
High Level Database
Interface with

Application to GIS

Mads Johnsen, s991179

LYNGBY 2005
M.Sc. Thesis

NR. 22/05

IMM

Printed at IMM, DTU

Abstract

This thesis presents a high level language hlcl (High Level Constraint Lan-
guage) which facilitates the formulation of constraints imposed on a rela-
tional database. The language has been designed with a syntax very similar
to natural language and has been developed to be as intuitive as possible.
It is based on the so-called “Peirce Product” known from algebraic logic,
which gives clear and unambiguous semantics. The language is intended
to help trained domain specialists, who are not necessarily logic specialists,
formulate constraints correctly.

Constraints are formulated in hlcl on the basis of a conceptual model
(E/R-diagram), which has a specified map into the actual database schema.
The specification of the conceptual model, database schema and the map-
ping between the two are referred to as the database model.

The thesis also describes a compiler system, which given a database
model can compile constraints formulated in hlcl to a directly executable
sql query and well-defined datalog¬ interface. A proof-of-concept com-
piler system is implemented in prolog and tested with actual constraints
from the Geographic Information Domain.

Resumé

Dette speciale præsenterer et højniveau sprog hlcl (High Level Constraint
Language) med henblik p̊a at formulere constraints p̊a en relationel database.
Sproget er designet med en syntaks meget tæt p̊a naturligt sprog og er ud-
viklet til at være s̊a intuitivt som muligt. Sproget er baseret p̊a det s̊akaldte
“Peirce Product” kendt fra algebraisk logik, som giver en klar og entydig se-
mantik. Sproget er tænkt som en hjælp til trænede domænespecialister, der
ikke nødvendigvis er specialister i logik, s̊a constraints formuleres korrekt.

Constraints er formuleret i hlcl p̊a basis af en konceptuel model (E/R-
diagram), der har en specificeret afbildning til databasens tabeller. Speci-
fikationen af den konceptuelle model, databasens tabeller og afbildningen
mellem de to bliver samlet referet til som database modellen.

Specialet beskriver ogs̊a et oversættersystem, der givet en database model
kan kompilere constraints formuleret i hlcl til en direkte eksekverbar sql

forespørgsel og en veldefineret datalog¬ grænseflade. Et “proof-of-concept”
kompiler system er udviklet i prolog og testet med faktiske constraints fra
det geografiske domæne.

Preface

The enclosed report constitutes the M.Sc. Thesis by Mads Johnsen. The
project was carried out at the Computer Science and Engineering division
(CSE), Institute of Informatics and Mathematical Modelling (IMM) at the
Technical University of Denmark (DTU). The duration of the project has
been six months from the 1st of October 2004 to the 31st of March 2005,
and corresponds to a workload equivalent of 30 ECTS points. The work has
been supervised by Professor Jørgen Fischer Nilsson and Associate Professor
Hans Bruun.

I would like to thank my supervisors for valuable guidance and construc-
tive criticism during the project. I would also like to thank Jesper Vinther
Christensen, Per Larsen and Thomas Bolander for valuable input and sup-
port during my work with the thesis.

Kgs. Lyngby, April 5, 2005

Mads Johnsen

Contents

1 Introduction 1

1.1 Reading Guide . 2

1.2 Thesis Structure . 5

1.3 Abbreviations . 6

2 Background 9

2.1 Database Constraints . 9

2.2 Application Domain . 10

3 General Idea 13

3.1 The hlcl System . 13

3.2 The Conceptual Model . 14

3.3 hlcl Syntax . 15

3.3.1 Informal Description 16

3.3.2 Macro Functionality 25

3.4 Language Design Decisions 26

3.4.1 hlcl Expressions and Intuition 28

3.5 Formal Description . 29

3.6 Model Theoretic Semantics 31

4 Running Examples 37

4.1 Conceptual Model . 38

4.2 Constraint Examples . 38

5 Related Work 43

5.1 Colan . 44

5.2 Description Logic . 46

5.3 OCL . 47

5.4 EER . 50

5.5 Concluding Remarks . 50

6 From hlcl to Predicate Logic 53

6.1 Macro Functionality . 53

6.2 Simple Translating Strategy 53

viii CONTENTS

6.3 Advanced Translating Strategy 58

6.3.1 Issues . 58

6.3.2 Strategy . 59

6.4 Full Translating Strategy . 65

7 Intermediate Steps 69

7.1 Interface Definitions . 70

7.1.1 Extended datalog 70

7.1.2 datalog¬ . 71

7.2 From Predicate Logic to Extended datalog 71

7.3 From Extended datalog to datalog¬ 73

7.4 Attributes in datalog¬ . 76

8 Database Representation 79

8.1 Formal Description . 79

8.2 Informal Description . 81

8.2.1 Conceptual Model . 81

8.2.2 Database Model . 83

8.2.3 Mapping . 84

8.3 Wellformedness . 87

8.4 Shortcomings of Representation 87

9 From Extended datalog to sql 89

9.1 Issues . 89

9.1.1 Expressiveness . 90

9.1.2 Safety . 90

9.2 Translation Strategy . 91

9.2.1 ISA-structures . 99

10 Implementation 103

10.1 prolog and Logic Programming 103

10.2 Definite Clause Grammars . 104

10.3 λ-Calculus in prolog . 104

10.4 Variables . 105

11 Future Work 107

11.1 Improvements of Current System 107

11.1.1 Optimizations of Queries 107

11.1.2 Expressiveness . 108

11.1.3 Optimization of Database Representation 108

11.2 Other Applications of Current System 108

11.2.1 As a Basis for Yet Another Interface 108

11.2.2 Deducting hlcl Constraints 108

11.2.3 Logical Relationships Between Constraints 109

CONTENTS ix

12 Conclusion 111

Bibliography 113

A Concepts Explained 119

A.1 Constraints in the E/R-model 119

A.2 Anaphora and “Donkey-sentences” 120

A.3 sql . 121

A.3.1 Spatial Data and sql 122

A.4 Problematic Representations 124

A.4.1 ISA-structures . 124

A.4.2 Mapping Weak Entity Sets 126

A.4.3 Computed Relations 127

A.5 λ-Calculus . 128

A.6 Skolem Functions . 129

B Detailed Implementation 131

B.0.1 Notation . 131

B.0.2 Coding Convention . 132

B.0.3 Interfaces . 133

B.1 Overview - hlcl to sql/datalog¬ 133

B.2 hlcl to Predicate LogicTranslation 134

B.3 Wellformedness Checking . 137

B.4 Intermediate Steps . 139

B.5 Extended datalog to sql . 140

B.6 Extended datalog to datalog¬ 141

B.7 Settings . 143

B.8 Other Predicates . 144

B.8.1 I/O Predicates . 144

B.8.2 Test Predicates . 144

B.9 Auxiliary Predicates . 144

C Userguide and CD Contents 149

C.1 CD Contents . 149

C.2 User Guide . 149

C.2.1 Installing the hlcl System 149

C.2.2 Running the hlcl System 150

D Test Cases 151

D.1 Overview . 151

D.2 Actual Tests . 157

x CONTENTS

E Sourcecode 191
E.1 hlcl-system . 191
E.2 User Settings . 231
E.3 Help Functions . 236
E.4 Test Functions . 239

List of Figures

1.1 Walkthrough Conceptual Model 3
1.2 Walkthrough Database Schema 4

3.1 An overview of the hlcl System 14
3.2 Two Classes . 16
3.3 A simple relation . 17
3.4 A path through relations . 17
3.5 Compound Relations . 20
3.6 An example conceptual model for illustrating use of brackets 22

4.1 The domain for the Constraint Examples 38

5.1 The domain for the OCL constraints 48

8.1 Conceptual Model Example 81
8.2 Database Tables corresponding to figure 8.1 82

A.1 E/R Diagram Constraint Examples 119
A.2 Topological Relations . 123
A.3 Topological Classes . 124
A.4 An example ISA-structure . 125
A.5 A Conceptual Model Fragment having Weak Entity Sets . . . 126

B.1 Notation . 132
B.2 hlcl to Predicate Logic Translation 135
B.3 Wellformedness Checking . 137
B.4 Intermediate steps . 139
B.5 Extended datalog to datalog¬ Translation 142

xii LIST OF FIGURES

List of Tables

3.1 hlcl Reserved Keywords . 25
3.2 Abstract Syntax Constructs for hlcl 30

A.1 The topological operators in Oracle Spatial 130

B.1 Naming Convention of Interfaces in Documentation 133
B.2 The cases in Extended datalog to sql Translation 145

D.1 Test Cases for the hlcl-system 152

xiv LIST OF TABLES

Chapter 1

Introduction

As computer systems are used more widely in our society, the databases sup-
porting the systems become larger and more complex. To keep increasingly
complex databases consistent and homogenous is a difficult and advanced
task. To ensure consistency, database professionals define so-called integrity
constraints on the objects of the database, which will reveal any data sets
that are incorrect.
The constraints are usually deducted from extensive specifications written
in plain natural language. The natural language specifications are easy to
read and understand for non-database experts, and are relieved from any
unnecessary implementation details. But due to the nature of natural lan-
guage, they can be ambiguous and are, in general, not sufficiently precise.
Constraints on the other hand are typically formulated in first order pred-
icate logic or in a database query language, and are very well-defined and
unambiguous. This means that there exists a gap between the informal
specification and the very formal constraints definition. Consequently, the
deducted constraints are not optimal in all cases, perhaps even wrong, and
this will ultimately result in loss of data quality.
In this report we present a language for formulation of constraints, which can
fill the gap between specifications and the actual constraints. The language
we have designed is called hlcl (High Level Constraint Language) and is
targeted to be as similar to natural language as possible, but its semantic
principles are built on a well known and well-defined property called “Peirce
Algebras”.
The language is intended for domain specialists, who have a basic back-
ground in databases. It is not intended for the absolute beginner, since it
has a fixed syntax and requires some training to use.

The user will formulate a constraint in the context of a conceptual model,
an Entity-Relationship Diagram (E/R Diagram), which is made available
to the user. A compiler with information about the conceptual model, the

2 Introduction

actual database schema and the mapping between the two, will compile the
constraint into an executable query in the target database. The mapping
between the conceptual model and database schema will be very loosely
coupled, so that any changes in the low-level database schema can be ac-
commodated by the map, resulting in no change in the conceptual model
nor constraint.
There is a number of benefits from introducing the High Level Constraint
Language we have designed: First of all hlcl will help the user to formulate
the constraints in an easier and more natural language. A wellformedness
check on the constraints will be able to catch many errors in the specifi-
cations. Second, the constraints will be clear and unambiguous, directly
executable and implementation independent. Finally the actual constraints
are formulated in the context of the conceptual knowledge, thereby being
free of any implementation specific details, making them simpler and easier
to understand.
In the present report the syntax and design choices of hlcl will be dis-
cussed, this includes a formal language specification and a semantic model.
A proof-of-concept compiler compiling hlcl into datalog¬ and sql will
be supplied and explained.

As a case study constraints from the “The National Survey and Cadastre”
(KMS) Geographical Information System (GIS) database will be used. It
is important to note that the proposed constraint language is very general,
and that it could be used on any system, but GIS is chosen since even quite
complex constraints are fairly easy to comprehend for nonspecialists.

1.1 Reading Guide

The structure of this report corresponds to steps taken in the process of
deducting a constraint from a specification to checking if it holds for a given
database. In order to give an overview of the report structure and the full
compiler process the following chapter will show how a simple constraint is
compiled step by step by the hlcl-system.

The starting point is a constraint formulated in natural language, and a
description of the target database. For a discussion of constraints in general
and the application domain we have chosen the reader is referred to chap-
ter 2 on page 9.

Suppose the target database has a conceptual model as in figure 1.1 on
the next page. In our conceptual model we only operate with entity classes1

and relations. For a full discussion of the requirements for the conceptual
model, the reader is referred to chapter 3.2 on page 14.

1In this report we will use the shorter term “classes” for “entity classes”

1.1 Reading Guide 3

Area
 Contain
 Building

Type

Residential

Figure 1.1: Walkthrough Conceptual Model

Let us imagine we want to express the constraint that: “all areas must

contain at least one building”. This report defines a language, hlcl for
describing such a constraint. An introduction to the constructed language
hlcl can be found in chapter 3 on page 13. The constraint would be for-
mulated in hlcl as:

all area type residential must contain building

hlcl expressions cannot be checked directly in the database. In order to
check our constraint, we need to translate hlcl into an executable query
language. To support this process an hlcl-compiler has been developed
which takes hlcl as input and transforms it to sql and datalog¬. The
source code for this system can be found in Appendix E on page 191 and
implementation details can be found in chapter 10 on page 103 and appen-
dix B on page 131. The installation guide for the system can be found in
appendix C on page 149. The rest of this chapter describes the steps the
hlcl compiler takes:

The first step is to translate the hlcl expression into an intermediate Pred-
icate Logic form - this is shown in chapter 6 on page 53. The above sentence
has the corresponding Predicate Logic expression:

∀Xarea(X)∧type(X,′ residential′)→ ∃Y (contain(X, Y)∧building(Y))

Then follows a series of logical rewritings, in which the Predicate Logic
expression is transformed to a sql-prepared form, called Extended data-

log. The rewritings are shown in chapter 7 on page 69. This leads to the
expression:

area(X)∧ type(X,′ residential′)∧¬∃Y (building(Y)∧ contain(X, Y))

In order to translate this into sql, the compiler uses the database schema

4 Introduction

Figure 1.2: Walkthrough Database Schema

specification and mapping. The specification of the description is given in
chapter 8 on page 79. The sql translation strategy is shown in chapter 9
on page 89. Say the database actually consists of three tables as shown in
figure 1.2, then the corresponding sql would look like the following:

SELECT *

FROM area a

WHERE

a.type = ’residential’

AND NOT EXISTS(

SELECT *

FROM contain b

WHERE b.areaID = a.areaID

AND WHERE EXISTS(

SELECT *

FROM Building c

WHERE c.BuildingID = b.BuildingID))

This sql query would be the output of the compiler system, and could
be used directly to query the database. The result of the query would be
any data sets which do not conform to the constraint, hence if all the data
conforms to the constraint then the database returns an empty: “0 rows
returned” result.

Besides being translated into sql, the hlcl constraint is also translated

1.2 Thesis Structure 5

into datalog¬ from the Extended datalog. The steps for translating Ex-
tended datalog to datalog¬ are described in chapter 7.3 on page 73. The
corresponding datalog¬ can be seen below:

error ← Area(X) ∧ type(X,’residential’) ∧ ¬f1(X)

f1(X) ← Building(Y) ∧ Contain(X,Y)

This concludes the walkthrough of the process and report.

1.2 Thesis Structure

The rest of this thesis is structured as follows:

Chapter 2 - Background
Contains an introduction to Integrity Constraints for databases and the ap-
plication domain.

Chapter 3 - General Idea
A new constraint specification language hlcl is introduced. The chapter
contains both an informal and a formal definition of the syntax of hlcl.

Chapter 4 - Running Examples
A number of integrity constraint examples from the GIS domain are intro-
duced, which will show various aspects of the language, and will be used as
a basis for explaining transformations done in chapter 6 and 9.

Chapter 5 - Related Work
Current research in integrity constraints and approaches to help users for-
mulate them is summarized. Particular attention is given to the four most
widely used constraint languages: Description Logic, colan, ocl and eer.

Chapter 6 - From hlcl to Predicate Logic
The issues concerned with translating hlcl to Predicate Logic are discussed,
and a formal translating strategy is given.

Chapter 7 - Intermediate Steps
The issues concerned with translating Predicate Logic to Extended data-

log and datalog¬ are discussed, and the logical rewriting steps are given.

Chapter 8 - Database Representation
The details of the database representation and mapping between the con-
ceptual model and to the actual database schema are discussed.

6 Introduction

Chapter 9 - From Extended datalog to sql

The issues concerned with translating Extended datalog to sql are dis-
cussed, and the translating strategy is explained through examples.

Chapter 10 - Implementation
Overall issues and strategies concerned with the actual implementation of
the hlcl system are discussed, such as choice of programming language,
compiler strategy, etc.

Chapter 11 - Future Work
Suggestions for future research are given.

Chapter 12 - Conclusion
This chaper concludes the thesis and the contributions of the thesis are re-
viewed.

Appendix A - Concepts Explained
Concepts and notations used in the report are explained, such as “donkey
sentences”, “anaphora” and λ-calculus.

Appendix B - Detailed Implementation
Detailed implementation issues such as algorithms and choice of data-structures
are explained.

Appendix C - User Guide and CD Contents
Contains a user Guide for installing and running the hlcl system

Appendix D - Test Cases
The test environment and the test results of the hlcl system are described.

Appendix E - Source Code
Contains the actual source code of the hlcl-system.

1.3 Abbreviations

A list of the most commonly used abbreviations in this report are explained
below:

1.3 Abbreviations 7

DL Description Logic, see chapter 5.2 on page 46
datalog¬ datalog with negation, see chapter 7.1.2 on

page 71
Extended The sql prepared datalog, see
datalog chapter 7.1.2 on page 71

FOL First Order Logic, Predicate Logic.
GIS Geographic Information System, see chapter 2.2

on page 10
hlcl High Level Constraint Language, see chapter 3

on page 13
ISA-structures A relationship in the E/R-model denoting inher-

itance.
KMS “Kort og Matrikelstyrelsen”, National Survey

and Cadastre. See www.kms.dk
SQL Structured Query Language, see appendix A.3

on page 121
TOP10DK “TOPografisk kortdabase 1:10.000 Danmark”.

A specification of the map of Denmark, see chap-
ter 2.2 on page 10

XML eXtensible Markup Language

8 Introduction

Chapter 2

Background

In this chapter a brief background description will be given, explaining both
integrity constraints in general and the application domain.

2.1 Database Constraints

Traditionally database integrity constraints have been divided into four dif-
ferent kinds. This view is presented in [GMUW02] and [AHV95], where
constraints are defined in the following categories:

Single-value constraints This is the most basic constraint type. Single-
value constraints requires that a certain value should be unique within
a certain context. The most common single-valued constraint type is
the key-constraints. A key-constraint specifies that an attribute, or a
set of attributes, constitutes a unique key, so that two entries cannot
have the same value in their key-attribute(s). Other single-value con-
straints are ”many-one” relationships, which constrain a relation to
relate each entity to at most one other entity.

Domain constraints These constraints can be seen as “value-limiting” on
the attribute values. The constraints specify that an attribute should
be within a certain value interval.

Referential constraints Referential constraints can constrain multiple ta-
bles, such that an attribute value in one table should also be a value
in another table. A subclass of these constraints are the “foreign key
constraints” which can impose that an attribute in one table should
also be an attribute key in another table.

Schema-level constraints also called ”General Constraints”. These con-
straints define the interactions between the entities in the conceptual
model, i.e. that one class must be related to another class in a specific
way.

10 Background

The first two of the above constraint types are relatively simple: They only
refer to one or two tables in the actual database, and therefore do not re-
quire a lot of computational effort to enforce. More importantly, due to
their simplicity they are easier for a database designer to realize and for-
mulate correctly. These constraints are typically built-in in the database
implementation, such that the database does not accept new entries which
violate the constraints. Therefore checking these constraints at a later stage
is pointless.
The third and fourth type: Referential and Schema-level constraints can be
nontrivial: They can potentially extend throughout the conceptual model,
and can consist of numerous intertwined relations between various classes,
and although they can also be built into the database, it is usually not the
case. These are the type of constraints we will examine and define a lan-
guage for in the present report.

[GMUW02] views constraints as an “active” element, where a constraint
is a query which is written once and then stored in the database. When
new data are entered, the database checks if the data conforms to the stored
constraints: The constraints are used as so-called “triggers”. To build the
constraints into the database implementation raises a number of issues: How
to store the constraints? Which constraints should be checked, how should
they be checked? How many and in what order should the constraints be
tested towards the data, etc. This is an ongoing research-topic, and we will
not look at these issues in the present report.
Instead we will adopt the view that an integrity constraint is simply a query
which is not necessarily built into the database. The user can execute the
query on the database at any time, and the result will contain any data-sets
breaking the constraint. Hence if the constraint is fulfilled, the query should
return no rows.

2.2 Application Domain

The proposed constraint language hlcl and corresponding system rely on
general database principles which could be used in any domain. In this re-
port we have chosen to look more closely at the geographic data domain,
and the example material is based on typical constraints one would meet
in the Geographic Information Systems (GIS). This chapter will contain a
brief discussion of the properties and special considerations needed when
handling geographic data.

Geographic Information Systems (GIS) is a broad term covering computer
systems specialized in managing geographic data. This includes a variety
of functions; such as storing the data, making various textual and graphical

2.2 Application Domain 11

extracts, having interfaces for users to update information, etc. Common
for most of these functions are that they are built on top of an underlying
database which stores the actual data.
Geographic databases are usually regular databases extended with data-
types supporting spatial properties. The spatial properties can store in-
formation about objects with respect to their location, or “maps” of these
objects and their properties. Typically, a geographic database represents a
model or a map of a landscape, containing information about both natural
terrain such as forests and lakes, and of man-made entities such as buildings
and roads.
The spatial properties are typically modelled within the “topological data-
base model”. In the topological database model one operates with objects
such as points, lines and polygons. These geometric shapes all fulfill the
topological property, which means that they are invariant in respect to scal-
ing, rotation and affine transformations1. The objects have mutual topo-
logical relations such as “overlap”, “contain”, etc.2. These shapes and their
properties are used as the basis of geographic objects, i.e. a road can be
represented as a line. For a more comprehensive description of topological
properties, the reader is referred to appendix A.3.1 on page 122.

The geographic database which KMS use consists of around ten million ob-
jects, and follows the “Danish TOP10DK specification” [SC01], which define
around 60 object categories. Besides the object definitions, the TOP10DK
specification also contains some constraints on the objects formulated in
natural language.
The data in the topological database typically originates from aerial photos.
The photos are analyzed, classified and manually entered in the database
by specialized personnel. This procedure will always give rise to a number
of mistakes, which need to be found at a later stage. At the same time,
geographic data is used more widely than ever. With the introduction of
computers and databases, GIS has grown and now spans over a much larger
domain. GIS has grown from being used to create a printed visual map used
by humans, to supply data to numerous of other applications, such as nav-
igation systems in cars, traffic planning portals on the internet, etc. When
the data is being used by other applications, it is more crucial than ever
that the data is absolutely correct, and since the data collecting method
is error-prone, integrity constraints are needed to ensure that the data is
well-formed.
Research in GIS related problems is a research field of its own, and as a result
the vendors making GIS systems have produced their own standards. Topo-

1Affine transformations are transformations that preserves lines and parallelism, e.g.
parallel lines are also parallel after the transformation

2A definition of the full topological set of relations can be found in appendix A.3.1 on
page 122

12 Background

logical Databases are typically implemented in proprietary non-standard
databases, such as “MapInfo” or “ArcGIS”, and have their own query
and constraint language, which can only be used within that implementa-
tion. Consequently it is crucial that the hlcl-system, besides the standard
sql interface, also has a another well-defined output interface. Therefore
the hlcl-system also translates hlcl to a well-defined datalog¬ interface
which can then be translated into any specific query languages.

To read more about GIS in general the reader is referred to [BS94]. Fur-
thermore a more detailed explanation of the problems in modelling data in
GIS can be found in [Chr05].

Chapter 3

General Idea

The overall task is to design a system where non-database experts can for-
mulate integrity constraints easily. The system uses a High-Level Constraint
Language, referred to as hlcl in this report. The system is designed such
that it lets the user formulate a constraint in hlcl, which then is translated
to form a directly usable integrity constraint query in sql. In order to do
so, the system also needs access to a database model. The overall idea of
the system is sketched in figure 3.1 on the next page.

3.1 The hlcl System

The main task of the hlcl system is to translate hlcl into usable database
queries, which in our case are queries in sql. The translation procedure
is broken up in two steps, where an intermediate language called Extended
datalog is used. hlcl is first translated into Extended datalog then
from Extended datalog to either sql or datalog¬. This approach has
been chosen since there are some common steps in the translation procedure
to both datalog¬ and sql and a translation of hlcl directly to sql would
be more difficult to understand.

hlcl → Predicate Logic → Extended datalog → sql

↘ datalog¬

By introducing this intermediate step, the process of translating from hlcl

to sql should be more clear and understandable. sql is the de facto stan-
dard query language for commercial relational DBMS systems. Allthough
sql is not the lowest level of abstraction for database queries, it has still
been chosen as the target query language, since optimizing sql for data-
bases has been an on-going research topic for a long time. Therefore letting
the DBMS do the actual querying by sql would give the best performance.
In general, optimization of the generated queries has not been researched

14 General Idea

Database

Conceptual

Model

End-user

1
 2

HLCL

SQL

Database

Model

Mapping

Database Representation

HLCL System

3

Result

1

Figure 3.1: An overview of the hlcl System

extensively in this thesis.
Furthermore a subset of the Extended datalog is also translated into
datalog¬. The datalog¬ interface provides an clear and easy-to-read
alternative to the sql query, which can become quite comprehensive even
for small constraints. Translating numerical quantifications into datalog¬

would result in a lot of extra predicates in the datalog¬, which would make
the datalog¬ expression less readable. We have chosen not to translate Ex-
tended datalog expressions with numerical quantifications into datalog¬.
The datalog¬ interface also makes the hlcl system easier to expand, since
the datalog¬ is a good starting point from which the constraint could be
translated into other query languages, depending on the actual database
implementation. hlcl is designed so that it can be used as a constraint lan-
guage not only for traditional relational databases but also for other kinds
of databases, i.e. Object Oriented Databases.

3.2 The Conceptual Model

It is important to realize that hlcl expressions are formulated in the con-
text of a certain conceptual model. The conceptual model decides much of
the syntax available, since the majority of hlcl expressions consist of names
of classes and relations. Conceptual models for databases are usually repre-

3.3 hlcl Syntax 15

sented in Entity-Relationship models (E/R-diagrams), which is a graphical
notation for representing database structure and concepts. An introduc-
tion to E/R-diagramming rules and concepts can be found in [GMUW02].
The conceptual model itself already defines a number of constraints: Which
classes could possibly be related, which classes are different, etc. Actually a
conceptual model can be seen as just a collection of constraints. In this re-
port we think of the constraints the conceptual model defined as very basic,
they are all definitions of the classes involved, a kind of “type system”, and
hlcl is not designed to formulate these constraints. An exception is con-
straints which defines multiplicity of relations and some kinds of referential
constraints, which can and should be formulated in hlcl, see appendix A.1
on page 119 for further details. hlcl is not made for defining simple con-
straints, instead hlcl defines schema-level constraints, and relies on the
“type system” already defined in the conceptual model. Therefore the most
basic hlcl constraint contains at least two classes, the “types” area and
building. There are a number of requirements to the conceptual model
which are listed below:

• The E/R diagram can consist of any number of entities and binary
relations.

• In order to streamline the model, attribute values possessed by entities,
should be modelled as relations to entity classes. The name of the
relation should be the name of the attribute, and the connected class
should be the value domain for that attribute.

• Names of relations do not need to be distinct, but different relations
connecting the same entities should have unique names.

• hlcl does not operate with inverse relations, therefore both a relation
and its inverse relation should be explicitly defined.

• ISA-structures 1 are supported, but only as hierarchies. This means
that multiple inheritance is not supported in the current hlcl-system.

• Relations which are shared between children in an ISA-structure should
always be connected from the parent in the ISA-structure. E.g. com-
mon relations should always be put at the top-most level in the struc-
ture.

3.3 hlcl Syntax

The general hlcl syntax is very simple; in fact, hlcl makes use of less
than 10 keywords and structures. In the following chapter we describe how

1Class inclusion, see [GMUW02]

16 General Idea

constraints are formulated in hlcl within a given corresponding conceptual
model. The description is divided into two chapters: This chapter will
introduce hlcl informally and to non-technical users, whereas chapter 3.5
on page 29 will give the formal specification of the language and is targeted
at readers with a background in logic and semantic models.
The hlcl will be explained by using a number of examples each labelled
with a C and a number. The numbers are not consecutive in this chapter.
These examples will be used throughout the report as “running examples”
to explain how hlcl is converted into datalog¬ and sql, and can all be
found in chapter 4 on page 37.

3.3.1 Informal Description

Minimal Sentence

C
0
 C
1

Figure 3.2: Two Classes

hlcl sentences are made up by two almost identical parts. The first part se-
lects which class the constraint should apply to, and the second part specifies
the actual constraint. The two parts are divided with a ‘‘must’’ keyword,
so that the overall sentence structure looks like:

all 〈first part〉 must 〈second part〉.

This report will refer to the “left-hand side” of the expression when re-
ferring to the first part, and similarly the “right-hand side” when referring
to the second part of the expression. In the simplest case each part are
simply a class as seen below:

All c0 must c1.

A simple sentence from the GIS domain could be:

All house must building

The above constraint states that “all houses must be buildings”. The cor-
responding conceptual model should look as figure 3.2 with c0 as “house”
and c1 as “building”. The first ‘‘all’’ quantifier can also be replaced
by a ‘‘no’’ quantifier, which gives the directly opposite constraint. The
‘‘must’’ keyword is correspondingly replaced by a ‘‘may’’, in order to

3.3 hlcl Syntax 17

reflect correct English:

No area may house

The above constraint states that “no areas may be houses”. These two sen-
tence types constitute the most basic sentence one can formulate in hlcl,
so the minimal hlcl constraint involves at least two classes.

Paths

C
0
 R
0
 C
1

Figure 3.3: A simple relation

The constraints consisting of just two classes are usually not interesting, and
can only form trivial constraints. The constraints can get more advanced
when we look at related classes. In the context of the conceptual model in
figure 3.3, an hlcl expression could be:

All c0 must r0 c1.

A simple sentence from the GIS domain could be:

C2 all area must contain building

The above constraint formulates that every “area” must have a relation
“contain” to a building (“every area must contain a building”). The above
constraint actually implies an existential quantifier, so that we actually state:
“an area must contain at least one building”. This existential quantifier is
implicit in the hlcl syntax, and one needs not explicitly to put it there.
In order to select more specific class instances, hlcl uses a structure which

C
0
 R
0
 C
1
 R
1
 C
2

Figure 3.4: A path through relations

can be seen as a path through relations and classes. In a path we navigate
from class to class through their relations. The syntax is simple, the path
is simply written by the class followed by the relation followed by the next
class, etc. A path-expression corresponding to the path seen in figure 3.4
can be seen below:

18 General Idea

c0 r0 c1 r1 c2

It is important to realize that one can only make path expressions that
have a corresponding path in the conceptual model. A full hlcl-expression
using the path in figure 3.4 on the preceding page could for instance be:

no c0 may r0 c1 r1 c2

If nothing is specified between the classes and relations, the hlcl-system
interprets it as existentially quantified classes, so that the above expression
would be understood as: “no c0 should be related by r0 to at least one c1

which is related by r1 to at least one c2” An example from the GIS domain
could be:

C5 no building may containedin area contain lake

The above constraint expresses that: “no buildings may be contained in an

area which contain a lake”. This makes the user able to select precisely which
class the constraints should function on. But more importantly, it makes it
possible for the user to access properties which are connected to the class
through related classes. The paths can be used on both the left-hand and
right-hand side of the expression.

Quantifiers

As previously mentioned, the existential quantifier is implicit in the hlcl-
language, but if one wants to express “an area must contain all build-

ings”, then a universal quantifier must explicitly be formulated in the hlcl-
expression. This is done with the ‘‘all’’ keyword, which is put between
the relation and the class as seen below.

r0 all c1

This construct can be put instead of a “r0 c1” construct at any depth in a
path. An example from the GIS domain could be:

C10 no area may contain all building

The above constraint expresses that: “no areas are allowed to contain every

building there exists in the database”. If we continue the path expression af-
ter the class containing the ‘‘all’’-keyword, we can further select the class.

No area must contain all building type residential

This constraint expresses that: “no areas should contain all buildings which

are of type residential”. Notice how the extra “type residential” limits the

3.3 hlcl Syntax 19

set of buildings which should not be contained in the areas.

Besides having the possibility to express that a class should be related to at
least one, or all entities of another class, hlcl also allows numerical quanti-
fiers, namely expressing exactly how many classes should be related. This is
done by using one of the three numerical quantifiers placed in between the
relation and the class as seen below:

r0 exactly 〈integer〉 c1.
r0 at least 〈integer〉 c1.
r0 at most 〈integer〉 c1.

The keywords should be self explanatory, but let us look at a couple of
examples from the GIS domain:

all area must contain exactly 4 building

all area must contain at least 4 building

all area must contain at most 4 building

The top one of the three constraints, states that: “all areas must contain

exactly 4 buildings”, the middle one states: “all areas must contain at least

4 or more buildings”, and the final constraint expresses: “all areas must

contain at most 4 or less buildings”. All of these quantifications, can be set
at any level in the path.

The “Solely” keyword

hlcl uses the keyword ‘‘solely’’ for limiting relations to a single class.
The ‘‘solely’’ keyword is put at the same place in the hlcl expression
as the other quantifiers, as seen below:

r0 solely c1

An example from the GIS domain could be:

all area must contain solely building

The above constraint states that “areas are not allowed to contain anything

else than buildings”, basically that the contain relation in the conceptual
model is only allowed to relate to buildings, and no other classes. It is
important to notice that this keyword is only relevant because we allow
multiple relations to have the same name. If we had stricter requirements to
the conceptual model, such as all relations should have unique names, then
the ‘‘solely’’ keyword would not be necessary.

20 General Idea

The ‘‘solely’’ keyword is not simple to use, in order to illustrate this
let us look at a more complicated example:

all area type residential must

contain solely building type residential

This hlcl-expression above means that “all residential areas must only

contain residential buildings, and nothing else”. But what if one wanted
to express that a residential area could contain lots of things, but all the
buildings that it contained should be residential. One might be tempted to
formulate a constraint as the one seen below:

all area type residential must

contain building type solely residential

But this constraint does not express the above constraint, instead it ex-
presses: “all residential areas must contain at least one building which is

of solely type residential”. The trick in formulating this constraint is to
realize that the class we want to put a constraint on is not areas but in fact
buildings. The correct constraint is shown below:

all building containedin area type residential must

type residential

The above constraint formulates: “all buildings which are contained in a

residential area must be residential”. Here ‘‘containedin’’ is the inverse
relation of ‘‘contain’’.

Compound statements

C

0

R

0

C

1

R

1

C

2

Figure 3.5: Compound Relations

Furthermore one can also make compound statements in hlcl, using one of 4
boolean compound operators: ‘‘and’’,‘‘or’’,‘‘andnot’’ and ‘‘ornot’’.
These can split sections of paths expressions apart. Suppose a conceptual
model like figure 3.5 is given, then hlcl allows us to formulate the following:

3.3 hlcl Syntax 21

all c0 must r0 c1 〈boolean operator〉 r1 c2

An actual constraint from the GIS domain could be:

C6 all area must contain building or contain lake

The above constraint expresses that: “all areas must either contain a build-

ing or contain a lake”. The compound statements can be used on both the
left-hand side and the right-hand side. But operators are only allowed in
between relational paths. It is not allowed to use operators between classes,
i.e. even if both relations were called r0 in figure 3.5 on the facing page, we
would not be allowed to write:

WRONG: all c0 must r0 c1 〈boolean operator〉 c2

So if we look at the previous example from the GIS domain, we would
not be allowed to write:

WRONG: all area must contain house or lake

In hlcl it is required that you “spell out” the whole expression as done
in constraint example C6.

hlcl does not have an “exclusive or” operator explicitly defined. Instead
it can be made with ‘‘or’’ and ‘‘solely’’ keywords. Take a look at the
two expressions below:

all area must contain house exclusive-or contain lake

all area must contain solely house or contain solely lake

These two expressions are logically identical, and therefore the user should
use the solely keyword, instead of a “exclusive or” operator.

Grouping Expressions with Brackets

Introducing compound operators also introduces a potential problem with
scoping. Check out the hlcl expression below in the context of figure 3.6
on the next page:

all c0 must r0 c1 r1 c2 or r2 c3

The above expression could be misunderstood, since there are two possi-
bilities for the class ”c3”, labelled A and B in figure 3.6 on the following
page. The hlcl-system is right-associative, meaning that the expression
will be read from right to left, so that ”c3” in the above hlcl expression

22 General Idea

C

0

R

0

C

1

R

1

C

2

R

2

C

3

R

2

C

3

A

B

Figure 3.6: An example conceptual model for illustrating use of brackets

is automatically understood as the class labelled B. If we want ”c3” to be
understood as the class labelled A, we need to use brackets, as seen below:

all c0 must (r0 c1 r1 c2) or r2 c3

In the above expression the class c3 refers to the class labelled A in fig-
ure 3.6. hlcl needs brackets when we want the expression to be read from
left to right, but it is also possible to use brackets even when they are not
needed, i.e. take a look at the expression below

all c0 must r0 c1 (r1 c2 or r2 c3)

The above expression is a valid hlcl expression. The brackets optional
so that the user can put them there anyway to improve readability.

User-defined Variables

The sentence structures which have been introduced so far can only express
existence of relations and classes. It is not possible to express equality of
any of the involved classes. This is solved in hlcl by allowing optional
user-defined variables. Introducing these gives rise to a number of questions
and problems, which will be handled separately in this section. Let us look
at an sentence example from the GIS domain:

all area intersectedby road must

contain building intersectedby road

The sentence states: “all areas intersected by a road must also contain a

building which is intersected by a road”. The sentence only imposes that
the roads should exist. But what if we also want to make the constraint
express the fact that the two roads involved should be the same? One ap-

3.3 hlcl Syntax 23

proach is to add something extra at the end of the sentence, i.e.: ‘‘...and
the earlier mentioned roads should be equal’’, but anaphoric con-
structs2 like these are not very easy to formulate, nor easy to handle in the
hlcl system.
The solution is to allow the user to define their own variables in the expres-
sion. Variables are capitalized letters which can be put right after a class.
A constraint expressing that the roads should be equal would look like:

C11 all area intersectedby road R must

contain building intersectedby road R

The user-defined variable “R” clarifies that the selected roads should be the
same. The user-defined variables make hlcl expressions succinct and pre-
cise.
User-defined variables can only be used in existentially quantified classes,
i.e. it is not possible to use the ‘‘all/solely/numerical’’ keyword and a
variable for the same class. The argument can be seen below. As an example
take a look at the hlcl fragment below:

...area contain building A...

The above hlcl fragment makes sense, it states that all areas which con-
tain a building, which we call A for later reference. Here the building A is
existentially quantified3. Let us look at the same fragment when the class
is universally quantified:

... area contain all building A...

This fragment is confusing. We want to impose a constraint on areas which
contain all buildings, and all of these buildings are labelled A for later refer-
ence. But if we really need to refer to all of these buildings at a later stage
in the constraint, it would have nothing to do with the original areas we are
imposing the constraint on. Then we are actually looking at two constraints
disguised as one, and this should be split up in two: A constraint dealing
with the areas, and a constraint dealing with all those buildings, which the
latter constraint would start with in our case:

All building A containedin area ...

This leads to an exception to the rule: That the only class which can have
a universally quantified variable is the class we want to put the constraint on.

2An explanation of anaphora can be found in appendix A.2 on page 120
3Remember that existential quantification is implicit in the hlcl syntax

24 General Idea

An hlcl expression can use an arbitrary number of user-defined variables,
to relate as many classes as needed. When a user introduces more than
one variable, the system will recognize different variable names as different
instances. For instance in the expression:

all building A neighbour building B must

ZDifferenceLargerThan5(A,B)

The constraint4 expresses the fact that that two different buildings must
have a zdifference larger than 5. In this expression one does not need to
explicitly add an extra condition saying A and B should be different. The
hlcl-system will interpret different variable names as different entities.

Notice that usage of variables is optional; it is not required for simple queries
to use variables, but as one makes larger queries in hlcl it becomes neces-
sary to use variables.

User-defined Predicates

Finally we introduce the possibility to use user-defined predicates. These
typically formulate topological and arithmetic properties, and should be
defined functions available in the target database. In the current hlcl im-
plementation only unary and binary predicates are allowed, but this could
easily be extended to n-ary predicates. User-defined predicates can be put
instead of class expression, although not instead of the very first class. They
are defined by a name, which is followed by an argument containing previ-
ously declared variables:

somepredicate(firstvariable,secondvariable,....,lastvariable)

Let us take a look at the following example:

all building A neighbour building B must

ZDifferenceLargerThan5(A,B)

The built-in predicates are always used together with variables, which indi-
cates which classes the function should be applied to.

hlcl Keywords

A summary of all reserved keywords in hlcl can be seen in table 3.1 on the
facing page.

4This constraint also uses user-defined predicates, which are explained in chapter 3.3.1

3.3 hlcl Syntax 25

all no must

may solely at

least most exactly

Table 3.1: hlcl Reserved Keywords

3.3.2 Macro Functionality

Definitions

In order to keep hlcl expressions short and compact, and to make it sim-
pler to formulate constraints, the hlcl-system allows the user to make class
definitions. Class definitions are simply a shorthand expressions for compli-
cated class specializations. The general structure can be seen below:

Classdef = Class Expression

The left-hand side of the above expression should be a single-word unique
label, and the right-hand side should be an hlcl class expression, which
should abide the same well-formedness rules as general hlcl. All of the
above hlcl constructs except variables and user-defined predicates are al-
lowed. An example of a class definition can be seen below:

ResidentialBuildings = building type residential

The definitions can be arbitrarily complex, a more advanced example can
be seen below:

SpecialBuildings = building type residential or

touch building size at least 100

The class definition label can then be used in hlcl expression where classes
normally would be placed, i.e. the definition of ‘‘ResidentialBuildings’’
could be used as seen below:

all area must contain SpecialBuildings

The above would be the same as writing:

all area must contain type residential or

touch building size at least 100

‘‘SpecialBuildings’’ is a specilization of building entities, and can there-

26 General Idea

fore only be put where the class ‘‘building’’ normally could be put. Class
definitions can be recursively defined, e.g. class definitions can use other
class definitions, such that definitions can “build on top of each other”. One
should be careful not to build recursive defintions - definitions that indirectly
define them self.

3.4 Language Design Decisions

In the following subchapters design discussions which we have encountered
in finding the most optimal language will be discussed.

Variable Specification in User-Defined Predicates

The user-defined predicates style is somewhat closer to programming style,
than to natural language. In the design phase it was considered if it would
be better simply to write the name of the predicates without variables. I.e.
instead of writing

all building A neighbour building B must

ZDifferenceLargerThan5(A,B)

One would simply write:

all building A neighbour building B must

ZDifferenceLargerThan5

The hlcl system could enforce a rule that specified that whatever variables
set on the left-hand side, would automatically be used to the user-defined
predicate on the right-hand side. This would actually make user-defined
predicate constructs without variables possible.
This construction was discarded, because even though this would be closer
to natural language, it would limit the hlcl expressiveness, i.e. one could
imagine an hlcl expression where not all user-defined variables would be
used in the predicate (As seen in constraint example C12), and the language
would not be very clear. Therefore the design decision was to deviate from
the natural language feel, and require that users declare the variables in the
user-defined predicates in a programming language manner.

Negations

hlcl does not have a separate negation operator, instead negation is al-
ways part of another construct, either as the top construct ‘‘no-may’’, or
in conjunction with one of the operators as ‘‘andnot’’ or ‘‘ornot’’. A

3.4 Language Design Decisions 27

separate negation operator is avoided because floating negations could po-
tentially make the expression counter-intuitive and unsafe. Leaving out the
negation operator does not limit the expressiveness of hlcl as shown in the
following.
Let us imagine that we had a negation operator: ‘‘no’’, which could be
placed between the class and the relation (same place as the ‘‘all/solely’’
operator). Take a look at the expression below:

all c0 must r0 no c1

The above expression is equivalent to one with a ‘‘no-may’’ construct
as seen below:

no c0 may r0 c1

Similarly if the ‘‘no’’ construct was part of a conjugated/disjunctive rela-
tional path, the ‘‘andnot’’/‘‘ornot’’ constructs could be used instead.

