
MASTER OF SCIENCE THESIS

Integration of “UML-ised”
Formal Techniques and Tools

with
RSL and the RSL toolset

Steffen Andersen Steffen Holmslykke
s973987 s991311

No. 2005-20
LYNGBY

March 2005

IMM

I

Preface

This master thesis was carried out at the Department of Informatics and Mathematical Modelling
(IMM) at the Technical University of Denmark (DTU). It was supervised by Professor Dines Bjørner
and co-supervised by Associate Professor Anne Haxthausen. The master thesis was written in the
period August 2004 to March 2005:

• at United Nations University - International Institute for Software Technology
(UNU-IIST) from August 2004 to November 2004,

• at National University of Singapore - School of Computing (NUS-SoC) from
December 2004 to January 2005 and

• at DTU from February 2005 to March 2005.

We would like to thank our supervisor Dines Bjørner for his invaluable guidance and for a great
stay in Singapore. Likewise we would like to thank Chris George for helping us and discussing our
work during and after our stay at UNU-IIST. Thanks also to our co-supervisor Anne Haxthausen for
helping us in the final phase of our thesis. Finally we would like to thank staff and students alike at
UNU-IIST and NUS-SoC for constructive discussions and an incredible experience.

Lyngby, March 21st, 2005

Steffen Andersen, s973987 Steffen Holmslykke, s991311

II

III

Abstract

Formal methods and graphical notations are tools in software engineering and much attention is given
to improve the integration of the two. In particular the Unified Modelling Language (UML) seems to
have been adopted as a de facto standard in industry as a graphical notation and has attracted much
research interest.

Many have focused on the formalisation of UML Class Diagrams with various success. In this thesis
we go in the opposite direction. We "UML’ise" the formal specification language RSL by presenting
a new diagram called Scheme Diagram which displays the structure of a RSL model. The diagram is
visually inspired by the UML Class Diagram but is semantically directly mapped to RSL. A plug-in
has been developed for the Eclipse Editor, which enables the user to draw diagrams and translate
them into RSL.

Secondly we look at the rather new Live Sequence Charts (LSCs), which are a successor to Message
Sequence Charts (MSCs) and hence Sequence Diagrams in UML. We formalise a subset in RSL and
examine the usefulness of LSC in a RSL context. An equivalent of LSCs in RSL is presented which
allows refinement of the initial model.

Keywords: RAISE, RSL, Graphical Notations, UML, Live Sequence Charts, Eclipse

IV

V

Resumé

Formelle methoder og grafiske notationer er værktøjer i software engineering og meget opmærk-
somhed er blevet givet til integrationen mellem de to. Specielt Unified Modelling Language (UML)
ser ud til at være blevet godtaget som en de facto standard i industrien som en grafisk notation.
Forskningsmæssigt har det også fået meget opmærksomhed.

Mange har fokuseret på formaliseringen af UML’s klasse diagram med varierende success. I denne
afhandling går vi i den modsatte retning. Vi ”UML’iserer” det formelle specificationssprog RSL ved
at præsentere et nyt diagram som vi kalder Scheme Diagram som viser strukturen i en RSL model.
Diagrammet er visuelt inspireret af UML’s klasse diagram men er semantisk set direkte relateret
til RSL. Et plug-in er blevet udviklet til Eclipse Editoren som sætter brugeren i stand til at tegne
diagrammer og oversætte dem til RSL.

Desuden kigger vi på de forholdsvis nye Live Sequence Charts (LSCs) som er en efterfølger til
Message Sequence Charts (MSCs) og dermed Sequence Diagrammer fra UML. Vi formaliserer en
delmængde af RSL og undersøger brugbarheden af LSCs i RSL sammenhæng. RSL-versionen af
LSC bliver præsenteret. Denne tillader forfining af den initielle model.

Nøgleord: RAISE, RSL, Grafiske notationer, UML, Live Sequence Charts, Eclipse

VI

VII

Presented above is our abstract in simplified chinese. The words written in english have no corresponding
representation in the chinese language. Thank you to Liang Hui from NUS-SoC for helping us with the
translation.

VIII

IX

Contents

I Prelude 1

1 Appetisers 3
1.1 Scheme Diagram: Railway nets . 3
1.2 Live Sequence Chart: Light . 4

2 Introduction 5
2.1 Motivation . 5
2.2 Contents . 6
2.3 Previous work . 6
2.4 Thesis structure . 6
2.5 The big picture . 7
2.6 Conventions . 7
2.7 Assumptions . 8

II Abstract models 9

3 Introduction 11

4 RSL syntax 13
4.1 Types: RSLα . 13
4.2 Print: RSLα → RSLγ . 14

5 Scheme diagrams 15
5.1 Introduction . 16
5.2 Previous work . 22
5.3 Summary of preliminary thesis . 24
5.4 Final Scheme Diagram . 25
5.5 Narrative of the Scheme Diagram syntax . 32
5.6 Examples . 46
5.7 Translation: SDδ → RSLα . 50
5.8 Future work . 50
5.9 Conclusion . 51

6 Live Sequence Charts 53
6.1 Before we start . 54
6.2 Structured narrative of LSC . 56
6.3 Previous work . 60
6.4 The LSC subset chosen: RSC . 66
6.5 Formal description of RSC . 70
6.6 Example: RSC RSL specification . 78
6.7 Translation: RSCδ → RSLα . 82
6.8 Example: Applicative RSC . 89
6.9 Future work . 92
6.10 Conclusion . 92

X CONTENTS

III Concrete implementation 93

7 Introduction 95

8 Language and library 97
8.1 Requirements . 97
8.2 Candidates . 97
8.3 Selection and rationale . 99

9 System description 101
9.1 Overview . 101
9.2 Eclipse plug-in . 102
9.3 Eclipse Scheme Diagram Editor . 105
9.4 Imperative RSL model specification of Scheme Diagram . 107
9.5 Gluing the Eclipse plug-in and the RSL model together . 108
9.6 Test . 109

IV Postlude 111

10 Conclusion 113

Bibliography 114

V Appendix 119

A Glossary 121
A.1 Scheme Diagram . 121
A.2 LSC . 122

B Description of RSL types in RSL 125
B.1 rslsyntax.rsl . 125
B.2 rslprint.rsl . 143

C RSL specifications for the Scheme Diagram 179
C.1 Scheme Diagram syntax . 179
C.2 Translation of Scheme Diagram to RSL. 209
C.3 Imperative Scheme Diagram . 225
C.4 Test . 245

D RSL specifications for the RSC 251
D.1 RSC syntax . 251
D.2 RSC semantics for one chart . 271
D.3 RSC collections . 287
D.4 Test . 294
D.5 CSP and LSC . 329
D.6 Applicative RSC . 346

E Contents of companion CD 363

F Use of ESDE CASE Tool 365
F.1 Installation . 365
F.2 User manual . 366

G Conferences 371
G.1 ICTAC 2004, Guiyang . 371
G.2 SEFM 2004, Beijing . 373

CONTENTS XI

H Seminars 375
H.1 Seminars at UNU-IIST . 375

I A tale of two cities 379
I.1 Macau . 379
I.2 Singapore . 380

XII CONTENTS

1

Part I

Prelude

3

Chapter 1

Appetisers

The following two sections present examples of the two diagrams that are discussed and used in this thesis.
Being appetisers they will be superficial but the diagrams are elaborated later. The first example is about
railway nets and demonstrates the Scheme Diagram. The second example shows the process of turning on a
light illustrated by a Live Sequence Chart.

1.1 Scheme Diagram: Railway nets

In [31] a specification is presented which describes simple railway nets. The following example is a part of the
specification covering sequences of linear rail units. First an informal description:

1. A rail unit is either a linear, switch, simple crossover or switchable crossover.
2. A rail unit has one or more connectors.
3. A line is a linear sequence of one or more linear rail units.
4. A track is a linear sequence of one or more linear rail units.
5. For every connector there are at most two rail units which have that connector in common.

Each of the artifacts/concepts written in italics in the informal description is placed in its own scheme in the
specification. Both line and track is a sequence of linear rail units. An additional scheme named sequence is
introduced which describe these similarities. Figure 1.1 show the Scheme Diagram of the specification which
follows on the next page. Both the Lines and Tracks scheme extend the Sequence which is shown by the
solid line with a hollow equal-sided triangle. The Units and Sequence schemes are parameterised. The formal
parameters are shown as solid lines with a hollow diamond at the end.

Figure 1.1: Scheme Diagram of a part of the railway nets specification.

4 Chapter 1. Appetisers

scheme Units(connectors : Connectors) =
class

type U
value

is_Linear : U → Bool,
is_Switch : U → Bool,
is_SimpleCrossover : U → Bool,
is_SwitchableCrossover : U → Bool,
obs_Cs : U → connectors.C-set,
lin_seq : U-set → Bool

end

scheme Connectors = class type C end

scheme Sequence(
connectors : Connectors,
units : Units(connectors)) =

class
type Seq
value obs_Us : Seq → units.U-set

end

scheme Tracks(
connectors : Connectors,
units : Units(connectors)) =
extend Sequence(connectors, units) with
class

type Tr
value obs_Us : Tr → units.U-set

end

scheme Lines(
connectors : Connectors,
units : Units(connectors)) =

extend Sequence(connectors, units) with
class

type L
value

obs_Seq : L → Seq,
obs_Us : L → units.U-set

end

1.2 Live Sequence Chart: Light

The diagram 1.2 is an example of a Live Sequence Chart. It is a simple description of how a light may be
switched on. The upper dotted hexagon is called a prechart, the lower box a mainchart. Whenever the events
prescribed in the prechart happen, the modelled system must conform to the events prescribed in the mainchart.

The hexagon within the prechart is a condition. It describes that the light must be off. The arrow Press is a
message, denoting that the user has pressed some button so that it is On. This means that when the light is off
and the on button is pressed, the following must happen:

A message SetState with the parameter On is sent from the Switch to the Light. Then the Light performs a local
action, EnlightenRoom. This is denoted with a the solid line box. The local action is further unspecified, and
only the name may give a hint to what is being done.

Figure 1.2: An example of a LSC where a user turns on a light using a switch.

5

Chapter 2

Introduction

Contents

2.1 Motivation . 5
2.2 Contents . 6
2.3 Previous work . 6
2.4 Thesis structure . 6
2.5 The big picture . 7
2.6 Conventions . 7
2.7 Assumptions . 8

2.1 Motivation

The current image of software engineering is not as good as one could wish for as an engineer. Too often there
is news of faulty, delayed and overly expensive software projects. Though this problem, termed the software
crisis, has existed for decades, it remains unsolved. The increasing complexity and scale of software projects
have made the software crisis a bigger problem than ever.

In order to control this escalating problem the use of proper software engineering methods and tools is required,
i.e. there is a need for sound engineering principles. This includes the successful phases of domain description,
requirements prescription and design specification [5].

One of the core problems during these phases is to communicate and share abstract ideas and concepts. A
very popular mean to do so is the Unified Modelling Language (UML). UML is primarily a set of graphical
notations to describe, prescribe and specify software. The main force of UML is its use of diagrams. They are
intuitive and are easy understood, also by project share-holders which may have little or no insight in software
engineering. Unfortunately UML and other graphical notations lack a complete formal foundation. In addition,
the current state of formal specification languages do not address some of the more complex language features
used in UML. Nor is there necessarily a motivation to do so. A primary goal of formal languages is soundness
which is difficult to attain with some features of UML.

A more rigorous and concise approach in software engineering is to use formal specification languages, e.g. the
RAISE Specification Language (RSL). They have a well-defined syntax and a complete mathematical seman-
tics. They may also include proof systems for formal reasoning about specifications. These are highly desirable
properties which to a great extend are able to reduce error-rates and misunderstandings. Their drawback is that
they can only be developed by trained professionals with knowledge of computer science.

Having recognised these two different approaches to software engineering, we come to the core of this thesis:
Combining the strengths of the two worlds.

6 Chapter 2. Introduction

2.2 Contents

We will present two different approaches for extending RSL with graphical notations.

The first is to “diagram’ise” RSL specifications with a notation inspired by the UML Class Diagram. We call
this new diagram for Scheme Diagram. The Scheme Diagram is semantically directly linked to RSL. It is only
visually inspired by the UML Class Diagram with regards to boxes and arrows, i.e. the presentation of the
structure of a model.

In order to demonstrate the capabilities of Scheme Diagrams we created a Scheme Diagram CASE tool. It is an
integrated plug-in for the Java based IDE Eclipse. We call this tool Eclipse Scheme Diagram Editor (ESDE).
It can be used for creating Scheme Diagrams, checking the well-formedness of the corresponding RSL model
and save it as a concrete RSL specification in .rsl files.

In order to specify the mapping from the Scheme Diagramsyntax to RSL, the RSL types are described using
RSL. Furthermore, a specification for printing these RSL types as concrete RSL specification text will be given
for the above mentioned use.

The second approach is to formalise a subset of the rather new graphical notation of Live Sequence Charts
(LSCs) which we call RSL Sequence Charts (RSCs). It can be used for describing/prescribing inter-object
communication. We will integrate and explore the possibility of creating a useful RSL specification based
on RSCs. The types and well-formedness conditions are given. Furthermore semantics for these are given.
Finally an equivalent applicative RSL version of RSC s is presented.

2.3 Previous work

This master thesis is based on several reports written at IMM1 that are worth mentioning. The first are [42]
and [41]. They are the preliminary thesis and master thesis by Christian Krogh Madsen. They discuss the
integration of graphical specification techniques with the formal specification language RSL.

The next paper is a special course report [31] which analyses the relationship between UML class diagrams
and RSL. This master thesis is preceded by a preliminary thesis. In the preliminary thesis [2] the possibility to
add a graphical notation to RSL was investigated. Furthermore the goal was to look at the integration of the
notation of Live Sequence Charts. The latter being based on the work on Message Sequence Charts by Krogh
Madsen [42, 41].

More detailed information about the above papers and other used literature are given in the applicable chapters.

2.4 Thesis structure

In this Introduction part the graphical notations that are discussed in this thesis are introduced in chapter 1.
This should give the reader an immediate idea of the notations used in this thesis.

The part Abstract models discusses the abstract models that are created. It presents the main achievements
in the thesis. Concepts are described and corresponding formal models are given. The third part, Concrete
Implementation, describes the concrete implementation of ESDE. It describes the choices and architecture of
the editor. Finally a discussion of the results will be presented.

Most of the specifications and auxiliary information have been put in appendices in the end. The thesis is also
accompanied by a CD-ROM which contains the work presented here. Relevant papers, source code and an
executable version of ESDE is also given.

A glossary of terms in Scheme Diagrams and RSCs are given first in the appendix. It may aid the reader when
reading the part on the abstract models.

1Informatics and Mathematical Modelling Institute at the Technical University of Denmark

2.5 The big picture 7

2.5 The big picture

In the beginning of the preliminary thesis [2] the "project tree" as seen in figure 2.1 was created. It served as a
guide in the project by identifying branches of work that could be pursued.

Figure 2.1: The initial project tree of the project. The items with grayed out boxes have not been treated.

Petri Nets were quickly dismissed as it is already a graphical notation with a formal foundation. The initial
idea of including State Charts was that they should complement LSCs. LSCs describe inter-object commu-
nication, whereas State Charts are used for intra-object communication. However, as our knowledge about
LSCs increased it became evident that this coupling was not very promising as a result of the already existing
research in the field of executable LSCs. Furthermore, attempts of formalising state charts had already been
made.

The implementation of ESDE was given a higher priority than an implementation for RSCs. Therefore the
translation for RSCs was not needed, and therefore omitted.

2.6 Conventions

All specifications presented in the appendix of this report type check with the rsltc tool v. 2.5 [9] provided by
UNU-IIST. Note that there have recently been changes to the language such as hd of a set and isin on maps.

Throughout the report we talk about translatable RSL specifications. By this we mean concrete RSL specifi-
cations that are translatable to C++ by the rsltc tool. Note that only a subset of RSL is translatable.

In order to distinguish concepts we introduce the following symbols as subscript:

• α denotes Abstract

• γ denotes Concrete

• δ denotes Diagram

8 Chapter 2. Introduction

2.7 Assumptions

As many aspects in this report are rather technical it must be assumed that the reader has a working knowl-
edge of RSL. Furthermore knowledge about UML class diagrams and scenario-based graphical notations (e.g.
Message Sequence Charts or Live Sequence Charts) is an advantage, but is not required.

9

Part II

Abstract models

11

Chapter 3

Introduction

In the following chapters the concepts, theory and the abstract models are presented. Initially an abstract RSL
syntax in RSL is given. This was used as a foundation for creating RSL specification using ESDE. The work
regarding Scheme Diagram is presented, followed by the work on LSCs/RSCs.

Common for most specifications is that they are translatable from RSL to C++ using the rsltc tool [9]. This
allowed for RSL test case generation. Furthermore it allowed the direct linking from the Scheme Diagram
specification to ESDE. I.e. using the translated Scheme Diagram specification to check well-formedness of a
model drawn in ESDE.

But the translatability posed quite some constraints, as only a subset of RSL is translatable to C++. Therefore
the specifications from the preliminary thesis [2] had to be severely altered before they could be reused. As
an example RSL union constructs cannot be translated. These had to be rewritten to equivalent variant defi-
nitions. Another constraint was that the support for quantifiers is limited. As a result the specifications looks
unnecessary complicated. This is due to the need of auxiliary functions for determining sets that can be used
for the quantification.

12 Chapter 3. Introduction

13

Chapter 4

RSL syntax

Contents

4.1 Types: RSLα . 13
4.2 Print: RSLα → RSLγ . 14

4.1 Types: RSLα

The syntax for the Scheme Diagram and LSC have all been specified in RSL. A mapping for each of these
diagrams to RSL was to be specified, thus requiring an abstract formal syntax for RSL in RSL. This will be
presented in this section. It is only the type declarations for the RSL syntax that have been included and not
the well-formed conditions. For our purpose the type declarations are sufficient, since it can be made concrete.

The syntax is based on the input for the original RAISE tool and updated with the following changes made to
RSL since:

• with ... in expressions

• Prefix + and -

• == symbol

• Finite maps

The names of the type declarations in the specification are the same as in the RSL Reference Description found
in part II in [18].

See appendix B for the complete formal RSL types. The following is an excerpt of the class expression types.

class_expr ==
class_expr_from_basic_class_expr(class_expr_to_basic_class_expr : basic_class_expr) |
class_expr_from_extending_class_expr(class_expr_to_extending_class_expr : extending_class_expr) |
class_expr_from_hiding_class_expr(class_expr_to_hiding_class_expr : hiding_class_expr) |
class_expr_from_renaming_class_expr(class_expr_to_renaming_class_expr : renaming_class_expr) |
class_expr_from_with_class_expr(class_expr_to_with_class_expr : with_class_expr) |
class_expr_from_scheme_instantiation(class_expr_to_scheme_instantiation : scheme_instantiation),

basic_class_expr :: decl∗,

extending_class_expr :: class_expr class_expr,

hiding_class_expr :: {| dil : defined_item∗
• len dil > 0 |} class_expr,

14 Chapter 4. RSL syntax

4.2 Print: RSLα → RSLγ

The following specification was created in order to allow the creation of a textual RSL specification based
on a specification given in abstract RSL. It thus needs to convert the various RSL constructs in RSLα to an
equivalent textual representation with appropriate RSL keywords and delimiters.

The foundation for this function was the already existing structure of RSLα. This was converted one at a time
to a print function. This tremendously eased the process and minimised the chance of errors, as the structure
was preserved. The correct amount of delimiters and newlines were not of concern. The rsltc pretty printer
functionality was to be used to arrange the output and make it more readable. As the RSL syntax was given
using may short record definitions and variant definitions a lot of the work could be done using automated
Emacs macros.

As the specification is rather large, it is presented in appendix C. The following is an example that shows how
a basic class expression is printed:

print_basic_class_expr(x) ≡
case (x) of

mk_basic_class_expr(a) →

A class expression needs the keywords class and end before and after the class expression declarations.

As the following example shows, the emphasis was on preserving the structure of the functions, rather than
optimising for size.

print_specification(x) ≡ print_module_decl_list(x),

print_module_decl_list : module_decl∗ → Text
print_module_decl_list(x) ≡

case x of
〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_module_decl(a),
〈a〉 ̂ b →

print_module_decl(a) ̂
′′,\n′′ ̂

Two special functions, RSL_int_to_string and RSL_double_to_string have been supplied under-specified in
order to allow conversion from integers/doubles to strings. In the generated C++ code they must simply be
removed. The compiler will automatically link calls to these functions to the supplied RSL-libraries where
they are defined.

15

Chapter 5

Scheme diagrams

Contents

5.1 Introduction . 16
5.1.1 Introductory example . 16
5.1.2 Why Scheme Diagrams? . 16
5.1.3 Is RSL object oriented? . 17
5.1.4 Structure of chapter . 21

5.2 Previous work . 22
5.2.1 Literature . 22
5.2.2 Discussion . 24

5.3 Summary of preliminary thesis . 24
5.4 Final Scheme Diagram . 25

5.4.1 Static implementation . 25
5.4.2 Scheme instantiation . 27
5.4.3 Object state . 29
5.4.4 Executable specification . 30

5.5 Narrative of the Scheme Diagram syntax . 32
5.5.1 Diagram . 32
5.5.2 Type expressions . 33
5.5.3 Scheme . 35
5.5.4 Object . 38
5.5.5 Association . 40
5.5.6 Extend . 42
5.5.7 Static implement . 44

5.6 Examples . 46
5.6.1 Mobile infrastructure . 46
5.6.2 Constructed example . 49

5.7 Translation: SDδ → RSLα . 50
5.8 Future work . 50
5.9 Conclusion . 51

16 Chapter 5. Scheme diagrams

5.1 Introduction

5.1.1 Introductory example

First a bootstrapping example of a Scheme Diagram for the Scheme Diagram is given. It will present an
overview of the syntax and well-formedness of the Scheme Diagram. Thus it will give an intuition of what
the remainder of this chapter is about and how the formalisation is composed. The diagram is presented in
figure 5.1.

In the top left corner the types scheme is shown which contains all the types necessary to describe the
syntax of the Scheme Diagram. This is extended with some convenient auxiliary functions in auxiliary.
This is followed by additional six extends each adding the well-formedness for one of the major parts of the
Scheme Diagram. For example the wf_types scheme primarily contains well-formedness functions for types
representing type expressions.

The wf_model scheme is the complete description of a well-formed Scheme Diagram. From this point there
are two different usages. The first is further extension with tests. The scheme examples defines the input for
the test cases defined in the scheme test.

The types and well-formedness specification have been prepared for translation into C++ and will be used by a
CASE tool for drawing Scheme Diagrams. The translation is based around the imperative scheme which
besides adding an imperative layer also is the interface to the tool.

Before proceeding the different kinds of lines will be explained. Based on the narrative so far it is possible
to deduce that lines with a hollow equal-sided triangle at one end denotes the extend construct in RSL. The
lines with a filled diamond pointing towards the imperative scheme represents the declaration of nested
objects. Lines with a hollow diamond pointing towards the scheme transltr represent parameterisation of
the scheme.

Figure 5.1: Scheme Diagram of the Scheme Diagram specification.

The rslsyntax scheme is an abstract syntax in RSL for the RSL syntax. The extending scheme rslprint
is able to translate the abstract syntax into a concrete RSL specification represented as a text string. The
imperative scheme declares three nested objects which respectively include: The syntax and well-formedness
of the Scheme Diagram, the abstract syntax of RSL and the translator from the Scheme Diagram syntax to the
abstract RSL syntax. The latter is a parameterised scheme and the first two objects declared in imperative
are used as actual parameters.

5.1.2 Why Scheme Diagrams?

A picture says more than a thousand words is a cliché but nonetheless many would say it is true. Like a
picture a diagram also conveys its information in two dimensions. It can be inferred that a diagram also says

5.1 Introduction 17

Object based criteria Object oriented criteria

O
bj

ec
ta

nd
st

at
es

E
nc

ap
su

la
tio

n
Sy

nc
hr

on
ou

s
re

qu
es

ts
A

sy
nc

hr
on

ou
s

re
qu

es
ts

D
at

a
ab

st
ra

ct
io

n
D

at
a

st
ru

ct
.o

fo
bj

ec
ts

O
bj

ec
ti

de
nt

ity
In

tr
a-

co
nc

ur
re

nc
y

In
te

r-
co

nc
ur

re
nc

y

C
la

ss
as

te
m

pl
at

es

C
la

ss
as

co
lle

ct
io

ns
In

he
ri

ta
nc

e
Su

b-
ty

pi
ng

M
ul

ti-
in

he
ri

ta
nc

e/
su

b-
ty

pi
ng

In
he

ri
ta

nc
e
6=

su
b-

ty
pi

ng
C

la
ss

es
as

ob
je

ct
s

C
ol

le
ct

io
n

of
ob

je
ct

s
D

yn
am

ic
/s

ta
tic

ob
je

ct
in

st
an

tia
tio

n
G

en
er

ic
ity

or
pa

ra
m

et
er

iz
at

io
n

1. 2. 3. 3. 4. 5. 6. 7. 8. 9. 10
.

11
.

12
.

13
.

14
.

15
.

16
.

17
.

18
.

Object-Z • • • • • • • • • • • • • (n) •

VDM++ • • • • • • • • • • (•) • • (•) (•)
Z++ • • • • • • • • • • • • (n) • • •

RSL • • • • • • • • • (•) • (•) • (•) •

Table 5.1: Comparison table from [20] between object oriented specification languages (modified). Only the
languages based on first-order logic and set-theory are included, and RSL has been added. • stands for yes,
’n’ for no and parentheses for partial.

a thousand words. This is of course a logical game based on weak assumptions. But it reaches the conclusion
that UML users, among others, already have shown to be true in practice:

[12]: A stated strength of OO modelling notations is their intuitive appeal, reducing the effort
required to read and understand the models.

Especially the Class Diagram which displays the static structure of a system has been widely accepted. The
diagram is however limited to describing only the structure. On the other hand formal specification languages
are very capable of describing an entire system. But they lack the intuitive appeal requiring that one actually
has to read the specifications. Obviously the two should be combined. There are several different approaches
of doing so. One is to formalise UML as it is, which is done in [13, 28]. Another is to extend an existing
formal specification language with object oriented constructs. This has amongst others been done in VDM++
[33].

The Scheme Diagram is a diagram made for RSL with inspiration from the UML Class Diagram. The elements
of the diagram have a direct mapping to RSL constructs. Thus the semantics is clear. The inspiration from the
Class Diagram is how the boxes and lines in the diagram are depicted. Similar constructs in UML and RSL
will be displayed in a similar way.

The example in section 5.1.1 has hopefully demonstrated the usefulness and intuitive appeal of Scheme Dia-
grams without entirely disclosing the reminder of the chapter.

5.1.3 Is RSL object oriented?

The motivation for creating a new diagram for RSL instead of formalising the UML Class Diagram is based on
the fact that RSL is not object oriented. Therefore it is in place to elaborate on why it is not. In [20] a set of cri-
teria are presented for categorising a language as object-based and object-oriented. These criteria are selected
by the authors of the paper and are not necessarily widely accepted as the correct criteria for classification. In
this section the criteria will be used to categorise RSLsince they are the most comprehensive and structured set
available. This is summarised in table 5.1 which also includes three languages for comparison.

In the following listing the italic text is quoted from [20, p. 3-5] and the normal text describes the possibilities
in RSL. Not all the criteria are clearly defined and they are not elaborated further in the paper. In such cases an
interpretation will be mentioned.

18 Chapter 5. Scheme diagrams

Object based criteria

1. Object: The ability to consider a system as a collection of independent entities which interact and
collaborate, i.e. an object gives some services to the other objects and can request some as well; every
entity possesses a state which can be modified.

A RSL specification is a collection of modules; modules being schemes and objects. A scheme is a
named set of models and an object is a specific model within a given set of models.
The objects of a specification can interact and collaborate but the module dependency must be a tree
structure; circular dependencies are not allowed. Mutual interaction can still be achieved using channels.
A state can optionally be specified for a set of models using variable declarations. [18, chp. 28].

2. Encapsulation: The ability to hide the state of objects from the outside, the only way to interact with an
object is to request on of its services.

Identifiers defined within a class expression may be hidden from the outside using the hide construct.
The identifiers can be type, value, variable, channel, and object declarations. [18, sec. 29.2].

3. Synchronous/asynchronous: . . . Generally, synchronisation requests are achieved by method calling,
while message passing is associated with asynchronous requests.

Both functions and CSP message passing available in RSL are synchronous. It is possible to model
asynchronous message passing using an intermediate buffer process between two communicating pro-
cesses, but it is not natively available. [18, sec. 38.7]

4. Data abstraction: The ability to describe abstract data types, as distinct from individual objects; these
models are called hybrid in contrast to pure object models, in which only objects can be used as mod-
elling entities.

In RSL it is possible to define abstract data types (sorts) which are types. Types and modules are
different concepts. [18, sec. 3.3,38.4.1].

5. Data structures of objects: The ability to describe data structures of objects such as stacks or arrays of
objects.

In RSL an identifier can be bound to an array of models. In the following example L is bound to an
array of objects:

scheme Lists = class
object L[i : ListNo] : class . . . end
type ListNo = {| n : Nat • n < 2|}

end

The part postfixed to the object identifier, [i : ListNo], is the index type and thus the size of the array.
The binding, i, is available to the class expression and can i.e. be used for index dependent instantiation.
[18, sec. 32].

6. Object identity: The notion of a persistent identity for an object. The object identity is unique within the
system.

Object declarations introduce a persistent identifier for an arbitrary model within a specified class ex-
pression, [18, sec. 28.2,38.3]:

object O : class . . . end

7. Intra-object concurrency: The ability to express concurrent events inside an object.

Two processes may be evaluated in parallel in RSL, using the parallel operator ‖, as shown with the
run function:

5.1 Introduction 19

channel c : Unit
value

run : Unit → in c out c Unit
run() ≡ foo() ‖ bar(),

foo : Unit → in c Unit
foo() ≡ c? ; foo(),

bar : Unit → out c Unit
bar() ≡ c!skip ; bar()

If parallel processes have write access to variables then they get copies of those variables. This means
that there can be no interference between two processes except through channel communication. Shar-
ing a variable is done by wrapping it in a process that changes the value of the variable via channel
communication. [18, sec. 24.4]

8. Inter-object concurrency: The ability to have concurrent progress of objects.

Inter object concurrency is supported in RSL using objects. In the following example, objects A and B
are parallel processes which may communicate through the channel c of object C.

object A : class value foo : Unit → in C.c out C.c Unit end,
object B : class value bar : Unit → in C.c out C.c Unit end,
object C : class channel c : Unit end

A better structuring would be to declare A, B, and C as objects within the same class and pass C as an
actual parameter to A and B. Now C can be hidden in the class and communication between A and B is
secure since C cannot be accessed by anything else than A and B.

Object oriented criteria

9. Classes as templates: The ability to describe the common aspects of objects and to create (statically
or dynamically) instances or objects of the class; each class defines a type which is associated with all
instances of the class (intensional description)

In RSL schemes are named class expressions which can optionally be manipulated before being used to
define one or more objects. Thus they are used as templates. [18, sec. 28.3].

10. Classes as collections: The ability to describe homogeneous collections of existing objects (extensional
description).

This criteria is interpreted as the ability to describe commonalities of objects instantiated by different
class expressions. In RSL this is only relevant when using parameterised schemes which is the only sit-
uation where objects are used as expressions. Formal parameters do not restrict the actual parameters to
be instances of a certain class expression. Instead they prescribe requirements that the actual parameters
must fulfil such as the presence of a particular type or axioms that must hold. [18, sec. 30.5].

11. Inheritance: The reuse or modification of an existing class in order to obtain a new one. Three distinct
scenarios are considered:

(a) Specialization inheritance: Some ingredients may be added.
(b) Redefinition inheritance: Some services may be redefined.
(c) Design inheritance: Some ingredients may be removed.

The extend construct in RSL gives the ability to extend one class expression with another; that is,
the resulting class expression is the result of extending the scope of one class expression to include the
scope of another. It is required that the two class expression are compatible, meaning that it is possible
to add new definitions but not to redefine nor remove existing definitions. [18, sec. 28.4]
Overloading, i.e. value definitions with same name but different maximal signatures, is allowed. But
redefinition is not directly supported using extend. It is however still possible by combining extend with

20 Chapter 5. Scheme diagrams

renaming. In the following example the function foo in A is renamed to foo_old in B. Hence there is
no function in B with the name foo which means that C may define one.

scheme A = class
value

foo : Int → Bool
foo(i) ≡ i > 5

end,

scheme B = use foo_old for foo in A,

scheme C = extend B with class
value

foo : Int → Bool
foo(i) ≡ true

end

With this approach the original definition is still in the specification which was probably not the in-
tention. However if scheme A fulfils a contract then scheme C will also fulfil the contract. This is
not entirely true since the redefinition of the function could violate the theory but C does statically
implement A and hence fulfils the contract statically.
Regarding removal of ingredients both rename and hide could be used, but neither do actually remove
declarations.

12. Sub-typing: The ability to express a hierarchy of types based on the substitutivity principle. Three cases
are considered.

(a) Weak sub-typing: Only the profiles of the methods are considered.
(b) Strong sub-typing: The semantics of all the methods are considered.
(c) Observational sub-typing: Only a subset of the properties (the so-called observable ones) is con-

sidered in the used logic.

The substitutivity principle is an essential element of the RAISE method and the implementation rela-
tion. Weak sub-typing as described is similar to static implementation and strong sub-typing is similar
to implementation where the theory also is considered. Observational sub-typing is exactly covered by
sub-typing expression in RSL. The predicate used is free to observe only a subset of the properties of
the super-type. [18, chp. 11]

13. Multiple inheritance/sub-typing: The ability to construct a class by means of more than one class, or
the ability for a type to have more than one super-type.

The extend construct can be used several times in succession thus achieving multiple inheritance:

scheme A = extend B with extend C with class . . . end,
scheme B = class . . . end,
scheme C = class . . . end

This is no different than single extension and the schemes must all be compatible. [18, sec. 28.4,39.3]
Only one type can be super-type in a subtype expression. The desired effect could be achieved using a
Cartesian product or a short record definition as super-type. [18, chp. 11].

14. Inheritance 6= sub-typing: The ability to build the inheritance hierarchy distinct from the sub-typing
hierarchy.

Extension and sub-typing are two different concepts. The extend construct is an operator on class
expressions and sub-typing on type expressions.

15. Classes as object: The ability to consider a class definition as an object. Therefore, there is some notion
of meta-class (i.e. the class of classes).

