiklerne handler om design af hierarkisk netværk og ring netværk. Artiklerne
er alle indsendt til videnskablige journaler og afventer bedømmelse, bortset fra
to artikler, der allerede er blevet accepteret. Artiklerne beskriver oftest optimale
metoder og i enkelte tilfælde heuristikker til at design hierarkiske netværk samt
ring netværk. I alle tilfælde er der udviklet grænser, der kan anvendes enten
til sammenligning eller indlejret i de optimale metoder. Endelig præsenteres
resultater for testkørsler af metoderne.

Preface

This thesis was prepared at Informatics and Mathematical Modelling, the Tech-
nical University of Denmark in partial fulfillment of the requirements for ac-
quiring the Ph.D. degree.

The thesis considers optimization of communication networks with more lay-
ers denoted hierarchical networks. The Ph.D. project has been supervised by
professor Jens Clausen.

The thesis consists of an introduction to the project and a collection of seven
research papers prepared during the period 2002–2005.

Lyngby, May 2005

Tommy Thomadsen

vi

Papers included in the thesis

A Vicky Mak, Tommy Thomadsen. Facets for the Cardinality Constrained
Quadratic Knapsack Problem and the Quadratic Selective Travelling Sales-
man Problem, 2004. Submitted for J. of Combinatorial Optimization.

B Tommy Thomadsen, Thomas Stidsen. A Branch-and-Cut Algorithm for
the Quadratic Selective Travelling Salesman Problem, 2003. Submitted
for Telecommunication Systems.

C Tommy Thomadsen, Thomas Stidsen. Hierarchical Ring Network Design
Using Branch-and-Price, 2005. Telecommunication Systems, Volume 29,
Issue 1, pp. 61–76.

D Thomas Stidsen, Tommy Thomadsen. Joint Routing and Protection Using
p-cycles, 2004. Submitted for European Journal of Operational Research.

E Tommy Thomadsen, Thomas Stidsen. The Generalized Fixed-Charge
Network Design Problem, 2004. Accepted for publication in Computers
and Operations Research.

F Tommy Thomadsen, Jesper Larsen. The Two-Layered Fully Intercon-
nected Network Design Problem – Models and an Exact Approach, 2005.
Submitted for Computers and Operations Research.

G Tommy Thomadsen. Design of Two-Layered Fixed Charge Networks,
2005. Submitted for Networks.

viii

Acknowledgments

I would like to thank my wife Hanne for supporting me during the 3 years of
work, and for giving me the opportunity to occasionally spent way too much
time on working. Also I thank my daughter Laura for giving me the reason
and opportunity to take on parental leave for 3 months, when it was needed the
most.

I thank my colleagues at the operations research section for creating an invalu-
able work environment. I thank my supervisor Jens Clausen for being there
when needed and especially I thank Thomas K. Stidsen for helpful discussions
and feedback. The sometimes loud-voiced discussions have been, if not neces-
sary, very beneficial. Finally I thank other colleagues for enduring all the noise
we made and for closing the door when we forgot to.

x

Contents

Summary i

Resumé iii

Preface v

Papers included in the thesis vii

Acknowledgments ix

1 Introduction 1

1.1 Hierarchical Networks . 2

1.2 Subproblems in Hierarchical Network Design 3

1.3 Outline of the Thesis . 4

2 Ring Network Design Problems 7

2.1 The Travelling Salesman Problem 8

xii CONTENTS

2.2 TSP with Optional Nodes . 8

2.3 TSP with Quadratic Costs and Revenues 12

3 Hierarchical Network Design Problems 15

3.1 The Fixed Charge Network Design Problem 15

3.2 The Basic Model for Hierarchical Network Design Problems . . . 17

3.3 An Extended Model for Hierarchical Network Design Problems . 18

3.4 Topology Constraints on the Clusters 19

3.5 Topology Constraints on the Backbone 20

3.6 More Hubs . 21

3.7 Using the models . 22

3.8 Related Papers . 22

4 Linear Programming Based Methods 23

4.1 The Linear Programming Relaxation 23

4.2 Branch-and-Bound . 24

4.3 Cutting Plane and Branch-and-Cut 25

4.4 Column Generation and Branch-and-Price 26

4.5 Branch-Cut-and-Price . 28

5 Papers in the Thesis 29

5.1 Paper A: Facets for the Cardinality Constrained Quadratic Knap-
sack Problem and the Quadratic Selective Travelling Salesman
Problem . 29

CONTENTS xiii

5.2 Paper B: A Branch-and-Cut Algorithm for the Quadratic Selec-
tive Travelling Salesman Problem 30

5.3 Paper C: Hierarchical Ring Network Design Using Branch-and-
Price . 30

5.4 Paper D: Joint Routing and Protection Using p-cycles 31

5.5 Paper E: The Generalized Fixed-Charge Network Design Problem 31

5.6 Paper F: The Two-Layered Fully Interconnected Network Design
Problem – Models and an Exact Approach 32

5.7 Paper G: Design of Two-Layered Fixed Charge Networks 33

6 Conclusion 35

6.1 Summary . 35

6.2 Main Contributions . 36

6.3 Future Work . 37

A Facets for the Cardinality Constrained Quadratic Knapsack
Problem and the Quadratic Selective Travelling Salesman Prob-
lem 39

A.1 Introduction . 40

A.2 Integer Programming Model and the Polyhedra 42

A.3 Polyhedral results for the QK polytope 44

A.4 Polyhedral results for the QSTS polytope 48

A.5 Conclusion . 56

B A Branch-and-Cut Algorithm for the Quadratic Selective Trav-
elling Salesman Problem 59

B.1 Introduction . 61

xiv CONTENTS

B.2 The Model . 62

B.3 Branch-and-Cut Algorithm . 66

B.4 Heuristics . 69

B.5 Computational Results . 71

B.6 Conclusions . 80

C Hierarchical Ring Network Design Using Branch-and-Price 83

C.1 Introduction . 84

C.2 Previous work . 87

C.3 The Modified HRN Problem . 88

C.4 The Problems . 90

C.5 The Branch-and-Price Algorithm 93

C.6 Computational Results . 96

C.7 Conclusion . 100

D Joint Routing and Protection Using p-cycles 103

D.1 Introduction . 105

D.2 The p-cycle Protection Method 106

D.3 Previous Work on p-cycle Planning 108

D.4 Solution Methodology . 109

D.5 Results and Discussion . 117

D.6 Conclusion . 122

E The Generalized Fixed-Charge Network Design Problem 125

CONTENTS xv

E.1 Introduction . 126

E.2 Related Problems . 127

E.3 A MIP Model for the GFCND Problem 129

E.4 Solving the GFCND problem . 131

E.5 Test Instance Generation . 133

E.6 Computational Results . 134

E.7 Conclusion . 138

F The Two-Layered Fully Interconnected Network Design Prob-
lem – Models and an Exact Approach 141

F.1 Introduction . 142

F.2 Network Design . 144

F.3 Decomposition and Column Generation 146

F.4 Branch-and-Price . 153

F.5 Experimental Results . 155

F.6 Conclusion . 158

G Design of Two-Layered Fixed Charge Networks 161

G.1 Introduction . 162

G.2 A Mathematical Model for the HLCND Problem 164

G.3 The Cutting Plane Algorithm . 166

G.4 A Column Generation Model . 167

G.5 The GRASP . 172

G.6 Computational Results . 175

xvi CONTENTS

G.7 Conclusion . 178

Chapter 1

Introduction

Communication networks have increasing importance in the modern society,
since communication networks provide services that are widely used and highly
valued. Services that rely directly on communication networks are the telephone
and the Internet, but numerous other services rely on communication networks,
either since they use the Internet or since they establish separate communica-
tion channels, e.g. using a telephone line. Most obvious are services where
access to centralized databases are required, e.g. money transfers and services
in the public sector. Also, various jobs consist mostly of communicating, and
as a consequence many employees cannot carry out their job if communication
networks are not available.

Thus, services that rely on communication networks are numerous and the ser-
vices are often paramount for companies to do business. For that reason, com-
panies and individuals expect communication networks to be available in much
the same way they require e.g. water and electricity to be available around-the-
clock.

This thesis considers the design of communication networks. In particular, we
consider hierarchical communication networks, since these have not received
very much attention so far. Hierarchical communication networks have, never-
theless, existed for decades and it is widely recognized that hierarchical networks
are beneficial, if not necessary, to cope with changing and increasing traffic de-

2 Introduction

mands.

Hierarchical networks divide a network into manageable entities, the clusters and
the backbone. These entities can to some extend be considered independent.
Alternatively the hierarchical networks can be seen as consisting of a lower and
an upper layer. The lower layer consists of the clusters of nodes and links inside
each cluster. One node in each cluster is designated as hub node. The upper
layer consists of the hub nodes and links interconnecting the hub nodes, i.e. the
backbone. In hierarchical networks there is a natural distinction between high
and low capacity links, since for a uniform traffic demand, the backbone links
are higher loaded than the cluster links.

Design of hierarchical networks have often been done by subdividing the de-
sign problem into at least two subproblems. The first subproblem consists of
determining the hierarchy (i.e. the clusters and the hubs) and the second sub-
problem consists of interconnecting the nodes in the clusters and the backbone.
One theme of the work presented in the thesis is to consider models where deter-
mination of the hierarchy and interconnection of nodes is done simultaneously.
A first step is to model hierarchical networks and a second step is to devise
algorithms for carrying out the optimization of the models.

It is challenging to devise models describing the problem properly, and espe-
cially devising models with a suitable trade off between the model detail and
the computational difficulty is not easy. Many of the problems considered gen-
eralize problems which are difficult to solve. As a consequence, the problems
considered present sufficient computational difficulties to be challenging to solve
to optimality.

This chapter contains an introduction to hierarchical networks, and the sub-
problems of hierarchical network design. Furthermore an outline of the thesis is
presented.

1.1 Hierarchical Networks

A network consists of nodes and links interconnecting the nodes. A hierarchical
network consists of disjoint sets of nodes denoted clusters. In addition, each
cluster contains at least one hub node. The backbone consists of the hub nodes
interconnected by backbone links. Similarly nodes in each cluster are inter-
connected by cluster links. An example of a hierarchical network is shown in
figure 1.1.

1.2 Subproblems in Hierarchical Network Design 3

Figure 1.1: An example of a hierarchical network.

In the figure, each cluster contains one hub, which is indicated by a filled square.
The backbone links are the links interconnecting the hubs and the cluster links
are the links which interconnects nodes internally in a cluster. Note that there
are no links between non-hub-nodes in different clusters. The backbone network
is a ring, and the cluster networks are examples of four topologies: Fully inter-
connected, tree, star and mesh. The mesh topology allows for any selection of
links and thus other topologies are special types of meshes.

Various topologies may be used in the clusters and in the backbone. Often the
cluster networks are sparse, e.g. tree or star, whereas the backbone is usually
denser, e.g. ring, mesh or even fully interconnected. This difference can be
explained by the issue of protection. A broken link in the backbone potentially
affects many more users than a broken link in the cluster networks. Thus,
as a rule of thumb, the backbone should be better protected than the cluster
networks, and thus the backbone is usually denser than the cluster networks.

1.2 Subproblems in Hierarchical Network De-

sign

In designing hierarchical networks, interrelated subproblems have to be solved.
The subproblems are listed below.

• Hub location (or selection)

4 Introduction

• Clustering of nodes

• Interconnection of nodes in the backbone and cluster networks

• Routing

These subproblems have often been considered independently or only a few
of them have been considered simultaneously. Since the subproblems are in-
terrelated, this may lead to suboptimal designs. The problem considering all
subproblems in an integrated fashion is denoted the hierarchical network design
problem.

Papers dealing with hierarchical network design is reviewed in [26]. This pa-
per also suggests a taxonomy for categorizing the networks. The taxonomy
categorize problems depending on what topology the backbone and the cluster
networks have. Thus, a network is identified by X-Y where X is the backbone
topology and Y the cluster network topology. X and Y may be either ring,
star, tree, fully interconnected or mesh. The taxonomy is used throughout this
thesis.

The last of the four subproblems, routing, is trivial for most topologies, except
ring and mesh. For the ring topology, the routing problem depends on the actual
ring type. For the mesh topology, the last two subproblems are usually solved in
an integrated fashion, by trading off routing costs and link establishment costs.
This problem is denoted the fixed charge network design problem.

1.3 Outline of the Thesis

Following this introductory chapter, ring network design problems are surveyed
in Chapter 2. Papers A, B, C and D address ring network design either solely or
in the context of hierarchical Ring-Ring network design. Thus the chapter serves
as an introduction to those papers and furthermore the papers and problems
are put in context.

Chapter 3 introduces a model of the hierarchical network design problem. By
adding constraints, topology requirements can be enforced on either the clus-
ters, the backbone or both. The model is suitable for describing the hierarchical
network design problem and to some extend for solving problems containing
meshes, e.g. the mesh-mesh network design problem. However, for other prob-
lems, specialized models are most likely better. Introducing the model also
serves as an introduction to notation and terminology used in papers on hierar-
chical network design, i.e. papers C, E, F and G.

1.3 Outline of the Thesis 5

Chapter 4 survey the optimization methods used. In all cases linear program-
ming based methods have been used, thus these are the topic of the chapter.

In the context set up by the previous chapter, Chapter 5 give a brief introduction
to each of the papers included in the thesis. The papers are included in the
appendix.

Finally, Chapter 6 gives concluding remarks.

6 Introduction

Chapter 2

Ring Network Design
Problems

The ring network topology is widely used in communication networks. This is
due to its inherent single link/node breakdown protection, its simple and fast
restoration scheme, and its moderate cost. In many cases ring network design
problems originate from other application areas and as a consequence have other
names. The most fundamental and well known problem is the Travelling Sales-
man Problem (TSP). TSP and related problems have been widely studied and
some of these problems are reviewed in this chapter. We consider symmetric
problems, which has the property that the distance from node i to node j is the
same as the distance from node j to node i.

In the papers included in the appendix, we have considered a generalization of
the TSP, denoted the Quadratic Selective TSP (QSTSP). QSTSP is considered
in Papers A, B, C and D either solely or as a subproblem. Thus, this chap-
ter serves as an introduction to these papers by explaining TSP, related TSP
generalizations, and QSTSP.

8 Ring Network Design Problems

2.1 The Travelling Salesman Problem

TSP is the problem of determining a subset of links making up a cycle such that
all nodes are visited at minimum cost. We denote any subset of edges making
up a cycle, a ring. In the following we give a graph-theoretical description of
TSP. As customary in such descriptions, let V = {1, . . . , n} be a set of nodes
and E ⊆ {{i, j} : i ∈ V, j ∈ V \{i}} be a set of undirected edges representing
the links of the network. Associate with each edge {i, j} = e ∈ E a cost ce ≥ 0
incurred if e is chosen.

Furthermore, let S ⊆ V and define δ(S) ⊆ E to be the set of edges with one
endpoint in S and one endpoint not in S, i.e. δ(S) = {{i, j} ∈ E : i ∈ S, j 6∈ S}.
For notational convenience, δ({i}) is abbreviated by δ(i). Furthermore define
E(S) ⊆ E to be the set of edges with both endpoints in S, i.e. E(S) = {{i, j} ∈
E : i, j ∈ S}.

Let xe = 1 if e ∈ E is in the ring, 0 otherwise. Given this, TSP is formulated
as follows.

Minimize
∑
e∈E

cexe (1)

s.t.
∑
e∈δ(i)

xe = 2 for i ∈ V (2)

∑
e∈E(S)

xe ≤ |S| − 1 for ∅ ⊂ S ⊂ V (3)

xe ∈ {0, 1} for e ∈ E (4)

The objective (1) gives the cost or length of the ring, which has to be minimized.
Constraint (2) ensures, that all nodes have an indegree of 2, and hence all nodes
are in the ring. Constraint (3) ensures that the selected edge set is connected.
The constraints are usually denoted the subtour elimination constraints. Finally
constraint (4) ensures that an edge is either selected or not.

2.2 TSP with Optional Nodes

The generalizations we consider all have the property, that some or all nodes
are optional, i.e. they do not necessarily have to be visited. In addition to the
edge selection variables, a variable yi is introduced for each node, which is 1 if

2.2 TSP with Optional Nodes 9

i is in the ring, 0 otherwise. In this case, the following constraint replaces con-
straints (2) and (3).

∑
e∈δ(i)

xe = 2yi for i ∈ V (5)

∑
e∈E(S)

xe ≤
∑

i∈S\{k}
yi − yl + 1 for ∅ ⊂ S ⊂ V, k ∈ S, l 6∈ S (6)

yi ∈ {0, 1} for i ∈ V (7)

Constraint (5) ensures, that nodes have an indegree of 2 if node i is in the ring
and 0 if it is not. Constraint (6) are the subtour elimination constraints which
ensure that the selected edge set is connected. Finally constraint (7) ensures
that a node is either in the ring or not. The following rewrite of (6) is easier to
interpret.

∑
e∈E(S)

xe ≤
∑
i∈S

yi + 1− yk − yl for ∅ ⊂ S ⊂ V, k ∈ S, l 6∈ S (8)

An interpretation is now, if a node k in S and a node l not in S are selected,
and c ≤ |S| nodes in total are selected in S, then the number of edges selected
in S (i.e. the left hand side) has to be less than or equal to c− 1. This ensures
that the selected edge set is connected.

If this is the only modification of TSP and ce ≥ 0, the ring consisting of no
nodes or edges is optimal with zero cost. Thus this modification usually comes
with either a modification of the objective function or a constraint which ensures
that at least a subset of the nodes have to be selected. These are discussed in
the following sections.

2.2.1 Objective Modifications

Let ci be a cost (possibly negative) incurred if i ∈ V is not in the ring. Given
this, the objective (1) may be modified to:

Minimize
∑
i∈V

ciyi +
∑
e∈E

cexe (9)

10 Ring Network Design Problems

Thus a tradeoff is established between the edge costs incurred and a penalty
incurred for not visiting node. Often such modifications are accompanied by a
constraint on the length of the ring as described in the following.

2.2.2 Length and Price Constrains

In addition to the objective modifications, constraints on the nodes and/or edges
visited may also exist. In the following, two types of constraints are shown.
They are based on a revenue on the edge and/or nodes. They are shown in
lower bound form, but since the revenues may be negative, they can also be
seen as budget constraints. In this chapter, we distinguish between constants in
the objective and constants in the constraints by consistently denoting the first
costs and the latter revenues.

∑
e∈E

rexe ≥ Rx (10)∑
i∈V

riyi ≥ Ry (11)

The constraints puts a lower bound on the revenues obtained from the edges
and the nodes, respectively. The right hand sides, Rx and Ry are constants. An
interesting special case of constraint (11) is the cardinality constraint in which
ri = −1 for all i and −Ry is a number of nodes. This constraint puts a limit on
the number of nodes in the ring. The costs in the objective and the revenues
are often related (e.g. by ci = −ri)), but this is not always the case.

2.2.3 Depots

Some problems include one or more depots, i.e. mandatory nodes. In most
cases it is important whether depot nodes exist, since the formulation may
take advantage of the depot nodes. Thus problems with depot nodes may be
computationally easer than problems without depots. Formulations which do
not require depots, can usually incorporate depots by simply fixing y-variables
corresponding to the depots to 1. Furthermore, if depots exist, the subtour
elimination constraints (6) can be rewritten by assuming that S contains at
least one depot node as in the following.

2.2 TSP with Optional Nodes 11

yl +
∑

e∈E(S)

xe ≤
∑
i∈S

yi for ∅ ⊂ S ⊂ V, l 6∈ S, S contains depot (12)

2.2.4 Related Papers

A number of papers address generalizations of TSP with optional nodes. In [40],
a generalized TSP is considered, with the only modification that a penalty is
incurred if a node is not visited. The problem is transformed into standard TSP
and solved.

The price collecting TSP is another generalization considered in [3, 4]. For the
price collecting TSP, costs are incurred when an edge is in the ring and a penalty
is incurred if a node is not visited. In addition, there is a lower bound on the
node revenues that has to be obtained.

The selective TSP or the Orienteering problem is considered in [18, 20, 28]. The
problem consists of minimizing the cost of nodes. In addition there is an upper
bound on the length of the ring, measured in edge costs. It is assumed that a
depot node exists.

The cardinality constrained circuit problem considered in [6] addresses the prob-
lem of minimizing the edge costs of the ring. There is an upper bound on the
number of nodes that can be visited, i.e. a cardinality constraint. In addition
there is a requirement, that the “ring” consisting of no edges is not a feasible
solution, thus at least three edges has to be selected. No depot nodes exists.

Another generalization of TSP is discussed in [16, 17, 29]. In this problem, the
nodes are assumed to be partitioned into disjoint clusters, and at least one node
from each cluster has to be in the ring. The objective is as for the TSP to
minimize the edge costs. Note that in the framework of hierarchical network
design presented in Chapter 1, this problem can be considered as a hierarchical
network design problem where the backbone is a ring. Furthermore, the clusters
of nodes have been determined, and thus the hub location, interconnection of
nodes and routing have to be carried out.

12 Ring Network Design Problems

2.3 TSP with Quadratic Costs and Revenues

Some papers consider quadratic costs and/or revenues. Associate with all pairs
of nodes a cost cij ≥ 0 incurred if i and j are in the ring. Note that unlike for
the cost of edges, ce, costs are defined for all pairs of nodes.

Let zij , i, j ∈ V, i < j be 1 if i and j are both in the ring, otherwise 0. For
notational convenience zji is sometimes used instead of zij . Note that the def-
inition of this variable is quite different than the definition of the variable for
the edges, xe. The variable zij are defined with respect to whether the nodes
are in the ring, whereas xe is defined with respect to whether the edge is in the
ring.

The quadratic cost term may now be included in the objective:

Minimize
∑
i∈V

ciyi +
∑
e∈E

cexe +
∑

i,j∈V,i<j
cijzij (13)

The y variables have to be linked to the z variables, which is accomplished by
the following constraints.

zij ≤ yi for i, j ∈ V, i 6= j (14)
zij ≥ yi + yj − 1 for i, j ∈ V, i < j (15)
zij ∈ {0, 1} for i, j ∈ V, i < j (16)

In addition a quadratic revenue, rij may exists which is bounded similarly to
bounds on edge and node revenues as given by the following constraint.∑

i,j∈V,i<j
rijzij ≥ Rz (17)

2.3.1 Related Papers

The paper [19] considers a problem with quadratic costs and edge costs in the
objective. In addition there is an upper bound on the length of the ring, mea-
sured in edge costs. Furthermore, no depot node is required. The paper presents
heuristic for the problem.

A similar problem is considered in [22]. In this paper it is assumed, that at least
one depot node exists. The authors suggest using alternative formulations for
obtaining better bounds and solve the problem by a MIP solver.

2.3 TSP with Quadratic Costs and Revenues 13

Finally the two papers included in this thesis, Paper A and Paper B consider
a problem with node, edge and quadratic costs. As mentioned, we denote this
problem the Quadratic Selective TSP (QSTSP). Paper A considers a cardinality
constraint on the nodes and in addition to the cardinality constraint, Paper B
considers a bound on the edge costs.

14 Ring Network Design Problems

Chapter 3

Hierarchical Network Design
Problems

When describing hierarchical network design problems, it is beneficial to start
by considering the fixed charge network design problem. The model for this
problem is an integral part in the models we present for the hierarchical net-
work design problems. Firstly, a model is presented for the fixed charge network
design problem. This is then extended to describe hierarchical network design
problems. In particular, various topology constraints are discussed, i.e. con-
straints that enforce a special structure on either the clusters, the backbone, or
both.

3.1 The Fixed Charge Network Design Problem

The problem of designing cost efficient networks, taking into account both edge
establishment, fixed costs and edge capacity costs, is denoted the Fixed Charge
Network Design(FCND) problem.

Let V be the set of all nodes, the edges E be a set of unordered node-pairs and
the arcs A be a set of ordered node-pairs. For each edge there exists exactly two
arcs of opposite direction. We use sa and ta to denote the start and terminal

16 Hierarchical Network Design Problems

node of arc a. In addition demands D for traffic between node-pairs exist. The
set D is a set of unordered node-pairs, and we use sd and td to denote the start
and terminal node of demand d. The direction of the demands do not matter,
since arcs always exist in both directions. For modeling purposes we only assume
that some demands are given, and in some cases that the demands enforce a
connected network, i.e. a disconnected network cannot serve the demands. For
computational tests, test instances are investigated, in which a demand exist
for each pair of nodes.

The binary decision variables ye correspond to whether or not edge e between
two hub-nodes should be established and the continuous decision variable xda
correspond to the fraction of demand d routed along arc a.

The communication demand volume for demand d is given by bd. Furthermore,
the capacity cost of arc a is given by ca, which is the cost per unit of demand
using that arc. Finally, the fixed cost of edge e is fe. Given these definitions,
the MIP model of the FCND problem is as follows.

min
∑
e∈E

feye +
∑

d∈D,a∈A
cabdx

d
a (1)

s.t.
∑
a|sa=i

xda −
∑
a|ta=i

xda =

 1 if i = sd
−1 if i = td
0 otherwise

d ∈ D, i ∈ V (2)

xda + xdb ≤ ye a, b ∈ A, sa = tb, ta = sb, {sa, ta} = e ∈ E, d ∈ D (3)
ye ∈ {0, 1} (4)

xda ∈ [0, 1] (5)

The objective (1) contains the edge establishment costs and the edge capacity
requirement costs. The flow constraints (2) ensure that the net out-flow is 1
if d starts in i, -1 if d terminates in i and zero otherwise. The constraints (3)
ensure that flow is only allowed along established edges, constraints (4) ensure
that edges are either established or not and finally constraints (5) ensure that
the routed flows are between zero and one.

The FCND problem is NP-hard [23]. Its application to various problem areas is
described in [31]. A number of optimization methods have been applied to the
FCND problem: Benders decomposition e.g. [11, 30], dual ascent [2], cutting
plane [1] and Lagrangian relaxation [23].

3.2 The Basic Model for Hierarchical Network Design Problems 17

3.1.1 The Capacitated Fixed Charge Network Design
Problem

The Capacitated Fixed Charge Network Design (CFCND) problem is obtained
by adding capacities, ce on the links:

∑
d∈D

bdx
d
a + bdx

d
b ≤ ceye a, b ∈ A, sa = tb, ta = sb, {sa, ta} = e ∈ E (6)

When capacities are present, it is important whether bifurcated (flows can split)
or non-bifurcated flows are considered. If non-bifurcated flows are considered,
it is in addition necessary to enforce that flow variables are integral:

xda ∈ {0, 1} (7)

A survey of CFCND is given in [21]. Lagrangian relaxation based methods are
discussed in [23, 24] and bundle based methods for solving CFCND are discussed
in [12]. Also Benders decomposition methods are surveyed in [11].

3.2 The Basic Model for Hierarchical Network
Design Problems

Hierarchical network design problems enforce constraints on the network to be
designed. As discussed in Chapter 1, when considering two layer networks, the
nodes are divided into clusters. In addition to connections internally in clusters,
a backbone network exists consisting of at least one node from each cluster,
the hub nodes. These are the basic constraints necessary and ensure that the
network designed is indeed hierarchical. In addition, topological constraints on
the cluster networks and/or backbone networks may exists. We will return to
such constraints later. Initially we also assume that each cluster contains exactly
one hub node.

In addition to the constants, variables and constraints used in the FCND prob-
lem, we additionally define the following. Let cmin and cmax be a lower and an
upper bound on the number of clusters, respectively and similarly let vmin and
vmax be a lower and an upper bound on the number of nodes in each cluster,
respectively. The variable hi is 1 if node i ∈ V is hub, 0 otherwise and zij is 1
if node i ∈ V and j ∈ V, i < j are in the same cluster, 0 otherwise. For nota-

18 Hierarchical Network Design Problems

tional convenience zji is sometimes used instead of zij . By adding the following
constraints to the FCND problem, we obtain a hierarchical network.

ye ≤ zij + hk ∀e = (i, j) ∈ E, k ∈ {i, j} (8)
hi + hj + zij ≤ 2 ∀i ∈ V, j ∈ V, i < j (9)

zik + zjk ≤ zij + 1 ∀i, j, k ∈ V, i < j, k 6= i, k 6= j (10)

vmin − 1 ≤
∑
j

zij ≤ vmax − 1 ∀i ∈ V (11)

cmin ≤
∑
i

hi ≤ cmax (12)

zij ∈ {0, 1} hi ∈ {0, 1} (13)

Constraint (8) ensures that if a link between two nodes i and j are used, then the
nodes are either in the same group, or both nodes are hub nodes. Constraint (9)
ensures that if two nodes are in the same cluster, they cannot both be hubs.
Constraint (10) ensures that if nodes i and k are in the same cluster, and nodes
j and k are in the same cluster, then nodes i and j are in the same cluster as
well. With constraints (13), constraints (8), (9) and, (10) ensure that the nodes
are in disjoint clusters containing one hub node and links either connects nodes
within clusters or hub nodes. Constraint (11) enforces bounds on the number
of nodes in each cluster and similarly constraint (12) enforces bounds on the
number of clusters.

3.3 An Extended Model for Hierarchical Net-
work Design Problems

When expressing topological constraints on either the clusters or the backbone,
it is beneficial to have variables distinguishing between whether links are in
the backbone, y1

e or in clusters, y2
e . These variables are linked to the existing

variables by the expression ye = y1
e+y2

e . Thus they replace existing ye variables.

It is often the case that links in clusters and in the backbone have different
costs. Given fixed costs f1

e for the backbone links and by f2
e for the cluster

links, this can now be expressed by modifying the objective. In addition the
capacity cost may vary between the clusters links and the backbone links. To
handle this, new variables xda are defined, one for the backbone and one for the

3.4 Topology Constraints on the Clusters 19

clusters, xdla , l ∈ {1, 2}. In addition two capacity costs are defined for each arc,
cla, l ∈ {1, 2}. Thus the following objective replaces the previous objective (1).

min
∑

e∈E,l∈{1,2}
f ley

l
e +

∑
d∈D,a∈A

clabdx
dl
a (14)

So far, the cluster networks and backbone network are meshed fixed charge
networks. By enforcing additional constraints, alternative topologies can be
obtained in either the clusters, the backbone, or both. In most cases alternative
models exist which are simpler and/or more suitable for computation. However,
the fact that the various topologies can be enforced in the extend model, shows
how general the extended model is.

The various topologies can either be present in the clusters or in the backbone,
and in these cases require different constraints. The following section describes
topological constraints on the cluster networks followed by a section describing
topological constraints on the backbone.

3.4 Topology Constraints on the Clusters

When the cluster networks are trees, the number of cluster edges plus the num-
ber of hubs is exactly |V |. Furthermore assuming that the demands enforce
a connected network, the following constraint ensure that cluster networks are
trees. ∑

e∈E
y2
e +

∑
i∈V

hi = |V | (15)

When the clusters are constrained to be stars, cluster edges can only be between
nodes, where exactly one of the endpoint nodes is a hub. Constraint (9) ensures
that at most one of the endpoint nodes of an edge is a hub and the following
constraint ensures that at least one of the endpoint nodes is a hub.

y2
e ≤ hi + hj ∀e = (i, j) ∈ E (16)

With constraint (15) these constraints ensure star networks in the clusters.

In the event that clustered are constrained to be rings, the indegree of all nodes

20 Hierarchical Network Design Problems

must equal 2 ensured by the following constraints.∑
e∈δ(i)

y2
e = 2 ∀i ∈ V (17)

Note that subtour elimination constraints are not necessary in the single hub
case. This is the case, since demands have to be handled and thus no node can
be disconnected from hubs.

Finally fully interconnected cluster networks can be ensured by the following
constraint.

y2
e = ze ∀e ∈ E (18)

3.5 Topology Constraints on the Backbone

A backbone tree network can be ensured by requiring the number of backbone
edges to be one less than the number of hubs.

∑
e∈E

y1
e =

∑
i∈V

hi − 1 (19)

Ensuring that the backbone is a star seems non-trivial - the basic problem is
that the “center” of the star is not know.

Enforcing a backbone ring, can be done by enforcing that nodes selected as hubs
have indegree two, much the same way as described in Section 2.2 on TSP with
optional nodes. ∑

e∈δ(i)
y1
e = 2hi ∀i (20)

Similarly to rings in the cluster networks, it is not necessary to have subtour
elimination constraints. Finally a fully interconnected backbone network can be
ensured by the following non-linear constraint.

y1
e = hihj ∀e = (i, j) ∈ E (21)

The constraint can be linearized in a straightforward manner.

3.6 More Hubs 21

3.6 More Hubs

If more hubs are allowed or required, it may possibly be combined with an
establishment cost for the hub. Let ci be the cost of selecting node i as hub, then
the establishment cost is included by adding the term

∑
i cihi to the objective.

The constraint (9) should be taken out of the formulation, since these constraints
invalidates solutions with clusters containing more than one hub. If e.g. up to
two hubs are allowed, constraint (9) can be generalized to cope with this, but
the constraints cannot enforce that e.g. at least two hubs exist in each cluster.

The following non-linear constraint can cope with both cases, where Hl and Hu

are lower and upper bounds on the number of hubs in each cluster.

Hl ≤ hi +
∑
j|j 6=i

zijhj ≤ Hu ∀i ∈ V (22)

Since the constraints are non-linear, they are not suitable for use directly in
a MIP solver. The constraints can, however, be linearized by introducing new
variables zij = zijhj and adding constraints linking zij with zij and hj .

A better approach may be to replace the ze variables with variables with cluster
numbers as explained in the following. Define gci to be 1 if node i is in cluster
number c, 1 ≤ c ≤ cmax. These variables replace the ze variables, but in
addition, the hub nodes need an additional index, such that they are defined as
hci is 1 if node i is hub in cluster c, 0 otherwise.

The important constraint in this context is that the case of more hubs can be
handled by the following constraint.

Hl ≤
∑
i

hci ≤ Hu ∀c, 1 ≤ c ≤ cmax (23)

Expressing the remaining constraints necessary to define the hierarchical net-
work design problem is beyond the scope of this section.

22 Hierarchical Network Design Problems

3.7 Using the models

In many cases some variables are not needed, e.g. when a fully interconnected
cluster is considered, ze = y2

e and thus either of the variable can be left out
to improve computational performance. However, the models serve the very
important purpose of expressing, conceptualizing and formalizing the hierarchi-
cal network design problems. In most cases the above models cannot be used
directly (i.e. by invoking a MIP solver) to solve larger instances in reasonable
time. For various topology constraints on either the cluster networks, the back-
bone networks, or both, alternative models usually exist, possibly for slightly
modified problems. Such specialized models are usually much more suitable for
computations.

3.8 Related Papers

Given the various combinations of topologies on the clusters/backbone, numer-
ous problem variants exists. Many of such problems are reviewed in [26]. Here
we mention some recent problems of interest and the problems considered in
this thesis.

A recent paper of interests in relation to hierarchical network design is the paper
[33], which present a heuristic for solving a star-star problem. A recent paper
[27] considers the ring-star problem, presents some strong valid inequalities and
solve the problem to optimally using cutting plane methods. The paper [25]
consider a problem where each cluster can consist of more rings. The problem
is solved in steps. Initially clusters and hubs are determined using the methods
described in [32] and the rings are designed in each cluster independently.

The ring-ring problem is considered by [34], [36], [37] which present a reformu-
lation of the problem and present heuristics for solving it. The reformulation is
considered in Paper C, and in this paper an optimal algorithm is presented.

The paper [15] reviews work on generalized network design problems. In such
problems, it is assumed that clusters are known, hence hubs and backbone links
have to be determined. The backbone network have various topologies. Paper E
consider a similar problem, however, the backbone is a mesh network with fixed
charges as for the FCND problem.

Finally the fully interconnected-fully interconnected network design problem is
considered by Paper F and the mesh-mesh network design problem by Paper G.

Chapter 4

Linear Programming Based
Methods

The papers included in this thesis all describe linear programming based meth-
ods and use a linear program solver as an integrated component. The solver
used in experiments is CPLEX using either primal simplex or dual simplex,
whichever is appropriate. In this chapter, we survey linear programming based
methods.

4.1 The Linear Programming Relaxation

The linear programming relaxation (LPR) is used in all the methods considered,
hence it is defined for a general MIP in the following. Assume that the constants
aij , bj , and ci are given. Then, consider the following general MIP:

24 Linear Programming Based Methods

min
∑
i

cixi (1)∑
i

aijxi ≥ bj ∀j ∈ J (2)

xi ∈ {0, 1} ∀i ∈ I (3)

The MIP consists of an objective and constraints. Constraints are sometimes
denoted cuts. The LPR is obtained by replacing the integrality constraints (3)
with bounds on the variables. Thus the LPR is as follows:

min
∑
i

cixi (4)∑
i

aijxi ≥ bj ∀j ∈ J (5)

xi ∈ [0, 1] ∀i ∈ I (6)

In addition some strengthening constraints may be added. The strengthening
constraints are valid, thus all feasible solutions to the MIP are maintained.
However, the strengthening constraints invalidates some solutions which are
feasible to the LPR. As a consequence, the value of the LPR may increase,
which is the purpose of adding the strengthening constraints. A facet is a valid
constraint that cannot be strengthened any further. Unless explicitly stated, we
do not distinguish between strengthening constraints and the constraints that
define the problem.

4.2 Branch-and-Bound

In order to solve the MIP, branch-and-bound is applied, with the value of the
LPR used as the bound. Branching is usually done on the integer variables.
Often, an off the shelf MIP-solver such as CPLEX can be used with success.
The MIP-solver manages the branch-tree and selects branching variables. Fur-
thermore, it often adds strengthening constraints to improve the performance.
We have mostly studied problems, where it is not possible or beneficial to apply
an off the shelf MIP-solver directly. In this case the problems are complex and
have theoretical and algorithmic interest.

4.3 Cutting Plane and Branch-and-Cut 25

4.3 Cutting Plane and Branch-and-Cut

Consider the LPR, possibly with some additional strengthening constraints in-
cluded. Generally, it is beneficial to have as few constraints as possible, since the
computation time of the linear programming solver increases with the number
of constraints. Observe that for the optimal solution, x∗i , i ∈ I, some constraints
may not be binding, i.e. for some j,

∑
iAijx

∗
i > bj . A constraint that is not

binding for the optimal solution, is actually not needed in the formulation. Thus
a speedup is in principle possible, if the non-binding constraints can be deter-
mined prior to solving the problem. However, to determine whether a constraint
is binding for the optimal solution, the optimal solution is needed.

This leads to the idea of constraint generation or cutting plane methods. Cutting
plane methods initially set up a problem with very few constraints and solve
this problem. Then alternately, violated constraints are added and the problem
is resolved. This is continued until no violated constraint exists and thus the
optimal solution is obtained. In a sense, all constraints are considered implicitly.
This approach often leads to significant speedups and allows for solving problems
with a huge, often exponential number of constraints in the problem size. This is
especially the case, if the number of binding constraints for the optimal solution
is low.

Branch-and-cut is a branch-and-bound algorithm where the cutting plane me-
thod is used to strengthen the LPR bound in each node of the branch-tree. To-
day, branch-and-cut is much more often used than cutting plane. Furthermore,
the challenges experienced when developing branch-and-cut methods include all
the challenges experienced when developing cutting plane methods. Thus, only
branch-and-cut is discussed in the following.

Since much computation time is spent on resolving linear programming prob-
lems, it is very important to do this efficiently. It turns out to be crucial to use
the information given in the previously obtained solution and start solving from
this solution. This is denoted warm-start. This holds for both cutting plane
and branch-and-cut, with the additional caveat that when branching or back-
tracking in the branch-tree, the stored solution may not give as high a speed up
as intended. To obtain best possible match between the stored solution and the
problem to solve, depth-first-search is always preferred over best-bound-first in
branch-and-cut.

It is non-trivial to figure out which constraints to add during each iteration
of the branch-and-cut method. In case a polynomial number of constraints of
some type exists, it is often a good idea to explicitly evaluate all constraints and
add the ones that are violated. In case an exponential number of constraints

26 Linear Programming Based Methods

exist, an alternative is to solve the problem of determining whether any violated
constraint exists. If so, determine at least one constraint to add. This is denoted
the separation problem.

In some cases, the separation problem for a particular type of constraint can
be solved to completion, i.e. a violated constraint is identified if any violated
constraint exists. However, if the constraints are used to strengthen the formu-
lation, it is not necessary to solve the separation problem to completion. If the
separation problem is instead solved heuristically, the bound may, however, not
be as strong as it could have been.

For the constraints that define the problem, the separation problem should be
solved to completion, otherwise the following difficulty may be experienced. An
integer, nevertheless, infeasible solution appears, but no violated constraint is
generated since the separation routine is heuristic. Since the solution is inte-
ger, branching is not possible. Thus, the heuristic separation routine should for
integer solutions produce at least one violated constraint if any violated con-
straint exists. This is most often the case for the heuristic separation routines,
regardless that this has not been an issue when developing the routine.

Generally speaking, there is a tradeoff between solving the separation problem,
resolving linear programs and the additional time required to do branching if the
separation problem is solved heuristically. A typical approach to take is to solve
the separation problem heuristically and, if necessary, solve it to completion,
when the heuristic does not determine any violated constraints. Often it is not
beneficial to include all violated constraints that can be determined, since too
many constraints increase the computation time. A typical approach is to put a
limit on the number of constraints that are added during each iteration. If more
constraints are determined, some are discarded either randomly or by ranking
the constraints in order of “how much they are violated”, i.e. by bj −

∑
iAijx

∗
i .