Path Expression

In hlcl we have chosen to use a very simple notation for paths. This is
chosen because its resemblance to natural language, and because it is easier
to type for the user. In the design phase several other ways of representing
paths were considered, at first brackets were used, so that a path would be
formulated:

c0(r0 c1 (r1c2))

The above notation is actually still allowed in hlcl as explained in 3.3.1
on page 21, but it is not mandatory. Other possible notations could have
been paths as seen in XPath5:

c0/r0/c1/r1/c2

Or it could be completely different notations, i.e. using arrows or other
special characters:

c0 7→ r0 7→ c1 7→ r1 7→ c2

But both of these constructs would break the “natural language feel” that
hlcl has, and furthermore make it harder to type into the system, therefore
the design decision is to stick with nothing else than spaces in between the

5XPath is a query language for XML - further information can be found online at:
http://www.w3.org/TR/xpath

28 General Idea

classes and relations in paths.

3.4.1 hlcl Expressions and Intuition

The goal of using hlcl language for specification is to make it easier for
the user to formulate these constraints, therefore it is a key aspect that the
language expresses constraints in an intuitive manner. But some of the con-
structs in hlcl are counter-intuitive, especially combinations of ‘‘no-may’’
and ‘‘or’’. Say the user wants to express the constraint that “No buildings

or houses may overlap an area”, this would intuitively be defined as:

WRONG: No building or house may overlap area

But this is wrong, the above constraint is fulfilled even if a building overlaps
an area, as long as no house overlaps an area, and vice-versa. The user
actually meant logical “and” instead of logical “or”, yet in natural language
an “or” is used. The correct sentence can be seen below:

No building and house may overlap area

To solve this problem, hlcl does not allow operators between classes on
the left-hand side in the constraints and this forces the user to split a con-
straint up in two, thereby getting:

No building may overlap area

No house may overlap area

Which is the correct interpretation of the constraint. The problem per-
sists throughout though, and the user still needs to be aware of constructs
where operators are used at a deeper path level, as seen in the expression
below:

No building overlap area or contain area may ...

The expression above is allowed in hlcl, it is only operators at the out-
ermost level which are not alllowed.
This concludes the language design decisions and thereby the informal de-
scription of the constructed hlcl language. In the following chapters a more
formal definition of hlcl will be given.

3.5 Formal Description 29

3.5 Formal Description

In this chapter a formal definition of hlcl in both a concrete and an ab-
stract syntax is given. The concrete syntax is a good reference for realizing
which hlcl expressions are allowed, and how they can be built up. The ab-
stract syntax is useful in the translation process of hlcl, because it ignores
constructs which are not directly used in the translation. The constructs
used in the abstract syntax will be used in the semantics and the translation
strategy of hlcl. An introduction to abstract syntax can be found in: [SK]

Concrete Syntax

〈expression〉::=”all” 〈class exp〉 ”must” 〈class exp〉 |
”no” 〈class exp〉 ”may” 〈class exp〉

〈class exp〉::=〈class〉 [〈rel class〉] |〈function〉 |〈varclass exp〉
〈varclass exp〉::=〈class〉 〈variable〉 [〈rel class〉]
〈rel class〉::=”(”〈rel class〉”)” |
〈relation〉 [〈int quant〉] 〈class exp〉 [〈operator〉 〈rel class〉] |
〈relation〉 〈varclass exp〉 [〈operator〉 〈rel class〉] |
〈attribute〉 〈value〉 |
〈attribute〉 〈numerical relation〉 〈integer〉 〈value〉

〈int quant〉::=”all” |”solely” | 〈numerical relation〉 〈integer〉
〈operator〉::= ”and” | ”or” | ”andnot” | ”ornot”

〈numerical relation〉::=”exactly” |”at least” |”at most”

〈variable〉::= ”A” | . . . |”Z”

〈integer〉::= ”1” |”2” | . . .
〈class〉::= ”building” | ”area” | . . .
〈attribute〉::= ”type” | ”size” | . . .
〈relation〉::= ”contain” | . . .
〈function〉::= ”zdifflargerthan” | . . .
〈value〉::= . . .

The values in 〈class〉, 〈relation〉, 〈attribute〉 and 〈value〉 depend on the cor-
responding conceptual model. The values in 〈function〉 depend on the data-
base model.
Please see 3.5 on page 31 in order to see well-formed limitations on the
grammars.

Abstract Syntax

30 General Idea

hlcl Abstract Syntax

all P must Q allmust(P,Q)

no P may Q nomay(P,Q)

Relation ClassExp exrelclass(Relation,ClassExp)

Relation all ClassExp allrelclass(Relation,ClassExp)

Relation solely ClassExp solelyrelclass(Relation,ClassExp)

Relation exactly N ClassExp numrelclass(eq,N,Relation,ClassExp)

Relation at least N ClassExp numrelclass(ge,N,Relation,ClassExp)

Relation at most N ClassExp numrelclass(le,N,Relation,ClassExp)

Attribute Value attribute(Attribute,eq,Value)

Attribute exactly N attribute(Attribute,eq,Value)

Attribute at least N attribute(Attribute,ge,Value)

Attribute at most N attribute(Attribute,le,Value)

Class RC class(Class,RC)

Class Var RC varclass(Class,Var,RC)

Predicate(Var) unarypredicate(Predicate,Var)

Predicate(Var1,Var2) binarypredicate(Predicate,Var1,Var2)

P and Q and(P,Q)

P or Q or(P,Q)

P andnot Q andnot(P,Q)

P ornot Q ornot(P,Q)

Table 3.2: Abstract Syntax Constructs for hlcl

〈E〉::= allmust(〈CE〉,〈CE〉) | nomay(〈CE〉,〈CE〉)
〈CE〉::= class(Cid,〈RC〉) | varclass(Cid,Vid,〈RC〉) | 〈F〉 | 〈RC〉
〈RC〉::= exrelclass(Rid,〈CE〉) | allrelclass(Rid,〈CE〉) | solelyrelclass(Rid,〈CE〉)
| numrelclass(Int,〈Comp〉,Rid,〈CE〉) | attribute(Aid,〈Comp〉,Val)
| or(〈RC〉,〈RC〉) | and(〈RC〉,〈RC〉) | ornot(〈RC〉,〈RC〉) | andnot(〈RC〉,〈RC〉)
| []

〈F〉::= unarypredicate(Pid,Vid) | binarypredicate(Pid,Vid1,Vid2)

〈Comp〉::= eq | ge | le

This abstract grammar introduces a number of predicates used for the basic
constructions in hlcl. Most of the names are self explanatory and straight-
forward, and the explanation of each construct can be seen in table 3.2.

3.6 Model Theoretic Semantics 31

Language Wellformedness

Besides fulfilling the grammars above, hlcl sentences should also fulfill a
number of wellformedness requirements, which cannot be expressed by the
grammar. These can be seen below:

WFF1 Queries using paths should only be able to “walk” in existing paths,
meaning that “c0 r0 c1” structures are only allowed iff there exists a
relation r0 between c0 and c1 in the conceptual model.

WFF2 Variables should be declared at least two times in the hlcl expres-
sion. Using a variable just one place in the expression, makes no sense
since we need at least two in order to make a comparison. Usage of
the same variable more than two times is allowed.

WFF3 The variables should be of the same type, meaning that multi-
ple occurrences of the same variable should refer to the same type
of class/attribute.

WFF4 hlcl expressions are only allowed to start with a class expression,
i.e they are not allowed to start on a user-defined predicate or a rela-
tional path.

WFF5 hlcl expressions are allowed to start on a relational path on the
right-hand side of the expression. This will be understood as a rela-
tional path continuing from first class expression given on the left-hand
side.

WFF6 hlcl expressions are not allowed to have compound operators on
the left-hand side of the expression. For a further explanation the
reader is referred to chapter 3.4.1 on page 28

WFF7 User-defined variables are not allowed in operands of the ’’all’’,
’’solely’’ and the nummerical quantifications operators.

3.6 Model Theoretic Semantics

The following chapter will contain a formal specification of the model the-
oretic semantics for hlcl. The model will use the constructs introduced in
the abstract syntax in chapter 3.5 as basis for the set theoretic model. The
constructs for user-defined variables and user-defined predicates will not be
modelled in the following, since it increases the complexity of the model
significantly. The modelling of the user-defined predicates has not pursued
further in this thesis.

32 General Idea

Basic Form

The two different sentence forms in hlcl expressions are represented by the
two top-predicates “allmust” and “nomay”, which are defined below:

[[allmust(P, Q)]] = [[P]] ⊆ [[Q]]
[[nomay(P, Q)]] = [[P]] ∩ [[Q]] = ∅

The first construct: “allmust” specifies class inclusion: That the set the
left-hand side captures must be a subset of the set the right-hand side cap-
tures. The second construct: “nomay” expresses the opposite, namely that
there should be no overlap between the sets, or more formally: The inter-
section between the set on the left-hand side and the set on right-hand side
should be empty. The simplest hlcl expressions has only a class as P and
Q, which is specified as follows:

[[class(Cid, [])]] = Cid

Combining the simplest class expression with the two top-predicates yields
the two basic sentence types which can be seen below:

[[allmust(class(CP , []), class(CQ, []))]]→ CP ⊆ CQ

[[nomay(class(CP , []), class(CQ, []))]]→ CP ∩ CQ = ∅

Peirce Product

The basic form seen above can be extended with relational paths. A class
containing a relational path has a “RC” component in the second argument
as seen below:

[[class(Cid, RC)]] = {x|x ∈ Cid ∧ x ∈ [[RC]]}

In the simplest case the “RC” component is an existentially quantified rela-
tional path, a “exrelclass” construct in the abstract syntax. The semantic
interpretation of the “exrelclass” is defined as:

[[exrelclass(Rid, CE)]] = {x|∃y, y ∈ [[CE]] ∧ (x, y) ∈ Rid}

The above set expression can be read as: “The entities where there ex-

ists a relation Rid to an entity of class CE”. Where “CE” can be a simple
class identifier or yet another relational path. This property is also known
as the “Peirce product”, which in [BBS94] would be expressed as “(Rid :
CE)”. The Peirce Product is a dyadic operator taking a binary relation and
a set as arguments, resulting in a set. For a more detailed introduction the

3.6 Model Theoretic Semantics 33

reader is referred to [BBS94].
This means that a relational full path, i.e. “c0 r0 c1”, with the following
abstract syntax:

[[class(C0, exrelclass(R0, class(C1, []))]]

Would have the following semantic meaning

{x|x ∈ C0 ∧ x ∈ {x|∃y, y ∈ C1 ∧ (x, y) ∈ R0}}

Which reads: “The set of entities of class C0 which relate to at least one

entity of class C1 through the relation R0”.

Peirce Product Variations

Besides existentially quantified relational paths, hlcl also uses paths which
are similar to the Peirce Product, but differently quantified. These will be
explained in this section. First we look at the dual operator to the Peirce
product, namely the “solelyrelclass”, which has the following meaning:

[[solelyrelclass(Rid, CE)]] = {x|∀y, y ∈ (x, y) ∈ Rid → y ∈ [[CE]]}

As it can be seen the “solelyrelclass” looks similar to the “exrelclass” except
that it uses a universal quantifier instead. The set expression can be read as:
“all entities which are related through the relation Rid to entities of solely

class CE”.
Furthermore hlcl allows another universal quantified path, namely “allrel-
class”, where implication is reversed as seen below:

[[allrelclass(Rid, CE)]] = {x|∀y, y ∈ [[CE]]→ (x, y) ∈ Rid}

This can be read as “all the entities related to all entities of class CE through

Rid”. Finally hlcl allows relational paths which use numerical quantifica-
tions. The meanings of these can be seen below:

[[numrelclass(eq, N, Rid, CE)]] =
{x|∃y, card({y|Rid(x, y) ∧ y ∈ [[CE]]}) = N)}

[[numrelclass(le, N, Rid, CE)]] =
{x|∃y, card({y|Rid(x, y) ∧ y ∈ [[CE]]}) < N)}

[[numrelclass(ge, N, Rid, CE)]] =
{x|∃y, card({y|Rid(x, y) ∧ y ∈ [[CE]]}) > N)}

34 General Idea

The three numerical quantifications are very similar, except there is a differ-
ence in the comparison to the given integer ’N’. The top numerical quantified
set expression can be read as: “the set of entities which exactly N entities

of class CE is related to through Rid”.

Operators

hlcl allows operators between the relational paths, in order to make com-
pound expression. The compound operators has a straightforward semantic
meaning and can be expressed directly in set theory:

[[and(P, Q)]] = [[P]] ∩ [[Q]]
[[or(P, Q)]] = [[P]] ∪ [[Q]]
[[andnot(P, Q)]] = [[P]] ∩ [[Q]]C

[[ornot(P, Q)]] = [[P]] ∪ [[Q]]C

Attributes

Finally there is the option that a relational path could in fact be an at-
tribute, which would have the semantic meaning seen below:

[[attribute(Aid, eq, value)]] = {x|Aid(x, value)}
[[attribute(Aid, le, value)]] = {x|∃y, Aid(x, y) ∧ y < value)}
[[attribute(Aid, ge, value)]] = {x|∃y, Aid(x, y) ∧ y > value)}

Let us look at a couple of examples illustrating the above points.

Example 3.6.1
Let us try to look at the semantic meaning for one of the simplest hlcl

expression as seen below:

C2 all area must contain building

The semantic meaning can be reduced as seen below:

[[allmust(class(area, []), exrelclass(contain, class(building, [])))]]
[[class(area, [])]] ⊆ [[exrelclass(contain, class(building, []))]]
area ⊆ {x|∃y, y ∈ [[class(building, [])]] ∧ (x, y) ∈ contain}
area ⊆ {x|∃y, y ∈ building ∧ (x, y) ∈ contain}

The final set expression can be read as: “the entities of class area should be a

subset of the entities which relate to at least one building through contain”.
This is clearly the correct interpretation.

Example 3.6.2
Let us look at a more complex hlcl expression:

3.6 Model Theoretic Semantics 35

C4 all building type industrial must beusedby company

The semantic meaning could be reduced as seen below

[[allmust(class(building, attribute(type, eq, industrial)),
exrelclass(beusedby, class(company, [])))]]

[[class(building, attribute(type, eq, industrial))]] ⊆
[[exrelclass(beusedby, class(company, []))]]

The left-hand side of the ⊆ is reduced into:

{x|x ∈ building ∧ x ∈ [[attribute(type, eq, industrial)]]}
{x|x ∈ building ∧ x ∈ {x|type(x, industrial)}

The right-hand side of the ⊆ is treated similar to the previous example:

[[exrelclass(beusedby, class(company, []))]]
{x|∃y, y ∈ company ∧ (x, y) ∈ beusedby}

This gives the full expression as seen below

{x|x ∈ building → x ∈ {x|type(x, industrial)}
⊆ {x|∃y, y ∈ company ∧ (x, y) ∈ beusedby}

This is also clearly the correct interpretation.

36 General Idea

Chapter 4

Running Examples

To help show the usage of hlcl, a number of constraint examples from the
GIS domain will be defined in the following section. These constraints will
first be defined in natural language and then their hlcl counterpart will be
explained. Some of the constraints are from [Chr04], others are extracted
from the “KMS TOP10DK Specification” [SC01].

38 Running Examples

4.1 Conceptual Model

Building

Intersectedby

Residential

Area

contain

type

Area

Building

Type

Intersectedby
 Roadname

haveheight

havefloor

Height

Floors

Industrial-

Area

Lake

Contain

Residential

Area Type

type
 n_ofRes

Residents

type

Industrial

Area Type

Touch

beusedby

Company

Road

roadname

Connected

type
 RoadType

containedin

Figure 4.1: The domain for the Constraint Examples

A small, but representative part of the gis domain has been modelled in
the E/R-diagram seen in figure 4.1. All classes and relations referred to
in the constraint examples, are shown in this diagram. The constraints
evolve around the three main classes “Area”, “Building” and “Road”. Fur-
thermore the “Area” class has two specializations: “IndustrialArea” and
“ResidentialArea”. The rest of the classes and relations should have names
which are self explanatory.

4.2 Constraint Examples

In this section a number of constraint examples will be defined. Constraints
are identified by C followed by a number for further reference, this identifi-
cation will be used throughout the report. The constraints have been cho-
sen as a representative set for explaining the hlcl concepts in the report,
but should not be viewed as a complete set for testing the actual system.
The constraints used for testing the system can be seen in appendix D on
page 151.

4.2 Constraint Examples 39

Constraint Example C1 “No industrial areas may be residential areas at

the same time”. In hlcl this would be formulated as:

C1 no industrialArea may residentialArea

The translation into hlcl is straightforward, a ‘‘no-may’’ construct is
used, and the classes are directly available in the conceptual model.

Constraint Example C2 “all area must contain at least one building”.
In hlcl this would be formulated as:

C2 all area must contain building

The translation uses the ‘‘all-must’’ construct, and uses the relation
“contain” to relate classes “area” and “building”.

Constraint Example C3 “no areas are allowed to contain lakes”. In hlcl

this would be formulated as:

C3 no area may contain lake

The translation is similar to C2, except the inverse ‘‘no-may’’ construct
is used

Constraint Example C4 “all industrial buildings should be used by a

company”. In hlcl this would be formulated as:

C4 all building type industrial must beusedby company

The translation makes use of the type attribute for building, thereby re-
stricting the constraint to only concern buildings which have the type “in-
dustrial”.

Constraint Example C5 “no buildings must be contained in areas which

also contains lakes”. In hlcl this would be formulated as:

C5 no building may containedin area contain lake

The translation makes use of a longer path, first through the “containedin”
relation, then through the “contain” relation. Such that the above constraint
can be read as no building may be contained in at least one area with at
least one lake in it.

40 Running Examples

Constraint Example C6 “areas has to either contain a building or a

lake”. In hlcl this would be formulated as:

C6 all area must contain building or contain lake

The translation uses composite operators, notice that both “contain” rela-
tions relate to the “area” class.

Constraint Example C7 “residential areas must contain maximum one

commercial building”. In hlcl this would be formulated as:

C7 all residentialArea must contain at most 1 building

type industrial

The translation makes use of the numerical quantifications, so that every
residentialArea must only contain at least one entity type commercial. In
this expression it is important to realize, that it is perfectly all right that
the residentialArea contains more of other entities, we only limit commercial
buildings specifically

Constraint Example C8 “industrial areas may only contain industrial

buildings”. In hlcl this would be formulated as:

C8 all industrialArea must contain solely building

type industrial

The translation makes use of the “solely” keyword for limiting the industri-
alArea’s contain relation. Notice the difference between this constraint and
C9: This constraint expresses the fact that industrial areas can only contain
buildings type industrial and nothing else, whereas C9 expresses that all the
buildings contained in an industrial area should be of the type industrial.

Constraint Example C9 “industrial areas may only contain buildings that

are industrial, but are allowed to contain other things as well”. In hlcl this
would be formulated as:

C9 all building containedin industrialArea must type industrial

See C8 for an explanation.

4.2 Constraint Examples 41

Constraint Example C10 “no areas are allowed to contain every single

building in the database”. In hlcl this would be formulated as:

C10 no area may contain all building

The translation uses the ‘‘all’’ keyword to quantify all objects in the
database of a certain kind.

Constraint Example C11 “No road must intersect an area unless it in-

tersects a building also within that area.”. In hlcl this would be formulated
as:

C11 all area intersectedby road R must

contain building intersectedby road R

The translation uses the user-defined variable “R” to keep track of the road.
Notice how the variable allows us to make a reference to the same road
multiple places in the expression. For more information about variables
please refer to section 3.3.1 on page 22.

Constraint Example C12 “If two buildings of the same type are neigh-

bors then the z-difference between the two buildings must be larger than 5

meters”. In hlcl this would be formulated as:

C12 all building A type T touch building B type T

must havezdifferencebiggerthan5(A,B)

The translation uses the variable T to ensure that the buildings have the
same type, and variables A and B in a special user-defined predicate havezd-
ifferencebiggerthan5(A,B) which makes the arithmetic comparison.

Constraint Example C13 “All Residential Buildings within Low Resi-

dential Areas must have at most 3 floors or be lower than 12 meters.”. In
hlcl this would be formulated as:

C13 all building type residential and containedin area

type lowresidential must havefloor at most 3 or haveheight

at most 12

This is a more advanced constraint illustrating several of the above principles
at the same time.

42 Running Examples

Constraint Example C14 “all buildings must be blockbuildings and are

only allowed to touch other buildings”. In hlcl this would be formulated
as:

C14 all building must type blockbuildings and

touch solely building

The translation is straightforward according to the above principles

Chapter 5

Related Work

This chapter contains a brief discussion of the efforts that have been made
in the database integrity constraint formulation field over the last twenty
years, and particular attention will be given to the four newest and most
popular approaches, namely: Description Logic, colan, ocl and eer.

There is a general consensus that formulating queries in low-level data-
base languages is too hard for end-users. Typically the users specifying the
queries are domain experts, but not necessarily database/computer experts.
Difficulty in formulating queries directly in a database implementation has
given rise to languages such as sql, which is an abstraction over the algo-
rithmic details of the database query1. But complicated queries are hard to
formulate even in sql, where they quickly become very big and confusing.
In general there are a lot of approaches as to make query formulation easier,
both by the means of the query language used, and in the process used to
formulate the constraint.
One approach is to change the process in which the user formulates a query:
Instead of having the user to formulate a complete query in one step, some
try to make an interactive system, where the user composes a query step by
step with guidance from the system.
This approach is used in a system called “Kaleidoscope” [Cha90]. In “Kalei-
doscope” the user specifies the query via a menu-driven interface. The user
starts off by selecting a small fragment of the query, the system then calcu-
lates the next possible fragments, and displays these to the user. From this
list the user selects yet another fragment. By this process the user composes
a query step by step, and the system ensures that the query is valid by only
allowing the user to choose valid query fragments.
Another similar approach is using “sql forms” [AG97], which consists of
page with a number of fields, similar to a form on the internet. The user
navigates through “blocks” of these forms, also generating a query. The

1See appendix A.3 on page 121 for more details on sql

44 Related Work

advantages are the same as with the “Kaleidoscope” approach.

Another approach is to use a graphical interface, instead of a textual one,
such as an E/R-diagram, where the user can compose a query by clicking
or “drag-n-drop’ing” a query. For a good survey of graphical systems the
reader is referred to [CERE90] which has a long list of references to graphi-
cal systems.
A lot of research has also been devoted to making “real” natural language
interfaces to databases. The idea is that a user could just use his everyday
language to access the database and there is no fixed syntax for the query.
The interfaces typically recognizes keywords and tries to guess what the user
wants. But without a fixed syntax there will always be some uncertainty in
the query. For a user who needs to extract information from a database,
this might be acceptable, since the query can be rephrased after the query
results are shown. But this is not acceptable for a constraint specification
system, since the user might not be able to realize from the result if the
constraint is correctly formulated or not. Therefore we need a fixed syntax
which is not as free as natural language, but which is still easy to learn and
understand due to its resemblance to natural language.
There is also a number of approaches which try to make high-level interfaces
closer to the one we suggest, but where it does not function on the relational
data model. One of these is colan which is handled in the next section.
alice [Urb89] is yet another approach with a language similar to hlcl,
but alice maps into a database model called coral, which is a deductive
database. [Red93] suggests a language pfl, which maps into a functional
database called pfl. Among the other systems, [GEHK99] refers to ciao++
[JQ92] which maps into a C++-inspired database-model and prism [SK84].

There are in fact a number of research articles which propose high-level
query languages for the E/R-model, [GH91] cites languages such as errol

[MR83], Despath [Roe85] and gordas [EW81], but these were invented
in the early 1980’s and have not been cited much since in the litterature.
Lately, most of the litterature on integrity constraints has been on ocl, and
the ocl litterature does not contrast ocl to these languages. Therefore we
have chosen not to pursue the ideas in these languages, since they are most
likely contained in the four languages shown below.

5.1 Colan

One of the attempts similar to the one we propose is the language colan

[BG95, GEHK99]. colan uses a language similar to hlcl, and works on
a database model called “P/FDM” (Prolog/Functional Data Model) data

5.1 Colan 45

model, where the query language is called daplex2. The constraint lan-
guage colan can be seen as an extension of daplex, and is sometimes also
referred to as Extended-daplex [EG96].
The P/FDM model is a functional database implemented in prolog, but
the articles state that it is similar to the relational data model. In an rather
new article, [GHP01] which is concerned with semi-structured xml data,
it is also stated that the P/FDM is similar to a semi-structured database.
Both similarities are somewhat unclear, since they are not described well
in the articles, and furthermore it is not well-defined how colan should be
translated into a query language such as sql.
Let us look at an example to get a better understanding of colan. In
[GEHK99] an example is given from the university domain, where a con-
straint expresses that “every member of the staff with a certain status,

should only advice honours students”. This is in colan expressed as:

constrain each s in staff such that astatus(s)=‘‘honour’’

so that each s1 in studadvised(s)

has status(s1)=‘‘honour’’;

The corresponding Predicate Logic expression looks like the following:

∀Sstaff (S) ∧ astatus(S, honour)→ ∀S1(studadvised(S1, S)
→ (student(S1) ∧ status(S1, honour)))

It can be seen that colan is very close to Predicate Logic, there is al-
most a linear correspondence: Variables are introduced and quantified in
the same order as they would be in Predicate Logic: colan is basically
“sugared logic”. One striking difference between colan and hlcl is that
colan requires that you explicitly define a variable for each class which is
used: There is no option of leaving out variables in simple expressions as you
can in hlcl. The above example illustrates the point well. When formulat-
ing the example in hlcl it becomes a much simpler expression as seen below:

All staff astatus honour must advise

solely student status honour

In the above expression “advise” is the inverse relation of “studadvised”.
It can be seen that our corresponding hlcl-expression does not need any
user-defined variables, and thereby creates a more simple and readable con-
straint.

2FDM is an ongoing research database framework, further information can be found
online: http://www.csd.abdn.ac.uk/∼pfdm/

46 Related Work

5.2 Description Logic

Description logic (DL) is a logic-based knowledge representation, which is
a descendant of the kl-one system. There exists a number of different de-
scription logics, i.e. FL, ALC, which all vary in decidability, computational
complexity and expressiveness. In general there is a trade-off between these
two properties: The more expressive the language, the more computation-
ally complex a language is.
Description logics work on semantic networks, which are similar to E/R-
models, and can therefore easily be used to model database structures, and
can even be used as a query language. Description logics operates with
concepts, which are unary predicates which can be viewed as classes, and
roles which are binary predicates which can be viewed as relations between
classes. Furthermore there are a number of operators, which differ depending
on how expressive the description logic is. A good introduction to Descrip-
tion Logics can be found in [BMNPS02].
Description Logic can also be used to model constraints, for instance the
simple hlcl expression:

C2 all area must contain building

The expression above would in DL look like:

area v ∃contain.building

Which would be read as: “The set of all areas is a subset of the set of
all areas that contain a building”. The opposite constraint seen below:

C3 no area may contain lake

Would in DL be formulated as:

⊥ .
= area u ∃contain.building

Which reads: “The intersection of the set of all areas and the set of ar-
eas which contains a building is empty”.
Modelling more complex constraints with Description Logic is problematic.
Description Logic basically only consists of unary predicates. There are
binary predicates, but these are the roles, which can only be used in con-
junction with existential and universal quantifications or perhaps some of
the built-in operators. It is not possible to use the relations on their own,
and therefore it is only possible to get certain structures in the corresponding
First Order Logic or ultimately sql query. For example let us look at the
constraint: “An area is not allowed to contain two buildings that overlap”.
In hlcl we would formulate this like:

5.3 OCL 47

no building containedin area A may

overlap building containedin area A

The similarity in structure is obvious. This constraint cannot possibly be
formulated in Description Logic. One can extend Description Logic with
variables, so that the above expression could be formulated as:

⊥ .
= ∃containedin.(V) u ∃overlap.(∃containedin.(V))

This expression reads: “The intersection of the set of buildings contained
in area V and the set buildings which overlap the buildings contained in area
V is empty”. But the above sentence is not Description Logic, due to the
usage of variables. A more formal definition of the problem of expressive-
ness can be seen in [Bor96], which points out a number of FOL expressions
that cannot be expressed in Description Logic. Recently a Description Logic
called DLR has been proposed, which allows n-ary relations. This means
that it should be able to formulate the constraints seen above, but unfortu-
antly it is only tractable in ExpTime, and it has therefore not been further
examined. Due to the limitations in expressiveness we have chosen not to
use Description Logic.

It should be noted that Description Logics were made with another intention
in mind, and Description Logics have some characteristics which hlcl does
not have: Description Logic has a resolution engine and can therefore rea-
son about its knowledge. hlcl functions on the other hand as a language,
which is compiled into sql without any reasoning or optimizations. There is
no framework from extracting extra knowledge out of our hlcl statements.
However we do not need this in our project, where hlcl has been used more
as a basis for parsing.

5.3 OCL

One of the more popular approaches to specifying integrity constraints is by
using a language called “Object Constraint Language” (ocl). ocl is part
of the uml Specification, which is maintained by the Object Management
Group3. The uml standard consists of a number of different diagram nota-
tions, mainly used in Software Development, but the concepts can also be
used in database design.
uml and ocl are evolving standards, uml is currently in version 1.5, but a
version 2.0 is on the drawing board. The ocl part of uml 2.0 can already
be found in [Gro].

3www.omg.org

48 Related Work

Example sentences in OCL

In ocl it is possible to specify 4 different kinds of constrains: Invariants,
Guards, Pre- and Postconditions. Invariants are the constraints that should
be fullfilled at all times for the database, and therefore we will only focus
on this type of constraint in ocl. Guards, Pre- and Postconditions are not
relevant, since they are used in database update queries.
To explain the syntax of ocl two constraint examples in ocl will be briefly

-Type

Area

-Type

Building

*
 *

contain

Figure 5.1: The domain for the OCL constraints

sketched, the used domain for the constraints can be seen in figure 5.1. A
simple sentence in hlcl is:

C2 all area must contain building

This would in ocl look like:

context area inv
s e l f . contain−>s i z e () >= 1

In ocl expressions one starts by defining a context, which is the base objec-
t/class that is affected by the constraint. In our case this is “area”. Then
follows a path expression: “self.building”, meaning we navigate from “self”
(a reference to context, area) to building. “size()” is a built-in predicate,
which returns the number of sets which are in this path. In our case the
number of buildings contained by every area, should be at least one.
Let us look at a more complicated example:

all area type residential must contain

at least 5 building type residential

Which in ocl would turn out to:

context area inv
s e l f . type = r e s i d e n t i a l implies s e l f . conta in −>

s e l e c t (type = r e s i d e n t i a l)−> s i z e () >= 5

In this query the context is the same. The ocl expression makes use of the
“implies” construct, which is available together with existential and univer-
sal quantification in ocl. In the above case the universal quantification is
implicit because we are quantifying the context class. It can be seen how
the handling of sets is difficult in ocl, we need to add selection criterions

5.3 OCL 49

in the middle of a path, and again use the built-in size() function. In gen-
eral ocl relies heavily on these built-in functions. With these constructs
every sentence we can formulate in hlcl can be formulated in ocl as well,
although it seems more difficult to do so.

Problems with OCL

In this project we have chosen not to let the users formulate constraints in
ocl, nor using ocl as an intermediate language between hlcl interface and
sql. There is a number of reasons for this:
The main reason is that the semantic model of ocl is not very well-defined.
A number of problems with the semantics of ocl have been pointed out in
[GR98]. Some of these problems have been fixed in ocl 2.0, but it is difficult
to conclude that ocl 2.0 has a completely well defined semantic model.
ocl is still a very “young” language, and it is likely that further problems
with its semantic model will arise during this evolving phase. Due to the un-
certain semantic model, an actual approach for converting ocl constraints
into sql is also somewhat unclear. Attempts to convert ocl to sql have
been made in [DHL01], but the algorithm has a somewhat “dirty” feel. It
is still in a prototype version, it can only convert a subset of ocl and the
article does not mention any formal strategy for the translation.
In [BKS02] the authors sketch an approach for converting ocl into First Or-
der Logic, and they present an ocl to First Order Logic algorithm. Whether
this subset of FOL in affect can be translated further on into sql is unclear4.
Attempts to formulate GIS constraints in ocl has been made in [CWD00],
but the authors realize that ocl do not fit their GIS needs, and modifies
the ocl syntax accordingly, again leaving the semantics unclear.
Finally, from the examples mentioned above it is clear that ocl syntax is
closer to Programming Languages syntax such as Java and C#, than it is
to natural language. ocl is part of a larger system, since ocl is a subset of
uml - which from our database constraint point of view has a lot of unnec-
essary functionality. This results in a comprehensive syntax, with a lot of
types, built-in functions and structures that the end-user needs to learn, in
order to formulate correct constraints.
hlcl should be closer to natural language, hence easier to use right away.
Furthermore it should only consist of the most necessary syntax structures,
which should be as simple as possible.

4See chapter 9.1 on page 89 for a discussion of the issues concerned with FOL to sql

translation

50 Related Work

5.4 EER

To use the Extended Entity Relationship (eer) model is yet another ap-
proach for formulating constraints, which is proposed in [GH91]. eer is
both a diagram notation, and a very well-founded semantic calculus for
queries. The basis for eer is the E/R-diagram, but it has been extended
so that it can model more complex relations and express most constraints.
In terms of semantic wellfoundnedness, eer is the direct opposite of ocl, a
comparison between ocl and eer can be found in [GR98]. But in terms of
ease and readability of constraints the syntax is not very simple, to illustrate
the point, look at the constraint below.

C2 all area must contain building

In order to formulate this in eer, the relation “contain” should be defined
as an attribute, which will then be used in the real constraint:

buildings: AREA → set(BUILDING)
buildings(a:AREA) := BTS -[b ‖ (b:BUILDING) ∧ contain(a,b)]-

This would be used in the actual constraint:

∀ (a:AREA) CNT -[b ‖ (b:buildings(a)]- ≥ 1

From the example it can be seen that it is even more difficult to formu-
late queries in eer than in Predicate Logic or First Order Logic! The end
user needs to formulate intermediate functions representing relations, and
be comfortable with usage of operators such as CNT (Count), BTS (Bag To
Set), and a number of other built-in functions in eer. Therefore eer does
not seem as a good choice for making constraint formulation easier.

5.5 Concluding Remarks

We have researched through articles from the last 20 years, and yet it seems
there is not a single integrity constraint language which suits all our needs
at the same time. colan has a syntax close to hlcl, but it is not as simple
and close to natural language as hlcl. Description Logic is well-defined and
can even reason with the defined constraints, but is not expressive enough
for our needs. eer has a well-defined semantic model, but is too complicated
to use to fill the gap between natural language and Predicate Logic. ocl is
probably the most widely used constraint language currently, but it seems
to have been developed as a constraint specification language, not an actual
constraint language, and its underlying semantic model is ambiguous and
unclear. We can therefore conclude that it seems there is a need for a new

5.5 Concluding Remarks 51

constraint language like hlcl which is both easy to use and has a formal
semantic model.

52 Related Work

Chapter 6

From hlcl to Predicate Logic

The following sections will contain a formal strategy for translating hlcl

expressions into Predicate Logic. The translation strategy is split up in
two parts: First a “simple translation strategy” is presented which deals
with hlcl sentences without user-defined variables and predicates. Second
an “advanced translation strategy” is presented, which solves the problems
that user-defined variables raise.
We have chosen this approach since it is easier to understand the general
ideas behind the translation when looking at the simple strategy, and then
be gently introduced to more “cluttered” advanced strategy.
Finally the two strategies will be merged in the “Full Translation Strategy”
chapter which summarizes the full strategy. When formalizing the strategies
λ-notation will be used, which is explained in chapter A.5 on page 128.

6.1 Macro Functionality

Before any of the translation strategies are applied to an hlcl-expression,
the class definitions are subsidized with their full hlcl-definitions. The func-
tionality behind class definitions is very simple: The hlcl-system searches
the hlcl-expression for any definitions. For each definition found, it substi-
tutes the definition name with the full hlcl-definition. The substitutions
are applied recursively, such that before a substitution is made, it is checked
if the substituted definition it self has any definitions, which are then sub-
stituted etc. If the hlcl-expression contains no definitions, the expression
is left untouched.

6.2 Simple Translating Strategy

The top sentence constructs in our abstract syntax are the “allmust” and
“nomay” constructs. The strategy for translating these two constructs is
close to our semantic model: “allmust” is being translated as implication,

54 From hlcl to Predicate Logic

and “nomay” is being translated as an conjunction. This can be seen below:

T [allmust(P, Q)] = ∀XT [P](X)→ T [Q](X)
T [nomay(P, Q)] = ¬∃XT [P](X) ∧ T [Q](X)

In the simplest case, the P and Q from above is “class” constructs. These
are translated into a λ-expression as seen below.

T [class(Cid, [])] = (λx.Cid(x))

If the class expression contains a relational path, the class expression is
translated as above, and conjugated with the translated relational path as
seen below:

T [class(Cid, RC)] = (λx.Cid(x) ∧ T [RC](x))

An example is shown below to illustrate the concepts, before we move on to
the more advanced constructs

Example 6.2.1

The simplest hlcl expression can be seen below

all c0 must c1

This expression would in the abstract syntax look as seen below

allmust(class(c0,[]),class(c1,[])

Applying T to the “allmust” construct results in:

∀XT [class(c0, [])](X)→ T [class(c0, [])](X)

Which would be further translated into

∀X(λx.C0(x))(X)→ (λx.C1(x))(X)

Now the hlcl-expression is translated, but in order to get the actual Pred-
icate Logic-expression we need to recursively apply λ-reduction. In this
example we only need one λ-reduction which gives us the final correct result:

∀XC0(X)→ C1(X)

Looking at the example above, one should notice how the the variable X is
quantified and passed along to the next iteration of T in the top constructs.

6.2 Simple Translating Strategy 55

Furthermore the class(Cid, []) structure will always be the innermost con-
struct in an hlcl sentence; notice it translates into a λ-function without
argument. This is because T eventually will evaluate to a λ-expression, to
which the X will be used as an argument, which will ensure that the subex-
pression uses the correct variable names.

All the “relclass” constructs introduce a new variable Y which they quantify
and pass on the following class expression. The variable Y should always
be the next available variable. The “exrelclass” has a translation similar to
the semantic model, which can be seen below

T [exrelclass(Rid, CE)] = (λx.∃Y (Rid(x, Y) ∧ T [CE](Y)))

The “allrelclass” is translated similar to “exrelclass” but with a different
quantifier as seen below.

T [allrelclass(Rid, CE)] = (λx.∀Y (Rid(x, Y)→ T [CE](Y)))

The “solelyrelclass” quantifies the expression similar to the “all” keyword,
but has a reversed implication.

T [solelyrelclass(Rid, CE)] = (λx.∀Y (T [CE](Y)→ Rid(x, Y)))

Finally there is the numerical quantifications, where we use a special nu-
merical quantifier (∃CompID,Integer) to illustrate the usage. This numerical
quantifier is not part of Predicate Logic nor datalog¬ and will therefore
only be used for sql translation purposes. The translation can be seen below

T [numrelclass(eq, N, Rid, CE)] = (λx.∃Y=N (Rid(x, Y)∧ T [CE](Y)))
T [numrelclass(ge, N, Rid, CE)] = (λx.∃Y≥N (Rid(x, Y)∧T [CE](Y)))
T [numrelclass(le, N, Rid, CE)] = (λx.∃Y≤N (Rid(x, Y) ∧ T [CE](Y)))

Attributes are handled similar to their semantic model. “Regular Attributes”,
i.e. attribute paths which states equality can be expressed directly in Pred-
icate Logic as seen below:

T [attribute(Aid, eq, val)] = (λx.Aid(x, val))

Numerically quantified attribute paths has an extra argument stating the
comparison method. These can, as in the case of numerical quantifiers, not
be used in datalog¬, but are also used for sql purposes. The translation
strategy can be seen below:

56 From hlcl to Predicate Logic

T [attribute(Aid, Compid, val)] = (λx.Aid(x, Compid, val))

The logical operators can be translated directly into Predicate Logic:

T [or(P, Q)] = (λx.T [P](x) ∨ T [Q](x))
T [and(P, Q)] = (λx.T [P](x) ∧ T [Q](x))
T [ornot(P, Q)] = (λx.T [P](x) ∨ ¬T [Q](x))
T [andnot(P, Q)] = (λx.T [P](x) ∧ ¬T [Q](x))

In order to get a better feel for the translation strategy a couple of examples
will be given in the following sub chapters.

Example 6.2.2
Let us take a look at one of the simplest running examples:

C2 all area must contain building

In our abstract syntax the sentence above would look like this:

allmust(class(area, []), exrelclass(contain, class(building, [])))

By using the simple strategy presented above we get the following:

∀XT [class(area, [])](X)→ T [exrelclass(contain, class(building, []))](X)
∀X(λx.area(x))(X)→ (λx.∃Y (contain(x, Y)∧T [class(building, [])](Y))(X)
∀X(λx.area(x))(X)→ (λx.∃Y (contain(x, Y)∧(λx.building(x))(Y))(X)

Then we can apply λ-reduction

∀X(λx.area(x))(X)→ (λx.∃Y (contain(x, Y) ∧ building(Y)))(X)

∀Xarea(X)→ ∃Y (contain(X, Y) ∧ building(Y))

The above Predicate Logic statement can be read as: “for all areas there

exists a building which is contained in the area”, which is obviously the
correct interpretation of the above hlcl expression.

Example 6.2.3
Then we can move on and check a more complicated example, namely one
using relational paths:

C4 all building type industrial must beusedby company

In our abstract syntax this sentence would look like:

6.2 Simple Translating Strategy 57

allmust(class(building, attribute(type, eq, building),
exrelclass(beusedby, class(company, [])))

By using the simple strategy presented above we get the following:

∀XT [class(building, attribute(type, eq, industrial)](X)→
T [exrelclass(beusedby, class(company, []))](X)

The right-hand side can be treated similar to example 6.2.2 on the pre-
ceding page, so in the following we will only look at the left-hand side:

∀XT [class(building, attribute(type, eq, building)](X)
∀X(λx.building(x) ∧ T [attribute(type, eq, industrial)])(x)(X)
∀X(λx.building(x) ∧ (λx.type(x, industrial))(x)(X)

Then we can apply λ-reduction:

∀X(λx.building(x) ∧ type(x, industrial))(X)
∀Xbuilding(X) ∧ type(X, industrial)

The full expression would then look like (translating the right-hand side
as example 6.2.2 on the facing page)

∀Xbuilding(X) ∧ type(x, industrial)
→ ∃Y (beusedby(X, Y) ∧ company(Y)

This reads as “all buildings which are of type industrial must be used by a

company”. This is the correct interpretation.

Example 6.2.4
Let us look at an example with composite structures. Take a look at the
hlcl expression below:

C6 all area must contain building or contain lake

In our abstract syntax this would be represented as:

allmust(class(area, []), or(exrelclass(contain, class(building, [])),
exrelclass(contain, class(lake, []))))

Using the translation strategy results in:

∀XT [class(area, [])](X)→
T [or(exrelclass(contain, class(building, [])),

58 From hlcl to Predicate Logic

exrelclass(contain, class(lake, [])))](X)

The left-hand side can be translated as in example 6.2.2 on page 56, in
the following we will only look at the right-hand side:

T [or(exrelclass(contain, class(building, [])),
exrelclass(contain, class(lake, [])))](X)

λx.(T [exrelclass(contain, class(building, []))](x)
∨ T [exrelclass(contain, class(lake, []))](x))(X)

λx.(λx.(∃Y (contain(x, Y) ∧ (λx.building(x))(x)))(x)
∨(λx.(∃Y (contain(x, Y) ∧ (λx.lake(x))(x)))(x))(X)

Then we can apply λ-reduction:

λx.(λx.(∃Y (contain(x, Y) ∧ building(x)))(x)
∨(λx.(∃Y (contain(x, Y) ∧ lake(x)))(x))(X)

λx.(∃Y (contain(x, Y) ∧ building(x)) ∨
(∃Y (contain(x, Y) ∧ lake(x)))(X)

∃Y (contain(X, Y) ∧ building(X)) ∨ (∃Y (contain(X, Y) ∧ lake(X))

The total expression is then

∀Xarea(X)→
∃Y (contain(X, Y)∧ building(X))∨ (∃Y (contain(X, Y)∧ lake(X))

This reads: “all areas must contain either a building or contain a lake”,
which is the correct result in Predicate Logic.

6.3 Advanced Translating Strategy

In this chapter we will deal with the problems that arise when introducing
user-defined variables.