This concept is not present in RSL.

5.1 Introduction 21

16. Collection of objects: The ability to make a collection of heterogeneous interacting objects, and to act
on the whole collection.

This is not possible in RSL.

17. Dynamic/static creation of objects:

RSL only supports static creation of objects. Dynamic creation could be modelled using object arrays
but this would not be true dynamic creation. Dynamic instantiation of parameterised schemes would be
problematic since it is unknown until the creation which object(s) should be used as actual parameters.

18. Genericity or parameterisation of classes:

RSL allows schemes to be parameterised with objects. [18, chp. 30]

Discussion

Table 5.1 summarises the evaluation of the criteria for RSL together with the languages of first-order logic and
set theory evaluated in [20]. RSL fulfils all the object based criteria except for asynchronous messages which
none of the other languages in the table do. Many of the object oriented criteria are supported in RSL, but
some essential features are missing in order to be object oriented:

The extend construct which provides inheritance in RSL extends the scope of one class expression to include
another, requiring that the two are compatible. It is thus not possible to overload a function with the same max-
imal signature in the extending class expression, without using the trick of renaming the overloaded function
to another name as describe in criteria 11.

An important criteria for an language to be object oriented is dynamic creation of objects which RSL does not
support. It can be modelled to some degree with object arrays but still poses a problem with parameterised
schemes. Another related issue is that RSL types and objects are two different concepts. It is thus not possible
for a function to return a reference to an object (pointer). An object type is missing.

An issue which is not clearly captured by the criteria is the constraint that RSL modules must not be recursively
dependent. The module dependency must form a tree or a forest of trees. Recursive dependency is possible in
object oriented modelling as references to objects are possible.

There is a rationale behind the limitations, which is to keep RSL sound. For example the use of recursion
between classes means that the semantics has to be explained in terms of macro expansion - unfold everything
into one big context. Then the semantics is not compositional, an we cannot in general talk about the semantics
of individual classes. Reasoning also is not compositional. [16]

Another point of view on recursion between modules is whether this is the right way to model. Dijkstra said
that the use of goto resulted in spaghetti code. Some are of the opinion that recursion between classes gives
spaghetti modules.

Although it is possible to model many of the criteria it must not become to cumbersome to do so, since the
benefits of object oriented modelling are likely to be less significant. It is concluded that RSL should be
categorised as a object based language and not object oriented.

5.1.4 Structure of chapter

Section 5.2 will present a literature study continued from [2]. It will cover related approaches and will be
supplemented by a discussion. Section 5.3 will summarise our work on the Scheme Diagram in [2], which is
followed by section 5.4 covering the technical advancements in the Scheme Diagram. A complete narrative
is presented in section 5.5 which presents all the parts of the Scheme Diagram. It is encouraged to read this
section before section 5.4. The narrative is followed by two non-trivial examples of the Scheme Diagram.
Both the narrative and the examples should provide a good understanding of how the Scheme Diagram is
represented in RSL. The non-trivial issues of translation is covered in section 5.7. The chapter ends with
comments on future work for the Scheme Diagram in section 5.8 and a conclusion in section 5.9. For this
chapter in general only selected parts are included from the formal specifications. The complete specifications
can be found in appendix C.

22 Chapter 5. Scheme diagrams

5.2 Previous work

Related and previous work to the Scheme Diagram will be presented in this section as a literature study. This is
followed by a discussion of the overall perspective of the literature study. Our preliminary thesis is summarised
in section 5.3.

5.2.1 Literature

[12] R. France, A. Evans, K. Lano, and B. Rumpe. The UML as a formal modeling notation. Comput. Stand.
Interfaces, 19(7):325–334, 1998.

Although this paper was written with UML v1.1 in mind it still seems relevant. In particular it
describes UML as the best Object Oriented modelling experience available though it suffers from
a lack of precise semantics. The paper presents an overview for the formalisation approach that
the precise UML group (pUML) is using to give UML a proper semantics and justifies its work
by discussing the problem that UML has. In the context of the Scheme Diagram the following
observations are interesting:
It is noted that a strength of Object Oriented modelling is the intuitiveness of the diagrams which
reduces the efforts to read and understand the models. However due to the lack of proper seman-
tics for Object Oriented notations the understanding for different readers may not be consistent.
The UML architects state, according to the paper, that the precision of syntax and semantics is a
major goal and claim to provide a “complete syntax” using meta-models and a mixture of natural
language and an adaption of formal techniques.
The paper acknowledges the use of a meta-model for describing the syntax of UML but states
that it cannot be used to interpret the semantics of non-trivial UML structures, especially when
the semantic meta-model is expressed in a subset of the notation it tries to interpret.
The homepage of pUML indicates that they are still active and involved with the definition of
UML v2.0:
http://www.cs.york.ac.uk/puml/

[3] Franck Barbier, Brian Henderson-Sellers, Annig Le Parc-Lacayrelle, and Jean-Michel Bruel. Formalization
of the Whole-Part Relationship in the Unified Modeling Language. IEEE Trans. Softw. Eng., 29(5):459–470,
2003.

The paper is concerned with the whole-part relationship in the UML Class Diagram being as-
sociation of kind Composition or Aggregation. Using UML v1.4 a proposal for a change to the
meta-model for UML v2.0 is given.
The problem is that Composition is declared as a subtype of aggregation, but no actual subtyping
is present in the meta–model. Additionally well-formedness for multiplicity for the two kinds is
missing.
The characteristics of the Whole-Part relationship is analysed and categorised as either primary
or secondary. Based on the characteristics, a modification to the UML meta-model is proposed.
Instead of using the association relation with a meta-attribute indicating Composition or Aggre-
gation, it introduces a new meta-class representing the Whole-Part relationship. This meta-class
has the primary characteristics.
Another two meta-classes are introduced representing the Aggregation and Composition relation.
Both are sub-classes of the Whole-Part meta-class and are their difference is how their features
are different regarding the secondary characteristics.
These new meta-classes are supplemented with constraints written in the Object Constraint Lan-
guage (OCL).

[28] J. He, Z. Liu, X. Li, and S. Qin. A Relational Model for Object-Oriented Designs. In Pro. APLAS’2004,
Lecture Notes in Computer Science, Taiwan, 2004. Springer.

http://www.cs.york.ac.uk/puml/

5.2 Previous work 23

The paper identifies object-oriented programming and formal methods as two important but in-
dependent approaches to software engineering in recent years. Moreover objects are and will
remain an important concept.
Besides the following model-based formalisms: Object-Z, VDM++, Syntropy, and Fusion, ad-
ditional six object oriented languages are mentioned. But all with limitations in one or more
features that categorise object oriented modelling.
The paper presents the semantics for a new object-oriented language (OOL) which includes sub-
types, visibility, inheritance, dynamic binding and polymorphism. A calculus based on this
model is also presented that supports structural and behavioural refinement of object oriented
designs.

[35] Yang Jing, Long Quan, Li Xiaoshan, and Zhiming Liu. A Predicative Semantic Model for Integrating
UML Models. In Proceedings of the 1st International Colloquium on Theoretical Aspects of Computing (IC-
TAC), 2004.

It is mentioned that the majority of the existing formal support to UML-based development focus
on formalisation of individual diagrams. Thus the consistency between different diagrams are
maintained.
This aim of the paper is a semantic model of UML based on the Object Oriented Language (OOL)
introduced in [28]. A syntax for a simple Class Diagram is presented using OOL which include
classes with attributes and methods, inheritance and binary associations with multiplicity but not
aggregation. A syntax for sequence diagrams is presented where each time line represents an
object or multiple objects. Messages between time lines are included. Simple well-formedness
rules are presented for the two diagrams.

[33] IFAD. The Rose–VDM++ Link. Technical report, IFAD, Forskerparken 10A, DK-5230 Odense M, 2000.
Revised for v6.6.

The report is a manual for the Rose-VDM++ Link which is an add-on to Rational Rose 98/20001.
Without going into technical details, it describes the architecture of the link. It is divided into
three categories: mapping from UML to VDM++, mapping from VDM++ to UML, and synchro-
nising UML and VDM++ models. A short tutorial of Rational Rose is also given.
The mapping rules from VDM++ to UML is presented by showing VDM++ specifications along
with the corresponding UML translations. The mapping rules have been defined such that they
are injective, thus the reverse mapping from UML to VDM++ is defined at the same time. Con-
structs that can only be described in one of the two representations are left out of the mapping.

• Instance variables and value definitions are basically the same but the latter is read-only.
These are mapped to attributes using the stereo types «instance variable» and «value» to
distinguish the two.

• VDM++ Operations are explicit and functions are implicit. These are mapped to UML
operations which only include the signature. Therefore stereotypes are again used to dis-
tinguish the two: «operation» and «function».

• In VDM++ objects may have relations to objects of other classes using the object reference
type declared in the instance variable clause. These are mapped to UML associations and
are not shown as attributes. The relations can be bidirectional and recursive. Multiplicity
is modelled using sets and ordered sets.

• There is a direct mapping of inheritance.
• In VDM++ operations can be delegated to subclasses using the subclass responsibility.

This corresponds to declaring operations abstract in UML. This means that the class be-
comes abstract and marked by displaying the class name in an italic font.

1Visual modelling tool for UML.

24 Chapter 5. Scheme diagrams

[20] N. Guelfi, O. Biberstein, D. Buchs, E. Canver, M-C. Gaudel, F. von Henke, and D. Schwier. Comparison
of object-oriented formal methods. Technical report, University of Newcastle Upon Tyne, Department of
Computing Science, 1997.

The goal of the document is the classification and comparison of object oriented formalisms for
assessing their suitability within the DeVa [10] project. The paper notes that the term “OO formal
approach” is used for several different approaches.
The first part of the document describes the classification criteria selected. The criteria are di-
vided into two categories: Object based and object oriented. The object based criteria primarily
describe encapsulation and methods for accessing the encapsulated state. Moreover the objects
are organised in a static structure. What is lacking compared to the object oriented criteria are
real inheritance and objects as value (pointers).
The main aspects that are missing in object based formalisms compared to object oriented in the
presented criteria is that no real inheritance is provided and objects may not be used like values
nor may objects be used as arguments to functions.
In total thirteen formalisms are compared divided into four categories of languages:

• First-order logic and set-theory: Object-Z, VDM++, Z++
• Algebraic: HOSA, TROLL, Maude, AS-IS
• Class Orientation with Nets: CLOWN, CO, OPN, CO-OPN/2
• Temporal Logic: TRIO+, OO-LTL

5.2.2 Discussion

The apparently large acceptance in industry and research interest in UML indicates the potential of the project.
It has, however, not reached its goal yet as several papers suggest. As [12] states: the semantics of UML is
not formally defined and it is also used to define itself. Two different concrete problems in the Class Diagram
regarding the semantics of the association relation, are mentioned in [21] and [3] respectively. A consequence
of the incomplete semantics is that the interpretation of UML diagrams rely on informal descriptions and
intuition.

To rectify this problem several approaches have been tried to combine UML with formal methods. In [13]
the Class Diagram is formalised and in [39, 35, 28] a new formal language is developed for object oriented
modelling. In [33] a formal language is extended to include object orientation. Common for most approaches
is that they only describe a subset of UML. Often a single diagram is formalised or even a subset of a single
diagram.

Another noticeable aspect is that the diagrams and features defined by UML are widely being accepted. A
consequence is that the formalisations and formal languages are adapted accordingly. In [48] the approach of
“UML’ising” formal techniques is presented. This is also the basis for the Scheme Diagram initially presented
in the preliminary thesis [2] and further developed in this thesis.

5.3 Summary of preliminary thesis

In [31] a relationship between the UML Class Diagram and RSL is sought through examples and formalisation
of the UML Class Diagram. The examples show that there indeed is a relationship and that diagrams can be
a supplement to a RSL specification. The formalisation of a part of the UML Class Diagram syntax does also
show that this is not a small task. Numerous attempts have been made to formalise subsets of UML but none
have been adopted by OMG which maintains the developments of UML.

The Scheme Diagram, first presented in our preliminary thesis [2], is inspired by the work done in [31]. We
started with a different approach by “UML’ising” formal methods instead of formalising UML. That is, a new
diagram is created, tailored for RSL. It maintains the formal foundation of RSL and is inspired by the UML
Class Diagram which already has proven its worth. In the remainder of this section the features of the Scheme
Diagram introduced in [2] are presented. This is based partly on [2, sec. 2.10].

5.4 Final Scheme Diagram 25

Schemes, being named class expressions, are supported by the diagram with type, value, variable, channel
and axiom declarations. This is achieved by fully supporting type expressions. Additionally hiding of dec-
larations is supported. Objects are included but must be an instance of a scheme. Extend is introduced as a
relation between two schemes. The association relation is introduced which is a precondition for qualification.
Additionally static implementation is introduced as a relation.

Regarding the static implementation as a relation in the diagram the underlying formalisation is not sound. It
is missing formal parameters and refinement of sorts and the use of qualification is not considered. The state
of an object neglects the variables available through qualification. A more profound detail that is missing is
scheme instantiation. It is thus not possible to specify which actual parameter should be used for a given formal
parameter. As a consequence hereof, object fitting is also missing.

It is chosen in [2] not to support renaming, the with operator and class expressions which are not named.

5.4 Final Scheme Diagram

This section will present the larger technical advancements made to the Scheme Diagram since it was first
presented in [2]. In particular scheme instantiation and object fitting have been introduced, and the static
implementation relation and object state have been improved. Further discussion and elaboration is covered
in section 5.4.1, 5.4.2 and 5.4.3. Furthermore the entire RSL specification for the Scheme Diagram has been
made translatable. That is, rewritten to the subset of RSL which can be translated into C++. This is covered in
section 5.4.4. The purpose of making the model executable is to reuse it in conjunction with the tool presented
in part III. A side effect is the possibility of testing the model. Test cases are present in appendix C.4.

In [2] the concept of diagrams is introduced with the purpose of presenting selected parts of a well-formed
model. This feature is primarily interesting from a CASE tool point of view and not from a modelling point
of view. With this in consideration and in order to simplify the specification, the feature has been removed. It
is possible in [2] to specify a list of role-names for a given association which is a shorthand for associations
differing only in the role-names. It has been removed for the same reasons.

Although fitting of objects have been included, renaming of schemes is not supported. This is further discussed
in section 5.8. The newly introduced with operator on class expressions is not supported. It is similar to
global objects without qualification but does not add new functionality to RSL; it is simply introduced for
convenience.

The to expressions scheme instantiation and instance of are similar but in fact different. The first stands for
the class expression which the scheme represents evaluated in the context of the actual parameters [18, sec.
39.6]. The second is used to state that a given model (object) is in a given set of models represented (class
expression) [18, sec. 28.2].

The two terms client and supplier are essential in understanding relations of the diagram. The two terms
refer to the participating modules of a relationship, and are also used in the Object Oriented terminology and
furthermore used in [19, p. 38]. The client is the dependent module and the supplier is the providing module.

5.4.1 Static implementation

A narrative of the static implementation relation for the Scheme Diagram is described in section 5.5.7. In
order to verify its well-formedness it is necessary to determine whether a client scheme statically implements
a supplier scheme: client_id vs supplier_id. The ¹s symbol is used for static implement between class
expressions and the vs symbol between scheme id’s. Static implementation is also used in conjunction with
object instantiation where actual parameters must statically implement formal parameters. It is described in
section 5.4.2.

In the Scheme Diagram only named class expressions are used, hence it is only necessary to determine static
implementation between named class expressions: Schemes. This is divided into two major parts. First the
signatures of the two schemes are determined. Second it is determined if the signature of the supplier is
included in the client.

The specification described in this section is based on that described in [2]. In [2] it was, however, far from
complete since it only included class expressions, no parameters or nested objects. Additionally determining
if the supplier is part of the client was done without considering the context.

26 Chapter 5. Scheme diagrams

The complete formal specification of the static implementation relation in the Scheme Diagram is present i
appendix C.1.5.

Signature

The signature of a scheme is the basis for determining static implementation. It denotes an identifier and
a maximal class expression. Formal parameters of a scheme are not included in the signature but are dealt
with through recursion in the comparison. Normally in RSL nested objects are considered a clause within a
class expression. In the Scheme Diagram all objects are relations and are not modelled as part of a scheme.
Consequently the signature of nested objects must be treated separately. The signature of the remaining clauses
is determined by the following three steps:

1. Make one basic class expression by eliminating extend relations.

2. Rewrite variant, union and short record definitions to sorts and value definitions.

3. Determine the maximal class.

Creating one basic class expression is done by first determining the class expression of the scheme. If the
scheme is client of an extend relation then the class expressions of the supplier is merged with the original
class expression. If the supplier is client in an extend relation, this is repeated. Any declaration that is hidden
and not part of the initial class expression is omitted.

Variant, union and short record declarations are all short hands for a sort definition, one or more value defini-
tions and two or more axioms [18, chp. 12, 15]. The axioms are not relevant for static implementation and are
ignored. After rewriting the maximal class can be determined. This is done by finding and substituting all type
expressions with their corresponding maximal type expression.

Determining the nested objects of a scheme is done similiar to eliminating extends. The nested associations for
the initial scheme are determined. If the scheme is a client in an extend relation then the nested associations
of the supplier are added. This is done recursively. If a client of a private nested association is a supplier of
the initial scheme, it is omitted.

Comparison

As already stated only schemes are considered in conjunction with static implementation in the Scheme Dia-
gram. Static implementation between two schemes is defined as follows [15, p. 54-55]:

• The number of formal parameters must be the same.

• The formal parameters of the supplier scheme must statically implement the parameters of the client
scheme.

• The class expression of the client scheme must statically implement the class expression of the supplier
scheme.

Substitutivity is a desired property of the implementation relation [19, sec. 1.6] captured by static implemen-
tation. This is also the reason that the static relation for the formal parameters is reversed. If a client scheme
strengthens its formal requirements only a subset of the actual parameters accepted by the supplier scheme is
accepted. Thus the client will not be able to substitute the supplier. It is however allowed for the client to
loosen its requirements since it still accepts all the actual parameters of the supplier.

In RSL the formal parameters of a scheme is a list. The formal parameter of the supplier must statically
implement the formal parameter of the client with the same index. In the Scheme Diagram this ordering is
not present since the parameters are drawn as lines connected to the scheme box. In RSL and thus the Scheme
Diagram the IDs used for the parameters must be unique and the same IDs must be present in a refinement.
Hence this does not pose a problem.

The static implementation relation for class expressions is defined as follows:

5.4 Final Scheme Diagram 27

[18, sec. 30.5]: class_expr2 statically implements class_expr1 if the maximal signature of
class_expr1 is included in the maximal signature of class_expr2

Included is a broad definition which need to be elaborated for each of the clauses of a class expression:

type Since variants, unions and short record definitions are rewritten, only sorts and abbreviation definitions
are considered. A sort of the supplier is included in the client if there exists a sort or abbreviation
with the same name. An abbreviation of the supplier is included in the client if the name and maximal
signature are the same.

value A value definition in the supplier is included in the client if there exists a value definition with the
same name and maximal signature. Additionally variable and channel accesses of the client must be a
subset of those in the supplier. [18, sec. 30.6.4]

variable A variable definition of the supplier is included in the client if its maximal signatures are the same
[18, sec. 30.6.2].

channel A channel definition of the supplier is included in the client if its maximal signatures are the same
[18, sec. 30.6.2].

axiom Axiom definitions do not have signatures and are disregarded [18, sec. 30.5].

object An object definition of the supplier is included in the client if there exists a new object definition with
the same type. Additionally the class expression of the new object definition must statically implement
the old. If the old is an array then the new must also be an array and the indices must statically implement
the old. [18, sec. 30.6.1]

Sorts may be refined into abbreviations which means that the maximal signatures of type, value, variable and
channel definitions may change in the refinement. Consider the following example:

scheme A1 = class
type T
value x : T

end

scheme A2 = class
type T = Int
value x : T

end

The scheme A2 statically implements A1 but the maximal type of x in A1 is T and in A2 it is Int. It is thus
necessary to consider the context. In [38, sec. 3.2] a signature morphism is described that addresses this
problem. We have adapted this approach to the Scheme Diagram. A map from type names to type expressions
is generated for each type definition in the client scheme. Before determining if a value definition from the
supplier is present in the client, all type names in its type expression are substituted by the type expression in
the map with the type name as lookup key.

5.4.2 Scheme instantiation

The syntax for the Scheme Diagram in [2] does not support scheme instantiation of parameterised schemes,
because it is not possible to specify actual parameters for the formal parameters. The formal parameters of
a scheme are all the associations of kind parameter which the scheme is a client of. When instantiating
a scheme all the formal parameters must be instantiated with an actual parameter being an object available
within the instantiating scheme. Since both the actual and formal parameters are described as associations and
thus as relations between two modules, there is no ordering information. That is, the order in which the formal
parameters are written in an RSL matters with regards to specifing which actual parameter is used for a given
formal parameter. Hence we introduce the following type:

type
ActualParameters = Name →m Name × Fitting,
Fitting = Name →m Name,

28 Chapter 5. Scheme diagrams

The type ActualParameters is a map from the name of a formal parameter to the name of an actual
parameter together with fitting information of the actual parameter. The type Fitting is a map from “old”
names to “new” names.

Renaming of class expressions is not supported by the Scheme Diagram, but fitting of objects is included. The
rationale is that generic parameterised schemes loose their potential without object fitting. Fitting is used in
conjunction with objects as actual parameters. The relationsship between the actual and formal parameters are
as follows: The class expression of the actual parameter must statically implement the class expression of the
formal parameter. If fitting of the actual parameter is included then the class expression of the actual parameter
must statically implement the class expression of the formal after the class expression of the formal parameter
has been renamed with the fitting: [18, sec. 30.5, 40.5]

object AP : ceap,
scheme FP = cefp

AP{xx for yy} vs FP ≡ ceap ¹s use xx for yy in cefp

Thus fitting requires renaming, but it is only required once just before instantiation. Thus the argument is that
complete rename support is more complicated for less functionality. See section 5.8 for a discussion about
renaming in the Scheme Diagram.

The ActualParameters information is relevant when instantiating parameterised schemes which may
happen with global objects and associations of kind parameter and nested. When using the extend construct in
RSL in conjunction with parameterised schemes, it is required to provide actual parameters to the supplier. In
the Scheme Diagram an extending scheme will inherit the formal parameters of the supplier and use these as
actual parameter when instantiating the supplier. Since the same name and class expression are used it is not
necessary to add the ActualParameters to the Extend type in the Scheme Diagram. See section 5.5.6.

In order to instantiate a global object with a parameterised scheme other global objects must be used as actual
parameters. It should also be possible to fit the global objects which are used as actual parameters thus the type
ActualParameters is added to the type Object.

type
Object ::

instance_of : Name
actual_parameters : ActualParameters
state : State

The set of names of the formal parameters of the scheme which the object is an instance of must thus equal the
domain of ActualParameters. This would mean that each formal parameter has an actual parameter.

Instantiating a parameterised scheme as a global object requires other global objects as actual parameters. In
the Scheme Diagram objects are only available through associations, hence it becomes necessary to allow
associations of kind Global between two global objects. This does, however, introduce an inconsistency since
neither the object nor the association can be added to the diagram before the other is present. The object
requires the association in order to use the supplier as actual parameter. The association requires the object
to be present otherwise the client end will be dangling. We chose to accept this transition from well-formed
diagram to non well-formed and back. The argument is that this is normal for development including that of
RSL specifications written in text. It is not well-formed until the user is finished typing (this is of course an
insufficient precondition for well-formedness).

scheme ELEM : class type Elem end
scheme ITEM : class type Item end
scheme B : class type Boat end
scheme STACK(e : ELEM) : class . . . end
scheme QUEUE(i : ITEM) : class . . . end

object b : B
object s : STACK(b{Elem for Boat})
object q : QUEUE(b{Item for Boat})

In the example the object s will be an instance of STACK and the actual parameters would be:

5.4 Final Scheme Diagram 29

[′′e′′ 7→ (′′b′′, [′′Boat′′ 7→ ′′Elem′′])]

The second place where object instantiation and fitting are used is with associations of kind Parameter and
Nested. Global associations do not denote instantiations since the supplier is a global object, thus no role
name is specified and it will not be necessary to include fitting information either. This information is present
in the global object. Both parameters and nested objects are scheme instantiations and can thus have formal
parameters which must be instantiated with actual parameters. As with global object instantiation the actual
parameter is a name of an object which is available within the instantiating context and again optional fitting
information is included.

type
Association ::

client : Name
kind : Kind
supplier : Name
rolename : Name
mul : Multiplicity,

Kind ==
Nested(Visibility, ActualParameters) |
Parameter(ActualParameters) |
Global,

Multiplicity == None | Index(binding : Name, mtype : TypeExpr)

The domain of the actual parameters is again the names of the formal parameters of the supplier scheme, hence
the domain of the actual parameters and the set of formal parameters names must be equal.

The following functions are relevant to scheme instantiation:

• (wf_scheme_instantiation, C.1.6): Determines if the actual parameters statically implements the formal
parameters.

• (wf_actual_parameters, C.1.6): Check if there is an actual parameter for each formal parameter and that
the object names used as actual parameters are actually available.

• (wf_object, C.1.6): Checks the well-formedness of global objects which includes a call to
wf_scheme_intantiation.

• (wf_association, C.1.8): Checks the well-formedness of associations of kind Nested and Parameter-
which includes a call to wf_scheme_intantiation.

5.4.3 Object state

How to depict the state of an object in the Scheme Diagram is inspired by the UML Class Diagram. A Class
Diagram in UML can additional to classes also contain objects. Actually an Object Diagram is merely a Class
Diagram without classes. An object in the Scheme Diagram must be an instance of a scheme, therefore it is
not possible to have a Scheme Diagram only containing objects.

It is recognised in [17, p. 435] that the use of the Object Diagram is limited, but may be used to illustrate a
complex state. This is also true for showing the state of an object in the Scheme Diagram. It is not possible to
translate the state into RSLsince the values represent a given state in time.

The state of an object in the Scheme Diagram is composed of the variables declared in the scheme which
the object is an instance of. The declared variables are however not limited to the immediate scheme but
also public variables available through the Extend relation and public variables available through nested
associations. Only private declared variables from the immediate scheme is visible in the object state. Other
private declared variables, through Extend or Association relations, are not visible to the object and thus
not included in its state. See figure 5.2.

The state is represented in RSL as a mapping from a variable to its value. In order to uniquely identify the
variables the qualification needed to reach the variable is included. Since value expressions are not included,
the state is not translatable and the values are simply modelled as a text giving the user freedom.

30 Chapter 5. Scheme diagrams

Figure 5.2: Example of an object with a state compartment.

type
State = QualifiedName →m Value,
Value = Text

It is only possible to depict one object with the same name in a diagram. Thus it is only possible to depict a
single state.

Variables may only be shown as part of a state in conjunction with global objects. Object declarations con-
taining variables are considered part of the declaring scheme. Actual parameters are always global objects or
nested association, hence parameter objects are not part of the state since their variables is part of the actual
parameter.

The following functions are relevant to object state:

• (wf_object_state, C.1.6) Checks the well-formedness of the state, which is whether all the variables
available is represented in the state.

• (state_domain, C.1.6) Determines the set of names with qualification of the variables which constitute
the state.

5.4.4 Executable specification

The complete specification for the Scheme Diagram is executable in the sense that it can be translated into C++
using the rsltc tool. Only a subset of RSL can be translated for the following two reasons. First, some of the
expressions are not possible to translate with a reasonable outcome, such as general for-all quantification (∀).
Second, the translator to C++ is simple not finished, e.g. it is capable of translating variant and short record
definitions but not union definitions. The specification presented in [2] is not translatable and an effort has been
put into rewriting offending expressions. The remainder of this section will describe some of the encounters
in the process of making the Scheme Diagram executable. When two RSL texts are listed in the remainder of
this section, then the left is from [2] and the right from appendix C.

Unions are used in several places in [2] but as just mentioned, they cannot be translated. Unions are simply a
short hand for a variant definitions where all constructors have exactly one type expression, thus it is possible
to rewrite unions to variants. This would reduce the readability of the specification. Instead we decided
to reconsider the type definition Model’. Conceptually the Scheme Diagram is divided into modules and
relations which is reflected in the definition in [2]. Instead we chose to model each element of the diagram in
a separate map and remove the concept of diagrams. This has simplified the model of the Scheme Diagram,
e.g. determining if a given name is a scheme. Removing the concept of diagrams was also done in order to

5.4 Final Scheme Diagram 31

simplify the well-formedness in general. Unions are in [2] also used in the type definition of type declarations
and type expression which also have been rewritten.

type
Model′ ::

modules : Name →m Module
relations : RID →m Relation
diagrams : DID →m Element-set,

Module = Scheme | Object,
Relation = Association | Extend | Implement,
Element = Name | RID

type
Model′ ::

schemes : Name →m ClassExpr ↔ replace_schemes
objects : Name →m Object ↔ replace_objects
associations : RID →m Association ↔ replace_associations
extends : RID →m Extend ↔ replace_extends
implements : RID →m Implement ↔ replace_implements

Another issue for the translation to C++ is curried functions. The suppliers function in [2] has a predicate
as parameter which determines which relations to consider. The function returns the set of names of modules
which are suppliers to the specified module. The predicate could restrict the suppliers to consider associations
only. Since it is not possible to specify a predicate it is necessary to create additional two functions which
restrict the relations considered. (suppliers_ass, suppliers_ext, C.1.2)

value
suppliers :

T.Model′ × (T.Model′ × T.RID → Bool) →
T.Name ∼

→ T.Name-set
suppliers(mdl, p)(m) ≡

{supplier_of(mdl, r) | r : T.RID •

is_relation(mdl, r) ∧ p(mdl, r) ∧
client_of(mdl, r) = m}

pre is_scheme(mdl, m) ∨ is_object(mdl, m)

value
suppliers : Model′ × Name ∼

→ Name →m RID
suppliers(mdl, s) ≡

[supplier_of(mdl, r) 7→ r | r : RID •

r ∈ relations(mdl) ∧
client_of(mdl, r) = s]

pre s ∈ modules(mdl)

The same situation holds for the associations functions which, provided a name of a module, determines
the available objects. In this case a predicate could select what kind of association should be considered.
(associations, C.1.2)

A third issue is recursive calls in quantification expressions and comprehended expressions in general. They
are not supported by the translator. This is solved by creating a new recursive function and instead of e.g.
a quantified expression the new function is called. Consider the case for product type expressions in the
following example:

wf_type_expr : Model′ × Name × TypeExpr → Bool
wf_type_expr(mdl, m, te) ≡

m ∈ modules(mdl) ∧
case te of

tl_Unit → true,
tl_Bool → true,
...
BracketedTypeExpr(te′) → wf_type_expr(mdl, m, te′),
ProductTypeExpr(tel) → wf_product_type_expr(mdl, m, tel)

end,

wf_product_type_expr : Model′ × Name × TypeExpr∗ → Bool
wf_product_type_expr(mdl, m, tel) ≡

tel = 〈〉 ∨
(tel 6= 〈〉 ∧ wf_type_expr(mdl, m, hd tel) ∧
wf_product_type_expr(mdl, m, tl tel))

Here the call to function wf_product_type_expr replaces the more simple expression, which besides the
recursive call would have been accepted by in the translation to C++.

∀ te′ : TypeExpr • te′ ∈ tel ⇒ wf_type_expr(mdl, m, te′)

Although some of the elegant notations of RSL may not be used when considering translation, we still think
that the specifications has maintained its readability.

32 Chapter 5. Scheme diagrams

5.5 Narrative of the Scheme Diagram syntax

In this section an informal description will be given of the Scheme Diagram and its elements. This is sup-
plemented with the types used to define the diagram and selected functions that will contribute to an in-depth
understanding. The complete formal specification for the Scheme Diagram is presented in appendix C. Figure
5.1 in section 5.1.1 presents an overview of the formal specification. A glossary is provided in appendix A.1
with terms used in the Scheme Diagram. The narrative is based on [2, chp. 2] but has been modified and
updated.

5.5.1 Diagram

Types

The purpose of the scheme diagram is to give an overview of the modules which are used to describe a system.
The diagram basically consists of boxes and lines connecting those boxes. The boxes represent RSL modules
being either schemes or objects. In this context it should be mentioned that contrary to a normal RSL speci-
fication it is only possible for objects to be instances of schemes; that is, instantiation with an unnamed class
expression is not supported. The rationale for doing so is to follow the example of the UML Class Diagram
which has classes and objects which to some degree can be compared to RSL schemes and objects respectively.
In the UML Class Diagram it is necessary to have a class before it is possible to instantiate an object. Another
reason is that it is simpler to keep track of the class expressions in the model if they are named and a scheme
is simply a named class expression. Objects can consequently only be instantiated by named class expressions
in the Scheme Diagram.

The lines between boxes denote relationships. There are three different relationships included in the Scheme
Diagram. They are Association, Extend and Implement. Association is concerned with references to other
modules. Extend represent the construct available in RSL with the same name. Implement2 indicates to the
user that a static implementation relation holds between the two schemes. In the Scheme Diagram all relations
are binary and directed.

type
Model′ ::

schemes : Name →m ClassExpr ↔ replace_schemes
objects : Name →m Object ↔ replace_objects
associations : RID →m Association ↔ replace_associations
extends : RID →m Extend ↔ replace_extends
implements : RID →m Implement ↔ replace_implements,

RID = Nat

When describing a diagram which must depict RSL it is perhaps a bit misleading when using the word model
in the formal description since it is an important term in the RSL terminology. A scheme being a set of models
and an object a single model. However the name “Model” has been chosen also inspired by UML by having a
complete model.

A well-formed Scheme Diagram is represented as a subtype which fulfills all the well-formed conditions
described in the following sections. (wf_model, C.1.9)

type
Model = {| mdl : Model′ • wf_model(mdl) |}

value
wf_model : Model′ → Bool

Well-formedness

1. All boxes must be either a Scheme or an Object and these must be uniquely identified by their name.
(wf_module_names, C.1.9)

2The name Implement is used for the relation in the Scheme Diagram as a shorthand for static implement.