However, it is also of importance how the constraints interact. If two constraints
address the same aspects, e.g. they almost include the same variables, it may
not be beneficial to add both constraints. Thus, it is most often advantageous
to use a heuristic separation routine that generates constraints that are in some
way different rather than ranking generated constraints based on the violation.
An example of such a heuristic separation routine is given in [17].

4.4 Column Generation and Branch-and-Price

Similarly to including only some of the constraints in cutting plane methods, it
is possible to include only some of the variables. This is denoted column gen-

4.4 Column Generation and Branch-and-Price 27

eration, and if used in a branch-and-bound setting, branch-and-price or integer
column generation [5, 39]. The motivation to include only some of the variables
is, similarly to cutting plane methods, that the computation time of the linear
programming solver increases with the number of variables. Furthermore, a
substantial number of the variables may be zero in the optimal solution, and
they are thus not needed when solving the problem. In column generation and
branch-and-price methods, initially, a problem is set up with some of the vari-
ables, only. Then alternately, variables with negative reduced costs are added
and the problem is resolved until no variables with negative reduced costs exist.

Column generation is most often used when an exponential number of variables
are present. In this case, it is necessary to solve a column generation problem -
too many variables exist to just check the reduced cost of all variables. Similarly
to cutting plane methods, it is important to use warm-start to get an efficient
algorithm.

Unlike the separation problem in cutting plane methods, it is necessary to solve
the column generation problem to completion to get a bound. Thus, it is of
little value to have a column generation problem which cannot be solved to
completion in practice. Conversely, it is certainly possible and common for
cutting plane methods to use constraints with a separation problem that is only
solved heuristically.

In this context, it is worth mentioning the concept of stabilized column genera-
tion [13]. The observation is that in many cases the convergence of the column
generation algorithm is slow, i.e. many of the columns generated have the value
zero in the optimal solution obtained in the end. By examining the dual vari-
ables at each iteration of a run of a column generation algorithm, it can be seen
that the dual variables often have extreme values and change radically from
one iteration to the next. This is especially seen during the first iterations of
a column generation algorithm [38]. Since the columns are generated based on
the values of the dual variables, the generated columns will be very different in
structure from iteration to iteration and the columns generated may be far from
the columns that turns out to be in the optimal solution. To circumvent this,
stabilized column generation seeks to avoid large changes in the dual variables
from iteration to iteration, thus hopefully generating more suitable columns.
Computational experiments support that this is a good idea, at least for set
packing and set covering problems [38].

Using branch-and-price pose some additional challenges regarding the branch-
ing, compared with branch-and-cut. In particular it is not a good idea to use
variable branching if an exponential number of columns exist. If variable branch-
ing is used, the column that is fixed to 0 may, and often will, be generated again.
Thus the column generation problem has to take branches into account.

28 Linear Programming Based Methods

In special cases, Ryan-Foster branching [35] can be used and generally constraint
branching as described in [5, 39] is applicable. The constraints added during
constraint branching also give rise to dual variables, which have to be included
in the column generation problem. In some cases this may be difficult. A short
intuitive description of such branching schemes is included in Paper C.

4.5 Branch-Cut-and-Price

When coding linear programming based methods adding variables and con-
straints are similar operations; they simply correspond to adding rows or co-
lumns to a matrix. Thus it makes sense to integrate the methods in a branch-
cut-and-price method allowing for both adding variables and constraints. Such
functionality is included in the ”branch-cut-and-price”-framework from coin[10].
This framework has been used in most papers included in the thesis.

Chapter 5

Papers in the Thesis

In this chapter, the seven papers included in the appendix is presented one by
one. For each paper, the problems, the models, the methods, and the results
are briefly discussed and related to the other papers.

5.1 Paper A: Facets for the Cardinality Con-
strained Quadratic Knapsack Problem and

the Quadratic Selective Travelling Salesman
Problem

Two related problems are considered in this paper. The Cardinality Constrained
Quadratic Knapsack Problem (CCQKP) and the Quadratic Selective Travelling
Salesman Problem (QSTSP). The paper presents strengthening constraints for
the two problems and gives proofs that the constraints are indeed facets.

The QSTSP is a ring network design problem with quadratic costs as described
in Section 2.3. QSTSP generalizes TSP, and is much more difficult than TSP
due to the quadratic terms in the objective function. Furthermore, QSTSP
generalizes the Quadratic Knapsack Problem (QKP).

30 Papers in the Thesis

The QKP is an extension of the classical knapsack problem. The classical knap-
sack problem seeks to maximize the revenue obtained for selected elements,
subject to a budget constraint on the weight of the elements. The QKP extends
this formulation by allowing for quadratic revenues, i.e. revenues obtained if
pairs of elements are selected. The QKP is considered in e.g. [7, 8, 9]. The CC-
QKP is the special case of the QKP where the budget constraint is a cardinality
constraint, i.e. the elements have unit weights.

Strong valid inequalities and facets in particular are useful in a branch-and-cut
method, since they can be used to improve the bound of the linear programming
relaxation. Thus the contribution of the paper is the constraints presented and
the proofs that they are indeed facets.

5.2 Paper B: A Branch-and-Cut Algorithm for

the Quadratic Selective Travelling Salesman
Problem

This paper presents heuristics and a branch-and-cut algorithm for the QSTSP.
Two different budgets are considered. The first is a budget on the number of
nodes and the second is a budget on the length of the ring. Computational
results are reported based on generated test instances. The test instances are
fully interconnected and a demand exists for all pairs of nodes. The compu-
tational experiments show that instances can be solved to optimality but also
that the running time can be substantial, up to almost 30 minutes for 50 node
instances. However, the running time depends heavily on the test instance. In
particular the running time depends heavily on which of the two budget types
are considered and how restrictive it is.

5.3 Paper C: Hierarchical Ring Network Design
Using Branch-and-Price

The design of a hierarchical ring network have received some attention previ-
ously and is the topic of this paper. In hierarchical ring networks, both the
backbone and the cluster networks consist of rings, i.e. a ring-ring network de-
sign problem. The algorithm presented determines the clusters, hubs and the
rings in the clusters. The routing cost of the backbone ring is only estimated.
The algorithm is based on a set partitioning formulation with a column for each

5.4 Paper D: Joint Routing and Protection Using p-cycles 31

possible ring. Branch-and-price is used, and it turns out that the column gen-
eration subproblem is the QSTSP. Optimal solutions are obtained for general
fully connected networks with up to 20 nodes in just about one hour and in
special cases for networks with up to 36 nodes in one and a half hour.

5.4 Paper D: Joint Routing and Protection Us-

ing p-cycles

The p-cycle protection method is recognized as a promising way to protect
networks. This paper address a problem which consists of routing demands in
a network and simultaneously protect the routed demands with p-cycles. The
p-cycles protect the routed demands by protecting each link of the demand
route. A p-cycle consists of a set of links making up a cycle. In addition to
being able to protect links on the cycle, the p-cycle can also protect chords of
the cycle. As a consequence, p-cycles have the advantage of being much more
capacity efficient than ring protection and at the same time the simple and fast
restoration scheme of ring protection can be used. In fact the capacity efficiency
is remarkably close to that of meshed protection schemes.

The algorithm used to route and protect demands is very similar to the algorithm
used in Paper C. It is a column generation method with two types of generated
columns. One column type corresponds to the routes and the column generation
subproblem is the shortest path problem. The other column type corresponds to
the p-cycles and in this case, the column generation subproblem is the QSTSP.

The computational results use real-world networks with a generated demand.
Results are obtained for networks with up to 43 nodes, 71 links, and demands
between all pairs of nodes. Solutions are in most cases within 1% of the optimal
solution obtained with a worst case computation time of 6 minutes. This em-
phasizes the computational efficiency of the proposed method when compared
to existing heuristic methods.

5.5 Paper E: The Generalized Fixed-Charge
Network Design Problem

Consider a network design problem in which some nodes have to be connected
in a specified topology (e.g. a tree or a ring) by edges. A generalization of such
a network design problem is the following. Assume that nodes are allocated to

32 Papers in the Thesis

node disjoint clusters and only one node (the hub) has to be selected from each
cluster. Determine the hub nodes and interconnect the hub nodes by edges in
the specified topology. Such generalized network design problems are reviewed
in [15].

This paper considers the generalized fixed charge network design problem in
which the topology mentioned above is a fixed charge network design. The paper
presents a model and an algorithm for solving the problem. The generalized fixed
charge network design problem is a hierarchical network design problem, since
it consists of determining hubs, the interconnection of the hubs, and routing in
the backbone.

A branch-cut-and-price algorithm for solving the problem is presented. A poly-
nomial number of variables and constraints exists, thus pricing and separation
problems are carried out by evaluating the reduced costs of variables and evalu-
ating constraints to see if they are violated. The algorithm is much more efficient
than straightforward solution using a MIP solver, since very few variables are
non-zero and very few cuts are binding.

Optimal results are obtained for networks with up to 300 nodes and 10 clusters,
150 nodes and 20 cluster, and 50 nodes and 30 clusters within 10 hours of com-
putation time. The results are quite remarkable, since the number of variables
and constraints are O(n4), where n is the number of nodes.

5.6 Paper F: The Two-Layered Fully Intercon-
nected Network Design Problem – Models

and an Exact Approach

This paper presents the problem of designing a hierarchical network where both
the backbone and the clusters consist of fully interconnected networks. Two inte-
ger programming models are presented. One model gives poor bounds, whereas
a column generation model gives much better bounds. The column generation
model is similar to models for the set-partitioning problem, with the exception
that two types of interacting columns exists. One type of column corresponds to
the backbone network and the other type of column corresponds to the cluster
networks. The column generation problem can be solved by solving a series
of QKPs. Solving a series of QKPs has the advantage that more columns are
generated during each iteration.

The column generation model is embedded into a branch-and-bound procedure
and is thus solved by branch-and-price. The computational results show that

5.7 Paper G: Design of Two-Layered Fixed Charge Networks 33

this is indeed a viable way to solve the problem. A substantial amount of time
is, nevertheless, spent on solving the column generation problem to optimality.
This is the case, regardless that optimal methods are only used if heuristics do
not produce any solutions to the column generation problem. The computa-
tional results are based on networks with up to 25 nodes and show that the
running time depends heavily on the way the test instances are generated.

5.7 Paper G: Design of Two-Layered Fixed

Charge Networks

In this paper, the hierarchical network design problem is studied. The problem
consists of designing a two-layered network where the backbone and the clusters
consist of fixed charge networks. The paper presents two integer programming
models that are extensions of the models presented in Paper F. The additional
complication is to cope with flow of demands. The linear programming bounds
of the two models are investigated, and it is shown that the column generation
model achieves the best bounds. However, neither of the bounds are tight
enough to be used for an optimal method. Instead, a GRASP heuristic [14] is
developed, which supplies heuristic solutions. Heuristic solutions are obtained
for complete networks with up to 50 nodes and a full demand matrix, albeit at
the cost of significant running times.

34 Papers in the Thesis

Chapter 6

Conclusion

This thesis has presented problems and algorithms in the area of hierarchical
network design. Such problems combine hub location, clustering and network
design. Furthermore, ring network design problems have been surveyed.

The thesis contains an introduction and a description of models and related work
in the area of ring network design and hierarchical network design. Furthermore
linear programming (LP) based methods are introduced. The majority of the
contribution consists of the seven papers included as appendices. The papers
are briefly described in Chapter 5.

6.1 Summary

The ring network design problems discussed in Chapter 2 are of great importance
since ring networks are widely used. In addition, ring network design problems
appear as subproblems in many real-life applications. We have considered one
particular problem, the quadratic selective TSP in Paper A and Paper B, and
use the results obtained here in Paper C and Paper D.

When considering hierarchical network design, one common approach is to di-
vide the problems into subproblems which are solved separately, leading to sub-

36 Conclusion

optimal designs. The approach taken in this thesis is instead to consider inte-
grated problems and devise methods for these. As a consequence, we usually face
computationally challenging problems. In some cases, the problems presented
have not been considered previously, and in other cases we present reformulated
models of existing problems that are more suitable for computation.

The hierarchical network design model presented in Chapter 3 is quite general
and includes the problems considered in papers C, E, F, and G. The model is
not very suitable for direct computation, but serves the purpose of formalizing
the problems. The LP relaxation of the model is used as bound in Paper G.

The algorithms presented are mostly LP based methods and are examples of
well performing methods. The methods are surveyed in Chapter 4, which is
also a short introduction to LP based methods, including references for related
material.

In LP based methods, studies of the underlying polyhedra are of great impor-
tance. We have used such results whenever possible and present polyhedral
results for two related problems in Paper A.

The computational results are ample. Papers B, C, E, F, and G present results
for optimal methods. The running times are in most cases quite high, but
given the complexity of the problems, such running times are to be expected
and acceptable. Papers B, D, and G present results for heuristics, but in all
cases bounds are presented as well. The benefit of the bounds is to allow for an
evaluation of the quality of the heuristic solutions. In Paper D, the bound is
excellent, in Paper G the bound is not very good, and in Paper B the bound is
somewhere in between. The heuristic solutions on the other hand seems to be
reasonable in all three cases.

6.2 Main Contributions

The problems that are addressed have applications in communication network
design and are of both practical and theoretical interest. The most important
contribution of the work reported is the models developed for hierarchical net-
work design problems and the linear programming based methods devised for
solving the problems. Through computational experiments, it is shown that
the methods work in practice. During the development of the methods, a num-
ber of challenging subproblems have been identified and solved, most notably,
the novel quadratic selective TSP. The quadratic selective TSP is in itself an
interesting problem, since it resembles ring network design.

6.3 Future Work 37

Finally, a spin-off result is the development of the algorithm to jointly route and
protect networks using p-cycles in Paper D. The method has proven superior
to previously suggested methods.

6.3 Future Work

Several extensions to problems and/or related problems may be considered.
Obvious extensions are capacitated networks, more hubs per cluster, inclusion
of equipment costs, and more than two layers. All extensions are motivated
by real-world networks, and are likely to increase the problem complexity even
further.

Alternative models are of interests, and in particular constraints which strength-
ens existing formulations may prove an important tool to reduce computation
times.

Numerous algorithmic improvements are possible and described in detail in the
papers. Here we mention some of the general algorithmic improvements that are
of interests. One such example is the stronger constraints mentioned above. An-
other example is the stabilization of the set-partitioning-like models considered
in papers C, D, F, and G.

Since the focus has been on optimal solutions, one obvious line of research to
explore is construction heuristics. Heuristics are interesting, either for obtaining
solutions fast or as input to speed up the branch-and-cut and branch-and-price
algorithms. Furthermore, a heuristic algorithm decomposing the hierarchical
network design problem into subproblems based on the ideas in Paper E is of
interests. For the purpose of benchmarking, the results presented in this thesis
will be valuable in studies of heuristics.

Finally computational experiments are largely based on generated data. Thus,
computational experiments based on real-world data would be of great signif-
icance. An alternative would be to consider sparser networks, resembling real
world networks.

38 Conclusion

Appendix A

Facets for the Cardinality
Constrained Quadratic

Knapsack Problem and the
Quadratic Selective Travelling

Salesman Problem

Submitted for J. of Combinatorial Optimization

40 Appendix A

Facets for the Cardinality Constrained Quadratic
Knapsack Problem and the Quadratic Selective Travelling

Salesman Problem

Vicky Mak1 and Tommy Thomadsen2

Abstract

This paper considers the Cardinality Constrained Quadratic Knapsack
Problem (QKP) and the Quadratic Selective Travelling Salesman Prob-
lem (QSTSP). The QKP is a generalization of the Knapsack Problem
and the QSTSP is a generalization of the Travelling Salesman Problem.
Thus, both problems are NP hard.
The QSTSP and the QKP can be solved using branch-and-cut methods,
and in doing so, good bounds can be obtained if strong constraints are
used. Hence it is important to identify strong or even facet-defining con-
straints. This paper presents the polyhedral combinatorics of QSTSP
and QKP, i.e. amongst others identify facet-defining constraints for the
QSTSP and the QKP, and provide mathematical proofs that they do
indeed define facets.

Keywords: Quadratic Knapsack, Quadratic Selective Travelling Salesman,
Polyhedral Analysis, Facets

A.1 Introduction

A well-known extension of the Travelling Salesman Problem (TSP) is the Selec-
tive (or Prize-collecting) TSP: In addition to the edge-costs, each node has an
associated reward (denoted the node-reward) and instead of visiting all nodes,
only profitable nodes are visited. The Quadratic Selective TSP (QSTSP) has
the additional complications: (1) each pair of nodes have an associated reward
(denoted the edge-reward) which can be gained only if both nodes are visited;
and (2) a constraint on the number of nodes selected is imposed, which we refer
to as the cardinality constraint. The objective of an QSTSP is to maximize

1This paper was written mostly when Vicky Mak was working at Department of Mathemat-
ics and Statistics, University of Melbourne, Australia. She now works at School of Information
Technology, Dearkin University. Email:vmak@ms.unimelb.edu.au

2Informatics and Mathematical Modelling, Technical University of Denmark, Lyngby, Den-
mark. Email: tt@imm.dtu.dk

A.1 Introduction 41

the total node-reward and edge-rewards gained minus the edge-costs incurred
subject to the satisfaction of the cardinality constraint.

Conceptually the QSTSP consists of two interacting problems, a cardinali-
ty-constrained min-cost circuit problem with respect to the edge-costs and a
cardinality-constrained max-reward clique problem with respect to the edge-
rewards.

The cardinality constrained circuit problem (CCCP) is considered in [3] where
polyhedral results are presented and in [4] where a branch and cut algorithm
is discussed. The max-reward clique problem is a special case of the quadratic
knapsack problem where the knapsack constraints have unit coefficients. We
denote this problem the cardinality constrained quadratic knapsack problem
(QKP). The quadratic knapsack problem (when coefficients are not necessarily
unit) is considered in e.g. [15], [5] and [6]. If edge-rewards are non-negative,
the cardinality constraint will be met with equality. This is similar to the p-
dispersion problem considered in [7] wherein the objective is to maximize the
minimum edge-reward. The p-dispersion problem is considered in [18] with an
objective equivalent to the one considered here.

Various TSP-like problems are similar to QSTSP in the way that a subset of
nodes has to be selected. E.g. the Prize-collecting TSP [1, 2], Selective TSP
[12, 16], the Orienteering problem [10], and the Generalized TSP [8, 9]. Problems
that consider the combination of a clique problem and a cycle problem has been
studied in [11] and [13]. Gendreau, Labbe, and Laporte [11] study a problem
where instead of imposing the cardinality constraint, an upper bound on the
sum of the edge-costs are imposed. Gouveia and Manuel Pires [13] study a
QSTSP-like problem with the additional requirement that some nodes must be
in the ring.

In this paper we study the polyhedral combiatorics of the QKP and the QSTSP.
Our interest in studying the QSTSP is due to the fact that this problem arose
as a subproblem from another combinatorial optimisation problem which deals
with designing hierarchical ring networks (see [19]). Naturally, the faster we can
solve the QSTSP, the better. The QKP, however, is an interesting problems in
its own right, but we study the QKP mostly for its relevance in understanding
the QSTSP. Since QKP is a generalization of the Knapsack Problem and QSTSP
is a generalization of the Travelling Salesman Problem, both problems are NP
hard.

A promising approach in solving these combinatorial optimisation problems is
the branch-and-cut method. A significant factor in the success of the method is
the use of strong constraints that at least partially describe the convex hull of
the incidence vectors of all feasible solutions, in other words, the use of facet-

42 Appendix A

defining cuts.

The contribution of this research is therefore the identification of some of the
facet-defining cuts, the mathematical proofs that these cuts are indeed facet-
defining, and the various mathematical techniques used in proving these results.

We begin with, in Section A.2, giving an integer programming model for QSTSP
and define the polyhedra of the QKP, CCCP, and the QSTSP. In Sections A.3
and A.4, we present our polyhedral results on the QKP and the QSTSP poly-
topes. Finally, in Section A.5, we conclude our findings.

A.2 Integer Programming Model and the Poly-

hedra

We consider QSTSP defined on the undirected graph G = (V,E). We assume
that G is a complete undirected graph. This is not restrictive, since we can
always introduce high costs for edges that do not exist.

For notational convenience, we use (U1, U2) to denote {(i, j) ∈ E | i ∈ U1, j ∈
U2}, for any U1, U2 ⊆ V ; use δ(S) to denote {(i, j) ∈ E | i ∈ S, j ∈ V \ S};
and use E(S) to denote {(i, j) ∈ E | i, j ∈ S}.

To give the model, we use ri for the node-reward, we for the edge-reward, ce
for the edge-cost, and b for the maximum number on nodes allowed in the ring.
Let xe be the decision variable with xe = 1 if e ∈ E is chosen in the ring and
0 otherwise; yi be the decision variable with yi = 1 if i ∈ V is on the ring, 0
otherwise; and ze be the decision variable with ze = 1, for (i, j) ∈ E if node i
and j are both on the ring, 0 otherwise. If (i, j) = e ∈ E, then zij is sometimes
used in place of ze. Given these, the QSTSP is formulated as follows.

max
∑
i∈V

ri · yi +
∑
e∈E

we · ze −
∑
e∈E

ce · xe (1)

s.t.
∑
e∈δ(i)

xe = 2yi, ∀i ∈ V (2)

ze ≤ yi, ∀i ∈ V, e ∈ δ(i) (3)
zij ≥ yi + yj − 1, ∀(i, j) ∈ E, i < j (4)

A.2 Integer Programming Model and the Polyhedra 43

∑
e∈δ(S)

xe ≥ 2(yk + yl − 1),

∀∅ ⊂ S ⊂ V, k ∈ S, l 6∈ S (5)∑
i∈V

yi ≤ b (6)

xe ∈ {0, 1}, ∀e ∈ E (7)
yi ∈ {0, 1}, ∀i ∈ V (8)
ze ∈ {0, 1}, ∀e ∈ E (9)

Constraints (2) makes sure that if and only if a node is selected, the indegree
of the node is 2. Constraints (3) and (4) establishes that zij = 1 if and only if
yi = yj = 1. Constraints (5) is the subtour elimination constraints and (6) is
the cardinality constraint. Finally (7), (8) and (9) are the binary constraints.
Let n = |V |. The Quadratic Selective Travelling Salesman(QSTS) polytope is
defined to be

PnbQS = conv {(x, y, z) ∈ R2|E|+n|(x, y, z) satisfies (2)− (9)}. (10)

We identify two related polytopes. The cardinality constrained quadratic knap-
sack(QK) polytope,

PnbQK = conv {(y, z) ∈ R|E|+n|(y, z) satisfies (3), (4), (6), (8) and (9)}, (11)

and the cardinality constrained circuit polytope,

PnbC = conv {(x, y) ∈ R|E|+n|(x, y) satisfies (2), (5)− (8)}}. (12)

Note that PnbQS is contained in the intersection of PnbQK and PnbC . Thus any
valid inequality for either PnbQK or PnbC is valid for PnbQS . Note also that for the
CCCP and QSTSP we consider in this paper, we assume that the empty cycle
is considered as a feasible solution, whereas in Bauer [3], it is not considered as
a feasible solution. No feasible cycles with one or two nodes exists.

The contribution of this paper is to study the QK polytope and a QSTS polytope
modelled without the y variables, denoted by P̃nbQS . We show that P̃nbQS and PnbQS
are in fact describing the same set of feasible solutions for the QSTSP, and that
any facet-defining inequality defined for P̃nbQS is also facet-defining for PnbQS . Then
we work on P̃nbQS and PnbQK : we establish the dimensions of these polytopes, and
for each of them, we develop several classes of constraints and prove that they
are facet-defining.

44 Appendix A

A.3 Polyhedral results for the QK polytope

In this section, we present our polyhedral results on the dimension of PnbQK and
that four classes of constraints are facet-defining. The first class is the non-
negativity constraint on ze, the following two classes are generalizations of (3)
and (4) respectively and the last class of constraints are obtained by modifying
(6).

In what follows, we use incidence vectors (y, z) ∈ {0, 1}|V |+|E|, for y ∈ {0, 1}|V |
and z ∈ {0, 1}|E| to represent our solutions. Each element in a vector corre-
sponds to a node j ∈ V or an edge (i, j) ∈ E. We also use ej ∈ {0, 1}|V |+|E|,
for any j ∈ V , to represent a vector with the value of the element correspond-
ing to node j equals 1 and the values of all other elements equal 0; and use
eij ∈ {0, 1}|V |+|E|, for any (i, j) ∈ E, to represent a vector with the value of the
element corresponding to edge (i, j) equals 1 and the values of all other elements
equal 0.

Theorem A.1 Given any G = (V,E), 2 ≤ b ≤ |V |, the dimension of the QK
polytope, PnbQK , is |E|+ |V |, i.e., it is full dimensional.

Proof. Consider the following feasible solutions:

1. (y, z)0 = 0;

2. (y, z)1 = ej , for all j ∈ V ; and

3. (y, z)2 = ei + ej + eij , for all (i, j) ∈ E.

Clearly, these give us |E|+ |V | + 1 affinely independent feasible solutions, and
therefore the dimension of the QK polytope is |E|+ |V |. 2

Theorem A.2 Given any G = (V,E), 2 ≤ b ≤ |V | the constraints, given as

zf ≥ 0, ∀f ∈ E, (13)

are facet-defining for PnbQK .

Proof. We need to show that the dimension of F = PnbQK ∩ {zf = 0} is |E| +
|V |−1. First of all, it is trivially true that F defines a proper face and therefore
dim(F) ≤ |E|+ |V | − 1. Now consider the following feasible solutions:

A.3 Polyhedral results for the QK polytope 45

1. (y, z)0 = 0;

2. (y, z)1 = ej , for all j ∈ V ; and

3. (y, z)2 = ei + ej + eij , for all (i, j) ∈ E \ {f}.

Clearly, these give us |E|+ |V | affinely independent feasible solutions, and there-
fore dim(F) is |E|+ |V | − 1. 2

Theorem A.3 Given any G = (V,E), 3 ≤ b ≤ |V | the constraints, given as:∑
e∈(i,S)

ze ≤ yi +
∑

e∈E(S)

ze, ∀i ∈ V, S ⊆ V \ {i}, |S| ≥ 2. (14)

are facet-defining for PnbQK .

Note that (3) is a special case of (14).

Proof. Let F = PnbQK ∩
{ ∑
e∈(i,S)

ze = yi +
∑

e∈E(S)

ze

}
. Since (y, z) = ej, for any

j ∈ V \{i}, does not satisfy the constraint at equality, dim(F) ≤ dim(PnbQK)−1.
Now, we show that dim(F) ≥ dim(PnbQK) − 1 by finding exactly dim(PnbQK) =
|V | + |E| affinely independent feasible solutions that satisfy the constraints at
equality. We do so by sequentially introducing the following vectors, each rep-
resenting a feasible solution.

1. (y, z)1 = {0};

2. (y, z)2 = {(y, z)2
j | ∀j ∈ V \ {i}} where (y, z)2

j = ej , (we have |V | − 1
of these solutions);

3. (y, z)3 = {(y, z)3
ij | ∀j ∈ S} where (y, z)3

ij = ei + ej + eij , for all j ∈ S,
(we have |S| of these solutions);

4. (y, z)4 = {(y, z)4
jk | ∀j ∈ S, k ∈ S̄ \ {i}} where (y, z)4

jk = ej + ek + ejk,
(we have |(S, S̄ \ {i})| of these solutions);

5. (y, z)5 = {(y, z)5
jk | ∀j, k ∈ S̄\{i}, j < k} where (y, z)5

jk = ej+ek+ejk,
(we have |E(S̄ \ {i})| of these solutions);

6. (y, z)6 = {(y, z)6
jk | ∀j, k ∈ S, j < k} where (y, z)6

jk = ei + ej + ek +
eij + eik + ejk, (we have |E(S, S)| of these solutions); and

46 Appendix A

7. (y, z)7 = {(y, z)7
jk | j ∈ S, ∀k ∈ S̄ \ i}, where (y, z)7

jk = ei + ej + ek +
eij + eik + ejk, (we have |S̄| − 1 of these solutions).

Hence, we have |V |+ |E| affinely independent feasible solutions in total and thus
the theorem is proved. 2

Theorem A.4 Given any G = (V,E), 3 ≤ b ≤ |V |, the constraints, given as:∑
e∈E(S)

ze + 1 ≥
∑
i∈S

yi, ∀S ⊆ V, |S| ≥ 2 (15)

are facet-defining for the QK polytope.

Note that (4) is a special case of (15).

Proof. Let F = PnbQK ∩
{ ∑
e∈E(S)

ze + 1 =
∑
i∈S

yi

}
. Since (y, z) = 0 does not

satisfy the constraint at equality, dim(F) ≤ dim(PnbQK) − 1. Now, we show
that dim(F) ≥ dim(PnbQK)− 1 by finding exactly dim(PnbQK) = |V |+ |E| affinely
independent feasible solutions that satisfy the constraints at equality. We do so
by taking the following steps.

1. (y, z)1 = {(y, z)1
i | ∀i ∈ S}, where (y, z)1

i = ei (we have |S| of these
solutions);

2. (y, z)2 = {(y, z)2
ij | ∀i ∈ S, j ∈ V }, where (y, z)2

ij = ei + ej + eij , (we
have |(S, S)|+ |(S, S̄)| of these solutions);

3. (y, z)3 = {(y, z)3
k | ∀k ∈ S̄}, where (y, z)3

k = ei+ej+ek+eij+eik+ejk,
for a fixed i ∈ S, and a fixed j ∈ S \ {i}, (we have |S̄| of these solutions);
and

4. (y, z)4 = {(y, z)4
jk | ∀j, k ∈ S̄}, where (y, z)4

jk = ei + ej + ek + eij +
eik + ejk, for a fixed i ∈ S, (there are |(S̄, S̄)| of these solutions).

It is obvious that the |S| + |(S, S)| + |(S, S̄)| feasible solutions introduced in
Step 1 and Step 2 are affinely independent. We now show, by contradiction,
that the solutions introduced in Step 3 are in fact affinely independent to any of
the previously introduced solutions. We assume that, w.l.o.g., the first solution
introduced in Step 3 is (y, z)3

l , for any l ∈ S̄, and that (y, z)3
l =

∑
i

λi(y, z)1
i +

A.3 Polyhedral results for the QK polytope 47

∑
ij

µij(y, z)2
ij, for some λ ∈ IR|S|, µ ∈ IR|(S,S)|+|(S,S̄)|, (λ, µ) 6= 0. Now, to

obtain the elements in (y, z)3
l corresponding to the z variables, we need µij =

µil = µjl = 1, and µf = 0 for all f ∈ E \ {(i, j), (i, l), (j, l)}. Observe that
in (y, z)1, the value of the elements corresponding to variable yl is always 0,
(since l ∈ S̄), so y3

l has a value of 2 instead of 1. Hence there is a contradiction.
Clearly (y, z)3 are independent as elements in S̄ are all distinct, we conclude
that the incidence vectors in (y, z)3 are all affinely independent. Last of all, the
solutions introduced in Step 4, i.e. (y, z)4 are obviously affinely independent to
all the previously introduced solutions. Thus the theorem is proved. 2

Theorem A.5 Given any G = (V,E), 3 ≤ b ≤ |V | − 1, the constraints, given
as: ∑

e∈δ(i)
ze ≤ (b− 1)yi, ∀i ∈ V (16)

are facet-defining for PnbQK .

Constraint (16) can be obtained by multiplying (6) with yi and noting that
yiyi = yi and yiyj = zij .

Proof. We need to show that the dimension of F = PnbQK∩{
∑
e∈δ(i)

ze = (b−1)yi}

is |E| + |V | − 1. Since (y, z) = ei does not satisfy constraint (16) at equality,
dim(F) ≤ |E|+ |V | − 1. Now consider the following feasible solutions:

1. (y, z)0 = 0;

2. (y, z)1 = ek, for all k ∈ V \ {i}, (we have |V | − 1 of these solutions);

3. (y, z)2 = ek + el + ekl, for all {k, l} ⊆ V \ {i}, (we have |E| − (|V | − 1) of
these solutions); and

Clearly, these |E|+1 points are affinely independent, and satisfy (16) at equality.

Now, we are left with finding |V |−1 affinely independent feasible solutions. We
do so by inspecting the set of all feasible solutions that selects exactly b nodes:
the node i plus b − 1 other nodes from the set V \ {i}. We define such a set
to be ΩV,b = {I1, . . . , Im | Il = {i} ∪ U, |Il| = b, ∀l = 1, . . . ,m}, where
U ⊂ V \ {i}. (Note that m is finite). We denote Il by {i, jl1, . . . , jlb−1} for each
l = 1, . . . ,m.

48 Appendix A

Our inductive hypothesis is that ΩV,b contains precisely |V | − 1 affinely inde-
pendent feasible solutions. Our proof takes the following steps: Step 1 concerns
the initial case for |V | = 4 and b = 3; Step 2 concerns induction on |V | while
holding b constant; and Step 3 concerns induction on both b and |V |.

Step 1. We have found precisely 3 affinely independent feasible solutions for the
case when |V | = 4 and b = 3.

Step 2. We assume that our inductive hypothesis is true for |V | = 4, . . . , s and
b = t. We now show that it is true for |V | = s + 1 and b = t. Consider the
QKP defined on G̃ = (Ṽ , Ẽ), for Ṽ = V ∪ {q}, Ẽ = (q, V) ∪ E(V). We show
that ΩṼ ,t contains exactly s affinely independent feasible solutions. By our
inductive hypothesis, there exists ΩV,t that contains s− 1 affinely independent
feasible solutions, and w.l.o.g., let these s − 1 solutions be I1, . . . , Is−1. As b
was held constant at t, these s− 1 points are also feasible for G̃ and satisfy (16)
at equality. Now consider a new solution Is = {i, j1

1 , . . . , j
1
t−2, q}. Clearly, Is is

affinely independent to any of the previously introduced solutions (wherein q is
never used), and it satisfy (16) at equality.

Step 3. We assume that our inductive hypothesis holds for |V | = 4, . . . , s,
b = 3, . . . , t, for t ≤ s− 1, and prove that it holds for |V | = s+ 1 and b = t+ 1.
Recall I1, . . . , Is−1 defined in Step 2. First, consider I ′s = I1∪{k}, for k ∈ V \I1,
which uses exactly t+ 1 nodes, and is affinely independent to (y, z)1 and (y, z)2

(as the node i is never selected therein). Then we define I ′l = Il ∪ {q}, for all
l = 1, . . . , s − 1, and thus obtain s − 1 affinely independent feasible solutions
each selecting t+ 1 nodes. These are affinely independent to (y, z)1, (y, z)2, and
I ′s due to the use of node q. Thus completes the proof. 2

A.4 Polyhedral results for the QSTS polytope

In this section, we present our polyhedral results for the QSTS polytope, P̃nbQS .
(Recall that this concerns the formulation without the y variables). We first
establish the dimension of P̃nbQS and establish the links between P̃nbQS and PnbQS .
We then prove that five classes of constraints are facet-defining for P̃nbQS . The
first class of constraints concerns the relationship between xe and ze; the second
class of constraints is a strengthened version of the subtour elimination con-
straints (5); and the last three classes of constraints are also facets for the QK
polytope, except that herein we use 1

2

∑
e∈δ(i)

xe in place of yi.

A.4 Polyhedral results for the QSTS polytope 49

In what follows, we use incidence vectors (x, z) ∈ {0, 1}2|E|, for x, z ∈ {0, 1}|E|
to represent our solutions. We also define (λ, µ) ∈ IR2|E|, for λ, µ ∈ IR|E|, with
each element in λ and µ representing an edge e ∈ E. Furthermore, when we
refer to p-cycles, we refer to cycles in G that contain p nodes.

We will use the following result frequently.

Proposition A.6 Given an undirected graph G = (V,E), |V | = 5, let X be
the matrix generated by incident vectors of all 3- and 4-cycles in G. Under
the assumption that G is complete, if X(λ, µ)T = 0, then λe = µe = 0 for all
e ∈ (E).

Proof. It can be verified that X is of rank 2|E| = 20, hence the result follows
immediately. 2

Theorem A.7 Given any QSTSP defined on an undirected graph G = (V,E),
with |V | ≥ 5 and 4 ≤ b ≤ |V |, under the assumption that G is complete, the
dimension of the QSTS polytope, P̃nbQS , is 2|E|.

Proof. We show, by contradiction, that the dimension of P̃nbQS is 2|E|. We first
assume that P̃nbQS is not full-dimensional, and hence there must be at least one
equality constraint, λ · x + µ · z = λ0, satisfied by all feasible solutions in the
polytope. Then we establish that this is true only when λe = µe = λ0 = 0,
for all e ∈ E, thus implying that there is no equality constraint satisfied by all
feasible solutions in the polytope and hence the polytope is full dimensional.
Consider the 0-cycle defined by (x, z) = 0. We have λ · 0 + µ · 0 = λ0. Hence
we get λ0 = 0. To show that λe = µe = λ0 = 0, for all e ∈ E, consider any
arbitrary subgraph G̃ = (Ṽ , Ẽ) for Ṽ ⊆ V , |Ṽ | = 5, and Ẽ = E(Ṽ). Under the
assumption that G is complete, G̃ is also complete. Now, consider a matrix X
generated by the incident vectors of all the 3-cycles and the 4-cycles in G̃. Since
λ0 = 0, by result of Proposition A.6, we have λe = µe = 0 for all e ∈ Ẽ. As G̃
is arbitrary in G, we have that λe = µe = 0, for all e ∈ E. Hence the theorem
is proved. 2

Next, we discuss the relation between P̃nbQS and PnbQS . Essentially, we try to
establish that the two polytopes represent the same set of feasible solutions,
and that facets found for one are facets for the other (with slight modifications).
Hence, all facets of P̃nbQS we propose in this paper are also facets for PnbQS . These
results are echos of similar results of Bauer et a. [4] for the CCCP.

Proposition A.8 For any QSTSP defined on G = (V,E) where |V | ≥ 5, and
4 ≤ b ≤ |V |, we have that dim(P̃nbQS) = dim(PnbQS).

50 Appendix A

Proof. Each incidence vector (x, z) ∈ IR2|E| ∩ P̃nbQS can be represented by an
incident vector (x, y, z) ∈ IR2|E|+|V | ∩ PnbQS . For any set of 2|E| + 1 affinely
independent incident vectors that spans P̃nbQS , we can get 2|E|+ 1 affinely inde-
pendent incident vectors in PnbQS . Thus dim(PnbQS) ≥ 2|E|. As the rank of the
degree constraints, (2), is |V |, clearly dim(PnbQS) ≤ 2|E| + |V | − |V |, and thus
dim(PnbQS) = 2|E|. 2

Remark A.4.1 Since dim(P̃nbQS) = dim(PnbQS), and each incidence vector
(x, z) ∈ IR2|E| ∩ P̃nbQS can be represented by an incident vector (x, y, z) ∈
IR2|E|+|V |∩PnbQS , the two polytopes describe the same set of feasible solutions for
the QSTSP.

Proposition A.9 For any QSTSP defined on G = (V,E) where |V | ≥ 5, and
4 ≤ b ≤ |V |, if ax+ bz ≤ a0 defines a facet for P̃nbQS , then it also defines a facet
for PnbQS .

Proof. The same 2|E| affinely independent incidence vectors (x, z) ∈ IR2|E| ∩
P̃nbQS that satisfy ax + bz ≤ a0 at equality can be converted to 2|E| affinely
independent incidence vectors (x, y, z) ∈ IR2|E|+|V | ∩ PnbQS . Hence the result. 2

Proposition A.10 For any QSTSP defined on G = (V,E) where |V | ≥ 5, and
4 ≤ b ≤ |V |, if αx + βy + γz ≤ α0 defines a facet for PnbQS , then α̃x + γz ≤ α0

also defines a facet for P̃nbQS , where α̃ij = αij + 1
2 (βi + βj).

Proof. Suppose Ω = {(x1, y1, z1), . . . , (x|E|, y|V |, z|E|)} defines 2|E| affinely
independent feasible solutions that satisfy αx+ βy + γz ≤ α0 at equality, then
Ω̃ = {(x̃1, 0, z1), . . . , (x̃|E|, 0, z|E|)}, where x̃ij = xij+ 1

2 (yi+yj) for all (i, j) ∈ E,
(which is essentially obtained from Ω by simple linear row operations), are also
affinely independent. Hence the result. 2

Theorem A.11 Given any QSTSP defined on an undirected graph G = (V,E),
with |V | ≥ 5 and 4 ≤ b ≤ |V |, the constraints given below, are facet-defining for
the QSTS polytope, P̃nbQS .

xe ≤ ze, ∀e ∈ E. (17)

Proof. We first show that the result holds for |V | ≥ 6 and b ≥ 4. (For |V | = 5
and 5 ≥ b ≥ 4, one can easily prove this by generating 2|E| affinely independent

A.4 Polyhedral results for the QSTS polytope 51

feasible points that satisfy (17) at equality). First we show that P̃nbQS∩{xe = ze}
defines a proper face. This is achieved by showing that there is at least one each
of a solution that satisfies the constraint at equality and a solution that does
not. Let e = (i, j). Consider a 4-cycle given by (l, i,m, j), for l,m ∈ V \ {i, j},
clearly xe = 0 and ze = 1, hence the constraint is not satisfied at equality. Now
consider a 3-cycle given by (l, i, j), for l ∈ V \ {i, j}, clearly xe = ze = 1 and the
constraint is satisfied at equality. Thus F defines a proper face.

Now, using Theorem 3.6 in Part I.4 of Nemhauser and Wolsey [17], we need to
show that if λ · x+ µ · z = λ0 for all x ∈ P̃nbQS ∩ {xe = ze}, then

λf =
{
α, if f = e,
0, otherwise; λ0 = 0; and µf =

{
−α, if f = e,
0, otherwise;

for some α ∈ IR.