6.3.1 Issues

Introducing user-defined variables is not just a matter of changing the outer
variable in our original translation strategy with the user-defined variable.
In order to illustrate the problem, let us look at an “exrelclass” which relates
to a user-defined variable. From our simple strategy we have a rule which
looks like:

T [exrelclass(Rid, CE)] = (λx.∃Y (Rid(x, Y) ∧ T [CE](Y)))

6.3 Advanced Translating Strategy 59

In order to adapt this to user-defined variables, the first step is to replace the
existentially quantified Y to the correct name of the user-defined variable,
which would result in the rule below:

T [exrelclass(Rid, varclass(Cid, Vid, RC)] =
(λx.∃Vid(Rid(x, Vid) ∧ T [varclass(Cid, Vid, RC)](Vid)))

If we used the above rule alone we would end up with an expression of
the form:

...∃Vid(class(Vid)...Vid...)...→ ...∃Vid(class(Vid)...Vid...)...

This looks correct, but reveals a new problem - namely quantifier scop-
ing of the existentially quantified Vid. This problem relates to the so-called:
“donkey sentences” which are explained in appendix A.2 on page 120. This
expression has two existentially quantified variables Vid, but the expression
fails to express the fact that that the variables Vid should be equal. This
is solved by using a single global universal quantifier instead of the two lo-
cal existential quantifiers. This will express that the variables should be
equal. Furthermore we should also get rid of the double class expression:
“class(Vid)”. It should only be initiated on the left-hand side, such that we
get an expression, similar in structure to the one seen below:

∀Vid...class(Vid)(...Vid...)→ (...Vid...)

In the following section we will extend the simple translation strategy with
the modifications mentioned above. The result is a somewhat more “clut-
tered” translation strategy which can be harder to understand. The key is
to remember that the only difference is, that the advanced strategy quanti-
fies all user-defined variables globally, and moves the class predicates to the
beginning of the Predicate Logic expression.

6.3.2 Strategy

Sub-strategy

In order to make the above mentioned modifications, an extra sub strategy
S is introduced. S takes two arguments: The first argument is an hlcl ex-
pression, and the second argument is a variable list. S searches through the
given hlcl expression and collects all user-defined variables which are not
in the given list. The result is a Predicate Logic expression which consists
of all the user-defined variables universally quantified together with class
expression. An example of how S works can be seen below:

60 From hlcl to Predicate Logic

S[varclass(Building, A, [])][] = ∀ABuilding(A)

S[varclass(Building, A, [])][A] = []

S[or(varclass(Building, A, []), varclass(Area, B, []))] =
∀ABuilding(A) ∧ ∀BArea(B)

S only returns one class and quantification for each user-defined variable,
so even though it encounters the same user-defined variable twice, only a
single class expression is returned for each user-defined variable. The formal
specification of S can be found in chapter 6.4 on page 65.

Actual Strategy

In general the advanced rules extend the rules from our simple strategy.
Instead of operating with Ps and Qs as we did in the simple strategy, we use
specific construct-matching, such as “allmust(varclass(, ,))” for matching
an “allmust” construct with a “varclass” construct. The topconstruct “all-
must” can be defined as:

T [allmust(class(Cid, RC), Q)] =
∀X(λx.Cid(x) ∧ S[and(RC, Q)][] ∧ T [RC](x))(X)→ T [Q](X)

The “allmust” construct uses the S to universally quantify variables and
pull out “class expressions” as explained above. Otherwise the expression is
very similar to the one in the simple strategy. If the expression starts with a
classexpression which uses a user-defined variable, the strategy looks as the
following:

T [allmust(varclass(Cid, Vid, RC), Q)] =
∀Vid(λx.Cid(x)∧S[and(RC, Q)][Vid]∧T [RC](x))(Vid)→ T [Q](Vid)

T [allmust(varclass(Cid, Vid, []), Q)] =
∀VidCid(Vid) ∧ S[and(RC, Q)][Vid]→ T [Q](Vid)

The above strategy quantifies the first user-defined variable Vid, and uses
it as the second argument in S since the it is already correctly scoped. Fur-
thermore Vid is used as argument in the λ-functions, such that the classes
uses the user-defined variable. The second case is simply a specialization
of the first one, namely that if the left-hand side only contains a “varclass
component, then the overall strategy is a bit simpler.
The “nomay” constructs have similar rules seen below:

6.3 Advanced Translating Strategy 61

T [nomay(class(Cid, RC), Q)] =
¬∃X(λx.Cid(x) ∧ S[and(RC, Q)][] ∧ T [RC](x))(X) ∧ T [Q](X)

T [nomay(varclass(Cid, Vid, RC), Q)] =
¬∃Vid(λx.Cid(x)∧S[and(RC, Q)][Vid]∧T [RC](x))(Vid)∧T [Q](Vid)

T [nomay(varclass(Cid, Vid, []), Q)] =
¬∃VidCid(Vid) ∧ S[and(RC, Q)][Vid] ∧ T [Q](Vid)

The “varclass” constructs are treated just like “class” constructs, except
the variable inside the class which is already given.

T [varclass(Cid, Vid, [])] = (λx.Cid(Vid))
T [varclass(Cid, Vid, RC)] = (λx.Cid(Vid) ∧ T [RC](Vid))

Notice how the first “varclass” strategy is a constant λ-expression. Nev-
ertheless we still need to have the full λ-expression, so number of arguments
and λ-expressions add up in the translation strategy. The “exrelclass” is
extended as explained the issues section.

T [exrelclass(Rid, varclass(Cid, Vid, [])] = (λx.Rid(x, Vid))
T [exrelclass(Rid, varclass(Cid, Vid, RC)] = (λx.Rid(x, Vid)∧T [RC](Vid))

These rules do not quantify the expression with the user-defined variable,
nor add a classs expression corresponding to Cid(Vid), this is done by the
sub-strategy S which was applied in the translation of the topconstructs.
Variables can only be used with existentially quantified classes, so the rules
concerning the other relational paths stays the same. Finally there is the
predicates which are translated as seen below:

T [unarypredicate(Pid, Vid)] = (λx.Pid(Vid))
T [binarypredicate(Pid, Vid1, Vid2)] = (λx.Pid(Vid1, Vid2))

In order to understand the presented strategies better, let us look at a few
example translations seen below.

Example 6.3.1

Let us look at an example translation of an hlcl expression using variables:

all building B must touch building B

In abstract syntax the above expression would look like:

allmust(varclass(building,B,[]),exrelclass(touch,varclass(building,B,[])))

62 From hlcl to Predicate Logic

Applying the translation strategy results in

∀B building(B) ∧ S[and(varclass(building, B, []),
exrelclass(touch, varclass(building, B, [])))][B]→
T [exrelclass(touch, varclass(building, B, []))](B)

The left-hand side of the implication in the expression uses the strategy
S, which evaluates into nothing, since there are no further user-defined vari-
ables in the expression. The result is that the full left-hand side of the
expression evaluates into the Predicate Logic expression seen below:

∀BbuildingB

The right-hand side of the expression can seen below

T [exrelclass(touch, varclass(building, B, []))](B)

Using the advanced strategy T is translated into the λ-expression seen below:

(λx.touch(x, B))(B)

Using λ-reduction we reach:

touch(B, B)

Putting the left-hand and the right-hand side together we get the final Pred-
icate Logic expression:

∀B buildingB → touch(B, B)

Which is clearly correct.

Example 6.3.2

Let us look at an example translation of an hlcl expression using user-
defined predicates:

no area A must someareafunction(A)

In abstract syntax the above expression would look like:

nomay(varclass(area,A,[]),unarypredicate(someareafunction,A))

Applying the translation strategy results in

6.3 Advanced Translating Strategy 63

¬∃A area(A) ∧ S[and(varclass(area, A, []),
unarypredicate(someareafunction, A))][A]→
T [unarypredicate(someareafunction, A)](A)

The left-hand side of the implication in the expression uses the strategy
S, which evaluates into nothing, since there are no further user-defined vari-
ables in the expression. The full left-hand side of the expression evaluates
into the Predicate Logic expression seen below:

¬∃A area(A)

The right-hand side of the expression as seen below

T [unarypredicate(someareafunction, A)](A)

Using the new strategy the above is translated into the λ-expression seen
below:

(λx.someareafunction(A))(A)

Using λ-reduction (in where we reduce a constant function) we reach:

someareafunction(A)

Putting the left-hand and the right-hand side together we get the final Pred-
icate Logic expression:

¬∃A area(A)→ someareafunction(A)

Which is clearly correct.

Example 6.3.3
Then let us look at an example, which uses both simple and advanced rules.
Take a look at the hlcl expression seen below:

C11 all area intersectedby road R must

contain building intersectedby road R

In abstract syntax this would look like

allmust(class(area, exrelclass(intersectedby, varclass(road, R, []))),
exrelclass(contain, class(building,
exrelclass(intersectedby, varclass(road, R, [])))))

64 From hlcl to Predicate Logic

Applying the strategy T results in the following, quite confusing, fragment
seen below:

∀X(λx.area(x) ∧
S[and(exrelclass(intersectedby, varclass(road, R, [])),
exrelclass(contain, class(building, exrelclass(intersectedby,
varclass(road, R, [])))))][] ∧ T [exrelclass(contain, class(building,
exrelclass(intersectedby, varclass(road, R, []))))](x))(X)
→ T [exrelclass(contain,
class(building, exrelclass(intersectedby, varclass(road, R, []))))](X)

In order to get an overview, the expression above is split it up in the left-
and right-hand side of the implication. If we look at the left-hand side, then
the substrategy S will simply return

∀Rroad(R)

So the entire left-hand side becomes:

∀X(λx.area(x) ∧ ∀Rroad(R) ∧ T [exrelclass(contain,
class(building, exrelclass(intersectedby, varclass(road, R, []))))](x))(X)

Applying T results in the following expressions

∀X(λx.area(x) ∧ ∀Rroad(R) ∧ (λx.∀Y (contain(x, Y)→
T [class(building, exrelclass(intersectedby, varclass(road, R, [])))))](Y))(x))(X)

∀X(λx.area(x) ∧ ∀Rroad(R) ∧ (λx.∀Y (contain(x, Y)→
(λx.building(x)∧T [exrelclass(intersectedby, varclass(road, R, []))])(x))(Y)))(X)

∀X(λx.area(x) ∧ ∀Rroad(R) ∧ (λx.∃Y (contain(x, Y) ∧
(λx.building(x) ∧ (λx.intersectedby(x, R)))(x))(Y)))(X)

The expression is finally translated and we can apply λ-reduction:

∀X(λx.area(x) ∧ ∀Rroad(R) ∧ (λx.∃Y (contain(x, Y) ∧
(λx.building(x) ∧ intersectedby(x, R))(Y)))(X)

∀X(λx.area(x) ∧ ∀Rroad(R) ∧ (λx.∃Y (contain(x, Y) ∧
building(Y) ∧ intersectedby(Y, R))(x))(X)

∀X(λx.area(x) ∧ ∀Rroad(R) ∧
∃Y (contain(x, Y) ∧ building(Y) ∧ intersectedby(Y, R))(X)

6.4 Full Translating Strategy 65

The final expression corresponding to the right-hand side can be seen below:

∀Xarea(X) ∧ ∀Rroad(R) ∧
∃Y (contain(X, Y) ∧ building(Y) ∧ intersectedby(Y, R))

Going back to the right-hand side we have:

T [exrelclass(contain, class(building, exrelclass(intersectedby,
varclass(road, R, []))))](X)

Applying the strategy T results in

(λx.∃Y (contain(x, Y) ∧ T [class(building, exrelclass(intersectedby,
varclass(road, R, [])))](Y)))(X)

(λx.∃Y (contain(x, Y) ∧ (λx.building(x) ∧
T [exrelclass(intersectedby, varclass(road, R, []))])(x))(Y)))(X)

(λx.∃Y (contain(x, Y) ∧ (λx.building(x) ∧
(λx.intersectedby(x, R))(x))(Y)))(X)

Applying λ-reduction yields:

(λx.∃Y (contain(x, Y)∧(λx.building(x)∧intersectedby(x, R))(Y)))(X)

(λx.∃Y (contain(x, Y) ∧ building(Y) ∧ intersectedby(Y, R))(X)

∃Y (contain(X, Y) ∧ building(Y) ∧ intersectedby(Y, R))

Which means the final expression is:

∀X area(X) ∧ ∀R road(R) ∧ ∃Y (contain(X, Y) ∧
building(Y) ∧ intersectedby(Y, R))→ ∃Y (contain(X, Y)
∧ building(Y) ∧ intersectedby(Y, R))

Which is clearly correct.

6.4 Full Translating Strategy

Let us recapitulate and look at all rules, which constitutes the full translating
strategy. It is important to notice that these transformation rules do not
ensure wellformedness. The translation strategy translates “blindly” and
requires a separate wellformedness check at a later stage. A summary of all

66 From hlcl to Predicate Logic

rules can be seen below:

Strategy T

T [allmust(class(Cid, RC), Q)] =
∀X(λx.Cid(x) ∧ S[and(RC, Q)][] ∧ T [RC](x))(X)→ T [Q](X)

T [allmust(varclass(Cid, Vid, RC), Q)] =
∀Vid(λx.Cid(x)∧S[and(RC, Q)][Vid]∧T [RC](x))(Vid)→ T [Q](Vid)

T [allmust(varclass(Cid, Vid, []), Q)] =
∀VidCid(Vid) ∧ S[and(RC, Q)][Vid]→ T [Q](Vid)

T [nomay(class(Cid, RC), Q)] =
¬∃X(λx.Cid(x) ∧ S[and(RC, Q)][] ∧ T [RC](x))(X) ∧ T [Q](X)

T [nomay(varclass(Cid, Vid, RC), Q)] =
¬∃Vid(λx.Cid(x)∧S[and(RC, Q)][Vid]∧T [RC](x))(Vid)∧T [Q](Vid)

T [nomay(varclass(Cid, Vid, []), Q)] =
¬∃VidCid(Vid) ∧ S[and(RC, Q)][Vid] ∧ T [Q](Vid)

T [exrelclass(Rid, class(Cid, RC))] = (λx.∃Y (Rid(x, Y)∧T [class(Cid, RC)](Y)))
T [exrelclass(Rid, varclass(Cid, Vid, [])] = (λx.Rid(x, Vid))
T [exrelclass(Rid, varclass(Cid, Vid, RC)] = (λx.Rid(x, Vid)∧T [RC](Vid))
T [allrelclass(Rid, class(Cid, RC))] = (λx.∀Y (Rid(x, Y)→ T [class(Cid, RC)](Y)))
T [solelyrelclass(Rid, CE)] = (λx.∀Y (T [CE](Y)→ Rid(x, Y)))
T [numrelclass(eq, N, Rid, CE)] = (λx.∃Y=N (Rid(x, Y)∧ T [CE](Y)))
T [numrelclass(ge, N, Rid, CE)] = (λx.∃Y≥N (Rid(x, Y)∧T [CE](Y)))
T [numrelclass(le, N, Rid, CE)] = (λx.∃Y≤N (Rid(x, Y) ∧ T [CE](Y)))

T [class(Cid, RC)] = (λx.Cid(x) ∧ T [RC](x))
T [class(Cid, [])] = (λx.Cid(x))
T [varclass(Cid, Vid, [])] = (λx.Cid(Vid))
T [varclass(Cid, Vid, RC)] = (λx.Cid(Vid) ∧ T [RC](Vid))

T [unarypredicate(Pid, Vid)] = (λx.Pid(Vid))
T [binarypredicate(Pid, Vid1, Vid2)] = (λx.Pid(Vid1, Vid2))

T [or(P, Q)] = (λx.T [P](x) ∨ T [Q](x))
T [and(P, Q)] = (λx.T [P](x) ∧ T [Q](x))
T [ornot(P, Q)] = (λx.T [P](x) ∨ ¬T [Q](x))
T [andnot(P, Q)] = (λx.T [P](x) ∧ ¬T [Q](x))

6.4 Full Translating Strategy 67

- Where Y is next available variable.

Strategy S
The strategy S is defined below:

S[varclass(Cid, Vid, RC)][List] = ∀VidCid(Vid) ∧ S[RC][List + Vid]
iff Vid is not in list

S[varclass(Cid, Vid, RC)][List] = S[RC][List]
iff Vid is in list

S[attribute(Aid, eq, Vid)][List] = ∀VidS[RC][List + Vid]
iff Vid is user-defined and not in list

S[attribute(Aid, eq, Vid)][List] = S[RC][List]
iff Vid is not or user-defined and in list

S[class(Cid, RC)][List] = S[RC][List]
S[attribute(Aid, Compid, Vid)][] = []
S[unarypredicate(Pid, Vid)][] = []
S[binarypredicate(Pid, Vid1, Vid2)][] = []
S[exrelclass(Rid, CE)][List] = S[CE][List]
S[allrelclass(Rid, CE)][List] = S[CE][List]
S[solelyrelclass(Rid, CE)][List] = S[CE][List]
S[numrelclass(Compid, N, Rid, CE)][List] = S[CE][List]
S[or(P, Q)][List] = S[List]S[List]
S[and(P, Q)][List] = S[List]S[List]
S[ornot(P, Q)][List] = S[List]S[List]
S[andnot(P, Q)][List] = S[List]S[List]
S[][] = []

68 From hlcl to Predicate Logic

Chapter 7

Intermediate Steps

The translation strategy T from chapter 6 on page 53 results in a Predi-
cate Logic expression. In order to translate this Predicate Logic into Ex-
tended datalog which will be the basis for sql translation and finally into
datalog¬ we need to make some logical rewritings. These rewritings occur
in two steps as seen below:

Predicate Logic→ Extended datalog → datalog¬

The Predicate Logic is first rewritten into Extended datalog. The Ex-
tended datalog can then be further translated into datalog¬. The specifics
of the two kinds of datalog can be seen below:

Extended datalog: This is the logic representation which is fine-tuned
for sql translation. Basically we keep all operators and quantifiers
which are available in sql. Furthermore the numerical quantifiers are
kept.

datalog¬: This is the purest logic representation, stripped of all quantifiers
and is basically pure clauses including negation (negation-as-failure,
see [Bra01]). This is meant to be an easy-to-read alternative, when
one wants to see what the constraint actually expresses (which can
be hard in sql). Furthermore it is a well-defined interface with can
be used by external applications. As previously mentioned only a
subset of the hlcl namely hlcl without numerical quantifications
and numerical attribute values can be translated into datalog¬.

The rewriting steps have been divided into two parts: The first 3 steps are
the Predicate Logic to Extended datalog translation, and the last steps
are the Extended datalog to datalog¬ translation. [Nil80] gives a 9-step
procedure for rewriting the Predicate Logic into pure clauses. Theorems 7.1
to 7.7 are from this procedure, which form the basis of the logical rewriting
steps seen below:

70 Intermediate Steps

Steps to Reach Extended datalog

1. Eliminate Internal Universal Quantifiers

2. Eliminate Implication Symbols

3. Negate Expression.

Final Steps to Reach datalog¬

1. Reduce Scope of Negation

2. Distribute Conjunctions

3. Remove Outer Universal Quantifiers

4. Eliminate Existential Quantifiers

5. Eliminate ∨ symbols

In the following sub chapters we will look at these steps one by one, and
manually translate one of the running examples in order to illustrate the
principles.

7.1 Interface Definitions

In the following two sub chapters a formal definition of the Extended dat-

alog and datalog¬ will be given.

7.1.1 Extended datalog

In this chapter a formal definition of our Extended datalog will be given. It
is important to realize that Extended datalog is only a subset of datalog,
the reason is that only certain structures are generated from the strategy T .

〈ext datalog〉::= all(Vid,〈ext datalog〉) |
all(Vid,and(〈subexp〉,〈subexp〉))

〈subexp〉::= and(〈class〉,〈quantifierexp〉) | or(〈class〉,〈quantiferexp〉)
| 〈class〉 | 〈predicate〉 | 〈quantifierexp〉

〈quantifierexp〉::= not(〈quantifierexp〉) |
and(〈relation〉,〈subexp〉) | 〈relation〉 |
exists(Vid,and(〈relation〉,〈subexp〉)) |
exists(Vid,and(〈relation〉,not(〈subexp〉))) |
exists(Vid,and(〈subexp〉,not(〈relation〉))) |
numexists(〈num quant〉,〈integer〉,Vid,and(〈relation〉,〈subexp〉))

〈class〉::= class(Cid,Vid)

7.2 From Predicate Logic to Extended datalog 71

〈relation〉::= relation(Rid,Vid,Vid)

〈attribute〉::= attribute(Aid,Vid,〈num quant〉,〈value〉)
〈predicate〉::= unarypredicate(Pid,Vid) | binarypredicate(Pid,Vid,Vid)

〈num quant〉::= eq | le | ge

〈integer〉::= 1 | 2 | 3 | . . .

7.1.2 datalog¬

In this chapter a formal definition of our datalog¬ will be given. datalog¬

consists of clauses which each has a form as described below:

〈datalog clause〉::= 〈result〉 ← 〈expression〉
〈expression〉::= 〈entity〉 | and(〈entity〉,〈expression〉)
〈entity〉::=not(〈entity〉) |

class(Cid,Vid) |
attribute(Aid,Vid,eq,〈value〉) |
relation(Rid,Vid,Vid) |
function(Fid,Vid − list) |
unarypredicate(Pid,Vid) |
binarypredicate(Pid,Vid,Vid) |

〈result〉::= error | function(Fid,Vid − list)

7.2 From Predicate Logic to Extended datalog

In this sub chapter we will go through the steps to reach the Extended
datalog from Predicate Logic.

Eliminate Internal Universal Quantifiers

Since sql does not have an operator for universal quantification, we need
to get rid of universal quantifications inside the predicate expression. The
method we are using relies on the “closed world assumption”, which states
that if something is not explicitly stated true, then it is false. This is the case
in a database, and theorem 7.1 allows us to replace the universal quantifier,
with a double-negated existential quantifier. The result is that instead of
saying “for all X, Y must hold”, then we say “there does not exist a X where

Y does not hold”. The formal definition can be seen below:

∀Aexp = ¬∃¬exp (7.1)

72 Intermediate Steps

Eliminate Implication Symbols

sql does not have an implication operator either, so implications symbols
should also be rewritten. Elimination of implication, both the outer impli-
cation, and any implications inside the expression, is done by applying the
theorem below:

P ⇒ Q ≡ (¬P) ∨Q (7.2)

Negate Expression

The final step is to negate the expression. This is done because the hlcl sen-
tence is formulated as a constraint that should hold for all entities within a
given class. But the actual sql constraint should query entities which break
the constraint. Negation is done in differently depending on whether the
constraint uses a “allmust” or “nomay” top construct. In constraints made
from the “allmust” construct, negation and removal of the outer implication
can be done at the same time, using the theorem seen below:

¬(P ⇒ Q) ≡ P ∧ ¬(Q) (7.3)

As an example look at the Predicate Logic expression below which shows
the structure made from an “allmust” construct.

∀Vid Exp1→ Exp2

Negating the above expression by using the theorem 7.3 results in:

error ← ∀Vid Exp1 ∧ ¬Exp2

Constraints which are made from the “nomay” construct has an outer nega-
tion by nature. By negating the inside expression we get a “¬∃¬” structure
which can be replaced shown in theorem 7.1.
As an example look at the Predicate Logic expression below which shows
the structure made from a “nomay” construct.

¬∃Vid Exp1 ∧ Exp2

Negating the above expression and using theorem 7.1 results in:

error ← ∀Vid Exp1 ∧ Exp2

In most of this report we will leave out left-hand side of this expression, and
leaving the “error” result implicit. The only time it is shown, is when we
reach the datalog¬ interface.

Example 7.2.1

Let us look at an example illustrating the logical rewritings described above:

7.3 From Extended datalog to datalog¬ 73

C14 all building must type blockbuildings

and touch solely building

According to our translating strategy from chapter 6 on page 53 the above
hlcl expression would be translated to the followed Predicate Logic.

∀Xbuilding(X)→ type(X,′ blockbuilding′) ∧
∀Y (touch(X, Y)→ building(Y))

First internal universal quantification is removed by applying the theorem
7.1:

∀Xbuilding(X)→ type(X,′ blockbuilding′) ∧
¬∃Y ¬(touch(X, Y)→ building(Y))

Then theorem 7.3 can be applied to remove the inner implication:

∀Xbuilding(X)→ type(X,′ blockbuilding′) ∧
¬∃Y (touch(X, Y) ∧ ¬building(Y))

Applying theorem 7.3 removes the outer implication, and negates the ex-
pression

error ← ∀Xbuilding(X) ∧ ¬(type(X,′ blockbuilding′) ∧
¬∃Y (touch(X, Y) ∧ ¬building(Y)))

The expression above is now in Extended datalog form and ready for
sql translation.

7.3 From Extended datalog to datalog¬

In this chapter the final steps to reach datalog¬ will be described.

Reduce Scope of Negation

The first step in order to reach datalog¬ is to reduce the scope of negation.
This means that all negations covering a conjunction or disjunction should
be moved “inwards” in the expression. The result should be an expression
where only the literals are negated. This can be done by applying DeMor-
gan’s theorem 7.4 and 7.5 seen below and the theorem of double negation,
theorem 7.6.

¬(P ∨Q) ≡ ¬P ∧ ¬Q (7.4)

¬(P ∧Q) ≡ ¬P ∨ ¬Q (7.5)

¬(¬(P)) ≡ P (7.6)

74 Intermediate Steps

Distribute Conjunctions

The next step is to put the expression in disjunctive normal form. This
means that expressions containing the disjunction operator inside a conjuga-
tion, should be distributed by applying the distributive law seen in theorem
7.7.

P ∧ (Q ∨R) ≡ (P ∧Q) ∨ (P ∧R) (7.7)

This results in an expression consisting of one of more disjuncts each which is
a conjugation between one or more literals. This form is sometimes referred
to as “disjunctive normal form”.

Eliminate Outer Universal Quantifier

The next step is to remove the last universal quantifiers, since the inner uni-
versal quantifications are already removed in Extended datalog, we only
have left to remove the out universal quantifiers. They are simply stripped
away, so that a sentence seen below

∀X, Y, Zclass(X)....

Simply turns into:

class(X)....

It is important to realize the variables in the expression above are still uni-
versally quantified, it is just left implicit, because all variables in datalog¬

are implicitly universally quantified.

Eliminate Existential Quantifiers

The next step is to eliminate the existential quantifiers. We do not use
method described in [Nil80]1, instead we realize that our existentially quan-
tified variables only come in a certain pattern. E.g. in conjunction with a
relational path as the one seen below:

...∃Y relation(X, Y) ∧ class(Y)...

The above expression can simply be “pulled” out of the expression, and
made into a separate function expression. This means that the expression
above turns into a seperate function seen below:

f(X) = ∀Y relation(X, Y) ∧ class(Y)

1Which is briefly described in appendix A.6 on page 129

7.3 From Extended datalog to datalog¬ 75

The existentially quantified subexpression is replace by the function name.
Let us look at an example to illustrate the principle.

∀Xarea(X) ∧ ¬∃Y (Buildings(Y) ∧ ¬contain(X, Y))

Let us then remove the above quantifier by using the principle. We in-
troduce a function f, which can be seen below:

f(X) = Buildings(Y) ∧ ¬contain(X, Y)

And the original sentence would turn into:

∀Xarea(X) ∧ ¬f(X)

Eliminate ∨ Symbols

The final step is to eliminate disjunction symbols. This is simply done by
breaking up a clauses containing disjunctions into several clauses, each keep-
ing the left-hand side of the expression. Since the expression is in disjunctive
normal form, the ∨ should be the outermost operators in the expression. So
that a sentence as:

error ← area(X) ∨ f(X)

Would turn into:

error ← area(X)
error ← f(X)

Example 7.3.1

Let us continue converting the example which we started in 7.2.1 on page 72.

∀Xbuilding(X) ∧ ¬(type(X,′ blockbuilding′) ∧
¬∃Y (touch(X, Y) ∧ ¬building(Y)))

The first step is to reduce the scope of the negation, the result can be
seen below.

∀Xbuilding(X) ∧ ¬type(X,′ blockbuilding′) ∨
∃Y (touch(X, Y) ∧ ¬building(Y))

The next step is to distribute conjunctions according to theorem 7.7 on
the facing page

76 Intermediate Steps

∀Xbuilding(X) ∧ ¬type(X,′ blockbuilding′) ∨ building(X) ∧
∃Y (touch(X, Y) ∧ ¬building(Y))

Then we remove outer universal quantifiers

building(X) ∧ ¬type(X,′ blockbuilding′) ∨ building(X) ∧
∃Y (touch(X, Y) ∧ ¬building(Y))

And remove existential quantifiers:

building(X) ∧ ¬type(X,′ blockbuilding′) ∨ building(X) ∧ f1(X)
f1(X)← touch(X, Y) ∧ ¬building(Y)

The last step is to break up disjunctions. These are eliminated by breaking
up the expression in multiple clauses, resulting in:

building(X) ∧ f1(X)
building(X) ∧ ¬type(X,′ blockbuilding′)
f1(X)← touch(X, Y) ∧ ¬building(Y)

The end result is a datalog¬ expression which can be seen below (where
the error result is defined explicitly):

error ← building(X) ∧ f1(X)

error ← building(X) ∧ ¬ type(X,’blockbuilding’)

f1(X) ← touch(X,Y) ∧ ¬ building(Y)

7.4 Attributes in datalog¬

One of the major differences between “real” datalog and our datalog¬

is the difference in representing attributes. In our Predicate Logic and
datalog¬ attributes are represented in a separate predicate, i.e. if we
want to state that an area is of type residential we would have:

area(X) ∧ type(X,residential)

This is not how one traditionally represents attributes in datalog¬, in
fact in real datalog¬ every predicate corresponds exactly to a table in the
database implementation, so that the class predicate’s arity depends on the
table. Furthermore the attribute is added directly inside the class predicate.
Let us imagine that class “area” in fact is represented by a 3 column table
in the database. The columns are labelled “areaID”,“Zipcode” and “type”,
and furthermore “areaID” is the primary key of the table. Then the resi-

7.4 Attributes in datalog¬ 77

dential area would be represented as:

area(X, ,’residential’)

As seen there is no separate attribute predicate, and the notation is more
compact, but also a lot more database specific.
Take the area table from before, let us imagine for that the two columns
“areaID” and “zipcode” constitute the primary key. Then we need to com-
pare both of these fields, using extra variables so that:

area(X,Y,) and contain(X,Y,....)

Operators are also treated differently when we chose to represent attributes
in the class predicate. Take a look at the hlcl fragment below:

area type residential and zipcode 90210

Because there is a conjunction between the two attributes, we can declare
them in one single predicate:

area(X,’90210’,’residential’)

But if the hlcl fragment was formulated like:

area type residential or zipcode 90210

Then we would have to split the datalog¬ declaration up into two class
definitions as seen below:

area(X,’90210’,) or area(X, ,’residential’)

These issues with attributes in datalog¬ are not “show-stoppers”. We
have the table structure represented in our database model, so all informa-
tion which we need to make this form are available. Also the algorithms for
making these compact are not complex. But looking back at our original
purpose for having a datalog¬ interface, namely as an easy-to-read inter-
face which could be used as basis for translation to other query languages.
It is not optimal to do these last transformations, because the interface be-
comes much more relation-database specific, and not as easy to read.

78 Intermediate Steps

Chapter 8

Database Representation

The hlcl system needs information about the target database which the
hlcl constraints should apply to. Basically it needs 3 different kinds of
specifications which are listed below:

Conceptual Model, E/R-Diagram This is an abstraction over the data-
base, and is the basis from which the user formulates the hlcl con-
straints. In the conceptual model we operate only with Entities (Classes)
and Relations (including ISA-relationships).

Database Model This is the specific implementation details of the data-
base. We are using a relational database which operates with tables,
attributes and primary keys. Furthermore there are some pre-defined
sql functions.

A mapping between the two models This is a specification of how the
two models correspond. This map enables the user to formulate hlcl

constraints in the context of the conceptual model, which will then
be translated into working query in the context of a real database
specified in the database model.

In order for hlcl to use these models and the mapping information they
need to be represented in prolog. A suggestion for representing conceptual
models in prolog can be found in [KZ98]. Their representation has a lot of
information, such as arity on relations and attributes, which are needed to
make rewritings into normal forms, but this is not used in the hlcl-system.
Instead a minimal representation is chosen for the hlcl system, where only
the essential information in the database representation is represented.

8.1 Formal Description

This chapter is meant to give the reader a quick overview of what informa-
tion is contained in the database model. A brief RSL specification can be

80 Database Representation

seen below.1

A specification for the Database Representation

scheme DATABASEREPRESENTATION =
class

type
Name,
Property,
ValueInterval,
Class = Name,
Relation = Name × Class × Class,
AttRelation = Class × Property × ValueInterval,
Isa = Class →m Class-set,
ConceptualModel = Class-set × Relation-set × AttRelation-set × Isa-set,

Column,
SQLExp,
Condition = SQLExp,
Table = Name × Column∗,
Function = Name × Column∗ →m SQLExp,
DatabaseModel = Table-set × Function-set,

Key = Column,
IntervalDefinition,
Classmap = Class →m Table × Condition × Key∗,
Relationmap = Relation × Class × Class →m Table × Key∗ × Key∗,
Valuemap = Class × Property →m Table × Column,
Typemap = ValueInterval →m IntervalDefinition,
Mapping = Classmap-set × Relationmap-set × Valuemap-set × Typemap-set

end

The specification consists solely of type declarations, where the three most
important ones are: “ConceptualModel”, “DatabaseModel” and “Mapping”.
These three subspecifications contain exactly the same information and has
the same shortcomings and limitations as the actual database representation
contained in the hlcl-system. The specification will not be explained fur-
ther, instead the actual predicates used for representing the database will be

1The specification language RSL is described in [Gro93].

8.2 Informal Description 81

explained in the next chapter, and the specification will provide an overview
of all information stored in the database representation.

8.2 Informal Description

In general the database representation is represented as a collection of pred-
icates, in which each predicate represents one class, relationship, function,
table or mapping. This representation takes up quite a lot of space, but it
makes the conceptual model representation easier to understand and modify.
The usage of these predicates will be defined in the following subchapters,
using the conceptual model in figure 8.1 and the database implementation
in figure 8.2 on the following page as reference.

Building
 Type
 buildingTypes

ISA

House

Neighbour

Figure 8.1: Conceptual Model Example

8.2.1 Conceptual Model

Each class in the conceptual model is represented by a unary “class” pred-
icate, which holds the class name as the argument. The general form of a
“class” predicate can be seen below:

class(Classname)

The conceptual model in figure 8.1 would have the following classes de-
fined:

class(building).

class(house).

Notice how the class “residential” is not represented, since this is not a
real class, but a property of the class “building”.

82 Database Representation

Figure 8.2: Database Tables corresponding to figure 8.1

Relations use the 3-ary “relation” predicate, and can be of two different
types. Either relations can be a relation which relates two classes, or it can
be a property assignment to a class, with a given value. In case it is a “real”
relation, the first argument is the first class the relation connects, the second
argument is the name of the relation, and the third argument is the second
class which the relation connects. The structure can be seen below:

relation(Class,Relation,Class)

This is the case for the “neighbour” relation in figure 8.1 on the preced-
ing page, where it would be represented as below:

relation(building,neighbour,building).

The second option is that a relation is a property of the class, which has the
representation seen below:

relation(Class,Property,AllowedValues)

This is the case for the “type” relation in figure 8.1 on the previous page,
where it would be represented as below:

relation(building,type,buildingTypes).

8.2 Informal Description 83

The “buildingTypes” is a list of values which is represented in the map-
ping part of the database model.
Finally we have a special kind of relationships, namely the ISA-structures
that denote inheritance. ISA-structures are represented by the binary “isa”-
predicate: The first argument is the parent class, and the second argument
is a list of the immediate sub-classes.

isa(Class,Classlist).

The ISA-structures in figure 8.1 on page 81 would be represented as:

isa(building,[house]).

It is important to notice that the ISA-structures function as a partial or-
der. When we specify “house”, we do not need to specify the relations
“neighbour” and “type”, since we have specified that “house” is a subclass
of “building”, and “house” has these relations defined. For more informa-
tion about how ISA-structures can be represented, the reader is referred to
appendix A.4.1 on page 124

8.2.2 Database Model

The database model is a description of the actual low-level database. The
main predicate used in the database model is the binary “table” predicate,
which is used to describe the tables of the database. The first argument is
the name of the table, the second argument is a list of the columns contained
in that table.

table(Name,ListOfColumns)

The tables in figure 8.2 on the facing page would be represented as:

table(allBuildingTable,[buildingID,type,owner])

table(allNeighboursTable,

[buildingID1,buildingID2,zipcode])

Furthermore we have a number of functions which can be applied to the
database. The functions are defined with the 3-argument “function” predi-
cate: The first argument is the name of the function, the second argument is
a variable map (A list of variables mapping into attributes needed), and the
third argument is the actual function as it would look in sql. The structure
of the “function” predicate can be seen below

function(Name,VarMap,SQLExpression).

84 Database Representation

As an example, a binary function Zdifference calculating the difference be-
tween two buildings would be defined as:

sqlfunction(zdifferencelargerthan5,[[A,buildingID],

[B,buildingID]],function(zdiff,[(A,buildingID),(B,buildingID)])).

As seen above the zdifference function needs two ’BuildingID’ attributes,
and it translates straighforward into a “zdiff(a,b)” function which should be
made available in sql.

8.2.3 Mapping

The mapping between the Conceptual Model and the Database Model should
be as flexible as possible, so that low-level database specific changes do not
affect the hlcl expressions. The basic idea is that every class and relation
correspond to a table.
To map a class in the conceptual model to a table we use the 4-ary “classmap”
predicate: The first argument is the class name, the second is the name of
the table, the third argument is a condition to the rows which represent the
class and the fourth and last argument is a list of attributes which consti-
tutes the primary key for that class.

classmap(Classname,Tablename,Condition,PrimaryKeyList)

In our the conceptual model in figure 8.1 on page 81 the mapping would
look like the following:

classmap(building,allBuildingTable,[],[buildingID])

In the above mapping the condition argument is an empty list, which means
that all rows in the “AllBuildingsTables” will be selected. This might not
always be the case, i.e. let us imagine that for the subclass “houses”, we
only wanted the rows in the “AllBuildingsTables” where the “buildingStyle”
attribute was equal to ’house’, then the condition argument should be a tu-
ple with the attributes name and the value, as seen below:

classmap(house,allBuildingTable,

[type,house],[buildingID])

The condition criteria can only be either an empty list or a binary tuple,
which limits the condition to be of this primitive kind of selection criteria.
More advanced selection criteria could be added fairly easily, but we have
chosen not to pursue this further for the presented system.

8.2 Informal Description 85

The set of attributes which forms the primary key is needed for comparing
classes. Other keys are not important, i.e. other attributes may also form a
key, but for our usage they do not really matter, since the only key we are
interested in is the one which is used by the classes and relations.
The above mapping allows the class and table to be differently named, and
it furthermore opens up for the possibility that one table can hold more
than one class.

Relations also map into tables, this is specified with the 6-ary “relmap”
predicate. The first 3 arguments are the relation name and its connecting
classes, the fourth argument is the name of the corresponding databasetable.
The last two arguments is the lists of attributes which form the primary key
for each connected class. The structure can be seen below

relmap(Class1,Relation,Class2,Table,

Class1keys,Class2keys)

The lists in the last two arguments are the names of the keys in the re-
lation table. This is because it is not certain that the attributes that form
the key in the class has the same name in the relation table. The expression
below is a good example of how the keys have different names in the relation
and in the class.

relmap(building,neighbour,building,allNeighbourTable,

[buildingID1],[buildingID2])

The “type” relation is not mapped, since this does not correspond to a
table in the database. Instead it corresponds to a specific attribute in the
“building” class, and this is defined by the binary “valuemap” predicate,
which maps the property to an attribute. The first argument is the Class,
the second argument is the relation name in the conceptual model, the third
argument is the value interval, and the final and fourth argument is the
actual column name in the database. The structure can be seen below:

valuemap(Class,Attribute,ValueInterval,ActualAttribute)

In our example we need to define the “type” relation, which should map
to an attribute. The corresponding definition can be seen below

valuemap(building,type,buildingTypes,type)

Furthermore we need to map the allowed value interval, which building
types can be within. This is done with the binary ”type” predicate. The
first argument is the name of the value interval given in the “relation” and

86 Database Representation

“valuemap” definition in the conceptual model, and the second argument is
the list of values which are allowed. The structure can be seen below:

type(ValueInterval,ValueIntervalDefinition)

In the hlcl-system we support 3 types of valueinterval definitions: 1) A
list of allowed values, 2) A string or 3) An integer. Further datatypes could
built in at a later stage. In our case buildingtype uses the list definition:

type(buildingTypes,[residential,commercial,house])

One thing to notice is that there are actually a couple of more attributes
in the database model, such as “zipcode” where we do not define a map.
The reason is that this attribute is not defined in the conceptual model, and
thereby not available in the hlcl-syntax, and it will therefore be ignored
in the hlcl-system. This is a general concept of the hlcl-system: Only
class/relations/properties defined in the conceptual model are available to
the user, but the resulting integrity constraints will work on a database
much larger, with a lot more class/relations/properties defined if needed.
This adds to the flexibility of the database representation.

Wildcards

The final feature of the mapping is addition of wildcards. If one relation
is valid for all classes, then instead of putting a “relation” predicate for all
class combinations, a underscore operator (“ ”) working as wildcard can be
used instead of the classes, ie. as seen below:

relmap(,neighbour, ,allNeighboursTable,[ID1],[ID2])

This requires a bit of caution though, as the user should be careful not
to define any relations twice.

Example 8.2.1

A summary of the database representation of the models in figure 8.1 on
page 81 and 8.2 on page 82 can be seen below:

% Conceptual Model
class(building).

class(house).

relation(building,neighbour,building).

relation(building,type,buildingtypes).

isa(building,[house]).

8.3 Wellformedness 87

% Database Model
table(allBuildingTable,[buildingID,type,Owner])

table(allNeighboursTable,[buildingID1,buildingID2,zipcode])

% Mapping
classmap(building,allBuildingTable,[],[buildingID])

classmap(house,allBuildingTable,[type,house],[buildingID])

valuemap(building,type,buildingtypes,type)

relmap(building,neighbour,building,allNeighboursTable,

[BuildingID1],[BuildingID2])

type(buildingtypes,[residential,commercial,house])

8.3 Wellformedness

There are a number of wellformedness requirements that should hold for the
database representation. The hlcl-system includes a function which checks
that the database specification is wellformed. (The implementation details
can be found in appendix B on page 131). The wellformedness criteria are
listed below:

• All classes defined in the conceptual model should have a mapping
into an existing table.

• All relations defined in the conceptual model should have a mapping
into an existing table.

• The keys specified in the mappings should exist in the table which it
is mapped to.

Furthermore there is a couple of wellformedness requirements which should
also hold, but which cannot be checked automatically. These are listed
below:

• All relations and their inverse relation should map into the same table,
with the corresponding key-attributes switched.

8.4 Shortcomings of Representation

There are a number of shortcomings in our conceptual mode representation.
These are listed below. All of these could be solved, but it would make the
representation more “blurry”, and it would make the overall idea harder to
see in the implementation.

• Classes only have one key, meaning that all relations must use the
same attributes/key for the same class. It is not possible to define

88 Database Representation

the fact that some relations use one key for a class, while others use
another key for the class.

• The conditions criteria in the class mapping is very limited, one can
only chose that an attribute should be a certain value. This could
be expanded to involve combinations of attributes, various arithmic
operations, such that a certain attribute should be bigger or smaller
than a given value or yet another attribute.

• Attribute value intervals are limited, to be either a list, an integer or
a string. This could be expanded to many different types.

Chapter 9

From Extended datalog to
sql

This chapter will explain the translation of Extended datalog to sql, which
consists of two parts: The first section will discuss issues and general prob-
lems with datalog to sql translation, the second part will cover the general
idea behind the translation and will explain by examples how it is done.

9.1 Issues

In general when translating datalog into sql one needs to be aware of two
potential problems: Differences in expressiveness and safety of datalog

and sql: datalog is a more expressive language than sql, i.e. that it is
possible to formulate constraints in datalog which cannot be formulated
in sql. Furthermore it should be possible to evaluate every query in sql

without ending up with an infinite relation. This subset of queries is called
“safe”.