5.5 Narrative of the Scheme Diagram syntax 33

2. All lines must be either be an Association, an Extend or an Implement. All relations must have an
unique identification regardless of its kind. (wf_relation_ids, C.1.9)

3. Circularity between modules are not allowed in RSL and will hence not be allowed in the Scheme Dia-
gram: There must not be circular relations between modules. It is possible for the static implementation
relation to be cyclic, e.g. two identical schemes. In order to completely avoid cyclic structures in the
diagram we have chosen to disallow it. (wf_non_cyclic, C.1.9)

wf_non_cyclic : Model′ → Bool
wf_non_cyclic(mdl) ≡

∼ (∃ s : Name •

s ∈ schemes(mdl) ∧ path(mdl, s, s)),

The path determines if there exists a directed path between two modules in the model. All the relations
in the Scheme Diagram are directed in the sense that one module is the supplier and the other is the client
and the direction is from client to supplier. There are no restrictions to the modules which are part of
the path except that they are part of the model. (path, C.1.9)

path : Model′ × Name × Name ∼

→ Bool
path(mdl, org, dst) ≡

path(mdl, org, dom suppliers(mdl, org), dst)
pre {org, dst} ⊆ modules(mdl),

path : Model′ × Name × Name-set × Name ∼

→ Bool
path(mdl, org, intermediate, dst) ≡

intermediate 6= {} ∧
(dst ∈ intermediate ∨
let n = hd intermediate in

path(mdl, n, dom suppliers(mdl, n), dst) ∨
path(mdl, dst, intermediate \ {n}, dst)

end)
pre {org, dst} ⊆ modules(mdl)

5.5.2 Type expressions

Types

The primary focus of schemes in the Scheme Diagram is on signatures of declarations. In this context type
expressions are essential and therefore included in the diagram. It gives the possibility to generate RSL spec-
ifications that are syntactically correct. This can be verified by the rsltc tool. Secondly it becomes possible to
verify the rules of overloading and the static implementation relation between two schemes.

Type expressions are described in detail in [18, chp. 41] and will thus not get a thorough description here. All
possible type expressions have been included in the Scheme Diagram, some with limitations. The limitations
of type expressions in the Scheme Diagram will be highlighted in the remainder of this section.

type
TypeExpr ==

tl_Unit |
tl_Bool |
tl_Int |
tl_Nat |
tl_Real |
tl_Text |
tl_Char |
TypeName(Name, Qualification) |

34 Chapter 5. Scheme diagrams

ProductTypeExpr({| tel : TypeExpr∗ • len tel ≥ 2 |}) |
BracketedTypeExpr(expr : TypeExpr) |
FiniteSetTypeExpr(TypeExpr) |
InfiniteSetTypeExpr(TypeExpr) |
FiniteListTypeExpr(TypeExpr) |
InfiniteListTypeExpr(TypeExpr) |
MapTypeExpr(domain : TypeExpr, range : TypeExpr) |
FunctionTypeExpr(

param : TypeExpr,
arrow : FunctionArrow,
result : ResultDescr) |

SubtypeExpr(TypeExpr, restriction : QualifiedName),
FunctionArrow == fa_total | fa_partial,
ResultDescr = AccessDescr∗ × TypeExpr

Type expressions are recursively defined where the basic and terminating elements are type literals and type
names. Type literals are predefined types within RSL and type names refer to declared types with optional
qualification.

The subtype expression is more complex than the other type expressions. It includes a value expression which
is a restriction on the specified super type. The subtype thus contains all the values which satisfies the value
expression which is required to be a predicate. Since value expressions are not included in the Scheme Diagram
the value expression of the subtype cannot be included. Instead the subtype expression has the name of a
predicate value expression which must be declared, as shown to the right:

y = {| x : Int • x > 10|} y = {| x : Int • wf_x(x)|}
wf_x : Int → Bool

The actual value expression is not included in the Scheme Diagram, only the signature. It can be added after the
diagram has been translated into RSL. The value declaration which is referenced from the subtype expression
must, to be well-formed, take supertype as parameter and return a boolean value.

The function type expression consists of four parts: (1) The type expressions for the parameters (2) Result
type expression of the function (3) If the function is partial or total (4) Access description for variables and
channels. There are many allowed combinations of how accesses to variables and channels may be specified as
part of the function type expression. Note that comprehended access is not included in the Scheme Diagram.
It is omitted in order to simplify the Scheme Diagram, since accesses are already a complicated recursivly
defined type structure. The possible ways of describing access is thus done by explicitly specifying the name
of the variable or channel or by using completed access (any).

type
AccessDescr = AccessMode × Access∗,
AccessMode == am_read | am_write | am_in | am_out,
Access ==

NameAccess(QualifiedName) |
EnumeratedAccess(Access∗) |
CompletedAccess(Qualification)

With an almost full description of type expressions it is possible to determine the maximal type expression
(maximal_type, C.1.3). As mentioned in the beginning of the section, this is interesting in conjunction with
overloading and static implementation. It allows for well-formedness predicates that will ensure that a trans-
lated diagram will be syntactically correct.

Well-formedness

4. Type expressions are represented by a recursive structure, e.g. a Cartesian product is a list of type
expressions. A type expression is well-formed if each of its contained type expressions are well-formed
(wf_type_expr, C.1.3). Type literals, e.g. Int, are trivially true. A type expression is not well-formed if
one of the following criteria fail:

5.5 Narrative of the Scheme Diagram syntax 35

(a) Sub-type expressions: The super-type must be well-formed and the restriction predicate must exist
as a value declaration. The type expression of the value declaration must be a function expression
with the super-type as parameter and Bool as return type. (wf_subtype_expr, C.1.3)

(b) Type name expressions: A type name is a reference to a declared type with optional qualification.
The name must exist relatively to the context in which the type name is used.
(wf_typename_expr, C.1.3)

wf_typename_expr : Model′ × Name × TypeExpr → Bool
wf_typename_expr(mdl, m, tn) ≡

case tn of
TypeName(n, q) →

valid_qualification(mdl, m, q) ∧
let schn = follow_qualification(mdl, m, q) in

schn ∈ schemes(mdl) ∧
n ∈ declared_type_names(extend_history(mdl,schn))

end,
→ false

end,
(c) Accesses: In conjunction with functions, variables and channels may be accessed. If the access

mode is in or out then the following names must be names of channels. If the access mode is
read or write then the following names must be names of variables. (wf_access_descr, C.1.3)

5.5.3 Scheme

Types

Schemes are depicted in the Scheme Diagram as rectangular boxes with between one and six compartments.
The top compartment contains the name of the scheme which also is the unique identifier of the scheme within
the Scheme Diagram. The remaining compartments contain the declarations of type, value, variable, channel,
and axiom – see section 5.5.5 for the reason why the object clause has been excluded. See figure 5.3 for an
example of the how the scheme is depicted. This is very similar to how the class is depicted in the UML Class
Diagram.

type
ClassExpr ::

types : TypeDecls ↔ replace_types
values : ValueDecls ↔ replace_values
variables : VariableDecls ↔ replace_variables
channels : ChannelDecls ↔ replace_channels
axioms : AxiomDecls ↔ replace_axioms

As the space available to depict the scheme is sparse and it must give an overview, the information presented
must be limited to fit these criteria. In the UML Class Diagram this has been done by only displaying the
signature of both attributes and operations; that is, information regarding the type of the attributes and the
types of parameters and result of functions. The same approach is chosen for the Scheme Diagram. Thus
only including the signature of declarations. All compartments need not be shown. The top compartment is
mandatory, the remaining compartments are optional.

An important concept in object oriented modelling is visibility. It denotes the level of visibility of elements
within an object to other objects. RSL has corresponding possibilities through hiding; all declarations are
visible to other modules unless they are explicitly hidden.

type
Visibility == Private | Public

The visibility concept with public and private declarations is thus included in the Scheme Diagram. It is
depicted in the scheme diagram to the left of each declaration with a plus sign for public and a minus sign for
private.

36 Chapter 5. Scheme diagrams

scheme STACK = hide el in
class

type Elem
variable el : Elem∗

value
push : Elem → write el Unit,
pop : Unit → write el Unit,
top : Unit → read el Elem,
empty : Unit → write el Unit,
is_empty : Unit → read el Bool

end Figure 5.3: An example of a scheme
in the Scheme Diagram.

Above is an example of a RSL specification of a stack. The corresponding depiction in figure 5.3 is how the
scheme is depicted in a Scheme Diagram. Notice the hiding of the variable el. Empty compartments are not
shown.

The first compartment holds the type declarations with corresponding type expressions. All the possible type
declarations have been included: sort definitions, abbreviation definitions, and variant definitions. The two
variant shorthands have also been included: union and short record definitions.

type
TypeDecls = (TypeDecl × Visibility)∗,
TypeDecl ==

SortDef(Name) |
AbbreviationDef(Name, TypeExpr) |
VariantDef(Name, {| vdl : Variant∗ • len vdl ≥ 1 |}) |
UnionDef(Name, {| nwl : NameOrWildcard∗

• len nwl ≥ 2 |}) |
ShortRecordDef(Name, ComponentKind∗),

NameOrWildcard == udName(qname : QualifiedName) | udWildcard

Sorts are the simplest form of type declaration consisting only of a name. Likewise are abbreviations simple
consisting of a name and a type expression. Variant declarations are somewhat more complex since it is a
shorthand for a sort definition, value function definitions, and some axioms. In conjunction with variant and
short record declaration it is possible to specify destructors and reconstructors. It is however only allowed to
use reconstructors if there exists a corresponding destructor. This will be part of the well-formedness conditions
and not be a concern when expanding the respective type declarations to value function definitions. The formal
representation of the union and short record declarations do not differ significantly compared to the variant
declaration and are also based on the same type declarations.

In the Scheme Diagram only the name and signature of a value declaration are shown. This is the same for
value definitions and function definitions both implicitly and explicitly. It is possible, due to overloading, to
have two value declarations with the same name as long as the maximal signature is different. The declarations
for variables and channels are similar to that of value declarations. Both declarations consist of a unique name
and a type expression.

type
ValueDecls = (ValueDecl × Visibility)∗,
ValueDecl ::

vdname : Name ↔ replace_vdname
vdte : TypeExpr ↔ replace_vdte

type
VariableDecls = (VariableDecl × Visibility)∗,
VariableDecl ::

vdname : Name ↔ replace_vdname
vdte : TypeExpr ↔ replace_vdte

5.5 Narrative of the Scheme Diagram syntax 37

type
ChannelDecls = (ChannelDecl × Visibility)∗,
ChannelDecl ::

cdname : Name ↔ replace_cdname
cdte : TypeExpr ↔ replace_cdte

In a RSL specification the axiom declarations can have an optional name associated. It does not have any
effect on the axiom but can provide an intuitive meaning to the axiom if named properly. Additionally it
makes references to the axiom more clear from e.g. documentation. For the same reasons and because value
expressions are not included, only the name of the axiom is included in the Scheme Diagram thus making it a
requirement that every axiom has a name. Axioms are the only declarations which do not have visibility in the
Scheme Diagram.

type
AxiomDecls = AxiomDecl∗,
AxiomDecl :: adname : Name ↔ replace_adname

Well-formedness

5. The names of the declarations in a class expression must adhere to the following requirements.
(wf_class_expr, C.1.4)

• Names within type declarations must be unique.
• Names within value declarations must be unique unless the maximal signature is different (over-

loading).
• Names of variable declarations must be unique.
• The set of value names and the set of variable names must be disjoint.
• Names within channel declarations must be unique.

The functions that check the names of value declarations is included as example. Two different indices
are selected from the list of value declaration. Either the names must be different or the maximal type
at the selected indices. It is necessary to use indices instead of two value declaration being part of the
list. In the latter case the same two will represent the same value declaration thus being equal and the
predicate will return false.

wf_value_overloading :
Model′ × Name × ValueDecl∗ → Bool

wf_value_overloading(mdl, n, valdl) ≡
(∀ i : Nat •

i ∈ inds valdl ⇒
(∀ j : Nat •

j ∈ inds valdl ∧ i 6= j ⇒
vdname(valdl(i)) 6= vdname(valdl(j)) ∨
maximal_type(mdl, 〈〉, n, vdte(valdl(i))) 6=

maximal_type(
mdl, 〈〉, n, vdte(valdl(j)))))

6. The type expressions used in the declarations must be well-formed as specified in section 5.5.2. This in-
cludes the type, value, variable and channel clauses of class expressions. Axiom and object declarations
do not have type expressions. (wf_scheme_decl_expr, C.1.4)
Value, variable and channel declarations are simple in their type structure, consisting of a name and
a type expression. Therefore they are also simple to check. Type declarations are more complex, the
well-formedness function for union definitions is included as example:

wf_union_def :
Model′ × Name × NameOrWildcard∗ → Bool

wf_union_def(mdl, n, nwl) ≡
(∀ i : Int •

38 Chapter 5. Scheme diagrams

i ∈ inds nwl ⇒
case nwl(i) of

udName((n′, q′)) →
valid_qualification(mdl, n, q′) ∧
n′ ∈

declared_type_names(
schemes(mdl)(

follow_qualification(mdl, n, q′))),
udWildcard → true

end),

The following must hold for each entry of the list of the right hand side of a UnionDef: if the entry is
a name, then the name must be a name of a type declaration, possibly with a qualification.

5.5.4 Object

Types

An object is a single model out of the set which a class expression represents. In RSL an object is either
instance of a class expression or a scheme. As the Scheme Diagram only include schemes, an object must be
an instance of a scheme.

type
Object ::

instance_of : Name
actual_parameters : ActualParameters
state : State,

State = QualifiedName →m Value,
Value = Text

The object is depicted as a rectangle with between one and three compartments. The top compartment contains
the name of the object and the name of the scheme which it is an instance of, separated by a colon. Additionally
the text in the top compartment is underlined to emphasise that it is an object. See figure 5.4. The remaining
two compartments are optional and hold actual parameters and the variable state respectively.

object INTSTACK : STACK(OI),

object OI : INTEGER,
scheme INTEGER = class

type Elem = Int
end,

scheme STACK(E : ELEM) =
hide el in class
variable el : E.Elem∗

value
push : E.Elem → write el Unit,
pop : Unit → write el Unit,
top : Unit → read el E.Elem,
empty : Unit → write el Unit,
is_empty : Unit → read el Bool

end,
scheme ELEM = class type Elem end

Figure 5.4: Example of objects and schemes in
the Scheme Diagram. The lines are introduced in
section 5.5.5.

5.5 Narrative of the Scheme Diagram syntax 39

The state of an object is composed of variables and corresponding values. The variables which are part of the
state are: All variables of the scheme which the object is an instance of and all public variables which can be
reached through nested qualification. Variables available through global or parameter associations are part of
another objects state. There are no constraints on the values of the state. Since value expressions are not part
of the diagram, it is not possible to specify well-formedness. See section 5.4.3 for a more detailed description
of the object state.

The name of the scheme which the object is an instance of, is written in the top compartment after the colon. If
the scheme is parameterised then it is necessary to specify the actual parameters. This is done in the parameters
compartment. For each formal parameter there must be an actual parameter with optional fitting. This is
described in detail in section 5.4.2.

Figure 5.4 illustrates the usage of objects. It builds upon the example presented in figure 5.3 but the STACK
is now a parameterised scheme. Two global objects are declared in the example: OI and INTSTACK. The
first is an instance of scheme INTEGER which is neither parameterised nor does it have variables. Therefore
only one compartment is shown with the name of the object. The INTSTACK object is an instance of the
parameterised scheme STACK. It uses the OI object as actual parameter. The lines between the boxes are
explained in section 5.5.5.

Well-formedness

7. The state of an object is well-formed if there for all variables available from the object is a corresponding
key in the state map (wf_object_state, C.1.6). Available variables are:

• All variables declared in the scheme which the object is an instance of.
• All public variables inherited by the scheme through the extend relation.
• All public variables which can be reached via qualification (association).

Nothing is required about the value of a given variable. It is represented by a text string and the user
is free to enter anything. If the value should be verified then it would be necessary to include value
expressions which is omitted in the Scheme Diagram.

8. An object must be an instance of a scheme which is part of the model. If the scheme is parameterised
then it must be a valid scheme instantiation. (wf_scheme_instantiation, C.1.6)
All the actual parameters must statically implement the formal parameters.

wf_scheme_instantiation :
Model′ × (Name →m Association) × Name ×

ActualParameters ∼

→
Bool

wf_scheme_instantiation(mdl, avail_objm, supplier, apm) ≡
let fpm = associations_param(mdl, supplier) in

wf_actual_parameters(mdl, dom avail_objm, fpm, apm) ∧
(∀ fp : Name •

fp ∈ dom fpm ⇒
let (apn, ap_fit) = apm(fp) in

static_implement(
mdl,
(scheme_name(

mdl, supplier(avail_objm(apn))),
ap_fit), supplier(fpm(fp)))

end)
end,

Each of the formal parameters must be assigned an actual parameter and the actual parameter must be
an object available in the context. (wf_actual_parameters, C.1.6)

40 Chapter 5. Scheme diagrams

5.5.5 Association

Types

The association relation is introduced in the diagram to emphasise the use of qualification in the RSL model;
that is, when a module makes a reference to another module. Qualification is used in three situations in RSL:

• when a globally declared object is referenced from other modules,

• when parameterised schemes are used and

• when objects are nested within another module.

The name “Association” is borrowed from the UML terminology and has been chosen due to the close simi-
larity with the use of qualification in RSL. The Association is one of the most complex relationships in UML
from a modelling point of view, and all the features are not included in the Scheme Diagram counterpart. One
reason for using the same name for the RSL relationship is to emphasise similarity to UML.

The Association in the Scheme Diagram is a binary relationship between two modules. It is depicted in
the diagram as a solid line between the participating modules. The accompanying ornaments are described
below. In the UML Class Diagram an association is a precondition for a link. A link is a relationship between
objects and can be considered an instantiation of an association. In the Scheme Diagram an association is a
precondition for qualification, there is no similiar concept of instantiation of associations. However objects are
declared in conjunction with associations of kind parameter and nested, which is mentioned below.

type
Association ::

client : Name
kind : Kind
supplier : Name
rolename : Name
mul : Multiplicity,

Kind ==
Nested(Visibility, ActualParameters) |
Parameter(ActualParameters) |
Global,

Multiplicity == None | Index(binding : Name, mtype : TypeExpr)

The association relationship in the Scheme Diagram is uni-directional unlike its UML counterpart which also
can be bi-directional. Thus navigability is introduced to indicate in which direction the association can be
traversed. Since it in the Scheme Diagram is only possible to traverse the association relation from the client
to the supplier the navigability arrow must always be at the supplier end. Hence the navigability arrow is a
mandatory part of how the association relation is depicted in the diagram and its purpose is to show which
of the participants that are client and supplier respectively. The navigability arrow is depicted as an open
arrowhead at the supplier end of the solid line representing the association.

It is possible to specify aggregation for a binary association in the UML Class Diagram which introduces a
whole-part relationship between the participants of the relation. A similar notion is introduced for the Asso-
ciation in the Scheme Diagram by using an optional ornament at the client end of the association specifying
the kind. The kind indicates which of the three possible situations of qualification that is used. The three kinds
and their relation to UML are shown in the table:

Kind Ornament UML
Global None Association
Parameter Hollow diamond Shareable aggregation
Nested Filled diamond Composite aggregation

The association kind in the Scheme Diagram can to some degree be perceived to have the same meaning
as aggregation does in the UML Class Diagram. A globally available object in the Scheme Diagram means
that it can be referenced by all other declared modules. When using either parameterised schemes or nested

5.5 Narrative of the Scheme Diagram syntax 41

scheme A = class ... end,
scheme B(ba : A) = class ... end,
scheme C = class

object
ca : A,
b[x : Int] : B(ca)

...
end

Figure 5.5: Scheme Diagram with associations of
kind Parameter and Nested between schemes.

modules there is an introduction of the whole-part relationship mentioned in conjunction with UML. The use
of parameters in RSL is thus similar to sharing an object (it should be noted that it is not the same as passing a
pointer to the object, which is not possible). Embedded objects are declared and instantiated by the client.

Rolenames are the names used by the client for the instantiated object. These are used with associations of
kind parameter and embedded since the supplier of global associations must be an object and thus already
has a name. Rolenames are names of the objects which are instantiated with the supplier as the named class
expression. The rolenames must therefore be placed at the supplier end of the association when shown in the
diagram. Rolenames are not used when the supplier is a global object.

In conjunction with embedded objects and parameterised schemes it is possible to specify arrays of objects.
In the scheme diagram this will go under the name multiplicity inspired by the Class Diagram. Multiplicity
applies to the supplier and must therefore be placed at the supplier end of the association.

Being able to determine the rolenames (and thereby objects) that can be referenced from a given module, it
is possible to see if a given qualification is valid relative to the specified module. Together with validation of
qualification it is possible to find the module which is reached by traversing the associations.

Unlike associations of kind Parameter and Nested the Global kind does not have a visible translation into RSL.
It could seem superfluous in the diagram, but it is not from a modelling point of view. In general it is required
to explicitly state all dependencies in the Scheme Diagram, where a dependency basically is a relation. This
is used to determine if there is a cyclic path between the relations and specify dependencies during translation
to RSL as required by the rsltc tool. Associations are preconditions for qualification and global objects can be
used just as parameters and nested objects. Thus the global association provides consistency from a diagramatic
point of view.

Well-formedness

9. The multiplicity of an association is well-formed if the type expression of the multiplicity is well-
formed. (wf_multiplicity, C.1.8).

10. An association is a relationship between two modules. If the kind is Parameter or Nested then it must
be between two schemes and the rolename must be nonempty. If the kind is Global then the supplier of
the relationship must be an object and the rolename must be empty. The client can either be a scheme
or an object. (wf_kind, C.1.8).

11. If the supplier of an association of kind Nested or Parameter is the name of a parameterised scheme, then
the scheme instantiation must be well-formed. There must be an actual parameter for each formal pa-
rameter and the actual parameters must statically implement the formal parameters. (wf_association, C.1.8)

12. The rolenames of all the associations in which the scheme directly or indirectly is a client of must
be unique. Indirectly is when associations are inherited through the extend relationship. That is all
available objects must have unique names in the context of the scheme. (wf_unique_rolenames, C.1.7).

42 Chapter 5. Scheme diagrams

wf_unique_rolenames : Model′ → Bool
wf_unique_rolenames(mdl) ≡

(∀ n : Name •

n ∈ schemes(mdl) ⇒
let

ridl = rid_set2list(extend_relations(mdl, n)),
rnl =

〈rolename(associations(mdl)(r)) |
r in ridl〉

in
len rnl = card elems rnl

end),

The (extend_relations.rsl, C.1.7) function returns the set of unique association id’s which are unique
even if the rolenames of the associations used are not. This is done recursively if the scheme is a child
in a extend relationship. The unique id’s are used to create a list of rolenames used by the associations
represented by the id’s. The list is of rolenames is used to determine if the rolenames are unique.

5.5.6 Extend

Types

The UML generalisation relationship is a taxonomic relationship between two classes. The client of the rela-
tionship inherits the attributes and operations of the supplier class but also the association relationships which
the supplier class participates in. The inheritance of association relationships is particularly interesting since
it, in our view, improves the readability of diagrams by reducing the number of lines that have to be drawn.

The extend construct in RSL provides a somewhat similar relationship where the client scheme inherits all
declarations which are not hidden. The scope of the client class expression is extended to the supplier
class expression. In section 5.5.5 a relationship similar to the association relationship in the UML Class
Diagram is introduced for the Scheme Diagram with the same name. It is thus obvious that the client of an
extend relationship in the Scheme Diagram inherits associations which the supplier participates in. Since the
association relation covers nested objects, parameters and global objects it is necessary to see how each of
them comply with the extend relationship.

Globally declared objects are available to all modules in the model as long as cyclic module dependencies are
avoided. In the Scheme Diagram it is necessary for modules that use global objects to indicate so. This is done
by drawing an association of kind global from the client module to the global object. In figure 5.6 a Scheme
Diagram is shown with a combination of a global association and an extend relation. As discussed in section
5.5.5 associations of kind Global is primary included due to modelling issues. They are not directly visible in
the corresponding RSL specification. Although not visible the association of kind Global is also inherited and
used in the Scheme Diagram when determining the available objects of a given scheme and when determining
module dependencies.

scheme A = class ... end,
object OA : A,
scheme B = class ... end,
scheme C = extend B with class ... end

Figure 5.6: Global association combined with the
extend relation.

In RSL nested objects are declarations, which means that an extending class expression will include all objects
declared in its supplier. See figure 5.7. In the Scheme Diagram it has been chosen to model nested objects as

5.5 Narrative of the Scheme Diagram syntax 43

association relations. For both the nested association and the extend relation there is a direct mapping to RSL
which implicitly supports the inheritance of the nested association relation.

scheme A = class ... end
scheme B = class object OA : A ... end
scheme C = extend B with class ... end

Figure 5.7: Nested association combined with the
extend relation.

Parameterised schemes are somewhat more complex than the other two situations, since the supplier scheme
must be instantiated. Remember that a scheme instantiation is also a scheme [18, sec. 39.6]. The actual
parameters must statically implement the formal. Hence there is no requirement that an actual parameter given
is an object of the same scheme as the formal parameter. In order to provide an actual parameter the client
scheme must also have a parameters. It is possible to use global objects, but it is not possible to use nested
objects. In the Scheme Diagram parameters are inherited, hence a client will have all the parameters of the
supplier with the same names and class expressions. See figure 5.8. It is to some degree a limitation of the
extend operator, but in our opinion it improves the readability of the diagram by reducing the number of lines
drawn. It is still possible for the client to add its own parameters as long as the names are different from the
parameters of the supplier.

scheme A = class ... end,
scheme B(OA : A) = class ... end,
scheme C(OA : A) = extend B(OA) with

class ... end

Figure 5.8: Parameter association combined with
the extend relation.

Determining the available objects for a given module is an important aspect of the Scheme Diagram. It corre-
sponds to finding all associations in which the module is a client, including inherited associations. For a given
module name the associations function produces a map from rolenames to the associations with the given
rolename and the module as client. If an association is of kind Global then the rolename of the association
must be empty since the object already has a name. In that case the name of the global object is used. If the
module is a scheme and it is client in an extend relation then this is repeated for the supplier. Objects cannot
participate in an extend relation hence no recursive calls will be made. Notice that the associations func-
tion in the first let expression is a destructor in the Model′ type and not a recursive call. It gives the map all
associations in the model with a unique relation identifier in the domain.

associations : Model′ × Name → (Name →m Association)
associations(mdl, n) ≡

let am = associations(mdl) in
[case kind(am(rid)) of

Global → supplier(am(rid)),
→ rolename(am(rid))

end 7→ am(rid) |
rid : RID •

rid ∈ dom am ∧ n ∈ modules(mdl) ∧
n = client(am(rid))]

end †
let ss = suppliers_ext(mdl, n) in

44 Chapter 5. Scheme diagrams

if ss = [] then [] else associations(mdl, hd ss) end
end,

The scheme diagram only allows for a client scheme to extend one supplier. Multiple inheritance is omitted
to simplify the model of the Scheme Diagram. As discussed in section 5.1.3 item 13, RSL does support this to
some degree.

A more complex example is presented in section 5.6.2. It includes both association and extend relations, and
parameterised schemes where the formal parameters themselves are parameterised.

Well-formedness

13. The relationship must be between two distinct schemes that are part of the model. (wf_extend, C.1.7)

14. A scheme may at most be client of one extend relation. There is no limitation on the number of
supplier roles a scheme can have. (wf_no_of_extends, C.1.7)

wf_no_of_extends : Model′ → Bool
wf_no_of_extends(mdl) ≡

(∀ n : Name •

n ∈ schemes(mdl) ⇒
let

sup_ext =
{rid |

rid : RID •

rid ∈ extends(mdl) ∧
client_of(mdl, rid) = n}

in
card sup_ext ≤ 1

end)

15. If a scheme is client in an extend relation then the class expression of the client scheme concatenated
with its supplier (and its supplier etc.) must be a well-formed class expression. (wf_schemes, C.1.4)

5.5.7 Static implement

Types

The implementation relation is important in the RAISE development method. It is used to determine whether
a module is a correct development of a previous module. A brief description of the implementation in RSL
is as follows: a scheme A implements a scheme B when A statically implements B and the theory of B holds
in A. The theory holds in A if the axioms of B hold in the context of A. Proving if the theory holds is a
large and complex task and will not be considered. The remaining part of the implementation relation, when
disregarding the theory, is static implementation. Static implementation can be determined considering only
signatures, being names and type expressions of the various declarations. Notice that in the RSL specification
for the Scheme Diagram the name Implement is used for the relation as a shorthand for static implement.

type
Implement ::

client : Name
supplier : Name

The static implementation relation is depicted in figure 5.9 and 5.10 as a dashed line with an open arrow head.
The two ends of the relation are denoted client and supplier. The supplier is the end with the supplier. The
interpretation of the relation is that the client must statically implement the supplier. In the Scheme Diagram,
static implementation is a relation between two schemes.

5.5 Narrative of the Scheme Diagram syntax 45

scheme S = class
type T
value x : T, y : T
axiom x 6= y

end,
scheme S1 = class

type T = Int
value x : T = 1, y : T = 2

end,
scheme S2 = class

value x : Int = 1, y : Int = 2
end
scheme S3 = class

type T = Int
value x : T = 1, y : T = 1

end
scheme S4 = class

type T, U
value x : T, y : U

end
scheme S5 = class

type T = Int, U = Int
value x : T = 1, y : U = 2

end
Figure 5.9: Scheme Diagram of the example pre-
sented in [18, sec. 30.6].

An in depth and technical discussion on static implementation is given in section 5.4.1. The remainder of this
section will describe the relation more loosely and focus on its usage in the Scheme Diagram. The relation
is composed of two parts, which consider the declarations of the two schemes and their association relations
respectively. A consequence of static implementation is that the client module can substitute the supplier.

When considering the declarations, a scheme A statically implements a scheme B when the maximal signature
of B is included in A. The maximal signature of a scheme is the maximal signature for each of its declarations
excluding axioms which do not have a signature. Variant, union, and short record declarations must first be
expanded to sorts and value functions. Figure 5.9 shows the example presented in [18, sec. 30.6]. The value
declaration of the form: value x : Int = 1, is not possible to represent in the Scheme Diagram since it is a short
hand for both a value and axiom definition. Instead the names of the corresponding axioms are included in
the diagram. Notice that S3 only statically implements S, since the theory of S does not hold in S3. Another
observation is that it is not possible to indicate that the relation does not hold, which is also shown in the
example. E.g. S2 does not statically implement S.

The second part of static implementation in the Scheme Diagram is concerned with associations of kind pa-
rameter and nested. The example presented in figure 5.10 illustrates the relationship that must hold when using
associations. If scheme D statically implements A then E must statically implement B and C must statically
implement F . Notice that the relationship is reversed for formal parameters. This is due to the substitutivity
principle. Thus the formal parameter p of D has fewer requirements than the formal parameter of A meaning
that any actual parameter that can be given to A can also be given to D.

The Static Implementation relation in the Scheme Diagram is s meta-relationship. It says something about
the two schemes it connects, but it does not have a mapping into RSL. It is included in the Scheme Diagram
because of its importance. In our oppinion the diagram is well-suited for the relation. Since it is a meta-
relationship it may be circular, but will not be in general. It is not allowed in the Scheme Diagram in order to
avoid circular dependencies.

46 Chapter 5. Scheme diagrams

scheme B = class ... end,
scheme C = class ... end,
scheme A(p : C) =

class
object n : B
...

end,

scheme E = class ... end,
scheme F = class ... end,
scheme D(p : F) =

class
object n : E
...

end
Figure 5.10: The static implementation relation
and parameterised schemes.

Well-formedness

16. The client and supplier must both be schemes and client must statically implement the supplier.
Static implementation is further described in section 5.4.1.

wf_implement : Model′ × RID → Bool
wf_implement(mdl, rid) ≡

rid ∈ implements(mdl) ∧
let i = implements(mdl)(rid) in

{client(i), supplier(i)} ⊆ dom schemes(mdl) ∧
static_implement(mdl, client(i), supplier(i))

end

5.6 Examples

Two non-trivial examples are presented in this section. The main focus of the examples is to demonstrate the
use of Extend and Association relations. The rationale is that the use of relations is the main element which
separates the Scheme Diagram from a normal RSL text.

5.6.1 Mobile infrastructure

In this section the RSL specification from [1] is used to demonstrate the Scheme Diagram. The specification
is about the mobility of users/devices within a wireless infrastructure. Only the structure of the specification
is interesting in conjunction with a diagrammatic presentation and not the actual purpose. This example is
particular interesting since the specification is relatively large. Furthermore it is created independently of the
Scheme Diagram. It will thus demonstrate if and how the diagram can supplement an existing specification.
The last part of this section lists the relevant parts of the specification, the body of the modules is omitted.

The existing RAISE tool is already capable of generating visual output, called VCG. See figure 5.11. The
diagram displays the dependency between modules in the specification. The directed lines are transitive. For
example, the module MSS is directly dependent on the module RESREQBAG, this is achieved through the
module TASK and thus not shown. The diagram is created by the rsltc tool using the -g option. It parses the
given RSL file and generates input for the Visualisation of Computer Graphs (VCG) tool in a .vcg file. An
advantage of the VCG is that the layout of the diagram is done automatically. A disadvantage is that is cannot
be used to create only to depict existing RSL specifications.

5.6 Examples 47

The corresponding Scheme Diagram is shown in figure 5.12. When compared with figure 5.11 it is natural to
see, that the two diagrams contain exactly the same number of boxes, one for each module. The difference lies
in the lines between the boxes, where additional information is added.

In the RSL specification the with ... in operator is used, which includes the objects given as parameter in the
scope of a class expression. The usage of the with operator is primary for convenience, since qualification
to the objects can be omitted. Otherwise it corresponds to globally declared objects. In the specification
it is used in nearly all modules except for ELEM and RESREQBAG. The Scheme Diagram does not support
the with operator, it could however have been replaced by global associations from to the object T from the
modules: SYS, MHs, MH, MSSs, MSS, TASK, HOARD, RASSIGN and RESOURCES. Notice that RESREQBAG3

and ELEM do not use the global object. The remaining three modules would inherit the relationship from SYS.