By considering the 0-cycle, we obtain λ0 = 0. Now consider any arbitrary sub-
graph G̃ = (Ṽ , Ẽ) for Ṽ ⊆ V \{i}, e = (i, j), |Ṽ | = 5, and Ẽ = E(Ṽ). Obviously
e /∈ Ẽ thus (17) holds with equality for all cycles in G̃. By Proposition A.6, we
thus have λf = µf = 0, for all f ∈ Ẽ. As G̃ is arbitrary, we have λf = µf = 0,
for all f ∈ E \ {e}. Then, consider any arbitrary 3-cycle that contains the edge
e, we get λe + µe = 0. Let λe = α for some α ∈ IR, we have µe = −α and thus
the theorem is proved. 2

To eliminate subtours (for the QSTSP), we propose a class of constraints which
strengthens (5), given as:∑

e∈δ(S)

xe ≥ 2zkl, ∀∅ ⊂ S ⊂ V, k ∈ S, l 6∈ S. (18)

Theorem A.12 Given any QSTSP defined on an undirected graph G = (V,E),
with |V | ≥ 10, |V | − 5 ≥ |S| ≥ 5 and 4 ≤ b ≤ |V |, the constraints given by (18),
are facet-defining for the QSTS polytope, P̃nbQS .

Proof. P̃nbQS ∩
{ ∑
e∈(S,S̄)

xe = 2zkl
}

defines a proper face, since (18) holds with

equality for the 0-cycle while it does not for the 3-cycle (k, p, q), for p, q ∈ S̄\{l},
p 6= q.

Now, we are left to show that if λ ·x+µ · z = λ0 for all x ∈ P̃nbQS ∩
{ ∑
e∈(S,S̄)

xe =

2zkl
}

, then

52 Appendix A

λe =
{
α, if e ∈ (S, S̄),
0, otherwise; λ0 = 0; and µe =

{
−2α, if e = (k, l),

0, otherwise;

for some α ∈ IR.

By considering the 0-cycle, we have λ0 = 0. Now, consider any arbitrary sub-
graph G̃ = (S̃, Ẽ) for S̃ ⊆ S, |S̃| = 5, and Ẽ = E(S̃). Constraint (18) holds with
equality for all cycles in G̃. Thus, by Proposition A.6, we have λf = µf = 0,
for all f ∈ Ẽ. As G̃ is arbitrary, we have λf = µf = 0, for all f ∈ E(S).
Analogously it can be obtained that λf = µf = 0, for all f ∈ E(S̄).

Now we obtain values for all the remaining elements in (λ, µ), i.e., we find λe and
µe for all e ∈ (S, S̄), by comparing cycles with 3 or 4 nodes for which (18) holds
with equality. In the following, we assume arbitrary i, j,m, for i, j ∈ S\{k}, i 6= j
and m ∈ S̄ \ {l}.

Let (x1, z1) and (x2, z2) be the incidence vectors of the 4-cycle defined by
(k, i, j, l) and the 3-cycle defined by (k, i, j) respectively. We get:

λ · x1 + µ · z1 − (λ · x2 + µ · z2) = λjl + λkl − λjk + µkl + µil + µjl = 0. (19)

Note that λjk = 0 since k, j ∈ S. Analogously let (x3, z3) be the incidence
vectors of the 4-cycle defined by (k, j, i, l). We get:

λ · x3 + µ · z3 − (λ · x2 + µ · z2) = λkl + λil − λik + µkl + µil + µjl = 0. (20)

Note that λik = 0 since k, i ∈ S. By comparing (19) with (20), we get λil = λjl.
Let λil = α, by symmetry, we get λil = α for all i ∈ S \ {k}. Now by comparing
the 3-cycle (k, j, l) with (19) it follows that µil = 0 for all i ∈ S \ {k}.

Comparing the 4-cycle (k, i, l, j) with the 3-cycle (k, i, j), we get µkl = −2α and
by comparing the 3-cycle (k, j, l) with the 4-cycle (k, j, l, i), we get λkl = α.
Given this and by symmetry, λkm = α and µkm = 0 for all m ∈ S̄ \ {l}.

By comparing the 3-cycle (i, l, k) and the 4-cycle (i, l,m, k), we get µim = 0 for
all i ∈ S \ {k} and all m ∈ S̄ \ {l}. Last of all, by comparing the 3-cycle (k, i, l)
and the 4-cycle (k, i,m, l), we obtain λim = α, for all i ∈ S \ {k}, m ∈ S̄ \ {l}. 2

Theorem A.12 does not hold for 7 ≤ |V | ≤ 9, but it actually holds for |V | = 6,
|S| = 5 and 4 ≤ b ≤ |V | (and for |S| = 1 which is the symmetric case). This can
be verified by generating 2|E| affinely independent feasible points that satisfy
(18) at equality.

A.4 Polyhedral results for the QSTS polytope 53

Theorem A.13 Given any G = (V,E), |V | ≥ 6, b ≥ 4, the constraints, given
as:∑
e∈(i,S)

ze ≤
1
2

∑
e∈δ(i)

xe +
∑

e∈E(S)

ze, ∀i ∈ V, S ⊂ V \ {i}, 1 ≤ |S| ≤ |V | − 5, (21)

are facet-defining for P̃nbQS .

Constraint (21) is obtained by replacing yi by 1
2

∑
e∈δ(i)

xe in (14) and is a gener-

alization of (3).

Proof. P̃nbQS ∩
{ ∑
e∈(i,S)

ze =
1
2

∑
e∈δ(i)

xe +
∑

e∈E(S)

ze

}
defines a proper face since

the 0-cycle satisfies the constraint at equality whereas the 3-cycle (i, p, q), for
p, q ∈ S̄ \ {i}, for p 6= q, does not. Now, we need to show that if λ ·x+µ · z = λ0

for all x ∈ P̃nbQS ∩
{1

2

∑
e∈δ(i)

xe +
∑

e∈E(S)

ze =
∑

e∈(i,S)

ze

}
, then

λe =
{

1
2α, if e ∈ δ(i),
0, otherwise; λ0 = 0; and µe =

 α, if e ∈ E(S),
−α, if e ∈ (i, S),
0, otherwise;

for some α ∈ IR.

By considering the 0-cycle we get λ0 = 0. W.l.o.g. let R, k be arbitrary for
R ⊆ S̄ \ {i}, |R| = 4 and k ∈ S. Consider the subgraph G̃ = (Ṽ , Ẽ), Ṽ ⊆ V ,
Ṽ = R ∪ {k} and Ẽ = E(Ṽ). Constraint (21) holds with equality for all cycles
in G̃, hence by Proposition A.6, λe = µe = 0 for all e ∈ Ẽ. Since R and k are
arbitrary, λe = µe = 0 for all e ∈ E(S̄ \ {i}) ∪ (S, S̄ \ {i}).

Let k ∈ S and p, q ∈ S̄ \ {i}, p 6= q be arbitrary. By comparing the cycles
(k, i, p, q) and (k, i, p), we obtain λpq + λkq − λkp + µkq + µiq + µpq = 0. Since
λpq = λkq = λkp = µkq = µpq = 0, µiq = 0. Since k, p and q are arbitrary,
µip = 0 for all p ∈ S̄ \ {i}.

Let k ∈ S and p, q ∈ S̄ \ {i}, p 6= q be arbitrary. By comparing the cycles
(k, p, i, q) and (k, p, i), we obtain λkq + λiq − λki + µkq + µpq + µiq = 0. Since
λkq = µkq = µpq = µiq = 0, λiq = λki are constant and let the constant be 1

2α.
Since k, p and q are arbitrary, λe = 1

2α for all e ∈ δ(i).

Let k ∈ S and p ∈ S̄ \ {i} be arbitrary. Consider the cycle (i, k, p) to obtain
µik = −α for all k ∈ S.

54 Appendix A

If |S| = 1, we are done. Otherwise, let k, l ∈ S, k 6= l and p ∈ S̄\{i} be arbitrary.
By comparing the cycles (k, l, i, p) and (k, i, l, p), we obtain λkl+λip = λki+λlp.
Since λlp = 0 and λip = λki = 1

2α, λkl = 0. Since k, l and p are arbitrary, λe = 0
for all e ∈ E(S).

Finally, let k, l ∈ S, k 6= l be arbitrary. Consider the cycle (i, k, l) to obtain
µkl = α. Since k and l are arbitrary, µe = α for e ∈ E(S). 2

Theorem A.14 Given any G = (V,E), |V | ≥ 5, b ≥ 5, the constraints, given
as: ∑

e∈E(S)

ze + 1 ≥
∑

e∈E(S)

xe +
1
2

∑
e∈δ(S)

xe, ∀S ⊂ V, 2 ≤ |S| ≤ |V | − 3, (22)

are facet-defining for P̃nbQS .

Constraint (22) is obtained by replacing yi by 1
2

∑
e∈δ(i)

xe in (15). Note that (4)

is a special case of (22).

Proof. P̃nbQS ∩
{ ∑
e∈E(S)

ze + 1 =
∑

e∈E(S)

xe +
1
2

∑
e∈δ(S)

xe

}
defines a proper face

since the 3-cycle (i, j, k), i ∈ S, j, k ∈ S̄ satisfies the constraint at equality and
the 0-cycle does not.

Now, we need to show that if λ ·x+µ ·z = λ0 for all x ∈ P̃nbQS ∩
{ ∑
e∈E(S)

ze+1 =

∑
e∈E(S)

xe +
1
2

∑
e∈δ(S)

xe

}
, then

λe =

−α, if e ∈ E(S),
− 1

2α, if e ∈ δ(S),
0, otherwise;

λ0 = α; and µe =
{
α, if e ∈ E(S),
0, otherwise;

for some α ∈ IR.

W.l.o.g. let R ⊆ S, |R| = 2 and T ⊆ S̄, |T | = 3 be arbitrary. Consider the
subgraph G̃ = (Ṽ , Ẽ), Ṽ ⊆ V , Ṽ = R ∪ T , (so |Ṽ | = 5) and Ẽ = E(S̃). Let
λ0 = α. Let the matrix X be generated by the incident vectors of all the cycles
in G̃ for which (22) holds with equality. X is found to be of rank 2|Ẽ| = 20,
thus X(λ, µ)T = α has an unique solution. The solution is λe = −α for all
e ∈ E(R), λe = − 1

2α for all e ∈ δ(R), and λe = 0 for all e ∈ E(T); µe = α for

A.4 Polyhedral results for the QSTS polytope 55

all e ∈ E(R) and µe = 0 for all e ∈ δ(R)∪E(T). Since R is arbitrary in S, T is
arbitrary in S̄, and each e ∈ E is in this arbitrarily chosen G̃, λe = −α for all
e ∈ E(S), λe = − 1

2α for all e ∈ δ(S) and λe = 0 for all e ∈ E(S̄), µe = α for all
e ∈ E(S) and µe = 0 for all e ∈ δ(S) ∪E(S̄). 2

The following constraints are found to be very effective in practise when solving
QSTSPs using a branch-and-cut method (see [19]):∑

e∈δ(i)
ze ≤

b− 1
2

∑
e∈δ(i)

xe, ∀i ∈ V. (23)

Constraint (23) is obtained by replacing yi with 1
2

∑
e∈δ(i)

xe in constraint (16).

Theorem A.15 Given any QSTSP defined on an undirected graph G = (V,E),
with |V | ≥ 6 and 4 ≤ b ≤ |V |−1, the constraints given by (23) are facet-defining
for the QSTS polytope, P̃nbQS.

Proof. P̃nbQS ∩
{ ∑
e∈δ(i)

ze =
b− 1

2

∑
e∈δ(i)

xe

}
defines a proper face, since any 3-

cycle (i, j, k), j, k ∈ V \ {i}, j 6= k does not satisfy the constraint at equality
whereas the 0-cycle does.

Now, we are left to show that if λ · x+ µ · z = λ0 for all x ∈ P̃nbQS ∩
{ ∑
e∈δ(i)

ze =

b− 1
2

∑
e∈δ(i)

xe

}
, then

λe =
{

α(b−1)
2 , if e ∈ δ(i),
0, otherwise;

λ0 = 0; and µe =
{
−α, if e ∈ δ(i),
0, otherwise;

for some α ∈ IR.

By considering the 0-cycle, it can be obtained that λ0 = 0. Now, consider any
arbitrary subgraph G̃ = (Ṽ , Ẽ) for Ṽ ⊆ V \ {i}, |Ṽ | = 5, and Ẽ = E(Ṽ). Since
all cycles in G̃ satisfies constraint (23) at equality, it follows from Proposition A.6
that λf = µf = 0, for all f ∈ Ẽ. As G̃ is arbitrary, we have λf = µf = 0, for all
f ∈ E(V \ {i}).

Let {i1, . . . , ib−1} ⊆ V \ {i} be arbitrary. Now compare the two b-cycles
(i, i1, i2, i3, . . . , ib−1) and (i, i2, i1, i3, . . . , ib−1). This gives λii1 + λi2i3 = λii2 +

56 Appendix A

λi1i3 . Since λi2i3 = λi1i3 = 0, λiia is constant for a = 1, . . . , b − 1 and let the
constant be α(b−1)

2 . Since {i1, . . . , ib−1} ⊆ V \ {i} is arbitrary, λij = α(b−1)
2

for all j ∈ V \ {i}. Finally compare the b-cycle (i, i1, i2, i3, . . . , ib−1) with the

(b − 1)-cycle (i1, i2, i3, . . . , ib−1) to obtain λii1 + λiib−1 − λi1ib−1 +
b−1∑
k=1

µik = 0.

Since λi1ib−1 = 0 and λii1 = λiib−1 = α(b−1)
2 , µiia = −α for a = 1, . . . , b − 1.

Since {i1, . . . , ib−1} ⊆ V \ {i} is arbitrary, µij = −α for all j ∈ V \ {i} and the
theorem is proved. 2

A.5 Conclusion

In this paper, we studied the polyhedra of the Quadratic Knapsack Problem and
the Quadratic Selective Travelling Salesman Problem. For each of these poly-
topes, we established its dimension, identified a number of strong constraints,
and proved that these constraints are indeed facet-defining cuts. Various math-
ematical techniques were used in proving these results.

These results are of great significance in the implementation of a branch-and-cut
method for obtaining exact solutions. The benefit of using such facet-defining
cuts is that it improves the quality of the linear programming relaxation bounds.

Bibliography

[1] Balas, E.(1989) The prize collecting traveling salesman problem. Networks
19 621–636

[2] Balas, E.(1995) The prize collecting traveling salesman problem. II. Poly-
hedral results. Networks 25 199–216

[3] Bauer, P. (1997) The circuit polytope: Facets. Mathematics of Operations
Research 22 110–145

[4] Bauer, P., Linderoth J.T., Savelsbergh M.W.P. (2002) A branch and cut
approach to the cardinality constrained circuit problem. Mathematical Pro-
gramming Ser. A 91 307–348

[5] Billionnet, A., Calmels, F.(1996) Linear programming for the 0-1 quadratic
knapsack problem. European Journal of Operational Research 92 310–325

57

[6] Caprara, A., Pisinger, D., Toth, P.(1999) Exact solution of the quadratic
knapsack problem. INFORMS Journal on Computing 11 125–137

[7] Erkut, E. (1990) Discrete p-dispersion problem. European Journal of Op-
erational Research 16 48–60

[8] Fischetti, M., Salazar Gonzalez, J.J., Toth, P.(1995) The symmetric gener-
alized traveling salesman polytope. Networks 26 113–123

[9] Fischetti, M., Salazar Gonzalez, J.J., Toth, P.(1997) A branch-and-cut algo-
rithm for the symmetric generalized traveling salesman problem. Operations
Research 45 378–394

[10] Fischetti, M., Salazar Gonzalez, J.J., Toth, P.(1998) Solving the Orienteer-
ing Problem through Branch-and-Cut. INFORMS Journal on Computing
10 133–148

[11] Gendreau, M., Labbe, M., Laporte, G. (1995) Efficient heuristics for the
design of ring networks. Telecommunication Systems - Modeling, Analysis,
Design and Management 4 177–188

[12] Gendreau, M., Laporte, G., Semet, F. (1998) A branch-and-cut algorithm
for the undirected selective traveling salesman problem. Networks 32 263–
273

[13] Gouveia, L., Manuel Pires, Jose(2001) Models for a Steiner ring network
design problem with revenues. European Journal of Operational Research
133 21–31

[14] Grötschel, M., Padberg, M.W. (1985) “Polyhedral Theory” in E.L. Lawler,
J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys, The Travelling Salesman
Problem Wiley

[15] Johnson, E.L., Mehrotra, A., Nemhauser, G.L.(1993) Min-cut clustering.
Mathematical Programming 62 133–151

[16] Laporte, G., Martello, S.(1990) The selective travelling salesman problem.
Discrete Applied Mathematics 26 193–207

[17] Nemhauser, G.L., Wolsey, L.A. (1998) Integer and Combinatorial Opti-
mization Wiley.

[18] Pisinger, D.(1999) Exact Solution of “p”-dispersion Problems. DIKU-
rapport 99/14

[19] Stidsen, T., Thomadsen, T. Optimal Design of Hierarchical Ring Networks
using Branch-and-Price. Work in progress.

58

Appendix B

A Branch-and-Cut Algorithm
for the Quadratic Selective

Travelling Salesman Problem

Submitted for Telecommunication Systems

60 Appendix B

A Branch-and-Cut Algorithm for the Quadratic Selective
Travelling Salesman Problem

Tommy Thomadsen1 and Thomas Stidsen 2

Abstract

A well-known extension of the Travelling Salesman Problem (TSP) is
the Selective TSP (STSP). In the STSP, each node has an associated
revenue and instead of visiting all nodes, the most profitable nodes,
taking the travelling costs into account, are visited. The Quadratic
STSP (QSTSP) possesses the additional complication that a revenue is
associated with each pair of nodes, which can be gained only if both
nodes are visited. The QSTSP resemble ring network design and is a
subproblem when designing hierarchical ring networks.
We describe an integer linear programming model for the QSTSP. The
QSTSP is solved both by applying two construction heuristics and by
applying a branch-and-cut algorithm.
Computational results are presented for two types of budget constraints
limiting the length of the ring and the number of nodes in the ring,
respectively. In addition, more or less restrictive budgets are considered.
The construction heuristics are fast, but obtain solutions which are far
from optimal. One heuristic is best when restrictive budgets are consid-
ered, the other heuristic is best when ample budgets are considered. The
branch-and-cut algorithm determines optimal solutions at much higher
computation times than the heuristics. The computation time depends
on the budget and is highest for budgets that are neither ample nor
restrictive. All problems with up to 50 nodes are solved within one hour
of computation time.

Keywords: Ring Networks, (Selective) Traveling Salesman Problem, Branch-
and-Cut, Integer Programming

1Informatics and Mathematical Modelling, Technical University of Denmark, Lyngby, Den-
mark. Email: tt@imm.dtu.dk

2Informatics and Mathematical Modelling, Technical University of Denmark, Lyngby, Den-
mark. Email: tks@imm.dtu.dk

B.1 Introduction 61

B.1 Introduction

When building telecommunication networks, the ring topology is widely used
due to its inherent single link/node breakdown protection and its simple and
fast restoration scheme. When a service provider chooses to build a ring, it is
of major importance to build a ring which affords a good tradeoff between the
revenue obtained and the node- and link-costs of building the ring. The ring
should also be implementable in the technology chosen, e.g. the number of nodes
and/or the length of the ring may be limited due to transmission delay.

Single-ring design can be generalized to multi-ring design where the service
provider is contracted to provide service to a set of customers using one or more
rings. In that case the same tradeoff as for single-ring design is apparent, but
for more rings at the same time. Evaluating the quality of single rings is a good
start when evaluating such multi-ring designs. In particular one could imagine
generating a set of potentially good rings and choosing a subset of those which
covers all customers.

The single-ring design can be seen as an extension to the classical Travelling
Salesman Problem (TSP) and it has been termed, both the Orienteering prob-
lem, Prize collecting TSP, and Selective TSP (STSP). We will use the term
STSP. In the STSP, a revenue is associated with each customer and the idea
is then to establish a good tradeoff between the design cost and the revenue
obtained for including nodes in the ring. The STSP is studied in e.g. [2], [3],
[9], [11], and [12]. A related problem is the Generalized TSP (GTSP) which
is considered in [6] and [7]. In GTSP the set of nodes is divided into disjoint
subsets denoted clusters and the shortest ring which passes at least one node in
each cluster must be determined.

The most notable difference between the different versions of the STSP and the
GTSP is how the size of the ring is limited. The limit may be a minimum size
or a maximum size determined directly or indirectly. Some of the possibilities,
which are sometimes combined are: 1) A tradeoff in design cost and revenue
collected, i.e. both the design cost and the revenue are present in the objective
[2, 3]; 2) A lower bound on the revenue collected [2, 3]; 3) An upper bound on
the design cost [9, 11, 12]; and 4) Controlled by clusters of nodes as in GTSP
[6, 7].

Another notable difference between the STSP and the GTSP is whether a par-
ticular node, usually denoted the depot, is required to be in the ring [9, 11, 12]
or not [2, 3, 6, 7]. In [9], a non-empty subset of nodes is required to be in the
ring. Finally GTSP [6, 7] falls a bit out of category. Here, a set of clusters of
nodes are given, and for each of the clusters one node in the cluster has to be

62 Appendix B

in the ring, but which node is to be determined.

The Quadratic STSP (QSTSP) possesses the additional complication that a
revenue is associated with each pair of nodes, which can be gained only if both
nodes are in the ring. The QSTSP is considered in [8] and [10]. In [8] a model for
the QSTSP with quadratic objective is presented and heuristics are developed
and tested. The size of the ring is controlled by an upper limit on the design
cost combined with a tradeoff in the objective between the design cost and the
revenue associated with each pair of nodes. No nodes are required to be in the
ring. In [10] alternative models for the QSTSP are considered. The size of the
ring is controlled by a bound on the number of nodes in the ring and also some
nodes are required to be in the ring. Three integer linear models are evaluated
by solving test instances with up to 80 nodes using Cplex. For the test instances,
all pairs of nodes have a demand, but only a fixed number of the shortest edges
are considered. For the largest instances with 80 nodes, only the 200 shortest
edges are considered. Some instances cannot be solved within 24 hours. Finally
[13] presents a polyhedral study of the QSTSP.

We present an integer linear programming model for the QSTSP and suggest
a branch-and-cut algorithm. Given the similarities with the GTSP, cuts and
corresponding separation-routines in [7] have been found very useful.

The outline of the paper is as follows. We present the model for the QSTSP
in Section B.2. In Section B.3 we describe the branch-and-cut algorithm and
in Section B.4 we describe two construction heuristics. In Section B.5 we test
the algorithms with two budget constraints limiting the length of the ring and
the number of nodes in the ring respectively. Finally we give conclusions in
Section B.6.

B.2 The Model

In this section we present an integer linear programming model for the QSTSP.
The model is in essence a linearization of the model presented in [8]. We restrict
ourselves to the undirected/symmetric version of QSTSP as is the case in [8]
and [10].

Let V = {1, . . . , n} be a set of vertices and E = {{i, j} : i ∈ V, j ∈ V \{i}} be
a set of node-pairs corresponding to undirected edges. Let ri be the revenue
(possibly negative) obtained if i ∈ V is in the ring. Associate with each node-
pair {i, j} = e a cost ce ≥ 0 incurred if e is chosen and a revenue re ≥ 0 obtained
if i and j are in the ring.

B.2 The Model 63

Let S ⊆ V and define δ(S) ⊆ E to be the set of edges with one endpoint in S
and one endpoint not in S, i.e. δ(S) = {{i, j} ∈ E : i ∈ S, j 6∈ S}. For notational
convenience, δ({i}) is abbreviated by δ(i). Furthermore define γ(S) ⊆ E to be
the set of edges with both endpoints in S, i.e. γ(S) = {{i, j} ∈ E : i, j ∈ S}.

Let xe = 1 if e ∈ E is in the ring, 0 otherwise. Let yi = 1 if i ∈ V is in the ring,
0 otherwise. And finally let ze = 1, {i, j} = e ∈ E if i and j are both in the
ring. Given this, the QSTSP is formulated as follows.

Maximize
∑
i∈V

riyi +
∑
e∈E

reze −
∑
e∈E

cexe (1)

Subject To ∑
e∈δ(i)

xe = 2yi for i ∈ V (2)

ze ≤ yi for i ∈ V, e ∈ δ(i) (3)
ze ≥ yi + yj − 1 for {i, j} = e ∈ E (4)∑

e∈γ(S)

xe ≤
∑

i∈S\{k}
yi − yl + 1 for ∅ ⊂ S ⊂ V, k ∈ S, l 6∈ S (5)

xe ∈ {0, 1} for e ∈ E (6)
yi ∈ {0, 1} for i ∈ V (7)
ze ∈ {0, 1} for e ∈ E (8)

The objective (1) is the sum of the revenues obtained for nodes and pairs of
nodes in the ring subtracted the cost of edges in the ring. Constraints (2)
ensure that if i is on the ring, then exactly two edges are incident to i, otherwise
no edges are incident to i. Constraints (3) and (4) connect the y and z variables.
Constraints (3) ensure that ze = 0 if one of the endpoint nodes is not in the
ring and constraints (4) ensure that if both endpoint nodes are in the ring, then
ze = 1.

Constraints (5) are the Generalized Subtour Elimination Constraints (GSECs)
in inner form [6, 7]. The GSECs ensure that at most one subtour exists. Assume
S contains the nodes of a subtour and assume that a node in another subtour
l 6∈ S exists. For any k ∈ S, the corresponding GSEC cut is violated, since∑

e∈γ(S) xe = |S| >
∑

i∈S\{k} yi − yl + 1 = |S| − 1 − 1 + 1 = |S| − 1 and thus
cuts off such solutions. Thus, GSECs always exist which cut off any solution
with more than one subtour. Finally constraints (6), (7), and (8) are the integer
domain constraints.

The GSECs can be reformulated in outer form, leading to the following con-

64 Appendix B

straints. ∑
e∈δ(S)

xe ≥ 2(yk + yl − 1) for ∅ ⊂ S ⊂ V, k ∈ S, l 6∈ S (9)

The reformulation is obtained by using constraints (2) and (5). The GSEC
constraints are easier to interpret in outer form than in inner form. If a node is
selected on both sides of a cut, then at least two edges crossing the cut must be
selected. Actually it suffices to consider GSECs such that |S| ≤ bn/2c. To see
why, assume that a GSEC with |S′| > bn/2c, S ⊂ V , k′ ∈ S′, and l 6∈ S′ exists.
A corresponding GSEC is S = V \S′, hence |S| ≤ bn/2c, k = l′, and l = k′.
Obviously this GSEC is violated if and only if the original GSEC is violated,
hence it suffices to consider GSECs such that |S| ≤ bn/2c.

For |S| ≤ bn/2c, the number of non-zero variables are smaller for GSECs in
inner form than in outer form. Hence GSECs in inner form are more suitable
for cutting-plane approaches [6] and are thus used.

As noted earlier, it is customary to limit the ring-size in some way, at least for
the STSP. We will consider two budget constraints, one which limits the length
of the ring, and one which limits the number of nodes in the ring. Assuming bx
is the max length of the ring and by is the maximum number of nodes in the
ring, the budget constraints are given below.∑

e∈E
cexe ≤ bx (10)∑

i∈V
yi ≤ by (11)

Constraint (10) limits the length of the ring and is the same budget constraint
used in [8]. Constraint (11) limits the number of nodes in a ring and corre-
sponds exactly to a subproblem arising when using column generation to solve
a hierarchical multi-ring network design problem as described in [15].

We note that the ce’s in (10) are the same ce’s as in the objective (1). The
following constraint generalizes both (10) and (11).∑

e∈E
bexe ≤ b (12)

Replacing be by ce we obtain (10) and by applying (2), we obtain (12) with be =
1
2 for all e ∈ E. If the budget constraint (11) is used and arbitrary coefficients
were multiplied on the yi’s in (11), then QSTSP is actually a generalization of
the Quadratic Knapsack Problem considered in e.g. [4] and [5].

B.2 The Model 65

The mathematical model is similar to several other models suggested in e.g.
[2, 6, 7, 9, 11, 12] with the exception of the quadratic revenue. In [8] a model is
presented with a quadratic revenue and budget constraint (10). The presented
model has a quadratic objective and the model is obtained by replacing ze with
yiyj and leaving out the now redundant constraints (3) and (4). Also no revenue
exists for nodes, i.e. ri = 0.

Integer requirements on ze are unnecessary, since ze is in effect a bookkeeping
variable. Furthermore, since re ≥ 0 and we maximize the demand-revenue
(
∑

e∈E reze), constraints (4) are not binding and thus redundant.

The advantage of the suggested model over the one given in [8] is clearly that the
model is linear, hence the usual tools for solving integer programs can be used.
The disadvantages are the additional (n2 − n)/2 variables (ze), the additional
n2−n constraints of type (3), and the additional (n2−n)/2 constraints of type
(4).

In [6] the polytope of the GTSP is studied and it is proved that the GSECs
are facet defining for the GTSP. Additionally [6] studies generalized comb con-
straints which are proven to be facet defining for the GTSP. A computational
study of a branch-and-cut algorithm using these cuts are presented in [7], and
shows that the GSECs are far more important than the generalized comb con-
straints. In most problems solved, no or very few (≤ 5) generalized combs are
generated. With this in mind, we will not consider the generalized combs any
further in this paper.

B.2.1 Additional Cuts

In order to strengthen the LP-relaxation, we introduce additional valid cuts
which cuts off fractional and hence infeasible solutions. The following constraints
strengthen the LP-relaxation.

xe ≤ yi for i ∈ V, e ∈ δ(i) (13)

Constraints (13) are valid, since if an edge is in the ring, then both endpoint
nodes are selected. Also, constraints (13) dominate the GSEC constraints (5)
for |S| = 2 as can be seen from the following. Let S = {i, j}, e = {i, j}, k = j,
and l 6∈ S, then the following GSEC is obtained:

xe ≤ yi − yl + 1 (14)

This constraint is valid whenever constraints (13) are valid since yl ≤ 1 and
thus xe ≤ yi ≤ yi − yl + 1. Furthermore, values exist for which constraint (14)

66 Appendix B

is valid but constraints (13) are not (e.g. xe = 1, yi = 0, and yl = 0). Thus
constraints (13) dominate constraint (14). Computational experiments indicate
that constraints (13) improve the performance only marginally.

The following constraints are valid only when the number of nodes in the ring
is limited i.e. constraint (11) is used.∑

j:e={i,j}∈E
ze ≤ (by − 1)yj for i ∈ V (15)

The constraints are described in e.g. [4] and [5] for the quadratic knapsack
problem. The constraints improve the value of the LP-relaxation considerably
for both the quadratic knapsack problem and for the QSTSP. The constraints
can be seen to be valid by multiplying (11) by yj and replacing yiyj with ze for
e = {i, j} and yjyj by yj.

B.3 Branch-and-Cut Algorithm

We solve the QSTSP using a branch-and-cut algorithm. A branch-and-cut al-
gorithm is a branch-and-bound algorithm where the bounds are obtained by
solving the LP-relaxation of the problem, possibly including some additional
cuts. We have implemented the branch-and-cut algorithm using the Branch-
Cut-and-Price framework (BCP) which is part of COIN [1]. BCP is, as its
name indicates, a framework for developing branch-cut-and-price algorithms.
The choice of using BCP instead of implementing from scratch was made to
speed up development. We have used BCP standard setups and classes when-
ever possible. The branch-and-cut algorithm is shown in Figure B.1.

An initial feasible solution is generated by selecting the best solution from
the two heuristics described in Section B.4. The algorithm maintains a set
of subproblems, initially containing the root node problem only. The root node
problem consists of (1), (2), bounds on variables and one of the budget con-
straints (10) or (11). If constraint (11) is used, we also include (15).

A subproblem is selected and the LP-relaxation of the subproblem including
additional cuts are solved. If any violated cuts can be determined, the cuts are
added to the subproblem and the subproblem is resolved. This is done until no
more violated cuts can be determined. We generate (3), (13), and the GSECs
(5). Generation of constraints (3) and (13) is done by checking whether any of
the constraints are violated. Since there are (n2 − n)/2 of each of those, the
computation time is O(n2). Generation of GSECs is described in the following
section.

B.3 Branch-and-Cut Algorithm 67

Incumbent = A feasible solution obtained heuristically.
Set of subproblems = {Root node problem}
while Set of subproblems 6= ∅

Select subproblem and remove it from Set of subproblems

do
Solve LP-relaxation of subproblem including generated cuts
Generate and add violated cuts

while New cuts added
Let Obj val = objective value of LP-relaxation
if LP solution is feasible, hence integer and Obj val > Incumbent:

Update incumbent: Incumbent = Obj val

else if Obj val ≤ Incumbent or subproblem is infeasible:
Continue

else Branch:
Add two subproblems to Set of subproblems

end while

Figure B.1: The branch-and-cut algorithm

Given a bound on the subproblem, three possibilities exists. 1) The subproblem
is feasible, hence a candidate solution has been identified. If the candidate is
better than the incumbent, the candidate takes the place of the incumbent. 2)
The bound is worse than the incumbent. The subproblem is not considered
any further, since it will not lead to any better solutions. 3) Nothing can be
determined, so we have to branch. Create two new subproblems and continue.

Subproblems are considered depth first. This allows for reuse of the obtained
LP-tableau in the following iteration. Variable branching is applied. Note that
the z variables are integer if the y variables are integer, thus the z variables
are not considered for branching. The variable to branch on is determined as
follows. First the y variables are considered. If any fractional y variable exists,
the y variable with a value closest to 1/2 is chosen. If no fractional y variable
exists, the x variables are considered. Similarly the x variable with a value
closest to 1/2 is chosen. Two new subproblems are created. In one subproblem
we set the chosen variable equal to one and in the other subproblem we set the
chosen variable equal to zero. The subproblem with the chosen variable equal
to one is considered first.

68 Appendix B

B.3.1 Separation of GSECs

Separation of GSECs is due to [7] which presents an optimal and a heuristic
separation routine. Optimal separation can be achieved in O(n4) time, but
proves to be ineffective for GTSP. For completeness the optimal separation
routine is, however, described.

Assume (x∗e , y∗i , z∗e) is the value of an optimal solution to the LP-relaxation
of the problem. Set up an undirected graph with n nodes and edge capacities
equal to x∗e .

Optimal separation of GSECs is best described based on constraints (9). Recall
the interpretation of the constraints: If a node is selected on both sides of a
cut, then at least two edges crossing the cut must be selected. Thus separation
can be done by for all pairs of nodes k, l computing a minimum cut separating
k and l. Given the minimum cut, i.e. a set of nodes S, evaluate (9) and check
whether it is violated. This can be achieved in O(n5) time, since a minimum
cut can be computed in O(n3) time and O(n2) pairs of nodes exists.

By using the following observation, the computation time can be reduced to
O(n4). For a given S′ ⊂ V , the most violated cut is obtained for k′ ∈ S′ and
l′ 6∈ S′ such that k′ = arg maxi∈S′{y∗i } and l′ = arg maxi6∈S′{y∗i }. Assume
without loss of generality that y∗k′ ≥ y∗l′ . For any GSEC defined by S, k, and l,
either k′ ∈ S or k′ 6∈ S. But in that case one of the most violated GSECs will
have k = k′ if k′ ∈ S or l = k′ if k′ 6∈ S. Thus it suffices to pick any such k′

and consider pairs for this k′ and all other nodes l. Thus only O(n) pairs need
to be considered and thus the complexity is only O(n4) in total.

In summary the separation algorithm is defined as follows. Pick a node k such
that k = arg maxi∈V {y∗i }. For all nodes l 6= k compute a minimum cut between
k and l. Evaluate (9) to check whether the cut is violated and if so add it in
the form of (5). Thus up to n− 1 cuts may be added.

Computational experiments show that substantial time is spent on optimal sep-
aration, however, the most important problem is that the generated cuts do
not span the graph [7]. This is explained in the following. Suppose that three
disjoint sets Sa ⊂ V, a = 1, 2, 3, exist for which δ(Sa) = 0. Assume the node k,
chosen during optimal separation, is in S1. Then at least two GSECs will be
generated with S = S1 and l ∈ S2 or l ∈ S3. The cut with S = S2, k ∈ S2, and
l ∈ S3 will not be generated. This last cut may be needed to get the best bound,
and thus may have to be generated in later iterations. Thus additional iterations
may be needed, thereby increasing the computation time. An alternative is to
use heuristic separation as described in [7] and in the following.

B.4 Heuristics 69

Again, set up an undirected graph with n nodes and capacity of edges equal to
x∗e . The idea is then to generate a minimum spanning forest using Kruskal’s
algorithm. Each time two components are merged, a cut is identified and added
if it is violated. Initially all nodes constitute a component. Consider all edges
e = {i, j}, x∗e > 0 in non-increasing order. If i and j are in different components,
the corresponding components are merged. When two components are merged,
let the resulting component be S. Furthermore, let k = arg maxi∈S{y∗i } and
l = arg maxi6∈S{y∗i } and add the corresponding GSEC if it is violated.

Checking whether a GSEC is violated can be done in O(n2) time and this may
be done at most once for each merge, i.e. n − 1 times, in total O(n3) time.
However, this can be reduced to O(n2) time in total by doing the following.
Maintain for each component the weight internally in the component and the
weight to all other components. For each merge of two components, update
the weights. Updating can be accomplished in linear time in n. Since at most
n merges are carried out the total complexity is O(n2). The complexity of
Kruskal’s algorithm is O(m logm) where m is the number of edges. Since m
may be up to O(n2) the complexity expressed in terms of n is O(n2 logn). Thus
the complexity of the heuristic separation is O(n2 logn).

As mentioned, the primary advantage of the heuristic separation routine is that
it generates GSECs that span the graph. This is confirmed by computational
experiments. The heuristic separation routine is used in all computational ex-
periments presented in Section B.5.

B.4 Heuristics

We have developed two types of greedy heuristics. One builds up a ring from
scratch similar to the heuristics used in [8] and one removes nodes from a full ring
initially including all nodes. To distinguish the two heuristics, we will denote
them the construction heuristic and the deconstruction heuristic, respectively.
The heuristics are used for comparison and for generating an initial solution for
the branch-and-cut algorithm. Generating an initial solution for the branch-
and-cut algorithm does not give a significant speed up, though.

The construction heuristic is shown in Figure B.2. For notational convenience
we use the following notation: rij = re for {i, j} = e and cij = ce for {i, j} = e.
Let ∆bud be the change in budget, equal to 1 when the number of nodes is
limited and equal to cik + cjk − cij when the length of the ring is limited.

The construction heuristic builds the ring by greedily identifying a feasible ring

70 Appendix B

Let {i, j} = arg max{rij + ri + rj − cij |cost within budget} ∈ E
Let k = arg max{rik + rjk + rk − cik − cjk|cost within budget} ∈ (V \{i, j})
Let R = {i, j, k} ⊆ V
Let F = {{i, j}, {j, k}, {k, i}} ⊆ E
while a node exists which can be added without exceeding the budget

Compute k ∈ V \R and ij ∈ F :
k, i, j = arg max
{(
P

i∈R rik + rk + cij − cik − cjk)/∆bud|cost within budget}
R = R ∪ {k}
F = F\{{i, j}} ∪ {{i, k}, {j, k}}

end while
Run 2-opt on the final set of nodes R.

Figure B.2: The construction heuristic

with three nodes (first four lines). The ring is then extended until the budget
is entirely spent. This is done by picking, during each iteration, the node which
yields the largest revenue minus additional cost relative to the increase in budget.
Finally the ring is improved by running 2-opt on the selected set of nodes.
Running 2-opt is defined as follows: For all non-adjacent edges ij and kl in the
ring, take out ij and kl and obtain two paths. Assume i and k are on the same
path. Connect the two paths by inserting edge il and jk, thus obtaining a new
ring. If the new ring is shorter than the old ring, accept the new ring, otherwise
keep the old ring.

The construction heuristic is aborted if it is not possible to compute a ring with
three nodes. In that case the trivial solution consisting of no nodes and a value
of 0 is reported.

The deconstruction heuristic is shown in Figure B.3. The deconstruction algo-
rithm initially builds a ring containing all nodes. This is done using farthest
insertion followed by running 2-opt. Farthest insertion constructs a ring as fol-
lows: Pick three nodes at random, obtaining an initial ring. Add the remaining
nodes one by one by doing the following. For all nodes not in the ring, determine
the shortest distance to a node in the ring and denote this value shorti where i
is a node not in the ring. For all nodes not in the ring, select the node which has
the highest shorti value. Insert this node i in the ring such that the increase in
the ring length is as low as possible.

The initial ring is now shortened by removing one node during each iteration.
The node removed is picked greedily as the node which decreases the objective
the least relative to the decrease in budget. Finally 2-opt is run on the remaining
set of nodes.

B.5 Computational Results 71

Compute a ring containing all nodes using farthest insertion and 2-opt.
Let R = V
Let F = Set of edges in the ring obtained
while Budget is exceeded

Compute k ∈ R and let i and j be neighbours, i.e. {i, k}, {j, k} ∈ F :
k = arg min{(

∑
i∈R\{k} rik + rk + cij − cik − cjk)/∆bud}

R = R\{k}
F = F\{{i, k}, {j, k}}∪ {{i, j}}

end while
Run 2-opt on the final set of nodes R.

Figure B.3: The deconstruction heuristic

The idea of starting out from a solution with all nodes selected and then remov-
ing one node at a time come from Quadratic Knapsack algorithms which use
the same method [4, 5].