One approach to ensure safety and correct expressiveness is to convert the
datalog into an intermediate form called “Range Form”, which is then con-
verted to sql. This approach is described in [Dec01] and [Dec02]. “Range
Form” is a logical form which only has ∧, ∨, ¬ and ∃ operators. Furthermore
“Range Form” is proven safe, which means that every datalog expression
which can be converted to “Range Form” can be evaluated in sql.
An algorithm for translating datalog into range form can be found in
[GT91]. This algorithm is quite complex, since it is made to modify every
type of datalog expression.

But our translating strategy T generates the same pattern of datalog-
expressions, hence it seems unnecessary to use the intermediate “range
form”. Instead we examine the pattern T generates, and make some cus-

90 From Extended datalog to sql

tomized transformations to the expression, so that it can be translated di-
rectly into sql. In the two following subchapters the issues will be described
and it will be showed informally that our Extended datalog interface is
both safe and non-recursive.

9.1.1 Expressiveness

datalog is a more expressive language than sql, i.e. that it is possible to
formulate constraints in datalog which cannot be formulated in sql. For
example the recursive datalog expression:

Ancestor(X,Y) :- Fatherof(X,Y).

Ancestor(X,Y) :- Ancestor(X,Z),Fatherof(Z,Y).

The above example is recursive, because the second clause contains a ref-
erence to its own definition. These clauses cannot be transformed into sql

statements1.

It is easy to realize that The Extended datalog which we use cannot be
recursive, since it only consists of one single clause returning error. There
is no subpart of the clause which refers to the clause itself in any way. We
can therefore conclude that our Extended datalog interface not more ex-
pressive than sql, and translation between the two should be possible.

9.1.2 Safety

There is an easy way of checking if a datalog expression is safe, which is
explained in [GMUW02]:

“Every variable that appears anywhere in the rule must appear in some non-
negated, relational subgoal” [GMUW02] pp. 467.

Extended datalog is safe because every variable is always declared both a
class and a relation, and at least one of them is not negated. Let us look at
the basic example:

C2 all area must contain building

In Extended datalog this would be represented as seen below:

∀Xarea(X) ∧ ¬∃Y (contain(X, Y) ∧ building(Y))

As we can see both X and Y appear in a non-negated subgoal (actually

1It is actually possible to evaluate recursive queries in sql version 3, but this has not
been implemented by any commercial DBMS systems yet.

9.2 Translation Strategy 91

there are no negated subgoals at all in the expression). For most hlcl-
expressions the first class, and the classes related to it will always be non-
negated, thereby making a safe Extended datalog-expression. The only
sentence types which have a negated related class are constructs using the
‘‘solely’’ keyword, an example can be seen below:

all area must contain solely building

The above hlcl-expression has the Extended datalog-expression seen be-
low:

∀Xarea(X) ∧ ¬∃Y (contain(X, Y) ∧ ¬(lake(Y)))

In the above expression the Y variable is negated in the last class “lake”,
but the relation “contain” has both variables X and Y and is non-negated.
Therefore the Extended datalog-expression is still safe.
In general, looking at the Extended datalog expressions it can be realized
that in order to have an unsafe expression, we would need to have an Ex-
tended datalog-expression on one of the two forms seen below:

∀Xarea(X) ∧ ¬∃Y (¬(contain(X, Y)) ∧ ¬(lake(Y)))
∀X¬(area(X)) ∧ ¬∃Y (¬(contain(X, Y)) ∧ lake(Y))

In the top case, the variable Y are only present in negated subgoals, hence
the expression is unsafe. But the Extended datalog-expression corresponds
to the constraint expressing: “There should exist an entity which is not con-

tained in an area and which is not a building.”. A construct like this can
simply not be made in hlcl. Similarly with the second expression: The Ex-
tended datalog-expression corresponds to the constraint: “Everything but

areas may not contain lakes”, this constraint is simply not possible either to
formulate in hlcl. It is not possible by starting the hlcl expression with
a negated class. This can lead us to conclude that Extended datalog is
a safe subset of datalog, since it is not possible to formulate constraints
hlcl which translates into unsafe datalog.

9.2 Translation Strategy

The general idea is that every class and relation correspond to a table,
which is defined in the conceptual model. The sql expressions are built
up as nested SELECT-FROM-WHERE clauses2. The Extended datalog

is already prepared for the sql translation, and the translation from Ex-

2For a more comprehensive introduction to sql the reader is referred to appendix A.3
on page 121

92 From Extended datalog to sql

tended datalog to sql can be done predicate by predicate. Therefore the
overall strategy is to break the entire Extended datalog expression up, and
translate each predicate by it self. In the following chapters we will look at
how the individual Extended datalog fragments are being translated into
sql.

Classes and Relations

The very first class expression is translated into a simple table lookup, i.e.
the fragment “class(X)...”, would be translated into the following sql:

SELECT *

FROM classtable a

WHERE ...

where “classtable” is the table corresponding to the class. The translator
will introduce labels, which are lowercase single character letters, which will
be used to refer to the class at a later time. In this top example the first class
is allocated the label ’a’. Classexpressions within an expression look a bit
different since they are inside a WHERE-clause already and consequently
need an extra EXISTS statement. I.e. the fragment “...class(X)...” would
be translated into:

EXISTS (SELECT *

FROM classtable b

WHERE ...)

Similarly a relation, i.e. “relation(X,Y)” would be translated into:

EXISTS (SELECT *

FROM relationtable b

WHERE ...)

Where “relationtable” is the table corresponding to the relation. In order
to relate the classes and relations, a condition which set their primary keys
equal is added. Consider the fragment below:

∀Xclass1(X) ∧ class2(X)

This would be translated into the following sql:

SELECT *

FROM class1table a

WHERE EXISTS(

SELECT *

FROM class2table b

WHERE b.key = a.key)

9.2 Translation Strategy 93

It should be noted that the two class expressions are nested, the second
class class2 is translated using the EXISTS keyword in order to nest it in
the WHERE clause. From the Extended datalog-expression we can see
that the classes both use the variable X, hence they should be set equal.
This is done by setting their primary keys equally after the second class-
expression. In the above case only one attribute forms the key. If the key
consisted of three attributes they would all be set equal and conjugated as
seen below:

...

WHERE b.key1 = a.key1

AND b.key2 = a.key2

AND b.key3 = b.key3

Example 9.2.1
Let us look at the translation of a constraint with only classes and relations
as seen below:

C2 all area must contain building

The corresponding sql can be seen below:

SELECT *

FROM areatable a

WHERE NOT (EXISTS(

SELECT *

FROM contain b

WHERE (b.id1 = a.areaID) AND EXISTS(

SELECT *

FROM buildingtable c

WHERE (c.buildingID = b.id2))))

As seen, classes and relations are no longer referred to as their names in
the conceptual model, instead the actual table names in the database model
are used. The sql query follows the structure in the Extended datalog

directly: The tables in sql are used in the same order as they appear in the
Extended datalog. Comparison is done with the set of attributes which
constitutes the primary key.

Attributes

Attribute fragments in sql are much simpler to translate than relations. No
EXISTS-expression is needed in the sql, instead they are translated into a
simple equation. As an example look at the fragment below

∀XClass(X) ∧ attribute(X, eq,′ val′)...

The above Extended datalog fragment would be translated into:

94 From Extended datalog to sql

SELECT *

FROM classtable a

WHERE a.attribute = ’val’

...

Numerical quantified attributes use the ’<=’ and ’>=’ operators directly
available in sql so that an Extended datalog fragment:

∀XClass(X) ∧ attribute(X, ge, 50)...

Would turn into an sql-query which would look like the one seen below:

SELECT *

FROM classtable a

WHERE a.attribute >= 50

...

Example 9.2.2

Let us look at the translation of an constraint example which uses attributes.
Consider the hlcl-expression below:

C4 all building type industrial must beusedby company

In the actual database implementation, “type” is not a relation between the
class “building” and “industrial”, but rather “type” is an attribute of build-
ing with value “industrial” - In Extended datalog this would be expressed
as:

∀Xbuilding(X) ∧ type(X, eq, industrial) ∧
¬∃Y (beusedby(X, Y) ∧ company(Y))

The resulting sql would look like the following:

SELECT *

FROM buildingtable a

WHERE a.type = ’industrial’

AND NOT EXISTS(

SELECT *

FROM beusedbytable b

WHERE b.buildingID = a.buildingID

AND EXISTS(

SELECT *

FROM company c

WHERE c.companyID = b.companyID)))

9.2 Translation Strategy 95

Operators and Negations

In general operators and negations are translated directly into the equiva-
lent operators in sql, which can be seen below:

¬(Exp) → NOT(Exp)
Exp1 ∧ Exp2 → Exp1 AND Exp2

Exp1 ∨ Exp2 → Exp1 OR Exp2

One thing to notice is that not all conjunctions in the Extended datalog-
expression are translated similar, since the conjunction is also used to “glue”
path expressions together. Therefore will some conjunctions be translated
into a simple “AND”, while others will be translated as a condition in the
previous SELECT structure. The situation is best explained by using a ex-
ample. Imagine the hlcl fragment below:

...contain house and contain river

The above would in Predicate Logic look like

...∃X(contain(X, Y) ∧ house(Y))∧∃X(contain(X, Y) ∧ river(Y))

The underlined ∧ should will translated into “AND” in sql. But the two
other conjunctions which are used to “glue” the relation and the class to-
gether, will be translated such that tablelookup corresponding to “house”
will be made inside the “contain” table selection and likewise with “contain”
and “river”. The hlcl-system can tell the two different kinds of conjunction
apart by the usage of the existential quantifiers. The rule is that only con-
junctions between two (possible negated) existential quantifiers should be
into “AND” in sql without being put nested in the previous table lookup.
In order to illustrate this principle take a look at the example below.

Example 9.2.3

To illustrate the above point, let us look at the translation of the following
hlcl-expression:

all area must contain building and contain lake

Which in Extended datalog would have the following expression:

∀Xarea(X) ∧
¬(∃Y (contain(X, Y)∧building(X))∧(∃Y (contain(X, Y)∧lake(X)))

This would have the following sql translation:

96 From Extended datalog to sql

SELECT *

FROM areatable a

WHERE NOT (EXISTS(

SELECT *

FROM containtable b

WHERE b.areaID = a.areaID

AND EXISTS(

SELECT *

FROM buildingtable c

WHERE c.buildingID = b.buildingID))

AND

EXISTS(

SELECT *

FROM containtable b

WHERE b.areaID = a.areaID

AND EXISTS(

SELECT *

FROM laketable c

WHERE c.lakeID = b.lakeID)))

In the sql above we can see how the ”glue”-conjunctions are nested in
the previous ’WHERE’ clause, but the conjunction between ”building” and
”contain” in the hlcl-expression corresponds to simply an ”AND” which is
not nested inside previous ’WHERE’ clause.

Quantifiers

Existential and Universal quantifiers do not result in any sql fragments in
the translation. But they are indirectly used to ensure correct translation,
by defining quantifier scope. As mentioned in the description of operators,
they are used to indicate whether a conjugation is a “real” conjugation or a
“glue”-conjugation.
Numerical Quantifiers on the other hand do affect sql translation, where
they modify the SELECT statement to invoke the COUNT construct in the
following table lookup. Such that a numerical operator are translated as
seen below:

∃=>N Exp → ((EXISTS Exp) => N)
∃=<N Exp → ((EXISTS Exp) =< N)
∃=N Exp → ((EXISTS Exp) = N)

Furthermore it raises a flag, which tells that the next Extended datalog

fragment should not use a “SELECT *” but instead a “SELECT count(*)”
in the scoping. To illustrate the point look at the hlcl fragment seen below:

9.2 Translation Strategy 97

...contain at least 5 house

This would have an Extended datalog-expression which would look like:

...∃=>5Y (contain(X, Y) ∧ house(Y))

The above expression would be translated into the following sql

...

((EXISTS(

SELECT count(*)

FROM contain b

WHERE (b.id1 = a.areaID) AND EXISTS(

SELECT *

FROM housetable c

WHERE c.buildingID = b.id2))) => 5)

As seen the only difference is the outer comparison, and that the first frag-
ment, in the case the lookup in the “contain” table, uses an extra “count(*)”
expression.

Variables

Translating user-defined variables is simply a matter of adding an extra
condition in the table lookup. In general the translation strategy is that on
the first encounter of a user defined variable, nothing extra sql is added.
Instead the variable and class is stored, such that it can be looked up at
a later stage. At the next encounter of the user-defined variable, an extra
condition is added in the ’WHERE’ clause in the lookup. Take a look at the
Extended datalog fragment seen below:

...class(X) ∧ relation(X, A)

Let us imagine that A is a user-defined variable, and that this is not the
first encounter. The translator would at this stage already know that A was
actually linked to the class, labelled a, and would therefore add an extra
condition in the sql translation as seen below:

...EXISTS(SELECT *

FROM classtable b

WHERE EXISTS(SELECT *

FROM relationtable c

WHERE c.key1 = b.key

AND

b.key2 = a.key))

98 From Extended datalog to sql

As seen on the very last line, the ‘‘b.key2 = a.key’’ fragment, ensures
that the A’s are set equal.
Translations of variables used in attributes are done in a similar way, but
instead of comparing the keys, the actual attribute is set to be the value of
each other. So if we have an expression as seen below:

...Class1(Y) ∧Attribute(Y, A)...Class2(X) ∧Attribute(X, A)

And the table corresponding to the class1 was labelled a, and the table
corresponding to class2 was labelled b, then we would simply need to add
the following in sql:

a.attribute = b.attribute

Example 9.2.4

To illustrate the above point, let us look at the translation of an hlcl-
expression using variables:

C11 all area intersectedby road R must

contain building intersectedby road R

Which in Extended datalog would have the following expression:

∀R, Xroad(R) ∧ area(X) ∧ intersectedby(X, R) ∧
¬∃Y (contain(X, Y) ∧ building(X) ∧ intersectedby(X, R)

This would have the following sql translation:

SELECT *

FROM roadtable a

WHERE EXISTS

SELECT *

FROM areatable b

WHERE EXISTS(

SELECT *

FROM intersectedareatable c

WHERE c.roadID = a.roadID

AND c.areaID = b.areaID)

AND NOT EXISTS(

SELECT *

FROM containtable b

WHERE b.areaID = a.areaID

AND EXISTS

SELECT *

FROM buildingtable c

9.2 Translation Strategy 99

WHERE c.buildingID = b.buildingID

AND EXISTS(

SELECT *

FROM intersectedbuildingtable d

WHERE d.buildingID = c.buildingID

AND d.roadID = a.roadID))))

Notice how the very last line: ’’d.roadID = a.roadID’’ ensures that the
two intersecting roads are the same.

Functions

Finally we have the user-defined predicates, which translates directly into
sql functions of the same name. The point is illustrated in the example
seen below:

all area A must function(A)

This would have the following Extended datalog expression:

∀Aarea(A) ∧ ¬∃function(A)

Which would correspond to the sql expression seen below:

SELECT *

FROM areatable a

WHERE NOT function(a.areaattribute)

The function is simply translated into the corresponding sql function, which
takes a specified attribute (areaattribute) from the areatable as argument.
The atttribute specification is done in the database representation.

9.2.1 ISA-structures

Dealing with ISA-structures in sql is straightforward. In most of the situa-
tions the fact that a class is a member of an ISA-structure does not change
the query. But there are special cases, where an extra lookup is needed, this
is when the attribute is not available in the referred class 3. Let us revisit
the example from the attribute section:

∀XClass(X) ∧ attribute(X, eq,′ val′)...

Let us suppose that “class” is actually a child of another class: “super-
class”, and this is actually where the attribute is located. Then the above
Extended datalog fragment would be translated into:

3See also appendix A.4.1 on page 124

100 From Extended datalog to sql

SELECT *

FROM classtable a

WHERE EXISTS(

SELECT *

FROM superclasstable b

WHERE b.key = a.key AND b.attribute = ’val’)

...

As seen translating the attribute results in an extra SELECT-statement,
relating the class to the superclass and then using the superclass to set the
attribute. Since classes in an ISA-structures has the same keys, relating the
“class” and “superclass” can be done by setting the attributes forming their
key to equal.
The general rule is: If the attribute is not present in the class, then we
should browse through its parents to find that attribute. When the parent
which has the attribute is found, the class and the parent should be set equal
and the attribute should be set on the parent. The procedure is the same
for immediate parents or a further related classes.

This approach is similar when dealing with user-defined predicates. One
could imagine a situation as below:

∀XClass(X) ∧ function(X)

Parallel to the above situation we could imagine that the function needed
an attribute from “class”, which was actually located in the “superclass”
of “class”. Then we would have to translate the above Extended datalog

fragment to the sql as seen below:

SELECT *

FROM classtable a

WHERE EXISTS(

SELECT *

FROM superclasstable b

WHERE b.key = a.key AND NOT function(b.areaattribute)))

The approach is similar to the one for attributes, and the same line of ar-
gumentation can be extended to binary predicates.

ISA-structures and relations do not pose any further problems. This is
due to the fact that our mapping between the conceptual model and data-
base schema has been simplified, such that all relations always use the class’
primary key to relate relations. Since all entities in a ISA-structures always
has the primary keys, we do not need to add extra SELECT clause to search
for the attributes, they are always present in all classes.

9.2 Translation Strategy 101

But if the mapping was to be extended, to support that different relations
used different keys in the classes, ISA-structures could still be implemented
using the strategy as sketched above.

Example 9.2.5

The final example in this chapter shows functions and an ISA-structure
being translated:

C11 all residentialArea A must havezipcode(A)

Which in Extended datalog would have the following expression:

∀AresidentialArea(A) ∧ ¬havezipcode(A)

Let us imagine that the havezipcode(A) used an attribute “zipcode” which
is not located in “residentialArea”, but in the superclass “Area”. This would
have the following sql translation:

SELECT *

FROM residentialArea a

WHERE EXISTS(

SELECT *

FROM area b

WHERE b.areaID = a.areaID AND NOT function(b.zipcode)))

This concludes the description of the hlcl-system. In the next chapter
various major implementation design descissions are discussed.

102 From Extended datalog to sql

Chapter 10

Implementation

In this chapter major design decisions and overall ideas regarding the actual
implementation of the hlcl system will be explained. For a more detailed
and code specific explanation of the hlcl-system the reader is referred to
appendix B on page 131.

10.1 prolog and Logic Programming

The hlcl-system is implemented in prolog, a declarative programming
language which consists of sequences of horn-clauses1. prolog is well suited
for recognizing and parsing languages, due to its resolution engine and built-
in functionality such as Definte Clause Grammars (explained below). The
declarative code is inherently high-level, because it focus on the logic of the
computations rather than the ”mechanics” of it. This results in code which
is shorter and simpler to overview, since all code is directly connected to the
algorithms and strategies presented.
The drawbacks is a poorer performance than traditional imperative lan-
guages such as C, and limited opportunity to program user-friendly func-
tionality such as a GUI etc.2.
There exists several prolog implementations, but we have chosen to use
SWI-Prolog version 5.4.2. A free version can be found at http://www.swi-
prolog.org. A more comprehensive introduction to prolog can be found in
[Bra01] and [BBS01].

1Definition of Horn Clauses can be found in [Nil99]
2But this can be done with one of the numerous interfaces between prolog and

Java/C/C++ (i.e. The JPL Package: Found at www.swi-prolog.org/packages/jpl)

104 Implementation

10.2 Definite Clause Grammars

In the translation from hlcl to Predicate Logic, a “Definite Clause Gram-
mar” (DCG) notation is used, which was first described in [PW80] 3. DCG
notation is a shorthand notation for describing grammars. Every DCG has
an equivalent prolog predicate, and there is no magic involved - it is just
“syntactic sugar”, which makes the grammar easier to understand and mod-
ify. The general syntax for a DCG is:

s --> v1,v2...vn.

Which is equivalent of the prolog predicate:

s(P0,P) :- v1(P0,P1),v2(P1,P2),...,vn(Pn-1,P)

A grammar consists of a number of production rules as the one seen above.
Furthermore it is possible to add extra prolog code which follows the
expression in curly braces. One example of this can be seen in the code
snippet below:

class(X,class(Class,X)) --> [Class], {is_class(Class)}.

The prolog code in the curly brackets add an extra condition - namely
that Class should succeed in the “is class” predicate.

Since DCG is just a shorthand notation, it “inherits” the same problems
prolog has. When designing DCG grammars, one should watch out for
left-recursive grammars. Since Prolog is a topdown parser, left recursion
will throw the application in a never ending-loop and crash the system.

10.3 λ-Calculus in prolog

To make the translation between hlcl and Predicate Logic one could choose
to make a “full” parser, which in multiple passes generated a parse tree,
which was then visited during the translation. Since the hlcl syntax is fairly
limited we have chosen to simplify the procedure by not building a parse tree,
but instead building the expression “on the fly”. Translating from hlcl to
datalog¬ without a parse tree is not straightforward, since the hlcl parts
do not appear in the same order as the datalog¬ parts. Therefore we have
the problem that we need to store partly-translated expressions during the
translation.
This is the same reason why the translating strategy T uses λ-calculus. To
solve this in prolog, one approach is to make a special notation for the λ-
operator, this is suggested in [PS87], where they introduce a “ˆ” operator,

3A more comprehensive introduction to DCG’s can be found in [Bra01],[PS87] and
[BWK+02]

10.4 Variables 105

and then program their own β-reduction engine in prolog.
We use another strategy which is explained in [PW80]. This strategy makes
use of the “logical variable”, such that unspecified parts of the translation
are saved as variable, which are passed around in the translation. The
“logical variables” are added as extra arguments in the DCG, which collects
all of them in both a top-down and a bottom-up manner at the same time.
In the sourcecode the variables ’X’,’P’,’P1’ and ’P2’ (where the X variable
represents a variable, and the P variables represent a translated fragment)
are used as the λ variables.

10.4 Variables

To represent variables in the hlcl sentences and in Extended datalog

sentences, we had the choice of using either the prolog system variables
(ungrounded notation, typically having names starting with an underscore,
i.e. “ G123”) or to introduce a special variable notation (ground notation).
We have chosen to introduce a special notation. It has the disadvantage
that prolog’s resolution engine cannot be used - since prolog does not
recognize them as variables. But it makes it much easier to make modifica-
tions made in the intermediate steps, when there are no unbound variables.
Variables that are introduced in the translation use a nested notation, such
as:

v (0)
v (v (0))
. . .

These variables are easy to generate and recognize in prolog. For user-
defined variables a notation seen below is used, since capital letters can not
be used:

var a
var b
. . .

This concludes the major design choises in the hlcl-system. For a more code
near explanation of the hlcl-system the reader is referred to appendix B
on page 131.

106 Implementation

Chapter 11

Future Work

This chapter will contain proposals for further research. The proposals have
been split into two sections; the first section describes various issues and
improvement ideas to the current hlcl-system. The second section describes
novel approaches and usages of the hlcl-system.

11.1 Improvements of Current System

11.1.1 Optimizations of Queries

At this stage of the development the hlcl-system is just a simple compiler,
it translates constraints into correct sql, but not necessarily the most opti-
mal sql. The hlcl-system could be improved to optimize queries on both
the hlcl level and at the sql level. For an example of optimizations on the
hlcl level, take a look at the hlcl expression below:

All area must contain building and contain building

The hlcl system will not recognize that the two conjugated relational paths
on the right-hand side are in fact the same, and it will translate the hlcl

to make two identical lookups. A mechanism1 recognizing repetitions could
be built-in in future hlcl-systems.
Queries could also be optimized at the sql level, an example is already
given in appendix A.4.2 on page 126. In general the hlcl-system does not
exploit the fact that relations or classes could map to the same table in the
database schema. In a future hlcl-system functionality which recognizes
that two classes or relations actually map down into the same table, could
be implemented, thereby saving unnecessary lookups in the database2.

1This mechanism is referred to as: “Common Subexpression Eliminiation” in compiler
theory

2Most of these optimizations would also be recognized by the query optimizer present
in most DBMS, which would make the nescessary optimizations before executing the query

108 Future Work

11.1.2 Expressiveness

The hlcl syntax could be expanded to become more expressive: I.e. it
could be looked into if arithmetic operations could be supported more ele-
gantly than in the current solution where the user has to use user-defined
predicates. In general the only arithmetic expressions supported, are the
one supported by the numerical operators, and only between a fixed num-
ber and a attribute/relation. Allowing expressions as the above would make
hlcl more expressive and thereby usable.

11.1.3 Optimization of Database Representation

The final improvement suggestion is make the database representation more
extensive. A number of shortcomings has already been listed in chapter 8.4
on page 87, and the database representation could be expanded to solve
these problems.

11.2 Other Applications of Current System

11.2.1 As a Basis for Yet Another Interface

The hlcl interface proposed in this report could be used as a basis for an
even higher interface for formulating database constraints. The layer could
be inspired by some of the approaches seen in chapter 5 on page 43.
One approach is to add another textual interface, which on the basis of the
database model came with suggestions “on the fly”, as the user was formu-
lating the constraints in order to help further formulation. Alternatively it
could guide the user through steps, where the user selected a fragment of
the constraint step by step, the same procedure as seen in “Kaleidoscope”
or “sql Forms”3.
Another option is the exploit the fact that hlcl is tightly bonded to the
E/R-model. One could imagine a graphical interface, i.e. the concep-
tual model where the user could compose an hlcl constraint by clicking
on the E/R-model. This could be done either by graphical selection only
(drag’n’drop), or by a multi-modal input mechanism consisting of both tex-
tual and graphical input.

11.2.2 Deducting hlcl Constraints

A novel approach could be to deduct hlcl constraints for an already given
database. A datamining system could be used in order to examine a data-
base with a defined database model. By examining the data-sets in the
database it could try to deduct which hlcl constraints was valid for all or

3See chapter 5 on page 43

11.2 Other Applications of Current System 109

most of the data-sets.
One could then imagine that a database designer which was not completely
sure about the constraints, would take a representative part of his data-sets
and try to deduct which constraints were valid, and then applying these
constraints to the entire database.

11.2.3 Logical Relationships Between Constraints

It could also be interesting to examine the logical relationships between
constraints formulated in hlcl. By figuring out the logical relationships be-
tween hlcl constraints, an hlcl system could compute which constraints
that would be a subset of other constraints, or if two or more constraints
exclude each other. Furthermore the logical relationships might reveal re-
lationships which could be used as rewrite rules, which a user formulating
hlcl constraints could use in order to simplify and clean up a constraint
collection.

110 Future Work

Chapter 12

Conclusion

The aim of the present thesis has been to create a new language for formu-
lating integrity constraints, which are at a higher level than constraints for-
mulated in Predicate Logic. A new High Level Constraint Language called
hlcl has been developed which shortens the gap between constraint speci-
fication and constraint formulation. hlcl has an easy-to-use syntax due to
its resemblance to natural language which also makes hlcl intuitive to read
and understand. The underlying semantic model is based on a well-known
algebraic logic called “Peirce Algebra”, thereby making the language formal,
unambiguous and excellent for constraint specification and formulation.
As a case study a number of constraints from the Geographic Information
Systems domain has been examined, and converted to hlcl. It has been
shown that hlcl is sufficiently expressive to formulate most constraints
present in the GIS domain.

The present thesis also contains a brief discussion of the efforts that have
been made in the integrity constraint formulation field over the last twenty
years, and particular attention has been given to the four most widely used
constraint specification languages. It seems that none of them suits all
our needs at the same time: colan has a syntax close to hlcl, but it is
not as simple and close to natural language as hlcl. Description Logic is
well-defined and can even reason with the defined constraints, but is not
sufficiently expressive for our needs. eer has a well-defined semantic model,
but is too complicated to use to fill the gap between natural language and
Predicate Logic. ocl is probably the most widely used constraint language
currently, but it seems to have been developed as a constraint specification
language, not an actual constraint language, and its underlying semantic
model is ambiguous and unclear. We therefore conclude that it seems there
is a need for a new constraint language like hlcl which is both easy to use
and has a formal semantic model.

112 Conclusion

An hlcl-system has been implemented in prolog, which translates
hlcl into both a sql and a datalog¬ interface. The sql interface can be
executed directly in a target database, revealing any data-sets which breaks
the constraint. The datalog¬ interface gives an easy-to-read alternative to
the sql and can be used as a basis for translation into other query languages.
The hlcl system has been documented and tested with constraints from the
GIS domain. A formal translation specification of how hlcl is translated
into datalog¬ and sql has been provided, such that further developments
of the hlcl-system and syntax are possible.

In order to translate the hlcl constraints the hlcl-system needs ac-
cess to a database representation specification. This specification has been
partitioned into three separate specifications: A specification of the Con-
ceptual Model, a specification of the Database Schema and a specification
of the mapping between the two. This allows the conceptual model and
thereby the hlcl constraints to stay the same, even if the underlying data-
base design is modified. Hence database schema design changes are readily
accommodated by recompilation of the constraints.

Furthermore directions for future work are indicated in the present re-
port. These spans from extensions of the current system, such as optimiza-
tion of translated sql queries, a wider database representation or extending
the hlcl syntax with new constructs, etc, to novel usages of hlcl. hlcl

might be used as basis for yet another interface, or as a language in a data-
mining process.

It could also be interesting to see hlcl applied to other domains than
GIS, i.e. one could imagine hlcl applied to the so-called “business rules”,
which can be viewed as “constraints for business processes”. hlcl might
help economists and logistic personnel formulate the rules and thereby be
used to optimize business procedures.

The work carried out in the present thesis has resulted in two articles
which are planned to be published later this year, namely [NJ05] which
discusses the formal aspects of the hlcl and its translation into sql and
[Chr05] which discusses the issues related to specificating geographic data.

Bibliography

[AG97] Nabil R. Adam and Aryya Gangopadhyay. A form-based nat-
ural language front-end to a cim database. IEEE Transactions
on Knowledge and Data Engineering, 9(2):238–250, 1997.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations
of Databases. Addison-Wesley, 1 edition, 1995.

[BBS94] C. Brink, K. Britz, and R. A. Schmidt. Peirce algebras. Formal
Aspects of Computing, 6(3):339–358, 1994.

[BBS01] Patrick Blackburn, Johan Bos, and Kristina Striegnitz. Learn
prolog now!, 2001. Available online at: http://www.coli.uni-
sb.de/kris/learn-prolog-now.

[Ben86] Johan Van Benthem. Essays in Logical Semantics. Reidel Publ.
Co., 1986.

[BG95] N. Bassiliades and P. M. D. Gray. Colan: a functional con-
straint language and its implementation. Data Knowl. Eng.,
14(3):203–249, 1995.

[BKS02] Bernhard Beckert, Uwe Keller, and Peter H. Schmitt. Translat-
ing the Object Constraint Language into first-order predicate
logic. In Proceedings, VERIFY, Workshop at Federated Logic
Conferences (FLoC), Copenhagen, Denmark, 2002.

[BMNPS02] Franz Baader, Deborah McGuinness, Danielle Nardi, and Pe-
ter F. Patel-Schneider. The Description Logic Handbook: The-
ory, Implementation and Applications. Cambridge University
Press, 2002.

[Bor96] Alexander Borgida. On the relative expressiveness of descrip-
tion logics and predicate logics. Artificial Intelligence, 82(1-
2):353–367, 1996.

[Bra01] Ivan Bratko. Prolog, Programming for Artificial Intelligence.
Addison Wesley, 2001.

114 BIBLIOGRAPHY

[BS94] Thomas Balstrøm and Ole Jacobi Esben Munk Sørensen, edi-
tors. GIS i Danmark. Teknisk Forlag, 1 edition, 1994.

[BWK+02] Aljoscha Burchardt, Stephan Walter, Alexander Koller,
Michael Kohlhase, Patrick Blackburn, and Johan
Bos. Computational Semantics. MiLCA, Sarbrucken,
2002. Available online at: http://www.coli.uni-
sb.de/cl/projects/milca/courses/comsem/.

[CERE90] Bogdan D. Czejdo, Ramez Elmasri, Marek Rusinkiewicz, and
David W. Embley. A graphical data manipulation language
for an extended entity-relationship model. IEEE Computer,
23(3):26–36, 1990.

[Cha90] Sang K. Cha. Kaleidoscope: a cooperative menu-guided query
interface (sql version). In Proceedings of the sixth conference on
Artificial intelligence applications, pages 304–310. IEEE Press,
1990.

[Chr04] Jesper Vinther Christensen. Specifying constraints for geo-
graphic information. -, July 2004.

[Chr05] Jesper Vinther Christensen. Creating and Maintaining distrib-
uted GeoObjects in Loosely Coupled Systems. PhD thesis, Tech-
nical University of Denmark, 2005. Forthcoming.

[CWD00] Miro Casanova, Thomas Wallet, and Maja D’Hondt. Ensur-
ing quality of geographic data with UML and OCL. In Andy
Evans, Stuart Kent, and Bran Selic, editors, UML 2000 - The
Unified Modeling Language. Advancing the Standard. Third In-
ternational Conference, York, UK, October 2000, Proceedings,
volume 1939 of LNCS, pages 225–239. Springer, 2000.

[Dec01] Hendrik Decker. Soundcheck for sql. In Proceedings of the Third
International Symposium on Practical Aspects of Declarative
Languages, pages 214–228. Springer-Verlag, 2001.

[Dec02] Hendrik Decker. Translating advanced integrity checking tech-
nology to SQL, pages 203–249. Idea Group Publishing, 2002.

[DHL01] Birgit Demuth, Heinrich Hussmann, and Sten Loecher. OCL
as a specification language for business rules in database ap-
plications. In Martin Gogolla and Cris Kobryn, editors, UML
2001 - The Unified Modeling Language. Modeling Languages,
Concepts, and Tools. 4th International Conference, Toronto,
Canada, October 2001, Proceedings, volume 2185 of LNCS,
pages 104–117. Springer, 2001.

BIBLIOGRAPHY 115

[EG96] Suzanne M. Embury and Peter M. D. Gray. Compiling a declar-
ative high-level language for semantic integrity constraints. In
Proceedings of the Sixth IFIP TC-2 Working Conference on
Data Semantics, pages 188–226. Chapman & Hall, Ltd., 1996.

[EW81] Ramez Elmasri and Gio Wiederhold. Gordas: A formal high-
level query language for the entity-relationship model. In Pe-
ter P. Chen, editor, Entity-Relationship Approach to Infor-
mation Modeling and Analysis, Proceedings of the Second In-
ternational Conference on the Entity-Relationship Approach
(ER’81), Washington, DC, USA, October 12-14, 1981, pages
49–72. North-Holland, 1981.

[GEHK99] Peter M. D. Gray, Suzanne M. Embury, Kit Y. Hui, and Gra-
ham J. L. Kemp. The evolving role of constraints in the func-
tional data model. J. Intell. Inf. Syst., 12(2-3):113–137, 1999.

[GH91] Martin Gogolla and Uwe Hohenstein. Towards a semantic view
of an extended entity-relationship model. ACM Trans. Data-
base Syst., 16(3):369–416, 1991.

[GHP01] Peter M. D. Gray, Kit Y. Hui, and Alun Preece. An expressive
constraint language for semantic web applications. E-business
and the intelligent Web: Papers from the IJCAI-01 Workshop,
pages 46–53, 2001.

[GMUW02] Hector Garcia-Molina, Jeffrey D. Ullman, and Jenniger
Widom. Database Systems, The complete book. Pearson
Prentince Hall, international edition, 2002.

[GR98] Martin Gogolla and Mark Richters. On constraints and queries
in UML. In Martin Schader and Axel Korthaus, editors, The
Unified Modeling Language – Technical Aspects and Applica-
tions, pages 109–121. Physica-Verlag, Heidelberg, 1998.

[Gro] Object Management Group. Uml 2.0 ocl specification.
Available at online at http://www.omg.org/technology/ doc-
uments/modeling spec catalog.htm#UML.

[Gro93] The RAISE Language Group. The RAISE specification lan-
guage. Prentice-Hall, Inc., 1993.

[GT91] Allen Van Gelder and Rodney W. Topor. Safety and translation
of relational calculus. ACM Trans. Database Syst., 16(2):235–
278, 1991.

116 BIBLIOGRAPHY

[JQ92] H. V. Jagadish and Xiaolei Qian. Integrity maintenance in
object-oriented databases. In Proceedings of the 18th Interna-
tional Conference on Very Large Data Bases, pages 469–480.
Morgan Kaufmann Publishers Inc., 1992.

[Kin04] Jeffrey C. King. Anaphora. In Edward N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. -, Spring 2004.

[KZ98] Manuel Kolp and Estaban Zimanyi. Prolog-based algorithms
for database design. In Proceedings of the 6th International
Conference on Practical Applications of Prolog (PAP’98), 1998.

[MR83] Victor M. Markowitz and Yoav Raz. Errol: An entity-
relationship, role oriented, query language. In Carl G. Davis,
Sushil Jajodia, Peter A. Ng, and Raymond T. Yeh, editors,
Proceedings of the 3rd Int. Conf. on Entity-Relationship Ap-
proach (ER’83), pages 329–345. North-Holland, 1983.

[Nil80] Nils J. Nilsson. Principles of artificial intelligence. Tioga Pub-
lishing co., 1980.

[Nil99] Jørgen Fischer Nilsson. Data Logic - A gentle Intoduction to
Logical Languages. Department of Information Technology,
1999.

[NJ05] Jørgen Fischer Nilsson and Mads Johnsen. A high level logico-
algebraic constraint checking language compiling into database
queries. Forthcomming, 2005.

[Ora02] Oracle. Oracle spatial, user guide and reference, March 2002.
-.

[PS87] Fernando C.N. Pereira and Stuart M. Shieber. Prolog and
natural-language analysis. CSLI, 1987.

[PW80] Fernando Pereira and David Warren. Definite clause grammars
for language analysis—a survey of the formalism and a compar-
ison to augmented transition networks. Artificial Intelligence,
13:231–278, 1980.

[Red93] Swarup Reddi. Integrity constraint enforcement in the func-
tional database language pfl. In Advances in Databases, 11th
British National Conference on Databases, BNCOD 11, vol-
ume 696 of Lecture Notes in Computer Science, pages 238–257.
Springer, 1993.

[Roe85] Wolfgang Roesner. Despath: An er manipulation language.
In Peter P. Chen, editor, Entity-Relationship Approach: The

BIBLIOGRAPHY 117

Use of ER Concept in Knowledge Representation, Proceedings
of the Fourth International Conference on Entity-Relationship
Approach, Chicago, Illinois, USA, 29-30 October 1985, pages
72–81. IEEE Computer Society and North-Holland, 1985.

[SC01] National Survery and Copenhagen Cadastre. Top10dk specifi-
cation, version 3.2.0, May 2001. In danish.

[SK] K. Slonneger and B. L. Kurtz. Formal semantics
of programming languages, - -. Available online:
http://www.cs.uiowa.edu/∼slonnegr/plf/Book/.

[SK84] Allan Shepherd and Larry Kerschberg. Prism: a knowledge
based system for semantic integrity specification and enforce-
ment in database systems. SIGMOD Rec., 14(2):307–315, 1984.

[Urb89] Susan Darling Urban. Alice: An assertion language for integrity
constraint expression. In Proceedings of Computer Software and
Applications Conference, pages 292–299. IEEE, 1989.

[Wik05a] Wikipedia. Lambda calculus. In , editor, Wikipedia. -, 2005.

[Wik05b] Wikipedia. Sql. In , editor, Wikipedia. -, 2005.

118 BIBLIOGRAPHY

Appendix A

Concepts Explained

A.1 Constraints in the E/R-model

[GMUW02] suggests E/R diagram notations which expresses constraints.
These graphical notations are not supported nor modelled in the conceptual
model which the hlcl-system use. Instead these constraints should be for-
mulated in hlcl rather on the E/R diagram it self. In the following it will
be shown that all of these graphical constraints can be expressed easily in
hlcl.
The diagram labelled A in figure A.1 shows a so-called “multiplicity” con-

area
 contain
 building

area
 contain
 building
>=5

area
 contain
 building

A

B

C

Figure A.1: E/R Diagram Constraint Examples

straint on the “contain” relation. The shown constraint is a “many-one”
constraint, which constrain each area to be related through “contain” to at
least one building. This can also be formulated in hlcl as seen below:

120 Concepts Explained

A All area must contain building

The diagram labelled B in figure A.1 on the preceding page imposes the
same kind of constraint on the relation, but instead of containing at least
one, the “>= 5” expresses that each area should contain at least 5 buildings.
This could also be expressed in hlcl as seen below:

B All area must contain at least 5 building

Finally we have the diagram labelled C in A.1 on the previous page. The
rounded arrowhead expresses referential integrity, which is similar to mul-
tiplicity constraints, yet more restrictive. The constraint expresses that the
relation should be a “many-one”, and furthermore that there should be ex-
actly one building related to every area. This can also be expressed in hlcl

as seen below:

C All area must contain exactly 1 building

We can conclude that the constraints which [GMUW02] suggests could be
put on E/R-diagram, could in fact also be expressed in hlcl. Therefore do
the conceptual model used in the hlcl-system not support these graphical
constraints, but instead expect the user to formulate them in hlcl.

A.2 Anaphora and “Donkey-sentences”

“Anaphora” is a certain phenomenon in natural language, which [Kin04] has
a good definition of seen below:

“Anaphora is sometimes characterized as the phenomena whereby the inter-
pretation of an occurrence of one expression depends on the interpretation
of an occurrence of another or whereby an occurrence of an expression has
its referent supplied by an occurrence of some other expression in the same
or another sentence.”[Kin04]

Basically anaphoric phenomena are hard to translate because the meaning
of the sentence depends on words located multiple places in the sentence.
One of the famous anaphoric sentences example is the so-called “donkey
sentence”, which describes a common problem with quantifier scoping in
anaphora. The sentence can be seen below:

“Every farmer that owns a donkey beats it”

Translating this into hlcl and Predicate Logic seems straightforward, the
translation can be seen below:

A.3 sql 121

all farmer own donkey must beat donkey

∀xfarmer(x) ∧ ∃y(donkey(y) ∧ own(x, y))→ ∃y(donkey(y) ∧ beat(x, y))

But as we can see above, the hlcl and Predicate Logic expression does not
capture our intended meaning. The above expressions fail to capture the fact
that it is the same donkey which is owned and beaten, which the anaphoric
“it” in the sentence describes. In order to express this relationship we need
to introduce variables in hlcl in were the expression then would be:

all farmer own donkey D must beat donkey D

This would be translated into the Predicate Logic expression seen below:

∀xfarmer(x) ∧ ∃D(donkey(D) ∧ own(x, D))→ beat(x, D)

But it can be seen that the scoping of the D variable is wrong, the scope
should extend to reach the D in beat(x,D) predicate. The correct result is
reached by extending the scope of the D quantifier, thereby converting it to
a universal quantifier as seen below:

∀x, Dfarmer(x) ∧ donkey(D) ∧ own(x, D)→ beat(x, D)

We can conclude that when we introduce variables in hlcl we also introduce
anaphoric constructs with the variables. As a result user-defined variable
names should be globally universally quantified instead of locally existen-
tially quantified. Therefore in the hlcl system all userdefined variables are
automatically converted to global universal variables, thereby solving the
anaphoric issues, and making hlcl more expressive. A further introduction
to ”Donkey Sentences” can be found in [Ben86].

A.3 sql

The target language for hlcl translation is sql. sql is an acronym for
“Structured Query Language”, pronounced “Sequel” and is the de facto
standard query language for relational database systems today. It was orig-
inally developed by IBM, and it exists in a number of versions: SQL (1987),
SQL2 (1992) and SQL3 (1999). Different DBMS vendors implement differ-
ent parts of the versions, although most commercial DBMS support SQL2
fully, and some even extend it with their own functionality. However the core
syntax remains the same across DBMS’s and platforms. sql is an abstrac-
tion over the database, where the user is relieved from algorithmic details.
From the user perspective all data are stored in tables, where each data set
is represented by a row in the table. The basic structure for retrieving data
is the “SELECT-FROM-WHERE” construct which can be seen below:

122 Concepts Explained

SELECT [Columns, * = All columns in the table]

FROM [Tables]

WHERE [Condition]

These constructs can be nested so that another SELECT clause can begin
in the WHERE clause, as seen below:

SELECT [Columns, * = All columns in the table]

FROM [Tables]

WHERE EXISTS(

SELECT [Yet Another Column]

FROM [Yet Another Table]

WHERE [Yet Another Condition]

Conditions are used to relate columns, i.e. a condition which requires column
to have the same value as another column would be “column = anothercol-
umn”. In general the operators in sql are straight forward, all the common
arithmetic comparisons such as ’=’,’<’ and ’>’ are available, and so are
the conjunction/disjunction/negation (AND/OR/NOT) operators and the
existential quantifier operator (EXISTS). For a more comprehensive intro-
duction to sql the reader is referred to [Wik05b, GMUW02].