The extra global associations have not been added to the diagram in figure 5.12, since they would certainly
degrade the readability. As mentioned in section 5.5.5 the global association is mainly present in the dia-
gram from a modelling point of view. The example show that from a diagrammatic point of view the global
association relations is questionable. The global association is thus still an open issue.

scheme TESTING = with T in extend I_MOB with class . . . end
scheme I_MOB = with T in extend MOBICHART with class . . . end
scheme MOBICHART = with T in extend SYS with class . . . end

scheme SYS = with T in class
object

TS : TASK,
RS : RESOURCES,
M : MSSs(RS, TS),
H : MHs(RS, TS)

. . .
end

scheme MHs(R : RESOURCES, TSK : TASK) = with T in class
object HS : MH(R, TSK)
. . .

end

scheme MH(R : RESOURCES, TSK : TASK) =
with T in class object RBAG : RESREQBAG(T{R_kind for Elem}) . . . end

scheme MSSs(R : RESOURCES, TSK : TASK) = with T in class
object MS : MSS(R, TSK)
. . .

end

scheme MSS(R : RESOURCES, TSK : TASK) = with T in class
object RBAG : RESREQBAG(T{R_kind for Elem})
. . .

end

scheme TASK = with T in class
object

RB : RESREQBAG(T{R_kind for Elem}),
ASIGN : RASSIGN,
HL : HOARD

. . .
end

scheme RASSIGN = with T in class . . . end
scheme RESREQBAG(E : ELEM) = with T in class . . . end

3Although it is included in the specification it is not actually used. Hence the dependency can be removed.

48 Chapter 5. Scheme diagrams

Figure 5.11: VCG chart of the mobile infrastructure specification.

Figure 5.12: Scheme Diagram of the mobile infrastructure specification.

5.6 Examples 49

scheme D = class ... end,
scheme E = class ... end,
scheme F = class ... end,
scheme G(f2 : F) = class ... end,
scheme C = class

object d2 : D
...

end,
scheme A(f1 : F, e : E) = class

object d1 : D
...

end,
scheme B(e : E, f1 : F, ge : G(f1), cp : C) =

extend A(f1, e) with class
object gp : G(f1), ce : C
...

end,
scheme H(cp : C, ge : G(f1), f1 : F, e : E) =

extend B(e, f1, ge, cp) with class
...

end
Figure 5.13: Combination of associations of kind
Parameter and Nested with the extend relation.

scheme ELEM = class . . . end
scheme RESOURCES = with T in class . . . end

scheme TYPES = class . . . end
object T : TYPES

5.6.2 Constructed example

The Scheme Diagram presented in figure 5.13 is a constructed example. The main purpose is to show scheme
instantiation in conjunction with the association and extend relations. The usage of formal parameters are
particular important to show since they are implicitly inherited. This is not the case for a normal RSL. The
RSL text presented together with figure 5.13 is actually auto generated by the tool presented in part III after
drawing the diagram in the tool.

The nested associations in the diagram have a clear and simple mapping to RSL. Their presence are only visible
in the schemes with the declarations, and are available for a client through the extend operator in RSL. This is
the case for all declarations in a class expression.

As described in section 5.5.5 there is no ordering of the formal parameters in the diagram. As a consequence the
type ActualParameters is introduced which maps the actual parameters to the formal. Hence the ordering
is not needed. When using the extend operator on parameterised schemes in RSL, scheme instantiation must
take place. Consider scheme A which has two formal parameter. It is extended by scheme B which inherits
the two schemes and another two formal parameters are added. Notice that the translated ordering actually
differs. Remember that the RSL is auto generated. The ordering is only used for pairing the actual and
formal parameters. Therefore the translation is correct and will syntax check. Another interesting situation
is the formal parmater gp of B which itself has a formal parameter. In this case an actual parameter must be
provided to the scheme instantiation.

The scheme H is also noticable. Although it visually only participates as a client in one relation, it actually has
four formal parameters and three nested objects.

50 Chapter 5. Scheme diagrams

5.7 Translation: SDδ → RSLα

The Scheme Diagram is made for RSL and represents a subset of RSL. Most of the constructs in the diagram
have a direct mapping to RSL; and vice versa. The complete formal specification describing the transforma-
tional semantics of the Scheme Diagram is presented in appendix C.2. That is, the semantics of the diagram
are described as a mapping to RSL which already has a well defined semantics. The abstract RSL syntax de-
scribed in section 4 is used as target for the translation. In this section the less obvious aspects of the translation
specification are commented.

A goal of the translation is that the result will pass the syntax check by the RSL type checker rsltc. In the
Scheme Diagram there is enough information to achieve this, in particular because type expressions are in-
cluded. The type expressions make it possible to add signatures for types, values, variables and channels.
Axioms do not have a signature and are basically a value expression of type boolean with an optional name. In
order to translate axioms into RSL it is necessary to add value expressions, which in the translation are chosen
to be true. (transltr_AxiomDecl, C.2)

The rsltc tool requires that each module is placed in its own file with the same name as the module and the .rsl
extension. It is also required that the context is specified, that is, dependencies to other modules. Determining
these dependencies in the Scheme Diagram is fairly easy since all modules are names and dependencies be-
tween them are the relations present in the model. Thus the context for a given scheme is the set of supplier
names for all relations in which the client is the given scheme. (transltr_context, C.2)

As mentioned in previous sections the order in which the formal parameters are written in a RSL specification
is important in conjunction with scheme instantiation. Since there is no ordering of the formal parameters in
the Scheme Diagram it is necessary to create one during translation. In general in the diagram a module de-
pendency is always explicitly stated in the form of an association or extend relation. Since module dependency
must not be recursive the structure of module dependency is either a tree or a forest of trees. The problem of
the ordering of parameters is solved in the order in which the modules are translated: Schemes are translated
before objects. A scheme must first be translated if it either has no dependencies or all of its dependencies al-
ready have been translated. Hence the leafs of the tree(s) are translated first. Consequently when translating a
scheme instantiation, the order of the parameters have already been decided. (leaf_scheme, next_scheme, C.2)

The extend construct in RSL is an operator on two class expressions giving one class expression being the
combination of the two. Formal parameters are part of a scheme declaration and not class expressions, hence
they are not included in the extension like object declarations. In the UML Class Diagram all associations are
inherited. Although this is an object oriented characteristic it is still practical in the diagram since it reduces the
number of relations needed to be drawn in the diagram. This was discussed in section 5.5.6. When extending
a parameterised scheme in RSL it is necessary to specify the actual parameters for that scheme. All formal
parameters are inherited with the same name and class expression in the Scheme Diagram, thus there exists an
actual parameter with the same name as the formal. (transltr_Extend, C.2)

Parts of the Scheme Diagram are not translatable and are simply ignored. The static implementation relation
is meta information about two schemes. Loosely speaking it is a factual statement about the two schemes.
Associations of kind Global indicate usage of a global declared object and in principle it is not translated. It is
used to determine the context which is required by the rsltc tool.

The state of an object is not translatable either since it shows the state at some moment in time. It does not
correspond to the initial value of a variable, since this should be included in the scheme.

5.8 Future work

The introduction of fitting required the renaming of class expressions. Thus part of the renaming functionality
is already implemented. Object fitting is introduced since it adds considerable value to the use of modules
and parameterised schemes. Without fitting generic parameterised schemes would be difficult to develop.
Renaming would not contribute similar value to the diagram if added, its usage is less obvious. It should,
however, still be considered for addition to the diagram. Since the renaming is an operator on class expressions
it should be available in conjunction with the extend relation and with the scheme.

In the Scheme Diagram static implementation is a relation between two schemes. An interesting development
would be to make it a relation between two diagrams. It could thus be used to automatically verify that one
diagram is a correct development of a former.

5.9 Conclusion 51

It is possible to display the state of an object. It could be considered to expand this notion to show the
development of the state. This could be done by having several boxes in the diagram representing the same
object. This is currently not possible since names of objects must be unique. Furthermore it would cause
redundant information since any given actual parameters must be the same if the object names are the same.

Section 5.7 presents the translation from the Scheme Diagram to RSL. In order for the Scheme Diagram
to be truly useful it must be possible to translate existing RSL texts to the diagram. Since only a subset
of RSL is included in the diagram some consideration must be given to the reverse translation, e.g. value
expressions could simply be ignored. More interesting is if requirement that all class expressions must be
named in the Scheme Diagramcan be fulfilled. Unnamed class expressions can in fact be rewritten to schemes
during translation without altering the meaning of the specification.

There are a few details that should be corrected. The use of Name in the Scheme Diagram does not have
the same meaning as in RSL. In RSL its is either an id or an operator, in the Scheme Diagram it only rep-
resents an id. The rolename of the Association type should be part of the Parameter and Nested kind, like
ActualParameters. It would simplify well-formedness and give a clearer understanding when reading the spec-
ification. Hiding in the Scheme Diagram only uses the name of the declarations. If overloading is used, then it
is necessary to add the type expression.

In the specification of the Scheme Diagram there are the following known issues:

• In (wf_typename_expr, C.1.3) only public type declarations are considered. If the qualification of the
type name is empty then the private type declarations of the initial scheme must also be included.

• When determining the available association of a given scheme the visibility is not considered.
(associations, C.1.2)

• Static implementation and signature morphing does not support qualification. Thus a type name that
includes qualification will always be its own maximal type. (gen_sig_map, C.1.5)

• Signature morphing is only applied to value and variable declarations. It should also be applied to type
and channel delcarations. (static_implement_types and static_implement_channels, C.1.5)

• Multiplicity is missing in global objects. Additionally it is only possible to specify one binding and not
a list of bindings.

• It must be checked that the specified predicate in a subtype expression has the supertype as parameter
and a boolean return type. (wf_subtype_expr, C.1.3)

5.9 Conclusion

The new Scheme Diagram has been presented in this chapter. The purpose of the diagram is to present an
overview of a RSL specification with focus on the structure and relationship between the modules. For this
purpose the selected subset, which the diagram represents, seems well balanced. This is apparent since a
well-formed Scheme Diagram always will pass the rsltc type checker after translation to RSL.

The examples in section 5.6 do reveal situations where the readability of the diagram is reduced. In particular
when a global object is used for common types by all other modules. This results in a diagram with a growing
number of lines which consequently may cross each other. Another situation which gives an unwanted number
of lines is the use of parameterised schemes, where the formal parameters themselves are parameterised, etc.

The schemes of the Scheme Diagram allow for the signature of the declaration to be included. The size of the
boxes do however tend to grow rapidly. The is partly due to the long signature that applicative specifications
produce, but also by the number of declarations. This is also the reason why it is not required that the modules
show their content in the diagram but only their name. Hence the focus is kept on the relationships.

Despite the fact that the Scheme Diagram is not ideal in all situations and that RSL is not object oriented, we
are of the opinion that the diagram is a positive addition to RSL. In particular because it emphasises the use of
modules.

52 Chapter 5. Scheme diagrams

53

Chapter 6

Live Sequence Charts

Contents

6.1 Before we start . 54
6.1.1 Introductory example . 54
6.1.2 Why LSCs? . 54
6.1.3 Structure of Chapter . 55

6.2 Structured narrative of LSC . 56
6.2.1 Background . 56
6.2.2 Events . 57
6.2.3 Timing . 58
6.2.4 Cuts/States . 59

6.3 Previous work . 60
6.3.1 A bevy of LSC related papers . 60
6.3.2 Summary of preliminary thesis . 65

6.4 The LSC subset chosen: RSC . 66
6.4.1 Collections . 66
6.4.2 Charts . 66
6.4.3 Instances/Locations . 66
6.4.4 Subcharts . 67
6.4.5 Events . 67
6.4.6 Timing . 69

6.5 Formal description of RSC . 70
6.5.1 Types . 70
6.5.2 Well-formedness conditions . 71
6.5.3 Semantics for one chart . 75

6.6 Example: RSC RSL specification . 78
6.7 Translation: RSCδ → RSLα . 82

6.7.1 An applicative RSL model of RSCs . 82
6.7.2 RSL CSP and LSCs . 85
6.7.3 RSL CSP approach . 86
6.7.4 A pure CSP approach . 87

6.8 Example: Applicative RSC . 89
6.8.1 RSCs . 89
6.8.2 Specification . 89

54 Chapter 6. Live Sequence Charts

6.8.3 Complete System . 91
6.9 Future work . 92
6.10 Conclusion . 92

6.1 Before we start

6.1.1 Introductory example

Since Live Sequence Charts is a graphical notation, we start with a more thorough example than given in the
appetiser in the introductory part. It should give the reader a better idea of how LSCs look like and work.

Figure 6.1 is an example about how a PC might be started. It has a universal mainchart, recognised by the
fully drawn borderline on the lower box. A universal mainchart means that the behaviour described by this
chart is always mandatory for the system being modelled. In contrast, a dotted borderline on the lower chart
represents an existential chart, denoting behaviour that minimum once must be exhibited by the system. This
resembles MSCs (Message Sequence Charts) whose weak semantics are not clearly defined in terms of what a
MSC actually specifies, e.g. [4].

The top hexagon is a prechart, a precondition which must be fulfilled before the behaviour in the underlying
mainchart must be exhibited. The precondition here is that the instance User sends a message to Controller
named Push with the parameter on. Thus for example describing the push of a button. User and Controller
are instances which may denote specific objects or processes, depending on the system treated. Instances
communicate via messages which have names and optionally arguments.

The next message is sent from the Controller instance to the PC instance. The PC then performs a local action
called Bootstrap, indicated by the box. It is further unspecified. The next hexagon is a condition, stating
"CPUtemp > 50". This denotes that the condition must be fulfilled in order to proceed beyond it.

It is then specified that the Controller sends a message Beep and Throttledown. The dots along the Controller
instance denote a coregion, meaning that the order in which those two events happen is non-deterministic.

The upper part of the vertical lines of the instances are fully drawn. This means that the progress along the
instances is mandatory, the instances must proceed. The lower part is dotted, meaning optional behaviour. It
includes a subchart that specifies that the Controller may choose to emit up to 3 more beeps depending on the
condition. The iteration of up to 3 times is denoted by the number in the upper left corner.

6.1.2 Why LSCs?

LSCs is a quite new scenario-based graphical requirements notation first proposed in [7] to extend MSCs [47,
34]. The paper identifies several weaknesses in MSC which is a widely used notation to capture requirements
for parallel systems. It is industry accepted and is much in use in the telecommunications industry for example,
and the graphical and textual syntax has been standardised by ITU-T [34]. A variant of MSCs is also known as
Sequence Diagrams in UML [17]. LSCs introduce a new feature of hot and cold elements which distinguish
mandatory and optional behaviour, thus adding liveness [2].

LSCs have been chosen as an interesting graphical notation with some recent research carried out regarding
the syntax and semantics, see section 6.3. It was interesting to see if LSCs could be successfully formalised
for the use with, and incorporated in the RSL-tool-set. This should be done in order to obtain the possibility of
specifying inter-object behaviour graphically and then translate it to RSL.

The focus has been on the integration with RSL rather than the formalisation of LSCs as in [41], which gave
rise to several limitations compared to the original LSCs. The initial idea was that the parallel nature of LSCs
was obvious to model using the CSP [30] constructs in RSL.

6.1 Before we start 55

Figure 6.1: Example of a LSC with various constructs.

6.1.3 Structure of Chapter

LSCs are introduced in a structured narrative in section 6.2. LSCs are described with their syntax and semantics
in detail. The use of LSCs is also explained.

This is followed by section 6.3 about the previous work that has been used for this part of the thesis. The
findings that were relevant are presented in order to give a background on the choices that were made.

Section 6.4 describes the subset of LSC constructs that were chosen and the reasons for these choices. This is
also presented in context of the previous work that is described.

Then a formal description of our version of LSCs is presented in RSL in section 6.5. It is called RSCs for RSL
Sequence Charts. The syntax with well-formedness conditions is given. After that trace semantics for one
chart is presented.

Then an example of RSC is given in section 6.6. Section 6.7 presents the translation of RSCs to an equivalent
RSL specification, the goal of this work. This is followed by an example of the applicative use in section 6.8.

Finally a section about the future work is given and the results will be concluded and discussed.

56 Chapter 6. Live Sequence Charts

6.2 Structured narrative of LSC

This chapter introduces the syntax and semantics of LSCs informally. The basic form of LSCs is presented with
[7] as basis. It was the initial paper on LSCs. The aim is to build an understanding of LSCs and their constructs
in order to prepare for the next, more technical sections. This section is partly based on the preliminary thesis
[2]. If the reader is acquainted with LSCs this section may be skipped.

6.2.1 Background

MSCs are used in the early stages of requirements engineering. They can for example be seen as a manifesta-
tion of use cases in UML. They thus represent an inherent informal existential view of a behavioural model of
a system. They are convenient for describing sample scenarios in an inter-object oriented fashion.

In the design phase there is a need for a more rigorous approach in order to fully specify what a system should
do. For this, often state-machine languages are used [7], like state-charts [22, 23]. They fully specify the
behaviour of a system in an intra-object fashion and are usually executable.

The ultimate goal of the authors of [7] is to investigate the two-way relationship between these two views of
behavioural description. As a solution they propose LSCs with the goal of enough semantical rigour to bridge
the gab. LSCs are suitable for the later stages of requirements when a universal view of the system is required.
The idea is to capture enough information about a system using LSCs in order to allow linking between the
descriptive view of LSCs and the constructive view of state-machine languages. LSCs as such can be used to
specify constraints on the partial order of events that take place in a system.

In [26] this idea is taken even further. A new method of development is proposed where executable LSCs
directly lead to the implementation. Thus effectively using the requirements to directly specify the system,
omitting the design phase. More on this in section 6.3.

The prechart and mainchart of a LSC are syntactically similar. They are charts that consist of one or more
instances that are drawn as vertical lines as presented in figure 6.1. They may be models of processes or
objects and semantically consist of a list of locations. Locations have a temperature: hot or cold. A location
has an event attached and if the location is hot it denotes that the event must be performed. If it is cold, it may
be performed. A restriction is that after a cold location in a chart all locations are cold. Locations are strictly
ordered in time along the instance on which they are defined.

In order to enhance the expressiveness, LSCs include the ability to specify subcharts as shown in figure 6.2.
Iteration is possible since subcharts have a multiplicity. This enables a subchart to specify that the enclosed
behaviour must be exhibited several times. This feature is not present in MSCs. Cold locations which are the
optional last locations in a subchart may be followed by hot locations in the super-chart, as shown in figure
6.2.

Figure 6.2: Example of a LSC with subchart and hot/cold locations: First the predicate is evaluated. If it is
true Msg1 must be sent. After that Msg2 may be sent, as it is specified on cold locations (as denoted by the
dotted lines). This is repeated 2 more times if the predicate still holds, due to the multiplicity of 3. Iteration
continues even if Msg2 is not sent. Finally Msg3 must be performed.

6.2 Structured narrative of LSC 57

A style that resembles imperative programming is also possible by constructs that give an while-do loop. This
can be done by using a subchart using a cold condition, see figure 6.3. The subchart is performed. If the
condition is true, the subchart is repeated. This is repeated until the condition evaluates to false due to the
unbounded multiplicity. Also if-then-else (see figure 6.3) and for-do and similar loops are possible. This
makes LSCs highly expressive with regards to flow of control and may ease the use of them since the above
features are highly intuitive.

Figure 6.3: Example of a do-while construct using a subchart with a predicate and a multiplicity of asterisk
(*), denoting infinite repetition.

Figure 6.4: Example of an if-then-else construct using a specialised subchart and a predicate. If the predicate
is true, the first part of the subchart is performed, if not, the lower part. The two subcharts must be adjacent.
If there is a gap, they denote two separate subcharts.

A finite number of instances may be created by other instances as shown in figure 6.5.

To each LSC there is attached a set of visible events and visible variables. The visible events are the events that
the LSC constrains. All the events that are shown in a mainchart are visible. In a separate box it is possible to
show events that are visible but may not be performed. They are called forbidden events. Visible variables are
the set of variables a mainchart uses. They can also contain variables that are not used and are not allowed to
be changed by other charts while the LSC is active. They are not displayed graphically.

6.2.2 Events

Events are the basic elements of LSCs. They denote the actual events that happen in the system. As such they
may also be shared among several LSCs. This is a basic concept: if a LSC event is present in two separate
LSCs it denotes the same actual event. This automatically links the described behaviour of LSCs together.

Messages/Coregions

Messages are one of the central elements of LSCs as they specify how instances communicate. They are hot
or cold: Hot messages are messages that must be sent and must be received by the intended receiver in order

58 Chapter 6. Live Sequence Charts

Figure 6.5: Example where instance A creates instance B. This is denoted by a message from A to the instance
box of B. B does only exist while this mainchart is active. Therefore it is annotated with a cross at the end of
the time line, denoting destruction.

to satisfy a LSC. A cold message must only be sent, there is no requirement for reception. Hot messages are
denoted with solid lines, cold messages with a dotted line.

Messages are synchronous or asynchronous, meaning that a synchronous message must be received immedi-
ately by the receiver. A asynchronous message may be delayed an unspecified amount of time. Synchronous
messages are denoted with solid arrowheads, asynchronous messages are denoted with hollow arrowheads.
Messages have a name and possibly some parameters [26].

A special event called coregion is introduced in order to specify some message inputs/outputs that may happen
in an arbitrary order. The coregion is strictly for message events only. An example of a coregion can be found
in figure 6.1 where it is denoted with dots along the vertical line of the instance named Controller.

Conditions

Conditions as shown in figure 6.1 are also hot (denoted with solid line hexagon) or cold (denoted with dot-
ted line hexagon) with very different semantical meaning. Conditions are evaluated on the basis of visible
variables. If a condition is true, the remainder of the chart may proceed.

If a false cold condition is encountered the complete chart exits successfully, meaning that the system fulfils
the chart. If the cold condition is located in a subchart, only the innermost subchart the condition is located in
is exited, continuing right after it. Semantically this resembles a goto statement.

If a false hot condition is encountered, this means there is an inconsistency in the model as a false hot condition
is never allowed. It is an assertion of a given statement.

Actions

Action labels are supplied in order to denote local computations that may alter arbitrary locally visible variables
on an instance to arbitrary values. An example of an action, "Bootstrap", may be seen in figure 6.1.

6.2.3 Timing

Time is mentioned shortly in [7] with local timing constructs. There is later work on time in [25] which
introduces a global clock and ticks. As there is no general accepted notation or semantics for timing constructs,
it is not presented here. See section 6.3.

6.2 Structured narrative of LSC 59

6.2.4 Cuts/States

As LSCs are meant to be executable in [26] the notion of cut is introduced. A cut denotes a set of positions
of instances in a chart. See figure 6.6. A cut corresponds to a program counter, identifying where to a LSC
has progressed. In order to capture all the information for execution, an actual state for a chart is needed,
see figures 6.6, 6.7 and 6.8. The state records information about the program counter and about the state of
coregions. Since coregions are considered one event comprising of several message events it is necessary to
record which events in a coregion have been performed and which have not.

Figure 6.6: Example of a cut: Instance A has performed the local action and can send Msg1. Instance C can
send Msg2. Instance B can either receive Msg 1 or Msg2 due to the coregion. The cut is denoted by the dotted
line.

Figure 6.7: Msg2 has been sent. This new information would yield a cut like the dotted line. This is however
not quite correct, as the cut intersects instance B several times. B is semantically still at the beginning of the
coregion location, as the complete coregion event has not been performed.

60 Chapter 6. Live Sequence Charts

Figure 6.8: The correct interpretation is that instance B is still at the coregion beginning and C has sent Msg2.
This cannot be displayed graphically. But semantically it is done by including auxiliary information about the
state of B, namely that Msg2 already has been received. This only leaves the possibility of receiving Msg1.
The resulting information is called a state instead of a cut.

6.3 Previous work

In the following, previous research used in this thesis is presented. The first section is about previous research
papers regarding LSCs and other useful papers. The second shortly introduces the work and results of our
preliminary thesis with regards to LSCs.

6.3.1 A bevy of LSC related papers

This section introduces the papers that set the stage for our interpretation of LSCs. Main aspects are shortly
introduced and limitations/extensions are commented on. The following papers are emphasised since they have
been studied extensively.

The section is also included since some of these papers are heavily referenced. Especially when justifying the
choices made regarding the subset of LSC that will be dealt with. Thus, it is not necessary to read the papers
themselves. The references are ordered chronologically.

[7] Werner Damm and David Harel. LSCs: Breathing life into message sequence charts. Form. Methods Syst.
Des., 19(1):45–80, 2001.

The initial proposal of LSCs. It introduces LSCs as an extension to MSCs in order to cope
with the weaknesses of the latter. It uses program-like pseudo-code to introduce the semantics.
Furthermore it uses skeleton-automata (state transition system) to explain the intra workings of
LSCs, for example between precharts and maincharts. Only a sketch of a possible formalisation
has been provided.
The main goal by Damm and Harel is to introduce liveness to a notation like MSCs, recognising
that there are fundamental unanswered questions regarding MSCs. For example: do they describe
all behaviours of a system? Or maybe just some behaviour?
To solve this issue, hot and cold elements are introduced, which denote mandatory and optional
behaviour respectively. Furthermore the notion of subcharts is introduced which creates interest-
ing possibilities of creating iterative structures e.g. do-while, see section 6.2. It also introduces
the concept of forbidden scenarios which describe behaviour that a system may not exhibit. The
paper mainly focuses on the key aspects of the approach. Therefore it omits specific issues re-
garding instance creation/destruction and the use of timers. With regards to MSCs it is also noted
that there exist several problematic semantic issues, e.g. what happens if a condition evaluates to
false?
Instances introduce a weak partial ordering on events. The partial ordering stems from the core-
gions that do not impose an ordering on message events, thus introducing non-determinism.

6.3 Previous work 61

Besides the ordering on instances there is no ordering between instances other than the order-
ing introduced by messages, conditions etc. Effectively parallelism is introduced. However the
system is treated as being discrete in order to ease the semantics. We follow that approach.
Timers are briefly shown with a notation taken from state-charts.

[24] David Harel and Hillel Kugler. Synthesizing State-Based Object Systems from LSC Specifications. In
CIAA ’00: Revised Papers from the 5th International Conference on Implementation and Application of Au-
tomata, pages 1–33. Springer-Verlag, 2001.

The paper is a follow-up on [7]. It is noted that Sequence Diagrams are the manifestation of use
cases. If these could be synthesised these could lead directly to implementation via state based
object systems. This means that there is a need to go from the inter-object oriented approach
in the requirements phase to the intra-object state machine approach in the design phase. The
idea is to synthesise a collection of LSCs as they convey enough information about the system in
contrast to Sequence Diagrams. It is defined that a specification using LSCs is consistent iff it is
satisfiable by a state based object system (finite state machines or state charts).
It is noted that if-then-else constructs in [7] are defined with two separate subcharts. This is
altered in order to ensure that a condition is only evaluated once, as depending variables may
change between two evaluations of the condition. This is also noted later in our approach.
Several constraints are imposed on the approach. Firstly only universal charts are used since
existential charts do not convey enough information about the model in order to allow synthesis.
Existential charts are seen as informal sketches early in the development phase which may be
refined to universal charts later.
Subcharts are only allowed if they cover all instances, thus effectively enforcing a synchronisa-
tion among all instances. This allows for easy recursion when synthesising a state based system,
as it can be done using a transition from a state to itself, where a state may consist of sub-states.
The paper only treats synchronous messages, but gives no arguments why. A guess is the idea
is to use StateMate, which is a validation/generation tool for Statecharts from the same company
D. Harel is affiliated with [32]. StateMate can only handle synchronous communication.
Also it basically only sketches a solution for a fundamental problem, namely how to avoid built-in
contradictions in universal charts. As discussed in [45] distributed reactive systems are in general
hard to synthesise. It is also assumed that the activation of the same chart cannot overlap, which
is a rather restrictive approach. This for example severely limits the possibilities of handling
several identical requests in parallel. Nothing is said about timing.

[36] Jochen Klose and Hartmut Wittke. An automata based interpretation of live sequence charts. In TACAS
2001: Proceedings of the 7th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 512–527. Springer-Verlag, 2001.

The paper tries to address the issue of the only sketched formalisation of LSCs. A Timed Büchi
Automata is derived from the LSC via unwinding the structure of it for the sake of model-
checking via an extension to already existing verification tools. They also introduce a form
of timing annotations which sets lower and upper bounds on events. Time has been treated as
discrete as they base their time model on a system exhibiting time-discrete behaviour.
They do not follow the syntax for annotations introduced by [7], since they simply use it as
a guard on the resulting automata. A notion of simultaneous regions is introduced in order to
allow parallel events in contrast to the discrete semantics of LSCs. This is the only place where
timing annotations may occur, effectively limiting the usefulness of these. Furthermore only
synchronous messages are considered, since StateMate is used to check the automata. A major
limitation is also that only a single LSCs is treated, so no formalisation of the inter workings
between several charts is given. This is a severe constraint, as this leaves open the fundamental
aspect of stating several requirements in several charts, a point also made in [24].

62 Chapter 6. Live Sequence Charts

[6] Yves Bontemps and Patrick Heymans. Turning High-Level Live Sequence Charts into Automata. Technical
report, Univ. of Namur - Computer Science Dept, March 2002. http://www.info.fundp.ac.be/~ybo.

The paper focuses on creating an equivalent of High-level MSC [42] using LSCs in order to
create a more formally defined interaction between several charts. However it limits the LSC to
using conditions and messages only.
They extend LSCs with compositional operators and define their semantics in terms of regular-
language traces. From these they build corresponding Büchi Automata (as in [36]) which accept
the traces of the language expressed by LSCs. By using appropriate existing algorithms the
resulting automata are checked for consistency, refinement etc. As the other approaches using
automata, the state-space explosion problem, due to the complexity of LSCs by synthesising
automata has not been addressed.
They clarify that messages not shown on LSCs are abstracted away but not disallowed, which
also is the case in our later specification in RSL. Furthermore they introduce invariants which
may (or must) hold during two points in time. The latter two additions have not been addressed
by us. Furthermore the article does not cover time specifically on LSCs as only conditions and
messages where allowed.

[25] David Harel and Rami Marelly. Playing with Time: On the Specification and Execution of Time-Enriched
LSCs. In MASCOTS ’02: Proceedings of the 10th IEEE International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunications Systems (MASCOTS’02), page 193. IEEE Computer Society,
2002.

The paper presents an extension to LSCs with timing constructs in order to specify behavioural
requirements of time-intensive systems, acknowledging that reactive systems often must react
and refer to time. Time is primarily modelled by extending LSCs with a single clock object. For
explicit timing demands a "Tick" has been introduced, which relates to an external clock object,
i.e. enabling LSCs to be activated after e.g. 50 "ticks". The synchrony hypothesis is assumed,
meaning that the actual events do not take time but time passes between events. This seems as a
reasonable abstraction in the context.
Generally the addition of time is very complex and in this case does not at all adhere to the initial
syntax of [7], where no semantics where presented. The annotations are quite complex and allow
for some structures that are not possible with our chosen subset of LSCs.

[44] Rami Marelly, David Harel, and Hillel Kugler. Specifying and executing requirements: the play-in/play-
out approach. In OOPSLA ’02: Companion of the 17th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 84–85. ACM Press, 2002. Previously: Technical
Report MCS01-15, Mathematics & Computer Science, Weizmann Institute Of Sience.

The paper is about a quite alternative approach to using LSCs. The main idea is to use a novel
approach called play-in/play-out in order to specify a system. The corresponding tool, called
play-engine, is only described on a high level. For further explanation, see [43, 26].

[43] Rami Marelly, David Harel, and Hillel Kugler. Multiple instances and symbolic variables in executable
sequence charts. In OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 83–100. ACM Press, 2002.

This paper was presented at the same conference as [44] and delves into the actual semantics of
the executable semantics of LSCs. Only an overview and the main principles of the execution
mechanism are presented. It is noted that the entry of a subchart actually is a synchronisation
barrier, not allowing an instance to proceed until all the participating instances have reached the
subchart. This applies to conditions as well, since the condition must only be evaluated once.
It is clarified that events not occuring in a chart may happen without constraining/violating the
chart. Symbolic execution is described as being possible with a slight modification to the partial

http://www.info.fundp.ac.be/~ybo

6.3 Previous work 63

order on instances. Furthermore an extension regarding the instances is introduced: an instance
may denote a group of objects rather than one concrete object. Consistency checks are not
integrated in the tool, thus LSCs might lead to violations under execution.

[26] David Harel and Rami Marelly. Come, Let’s Play - Scenario-Based Programming Using LSCs and the
Play-Engine. Springer-Verlag Berlin Heidelberg, 2003.

The book may be seen as a compilation of the previous papers of the authors about LSCs and
the "play-in/play-out" approach. Play-in is done via letting users show the desired behaviour
of a system via a mock GUI. The behaviour is then captured via LSCs while "playing". The
recorded LSCs are then used to "play-out" the behaviour, i.e. interacting with the user based on
the requirements given via the previously recorded LSCs. This does not equal to a simple replay,
but an interaction based on the constraints imposed by the LSCs.
By recording enough LSCs it is suggested that this approach could be used to build an entire
system (though simple ones), completely skipping the design phase [24] and going directly from
requirements to implementation. It is noted that this approach is much more natural for users
allowing them directly to specify how a system should react. Timing annotations are taken from
[25] and the synchrony hypothesis is therefore assumed.
As the book states itself it does not dwell on the details of the language constructs, the methodol-
ogy nor the tool. This of course makes it somewhat difficult to asses the choices made. Especially
the absence of rigorously defined semantics makes it hard to make use of it. Example: A very
interesting note on messages states that there are semantic problems with temperatures on lo-
cations and messages. They allow message sending and reception locations to be of different
temperatures, thus allowing up to 23 = 8 different temperature combinations since messages
themselves have a temperature. Several of these are contradictory, see example in figure 6.13.
The play-engine, as the implemented tool is called, enforces an maximal policy, that is that ev-
erything that can be performed, will be performed. As it is executable it has to perform some
choices, which the semantics allow. In relation to cold locations this policy is applied by per-
forming the events on these locations if they do not violate hot events, called hot cuts. This might
be a reasonable assumption, however it is not documented very well. Furthermore the issue of
multiple activation of the same chart as done in [43] has not been addressed.
The book also treats other issues, e.g. smart play-out, which is an addition to the play-out ap-
proach. This is however not interesting for our work as we do not cover these issues.

[42] Christian Krog Madsen. Study of Graphical and Temporal Specification Techniques. Technical report,
DTU, Nov 2003.

The paper is a preliminary thesis [41]. Three types of diagrams, namely Petri Nets, Message
Sequence Charts and State Charts are described using structured English, examples and formali-
sation in RSL. Especially the MSC part is interesting as an example is given where it is modelled
using CSP in RSL. However it must be noted that throughout the example only simple message
sending is included, no conditions. So the modelling amounts to quite trivial CSP constructs.

[41] Christian Krog Madsen. Integration of Specification Techniques. Master’s thesis, DTU, 2003.

The thesis describes the graphical notation of State Charts and LSCs. A process algebra is defined
for a subset of LSCs and for expressing communication behaviours of RSL specifications. The
algebra is then used to give an algebraic semantics to the subset of LSC. The main drawback is
that only message (including coregion) and condition events are included.
The subset of LSC is then related to a subset of RSL noting that there are problematic issues with
LSC which need to be addressed. Only synchronous messages are considered, as RSLs CSP only
allows this kind of messages. An appendix is given which lists some of the problems with LSCs
as they are proposed in the previous papers.