In some cases the algorithms return solutions of negative value. These are re-
jected and the trivial solution consisting of no nodes and a value of 0 is reported.

B.5 Computational Results

In this section computational results are presented. It is investigated how the
branch-and-cut algorithm performs and how the heuristics perform. We investi-
gate how the budget constraint influence the problems. In particular a problem
is expected to be easier if the budget is either very restrictive or very ample.

If the budget is very restrictive, the set of feasible rings is smaller than for an
average restricted budget. Hence selecting one node will have more affect on
the bound and hence branching may finish faster.

When the budget is ample, almost all nodes will be selected. Thus the optimal
revenue is close to the total possible revenue. Such problems reduce to TSP
plus a constant corresponding to the revenue. In essence, the branch-and-cut
algorithm solves these problems as one would solve TSP, and in particular the
bound on the optimal distance cost corresponds to the value of the LP-relaxation
of the TSP. The LP-relaxation of the TSP is strong, and so a strong bound is
obtained on the optimal solution for the QSTSP. Thus problems with ample
budgets should be easy. The most difficult problems seems to be problems with

72 Appendix B

budgets that are neither ample nor restrictive and thus have optimal solutions
with approximately n/2 nodes.

B.5.1 Generation of Test Instances

The test instances are generated similarly to what was suggested in [8]. The
original test instances are not available to us, and in addition revenues on the
nodes are generated, which is not considered in [8]. n points are randomly
located in the plane with coordinates uniformly distributed between 0 and 100.
Coefficient ce is the Euclidean distance rounded to integer between points i and
j, e = {i, j}.

When limiting the length of the ring, set bx = 0.75
√
n/2 which will have the

effect that somewhat more than n/2 nodes will be in the optimal ring [8]. Since
ce is the coefficient in both the objective and in the budget constraint limiting the
ring length, the distance-cost incurred is at most bx. Given this, an expected
total revenue of similar size is constructed. To make sure that no instances
are generated where it does not pay off to have any nodes, the revenues are
constructed such that the total expected revenue R is 1.15bx. The aim is to
distribute the total revenue equally over node-revenues and demand-revenues.
Thus the test instances have the property that the expected node-revenue and
demand-revenue are both R/2.

Given the total node- and demand-revenue and the expected number of nodes
in the ring (= n/2), the average node- and demand-revenue can be determined.
The average node-revenue rn is:

n

2
rn =

R

2
=

1.15bx
2
⇔ rn =

1.15bx
n

(16)

The number of demands for l nodes is (l2− l)/2, thus the total demand revenue
is:

R/2 = rd((n/2)2 − n/2)/2 ≈ rd((n/2)2)/2 (17)

Isolating rd, an expression for the average demand-revenue is obtained:

rd ≈
R

(n/2)2
=

4 · 1.15bx
n2

=
4.6bx
n2

(18)

The revenue of a node is now uniformly distributed between 0 and 2rn and
the revenue of an edge is uniformly distributed between 0 and 2rd. The total
revenue turns out to be higher than the expected revenue, since the number
of nodes in optimal solutions is on average higher than n/2. 10 instances of
networks with 10, 20, 30, 40 and 50 nodes have been generated.

B.5 Computational Results 73

B.5.2 Results

In this section computational results for the branch-and-cut algorithm and for
the two heuristics are presented. As mentioned, BCP [1] is used for the branch-
and-cut algorithm and Cplex 7.5 is used for solving LP problems. The tests are
carried out on a PC with a 1.6 Ghz Intel Xeon processor running Linux.

It is investigated how the type of budget and the more or less restrictive budgets
affect computation times. When the length of the ring is limited, tests are
carried out for a budget of 0.2, 0.6 1.0, 1.4, and 1.8 times the bx described in
Section B.5.1. When limiting the number of nodes in the ring, by is set equal to
5, 10, 20, 30, 40, and 50. Results for instances where by > n are not reported,
since the results are the same as for by = n. Results given are averages over 10
random instances. All tests were completed within one hour. The results when
limiting the length of the ring are given in Table B.1.

The first and second columns of Table B.1 contain the number of nodes in the
test instance and the budget relative to the normal budget. The third col-
umn contains the average number of nodes in solutions, and the fourth column
contains the average optimal solution. Columns five to seven contain the compo-
nents of the objective value corresponding to x, y, and z, see (1). The columns
eight to eleven contain the root node value after adding cuts, the gap between
the root node and the optimal solution relative to the optimal solution, the
number of subproblems and the maximum depth of the branch-tree. Finally
the last three columns contain computation times. The total time and the two
most time consuming operations, the time spent on generating cuts, and the
time spent on solving LPs are reported.

The results when limiting the number of nodes in the ring are given in Ta-
ble B.2. The table contains the same columns as Table B.1, except the second
column which contains the maximum number of nodes in the ring, by. Note that
distance-costs and the node- and demand-revenues all contribute significantly
to the objective. This corresponds to how the test instance were generated.

The results show that the budget has considerable impact on the gap between
the root node and the optimal solution. The gap is low for ample budgets, but
high for restrictive budgets. The computation times are not always higher for
instances with larger gaps. The instances with very restrictive budgets are solved
faster than instances with average restrictive budgets. For instances with very
restrictive budgets, branching on a variable has more impact on the bound than
for other instances. This explains why the computation time is low regardless
of the large gap and as a consequence, the number of subproblems is low. In
summary, the computation times are highest when neither ample nor restrictive

7
4

A
p

p
en

d
ix

B

n Budget Nodes in Optimal Distance Node Demand Root Gap Num. of Tree Time (seconds)
Solution value cost revenue revenue LP-value (%) subp. depth Total Cut LP

10 0.2 0.6 7.5 5.9 8.4 5.0 43.8 482.8 9.2 4.1 0.0 0.0 0.0
10 0.6 3.9 54.6 75.7 82.3 48.0 117.3 115.0 21.6 5.0 0.1 0.0 0.0
10 1.0 6.2 113.8 144.6 128.2 130.1 172.4 51.5 20.2 5.2 0.1 0.0 0.0
10 1.4 8.3 182.2 219.4 163.2 238.4 220.3 20.9 12.4 4.9 0.0 0.0 0.0
10 1.8 9.5 227.9 259.4 181.3 305.9 239.4 5.1 5.0 1.8 0.0 0.0 0.0
20 0.2 3.5 32.7 41.7 61.1 13.2 75.5 131.2 24.6 6.5 0.4 0.0 0.3
20 0.6 8.7 104.5 127.3 137.3 94.6 207.1 98.1 66.8 8.9 0.9 0.0 0.7
20 1.0 13.6 201.0 231.8 197.4 235.3 308.9 53.7 133.0 10.9 1.4 0.1 1.1
20 1.4 17.9 361.7 316.9 260.6 418.0 393.3 8.7 49.0 8.8 0.6 0.0 0.4
20 1.8 20.0 418.1 377.0 279.9 515.2 419.1 0.2 2.8 0.4 0.0 0.0 0.0
30 0.2 4.7 36.4 46.1 67.8 14.7 95.5 162.2 82.8 12.6 3.1 0.1 2.5
30 0.6 13.4 120.2 167.4 162.3 125.3 264.2 119.7 326.8 16.2 11.1 0.3 9.2
30 1.0 22.0 316.8 286.2 259.5 343.5 396.7 25.2 233.2 16.9 7.7 0.3 6.3
30 1.4 28.3 498.3 396.8 325.0 570.0 510.6 2.5 36.2 10.5 1.5 0.1 1.1
30 1.8 30.0 530.2 454.6 341.3 643.5 531.7 0.3 8.6 1.6 0.2 0.0 0.1
40 0.2 6.5 38.1 56.3 75.8 18.6 111.3 192.0 304.4 20.1 23.2 0.5 19.6
40 0.6 18.9 166.6 197.7 196.9 167.4 303.5 82.1 475.2 16.2 44.7 1.2 38.6
40 1.0 30.1 387.4 331.0 293.3 425.1 453.8 17.1 303.4 22.3 26.2 0.9 22.5
40 1.4 37.8 568.9 462.5 358.4 672.9 581.6 2.2 285.8 21.8 20.3 1.2 15.1
40 1.8 40.0 608.5 519.8 377.6 750.7 610.1 0.3 11.4 2.6 0.3 0.0 0.2
50 0.2 9.0 50.0 69.2 92.3 26.9 136.8 173.5 566.4 27.0 86.3 1.9 74.7
50 0.6 24.4 215.1 221.5 234.9 201.8 368.6 71.3 1459.0 23.2 283.4 7.0 249.3
50 1.0 38.7 490.3 372.3 354.4 508.2 556.3 13.5 438.6 28.1 83.6 2.5 73.6
50 1.4 48.0 694.2 511.5 429.9 775.8 707.5 1.9 229.2 28.3 35.2 1.8 28.7
50 1.8 50.0 725.5 559.4 443.8 841.2 727.6 0.3 25.6 3.2 1.1 0.1 0.8

Table B.1: Results for the branch-and-cut algorithm, limit on the length of the ring.

B
.5

C
o

m
p

u
ta

tio
n

a
l

R
esu

lts
7

5

n Budget Nodes in Optimal Distance Node Demand Root Gap Num. of Tree Time (seconds)
Solution value cost revenue revenue LP-value (%) subp. depth Total Cut LP

10 5 4.9 70.0 122.2 110.6 81.6 91.2 30.3 12.6 3.6 0.0 0.0 0.0
10 10 10.0 242.4 285.2 188.1 339.5 242.4 0.0 1.0 0.0 0.0 0.0 0.0
20 5 4.8 44.4 70.5 87.0 27.8 59.9 35.0 18.6 4.4 0.3 0.0 0.2
20 10 9.9 122.5 165.7 163.7 124.5 169.2 38.1 65.6 7.9 1.2 0.0 1.1
20 20 20.0 418.1 377.0 279.9 515.2 419.1 0.2 2.6 0.5 0.1 0.0 0.0
30 5 4.5 36.8 47.5 71.0 13.4 47.4 28.6 17.0 4.2 0.6 0.0 0.5
30 10 9.9 75.0 131.8 139.4 67.4 116.9 55.9 129.4 10.4 5.9 0.1 5.3
30 20 20.0 271.4 270.4 252.2 289.5 328.5 21.1 352.0 14.1 17.4 0.4 15.8
30 30 30.0 530.2 454.6 341.3 643.5 532.1 0.4 5.8 1.4 0.2 0.0 0.1
40 5 4.7 28.9 40.3 61.1 8.1 38.8 34.1 19.4 5.9 1.2 0.0 1.0
40 10 10.0 56.6 106.6 117.5 45.7 92.4 63.4 159.0 10.1 16.0 0.3 14.6
40 20 20.0 189.5 229.6 231.0 188.1 250.4 32.2 1123.8 19.0 139.9 2.0 129.1
40 30 30.0 393.8 349.3 314.8 428.4 441.0 12.0 693.6 23.2 86.1 1.1 80.7
40 40 40.0 608.5 519.8 377.6 750.7 610.1 0.3 9.8 2.8 0.5 0.0 0.4
50 5 4.4 28.7 30.7 53.5 6.0 38.1 32.9 22.2 6.0 1.9 0.0 1.6
50 10 9.8 54.2 84.9 107.1 32.0 84.7 56.3 134.8 10.7 24.4 0.4 22.6
50 20 20.0 157.3 197.6 218.3 136.6 216.3 37.5 947.6 18.9 273.6 3.3 259.2
50 30 30.0 317.8 300.4 312.6 305.6 387.5 21.9 5320.8 26.0 1525.9 16.1 1431.7
50 40 40.0 520.3 406.1 382.7 543.7 571.4 9.8 2257.0 32.6 541.5 4.4 516.7
50 50 50.0 725.5 559.4 443.8 841.2 727.6 0.3 30.2 3.3 1.9 0.0 1.6

Table B.2: Results for the branch-and-cut algorithm, limit on the number of nodes.

76 Appendix B

budgets are considered.

The computation times are highest for instances with a limit on the number
of nodes compared with instances with a limit on the length of the ring. Fur-
thermore, note that the main part of the computation time is spent on solving
LPs.

The two heuristics are tested for the same instances as the branch-and-cut al-
gorithm. Computation times of the heuristics are insignificant and always less
than 1 second for the instances considered. The results are given in Table B.3
and Table B.4.

Columns one to three in the Tables shows the number of nodes, the budget and
the optimal solution obtained by the branch-and-cut algorithm. Columns four
to eight presents the results for the construction heuristic and columns nine to
thirteen present the results for the deconstruction heuristic. For each heuristic,
the solution, the gap relative to the optimal solution and the components of the
objective are reported.

The construction algorithm performs best if the budget is restrictive whereas
the deconstruction algorithm performs best if the budget is ample. Comparing
the heuristic solutions obtained with the proven optimal solutions, there are
substantial gaps.

B.5.3 Discussion of Results

As noted in the previous section, the main part of the computation time is spent
on solving LPs. This has three explanations. 1) The bound obtained is weak,
so the number of processed subproblems is rather high. 2) For each subproblem
the LP-solver is invoked several times in order to strengthen the bound from
the newly added cuts and to be able to generate more cuts. 3) The LPs are of
considerable size.

Improving on the first point can be done by identifying new cuts which improve
the bound. Constraints (15) are examples of this and such constraints are im-
portant for improving the performance in the case where the number of nodes
in the ring is limited. Improving on the second point can be done by generating
more cuts and more importantly generate the “right” cuts [14]. For each sub-
problem, the LP is solved, additional cuts are generated, and the LP is resolved
and so on until no more violated cuts exist. The right cuts are the cuts that are
effective at the end of this process. If it were possible to identify them, only two
calls to the LP solver would be necessary for each subproblem. One initial call

B
.5

C
o

m
p

u
ta

tio
n

a
l

R
esu

lts
7

7

Optimal Construction Heuristic Deconstruction Heuristic
n Budget solution Solution Gap Distance Node Demand Solution Gap Distance Node Demand

value value (%) cost revenue revenue value (%) cost revenue revenue
10 0.2 7.5 3.7 50.2 3.2 4.2 2.7 0.0 100.0 0.0 0.0 0.0
10 0.6 54.6 40.0 26.6 72.5 73.3 39.3 27.0 50.4 52.3 50.7 28.7
10 1.0 113.8 89.5 21.4 130.3 110.1 109.6 85.7 24.6 133.5 107.8 111.4
10 1.4 182.2 173.3 4.9 213.7 155.0 232.0 162.3 10.9 210.4 151.5 221.2
10 1.8 227.9 193.1 15.2 245.4 168.3 270.2 221.7 2.7 262.3 180.0 304.0
20 0.2 32.7 23.4 28.3 34.0 49.0 8.4 12.4 62.2 17.3 24.7 5.0
20 0.6 104.5 69.9 33.1 117.2 112.7 74.4 39.6 62.1 74.0 74.7 38.9
20 1.0 201.0 135.4 32.6 219.0 172.5 181.9 116.2 42.2 205.8 160.5 161.5
20 1.4 361.7 260.3 28.0 320.0 230.8 349.5 339.8 6.1 314.2 256.0 398.0
20 1.8 418.1 363.8 13.0 371.1 267.3 467.6 413.7 1.1 381.4 279.9 515.2
30 0.2 36.4 27.3 25.0 42.5 57.6 12.2 24.4 33.0 31.5 47.9 8.0
30 0.6 120.2 84.1 30.0 148.6 138.0 94.7 22.5 81.3 116.3 87.6 51.2
30 1.0 316.8 188.0 40.6 283.9 220.4 251.5 213.5 32.6 284.2 225.4 272.3
30 1.4 498.3 332.2 33.3 394.3 283.9 442.7 466.4 6.4 390.7 316.0 541.1
30 1.8 530.2 452.6 14.6 474.6 329.7 597.5 523.8 1.2 461.0 341.3 643.5
40 0.2 38.1 23.1 39.3 55.9 64.0 15.0 2.0 94.7 10.5 9.9 2.6
40 0.6 166.6 95.7 42.6 193.4 167.8 121.3 40.3 75.8 130.6 99.3 71.7
40 1.0 387.4 241.6 37.6 323.5 255.2 309.9 272.4 29.7 327.5 260.9 338.9
40 1.4 568.9 392.8 31.0 450.5 316.6 526.6 526.2 7.5 458.7 348.2 636.7
40 1.8 608.5 530.1 12.9 546.8 370.1 706.8 596.9 1.9 531.4 377.6 750.7
50 0.2 50.0 22.6 54.9 63.5 68.8 17.2 14.7 70.5 38.1 44.5 8.3
50 0.6 215.1 119.3 44.6 218.7 196.5 141.4 68.4 68.2 172.6 146.0 95.0
50 1.0 490.3 309.4 36.9 368.3 308.3 369.4 362.0 26.2 366.8 322.0 406.8
50 1.4 694.2 532.7 23.3 516.4 394.5 654.6 647.7 6.7 513.9 420.4 741.2
50 1.8 725.5 624.4 13.9 619.2 435.8 807.8 703.8 3.0 581.1 443.8 841.2

Table B.3: Results for heuristics, limit on the length of the ring.

7
8

A
p

p
en

d
ix

B

Optimal Construction Heuristic Deconstruction Heuristic
n Budget solution Solution Gap Distance Node Demand Solution Gap Distance Node Demand

value value (%) cost revenue revenue value (%) cost revenue revenue
10 5 70.0 61.6 12.0 115.2 100.0 76.8 53.8 23.1 126.8 104.1 76.5
10 10 242.4 192.6 20.5 260.7 172.2 281.0 240.1 0.9 287.5 188.1 339.5
20 5 44.4 35.2 20.7 71.9 80.2 26.9 20.0 55.0 43.4 49.4 14.0
20 10 122.5 93.1 24.0 193.1 157.9 128.3 87.1 28.9 230.4 180.8 136.7
20 20 418.1 357.6 14.5 376.4 267.5 466.9 413.7 1.1 381.4 279.9 515.2
30 5 36.8 26.0 29.4 54.3 65.8 14.5 1.6 95.6 19.9 18.4 3.1
30 10 75.0 52.2 30.3 126.5 116.5 62.2 34.4 54.1 168.8 140.8 62.4
30 20 271.4 216.9 20.1 305.7 232.6 289.8 246.9 9.0 311.7 267.3 291.2
30 30 530.2 458.7 13.5 468.4 328.6 600.1 523.8 1.2 461.0 341.3 643.5
40 5 28.9 22.0 24.0 42.0 54.8 9.1 8.7 70.0 13.3 19.1 2.8
40 10 56.6 37.6 33.6 99.3 96.4 39.6 13.3 76.4 96.5 82.4 27.4
40 20 189.5 125.9 33.6 236.8 191.8 166.7 144.9 23.5 297.4 249.1 193.2
40 30 393.8 314.1 20.2 407.9 297.5 417.8 362.0 8.1 385.1 318.3 428.8
40 40 608.5 522.9 14.1 566.3 370.6 714.5 596.9 1.9 531.4 377.6 750.7
50 5 28.7 19.7 31.4 50.1 62.5 7.3 2.6 91.0 19.5 19.6 2.5
50 10 54.2 35.4 34.6 86.9 93.5 28.9 5.6 89.7 75.2 65.1 15.7
50 20 157.3 110.4 29.8 220.9 199.7 131.5 93.5 40.6 281.3 238.0 136.8
50 30 317.8 240.1 24.5 339.1 279.0 300.2 270.7 14.8 363.7 325.5 308.9
50 40 520.3 427.2 17.9 479.0 365.4 540.8 489.7 5.9 446.4 390.0 546.1
50 50 725.5 632.6 12.8 612.7 436.5 809.4 703.8 3.0 581.1 443.8 841.2

Table B.4: Results for heuristics, limit on the number of nodes.

B.5 Computational Results 79

and one call after the problem has been resolved. In general it is not possible
to identify the right cuts without actually carrying out the iterations. However,
heuristics may perform better than simply computing the most violated cuts
or even all violated cuts. In particular the heuristic separation routine used to
generate GSECs is an example of a routine which generates better cuts than
the cuts generated using the optimal separation routine.

Finally at least two possible ways of improving on the third point exists. One
possibility is to evaluate the bound or alternative bounds combinatorially. This
has been done successfully for the Quadratic Knapsack Problem [5]. The other
possibility is to try to reduce the number of constraints in the formulation and
the number of non-zero variables in the constraints. One way of doing this could
be to remove ineffective cuts and generate them again if needed. It may also be
possible to use alternative representations of cuts with fewer non-zero variables
as suggested in [14].

As an example of this, let the current LP solution be x∗e , y∗i , and z∗e . Assume
that a violated GSEC is given by S1 ⊂ V , |S1| ≤ |V |/2, k1 ∈ S1, l 6∈ S1, and∑

e∈δ(S1) xe = 0. Assume further that S contains two nonempty disjoint subsets
S2 ∪ S3 = S1 such that

∑
e∈δ(S2) xe =

∑
e∈δ(S3) xe = 0. Instead of the GSEC

corresponding to S1, one can include two GSECs with S2, k2 ∈ S2, l 6∈ S, and
S3, k3 ∈ S3, l 6∈ S. The nodes k2 and k3 are picked such that y∗k2

= maxi∈S2{y∗i }
and y∗k3

= maxi∈S3{y∗i }. The GSECs are used in inner form (5) and thus the
number of variables for a GSEC constraint is (|S|2 − |S|)/2 + |S|. It can be
checked that for |S1| ≥ 3 fewer non-zero variables are required to represent the
two GSECs corresponding to S2 and S3 than the GSEC corresponding to S1.

We believe that the most promising approach is to obtain new cuts related
to the ze variables which cause the highly fractional solutions. In order for
better bounds to be really useful, better heuristics may be needed. In order
to determine the maximum speed-up which could be expected if alternative
heuristics were used, the optimality verification process has been isolated, i.e.
the following has been carried out. Obtain the optimal solution by branch-and-
cut and measure the computation time. Rerun the branch-and-cut algorithm
but initialize the incumbent to the optimal solution. Doing this, the average
reduction in computation time is approximately 40% for the instances which
require more than 10 seconds. This is the absolutely best improvement that can
be realized due to improved heuristics. However, if the bounds are improved,
the computation time may decrease even further.

80 Appendix B

B.6 Conclusions

The QSTSP has been presented as an extension of the TSP. An integer lin-
ear programming model for the QSTSP has been presented. The problem is
solved both by applying branch-and-cut and by applying construction heuris-
tics. Computational results are highly dependent on the budget, but in sum-
mary the construction heuristics are fast, but obtain solutions far from optimal.
The branch-and-cut algorithm computes provably optimal solutions to all test
problems with up to 50 nodes within one hour.

In order for the branch-and-cut algorithm to be really useful, it is necessary to
reduce the computation time. The main part of the computation time is spent
on solving LPs. Hence, to get a substantial overall reduction in computation
time, the time spent on solving LPs should be reduced. One way of doing this
is to identify better cuts. Alternatively, advanced heuristics could be consid-
ered, which would probably obtain much better solutions than the construction
heuristics much faster than the branch-and-cut algorithm.

Acknowledgments

The authors would like to thank Jens Clausen, Jesper Larsen and Camilla
Schaumburg-Müller for helpful discussions and comments.

Bibliography

[1] COIN-OR: COmputational INfrastructure for Operations Research,
www.coin-or.org

[2] Balas, E. (1989) The prize collecting traveling salesman problem, Networks
19(6), 621-636.

[3] Balas, E. (1989) The prize collecting traveling salesman problem. II. Poly-
hedral results, Networks 25(4), 199-216.

[4] Billionnet, Alain and Calmels, Frederic. (1996) Linear programming for the
0-1 quadratic knapsack problem, European Journal of Operational Research
92(2), 310-325.

[5] Caprara, A. and Pisinger, D. and Toth, P. (1999) Exact solution of the
quadratic knapsack problem, INFORMS Journal on Computing 11(2), 125-
137.

81

[6] Fischetti, M. and Salazar Gonzalez, J.J. and Toth, P. (1995) The symmetric
generalized traveling salesman polytope, Networks 26(2), 113-123.

[7] M. Fischetti, J.J. Salazar Gonzalez, P. Toth. (1997) A branch-and-cut algo-
rithm for the symmetric generalized traveling salesman problem, Operations
Research 45(3), 378-394.

[8] Gendreau, M., Labbe, M. and Laporte, G. (1995) Efficient heuristics for the
design of ring networks, Telecommunication Systems - Modeling, Analysis,
Design and Management 4(3-4), 177-188.

[9] Gendreau, M., Laporte, G and Semet. (1998) A branch-and-cut algorithm
for the undirected selective traveling salesman problem, Networks 32(4),
263-273.

[10] Gouveia, Luis and Manuel Pires, Jose. (2001) Models for a Steiner ring
network design problem with revenues, European Journal of Operational
Research 133(1), 21-31.

[11] Laporte, G. (1986) Generalized subtour elimination constraints and con-
nectivity constraints, Journal of the Operational Research Society 37(5),
509-514.

[12] Laporte, G. and Martello, S. (1990) The selective travelling salesman prob-
lem, Discrete Applied Mathematics 26(2-3), 193-207.

[13] Mak, Vicky and Thomadsen, Tommy. (2004) Facets for the Cardinality
Constrained Quadratic Knapsack Problem and the Quadratic Selective
Travelling Salesman Problem, IMM-Technical Report-2004-19.

[14] Padberg, Manfred and Rinaldi, Giovanni. (1991) A Branch-and-Cut Al-
gorithm for the Resolution of Large-Scale Symmetric Traveling Salesman
Problems, SIAM Review 33(1), 60-100.

[15] Thomadsen, Tommy and Stidsen, Thomas. (2005) Hierarchical Ring Net-
work Design Using Branch-and-Price, To appear in Telecommunication Sys-
tems.

82

Appendix C

Hierarchical Ring Network
Design Using

Branch-and-Price

Appears in Telecommunication Systems, Volume 29, Issue 1, pp. 61–76, 2005

84 Appendix C

Hierarchical Ring Network Design Using
Branch-and-Price

Tommy Thomadsen1 and Thomas Stidsen2

Abstract

We consider the problem of designing hierarchical two layer ring net-
works. The top layer consists of a federal-ring which establishes connec-
tion between a number of node disjoint metro-rings in a bottom layer.
The objective is to minimize the costs of links in the network, taking
both the fixed link establishment costs and the link capacity costs into
account.
Hierarchical ring network design problems combines the following opti-
mization problems: Clustering, hub selection, metro ring design, federal
ring design and routing problems. In this paper a branch-and-price algo-
rithm is presented for jointly solving the clustering problem, the metro
ring design problem and the routing problem. Computational results
are given for networks with up to 36 nodes.

Keywords: Ring network design, Hierarchical network design, Branch-and-
Price.

C.1 Introduction

Design of survivable communication networks is important for at least two rea-
sons. First of all there is a growing reliance on electronic communication in
society. Secondly failures (e.g. a link failure) may have a large impact, given the
high capacity of links.

Self Healing Rings (or rings for short) have been widely used to ensure survivable
communication for several reasons. First of all, the rings are pre-configured such
that the only nodes that need to do re-routing in case of a link failure are the
two endpoint nodes of the failed link. Thus no communication with other nodes
is necessary making ring protection fast. Furthermore the node equipment is

1Informatics and Mathematical Modelling, Technical University of Denmark, Lyngby, Den-
mark. Email: tt@imm.dtu.dk

2Informatics and Mathematical Modelling, Technical University of Denmark, Lyngby, Den-
mark. Email: tks@imm.dtu.dk

C.1 Introduction 85

cheap to build and protection does not require the involvement of an expensive
network management system.

Larger networks consist of several interconnected rings, since it is neither pos-
sible nor beneficial to restrict the entire network topology to a single ring. One
possible way to interconnect the rings is in a hierarchy. Hierarchical networks
have existed for decades and were introduced because of the limited switching
capabilities in the telephone systems. Hierarchies are still used since they divide
the network in sub-networks which can to some extend be treated independently,
easing maintenance and upgrade.

In this paper we consider the design of hierarchical ring networks (HRNs), i.e.
hierarchical networks where each sub-network is a ring. We assume that com-
munication demands are given and determine a HRN which satisfies the com-
munication demands as cheaply as possible. We present models and algorithms
for two layers only, but both models and algorithms can be generalized to more
layers. We denote the ring in the top layer the federal-ring, and the node disjoint
rings in the bottom layer, the metro-rings. See Figure C.1 for an example of a
HRN. We consider single homing, i.e. exactly one node from each metro-ring is
in the federal-ring. This node is called the hub node.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Metro ring

Metro ring Metro ring

Metro ring

ring
Federal

Figure C.1: A two layer hierarchical ring network

The HRN design problem belongs to the more general class of hierarchical net-
work design problems which jointly considers hub location and network design.
For an excellent survey of this area we refer to [9]. In [9] the hierarchical network
design problem is decomposed into a number of smaller optimization problems:

Clustering: Decide which nodes should belong to the same metro-network.

86 Appendix C

Hub Selection: For each metro-network select hub nodes to connect the me-
tro-networks to the federal-network.

Metro-Network Design: Determine the best network to connect the nodes
in each metro-network.

Federal-Network Design: Determine the best federal-network connecting the
hub nodes.

Routing: Route the communication demands, minimizing the capacity usage
in nodes and links.

An approach to the hierarchical network design problem is to solve it step by
step by solving one or more of the above smaller optimization problems in each
step. This is what most papers suggest, including this paper. This means that
the hierarchical network design problem is solved by first solving e.g. the clus-
tering problem and the metro-network design problem, then the hub selection
problem and the federal-network design problem and finally the routing prob-
lem. The optimization process is much simpler but a suboptimal solution of the
hierarchical network design problem may be obtained.

The main contribution of the paper is the implementation of a branch-and-price
algorithm which can be used to solve to optimality a modified model which
includes the clustering problem, the metro-ring design problem and the rout-
ing problem. We refer to this problem as the modified HRN problem. The hub
selection problem and the federal-ring design problem can be solved jointly after-
wards and is a Generalized Travelling Salesman Problem considered in e.g. [3].
We discuss the modified HRN problem and point out under what circumstances
an optimal solution for the modified problem is optimal for the original opti-
mization problem. The problem modification has previously been put forward
and used for implementing heuristics but it has not been analysed in detail.
Optimal solutions have previously been obtained for networks with up to 12
nodes and used for comparison with heuristic values. Our branch-and-price al-
gorithm can in general solve instances with 20 nodes and for problems with
special structure up to 36 nodes.

The outline of the paper is as follows. In Section C.2, we discuss related papers.
In Section C.3 we consider the problem modification of the clustering problem
and the metro-ring design problem. In Section C.4, the integer linear formula-
tion of the modified HRN problem is given and in Section C.5 we describe how
the integer linear model can be solved using a branch-and-price algorithm. In
Section C.6 we give some computational results and suggest some directions for
future research. Finally we give some concluding remarks in Section C.7.

C.2 Previous work 87

C.2 Previous work

Because of the importance of ring protection, a significant amount of work has
been carried out regarding the design of ring networks. In this section some
related papers are briefly discussed.

In [1] a two layer HRN design problem is studied. The hubs are assumed given,
thus eliminating the hub selection problem and reducing the federal-network
design problem to a Travelling Salesman Problem. The focus is on the clus-
tering problem and the metro-network design problem. For the optimization
of the metro-network design problem, a heuristic with guaranteed worst case
performance is suggested. By constructing the rings, the clustering problem is
implicitly solved. Finally, the routing problem is ignored, i.e. the capacity costs
of the network is not considered.

In [6] a more real-world version of the HRN design problem is studied. Besides
requiring some metro-networks to be rings, some metro-networks are allowed to
be tree-like. This is achieved by dividing nodes into two groups, some which
require ring protection and some which do not. The communication demand
pattern assumes that each demand node only requires to communicate with
one or a few service nodes. This assumption simplifies the routing problem.
The problem is solved in steps using heuristics to first determine the clusters,
select hubs, design the metro-networks and design the federal-network. For each
problem tailored heuristics are used, which makes the combined optimization
algorithm fast and applicable to what-if analyses.

In [8] another type of hierarchical network design problem is considered. Each
sub-network is allowed to consist of several rings, which are connected to the
same hub nodes. Again the problem is solved in steps. First the clusters are de-
termined and the hubs selected, using the column generation method from [11].
The objective is to maximize the traffic within the metro-networks. Secondly
the metro-network design problem is solved for each of the clusters separately
by a column generation algorithm. The algorithm is used to minimize the cost
of the rings which connects all the nodes in each of the metro-networks to the
hubs. The costs includes both link costs and node costs. The federal-network
design problem and the routing problem is not considered. Finally the devel-
oped algorithm is tested on a real world telecommunication network from Korea
Telecom.

Another type of the hierarchical network design problem is suggested in [7]. The
focus in this article is the clustering problem. The nodes are clustered in order to
minimize the number of necessary clusters, i.e. metro-networks, constrained by
the capacity of the metro-rings and the federal-ring. The cost of the metro-ring

88 Appendix C

structures and the federal-ring structures are thus not considered.

The hardness of the routing problem in combination with one or more other
problems is illustrated in the paper [5]. Here the routing costs are considered
in combination with the logical design of the rings, i.e. which nodes in the rings
should contain add-drop equipment. An integer linear program is presented,
but as it is pointed out, it is clearly not suitable to exact solution approaches.
Instead a tabu search heuristic for the combined problem is presented. The main
problem is that given a complete ring-network design, the routing problem is
itself a multicommodity optimization problem. Hence, for each iteration in the
tabu-search heuristic, many such multicommodity optimization problems needs
to be solved. The algorithm is tested on real world examples with up to 48
nodes.

In [14] the modified HRN problem was introduced and this was further developed
in [15, 16, 17, 18]. We use the same idea of a modified HRN problem in this
paper, and the problem modification is described in greater detail in Section C.3.
In the papers [14, 15, 16, 17, 18] both a heuristic and an enumerative scheme
is described, but the number of possible networks grows exponentially, making
the enumerative scheme useless except for small and trivial instances (less than
10 nodes). The heuristic on the other hand is able to handle large networks,
but gives no guarantee regarding the quality of the solutions obtained.

In [12] an integer linear program of the modified HRN problem is presented.
Optimal solutions can in some cases be obtained using the model, for networks
with up to 12 nodes and a maximum of 4 nodes in the metro-rings. The focus
of the paper is a “partition, construct and perturb” heuristic. This heuristic
is compared with optimal solutions when these can be obtained and with the
heuristics from [14]. It is concluded that better results than Shi and Fonseka
are in general obtained.

C.3 The Modified HRN Problem

Let the network G(V,E) where V is the set of nodes and E is the set of possible
bidirectional links. Let D be the set of demands, let Rmet be the set of possible
metro-rings and Rfed the set of possible federal-rings. For r ∈ Rfed or r ∈ Rmet,
r ⊆ E, i.e. r is a subset of links, and the links induce a ring. Let d′ij , ij ∈ D
denote the demand for communication flow between node i ∈ V and j ∈ V .
Also let ce be the fixed cost for establishing link e and correspondingly let the
cost per capacity unit on link e be be.

C.3 The Modified HRN Problem 89

The purpose of modifying the problem is to obtain a formulation which includes
the cluster problem, the metro-network design problem and implicitly includes
the routing problem. Thus no routing variables are necessary. This is possible,
since we consider unidirectional self-healing rings. The modification also allows
a decomposition of the total cost into costs for each ring which can be measured
independently.

The cost of a HRN is assumed to depend solely on the links used by the rings in
the network and the capacity of these links, i.e. the fixed cost and the capacity
cost respectively. Thus the cost of a HRN is as given in equation (1), where
rfed ∈ Rfed is the federal-ring, R

met ⊂ Rmet is the set of node disjoint metro-
rings covering all nodes and finally CAPr is the minimal capacity required on
each link of ring r to service the traffic flow.∑

e∈rfed
ce + CAPrf ed ·

∑
e∈rfed

be +
∑

r∈Rmet
(
∑
e∈r

ce + CAPr ·
∑
e∈r

be) (1)

The fixed cost of the federal-ring is left as a separate optimization problem, i.e.
the HRN cost is initially approximated by the fixed cost of the metro-rings and
the capacity cost:∑

r∈Rmet

∑
e∈r

ce + CAPrf ed ·
∑
e∈rfed

be +
∑

r∈Rmet
CAPr ·

∑
e∈r

be (2)

We consider unidirectional self-healing rings, for which it holds that commu-
nication flow in the ring takes up capacity in all links in the ring. Thus if a
demand ij ∈ D traverse a ring, it takes up capacity d′ij in all links on the ring.
Assume that B is the average capacity cost per ring per unit of demand. An
estimate of the capacity cost for satisfying the demand d′ij is Bd′ij if i and j are
in the same metro-ring and 3Bd′ij if i and j are in different metro-rings, since
three rings are in that case traversed (two metro-rings and the federal-ring).
Also the capacity cost can be expressed as a worst case cost, K = 3B

∑
ij∈D d

′
ij

corresponding to that all demands traverse three rings minus a savings obtained
by handling communication demands within metro-rings. Denote by Dmet

r ⊂ D
the set of demands handled within metro-ring r. In that case the capacity cost
can be estimated as follows.

CAPrf ed ·
∑
e∈rfed

be +
∑

r∈Rmet
CAPr ·

∑
e∈r

be ≈ K − 2B
∑

r∈Rmet

∑
ij∈Dmetr

d′ij (3)

The total HRN cost is then estimated by the following.

K +
∑

r∈Rmet

∑
e∈r

ce − 2B
∑

r∈Rmet

∑
ij∈Dmetr

d′ij (4)

The intuition behind this rewrite is, that minimizing the capacity cost corre-
sponds to maximizing the communication demand handled within metro-rings.

90 Appendix C

This is in good agreement with previous recommendations [4] and what has
been done in e.g. [11]. Note that 2B will have to be experimentally determined.
Different values of 2B will result in different cost structures, e.g. a low 2B will
correspond to the case where the capacity cost is higher in the federal-ring than
in the metro-rings.

The cost per ring per unit of demand may be far from constant (i.e. deviate
considerably from B). However if the capacity cost reflects a cost of node-
equipment rather than a cost proportional to the distance between nodes, B is
thus proportional to the number of nodes in the rings. In that case it makes
much more sense to have a known, fixed B corresponding to a known fixed
number of nodes in the rings, and in particular [14, 15, 16] study such networks.
For HRNs where the capacity cost per ring per unit of demand is not B in all
cases, optimal solutions for the modified problem may not be optimal in the
original problem.

Note that the cost can now be decomposed into costs minus a reward for each
metro-ring plus a constant K, which can be measured independently. Thus the
cost for metro-ring r ∈ Rmet is:

cr =
∑
e∈r

ce − 2B
∑

ij∈Dmetr

d′ij (5)

Consider the demand d′ij where i and j are in different metro-rings, i is in
the federal-ring and r is the metro-ring including i. In that case equation (4)
includes a cost for routing d′ij in r, but d′ij need not be routed “from i via r to
i” - there is no need to route it in r at all. Thus additional savings should be
included if i is in the federal-ring. This saving is included as a reward on nodes
when the federal-ring is designed. The node reward is the sum of all demands
starting or ending in the node.

C.4 The Problems

Given the modification of the problem, the idea is now to select the lowest
cost set of metro-rings, which includes nodes exactly once, i.e. a set-partitioning
problem. However, since there are too many metro-rings to pregenerate all, we
generate metro-rings when needed. Thus what we describe is actually a column
generation algorithm or, since branching is needed to get integer solutions, an
integer programming column generation algorithm, also known as branch-and-
price [2, 20].

In this section we will describe the two problems we need to solve; the ring-

C.4 The Problems 91

partitioning problem (which is a set-partitioning problem) and the ring-gene-
ration problem. We will describe the branch-and-price algorithm in detail in
Section C.5.

When the metro-rings have been designed, the federal-ring is designed as the
shortest ring, which includes exactly one node from each metro-ring and takes
into account node rewards as described in the previous section. This is a Gen-
eralized Travelling Salesman Problem which can be solved using a branch-and-
cut algorithm as done in [3]. This problem seems to be easier than the ring-
generation problem which is solved many times, and thus the design of the
federal-ring is not the bottleneck of the algorithm. We will not consider the
design of the federal-ring any further in this paper.

C.4.1 The Ring-Partitioning Problem

Given a set of metro-rings R ⊂ Rmet, the ring-partitioning problem is the
problem of choosing the lowest cost subset of metro-rings in R, such that all
nodes are covered exactly once. Define pir = 1 if node i is part of ring r, 0
otherwise. The variables ur is 1 if ring r is selected, 0 otherwise. The ring-
partitioning problem is then:

min
∑
r∈R

cr · ur (6)

s.t.
∑
r∈R

pir · ur = 1 ∀i ∈ V (πi) (7)

ur ∈ {0, 1} (8)

The objective (6) is the total cost of selecting metro-rings, where cr is defined in
equation (5). Constraints (7) ensure that each node is in exactly one metro-ring
and constraints (8) are the integer domain constraints. Finally πi are the dual
variables for constraints (7). The problem obtained by relaxing constraint (8) is
denoted the relaxed ring-partitioning problem. If branching is necessary, addi-
tional constraints are added, see Section C.5.1. Rings are iteratively generated
and added to R. The ring-generation problem is described in the following
section.

92 Appendix C

C.4.2 The Ring-Generation Problem

The objective of the ring-generation problem is based on the cost in equation (5).
However this cost does not include any information on which other rings are in
R, and thus it is possible that a node will never be included in any ring. The
idea is to add a reward to the objective, which reflects how difficult a node is
to cover in the ring-partitioning problem given the current set of rings R. A
node is difficult to cover if e.g. a single ring r ∈ R contains the node and thus r
need to be selected regardless of the cost. If a node i is difficult to cover a high
reward is put on including i in a ring. The reward used is the value of the dual
variables in the optimal solution to the ring-partitioning problem, πi.