A.3.1 Spatial Data and sql

In the following chapter it is described how the actual production database
at KMS is built up. KMS uses Oracle DBMS version 9.2.0 with the Spa-
tial Package installed. The Spatial Package contains functions for querying
topological data, which are the classes and relations seen in figure A.2 on
the facing page and A.3 on page 124. These tables are taken straight from
the the documentation for Oracle Spatial which can be found in [Ora02].
In order to express constraints using the topological properties such as:
“touch”, “intersect” etc, we need to make use of the “SDO RELATE” spa-
tial function in Oracle sql. In general “SDO RELATE” has a form as seen
below:

boolean::= SDO_RELATE <geometry>,<geometry>,

’MASK = <mask>, QUERYTYPE = <querytype>’) = <bool>;

Where <geometry> are geometry columns, and the mask is a combination
of the topological operators given in table A.1 on page 130. In order to
illustrate its usage look at the example below:

C2 all area must contain building

The actual sql needed for the spatial database can be seen below:

A.3 sql 123

Figure A.2: Topological Relations

SELECT *

FROM Area, Building

WHERE

SDO_RELATE(Area.geom, Building.geom,

’mask=INSIDE+COVEREDBY querytype=WINDOW’) = ’FALSE’;

“SDO RELATE” is not the only function the spatial database has: Another
feature of spatial databases are to filter queries, so that you can specify
a geographic area in which you want to search. This can limit the query
evaluation time. But it is beyond the scope of this report to look into
performance issues, and also it should be fairly simple for a system to add
these primary filters. We have chosen not to implement these functions,
instead we adopt the view that these functions should be computed in a
view, which is treated just as tables in sql. For an explanation of why we
do not translate into functions please see appendix A.4.3 on page 127.

124 Concepts Explained

Figure A.3: Topological Classes

A.4 Problematic Representations

In this chapter the discussion of representing the database model started
in chapter 8 on page 79 will be continued. In particular we will look at
three special cases, namely representing ISA-structures, Weak Entity Sets
and Computed Relations.

A.4.1 ISA-structures

Introducing ISA-structures make the translation into sql a bit more com-
plicated. ISA-structures open up for the possibility of that an attribute is
placed at a parent instead at the child, yet the child still refers to the at-
tribute as was attribute its own. How the ISA-structures are treated depends
on the representation of them in the database tables. [GMUW02] describes
3 different ways of implementing ISA-structures in relational schema:

1. Using NULL values

2. Treating entities as objects belonging to a single class

3. Following the E/R viewpoint

The following subchapters will contain a walk through of each of these cases,
using figure A.4 as the a basis example hierarchy.

A.4 Problematic Representations 125

C

0

ISA

C

2

ISA

C

3

R

0

C

1

Figure A.4: An example ISA-structure

Using NULL Values

The first method of implementing ISA-structures in databases, is to use one
common table for all the classes in the ISA-structure. This results in all
attributes being available for all entities. If an entity does not have a value
for an attribute, the value is simply set to NULL, hence the name of the
method. In the case of the diagram in figure A.4, classes c0, c2 and 3 would
use one common table.
If one chooses to implement ISA-structures by the above method no extra
work for the hlcl-system is required, since all attributes relevant for the
class is directly available in their own table, no extra sql lookups are needed.

Treating the entities as objects belonging to a single class

Another method of implementing ISA-structures is to create a table for each
subtree in the ISA-structure. This means that in the case of figure A.4 we
would create a separate table for c0, c2 and c3 which would each contain all
relevant entities. Every class would have their parents attributes and the
attributes specific for that class. Yet again, since all attributes relevant for
the class is directly available in their own table, no extra sql lookups are
needed.

Following the E/R viewpoint

The final method of implementing ISA-structures is by “following the E/R
viewpoint”. Following the E/R Viewpoint means that each entity set in the
E/R-diagram, should map into its own table, only having the primary key
and the attributes specific for that class. This is the only problematic rep-
resentation of ISA-structures. The solution is already given in chapter 9.2.1
on page 99: An extra SELECT-clause is added, selecting the parent which
has the attribute in its table. By relating the class and its parent, and by
setting the parents attribute to the given value, we have solved the problem
of a child referring to an attribute which its parent have.

126 Concepts Explained

A.4.2 Mapping Weak Entity Sets

Weak entity sets are entity sets whose key is composed of attributes which
belong to another entity set. In the most extreme case weak entity sets do
not have any attributes of their own. Take a look at figure A.5, which shows a
fragment of an E/R-diagram with weak entity sets. Imagine that the classes
“student”,“course” and “grade” are all connected to other classes not shown
in the E/R-diagram fragment. The basic problem is that we normally have a

StudentID
 with
 Student

Course

taking

University

EnrolledIn

Grade
with

Figure A.5: A Conceptual Model Fragment having Weak Entity Sets

table for each class and relation in the conceptual model, but in weak entity
sets there are no tables for the supporting relations: “with” and “in”. The
Exam entity is basically just a collection of a “studentid”, a “courseid” and
a “grade”. [GMUW02] suggests that these should be modelled as one single
table, which means the E/R-diagram would have the following database
description:

table(examtable,[studentid,courseid,grade])

On the other hand we would like to have a conceptual model representation
which corresponds exactly to the diagram notation seen in figure A.5. I.e.
as the one seen below:

class(exam)

...

relation(exam,in,course)

relation(exam,with,grade)

...

So the challenge is to make a mapping which can map all the entities in the
conceptual model to single table which exists in the database schema. There

A.4 Problematic Representations 127

are a number of solutions to this problem: In the current hlcl-system it is
required that a table as seen above should have a key, a unique attribute
identifying each exam, i.e. “examid”. This key would allow us to map the
supporting relations down into the table as seen below:

classmap(exam,examtable,[],[examid]).

relmap(student,taken,exam,[studentid],[examid]).

relmap(exam,with,grade,[examid],[grade]).

...

But even with the mapping above, the corresponding sql would be far from
optimal. Constraints involving the exam would make multiple lookups in
the exam table, because the hlcl system does not realize the relations map
into the same table. A similar approach could be to map the supporting
relations as if they were attributes, but the hlcl-system see expressions as
these as wellformed, because it does not allow paths made from attributes.

The preferred solution is to introduce yet another mapping predicate “weakmap”,
which can map weak entity sets in a table:

weakmap(student,taken,exam,[studentid],[studentid,courseid,grade])

...

Translating weak entity sets in sql do not pose any major problems. It is
simply a matter of that the hlcl should be aware that certain classes are
weak entity sets. An extra predicate as seen above, would give that informa-
tion and allow the hlcl system to translate these correctly. Unfortunately
time did not allow us to exploit this issue further, but it could be designed
in future hlcl-systems.

A.4.3 Computed Relations

As mentioned in appendix A.3.1 on page 122 some relations in the GIS do-
main are not actually tables in the database, but in fact computed relations
/ functions.
In the current hlcl system it is required that all relations in the E/R-model
should correspond to a table, or an attribute in a table. So in order to rep-
resent computed functions as relations, the hlcl requires that a view made
from the computed function, which in sql is treated just as tables.
But another option would actually be to make a special mapping for com-
puted relations in the database model. We have already defined functions in
the database description, for the user-defined predicates. Similarly we could
represent the topological functions in the same predicate, as seen below:

function(contain,[[a,buildingID],[b,buildingID]],

sdorelate(a,b)).

128 Concepts Explained

Then we could introduce an extra 4-ary predicate “relfuncmap”, which
would map the relation to a sql function defined in the database repre-
sentation. Then we could imagine that the relation “contain” would have a
definition as seen below:

relfuncmap(Area,Contain,Building,contain)

So from the representative point of view, functions could easily be added
in the database representation. But it seems it is not possible from the
sql point of view. In A.3.1 on page 122 we have seen that an equivalent
sentence exists using a function instead of a table for the simplest cases of
hlcl sentences. But let us look at the more advanced sentence seen below:

all area must contain solely building

This would result in the following Predicate Logic expression:

∀xarea(x) ∧ ¬∃y(contain(x, y) ∧ ¬building(y))

This should have a sql structure as seen below:

SELECT *

FROM area a

WHERE NOT

contain(a,X)

AND NOT(

SELECT *

FROM building

WHERE b.id != X)

The structure seen above is not allowed in sql. The problem is the variable
’X’ cannot “look ahead”. It is not specified what ’X’ should be, instead
the only thing we specify is that it should not be buildings, the query is
“unsafe”. It might be possible to construct this query by using built-in
variable functionality in sql somehow. But it is not trivial and it has not
been pursued further in this thesis.

A.5 λ-Calculus

The translation strategy in chapter 6 on page 53 uses a notation called λ-
calculus. A λ-expression can be seen as a single argument function which
contains 2 parts: The first part is the actual function, which consists of a λ,
a variable and the function expression, and the second part is the function
argument. The syntax can be seen below:

A.6 Skolem Functions 129

(λ〈variable〉.〈function〉)(〈value〉)

As an example look at the λ-expression below:

(λx.x+1)(3)

The example above is similar to writing “f(x) = x+1” and “x = 3”. The
above λ-expression can be solved by using β-reduction. In β-reduction the
variable is substituted by the argument, thereby reducing the example to:

3+1

Which is 3 + 1 = 4. β-reduction left associative and can be continually
applied. Another important rule states that the naming of the variables in a
λ-expression is unimportant, i.e. (λx.x+1)(3) = (λy.y+1)(3). The renaming
of variables are done by α-reduction. These two rules combined are referred
to as λ-reduction and this is the rule which will be used throughout this
report. A more comprehensive introduction to λ-calculus can be found in
[Wik05a, PS87].

A.6 Skolem Functions

For removing existential quantifiers [Nil80] uses a method in which one uses
“skolem”-functions. The idea is that all existentially quantified variables
can be replaced by a function. Let us imagine we have a Predicate Logic ex-
pression with an existentially quantified variable “V”. This variable must be
dependent on all other variables which are in the scope of “V”, and nothing
else. This means we can substitute “V”, with a function taking the other
variables as input and returning the new variable as output. This function
called a skolem-function and is left unspecified. Let us look at an example
seen below:

∀X∃Y contain(X, Y)

A skolem function would be introduced where Y = f1(X), so that the ex-
pression is equivalent of the expression seen below:

∀Xcontain(X, f1(X))

We have chosen not to use this approach, since this would move the datalog¬

expression out of First Order Logic. Instead we use the method described
in chapter 7.3 on page 74

130 Concepts Explained

DISJOINT The boundaries and interiors do not
intersect.

TOUCH The boundaries intersect but the in-
teriors do not intersect.

OVERLAPBDYDISJOINT The interior of one object intersects
boundary and interior of other ob-
ject, but two boundaries do not in-
tersect (example: a line originates
outside a polygon and ends inside
the polygon)

OVERLAPBDYINTERSECT The boundaries and interiors of the
two objects intersect

EQUAL The two objects have the same
boundary and interior

CONTAINS The interior and boundary of one
object is completely contained in the
interior of other object

COVERS The interior of one object is com-
pletely contained in interior of other
object and their boundaries inter-
sect

INSIDE The opposite of CONTAINS. A IN-
SIDE B implies B CONTAINS A.

COVEREDBY The opposite of COVERS. A COV-
EREDBY B implies B COVERS A.

ANYINTERACT The objects are non-disjoint

Table A.1: The topological operators in Oracle Spatial

Appendix B

Detailed Implementation

This chapter will contain the specific implementation details. This is meant
as a very code near explanation, it does therefore not elaborate on the gen-
eral ideas. For major design decisions the reader is referred to chapter 10
on page 103. The actual source code can be seen in appendix E on page 191.

The general approach to implementing the hlcl-system is the divide-and-
conquer method, this leads to a very modular application with very strict
interfaces, where sub-parts of the application functions independently and
can be understood separately.
We have tried to reflect this in the source code documentation, where each
sub-part of the application is described in its own chapter, thereby giving
the reader a possibility to understand the application bottom-up.
The main hlcl-system code is presented in in appendix B.1 on page 133
to B.7 on page 143. A number of predicates which “pretty print” the hlcl

expression both to the console, and in LATEX are explained in Appendix B.8.1
on page 144. Furthermore there are a number of predicates which automates
tests which are described in Appendix B.8.2 on page 144.

B.0.1 Notation

To help getting an overview of the code, each subpart of the application uses
a graphic notation as seen in figure B.1 on the following page. The notation
consists of a frame which has the subpart name, and a series of boxes contain-
ing the major predicates used in that subpart. These boxes should be viewed
in order: The topmost predicate is the main predicate, any boxes which
are beneath and left indented are predicates called by the top-predicate.
That means that in figure B.1 on the next page “main predicate” is the
main application, which calls “sub predicate1” and “sub predicate2”, where
“sub predicate2” calls “sub sub predicate”. In order to give the reader a
better overview the predicate list is not exhaustive; it only lists major pred-
icates and leaves auxiliary predicates out.

132 Detailed Implementation

Application part label

sub_predicate1(Arg)

sub_predicate2(Arg)

main_predicate(Arguments)

sub_sub_predicate(Arg)

Figure B.1: Notation

B.0.2 Coding Convention

In order for the prolog code to be as easy to read and maintain as possible,
the code conforms to the code guidelines given below:

• Every predicate name consists of lower-case letters and underscore ()
as a separator, i.e.: “fix scoping”.

• Every variable name starts with upper-case letters and uses no spacing,
i.e.: “VarMap”.

• Arguments in predicates appear in the following order: First input
arguments, then any internally used arguments, and finally output
arguments.

• Usage of the SWI-Prolog built-in predicates is kept to a minimum. The
ones that are used are the typical list operations such as: member/2,
append/3, etc.

• Every predicate definition will be preceded by a comment, which states
the arguments preceeded by + for input, - for output, and ? for both1.
The names of these arguments follow a type structure which can be
seen in table B.1 on the facing page.

1In this chapter we will use the term “input” for variables which should be initiated
before the predicate is applied, and “output” for variables which are initiated as the
predicate succeeds.

B.1 Overview - hlcl to sql/datalog¬ 133

B.0.3 Interfaces

A list of the most commonly used interfaces / datatypes can be seen in
table B.1. All interfaces except the input hlcl is in a term-notation, in-
stead of the direct notation. For instance is conjugation represented as
“and(arg1,arge2)” rather than the straightforward infix notation: “arg1
and arg2”, similarly with classes which are represented as “class(area,v(0))”
rather than “area(v(0))”. This is due to the fact that terms are easier to
handle in prolog, and we can avoid using the “..=” operator which is po-
tentially hazardous. Instead I/O predicates have been implemented which,
at the final stage, can convert interfaces from term-notation to their correct
straightforward notation.
Another important datatype are the “ClassVarMap” and “ClassLabelMap”.

Name Type Example

Hexp hlcl Expression [all,area,must,contain,building]

Pexp Predicate Logic Expression all(v(0),imp(class(area,v(0)),...

Sexp sql Expression selectstat(*,area,and(equals(area....

Dexp datalog¬ Expression [leftimp(function...],[...],...

Class Class Expression class(area,v(0))

Rel Relation Expression relation(contains,v(0),v(v(0))))

Var Variable Expression v(v(v(0)))

VarClassMap Variable Class Map [[class,area,v(0)],[attribute,type,var a]]

VarLabelMap Variable Label Map [[v(0),class(area,v(0)),a],
[var a,relation(contain,v(0),var a),c]]

CountMap Variable Count Map [[2,v(0)],[4,var a]]

...List List of one of the above i.e. VarList: [v(0),var a]

Table B.1: Naming Convention of Interfaces in Documentation

“ClassVarMap” links a variable to a class or an attribute and is used in the
hlcl to Predicate Logic expression translation and wellformedness check-
ing. “ClassLabelMap” links a variable to a Class or a Relation and a label,
and is used in Extended datalog to sql translation. Both maps consist
of a list with 3 dimensional tuples. Therefore the two maps shares various
lookup and modification predicates which are described in appendix B.9 on
page 144.

B.1 Overview - hlcl to sql/datalog¬

The hlcl system consists of one top-predicate: “hlcl to sqldat”, which takes
an hlcl expression on a list form and returns both datalog and sql

versions of that expression. If the hlcl expression is not wellformed the
“hlcl to sqldat” will not succeed, thereby returning no output. Translating

134 Detailed Implementation

the hlcl expression is a five step process which consists of the following
subpredicates:

hlcl to pred Transforms the hlcl expression into Predicate Logic. This
predicate is explained in appendix: B.2.

check wellformedness Checks that the hlcl expression is valid. This
predicate is explained in appendix: B.3.

perform intermediate steps Transforms the well-formed Predicate Logic
expression to Extended datalog. This predicate is explained in ap-
pendix: B.4.

pred to sql Transforms the Extended datalog into a sql expression.
This predicate is explained in appendix B.5

pred to dat Transforms the Extended datalog into datalog¬. This
predicate is explained in appendix B.6

B.2 hlcl to Predicate LogicTranslation

The hlcl to Predicate Logicexpression translation is done by the binary top
predicate: “hlcl to pred”. The input is an hlcl-expression on list form, and
the output is the corresponding Predicate Logic expression on term-form.
The actual translation is a three step procedure seen below:

apply macro functionality The first step substitutes the class-definitions.
The predicate takes an hlcl expression as input and returns an hlcl

expression without class definitions. This predicate traverses the hlcl-
expression for any class definitions, and substitutes them by the full
class expression. The predicate works recursively, e.g. before a substi-
tution is made, the class expression is scanned for further definitions
which is substituted further etc.

hlcl The second step translates the hlcl list form to a Predicate Logic
expression on term form. This is done by hlcl which is a Definite
Clause Grammar. The input is an hlcl-expression and the output
is (not necessarily wellformed) Predicate Logic on term form. The
DCG corresponds exactly to the BNF syntax given in chapter 3.5 on
page 29. The DCG converts the hlcl on list form to the Predicate
Logic expression on term-form. The rules for this translation is the
translation strategy as seen in chapter 6 on page 53. In the implemen-
tation of the hlcl-system we have chosen not to implement all of the
advanced translation strategy in the DCG, since it would make the
DCG very cluttered, and thereby hard to modify. Instead the DCG
translates the simple rules, and the scoping issues is solved in the next

B.2 hlcl to Predicate LogicTranslation 135

HLCL to
 Predicate Logic

hlcl(-Pexp,+Hexp,[])

fix_scoping(+Pexp,-Pexp)

hlcl_to_pred(+Hexp,-Pexp)

substract_userdefined_varmap(+Pexp,-VarMap)

remove_from_varmap(_,+Var,+VarMap,-VarMap)

add_universal_quantified_variables(+Pexp,+VarList,-Pexp)

apply_macro_functionality(+Hexp,-Hexp)

remove_varclass_components(+Pexp,+Var,_,-Pexp)

insert_varclass_components_list(+VarMap,+Var,+Pexp,-Pexp)

substract_ud_vars(+VarMap,-VarList)

Figure B.2: hlcl to Predicate Logic Translation

step. Furthermore a minimal wellformedness checking is performed,
checking if relations and classes used in the expression in fact exists in
the conceptual model.

fix scoping The third step fixes the scoping issues with user-defined vari-
ables. The input is a Predicate Logic expression and the output is a
Predicate Logic expression with correctly scoped variables and no dual
class definitions. If there are no user-defined variables defined in the
Predicate Logic expression, then no modifications will be done to the
expression. First we need to figure out which user-defined variables
are wrongly scoped, this is done by the first two predicates, Second,
we need to make sure that there is only one “varclass’ component for
each user-defined variable which is located immediately after the first
class expression, this is done by the next two predicates. And third

136 Detailed Implementation

we need to correctly scope the user-defined variables, this is done by
the last predicate. The scoping issues are solved by the following five
subpredicates:

substract userdefined varmap First we need to find all user-defined
variables. This predicate takes a Predicate Logic expression as
input and returns a VarClassMap containing a map of all user-
defined variables, and their class and type (class/attribute). The
predicate simply traverses the Predicate Logic expression, and
every time it meets an ”varclass“ component or an attribute com-
ponent with a user-defined variable as value the details are ap-
pended to the map.

remove from varmap The next step is to remove the first class vari-
able from the map, the reason is that the first variable will by
nature always be scoped and located correctly. This predicate
takes a VarClassMap and the outer variable as input and the
output is a VarClassMap. If the map contains an entry with the
outer variable, then that entry is removed from the map, other-
wise the map is returned as it was given as input.

remove varclass components The next step is to remove all “var-
class” components from the Predicate Logic expression. Each
userdefined variable is translated into a varclass component by
the DCG, and all of these should be removed. This predicate
takes a Predicate Logic expression and the VarClassMap from
above and returns a Predicate Logic expression. The predicate
works by traversing the Predicate Logic expression, and if it finds
a varclass component which is in the VarClassMap it is removed
from the expression.

insert varclass components list The next step is to insert one of
each “varclass” component right after the very first class expres-
sion. This predicate takes a Predicate Logic expression and the
VarClassMap and returns a Predicate Logic expression. This
predicate adds the removed varclass components, right after the
very first class expression, this way the classes will archeive the
correct scoping.

add universal quantified variable Finally we need to scope the
user-defined variables correctly. This predicate takes the vari-
able map from above and the Predicate Logic expression as in-
put and returns a correct Predicate Logic expression as output.
The predicate takes each element in the varclassmap and adds
an outer universal quantifier quantifiying that variable over the
expression.

B.3 Wellformedness Checking 137

B.3 Wellformedness Checking

check_variable_types(+VarMap)

check_paths(+Pexp,+VarMap)

check_wellformedness(+Pexp,-VarMap)

Wellformedness Checks

substract_varclassmap(+Pexp,-VarMap)

check_variable_count(+Pexp)

count_variables_used(+Pexp,+VarMap,-CMap)

is_countmap_ok(+CMap)

Figure B.3: Wellformedness Checking

The overall predicate checking wellformedness is called “check wellformedness”.
The input is a Predicate Logic expression on term form, and there is no out-
put from this predicate. Instead the predicate succeeds if the Predicate Logic
expression is wellformed. No modifications are made to the Predicate Logic
expression in this predicate. One should note that a minimal wellformedness
checking is already done in the DCG in the “hlcl to pred” predicate, namely
WFF4, 5 & 6, but we still need to check the rest of the wellformedness re-
quirements given in chapter 3.5 on page 31. The wellformedness checking is
split up, such that each wellformedness check in the list in chapter 3.5 on
page 31 corresponds to a predicate. This results in a four-step procedure as
seen in figure B.3.

substract varclassmap First we need to subtract all variables, their type
and their class, this map will be used of the rest of the wellformedness
checking sub predicates. The input of this predicate is a Predicate
Logic expression, and the output is a VarClassMap. This predicate
works by traversing the Predicate Logic expression and adding the
information every time a “varclass” component is encountered, the
class and variable is added to the map.

138 Detailed Implementation

check variable types This predicate checks that the user-defined vari-
ables are referring to the same class (WFF3). The predicate takes
the VarClassMap as input, and has no output. Instead the predicate
succeeds if no variables in the VarClassMap are referring to different
classes. The predicate works by traversing the VarClassMap, and for
every element in the map, it search the rest of the VarClassMap mak-
ing sure that there is not an entry where the same variable refers to
another type or name of class.

check variable count This predicate checks that user-defined variables
are used at least twice (WFF2). The input is the Predicate Logic
expression, and there is no output, instead the predicate succeeds if
the variables are used correctly. The predicate uses two predicates
seen below:

count variables used This predicate counts the number of times
every user-defined variable is used in the Predicate Logic ex-
pression. This predicate takes the Predicate Logic expression,
the VarClassMap and returns a CountMap as output. The predi-
cate works by traversing the Predicate Logic expression and every
time a relation or a user-defined predicate is met, the variables
are added to the CountMap. The count map is a list of tuples,
where each tuple is the variable name and a number, when added
this number is either incremented, or new tuple containing the
variable and ’1’ is added to the list. See table B.1 on page 133
for an example of a CountMap.
We only increment the CountMap when a variable is used in ei-
ther a relation or a userdefined predicate. One could think that
it would be easier to increment when a variable was used in a
“varclass” component, but this is not possible since the all “var-
class” components except one for each variable were removed in
the hlcl to Predicate Logic expression translation.

is countmap ok The next step is to check if every element in the
VarCountMap is used at least twice. This predicate takes the
VarCountMap as input and returns nothing for output, instead
the predicate succeeds if the VarCountMap is correct. The pred-
icate traverses through every element in the VarCountMap to
ensure that the count in there is at least 2. If every element has
at least two the predicate succeeds.

check paths Finally we need to check that the Predicate Logic expres-
sion uses valid paths in the conceptual model (WFF1). This predicate
takes the Predicate Logic expression as and VarClassMap as input and
returns nothing as output. Instead it succeeds if all paths used in the
Predicate Logic expression are correct. The predicate traverses the

B.4 Intermediate Steps 139

Predicate Logic expression and every time a relation/attribute/usede-
fined predicate is met, the variables in their arguments is looked up in
the varclass map, and the predicate checks to see if the path exists in
the conceptual model.

B.4 Intermediate Steps

Intermediate Steps

perform_intermediate_steps(+Pexp,-Pexp)

replace_internal_all(+Pexp,-Pexp)

replace_implication(+Pexp,-Pexp)

replace_all(+Pexp,-Pexp)

negate_expression(+Pexp,-Pexp)

Figure B.4: Intermediate steps

The intermediate steps converts the Predicate Logic expression to a Ex-
tended datalog expression. The input is the Predicate Logic expression in
term-form, and the output is Extended datalog in term-form. There are
three steps in the intermediate translation, which is handled by the following
three subpredicates.

replace internal all The first step is to replace all internal universal quan-
tifications. This predicate takes an Predicate Logic expression with in-
ternal universal quantifications and returns a Predicate Logic expres-
sion without internal universal quantifications. The predicate works by
first traversing through the outer universal quantifications, which are
to be left untouched, and then call “replace all” on the inner Predicate
Logic expression.

replace all This predicate replaces all universal quantifications with
a double-negated existential quantifier, furthermore it replaces
the implication inside the universal quantification with a conju-
gation. The input of this predicate is a Predicate Logic expression

140 Detailed Implementation

and the output is a Predicate Logic expression without any uni-
versal quantifications.

replace implication The second step is to replace the outer implication
from “all-must” constructs. This predicate takes a Predicate Logic ex-
pression as input and returns a Predicate Logic expression without any
implications. The predicate works by replacing the implication with a
conjugation, thereby both removing the implication and negating the
expression, as described in chapter 7 on page 69. This predicate does
not have any affect on expressions made up by a “no-may” construct.

negate expression The third and final step is to negate any “no-may”
expressions. This predicate takes a Predicate Logic expression as in-
put and returns a Predicate Logic expression. This predicate finds
the first negated existential quantifier and replaces it with a universal
quantifier, thereby negating the expression and returning it as output.

B.5 Extended datalog to sql

The Extended datalog into sql translation is implemented differently than
the other parts of the hlcl-system. Instead of being broken down into mul-
tiple predicates each doing a small step of the translation, we basically only
have one predicate: “subpred to sql” which instead case out in numerous dif-
ferent cases. “subpred to sql” predicate which takes 7 arguments seen which
can be seen below. Their typical name can be seen below:

1: - The input Extended datalog expression

2: - The output sql expression

3: Inside A sql fragment which needs to be put in the ”WHERE” clause
of the translated sql

4: VarMapIn A ClassLabelMap for all variables within the current scope
before the translation.

5: VarMapOut A ClassLabelMap for all variables within the current scope
after the translation.

6: Varclassmap A map containing all the classes and relations which has
been translated into tables.

7: CountFlag A flag indicating if the next select statement should use ’*’
or ’count(*)’.

In order to differentiate between the maps, we will in the following call the
maps used in 4th and 5th argument the “relational map”, whereas the map

B.6 Extended datalog to datalog¬ 141

in the 6th argument is referred to as the “classmap”. The actual translation
cases out on many different cases, which can be seen in table B.2 on page 145.
Most of the cases uses a couple of subfunctions in order to build the sql

query. The most common ones can be seen below:

is exists expression This function can tell if a datalog¬ subexpression
starts with an existential quantifier. The input is an Extended data-

log expression on termform, and there is not output. This function
is used to determine wether a conjugation is a ”real” AND or a ”glue”
AND.

conceptual to table This function translates a class into a table and a
condition. The input is a classexpression, and the output is a table-
name and a (possibly empty) condition.

conceptual relation to table This function translates a relation into a
table and a condition. The input is a relation and its connected classes,
and the output is a table-name and a (possibly empty) condition.

condition to sql This function translates the condition from the two above
functions into sql. The input is a condition and the output is an sql

fragment on term form.

set equal This function is used to generate the sql fragment which sets two
entities equal. The input is two classexpression or relation expressions,
and the output is a sql fragment which makes the condition that the
two entitites should be equal.

make negation expression This function is the exact oposite ”set equal”.
Instead of generating the sql fragment which sets two entities equal,
it generates a sql fragment which sets the two not to be equal. The
input is two classexpressions, and the output is a sql fragment which
makes the condition that the two entitites should be not equal.

B.6 Extended datalog to datalog¬

Converting Extended datalog into datalog¬ is done in “pred to datalog”.
The input is an Extended datalog expression and the output is datalog¬

expression on term form. The translation is split up in steps which corre-
sponds to the steps formally covered in chapter 7.3 on page 73.

reduce scope of negation The first step is to reduce the scope of nega-
tion. The input is a Predicate Logic expression and the output is a
Predicate Logic expression where only literals are negated. The pred-
icate works by traversing the expression, and every time it meets a
negated conjunction or disjunction, the negation is moved inwards ac-
cording to de-morgans rules.

142 Detailed Implementation

Extended Datalog to Datalog(neg)

pred_to_datalog(+Pexp,-Dexp)

reduce_scope_of_negation(+Pexp,-Pexp)

distribute_conjunctions(+Pexp,-Pexp)

remove_outer_uni_quant(+Pexp,-Pexp)

rewrite_existential_quantifiers(+Pexp,-Pexp)

remove_disjunctions_list(+Pexp,-Dexp)

remove_existential_quantifiers(...)

collect_functions(+Pexp,+Pexp,-Pexp)

Figure B.5: Extended datalog to datalog¬ Translation

distribute conjunctions The next step is to distribute conjunctions. The
input is a Extended datalog expression with only negated literals and
the output is a Extended datalog expression on disjunctive normal
form. The predicate works by traversing down through the expres-
sion finding structures of conjugated disjuncts, and unfolds them as
described in chapter 7.3 on page 73.

remove outer universal quantifiers The next step is to remove outer
universal quantifiers. The input is a Extended datalog expression
on disjunctive normal form, and the output is a Extended datalog

expression on disjunctive normal form without any universal quan-
tifiers. The predicate works by traverses through the first universal
quantifiers (which is the only place where they can be located, since
inner universal quantifiers were removed in the intermediate steps) and
returns the expression inside, thereby removing the universal quanti-
fiers.

rewrite existential quantifiers The next step is to rewrite existential

B.7 Settings 143

quantifiers. This predicate takes a Extended datalog expression on
disjunctive normal form and returns a list of datalog¬ clauses. This
predicate works by using two other predicates, first “remove existential quantifiers”
is called breaks up the Extended datalog expression into a number
of clauses, and then “collect functions” which merges the datalog¬

clause with the list of clauses.

remove existential quantifiers This predicate takes a Predicate Logic
expression as input and returns a datalog¬ clause which corre-
sponds to the original Predicate Logic expression and a list of
extra clauses. The predicate works by traversing the expression,
and every time a existential quantifier is met, it is being subs-
tidized with a function. The expression inside the existentially
quantified expression is set equal to the function and put in the
clause list.

collect functions The second step is to append the datalog¬ ex-
pression corresponding to the original Predicate Logic expression
to the list of function clauses. This predicate puts the “error←”
on the original clause, and appends it to the list, resulting in one
list with all clauses.

remove disjunctions list Finally we need to break up disjunctions. This
predicate takes a datalog¬ clause list as input and returns a datalog¬

clause list as output. The predicate applies remove disjunction on
every clause, appending all returning clauses together.

remove disjuntions This predicate splits up clauses which contain
disjunctions. The predicate take a single datalog¬ clause as
input and returns a (possibly single-element) list of clauses. The
predicate looks for any outer disjunctions, and if found, the ex-
pression is split up into two datalog¬ sentences each resulting
in the function or error.

B.7 Settings

Conceptual Model

The conceptual model representation is in already described in detail in
chapter: 8 on page 79, and will not be further explained here. Besides the
conceputal model representation a predicate for checking wellformedness of
the database model is supplied, and will be explained below:

check conceptual model this 0-argument predicate checks if the concep-
tual model lives up to the wellformed requirements given in chapter 8.3
on page 87.

144 Detailed Implementation

User-defined Variables

Besides the actual conceptual model, the user can also define the names
of their own user-defined variables. By default these are set to ”var a” ...
”var e”, but they can be declared with the “userDefVariable” predicate.

Definitions

Class definitions as described in chapter 3.3.2 on page 25 can be introduced
by the binary “definition” predicate, where the first argument is a label of
the defined class, and the second is the corresponding class expression, given
in the terms of the conceptual model.

B.8 Other Predicates

In the following sub-appendixes predicates not directly related to the hlcl-
system will be described. These are typically I/O and validation predicates.

B.8.1 I/O Predicates

For pretty-printing our interfaces: hlcl, Predicate Logic expression, data-

log and sql a couple of output predicates has been defined.
These predicates converts the internal term representation of the interfaces
to an output form which is easy to read. The names of the print predicate
are self explanatory. The details of these predicates will not be further ex-
plained, they are simply a collection of “print” and “nl” predicates, and are
straightforward to understand. There exists pretty-printing predicates for
both the terminal (plain-text) and for LATEX.

B.8.2 Test Predicates

In order to do a lot of tests easily and verify the correctness of the hlcl-
systems, two predicates for automating tests have been implemented. The
predicates are called “run tests” and “run tests tex”, and they simply call
the predicates in the order described in chapter: B.1 on page 133, where
they print out the intermediate results. “run tests” makes use of the plain-
text pretty printing facilities, and “run tests tex” makes use of the LATEX
pretty-printing facilities. Test funktioner af definitoner

B.9 Auxiliary Predicates

The auxialliary predicates are used of most part of the hlcl-system. The
names are fairly self explanatory, and the predicates themselves are typically
very simple. Therefore the reader is referred to the user comments in the
code.

B.9 Auxiliary Predicates 145

Table B.2: The cases in Extended datalog to sql Transla-
tion

Case Description

1 Conjunction ‘‘real’’ And The conjugation is translated to
“AND” in sql and given maps
are passed on to the translation of
the sub-expressions on the left- and
right-hand side.

2 Disjunction Or The disjunction is translated to
“AND” in sql and given maps
are passed on to the translation of
the sub-expressions on the left- and
right-hand side.

3 ‘‘Glue’’ Conjunction The “glue” conjunction is translated
to “AND” in sql similar to case 1.
But the VarMaps from the trans-
lated left-hand side of the conjunc-
tion is passed to the transaltion of
the right-hand side of the expres-
sion. Furtermore is the translated
sql from the right-hand side nested
in the ’WHERE’-clause of the trans-
lated right-hand side.

4 Negation The negation translates into a
’NOT’ in sql, and all VarMaps are
passed on to the translation of the
sub-expression.

5 Existential Quantifier Existential quanfitifier is not trans-
lated into anything in sql. In-
stead the class which corresponds to
the existential quantified variable is
found and added it to the relational
map.

6 Nummerical Quantifier Nummerical quanfitifier is trans-
lated to the outer comparison and
the flag for nummerical relation
is raised. Furthermore the class
which corresponds to the nummer-
ical quantified variable is found and
added it to the relational map.

Continued on next page

146 Detailed Implementation

Table B.2 – continued from previous page

Case Description

7 Universal Quantifer Universal quanfitifier is not trans-
lated into anything in sql. In-
stead the class which corresponds to
the universally quantified variable is
found and added it to the relational
map.

8 Universal Quantifier,

quantifying a attribute

value

As case 7.

9 The very first class

in the extended datalog

expression

Translates into sql without an ’EX-
IST’ infront, and the label is set to
“a”

10 The very first varclass

in the extended datalog

expression

As case 9.

11 A class in a relational

path

Translates into a ’SELECT’ state-
ment, with an ’EXISTS’ in front and
the table which corresponds to the
class key attributes is set equal to
the previous relation

12 A varclass in the

relational path

As 11

13 A varclass in a

relational path, before

the relation is met

Translates into a ’SELECT’ state-
ment, with an ’EXISTS’ in front.

14 A relation relating the

same variables

Translates into a ’SELECT’ clause
where both key-sets in the relation
table is set equal to the class.

15 A relation relating

already translated

classes

Translates into a ’SELECT’ state-
ment, and relates both key-sets in
the relation table to the keys of the
table corresponding to the classes.

16 A relation relating a

translated class to a

non-translated class

Translates into a ’SELECT’ state-
ment, setting the first key-set in the
relation equal to the keys in the ta-
ble corresponding to the first class

17 A relation right after a

nummerical quantifier

Same as 16, but a ’count(*)’ instead
of a ’*’ is used in the select state-
ment. Resets the nummerical flag

Continued on next page

B.9 Auxiliary Predicates 147

Table B.2 – continued from previous page

Case Description

18 The first time an

attribute with a

user-defined variable

as value, which is

located at a parent in a

ISA-structures is met.

Translates into an extra ’SELECT’
statement which relates the parent
to the class, and the parents label is
added to the classmap

19 The next time an

attribute with a

user-defined variable

as value, which is

located at a parent in a

ISA-structures is met

Translated into a sql expression
which set the current attribute
equal to the one which is looked up
in the VarMap

20 The first time an

attribute, which is

located at a parent in a

ISA-structures is met

Translates into an extra ’SELECT’
statement which relates the parent
to the class, the attribute in the par-
ent is set to be the attributes value,
and the parents label is added to the
classmap

21 The next time an

attribute, which is

located at a parent in a

ISA-structures is met.

Same as 20

22 A nummerically

quantified attribute

which is located

at a parent in a

ISA-structures

Same as 20, but instead of setting
the attributes equal the comparison
is done.

23 All other attributes not

meeting any of the above

descriptions

The attribute is set the the given
value in sql

24 A unary predicate

which has its argument

in a parent in a

ISA-structures

Translates into a ’SELECT’ state-
ment relating the class and its par-
ent together, using the parent as an
argument in the predicate

25 All other unary

predicates

Translates to a sql function. The
argument is looked up in the rela-
tion map.

Continued on next page

148 Detailed Implementation

Table B.2 – continued from previous page

Case Description

26 Binary predicate which

has both arguments

in parents in an

ISA-structures

As 24, but with two extra SELECT
statements.

27 Binary predicate which

its first arguments

in parent in an

ISA-structures

As 24, but with one extra SELECT
statement relation the first argu-
ment.

28 Binary predicate which

its second arguments

in parent in an

ISA-structures

As 24, but with one extra SELECT
statement relation the second argu-
ment.

29 All other binary

predicates

Translates to a sql. The arguments
are looked up in the relation map.

Appendix C

Userguide and CD Contents

C.1 CD Contents

The attached CD contains the report and hlcl system, and it has the fol-
lowing file structure:

read.me This description

\doc\report.pdf This report

\doc\report.ps This report

\src\hlcl.pl The HLCL System

\src\tests.pl The HLCL Test Cases

\src\usersettings.pl User Settings incl. Database Model

C.2 User Guide

This guide concerns the more specific technical issues related to installing
and using the hlcl-system. For an introduction to the actual hlcl lan-
guage, the reader is referred to chapter 3 on page 13.

C.2.1 Installing the hlcl System

In order for the hlcl system to run, one needs to have prolog installed.
SWI-Prolog can be downloaded free of charge from the following URL:
”http://www.swi-prolog.org/”. The hlcl-system is tested with version 5.4.2,
so this is the version we recommend to download. To install prolog follow
the installation instructions found at the same page.
The hlcl-system can run directly from the CD, although if one needs to
make changes to the user-settings, it should be copied on to a hard drive.

150 Userguide and CD Contents

To start the hlcl-system open the file ”hlcl.pl” by doubleclicking on it, this
should result in the SWI-prolog starting up with the following text:

% usersettings compiled 0.00 sec, 12,464 bytes

% usersettings compiled 0.00 sec, 0 bytes

% helper compiled 0.00 sec, 2,896 bytes

% e:\hlcl.pl compiled 0.01 sec, 104,296 bytes

Welcome to SWI-Prolog (Multi-threaded, Version 5.4.2)

Copyright (c) 1990-2003 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,

and you are welcome to redistribute it under certain conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

1 ?-

Now the hlcl-system is loaded and ready for translating hlcl expressions.

C.2.2 Running the hlcl System

The user can either run the given testsuite, which is done by the following
command

:-[tests].

This will print out all testcases to the screen. If the user wants to try to
compile a query himself, then the toppredicate ”hlcl to datalog” should be
used. It takes hlcl as input on a list form, ie:

:-hlcl_to_datalog([all,area,must,contain,building],SQL,DATALOG).

It is possible to modify usersettings and database representaion by openening
the file: ”user.pl”. A detailed explanation for how to represent the database
in prolog is given in chapter 8 on page 79. It is recommended that the
database model is checked before actually using it - this can be done with
the following command:

:-check_conceptual_model.

Which will return a ”conceptual model is OK”, if everything is in order.

Appendix D

Test Cases

This chapter will describe the tests which were performed on the hlcl-
system. In general two kinds of tests were performed: First a number of
hlcl-expressions were translated into sql and datalog¬. Second, some of
translated sql queries were tested in a test-database.
For testing the sql queries, a test-database was implemented in MySQL
4.1.71. The subset of sql which our queries use functions similar in MySQL
and in Oracle which is used by KMS, but MySQL is easier to install and this
was chosen as a test platform instead of the huge and costly Oracle DBMS.
Only a representative part of the test queries were tested in the database,
the rest of the queries were manually inspected.

D.1 Overview

In the following table each of the test cases will be described. Testing every
single hlcl constraint is not possible, due to the vast amount of constraints.
Instead a representative part of hlcl constraints has been chosen, which
tries to combine as many as the constructs and implications as possible.