64 Chapter 6. Live Sequence Charts

[51] Tao Wang, Abhik Roychoudhury, Roland H. C. Yap, and S. C. Choudhary. Symbolic execution of behav-
ioral requirements. In PADL, pages 178–192, 2004.

The paper describes an approach to add real symbolic execution of LSCs using Constraint Logic
Programming (CLP). This enables the execution of several LSCs, which only differ in values,
as one. Furthermore it gives the possibility to simulate scenarios with an unbounded number of
processes.
It is noted that [43] does not allow symbolic execution, even though the charts are depicted with
variables, as these are instantiated during execution, thus restricting the potential behaviour of
a LSC. This is also undesired since the charts are instantiated with all possible values, possibly
resulting in a large number of charts.
Time is also handled differently than in [25]. As described previously the Play-Engine introduces
a global clock which ticks (automatically or user invoked in simulation), thus making the time
annotations tests as whether they hold or not. In the paper they treat the annotations as constraints
and constrain the time to an allowed interval, see figure 6.9. Only universal charts are considered.

Figure 6.9: Example from [51] where the play-engine will fail: When the variable T1 is encountered it must
be instantiated, which is not the case. The approach described in [51] adds this as a constraint. When the
message then has been sent and the assignment is encountered, it can be checked that the constraint is satisfied.

[49] Jun Sun and Jin Song Dong. Model checking live sequence charts. not published, 2004. Paper written in
conjunction with Ph.D. Thesis at School of Computing, National University of Singapore, (sunj, dongjs)@comp.nus.edu.sg.

The paper tries to exploit the close semantic resemblance between LSCs and CSPs traces and
failures. The idea is to transform the former to the latter in order exploit the available tool-
support for the latter. Inconsistency (see figure ??) can be checked for by using FDR1. The
approach is based on the skeleton-automata in [7]. A separate RUN process is included in order
to specify that not visible events are not constrained.
The approach also limits messages to synchronous messages. Furthermore conditions are re-
stricted to one instance only. This could potentially lead to different results if two instances are
to evaluate the same condition, as evaluation times may differ. Furthermore all locations are cold,
as CSP only specifies prefix-close languages. However solutions to some of these shortcomings
are sketched.

[40] Zhiming Liu, Xiaoshan Li, Jing Liu, and He Jifeng. Integrating and refining UML models. Technical
report, UNU-IIST, March 2004. Report No. 295.

The report looks at UML multi view modelling and tries to give a formal solutions to the inherent
model consistency and model integration problems. It is noted that the majority of the research
in this area concentrates on formalising a single diagram. They note that there is little work
on refinement of UML models. As this report is on UML there are no direct implications for

1Commercial model checker for CSP, [11]

6.3 Previous work 65

Figure 6.10: An example of inconsistency. Both main charts are activated by the message Msg1. The left LSC
then specifies with hot locations that Msg2 must happen before Msg3. The right specifies that Msg3 must be
sent before Msg2. Clearly a contradiction.

our treatment of LSC. It is an attempt to formalise the inherently informal UML whereas our
approach is more in the direction of adding graphical notations to RSL.
The approach is to model a system with a system model consisting of a Class Diagram, several
Sequence Diagrams, several State Machines and a system constraint. It then uses OOL, which
is an object-oriented language, to specify the system. They do not consider parallelism and they
adopt the run-to-complete semantics of UML state-machines. This would not allow for a state
machine to be interrupted by some external event, as is the case by a false hot condition in LSCs.
In an attempt to lessen the complexity of the task many of the more advanced features of the
diagrams have been omitted.

[50] Jun Sun and Jin Song Dong. Synthesizing distributed processes from scenario-based specification. not
published, 2004. Paper written in conjunction with Ph.D. Thesis at School of Computing, National University
of Singapore, (sunj, dongjs)@comp.nus.edu.sg.

The paper is a followup on [49] and is still in draft. It gives a more complete overview of
LSCs and CSP. It steps through the construction of equivalent CSP processes of LSCs. One
special operator in CSP worth of mentioning, is the interrupt operator. It gives the possibility
of interrupting a CSP process on a specified event, which is crucial when constructing the CSP
equivalent of conditions, where instances may abort or stop. An example of a synthesised CSP
process is given.

6.3.2 Summary of preliminary thesis

[2] Steffen Andersen and Steffen Holmslykke. From UML to RSL – and back again!, July 2004.

In our preliminary thesis we examined LSCs with the goal of creating an equivalent RSL spec-
ification in mind. The initial idea was to use the CSP constructs of RSL in order to specify the
concurrent nature of LSCs. All the work has to some extend been used in this thesis. However
almost all of it has been rewritten and augmented as our understanding of LSCs grew. Minor de-
tails from the preliminary thesis have not been included, so the interested reader is encouraged to
read it. The development of the LSC related specifications can be viewed as an iterative process
during the preliminary thesis and thesis period.
In the preliminary thesis LSCs and their features are introduced. An initial syntax of a LSC is
given. This was the basis for the syntax in this thesis. Based on the syntax well-formedness
conditions are presented. Finally an initial trace semantics for charts is presented. It is initial as
it gave us a feel if we were on the right track. The specifications where not translatable.
The presentation of LSCs has to some extend been reused from the preliminary thesis. We felt
it necessary to develop it further in order to better explain LSCs to the reader. Especially the
general concepts of using LSCs were not described in enough detail.

66 Chapter 6. Live Sequence Charts

6.4 The LSC subset chosen: RSC

In this section it is explained in more detail than the preliminary thesis [2] which subset/version of LSC that is
chosen to be modelled in order to set the stage for the RSL types, well-formedness conditions and semantics. In
order to avoid confusion, the subset/version of LSC is called RSC, an abbreviation for RSL Sequence Charts.
It is written as subset/version since there is no general accepted version of LSC. Nearly every paper has its
own restrictions and extensions compared to the initial version introduced in [7], which was also apparent in
section 6.3. This resembles the introduction of State Charts, where it took a long time to reach an agreed upon
syntax/semantics. Still today there are many. The most popular however is the one found in StateMate [27].

The discussion here is focused on the syntax and semantics in an informal way in order to give an explanation
for the choices made in the following section. The types and semantics will be treated formally with RSL in
section 6.5 along with more specific comments. They are not presented here as the types also depend on the
previous section.

6.4.1 Collections

The basic idea of using LSCs is to specify requirements of a system by describing the behaviour that is manda-
tory and optional. Since a single chart only has limited expressive power it would make little sense only to
look at single LSCs [24] as done in [36]. Our aim is therefore to model several LSCs. We will call that a
collection. That name is chosen rather than the normally used specification in order to avoid confusion with a
RSL specification. Precharts are crucial since they may activate the corresponding mainchart by events taken
place on other events, see figure 6.11.

Figure 6.11: The left chart specifies some behaviour that the system must conform to. The first two events are
also present in the prechart of the left chart. When they happen, the right mainchart is activated. Therefore
the event Return() and ShowResult() must be performed after Compute() and Action. Therefore the left LSC
"activates" the right.

6.4.2 Charts

We will only consider universal charts. They are much more expressive compared to existential charts which
resemble MSCs weak semantics. As we want to specify behaviour that must happen, we only model universal
charts in this formal specification context [36].

In precharts we do not consider a separate activation condition as introduced in [7], as this can be modelled by
using a condition in the prechart.

6.4.3 Instances/Locations

From a modelling point of view, an instance is an abstraction. It can represent a specific object, a collection
of objects etc. The RSC should provide enough freedom to model all those things, since we in reality are
interested in the inter-object communication, whatever the object is.

6.4 The LSC subset chosen: RSC 67

We only consider hot locations in the semantics in the next section 6.5 in contrary to [26] where mostly cold
locations are used. As hot locations denote mandatory behaviour, we think the force of LSC lies with these.
We mainly want to use scenarios where we specify what the system must do, not what it may do. In [26]
the Play-Engine is also primarily used with cold locations. This is not a problem as the Play-Engine actually
executes the LSCs rather than using them as a requirement. This implicitly gives liveness since the play-engine
always chooses to perform events on cold locations if they do not violate hot elements due to its maximal
policy. However if all the locations are cold on a collection of LSCs, a system may fulfil the requirements by
simply doing nothing, which is not desirable. Therefore hot locations give a more expressive applicative RSL
description of a RSC (see section 6.7.1) as the specified events must happen.

Even though [26] omitted instance creation we felt it necessary to include it. The reason is that it should
be possible to create an instance that is unaffected by the behaviour of other LSCs. Dynamic creation is not
possible, as the created instances must be known beforehand. This is also a consequence of the graphical
nature of RSCs. An example of creation can be seen in figure 6.5.

6.4.4 Subcharts

Regarding subcharts we could have considered simple subcharts that must span all instances in a LSC as in
[24]. However this severely limits the expressibility in the chart. Therefore a subchart may span arbitrary
instances, including a single one, which may be necessary for iteration over a local action.

However we do not allow unbounded iteration as this would pose a big problem in creating our operational
trace function, which must return a finite result, see section 6.5.3. This is clearly easier to model using automata
as in [6] with circular transitions.

For the sake of simplicity we have chosen not to create a separate if-then-else construct [24] with two con-
catenated subcharts and only one condition evaluation. The construct must be modelled with two separate
subcharts with two complementary conditions. This potentially gives rise to two different evaluations of the
conditions with the implication that none or both of the subcharts may be evaluated.

6.4.5 Events

Messages/Coregions

Messages are the fundamental building blocks of LSCs, and as such they come in several variants as explained
in section 6.2. We started out by only modelling hot, synchronous messages since our aim was to implement
messages using RSLs CSP constructs. Cold messages would mean that messages could be lost. Since messages
are synchronous in CSP it would be necessary to create an intermediate process which nondeterministically
would chose whether to pass on the message or delay it indefinitely (same limitation as in [49]). Thus we do
not allow a situation like in figure 6.12.

Figure 6.12: Example of message overtaking. Both messages are asynchronous, which can be seen as their
arrowheads are hollow. This means they can be sent before they are received, allowing the above construct.

Another argument for hot messages combined with hot locations are the semantic problems arising as described
in [26]. See figure 6.13.

68 Chapter 6. Live Sequence Charts

Figure 6.13: Example of a problem with the notion of hot/cold: Instance A has only cold locations, thus
specifying that the events may happen. The message is cold, denoting when it is being sent, it must not be
received. However instance B is specified with cold locations, which denote that the events must happen. Now,
must the message be sent or not? Must it be received or not?

Regarding asynchronous messages an intermediate process could be created that delays the passing on for a
nondeterministically chosen amount of time, thus demanding modelling of time, see below. We anticipated
that such an process always could be added later to a specification in order to allow these kinds of messages.
We chose to simplify the well-formedness conditions and semantics by only modelling synchronous messages.
Especially the well-formedness condition that the transitive closure of the partial order of messages and con-
ditions must be acyclic would become somewhat more complicated. A result of this simplification is that
messages now have the semantics of synchronisation barriers between two instances, which of course limits
the expressibility.

Messages in LSCs also allow for parameters, effectively functioning as value passing. In the RSC context
message arguments are omitted as we use variables. More on the handling of this in section 6.7.1.

Coregions are modelled as proposed, allowing the sending/reception of messages in a coregion to occur in a
non-determined sequence.

Conditions

Conditions are allowed to span several instances as in [7]. Others have constrained them to one instance, e.g.
[49]. LSCs are all about inter-object communication and are thus suitable for modelling distributed systems.
However in distributed systems all instances would not have access to the predicate/value that determines the
outcome of the condition [41]. Only one execution is desired. If every instance evaluated the condition they
could reach different results since time is not ordered among instances.

We allow shared conditions which means the system would require some sort of synchronisation communica-
tion. A condition may then be viewed as an abstraction of that in order to simplify the graphical representation
with unnecessary messages.

It is noted that a hot condition is quite similar to an assertion in a program, it must be true at the given moment
in order for a system to be an correct implementation of the model.

Conditions are abstracted into simple names as it must be possible for the software engineer to exactly specify
the predicate in RSL.

Actions

Actions are in [7] only specified as updating arbitrary variables with arbitrary values. In [26] these are com-
pletely omitted as the idea is to completely specify the behaviour of the system including variables, thus not
needing an action event. We kept the action event in order to allow for local computations on an instance that
may update variables. Especially in RSL this is useful when refining an specification, where a local action may
be under-specified to begin with.

Forbidden events

We do not consider forbidden events which were introduced in [26]. Our main priority was to handle events
on LSCs that must happen.

6.4 The LSC subset chosen: RSC 69

6.4.6 Timing

Time and timing in RSC was one of the main concerns regarding RSC. The initial syntax completely lacked
semantics and not until [25] time was treated in more detail. Unfortunately (albeit naturally) the semantics are
quite complex and the included syntax is fundamentally different as the one initially indicated in [7] on which
we based our initial syntax in the preliminary thesis [2]. The initial type of timing constructs we worked on
only allowed for timing annotations local to an instance, which is not very useful when modelling a distributed
system [41]. Having studied the subject more thoroughly and examined what was possible with Timed RSL
[52] we chose not to model time and timing annotations. Timed RSL has a single timing construct, called wait,
which semantically only gives the possibility to introduce delay. The semantic of wait x is: It will wait at wait
for at most x time units. This not enough for modelling the constructs possible in [25] which introduces global
time and ticks.

70 Chapter 6. Live Sequence Charts

6.5 Formal description of RSC

In the following the syntax, well-formedness conditions and semantics for RSC are introduced. The specifi-
cations are to be found in appendix D. They are based on the work in our preliminary thesis and have been
augmented and rewritten in this thesis. One large difference is that they were made translatable, see section
refsec:sd-making-model-exec. Some of the following text is based on the preliminary thesis [2].

One of the advantages of making the specifications translatable was the possibility for tests. Extensive tests
have been included in appendix D.4 including comments.

As the initial plan was to create an executable RSC collection it was also started to work on types, well-
formedness conditions and semantics for these. These where not needed in the resulting applicative RSC.
However the interested reader can find the (unfinished) specification in the appendix D.3. It gives an idea of
how an executable collection of RSCs might look like. It is presented with comments.

6.5.1 Types

The following types define the syntax of a single RSC chart. The types are reworked from the preliminary
thesis [2]. Sorts like names of messages are refined as texts, allowing for translation.

A RSC has a name, prechart, mainchart and a set of created instances. A RSC is modelled consisting of a pre-
and mainchart since their use is fundamentally different, even though their syntax is the same. Creations must
be the instance names of the instances that are created in the main chart.

type
RSC′ ::

name : RSC_Name
prechart : Chart
mainchart : Chart
creations : Inst_Name-set,

A chart is a map from instance names to a list of locations in order to ease look up of locations. We will also
use the index on the list in order to model the state in the semantics.

type
Chart = Inst_Name →m Location∗,
Location :: temp : HotCold event : Event,

An event may be one of the following: action, message input/output, condition, coregion or subchart begin/end.
Coregion and subcharts have been included as events in order to simplify the specifications.

An action event has a name and an id. It is further unspecified as we want to specify it in RSL later on.

An input event has an id and an source. The message name is given in the corresponding, uniquely identifiable
message output event.

An output event has an id, a name and a destination. No parameters are included as this is later done via
variables in section 6.7. The temperature is not included since we only consider hot messages in the semantics.

A condition event has a name, an id, a temperature and a list of instance names. The list denotes which
instances share the condition.

A coregion event has a location list. It must be the sublist of events on the instance that contains the message
events that may happen in random order.

A subchart event has a name, an id, a list of instance names, a multiplicity and a location list. The instance
names denote the instances among which the subchart is shared. The multiplicity denotes the maximum
number of repetitions of the chart.The location-list is the part of the instance’s locations that the subchart
encloses.

A endsubchart event has an id. It is used to denote the end of a subchart with the given id.

A stop event is included as the last event on an instance.*/

6.5 Formal description of RSC 71

type
Event ==

mk_ActionEvent(Action_Name, aid : ID) |
mk_InputEvent(inmsgid : ID, isender : Address) |
mk_OutputEvent(

outmsgid : ID,
outpid : Msg_Name,
dest : Address) |

mk_ConditionEvent(
conname : Cond_Name,
cid : ID,
cetemp : HotCold,
ceshare : Inst_Name-set) |

mk_CoregionEvent(crlocl : Location∗) |
mk_Subchart(

scname : Subchart_Name,
scid : ID,
scshare : Inst_Name-set,
mult : Multiplicity,
sclocl : Location∗) |

mk_EndSubchart(escid : ID) |
StopEvent,

Temperature may be hot or cold.

type
HotCold == Hot | Cold,

A multiplicity is a positive number.

type
Multiplicity = {| n : Nat • n>0 |},

An address is Environment or an instance name.

type
Address == Environment | mk_Address(name : Inst_Name),

Identifiers are texts or integers.

type
Action_Name = Text,
Cond_Name = Text,
Inst_Name = Text,
RSC_Name = Text,
ID = Int,
Msg_Name = Text,
Subchart_Name = Text

6.5.2 Well-formedness conditions

The type RSC has been made a subtype of RSC’ that is well-formed. A predicate has been defined in order to
check all the well-formedness conditions, 18 in total. Since the specification is rather large it has been included
in Appendix D.1.2. The conditions include comments on the purpose and argumentation why they are included.
As an example, condition 3 is included here. It is one of the most important ones as it prevents deadlocks. It
was also quite complicated since it was made translatable. All the conditions have been completely separated.
This eases the understanding and gives the possibility of testing each one separately.

The following is a list of all the conditions with a short description:

72 Chapter 6. Live Sequence Charts

1. (wf_ids_unique, D.1.2) IDs of events are unique in order to identify them.

2. (wf_message_match, D.1.2) Messages are paired correctly or stem from environment in order to ensure
correct message passing.

3. (wf_mess_cond_acyclic, D.1.2) The undirected connection graph is acyclic in order to avoid deadlock.

4. (wf_condition_share, D.1.2) Conditions are consistent across instances that share the specific condi-
tions.

5. (wf_subchart_locations, D.1.2) Locations in subcharts are locations on the instance in order to ease
semantics and other well-formedness conditions.

6. (wf_subchart_ordered, D.1.2) All subcharts are ordered correctly in order to avoid deadlock For exam-
ple they may not overtake each other across instances.

7. (wf_subchart_coherent, D.1.2) Subcharts are coherent in order to ensure correct subcharts.

8. (wf_subchart_end, D.1.2) A subchart has an endsubchart token in order to identify its end.

9. (wf_subchart_conditions, D.1.2) Conditions in subcharts are contained in order to ensure correct sub-
charts.

10. (wf_subchart_messages, D.1.2) Messages in subcharts are completely contained inside the subchart in
order to ensure correct subcharts. A message may for example not be sent but not be received in a
subchart.

11. (wf_subchart_subchart, D.1.2) Subcharts within subcharts are completely contained inside the super-
chart in order to ensure correct subcharts.

12. (wf_coregion_locations, D.1.2) Locations in coregions are locations on the instance in order to ease
semantics and other well-formedness conditions.

13. (wf_coregion_messages, D.1.2) All events in coregions are messages, as coregions may only consist of
messages.

14. (wf_cold_subchart, D.1.2) All locations after a cold location in subcharts are cold in order to ensure
correct ordering of hot and cold messages.

15. (wf_cold_mainchart, D.1.2) All locations after a cold location in a mainchart are cold in order to ensure
correct ordering of hot and cold messages.

16. (wf_last, D.1.2) The last event is a stop event in order to ensure correct termination of a chart.

17. (wf_creation, D.1.2) A created instance may not be present in prechart, as it is obviously not created
until sometime in the mainchart.

18. (wf_prechart_condition, D.1.2) Conditions in prechart must be hot, since a cold condition could mean
an unwanted successful exit from the prechart.

Figure 6.14: Example of a non well-formed RSC that deadlocks. No instance can proceed, as no event is
enabled as all messages are hot and synchronous.

The following well-formedness condition is to ensure that no deadlocks occur. This is done by checking that
the transitive closure of the bidirectional connection graph is acyclic. This property includes that a message

6.5 Formal description of RSC 73

Figure 6.15: Another example of a RSC that deadlocks. This time with a condition. Again, no event is enabled
as the connection graph is cyclic.

output is not causally dependent on its corresponding message input, directly and indirectly through other
messages, see figure 6.14. However this property is not enough since messages are synchronous and thus will
deadlock if the destination is not ready to accept the input. An example can be seen in figure 6.15, where the
directed connection graph is not cyclic and the bidirectional is. Messages are a synchronisation barrier, thus
the order introduced is given by the synchronisation points on the instances. As condition events also represent
synchronisation points they need also be considered. The order is established by creating the tuples of IDs that
happen in order, i.e. the tuples AB which denotes that the event with ID A happens before the event with ID B
(on an instance). Now by ensuring that this order is not cyclic, the desired property is achieved. Even though
subcharts are synchronisation points as well, they must not be considered, since messages, conditions etc. in
subcharts are contained within the subchart and can thus not introduce a cyclic order due to the other well-
formedness conditions. If the specification was not to be translated, the above condition could be specified
very shortly. The following demonstrates this. The orders are all the orders introduced in the chart. For
example if the message with ID 1 happens before a condition with ID 64, the order (1,64) is included. It is
then checked that there does not exist a sequence of these orders that is cyclic:

type
ID = Int,
Order :: id1 : ID id2 : ID

value
wf_mess_cond_acyclic : Chart → Bool
wf_mess_cond_acyclic(chart) ≡

let orders = po_instances(chart) in
∼(∃ ol : Order∗ •

(elems ol ⊆ orders) ∧
(∀ i : Nat • i > 0 ∧ i < len ol ⇒ id2(ol(i)) = id1(ol(i + 1))) ∧
id1(ol(1)) = id2(ol(len ol)))

end,

The translatable version: For all given orders on a chart this functions checks weather the undirected connection
graph is acyclic or not by trying to traverse the IDs reachable from each order present. Sorting is actually not
necessary, but done in order to speed up the check in the resulting C++ code.

value
wf_mess_cond_acyclic : Chart → Bool
wf_mess_cond_acyclic(chart) ≡

let
orders = po_instances(chart),
orderl = insertionSort(set_to_list(orders), 〈〉)

in
∀ o : Order • o ∈ elems orderl ⇒

74 Chapter 6. Live Sequence Charts

acyclic({id1(o), id2(o)}, id2(o), orderl)
end,

\RSLatex

Finds the order of messages and conditions on instances of a chart.

\RSLatex
po_instances : Chart → Order-set
po_instances(chart) ≡

if chart = [] then {}
else let i = hd chart in po_instance(chart(i), {}) ∪ po_instances(chart \ {i}) end
end,

po_instance finds the order of messages and conditions on an instance (i.e. Location-list). It creates all
the orders introduced by the instance by creating tuples of ID, e.g. AB which denotes that the message or
condition with ID A happens before the message or condition with ID B. It calls itself recursively in order to
treat each Location depending on its event. It maintains a set of ID’s (idset) which holds the IDs that happen
before the location at the beginning of the current Location-list. Messages and condition events have their
ID extracted and an Order-set is created by using the extracted ID and the preceeding ids given by idset. It
proceeds with the rest of the list and adds the extracted ids to idset, which now holds the ID’s of messages and
conditions that have happened. Coregionevents do not introduce ordering among themselves, only in relation
to events happening before and after the coregion. All the ids of messages in coregion are extracted. Since
a coregionevent spans more than one location all the locations of the coregionevent are removed in order to
proceed. All other events are not relevant for ordering. Not even subcharts, since there are wf-conditions that
guarantee that messages and conditions contained in subcharts do solely occur inside them.

po_instance : Location∗ × ID-set → Order-set
po_instance(locl, idset) ≡

if locl = 〈〉 then {}
else
case event(hd locl) of

mk_InputEvent(inmsgid,) →
append(idset, {inmsgid})
∪
po_instance(tl locl, idset ∪ {inmsgid}),

mk_OutputEvent(outmsgid, , , ,) →
append(idset, {outmsgid})
∪
po_instance(tl locl, idset ∪ {outmsgid}),

mk_ConditionEvent(, cid, ,) →
append(idset, {cid})
∪
po_instance(tl locl, idset ∪ {cid}),

mk_CoregionEvent(clocl) →
let cids = coregion_ids(clocl), newlocl = reduce_list((len clocl) + 1, locl) in

append(idset, cids) ∪ po_instance(newlocl, idset ∪ cids)
end,
→ po_instance(tl locl, idset)

end
end,

Given a set of already traversed IDs, the current last traversed ID and a list of orders, this function checks
whether the connection graph is acyclic or not. This is done by finding the next possible orders given the
current last traversed ID.

acyclic : Int-set × Int × Order∗ → Bool
acyclic(seenIDs, lastid, orderl) ≡

let fitting = extractfitting(lastid, orderl) in acyclic_fit(seenIDs, fitting, orderl) end,

6.5 Formal description of RSC 75

Given a set of already traversed ID’s, a list of possible next orders and a list of all orders, this function checks
weather the connection graph is acyclic or not.

acyclic_fit : Int-set × Order∗ × Order∗ → Bool
acyclic_fit(seenIDs, fitting, orderl) ≡

case fitting of
〈〉 → true,
〈a〉 ̂ 〈〉 → id2(a) 6∈ seenIDs

∧ acyclic(seenIDs ∪ {id2(a)}, id2(a), orderl),
〈a〉 ̂ b →

id2(a) 6∈ seenIDs
∧ acyclic(seenIDs ∪ {id2(a)}, id2(a), orderl)
∧ acyclic_fit(seenIDs, b, orderl)

end,

Extracts the orders of a list (as a list) with a given id as id1.

extractfitting : Int × Order∗ → Order∗

extractfitting(id, orderl) ≡
case orderl of

〈〉 → 〈〉,
〈a〉 ̂ 〈〉 → if id1(a) = id then 〈a〉 else 〈〉 end,
〈a〉 ̂ b →

if id1(a) = id then 〈a〉 ̂ extractfitting(id, b)
else extractfitting(id, b) end

end,

6.5.3 Semantics for one chart

The semantics for RSCs is the set of all possible traces of a RSC. A trace is a list of possible states a RSC can
be in during an execution. This list then describes one complete run of the RSC as it is performed. The states
resemble the states described in 6.2.

As the semantics must be translatable to C++ we had to be very implementation oriented. The semantics
adhere to the informal description presented in section 6.4, so it will not be discussed further here.

The semantics are defined for one chart, which means it is valid for both a prechart and mainchart. It consists
of two main parts. The first examines a charts current state in order to find the set of events that may be
performed. These events are called enabled events [26]. Based on the enabled events a set of all the possible
traces of a RSC is computed by diverging every trace when several enabled events are present.

As the instances are modelled as lists it was decided to use the index of the current event in order to denote
the state. Thus the position info is a pointer which points to the next event that must happen. As we are not
talking about cuts but states, the state must also give extra information in case of a coregion. Most of the RSL
specification is given in appendix D.2.

The following are the most important top level functions:

semantics gives all the possible traces for a given chart.

semantics : Chart → Traces
semantics(chart) ≡ eval(chart, {〈initialize_chart(chart)〉}),

eval recursively evaluates traces until no new are found.

eval : Chart × Traces → Traces
eval(chart, ts) ≡

let ts′ = eval_traces(chart, ts) in
if ts′ = ts then ts else eval(chart, ts′) end

end,

76 Chapter 6. Live Sequence Charts

eval_traces evaluates traces. There is a need for an extra function as recursively defined quantified ex-
pressions are not in the subset of RSL that is translatable to C++.

eval_traces : Chart × Traces → Traces
eval_traces(chart, ts) ≡

- -converting -set-set to -set
convert_tss2s({eval_trace(chart, t) | t : Trace • t ∈ ts}),

eval_trace evaluates a trace by finding the next possible states given the current state, and creating the
resulting new traces.

eval_trace : Chart × Trace ∼

→ Traces
eval_trace(chart, t) ≡

let evalss = eval_state(chart, hd t) in
if evalss = {} ∨ (∀ ns : State • ns ∈ evalss ⇒ ns =
hd t ∨ (if len t > 1 then hd t = (hd (tl t)) else false end))
then {t}
else

if (∃ ns : State • ns ∈ evalss ∧ ns = [])
then

{〈ns〉 ̂ t | ns : State • ns ∈ evalss ∧ ns 6= hd t ∧ ns 6= []} ∪
{〈hd t〉 ̂ t}

else {〈ns〉 ̂ t | ns : State • ns ∈ evalss ∧ ns 6= hd t}
end

end
end
pre t 6= 〈〉 ,

eval_state: given a chart and a state the enabled events are found and the corresponding next states are
found.

eval_state : Chart × State → State-set
eval_state(chart, curState) ≡

{step_event(chart, x, curState) | x : EnabledEvent • x ∈ get_enabled_events(chart, curState)},

get_enabled_events finds the enabled events in a given state.

get_enabled_events : Chart × State → EnabledEvent-set
get_enabled_events(chart, curState) ≡

let inames = dom curState in
convert_ees2es(

{get_enabled_event(chart, curState, iname) | iname : Inst_Name • iname ∈ inames})
end,

Same as above, splitted for convenience.

get_enabled_event : Chart × State × Inst_Name → EnabledEvent-set
get_enabled_event(chart, curState, iname) ≡

let pi = curState(iname), curEvent = eventlist(chart(iname))(pointer(pi)) in
get_enabled_event_cur(chart, curState, iname, curEvent)

end,

get_enabled_event_cur gets the enabled events depending on the current event.

get_enabled_event_cur : Chart × State × Inst_Name × Event → EnabledEvent-set
get_enabled_event_cur(chart, curState, iname, curEvent) ≡

case curEvent of
mk_InputEvent(inmsgid, inaddr) → {get_ee_inputevent(chart,
curState, iname, inmsgid, inaddr)},
mk_OutputEvent(outmsgid, temp, outpid, outpar, outaddr) →

6.5 Formal description of RSC 77

{get_ee_outputevent(chart, curState, iname, outmsgid, outaddr)},
mk_ConditionEvent(conname, cid, cetemp, share) →

get_ee_con(chart, curState, iname, curEvent),
mk_CoregionEvent(locl) → get_ee_coregion(chart, curState, iname, locl),
mk_Subchart(scname, scid, inames, mult, sclocl) →

{get_ee_subchart(chart, curState, curEvent)},
mk_EndSubchart(scid) → {get_ee_endsc(chart, curState, scid)},
StopEvent → {EnabledStopped},
mk_ActionEvent(aname,id) → {EnabledAction(iname,aname, id)}

end,

78 Chapter 6. Live Sequence Charts

6.6 Example: RSC RSL specification

Figure 6.16 is a constructed example of RSC. It does not represent a specific scenario, but is created in a way
to accommodate all the possible RSC constructs in one chart without getting too big. The equivalent RSL
specification of the RSC is presented. This is followed with examples of how the semantics for the mainchart
work when executed.

Figure 6.16: Example of a RSC with all the possible constructs.

The following is the equivalent RSC specification in RSL including a small part of the execution using the
functions in the semantics given in D.2. The compiled test binaries can be found on the companion CD, see
chapter E.

All the events are defined.

value
pre_m1out : Event = mk_OutputEvent(01, ′′PreMsg1′′, mk_Address(′′A′′)),
pre_m1in : Event = mk_InputEvent(01, mk_Address(′′B′′)),
pre_m2out : Event = mk_OutputEvent(02, ′′PreMsg2′′, mk_Address(′′C′′)),
pre_m2in : Event = mk_InputEvent(02, mk_Address(′′B′′)),
pre_cond : Event = mk_ConditionEvent(′′Preactive′′, 03, Hot, {′′A′′, ′′B′′, ′′C′′}),
main_m1out : Event = mk_OutputEvent(1, ′′Msg1′′, mk_Address(′′B′′)),
main_m1in : Event = mk_InputEvent(1, mk_Address(′′A′′)),
main_m2out : Event = mk_OutputEvent(2, ′′Msg2′′, mk_Address(′′B′′)),
main_m2in : Event = mk_InputEvent(2, mk_Address(′′C′′)),
main_m3out : Event = mk_OutputEvent(3, ′′Msg3′′, mk_Address(′′D′′)),
main_m3in : Event = mk_InputEvent(3, mk_Address(′′C′′)),
main_m4out : Event = mk_OutputEvent(4, ′′Msg4′′, mk_Address(′′B′′)),
main_m4in : Event = mk_InputEvent(4, mk_Address(′′A′′)),
main_m5out : Event = mk_OutputEvent(5, ′′Msg5′′, Environment),

6.6 Example: RSC RSL specification 79

main_m6out : Event = mk_OutputEvent(6, ′′Msg6′′, mk_Address(′′C′′)),
main_m6in : Event = mk_InputEvent(6, mk_Address(′′B′′)),
main_m7out : Event = mk_OutputEvent(7, ′′Msg7′′, mk_Address(′′B′′)),
main_m7in : Event = mk_InputEvent(7, mk_Address(′′C′′)),
main_actA : Event = mk_ActionEvent(′′ActionA′′, 11),
main_actD : Event = mk_ActionEvent(′′ActionD′′, 12),
main_cr1 : Event = mk_CoregionEvent(〈mk_Location(Hot, main_m1in),

mk_Location(Hot, main_m2in)〉),
main_cr2 : Event = mk_CoregionEvent(〈mk_Location(Cold, main_m6out),

mk_Location(Cold, main_m7in)〉),
main_cr3 : Event = mk_CoregionEvent(〈mk_Location(Cold, main_m6in),

mk_Location(Cold, main_m7out)〉),
main_condmain : Event = mk_ConditionEvent(′′Condition′′, 21, Hot, {′′B′′,′′C′′}),
main_condsub : Event = mk_ConditionEvent(′′ConditionSub′′, 22, Hot, {′′A′′, ′′B′′}),
main_scla : Location∗ = 〈mk_Location(Hot, main_condsub),

mk_Location(Cold, main_m4out)〉,
main_sclb : Location∗ = 〈mk_Location(Hot, main_condsub),

mk_Location(Cold, main_m4in)〉,
main_sca : Event = mk_Subchart(′′Subchart′′, 31, {′′A′′, ′′B′′}, 3, main_scla),
main_scb : Event = mk_Subchart(′′Subchart′′, 31, {′′A′′, ′′B′′}, 2, main_sclb),
main_scstop : Event = mk_EndSubchart(31),

Defining main chart instances (location lists).

main_insta : Location∗ =
〈mk_Location(Hot, main_m1out),

mk_Location(Hot, main_actA),
mk_Location(Hot, main_sca)〉
̂ main_scla ̂

〈mk_Location(Hot, main_scstop),
mk_Location(Hot, StopEvent)〉,

main_instb : Location∗ =
〈mk_Location(Hot, main_cr1),

mk_Location(Hot, main_m1in),
mk_Location(Hot, main_m2in),
mk_Location(Hot, main_condmain),
mk_Location(Hot, main_scb)〉
̂ main_sclb ̂

〈mk_Location(Hot, main_scstop),
mk_Location(Cold, main_cr2),
mk_Location(Cold, main_m6out),
mk_Location(Cold, main_m7in),
mk_Location(Cold, StopEvent)〉,

main_instc : Location∗ =
〈mk_Location(Hot, main_m2out),

mk_Location(Hot, main_condmain),
mk_Location(Hot, main_m3out),
mk_Location(Cold, main_cr3),
mk_Location(Cold, main_m6in),
mk_Location(Cold, main_m7out),
mk_Location(Cold, StopEvent)〉,

main_instd : Location∗ =
〈mk_Location(Hot, main_m3in),

mk_Location(Hot, main_actD),
mk_Location(Hot, main_m5out),
mk_Location(Hot, StopEvent)〉,

Defining prechart instances.