Let dij = B · d′ij , let n(r) ⊆ V be the nodes in r and let Dr ⊂ D be the set of
demands which start and end in r. Formally, we generate the ring with most
negative reduced cost, where the reduced cost is given by the following equation.

cr −
∑
i∈n(r)

πi =
∑
e∈r

ce −
∑
ij∈Dr

dij −
∑
i∈n(r)

πi (9)

We assume an upper limit, m is given on the number of nodes in the ring. Define
the following variables, yi = 1 if node i is in the ring, 0 otherwise, xe = 1 if link
e is in the ring, 0 otherwise and zij = 1 if demand ij can be handled by the
ring, otherwise 0. (Equivalently, zij = 1 if yi = 1 and yj = 1, otherwise 0.)

For S ⊂ V , let δ(S) ⊂ E denote the set of edges with an endpoint in S and an
endpoint not in S. Then the ring-generation problem can be stated as follows.

min
∑
e∈E

ce · xe −
∑
ij∈D

dij · zij −
∑
i∈V

πi · yi (10)

s.t.
∑

e∈δ({i})
xe = 2yi ∀i ∈ V (11)

zij ≤ yi ∀ij ∈ D (12)
zij ≤ yj ∀ij ∈ D (13)
zij ≥ yi + yj − 1 ∀ij ∈ D (14)∑

i∈V
yi ≤ m (15)∑

e∈δ(S)

xe ≥ 2(yk + yl − 1)

∀S ⊂ V, 3 ≤ |S| ≤ n− 3, k ∈ S, l 6∈ S (16)
xe ∈ {0, 1}, yi ∈ {0, 1}, zij ∈ {0, 1} (17)

C.5 The Branch-and-Price Algorithm 93

The objective (10) corresponds exactly to the reduced cost given in equation (9).
If a node is selected (yi = 1), two links should be incident to node i, which is
ensured by constraint (11). If both nodes i and j are selected the variable
zij = 1, which is ensured by the constraints (12), (13) and (14). The number of
nodes in the rings is bounded by the hop constraint (15). Subtour elimination
constraints (16) ensure that a single ring is generated and finally integer solutions
are ensured by the domain constraints (17).

We solve the ring-generation problem by branch-and-cut as described in [19],
where the subtour elimination constraints are generated as needed. Also [10]
describes cuts which may improve the performance of the branch-and-cut al-
gorithm. The ring-generation problem is a generalization of the (Selective)
Travelling Salesman Problem and of the Quadratic Knapsack problem and thus
we denote it the Quadratic Selective Travelling Salesman Problem.

If branching is necessary, additional terms are added to the objective function
and additional constraints are added. These additions are described in Sec-
tion C.5.1.

C.5 The Branch-and-Price Algorithm

The branch-and-price algorithm is described in pseudo code in Figure C.2. The
main idea in a branch-and-price algorithm is to perform the bounding in a
branch-and-bound algorithm using column generation. The algorithm maintains
an incumbent, i.e. the lowest cost feasible solution known, and a set of branch-
nodes, i.e. a set of relaxed ring-partitioning problems. Initially the set of branch-
nodes contains the ring-partitioning problem without any branching decisions.
A branch-node corresponding to a relaxed ring-partitioning problem is solved
using column generation in the inner while loop. It is resolved in each iteration
of the inner while loop and a ring is generated by the ring-generation problem.
If no ring exists with negative reduced cost the value of the ring-partitioning
problem is a lower bound. This lower bound is used in the outer loop which is
the branch-and-bound part of the algorithm.

In the outer loop it is checked whether the optimal solution to the relaxed ring-
partitioning problem solution is feasible, i.e. integer, or if it is a lower bound only.
If the solution is integer and better than the current incumbent, the incumbent
is updated and that branch is fathomed. If the solution is fractional, the lower
bound is compared with the current incumbent and if it is worse, the branch is
fathomed. If neither is the case, branching is performed.

94 Appendix C

Incumbent = Infinity.
Branch-nodes = {Initial Relaxed Ring-Partitioning problem}
while Branch-nodes 6= ∅ do

Select branch B ∈ Branch-nodes

do
Solve relaxed ring-partitioning problem B
Solve ring-generation problem, based on dual variables of B
if Reduced cost of optimal ring < 0 then

Add optimal ring to B
while Reduced cost of optimal ring < 0
Let Obj val = Optimum of B
if the solution to the relaxed ring-partitioning problem is

feasible (integer) and Obj val ¡ Incumbent then
Update incumbent: Incumbent = Obj val

Fathom branch
else if Obj val ≥ Incumbent then

Fathom branch
else

Branch: Add two branches to Branch-nodes

end while

Figure C.2: The Branch-and-Price algorithm

C.5.1 Ryan-Foster Branching

Branching in a branch-and-price algorithm is more complicated than in a stan-
dard branch-and-bound algorithm. We use Ryan-Foster branching [13] to obtain
integer solutions. This is possible since all coefficients of all constraints in the
ring-partitioning problem are 0 or 1 and all right hand sides are 1, see con-
straint (7).

Consider constraint i. Since the right hand side is 1 and variables have to be
integer, exactly one ring with pir = 1 has to be selected (ur = 1). For all other
selected rings, pir = 0. We say that “node i is covered by ring r”. The idea is
now to identify a set of rings S ⊂ Rmet and create two branches, 1) node i has
to be covered by a ring in S and 2) node i has to be covered by a ring not in S.
The question is now, how do we select i and S.

Assume node i is partially covered by more than one ring, and assume ring r
is one of these rings (i.e. 0 < ur < 1). Usual variable branching corresponds
to letting S = {r}, thus the branches will be ur = 1 and ur = 0. This sort of

C.5 The Branch-and-Price Algorithm 95

branching is not suitable in a column generation algorithm for several reasons
all related to the vast amount of variables that exists (but are not explicitly
known). First of all since we set ur = 0 in the ring-partitioning problem, r
usually has a negative reduced cost and hence when solving the ring-generation
problem, r will be generated again. This can be handled by modifying the ring-
generation problem to specifically exclude r. However, usually rings similar to
r exists and thus these rings will be generated instead. This means that the
bound of the ur = 0 branch will not improve much when branching and we have
an unbalanced branch-tree where the depth is considerable.

The idea is to let S contain several rings and in particular include rings which
have not yet been generated (i.e. not in R). Thus in general S \R 6= ∅. Identify a
fractional ring (0 < ur < 1) and two nodes i and j with pir = 1 and pjr = 1. If
the solution is fractional, such two nodes always exists. Let S = {r ∈ Rmet|pir =
1 ∧ pjr = 1}, that is the rings that cover both i and j. The two branches are
thus, 1) i and j are covered by the same ring and 2) i and j are covered by
different rings.

A branch decision is identified by a node-pair {i, j} and whether i and j should
be covered by the same ring or not. For a ring-partitioning problem, we have
several such branch decisions of both types. Denote by BSAME ⊂ V 2 the set of
branching decisions where node-pairs should be covered by the same ring and
correspondingly denote by BDIFF ⊂ V 2 the set of branching decisions where
node-pairs should be covered by different rings. Then we add the following con-
straints to the ring-partitioning problem which implement the actual branching.∑

{r∈R|pir=1∧pjr=1}
ur = 1 ∀{i, j} ∈ BSAME (γij) (18)

∑
{r∈R|pir=1∧pjr=1}

ur = 0 ∀{i, j} ∈ BDIFF (δij) (19)

We denote the dual variables of the constraints by γ{i,j} and δ{i,j} as indicated.
The constraints added to the ring-partitioning problem affect the calculation of
the reduced costs of rings, thus the objective of the ring-generation problem is
changed. Note that pir = 1 ∧ pjr = 1 exactly if zij = 1 in the ring-generation
problem. Let γ{i,j} = 0 if {i, j} 6∈ BSAME and δ{i,j} = 0 if {i, j} 6∈ BDIFF ,
then the objective of the ring-generation problem (see equation (10)) becomes:∑

e∈E
ce · xe −

∑
ij∈D

(dij + γ{i,j} + δ{i,j}) · zij −
∑
i∈V

πi · yi (20)

When solving the ring-generation problem, it is furthermore necessary to ensure
that only rings which fulfill the branching decisions are generated. This is
ensured by the following constraints.

yi − yj = 0 ∀ {ij} ∈ BSAME (21)

96 Appendix C

yi + yj ≤ 1 ∀ {ij} ∈ BDIFF (22)

Both constraints allows rings where both yi = 0 and yj = 0, but constraints (21)
ensure that if node i is selected, then so is j and vice versa. On the other hand,
constraints (22) ensure that rings generated include at most one of i and j.

C.6 Computational Results

To test the branch-and-price algorithm, problem instances with between 10 and
20 nodes are generated. The problem instances are generated similarly to what
is done in [19]. The nodes are placed in a plane with the coordinates uniformly
distributed between 0 and 100. The fixed costs (ce) are determined as the
Euclidean distance. Rather than generating both capacity costs (be) and the
demands (d′ij) and compute an average cost per ring per unit of demand to
obtain dij (as discussed in Section C.3), we generate dij only. The dij values
are generated as uniformly distributed between 0 and an upper bound u.

Selecting a proper value of u is critical. If u is selected too small, then the
optimal solution is a single federal-ring including all nodes and no metro-rings.
Using the same value of u as in [19] proved sufficient. The upper bound u used
is given in the following equation.

u ≈ 5√
|V |3

(23)

The value of u arise by considering the tradeoff between total average demand
and the shortest tour measured in fixed link costs for rings with |V |/2 nodes.
We refer to [19] for an in-depth explanation. The important observation is,
that a tradeoff exists between the fixed link cost and the savings obtained from
demands. As we shall see, the hop constraint (15) is in most, but not all cases
binding; thus a tradeoff exists. The tests were run on a 1200 Mhz SUN Fire
3800. We use CPLEX 9.0 to solve linear programming models.

For each of 10, 12, 14, 16, 18 and 20 nodes, 10 different random instances
are generated. We report results as averages over 10 instances. We vary the
maximal number of nodes in the metro-rings, m between 4 and min{10, |V |−3}.
In addition to this, we investigate networks with 25 and 36 nodes with m equal
to 5 and 6 respectively. It turns out, that since |V |/m is integer for these
networks, they are easier to solve than networks for which this is not the case.
The results are given in Table C.1. The table shows the number of nodes, the
maximum number of nodes in metro-rings, the number of branch-nodes, the
total time spent in seconds and the percentage spent on the ring-partitioning

C.6 Computational Results 97

|V| m #Branch Total Time Time Time #Rings #Metro
Nodes (sec.) Part. Gene. Gene. Rings

10 4 8.0 4.0 6.7% 93.3% 40.2 3.0
10 5 1.0 2.5 4.6% 95.4% 18.8 2.0
10 6 11.2 7.8 4.7% 95.3% 64.4 2.0
10 7 7.2 4.9 5.7% 94.3% 42.1 2.0

12 4 4.0 3.7 4.9% 95.1% 23.0 3.0
12 5 13.0 16.4 3.9% 96.1% 83.2 3.0
12 6 1.0 7.3 3.1% 96.9% 30.1 2.0
12 7 15.0 24.5 3.5% 96.5% 105.5 2.0
12 8 19.2 27.6 3.7% 96.3% 123.4 2.0
12 9 9.8 14.1 3.6% 96.4% 65.4 2.0

14 4 3.2 5.7 4.7% 95.3% 27.2 4.0
14 5 6.4 18.5 2.6% 97.4% 51.1 3.0
14 6 44.4 105.1 2.7% 97.3% 277.3 3.0
14 7 1.0 29.8 1.4% 98.6% 46.8 2.0
14 8 32.6 110.2 2.9% 97.1% 275.8 2.0
14 9 50.6 118.5 3.2% 96.8% 327.5 2.0
14 10 36.4 85.6 3.4% 96.6% 251.5 2.0

16 4 5.8 11.9 4.2% 95.8% 39.6 4.4
16 5 29.4 87.9 2.6% 97.4% 176.3 4.0
16 6 34.4 158.4 2.1% 97.9% 251.1 3.0
16 7 68.8 359.3 2.3% 97.7% 539.8 3.0
16 8 1.8 84.2 0.9% 99.1% 68.7 2.0
16 9 44.2 324.9 1.9% 98.1% 405.2 2.0
16 10 60.6 383.0 2.5% 97.5% 570.7 2.0

18 4 16.4 32.3 3.6% 96.4% 74.2 5.0
18 5 2.6 32.4 1.8% 98.2% 40.3 4.0
18 6 6.0 89.5 1.2% 98.8% 75.5 3.2
18 7 33.4 446.5 1.3% 98.7% 325.6 3.0
18 8 124.0 1183.7 2.1% 97.9% 1116.0 3.0
18 9 1.0 217.3 0.6% 99.4% 89.9 2.0
18 10 30.2 737.2 1.3% 98.7% 440.2 2.0

20 4 6.8 27.0 3.9% 96.1% 50.6 5.7
20 5 8.6 91.8 1.5% 98.5% 71.7 4.7
20 6 24.2 356.4 1.1% 98.9% 190.3 4.0
20 7 12.8 407.0 0.7% 99.3% 143.4 3.2
20 8 53.4 1854.6 0.9% 99.1% 659.6 3.0
20 9 179.8 4344.2 1.4% 98.6% 2026.2 3.0
20 10 1.0 688.0 0.3% 99.7% 117.8 2.0

25 5 11.2 302.0 1.0% 99.0% 110.8 5.9

36 6 21.0 5457.8 0.4% 99.6% 245.9 7.0

Table C.1: Computational Results. Averages over 10 instances.

98 Appendix C

problem and the ring-generation problem respectively. Finally the number of
times that metro-rings are generated (this includes cases where no metro-rings
are actually found) and the number of metro-rings in the optimal solution are
listed.

For all problem instances with up to 20 nodes, the branch-and-price algorithm
terminates in at most 3 hours (average worst case is 73 minutes). Since the
design of HRNs are considered strategic problems, the computational time is
acceptable. As it can be seen, the bottleneck in the algorithm is the generation
of rings which consistently takes more than 90% of the running time. The
gradually increasing running time for increasing |V | may both be attributed
to increased running time for each ring-generation problem solved and to the
increasing number of metro-rings which are generated (second last column). The
number of branch-nodes is limited, making memory issues negligible. However,
each branch requires generation of a substantial number of metro-rings, causing
substantially higher running time.

Instances where |V |/m is integer are easier than instances where this is not the
case. This is due to the increased number of branch-nodes which is caused by an
increased amount of fractional variables. Especially when |V |/m = 2, the pos-
sibility of obtaining an integer solution without branching is high. The special
case when all metro-rings and the federal-ring have the same number of nodes,
i.e. |V |/m = m and |V |/m integer, is considered in [14, 15, 16]. Since |V |/m
is integer, as discussed above, such instances are easier to solve to optimality
than instances where this is not the case. The last two rows in Table C.1 gives
results for instances with |V | = 25, m = 5 and |V | = 36, m = 6. The most
difficult instances with 36 nodes are solved in less than 6 hours and on average
over 10 instances in just above 1 1

2 hour.

For networks with up to 20 nodes, in most cases, the optimal solution contains
exactly the minimum number of metro-rings needed, given m. Only in 22 cases
out of 380 test runs in total, one more than the minimum number of metro-
rings needed is in the optimal solution. In Table C.1, this is the reason why
the last column contains fractions. This indicates that the demand values are
sufficiently high to make the metro-rings profitable and the hop constraint (15)
thus binding. On the other hand, since some instances exists for which this is
not the case, the demand values are not too high.

C.6.1 Future Research

The approach described in this paper can handle instances of the modified HRN
problem with up to 20 nodes. While we would like to solve larger problems, the

C.6 Computational Results 99

discussion in Section C.1 should make clear that the modified HRN problem con-
stitutes a hard optimization problem. Furthermore, previous HRN approaches
have either considered heuristics, with no performance guarantees, or enumera-
tive schemes which can handle less than 12 nodes. In order to be able to handle
larger instances in reasonable time, it is paramount to reduce the time spent
on ring-generation. Note that for each branch-node in the branch-and-bound
algorithm, at least one ring-generation problem has to be solved to optimal-
ity (the one giving no rings) to ensure that the value obtained when solving
the ring-partitioning problem is indeed a bound. Thus it is inevitable that the
ring-generation problem has to be solved to optimality at least as many times
as there are branch-nodes. The remaining number of times that rings are gen-
erated heuristics could be used, rings could be pre-generated and several rings
could be generated each time. These techniques could probably increase the size
of the modified HRN problems which can be handled. In this paper we have
further considered the most abstract and general formulation of the problem.
An obvious practical improvement could be to limit the links allowed in the
network to the e.g. k nearest neighbours for each node. Another approach to
reduce the problem hardness is the use of a so-called compatibility graph which
disallow certain pairs of nodes to be in the same metro-network is suggested in
[11].

As mentioned in Section C.3, the optimal solution of the modified HRN problem
may not be optimal in the original HRN problem. This is mainly for two reasons:
The metro-rings and the federal-ring is designed in separate (thus non-optimal)
stages and secondly, the modification assumes the average cost per ring per unit
of demand of rings are the same. It seems possible but nontrivial to include the
federal-ring design in the branch-and-price algorithm, but it seems more difficult
to solve the problem with the cost per ring per unit of demand. However, one
initial approach to take is to investigate how much the optimal solution for
the modified HRN problem deviates from the optimal solution to the original
HRN problem. This could be done either by investigating very small instances
for which optimal solutions can be found or by finding a lower bound on the
original problem cost.

Also it would be interesting to allow bidirectional instead of unidirectional self-
healing rings. One possibility is to use the same problem modification, and thus
approximate the bidirectional rings with unidirectional rings. However, in that
case the traffic approximation becomes even more unreliable.

Note that a capacity constraint can be added to the ring-generation problem,
thus dealing with ring capacity for the metro-rings. If capacities are available
in modular sizes for varying capacity costs, an idea is to generate rings for each
of the available capacities and corresponding capacity cost. This will probably
not work very well, essentially because the capacity cost per ring per unit of

100 Appendix C

demand is different for rings and thus B is not a good estimate for at least some
rings. It may be possible to get reasonable results, however, by using different
estimates of B for the various capacities. Assume a low capacity ring has a high
per unit capacity cost. In that case, intuitively a high B should be used for low
capacity rings, since this will correspond to a low overall saving accounting for
the more expensive per unit capacity, see equation (4).

C.7 Conclusion

In this paper we have considered the problem of designing HRNs. A prob-
lem modification has been presented which has previously been used to build
heuristics for designing HRNs. A branch-and-price algorithm is described, im-
plemented and tested. For the modified problem this algorithm finds provably
optimal solutions to networks with up to 20 nodes in less than 3 hours. For
problems with special structure, the algorithm finds provably optimal solutions
with up to 36 nodes in less than 6 hours. The computational time depends
heavily on the instances considered, and in particular it is possible to design
considerably larger networks if the maximum number of nodes in metro-rings
are small and/or if the number of nodes in the network is divisible with the
maximum number of nodes in metro-rings. Algorithmic improvements which
could speed up the algorithm have been suggested and we also suggest an in-
vestigation of how much the optimal solution to the modified problem deviates
from the solution to the original problem. In particular this investigation is
important if bidirectional self healing rings are considered.

Bibliography

[1] K. Altinkemer. (1994) Topological design of ring networks, Computers &
Operations Research 21(4), 421-431.

[2] C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh and P.H.
Vance. (1998) Branch-and-price: column generation for solving huge integer
programs, Operations Research 46(3), 316–29.

[3] M. Fischetti, J.J. Salazar Gonzalez, P. Toth. (1997) A branch-and-cut algo-
rithm for the symmetric generalized traveling salesman problem, Operations
Research 45(3), 378-394.

[4] T. Flanagan. (1990) Fiber network survivability, IEEE Communications
Magazine 28(6), 46-53.

C.7 Conclusion 101

[5] B. Fortz, P. Soriano, C. Wynants. (2003) A tabu search algorithm for
self-healing ring network design, European Journal of Operational Research
151(2), 280-295.

[6] M. Gawande, J.G. Klincewicz and H. Luss. (2000) Design of SONET/SDH
ring assignment with capacity constraints, Advances in performance anal-
ysis 2, 159-217.

[7] O. Goldschmidt, A. Laugier and E.V. Olinick. (2003) SONET/SDH ring as-
signment with capacity constraints, Discrete Applied Mathematics 129(1),
99-128.

[8] D. Kang, K. Lee, S. Park, K. Park and S.-B. Kim. (2000) Design of local
networks using USHRs, Telecommunication Systems 14(4), 197-217.

[9] J. G. Klincewicz. (1998) Hub location in backbone/tributary network de-
sign: a review, Location Science 6, 307-33.

[10] V. Mak and T. Thomadsen. (2004) Facets for the Cardinality Constrained
Quadratic Knapsack Problem and the Quadratic Selective Travelling Sales-
man Problem, IMM-Technical Report-2004-19.

[11] K. Park, K. Lee, S. Park and H. Lee. (2000) Telecommunication node
clustering with node compatibility and network survivability requirements,
Management Science 46(3), 363-374.

[12] A. Proestaki and M.C. Sinclair. (2000) Design and dimensioning of dual-
homing hierarchical multi-ring networks, IEE Proceedings-Communications
147(2), 96-104.

[13] D.M. Ryan and B. Foster. (1981) An integer programming approach to
scheduling, Computer Scheduling of Public Transport. Urban Passenger
Vehicle and Crew Scheduling. Proceedings of an International Workshop,
269-280.

[14] J. Shi and J.P. Fonseka. (1993) Dimensioning of self-healing rings and their
interconnections, Global Telecommunications Conference, 1993, including a
Communications Theory Mini-Conference. Technical Program Conference
Record, IEEE in Houston. GLOBECOM ’93., IEEE. 3, 1579-1583.

[15] J. Shi and J.P. Fonseka. (1994) Design of hierarchical self-healing ring net-
works, Communications, 1994. ICC ’94, SUPERCOMM/ICC ’94, Confer-
ence Record, ’Serving Humanity Through Communications.’ IEEE Inter-
national Conference on. 1, 478-482.

[16] J. Shi and J.P. Fonseka. (1995) Hierarchical self-healing rings, IEEE/ACM
Transactions on Networking, 690-697.

102

[17] J. Shi and J.P. Fonseka. (1996) Interconnection of self-healing rings, 1995
IEEE International Conference on Communications. Converging Technolo-
gies for Tomorrow’s Applications. ICC ’96. 3, 1563-1567.

[18] J. Shi and J.P. Fonseka. (1997) Analysis and design of survivable telecom-
munications networks, IEE Proceedings-Communications 144(5), 322-330.

[19] T. Thomadsen and T. Stidsen. (2003) The Quadratic Selective Travelling
Salesman Problem, IMM-Technical Report-2003-17.

[20] F. Vanderbeck and L.A. Wolsey. (1996) An exact algorithm for IP column
generation, Operations Research Letters 19, 151-159.

Appendix D

Joint Routing and Protection
Using p-cycles

Submitted for European Journal of Operational Research

104 Appendix D

Joint Routing and Protection Using p-cycles

Thomas Stidsen1 and Tommy Thomadsen 2

Abstract

Today people rely heavily on electronic communication systems like the
Internet, telephone systems, etc. Hence, it is important to ensure re-
liable electronic communication. The bulk of the electronic communi-
cation today is carried by circuit switched networks, thus protection
against failures in these networks is paramount. Protection is possible
by rerouting the electronic communication, bypassing the failed network
component. In order to be able to reroute, extra capacity is, neverthe-
less, needed.
This article considers the recently suggested fast protection method, p-
cycles. We develop a method for minimizing the capacity needed for
protection using p-cycles. The routing of traffic influence the amount
of extra capacity needed, thus we consider joint optimization of routing
and protection.
An integer linear programming model is presented and a column genera-
tion algorithm is developed. The algorithm is faster and obtains better
bounds and solutions than existing methods. The algorithm enables
an experimental study of the capacity efficiency of p-cycles. The results
show that p-cycles are comparable to any other protection method, with
respect to the capacity usage. The results also show that substantial ca-
pacity savings can be achieved when routing and protection is performed
jointly.
Based on the integer linear programming model, we discuss how pro-
tection costs can be taken into account in routing methods. We also
discuss an alternative efficiency measure of the p-cycles, which takes
into account the interaction with existing p-cycles.

Keywords: networks, p-cycles, routing, protection, column-generation.

1Informatics and Mathematical Modelling, Technical University of Denmark, Lyngby, Den-
mark. Email: tks@imm.dtu.dk

2Informatics and Mathematical Modelling, Technical University of Denmark, Lyngby, Den-
mark. Email: tt@imm.dtu.dk

D.1 Introduction 105

D.1 Introduction

Reliable communication networks are important in society today because of
the increasing dependency on electronic communication. However, most com-
munication networks are vulnerable to equipment failures, cable cuts, electric
outages, etc. Furthermore, is difficult, if possible at all, to avoid such failures.
Alternatively, the traffic may be reestablished by rerouting the traffic around
the failed network components.

Most of the high capacity communication networks today are circuit switched,
i.e. a connection is established prior to sending actual data. In this article we
consider bidirectional connections which enables two way communication via
bidirectional links. In Figure D.1(a), a bidirectional connection is established
between node A and node D. Given a network of nodes and bidirectional links
and a communication demand defined by a set of bidirectional connections,
routing is the optimization task of deciding the paths which should be used by
the bidirectional connections. The path of the connection in Figure D.1(a) use
the links AF , FE, and ED. Furthermore, the connection occupies a certain
bandwidth on the links AF , FE, and ED of its path. The required capacity of
a link is the sum of the bandwidths of all connections which pass the link. The
working capacity of the network is the summed capacity of all the links.

A

B

C

D

E

F

(a) A bidirectional connection

A

B

C

D

E

F

(b) A broken bidirectional con-
nection

Figure D.1: A circuit switched network

In Figure D.1(b), the effect of a link failure of link FE is shown: The link
between E and F fails and the connection between A and D is lost. When a link
failure occurs, the connections may be reestablished by rerouting the connections

106 Appendix D

passing the failed link. Rerouting is applied in protection methods to recover
failures. A number of different protection methods has been suggested: Span
protection, path protection, ring protection, global rerouting [16, 19], and p-cycle
protection. For a comprehensible review of the different protection techniques
we refer to [6]. Generally these protection methods protect against any single
link failure. We consider cycle protection [13] as an abstract model of ring
protection.

In order to be able to reroute in link failure situations, capacity is needed in
addition to the working capacity. Determining what additional capacity should
be installed in order to be able to handle any single link failure is an optimization
task. The additional capacity necessary is denoted the protection capacity.

Recently the so-called p-cycle protection method (Pre-configured Protection Cy-
cle), has been suggested [8]. The authors claim that the p-cycle protection
method is both capacity efficient and offer fast protection, leading to the claim
that p-cycles provide “ring-like speed with mesh-like capacity”.

Routing is usually done prior to protecting the network. For p-cycles, it is, how-
ever, beneficial to optimize routing and protection jointly. This article considers
the joint routing and protection problem, where protection is performed using
p-cycles. The main contribution is the development of a column generation al-
gorithm which determines close to optimal solutions for the joint routing and
protection problem.

The remainder of the article is organized as follows. In Section D.2, the gen-
eral problem of routing and p-cycle protection is described. Previous work on
optimization of p-cycle protection is briefly reviewed in Section D.3. In Sec-
tion D.4, the column generation algorithm for joint routing and p-cycle alloca-
tion is described. This algorithm is tested on six networks and in Section D.5,
the results are presented and discussed. Finally concluding remarks are given
in Section D.6.

D.2 The p-cycle Protection Method

The p-cycle protection method uses additional capacity allocated in cycles to
protect the links. The allocated cycles are denoted p-cycles. The same amount
of capacity is required on all links of the p-cycle. The capacity is pre-configured
such that in case of a link failure, the only nodes that need to do rerouting are
the end nodes of the failed link. Thus no signaling is required. The p-cycle
protects two types of links, on-cycle links, see Figure D.2(a) and straddling

D.2 The p-cycle Protection Method 107

(chord) links, see Figure D.2(b). In the figures, the thick solid lines indicate the
pre-configured capacity of the p-cycle. The failed links, in Figure D.2(a) link
EF and in Figure D.2(b) link BF , are marked with a cross.

A

B

C

D

E

F

(a) On-cycle link protection

A

B

C

D

E

F

(b) Straddling link protection

Figure D.2: p-cycle protection

On-cycle protection uses the fact that there is always one other way around the
cycle, in case of a link failure. In case a link on the cycle fails, the connections
on that link are rerouted over the remaining links of the cycle. The rerouted
connections are illustrated with the dashed line from node E through D C
B A to node F . Naturally the maximal number of connections which can be
protected for the on-cycle links corresponds to the pre-configured capacity of
the p-cycle.

Figure D.2(b) shows how a straddling link can be protected. Because the end-
nodes are on the cycle but the link is not on the cycle, the cycle has two routes
between the end-nodes (B and F) of the failed link, illustrated with the dashed
line and the dotted line in Figure D.2(b). The p-cycle can hence protect twice
the pre-configured capacity of the p-cycle. For a more comprehensive description
of p-cycles we refer to chapter 10 in [6].

A link may be protected by several p-cycles, i.e. if a link fails, the connections
using that link may be protected by rerouting them along several different p-
cycles protecting that link.

This article studies the problem of jointly planning routing and p-cycle pro-
tection. Given a network and a connection demand, the sum of the working
capacity and the protection capacity of the network is minimized.

108 Appendix D

D.3 Previous Work on p-cycle Planning

p-cycles were first suggested in [8] and it was claimed that p-cycles provide
“ring-like speed with mesh-like capacity”. Since then, a number of articles have
been published regarding different aspects of p-cycles. In this section we briefly
review those which are most relevant in connection with the joint routing and
p-cycle protection problem considered here.

In [15] theoretical arguments are given for the efficiency of p-cycles. Bounding-
type arguments are given for the claim that the p-cycle method is the most
capacity efficient pre-configured protection method. They do, however, base
the argumentation on fully connected networks. This seems far from the rather
sparsely connected telecommunication networks.

A Mixed Integer Program (MIP) model for planning p-cycle protection is pre-
sented in [8]. A prerouted network is assumed, i.e. the protection capacity
requirement is minimized given the working capacity. One problem with the
MIP model is that it requires enumeration of all possible p-cycles. Further-
more, it may be capacity inefficient since routing and protection are performed
separately. Because the number of p-cycles grows exponentially, only networks
of moderate size may be solved to optimality. By pre-selecting “promising” p-
cycles, the size of the networks which can be handled may be increased albeit
sacrificing the optimality guarantee. This is considered in [4, 9]. In [4] two mea-
sures for evaluating p-cycles are suggested. In Section D.4.4.2 we study these
measures in more detail. In [9], the effect of preselecting p-cycles of different
size is investigated.

The problem of joint routing and p-cycle protection is studied in [7, 12]. In [7] a
number of paths and p-cycles are pre-selected, making optimization of networks
of medium size possible, again sacrificing the optimality guarantee. In [12],
column generation is applied to implicitly represent all paths and p-cycles. The
column generation subproblem is, however, not solved to optimality and thus no
bounds can be derived, see Section D.4.4.1. Still, it is in [12] demonstrated that
low capacity requirements can be achieved using p-cycle protection. In [13], the
related problem of joint routing and protection using cycles is studied.

A different approach is taken in [14]. Here a complex MIP model, which does
not require enumeration of all possible p-cycles, is formulated. The number of
binary variables of the formulation is O(|N | · |L| · |C|), where |N | is the number
of nodes, |L| is the number of nodes and |C| is the number of different p-cycles
which are actually used. While this is certainly an improvement compared to
an exponential number of variables in the MIP formulation from [8], the size
of the formulation still grows significantly making optimal solution methods in-

D.4 Solution Methodology 109

tractable for networks of medium size. Instead, an elaborate method for stepwise
optimization of gradually refined models is suggested. The approach is verified
by application to full meshed networks with up to 25 nodes.

D.4 Solution Methodology

As discussed in Section D.3, the MIP model suggested in [8] requires enumer-
ation of all possible p-cycles to achieve an optimal solution. In this section,
we describe how the use of a column generation algorithm allows us to solve a
relaxation of the MIP model through implicit enumeration of the p-cycles. This
enables solution of the LP-relaxed MIP model to optimality generating only a
fraction of the possible p-cycles.

Section D.4.1 describes the MIP model for joint routing and p-cycle protection.
In Section D.4.2 the column generation algorithm which is needed to solve the
relaxed MIP model is described. The column generation algorithm requires
the solution of two sub-problems: The path generation problem described in
Section D.4.3, and the p-cycle generation problem described in Section D.4.4.
Finally, Section D.4.5 describes how to use the generated paths and p-cycles to
find near optimal solutions to the original MIP model.

D.4.1 The Joint Routing and Protection Planning Prob-
lem

Consider a network consisting of a set of nodes N and a set of links L. Fur-
thermore, a set of connection demands D, indexed by unordered node pairs,
k, l ∈ V are defined. The constant dkl ∈ N0 is the number of connections de-
manded between nodes k and l. A set of paths Pkl, exist for each demand kl
and a set of p-cycles R are given. Let cij be the capacity cost for allocating
one unit of capacity on link ij ∈ L. The capacity cost of a path p ∈ Pkl is
cklp =

∑
ij∈p cij . The capacity cost of a p-cycle r ∈ R is cr =

∑
ij∈r cij , i.e. the

sum of the capacity cost of the on-cycle links of the p-cycle. We assume that
the capacity unit of the required connections dkl is equal to the capacity units
of the links.

The constants PATHkl
p,ij have value 1 if path p ∈ Pkl use link ij ∈ L and 0

otherwise. The constants PCY Cr,ij have value 1 if link ij of p-cycle r is on-
cycle, 2 if link ij is straddling, and 0 otherwise. The PCY Cr,ij constants define
the protection offered by the p-cycle.

110 Appendix D

The variables vklp ∈ Z+ are the number of connections of demand kl ∈ D that
use path p ∈ Pkl and the variables ur ∈ Z+, are the pre-configured capacity of
p-cycle r ∈ R. Then a MIP model for the Joint routing and p-cycle protection
problem, henceforth called the JP model can be formulated:

minimize:

protection cost︷ ︸︸ ︷∑
r∈R

cr · ur +

routing cost︷ ︸︸ ︷∑
kl∈D

∑
p∈Pkl

cklp · vklp (1)

subject to:

(ξkl)
∑
p∈Pkl

vklp = dkl ∀ kl ∈ D

(2)

(πij)
∑
r∈R

PCY Cr,ij · ur −
∑
kl∈D

∑
p∈Pkl

PATHkl
p,ij · vklp ≥ 0 ∀ ij ∈ L

(3)

vklp ∈ Z+ ∀ p ∈ Pkl
(4)

ur ∈ Z+ ∀ r ∈ R
(5)

The objective function (1) calculates the combined routing and protection cost.
The constraints (2) ensure that all demands are satisfied by routing exactly
the required connections along one or more of the available paths. The con-
straints (3) ensure that each link is protected against failure by allocation of
enough protection capacity along p-cycles which offers protection to the link.
Notice the difference between on-cycle link protection and straddling link protec-
tion is included in the PCY Cr,ij constant. The dual variables of constraints (2)
are ξkl and the dual variables of constraints (3) are πij .

The JP model is a generalization of the MIP model suggested in [8], which
arises when Pkl contain exactly one path, the shortest, for each demand kl. The
same model as the above is used in [7, 12]. The main problem with the JP
model is that the number of paths and p-cycles grows exponentially with the
number of nodes (and links) in the network. In order to ensure optimality, all
paths and p-cycles must be considered explicitly or implicitly. To avoid explicit
representation of paths and p-cycles, column generation is applied. The Relaxed
JP model, R-JP is created by relaxing the integer domain constraints (4) and (5)

D.4 Solution Methodology 111

of the variables vklp and ur, i.e. vklp , ur ∈ R+. The R-JP model is an LP model,
which can then be solved using column generation where the paths and p-cycles
are taken into account implicitly. The column generation algorithm solves a
R-JP model of reduced size where only a small subset of paths P and p-cycles
R are included. We denote this the R-JP(P,R) model. Paths and p-cycles are
then generated when needed.

D.4.2 Column Generation Algorithm

The idea of a column generation algorithm is to only generate the variables when
needed, i.e. when the reduced cost of a variable is negative. For each iteration
of the column generation algorithm the paths (one for each demand) with the
minimal reduced cost is found and the p-cycle with the minimal reduced cost
is found. If the reduced cost of a path or a p-cycle is negative, they are called
improving. If no improving paths or p-cycles are found, the algorithm terminates
and the R-JP model has been solved to optimality using only a subset of possible
paths and p-cycles. The column generation algorithm is given in pseudo-code
in Figure D.3.

P = Shortest path for each demand node pair kl
R = one dummy p-cycle for each link ij
do

Solve the R-JP(P,R) problem
Solve routing subproblems searching for improving paths
if improving paths found then

Add improving paths to P
Solve p-cycle subproblem searching for an improving p-cycle
if improving p-cycle found then

Add improving p-cycle to R
while improving path or improving p-cycle is found

Figure D.3: The joint routing and p-cycle protection column generation algo-
rithm

Initially the column generation algorithm is started with a set of shortest paths,
one for each demand, and a set of dummy p-cycles one for each link ij. A dummy
p-cycle is a (non-existent) p-cycle which has the ability of protecting just one
link and which is so expensive that it will never show up in the optimal solution.
Then the R-JP(P,R) model is solved based on the current set of paths P and the
current set of p-cycles R. Based on the dual variables from equation (2) (ξkl)
and equation (3) (πij), improving paths and p-cycles are found. This process

112 Appendix D

continues until no improving paths or p-cycles are found.

D.4.3 Subproblem I: Path Generation

The path generation problem is the problem of generating paths with negative
reduced cost. The reduced cost of a variable ĉklp can be calculated based on the
dual variables ξkl and πij from equation (2) and equation (3) in the R-JP(P,R)
model and the link cost cij as follows.

ĉklp =
∑
ij∈p

cij − ξkl +
∑
ij∈p

πij (6)

Each reduced cost contains three terms, the sum of the link costs cij , a reward
term ξkl for providing an additional path to route the demand kl and a sum of
the link protection costs πij . The term ξkl appear in the reduced cost for all
kl-paths. Therefore the path with the lowest reduced cost for a demand kl can
be found as the shortest path in a network with link costs defined as follows.

cij = cij + πij (7)

By duality πij ≥ 0 and by assumption cij ≥ 0, this means that cij ≥ 0. Thus
we can apply the Floyd-Warshall algorithm [3] and the shortest paths for all
demands kl can be calculated in O(|N |3). The running time may be improved
using iterated Dijkstra, but since running time for generating paths is insignifi-
cant, this has not been implemented.

For all node pairs kl, if a path exists with ĉklp < 0 it is an improving path and
it is included into the set of paths P in the R-JP(P,R) model.

Column generation is a standard approach used for the multi commodity flow
problem, hence the pricing problem of paths has been extensively studied. The
problem is studied in connection with network restoration in [11] and in con-
nection with p-cycles in [12].

When the column generation algorithm terminates, the price cij is the price
for using that link, including both routing costs and protection costs. Often
joint routing and p-cycle protection is unrealistic because, as is argued in [14],
introduction of new p-cycles in a network is a strategic decision, whereas routing
is an operational decision. We suggest that after the strategic choice of p-cycles,

D.4 Solution Methodology 113

based on a forecast of the demand, routing is performed as shortest path routing
based on cij prices. This is not optimal because new p-cycles may be needed,
but an estimation of the protection costs is utilized in the routing.

D.4.4 Subproblem II: p-cycle Generation

The second subproblem is the p-cycle generation problem, i.e. the problem of
generating p-cycles with negative reduced costs. The reduced costs of the p-
cycles depend only on the πij dual values. The reduced costs may be calculated
as given below.

ĉr =
∑
ij∈r

cij −
∑

ij straddling r

2 · πij −
∑
ij∈r

πij

=
∑
ij∈r

cij −
∑

ij straddling r or ij∈r
2 · πij +

∑
ij∈r

πij (8)

The last equality sign follows immediately by including both straddling and on-
cycle links into the second sum and afterwards correcting by adding the third
sum.

The p-cycle generation problem is an NP-hard optimization problem [12, 17]
which we have previously termed the Quadratic Selective Travelling Salesman
problem. This problem is described in detail in [17] and we refer to this article
for an in-depth treatment. In [10] a polyhedral study of the problem is carried
out.