1An open-source database which can be downloaded free of charge at: www.mysql.com

1
5
2

T
e
st

C
a
se

s

Table D.1: Test Cases for the hlcl-system

Test # Constraint Rationale Result

1 all lake must area The simplest sentence type
√

2 no area may building The simplest sentence type negated
√

3 all house must house The simplest sentence relating entities with keys formed by
multiple attributes

√

4 no area must building type

industrial

The simplest sentence type with paths on righthandsside
√

5 no area touch area must building

type industrial

The simplest sentence type with paths on both sides
√

6 all area must contain building One simple path expression
√

7 all building must touch building Another simple path expression
√

8 all area must have house Another simple path expression using multiple attributes as
key

√

9 no area may contain lake Negated path expression
√

10 all building must type industrial Path which is just an attribute
√

11 all building type industrial must

touch building

Longer path on righthandsside
√

12 all building type industrial must

touch building type residential

Longer path on righthandsside
√

13 no building type industrial may

touch building type residential

Longer path on righthandsside
√

14 no building may containedin area

contain lake

Longer path on righthandsside
√

Continued on next page

D
.1

O
v
e
rv

ie
w

1
5
3

Table D.1 – continued from previous page

Test # Constraint Rationale Result

15 all building type industrial must

beusedby company

Longer path on lefthandsside and righthandsside
√

16 no building may containedin area

have house

Longer path expression using multiple attributes as key
√

17 all area must contain building or

contain lake

Using the or operator
√

18 all area must contain building and

contain lake

Using the and operator
√

19 all area must contain building

ornot contain lake

Using the ornot operator
√

20 all area must contain building

andnot contain lake

Using the andnot operator
√

21 all area must contain building

touch building or contain lake

Using the or operator and a path
√

22 no area may contain all building Using the all keyword
√

23 no area may contain all building

touch building

Using the all keyword and a path
√

24 all area must contain solely

building

Using the solely keyword
√

25 all industrialArea must contain

solely building type industrial

Using the solely keyword and a path
√

Continued on next page

1
5
4

T
e
st

C
a
se

s

Table D.1 – continued from previous page

Test # Constraint Rationale Result

26 all building must type

blockbuilding and touch solely

building

Using the solely keyword and an operator
√

27 all building X must touch building

X

Using variable
√

28 all area contain building X must

contain building X

Using variables and paths
√

29 all building type X must touch

building type X

Using variable for attributes
√

30 all area intersectedby road X must

contain building intersectedby

road X

Using variable and long pahts
√

31 all building X must touch building

X and touch building X

Referencing to the same variable more than twice
√

32 all building X touch building Y

must zdifferencelargerthan5 X Y

Using variable and userdefined predicates
√

33 all building X type Z and

touch building Y type Z must

zdifferencelargerthan5 X Y

Using variable, predicates and paths
√

34 all residentialArea must contain

at most 5 building

Using nummerical quantifiers
√

35 all residentialArea must contain

at least 37 building

Using nummerical quantifiers
√

Continued on next page

D
.1

O
v
e
rv

ie
w

1
5
5

Table D.1 – continued from previous page

Test # Constraint Rationale Result

36 all residentialArea must

contain excactly 1 building type

industrial

Using nummerical quantifiers and paths
√

37 all residentialArea must zipcode

at most 2000

Using nummerical quantifiers for attributes
√

38 all residentialArea must zipcode

3520

Using a child in an ISA-structures
√

39 all residentialArea zipcode X must

touch residentialArea zipcode X

Setting an attribute value variable for a child ISA-structures,
where the attribute actually in parent

√

40 all residentialArea zipcode X must

touch area zipcode X

Setting an attribute value variable for a child ISA-structures,
where the attribute actually in parent

√

41 all area zipcode X must touch

residentialArea zipcode X

Setting an attribute value variable for a child ISA-structures,
where the attribute actually in parent

√

42 all residentialArea X must

zipcodefunc X

Setting an attribute value for a child ISA-structures, where
the attribute actually in parent and using a userdefined pred-
icate

√

43 all residentialArea X touch area Y

must binfunc X Y

Setting an attribute value for a child ISA-structures, where
the attribute actually in parent and using a userdefined pred-
icate

√

44 all area must (contain building) Use of optional brackets
√

45 all area must (contain building

type industrial)

Use of optional brackets
√

Continued on next page

1
5
6

T
e
st

C
a
se

s

Table D.1 – continued from previous page

Test # Constraint Rationale Result

46 all definedbuilding must touch

definedbuilding

Testing usage of class definitions
√

47 no definedarea must intersectedby

road

Testing usage of recursive class definitions
√

48 An empty expression. Should fail!
√

49 all (area must (contain building

type industrial)

Wrong use of optional brackets. Should fail!
√

50 all area and building must contain

building

Use of operators on righthansside. Should fail!
√

51 all area X must contain building Use of only one userdefined variable. Should fail!
√

D.2 Actual Tests 157

D.2 Actual Tests

158 Test Cases

Testcase 1

The simplest sentence type

hlcl all lake must area

Pred. Logic ∀A (lake(A) → area(A))

Ext. Dat ∀A (lake(A) ∧ ¬(area(A)))

SQL:

SELECT *

FROM lake a

WHERE NOT (EXISTS(

SELECT *

FROM area b

WHERE (b.areaID = a.lakeID)))

datalog¬:
error ← lake(A) ∧ ¬area(A)

Testcase 2

The simplest sentence type negated

hlcl no area may building

Pred. Logic ¬(∃A (area(A) ∧ building(A)))

Ext. Dat ∀A (area(A) ∧ building(A))

SQL:

SELECT *

FROM area a

WHERE EXISTS(

SELECT *

FROM building b

WHERE (b.buildingID = a.areaID))

datalog¬:
error ← area(A) ∧ building(A)

D.2 Actual Tests 159

Testcase 3

The simplest sentence relating entities with keys formed by multiple at-
tributes

hlcl all house must house

Pred. Logic ∀A (house(A) → house(A))

Ext. Dat ∀A (house(A) ∧ ¬(house(A)))

SQL:

SELECT *

FROM house a

WHERE NOT (EXISTS(

SELECT *

FROM house b

WHERE (b.houseID = a.houseID) AND (b.owner = a.owner)))

datalog¬:
error ← house(A) ∧ ¬house(A)

Testcase 4

The simplest sentence type with paths on righthandsside

hlcl no area must building type industrial

Pred. Logic ¬(∃A (area(A) ∧ building(A) ∧ type(A,type(A,industrial)))

Ext. Dat ∀A (area(A) ∧ building(A) ∧ type(A,type(A,industrial))

SQL:

SELECT *

FROM area a

WHERE EXISTS(

SELECT *

FROM building b

WHERE (b.buildingID = a.areaID) AND (b.type) = ’industrial’)

datalog¬:
error ← area(A) ∧ building(A) ∧ type(A,industrial)

160 Test Cases

Testcase 5

The simplest sentence type with paths on both sides

hlcl no area touch area must building type industrial

Pred. Logic ¬(∃A (area(A) ∧ ∃B (touch(A,B) ∧ area(B)) ∧ building(A)
∧ type(A,type(A,industrial)))

Ext. Dat ∀A (area(A) ∧ ∃B (touch(A,B) ∧ area(B)) ∧ building(A) ∧
type(A,type(A,industrial))

SQL:

SELECT *

FROM area a

WHERE EXISTS(

SELECT *

FROM contain b

WHERE (b.geoID1 = a.areaID) AND EXISTS(

SELECT *

FROM area c

WHERE (c.areaID = b.geoID2) AND EXISTS(

SELECT *

FROM building d

WHERE (d.buildingID = a.areaID) AND (d.type) = ’industrial’)))

datalog¬:
error ← area(A) ∧ f1(A) ∧ building(A) ∧ type(A,industrial)
f1(A) ← touch(A,B) ∧ area(B)

Testcase 6

One simple path expression

hlcl all area must contain building

Pred. Logic ∀A (area(A) → ∃B (contain(A,B) ∧ building(B)))

Ext. Dat ∀A (area(A) ∧ ¬(∃B (contain(A,B) ∧ building(B))))

SQL:

D.2 Actual Tests 161

SELECT *

FROM area a

WHERE NOT (EXISTS(

SELECT *

FROM contain b

WHERE (b.geoID1 = a.areaID) AND EXISTS(

SELECT *

FROM building c

WHERE (c.buildingID = b.geoID2))))

datalog¬:
error ← area(A) ∧ ¬f1(A)
f1(A) ← contain(A,B) ∧ building(B)

Testcase 7

Another simple path expression

hlcl all building must touch building

Pred. Logic ∀A (building(A) → ∃B (touch(A,B) ∧ building(B)))

Ext. Dat ∀A (building(A) ∧ ¬(∃B (touch(A,B) ∧ building(B))))

SQL:

SELECT *

FROM building a

WHERE NOT (EXISTS(

SELECT *

FROM contain b

WHERE (b.geoID1 = a.buildingID) AND EXISTS(

SELECT *

FROM building c

WHERE (c.buildingID = b.geoID2))))

datalog¬:
error ← building(A) ∧ ¬f1(A)
f1(A) ← touch(A,B) ∧ building(B)

162 Test Cases

Testcase 8

Another simple path expression using multiple attributes as key

hlcl all area must have house

Pred. Logic ∀A (area(A) → ∃B (have(A,B) ∧ house(B)))

Ext. Dat ∀A (area(A) ∧ ¬(∃B (have(A,B) ∧ house(B))))

SQL:

SELECT *

FROM area a

WHERE NOT (EXISTS(

SELECT *

FROM have b

WHERE (b.areaID = a.areaID) AND EXISTS(

SELECT *

FROM house c

WHERE (c.houseID = b.houseID) AND (c.owner = b.owner))))

datalog¬:
error ← area(A) ∧ ¬f1(A)
f1(A) ← have(A,B) ∧ house(B)

Testcase 9

Negated path expression

hlcl no area may contain lake

Pred. Logic ¬(∃A (area(A) ∧ ∃B (contain(A,B) ∧ lake(B))))

Ext. Dat ∀A (area(A) ∧ ∃B (contain(A,B) ∧ lake(B)))

SQL:

SELECT *

FROM area a

WHERE EXISTS(

SELECT *

FROM contain b

D.2 Actual Tests 163

WHERE (b.geoID1 = a.areaID) AND EXISTS(

SELECT *

FROM lake c

WHERE (c.lakeID = b.geoID2)))

datalog¬:
error ← area(A) ∧ f1(A)
f1(A) ← contain(A,B) ∧ lake(B)

Testcase 10

Path which is just an attribute

hlcl all building must type industrial

Pred. Logic ∀A (building(A) → type(A,type(A,industrial))

Ext. Dat ∀A (building(A) ∧ ¬(type(A,type(A,industrial)))

SQL:

SELECT *

FROM building a

WHERE NOT ((a.type) = ’industrial’)

datalog¬:
error ← building(A) ∧ ¬type(A,industrial)

Testcase 11

Longer path on righthandsside

hlcl all building type industrial must touch building

Pred. Logic ∀A (building(A) ∧ type(A,type(A,industrial)→ ∃B (touch(A,B)
∧ building(B)))

Ext. Dat ∀A (building(A) ∧ type(A,type(A,industrial) ∧ ¬(∃B (touch(A,B)
∧ building(B))))

SQL:

164 Test Cases

SELECT *

FROM building a

WHERE (a.type) = ’industrial’ AND NOT (EXISTS(

SELECT *

FROM contain b

WHERE (b.geoID1 = a.buildingID) AND EXISTS(

SELECT *

FROM building c

WHERE (c.buildingID = b.geoID2))))

datalog¬:
error ← building(A) ∧ type(A,industrial) ∧ ¬f1(A)
f1(A) ← touch(A,B) ∧ building(B)

Testcase 12

Longer path on righthandsside

hlcl all building type industrial must touch building type residential

Pred. Logic ∀A (building(A) ∧ type(A,type(A,industrial)→ ∃B (touch(A,B)
∧ building(B) ∧ type(B,type(B,residential)))

Ext. Dat ∀A (building(A) ∧ type(A,type(A,industrial) ∧ ¬(∃B (touch(A,B)
∧ building(B) ∧ type(B,type(B,residential))))

SQL:

SELECT *

FROM building a

WHERE (a.type) = ’industrial’ AND NOT (EXISTS(

SELECT *

FROM contain b

WHERE (b.geoID1 = a.buildingID) AND EXISTS(

SELECT *

FROM building c

WHERE (c.buildingID = b.geoID2) AND (c.type) = ’residential’)))

datalog¬:
error ← building(A) ∧ type(A,industrial) ∧ ¬f1(A)
f1(A) ← touch(A,B) ∧ building(B) ∧ type(B,residential)

D.2 Actual Tests 165

Testcase 13

Longer path on righthandsside

hlcl no building type industrial may touch building type residential

Pred. Logic ¬(∃A (building(A) ∧ type(A,type(A,industrial) ∧ ∃B (touch(A,B)
∧ building(B) ∧ type(B,type(B,residential))))

Ext. Dat ∀A (building(A) ∧ type(A,type(A,industrial) ∧ ∃B (touch(A,B)
∧ building(B) ∧ type(B,type(B,residential)))

SQL:

SELECT *

FROM building a

WHERE (a.type) = ’industrial’ AND EXISTS(

SELECT *

FROM contain b

WHERE (b.geoID1 = a.buildingID) AND EXISTS(

SELECT *

FROM building c

WHERE (c.buildingID = b.geoID2) AND (c.type) = ’residential’))

datalog¬:
error ← building(A) ∧ type(A,industrial) ∧ f1(A)
f1(A) ← touch(A,B) ∧ building(B) ∧ type(B,residential)

Testcase 14

Longer path on righthandsside

hlcl no building may containedin area contain lake

Pred. Logic ¬(∃A (building(A) ∧ ∃B (containedin(A,B) ∧ area(B) ∧ ∃C
(contain(B,C) ∧ lake(C)))))

Ext. Dat ∀A (building(A) ∧ ∃B (containedin(A,B) ∧ area(B) ∧ ∃C (con-
tain(B,C) ∧ lake(C))))

SQL:

166 Test Cases

SELECT *

FROM building a

WHERE EXISTS(

SELECT *

FROM contain b

WHERE (b.geoID2 = a.buildingID) AND EXISTS(

SELECT *

FROM area c

WHERE (c.areaID = b.geoID1) AND EXISTS(

SELECT *

FROM contain d

WHERE (d.geoID1 = c.areaID) AND EXISTS(

SELECT *

FROM lake e

WHERE (e.lakeID = d.geoID2)))))

datalog¬:
error ← building(A) ∧ f1(A)
f1(A) ← containedin(A,B) ∧ area(B) ∧ f2(B)
f2(B) ← contain(B,C) ∧ lake(C)

Testcase 15

Longer path on lefthandsside and righthandsside

hlcl all building type industrial must beusedby company

Pred. Logic ∀A (building(A) ∧ type(A,type(A,industrial)→ ∃B (beusedby(A,B)
∧ company(B)))

Ext. Dat ∀A (building(A) ∧ type(A,type(A,industrial) ∧ ¬(∃B (beusedby(A,B)
∧ company(B))))

SQL:

SELECT *

FROM building a

WHERE (a.type) = ’industrial’ AND NOT (EXISTS(

SELECT *

FROM relBuildingCompany b

WHERE (b.buildingID = a.buildingID) AND EXISTS(

SELECT *

FROM company c

WHERE (c.companyID = b.companyID))))

D.2 Actual Tests 167

datalog¬:
error ← building(A) ∧ type(A,industrial) ∧ ¬f1(A)
f1(A) ← beusedby(A,B) ∧ company(B)

Testcase 16

Longer path expression using multiple attributes as key

hlcl no building may containedin area have house

Pred. Logic ¬(∃A (building(A) ∧ ∃B (containedin(A,B) ∧ area(B) ∧ ∃C
(have(B,C) ∧ house(C)))))

Ext. Dat ∀A (building(A) ∧ ∃B (containedin(A,B) ∧ area(B) ∧ ∃C (have(B,C)
∧ house(C))))

SQL:

SELECT *

FROM building a

WHERE EXISTS(

SELECT *

FROM contain b

WHERE (b.geoID2 = a.buildingID) AND EXISTS(

SELECT *

FROM area c

WHERE (c.areaID = b.geoID1) AND EXISTS(

SELECT *

FROM have d

WHERE (d.areaID = c.areaID) AND EXISTS(

SELECT *

FROM house e

WHERE (e.houseID = d.houseID) AND (e.owner = d.owner)))))

datalog¬:
error ← building(A) ∧ f1(A)
f1(A) ← containedin(A,B) ∧ area(B) ∧ f2(B)
f2(B) ← have(B,C) ∧ house(C)

Testcase 17

Using the or operator

168 Test Cases

hlcl all area must contain building or contain lake

Pred. Logic ∀A (area(A) → ∃B (contain(A,B) ∧ building(B)) ∨ ∃B (con-
tain(A,B) ∧ lake(B)))

Ext. Dat ∀A (area(A) ∧ ¬(∃B (contain(A,B) ∧ building(B)) ∨ ∃B (con-
tain(A,B) ∧ lake(B))))

SQL:

SELECT *

FROM area a

WHERE NOT (EXISTS(

SELECT *

FROM contain b

WHERE (b.geoID1 = a.areaID) AND EXISTS(

SELECT *

FROM building c

WHERE (c.buildingID = b.geoID2))) OR EXISTS(

SELECT *

FROM contain b

WHERE (b.geoID1 = a.areaID) AND EXISTS(

SELECT *

FROM lake c

WHERE (c.lakeID = b.geoID2))))

datalog¬:
error ← area(A) ∧ ¬f1(A) ∧ ¬f2(A)
f1(A) ← contain(A,B) ∧ building(B)
f2(A) ← contain(A,B) ∧ lake(B)

Testcase 18

Using the and operator

hlcl all area must contain building and contain lake

Pred. Logic ∀A (area(A) → ∃B (contain(A,B) ∧ building(B)) ∧ ∃B (con-
tain(A,B) ∧ lake(B)))

Ext. Dat ∀A (area(A) ∧ ¬(∃B (contain(A,B) ∧ building(B)) ∧ ∃B (con-
tain(A,B) ∧ lake(B))))

D.2 Actual Tests 169

SQL:

SELECT *

FROM area a

WHERE NOT (EXISTS(

SELECT *

FROM contain b

WHERE (b.geoID1 = a.areaID) AND EXISTS(

SELECT *

FROM building c

WHERE (c.buildingID = b.geoID2))) AND EXISTS(

SELECT *

FROM contain b

WHERE (b.geoID1 = a.areaID) AND EXISTS(

SELECT *

FROM lake c

WHERE (c.lakeID = b.geoID2))))

datalog¬:
error ← area(A) ∧ ¬f1(A)
error ← area(A) ∧ ¬f2(A)
f1(A) ← contain(A,B) ∧ building(B)
f2(A) ← contain(A,B) ∧ lake(B)

Testcase 19

Using the ornot operator

hlcl all area must contain building ornot contain lake

Pred. Logic ∀A (area(A) → ∃B (contain(A,B) ∧ building(B)) ∨ ¬(∃B
(contain(A,B) ∧ lake(B))))

Ext. Dat ∀A (area(A) ∧ ¬(∃B (contain(A,B) ∧ building(B)) ∨ ¬(∃B (con-
tain(A,B) ∧ lake(B)))))

SQL:

SELECT *

FROM area a

WHERE NOT (EXISTS(

SELECT *

170 Test Cases

FROM contain b

WHERE (b.geoID1 = a.areaID) AND EXISTS(

SELECT *

FROM building c

WHERE (c.buildingID = b.geoID2))) OR NOT (EXISTS(

SELECT *

FROM contain b

WHERE (b.geoID1 = a.areaID) AND EXISTS(

SELECT *

FROM lake c

WHERE (c.lakeID = b.geoID2)))))

datalog¬:
error ← area(A) ∧ ¬f1(A) ∧ f2(A)
f1(A) ← contain(A,B) ∧ building(B)
f2(A) ← contain(A,B) ∧ lake(B)

Testcase 20

Using the andnot operator

hlcl all area must contain building andnot contain lake

Pred. Logic ∀A (area(A) → ∃B (contain(A,B) ∧ building(B)) ∧ ¬(∃B
(contain(A,B) ∧ lake(B))))

Ext. Dat ∀A (area(A) ∧ ¬(∃B (contain(A,B) ∧ building(B)) ∧ ¬(∃B (con-
tain(A,B) ∧ lake(B)))))

SQL:

SELECT *

FROM area a

WHERE NOT (EXISTS(

SELECT *

FROM contain b

WHERE (b.geoID1 = a.areaID) AND EXISTS(

SELECT *

FROM building c

WHERE (c.buildingID = b.geoID2))) AND NOT (EXISTS(

SELECT *

FROM contain b

WHERE (b.geoID1 = a.areaID) AND EXISTS(

D.2 Actual Tests 171

SELECT *

FROM lake c

WHERE (c.lakeID = b.geoID2)))))

datalog¬:
error ← area(A) ∧ ¬f1(A)
error ← area(A) ∧ f2(A)
f1(A) ← contain(A,B) ∧ building(B)
f2(A) ← contain(A,B) ∧ lake(B)

Testcase 21

Using the or operator and a path

hlcl all area must contain building touch building or contain lake

Pred. Logic ∀A (area(A)→ ∃B (contain(A,B) ∧ building(B) ∧ ∃C (touch(B,C)
∧ building(C))) ∨ ∃B (contain(A,B) ∧ lake(B)))

Ext. Dat ∀A (area(A) ∧ ¬(∃B (contain(A,B) ∧ building(B) ∧ ∃C (touch(B,C)
∧ building(C))) ∨ ∃B (contain(A,B) ∧ lake(B))))

SQL:

SELECT *

FROM area a

WHERE NOT (EXISTS(

SELECT *

FROM contain b

WHERE (b.geoID1 = a.areaID) AND EXISTS(

SELECT *

FROM building c

WHERE (c.buildingID = b.geoID2) AND EXISTS(

SELECT *

FROM contain d

WHERE (d.geoID1 = c.buildingID) AND EXISTS(

SELECT *

FROM building e

WHERE (e.buildingID = d.geoID2))))) OR EXISTS(

SELECT *

FROM contain b

WHERE (b.geoID1 = a.areaID) AND EXISTS(

SELECT *

172 Test Cases

FROM lake c

WHERE (c.lakeID = b.geoID2))))

datalog¬:
error ← area(A) ∧ ¬f1(A) ∧ ¬f3(A)
f1(A) ← contain(A,B) ∧ building(B) ∧ f2(B)
f2(B) ← touch(B,C) ∧ building(C)
f3(A) ← contain(A,B) ∧ lake(B)

Testcase 22

Using the all keyword

hlcl no area may contain all building

Pred. Logic ¬(∃A (area(A) ∧ ∀B (building(B) → contain(A,B))))

Ext. Dat ∀A (area(A) ∧ ¬(∃B (building(B) ∧ ¬(contain(A,B)))))

SQL:

SELECT *

FROM area a

WHERE NOT (EXISTS(

SELECT *

FROM building b

WHERE NOT (EXISTS(

SELECT *

FROM contain c

WHERE (c.geoID1 = a.areaID) AND (c.geoID2 = b.buildingID)))))

datalog¬:
error ← area(A) ∧ ¬f1(A)
f1(A) ← building(B) ∧ ¬contain(A,B)

Testcase 23

Using the all keyword and a path

hlcl no area may contain all building touch building

Pred. Logic ¬(∃A (area(A) ∧ ∀B (building(B) ∧ ∃C (touch(B,C) ∧ build-
ing(C)) → contain(A,B))))

D.2 Actual Tests 173

Ext. Dat ∀A (area(A) ∧ ¬(∃B (building(B) ∧ ∃C (touch(B,C) ∧ build-
ing(C)) ∧ ¬(contain(A,B)))))

SQL:

SELECT *

FROM area a

WHERE NOT (EXISTS(

SELECT *

FROM building b

WHERE EXISTS(

SELECT *

FROM contain c

WHERE (c.geoID1 = b.buildingID) AND EXISTS(

SELECT *

FROM building d

WHERE (d.buildingID = c.geoID2) AND NOT (EXISTS(

SELECT *

FROM contain e

WHERE (e.geoID1 = a.areaID) AND (e.geoID2 = b.buildingID)))))))

datalog¬:
error ← area(A) ∧ ¬f1(A)
f1(A) ← building(B) ∧ f2(B) ∧ ¬contain(A,B)
f2(B) ← touch(B,C) ∧ building(C)

Testcase 24

Using the solely keyword

hlcl all area must contain solely building

Pred. Logic ∀A (area(A) → ∀B (contain(A,B) → building(B)))

Ext. Dat ∀A (area(A) ∧ ∃B (contain(A,B) ∧ ¬(building(B))))

SQL:

SELECT *

FROM area a

WHERE EXISTS(

SELECT *

174 Test Cases

FROM contain b

WHERE (b.geoID1 = a.areaID) AND NOT (EXISTS(

SELECT *

FROM building c

WHERE (c.buildingID = b.geoID2))))

datalog¬:
error ← area(A) ∧ f1(A)
f1(A) ← contain(A,B) ∧ ¬building(B)

Testcase 25

Using the solely keyword and a path

hlcl all industrialArea must contain solely building type industrial

Pred. Logic ∀A (industrialArea(A) → ∀B (contain(A,B) → building(B)
∧ type(B,type(B,industrial)))

Ext. Dat ∀A (industrialArea(A) ∧ ∃B (contain(A,B) ∧ ¬(building(B) ∧
type(B,type(B,industrial))))

SQL:

SELECT *

FROM industrialArea a

WHERE EXISTS(

SELECT *

FROM contain b

WHERE (b.geoID1 = a.areaID) AND NOT (EXISTS(

SELECT *

FROM building c

WHERE (c.buildingID = b.geoID2) AND (c.type) = ’industrial’)))

datalog¬:
error ← industrialArea(A) ∧ f1(A)
error ← industrialArea(A) ∧ f2(A)
f1(A) ← contain(A,B) ∧ ¬building(B)
f2(A) ← contain(A,B) ∧ ¬type(B,industrial)

D.2 Actual Tests 175

Testcase 26

Using the solely keyword and an operator

hlcl all building must type blockbuilding and touch solely building

Pred. Logic ∀A (building(A)→ type(A,type(A,blockbuilding) ∧ ∀B (touch(A,B)
→ building(B)))

Ext. Dat ∀A (building(A) ∧ ¬(type(A,type(A,blockbuilding) ∧ ¬(∃B (touch(A,B)
∧ ¬(building(B))))))

SQL:

SELECT *

FROM building a

WHERE NOT ((a.type) = ’blockbuilding’ AND NOT (EXISTS(

SELECT *

FROM contain b

WHERE (b.geoID1 = a.buildingID) AND NOT (EXISTS(

SELECT *

FROM building c

WHERE (c.buildingID = b.geoID2))))))

datalog¬:
error ← building(A) ∧ ¬type(A,blockbuilding)
error ← building(A) ∧ f1(A)
f1(A) ← touch(A,B) ∧ ¬building(B)

Testcase 27

Using variable

hlcl all building X must touch building X

Pred. Logic ∀X (building(X) → touch(X,X))

Ext. Dat ∀X (building(X) ∧ ¬(touch(X,X)))

SQL:

176 Test Cases

SELECT *

FROM building a

WHERE NOT (EXISTS(

SELECT *

FROM contain b

WHERE (b.geoID1 = a.buildingID) AND (b.geoID2 = a.buildingID)))

datalog¬:
error ← building(X) ∧ ¬touch(X,X)

Testcase 28

Using variables and paths

hlcl all area contain building X must contain building X

Pred. Logic ∀X (∀A (area(A) ∧ building(X) ∧ contain(A,X)→ contain(A,X)))

Ext. Dat ∀X (∀A (area(A) ∧ building(X) ∧ contain(A,X) ∧ ¬(contain(A,X))))

SQL:

SELECT *

FROM area a

WHERE EXISTS(

SELECT *

FROM building b

WHERE EXISTS(

SELECT *

FROM contain c

WHERE (c.geoID1 = a.areaID) AND (c.geoID2 = b.buildingID) AND NOT (EXISTS(

SELECT *

FROM contain d

WHERE (d.geoID1 = a.areaID) AND (d.geoID2 = b.buildingID)))))

datalog¬:
error ← area(A) ∧ building(X) ∧ contain(A,X) ∧ ¬contain(A,X)

Testcase 29

Using variable for attributes

D.2 Actual Tests 177

hlcl all building type X must touch building type X

Pred. Logic ∀X (∀A (building(A) ∧ type(A,X)→ ∃B (touch(A,B) ∧ build-
ing(B) ∧ type(B,X))))

Ext. Dat ∀X (∀A (building(A) ∧ type(A,X) ∧ ¬(∃B (touch(A,B) ∧ build-
ing(B) ∧ type(B,X)))))

SQL:

SELECT *

FROM building a

WHERE NOT (EXISTS(

SELECT *

FROM contain b

WHERE (b.geoID1 = a.buildingID) AND EXISTS(

SELECT *

FROM building c

WHERE (c.buildingID = b.geoID2) AND (c.type) = a.type)))

datalog¬:
error ← building(A) ∧ type(A,X) ∧ ¬f1(X,A)
f1(X,A) ← touch(A,B) ∧ building(B) ∧ type(B,X)

Testcase 30

Using variable and long pahts

hlcl all area intersectedby road X must contain building intersectedby

road X

Pred. Logic ∀X (∀A (area(A) ∧ road(X) ∧ intersectedby(A,X)→ ∃B (con-
tain(A,B) ∧ building(B) ∧ intersectedby(B,X))))

Ext. Dat ∀X (∀A (area(A) ∧ road(X) ∧ intersectedby(A,X) ∧ ¬(∃B (con-
tain(A,B) ∧ building(B) ∧ intersectedby(B,X)))))

SQL:

SELECT *

FROM area a

WHERE EXISTS(

SELECT *

178 Test Cases

FROM road b

WHERE EXISTS(

SELECT *

FROM intersect c

WHERE (c.geoID2 = a.areaID) AND (c.geoID1 = b.roadsegmentID)

AND NOT (EXISTS(

SELECT *

FROM contain d

WHERE (d.geoID1 = a.areaID) AND EXISTS(

SELECT *

FROM building e

WHERE (e.buildingID = d.geoID2) AND EXISTS(

SELECT *

FROM intersect f

WHERE (f.geoID2 = e.buildingID) AND

(f.geoID1 = b.roadsegmentID)))))))

datalog¬:
error ← area(A) ∧ road(X) ∧ intersectedby(A,X) ∧ ¬f1(A)
f1(A) ← contain(A,B) ∧ building(B) ∧ intersectedby(B,X)

Testcase 31

Referencing to the same variable more than twice

hlcl all building X must touch building X and touch building X

Pred. Logic ∀X (building(X) → touch(X,X) ∧ touch(X,X))

Ext. Dat ∀X (building(X) ∧ ¬(touch(X,X) ∧ touch(X,X)))

SQL:

SELECT *

FROM building a

WHERE NOT (EXISTS(

SELECT *

FROM contain b

WHERE (b.geoID1 = a.buildingID) AND

(b.geoID2 = a.buildingID) AND EXISTS(

SELECT *

FROM contain c

WHERE (c.geoID1 = a.buildingID) AND

(c.geoID2 = a.buildingID))))

D.2 Actual Tests 179

datalog¬:
error ← building(X) ∧ ¬touch(X,X)
error ← building(X) ∧ ¬touch(X,X)

Testcase 32

Using variable and userdefined predicates

hlcl all building X touch building Y must zdifferencelargerthan5

X Y

Pred. Logic ∀Y (∀X (building(X) ∧ building(Y) ∧ touch(X,Y) → zdiffer-
encelargerthan5(X,Y)))

Ext. Dat ∀Y (∀X (building(X) ∧ building(Y) ∧ touch(X,Y) ∧ ¬(zdifferencelargerthan5(X,Y))))

SQL:

SELECT *

FROM building a

WHERE EXISTS(

SELECT *

FROM building b

WHERE (b.buildingID != a.buildingID) AND EXISTS(

SELECT *

FROM contain c

WHERE (c.geoID1 = a.buildingID) AND (c.geoID2 = b.buildingID)

AND NOT (’zdiff’(a.buildingID,b.buildingID))))

datalog¬:
error← building(X) ∧ building(Y) ∧ touch(X,Y) ∧ ¬zdifferencelargerthan5(X,Y)

Testcase 33

Using variable, predicates and paths

hlcl all building X type Z and touch building Y type Z must zdifferencelargerthan5

X Y

Pred. Logic ∀Z (∀Y (∀X (building(X) ∧ building(Y) ∧ type(X,Z) ∧ touch(X,Y)
∧ type(Y,Z) → zdifferencelargerthan5(X,Y))))

180 Test Cases

Ext. Dat ∀Z (∀Y (∀X (building(X) ∧ building(Y) ∧ type(X,Z) ∧ touch(X,Y)
∧ type(Y,Z) ∧ ¬(zdifferencelargerthan5(X,Y)))))

SQL:

SELECT *

FROM building a

WHERE EXISTS(

SELECT *

FROM building b

WHERE (b.buildingID != a.buildingID) AND EXISTS(

SELECT *

FROM contain c

WHERE (c.geoID1 = a.buildingID) AND (c.geoID2 = b.buildingID)

AND (b.type) = a.type AND NOT (’zdiff’(a.buildingID,b.buildingID))))

datalog¬:
error← building(X) ∧ building(Y) ∧ type(X,Z) ∧ touch(X,Y) ∧ type(Y,Z)

∧ ¬zdifferencelargerthan5(X,Y)

Testcase 34

Using nummerical quantifiers

hlcl all residentialArea must contain at most 5 building

Pred. Logic ∀A (residentialArea(A)→ ∃le5 B (contain(A,B) ∧ building(B)))

Ext. Dat ∀A (residentialArea(A) ∧ ¬(∃le5 B (contain(A,B) ∧ building(B))))

SQL:

SELECT *

FROM residentialArea a

WHERE NOT ((EXISTS(

SELECT COUNT(*)

FROM contain b

WHERE (b.geoID1 = a.areaID) AND EXISTS(

SELECT *

FROM building c

WHERE (c.buildingID = b.geoID2)))) <= 5)

datalog¬:
N/A - Cannot express nummerical quantification in datalog

D.2 Actual Tests 181

Testcase 35

Using nummerical quantifiers

hlcl all residentialArea must contain at least 37 building

Pred. Logic ∀A (residentialArea(A) → ∃ge37 B (contain(A,B) ∧ build-
ing(B)))

Ext. Dat ∀A (residentialArea(A) ∧ ¬(∃ge37 B (contain(A,B) ∧ building(B))))

SQL:

SELECT *

FROM residentialArea a

WHERE NOT ((EXISTS(

SELECT COUNT(*)

FROM contain b

WHERE (b.geoID1 = a.areaID) AND EXISTS(

SELECT *

FROM building c

WHERE (c.buildingID = b.geoID2)))) => 37)

datalog¬:
N/A - Cannot express nummerical quantification in datalog

Testcase 36

Using nummerical quantifiers and paths

hlcl all residentialArea must contain excactly 1 building type industrial

Failed

Testcase 37

Using nummerical quantifiers for attributes

hlcl all residentialArea must zipcode at most 2000

Pred. Logic ∀A (residentialArea(A) → zipcode(A,zipcode(A,2000))

Ext. Dat ∀A (residentialArea(A) ∧ ¬(zipcode(A,zipcode(A,2000)))

182 Test Cases

SQL:

SELECT *

FROM residentialArea a

WHERE NOT (SELECT *

FROM area b

WHERE (b.areaID = a.areaID) AND (a.zipcode) <= 2000)

datalog¬:
N/A - Cannot express nummerical quantification in datalog

Testcase 38

Using a child in an ISA-structures

hlcl all residentialArea must zipcode 3520

Pred. Logic ∀A (residentialArea(A) → zipcode(A,zipcode(A,3520))

Ext. Dat ∀A (residentialArea(A) ∧ ¬(zipcode(A,zipcode(A,3520)))

SQL:

SELECT *

FROM residentialArea a

WHERE NOT (SELECT *

FROM area b

WHERE (b.areaID = a.areaID) AND (a.zipcode) = 3520)

datalog¬:
error ← residentialArea(A) ∧ ¬zipcode(A,3520)

Testcase 39

Setting an attribute value variable for a child ISA-structures, where the at-
tribute actually in parent

hlcl all residentialArea zipcode X must touch residentialArea zipcode

X

Pred. Logic ∀X (∀A (residentialArea(A) ∧ zipcode(A,X)→ ∃B (touch(A,B)
∧ residentialArea(B) ∧ zipcode(B,X))))

D.2 Actual Tests 183

Ext. Dat ∀X (∀A (residentialArea(A) ∧ zipcode(A,X) ∧ ¬(∃B (touch(A,B)
∧ residentialArea(B) ∧ zipcode(B,X)))))

SQL:

SELECT *

FROM residentialArea a

WHERE SELECT *

FROM area b

WHERE (b.areaID = a.areaID) AND NOT (EXISTS(

SELECT *

FROM contain c

WHERE (c.geoID1 = a.areaID) AND EXISTS(

SELECT *

FROM residentialArea d

WHERE (d.areaID = c.geoID2) AND SELECT *

FROM area e

WHERE (e.areaID = d.areaID) AND (e.zipcode) = b.zipcode)))

datalog¬:
error ← residentialArea(A) ∧ zipcode(A,X) ∧ ¬f1(X,A)
f1(X,A) ← touch(A,B) ∧ residentialArea(B) ∧ zipcode(B,X)

Testcase 40

Setting an attribute value variable for a child ISA-structures, where the at-
tribute actually in parent

hlcl all residentialArea zipcode X must touch area zipcode X

Pred. Logic ∀X (∀A (residentialArea(A) ∧ zipcode(A,X)→ ∃B (touch(A,B)
∧ area(B) ∧ zipcode(B,X))))

Ext. Dat ∀X (∀A (residentialArea(A) ∧ zipcode(A,X) ∧ ¬(∃B (touch(A,B)
∧ area(B) ∧ zipcode(B,X)))))

SQL:

SELECT *

FROM residentialArea a

WHERE SELECT *

FROM area b

184 Test Cases

WHERE (b.areaID = a.areaID) AND NOT (EXISTS(

SELECT *

FROM contain c

WHERE (c.geoID1 = a.areaID) AND EXISTS(

SELECT *

FROM area d

WHERE (d.areaID = c.geoID2) AND (d.zipcode) = b.zipcode)))

datalog¬:
error ← residentialArea(A) ∧ zipcode(A,X) ∧ ¬f1(X,A)
f1(X,A) ← touch(A,B) ∧ area(B) ∧ zipcode(B,X)

Testcase 41

Setting an attribute value variable for a child ISA-structures, where the at-
tribute actually in parent

hlcl all area zipcode X must touch residentialArea zipcode X

Pred. Logic ∀X (∀A (area(A) ∧ zipcode(A,X) → ∃B (touch(A,B) ∧ resi-
dentialArea(B) ∧ zipcode(B,X))))

Ext. Dat ∀X (∀A (area(A) ∧ zipcode(A,X) ∧ ¬(∃B (touch(A,B) ∧ resi-
dentialArea(B) ∧ zipcode(B,X)))))

SQL:

SELECT *

FROM area a

WHERE NOT (EXISTS(

SELECT *

FROM contain b

WHERE (b.geoID1 = a.areaID) AND EXISTS(

SELECT *

FROM residentialArea c

WHERE (c.areaID = b.geoID2) AND SELECT *

FROM area d

WHERE (d.areaID = c.areaID) AND (d.zipcode) = a.zipcode)))

datalog¬:
error ← area(A) ∧ zipcode(A,X) ∧ ¬f1(X,A)
f1(X,A) ← touch(A,B) ∧ residentialArea(B) ∧ zipcode(B,X)

D.2 Actual Tests 185

Testcase 42

Setting an attribute value for a child ISA-structures, where the attribute ac-
tually in parent and using a userdefined predicate

hlcl all residentialArea X must zipcodefunc X

Pred. Logic ∀X (residentialArea(X) → zipcodefunc(X))

Ext. Dat ∀X (residentialArea(X) ∧ ¬(zipcodefunc(X)))

SQL:

SELECT *

FROM residentialArea a

WHERE NOT (SELECT *

FROM area b

WHERE (a.areaID = b.areaID) AND ’zipcodefunc’(b.zipcode))

datalog¬:
error ← residentialArea(X) ∧ ¬zipcodefunc(X)

Testcase 43

Setting an attribute value for a child ISA-structures, where the attribute ac-
tually in parent and using a userdefined predicate

hlcl all residentialArea X touch area Y must binfunc X Y

Pred. Logic ∀Y (∀X (residentialArea(X) ∧ area(Y) ∧ touch(X,Y) → bin-
func(X,Y)))

Ext. Dat ∀Y (∀X (residentialArea(X) ∧ area(Y) ∧ touch(X,Y) ∧ ¬(binfunc(X,Y))))

SQL:

SELECT *

FROM residentialArea a

WHERE EXISTS(

SELECT *

FROM area b

WHERE EXISTS(

SELECT *

186 Test Cases

FROM contain c

WHERE (c.geoID1 = a.areaID) AND

(c.geoID2 = b.areaID) AND NOT (SELECT *

FROM area d

WHERE (d.areaID = a.areaID) AND

’binfunc’(d.zipcode,b.areaID))))

datalog¬:
error← residentialArea(X) ∧ area(Y) ∧ touch(X,Y) ∧ ¬binfunc(X,Y)

Testcase 44

Use of optional brackets

hlcl all area must (contain building)

Pred. Logic ∀A (area(A) → ∃B (contain(A,B) ∧ building(B)))

Ext. Dat ∀A (area(A) ∧ ¬(∃B (contain(A,B) ∧ building(B))))

SQL:

SELECT *

FROM area a

WHERE NOT (EXISTS(

SELECT *

FROM contain b

WHERE (b.geoID1 = a.areaID) AND EXISTS(

SELECT *

FROM building c

WHERE (c.buildingID = b.geoID2))))

datalog¬:
error ← area(A) ∧ ¬f1(A)
f1(A) ← contain(A,B) ∧ building(B)

Testcase 45

Use of optional brackets

hlcl all area must (contain building type industrial)

D.2 Actual Tests 187

Pred. Logic ∀A (area(A)→ ∃B (contain(A,B) ∧ building(B) ∧ type(B,type(B,industrial)))

Ext. Dat ∀A (area(A) ∧ ¬(∃B (contain(A,B) ∧ building(B) ∧ type(B,type(B,industrial))))

SQL:

SELECT *

FROM area a

WHERE NOT (EXISTS(

SELECT *

FROM contain b

WHERE (b.geoID1 = a.areaID) AND EXISTS(

SELECT *

FROM building c

WHERE (c.buildingID = b.geoID2) AND (c.type) = ’industrial’)))

datalog¬:
error ← area(A) ∧ ¬f1(A)
f1(A) ← contain(A,B) ∧ building(B) ∧ type(B,industrial)

Testcase 46

Testing usage of class definitions

hlcl all definedbuilding must touch definedbuilding

Pred. Logic ∀A (building(A) ∧ type(A,type(A,residential)→ ∃B (touch(A,B)
∧ building(B) ∧ type(B,type(B,residential)))

Ext. Dat ∀A (building(A) ∧ type(A,type(A,residential) ∧ ¬(∃B (touch(A,B)
∧ building(B) ∧ type(B,type(B,residential))))

SQL:

SELECT *

FROM building a

WHERE (a.type) = ’residential’ AND NOT (EXISTS(

SELECT *

FROM contain b

WHERE (b.geoID1 = a.buildingID) AND EXISTS(

SELECT *

FROM building c

WHERE (c.buildingID = b.geoID2) AND (c.type) = ’residential’)))

188 Test Cases

datalog¬:
error ← building(A) ∧ type(A,residential) ∧ ¬f1(A)
f1(A) ← touch(A,B) ∧ building(B) ∧ type(B,residential)

Testcase 47

Testing usage of recursive class definitions

hlcl no definedarea must intersectedby road

Pred. Logic ¬(∃A (area(A) ∧ ∃B (contain(A,B) ∧ building(B) ∧
type(B,type(B,residential)) ∧ ∃B (intersectedby(A,B) ∧ road(B))))

Ext. Dat ∀A (area(A) ∧ ∃B (contain(A,B) ∧ building(B)
∧ type(B,type(B,residential)) ∧ ∃B (intersectedby(A,B) ∧ road(B)))

SQL:

SELECT *

FROM area a

WHERE EXISTS(

SELECT *

FROM contain b

WHERE (b.geoID1 = a.areaID) AND EXISTS(

SELECT *

FROM building c

WHERE (c.buildingID = b.geoID2) AND (c.type) = ’residential’ AND EXISTS(

SELECT *

FROM intersect d

WHERE (d.geoID2 = a.areaID) AND EXISTS(

SELECT *

FROM road e

WHERE (e.roadsegmentID = c.buildingID)))))

datalog¬:
error ← area(A) ∧ f1(A) ∧ f2(A)
f1(A) ← contain(A,B) ∧ building(B) ∧ type(B,residential)
f2(A) ← intersectedby(A,B) ∧ road(B)

Testcase 48

An empty expression. Should fail!

D.2 Actual Tests 189

hlcl

Failed

Testcase 49

Wrong use of optional brackets. Should fail!

hlcl all (area must (contain building type industrial)

Failed

Testcase 50

Use of operators on righthansside. Should fail!

hlcl all area and building must contain building

Failed

Testcase 51

Use of only one userdefined variable. Should fail!

hlcl all area X must contain building

Failed

190 Test Cases

Appendix E

Sourcecode

E.1 hlcl-system

192 Sourcecode

/ ∗∗
Title : A Highlevel interface to GIS
Author : Mads Johnsen
Last Modified : 29/03/2005

Build : 0067 / Final Build
Notes : This .pl file contains the actual HLCL− system

∗ ∗/

Imports

←[usersettings]. %Conceptual Model, Variables and Class Definitions

←[helper]. %Functions allowing for WFF Checking of the above

hlcl to sqldat(+HLCLExp,−SQLExp,−DatExp)

Takes an HLCL Expression and returns the SQL and Datalog
equivalent of that query

hlcl to sqldatalog(HLCL,SQL,DAT)←
hlcl to pred(HLCL,Pred),
check wellformedness(Pred),
perform intermediate steps(Pred , IntDat),
subpred to sql(IntDat ,SQL, [], [], , [],nocount),
pred to datalog(IntDat ,DAT),
nl,print sql(SQL),nl,nl,print dat list(DAT).