80 Chapter 6. Live Sequence Charts

pre_insta : Location∗ =
〈mk_Location(Hot, pre_cond),

mk_Location(Hot, pre_m1in),
mk_Location(Hot, StopEvent)〉,

pre_instb : Location∗ =
〈mk_Location(Hot, pre_cond),

mk_Location(Hot, pre_m1out),
mk_Location(Hot, pre_m2out),
mk_Location(Hot, StopEvent)〉,

pre_instc : Location∗ =
〈mk_Location(Hot, pre_cond),

mk_Location(Hot, pre_m2in),
mk_Location(Hot, StopEvent)〉,

Defining charts.

mainch : Chart = [′′A′′ 7→ main_insta,
′′B′′ 7→ main_instb,
′′C′′ 7→ main_instc,
′′D′′ 7→ main_instd],

prech : Chart = [′′A′′ 7→ pre_insta,
′′B′′ 7→ pre_instb,
′′C′′ 7→ pre_instc],

Defining RSC subtype.

testrsc : RSC′ = mk_RSC′(′′Test-RSC′′, prech, mainch, {′′D′′}),

Start state and initial enabled events. Provided in order to shorten the paramter list.

state0 : State = initialize_chart(wfl_mainch),
ee0 : EnabledEvent-set = get_enabled_events(wfl_mainch, state0)

As the specification is translatable it is possible to create test cases. They all return true when run. The
following assumes that the mainchart is activated and it is executed.

Checking if the RSC is wellformed.

test_case
[wfl_RSC_is_wellformed______]

wf_RSC(testrsc),

The following returns the state after 3 events have been performed. The state corresponds to the state3 drawn
in figure 6.16. The state is made more human readable by only showing the program pointers on the instances.
The numbers thus denote at which location the next possible event is located on each instance. The ordering is
instance A,B,C,D. Instance D is waiting at position 1, waiting for its "activation" message.

test_case
[state_3_steps______________]

sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(3, state0, ee0),true))) =
〈3,4,2,1〉,

The following shows which events are enabled in the above state. Currently only the condition is enabled.

test_case
[enabled_events_3_steps_____]

ads(test_machine(wfl_mainch, mk_gStep(3,state0,ee0),true)) =
{NotEnabled,EnabledCondition({′′B′′,′′C′′},′′Cond1′′,12)},

This is the state after the condition has been performed, state4 in the figure.

6.6 Example: RSC RSL specification 81

test_case
[state_4_steps______________]

sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(4, state0, ee0),true))) =
〈3,5,3,1〉,

Now there are 2 possible events, the entering of the subchart and sending of Msg3.

test_case
[enabled_events_4_steps_____]

ads(test_machine(wfl_mainch, mk_gStep(4,state0,ee0),true)) =
{EnabledMessage({′′C′′},{′′D′′},81),EnabledEnterSubchart({′′A′′,′′B′′},13,2),NotEnabled}

82 Chapter 6. Live Sequence Charts

6.7 Translation: RSCδ → RSLα

This section presents a RSC equivalent specification in RSL that allows refinement of messages, actions, and
conditions. The RSC described in section 6.4 is the subset of LSCs for which there is specified syntax and
well-formedness conditions.

RSL provides several different ways of modelling. LSCs/RSCs have a close conceptual relation to processes
and message passing. Therefore it is intuitive to think of the CSP included in RSL. This was also our initial
approach of modelling a RSC. But we found that the CSP operators available in RSL are not sufficient to make
a general model. This initial approach is discussed in section 6.7.2.

The intended purpose of a collection of LSCs is to specify the requirements of a system. Thus the equivalent
RSL specification must achieve the same. Besides the fact that the CSP part of RSL is simplified we also
think that using CSP processes and channels makes the specification design oriented. The goal in [26] is the
executability of LSCs, thus working towards a design specification. Our goal is to make the RSCs as expressive
as possible with a high degree of freedom for the software engineer. Therefore we chose to use an applicative
style which captures the requirements expressed using RSCs/LSCs. This is discussed in section 6.7.1.

We also present the pure CSP approach of [50] in the last section.

6.7.1 An applicative RSL model of RSCs

In section 6.5.3 the semantics for a RSC is given as traces of states. The purpose is to visualise the possible
ways of progressing a RSC, disregarding the actual meaning of the events. The requirements in the RSL
specification must express the constraints imposed by the collection of RSCs. Hence it is necessary to include
the semantics of the events in the charts. The semantics presented in this section describe a set of models where
each model represent a trace of events.

Figure 6.17: Scheme Diagram of the account example RSC specification.

The structure of the specification is shown in figure 6.17. A system consists of two parts:

1. A set of RSC specifications and the functions which are used in the RSCs.

2. A generic scheme which given the information in item 1 as parameter, returns the set of models, each
containing a valid trace of the system.

In figure 6.17 the account scheme contains the set of RSCs and functions in RSL. It must implement the spec-
ification since it denotes the formal arguments for the semantics scheme. An account example with diagrams
and explicitly specified functions is given in 6.8. The semantics and rsc_types schemes are discussed further
in the following sections.

The schemes from the semantics in section 6.5.3 are also present in figure 6.17. The RSC specified by the
user must be well-formed, thus we reuse the syntax and well-formedness conditions. Furthermore there are
two functions ((get_enabled_events, step_event, D.6) from the RSC_semantics which still are applicable. The
functions are used for determining enabled events and the next states in a RSC.

The full RSL specification for figure 6.17 is available in appendix D.6. It is augmented with a lot of comments
regarding how the specification works in relation to RSC and is worth reading for the interested reader.

6.7 Translation: RSCδ → RSLα 83

Events versus functions

There are three kinds of events that can take place in a RSC: a message, action or condition. In a RSC it is
possible to prescribe the events that can/must happen but not the effect of an event. This can be done in RSL.
But first the events must be related to RSL. We have chosen to map events to functions. In order for functions
to have an effect we also introduce variables, see section 6.7.1.

type
SysEvent′ ==

mk_SysAction(instance : Inst_Name, action : Text) |
mk_SysMsg(src : Inst_Name-set, dst : Inst_Name-set, method : Text) |
mk_SysCondition(shared_by : Inst_Name-set, cond : Text),

A condition event is a predicate which is given the names of the instances it spans and variables as parameter.
An action event is a local computation, thus given the name of the instance on which it is placed and variables
as parameters. Message events can be considered a function invocation at the destination instance initiated by
the source instance. Hence the source instance, destination instance and variables are given as parameters.

type
Condition = Inst_Name-set × Variables → Bool,
Action = Inst_Name × Variables → Variables,
Message = Inst_Name-set × Inst_Name-set × Variables → Variables

The RSC is given to the semantics as part of the actual parameter of the scheme. The three events are in the
syntax labelled with the names of the events/functions as a Text type. In order to use use this label and make
the function calls generic, three maps from function names to functions are introduced.

value
actions : Text →m T.Action,
conditions : Text →m T.Condition,
messages : Text →m T.Message

Applying a function must be preceded by a map lookup, but makes it possible to apply a function given its
name as a text string. The three maps are part of the formal parameters for the semantics scheme.

Variables

In order for the functions to have an effect it is necessary to have variables. A global variable state is introduced
which maps variable names to values. All functions when applied are given the variables as parameters thus all
have the possibility to read variables. Both messages and actions are events that can have an effect, therefore
they must return a map of variables. A condition is a predicate thus its return type is a boolean.

type
Variables = Text →m Value,
Value == Boolean(Bool) | Integer(Int) | String(Text)

Since the variable state is modelled as a map, in addition to changing the value of a variable it also permits the
functions to create, delete, and change the type of a variable. It is however required that the functions handle
situations where required variables are missing or of the wrong type.

Since the variable state is global all functions have access to all variables. It is however still possible to
model local variables using generic functions or predicates. According to the well-formedness of the RSC the
instances all have unique names. For actions the name of the instance where the action must be performed is
given as parameter. Accessing a variable is preceded by a map lookup using the variable name. Thus a local
variable can be preceded by the instance name, eg: Account.balance. Whether local or global variables
are used are up to the specifier of the functions.

84 Chapter 6. Live Sequence Charts

Traces

The semantics scheme contains two under-specified value declarations being a system trace (st) and an initial
variable state. The system trace is constrained by two axioms which are true if the system trace fulfils the
RSCs part of the actual parameter. There are no constraints on the initial variable state. Therefore its presence
corresponds to an ∃ quantification. Thus each model in the set of models from the semantics scheme, represents
a valid trace and initial variable state combination.

type
SysTrace = SysEventω

value
st : T.SysTrace,
v : T.Variables,
vl : T.Variables∗ = make_var_trace(st, v)

Although several different RSCs can be activated at the same time, it is simpler to verify one RSC with the
system trace at a time. The entire system trace is available, but it is also necessary to know the variable state.
Only messages and actions may alter the state of the variables thus it is possible to compute a variable state
trace that corresponds to the system trace. Thus it is assumed that the variables trace is a consequence of the
system trace and the initial variable state.

The system trace is not restricted to events that are part of the RSCs which constitute the system. When
evaluating a chart these events matter. In a prechart such events are ignored, as the prechart is only concerned
with the events that are specified (visible). In a mainchart these events may not alter the variables which are
visible to the chart. This would diminish the semantic expression of conditions. If non visible events where
allowed to change the visible variables, the following could happen: A condition is evaluated to true and the
mainchart is about to proceed. Now an invisible event alters the variable which forms the basis for the condition
so that it would return false. Then the enabled event proceeds event though the condition would evaluate to
false. This is not the intention of using conditions and therefore the described limitation.

axiom
[valid_trace_no_prechart]

∀ rsc : T.RSC •

rsc ∈ SPEC.rscs ∧ T.prechart(rsc) = [] ⇒ valid_trace_nopre(rsc, st, vl),
[valid_trace_with_prechart]

∀ rsc : T.RSC •

rsc ∈ SPEC.rscs ∧ T.prechart(rsc) 6= [] ⇒ valid_trace(rsc, st, vl)

Discussion

Although the RSC diagram is not designed with refinement in mind this option is possible when translating
it to RSL. The original applicative valid_trace function describes the requirements. This function can
be refined using e.g. CSP as previous mentioned. Thus a door has been opened which makes it possible to
continue the transition to a design specification. The following is a discussion about some of the features of
the current specification.

There is a difference in the semantics of a RSC with and without a prechart. When a prechart is present
it controls when the mainchart is active. If there is no prechart it is implicitly true and the mainchart is
automatically active. This means the behaviour specified in the mainchart must always hold. This can however
pose a problem when we look at activation. If multiple activation is allowed this poses a problem. Example:
a mainchart with two distinct events will always result in the empty set of models. Assume the first event
happens. After this event the mainchart is again activated, requiring that the first event happens again, see
figure 6.18 But this contradicts the first activation which requires the second event to happen. This is possible
since both incarnations have the same visible events. We therefore require that the mainchart of a RSC without
a prechart must be completed before it is activated again.

It is another case when considering RSCs with prechart, where we allow simultaneous activation. This may
seem inconsistent compared to the constraint mentioned above with RSCs without prechart. However the

6.7 Translation: RSCδ → RSLα 85

Figure 6.18: Illustrating problem if multiple activation of LSCs without prechart is allowed. MsgA has been
sent. The left incarnation of the RSC requires that MsgB is sent. The right (last) incarnation requires MsgA to
be sent.

expressiveness is enhanced greatly when allowing simultaneous activation, as can be seen in figure XX (include
figure from playbook, page 154). Other approaches, as for example [24] have more severe constraints. Due
to the state-based nature they do not even allow simultaneous activation of precharts, thus potentially missing
activations of maincharts.

In our framework it is possible to specify inconsistent RSC. An example is given in figure 6.10. Thus the RSL
specification will yield an empty model. As it is outside the scope of this project to check inconsistency, it is
up to the software engineer to ensure consistency in the RSC collections used.

One of our design decisions was not to consider forbidden events. This is quite easy to change in the current
specification by augmenting/altering the function (visible_events, D.2) by returning the events that are wished
to be forbidden as well. Forbidden scenarios ([26]) which specify unwanted behaviour, are possible. This
is simply done by specifying the unwanted behaviour in a prechart that leads to a false hot condition in the
mainchart. This ensures that the system may never exhibit the behaviour specified in the prechart.

A more delicate subject is about conditions. As discussed in 6.4 we have chosen to include conditions that
can span several instances. As conditions are predicates that need to read variables, it is unclear where these
variables are read. As of now it is up to the software engineer to specify this correctly. As a starting point all
variables are global, thus avoiding this problem. But RSCs are very suitable for distributed systems where this
assumption does not hold, thus requiring refinement by the software engineer.

Cold locations have also been omitted due to the problems described earlier. A possible solution in this ap-
plicative context could be the following: if the events specified in the cold part of a chart happen, they must
conform to the partial order induced by the chart.

Regarding messages to and from the environment it is chosen to model a destination/source as a set of instance
names. If it is empty it denotes the environment. If not it may only contain one instance name that uniquely
identifies the destination/source.

The current specification also implies a finite run of a system. However it would only require minor changes
in order to allow infinite runs. It was chosen not to do so, as the semantics for one chart are finite as well.
Subcharts may not be repeated indefinitely, as the initial goal was to use CSP in RSL. Thus it would be
obvious to correct this issue in both the chart semantics and the RSL specification.

6.7.2 RSL CSP and LSCs

The initial approach of using CSP in RSL was initiated by trying to create examples in order to explore the
possibilities. Two unfinished examples can be found in D.5. The idea was to construct a RSC process as a
parallel composition of processes, one for each instance. Then specify the message passing as specified by
the RSC equivalents. A main problem quickly emerged regarding the semantics of hot and cold conditions.
Especially hot conditions were hard to specify as they required some sort of interrupt. This stems from the fact
that a false hot condition is not allowed, and thus must stop all instances, regardless of their current state. This
problem is easily solved using solely CSP, as described in 6.7.4.

Another major problem was the simultaneous activation of several charts. Individual RSCs only constrain
some of the events. But in order to specify a complete system the sum of the constraints must be expressed. In
order to solve this problem, the resulting RSL specification had to be a sum of all the RSCs. Thus needing some

86 Chapter 6. Live Sequence Charts

sort of synthesis as done in [24] in order to capture all the behaviour. It would amount to a RSL equivalent of
one large state machine. This would become severely complicated and is out of the scope of this project.

A further undesired property in this approach is that the resulting concurrent specification is rather undesirable
with regards to refinement. The usual approach in RSL specification is to start with a applicative specification
and through refinement end up with a more design oriented concurrent specification [19]. Starting with a
concurrent specification would also make justification diffucult.

The approach described in section 6.7.4 was very interesting considering our own initial goal of using CSP in
RSL. However it became evident that we severely lacked the equivalent of an interrupt operator. Semantically
the operators we had at our disposal could not be used to model LSCs.

6.7.3 RSL CSP approach

The following subsections describe the thoughts we initially made regarding the construction of a CSP RSL
equivalent of LSCs. As it is not used in our final specifications, it may be skipped.

Communication

Communication is done via channels. There should be a dedicated channel for each message to be sent in the
LSC in order to lower the risk of deadlock caused by sending several messages on the same channel.

LSCs are modelled as separate parallel processes. In order to synchronise at certain events (i.e. conditions
and subcharts) separate processes are created for each of those events. These processes wait for synchroni-
sation signals from the relevant instances and thereafter return a signal with appropriate information on how
to proceed. The number of processes may therefore be rather large. But since the specification of them has
been made generic it is quite easy to get an overview of all the processes by looking at the instantiated process
objects and their parameters.

All communication is done using channels between processes. Schemes have been specified in order to ease
the instantiation of channels with correct types.

Synchronisation

Condition processes synchronise the involved instances and use a predicate (test_condition) to check whether
the condition is true or not. This also has the implication that the condition is only evaluated once, as it should
be.

Several scenarios are possible depending on the evaluation and temperature of the condition. If the condition is
true, normal LSC execution is resumed. If it is a hot condition that evaluates to false, the LSC behaviour is not
satisfied, thus resulting in stop. Another interpretation of the semantics of a hot condition in a implemented
system, would be to introduce a while loop. This should be repeated until the condition is true. This stems
from the fact that a false hot condition is not allowed. On the other hand this could easily lead to a dead locked
system.

Interrupt is modelled using an interrupt channel that all instances can send to. The interrupt channel is con-
nected to an interrupt process that distributes the interrupt to all instances, which are to stop. As the system is
discrete only one interrupt will be processed.

If it is a cold condition the progression depends on whether the condition is inside a subchart. If it is, the
current subchart is exited (all instances involved) and the LSC is resumed right after the subchart end. If
the condition is not in a subchart, the main chart is successfully exited and the system may exhibit arbitrary
behaviour, chaos.

Subchart processes also synchronise the involved instances. Their main function is to determine whether a
subchart is to be repeat at the end of it. For that use a variable has been introduced as a counter to maintain
track of how often the subchart has been run.

6.7 Translation: RSCδ → RSLα 87

Coregions

Coregion execution is modelled in another function. The reason for this is that a coregion event only consists
of message events. It is then (external) nondeterministically determined in which order the events are carried
out.

Liveness

When translating the LSC from its diagrammatic notation to RSL the properties of the diagram should still
hold. One property is liveness which arguably still holds with the suggested mapping to RSL. Liveness can
be achieved through construction; that is, the mapping will result in a specification which has the liveness
property.

∀ lsc : LSC • wf_syntax(lsc) ⇒ wf_liveness(transltr(lsc))

Communication in a LSC diagram which fulfils the described LSC syntax is always between two processes. At
every location of an instance which sends a message there exists a corresponding process and location which
is willing to receive the message, and vice versa.

A possible way of showing this formally is considering the next possible locations of a given instance together
with the remaining locations and argue that the first location will eventually take place and then proceed with
the remainder of the list. Eventually the list will be empty and the instance will have completed successful.

As discussed in section 6.4 we have not introduced timing constructs. However this should be possible given
the specification. It would be possible to use Timed RSL and define timing constraints with limited express-
ibility in relation to certain events. This would also make it possible to create constraints that are global and
not only local to an instance. We have not pursued this issue further.

6.7.4 A pure CSP approach

The following approach is a more detailed description of [49] and [50].

CSPs are constructed based on LSCs. This is done by mimicking the states of the equivalent skeleton automa-
ton of a LSC. In charts without a prechart (basic charts) two processes are defined: terminated and aborted to
mimic the states of a LSC that has terminated (successful run) or aborted (unsuccessful exit due to a false hot
condition). One LSC is defined as a process that is the parallel composition of the processes of the instances.
It is noted that operators like if-then-else have their exact images in CSP. If-then-else can be created as an
external choice of two guarded processes.

The handling of hot and cold conditions is elegantly done using CSPs interrupt operator [30], which allows
for a semantically sound interrupt of a chart or a complete system. The interrupt operator reacts on a special
specified event. When for example one instance encounters a false hot condition, this event is emitted and all
other instances are interrupted.

The prechart and mainchart are considered two separate processes and are synchronised using a special event.
When the prechart finishes the system proceeds as the main chart.

The complete system is then specified as the parallel composition of all the processes of the individual LSCs.

Precharts are monitored continuously in order to see if the main chart must be activated. For each new event
a new prechart process is forked to check if the prechart behaviour is exhibited. If unexpected events are
encountered, the precharts are discarded. As only regular languages are considered, it is assumed that the
activation of the same mainchart never overlaps.

Both universal and existential charts are considered. Existential charts are used to check if they trace refine the
universal charts, and can thus be used to check if the initial requirements in form of existential charts hold in
the final system.

The final CSPs can then be model-checked using FDR [11] to check for inconsistency.

The following is a list of LSC constructs and whether they are supported by this approach or not.

88 Chapter 6. Live Sequence Charts

Multiple charts Multiple prechart activation is allowed, multiple mainchart activation is not.

Charts Both existential and universal

Prechart Yes. In [50] semantics for LSCs with and without precharts is given.

Subcharts Yes. Via process branching.

Locations Only cold locations, as CSP only supports prefix-closed languages.

Messages Hot synchronous messages only. Asynchronous solution sketched in [50]. Cold messages could
be modelled with indefinite delay. Asynchronous messages could be modelled with i FIFO buffer that
delays messages.

Coregions No.

Conditions Cold and hot. However only conditions on single instances are allowed.

Timing No.

Branching/Iteration Yes.

Actions No. Local computations cannot be specified.

6.8 Example: Applicative RSC 89

6.8 Example: Applicative RSC

The following is an example of an applicative RSC specification in RSL. It is a rather simple example of a
customer withdrawing money from an ATM. It consists of two RSCs that are given in figure 6.19. Furthermore
small parts have been added in RSL in order to show the possibilities of augmenting the specification with
information that is not conveyed in the diagrams. The complete example can be found in appendix D.6.

6.8.1 RSCs

Figure 6.19: The two RSCs that form the basis for the account example.

6.8.2 Specification

The following is the specification of the system. The specification of the two RSCs has been omitted, as it is
the same method as used in the example in section 6.6.

The constraints are given by the two RSC’s.

value
rscs : T.Collection = {rsc1, rsc2},

The actions, conditions and messages that are present on the RSC’s are specified in the respective maps.

actions : Text →m T.Action =
[′′NewBalance′′ 7→ new_balance],

conditions : Text →m T.Condition =
[′′BalanceOK′′ 7→ balance_ok,
′′NotBalanceOK′′ 7→ not_balance_ok],

messages : Text →m T.Message =
[′′InsertCard′′ 7→ insert_card,
′′SelectWithdrawal′′ 7→ select_withdrawal,
′′EnterAmount′′ 7→ enter_amount,
′′Dispense′′ 7→ dispense, ′′EjectCard′′ 7→ eject_card],

The following variables have been specified to be used in the system. We only have three accounts in this local
ATM.

90 Chapter 6. Live Sequence Charts

variables : T.Variables =
[′′ATM.amount′′ 7→ T.Integer(0),
′′ATM.balance′′ 7→ T.Integer(0),
′′ATM.cashsupply′′ 7→ T.Integer(10000),
′′ATM.account1′′ 7→ T.Integer(100),
′′ATM.account2′′ 7→ T.Integer(64),
′′ATM.account3′′ 7→ T.Integer(500)],

The variables that are visible for each chart are specified. Visible variables for a RSC may not be altered by
other RSC’s as long as its mainchart is active.

visible_variables : T.RSC →m Text-set =
[rsc1 7→
{′′ATM.amount′′, ′′ATM.balance′′, ′′ATM.cashsupply′′,

′′ATM.account1′′, ′′ATM.account2′′, ′′ATM.account3′′},
rsc2 7→ {′′ATM.amount′′, ′′ATM.balance′′}]

The following are the functions that are defined. They consist of the functions prescribed by the RSC and some
extra functions that are specified for extending the RSC specification.

The signatures of the functions include the instance-names as specified in the types. They might be used in
larger examples where the same message may happen on several instances. In this example this is not neces-
sary and the given parameters are not always used.

balance_ok checks if the current balance stored in the ATM is higher than the requested withdrawal amount.

value
balance_ok : T.Inst_Name-set × T.Variables → Bool
balance_ok(ins, v) ≡

if ′′ATM′′ ∈ ins ∧ ′′Customer′′ ∈ ins
then

T.integer(v(′′ATM.balance′′)) ≥
T.integer(v(′′ATM.amount′′))

else false
end,

The negation of balance_ok.

not_balance_ok :
T.Inst_Name-set × T.Variables → Bool

not_balance_ok(ins, v) ≡ ∼ balance_ok(ins, v),

If the cash is dispensed the variables are updated using the action new_balance.

new_balance :
T.Inst_Name × T.Variables → T.Variables

new_balance(iname, v) ≡
let

newbalance =
T.integer(v(′′ATM.balance′′)) −
T.integer(v(′′ATM.amount′′)),

newcash =
T.integer(v(′′ATM.cashsupply′′)) −
T.integer(v(′′ATM.amount′′))

in
v †
[′′ATM.balance′′ 7→ T.Integer(newbalance),
′′ATM.cashsupply′′ 7→ T.Integer(newcash)]

end,

6.8 Example: Applicative RSC 91

insert_card retrieves the balance of the account bound to the card that is inserted.

insert_card :
T.Inst_Name-set × T.Inst_Name-set × T.Variables →

T.Variables
insert_card(iname1, iname2, v) ≡

v † [′′ATM.balance′′ 7→ v(read_account_number())],

Underspecified function of the hardware reading the account number. Note that this function is not part of the
RSC’s.

read_account_number : Unit → Text,

Underspecified function for the ATM hardware that a withdrawal has been requested.

select_withdrawal :
T.Inst_Name-set × T.Inst_Name-set × T.Variables →

T.Variables
select_withdrawal(iname1, iname2, v) ≡ v,

Function for abstracting the entering of the requested amount via the ATM’s keypad.

enter_amount :
T.Inst_Name-set × T.Inst_Name-set × T.Variables →

T.Variables
enter_amount(iname1, iname2, v) ≡

v † [′′ATM.amount′′ 7→ T.Integer(read_key_pad())],

Underspecfied function for retriving the entered amount on the keypad. Again, this is not part of the RSC’s.

read_key_pad : Unit → Int,

Dispense should tell the ATM hardware to dispense the requested amount. It should read the "ATM.amount"
variable and let the hardware dispense the cash.

dispense :
T.Inst_Name-set × T.Inst_Name-set × T.Variables →

T.Variables
dispense(iname1, iname2, v) ≡ v,

Underspecified function for abstracting the ATM hardware that ejects the card.

eject_card :
T.Inst_Name-set × T.Inst_Name-set × T.Variables →

T.Variables
eject_card(iname1, iname2, v) ≡ v

6.8.3 Complete System

The complete system of the account example is created using the semantics.

scheme system =
class

object ACC : account, rsc_check : semantics(account)
end

92 Chapter 6. Live Sequence Charts

6.9 Future work

The work presented here is the current status on RSCs. This means there are definitely grounds for further
work on RSCs.

Currently only a subset of LSCs is supported. Future extensions would for example be to include cold locations.
However a meaningful semantics must be worked out prior to this. In our current specification this would
amount to check that if the events on cold locations happen, they must conform to the partial order induced by
the chart.

An obvious alteration would be to include infinite runs. This limitation has its origin in the chart semantics, as
the initial plan was to construct an automated simulator, where infinity would not be practical.

The process of refinement of the applicative RSC should also be investigated further. Especially regarding
variables. The initial approach is that variables are global. This is not very attractive since RSCs typically
may be used to specify distributed systems. As of now it is up to the software engineer to correctly specify
variables. A more detailed investigation about how to create local variables would be valuable.

Timing has been omitted as it is a very complicated issue. In order to allow RSCs with timing annotations, the
use of Timed RSL/Duration Calculus should be investigated. As of now it is up to the software engineer to
introduce timing in the resulting applicative RSC if so desired.

An initial goal was to construct an editor that allowed the drawing, simulation and translation of RSCs. This
was not done and it would be obvious to create such a CASE-tool in order to support work with RSCs. It
should include automatic generation of the resulting RSL specifications.

It should also be considered that there is an ongoing effort within LSCs and related tools. Integration with a
consistency checker as presented in [49] and the Play-Engine [26] would be of great benefit. Unfortunately the
lack of a standardised interface language, for example in XML, would complicate this.

More specifically, the applicative RSC system does not consider instance creation at the moment. It is up to
the specifier to ensure that created instances are not referenced outside the RSC where the instance is created.

6.10 Conclusion

In this thesis the RSC types and well-formedness conditions have been simplified and completed compared
to the preliminary thesis [2]. Furthermore the specifications have been made translatable, allowing testing
in order to gain confidence in the correctness. A semantics for a chart was elaborated for use with a RSL
equivalent of LSCs.

The initial approach of creating a CSP based RSL version of LSCs was not successful due to semantical
problems and that the RSL CSP subset is too small. Others have successfully investigated an approach using
purely CSP as described in section 6.7.4. As the CSP interrupt operator is missing in RSL this was not possible
using RSL. The goal was to create a specification that allowed augmentation and refinement of the resulting
specification. A thing which is not possible in a pure CSP approach. After the failed attempt it was chosen to
use an applicative approach instead of the imperative, concurrent CSP approach.

The applicative approach allowed for a more expressive model which allowed the wanted augmentation and
later refinement. Thus the LSCs can be used as requirements specifications. These are in nature more high
level than design specifications like the CSP approach. It was complicated by the fact that the research in
LSCs is very focused about creating executable LSCs, thus going in a more design oriented direction. This is
contrary to the initial proposal and foundation in MSCs which are requirements notations. As it is our opinion
that RSL is much more suited for the latter, we have followed this approach. This also gives the possibility of
following the regular RAISE development method more closely, by going from an applicative specification to
an imperative one.

Since a CASE tool was not developed there is not much benefit besides testing in the translatable specifications.
This brings us to the next point. In order to be useful the current model must be supported by an integrated
CASE tool. It should allow translation back and forth between RSC s and the equivalent RSL specifications.
Currently it is too cumbersome to use. If this tool could be developed and the issues mentioned in section 6.9
could be resolved, RSCs could become a viable choice for specifying inter-object communication in RSL.

93

Part III

Concrete implementation

95

Chapter 7

Introduction

In order to showcase the achievements presented in chapter 5 a concrete implementation was constructed. Re-
garding Scheme Diagrams the main goal was to construct a CASE-tool that gives the ability to actually create
Scheme Diagrams. The idea was to create an editor that allowed to graphically construct Scheme Diagrams
and allowed printing of a concrete RSL specification. The back end was to be formed by the translatable
Scheme Diagram specifications.

The following chapters will proceed as follows: We will describe the process of selecting language and GUI
library for the implementation in chapter 8. We will present the candidates and give a rationale for the final
selection.

This is followed by chapter 9 discussing the actual system that has been implemented. A short overview of the
structure is presented followed by a description of the individual parts that make up the system. The emphasis
is on the structure of the program. A more technical walk through has been omitted, as there is extensive
technical documentation on the companion CD, appendix E.

96 Chapter 7. Introduction

97

Chapter 8

Language and library

Contents

8.1 Requirements . 97
8.2 Candidates . 97

8.2.1 Java:Eclipse+GEF . 97
8.2.2 C++: wxWidgets . 98

8.3 Selection and rationale . 99

8.1 Requirements

The first initial requirement for our implementation was the ability to run under both Linux and Windows
environments in order to reach a broader audience with the final program. This was also a consequence of the
fact that the rsltc tool is available for both Linux and Windows. In order to minimise cross-platform problems
Java was deemed the preferred choice of language. The other contemporary program-language we considered
as suitable as well, was C++. This mainly stems from the fact that the RSL specifications initially only could
be translated to C++. More on this in 9.3, see also previous section 5.4.4. A recent master thesis [29] has
come up with a similar translator from RSL to Java. The implementation is however very rudimentary. As an
example maps and let expression have not yet been incorporated. The use of C++ for the editor would also
lead to the need for two separate compilations, one for each platform. However this is still needed for our
translatable Scheme Diagram specification, which forms the back-end regarding our model.

In order to minimise the time required to implement the tool, a definite requirement was to use an already
existing framework for graphical editing. This should include ready-made graphics libraries. The framework
should also be supported by a rather large community. This would ensure future development, bug fixes and a
larger probability of help within forums and the like.

8.2 Candidates

Based on the requirements in the previous section we narrowed down the search to two frameworks, one for
C++ and one for Java. We will now describe the benefits and drawbacks of each of them.

8.2.1 Java:Eclipse+GEF

Generally speaking Java is a well known platform independent programming language developed by Sun Mi-
crosystems, see http://java.sun.com. Eclipse [46] is a recent Java-based open source project, main-
tained by IBM, developing a highly modularised tool platform. It is a universal IDE which can be extended by

http://java.sun.com

98 Chapter 8. Language and library

virtually any editor/tool. The focus is on tool integration and the concept of plug-ins, extensions that enhance
the functionality of the Eclipse IDE.

Benefits:

• There exists a large library with all the common operations like manipulating figures where already
implemented.

• It has already proven itself to be platform independent and we will not have to pay any particular concern
about any platform specifics.

• Eclipse in itself is a Java IDE and provides features such as on-line documentation, code completion
and debugging.

• Eclipse is especially suited for developing editors as plug-ins. A complete framework for creating new
plug-ins is provided along with some examples.

• In its nature Eclipse allows for easy implementation with other tools (e.g. RSL syntax checkers) in the
future.

• GEF (Graphical Editing Framework) is present. As the name suggests, it is a framework for creating
graphical editors. It comes with examples as well. GEF is based on Draw2d, which is another plug-in
for Eclipse, that provides libraries for graphical figures, their manipulation and display.

• Eclipse has a rather large community with active forums.

Drawbacks:

• Performance-wise, Java applications tend to be slow.

• During testing it was evident that Eclipse was very memory-consuming.

• The approach with plug-ins is quite complex, as the whole Eclipse framework must be mastered in order
to be able to create plug-ins.

• In our case Eclipse would require attaining knowledge not only about Eclipse itself, but also GEF and
Draw2D.

• Eclipse is still under development. This could lead to deprecated methods and structural changes in the
framework which would require alteration of the implementation later on.

• The Eclipse documentation is clearly not finished and lacks comprehensive explanations and examples.
The same is especially true for GEF.

• A major drawback would be that the use of JNI (Java Native Interface) would be required. JNI allows
the use of C++ compiled libraries from Java programs.