The following MIP model of the P -Cycle Generation problem, henceforth called
the PCG model, uses three types of variables: The variables yi ∈ {0, 1} repre-
sent the nodes which are part of the p-cycle, 1 for being included 0 otherwise.
The variables xij ∈ {0, 1} for ij ∈ L represents the links where the protection
capacity is pre-configured, 1 for being included 0 otherwise. Finally the vari-
ables zij ∈ R+ represents all node pairs ij ∈ L which are included in the p-cycle,
1 for the node pair being included 0 otherwise. The PCG is then expressed as
follows.

minimize: ∑
ij∈L

(cij + πij)xij −
∑
ij∈L

2πijzij (9)

114 Appendix D

subject to: ∑
j∈V

xij = 2yi ∀ i ∈ N (10)

zij ≤ yi ∀ ij ∈ L (11)
zij ≤ yj ∀ ij ∈ L (12)
zij ≥ yi + yj − 1 ∀ ij ∈ L (13)∑

i∈S,j 6∈S,ij∈L
xij ≥ 2(yk + yl − 1)

∀ S ⊂ N, 3 ≤ |S| ≤ |N | − 3 , k ∈ S, l 6∈ S (14)

xij , yi ∈ {0, 1} zij ∈ R+ (15)

The objective equation (9) calculates the reduced cost as described above in
equation (8). All nodes which are in the p-cycle are required to have to two
incident links, which is ensured by equation (10). For each ij ∈ L where i and j
are included in a p-cycle, i.e. yi = 1 and yj = 1, the variable zij = 1. This is en-
sured by equation (11), (12) and (13). Since πij ≥ 0, constraints (13) are implied
and are thus not necessary in the formulation. Sub-tour elimination constraints
are added in order to ensure that connected cycles are constructed (14). Finally
the domain constraints (15) ensure integer values for the x and y variables which
in turn force integrality of the z variables.

The PCG model is solved using the branch-and-cut algorithm described in [17].
Solving the PCG model is the bottleneck of the column generation algorithm.
This is validated by computational tests, see Table D.2 in Section D.5.1. How-
ever, the total computation time is acceptable, thus we have deemed improve-
ments unnecessary. If a speed up of the column generation algorithm is needed,
heuristic generation of improving p-cycles could be applied. Inspiration for this
could be sought in algorithms for the TSP problem and pricing problems for
cycles [12]. However, to ensure optimality of the column generation algorithm,
guarantee of non-negative reduced costs are required, thus, ultimately optimal
solution of the PCG model is required.

D.4.4.1 Reduced cost of cycles

For comparison we modify the algorithm to deal with the Joint routing and Cycle
protection (JC) model. We use the same column generation algorithm as for
the JP model. The only difference is the removal of straddling protection from
the PCY Cr,ij constant, i.e. PCY Cr,ij = 1 if link ij of p-cycle r ∈ R is on-cycle
and 0 otherwise. The path generation problem, see Section D.4.3, remains the

D.4 Solution Methodology 115

same, but the MIP model for the cycle generation problem is slightly different
from the PCG model. The objective is to find the cycle with the most negative
reduced cost, hence equation (9) is changed to equation (16) below, where the
reward for the straddling links have been removed.

minimize
∑
ij∈L

(cij − πij)xij (16)

Only the objective function is changed to find improving cycle instead of improv-
ing p-cycles. However, at the same time the zij variables and the constraints in
equation (11), (12) and (13) become obsolete. This indicates that cycle gener-
ation is easier than p-cycle generation, and in fact cycles can be generated in
polynomial time. Applying the Bellman-Ford algorithm [3], cycles with negative
reduced costs, negative cycles, can be found in O(|L| · |N |2) time.

D.4.4.2 p-cycle Efficiency

As mentioned in Section D.3, one way to reduce the problem of the large number
of possible p-cycles is to pre-select a fraction of promising p-cycles. In [4] two
different measures of the p-cycles efficiency for p-cycle pre-selection is suggested:
“A Priori p-cycle Efficiency” AE(r), see equation (17); and “Demand-weighted
p-cycle Efficiency” EW (r), see equation (18).

AE(r) =

∑
ij PCY Cr,ij∑

ij∈r cij
(17)

EW (r) =

∑
ij CAPij · PCY Cr,ij∑

ij∈r cij
(18)

The efficiency measure AE(r) counts the number of protected links, divided by
the cost of the p-cycle. In EW (r) the offered protection capacity is weighted
with the working capacity which needs to be protected for each link, CAPij .
Hence this measure assumes that the demands are already routed.

To compare AE(r) and EW (r) measures with the reduced cost (ĉr) from equa-
tion (8), the reduced costs of the p-cycles is divided by the cost

∑
ij∈r cij (as-

116 Appendix D

suming
∑

ij∈r cij 6= 0) of the p-cycle and equation (19) is obtained.

ĉ′r = 1−
∑
ij∈r πij · PCY Cr,ij∑

ij∈r cij
(19)

Given a p-cycle r, the sign of ĉ′r is the same as ĉr, because we assume cij ≥ 0,
i.e. ĉr < 0 ⇒ ĉ′r < 0. However, the division may have changed the order of
the p-cycles with negative reduced costs, hence the best p-cycle according to
equation (8) is not necessarily the best p-cycle according to equation (19). The
division effectively makes the shorter p-cycles more attractive. If we ignore the
constant term and change the sign of the fraction, we obtain a new measure
which should be maximized.

ĉ′′r =

∑
ij πij · PCY Cr,ij∑

ij∈r cij
(20)

It is interesting to compare the optimal p-cycles according to the three differ-
ent measures: AE(r) (equation (17)), EW (r) (equation (18)) and ĉ′′r (equa-
tion (20)). The optimal p-cycle according to the AE(r) measure, is the p-cycle
with the lowest average cost for link protection. The main problem is that it
does not take into account the actual need for protection, i.e. the working capac-
ity which needs to be protected. The EW (r) measure weighs the importance
the protection of the links according to the working capacity CAPij of each
link. The main problem with the EW (r) measure is that it does not take the
interplay of the different p-cycles into account, i.e. a link may not be very in-
teresting to protect, even though CAPij is high, because the link might already
be cheaply covered by other efficient p-cycles. Given a network, a set of existing
p-cycles and a demand, we conjecture that the measures defined in equation (8)
and equation (20) are the best measures of future p-cycles to include into the
network. Furthermore, these measures seems most appropriate when choosing
p-cycles to add in response to increased demand.

D.4.5 Getting Integer Solutions

The column generation algorithm obtains an optimal solution to the R-JP
model, but it is not guaranteed to return an integer solution, i.e. the opti-
mal solution to the JP model. In this article we have chosen the simple solution
of solving the JP model using a standard MIP solver with the paths P and
p-cycles R collected during the column generation algorithm. Hence it is really

D.5 Results and Discussion 117

the JP(P,R) model which is solved and it is important to acknowledge that the
MIP solver only returns the optimal solution given the available paths and p-
cycles and not the optimal integer solution to the full JP model. But because
we have an optimal lower bound from the column generation algorithm, the
solution to the R-JP model, we can quantify the worst case optimality gap. As
the results clearly illustrates in Section D.5.3 this approach is fully sufficient to
achieve close to optimal performance for all the networks tested. In order to get
the real optimal solution a branch-and-price algorithm is needed [1, 18].

D.5 Results and Discussion

Our column generation algorithm and the integer heuristic is tested on six net-
works, see Table D.1. The objective of the tests and discussions in this section
is twofold: To examine the efficiency of the column generation algorithm and
to compare the capabilities of p-cycles with cycle protection and the global
rerouting lower bound [16, 19]. The global rerouting lower bound is achieved
by allowing rerouting of all connections in case of any single link failure. Note
that global rerouting is a lower bound for any protection method. In [19] a
heuristic for global rerouting is suggested but here we report results obtained
by a column generation algorithm which guarantees the lower bound [16].

Nodes Links Avg. Node Working Global Rerouting
Degree Capacity Abs. Rel.

Cost239 [2] 11 26 4.73 86 11.6 13 %
Europe 13 21 3.23 158 90.0 57 %
USA [4] 28 45 3.21 1273 641.2 50 %
Italy [5] 33 68 4.12 1718 581.4 34 %
France [4] 43 71 3.3 3473 1604.0 46 %
France 2 [4] 43 71 3.3 4043 3156.3 78 %

Table D.1: The tested networks

The columns in Table D.1 contain (in order): The number of nodes, the number
of links, the average node degree, the working capacity i.e. capacity after shortest
path routing of all demands, and the global rerouting lower bound both in
absolute extra capacity and the percentage extra compared to working capacity.

For all networks, one connection is requested for all node pairs, except for the
network France 2 where the same (sparse) demand pattern as in [4] was used.
Otherwise, the networks France and France 2 are identical. In the tests we
assume unit costs for the links, i.e. cij = 1, as have been done previously in [4].

118 Appendix D

Based on the test networks, Section D.5.1 presents results regarding computa-
tional efficiency of the algorithm. Section D.5.2 compares the protection capac-
ity of p-cycles with the protection capacity of cycles, using shortest path routing
and joint routing, and with the global rerouting lower bound. In Section D.5.3,
the integer solutions are compared with the bound. Finally, in Section D.5.4,
the importance of straddling link protection offered by the p-cycle method is
studied.

D.5.1 Computational Efficiency

Table D.2 presents data regarding the running time of the column generation
algorithm. For each network, the total running time, the percentage of the
time spent on solving the R-JP problem (including time spent on initialization
and path generation), the percentage of the time spent on generating p-cycles,
the percentage of the time spent on obtaining integer solutions, the number of
p-cycles generated (Gen.), the number of p-cycles used in the integer solutions
(Used), and the time spent on generating one p-cycle on average. The CPLEX
9.0 solver is used both to solve the R-JP model in the column generation al-
gorithm, to solve the linear programs in the branch-and-cut algorithm for the
PCG model, and to obtain the integer solutions of the JP(P,R) model. The
MIP solver generates the integer solutions as described in Section D.4.5, but if a
provably optimal solution is not found after 30 seconds, the MIP solver is termi-
nated and the best feasible solution found is returned. Preliminary tests show
that 30 seconds was sufficient to obtain good heuristic solutions. The computer
used was a 1200 MHz SUN Fire 3800 machine.

Total JP PCG Integer #p-cycles Avg. PCG
Time (sec.) Time (%) Time (%) Time (%) Gen. Used Time (sec.)

Cost239 0.4 25.0 % 75.0 % 0.0 % 8 3 0.04
Europe 1.0 10.0 % 90.0 % 0.0 % 10 5 0.09
USA 44.3 2.0 % 30.2 % 67.7 % 17 11 0.79
Italy 160.6 3.1 % 78.1 % 18.7 % 44 14 2.85
France 360.1 2.1 % 96.3 % 1.6 % 43 22 8.07
France 2 239.2 0.7 % 99.1 % 0.2 % 41 19 5.78

Table D.2: Computational efficiency

The column generation algorithm terminates in less than 361 seconds for all
the test networks. The main part of the running time is spent on generating p-
cycles, and to some extend finding an integer solution. The number of generated
p-cycles is low, always less than 50, even though the number of possible p-cycles
for example in the France network is at least 500000 [4]. Furthermore only
about half of these are used in the integer solutions. The running time may be

D.5 Results and Discussion 119

improved by pre-generating a number of p-cycles e.g. by using the pre-selection
methods suggested in [4, 9].

D.5.2 Protection Capacity Efficiency

In this section, we compare the (integer) solutions for the JP model, the Shortest
path routing p-cycle protection (SP) model, the JC model and the Shortest path
routing Cycle protection (SC) model. The SP protection method and the SC
protection method only allows the demands to be satisfied using one path: The
shortest. Hence, the JP model is reduced to contain only the shortest path
in the set of paths Pkl for each demand. As mentioned earlier in Section D.3,
other articles have considered p-cycle protection assuming a prerouted demand.
Thus the comparison between JP and SP is interesting. The cycle protection
models are solved using the same column generation algorithm described in
Section D.4.2, with the modifications described in Section D.4.4.1.

For each network in Table D.3, the working capacity is given in the first column.
The protection capacity in absolute number and relative to the working capacity
is given for the integer solutions for the four different models.

p-cycle Protection Cycle Protection
Working JP SP JC SC

Abs. Abs. Rel. Abs. Rel. Abs. Rel. Abs. Rel.

Cost239 86 30 35% 37 43% 90 105% 94 109%
Europe 158 112 71% 147 93% 162 103% 182 115%
USA 1273 861 68% 1064 84% 1328 104% 1472 116%
Italy 1718 868 51% 1206 70% 1774 103% 1892 110%
France 3473 2255 65% 2904 84% 3732 107% 3954 114%
France 2 4043 3345 83% 3470 86% 4774 118% 4848 120%

Table D.3: p-cycle and cycle protection efficiency

From Table D.3 it is clear that the joint routing and p-cycle protection method
is the most efficient. This method requires between 35% and 83% protection
capacity to protect the network. The corresponding cycle protection method
requires between 103% and 118% protection capacity. p-cycles are most capacity
efficient for the networks with the highest node degree: Cost239 and Italy. The
higher density of the networks enables better use of straddling links, which is
shown in Section D.5.4.

In [14] a number of good arguments against joint routing and protection are
given. While we acknowledge these, we find it interesting that savings of 3%−

120 Appendix D

22% of the required protection capacity is possible for p-cycles. A possible
explanation of the improved efficiency of joint routing and protection is offered
in Section D.5.4. For cycle protection, the total capacity savings are, however,
only 2%− 12%.

In [4], it is suggested to solve the SP model using p-cycles generated prior to
optimization. Results are presented for USA and France 2. For USA, all p-
cycles can be enumerated, thus the optimal solution of 1064 is obtained, which
coincide with the solution we have obtained. For France 2, all p-cycles cannot
be generated, but by generating 15000, a heuristic solution of 3675 is obtained.
For comparison, we obtain a heuristic solution of 3470 using the SP model and
a solution of 3345 if joint optimization is applied.

It could be argued that the comparison in Table D.3 is not fair, since the per-
centages are given compared to no protection at all. In Table D.4, the global
rerouting lower bound [16, 19] is compared to p-cycle protection with and with-
out joint routing. The first column contains the working capacity and the second
column the additional capacity needed for global rerouting protection. Then fol-
lows the protection capacity, the extra capacity compared to the global rerouting
lower bound, and the extra capacity in percent of the working capacity for JP
and SP.

Working Global JP SP
Rerouting Abs. Extra Extra % Abs. Extra Extra %

Cost239 86 11.6 30 18.4 21 % 37 25.4 30%
Europe 158 90.0 112 22.0 14 % 147 57.0 36%
USA 1273 641.2 861 219.8 17 % 1064 422.8 33%
Italy 1718 581.4 868 286.6 17 % 1206 624.6 36%
France 3473 1604 2255 651 19 % 2904 1300 37%
France 2 4043 3156.3 3345 188.7 5 % 3470 313.7 7.8%

Table D.4: Global rerouting vs. p-cycle protection

It is interesting to observe, that at most 21% extra capacity is needed to en-
sure protection using p-cycles as compared to the global rerouting lower bound.
Furthermore, France 2 is only 5% from the global rerouting lower bound. This
is due to the sparse demand pattern.

D.5.3 Integer Solution Quality

Table D.5 shows the gap between the lower bound found by the column gener-
ation algorithm and the integer solution found by the MIP solver.

D.5 Results and Discussion 121

p-cycle Protection Cycle Protection
JP SP JC SC

Cost239 2.33 % 4.65 % 5.45 % 2.50 %
Europe 0.00 % 0.59 % 0.75 % 0.99 %
USA 0.35 % 0.15 % 0.09 % 0.00 %
Italy 0.81 % 0.11 % 0.08 % 0.14 %
France 0.15 % 0.01 % 0.00 % 0.00 %
France 2 0.08 % 0.08 % 0.04 % 0.03 %

Table D.5: Integer gap (%) to Column generation lower bound

As can be seen from Table D.5, the solutions obtained are within 1% from
optimum for all variants of the algorithms for all networks, except Cost239
where the integer solutions are up to 5.45% from the lower bound. Thus in
general the algorithm produces close to optimal solutions.

The Cost239 network is small, thus all p-cycles can be generated. Furthermore,
the optimal integer solution can be obtained, however the gap is still substantial.
Thus, the heuristic solution obtained is good, but the lower bound for Cost239
is significantly worse than for the other networks. This may be caused by the
high density of the Cost239 network compared to the other networks.

D.5.4 Straddling Link Protection and Surplus Capacity

The difference between p-cycles and cycles is in essence the possibility of protect-
ing straddling links. In this section we investigate how much of the protection
capacity is straddling protection compared to on-cycle protection. The p-cycles
may be able to protect more working capacity in the link than is actually present.
This is denoted surplus capacity. The surplus capacity for a link ij corresponds
to the value of the left hand side of inequality (3) and the total surplus capacity
is the sum of surplus capacity for all links.

Table D.6 compare the on-cycle protection capacity, the straddling protection
capacity and the surplus capacity for JP and SP. All capacities are given in
percent of the total protection capacity, i.e. on-cycle plus straddling protection
capacity. It can be seen in Table D.6 that for the networks Cost239 and Italy,
more than 50% of the protection capacity is straddling protection. For the
rest of the networks 40% to 50% is straddling protection. The higher amount
of straddling capacity in the networks Cost239 and Italy is due to the higher
density of these networks. This also explains the higher capacity efficiency of

122 Appendix D

JP SP
On-cycle Straddling Surplus On-cycle Straddling Surplus

Cost239 29 % 71 % 17 % 31 % 69 % 29 %
Europe 52 % 48 % 25 % 52 % 48 % 44 %
USA 52 % 48 % 20 % 56 % 44 % 33 %
Italy 39 % 61 % 18 % 43 % 57 % 39 %
France 50 % 50 % 17 % 58 % 42 % 30 %
France 2 56 % 44 % 30 % 55 % 45 % 36 %

Table D.6: Pre-configured capacity: On-cycle, straddling and surplus

the p-cycle protection method for these networks in Table D.3.

The effect of joint routing and protection only slightly increases the amount of
straddling capacity. On the other hand, joint routing and protection signifi-
cantly decreases the amount of surplus capacity and this seems to be the main
reason for the improved capacity efficiency of joint routing and protection.

D.6 Conclusion

In this article we have described an integer linear programming model for the
problem of jointly routing and protecting a network using p-cycles. A column
generation algorithm is implemented to obtain lower bounds. Based on the
columns generated, heuristic solutions are found. The gap between the lower
bound and the heuristic solution is insignificant.

An experimental study shows that the algorithm obtains better bounds and
solutions faster than previously used algorithms. Lower bounds and solutions
are found for networks with up to 43 nodes and 71 links in at most six minutes.

The experiments further show that straddling link protection is a valuable ad-
dition to cycle protection. Also, joint routing and protection reduce the total
capacity usage compared to when routing is predetermined. The gap between
the joint routing and protection for p-cycles and the global rerouting lower
bound is only 5%− 21%, which is quite remarkable since the p-cycle protection
method is fast.

Based on the integer linear programming model, it is discussed how the protec-
tion cost can be taken into account in routing methods. Finally, a new measure
of p-cycle efficiency is discussed, which takes the interplay of existing p-cycles
into account.

D.6 Conclusion 123

Bibliography

[1] C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh and P.H.
Vance. Branch-and-price: column generation for solving huge integer pro-
grams. Operations Research, 46(3):316–29, 1998.

[2] P. Batchelor, B. Daino, P. Heinzmann, D.E. Hjelme, P. Leuthold, R. Inkret,
G.D. Marchis, H.A. Jager, F. Matera, M. Joindot, B. Mikac, A. Kuchar, H.-
P. Nolting, E.L. Coquil, J. Spath, F. Tillerot, B.V. Caenegem, N. Wauters,
and C. Weinert. Study on the implementation of optical transparent trans-
port networks in the european environment-results of the Research Project
COST 239. Photonic Network Communication 2(1):15–32, 2000.

[3] T.H. Cormen, C.E. Leiserson and R.L. Rivest. Introduction to Algorithms.
McGraw-Hill Book Company, 2th edition, 2001.

[4] J. Doucette, D. He, W. Grover, and O. Yang. Algorithmic approaches for
efficient enumeration of candidate p-cycles and capacitated p-cycle network
design. Fourth International Workshop on the Design of Reliable Commu-
nication Networks, 212–220, 2003.

[5] W. Grover, J. Doucette, M. Clouqueur, D. Leung, and D. Stamatelakis.
New options and insights for survivable transport networks. IEEE Com-
munications Magazine, 40(1):34–41, 2002.

[6] W.D. Grover. Mesh-Based Survivable Networks: Options and Strategies for
Optical, MPLS, SONET and ATM Networking, Prentice Hall, 2003.

[7] W.D. Grover and J. Doucette. Advances in optical network design
with p-cycles: joint optimization and pre-selection of candidate p-cycles.
IEEE/LEOS Summer Topical Meeting, WA2–49, 2002.

[8] W.D. Grover and D. Stamatelakis. Cycle-oriented distributed preconfigu-
ration: ring-like speed with mesh-like capacity for self-planning network
restoration. IEEE International Conference on Communications, 1:537–
543, 1998.

[9] J. Kang and M. Reed. Bandwidth protection in MPLS networks using p-
cycle structure. Proceedings of the Fourth International Workshop on the
Design of Reliable Communication Networks, 356–362, 2003.

[10] V. Mak and T. Thomadsen. Facets for the Cardinality Constrained
Quadratic Knapsack Problem and the Quadratic Selective Travelling Sales-
man Problem. IMM-Technical Report-2004-19, 2004.

[11] K. Murakami, and H.S. Kim. Joint optimization of capacity and flow as-
signment for self-healing ATM networks. IEEE International Conference
on Communications, 1:216–220, 1995.

124

[12] D. Rajan, and A. Atamtürk. Survivable network design: routing of flows and
slacks. In Anandalingam, G and Raghavan, S., editors, Telecommunications
Network Design and Management, Kluwer Academic Publishers, 65–81,
2003.

[13] D. Rajan, and A. Atamtürk. A directed cycle-based column-and-cut
generation method for capacitated survivable network design. Networks,
43(4):201–211, 2004.

[14] D.A. Schupke. An ILP for optimal p-cycle selection without cycle enumera-
tion. Eighth Working Conference on Optical Network Design and Modelling
(ONDM), 2004.

[15] D. Stamatelakis and W.D. Grover. Theoretical underpinnings for the effi-
ciency of restorable networks using preconfigured cycles (p-cycles). Com-
munications, IEEE Transactions on 48(8):1262–1265, 2000.

[16] T. Stidsen. P. Kjærulff. Protection lower bounding through global rerout-
ing. Work In Progress.

[17] T. Thomadsen and T. Stidsen. (2003) A Branch-and-Cut Algorithm for the
Quadratic Selective Travelling Salesman Problem. Submitted for Telecom-
munication Systems.

[18] F. Vanderbeck and L.A. Wolsey. An exact algorithm for IP column gener-
ation. Operations Research Letters 19(4):151–159, 1996.

[19] J. Yamada. A spare capacity design method for restorable networks. IEEE
Global Telecommunications Conference 2:931–935, 1995.

Appendix E

The Generalized Fixed-Charge
Network Design Problem

Accepted for publication in Computers and Operations Research

126 Appendix E

The Generalized Fixed-Charge Network Design Problem

Tommy Thomadsen1 and Thomas Stidsen 2

Abstract

In this paper we present the Generalized Fixed-Charge Network Design
(GFCND) problem. The GFCND problem is an instance of the so-called
Generalized Network Design problems. In such problems, clusters in-
stead of nodes have to be interconnected by a network. The network
interconnecting the clusters is a Fixed-Charge network, and thus the
GFCND problem generalizes the Fixed-Charge Network Design prob-
lem. The GFCND problem is related to the more general problem of
designing hierarchical telecommunication networks.
A mixed integer programming model is described and a branch-cut-and-
price algorithm is implemented. Violated constraints and variables with
negative reduced costs are found using enumeration. The algorithm is
capable of obtaining optimal solutions for problems with up to 30 clus-
ters and up to 300 nodes. This is possible, since the linear programming
relaxation bound is very tight and there are few non-zero variables and
few binding constraints.

Keywords: Fixed-Charge Network Design, Generalized Network Design,
Branch-Cut-and-Price, Hierarchical Networks

E.1 Introduction

Hierarchical telecommunication networks consist of two or more layers of net-
works. Hierarchical telecommunication networks exist for historical reasons and
enable economy of scale in the central high speed networks, the backbone-
networks. This paper examines the problem of designing a backbone mesh
network interconnecting given clusters. The problem is an important subprob-
lem when constructing hierarchical telecommunication networks. This problem
is denoted the Generalized Fixed-Charge Network Design (GFCND) problem
and is illustrated in Figure E.1.

1Informatics and Mathematical Modelling, Technical University of Denmark, Lyngby, Den-
mark. Email: tt@imm.dtu.dk

2Informatics and Mathematical Modelling, Technical University of Denmark, Lyngby, Den-
mark. Email: tks@imm.dtu.dk

E.2 Related Problems 127

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
� �

�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
�� �

�
�

�
�
�

�
�
�
�

(a) Clusters of nodes

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
� �

�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
�� �

�
�

�
�
�

�
�
�
�

(b) Backbone network

Figure E.1: The Generalized Fixed-Charge Network Design

Figure E.1(a) shows 5 clusters of nodes. We assume that nodes in each clus-
ter are internally connected by a cluster-network. The clusters on the other
hand are not connected but have to be connected by a backbone-network, in
order to be able to communicate. Figure E.1(b) shows a possible backbone-
network. A solution to the GFCND problem consists of a set of hubs, one for
each cluster, illustrated as filled squares. The hubs are connected by edges to
form the backbone-network. The required capacity of the edges is illustrated in
Figure E.1(b) as different thicknesses of the edges. The required capacity of the
edges depend on the communication demand and how the demands are routed.
The cost of the backbone-network is the sum of the edge establishment costs and
the edge capacity costs. Given a set of clusters of nodes, the GFCND problem
consists of locating hubs and determining the cheapest backbone-network.

The outline of this paper is as follows. Section E.2 discusses related problems.
Section E.3 presents a Mixed Integer Programming (MIP) model for the GFCND
problem. Section E.4 describes a branch-cut-and-price algorithm which solves
the GFCND problem. Section E.5 describes how test instances are generated
and Section E.6 presents computational results for the test instances. Finally,
Section E.7 gives some concluding remarks.

E.2 Related Problems

The GFCND problem is related to two different types of well known optimiza-
tion problems “Generalized Network Design” [4] and “Fixed-Charge Network
Design” [10, 2]. If the hubs are known in advance, the GFCND problem be-
comes the Fixed-Charge Network Design, hence the name.

128 Appendix E

E.2.1 The Fixed-Charge Network Design Problem

The problem of designing cost efficient networks, taking into account both edge
establishment costs and edge capacity costs, is denoted the Fixed-Charge Net-
work Design problem. The Fixed-Charge Network Design problem is NP-hard
[7]. Its application to many different types of problem areas is described in [10].
A number of different optimization method has been applied to the Fixed-
Charge Network Design problem: Benders Decomposition e.g. [3, 9], Dual-
Ascent [2], Cutting-Plane [1] and Lagrangian relaxation [6, 7].

E.2.2 Hierarchical Network Design

Hierarchical network design problems combine a series of interconnected opti-
mization problems:

Clustering: Decide which nodes should belong to the same cluster.

Hub-Selection: For each cluster select a hub from the cluster to include in the
backbone-network.

Cluster-Network Design: Determine the network which connects the nodes
inside each cluster.

Backbone-Network Design: Determine the backbone-network which con-
nects the hub nodes.

Cluster-Network Routing: Route the communication demands in the
cluster-networks.

Backbone-Network Routing: Route the communication demands in the
backbone-network.

Hierarchical network design problems combine these interdependent subprob-
lems and solutions are hierarchical networks able to handle the communication
demands. The papers reviewed in [8] consider such hierarchical network design
problems. In some cases the subproblems are solved separately step by step and
thus optimal solution of the combined problem is not guaranteed.

The GFCND problem is a combination of some of the hierarchical network
design subproblems. Given a set of clusters, the Hub-Selection, the Backbone-
Network Design, and the Backbone-Network Routing problems constitute the
GFCND problem.

E.3 A MIP Model for the GFCND Problem 129

The costs incurred by the Cluster-Network Design and Cluster-Network Routing
problems can be included in GFCND as follows. Given a set of clusters, solve the
Cluster-Network Design and Cluster-Network Routing problems for each cluster
and for each node chosen as hub. Associate the computed cost with selecting the
node as hub in GFCND. The difficulty of solving the Cluster-Network Design
and Cluster-Network Routing problems depend on the actual cluster networks.
E.g. the cluster networks may be star, tree, ring or even Fixed-Charge Networks.
In [11] a GFCND like problem is considered where clusters are Fixed-Charge
Networks and the clusters are not given in advance.

E.2.3 The Generalized Network Design Problem

A number of well known network optimization problems are generalized by intro-
ducing clusters of nodes in [4]. Many standard network optimization problems
assume that all nodes have to be connected, but in [4] this requirement is altered
by requiring that one node from each cluster has to be connected. Three of the
problems discussed in [4] are related to the list of optimization problems in Sec-
tion E.2.2: The Generalized Minimum Spanning Tree problem, the Generalized
Traveling Salesman Problem, and the Generalized Minimum 2-edge-connected
Spanning Network problem. The problems combine the Hub-Selection problem
with the Backbone-Network Design with special constraints on the architec-
ture of the backbone-network. A particularly interesting paper is [5], where a
branch-and-cut algorithm for the Generalized Traveling Salesman Problem is
considered. This approach is tested on instances with up to 89 clusters and 442
cities. Some of the techniques which we employ are inspired by this paper.

E.3 A MIP Model for the GFCND Problem

In this Section we describe a MIP model for the GFCND problem. This model
defines the previous described GFCND problem.

Let V be the set of all nodes, the edges E be a set of unordered node-pairs and
the arcs A be a set of ordered node-pairs. For each edge there exists exactly
two arcs of opposite direction. Let C be a set of clusters where each cluster is a
subset of V such that

⋃
c∈C c = V and c

⋂
c′ = ∅ for distinct clusters c and c′.

The demands D is the set of unordered cluster-pairs. We use the index e ∈ E
for the edges, the index a ∈ A for the arcs, the index d ∈ D for the demands and
index i ∈ V for the nodes. Furthermore we use sa and ta to denote the start
and terminating node of arc a. Correspondingly we use sd and td to denote the

130 Appendix E

start and terminating cluster of demand d.

The binary decision variable hi correspond to whether or not node i should
be selected to be a hub-node. The binary decision variables ye correspond to
whether or not edge e between two hub-nodes should be established. Finally,
the fractional decision variable xda correspond to the fraction of demand d along
arc a.

The communication demand volume for demand d is given by bd. Furthermore,
the capacity cost of arc a is given by ca, which is the cost per unit of demand
using that arc. Finally, the fixed cost of edge e is fe. Given these definitions,
the MIP model of the GFCND problem is defined as follows.

min
∑
e∈E

feye +
∑

d∈D,a∈A
cabdx

d
a (1)

s.t.
∑
a|sa=i

xda −
∑
a|ta=i

xda =

 hi if i ∈ sd
−hi if i ∈ td
0 otherwise

d ∈ D, i ∈ V (2)

xda + xdb ≤ ye a, b ∈ A, sa = tb, ta = sb, {sa, ta} = e ∈ E, d ∈ D (3)
ye ≤ hi e ∈ E, i ∈ e (4)∑

i∈c
hi = 1 c ∈ C (5)

hi, ye ∈ {0, 1} (6)

xda ∈ [0, 1] (7)

In the above MIP model, the objective, equation (1) calculates the combined
edge establishment costs and edge capacity requirement costs. The flow con-
straints (2) ensure that the flow requirement for each demand is fulfilled. The
left hand side is the outflow minus the inflow of demand d in node i. The right
hand side is hi if demand d orginates in cluster sd, −hi if d terminates in cluster
td, and 0 otherwise. By using hi and −hi instead of 1 and −1, as is customary,
flows originate and terminate in established hubs, only. The constraints (3) en-
sure that flow is only allowed along established edges. The constraints (4) ensure
that only edges between selected hubs may be established. The constraints (5)
ensure that exactly one hub node is selected in each cluster. Finally the do-
mains of the hi, ye and xda variables are defined by (6) and (7). By relaxing
constraint (6) the linear programming relaxation of the MIP model is obtained.
We denote this the Linear Programming (LP) model.

E.4 Solving the GFCND problem 131

By including the following constraints, the value of the linear programming
relaxation may improve.∑

e={k,i}|k∈C
ye ≤ hi ∀ c ∈ C, i ∈ V, i /∈ c (8)

These constraints (8) are denoted the fan constraints [5]. For a cluster c and
a node i 6∈ c, the constraints express that the sum of the edges connecting the
nodes in cluster c to node i can at most be one and only if node i is a hub. The
fan constraints are valid, since the edges can only be selected if node i is a hub.
Also, since only one hub is allowed for each cluster, only one of the edges can
be selected.

The fan constraints (8) replace constraints (4) and are stronger, since con-
straints (8) can be obtained by lifting constraints (4).

E.4 Solving the GFCND problem

The MIP model of the GFCND problem described in Section E.3 can be used
to find optimal solutions using a MIP solver. However, given the substantial
number of variables and constraints, only problems with few nodes and clusters
may be solved this way. As an alternative to using a MIP solver directly, we
present a branch-cut-and-price algorithm. The branch-cut-and-price algorithm
takes advantage of the fact that only few non-zero variables and few binding
constraints exist. The branch-cut-and-price algorithm is specified in Figure E.2.

Initially the branch-cut-and-price algorithm initialize the three sets Vars, Cons

and Branches. The set Vars contains a subset of the variables in the LP
model. It is initialized to contain all of the hi variables and all of the ye variables,
but only a subset of the xda variables. The xda variables are determined such
that a feasible solution exists. To that end, a node is selected randomly from
each cluster and a Minimum Spanning Tree (MST) is determined. For each
demand d the variables xda along the shortest path in the MST are included in
Vars. Correspondingly the set Cons constains a subset of the constraints. It
is initialized to contain all of the constrains (5). Furthermore, if a previously
selected xda variable is a term in a constraint (2) or (3), this constraint is included
in Cons. Branches contains a set of branches, where each branch is a set of
variable fixations. Each fixation either fix a hi variable or a ye variable to 0 or
1. Initially Branches is set to contain one branch, the branch with no variable
fixations. Finally the Incumbent value is intialized to infinity.

In the main loop a Branch is selected from Branches and the inner loop is

132 Appendix E

Vars = initial set of variables
Cons = initial set of constraints
Branches = set consisting of an initial branch
Incumbent = +∞
do

Select and remove Branch ∈ Branches

do
LP-lowerbound = Solve LP(Cons, Vars, Branch)

Add variables with negative reduced cost to Vars

Add violated constraints to Cons

while variables or constraints added
if LP solution is integer and LP-lowerbound < Incumbent:

Update incumbent: Incumbent = LP-lowerbound

Fathom
else if LP-lowerbound ≥ Incumbent:

Fathom
else

Select branching variable v
Add the two branches v = 1 and v = 0 to Branches

while Branches 6= ∅

Figure E.2: The branch-cut-and-price algorithm

entered. Given Branch, Vars and Cons, the LP model is solved. The first
time the LP model is solved, it is solved from scratch. In following iterations,
the LP model is resolved, i.e. the previous solution is used as a starting point.
After the LP model has been solved, the variables xda with negative reduced
cost are added and the constraints (2), (3), and (8) which are violated are
added. Since there are only polynomially many variables and constraints, these
are found through enumeration. When the inner loop is terminated, the LP
model with the variable fixations in Branch has been solved. The first time,
the inner loop is terminated, the initial branch with no variable fixations have
been solved. This solution is the solution to the LP model and is denoted the
Root-LP solution.

Given the solution to the LP model, it is tested if the solution is integer, i.e
whether the hi and ye variables have integer values. If this is the case, and the
LP-lowerbound is better than the Incumbent, the Incumbent is updated
and the Branch is fathomed, i.e. it is not considered anymore. If otherwise
the LP-lowerbound value is worse than the current value of the Incumbent,
the Branch is fathomed. If the Branch has not been fathomed, branching is
necessary. A branching variable is determined as the highest valued fractional

E.5 Test Instance Generation 133

hi variable, and if no fractional hi variable exists, the highest valued fractional
ye is selected. Two new branches are created based on Branch. In addition
to the variable fixations in Branch, the branching variable is fixed to 0 in one
branch and 1 in the other branch.

Branch-cut-and-price algorithms may require more advanced branching schemes
than simple variable branching, see e.g. [12]. This is, however, not necessary for
the branch-cut-and-price algorithm in this paper, since the binary variables are
all included in Vars initially. The reason this is possible is, that there are only
|V |(|V |+ 1)/2 binary variables.

E.5 Test Instance Generation

Each test instance consists of a number of nodes randomly located in the unit
square. The clusters are created in that same way as in [5] and as described in
the following. Let there be given a number of nodes |V | and a desired number
of clusters |C|. Center nodes are selected iteratively for each of the |C| clusters.
The first center node is selected randomly. The remaining center nodes are
selected such that the current center node is the node with largest minimum
distance to the previously selected center nodes. The clusters are then formed
by associating each of the remaining |V | − |C| nodes to the closest center node.

An important characteristic of the test instances is the density of the optimal
solution, which is usually expressed by the average node degree. However, since
a solution interconnects clusters only, the density of a solution is expressed as
the average cluster degree. The average cluster degree is the number of edges
times 2 divided by the number of clusters. The average cluster degree of the
optimal solution is influenced by modifying the ratio between the establishment
costs and the capacity costs and by modifying the demands. For each pair of
clusters a demand d is defined. The value of the demand, bd is set equal to a
uniformly distributed random variable between 0 and 20 times the product of
the number of nodes in each of the two clusters.

Given a scaling factor R it turns out, that the following equation leads to rea-
sonable constant average cluster degrees regardless of the value of |V | and |C|.

fe = R · ce · |V | (9)

The edge capacity costs ce are set equal to the Euclidean distance. Given R
and |V | the edge establishment costs fe are then obtained by equation (9).

After some experimentation, the scaling factor is set to R = 0.5. This leads

134 Appendix E

to average cluster degrees between 2.4 and 4.2. For smaller scaling factors,
the average cluster degrees increase and the test instances become more time
consuming for the branch-cut-and-price algorithm. For higher scaling factors,
the average cluster degrees decrease and the test instances become less time
consuming for the branch-cut-and-price algorithm.

E.6 Computational Results

To test the branch-cut-and-price algorithm we generate test instances with 50 to
300 nodes in steps of 25 nodes and with 10 to 30 clusters in steps of 10 clusters.
The tests are performed on a 1000 Mhz SUN Fire V440, running Solaris 9. We
use CPLEX as LP-solver. A time limit of 10 hours is set and the program
size is limited to 4 GB of ram. The results regarding the branch-cut-and-price
algorithm are given in Table E.1.

Problem A. Cluster Time (sec.) Branch Gap %
|C| |V | Degree Total Root-LP Branch Nodes Fan No Fan

10 50 2.4 42 40 2 1 0.04 % 0.04 %
75 2.8 73 73 0 0 0.00 % 0.00 %

100 3.4 234 234 0 0 0.00 % 0.00 %
125 2.6 605 604 0 0 0.00 % 0.15 %
150 3.8 654 653 0 0 0.00 % 0.00 %
175 3.8 767 767 0 0 0.00 % 0.00 %
200 4.2 2785 2784 0 0 0.00 % 0.19 %
225 3.6 3318 3281 37 1 0.02 % 0.23 %
250 3.2 5499 5497 0 0 0.00 % 0.00 %
275 4.0 4658 4656 0 0 0.00 % 0.00 %
300 3.4 7510 7508 0 0 0.00 % 0.00 %

20 50 2.9 1499 1182 317 6 0.14 % 0.14 %
75 2.8 4904 4903 0 0 0.00 % 0.00 %

100 3.2 11978 11976 0 0 0.00 % 0.00 %
125 3.5 34385 29799 4586 7 0.03 % 0.03 %
150 3.5 34361 34358 0 0 0.00 % 0.00 %

30 50 2.6 23511 16108 7404 12 0.14 % 0.14 %

Table E.1: Branch-cut-and-price algorithm results

The first two columns contain the number of clusters and nodes for the given test
instances. The third column contains the average cluster degree for the optimal
network generated by the branch-cut-and-price algorithm. The fourth, fifth and
sixth columns contains, respectively, the total computation time of the branch-
cut-and-price algorithm, the time required for solving the Root-LP problem and

E.6 Computational Results 135

the time required by the branch-cut-and-price algorithm after solving the Root-
LP. The seventh column contains the number of branches required to obtain the
optimal integer solution. The eighth and ninth columns contain the integrality
gap between the optimal integer solution and the optimal Root-LP solution with
and without the fan constraints (8), respectively. The “No Fan” integrality gap
is found by solving the Root-LP without the fan constraints (8), but with (4),
and comparing this optimal solution with the optimal integer solution.

The results show that the branch-cut-and-price algorithm can find optimal so-
lutions for test instances with up to 10 clusters and 300 nodes, 20 clusters and
150 nodes, or 30 clusters and up to 50 nodes. Furthermore it is clear that the
majority of the computation time is spent on solving the Root-LP problem. The
reason is that the integrality gap is small and thus few branches are necessary.
In fact, for 12 out of 17 instances, branching is not necessary at all, since the
Root-LP solution is integer. Hence only a small fraction of the total computa-
tion time is spent on branching. When the fan constraints are not used, 7 out
of 17 instances have an integrality gap. In 3 of these 7 instances, the integrality
gap is reduced by adding fan constraints and in 2 instances the integrality gap
is even closed.

Since the solution of the Root-LP problem is the most time consuming part, we
will look more closely at the Root-LP solution time, see Table E.2.

Problem Root-LP Branch-cut-and-price, time (sec.) Directly LP
|C| |V | Iterations Pricing Separation Resolving Total Time (sec.)