/ ∗∗
From HLCL → Predicate Logic

∗ ∗/

hlcl to pred(+HLCLExp,−PredExp)

Converts an HLCL expression in a list form to a Predicate expression

hlcl to pred(HLCL,Pred)←
apply macro functionality(HLCL,HLCLDef),
hlcl(Intermediate, HLCLDef , []),
fix scoping(Intermediate,Pred).

apply macro functionality(+HLCLExp,−HLCLExp)

E.1 hlcl-system 193

Scans the HLCL Expression for definitions and substitutes them by
their class definition.

apply macro functionality([], []).
apply macro functionality([Head |Tail],Res)←

definition([Head],Exp),
apply macro functionality(Exp,Mexp),
append(Mexp,Rest ,Res),
apply macro functionality(Tail ,Rest), !.

apply macro functionality([Head |Tail], [Head |Rest])←
apply macro functionality(Tail ,Rest).

hlcl(−PredExp, +HLCLExp, +List)

Converts an HLCL expression in a list form to a Predicate expression.
The third argument is a difference list used by the DCG, and usually
initiated as an empty list.

hlcl(S) −→ q(v(0),P1 ,P2 ,S), class(v(0),P1), imp, sl(v(0),P2).

hlcl(S) −→ q(X ,P1 ,P2 ,S), varclass(X ,P1), imp, sl(X ,P2).

q(X ,P1 ,P2 ,all(X , imp(P1 ,P2))) −→ [all].
q(X ,P1 ,P2 ,neg(exists(X ,and(P1 ,P2)))) −→ [no].

sl(X ,P) −→ ['('], sl(X ,P), [')'].
sl(X ,P) −→ class(X ,P).
sl(,P) −→ pred(P).
sl(X ,P) −→ rc(X ,P).
sl(X ,P) −→ rc(X ,P1),operator(P1 ,P2 ,P), sl(X ,P2).
sl(X ,P) −→ ac(X ,P).
sl(X ,P) −→ ac(X ,P1),operator(P1 ,P2 ,P), sl(X ,P2).

pred(unarypredicate(Pred ,Var)) −→
[Pred],variable(Var),
{sqlfunction(Pred , [[,]],)}.

pred(binarypredicate(Pred ,Var1 ,Var2)) −→
[Pred],variable(Var1),variable(Var2),
{sqlfunction(Pred , [[,], [,]],)}.

class(X , class(Class,X)) −→
[Class],
{is class(Class)}.

class(X ,and(class(Class,X),P)) −→
[Class], sl(X ,P),
{is class(Class)}.

194 Sourcecode

varclass(Var ,varclass(Class,Var)) −→
[Class],variable(Var),
{is class(Class)}.

varclass(Var ,and(varclass(Class,Var),P)) −→
[Class],variable(Var), sl(Var ,P),
{is class(Class)}.

ac(X ,attribute(Attribute, eq,Var ,X)) −→
[Attribute],variable(Var),
{is attribute(,Attribute)}.

ac(X ,attribute(Attribute, eq,Value,X)) −→
[Attribute,Value],
{is attribute(,Attribute)}.

ac(X ,attribute(Attribute,Comp,Value,X)) −→
[Attribute],numericalquantifier(Comp), [Value],
{is attribute(,Attribute)}.

rc(X , exists(v(X),and(relation(Rel ,X ,v(X)),Term2))) −→
[Rel], class(v(X),Term2),
{is relation(Rel)}.

rc(X ,numexists(Q ,No,v(X),and(relation(Rel ,X ,v(X)),Term2))) −→
[Rel],numericalquantifier(Q), integerno(No), class(v(X),Term2),
{is relation(Rel)}.

rc(X ,and(relation(Rel ,X ,Var),Term2)) −→
[Rel],varclass(Var ,Term2),
{is relation(Rel)}.

rc(X ,all(v(X), imp(Term2 , relation(Rel ,X ,v(X))))) −→
[Rel ,all], class(v(X),Term2),
{is relation(Rel)}.

rc(X ,all(v(X), imp(relation(Rel ,X ,v(X)),Term2))) −→
[Rel , solely], class(v(X),Term2),
{is relation(Rel)}.

/ ∗∗
Lexicon

∗ ∗/
imp −→ [must].
imp −→ [may].

operator(P1 ,P2 ,and(P1 ,P2)) −→ [and].
operator(P1 ,P2 ,or(P1 ,P2)) −→ [or].
operator(P1 ,P2 ,and(P1 ,neg(P2))) −→ [andnot].
operator(P1 ,P2 ,or(P1 ,neg(P2))) −→ [ornot].

E.1 hlcl-system 195

numericalquantifier(eq) −→ [exactly].
numericalquantifier(ge) −→ [at, least].
numericalquantifier(le) −→ [at,most].

integerno(Int) −→ [Int], {integer(Int)}.
variable(Var) −→ [Var], {userDefVariable(Var)}.

fix scoping(+PredExp,−PredExp)

Fixes the scoping issues that userdefined variables introduces.

fix scoping(neg(exists(Var ,Exp)),Result)←
substract userdefined varmaps(Exp,PrevVarMap),
remove from varmap(,Var ,PrevVarMap,VarMap),
remove varclass components(Exp,Var , ,FixedExp),
insert varclass components list(VarMap,Var ,FixedExp,BetterFixedExp),
add universal quantified variable(neg(exists(Var ,BetterFixedExp)),VarMap,Result).

fix scoping(all(Var ,Exp),Result)←
substract userdefined varmaps(Exp,PrevVarMap),
remove from varmap(,Var ,PrevVarMap,VarMap),
remove varclass components(Exp,Var , ,FixedExp),
insert varclass components list(VarMap,Var ,FixedExp,BetterFixedExp),
add universal quantified variable(all(Var ,BetterFixedExp),VarMap,Result).

remove varclass components(+PredExp,−PredExp).

Removes class expressions which are initated with a userdefined
variable, e.g. varclass components of the expression

remove varclass components(and(varclass(Class,Var),Exp),Var ,Out ,
and(varclass(Class,Var),Texp))←

remove varclass components(Exp, [],Out ,Texp), !.

remove varclass components(and(Exp,varclass(Class,Var)),Var , [],
and(Texp,varclass(Class,Var)))←

remove varclass components(Exp,Var ,Var ,Texp), !.

remove varclass components(and(varclass(,),Exp),Var ,Out ,Texp)←
remove varclass components(Exp,Var ,Out ,Texp), !.

remove varclass components(and(Exp,varclass(,)),Var ,Out ,Texp)←
remove varclass components(Exp,Var ,Out ,Texp), !.

remove varclass components(imp(varclass(Class,Var),Exp),Var ,Out ,

196 Sourcecode

imp(varclass(Class,Var),Texp))←
remove varclass components(Exp, [],Out ,Texp), !.

remove varclass components(imp(Exp,varclass(Class,Var)),Var , [],
imp(Texp,varclass(Class,Var)))←

remove varclass components(Exp,Var ,Var ,Texp), !.

remove varclass components(imp(varclass(,),Exp),Var ,Out ,Texp)←
remove varclass components(Exp,Var ,Out ,Texp), !.

remove varclass components(imp(Exp,varclass(,)),Var ,Out ,Texp)←
remove varclass components(Exp,Var ,Out ,Texp), !.

remove varclass components(class(C ,V),Var ,Var , class(C ,V)).
remove varclass components(varclass(C ,V),Var ,Var ,varclass(C ,V)).
remove varclass components(relation(C ,X ,V),Var ,Var , relation(C ,X ,V)).
remove varclass components(attribute(C ,Comp,Val ,Var1),Var ,Var ,
attribute(C ,Comp,Val ,Var1)).
remove varclass components(unarypredicate(P ,V),Var ,Var ,
unarypredicate(P ,V)).
remove varclass components(binarypredicate(P ,V1 ,V2),Var ,Var ,
binarypredicate(P ,V1 ,V2)).
remove varclass components(neg(Exp),Var ,Var ,neg(Exp)).
remove varclass components(and(Exp1 ,Exp2),VarIn,VarOut ,and(Texp1 ,Texp2))←

remove varclass components(Exp1 ,VarIn,VarInt ,Texp1),
remove varclass components(Exp2 ,VarInt ,VarOut ,Texp2).

remove varclass components(imp(Exp1 ,Exp2),VarIn,VarOut , imp(Texp1 ,Texp2))←
remove varclass components(Exp1 ,VarIn,VarInt ,Texp1),
remove varclass components(Exp2 ,VarInt ,VarOut ,Texp2).

remove varclass components(or(Exp1 ,Exp2),VarIn,VarOut ,or(Texp1 ,Texp2))←
remove varclass components(Exp1 ,VarIn,VarInt ,Texp1),
remove varclass components(Exp2 ,VarInt ,VarOut ,Texp2).

remove varclass components(all(Exp1 ,Exp2),VarIn,VarOut ,all(Exp1 ,Texp2))←
remove varclass components(Exp2 ,VarIn,VarOut ,Texp2).

remove varclass components(exists(Exp1 ,Exp2),VarIn,VarOut , exists(Exp1 ,Texp2))←
remove varclass components(Exp2 ,VarIn,VarOut ,Texp2).

remove varclass components(numexists(Exp1 ,A,B ,Exp2),VarIn,VarOut ,
numexists(Exp1 ,A,B ,Texp2))←

remove varclass components(Exp2 ,VarIn,VarOut ,Texp2).

insert varclass components list

(+VarClassMap, +Var , +PredExp,−PredExp)

Repeatly calls insert varclass components for each varclass element in

E.1 hlcl-system 197

the given classmap.

insert varclass components list([], ,Exp,Exp).
insert varclass components list([[class,Class,Var]|Rest],OuterVar ,Exp,Res)←

insert varclass components(varclass(Class,Var),OuterVar ,Exp, Inter),
insert varclass components list(Rest ,OuterVar , Inter ,Res).

insert varclass components list([[attribute, ,]|Rest],OuterVar ,Exp,Res)←
insert varclass components list(Rest ,OuterVar ,Exp,Res).

insert varclass components(+VarClassExp, +Var , +Exp,−Exp)

Inserts the classes which uses userdefined variables right next to the
first class. The classmap has all userdefined variables,
the Variable marks the first class

insert varclass components(VC ,Outer , imp(Exp1 ,Exp2), imp(Res,Exp2))←
insert varclass components(VC ,Outer ,Exp1 ,Res).

insert varclass components(VC ,Outer ,and(Exp1 ,Exp2),and(Res,Exp2))←
insert varclass components(VC ,Outer ,Exp1 ,Res).

insert varclass components(varclass(C ,V),Outer , class(Class,Outer),
and(class(Class,Outer),varclass(C ,V))).
insert varclass components(varclass(C ,V),Outer ,varclass(Class,Outer),
and(varclass(Class,Outer),varclass(C ,V))).

add universal quantified variable(+PredExp, +VarMap,−PredExp).

Adds universally quantified variables which are in the VarMap to the
predicate expression.

add universal quantified variable(Exp, [],Exp).

add universal quantified variable(Exp, [[, ,Var]|Tail],all(Var ,Res))←
add universal quantified variable(Exp,Tail ,Res).

/ ∗∗
Wellformednesschecks

∗ ∗/

check wellformedness(+PredExp,−VarList)

Succeeds if the predicate expression is well-formed.

check wellformedness(Exp)←

198 Sourcecode

substract varclassmap(Exp,Map),
substract ud varmap(Map,UDMap),
check variable types(UDMap),
check variable count(Exp),
check paths(Exp,Map).

check variable types(+VarClassMap)

Calls check different on every element in the given VarClassMap.
Suceeds if check different succeds on all combinations of the elements.

check variable types([]).
check variable types([[Type,Class,Var]|Rest])←

check different([Type,Class,Var],Rest),
check variable types(Rest).

check variable types(+VarClassEntity , +VarClassMap)

Suceeds if no variables in the VarClassMap refers to different classes
or attributes

check different(, []).
check different([Type,Class,Var1], [[Type,Class,Var1]|Rest])←

check different([Type,Class,Var1],Rest), !.
check different([Type,Class,Var1], [[,Class,Var2]|Rest])←

check different([Type,Class,Var1],Rest),
Var1 \ = Var2 , !.

check different([Type,Class1 ,Var1], [[,Class2 ,Var2]|Rest])←
check different([Type,Class1 ,Var1],Rest),
Class1 \ = Class2 , Var1 \ = Var2 , !.

check different([Type,Class1 ,Var1], [[Type2 , ,Var2]|Rest])←
check different([Type,Class1 ,Var1],Rest),
Type \ = Type2 , Var1 \ = Var2 , !.

check variable count(+Expression)

Uses count variable used to create a VarCountMap, which is then
checked with is countmap ok. This predicate suceeds if every
userdefined variable is used at least twice in the hlcl expression

check variable count(Exp)←
count variable used(Exp, [],Map),
is countmap ok(Map).

E.1 hlcl-system 199

is countmap ok(+VarCountMap)

Suceeds if every entitity in the VarCountMap is used at least twice.

is countmap ok([]).
is countmap ok([[Int ,]|Rest])←

Int is max(2, Int),
is countmap ok(Rest).

count variable used(+PredExp, +VarClassMap,−VarClassMap)

Collects all used userdefined variables in a VarClassNoMap

count variable used(and(Exp1 ,Exp2),MapIn,MapOut)←
count variable used(Exp1 ,MapIn,MapInt),
count variable used(Exp2 ,MapInt ,MapOut).

count variable used(or(Exp1 ,Exp2),MapIn,MapOut)←
count variable used(Exp1 ,MapIn,MapInt),
count variable used(Exp2 ,MapInt ,MapOut).

count variable used(imp(Exp1 ,Exp2),MapIn,MapOut)←
count variable used(Exp1 ,MapIn,MapInt),
count variable used(Exp2 ,MapInt ,MapOut).

count variable used(all(,Exp),MapIn,MapOut)←
count variable used(Exp,MapIn,MapOut).

count variable used(exists(,Exp),MapIn,MapOut)←
count variable used(Exp,MapIn,MapOut).

count variable used(numexists(, , ,Exp),MapIn,MapOut)←
count variable used(Exp,MapIn,MapOut).

count variable used(neg(Exp),MapIn,MapOut)←
count variable used(Exp,MapIn,MapOut).

count variable used(relation(,Var1 ,Var2),MapIn,MapOut)←
add to map(Var1 ,MapIn,MapInt),
add to map(Var2 ,MapInt ,MapOut).

count variable used(binarypredicate(,Var1 ,Var2),MapIn,MapOut)←
add to map(Var1 ,MapIn,MapInt),
add to map(Var2 ,MapInt ,MapOut).

count variable used(unarypredicate(,Var),MapIn,MapOut)←
add to map(Var ,MapIn,MapInt),
add to map(Var ,MapInt ,MapOut).

count variable used(attribute(, ,Val ,),MapIn,MapOut)←
is ud variable(Val),
add to map(Val ,MapIn,MapOut), !.

count variable used(attribute(, , ,),Map,Map).
count variable used(class(,),Map,Map).

200 Sourcecode

count variable used(varclass(,),Map,Map).

add to map(+Var , +VarNoMap,−VarNoMap)

Adds the Var to the given VarNoMap and returns the VarNoMap.

add to map(Val , [], [[1,Val]])←
is ud variable(Val), !.

add to map(, [], []).
add to map(Val , [[Int ,Val]|Rest], [[NewInt ,Val]|Rest])←

NewInt is Int + 1, !.
add to map(Val , [[Int ,AnotherVal]|Rest], [[Int ,AnotherVal]|Result])←

add to map(Val ,Rest ,Result).

check paths(+PredExp, +VarList)

Checks relations and predicates expressions corresponds to the given
conceptual model.

check paths(neg(X),Res)←
check paths(X ,Res).

check paths(or(X ,Y),Res)←
check paths(X ,Res),
check paths(Y ,Res).

check paths(and(X ,Y),Res)←
check paths(X ,Res),
check paths(Y ,Res).

check paths(imp(X ,Y),Res)←
check paths(X ,Res),
check paths(Y ,Res).

check paths(exists(,X),Res)←
check paths(X ,Res).

check paths(numexists(, , ,X),Res)←
check paths(X ,Res).

check paths(all(,X),Res)←
check paths(X ,Res).

check paths(relation(Relation,Var1 ,Var2),List)←
is related(Class1 ,Relation,Class2 ,),
lookup class label(Class1 , ,Var1 ,List),
lookup class label(Class2 , ,Var2 ,List).

check paths(relation(Relation,Var1 ,Var2),List)←

E.1 hlcl-system 201

relation(Class1 ,Relation,Class2),
lookup class label(Class1 , ,Var1 ,List),
lookup class label(Class2 , ,Var2 ,List).

check paths(unarypredicate(Predicate,Var1),List)←
sqlfunction(Predicate, [[,Att1]],),
lookup class label(Class1 , ,Var1 ,List),
has attribute(Class1 ,Att1).

check paths(binarypredicate(Predicate,Var1 ,Var2),List)←
sqlfunction(Predicate, [[,Att1], [,Att2]],),
lookup class label(Class1 , ,Var1 ,List),
lookup class label(Class2 , ,Var2 ,List),
has attribute(Class1 ,Att1),has attribute(Class2 ,Att2).

check paths(class(,),).
check paths(varclass(,),).
check paths(attribute(Att , ,Value,Var),Map)←

lookup class label(Class, ,Var ,Map),
is attribute(Class,Att),
is ud variable(Value).

check paths(attribute(Att , ,Value,Var),Map)←
lookup class label(Class, ,Var ,Map),
is related(Class,Att , ,),
is ud variable(Value).

check paths(attribute(Att , ,Value,Var),Map)←
lookup class label(Class, ,Var ,Map),
is attribute(Class,Att),
is attribute within boundries(Class,Att ,Value).

check paths(attribute(Att , ,Value,Var),Map)←
lookup class label(Class, ,Var ,Map),
is related(Class,Att , ,ActualClass),
is attribute within boundries(ActualClass,Att ,Value).

/ ∗∗
Intermediate Steps

∗ ∗/

perform intermediate steps(+PredExp,−PredExp)

Translates the predicate expression into Datalog(not,or,exists).

perform intermediate steps(Expression,Result)←
replace internal all(Expression,R1),
replace implication(R1 ,R2),
negate expression(R2 ,Result).

202 Sourcecode

replace internal all(+PredExp,−PredExp)
Replaces internal universal quantifiers with a double negated
existential quantifier. This predicate just traverses through the outer
universal quantifiers and uses replace all for the actual removal.

replace internal all(all(A,Exp),all(A,Res))←
replace internal all(Exp,Res), !.

replace internal all(Exp,Res)←
replace all(Exp,Res).

replace all(+PredExp,−PredExp)
Replaces internal universal quantifiers with a double negated
existential quantifier

replace all(all(A, imp(B ,C)),neg(exists(A,and(B ,neg(C)))))← !.
replace all(imp(A,B), imp(C ,D))←

replace all(A,C),
replace all(B ,D), !.

replace all(or(A,B), or(C ,D))←
replace all(A,C),
replace all(B ,D), !.

replace all(and(A,B), and(C ,D))←
replace all(A,C),
replace all(B ,D), !.

replace all(exists(A,B), exists(A,D))←
replace all(B ,D), !.

replace all(numexists(Q ,N ,A,B), numexists(Q ,N ,C ,D))←
replace all(A,C),
replace all(B ,D), !.

replace all(neg(A),neg(B))←
replace all(A,B), !.

replace all(A,A).

replace implication(+PredExp,−PredExp)
Removes the outer implication and negates the whole expression.

replace implication(imp(A,neg(B)),and(C ,D))←
replace implication(A,C),
replace implication(B ,D), !.

replace implication(imp(A,B),and(C ,neg(D)))←
replace implication(A,C),

E.1 hlcl-system 203

replace implication(B ,D), !.
replace implication(or(A,B), or(C ,D))←

replace implication(A,C),
replace implication(B ,D), !.

replace implication(and(A,B), and(C ,D))←
replace implication(A,C),
replace implication(B ,D), !.

replace implication(exists(A,B), exists(C ,D))←
replace implication(A,C),
replace implication(B ,D), !.

replace implication(numexists(Q ,N ,A,B), exists(Q ,N ,C ,D))←
replace implication(A,C),
replace implication(B ,D), !.

replace implication(all(A,B), all(C ,D))←
replace implication(A,C),
replace implication(B ,D), !.

replace implication(neg(A), neg(B))←
replace implication(A,B), !.

replace implication(A,A).

negate expression(+PredExp,−PredExp)

Negates the expression if it is of type no-may, all-must type
expressions are already negated in replace implication

negate expression(all(Var ,Exp),all(Var ,Texp))←
negate expression(Exp,Texp), !.

negate expression(neg(exists(Var ,Exp)),all(Var ,Exp))← !.
negate expression(Exp,Exp).

/ ∗∗
Datalog → SQL

∗ ∗/

subpred to sql(+PredExp,−SQLExp)

Translates the predicate expression into SQL. The different cases are
commented seperatly below

%CASE: Conjunction ”real” And

subpred to sql(and(Exp1 ,Exp2),and(Texp1 ,Texp2), Inside,
VarMapIn,VarMapOut ,RelLUMap,CountFlag)←

is exist expression(Exp1), is exist expression(Exp2),

204 Sourcecode

subpred to sql(Exp1 ,Texp1 , Inside,VarMapIn,VarMapOut1 ,RelLUMap,CountFlag),
subpred to sql(Exp2 ,Texp2 , Inside,VarMapIn,VarMapOut2 ,RelLUMap,CountFlag),
append(VarMapOut1 ,VarMapOut2 ,VarMapOut).

%CASE: Disjunction Or

subpred to sql(or(Exp1 ,Exp2),or(Texp1 ,Texp2), Inside,
VarMapIn,VarMapOut ,RelLUMap,CountFlag)←

subpred to sql(Exp1 ,Texp1 , Inside,VarMapIn,VarMapOut1 ,RelLUMap,CountFlag),
subpred to sql(Exp2 ,Texp2 , Inside,VarMapIn,VarMapOut2 ,RelLUMap,CountFlag),
append(VarMapOut1 ,VarMapOut2 ,VarMapOut).

%CASE: ”Glue” Conjunction

subpred to sql(and(Exp1 ,Exp2),Texp1 , Inside,VarMapIn,VarMapOut ,RelLUMap,
CountFlag)←

subpred to sql(Exp1 ,Texp1 ,Texp2 ,VarMapIn,VarMapOut1 ,RelLUMap,CountFlag),
subpred to sql(Exp2 ,Texp2 , Inside,VarMapOut1 ,VarMapOut ,RelLUMap,CountFlag).

%CASE: Normal Existential Quantifier

subpred to sql(exists(Var ,Exp),Texp, Inside,
VarMapIn,VarMapOut ,RelLUMap,)←

find class(Var ,Exp, class(Class,Var)),
append(RelLUMap, [[Var ,Class]],NewRelLUMap),
subpred to sql(Exp,Texp, Inside,VarMapIn,VarMapOut ,NewRelLUMap,nocount).

%CASE: Nummerical Quantifier

subpred to sql(exists(Comp,No,Var ,Exp), comparison(Comp,Texp,No),
Inside,VarMapIn,VarMapOut ,
RelLUMap,)←

find class(Var ,Exp, class(Class,Var)),
append(RelLUMap, [[Var ,Class]],NewRelLUMap),
subpred to sql(Exp,Texp, Inside,VarMapIn,VarMapOut ,NewRelLUMap, count).

%CASE: Universal Quantifer

subpred to sql(all(Var ,Exp),Texp, Inside,VarMapIn,VarMapOut ,RelLUMap,)←
find class(Var ,Exp, class(Class,Var)),
append(RelLUMap, [[Var ,Class]],NewRelLUMap),
subpred to sql(Exp,Texp, Inside,VarMapIn,VarMapOut ,NewRelLUMap,nocount), !.

%CASE: Universal Quantifier, quantifying a attribute value

subpred to sql(all(,Exp),Texp, Inside,VarMapIn,VarMapOut ,RelLUMap,CF)←
subpred to sql(Exp,Texp, Inside,VarMapIn,VarMapOut ,RelLUMap,CF).

%CASE: Negation

subpred to sql(neg(Exp),notstat(TExp), Inside,VarMapIn,
VarMapOut ,RelLUMap,CF)←

subpred to sql(Exp,TExp, Inside,VarMapIn,VarMapOut ,RelLUMap,CF).

%CASE: The very first class in the extended datalog expression

E.1 hlcl-system 205

subpred to sql(class(Class,Var),
selectstat('*',ClassTable,a,and(CondExp, InsideExp)),
InsideExp, [], [[Var , class(Class,Var),a]], ,)←

conceptual to table(Class,ClassTable,Condition),
condition to sql(a,Condition,CondExp), !.

%CASE: The very first varclass in the extended datalog expression

subpred to sql(varclass(Class,Var),
selectstat('*',ClassTable,a,and(CondExp, InsideExp)),
InsideExp, [], [[Var , class(Class,Var),a]], ,)←

conceptual to table(Class,ClassTable,Condition),
condition to sql(a,Condition,CondExp), !.

%CASE: A class in a relational path

subpred to sql(class(Class,Var),
exists(selectstat('*',ClassTable,CLabel ,and(and(CondExp,EQ2), InsideExp))),
InsideExp,VarMap,NewVarMap, ,)←

conceptual to table(Class,ClassTable,Condition),
condition to sql(CLabel ,Condition,CondExp),
lookup class label(Exp,Var ,ELabel ,VarMap),
get next label(VarMap,CLabel),
exchange expression(Var , class(Class,Var),CLabel ,Exp,ELabel ,VarMap,NewVarMap),
set equal(class(Class,Var),CLabel ,Exp,ELabel ,EQ2).

%CASE: A class in a relational path, before the relation is met

subpred to sql(class(Class,Var),
exists(selectstat('*',ClassTable,CLabel ,and(CondExp, InsideExp))),
InsideExp,VarMap,NewVarMap, ,)←

conceptual to table(Class,ClassTable,Condition),
get next label(VarMap,CLabel),
condition to sql(CLabel ,Condition,CondExp),
append(VarMap, [[Var , class(Class,Var),CLabel]],NewVarMap), !.

%CASE: A varclass in a relational path, before the relation is met

subpred to sql(varclass(Class,Var),
exists(selectstat('*',ClassTable,CLabel ,and(CondExp,and(NegExp, InsideExp)))),
InsideExp,VarMap,NewVarMap, ,)←

conceptual to table(Class,ClassTable,Condition),
get next label(VarMap,CLabel),
condition to sql(CLabel ,Condition,CondExp),
make negation expression(Class,CLabel ,VarMap,NegExp),
append(VarMap, [[Var , class(Class,Var),CLabel]],NewVarMap), !.

%CASE: A varclass in the relational path

subpred to sql(varclass(Class,Var),
exists(selectstat('*',ClassTable,CLabel ,and(and(CondExp,EQ2), InsideExp))),

206 Sourcecode

InsideExp,VarMap,NewVarMap, ,)←
conceptual to table(Class,ClassTable,Condition),
condition to sql(CLabel ,Condition,CondExp),
lookup class label(Exp,Var ,ELabel ,VarMap),
get next label simple(ELabel ,CLabel),
exchange expression(Var , class(Class,Var),CLabel ,Exp,ELabel ,VarMap,NewVarMap),
set equal(class(Class,Var),CLabel ,Exp,ELabel ,EQ2).

%CASE: A relation relating the same variables

subpred to sql(relation(Relation,Var ,Var),
exists(selectstat('*',RelationTable,RLabel ,and(EQ1 , InsideExp))),
InsideExp,VarMap,NewVarMap,LookUpInMe,)←

lookup class(Class,Var ,LookUpInMe),
lookup class label(class(Class,Var),Var ,ELabel ,VarMap),
conceptual relation to table(Class,Relation,Class,RelationTable, []),
get next label(VarMap,RLabel),
append(VarMap, [[dummy, relation(Relation,Var ,Var),RLabel]],NewVarMap),
set equal(relation(Relation,Var ,Var),RLabel , class(Class,Var),ELabel ,EQ1), !.

%CASE: A relation relating already translated classes

subpred to sql(relation(Relation,Var1 ,Var2),
exists(selectstat('*',RelationTable,RLabel ,and(and(EQ1 ,EQ2), InsideExp))),
InsideExp,VarMap,NewVarMap,LookUpInMe,)←

lookup class(Class2 ,Var2 ,LookUpInMe),
lookup class label(class(Class,Var1),Var ,ELabel ,VarMap),
lookup class label(class(Class2 ,Var2),Var2 ,ELabel2 ,VarMap),
conceptual relation to table(Class,Relation,Class2 ,RelationTable, []),
get next label(VarMap,RLabel),
append(VarMap, [[dummy, relation(Relation,Var1 ,Var2),RLabel]],NewVarMap),
set equal(relation(Relation,Var1 ,Var2),RLabel , class(Class,Var),ELabel ,EQ1),
set equal(relation(Relation,Var1 ,Var2),RLabel , class(Class2 ,Var2),ELabel2 ,EQ2), !.

%CASE: A relation relating a translated class to a non−translated class

subpred to sql(relation(Relation,Var1 ,Var2),
exists(selectstat('*',RelationTable,RLabel ,and(EQ1 , InsideExp))),
InsideExp,VarMap,NewVarMap,LookUpInMe,nocount)←

lookup class(Class2 ,Var2 ,LookUpInMe),
lookup class label(class(Class,Var),Var ,ELabel ,VarMap),
conceptual relation to table(Class,Relation,Class2 ,RelationTable, []),
get next label(VarMap,RLabel),
set equal(relation(Relation,Var1 ,Var2),RLabel , class(Class,Var),ELabel ,EQ1),
append(VarMap, [[Var2 , relation(Relation,Var1 ,Var2),RLabel]],NewVarMap).

%CASE: A relation right after a nummerical quantifier

subpred to sql(relation(Relation,Var1 ,Var2),
exists(selectstat('COUNT(*)',RelationTable,RLabel ,and(EQ1 , InsideExp))),

E.1 hlcl-system 207

InsideExp,VarMap,NewVarMap,LookUpInMe, count)←
lookup class(Class2 ,Var2 ,LookUpInMe),
lookup class label(class(Class,Var),Var ,ELabel ,VarMap),
conceptual relation to table(Class,Relation,Class2 ,RelationTable, []),
get next label(VarMap,RLabel),
set equal(relation(Relation,Var1 ,Var2),RLabel , class(Class,Var),ELabel ,EQ1),
append(VarMap, [[Var2 , relation(Relation,Var1 ,Var2),RLabel]],NewVarMap).

%CASE: The first time an attribute with a userdefined variable as value,

% which is located at a parent in a ISA−Hierachy is met.

subpred to sql(attribute(Att , eq,Val ,Var),
selectstat('*',ClassTable,CLabel ,and(EQ1 ,and(CondExp,
and(comparison(eq, (CLabel ,Att), (AttLabel ,Att)), Inside)))),
Inside,VarMap,VarMap, ,)←

is ud variable(Val),
lookup class label(class(Class,Var),Var ,ELabel ,VarMap),
lookup class label(Att ,Val ,AttLabel ,VarMap),
is related(Class,Att , ,SuperClass),
conceptual to table(SuperClass,ClassTable,Condition),
condition to sql(CLabel ,Condition,CondExp),
get next label(VarMap,CLabel),
set equal(class(SuperClass,Var),CLabel , class(Class,Var),ELabel ,EQ1), !.

%CASE: The next time an attribute with a userdefined variable as value,

% which is located at a parent in a ISA−Hierachy is met.

subpred to sql(attribute(Att , eq,Val ,Var),
and(comparison(eq, (ELabel ,Att), (AttLabel ,Att)), Inside),
Inside,VarMap,VarMap, ,)←

is ud variable(Val),
lookup class label(class(,Var),Var ,ELabel ,VarMap),
lookup class label(Att ,Val ,AttLabel ,VarMap), !.

%CASE: The first time an attribute, which is located at a parent in a ISA−Hierachy is met.

subpred to sql(attribute(Att , eq,Val ,Var),
selectstat('*',ClassTable,CLabel ,and(EQ1 ,and(CondExp, Inside))),
Inside,VarMap,NewVarMap, ,)←

lookup class label(class(Class,Var),Var ,ELabel ,VarMap),
is ud variable(Val),
is related(Class,Att , ,SuperClass),
conceptual to table(SuperClass,ClassTable,Condition),
condition to sql(CLabel ,Condition,CondExp),
get next label(VarMap,CLabel),
set equal(class(SuperClass,Var),CLabel , class(Class,Var),ELabel ,EQ1),
append(VarMap, [[Val ,Att ,CLabel]],NewVarMap), !.

%CASE: The next time an attribute, which is located at a parent in a ISA−Hierachy is met.

208 Sourcecode

subpred to sql(attribute(Att , eq,Val ,Var),
Inside, Inside,VarMap,NewVarMap, ,)←

lookup class label(class(,Var),Var ,ELabel ,VarMap),
is ud variable(Val),
append(VarMap, [[Val ,Att ,ELabel]],NewVarMap), !.

%CASE: A nummerically quantified attribute which is located at a parent in a ISA−Hierachy.

subpred to sql(attribute(Att ,Comp,Val ,Var),
and(selectstat('*',ClassTable,CLabel ,and(EQ1 ,and(CondExp,
comparison(Comp, (ELabel ,Att),Val)))), Inside),
Inside,VarMap,VarMap, ,)←

lookup class label(class(Class,Var),Var ,ELabel ,VarMap),
is related(Class,Att , ,SuperClass),
conceptual to table(SuperClass,ClassTable,Condition),
condition to sql(CLabel ,Condition,CondExp),
get next label(VarMap,CLabel),
set equal(class(SuperClass,Var),CLabel , class(Class,Var),ELabel ,EQ1), !.

%CASE: All other attributes not meeting any of the above descriptions.

subpred to sql(attribute(Att ,Comp,Val ,Var),
and(comparison(Comp, (ELabel ,Att),Val), Inside),
Inside,VarMap,VarMap, ,)←

lookup class label(class(,),Var ,ELabel ,VarMap).

%CASE: A unary predicate which has its argument in a parent in a ISA−hierachy.

subpred to sql(unarypredicate(Name,Var),
and(selectstat('*',ClassTable,CLabel ,and(EQ1 ,and(CondExp,Result))), Inside),
Inside,VarMap,VarMap, ,)←

lookup class label(class(Class,Var),Var ,ELabel ,VarMap),
get next label(VarMap,CLabel),
sqlfunction(Name, [[CLabel ,Att]],Result),
is related(Class,Att , ,SuperClass),
conceptual to table(SuperClass,ClassTable,Condition),
condition to sql(CLabel ,Condition,CondExp),
set equal(class(Class,Var),ELabel , class(SuperClass,Var),CLabel ,EQ1), !.

%CASE: All other unary predicates.

subpred to sql(unarypredicate(Name,Var),
and(Result , Inside),
Inside,VarMap,VarMap, ,)←

lookup class label(class(,Var),Var ,Label ,VarMap),
sqlfunction(Name, [[Label ,]],Result).

%CASE: Binary predicate which has both arguments in parents in an ISA−hierachy

subpred to sql(binarypredicate(Name,Var ,Var2),
and(selectstat('*',ClassTable,CLabel ,and(EQ1 ,and(CondExp,

E.1 hlcl-system 209

selectstat('*',ClassTable2 ,CLabel2 ,and(EQ2 ,and(CondExp2 ,Result)))))), Inside),
Inside,VarMap,VarMap, ,)←

lookup class label(class(Class,Var),Var ,ELabel ,VarMap),
get next label(VarMap,CLabel),
lookup class label(class(Class2 ,Var2),Var2 ,ELabel2 ,VarMap),
get next label simple(CLabel ,CLabel2),
sqlfunction(Name, [[CLabel ,Att], [CLabel2 ,Att2]],Result),
is related(Class,Att , ,SuperClass),
is related(Class2 ,Att2 , ,SuperClass2),
conceptual to table(SuperClass,ClassTable,Condition),
condition to sql(CLabel ,Condition,CondExp),
conceptual to table(SuperClass2 ,ClassTable2 ,Condition2),
condition to sql(CLabel2 ,Condition2 ,CondExp2),
set equal(class(SuperClass,Var),CLabel , class(Class,Var),ELabel ,EQ1),
set equal(class(SuperClass2 ,Var2),CLabel2 , class(Class2 ,Var2),ELabel2 ,EQ2), !.

%CASE: Binary predicate which its first arguments in parent in an ISA−hierachy

subpred to sql(binarypredicate(Name,Var ,Var2),
and(selectstat('*',ClassTable,CLabel ,and(EQ1 ,and(CondExp,Result))), Inside),
Inside,VarMap,VarMap, ,)←

lookup class label(class(Class,Var),Var ,ELabel ,VarMap),
get next label(VarMap,CLabel),
lookup class label(class(,Var2),Var2 ,Label2 ,VarMap),
sqlfunction(Name, [[CLabel ,Att], [Label2 ,]],Result),
is related(Class,Att , ,SuperClass),
conceptual to table(SuperClass,ClassTable,Condition),
condition to sql(CLabel ,Condition,CondExp),
set equal(class(SuperClass,Var),CLabel , class(Class,Var),ELabel ,EQ1), !.

%CASE: Binary predicate which its second arguments in parent in an ISA−hierachy

subpred to sql(binarypredicate(Name,Var2 ,Var),
and(selectstat('*',ClassTable,CLabel ,and(EQ1 ,and(CondExp,Result))), Inside),
Inside,VarMap,VarMap, ,)←

lookup class label(class(Class,Var),Var ,ELabel ,VarMap),
get next label(VarMap,CLabel),
lookup class label(class(,Var2),Var2 ,Label2 ,VarMap),
sqlfunction(Name, [[Label2 ,], [CLabel ,Att]],Result),
is related(Class,Att , ,SuperClass),
conceptual to table(SuperClass,ClassTable,Condition),
condition to sql(CLabel ,Condition,CondExp),
set equal(class(SuperClass,Var),CLabel , class(Class,Var),ELabel ,EQ1), !.

%CASE: All other binary predicates.

subpred to sql(binarypredicate(Name,Var1 ,Var2),
and(Result , Inside), Inside,VarMap,VarMap, ,)←

210 Sourcecode

lookup class label(class(,Var1),Var1 ,Label1 ,VarMap),
lookup class label(class(,Var2),Var2 ,Label2 ,VarMap),
sqlfunction(Name, [[Label1 ,], [Label2 ,]],Result).

make negation expression(+Classexp1 , +Label1 ,VarMap,−EqExp)

Looks up in the VarMap to see if a class is already defined which has
the same type and userdefined variable. In that case a sql expression
setting the two classes different is returned. This is used when we
declare different variables of same time.

make negation expression(, , [], [])← !.

make negation expression(Class,CLabel , [[Var , class(Class,Var),Olabel]|Rest],
and(Exp,RestExp))←

is ud variable(Var),
get class column names(Class,CID),
make not equal exp(CLabel ,CID ,Olabel ,CID ,Exp),
make negation expression(Class,CLabel ,Rest ,RestExp), !.

make negation expression(Class,CLabel , [|Rest],RestExp)←
make negation expression(Class,CLabel ,Rest ,RestExp), !.

make not equal exp(+Entity1 , +AttList1 , +Entity2 , +AttList2 ,−EqExp)

Only Used by the make negation expressoin predicate, constructs the
actual SQL comparison expression

make not equal exp(Ent1 , [Att1],Ent2 , [Att2],
notequals((Ent1 ,Att1), (Ent2 ,Att2)))← !.

make not equal exp(Ent1 , [Att1 |Tail1],Ent2 , [Att2 |Tail2],
and(notequals((Ent1 ,Att1), (Ent2 ,Att2)),Result))←

make not equal exp(Ent1 ,Tail1 ,Ent2 ,Tail2 ,Result).

set equal(+Exp, +Exp,−EqExp)

Sets the class or the relation (both tables in SQL) equal, no matter
how many keys they have in common.

set equal(relation(Relation,ClassVar ,ClassVar),RLabel ,
class(Class,ClassVar),CLabel ,and(Result1 ,Result2))←

get class column names(Class,CID),
get relation column names(Relation,RID1 ,RID2),

E.1 hlcl-system 211

make equal exp(RLabel ,RID1 ,CLabel ,CID ,Result1),
make equal exp(RLabel ,RID2 ,CLabel ,CID ,Result2), !.

set equal(relation(Relation,ClassVar ,),RLabel ,
class(Class,ClassVar),CLabel ,Result)←

get class column names(Class,CID),
get relation column names(Relation,RID ,),
make equal exp(RLabel ,RID ,CLabel ,CID ,Result).

set equal(relation(Relation, ,ClassVar),RLabel ,
class(Class,ClassVar),CLabel ,Result)←

get class column names(Class,CID),
get relation column names(Relation, ,RID),
make equal exp(RLabel ,RID ,CLabel ,CID ,Result).

set equal(class(Class,ClassVar),CLabel ,
relation(Relation, ,ClassVar),RLabel ,Result)←

get class column names(Class,CID),
get relation column names(Relation, ,RID),
make equal exp(CLabel ,CID ,RLabel ,RID ,Result).

set equal(class(Class,ClassVar),CLabel ,
relation(Relation,ClassVar ,),RLabel ,Result)←

get class column names(Class,CID),
get relation column names(Relation,RID ,),
make equal exp(CLabel ,CID ,RLabel ,RID ,Result).

set equal(class(Class,ClassVar),CLabel ,
class(Class1 ,ClassVar),CLabel1 ,Result)←

get class column names(Class,CID),
get class column names(Class1 ,CID1),
make equal exp(CLabel ,CID ,CLabel1 ,CID1 ,Result).

make equal exp(+Entity1 , +AttList1 , +Entity2 , +AttList2 ,−EqExp)

Only used by the set equal predicate, constructs the actual SQL equal
expression

make equal exp(Ent1 , [Att1],Ent2 , [Att2], equals((Ent1 ,Att1), (Ent2 ,Att2)))← !.

make equal exp(Ent1 , [Att1 |Tail1],Ent2 , [Att2 |Tail2],
and(equals((Ent1 ,Att1), (Ent2 ,Att2)),Result))←

make equal exp(Ent1 ,Tail1 ,Ent2 ,Tail2 ,Result).

212 Sourcecode

get next label simple(+Char ,−Char)

Given a char (label) it returns the next char in the alfabet.

get next label simple(Label ,Res)←
char code(Label , Int),
NextInt is Int + 1,
char code(Res,NextInt).

get next label(+LabelList ,−Label)

Given a char-list (label) it returns the next char in the alfabet not in
the list.

get next label([],a)← !.
get next label(List ,Res)←

find biggest(List , Int),
NextInt is Int + 1,
char code(Res,NextInt), !.

find biggest(+LabelList ,−Label)

Given VarLabelMap it returns the next char (label) in the alfabet not
in the list.

find biggest([], 0).
find biggest([[, ,Label]|Rest],Result)←

char code(Label , Int),
find biggest(Rest ,Res),
Result is max(Int ,Res).

conceptual to table

(+Class,-Tablename,-Condition)
Given a class it returns the corresponding table in the database and
any conditions.

conceptual to table(Class,Table,Condition)←
classmap(Class,Table,Condition,).

conceptual relation to table

(+Class1 , +Relation, +Class2 ,−Tablename,−Condition)

E.1 hlcl-system 213

Given a relation and its connecting classes it returns the
corresponding table in the database and any conditions.

conceptual relation to table(Class1 ,Relation,Class2 ,Table, [])←
relmap(Class1 ,Relation,Class2 ,Table, ,).

condition to sql(+Label , +Condition,−SQLSubExp)

Given a label and a condition (from conceptual model) the
corresponding comparison in SQL is returned

condition to sql(, [], []).
condition to sql(Label , [Att ,Val], equals((Label ,Att),Val)).

is exist expression(+PredExp)

Suceeds if the expression is starting with a (negated)
existential/numerrical quantifier.

is exist expression(exists(,)).
is exist expression(neg(exists(,))).
is exist expression(exists(, , ,)).
is exist expression(neg(exists(, , ,))).