8.2.2 C++: wxWidgets

C++ is another contemporary programming language. The only complete graphical editing framework that
was found was wxWidgets (formerly known as wxWindows) is a cross platform GUI library for C++. It has
been used by many mainstream programs such as:

VideoLAN A cross-platform multimedia player supporting a large variety of codecs, see http://www.videolan.org.

Audacity A fast and powerful audio editor, see http://audacity.sourceforge.net.

Compared to Eclipse, wxWidgets only consists of the library, no framework for tools is included.

Benefits:

• The resulting program will be platform native program and is thus likely to have higher performance.

• Object Graphics Library (OGL) is available. OGL is a ready-to-use library with predefined shapes,
connectors etc. which should be very useful in creating diagrams.

http://www.videolan.org
http://audacity.sourceforge.net

8.3 Selection and rationale 99

• The general approach is easier since there is no framework to getting used to.

• The choice of IDE is free.

• RSL program could easily be integrated, as it itself is translated to C++.

• wxWidgets has a large community with active forums.

• wxWidgets has been under development for 11 years, and thus must be considered quite stable.

• Good documentation.

Drawbacks:

• The complete editor must be build from scratch, thus requiring more programming.

• We are likely to encounter more problems with regard to making the program work on different plat-
forms.

8.3 Selection and rationale

Considering the above benefits and drawbacks we chose to use the Eclipse framework, based on the following
rationale:

• Eclipse is an open-source, fully integrated IDE for Java. This would eliminate the need for finding a
C++ IDE. An Eclipse project works on a C++ IDE plug-in as well, however it is not as developed as the
Java IDE.

• The plug-in approach would mean that a lot of the basic functionality would be provided, thus eliminat-
ing a lot of the programming effort needed. This was weighted against the increased effort needed to
learn the framework. The examples and tutorials were deemed sufficient for attaining a steep learning
curve.

• Ready-made examples of a basic UML class diagram editor were available. This could kick-start the
development of our tool, since the Scheme Diagrams have many similarities with a UML class diagram.

• By using Java, platform independence would be obtained. This was weighted against that we had to use
an interface library in order to use the translated RSL specification. As we had a closer look at JNI, we
anticipated it would be rather hassle-free to integrate the resulting RSL C++ library with the Java code.

• As Eclipse is very modular, it would be easy to extend the tool in the future with other editors.

• Other factors such as large community, where deemed to be satisfactory for both options.

• Performance was not considered an important aspect, as our tool is a proof of concept.

100 Chapter 8. Language and library

101

Chapter 9

System description

Contents

9.1 Overview . 101
9.2 Eclipse plug-in . 102

9.2.1 Requirements . 102
9.2.2 Eclipse . 103
9.2.3 GEF . 103
9.2.4 Draw2D . 105

9.3 Eclipse Scheme Diagram Editor . 105
9.3.1 Limitations . 106

9.4 Imperative RSL model specification of Scheme Diagram 107
9.4.1 Translation from RSL to C++ . 107
9.4.2 Imperative specification . 108

9.5 Gluing the Eclipse plug-in and the RSL model together 108
9.5.1 JNI . 108
9.5.2 Type conversion . 109
9.5.3 The Interface . 109

9.6 Test . 109

9.1 Overview

The choice presented in the previous chapter required the creation of a new editor plug-in for Scheme Diagrams
using GEF and Draw2d in Eclipse. Furthermore it required JNI for integrating the Java plug-in with our
translated RSL specifications described in the previous part. The system would thus consist of three parts:

• The RSL specification translated to C++ and compiled as a library. The RSL specification had to be
made imperative in order to allow variables to store the model that is being worked on.

• The JNI interface describing the methods needed to call the C++ methods from Java.

• The Eclipse framework that provides the front end and a business model (described later) representation
of the Scheme Diagrams using GEF and Draw2D.

These three parts are presented in the following three sections respectively. As they are quite independent they
can be arranged and read in any order. In the next section we start by describing the requirements for the tool,
Eclipse and the accompanying framework. We then describe our own plug-in structure in more detail. The
following section presents the imperative RSL specification and the resulting library. The last section finishes
off with the integration of the two.

Figure 9.1 gives an overview of the relation between the three parts.

102 Chapter 9. System description

Figure 9.1: The implementation consists of three parts. The left part is the Eclipse part in Java. It consists of
the Eclipse Framework and the ESDE plug-in in Java which conforms to the Model View Controller paradigm
(explained later). It uses the SchemeDiagramInterface to connect to the middle part, which is in C++. Javah
is used to create the SchemeDiagramInterface.h header file that corresponds to the .java file. The C++ part
consists of the interface specification in SchemeDiagramInterface.cc and the resulting C++ code from the
specifications, imperative.cc. They are compiled using the g++ compiler. The specifications on the right form
the back end. As indicated, the rsltc tool is used to translate the specifications to C++. The right part is
displayed using Scheme Diagram notation. The rest is a pseudo notation for indicating the relationships
between the various entities.

9.2 Eclipse plug-in

9.2.1 Requirements

In this section we will shortly present the high level requirements for ESDE. This includes requirements for
the graphical user interface. However it excludes any technicalities to the syntax and semantics of the contents
of the diagrams, which already have been described in previous sections. Much of the requirements where
inspired by already existing UML Class Diagram editors, e.g. Poseidon UML [14]. Regarding the overall GUI
it is already given by the Eclipse framework. Other requirements where as follows:

• A canvas for the diagram where the graphical objects can be added/removed/manipulated.

• An outline view which shows an overview of the complete diagram.

• Buttons for changing the layout/appearance of the diagram.

• A palette with access to tools for adding elements.
– Adding of schemes/modules
– Adding of relations, e.g. association
– Adding of values, variables etc.

• Context menu for deleting elements

• Functionality for changing element names/values

• Undo/redo functionality

• Functionality for checking well-formedness

• Functionality for printing the equivalent RSL specification to files

• Functionality for saving the Java-based model.

There are several ways to let the user create a model in the diagram. We will adopt the model of letting the
user create the diagram and only syntax check the model upon request request. It is a consequence of the fact
that it is not possible to edit a diagram while maintaining it well-formed all the time.

Furthermore, some of the well-formedness conditions will be enforced by the graphical user interface. As an
obvious example it should not be possible to connect the same line to more than two containers.

9.2 Eclipse plug-in 103

9.2.2 Eclipse

As mentioned earlier Eclipse is a highly modularised tool platform. In this section we will present an abstract
overview of the Eclipse structure. For further information on Eclipse we refer to [46].

Figure 9.2 illustrates how Eclipse is structured. The Eclipse platform provides the basic functionality in form
of a workspace with all the global settings and a workbench which makes use of an editor. The two plug-ins
on the left which are provided with Eclipse are the JDT, which is a Java IDE and the PDE, which is used in
order to create new plug-ins within Eclipse. The right side tools describe that new plug-ins may be supplied to
the framework. Our plug-in is such an addition. It provides the facility of a Scheme Diagram editor.

Figure 9.2: Overview of the Eclipse system from [8].

9.2.3 GEF

GEF (Graphical Editing Framework) is a framework primarily for creating graphical editors in Eclipse. It is
an editor framework built on top of Draw2D (see section 9.2.4). It supplies a complete predefined structure of
new editors. This means that the structural part of our plug-in was given beforehand.

Figure 9.3 is an illustration of the structure of GEF. The top part denotes the so called workbench page, which
corresponds to the workbench on figure 9.2. It provides the interface to the rest of the Eclipse framework.
The Editor-part is the main part that is responsible for the editing. It will be elaborated below. A palette-
viewer is provided which allows for creating a palette with tools for editing. The edit domain is supplied and
automatically handles such things as the command stack which allows for undo/redo actions. The edit part
viewers are responsible for the actual diagrammatic representation in the editor. In our editor there will only
be one, as we only have one view of our model. The outline view is supplied in order to allow for an outline of
the complete editor canvas. This gives a quick overview of the displayed figures.

In order to understand the above better, we will now describe how a GEF editor works. GEF works with a
model view controller paradigm which is illustrated in figure 9.4. The idea is that the model is completely
separated from the graphical representation, the view. The controller is used for controlling changes in the
model and for correspondingly updating the view.

In our case the model is the Scheme Diagram model provided in RSL and is the actual data and relations we
want to edit and display graphically. In order to create the linking between the RSL model and the plug-in,
we worked with the concept of a business model. A business model is an extension to the existing model with
information such as placement of boxes and arrows. This is needed since such information is not present in the
RSL Scheme Diagram model. A not well-formed model may be edited. This is a consequence of the fact that

104 Chapter 9. System description

Figure 9.3: Overview of the GEF structure from [8].

Figure 9.4: Overview of the Model View Controller paradigm from [8].

9.3 Eclipse Scheme Diagram Editor 105

the model cannot be well-formed at all times when being edited, e.g. when adding global objects. This means
that the Scheme Diagram is not checked for well-formedness continuously. The user is given the possibility to
choose when to check the model. When editing a diagram, it will for the most part not be well-formed until
the user has finished drawing it. Another reason for this was performance, as the editor would have a very
sluggish response if all information in the model had to be checked upon each alteration. The model itself is
not concerned with how the model is displayed graphically. It simply holds information about the structure of
the model.

The controller is called EditorPart in GEF. This is the control structure that determines everything regarding
the editing. It handles user input and manipulates the model accordingly.

The view (called VisualPart)is concerned with the actual graphical rendering of the model. How the boxes
look like, how their names are displayed etc. The graphical representation is in our plug-in done using Draw2D
figures, see below.

The main idea of this approach is to have a clean separation of the three parts. This allows for easy alteration
in each part, as they are very independent. For example a completely different graphical representation of the
model could be used by only changing the view part.

9.2.4 Draw2D

Draw2D is a painting and layout plug-in for Eclipse. The structure of Draw2D is given in figure 9.5. The
developer must provide the figure hierarchy, the remaining boxes in the figure are the internals of Draw2D. The
developer must define how each figure is drawn. The Draw2D framework supplies a canvas with corresponding
event handling, actual drawing of the figure, etc.

Figure 9.5: Overview of the Draw2D structure from [8].

Draw2D provides predefined figures in form of different shapes, arrows etc. These are easily created without
having to worry about the internal structure of Draw2D. Auxiliary classes are also provided for the figures,
which e.g. influence the layout of the figures in the canvas. As an example there are ConnectionRouters, which
automatically routes a connection between two points on the canvas without overlapping with other figures.

9.3 Eclipse Scheme Diagram Editor

The tool is named ESDE, standing for Eclipse Scheme Diagram Editor. In this section we will give a short in-
troduction to the structure of ESDE. Detailed comments on the methods and variables are supplied as JavaDoc

106 Chapter 9. System description

comments in the source code, which can be found on the companion CD-ROM, appendix E). Therefore we
will not describe the actual Java code in any detail here.

The plug-in is heavily inspired by two examples. Mainly [53] where the framework fitted our intended plug-in
well. The other example is regarding Draw2D. It shows how to use Draw2D to create a (very basic) UML class
diagram [37]. The appropriate author is listed in all source code files. In files where we have only supplied
additions/alterations we have listed ourselves as authors together with the original author. In files which where
only inspired by the examples we have listed ourselves as authors. We have added JavaDoc comments in all
files, as these where sparse in the examples.

We will now give an description of the packages that the plug-in consists of:

rsl.esde.action Classes for the actions associated with buttons in the workspace. Only actions which are not
standard, i.e. delete, must be coded.

rsl.esde.command Classes for handling user commands on the canvas, i.e. creating a scheme or renaming a
connection.

rsl.esde.directedit Helper classes responsible for direct editing of text fields (labels), i.e. the name of a
scheme.

rsl.esde.dnd Classes handling a drag and drop on the canvas.

rsl.esde.editor The main editor classes which provide the start up. Including the outline view and the palette
with tools.

rsl.esde.figures Classes for creating the displayed graphical figures. Correspond to the view part of the MVC
paradigm. Uses Draw2D.

rsl.esde.layout Classes handling layout. It is possible to use automatic and manual layout.

rsl.esde.misc Two classes from Draw2D that had to be modified to work in our framework.

rsl.esde.model Classes for the model elements. Corresponds to the model part of the MVC paradigm.

rsl.esde.part Classes of editor parts that are responsible for performing alterations etc. Corresponds to the
controller part of the MVC paradigm.

rsl.esde.policy Policies that govern which operations are permitted in an editor part. Responsible for creating
commands and initialising them correctly.

A screen shot of the editor is presented in appendix F. It is annotated with descriptions of the various elements
that fulfil the requirements mentioned earlier.

Basically the editor is used to draw the desired diagram. While it is edited it is not checked for well-
formedness. This is chosen as the model will usually not be well-formed while it is being edited. Instead
buttons have been supplied that allow the user to check the well-formedness at will. Via a button the equivalent
translated RSL specification can be saved to a chosen location in .rsl text files.

9.3.1 Limitations

ESDE has some limitations compared to what is possible in the Scheme Diagram model. We will describe
these and give a motivation for the choices.

Objects in the Scheme Diagram model have a state comprising of the variables that are present in the scheme
which the object is an instance of. Clearly the object must therefore define those variables. In ESDE we
have chosen not to model this. When the well-formedness of a Scheme Diagram is checked, the state is
automatically added to objects, as can be seen in (wf_model, C.3.1). Ideally ESDE should automatically update
the variables of objects depending on the variables of the scheme the object is an instance of. It does not
make sense to model the values of these variables as the model is static. It is a consequence of the current
implementation, which has a clear cut between the plug-in and the RSL C++ model. It would be possible if
the model was implemented in Java. Then there would be tighter integration of the model and the diagram.

There are also limitations with regards to the type declarations and type expressions that are possible to enter
in schemes. The problem stems from the JNI interface and the building of the RSL model when checking and

9.4 Imperative RSL model specification of Scheme Diagram 107

printing a diagram. The input in the diagram must be parsed in order to be able to create the corresponding
RSL type declarations and type expressions. This is a consequence of the fact that the type declarations and
type expressions are stored as text in the Java model. As the building of a real parser was outside the scope of
this project, regular expressions have been used as a quick solution. They are used to validate the input in the
diagram and parse the types and expressions when they are added to the RSL model. Regular expressions have
been used as a light solution. They are not fully applicable since recursive expressions cannot be specified.
A better solution is to create a parser perhaps inspired by the source code of rsltc. An alternative is tighter
integration with rsltc which could be used to do real time parsing.

The syntax is given in appendix F. As regular expressions do not allow recursion, it is only possible to create
a subset of the constructs possible in the Scheme Diagram model. E.g. it is not possible to create a type
expression that consists of both a Cartesian product and a function. Furthermore access descriptions have not
been included as of yet. Type declarations can only be sorts or abbreviation definitions.

9.4 Imperative RSL model specification of Scheme Diagram

9.4.1 Translation from RSL to C++

From early on in this project we decided to use automated code generation from the RSL specification. This
had some advantages: our formal specification could be tested and the implementation is more likely to do as
specified. Furthermore a large part of our system was ready right away. Otherwise we had to implement the
model in a program language ourselves based on the specification.

There where also some disadvantages: It was not possible to make changes to the auto generated code for two
reasons: Any changes would be erased if there was made a change to the formal specification and generated
the C++ source code again. The generated code was not easy to read thus it would also be cumbersome to
make changes. The specifications had to be modified so they would be translatable, thus some abstraction was
lost. Furthermore it was extremely cumbersome to debug the translated code.

If we were to consider the modifications to the specification as a refinement and thus maintain two versions,
then it had been basically just extra work. After briefly looking at the scope of the changes that had to be
made in order to translate into C++ it was evident that some of the elegance of the original specification was
to disappear. In particular union definitions had to be converted to variant definitions which means a lot of
constructors and destructors. Another problem were curried functions, which had to be converted to a function
with one formal argument by making one large Cartesian product.

Despite the disadvantages we thought that the benefits were significant enough to pursue. This was also men-
tioned several times at the conferences we attended (and later seminars, appendix H): Changes to specifications
with automated generation of the underlying specifications will significantly reduce maintenance cost (time in
our case).

Regarding “refinement” of RSL syntax in order to create a translatable specification, the following issues where
addressed:

• Unions cannot be used due to shortcomings of the C++ translator. However equivalent variant defini-
tions with appropriate constructors and destructors solve this problem. Semantically this will not change
the specification.

• In order to ease the rewriting of the union definitions, an emacs macro was used in order to automate
the process a bit.

• The rewriting has a notable disadvantage as the specification becomes a lot harder to read and under-
stand. However the macro uses a “standardised” way of naming constructors and destructors, this should
ease the understanding of the variant definitions, see below.

• The C++ translator was initially used with gcc 2.95.2. When we tried to compile the specification with
gcc 3.3.X we encountered several errors which were solved when downgrading to 2.95.2. A fix to the
rsltc tool was applied to resolved this, so that the specifications can now be compiled using the newer
gcc 3.3.5

108 Chapter 9. System description

• Nonetheless a couple of errors were presented by the compiler. By debugging it was found that the fol-
lowing RSL specification will produce an error. We encountered them at places where union definitions
had been rewritten to the equivalent variant definitions.

type1D2D == type1D2D_from_type1D(type1D2D_to_type1 : type1D) |
type1D2D_from_type2D(type1D2D_to_type2 : type2D),

type1D = Int,
type2D = Int × Int,

I.e. when a type used in a variant definition uses a product type expression (as in type2). There were 2
solutions to alter the specification in order to make a version that compiles. The first is to remove the
type_1D2D_to_type2D destructor. This would mean that a case expression may be needed instead of a
destructor if the type2D value was to be extracted. The other solution we found was to rewrite type 2 as
a short record definition:

type2 :: Int Int,

However this is semantically not quite the same, since this construct introduces a sort type2D (due to
the implicit variant definition) which initially is not the case. The intended meaning that the second type
in the type1D2D variant definition is composed of 2 Ints is however preserved.
This issue was later resolved by a bug fix after a consultation with the author of the rsltc tool [9].

9.4.2 Imperative specification

In order to use the specifications in conjunction with the plug-in we had to make the specification imperative.
It is supplied in appendix C.3.1.

A variable is used to store the model in the abstract RSL syntax. It was created in order to allow the creation
of interface functions for adding schemes, relations etc. via the JNI interface. This allowed for the checking of
well-formedness and printing as text.

9.5 Gluing the Eclipse plug-in and the RSL model together

9.5.1 JNI

JNI is the native programming interface for Java that is part of the JDK. The JNI allows Java code that runs
within a Java Virtual machine to call methods in native libraries. In our case the translated and compiled
Scheme Diagram specifications. Figure 9.6 illustrates this relationship.

Figure 9.6:

9.6 Test 109

9.5.2 Type conversion

The biggest limitation by using JNI is the restriction regarding parameter types and return types. Only int,
double and boolean (Java) types are directly supported, since Arrays, Strings, etc. are objects in Java. For
string a special conversion function must be supplied. It is given in C.3.5. In order to avoid arrays the interface
functions have been specified in order to allow recursive calls.

9.5.3 The Interface

The interface to call in ESDE is supplied in SchemeDiagramInterface.java, see appendix C.3.2. The methods
are declared as native in order to let the Java Virtual Machine know that the methods are supplied in an external
native library. The name of the library to load is also specified, in this case libsd.so.

Included in the JNI package for Java is the tool javah. Based on SchemeDiagramInterface.java it generates
the equivalent C++ header file (C.3.3) with the appropriate signatures. The corresponding C++ file was then
created. It had to specify which C++ functions in the translated C++ Scheme Diagram where to be called
(C.3.4). Our naming convention in the .java file followed Java conventions with capital letters, e.g. addScheme.
In the .cc file we used the C naming convention with underscores, e.g. add_scheme. This also helped in
distinguishing where the functions belonged.

The following is an example of the functions that add a scheme to the model:

Listing 9.1: SchemeDiagramInterface.java example

p u b l i c n a t i v e boolean addScheme (S t r i n g name) ;

Listing 9.2: rsl_esde_libsd_SchemeDiagramInterface.h example

/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : addScheme
∗ S i g n a t u r e : (L java / l ang / S t r i n g ;) Z
∗ /

JNIEXPORT j b o o l e a n JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d S c h e m e
(JNIEnv ∗ , j o b j e c t , j s t r i n g) ;

Listing 9.3: rsl_esde_libsd_SchemeDiagramInterface.cc example

JNIEXPORT j b o o l e a n JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d S c h e m e

(JNIEnv ∗env , j o b j e c t obj , j s t r i n g name)
{

re turn add_scheme (j s t r 2 r s l (env , name)) ;
}

9.6 Test

When developing the specifications they where primarily tested using the newly introduced test_case clause
in RSL. When ESDE was finished we decided to test ESDE and the imperative RSL specification at the same
time.

This was done by creating several Scheme Diagrams as test cases in ESDE. Both well-formed and not well-
formed diagrams were created in order to create confidence in the translation and well formedness conditions.
All the test examples can be found on the companion CD, appendix E.

Equivalent RSL specifications (as .rsl files) of representative diagrams have been included in appendix C.4
in order to show the correct functioning of the RSL print specification.

110 Chapter 9. System description

111

Part IV

Postlude

113

Chapter 10

Conclusion
Isaac Newton: If I have seen farther, it is by standing on the shoulder of giants.

An important aspect of this master thesis has been to build upon the work of others. This is the case for both
of the diagrams presented in part II and also for the concrete implementation presented in part III.

The Scheme Diagram presented in this thesis is based on [2] and considerable advancements have been
achieved. The diagram has reached a state where it is practically usable as demonstrated by the examples
and the implementation. There are still open issues as mentioned in section 5.8, but none have a fundamental
impact on the soundness of the diagram. In general the mapping from the diagram to RSL is sound and the
inspiration from the Class Diagram has given the diagram a presentable form.

A functional implementation of the Scheme Diagram editor is presented. It demonstrates the convenience of
graphical development of specifications. Additionally the diagram can be used as documentation. The tool
should, however, be considered proof of concept because the underlying model is based on the translated
Scheme Diagram specification. The design of the implementation allows for the model to be substituted with
an implementation in Java without altering the graphical part. Hence there is a basis for improvement. The tool
could be used by existing RSL users as a supplement, but could also be used to introduce newcomers to the
language. Especially users with a background in UML could benefit from an intuitive understanding of RSL
through the diagram. A translator from RSL text to the Scheme Diagram would be a considerable addition to
the CASE tool. It would allow the diagram to be a continuing part of the development process and not just an
initial aid.

The RSC presented is also based on [2]. The syntax and semantics have been considerably rewritten and made
translatable. The initial approach of using the CSP subset present in RSL to model the inter-object behaviour of
RSCs was found not to be semantically sound. Instead an applicative approach resulted in a much more clean
and usable solution. It has been showed that RSCs may be used as a point of departure for further refinement
of inter-object behaviour. However, the current status of RSCs definitely needs CASE-tool support in order
to be useful. Initially the plan was to construct a simulator/editor for RSC during this thesis. Regarding the
simulator part it was deemed superfluous, since the already implemented Play-Engine [26] is useful for that
purpose. Regarding the editor the implementation of a Scheme Diagram editor was prioritised higher, as the
achievements with Scheme Diagram where more promising.

In general terms, LSCs do not seem to have reached a sufficient level of maturity. There are still many open
questions regarding the semantics. This is also worsened by the current research effort of creating various ver-
sions of executable LSCs. These issues should be resolved before continuing the effort towards the integration
of LSCs/RSCs with RSL.

We have reached the conclusion that RSL was not suitable for translation in our project. The first reason is that
the rsltc tool is incomplete regarding translation to C++ and restricts the usage of RSL. The second reason is
that the tool has a Graphical User Interface (GUI) and consequently requires interaction. Well-formedness is
for both diagrams specified as predicates, which do not indicate reasons to violations. An implementation of
the Scheme Diagram syntax and well-formedness in Java using the RSL specification as requirements, would
be a better approach. It could for example produce better error messages, since features such as exceptions
could be used. A third and more general reason is that debugging the RSL specification is difficult, since it is
actually the translation to C++ that is debugged. This is not intended to be human readable.

In this thesis we have shown that it is possible to use graphical notations in conjunction with RSL with promis-
ing results. There are definitely grounds for further research in that direction.

114 Chapter 10. Conclusion

115

Bibliography

[1] Satyajit Acharya and Chris George. Specifying a Mobile Computing Application Environment Using
RSL. Technical Report 300, UNU-IIST, P.O.Box 3058, Macau, May 2004.

[2] Steffen Andersen and Steffen Holmslykke. From UML to RSL – and back again!, July 2004.

[3] Franck Barbier, Brian Henderson-Sellers, Annig Le Parc-Lacayrelle, and Jean-Michel Bruel. Formal-
ization of the Whole-Part Relationship in the Unified Modeling Language. IEEE Trans. Softw. Eng.,
29(5):459–470, 2003.

[4] Hanene Ben-Abdallah and Stefan Leue. Timing constraints in message sequence chart specifications.
In FORTE X / PSTV XVII ’97: Proceedings of the IFIP TC6 WG6.1 Joint International Conference
on Formal Description Techniques for Distributed Systems and Communication Protocols (FORTE X)
and Protocol Specification, Testing and Verification (PSTV XVII), pages 91–106. Chapman & Hall, Ltd.,
1998.

[5] Dines Bjørner. Software Engineering. Springer-Verlag, Berlin, 2005. To be published Spring 2005.

[6] Yves Bontemps and Patrick Heymans. Turning High-Level Live Sequence Charts into
Automata. Technical report, Univ. of Namur - Computer Science Dept, March 2002.
http://www.info.fundp.ac.be/~ybo.

[7] Werner Damm and David Harel. LSCs: Breathing life into message sequence charts. Form. Methods
Syst. Des., 19(1):45–80, 2001.

[8] Eclipse.org. Help Eclipse Platform. Built-in Help and Documentation for Eclipse 3.0.1.

[9] Chris W. George et al. RAISE tool. http://www.iist.unu.edu/newrh/III/3/1/page.html.

[10] Design for Validation. Esprit long term research project no. 20072.
http://www.newcastle.research.ec.org/deva/.

[11] Formal Systems (Europe) Ltd. http://www.fsel.com.

[12] R. France, A. Evans, K. Lano, and B. Rumpe. The UML as a formal modeling notation. Comput. Stand.
Interfaces, 19(7):325–334, 1998.

[13] Ana Funes and Chris George. Formal foundations in rsl for uml class diagrams. Technical report,
UNU/IIST, May 2002. Report No. 253.

[14] Gentleware. Poseidon for UML. http://www.gentleware.com.

[15] Chris George and Søren Prehn. The RAISE Justification Handbook, May 1994.

[16] Chris W. George. Discussion with author in person and via mail.

[17] Object Management Group. OMG Unified Modeling Language Specification, version 1.5.
http://www.omg.org/cgi-bin/doc?formal/03-03-01, March 2003.

[18] The RAISE Language Group. The RAISE Specification Language. Prentice Hall International (UK) Ltd,
1992.

[19] The RAISE Method Group. The RAISE Development Method. Prentice Hall International (UK) Limited,
1995.

http://www.info.fundp.ac.be/~ybo
http://www.newcastle.research.ec.org/deva/
http://www.fsel.com
http://www.gentleware.com
http://www.omg.org/cgi-bin/doc?formal/03-03-01

116 BIBLIOGRAPHY

[20] N. Guelfi, O. Biberstein, D. Buchs, E. Canver, M-C. Gaudel, F. von Henke, and D. Schwier. Comparison
of object-oriented formal methods. Technical report, University of Newcastle Upon Tyne, Department of
Computing Science, 1997.

[21] Gonzalo Génova, Juan Llorens, and Paloma Martinéz. The meaning of multiplicity of n-ary associations
in UML. Published online, 2.December 2002. Springer-Verlag.

[22] David Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming,
8(3):231–274, 1987.

[23] David Harel and Eran Gery. Executable Object Modeling with Statecharts. IEEE Computer, Vol.30, No.
7, pp. 31-41, 1997.

[24] David Harel and Hillel Kugler. Synthesizing State-Based Object Systems from LSC Specifications. In
CIAA ’00: Revised Papers from the 5th International Conference on Implementation and Application of
Automata, pages 1–33. Springer-Verlag, 2001.

[25] David Harel and Rami Marelly. Playing with Time: On the Specification and Execution of Time-Enriched
LSCs. In MASCOTS ’02: Proceedings of the 10th IEEE International Symposium on Modeling, Anal-
ysis, and Simulation of Computer and Telecommunications Systems (MASCOTS’02), page 193. IEEE
Computer Society, 2002.

[26] David Harel and Rami Marelly. Come, Let’s Play - Scenario-Based Programming Using LSCs and the
Play-Engine. Springer-Verlag Berlin Heidelberg, 2003.

[27] David Harel and Amnon Naamad. The statemate semantics of statecharts. ACM Trans. Softw. Eng.
Methodol., 5(4):293–333, 1996.

[28] J. He, Z. Liu, X. Li, and S. Qin. A Relational Model for Object-Oriented Designs. In Pro. APLAS’2004,
Lecture Notes in Computer Science, Taiwan, 2004. Springer.

[29] Ulrik Hjarnaa. Translation of a subset of rsl into java. Master’s thesis, Technical University of Denmark,
November 2004. Masters Thesis.

[30] C. A. R. Hoare. Communicating Sequential Processes. Prentice–Hall, 1985.

[31] Steffen Holmslykke. Analysis of UML Class Diagrams and a Formal Model, February 2004.

[32] I-Logix. http://www.ilogix.com/.

[33] IFAD. The Rose–VDM++ Link. Technical report, IFAD, Forskerparken 10A, DK-5230 Odense M, 2000.
Revised for v6.6.

[34] ITU-T. ITU-T Recommendation Z.120: Message Sequence Charts (MSC). Technical report, ITU-T,
1996.

[35] Yang Jing, Long Quan, Li Xiaoshan, and Zhiming Liu. A Predicative Semantic Model for Integrating
UML Models. In Proceedings of the 1st International Colloquium on Theoretical Aspects of Computing
(ICTAC), 2004.

[36] Jochen Klose and Hartmut Wittke. An automata based interpretation of live sequence charts. In TACAS
2001: Proceedings of the 7th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 512–527. Springer-Verlag, 2001.

[37] Daniel Lee. Display a UML Diagram using Draw2D, 2003.
http://www.eclipse.org/articles/Article-GEF-Draw2d/GEF-Draw2d.html.

[38] Morten P. Lindegaard and Anne E. Haxthausen. Proof Support for Raise by a Reuse Approach based on
Institutions. Informatics and Mathematical Modelling, Technical University of Denmark.

[39] Jing Liu, Zhiming Liu, He Jifeng, and Xiaoshan Li. Linking UML Models of Design and Requirement.
Technical report, UNU/IIST, February 2004. Report No. 293.

[40] Zhiming Liu, Xiaoshan Li, Jing Liu, and He Jifeng. Integrating and refining UML models. Technical
report, UNU-IIST, March 2004. Report No. 295.

[41] Christian Krog Madsen. Integration of Specification Techniques. Master’s thesis, DTU, 2003.

[42] Christian Krog Madsen. Study of Graphical and Temporal Specification Techniques. Technical report,
DTU, Nov 2003.

http://www.ilogix.com/
http://www.eclipse.org/articles/Article-GEF-Draw2d/GEF-Draw2d.html

BIBLIOGRAPHY 117

[43] Rami Marelly, David Harel, and Hillel Kugler. Multiple instances and symbolic variables in executable
sequence charts. In OOPSLA ’02: Proceedings of the 17th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 83–100. ACM Press, 2002.

[44] Rami Marelly, David Harel, and Hillel Kugler. Specifying and executing requirements: the play-in/play-
out approach. In OOPSLA ’02: Companion of the 17th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 84–85. ACM Press, 2002. Previ-
ously: Technical Report MCS01-15, Mathematics & Computer Science, Weizmann Institute Of Sience.

[45] A. Pneuli and R. Rosne. Distributed reactive systems are hard to synthesize. In IEEE Symp. on Founda-
tions of Computer Science, volume 2, pages 746–757, 1990.

[46] Open Source Project. Eclipse.org Main Page. http://www.eclipse.org/.

[47] M. A. Reniers. Static Semantics of Message Sequence Charts, 1996.

[48] Dines Bjørner, Chris W. George, Anne E. Haxthausen, Christian Krog Madsen, Steffen Holmslykke, and
Martin Penicka. "UML–ising" Formal Techniques. In Springer-Verlag book on DG INT projects?, 2004.

[49] Jun Sun and Jin Song Dong. Model checking live sequence charts. not published, 2004. Paper writ-
ten in conjunction with Ph.D. Thesis at School of Computing, National University of Singapore, (sunj,
dongjs)@comp.nus.edu.sg.

[50] Jun Sun and Jin Song Dong. Synthesizing distributed processes from scenario-based specification. not
published, 2004. Paper written in conjunction with Ph.D. Thesis at School of Computing, National
University of Singapore, (sunj, dongjs)@comp.nus.edu.sg.

[51] Tao Wang, Abhik Roychoudhury, Roland H. C. Yap, and S. C. Choudhary. Symbolic execution of
behavioral requirements. In PADL, pages 178–192, 2004.

[52] Xia Yong and Chris George. An operational semantics for timed raise. In World Congress on Formal
Methods, pages 1008–1027, 1999.

[53] Phil Zoio. A shape diagram editor, 2004. http://www.eclipse.org/articles/Article-GEF-diagram-
editor/shape.html.

http://www.eclipse.org/

118 BIBLIOGRAPHY

119

Part V

Appendix

121

Appendix A

Glossary

In the following glossaries for Scheme Diagram and LSC are presented. All names in bold are defined.

A.1 Scheme Diagram

The Scheme Diagram is inspired by the way the UML Class Diagram is depicted. But also by some of the
natural language terms. Consequently the terms used in conjunction with the Scheme Diagram are a mixture
of RSL and UML.

Association A relation in the Scheme Diagram. It is a precondition for qualification and for associations of
kind parameter and nested. It also corresponds to object declarations. The term is borrowed from the
UML Class Diagram. See section 5.5.5.

Client Denotes the dependent participant of a binary relation. See definition in section 5.4.

Global An association kind kind where the supplier of the association must be a global object. See section
5.5.5.

Inheritance Originates from object oriented terminology. It resembles the extend operator in RSL but there
are differences. See section 5.5.6.

Model The term is borrowed from UML and corresponds to a specification in RSL. The term is used since the
term specification in RSL only includes modules. The Scheme Diagram also includes relations which
is emphasised by the term model. See section 5.5.1.

Multiplicity Corresponds to arrays in RSL terminology. See section 5.5.5.

Navigability The term is borrowed from UML and is used to indicate the direction in which an association
can be traversed.