10 50 38 4 15 21 40 179
75 41 9 32 32 73 447

100 56 24 78 131 234 1740
125 87 41 120 440 604 5273
150 82 57 170 422 653 6582
175 111 89 237 432 767 9722
200 75 125 462 2189 2784 -
225 117 170 581 2515 3281 -
250 111 218 761 4500 5497 -
275 105 260 971 3402 4656 -
300 131 347 1164 5962 7508 -

20 50 64 69 263 848 1182 5115
75 220 225 738 3926 4903 18589

100 56 293 1319 10358 11976 -
125 253 721 2803 26236 29799 -
150 88 876 3973 29488 34358 -

30 50 148 537 1628 13930 16108 30098

Table E.2: Root-LP solving time statistics

136 Appendix E

For each instance, the third column contains the number of iterations required
when solving the Root-LP. Column four, five, six, and seven contain, respec-
tively, the time required for pricing, the time required for separation, the time
required for resolving, and the total time required for solving the Root-LP. Fi-
nally the eighth column contains the computation time required by CPLEX to
solve the Root-LP problem directly, i.e. with all constraints and variables in-
cluded. The entries containing a dash could not be solved directly by CPLEX
because of memory limitations. The instances that CPLEX can solve directly
require significantly more computation time than the computation time required
for solving the Root-LP using the branch-cut-and-price algorithm.

From Table E.2 it is clear that the resolve operation when solving the Root-LP
problem dominates the computation time. For all but one test instance it takes
up more than half of the total computation time, and this fraction increases with
the number of nodes and clusters. Hence, to reduce the overall computation time
significantly, the resolve time should be reduced. The resolve time depends on
the number of constraints and number of variables generated. The number of
generated constraints and the number of binding constraints after solving the
Root-LP are given in Table E.3.

Problem Total Generated Binding
|C| |V | # # % # %

10 50 54555 4208 7.7 % 2751 5.0 %
75 118769 5450 4.6 % 3442 2.9 %

100 213721 7581 3.5 % 4539 2.1 %
125 327144 10298 3.1 % 6530 2.0 %
150 478590 10455 2.2 % 5976 1.2 %
175 646580 10566 1.6 % 5903 0.9 %
200 848457 14531 1.7 % 8261 1.0 %
225 1073270 16247 1.5 % 9208 0.9 %
250 1310585 18539 1.4 % 10534 0.8 %
275 1575959 18587 1.2 % 10313 0.7 %
300 1868922 21686 1.2 % 12053 0.6 %

20 50 236313 19785 8.4 % 12694 5.4 %
75 517659 29467 5.7 % 18206 3.5 %

100 924765 36063 3.9 % 22720 2.5 %
125 1439391 48534 3.4 % 29548 2.1 %
150 2052129 52614 2.6 % 32218 1.6 %

30 50 544622 54215 10.0 % 32619 6.0 %

Table E.3: Constraints generated and binding

For each instance, the third column contains the total number of constraints
in the MIP model. Columns four and five contain the number of generated
constrains and columns six and seven contain the number of binding constraints

E.6 Computational Results 137

in the optimal Root-LP solution. Only a small fraction of the constraints need
to be generated, but the number of constraints generated increases with the
number of nodes and the number of clusters. However, the fraction of the total
number of constraints decrease with the number of nodes. Furthermore, at least
half of the generated constraints are binding in the optimal solution, hence at
most half of the generated constraints are redundant.

The number of generated variables and the number of non-zero variables after
solving the Root-LP are given in Table E.4.

Problem Total Generated Non-zero
|C| |V | # # % # %

10 50 100332 16548 16.5 % 187 0.1864 %
75 222024 27843 12.5 % 115 0.0518 %

100 403230 49416 12.3 % 110 0.0273 %
125 620199 55588 9.0 % 120 0.0193 %
150 910787 78556 8.6 % 106 0.0116 %
175 1233407 108638 8.8 % 108 0.0088 %
200 1621638 151830 9.4 % 105 0.0065 %
225 2054277 165116 8.0 % 337 0.0164 %
250 2511122 192565 7.7 % 112 0.0045 %
275 3022294 242587 8.0 % 105 0.0035 %
300 3586883 248903 6.9 % 109 0.0030 %

20 50 448106 61591 13.7 % 1359 0.3033 %
75 996009 112420 11.3 % 606 0.0608 %

100 1793467 165789 9.2 % 560 0.0312 %
125 2804285 253558 9.0 % 807 0.0288 %
150 4009794 335084 8.4 % 561 0.0140 %

30 50 1039153 143615 13.8 % 4577 0.4405 %

Table E.4: Variables generated and non-zero

For each instance, the third column contains the total number of variables in the
MIP model. Columns four and five contain the number of generated variables
and columns six and seven contain the number of non-zero variables in the
optimal Root-LP solution.

The number of non-zero variables in the optimal solutions remain constant re-
gardless of the number of nodes in the test instances. Unfortunately the number
of generated variables increase with the number of nodes in the test instances.
This indicates that a significant reduction of the computation time of the algo-
rithm may be achieved by selecting better variables. This should both reduce
the resolve time per iteration and reduce the number of needed iterations, for
an overall reduction in the resolve time.

138 Appendix E

The instances (|C| = 10, |V | = 50), (|C| = 10, |V | = 225), (|C| = 20, |V | = 50),
(|C| = 20, |V | = 125) and (|C| = 30, |V | = 50) have significantly more non-zero
variables than the other instances with similar characteristics. This is due to
the fact that these instances have a non-zero integrality gap.

The number of generated variables and constraints are significantly below the
total number of variables and constraints, respectively. This is the reason that
the branch-cut-and-price algorithm can solve instances with many more nodes
and clusters than if the MIP model is solved directly as seen in Table E.2.

E.7 Conclusion

This paper has presented the GFCND problem. The GFCND problem involves
interconnecting clusters by a Fixed-Charge network. A MIP model for the
GFCND problem has been formulated and enhanced with additional cuts to
achieve a smaller integrality gap. A branch-cut-and-price algorithm for the
GFCND problem has been presented and tested. Violated constraints and vari-
ables with negative reduced costs are found using enumeration

The algorithm has been tested on instances with up to 10 clusters and 300 nodes
or up to 30 clusters and 50 nodes. It has been demonstrated that the integrality
gap is zero in 12 out of 17 data instances and less than 0.14% for the remaining
data instances. Because of the small integrality gap, the computational bottle-
neck is the solution of the Root-LP problem. The branch-cut-price algorithm is
efficient compared with solving the MIP model directly, since only a fraction of
the constraints and variables are generated.

Acknowledgments

The authors would like to thank the anonymous reviewer for helpful comments.

Bibliography

[1] Balakrishnan, A. (1987) LP extreme points and cuts for the fixed-charge
network design problem, Mathematical Programming 39(3), 263-284.

[2] Balakrishnan, A. and Magnanti, T.L. and Wong, R.T. (1989) A Dual-
Ascent Procedure for Large-Scale Uncapacitated Network Design, Opera-
tions Research 37(5), 716-740.

139

[3] Costa, A.M. (2005) A survey on benders decomposition applied to fixed-
charge network design problems, Computers and Operations Research
32(6), 1429-1450.

[4] Feremans, C. and Labbe, M. and Laporte, G. (2003) Generalized network
design problems, European Journal of Operational Research, 148(1), 1-13.

[5] Fischetti, M. and Salazar Gonzalez, J.J and Toth, P. (1997) A branch-and-
cut algorithm for the symmetric generalized traveling salesman problem,
Operations Research, 45(3), 378-394.

[6] Gendron, B. and Crainic, T. G. and Frangioni, A. (1999) Multicommod-
ity Capacitated Network Design, Telecommunications Network Planning,
Kluwer, 1-19.

[7] Holmberg, K. and Yuan, D. (1998) A Lagrangean approach to network
design problems, International Transactions in Operational Research, 5(6),
529-539.

[8] Klincewicz, J. G. (1998) Hub location in backbone/tributary network de-
sign: a review, Location Science, 6(1-4), 307-335.

[9] Magnanti, T.L. and Mireault, P. and Wong, R.T. (1986) Tailoring Benders
Decomposition for Uncapacitated Network Design, Mathematical Program-
ming Studies, 26, 112-154.

[10] Magnanti, T.L. and Wong, R.T. (1984) Network design and transportation
planning: models and algorithms, Transportation Science, 18(1), 1-55.

[11] Thomadsen, T. (2005) Joint Hub Location, Node Clustering and Network
Design of Two-Tiered Meshed Networks, To appear in Proceedings of INOC
2005.

[12] Vanderbeck, F. and Wolsey, L.A. (1996) An exact algorithm for IP column
generation, Operations Research Letters, 19(4), 151-159.

140

Appendix F

The Two-Layered Fully
Interconnected Network

Design Problem – Models and
an Exact Approach

Submitted for Computers and Operations Research

142 Appendix F

The Two-Layered Fully Interconnected Network Design
Problem – Models and an Exact Approach

Tommy Thomadsen1 and Jesper Larsen2

Abstract

This paper considers the design of two-layered fully interconnected net-
works. A two-layered network consists of clusters of nodes, each defining
an access network and a backbone network. We consider the integrated
problem of determining the access networks and the backbone network
simultaneously. A mathematical model is presented, but as the linear
programming relaxation of the mathematical model is weak, a model
based on the set partitioning model and column generation approach is
also developed. The column generation subproblems are solved by solv-
ing a series of quadratic knapsack problems. We obtain superior bounds
using the column generation approach than with the linear programming
relaxation. The column generation method is therefore developed into
an exact approach using the Branch-and-Price framework. With this
approach we are able to solve problems consisting of up to 25 nodes
in reasonable time. Given the difficulty of the problem, the results are
encouraging.

Keywords: Hierarchical networks, Fully interconnected networks, Hub loca-
tion, Branch-and-Price.

F.1 Introduction

Wired communication networks are usually organized in a hierarchal structure
based on two or more layers. This structure has proven robust to changing
demands and upgrades and is seen as the right compromise between cost and
redundancy. We consider networks with two layers, but the analysis is general-
izable to more layers.

The two layers in the network are denoted the backbone network and the ac-
cess networks. The backbone network connects disjoint clusters of nodes, each

1Informatics and Mathematical Modelling, Technical University of Denmark, Lyngby, Den-
mark. Email: tt@imm.dtu.dk

2Informatics and Mathematical Modelling, Technical University of Denmark, Lyngby, Den-
mark. Email: jla@imm.dtu.dk

F.1 Introduction 143

comprising an access network. The node connecting an access network to the
backbone network is called a hub. An example is shown in Figure F.1. Here
hubs are shown as squares, thin lines are connections in an access network,
while thick lines represent connections in the backbone network. The dashed
lines mark the clusters, each representing an access network.

c d

a

b

Figure F.1: Example of a two-layered network. All access networks and the
backbone network are fully interconnected.

When designing such hierarchal or layered networks, a number of interrelated
questions have to be resolved: Which nodes should be hubs, how should we
define the clusters, and which interconnections should we allow. Since theses
problems are interrelated, they should be addressed by an integrated approach
in order to ensure an optimal solution.

This paper considers the joint selection of hubs and clustering of nodes of two-
layered networks. In each of the layers, we assume the networks to be fully
interconnected. This corresponds to Figure F.1, where the access networks and
the backbone network are fully interconnected, that is, for two nodes in the
backbone or the same cluster, there is a link. The objective is to minimize link
costs consisting of a cost for each link that needs to be established. This problem
is denoted the Fully Interconnected Network Design Problem (FINDP).

Note that communication between two nodes in the same access network (eg. a
and c in Figure F.1) is handled within the access network. On the other hand,
communication between two nodes not in the same access network has to be
routed via the backbone network. So communication from a to b is routed via
c and d in the backbone network in Figure F.1.

144 Appendix F

Klincewizc [6] surveys work on two-layered network design. A significant part of
the work reviewed focus on fully interconnected backbone networks. In particu-
lar [3] and [8] consider the design of fully interconnected backbone network and
a star network in the access networks. Using the fully interconnected network
on both layers is an open problem according to the survey paper of Klincewizc.

The FINDP could be used in setting up a computation cluster of computers.
Instead of affording a direct connection between all computers, they are divided
into two layers, with a backbone network ensuring fast access beyond the access
network of a computer.

The paper is organized as follows. Section F.2 presents a mathematical model
for the FINDP problem. As the linear relaxation of the mathematical model
is weak, we develop a column generation approach in Section F.3, and present
the Branch-and-Price framework to obtain integral solutions in Section F.4.
Experimental results are presented in Section F.5, and finally the conclusions
are given in Section F.6.

F.2 Network Design

First we formulate a mathematical model for the FINDP. Consider the graph
G = (V,E), where V is the set of nodes and E is the set of undirected links.
Let cij denote the cost of link ij in E.

We consider a problem where there are lower and upper bounds on the number
of clusters and the number of nodes in the clusters. Let bmin and bmax be a lower
bound and an upper bound on the number of clusters, respectively. Furthermore
vmin is the lower bound on the number of nodes in any cluster and vmax the
corresponding upper bound.

We initially define three sets of variables xij , yij for i, j in V , i < j, and hi for
i in V . The variable hi is 1 if node i is hub for a cluster, and 0 otherwise. The
variable xij is 1 if ij is a link in the access and 0 otherwise, and correspondingly
yij is 1 if ij is a link in the backbone network and 0 otherwise. Initially we get:

min
∑
ij∈E

cijxij +
∑
ij∈E

cijyij (1)

s.t. yij + xij ≤ 1 ∀ij ∈ E (2)
hi + hj + xij ≤ 2 ∀ij ∈ E (3)

F.2 Network Design 145

yij ≤ hk ∀ij ∈ E, k ∈ {i, j} (4)
xik + xjk ≤ xij + 1 ∀i, j, k ∈ V, i < j, k 6= i, k 6= j (5)
yik + yjk ≤ yij + 1 ∀i, j, k ∈ V, i < j, k 6= i, k 6= j (6)
xij , yij , hi binary (7)

The objective function (1) is the sum of costs in the access networks and the
backbone network. Inequality (2) ensures that a link cannot be used both in the
backbone network and the access network at the same time. Next inequality (3)
states that if both nodes i and j are hubs then there can be no access network
link between these nodes. Now inequality (4) says that if a node k is not a
hub, then a backbone network link cannot be incident to k. Finally (5) and
(6) ensure that the access network, respectively the backbone network are fully
interconnected.

The model can be strengthened by adding

hi + hj ≤ yij + 1 ∀ij ∈ E (8)

where (2) and (8) dominates (3), and (4) together with (8) dominates (6).

This initial model does, however, not ensure that each cluster contains a hub.
Therefore, we introduce the variable wij for each ordered pair (i, j) where i, j ∈
V, i 6= j. If wij is 1 node i is hub and node j is connected to i and 0 otherwise,
i.e.

wij = hixij .

Described by linear constraints we get:

wij ≤ hi ∀i, j ∈ V, i 6= j (9)
wij ≤ xij ∀i, j ∈ V, i 6= j (10)
hi + xij ≤ 1 + wij ∀i, j ∈ V, i 6= j (11)

hj +
∑
i,i6=j

wij = 1 ∀ij ∈ E (12)

wij binary (13)

The constraints (9) and (10) force wij to 0 if node i is not a hub or if there is
no link in the access network between i and j. Inequality (11) set wij to 1 if
node i is a hub and there is a link between i and j in the network. Then (12)
either forces node i to be a hub or to be connected to exactly one hub j, and as
a consequence, each cluster contains a hub.

146 Appendix F

Finally we describe bounds on the number of clusters (14) and nodes in each
cluster (15):

bmin ≤
∑
i

hi ≤ bmax (14)

vmin − 1 ≤
∑
j

xij ≤ vmax − 1 ∀i ∈ V (15)

When we refer to the model FINDP for the two-layered fully interconnected
network problem we refer to the model defined by (1)-(2), (4)-(5) and (7)-(15).
The linear programming relaxation is obtained by replacing (7) and (13) with
a non-negativity constraint on all variables. This model is denoted LP-FINDP.

F.3 Decomposition and Column Generation

LP-FINDP generally provides a poor bound on the optimal value of the FINDP.
This is largely due to the weak LP relaxation and the inherent symmetry in the
formulation.

In order to obtain a better formulation of the FINDP problem let C be the set
of all clusters with a hub selected, and let B be the set of all backbone networks,
where each backbone network is a set of hubs. Let aci be 1 if node i is in cluster
c and 0 otherwise. Furthermore let sci be 1 if node i is hub in cluster c and
0 otherwise. For the backbone, let sbi be 1 if node i is in backbone, and 0
otherwise. For a cluster c in C let cc be the cost of the cluster, i.e. the sum of
all cost on the links in c, that is,

cc =
∑
i,j,i<j

acia
c
jcij

and correspondingly let cb be the cost of the backbone b in B, so:

cb =
∑
i,j,i<j

sbis
b
jcij

Now we can formulate an alternative model of the FINDP problem. Variables
are uc which are 1 if cluster c in C is selected, 0 otherwise and vb which are 1 if
backbone b in B is selected, 0 otherwise.

F.3 Decomposition and Column Generation 147

min
∑
c∈C

ccuc +
∑
b∈B

cbvb (16)

s.t.
∑
c∈C

aciuc = 1 i ∈ V (17)

−
∑
c∈C

sciuc +
∑
b∈B

sbivb = 0 i ∈ V (18)

uc, vb binary (19)

Here, (16) is the objective function minimizing the accumulated cost of the
access networks and the backbone network. The equalities (17) ensure that all
nodes belong to exactly one access network, while the constraints (18) ensure
that hub nodes are in the backbone network.

Consider a small example of 4 nodes that should be divided into exactly 2 clus-
ters of precisely 2 nodes each. For this small instance, it is possible to enumerate
all possibilities. Let us denote the nodes a, b, c and d. Figure F.2 shows the coef-
ficient matrix and right-hand sides for this small problem. Each possible cluster
consists of 2 nodes, so for each possible cluster there are two hub candidates.
Therefore each feasible cluster results in two different columns representing the
cluster but with different hubs (represented by the −1 coefficient in the lower
half). Then follows a column for each possible backbone solution. If e.g. we
choose the two clusters (a, b) and (c, d), then depending on the choice of hub,
the matching column in the rightmost part will enforce the right cost of the
backbone network.

a : 1 1 1 1 1 1 | = 1
b : 1 1 1 1 1 1 | = 1
c : 1 1 1 1 1 1 | = 1
d : 1 1 1 1 1 1 | = 1
a :−1 −1 −1 | 1 1 1 = 0
b : −1 −1 −1 | 1 1 1 = 0
c : −1 −1 −1 | 1 1 1 = 0
d : −1 −1 −1 | 1 1 1 = 0

Figure F.2: Coefficient matrix for a small example consisting of 4 nodes. Blanks
in the matrix represent entries of value 0.

It is only possible to enumerate all columns for very small instances. E.g. for
a problem with K = 20, vmin = bmin = 6 and vmax = bmax = 8 we get ap-
proximately 2.1 million columns. In order to avoid generating all clusters and

148 Appendix F

backbones a priori, we use the iterative method of column generation. The
clusters and backbone networks are generated as they are needed. For each
constraint (17) we associate a dual variable αi and for each constraint (18) we
associate the dual variable βi.

Preliminary results show significantly better bounds by adding the following
strengthening constraint to the model:∑

b∈B
vb = 1 (20)

The constraint (20) has an associated dual variable γ.

Most often column generation is seen as a master problem and a subproblem.
The master problem solves an LP relaxation and delivers dual variables to the
subproblem where new variables are computed in case a better one exists. The
linear programming relaxation of the FINDP (defined by (16) to (20)) problem
is denoted CG-FINDP and is obtained by replacing (19) with non-integrality
constraints. For the CG-FINDP the master problem is associated with two
subproblems; one for generating clusters and one for generating backbone con-
figurations, see Figure F.3.

Problem
Master

Cluster
Generation

Backbone
Generation
SubproblemSubroblem

Figure F.3: Overview of the column generation algorithm.

F.3.1 The Backbone generation subproblem

For an optimal solution the reduced cost of a backbone column is:∑
ij∈E

cijyij −
∑
i∈V

βisi − γ (21)

F.3 Decomposition and Column Generation 149

where yij and si are binary variables representing whether the link ij respec-
tively the node i is part of the backbone network.

In order to find a new column to enter the basis, we seek the column with
the most negative reduced cost. By multiplying the reduced cost with −1 the
objective function is:

max
∑
i∈V

βisi + γ −
∑
ij∈E

cijyij (22)

The constraints for obtaining a feasible backbone network are:

yij ≤ si ij ∈ E (23)
yij ≤ sj ij ∈ E (24)
si + sj ≤ yij + 1 ij ∈ E (25)

bmin ≤
∑
i∈V

si ≤ bmax (26)

si, yij binary (27)

The link ij can only be selected for the backbone network if both node i and j
are part of it. This is ensured by the constraints (23) and (24). Furthermore,
inequalities (25) enforces link ij to be part of the backbone network if nodes
i and j are selected. Finally, constraint (26) ensures that the bounds on the
number of clusters (access networks) are enforced. The pricing problem for the
backbone generation subproblem is defined by (22)-(27). A solution approach
to this model is described in Section F.3.3

F.3.2 The Cluster generation subproblem

The definition of the cluster generation subproblem is parallel to the approach
for the backbone network. Let ai and xij be 1 if the node i respectively the link
ij is in the cluster, and 0 otherwise. Furthermore the variable si is 1 if node i
is hub, and 0 otherwise. Now the reduced cost of a cluster is:∑

ij∈E
cijxij −

∑
i∈V

αiai +
∑
i∈V

βisi (28)

The cluster generation problem seeks the column with the most negative reduced
cost, or equivalent, has the objective:

max
∑
i∈V

αiai −
∑
i∈V

βisi −
∑
ij∈E

cijxij (29)

150 Appendix F

A feasible column (defining an access network) must fulfill:∑
i∈V

si = 1 (30)

si ≤ ai i ∈ V (31)
xij ≤ ai ij ∈ E (32)
xij ≤ aj ij ∈ E (33)
ai + aj ≤ xij + 1 ij ∈ E (34)

vmin ≤
∑
i∈V

ai ≤ vmax (35)

ai, si, xij binary (36)

Each access network has precisely one hub, which is ensured by equation (30),
and the hub has to be part of the access network, which is ensured by (31).
Parallel to (23)-(25) for the backbone generation problem, (32)-(34) ensure that
a link ij is selected if and only if both nodes i and j are selected. A feasible
access network can only have between vmin and vmax nodes i.e. it has to fulfill
(35). Thus the pricing problem for the cluster generation is defined by (29)-(36).
A solution approach is discussed in the following section.

F.3.3 Solving the subproblems

Instead of solving the problems for backbone and cluster generation directly,
it can be observed that both of the subproblems can in fact be solved as a
series of quadratic knapsack problems (QKP). For at general description of
QKP see [5]. The quadratic knapsack problem seeks to maximize a quadratic
objective function subject to a single capacity constraint. If we let the binary
variable qi be equal to 1 if item i is selected and 0 otherwise, and let qij be 1 if
both i and j are selected and 0 otherwise. Finally let pi be the profit of selecting
item i, pij be the profit of selecting both item i and j. Then the QKP can be
formulated as:

max
∑
i

piqi +
∑
i

∑
j:i<j

pijqij (37)

s.t. qij ≤ qi i, j (38)
qij ≤ qj i, j (39)
qi + qj ≤ qij + 1 i, j (40)

F.3 Decomposition and Column Generation 151

∑
j

wjqj ≤ C (41)

qij , qj binary (42)

where wj is the weight of the j’th item and C is the capacity of the knapsack.
Constraints (38), (39), and (40) ensure consistency of variables and (41) is the
knapsack constraint. A solution approach to the QKP is described in [2]. The
approach is based on Lagrangian relaxation and seems to be the current state-of-
the-art for exact solution of the QKP. Furthermore the source code is available at
the homepage of David Pisinger, see www.diku.dk/~pisinger. This approach
and the available code is used to solve both subproblems.

Let us first consider our subproblem for the backbone network, (22)- (27). The
subproblem bears some resemblance with the QKP. The nodes can be considered
items with a weight of 1 and the profit equals the cost of the links in the
backbone. The deviation is that both a lower and upper bound exist on the
contents of the knapsack. To address this, we take the approach of adding a
constant to all coefficients in the objective, such that all coefficients are non-
negative. With non-negative coefficients in the objective and weights equal to
1 in the knapsack, the optimal solution to the corresponding QKP, will always
fill the knapsack to capacity. Hence, the subproblem can be solved by solving a
series of QKP’s, one for each of the capacities C = bmin, bmin + 1, . . . , bmax. The
algorithm is shown in Figure F.4.

for bk = bmin to bmax do
Solve QKP for C = bk
if Solution has a positive value then

add the cluster column to the master problem
end if

end for

Figure F.4: The backbone generation algorithm.

Similarly to the backbone generation problem, we add a constant to all coef-
ficients in the objective, such that all coefficients are non-negative and solve a
problem for each of C = vmin, vmin + 1, . . . , vmax. However, the cluster gen-
eration problem poses one additional complication compared to the backbone
generation problem. In addition to choosing nodes, one of the nodes has to be
designated as the hub node. We handle this by enforcing each of the nodes to
be hub, one at a time. This corresponds to fixing each of the si variables to
1 in turn. However, fixing a variable to 1 cannot be done directly using the
code used to solve the QKP’s. Instead, a sufficiently high value is added to
the objective coefficient of the node, thus ensuring that the node is selected.

152 Appendix F

As a consequence, |V |(vmax − vmin + 1) QKP problems have to be solved. The
algorithm is shown in Figure F.5.

for i ∈ V do
for vk = vmin to vmax do

Solve QKP for C = vk and si forced to 1
if Solution has a positive value then

add the cluster column to the master problem
end if

end for
end for

Figure F.5: The cluster generation algorithm.

The approach described in [2] also contains a greedy heuristic for the QKP.
In our generation of subproblems, we run this heuristic on the full series of
subproblems before running the exact approach. The exact approach is only
used if no columns can be obtained by the heuristic. The QKP is also used as
a subproblem in a column generation approach in [4]. Furthermore, [9] uses a
similar approach to solve a related two layered network design problem.

F.3.4 Initialization

To initialize the column generation, a number of “dummy” columns for the
clustering and the backbone part are generated. The dummy columns for the
clustering part consists of one column per node. Each column contains one node
with no designated hub, that is, the column contains a single 1 for the i’th row
(aci = 1).

For the backbone part we also generate one column per node i. These columns
have a 1 corresponding to the i’th node being a hub (sbi = 1), and all remain-
ing coefficients are 0. In order to satisfy (20), an additional “dummy” column
is added. It does not contain any nodes but has a coefficient 1 for the con-
straint (20). All these dummy columns are added to ensure a feasible LP upon
branching and they are assigned a value sufficiently high in order to force them
out of the basis in the optimal solution.

F.4 Branch-and-Price 153

F.4 Branch-and-Price

As the column generation method described above cannot guarantee integral so-
lutions, it has to be embedded in the Branch-and-Bound framework. The com-
bination of column generation and Branch-and-Bound is often denoted Branch-
and-Price or IP column generation [1, 10].

In case the solution of a branch node in the Branch-and-Bound tree is not
integer and cannot be fathomed, we branch. Here, we implement the Ryan-
Foster branching [7]. We branch on whether node i and j are in the same
cluster or not. A constraint enforcing this requirement is added to the master
problem. This does, however, not guarantee integer optimality. Two clusters
with the same nodes but with different hubs may be selected, each with uc equal
to 1

2 . Now branching on whether node i and j are in the same cluster cannot
be applied, yet the solution is not integer. This is handled by branching on
whether a node is hub or not, that is, in one branch, node i is forced to be hub,
and in the other branch node, i cannot be hub.

In the master problem, the choices taken by the branching strategy results in
the addition of constraints. Let B1 ⊆ E be the set of “nodes are/are not in
the same cluster” branches and B2 ⊆ V be the set of “node i is/is not hub”
branches. We define pcb for {i, j} = b ∈ B1 to be equal to one if i and j are
in the same cluster, otherwise 0. Furthermore, recall that sci is 1 if i is hub in
cluster c. So we get:

∑
c∈C

pcbuc = 0/1 b ∈ B1 (43)∑
c∈C

sciuc = 0/1 i ∈ B2 (44)

where (43) with the right-hand side 0 corresponds to forbid clusters containing
i and j, and a right-hand side of 1 forces a cluster to contain both i and j.
Correspondingly a right-hand side of 0 in (44) means that node i is not hub,
and 1 forces i to be hub.

Branching is implemented by first determining the uc column with fractional
values closest to 1

2 . Then, the first row covered (i.e. it has a coefficient of 1) by
this column is found. Now we search for another column that has a fractional
value and covers the same row. Such a column must exist due to the partitioning
constraints for the clusters (17). So either:

154 Appendix F

1. The columns cover exactly the same rows. This implies that the hub are
not identical and we branch on whether the node is hub or not.

2. The columns cover different rows. Now we determine the first row where
they differ and branch on whether nodes are in the same cluster or not.

Referring back to the example in Figure F.2, consider the situation where the
first two columns are picked with a value of 1

2 and the two remaining nodes
where covered by a single column with value 1. Then the branching approach
will detect that both columns define the same cluster (they cover the exact same
rows) and therefore branching will force the node represented by the first row
(node a) to either be or not be a hub. If instead we had uc equal to 1

2 for the
first and the third column, the test reveals that the two columns define different
clusters and branching will force a and b to be in the same cluster or not.

In the branching tree, a depth first strategy is applied. This enables use of
“warm start” in the LP relaxation of the master problem with the previous
solution. Having two candidates for branching on the same depth, we choose
the one that fixes the right hand side values to 1 in (43) and (44).

The branch constraints (43) and (44) leads to dual variables which needs to be
incorporated into the subproblems. Taking these dual variables into account
in the subproblem is sufficient, i.e. it is not necessary to force the subproblem
to generate columns feasible with respect to a given set of branches. The dual
variables δb and εi corresponding to (43) and (44) are only added to the calcula-
tion of the reduced cost for a cluster column. No modification of the backbone
columns are necessary.

We now modify (28) to reflect that the reduced cost of the columns should
include the dual variables of the branch constraints:∑

ij∈E
cijxij −

∑
i∈V

αiai +
∑
i∈V

βisi −
∑
b∈B1

δbpb −
∑
i∈B2

εisi (45)

where pb is 1 for b = (i, j), if i and j are in the same cluster.

Therefore, for the cluster generation problem, the objective of the pricing prob-
lem (29) is modified to:

max
∑
i∈V

αiai −
∑
i∈V

βisi −
∑
ij∈E

cijxij +
∑
b∈B1

pbδb +
∑
i∈B2

siεi (46)

By noting that pb = p{i,j} = aiaj = xij and rewriting, we obtain:

max
∑
i∈V

αiai +
∑
i∈V

(εi − βi)si +
∑
ij∈E

(δij − cij)xij (47)

F.5 Experimental Results 155

Thus including the additional dual variables is only a matter of modifing the
constants of the objective, and hence can easily be included.

F.5 Experimental Results

We have tested the two bounds and the Branch-and-Price approach on gener-
ated instances with n nodes for n = 10, 15, 20, and 25. All the graphs are fully
connected and two types of instances have been generated. Euclidean instances
where the link costs are proportional to the Euclidean distances between the
endpoints which have been randomly located in the unit square, and random
instances, where the link costs are randomly selected using a uniform distribu-
tion. Furthermore bmin and vmin are set to |√n| − Bd, and bmax and vmax are
set to |

√
n|+Bd. Here we have tested each instance with Bd equal to 1, 2, and

3.

First we have tested the column generation scheme (CG-FINDP) against the
LP relaxation of the FINDP (LP-FINDP) to see which approach produces the
tightest bounds. The results are shown in Table F.1 and Table F.2. In the tables,
“Gap” is the gap to the known optimal solution, “Iter” denotes the number of
iterations, i.e. the number of calls to the subproblems in the column generation
algorithm, and “Cols” identifies the number of columns generated.

Problem LP-FINDP CG-FINDP
n Bd Seconds Gap (%) Seconds Gap (%) Iter Cols
10 1 0.15 52.6 0.47 14.9 8 159
10 2 0.12 61.1 0.88 3.9 9 219
10 3 0.15 69.9 1.05 13.1 9 237
15 1 1.15 31.3 1.84 8.8 17 388
15 2 1.31 60.0 2.32 1.9 14 408
15 3 0.38 73.3 3.25 17.2 13 450
20 1 1.69 57.0 3.62 27.7 21 545
20 2 1.16 65.6 6.14 11.1 17 718
20 3 1.36 76.0 8.24 13.8 14 747
25 1 6.39 27.1 13.30 14.9 24 846
25 2 4.73 56.5 14.58 20.2 21 1272
25 3 5.07 70.8 19.06 15.6 19 1224

Table F.1: The LP relaxation of the FINDP model vs. the column generation
approach for a lower bound on the Euclidean instances.

For both types of graphs, it is evident that the column generation approach

156 Appendix F

Problem LP-FINDP CG-FINDP
n Bd Seconds Gap (%) Seconds Gap (%) Iter Cols
10 1 0.16 66.5 0.41 5.7 9 163
10 2 0.14 74.4 1.26 4.5 9 194
10 3 0.13 78.5 0.82 4.7 8 222
15 1 1.74 49.6 1.15 5.3 12 294
15 2 1.29 76.0 3.64 1.8 13 397
15 3 0.47 80.4 5.34 5.9 14 487
20 1 1.81 56.8 5.49 1.5 21 599
20 2 1.09 80.2 12.15 9.7 16 636
20 3 1.12 88.9 14.46 7.1 19 697
25 1 6.61 48.5 14.97 6.1 25 763
25 2 4.97 76.2 33.24 4.0 27 1220
25 3 4.64 83.7 36.97 1.8 27 1367

Table F.2: The LP relaxation of the FINDP model vs. the column generation
approach for a lower bound on the randomly generated instances.

produces bounds superior to the LP relaxation. On the Euclidean instances
the gaps are between 27% and 76% for the LP relaxation, which will make it
difficult to obtain an efficient exact approach based on an LP relaxation. In
contrast the bound for CG-FINDP are between 1.88% and 28%, and for the
random instances, the bounds are even better. Here the largest deviation from
the optimal solution is below 10% for the CG-FINDP. For the LP relaxation,
the gaps have increased and are in the interval between 48% and 89%. The
cost of better bounds is a modest increase in running times. Note that both
the number of columns and iterations needed is low. We never need to generate
more than 1400 columns and run 27 iterations.

Based on the results above we have only tested an exact approach based on
the column generation bound. The results of the tests are presented in Table
F.3 and Table F.4. Here the column “BB” displays the number of Branch-
and-Bound nodes needed to find the optimal solution, “Cols” and “Iter” denote
the number of columns respectively the number of iterations in the column
generation process that is needed. Finally, the remaining 4 columns presents
the total running time, and then a breakdown into the Master Problem (“MP”),
the exact pricing algorithm (“SP opt”) and the heuristic pricing algorithm (“SP
heu”).

The results clearly show that the randomly generated instances are easier to
solve than the Euclidean instances. Obviously, the tighter gap plays an impor-
tant role. Except for the three Euclidean instances with 25 nodes, all running

F.5 Experimental Results 157

Problem BB Cols Iter Seconds
n Bd Total MP SP opt SP heu

10 1 54 441 213 25 0 17 6
10 2 34 540 152 27 0 18 8
10 3 6 346 41 8 0 4 3
15 1 245 1859 1172 391 9 326 52
15 2 78 1201 431 201 2 166 31
15 3 66 1310 398 256 2 207 42
20 1 1621 7226 6228 4796 302 4091 369
20 2 120 2481 679 696 9 610 68
20 3 1006 6971 4324 7551 221 6655 636
25 1 4568 19137 19375 42619 5626 35279 1463
25 2 45839 55692 115849 671346 248690 402661 14474
25 3 4922 18658 16978 71056 4948 62838 2984

Table F.3: Results for the Branch-and-Price for the FINDP on the Euclidean
instances

Problem BB Cols Iter Seconds
n Bd Total MP SP opt SP heu
10 1 4 179 14 1 0 1 0
10 2 2 219 8 2 0 1 0
10 3 2 247 12 3 0 2 1
15 1 15 551 123 40 0 34 5
15 2 54 917 269 177 1 152 19
15 3 120 1547 634 575 4 495 69
20 1 34 1168 215 179 2 169 13
20 2 150 2061 787 1197 10 1093 79
20 3 262 3248 1565 3151 31 2867 231
25 1 45 1697 475 944 6 885 36
25 2 77 2453 510 1720 9 1609 65
25 3 42 2281 367 1565 6 1455 64

Table F.4: Results for the Branch-and-Price for the FINDP on the randomly
generated instances

times can be seen as reasonable. It is worth noting that a large fraction of the
time spent by our algorithm is spent in the exact SP. In the breakdown of the
time usage, the time spent in the exact SP algorithm always accounts for the
vast majority of the running time. Most of the problems, including all randomly
generated instances, are solved generating only a few thousand columns.

The exact SP algorithm can be replaced by a single call to a MIP solver, as a

158 Appendix F

consequence producing at most one column. Since the heuristic SP produces
most columns, the call to the exact SP procedure is often just to check that all
columns have been generated. Thus in interplay with the heuristic, this could
be faster. Initial computational experiences support this.

F.6 Conclusion

The contribution of this paper is the development of two different models (a
mathematical model and one based on column generation) and an exact solution
approach for a two-layered network design problem. The problem is defined
by using a fully interconnected topology both for the access networks and the
backbone network.

Our computational experiments are based on two sets of instances, one randomly
generated and one using Euclidean distances. The results show that the bound
based on column generation is superior to the LP relaxation of the mathematical
model. The gaps are often more than a factor 10 worse on the LP relaxation. It
seems impossible to base an efficient exact approach on the LP relaxation. The
bounds on the column generation approach are tight enough – especially on the
random instances – to develop an optimal approach, even though this bound is
more time consuming to compute than the LP relaxation.

The optimal method is able to solve all randomly generated instances within
one hour. The bounds on the Euclidean instances are worse than for the ran-
domly generated instances, which is also reflected in the running times. For the
Euclidean instances 5 out of the 12 instances cannot be solved within one hour
– one instance takes almost 8 days to solve. It is noteworthy that most of our
problems are solved generating only a few thousand columns.

We believe that further improvements can be obtained by proving optimality
of the subproblems solving the pricing problems directly in a MIP solver in-
stead of solving a series of QKP’s. Furthermore the running times on especially
the Euclidean instances suggests research in heuristics based on the optimal
method. Feasible solutions obtained by such heuristics can be used to speed up
the Branch-and-Price algorithm.

159

Bibliography

[1] C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, P.H.
Vance. Branch-and-price: column generation for solving huge integer pro-
grams. Operations Research, 46(3):316–29, 1998.

[2] A. Caprara, D. Pisinger, and P.Toth. Exact solution of the quadratic knap-
sack problem. INFORMS Journal on Computing, 11(2):125–137, 1999.

[3] A.T. Ernst and M. Krishnamoorthy. Efficient algorithms for the uncapaci-
tated single allocation p-hub median problem. Location Science, 4(3):139–
154, 1996.

[4] E.L. Johnson, A. Mehrotra, and G.L. Nemhauser. Min-cut clustering. Math-
ematical Programming, 62(1):133–151, 1993.

[5] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer,
2004.

[6] J.G. Klincewicz. Hub location in backbone/tributary network design: a
review. Location Science, 6:307–335, 1998.

[7] D.M. Ryan and B.A. Foster. An integer programming approach to schedul-
ing. In A. Wren, editor, Computer Scheduling of Public Transport Urban
Passenger Vehcile and Crew Scheduling, 269–280, North Holland, Amster-
dam, 1981.

[8] D. Skorin-Kapov, J. Skorin-Kapov and M. O’Kelly. Tight linear program-
ming relaxations of uncapacitated p-hub median problems. European Jour-
nal of Operational Research, 94(3):582–593, 1996.

[9] T. Thomadsen. Design of Two-Layered Fixed Charge Networks. Work in
progress, 2005.

[10] F. Vanderbeck, L.A. Wolsey. An exact algorithm for IP column generation.
Operations Research Letters 19(4):151–159, 1996.

160

Appendix G

Design of Two-Layered Fixed
Charge Networks

Submitted for Networks

Preliminary version appears in Proceedings of the International Network Opti-
mization Conference(INOC), 2005, Lisbon.

162 Appendix G

Design of Two-Layered Fixed Charge Networks

Tommy Thomadsen1

Abstract

This paper considers design of two-layered meshed networks. A two-
layered meshed network consists of clusters of nodes comprising the
access network layer and a backbone layer interconnecting the clusters.
Designing a two-layered meshed network involves a number of inter-
related problems: Hub location, clustering of nodes, interconnection of
nodes, and routing. In this paper these problems are all solved jointly. A
mathematical model is presented and two lower bounds are derived. One
is the straightforward linear programming relaxation and the other is
obtained by reformulating the problem into a model suitable for column
generation. The column generation subproblems are solved by solving
a series of quadratic knapsack problems. Furthermore, a heuristic is
implemented to obtain feasible solutions. Results are presented which
computationally evaluates the quality of the lower bounds versus the
quality of the heuristic solutions. The column generation lower bound
is always the best of the two bounds, though differences are small. The
gap between the heuristic solution and the bound is up to 9% and the
majority of this gap seems to be due to the quality of the bounds. On
the other hand, the heuristic performs quite well. Especially in light of
the difficulty of the problem, the results are encouraging.

Keywords: Hub location, Node Clustering, Backbone/Access Network Design,
Hierarchical Networks, Meshed Networks.

G.1 Introduction

Communication networks usually have a hierarchical structure composed of two
or more layers. A hierarchical structure has proved beneficial to cope with
changing traffic demands and regular upgrades. When designing such hierarchi-
cal or layered networks, interrelated problems have to be solved. For instance,
the location of hubs, clustering of nodes, interconnection of nodes, and routing

1Informatics and Mathematical Modelling, Technical University of Denmark, Lyngby, Den-
mark. Email: tt@imm.dtu.dk

G.1 Introduction 163

are problems which should be solved. These problems have often been consid-
ered independently or only a few of them have been considered simultaneously.
Since the problems are interrelated, this may lead to suboptimal designs.