/ ∗∗
Intermediate → pure Datalog(neg)

∗ ∗/

pred to datalog(+PredExp,−DatExp)

Converts a Predicate expression into a ”pure” Datalog(Neg)
expression

pred to datalog(Pexp,
['N/A - Cannot express nummerical quantification in datalog'])←

contain nummerical quantifier(Pexp), !.

pred to datalog(Pexp,Res)←
reduce scope of negation(Pexp,Pexp1),
distribute conjunctions(Pexp1 ,Pexp2),
remove outer universal quantifiers(Pexp2 ,Pexp3),
rewrite existential quantifiers(Pexp3 ,Pexp4),
remove disjunctions list(Pexp4 ,Res).

214 Sourcecode

contain nummerical quantifier(+PredExp)

Suceeds if the expression contains a nummerical quantification.

contain nummerical quantifier(exists(, , ,)).
contain nummerical quantifier(attribute(, le, ,)).
contain nummerical quantifier(attribute(,ge, ,)).
contain nummerical quantifier(all(,Exp))←

contain nummerical quantifier(Exp).
contain nummerical quantifier(exists(,Exp))←

contain nummerical quantifier(Exp).
contain nummerical quantifier(neg(Exp))←

contain nummerical quantifier(Exp).
contain nummerical quantifier(and(Exp,))←

contain nummerical quantifier(Exp).
contain nummerical quantifier(and(,Exp))←

contain nummerical quantifier(Exp).
contain nummerical quantifier(or(Exp,))←

contain nummerical quantifier(Exp).
contain nummerical quantifier(or(,Exp))←

contain nummerical quantifier(Exp).

remove disjunctions list(+PredExpList ,−PredExpList)

Applies remove disjunctions on every clause in the clause list

remove disjunctions list([], []).

remove disjunctions list([leftimp(Val ,Exp)|Tail],FinalResult)←
remove disjunctions(Val ,Exp,Res),
remove disjunctions list(Tail ,Result),
append(Res,Result ,FinalResult).

remove disjunctions(+Value,−PredExp, +PredExp)

Breaks up disjunctions and returns them in a clause list.

remove disjunctions(Val ,or(Exp1 ,Exp2),Res)←
remove disjunctions(Val ,Exp1 ,Texp1),
remove disjunctions(Val ,Exp2 ,Texp2),
append(Texp1 ,Texp2 ,Res), !.

remove disjunctions(Val ,Exp, [leftimp(Val ,Exp)]).

distribute conjunctions(+PredExp,−PredExp)

E.1 hlcl-system 215

Distributes conjunctions and returns the predicate expression.

distribute conjunctions(and(Exp1 ,or(Exp2 ,Exp3)),or(Texp1 ,Texp2))←
distribute conjunctions(and(Exp1 ,Exp2),Texp1),
distribute conjunctions(and(Exp1 ,Exp3),Texp2), !.

distribute conjunctions(and(or(Exp1 ,Exp2),Exp3),or(Texp1 ,Texp2))←
distribute conjunctions(and(Exp1 ,Exp3),Texp1),
distribute conjunctions(and(Exp2 ,Exp3),Texp2), !.

distribute conjunctions(or(Exp1 ,Exp2),or(Texp1 ,Texp2))←
distribute conjunctions(Exp1 ,Texp1),
distribute conjunctions(Exp2 ,Texp2).

distribute conjunctions(and(Exp1 ,Exp2),or(and(Texp11 ,Texp2),
and(Texp12 ,Texp2)))←

distribute conjunctions(Exp1 ,or(Texp11 ,Texp12)),
distribute conjunctions(Exp2 ,Texp2), !.

distribute conjunctions(and(Exp1 ,Exp2),or(and(Texp1 ,Texp21),and(Texp1 ,Texp22)))←
distribute conjunctions(Exp1 ,Texp1),
distribute conjunctions(Exp2 ,or(Texp21 ,Texp22)), !.

distribute conjunctions(and(Exp1 ,Exp2),or(and(Texp1 , exists(Var ,Texp21)),
and(Texp1 , exists(Var ,Texp22))))←

distribute conjunctions(Exp1 ,Texp1),
distribute conjunctions(Exp2 , exists(Var ,or(Texp21 ,Texp22))), !.

distribute conjunctions(and(Exp1 ,Exp2),and(Texp1 ,Texp2))←
distribute conjunctions(Exp1 ,Texp1),
distribute conjunctions(Exp2 ,Texp2).

distribute conjunctions(neg(Exp1),neg(Texp1))←
distribute conjunctions(Exp1 ,Texp1).

distribute conjunctions(all(Var ,Exp1),all(Var ,Texp1))←
distribute conjunctions(Exp1 ,Texp1).

distribute conjunctions(exists(Var ,Exp1), exists(Var ,Texp1))←
distribute conjunctions(Exp1 ,Texp1).

distribute conjunctions(leftimp(Var ,Exp1), leftimp(Var ,Texp1))←
distribute conjunctions(Exp1 ,Texp1).

distribute conjunctions(relation(Relation,Var1 ,Var2), relation(Relation,Var1 ,Var2)).
distribute conjunctions(class(Class,Var), class(Class,Var)).
distribute conjunctions(varclass(Class,Var),varclass(Class,Var)).
distribute conjunctions(unarypredicate(Predicate,Var),
unarypredicate(Predicate,Var)).
distribute conjunctions(binarypredicate(Predicate,Var1 ,Var2),
binarypredicate(Predicate,Var1 ,Var2)).

216 Sourcecode

distribute conjunctions(attribute(Att ,C ,Val ,Var),attribute(Att ,C ,Val ,Var)).
distribute conjunctions(function(Class,Var), function(Class,Var)).

reduce scope of negation(+PredExp,−PredExp)

Moves negation inwards in the expression, using DemMorgan and
double-negation theorems.

reduce scope of negation(neg(and(Exp1 ,Exp2)),or(Texp1 ,Texp2))←
reduce scope of negation(neg(Exp1),Texp1),
reduce scope of negation(neg(Exp2),Texp2), !.

reduce scope of negation(neg(or(Exp1 ,Exp2)),and(Texp1 ,Texp2))←
reduce scope of negation(neg(Exp1),Texp1),
reduce scope of negation(neg(Exp2),Texp2), !.

reduce scope of negation(neg(neg(Exp)),Texp1)←
reduce scope of negation(Exp,Texp1), !.

reduce scope of negation(neg(exists(Var ,Exp)),neg(exists(Var ,Texp1)))←
reduce scope of negation(Exp,Texp1), !.

reduce scope of negation(neg(Exp),neg(Texp1))←
reduce scope of negation(Exp,Texp1).

reduce scope of negation(and(Exp1 ,Exp2),and(Texp1 ,Texp2))←
reduce scope of negation(Exp1 ,Texp1),
reduce scope of negation(Exp2 ,Texp2).

reduce scope of negation(or(Exp1 ,Exp2),or(Texp1 ,Texp2))←
reduce scope of negation(Exp1 ,Texp1),
reduce scope of negation(Exp2 ,Texp2).

reduce scope of negation(all(Var ,Exp),all(Var ,Texp))←
reduce scope of negation(Exp,Texp).

reduce scope of negation(exists(Var ,Exp), exists(Var ,Texp))←
reduce scope of negation(Exp,Texp).

reduce scope of negation(relation(Relation,Var1 ,Var2),
relation(Relation,Var1 ,Var2)).
reduce scope of negation(class(Class,Var), class(Class,Var)).
reduce scope of negation(varclass(Class,Var),varclass(Class,Var)).
reduce scope of negation(unarypredicate(Predicate,Var),
unarypredicate(Predicate,Var)).
reduce scope of negation(binarypredicate(Predicate,Var1 ,Var2),
binarypredicate(Predicate,Var1 ,Var2)).
reduce scope of negation(attribute(Att ,C ,Val ,Var),attribute(Att ,C ,Val ,Var)).

E.1 hlcl-system 217

rewrite existential quantifiers(+PredExp,−PredExp)

A function replacing existential quantifiers by functions.

rewrite existential quantifiers(Exp,Res)←
remove existential quantifiers(Exp, [], , 0, ,List ,Dexp),
collect functions(Dexp,List ,Res).

collect functions(+PredExp, +PredExpList ,−PredExpList)

appends the Predicate expression as an element in the list, returning
a new list

collect functions(Exp1 ,List ,Res)←
append([leftimp(error,Exp1)],List ,Res).

remove existential quantifiers

(+PredExp,+VarListIn,-VarListOut,+FuncID1,-FuncID2,-Predexp1,-
PredExpList)
Removes existential quantifiers, by breaking existentially quantified
parts out in separate clauses.
The VarList’s are used to keep variables which should be used in the
function argument. The FuncID’s are used to lookup which function
number should be used,
and the result is both one clause, corresponding to the first clause,
and a number of extra clauses

remove existential quantifiers(exists(,and(relation(Name,Var ,Anothervar),Exp)),
AttIn,
AttIn,
FuncID ,
ResID ,
ExtraFunctions, function(NewFuncID ,AttList))←

NewFuncID is FuncID + 1,
find attribute variables(Var ,AttIn,AttList),
remove existential quantifiers(and(relation(Name,Var ,Anothervar),Exp), [], ,
NewFuncID ,ResID ,ExtraExtraFunction, IRes),
append([leftimp(function(NewFuncID ,AttList), IRes)],
ExtraExtraFunction,ExtraFunctions), !.

remove existential quantifiers(exists(,and(Exp,neg(relation(Name,Var ,Anothervar)))),
AttIn,
AttIn,
FuncID ,

218 Sourcecode

ResID ,
ExtraFunctions, function(NewFuncID ,AttList))←

NewFuncID is FuncID + 1,
find attribute variables(Var ,AttIn,AttList),
remove existential quantifiers(and(Exp,neg(relation(Name,Var ,Anothervar))), [], ,
NewFuncID ,ResID ,ExtraExtraFunction, IRes),
append([leftimp(function(NewFuncID ,AttList), IRes)],
ExtraExtraFunction,ExtraFunctions), !.

remove existential quantifiers(and(Exp1 ,Exp2),AttIn,AttOut ,FuncID ,
FuncID2 ,Functions,and(Texp1 ,Texp2))←

remove existential quantifiers(Exp1 ,AttIn,AttInt ,FuncID ,FuncID1 ,
Functions1 ,Texp1),
remove existential quantifiers(Exp2 ,AttInt ,AttOut ,FuncID1 ,FuncID2 ,
Functions2 ,Texp2),
append(Functions1 ,Functions2 ,Functions).

remove existential quantifiers(or(Exp1 ,Exp2),AttIn,AttOut ,FuncID ,FuncID2 ,
Functions,or(Texp1 ,Texp2))←

remove existential quantifiers(Exp1 ,AttIn,AttInt ,FuncID ,FuncID1 ,
Functions1 ,Texp1),
remove existential quantifiers(Exp2 ,AttInt ,AttOut ,FuncID1 ,FuncID2 ,
Functions2 ,Texp2),
append(Functions1 ,Functions2 ,Functions).

remove existential quantifiers(neg(Exp1),AttIn,AttOut , ID1 , ID2 ,Functions,
neg(Texp1))←

remove existential quantifiers(Exp1 ,AttIn,AttOut , ID1 , ID2 ,Functions,Texp1).

remove existential quantifiers(relation(Relation,Var1 ,Var2),Att ,Att , ID , ID , [],
relation(Relation,Var1 ,Var2)).
remove existential quantifiers(class(Class,Var),Att ,Att , ID , ID , [],
class(Class,Var)).
remove existential quantifiers(varclass(Class,Var),Att ,Att , ID , ID , [],
varclass(Class,Var)).
remove existential quantifiers(unarypredicate(Predicate,Var),Att ,Att , ID , ID , [],
unarypredicate(Predicate,Var)).
remove existential quantifiers(binarypredicate(Predicate,Var1 ,Var2),Att ,Att ,
ID , ID , [],
binarypredicate(Predicate,Var1 ,Var2)).
remove existential quantifiers(attribute(Att ,C ,Val ,Var),AttIn,AttNew , ID , ID , [],
attribute(Att ,C ,Val ,Var))←

is ud variable(Val),append(AttIn, [[Var ,Val]],AttNew), !.
remove existential quantifiers(attribute(Att ,C ,Val ,Var),AttIn,AttIn, ID , ID , [],
attribute(Att ,C ,Val ,Var)).

E.1 hlcl-system 219

find attribute variables(+Var , +VarMap,−VarList)

Given a VarMap and a Variable it returns a list of the variable and
any variables in the VarMap

find attribute variables(Var , [], [Var]).

find attribute variables(Var , [[Var ,Val]|Rest], [Val |Res])←
find attribute variables(Var ,Rest ,Res), !.

find attribute variables(Var , [[,]|Rest],Res)←
find attribute variables(Var ,Rest ,Res).

remove outer universal quantifers(+PredExp,−PredExp)

Removes outer universal quantifiers.

remove outer universal quantifiers(all(,Exp),Result)←
remove outer universal quantifiers(Exp,Result), !.

remove outer universal quantifiers(Exp,Exp).

/ ∗∗
Aux . Functions

∗ ∗/
%%

% VarMaps Aux. Functions

%%

substract varclassmap(+PredExp,−VarList)

Substracts all variables and their classes from a predicate logic
expression and at them to a list which is output.

substract varclassmap(neg(X),Res)←
substract varclassmap(X ,Res).

substract varclassmap(or(X ,Y),Res)←
substract varclassmap(X ,Res1),
substract varclassmap(Y ,Res2),
merge set(Res1 ,Res2 ,Res).

substract varclassmap(and(X ,Y),Res)←
substract varclassmap(X ,Res1),
substract varclassmap(Y ,Res2),
merge set(Res1 ,Res2 ,Res).

220 Sourcecode

substract varclassmap(imp(X ,Y),Res)←
substract varclassmap(X ,Res1),
substract varclassmap(Y ,Res2),
merge set(Res1 ,Res2 ,Res).

substract varclassmap(exists(,X),Res)←
substract varclassmap(X ,Res).

substract varclassmap(numexists(, , ,X),Res)←
substract varclassmap(X ,Res).

substract varclassmap(all(,X),Res)←
substract varclassmap(X ,Res).

substract varclassmap(varclass(Class,Var), [[class,Class,Var]]).

substract varclassmap(class(Class,Var), [[class,Class,Var]]).

substract varclassmap(attribute(Att , eq,Var ,), [[attribute,Att ,Var]])←
is ud variable(Var), !.

substract varclassmap(attribute(, , ,), []).
substract varclassmap(relation(, ,), []).
substract varclassmap(unarypredicate(,), []).
substract varclassmap(binarypredicate(, ,), []).

substract userdefined varmaps(+PredExp,−VarList).

Substracts all userdefined variables in the Predicate expression and
returns them in the variable list

substract userdefined varmaps(Exp,Res)←
substract varclassmap(Exp,Map),
substract ud varmap(Map,Res).

substract ud varmap(+VarMap1 ,−VarMap2).

Returns every element from VarMap1 which has a userdefined
variable in VarMap2

substract ud varmap([], []).
substract ud varmap([[Type,Class,Var]|Rest], [[Type,Class,Var]|Res])←

is ud variable(Var),
substract ud varmap(Rest ,Res), !.

substract ud varmap([[, ,]|Rest],Res)←
substract ud varmap(Rest ,Res).

E.1 hlcl-system 221

substract ud vars(+VarMap,−VarList).

Returns every Variable from VarMap which has a userdefined variable
in the list VarList.

substract ud vars([], []).
substract ud vars([[, ,Var]|Rest], [Var |Res])←

is ud variable(Var),
substract ud vars(Rest ,Res), !.

substract ud vars([[, ,]|Rest],Res)←
substract ud vars(Rest ,Res).

remove from varmap(+Class , +Var , +VarMap1 ,−VarMap2).

Removes the [[class,Class,Var]] element from VarMap1 and returns it
in VarMap2

remove from varmap(, , [], []).
remove from varmap(Class,Var , [[class,Class,Var]|Rest],Rest)← !.
remove from varmap(Class,Var , [[T2 ,C2 ,V2]|Rest], [[T2 ,C2 ,V2]|Result])←

remove from varmap(Class,Var ,Rest ,Result).

is in varmap(+Class , +Var , +VarMap).

Suceeds if the element [class,Class,Var] is in the VarMap.

is in varmap(Class,Var , [[class,Class,Var]|]).
is in varmap(Class,Var , [[, ,]|Rest])←

is in varmap(Class,Var ,Rest).

lookup class(?Class , ?Var , +VarMap)

looks up a class or a variable in the given variable list

lookup class(Class,Var , [[Var ,Class]]).
lookup class(Class,Var , [[Var ,Class]|]).
lookup class(Class,Var , [[,]|Rest])←

lookup class(Class,Var ,Rest).

lookup class label(?Class , ?Var , ?Label , +VarLabelMap)

222 Sourcecode

looks up a class or a variable in the given VarClassMap /
VarLabelMap.

lookup class label(Class,Var ,Label , [[Var ,Class,Label]]).
lookup class label(Class,Var ,Label , [[Var ,Class,Label]|]).
lookup class label(Class,Var ,Label , [[, ,]|Rest])←

lookup class label(Class,Var ,Label ,Rest).

exchange expression(Var ,To,TLabel ,From,FLabel ,VarMap,NVarMap)

Exchanges the [Var,To,TLabel] to [Var,From,FLabel] in the VarMap
and returns it in NVarMap.

exchange expression(Var ,To,ToLabel ,From,FromLabel ,
[[Var ,From,FromLabel]|Rest], [[Var ,To,ToLabel]|Rest]).

exchange expression(Var ,To,ToLabel ,From,FromLabel , [[A,B ,C]|Rest],
[[A,B ,C]|Result])←

exchange expression(Var ,To,ToLabel ,From,FromLabel ,Rest ,Result).

%%%

% Conceptual Model Aux. Functions

%%%

is relation(+Expression)

Succeeds if the expression is a relation in the conceptual model

is relation(Relation)←
relation(,Relation,).

is related(+Expression)

checks isa as well Succeeds if the expression is a relation in the
conceptual model

is related(Class1 ,Relation,Class2 ,SuperClass)←
isa(SuperClass,List),
member(Class1 ,List),
relation(SuperClass,Relation,Class2).

is related(Class1 ,Relation,Class2 ,SuperClass1)←
isa(SuperClass,List),
member(Class1 ,List),
is related(SuperClass,Relation,Class2 ,SuperClass1).

E.1 hlcl-system 223

is related(Class1 ,Relation,Class2 ,SuperClass)←
isa(SuperClass,List),
member(Class2 ,List),
relation(Class1 ,Relation,SuperClass).

is related(Class1 ,Relation,Class2 ,SuperClass1)←
isa(SuperClass,List),
member(Class2 ,List),
is related(Class1 ,Relation,SuperClass,SuperClass1).

is class(+Expression)

Succeeds if the expression is a class in the conceptual model

is class(Class)←
class(Class).

has attribute(Class ,Attribute)

checks in isa hierachies as well-.

has attribute(Class,ActualAtt)←
classmap(Class,Table, ,),
table(Table,Rows),
member(ActualAtt ,Rows), !.

has attribute(Class,Attribute)←
isa(AnotherClass,Children),
member(Class,Children),
has attribute(AnotherClass,Attribute).

is attribute(+Expression)

Succeeds if the expression is a attribute in the conceptual model

is attribute(Class,Attribute)←
valuemap(Class,Attribute, ,ActualAtt),
classmap(Class,Table, ,),
table(Table,Rows),
member(ActualAtt ,Rows).

is attribute within boundries(+Expression)

Succeeds if the attribute value is within the defined boundries

is attribute within boundries(Class,Attribute,)←

224 Sourcecode

valuemap(Class,Attribute,Type,),
type(Type, stringtype).

is attribute within boundries(Class,Attribute,Value)←
valuemap(Class,Attribute,Type,),
type(Type, int), integer(Value).

is attribute within boundries(Class,Attribute,Value)←
valuemap(Class,Attribute,Type,),
type(Type,RealType),member(Value,RealType).

is predicate(+Expression)

Succeeds if the expression is a predicate in the conceptual model

is predicate(Predicate)←
sqlfunction(Predicate, ,).

get relation column names(+Expression,−Columnlist ,−Columnlist)

Returns the columns for a given relation

get relation column names(Relation,Names1 ,Names2)←
relmap(,Relation, , ,Names1 ,Names2).

get class column names(+Expression,−Columnlist ,)

Returns the columns for a given class

get class column names(Class,Names)← classmap(Class, , ,Names).

is ud variable(+Var).

Succeeds if Var is a userdefined variable.

is ud variable(X)← userDefVariable(X).

is sys variable(+Var).

Succeeds if Var is a system variable.

is sys variable(v(0)).
is sys variable(v(X))← is sys variable(X).

E.1 hlcl-system 225

find class(+Var , +PredExp1 ,−ClassExp).

Finds the expression class(X) in C and returns class. Note it always
returns class, even on a varclass

find class(Var ,neg(Exp),Res)←
find class(Var ,Exp,Res).

find class(Var ,or(,Exp),Res)←
find class(Var ,Exp,Res).

find class(Var ,or(Exp,),Res)←
find class(Var ,Exp,Res).

find class(Var ,and(,Exp),Res)←
find class(Var ,Exp,Res).

find class(Var ,and(Exp,),Res)←
find class(Var ,Exp,Res).

find class(Var , imp(,Exp),Res)←
find class(Var ,Exp,Res).

find class(Var , imp(Exp,),Res)←
find class(Var ,Exp,Res).

find class(Var ,all(,Exp),Res)←
find class(Var ,Exp,Res).

find class(Var , class(Class,Var), class(Class,Var)).
find class(Var , class(Class,Var ,VList), class(Class,Var ,VList)).
find class(Var ,varclass(Class,Var), class(Class,Var)).

/ ∗∗
I /O − functions (mostly output actually)

∗ ∗/

print hlcl(+HLCLExp).

”Pretty prints” the HLCL expression to the Console.

print hlcl([]).
print hlcl([Head |Tail])←

print(Head), print(' '), print hlcl(Tail).

print hlcl tex([]).
print hlcl tex([Head |Tail])←

print var(Head), print(' '), print hlcl tex(Tail), !.
print hlcl tex([Head |Tail])←

print(Head), print(' '), print hlcl tex(Tail).

226 Sourcecode

print sql(+SQLExp).

”Pretty prints” the SQL expression to the Console.

print sql(selectstat(X ,Y ,L,Z))←
print('SELECT '),print(X),print('\n'), print('FROM '),
print(Y),print(' '),print(L),print('\n'),print('WHERE '),print sql(Z), !.

print sql(notstat(X))←
print('NOT ('), print sql(X),print(')'), !.

print sql(neg(X))←
print('NOT ('), print sql(X),print(')'), !.

print sql(and([],Y))← print sql(Y), !.
print sql(and(X , []))← print sql(X), !.
print sql(and(X ,Y))←

print sql(X), print(' AND '), print sql(Y), !.
print sql(or(X ,Y))←

print sql(X), print(' OR '), print sql(Y), !.
print sql(exists(X))←

print('EXISTS(\n'), print sql(X), print(')'), !.
print sql(equals(X ,Y))←

print('('), print sql(X), print(' = '), print sql(Y), print(')'), !.
print sql(notequals(X ,Y))←

print('('), print sql(X), print(' != '), print sql(Y), print(')'), !.
print sql(comparison(eq,X ,Y))←

print('('), print sql(X),print(')'), print(' = '), print sql(Y), !.
print sql(comparison(le,X ,Y))←

print('('), print sql(X),print(')'), print(' <= '), print sql(Y), !.
print sql(comparison(ge,X ,Y))←

print('('), print sql(X),print(')'), print(' => '), print sql(Y), !.
print sql(function(Name, [(Label ,Att)]))←

print sql(Name),print('('),print(Label),print('.'),print(Att),print(')'), !.
print sql(function(Name, [(Label ,Att), (Label2 ,Att2)]))←

print sql(Name),print('('),print(Label),print('.'),print(Att),print(','),
print(Label2),print('.'),print(Att2),print(')'), !.

print sql((Class,Attribute))←
print(Class),print('.'),print(Attribute), !.

print sql(Int)← integer(Int),print(Int), !.
print sql(String)← print('\''),print(String),print('\'').

print pred(+PredExp).

”Pretty prints” the predicate expression to the Console.

print pred(all(X ,Y))←

E.1 hlcl-system 227

print('ALL '), print pred(X), print(' ('), print pred(Y),print(')'), !.
print pred(exists(X ,Y))←

print('EXISTS '), print pred(X), print(' ('), print pred(Y),print(')'), !.
print pred(numexists(Type,No,Var ,Exp))←

print('EXISTS '),print(Type),print(' '),print(No),print(' '),print pred(Var),
print(' ('), print pred(Exp),print(')'), !.

print pred(exists(Type,No,Var ,Exp))←
print('EXISTS '),print(Type),print(' '),print(No),print(' '),print pred(Var),
print(' ('), print pred(Exp),print(')'), !.

print pred(and(X ,Y))←
print pred(X), print(' AND '), print pred(Y), !.

print pred(or(X ,Y))←
print pred(X), print(' OR '), print pred(Y), !.

print pred(imp(X ,Y))←
print pred(X), print(' => '), print pred(Y), !.

print pred(neg(X))← print('?('), print pred(X),print(')'), !.
print pred(attribute(Attribute, ,Value,Var))←

print(Attribute), print('('), print pred(Var),print(','),print(Value),print(')').
print pred(class(Class,Var))←

print(Class), print('('), print pred(Var),print(')').
print pred(varclass(Class,Var))←

print(Class), print('('), print pred(Var),print(')').
print pred(relation(Class,Var1 ,Var2))←

print(Class), print('('), print pred(Var1),print(','),print pred(Var2),print(')').
print pred(unarypredicate(Predicate,Var))←

print(Predicate), print('('), print pred(Var),print(')').
print pred(binarypredicate(Predicate,Var1 ,Var2))←

print(Predicate), print('('), print pred(Var1),print(','),print pred(Var2),print(')').
print pred(Var)← print var(Var).

print pred(+PredExp).

”Pretty prints” the predicate expression to the Console.

print pred tex(all(X ,Y))←
print('$\\forall$'), print pred tex(X), print(' ('), print pred tex(Y),print(')'), !.

print pred tex(exists(X ,Y))←
print('$\\exists$'), print pred tex(X), print(' ('), print pred tex(Y),print(')'), !.

print pred tex(numexists(Type,No,Var ,Exp))←
print('$\\exists {'),print(Type),print(' '),print(No),print('}$ '),
print pred tex(Var), print(' ('), print pred tex(Exp),print(')'), !.

print pred tex(exists(Type,No,Var ,Exp))←
print('$\\exists {'),print(Type),print(' '),print(No),print('}$ '),
print pred tex(Var), print(' ('), print pred tex(Exp),print(')'), !.

228 Sourcecode

print pred tex(and(X ,Y))←
print pred tex(X), print(' $\\wedge$ '), print pred tex(Y), !.

print pred tex(or(X ,Y))←
print pred tex(X), print(' $\\vee$ '), print pred tex(Y), !.

print pred tex(imp(X ,Y))←
print pred tex(X), print(' $\\rightarrow$ '), print pred tex(Y), !.

print pred tex(neg(X))← print('$\\neg$('), print pred tex(X),print(')'), !.
print pred tex(attribute(Attribute, ,Value,Var))←

print(Attribute), print('('), print pred tex(Var),print(','),
print var(Value),print(')').

print pred tex(attribute(Attribute, ,Value,Var))←
print(Attribute), print('('), print pred tex(Var),print(','),print(Value),print(')').

print pred tex(class(Class,Var))←
print(Class), print('('), print pred tex(Var),print(')').

print pred tex(varclass(Class,Var))←
print(Class), print('('), print pred tex(Var),print(')').

print pred tex(relation(Class,Var1 ,Var2))←
print(Class), print('('), print pred tex(Var1),print(','),print pred tex(Var2),
print(')').

print pred tex(unarypredicate(Predicate,Var))←
print(Predicate), print('('), print pred tex(Var),print(')').

print pred tex(binarypredicate(Predicate,Var1 ,Var2))←
print(Predicate), print('('), print pred tex(Var1),print(','),
print pred tex(Var2),print(')').

print pred tex(Var)← print var(Var).

print var(+Var)

”Pretty Prints” the variable to the console.

print var(Var)← var no(Var , Int), char code(Char , Int),print(Char), !.
print var(UDVar)← sub atom(UDVar , 0, 4, 1,var), sub atom(UDVar , 4, 1, 0,Res),

char code(Res, Int),NewInt is Int − 9, char code(Var ,NewInt),print(Var), !.

var no(+Var ,−Int)

Returns the ascii integer corresponding to the variable.

var no(v(var a), 65)← !.
var no(v(0), 65)← !.
var no(v(X),No)←

var no(X , Int),
integer(Int), No is Int + 1, !.

E.1 hlcl-system 229

print dat list(+DatListExp)

”Pretty prints” a series of datalog(neg) clauses

print dat list([]).
print dat list([Head |Tail])← print dat(Head), nl, print dat list(Tail).

print dat list(+DatListExp)

”Pretty prints” a series of datalog(neg) clauses

print dat list tex([]).
print dat list tex([Head |Tail])← write('\\hspace*{1cm}'),

print dat tex(Head),write('\\\\'),nl,print dat list tex(Tail).

print dat(+DatExp).

”Pretty prints” the datalog(neg) expression to the Console.

print dat(and(X ,Y))←
print dat(X), print(' AND '), print dat(Y), !.

print dat(or(X ,Y))←
print dat(X), print(' OR '), print dat(Y), !.

print dat(leftimp(X ,Y))←
print dat(X), print(' <-- '), print dat(Y), !.

print dat(neg(X))← print('?'), print dat(X), !.
print dat(function(No,Var))← print('f'),print(No),print('('),print list(Var),

print(')'), !.
print dat(error)← print('error'), !.
print dat(attribute(Attribute, eq,Value,Var))←

is ud variable(Value),print(Attribute), print('('), print dat(Var),print(','),
print dat(Value),print(')'), !.

print dat(attribute(Attribute, eq,Value,Var))←
print(Attribute), print('('), print dat(Var),print(','),print(Value),print(')'), !.

print dat(class(Class,Var))←
print(Class), print('('), print list(Var),print(')'), !.

print dat(varclass(Class,Var))←
print(Class), print('('), print dat(Var),print(')'), !.

print dat(relation(Class,Var1 ,Var2))←
print(Class), print('('), print dat(Var1),print(','),print dat(Var2),print(')'), !.

print dat(unarypredicate(Predicate,Var))←
print(Predicate), print('('), print dat(Var),print(')'), !.

print dat(binarypredicate(Predicate,Var1 ,Var2))←
print(Predicate), print('('), print dat(Var1),print(','),print dat(Var2),print(')'), !.

230 Sourcecode

print dat(Var)← print var(Var), !.
print dat(X)← print(X).

print dat tex (+DatExp).

”Pretty prints” for TeX the datalog(neg) expression to the Console.

print dat tex(and(X ,Y))←
print dat tex(X), print(' $\\wedge$ '), print dat tex(Y), !.

print dat tex(leftimp(X ,Y))←
print dat tex(X), print(' $\\leftarrow$ '), print dat tex(Y), !.

print dat tex(neg(X))← print('$\\neg$'), print dat tex(X), !.
print dat tex(function(No,Var))← print('f'),print(No),print('('),

print list(Var),print(')'), !.
print dat tex(error)← print('error'), !.
print dat tex(attribute(Attribute, eq,Value,Var))←

is ud variable(Value),print(Attribute), print('('), print dat tex(Var),
print(','),print dat tex(Value),print(')'), !.

print dat tex(attribute(Attribute, eq,Value,Var))←
print(Attribute), print('('), print dat tex(Var),print(','),
print(Value),print(')'), !.

print dat tex(class(Class,Var))←
print(Class), print('('), print list(Var),print(')'), !.

print dat tex(varclass(Class,Var))←
print(Class), print('('), print dat tex(Var),print(')'), !.

print dat tex(relation(Class,Var1 ,Var2))←
print(Class), print('('), print dat tex(Var1),print(','),
print dat tex(Var2),print(')'), !.

print dat tex(unarypredicate(Predicate,Var))←
print(Predicate), print('('), print dat tex(Var),print(')'), !.

print dat tex(binarypredicate(Predicate,Var1 ,Var2))←
print(Predicate), print('('), print dat tex(Var1),print(','),
print dat tex(Var2),print(')'), !.

print dat tex(Var)← print var(Var), !.
print dat tex(X)← print(X).

print list(+List)

prints a list to the console, ie. [a,b] -¿ a,b

print list([])← !.
print list([Head |[]])← print dat(Head), !.
print list([Head |Tail])← print dat(Head),print(','),print list(Tail), !.
print list(NoList)← print dat(NoList).

E.2 User Settings 231

E.2 User Settings

232 Sourcecode

/ ∗∗
Title : A Highlevel interface to GIS
Author : Mads Johnsen
Last Modified : 15/02/2005

Notes : Conceptual Model , must be imported in application

∗ ∗/

/ ∗∗
User Settings − Database Model

∗ ∗/

Conceptual model

class(building).
class(area).
class(residentialArea).
class(industrialArea).
class(road).
class(company).
class(lake).
class(house).

relation(area, touch,area).
relation(area,have,house).
relation(area, contain, lake).
relation(area, zipcode, fourdigits).
relation(area, intersectedby, road).
relation(area, contain,building).
relation(residentialArea,n ofRes, residents).
relation(residentialArea, type, residentialAreaType).
relation(industrialArea, type, industrialAreaType).

relation(building, touch,building).
relation(building, containedin,area).
relation(building,beusedby, company).
relation(building, type,buildingtype).
relation(building,height,height).
relation(building,numoffloors,floors).

relation(road, isType, roadtype).
relation(road, connected, road).
relation(road, roadname, roadname).

E.2 User Settings 233

relation(road, intersect,building).
relation(building, intersectedby, road).

isa(area, [residentialArea, industrialArea]).
%isa(residentialArea,[superResidentialArea]).

Database Description

table(house, [houseID,geometry,owner]).
table(area, [areaID,geometry, zipcode]).
table(industrialArea, [areaID, industrial type]).
table(residentialArea, [areaID,num of residents, residential type]).
table(building, [buildingID,height,numoffloors,geometry,building type]).
table(company, [companyID, company name]).
table(lake, [lakeID,geometry]).
table(road, [roadsegmentID,geometry, road type, rname]).
table(relBuildingCompany, [buildingID, companyID]).
table(contain, [geoID1,geoID2]).
table(have, [areaID,houseID,owner]).
table(intersect, [geoID1,geoID2]).
table(touch, [geoID1,geoID2]).
table(connected, [geoID1,geoID2]).

sqlfunction(zdifferencelargerthan5, [[A,buildingID], [B ,buildingID]],
function(zdiff , [(A,buildingID), (B ,buildingID)])).
sqlfunction(zipcodefunc, [[A, zipcode]], function(zipcodefunc, [(A, zipcode)])).
sqlfunction(binfunc, [[A, zipcode], [B , zipcode]],
function(binfunc, [(A, zipcode), (B ,areaID)])).

Mapping

classmap(building,building, [], [buildingID]).
classmap(area,area, [], [areaID]).
classmap(house,house, [], [houseID,owner]).
classmap(residentialArea, residentialArea, [], [areaID]).
classmap(industrialArea, industrialArea, [], [areaID]).
classmap(road, road, [], [roadsegmentID]).
classmap(company, company, [], [companyID]).
classmap(lake, lake, [], [lakeID]).

relmap(building,beusedby, company, relBuildingCompany, [buildingID], [companyID]).
relmap(area,have,house,have, [areaID], [houseID,owner]).
relmap(, contain, , contain, [geoID1], [geoID2]).

234 Sourcecode

relmap(, containedin, , contain, [geoID2], [geoID1]).
relmap(, intersect, , intersect, [geoID1], [geoID2]).
relmap(, intersectedby, , intersect, [geoID2], [geoID1]).
relmap(, touch, , contain, [geoID1], [geoID2]).
relmap(, connected, , contain, [geoID1], [geoID2]).

valuemap(area, zipcode, fourdigits, zipcode).
valuemap(building,numoffloors,floors,numoffloors).
valuemap(building,height,height,height).
valuemap(road, roadname, roadname, rname).
valuemap(road, isType, roadtype, road type).
valuemap(building, type,buildingtype,building type).
valuemap(residentialArea,n ofRes, residents,num of residents).
valuemap(residentialArea, type, residentialAreaType, residential type).
valuemap(industrialArea, type, industrialAreaType, industrial type).

type(residentialAreaType, stringtype).
type(industrialAreaType, stringtype).
type(roadname, stringtype).
type(floors, int).
type(height, int).
type(integertype, int).
type(fourdigits, int).
type(roadtype, [minor,major,highway]).
type(buildingtype, [residential, industrial,blockbuilding]).
type(residents, int).

/ ∗∗
User Settings − Variable settings

∗ ∗/
userDefVariable(var a).
userDefVariable(var b).
userDefVariable(var c).
userDefVariable(var d).
userDefVariable(var e).

/ ∗∗
User Settings − Class Definitions

∗ ∗/
definition([resareas], [area, type, residential]).
definition([resbuildareas], [area, type, residential,and, contain,building]).
definition([mads], [area,mads, resareas, residential,and, contain,building]).
definition([definedbuilding], [building, type, residential]).

E.2 User Settings 235

definition([definedarea], [area, contain,definedbuilding]).

236 Sourcecode

E.3 Help Functions

E.3 Help Functions 237

/ ∗∗
Title : A Highlevel interface to GIS
Author : Mads Johnsen
Last Modified : 15/02/2005

Notes : ''Helper Functions'' to userdefined settings :
Database model, class definitions etc.

∗ ∗/

Import User Settings Here

←[usersettings]. %Conceptual Model, Variables and Class Definitions

/ ∗∗
Functions

∗ ∗/

check conceptual model()

Checks to see if the given conceptual model is wellformed. Either
error statements or a
”conceptual model is OK” will be printed on screen.

%all classes defined should have a mapping into an existing table

check conceptual model←
class(Class), not(classmap(Class, , ,)),
write('No classmap defined for class '),write(Class),nl, !.

check conceptual model← %Check that conditions are infact an attribute

class(Class), classmap(Class,Table, ,), not(table(Table,)),
write('The table '),write(Table),write(' does not exist!'),nl, !.

%all relations defined should have a mapping into an existing table

check conceptual model←
relation(C1 ,R,C2), not(check relation(C1 ,R,C2 ,ok)),write('relation '),
write(C1),write(' '),write(R),write(' '),
write(C2),write(' is not welldefined!'), !.

%No of keyconstraints is the same in relation and classes

check conceptual model←
relmap(,Relation, , ,RList ,), relation(Class,Relation,),
classmap(Class, , ,CList), length(RList ,No),not(length(CList ,No)),
write('relation '), write(Relation),write(' and class '),write(Class),
write(' does not have same no of key-attributes'), !.

238 Sourcecode

%No of keyconstraints is the same in relation and classes

check conceptual model←
relmap(,Relation, , , ,RList), relation(,Relation,Class),
classmap(Class, , ,CList), length(RList ,No),not(length(CList ,No)),
write('relation '),write(Relation), write(' and class '),
write(Class),write(' does not have same no of key-attributes'), !.

check conceptual model← %No of keyconstraints is the same in relation and classes

write('Conceptual model OK'), nl.

check relation(+ClassExp, +RelationExp, +ClassExp,−Result)

checks the given Relation to see if it wellformed and welldefined in
the conceptual model. If it is correct,
a ”ok” is returned, otherwise a ”nok” is returned.

check relation(C1 ,Att ,Values,ok)←
classmap(C1 ,Table, ,), valuemap(C1 ,Att ,Values,ColumnLabel),
table(Table,AllAtts), type(Values,),member(ColumnLabel ,AllAtts), !.

check relation(C1 ,Relation,C2 ,ok)←
relmap(C1 ,Relation,C2 ,Table, ,), table(Table,), !.

check relation(, , ,nok).

E.4 Test Functions 239

E.4 Test Functions

240 Sourcecode

/ ∗∗
Title : A Highlevel interface to GIS
Author : Mads Johnsen
Last Modified : 29/03/2005

Notes : Testfunctions and Testcases

∗ ∗/
←[hlcl].

/ ∗∗
TESTS & Test Functions

∗ ∗/

run tests(+TestMap)

Runs the tests in the TestMap and prints results in console

run tests([]).
run tests([[Head ,Description]|Tail])←
hlcl to pred(Head ,X), check wellformedness(X),
perform intermediate steps(X ,Y),
pred to datalog(Y ,Q), subpred to sql(Y ,Z , [], [], , [],nocount),
print('***\n\n'),
print hlcl(Head),print('\n\n'),
print hlcl(Description),print('\n\n'),
print pred(X),print('\n'), %pred. logic

print pred(Y),print('\n\n'), %Intermediate Steps

print('DATALOG:\n\n'),print dat list(Q),print('\n\n'),
print('SQL:\n\n'),print sql(Z),print('\n\n'),
print('\n\n'),
run tests(Tail), !.

run tests([[Head , [Description]]|Tail])←
hlcl to pred(Head ,X), check wellformedness(X),
print('***\n\n'),
print hlcl(Head),print('\n\n'),
print(Description),print('\n\n'),
print('Internal Error: Intermediate Steps could not be made!\n\n'),
run tests(Tail), !.

run tests([[Head ,Description]|Tail])←
hlcl to pred(Head ,X),
print('***\n\n'),
print hlcl(Head),print('\n\n'),

E.4 Test Functions 241

print(Description),print('\n\n'),
print pred(X),print('HLCL is not wellformed!\n\n'),
run tests(Tail), !.

run tests([[Head ,Description]|Tail])←
print('***\n\n'),
print hlcl(Head),print('\n\n'),
print(Description),print('\n\n'),
print('HLCL could not be parsed!\n\n'),
run tests(Tail), !.

run tests tex (+TestMap)

Runs the tests in the TestMap and prints results in console in TeX
format

run tests tex([],).
run tests tex([[Head , [Description]]|Tail], Int)←
hlcl to pred(Head ,Pred), check wellformedness(Pred),
perform intermediate steps(Pred ,PredInt),
subpred to sql(PredInt ,SQL, [], [], , [],nocount),pred to datalog(PredInt ,Dat),
print('\\subsubsection{Testcase '),print(Int),print('}'),nl,
print('\\emph{'),print(Description),print('}\\\\'),nl,
print('\\begin{description}\\item[{\\sc hlcl}]'),
print('\\texttt{'),print hlcl tex(Head),print('}\\end{description}'),nl,
print('\\begin{description}\\item[Pred. Logic]'),
print('\\emph{'),print pred tex(Pred),print('}\\end{description}'),nl,
print('\\begin{description}\\item[Ext. Dat]'),
print('\\emph{'),print pred tex(PredInt),print('}\\end{description}'),nl,
print('\\textbf{SQL:}\\\\'),
print('\\begin{verbatim}'),nl,print sql(SQL),nl,print('\\end{verbatim}'),
nl,nl,nl,
print('{\\sc datalog}\\ensuremath{^{\\neg}}:\\\\'),nl,
print dat list tex(Dat),nl,
NextInt is Int + 1, run tests tex(Tail ,NextInt), !.

run tests tex([[Head , [Description]]|Next], Int)←
print('\\subsubsection{Testcase '),print(Int),print('}'),nl,
print('\\emph{'),print(Description),print('}\\\\'),nl,
print('\\begin{description}\\item[{\\sc hlcl}]'),
print('\\texttt{'),print hlcl tex(Head),print('}\\end{description}'),nl,
print('\\textbf{Failed}'),nl,nl,NextInt is Int + 1, run tests tex(Next ,NextInt).

print test table([],).
print test table([[Head , [Description]]|Tail], Int)←
print(Int), print('& \\texttt{'),print hlcl tex(Head),print('} & '),

242 Sourcecode

print(Description),
print('&'),print('$\\surd$'),print('\\\\'),nl,print('\\hline'),nl,
NextInt is Int + 1,
print test table(Tail ,NextInt).