This paper considers joint hub location, clustering of nodes and network design
(establishing the links and route the demands) of two-layered meshed networks.
The two layers are denoted the backbone network and the access network. The
backbone network connects disjoint clusters of nodes comprising the access net-
work. An example is given in Figure G.1.

Figure G.1: An example of a two-layered meshed network.

In the figure, the squares are the hub nodes or the backbone nodes and the solid
lines are the links of the backbone network. The circles and the dashed lines are
the access network nodes and links. The clusters are indicated, and each cluster
consists of a hub node, some access network nodes and some access network
links. The backbone consists of all hubs and backbone links interconnecting the
hubs. The objective is to minimize link costs consisting of a fixed cost and a
capacity cost and at the same time satisfy the communication demand. This is
denoted the hub location, clustering and network design (HLCND) problem.

Problems that combine hub location, clustering and network design are reviewed
in [9]. Common to all papers are that they study networks where either the
backbone or the access networks (usually both) have special structure; either
a path, star, tree, ring, or fully interconnected. A recent paper on the topic is
[6] which considers the design of two-layered networks where both the backbone
and the access networks are trees. Also [2] studies a problem where the backbone
network is either a tree or a ring and the access network consist of stars. In the
paper, node costs depending on the equipment installed are taken into account.
The problem when the backbone is a ring and the access network consists of stars
is considered in [10]. The authors present an exact algorithm for the problem.
Finally [12] considers a problem, where a fixed charge backbone network has to

164 Appendix G

be determined, given the clusters.

Several papers have addressed fixed charge network design. An early paper is
[11]. More recent papers are e.g. [3] and [7], which both consider Lagrangian
methods for the network design problem. A review of work on capacitated
network design can be found in [5]. The HLCND generalizes the fixed charge
network design problem, since the backbone and each of the clusters of the
access network consists of fixed charge networks.

This paper considers design of two-layered networks, i.e. joint hub location,
clustering of nodes and network design, where the clusters and the backbone are
fixed charge networks. This is in contrast to other papers considering combined
hub location, clustering and network design, since all these papers enforce a
special structure on either the backbone, the clusters, or both. Furthermore,
routing is most often not included in previously considered problems, whereas
this is included in this paper.

The rest of the paper is organized as follows. Section G.1 presents a mathemat-
ical model for the HLCND problem. The linear programming relaxation of the
model is computed by means of cutting plane, which is presented in Section G.3.
An alternative model is investigated in Section G.4. Column generation is used
for solving the linear programming relaxation of this model. In order to obtain
feasible solutions a heuristic is developed, which is described in Section G.5.
Section G.6 presents computational results and finally Section G.7 gives some
concluding remarks.

G.2 A Mathematical Model for the HLCND
Problem

Consider the graph G = (V,E), where V is the set of nodes and E is the set
of undirected edges representing the links. Let A be the set of directed arcs
corresponding to E, such that for each edge (ij) = e in E, two arcs exist,
one in each direction. For edge e, the arcs are denoted e1 ∈ A and e2 ∈ A.
Furthermore D is a set of communication demands. The terms s(a) and t(a)
are used to denote the start and terminal node of arc a in A. For d in D, O(d)
and D(d) denote the origin and the destination node, respectively.

Let fe denote the fixed cost for an edge e in E and ca denote the capacity cost
per unit of communication demand for an arc a in A. Let bd denote the units
of communication demanded corresponding to demand d in D. Furthermore let
cmin and cmax be a lower and an upper bound on the number of clusters and

G.2 A Mathematical Model for the HLCND Problem 165

similarly let vmin and vmax be a lower and an upper bound on the number of
nodes in each cluster.

The model has four types of variables, ye, xda, hi, and zij . The variable ye, e in
E is 1 if edge e is used, 0 otherwise. The variable xda, e in E, a in A denotes the
fraction of the demand d routed on arc a. Also, hi, i in V is 1 if node i is a hub,
0 otherwise and zij , i and j in V , i < j is 1 if nodes i and j are in the same
cluster, 0 otherwise. For notational convenience zji is sometimes used instead
of zij . The model for the HLCND problem is then:

min
∑
e∈E

feye +
∑

d∈D,a∈A
bdcax

d
a (1)

s.t.
∑

a∈A,s(a)=i

xda −
∑

a∈A,t(a)=i

xda=

 1 if i = O(d)
−1 if i = D(d)
0 otherwise

∀d ∈ D, i ∈ V (2)

xde1 + xde2 ≤ ye ∀e ∈ E, d ∈ D (3)
ye ≤ zij + hk ∀e = (i, j) ∈ E, k ∈ {i, j} (4)

hi + hj + zij ≤ 2 ∀i ∈ V, j ∈ V, i < j (5)
zik + zjk ≤ zij + 1 ∀i, j, k ∈ V, i < j, k 6= i, k 6= j (6)

vmin − 1 ≤
∑
j

zij ≤ vmax − 1 ∀i ∈ V (7)

cmin ≤
∑
i

hi ≤ cmax (8)

xda ∈ [0, 1] ye ∈ {0, 1} (9)
zij ∈ {0, 1} hi ∈ {0, 1} (10)

The objective (1) is the sum of the fixed cost and of the capacity cost. Con-
straints (2) are the flow conservation constraints. They ensure, that for each
demand the inflow equals the outflow at intermediate nodes, the net outflow
is 1 at the origin node and the net inflow is 1 at the destination node. Con-
straints (3) ensure that if any demand are routed on a link in either direction,
then the link is in use and the fixed cost for the link is accounted for in the
objective. Together with (9), constraints (1), (2) and (3) describe a fixed charge
network design problem [11].

The remaining constraints enforce the selection of hubs and clustering of nodes.
If a link between two nodes i and j are used, then the nodes are either in the
same cluster or both nodes are hub nodes, which is ensured by constraints (4).

166 Appendix G

Each cluster can only contain one node, which is ensured by constraints (5) by
prohibiting solutions for which two nodes are both hubs and in the same cluster.
Constraints (6) ensure that if nodes i and k are in the same cluster, and nodes
j and k are in the same cluster, then nodes i and j are in the same cluster
as well. Together with constraints (10), constraints (4), (5), and (6) ensure
that the nodes are in disjoint clusters containing one hub node and links either
connect nodes within clusters or hub nodes. Constraints (7) enforce bounds on
the number of nodes in each cluster and similarly constraint (8) enforce bounds
on the number of clusters.

HLCND can be solved by applying a standard MIP solver. It is, however, only
possible to find optimal solutions for up to 12 nodes in less than 1 hour of com-
putation time. Even finding the value of the Linear Programming Relaxation
(LPR) takes close to 1 hour for networks with 30 nodes and requires gigabytes
of memory.

Instead of solving HLCND using a MIP solver, a Greedy Randomized Adaptive
Search Procedure (GRASP) [4] is used for obtaining feasible solutions. However,
the value of the LPR is useful for evaluating the quality of the heuristic solutions.
In order to obtain the value of the LPR for larger instances, we develop a cutting
plane algorithm. Also with the purpose of improving the value of the LPR, we
investigate a reformulation of the model.

G.3 The Cutting Plane Algorithm

Given the problem structure, a substantial number of x variables are zero in an
optimal solution. To reduce the computation time spent on obtaining a lower
bound, the cutting plane algorithm does not include all x variables initially but
price in variables when needed.

The initial problem solved contains all y, t and z variables and constraints (7)
and (8). In addition a subset of the x variables and a subset of the constraints (2)
and (3) are included. These subsets of variables and constraints are selected such
that a feasible solution always exists. This is done by constructing a feasible
solution, and including all nonzero x variables. In addition all constraints of
type (2) and (3) that contain a nonzero variable are included.

During each iteration, the reduced cost of the x variables are evaluated. If a
variable has a negative reduced cost, it is added. Similarly, the constraints (2),
(3), (4), (5), and (6) are evaluated during each iteration. All constraints that
are violated are added. Following this, the problem is resolved. This continues
until no variables or constraints are added.

G.4 A Column Generation Model 167

In addition some constraints of the following type are added. Consider a subset
S of V and let T ⊂ E be a spanning tree on S. Then the following constraints
are valid. ∑

i∈S
hi +

∑
(i,j)=e∈T

zij ≤ |S| (11)

This is a generalization of (5). For |S| equal to 3, these constraints are used in
the cutting plane algorithm. During each iteration, the constraints are evaluated
and, if violated, added.

G.4 A Column Generation Model

In this section an alternative model of the HLCND problem is considered. A
variable exists for each possible cluster and each possible backbone. Since there
are an exponential number of these variables, the model is solved using column
generation. To explain the model, a substantial number of constants and vari-
ables need to be defined and thus a short example is given to ease understanding.

The paper [8] solves a clustering problem by using column generation in much
the same way as we suggest for the HLCND. The subproblem in the column
generation approach suggested in [8] is the quadratic knapsack problem. In case
of the HLCND, it turns out that the subproblems in the column generation
approach can be solved by solving a series of quadratic knapsack problems.
Thus, methods developed for the quadratic knapsack problem are used.

Let C be the set of all feasible clusters with a hub selected and B be the set
of all backbone networks, i.e. each backbone is a set of hubs. For the clusters,
three types of constants are defined, aci , a

c
e, and hci . The constant aci is 1 if

node i is in cluster c, otherwise 0 and ace is 1 if both endpoint nodes of edge e
are in cluster c, otherwise 0. The constant hci is 1 if node i is hub in cluster c,
otherwise 0.

Two types of constants are defined for the backbone, abi and abe. Similarly to
the cluster variables, abi is 1 if node i is in backbone b, otherwise 0 and abe is 1
if both endpoint nodes of edge e are in backbone b, otherwise 0.

Figure G.2 gives an example of a network with clusters and hubs indicated. The
two clusters give rise to two columns, denoted c1 and c2, and similarly the two
hubs correspond to a backbone network column denoted b1.

For cluster c1, the constants ac11 , ac12 and ac13 are 1, since nodes 1, 2, and 3 are

168 Appendix G

�
�
�
�

�
�
�
�

3
1

2
5

4

Figure G.2: An example with clusters and hubs indicated.

in the cluster. The constants ac112, ac113 and ac123 are 1 since these links may be
in the cluster. Finally hc13 is 1, since node 3 is hub. Remaining constants for
cluster c1 are 0.

For cluster c2, the constants ac24 , ac25 are 1, since nodes 4 and 5 are in the
cluster. The constant ac245 is 1, since the link between 4 and 5 may be in the
cluster. Finally hc24 is 1, since node 4 is hub. Remaining constants for cluster
c2 are 0.

For the backbone b1, ab13 and ab14 are 1 since nodes 4 and 5 are in the backbone.
Also ab134 is 1 since node 3 and 4 are in the backbone, and remaining constants
for the backbone are 0.

Note that in defining the link constants, there is no indication as to whether
a link is actually selected. The definition only considers whether the endpoint
nodes of a link is in the cluster. In the example, the three links in cluster c1
are possible to select, thus the corresponding constants are one, but when the
network is designed they may not be included in the optimal solution.

Two types of variables are used, one type for the clusters and one for the back-
bone. Let uc, c in C be 1 if cluster c is selected, 0 otherwise and vb, b in B be
1 if backbone b is selected, 0 otherwise. The model for the HLCND problem is
then as given in the following.

min
∑
e∈E

feye +
∑

d∈D,a∈A
bdc

d
ax
d
a (12)

s.t. (2), (3) and (9)∑
c∈C

aciuc = 1 i ∈ V (αi) (13)

G.4 A Column Generation Model 169

−
∑
c∈C

hciuc +
∑
b∈B

abivb = 0 i ∈ V (βi) (14)∑
c∈C

aceuc +
∑
b∈B

abevb ≥ ye ∀e ∈ E (γe) (15)∑
b∈B

vb = 1 (δ) (16)

uc ∈ {0, 1} vb ∈ {0, 1} (17)

The core of the formulation is the three constraints (13), (14), and (15). Con-
straints (13) ensure that each node is in exactly one cluster and constraints (14)
ensure that nodes that are hub nodes of a selected cluster are in the back-
bone network. In addition to selecting clusters and the backbone, it has to
be ensured, that links are only established between nodes within clusters or
in the backbone. This is ensured by Constraints (15). Finally constraint (16)
ensures that exactly one backbone network is selected. This constraint is not
necessary but strengthens the linear programming relaxation. The dual vari-
ables corresponding to each type of constraint are indicated in brackets after
the constraints.

Two column generation problems are now apparent, one for the cluster columns,
uc and one for the backbone columns, vb. These are described in the following.

G.4.1 The Cluster Generation Problem

For an optimal solution and thus a set of values for the dual variables, the
reduced cost of a uc column is the following.

−
∑
i∈V

αia
c
i +

∑
i∈V

βih
c
i −

∑
ij∈E

γea
c
e (18)

The column generation subproblem seeks the column with the most negative
reduced cost, or equivalently, has the following objective:

max
∑
i∈V

αiai −
∑
i∈V

βihi +
∑
ij∈E

γeae (19)

In this objective, ai, ae, and hi are binary variables representing whether node
i is in the cluster, edge e is in the cluster, and node i is hub, respectively. The
following constraints ensure that feasible clusters are generated.∑

i∈V
hi = 1 (20)

170 Appendix G

vmin ≤
∑
i∈V

ai ≤ vmax (21)

hi ≤ ai i ∈ V (22)
ae ≤ ai e ∈ E, i endpoint of e (23)

ai + aj ≤ ae + 1 e ∈ E, (i, j) = e (24)
ai ∈ {0, 1}, hi ∈ {0, 1},ae ∈ {0, 1} (25)

Exactly one hub has to be determined, which is ensured by constraint (20).
Furthermore, constraint (21) ensure that bounds are enforced on the number
of nodes in the cluster. Consistency between the variables is ensured by the
remaining constraints. Constraints (22) ensure that a node is selected if it is
the hub. The connection between ai and ae is established by constraints (23)
and (24), and finally constraints (25) ensure that all variables are integer.

Instead of solving the problem directly, a series of problems are solved. This has
the beneficial side-effect that more than one column is usually being generated
per iteration. The hi variables are fixed one at a time and the bounds on the
cluster size is fixed to each of [vmin, vmin + 1, . . . , vmax] in turn. Thus in total
|V |(vmax − vmin + 1) problems are solved.

Fixing these values has the consequence that one node is mandatory (and the
hub) and the number of nodes in the cluster is fixed. Assume the node fixed
to be hub is denoted k and that the cluster size is fixed to vk. Given this, the
problem that has to be solved is the following:

max
∑
i∈V

αiai − βk +
∑
ij∈E

γeae (26)

s.t.
∑
i∈V

ai = vk (27)

ak = 1 i ∈ V (28)
ae ≤ ai e ∈ E, i endpoint of e (29)

ai + aj ≤ ae + 1 e ∈ E, (i, j) = e (30)
ai ∈ {0, 1},ae ∈ {0, 1} (31)

Except for constraint (28) and the fact that constraint (27) is an equation rather
than an inequality, this problem is the quadratic knapsack problem(QKP) [1].
However, by replacing ak by a sufficiently high constant, by adding a sufficiently

G.4 A Column Generation Model 171

high value to all constants, such that all constants are non-negative, and by
replacing constraint (27) by an inequality, the problem can be solved as a QKP.
The code developed and described by Caprara, Pisinger, and Toth in [1] has
been used to do the computations. The generated cluster columns are added if
the reduced cost is negative, which corresponds to that the objective value is
positive. The algorithm used to generate clusters is shown in figure G.3.

for h ∈ V
for vk = vmin to vmax

Solve the QKP with vk as bound and h mandatory.
If the solution has a positive value

add the corresponding cluster column.

Figure G.3: The cluster generation algorithm.

G.4.2 The Backbone Generation Problem

Similarly to the cluster generation problem, the following model is obtained
for generation of backbone columns. In the model, ai and ae are binary vari-
ables representing whether node i is in the cluster and edge e is in the cluster,
respectively.

max
∑
i∈V

βiai +
∑
e∈E

γeae + δ (32)

s.t. cmin ≤
∑
i∈V

ai ≤ cmax (33)

ae ≤ ai e ∈ E, i endpoint of e (34)
ai + aj ≤ ae + 1 e ∈ E, (i, j) = e (35)

ai ∈ {0, 1},ae ∈ {0, 1} (36)

Constraint (33) enforces bounds on the number of nodes. Consistency between
variables is established by constraints (34) and (35). Finally constraints (36)
ensure that the variables are integer.

The bounds on the number of nodes in the backbone is fixed to [cmin, cmin +
1, . . . , cmax] in turn. Each of the cmax − cmin + 1 problems are then solved as

172 Appendix G

QKPs. The generated backbone columns are added if the reduced cost is neg-
ative, corresponding to that the objective is positive. The backbone generation
algorithm is shown in figure G.4.

for ck = cmin to cmax
Solve the QKP with ck as bound.
If the solution has a positive value

add the corresponding backbone to the master.

Figure G.4: The backbone generation algorithm.

Solving the QKPs optimally is time consuming. However, since good heuristics
exist for the QKP, these are used first, and when no heuristic solutions can be
obtained, the optimal method is invoked. This is done for both the cluster and
backbone generation algorithm. The heuristic developed in [1] is used.

In addition to generation of the cluster and backbone columns, the x variables
are priced in the same manner as for the cutting plane algorithm described
in Section G.3. Also, similarly to the cutting plane algorithm, all of the con-
straints (2) and (3) are not included initially, but added when needed.

G.5 The GRASP

The GRASP which provides feasible solutions is shown in figure G.5. For a
general introduction to GRASP, see e.g. [4].

best ← infinity
for a fixed number of iterations do

current ← Construct a feasible solution
while a better neighbor solution exists.

current ← any neighbor solution better than current

if current better than best

best ← current

Figure G.5: The GRASP for HLCND.

The GRASP consists of a construction phase and a local optimization phase that
is run a fixed number of times and maintains the best known feasible solution.

G.5 The GRASP 173

In the computational results presented, 100 iterations are carried out. The
construction phase consists of a randomized greedy algorithm described in the
following. A feasible solution is a subdivision of the nodes in the network into
clusters and a selection of one hub node in each cluster, such that the number
of nodes in each cluster and the number of clusters are within bounds.

G.5.1 The Construction Phase

The construction phase is a randomized greedy algorithm, i.e. during construc-
tion, the best decision is not necessarily made, but for a fixed k, one of the
k best decisions are made. The construction phase merges sets of nodes into
feasible clusters. Merges that result in too large clusters are never considered.
Initially each node is equivalent with one set. Sets are then merged based on an
estimate of the probability that two nodes are in the same set. This is continued
until feasible clusters are obtained. In the event that a situation occur, in which
no feasible clusters can be obtained, the construction is restarted.

For node pairs, two different estimates of the probability that two nodes are
in the same set are considered. This leads to two different algorithms denoted
GRASP dist and GRASP LPR. The first algorithm is based on the distance
between nodes whereas the second is based on the value of the z variables in the
LPR solution. The estimate used for two sets of nodes A and B, where either
or both of the sets have more than one node, is the average over all node pairs
such that one node is in A and the other node is in B.

In all the computational results reported, k is 10, i.e. one of the 10 best merges,
selected randomly, are carried out. To speed up construction, the estimate is
maintained for current pairs of sets. Each time a merge is accomplished, the
maintained estimates are updated, which can be done in linear time for all
the maintained estimates. This has to be compared with the quadratic time
necessary to compute each estimate, given estimates for pairs of nodes only.

Finally hubs have to be selected in each cluster, which is done randomly based on
estimates for each node that this is hub. In GRASP dist, the estimate is based
on the distance to the center of the network. In GRASP LPR, the estimate is
based on the values of the h variables in the LPR solution.

174 Appendix G

G.5.2 The Local Optimization Phase

The local optimization phase investigates solutions which are neighbor solutions
to the constructed solution. Two types of neighbor solutions are considered.
The first consists of moving one node from one cluster to another. The second
consists of selecting an alternative hub within a cluster.

All neighbor solutions of the first type are considered and accepted if better
than the current solution. Then the neighbor solutions of the second type are
considered. This is continued until no improving neighbor solutions exists.

G.5.3 Evaluation of a Solution

Whenever a feasible solution is constructed or obtained by local optimization,
it has to be evaluated, i.e. the cost of the network has to be computed. For a
feasible solution, the clusters and the hubs are determined, thus the evaluation
consists of determining the links and route the demands. Note that, since each
cluster contains exactly one hub, the demands from a node in a cluster to any
other cluster has to go through the hub node. Thus routes and links in a cluster
can be determined independently of the backbone and other clusters. Similarly,
given the clusters and hubs, it is obvious which demands runs through the
backbone and from and to which hub nodes. Thus the backbone network can
be determined independent of the links and routes in clusters.

For each cluster (and similarly for the backbone), several demands run from the
same node to the hub node in the cluster. To ease computation, it is beneficial
to aggregate demands with the same start and end node. Evaluating a feasible
solution, then amounts to solving a fixed charge network design problem for all
clusters and the backbone independently. Since the number of nodes in each
cluster and in the backbone is low compared with the overall network, it is
possible to find the optimal solution using a MIP solver. It is, however, by far
the most computational intensive part of the GRASP.

As mentioned, the optimal route within a cluster is independent of how the other
clusters and the backbone are designed. Furthermore, a substantial number
of solutions are constructed, and locally optimized. Thus, some clusters will
inevitably reappear, and in that case previously computed values for the clusters
can be reused. To reduce the time spent on solving fixed charge network design
problems, the computed values for each cluster is recorded and reused.

Furthermore, since a number of solutions are constructed and locally optimized,

G.6 Computational Results 175

entire solutions that have been evaluated previously reappear. Thus values of
entire solutions identified by the clusters and hubs are recorded and reused
whenever possible.

G.6 Computational Results

For evaluating the algorithms, test instances are generated by locating nodes in
the unit square. A link exists between all pairs of nodes and the fixed costs and
capacity costs are proportional to the Euclidean distance. Uniformly distributed
demands are generated for each pair of nodes. The ratio between the fixed
cost and the capacity cost is kept constant and for the results presented equal
to the average demand per link multiplied by 0.2|V |. This leads to feasible
solutions with an average node degree of approximately 2-2.5, which corresponds
to solutions with clusters consisting of mainly trees and with a backbone that
is usually two-connected. This seems reasonable from a practical point of view.

In addition, values for cmin, cmax, vmin and vmax are generated. This is done
by providing the value vfree, which is a nonzero integer. The value vfree can be
interpreted as how “freely” the clusters and backbone can be determined, i.e.
how many nodes they contain. Define vcenter to be

√
|V | rounded to nearest

integer. Then vmin = vcenter − vfree and vmax = vcenter + vfree. Given this,

cmin =
⌈
|V |
vmax

⌉
and cmax =

⌊
|V |
vmin

⌋
. As an example, when vfree takes the

value 1, this corresponds to very tight bounds on the number of nodes in the
clusters and in the backbone and correspondingly, large values of vfree gives
loose bounds. Only instances with vfree fixed to 1 and 2 are considered.

Table G.1 presents the computational results for the lower bounds.

The first two columns identify the problem by the number of nodes and vfree.
The third column shows the time required to compute the optimal solution.
The remaining columns show the relative gap to the best known solution and
the time required to compute the lower bounds. The best known solution is the
optimal solution if it is known, and otherwise the best of the solutions produced
by the two GRASPs. The optimal solution is computed by branch-and-bound
using the column generation model for bounding. Note that in the column
generation model, the cluster and backbone column variables are integer if the
y variables are integer. Thus branching is on the y variables.

The gaps are substantial, but in all cases the column generation model bound
is the same or lower than the LPR bound. However, the larger the instances
are, the closer the bounds are to each other. The time required to compute

176 Appendix G

Problem Optimal LPR Col. Gen. Model
|V | vfree Time(s) Gap(%) Time(s) Gap(%) Time(s)
10 1 232 3.13 1 1.94 1
12 1 2306 3.21 1 2.60 4
15 1 147523 7.07 4 6.55 10

2 3266 2.67 3 2.23 10
20 1 5.46 27 5.30 68

2 3.86 25 3.77 56
25 1 6.06 125 5.98 379

2 4.07 113 4.05 356
30 1 6.53 503 6.50 988

2 6.21 438 6.19 999
40 1 8.02 8322 8.02 10060

2 6.64 5228 6.64 15351
50 1 7.44 107634 7.44 43957

2 7.38 102995 7.38 50571

Table G.1: Computational results for the lower bounds.

the bounds are substantial, an in the worst case close to 30 hours. However,
recall that the number of x variables in the formulation is O(|V |4). Thus, the
instances seems deceptively small from the node count, but they are quite large
in terms of variables and constraints. The high computation times are therefore
not surprising.

Table G.2 presents the computational results for the GRASP.

The first two columns identify the problem. The remaining columns show the
relative gap to the best of the two lower bounds and the optimal solution, if
known, and the time required to compute the heuristic solutions. GRASP LPR
requires the solution of the LPR, thus in addition to the reported time, the time
required to compute the LPR is used.

For the four smallest instances, for which the optimal solution is known, the
gap is less than 1%. Note that for the same four instances, the gap for the lower
bounds in Table G.1 is much worse. Thus, the majority of the gap is due to
the quality of the lower bound, whereas the heuristics seems to produce quite
good solutions. The gap is in the worst case 9%, but since this is presumably
due to the lower bounds, it is more interesting to compare the two GRASPs.

G.6 Computational Results 177

Problem GRASP dist GRASP LPR
|V | vfree Gap(%) Time Gap(%) Time

10 1 0.00 4 0.00 5

12 1 0.00 12 0.64 12

15 1 0.00 31 0.00 31
2 0.29 38 0.19 46

20 1 5.81 76 5.59 74
2 3.92 293 4.91 410

25 1 6.36 124 6.36 125
2 4.22 234 5.39 293

30 1 6.95 545 7.15 547
2 6.69 1288 6.60 1844

40 1 8.72 1977 8.72 2315
2 7.11 4113 7.92 6261

50 1 9.00 4873 8.03 4902
2 7.97 7528 8.56 9115

Table G.2: Computational results for the GRASP.

GRASP dist and GRASP LPR obtain comparable results which are never more
than 1% from each other. Neither seems better than the other. The compu-
tational times are comparable with the mentioned caveat that GRASP LPR
requires the evaluation of the LPR. Thus if no bound is required, GRASP dist
is preferable.

The value of vfree affects the quality of the lower bound versus the heuristic
solution and the computational time of the GRASPs. For the two instances
with 15 nodes, for which the optimal solution is known, the quality of the lower
bound is best for vfree = 2. In general the gap between the heuristic solutions
and the lower bound is smallest for vfree = 2. Also notable is, that instances
with vfree = 1 require less computation time than instances with vfree = 2.
This can be explained by the observation, that for vfree = 2, larger clusters and
backbones are allowed compared with vfree = 1. When evaluating solutions,
fixed charge network design problems are solved using a MIP solver, and since
the computation time is highly dependent on the size of the fixed charge network
design problems, the overall computational time increases.

178 Appendix G

G.7 Conclusion

The major contribution of this paper is to investigate the hub location, clustering
and network design problem. The problem consists of determining a two-layered
fixed charge network, which includes hub location and clustering of nodes. The
model and the reformulated model suitable for column generation are both new
and are used to obtain lower bounds. The GRASP developed produce acceptable
solutions.

The problem generalizes fixed charge network design and furthermore is related
to other problems which address the design of two-layered networks. The prob-
lem presented here is much more difficult than most related problems, since in
these a special structure is enforced on either the backbone network, the cluster
networks, or both, which ease computations.

Computational experiments show that the bound based on column generation
is better than the straightforward linear programming relaxation for small in-
stances. The gaps between the feasible solutions and the lower bounds are, how-
ever, up to 9%. The majority of the gap seems to be due to the bounds, whereas
the heuristic seems to produce quite good feasible solutions. The heuristic so-
lutions are less than 1% from the optimal solutions for the few small examples
where an optimal solution has been obtained.

The GRASP produces solutions for the hub location, clustering and network
design problem, and since bounds are presented, we can computationally evalu-
ate how well the GRASP is performing. However, if an optimal method is to be
developed, the bounds should be improved both in terms of the quality of the
bound achieved and in terms of running time. Other authors have previously
solved fixed charge network design problems using Lagrangian methods, so that
seems as an obvious path to follow. The complexity of the problem, nevertheless,
implies that the largest instances will be very difficult to solve to optimality. At
the very least, using Lagrangian methods could decrease the computation time
required to obtain the bound and hopefully improve the bound. The GRASP
seems to produce rather good solutions, however, the computation time should
be decreased. Thus, it may be interesting to consider alternative heuristics.

Bibliography

[1] Caprara, A., Pisinger, D., Toth, P. Exact solution of the quadratic knapsack
problem. INFORMS Journal on Computing, Vol. 11, No. 2, 125–137, 1999.

179

[2] Chamberland, S., Sansò, B., Marcotte, O. Topological design of two-level
telecommunication networks with modular switches. Operations Research,
Vol. 48, No. 5, 745–60, 2000.

[3] Crainic, T. G., Frangioni, A., Gendron B. Bundle-based relaxation meth-
ods for multicommodity capacitated fixed charge network design. Discrete
Applied Mathematics, Vol. 112, No. 1-3, 73–99, 2001.

[4] Feo, T. A., Resende M. G. C. Greedy Randomized Adaptive Search proce-
dures. Journal of Global Optimization, Vol. 6, 109–133, 1995.

[5] Gendron, B., Crainic, T. G., Frangioni, A. Multicommodity Capacitated
Network Design. Telecommunications Network Planning, Sansò, B., Sori-
ano, P. ed. Kluwer, 1-19, 1999.

[6] Gouveia, L., Telhada, J. An Augmented Arborescence Formulation for the
Two-Level Network Design Problem. Annals of Operations Research, Vol.
106, No. 1-4, 47–61, 2001.

[7] Holmberg, K., Yuan, D.A Lagrangean approach to network design problems
International Transactions in Operational Research, Vol. 5, No. 6, 529–539,
1998.

[8] Johnson, E.L., Mehrotra, A., Nemhauser, G.L. Min-cut clustering Mathe-
matical Programming, Vol. 62, No. 1, 133–151, 1993.

[9] Klincewicz, J.G. Hub location in backbone/tributary network design: a
review. Location Science, Vol. 6, 307–335, 1998.

[10] Labbe, M., Laporte, G., Martin, I.R., Gonzalez, J J.S. The Ring Star Prob-
lem: Polyhedral analysis and exact algorithm. Networks - Bognor Regis,
Vol. 43, No. 3, 177–18, 2004.

[11] Magnanti, T.L., Wong, R.T. Network design and transportation planning:
models and algorithms. Transportation Science, Vol. 18, No. 1, 1–55, 1984.

[12] Thomadsen, T., Stidsen, T. The Generalized Fixed-Charge Network Design
Problem. Computers and Operations Research, To appear, 2005.

180

Bibliography

[1] A. Balakrishnan. Lp extreme points and cuts for the fixed-charge network
design problem. Mathematical Programming, 39(3):263–284, 1987.

[2] A. Balakrishnan, T.L. Magnanti, and R.T. Wong. A dual-ascent proce-
dure for large-scale uncapacitated network design. Operations Research,
37(5):716–740, 1989.

[3] E. Balas. The prize collecting traveling salesman problem. Networks,
19(6):621–36, 1989.

[4] E. Balas. The prize collecting traveling salesman problem. ii. polyhedral
results. Networks, 25(4):199–216, 1995.

[5] C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, and
P.H. Vance. Branch-and-price: column generation for solving huge integer
programs. Operations Research, 46(3):316–29, 1998.

[6] P. Bauer, J.T. Linderoth, and M.W.P. Savelsbergh. A branch and cut ap-
proach to the cardinality constrained circuit problem. Mathematical Pro-
gramming, 91(2):307–348, 2002.

[7] A. Billionnet and F. Calmels. Linear programming for the 0-1 quadratic
knapsack problem. European Journal of Operational Research, 92(2):310–
325, 1996.

[8] A. Billionnet, A. Faye, and E. Soutif. A new upper bound for the 0-1
quadratic knapsack problem. European Journal of Operational Research,
112(3):664–672, 1999.

[9] A. Caprara, D. Pisinger, and P. Toth. Exact solution of the quadratic
knapsack problem. INFORMS Journal on Computing, 11(2):125–37, 1999.

182 Bibliography

[10] COIN-OR. COmputational INfrastructure for Operations Research
www.coin-or.org.

[11] A.M. Costa. A survey on benders decomposition applied to fixed-charge
network design problems. Computers and Operations Research, 32(6):1429–
1450, 2005.

[12] T.G. Crainic, A. Frangioni, and B. Gendron. Bundle-based relaxation
methods for multicommodity capacitated fixed charge network design. Dis-
crete Applied Mathematics, 112(1-3):73–99, 2001.

[13] O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized column
generation. Discrete Mathematics, 194(1-3):229–237, 1999.

[14] T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search proce-
dures. Journal of Global Optimization, 6:109–133, 1995.

[15] C. Feremans, M. Labbe, and G. Laporte. Generalized network design prob-
lems. European Journal of Operational Research, 148(1):1–13, 2003.

[16] M. Fischetti, J.J. Salazar Gonzalez, and P. Toth. The symmetric general-
ized traveling salesman polytope. Networks, 26(2):113–23, 1995.

[17] M. Fischetti, J.J. Salazar Gonzalez, and P. Toth. A branch-and-cut algo-
rithm for the symmetric generalized traveling salesman problem. Operations
Research, 45(3):378–94, 1997.

[18] M. Fischetti, J.J. Salazar Gonzalez, and P. Toth. Solving the orienteer-
ing problem through branch-and-cut. INFORMS Journal on Computing,
10(2):133–48, 1998.

[19] M. Gendreau, M. Labbe, and G. Laporte. Efficient heuristics for the design
of ring networks. Telecommunication Systems - Modeling, Analysis, Design
and Management, 4(3-4):177–88, 1995.

[20] M. Gendreau, G. Laporte, and F. Semet. A branch-and-cut algorithm for
the undirected selective traveling salesman problem. Networks, 32(4):263–
73, 1998.

[21] B. Gendron, T. G. Crainic, and A. Frangioni. Multicommodity capacitated
network design. Telecommunications Network Planning, Kluwer, pages 1–
19, 1999.

[22] L. Gouveia and J.M. Pires. Models for a steiner ring network design problem
with revenues. European Journal of Operational Research, 133(1):21–31,
2001.

Bibliography 183

[23] K. Holmberg and D. Yuan. A lagrangean approach to network design
problems. International Transactions in Operational Research, 5(6):529–
539, 1998.

[24] K. Holmberg and D. Yuan. A lagrangian heuristic based branch-and-bound
approach for the capacitated network design problem. Operations Research,
48(3):461–81, 2000.

[25] D. Kang, K. Lee, S. Park, K. Park, and S.-B. Kim. Design of local networks
using ushrs. Telecommunication Systems, 14(4):197–217, 2000.

[26] J.G. Klincewicz. Hub location in backbone/tributary network design: a
review. Location Science, 6(1-4):307–335, 1998.

[27] M. Labbe, G. Laporte, I.R. Martin, and J.J. Salazar Gonzalez. The ring
star problem: Polyhedral analysis and exact algorithm. Networks - Bognor
Regis, 43(3):177–189, 2004.

[28] G. Laporte and S. Martello. The selective travelling salesman problem.
Discrete Applied Mathematics, 26(2-3):193–207, 1990.

[29] G. Laporte and F. Semet. Computational evaluation of a transformation
procedure for the symmetric generalized traveling salesman problem. IN-
FOR Journal, 37(2):114–120, 1999.

[30] T.L. Magnanti, P. Mireault, and R.T. Wong. Tailoring benders decomposi-
tion for uncapacitated network design. Mathematical Programming Studies,
26:112–154, 1986.

[31] T.L. Magnanti and R.T. Wong. Network design and transportation plan-
ning: models and algorithms. Transportation Science, 1984.

[32] K. Park, K. Lee, S. Park, and H. Lee. Telecommunication node clustering
with node compatibility and network survivability requirements. Manage-
ment Science, 46(3):363–374, 2000.

[33] J. Petrek and V. Siedt. A large hierarchical network star-star topology de-
sign algorithm. European Transactions on Telecommunications, 12(6):511–
22, 2001.

[34] A. Proestaki and M.C. Sinclair. Design and dimensioning of dual-homing
hierarchical multi-ring networks. IEE Proceedings-Communications,
147(2):96 –104, 2000.

[35] D.M. Ryan and B. Foster. An integer programming approach to scheduling.
Computer Scheduling of Public Transport. Urban Passenger Vehicle and
Crew Scheduling. Proceedings of an International Workshop, pages 269–80,
1981.

184 Bibliography

[36] J. Shi and J.P. Fonseka. Hierarchical self-healing rings. IEEE/ACM Trans-
actions on Networking, 3(6):690 –697, 1995.

[37] J.J. Shi and J.P. Fonseka. Analysis and design of survivable telecommuni-
cations networks. IEE Proceedings-Communications, 144(5):322–330, 1997.

[38] M.M. Sigurd. Column Generation Methods and Applications. PhD thesis,
Dept. of Computer Science, University of Copenhagen, Denmark, 2004,
www.diku.dk/~sigurd.

[39] F. Vanderbeck and L.A. Wolsey. An exact algorithm for ip column gener-
ation. Operations Research Letters, 19(4):151–159, 1996.

[40] T. Volgenant and R. Jonker. On some generalizations of the travelling-
salesman problem. Journal of the Operational Research Society,
38(11):1073–9, 1987.

	Summary
	Resumé
	Preface
	Papers included in the thesis
	Acknowledgments
	1 Introduction
	1.1 Hierarchical Networks
	1.2 Subproblems in Hierarchical Network Design
	1.3 Outline of the Thesis

	2 Ring Network Design Problems
	2.1 The Travelling Salesman Problem
	2.2 TSP with Optional Nodes
	2.3 TSP with Quadratic Costs and Revenues

	3 Hierarchical Network Design Problems
	3.1 The Fixed Charge Network Design Problem
	3.2 The Basic Model for Hierarchical Network Design Problems
	3.3 An Extended Model for Hierarchical Network Design Problems
	3.4 Topology Constraints on the Clusters
	3.5 Topology Constraints on the Backbone
	3.6 More Hubs
	3.7 Using the models
	3.8 Related Papers

	4 Linear Programming Based Methods
	4.1 The Linear Programming Relaxation
	4.2 Branch-and-Bound
	4.3 Cutting Plane and Branch-and-Cut
	4.4 Column Generation and Branch-and-Price
	4.5 Branch-Cut-and-Price

	5 Papers in the Thesis
	5.1 Paper A: Facets for the Cardinality Constrained Quadratic Knapsack Problem and the Quadratic Selective Travelling Salesman Problem
	5.2 Paper B: A Branch-and-Cut Algorithm for the Quadratic Selective Travelling Salesman Problem
	5.3 Paper C: Hierarchical Ring Network Design Using Branch-and-Price
	5.4 Paper D: Joint Routing and Protection Using p-cycles
	5.5 Paper E: The Generalized Fixed-Charge Network Design Problem
	5.6 Paper F: The Two-Layered Fully Interconnected Network Design Problem -- Models and an Exact Approach
	5.7 Paper G: Design of Two-Layered Fixed Charge Networks

	6 Conclusion
	6.1 Summary
	6.2 Main Contributions
	6.3 Future Work

	A Facets for the Cardinality Constrained Quadratic Knapsack Problem and the Quadratic Selective Travelling Salesman Problem
	A.1 Introduction
	A.2 Integer Programming Model and the Polyhedra
	A.3 Polyhedral results for the QK polytope
	A.4 Polyhedral results for the QSTS polytope
	A.5 Conclusion

	B A Branch-and-Cut Algorithm for the Quadratic Selective Travelling Salesman Problem
	B.1 Introduction
	B.2 The Model
	B.3 Branch-and-Cut Algorithm
	B.4 Heuristics
	B.5 Computational Results
	B.6 Conclusions

	C Hierarchical Ring Network Design Using Branch-and-Price
	C.1 Introduction
	C.2 Previous work
	C.3 The Modified HRN Problem
	C.4 The Problems
	C.5 The Branch-and-Price Algorithm
	C.6 Computational Results
	C.7 Conclusion

	D Joint Routing and Protection Using p-cycles
	D.1 Introduction
	D.2 The p-cycle Protection Method
	D.3 Previous Work on p-cycle Planning
	D.4 Solution Methodology
	D.5 Results and Discussion
	D.6 Conclusion

	E The Generalized Fixed-Charge Network Design Problem
	E.1 Introduction
	E.2 Related Problems
	E.3 A MIP Model for the GFCND Problem
	E.4 Solving the GFCND problem
	E.5 Test Instance Generation
	E.6 Computational Results
	E.7 Conclusion

	F The Two-Layered Fully Interconnected Network Design Problem -- Models and an Exact Approach
	F.1 Introduction
	F.2 Network Design
	F.3 Decomposition and Column Generation
	F.4 Branch-and-Price
	F.5 Experimental Results
	F.6 Conclusion

	G Design of Two-Layered Fixed Charge Networks
	G.1 Introduction
	G.2 A Mathematical Model for the HLCND Problem
	G.3 The Cutting Plane Algorithm
	G.4 A Column Generation Model
	G.5 The GRASP
	G.6 Computational Results
	G.7 Conclusion