Nested An association kind which corresponds to a nested object declaration in a scheme. See section 5.5.5.

Parameter An association kind which corresponds to a formal parameter of a scheme. See section 5.5.5.

Rolename Is used in conjunction with the association relation. It is the name of the object that is an instance
of the client in that association. See section 5.5.5.

State Used in conjunction with objects and denotes the set of variables which are available with corresponding
values. See section 5.5.4 and 5.4.3.

Supplier Denotes the providing participant of a binary relation. See definition in section 5.4.

Visibility Denotes the visibility of a declaration from outside the module. The possibilities are either Private
or Public. See section 5.5.3.

122 Appendix A. Glossary

A.2 LSC

action Is an event that denotes a local computation on an instance. It is not specified in detail but denoted by
a name.

active mainchart Is a mainchart whose prechart behaviour has been fulfilled at some given moment. The
system must now exhibit the behaviour expressed in the active mainchart.

asynchronous A message event may be asynchronous, meaning that the reception of the message may be
later than the sending.

behaviour LSCs are used for describing wanted behaviour, i.e. events and computations that are done by
some given system.

chart Consists of a given number of instances. It is used to group these in order to allow to show some given
behaviour.

cold Temperature of events. Denotes possible behaviour. See also hot. Applies for conditions, locations
and messages.

collection A set of LSCs that form a requirements specification.

condition An event that uses a predicate in order to determine if a chart should progress beyond the condi-
tion. May be hot or cold. At a true condition, the chart proceeds. At a false cold condition exits the
current chart. A false hot condition is a violation of the specification and is thus not allowed.

consistency Two LSCs can specify behaviour that contradicts each other. If a collection is consistent, no
two LSCs in a collection contradict each other.

coregion Consists of message events. The ordering in which those events happen is specified to be irrelevant
by using a coregion.

creation An instance may create a new instance. The new instance can only be referenced in the LSC it is
created.

cut Denotes the progress of a chart. A cut shows the location after the events that have already been per-
formed.

enabled event Is an event that in a given state may be performed as the next event without violating the LSC.

event Is an atomic part of a behaviour. It may be a action, condition or input/output message event.

existential A LSC may be existential. This denotes that the behaviour specified by the LSC must at least be
exhibited once in the lifetime of the system that is described.

hot Temperature of events. Denotes mandatory behaviour. See also cold. Applies for conditions, locations
and messages.

instance Is an ordered list of locations. Instances may denote object, processes etc. and have a name.

LSC Is used for describing a scenario with behaviour that the system that is described must exhibit. It consists
of a prechart and a mainchart.

location Is a part of an instance. It has a temperature and an event.

mainchart Is the part of the LSC that describes behaviour that the system that is described must exhibit
under certain conditions.

message Consists of a message output event and a corresponding message input event. Together they denote
that some form of communication happens between two instances. They have a temperature and are
synchronous or asynchronous.

multiplicity Is the maximum number of times a subchart may be repeated.

play-in/play-out The concept of automatically generating LSCs based on users specification of wanted be-
haviour using a mock GUI (play-in). Play-out is to execute the resulting collection of LSCs as the
finished program that behaves according to the LSCs.

prechart A precondition in order to activate a mainchart. A prechart may not use cold conditions.

A.2 LSC 123

subchart Can be used in order to specify repeated behaviour using multiplicity. May also used for branch-
ing. A subchart encloses a certain coherent section on a chart.

state Is a cut annotated with information about already happened events. Based on the state, all enabled
events can be identified.

step The process of performing one event in a LSC in a given state. A step will thus advance the state to the
next state denoting that the event has been exhibited.

synchronous A message event may be synchronous, meaning that a sent message is received immediately.

temperature Used for denoting mandatory vs. optional behaviour, see hot and cold.

trace Is a list of states that uniquely identify in which order the events in a run of a system have happened.

universal A LSC may be universal. This denotes that the behaviour specified by the LSC must always be
exhibited by the system that is described.

124 Appendix A. Glossary

125

Appendix B

Description of RSL types in RSL

Contents

B.1 rslsyntax.rsl . 125
B.2 rslprint.rsl . 143

B.1 rslsyntax.rsl

scheme rslsyntax = class
type

/∗
Specifies the context for the rsltc tool. That is,
the names of the other RSL that is used. Context
is thus a mapping from a module name to the set of
other module names used. This information is not
included in the rslsyntax scheme since it beyond
the syntax for RSL and more a requirement from the
rsltc tool.
∗/
Context = id →m id-set

type
- - [p. 269, 1]

specification = {| mdl : module_decl∗ • len mdl > 0 |},

- - [p. 270, 1]

module_decl ==
module_decl_from_scheme_decl(module_decl_to_scheme_decl :
scheme_decl) | module_decl_from_object_decl(module_decl_to_object_decl : object_decl),

- - [p. 270, 1]

decl == decl_from_scheme_decl(decl_to_scheme_decl : scheme_decl) |
decl_from_object_decl(decl_to_object_decl : object_decl) |
decl_from_type_decl(decl_to_type_decl : type_decl) |
decl_from_value_decl(decl_to_value_decl : value_decl) |
decl_from_variable_decl(decl_to_variable_decl : variable_decl) |
decl_from_channel_decl(decl_to_channel_decl : channel_decl) |
decl_from_axiom_decl(decl_to_axiom_decl : axiom_decl),

126 Appendix B. Description of RSL types in RSL

- - scheme_decl ::= scheme scheme_def_3list
- - [p. 270, 1]
scheme_decl :: {| sdl : scheme_def∗ • len sdl > 0 |},

- - scheme_def ::= opt1_comment_4string id opt4_formal_scheme_parameter = class_expr
- - [p. 270, 1]
scheme_def :: id opt_formal_scheme_parameter class_expr,

- - formal_scheme_parameter ::= (formal_scheme_argument_2list)
- - [p. 271, 1]
opt_formal_scheme_parameter = formal_scheme_argument∗,

- - formal_scheme_argument ::= object_def
- - [p. 271, 1]
formal_scheme_argument :: object_def,

- - object_decl ::= object object_def_3list
- - [p. 272, 1]
object_decl :: {| odl : object_def∗ • len odl > 0|},

- - object_def ::= opt1_comment_4string id opt4_formal_array_parameter : class_expr
- - [p. 272, 1]
object_def :: id opt_formal_array_parameter class_expr,

- - formal_array_parameter ::= [typing_2list]
- - [p. 272, 1]
opt_formal_array_parameter = typing∗,

- - type_decl ::= type type_def_3list
- - [p. 273, 1]
type_decl :: {| tdl : type_def∗ • len tdl > 0|},

- - type_def ::= sort_def | variant_def | union_def | short_record_def | abbreviation_def
- - [p. 273, 1]

type_def == type_def_from_sort_def(type_def_to_sort_def : sort_def) |
type_def_from_variant_def(type_def_to_variant_def : variant_def) |
type_def_from_union_def(type_def_to_union_def : union_def) |
type_def_from_short_record_def(type_def_to_short_record_def : short_record_def) |
type_def_from_abbreviation_def(type_def_to_abbreviation_def : abbreviation_def),

- - sort_def ::= opt1_comment_4string id
- - [p. 273, 1]
sort_def :: id,

- - variant_def ::= opt1_comment_4string id == variant_2choice
- - [p. 274, 1]
variant_def :: id {| vl : variant∗ • len vl > 0|},

- - variant ::= constructor | record_variant
- - [p. 274, 1]

variant ==
variant_from_constructor(variant_to_constructor : constructor) |
variant_from_record_variant(variant_to_record_variant : record_variant),

- - record_variant ::= constructor (component_kind_2list)

B.1 rslsyntax.rsl 127

- - [p. 274, 1]
record_variant :: constructor {| ckl : component_kind∗

• len ckl > 0|},

- - component_kind ::= opt6_destructor type_expr opt5_reconstructor
- - [p. 274, 1]
- - TODO
component_kind :: opt_destructor type_expr opt_reconstructor,
opt_destructor == opt_dest_none | opt_destructor_from_destructor(opt_destructor_to_destructor : destructor),
opt_reconstructor ==
opt_reco_none |
opt_reconstructor_from_reconstructor(opt_reconstructor_to_reconstructor : reconstructor),

- - constructor ::= id_or_op | _
- - [p. 274, 1]

constructor == constructor_from_id_or_op(constructor_to_id_or_op :
id_or_op) | con_wildcard,

- - destructor ::= id_or_op :
- - [p. 274, 1]
destructor = id_or_op,

- - reconstructor ::= <-> id_or_op
- - [p. 274, 1]
reconstructor = id_or_op,

- - union_def ::= opt1_comment_4string id = name_or_wildcard_1choice2
- - [p. 279, 1]
union_def :: id {| nwl : name_or_wildcard∗

• len nwl > 1|},

- - name_or_wildcard ::= .type_.name | _
- - [p. 279, 1]

name_or_wildcard ==
name_or_wildcard_from_type_name(name_or_wildcard_to_type_name :
type_name) | nw_wildcard,
type_name = {| n:name • name_type(n)|},

- - short_record_def ::= opt1_comment_4string id ::
- - component_kind_5string
- - [p. 279, 1]
short_record_def :: id {| ckl : component_kind∗

• len ckl > 0 |},

- - abbreviation_def ::= opt1_comment_4string id = type_expr
- - [p. 280, 1]
abbreviation_def :: id type_expr,

- - value_decl ::= value value_def_5list
- - [p. 280, 1]
value_decl :: {| vdl : value_def∗ • len vdl > 0|},

- - value_def ::= commented_typing | explicit_value_def | implicit_value_def |
- - explicit_function_def | implicit_function_def
- - [p. 280, 1]

value_def == value_def_from_commented_typing(value_def_to_commented_typing : commented_typing) |
value_def_from_explicit_value_def(value_def_to_explicit_value_def :

128 Appendix B. Description of RSL types in RSL

explicit_value_def) |
value_def_from_implicit_value_def(value_def_to_implicit_value_def :
implicit_value_def) |

value_def_from_explicit_function_def(value_def_to_explicit_function_def :
explicit_function_def) |

value_def_from_implicit_function_def(value_def_to_implicit_function_def :
implicit_function_def),

- - explicit_value_def ::= opt1_comment_4string single_typing = .pure_.value_expr
- - [p. 281, 1]
explicit_value_def :: single_typing {|ve:value_expr • pure(ve)|},

- - implicit_value_def ::= opt1_comment_4string single_typing .pure_.restriction
- - [p. 281, 1]
implicit_value_def :: single_typing {|r : restriction • pure(r)|},

- - explicit_function_def ::= opt1_comment_4string single_typing formal_function_application is value_expr_pr12 opt5_pre_condition
- - [p. 282, 1]
explicit_function_def :: single_typing formal_function_application value_expr opt_pre_condition,

opt_pre_condition ==
opt_prec_none |
opt_pre_condition_from_pre_condition(opt_pre_condition_to_pre_condition : pre_condition),

- - formal_function_application ::= id_application | prefix_application | infix_application
- - [p. 282, 1]

formal_function_application ==
formal_function_application_from_id_application(formal_function_application_to_id_application
: id_application) |
formal_function_application_from_prefix_application(formal_function_application_to_prefix_application :
prefix_application)|
formal_function_application_from_infix_application(formal_function_application_to_infix_application : infix_application),

- - id_application ::= .value_.id formal_function_parameter_0string
- - [p. 282, 1]
id_application :: {|i : id • id_value(i)|} {| ffpl : formal_function_parameter∗ • len ffpl > 0|},

- - formal_function_parameter ::= (opt4_binding_2list)
- - [p. 282, 1]
formal_function_parameter :: binding∗,

- - prefix_application ::= prefix_op id
- - [p. 282, 1]
prefix_application :: prefix_op id,

- - infix_application ::= id infix_op id
- - [p. 282, 1]
infix_application :: id infix_op id,

- - implicit_function_def ::= opt1_comment_4string single_typing formal_function_application post_condition opt5_pre_condition
- - [p. 284, 1]
implicit_function_def :: single_typing formal_function_application post_condition opt_pre_condition,

- - variable_decl ::= variable variable_def_3list
- - [p. 287, 1]
variable_decl :: {| vdl : variable_def∗ • len vdl > 0 |},

B.1 rslsyntax.rsl 129

- - variable_def ::= single_variable_def | multiple_variable_def,
- - [p. 287]
variable_def ==
variable_def_from_single_variable_def(variable_def_to_single_variable_def
: single_variable_def) | variable_def_from_multiple_variable_def(variable_def_to_multiple_variable_def : multiple_variable_def),

- - single_variable_def ::= opt1_comment_4string id : type_expr opt5_initialisation
- - [p. 287]

single_variable_def :: id type_expr opt_initialisation,

opt_initialisation ==
opt_init_none |
opt_initialisation_from_initialisation(opt_initialisation_to_initialisation : initialisation),
initialisation = {|ve : value_expr • pure(ve)|},

- - multiple_variable_def ::= opt1_comment_4string id_1list2 : type_expr
- - [P. 287]
multiple_variable_def :: {| idl : id∗

• len idl > 1|} type_expr,

- - channel_decl ::= channel channel_def_3list
- - [p. 288, 1]
channel_decl :: {| cdl : channel_def∗ • len cdl > 0|},

- - channel_def ::= single_channel_def | multiple_channel_def
- - [p.288]

channel_def ==
channel_def_from_single_channel_def(channel_def_to_single_channel_def
: single_channel_def) |
channel_def_from_multiple_channel_def(channel_def_to_multiple_channel_def : multiple_channel_def),

- - single_channel_def ::= opt1_comment_4string id : type_expr
- - [p.288]
single_channel_def :: id type_expr,

- - multiple_channel_def ::= opt1_comment_4string id_1list2 : type_expr
- - [p.288]
multiple_channel_def :: {| idl : id∗

• len idl > 1|} type_expr,

- - axiom_decl ::= axiom axiom_def_5list
- - [p. 289, 1]
axiom_decl :: {| adl : axiom_def∗ • len adl > 0 |},

- - axiom_def ::= opt1_comment_4string opt6_axiom_naming .readonly_logical_.value_expr
- - [p. 289]
axiom_def :: opt_axiom_naming {|ve : value_expr • readonly(ve) ∧ logical(ve)|},
opt_axiom_naming ==
opt_axio_none |
opt_axiom_naming_from_axiom_naming(opt_axiom_naming_to_axiom_naming : axiom_naming),

- - axiom_naming ::= [id]
- - [p.289]
axiom_naming :: id,

- - class_expr ::= basic_class_expr | extending_class_expr | hiding_class_expr |

130 Appendix B. Description of RSL types in RSL

- - renaming_class_expr | with_class_expr | scheme_instantiation
- - [p.291]

class_expr ==
class_expr_from_basic_class_expr(class_expr_to_basic_class_expr :
basic_class_expr) |
class_expr_from_extending_class_expr(class_expr_to_extending_class_expr : extending_class_expr) |
class_expr_from_hiding_class_expr(class_expr_to_hiding_class_expr :
hiding_class_expr) |
class_expr_from_renaming_class_expr(class_expr_to_renaming_class_expr
: renaming_class_expr) |
class_expr_from_with_class_expr(class_expr_to_with_class_expr :
with_class_expr) |
class_expr_from_scheme_instantiation(class_expr_to_scheme_instantiation : scheme_instantiation),

- - basic_class_expr ::= class opt8_decl_3string end
- - [p.292]
basic_class_expr :: decl∗,

- - extending_class_expr ::= extend class_expr with class_expr
- - [p.292]
extending_class_expr :: class_expr class_expr,

- - hiding_class_expr ::= hide defined_item_1list in class_expr
- - [p.293]
hiding_class_expr :: {| dil : defined_item∗

• len dil > 0 |} class_expr,

- - renaming_class_expr ::= use rename_pair_2list in class_expr
- - [p.293]
renaming_class_expr :: {| rpl : rename_pair∗ • len rpl > 0 |} class_expr,

- - with_class_expr ::= with .element_.object_expr in class_expr
- - [p. NEW]
with_class_expr :: {|oel : object_expr∗ • element(oel) ∧ len oel > 0|} class_expr,

- - scheme_instantiation ::= .scheme_.name opt4_actual_scheme_parameter
- - [p.294]
scheme_instantiation :: {|n: name • name_scheme(n)|} opt_actual_scheme_parameter,
opt_actual_scheme_parameter ==
opt_asp_none |
opt_actual_scheme_parameter_from_actual_scheme_parameter(opt_actual_scheme_parameter_to_actual_scheme_parameter
: actual_scheme_parameter),

- - actual_scheme_parameter ::= (object_expr_2list)
- - [p.294]
actual_scheme_parameter :: {| oel : object_expr∗ • len oel > 0 |},

- - rename_pair ::= defined_item for defined_item
- -[p.297]
rename_pair :: defined_item defined_item,

- - defined_item ::= id_or_op | disambiguated_item
- - [p.297]

defined_item == defined_item_from_id_or_op(defined_item_to_id_or_op :
id_or_op) | defined_item_from_disambiguated_item(defined_item_to_disambiguated_item : disambiguated_item),

- - disambiguated_item ::= id_or_op : type_expr

B.1 rslsyntax.rsl 131

- - [p.297]
disambiguated_item :: id_or_op type_expr,

- - object_expr ::= .object_.name | element_object_expr |
- - array_object_expr | fitting_object_expr
- -[p.299]

object_expr == object_expr_from_object_name(object_expr_to_object_name
: object_name) |
object_expr_from_element_object_expr(object_expr_to_element_object_expr
: element_object_expr) |
object_expr_from_array_object_expr(object_expr_to_array_object_expr :
array_object_expr) |
object_expr_from_fitting_object_expr(object_expr_to_fitting_object_expr : fitting_object_expr),
object_name = {| n: name • name_object(n)|},

- - element_object_expr ::= .array_.object_expr actual_array_parameter
- -[p.300]
element_object_expr :: {|oe:object_expr • array(oe)|} actual_array_parameter,

- - actual_array_parameter ::= [.pure_.value_expr_2list]
- -[p.300]
actual_array_parameter :: {| vel : value_expr∗ • len vel > 0 ∧ pure(vel) |},

- - array_object_expr ::= [| typing_2list :- .element_.object_expr |]
- -[p.300]
array_object_expr :: {| tyl : typing∗

• len tyl > 0 |} {| oe : object_expr • element(oe)|},

- - fitting_object_expr ::= object_expr rename_pair_2list
- - [p.301]
fitting_object_expr :: object_expr {| rpl : rename_pair∗ • len rpl > 0 |},

- - [p.302]
type_expr == type_expr_from_type_literal(type_expr_to_type_literal :
type_literal) | type_expr_from_name(type_expr_to_name : name) |
type_expr_from_product_type_expr(type_expr_to_product_type_expr :
product_type_expr) | type_expr_from_set_type_expr(type_expr_to_set_type_expr : set_type_expr) |
type_expr_from_list_type_expr(type_expr_to_list_type_expr :
list_type_expr) |
type_expr_from_map_type_expr(type_expr_to_map_type_expr :
map_type_expr) |
type_expr_from_function_type_expr(type_expr_to_function_type_expr :
function_type_expr) |
type_expr_from_subtype_expr(type_expr_to_subtype_expr : subtype_expr)
| type_expr_from_bracketed_type_expr(type_expr_to_bracketed_type_expr : bracketed_type_expr),

- - type_literal ::= Unit | Bool | Int | Nat | Real | Text | Char
- - [p.302]

type_literal == tl_Unit | tl_Bool | tl_Int | tl_Nat | tl_Real | tl_Text | tl_Char,

- - product_type_expr ::= type_expr_pr1_product2
- - [p.305]
product_type_expr :: {| tel : type_expr∗ • len tel > 1 |},

- - set_type_expr ::= finite_set_type_expr | infinite_set_type_expr

132 Appendix B. Description of RSL types in RSL

- - [p.305]

set_type_expr ==
set_type_expr_from_finite_set_type_expr(set_type_expr_to_finite_set_type_expr
: finite_set_type_expr) |
set_type_expr_from_infinite_set_type_expr(set_type_expr_to_infinite_set_type_expr : infinite_set_type_expr),

- - finite_set_type_expr ::= type_expr_pr0-set
- - [p.305]
finite_set_type_expr :: type_expr,

- - infinite_set_type_expr ::= type_expr_pr0-infset
- - [p.305]
infinite_set_type_expr :: type_expr,

- - list_type_expr ::= finite_list_type_expr | infinite_list_type_expr
- - [p.306]

list_type_expr ==
list_type_expr_from_finite_list_type_expr(list_type_expr_to_finite_list_type_expr
: finite_list_type_expr) |
list_type_expr_from_infinite_list_type_expr(list_type_expr_to_infinite_list_type_expr :
infinite_list_type_expr),

- - finite_list_type_expr ::= type_expr_pr0-list
- - [p.306]
finite_list_type_expr :: type_expr,

- - infinite_list_type_expr ::= type_expr_pr0-inflist
- - [p.306]
infinite_list_type_expr :: type_expr,

- - map_type_expr ::= finite_map_type_expr | infinite_map_type_expr
- - [p.306]
map_type_expr ==
map_type_expr_from_finite_map_type_expr(map_type_expr_to_finite_map_type_expr
: finite_map_type_expr) |
map_type_expr_from_infinite_map_type_expr(map_type_expr_to_infinite_map_type_expr : infinite_map_type_expr),

- - finite_map_type_expr ::= type_expr_pr2 -m-> type_expr_pr3
- - [p.306]
finite_map_type_expr :: type_expr type_expr,

- - infinite_map_type_expr ::= type_expr_pr2 -∼m-> type_expr_pr3
- - [p.306]
infinite_map_type_expr :: type_expr type_expr,

- - function_type_expr ::= type_expr_pr2 function_arrow result_desc
- - [p.307]
function_type_expr :: type_expr function_arrow result_desc,

- - function_arrow ::= -∼-> | ->

function_arrow == fa_total | fa_partial,
- - [p.307]

- - result_desc ::= opt3_access_desc_1string type_expr_pr3
- - [p.307]

B.1 rslsyntax.rsl 133

result_desc :: accss_desc∗ type_expr,

- - subtype_expr ::= | single_typing .pure_.restriction |
- - [p.308]
subtype_expr :: single_typing {| r : restriction • pure(r) |},

- - bracketed_type_expr ::= (type_expr)
- - [p.309]
bracketed_type_expr :: type_expr,

- - access_desc ::= access_mode access_1list
- - [p.309]
accss_desc :: accss_mode {| acl : accss∗ • len acl > 0 |},

- - access_mode ::= read | write | in | out
- - [p.309]
accss_mode == am_read | am_write | am_in | am_out,

- - access ::= .variable_or_channel_.name |
- - enumerated_access | completed_access | comprehended_access
- - [p.309]

accss == accss_from_acc_name(accss_to_acc_name : acc_name) |
accss_from_enumerated_accss(accss_to_enumerated_accss :
enumerated_accss) |
accss_from_completed_accss(accss_to_completed_accss :
completed_accss) | accss_from_comprehended_accss(accss_to_comprehended_accss
: comprehended_accss),

acc_name = {| n: name • name_channel(n) ∨ name_variable(n)|},

- - enumerated_access ::= opt4_access_1list
- - [p.309]
enumerated_accss :: accss∗,

- - completed_access ::= opt7_qualification any
- - [p.309]
completed_accss :: opt_qualification,
opt_qualification ==
opt_qual_none |
opt_qualification_from_qualification(opt_qualification_to_qualification : qualification),

- - comprehended_access ::= access | .pure_.set_limitation
- - [p.309]
comprehended_accss :: accss {|sl: set_limitation • pure(sl)|},

- - [p.312]
value_expr ==
ve_val_l(value_literal) |
ve_name({| n:name • name_value(n) ∨ name_variable(n)|}) |
ve_pren(pre_name) |
ve_bas_e(basic_expr) |
ve_pro_e(product_expr) |
ve_set_e(set_expr) |
ve_lis_e(list_expr) |
ve_map_e(map_expr) |
ve_fun_e(function_expr) |

134 Appendix B. Description of RSL types in RSL

ve_app_e(application_expr) |
ve_qua_e(quantified_expr) |
ve_equ_e(equivalence_expr) |
ve_pos_e(post_expr) |
ve_dis_e(disambiguation_expr) |
ve_bra_e(bracketed_expr) |
ve_inf_e(infix_expr)|
ve_pre_e(prefix_expr) |
ve_com_e(comprehended_expr) |
ve_ini_e(initialise_expr) |
ve_ass_e(assignment_expr) |
ve_inp_e(input_expr) |
ve_out_e(output_expr) |
ve_str_e(structured_expr),

- - value_literal ::= unit_literal | bool_literal | int_literal |
- - real_literal | text_literal | char_literal
- - [p.315]
value_literal == unit_literal | bool_literal(Bool) | int_literal(Int) |
real_literal(Real) | text_literal(Text) | char_literal(Char),

- - unit_literal ::= ()
- - [p.315]
- -unit_literal,

- - bool_literal ::= true | false
- - [p.315]
/∗
bool_literal == bl_true | bl_false,
int_literal,
real_literal,
text_literal,
char_literal,∗/
- - pre_name ::= .variable_.name ‘
- - [p.316]
pre_name = {| n:name • name_variable(n)|},

- - basic_expr ::= chaos | skip | stop | swap
- - [p.316]
basic_expr == be_chaos | be_skip | be_stop | be_swap,

- - product_expr ::= (value_expr_2list2)
- - [p.316]
product_expr :: {| vel : value_expr∗ • len vel > 1 |},

- - set_expr ::= ranged_set_expr | enumerated_set_expr | comprehended_set_expr
- - [p.317]

set_expr == set_expr_from_ranged_set_expr(set_expr_to_ranged_set_expr
: ranged_set_expr) |
set_expr_from_enumerated_set_expr(set_expr_to_enumerated_set_expr :
enumerated_set_expr) |
set_expr_from_comprehended_set_expr(set_expr_to_comprehended_set_expr : comprehended_set_expr),

- - ranged_set_expr ::= .readonly_integer_.value_expr .. .readonly_integer_.value_expr
- - [p.317]

B.1 rslsyntax.rsl 135

ranged_set_expr :: {|ve:value_expr • readonly(ve) ∧ integer(ve)|} {|ve:value_expr • readonly(ve) ∧ integer(ve)|},

- - enumerated_set_expr ::= .readonly_.opt4_value_expr_2list
- - [p.317]
enumerated_set_expr :: {|ve:value_expr • readonly(ve)|}∗,

- - comprehended_set_expr ::= .readonly_.value_expr | set_limitation
- - [p.318]
comprehended_set_expr :: {|ve:value_expr • readonly(ve)|} set_limitation,

- - set_limitation ::= typing_2list opt2_restriction
- - [p.318]
set_limitation :: {| tyl : typing∗

• len tyl > 0 |} opt_restriction,
opt_restriction == opt_rest_none | opt_restriction_from_restriction(opt_restriction_to_restriction : restriction),

- - restriction ::= :- .readonly_logical_.value_expr
- - [p. 318, 1]
restriction :: {|ve:value_expr • readonly(ve) ∧ logical(ve)|},

- - list_expr ::= ranged_list_expr | enumerated_list_expr | comprehended_list_expr
- - [p.319]
list_expr ==
list_expr_from_ranged_list_expr(list_expr_to_ranged_list_expr :
ranged_list_expr) |
list_expr_from_enumerated_list_expr(list_expr_to_enumerated_list_expr
: enumerated_list_expr) |
list_expr_from_comprehended_list_expr(list_expr_to_comprehended_list_expr : comprehended_list_expr),

- - ranged_list_expr ::= <. .integer_.value_expr .. .integer_.value_expr .>
- - [p.319]
ranged_list_expr :: {|ve:value_expr • integer(ve)|} {|ve:value_expr • integer(ve)|},

- - enumerated_list_expr ::= <. opt4_value_expr_2list .>
- - [p.319]
enumerated_list_expr :: value_expr∗,

- - comprehended_list_expr ::= <. value_expr | list_limitation .>
- - [p.320]
comprehended_list_expr :: value_expr list_limitation,

- - list_limitation ::= binding in .readonly_list_.value_expr opt2_restriction
- - [p.320]
list_limitation :: binding {|ve:value_expr • readonly(ve) ∧list(ve)|} opt_restriction,

- - map_expr ::= enumerated_map_expr | comprehended_map_expr
- - [p.321]
map_expr ==

map_expr_from_enumerated_map_expr(map_expr_to_enumerated_map_expr :
enumerated_map_expr) |
map_expr_from_comprehended_map_expr(map_expr_to_comprehended_map_expr :
comprehended_map_expr),

- - enumerated_map_expr ::= [opt4_value_expr_pair_2list]
- - [p.321]
enumerated_map_expr :: value_expr_pair∗,

136 Appendix B. Description of RSL types in RSL

- - value_expr_pair ::= .readonly_.value_expr +> .readonly_.value_expr
- - [p.321]
value_expr_pair :: value_expr value_expr,

- - comprehended_map_expr ::= [value_expr_pair | set_limitation]
- - [p.322]
comprehended_map_expr :: value_expr_pair set_limitation,

- - function_expr ::= - lambda_parameter :- value_expr_pr14
- - [p.322]
function_expr :: lambda_parameter value_expr,

- - lambda_parameter ::= lambda_typing | single_typing
- - [p.322]

lambda_parameter ==
lambda_parameter_from_lambda_typing(lambda_parameter_to_lambda_typing
: lambda_typing) | lambda_parameter_from_single_typing(lambda_parameter_to_single_typing : single_typing),

- - lambda_typing ::= (opt4_typing_2list)
- - [p.322]
lambda_typing :: typing∗,

- - application_expr ::= .list_or_map_or_function_.value_expr_pr255 actual_function_parameter_0string
- - [p.323]
application_expr :: value_expr actual_function_parameter,

- - actual_function_parameter ::= (opt4_value_expr_2list)
- - [p.324]
actual_function_parameter :: value_expr∗,

- - quantified_expr ::= quantifier typing_2list restriction
- - [p.325]
quantified_expr :: quantifier {| tyl:typing∗

• len tyl > 0 |} restriction,

- - quantifier ::= all | exists | exists!
- - [p.322]
quantifier == qu_all | qu_exists | qu_existsem,

- - equivalence_expr ::= value_expr_pr12 is value_expr_pr12 opt5_pre_condition
- - [p.326]
equivalence_expr :: value_expr value_expr opt_pre_condition,

- - pre_condition ::= pre .readonly_logical_.value_expr_pr12
- - [p. 326, 1]
pre_condition :: {|ve:value_expr • readonly(ve) ∧ logical(ve)|},

- - post_expr ::= value_expr_pr12 post_condition opt5_pre_condition
- - [p. 327, 1]
post_expr :: value_expr post_condition opt_pre_condition,

- - post_condition ::= opt2_result_naming post .readonly_logical_.value_expr_pr12
- - [p. 327, 1]
post_condition :: opt_result_naming {|ve:value_expr • readonly(ve) ∧ logical(ve)|},
opt_result_naming ==
opt_resn_none |
opt_result_naming_from_result_naming(opt_result_naming_to_result_naming : result_naming),

B.1 rslsyntax.rsl 137

- - result_naming ::= as binding
- - [p. 327, 1]
result_naming :: binding,

- - disambiguation_expr ::= value_expr_pr1 : type_expr
- - [p.328]
disambiguation_expr :: value_expr type_expr,

- - bracketed_expr ::= (value_expr)
- - [p.328]
bracketed_expr :: value_expr,

- - [p.329]
infix_expr ==
infix_expr_from_stmt_infix_expr(infix_expr_to_stmt_infix_expr :
stmt_infix_expr) |
infix_expr_from_axiom_infix_expr(infix_expr_to_axiom_infix_expr :
axiom_infix_expr) | infix_expr_from_value_infix_expr(infix_expr_to_value_infix_expr : value_infix_expr),

stmt_infix_expr :: value_expr infix_combinator value_expr,

axiom_infix_expr :: {|ve: value_expr • logical(ve) |} infix_connective value_expr,

value_infix_expr :: value_expr infix_op value_expr,

- -[p.330]
prefix_expr ==
prefix_expr_from_axiom_prefix_expr(prefix_expr_to_axiom_prefix_expr :
axiom_prefix_expr) |
prefix_expr_from_universal_prefix_expr(prefix_expr_to_universal_prefix_expr
: universal_prefix_expr) |
prefix_expr_from_value_prefix_expr(prefix_expr_to_value_prefix_expr : value_prefix_expr),

axiom_prefix_expr :: prefix_connective {| ve:value_expr • logical(ve) |},

universal_prefix_expr :: {| ve:value_expr • logical(ve) ∧ readonly(ve) |},

value_prefix_expr :: prefix_op value_expr,

- - comprehended_expr ::= .associative_commutative_.infix_combinator value_expr | set_limitation
- - [p.331]
comprehended_expr :: {| ic:infix_combinator • associative(ic) ∧ commutative(ic) |} value_expr set_limitation,

- - initialise_expr ::= opt7_qualification initialise
- -[p.332]
initialise_expr :: opt_qualification,

- - assignment_expr ::= .variable_.name := value_expr_pr9
- - [p.332]
assignment_expr :: {|n:name • name_variable(n)|} value_expr,

- - input_expr ::= .channel_.name ?
- - [p.331]
input_expr :: {|n:name • name_channel(n)|},

- - output_expr ::= .channel_.name ! value_expr_pr9

138 Appendix B. Description of RSL types in RSL

- - [p.331]
output_expr :: {|n:name • name_channel(n)|} value_expr,

- - structured_expr ::= local_expr | let_expr | if_expr | case_expr | while_expr | until_expr | for_expr
- - [p.334]

structured_expr ==
structured_expr_from_local_expr(structured_expr_to_local_expr :
local_expr) |
structured_expr_from_let_expr(structured_expr_to_let_expr : let_expr)
| structured_expr_from_if_expr(structured_expr_to_if_expr : if_expr) |
structured_expr_from_case_expr(structured_expr_to_case_expr :
case_expr) |
structured_expr_from_while_expr(structured_expr_to_while_expr :
while_expr) |
structured_expr_from_until_expr(structured_expr_to_until_expr :
until_expr) | structured_expr_from_for_expr(structured_expr_to_for_expr : for_expr),

- - local_expr ::= local opt8_decl_3string in value_expr end
- - [p.334]
local_expr :: decl∗ value_expr,

- - let_expr ::= let let_def_2list in value_expr end
- - [p.335]
let_expr :: let_def value_expr,

- - let_def ::= typing | explicit_let | implicit_let
- - [p.335]

let_def == let_def_from_typing(let_def_to_typing : typing) |
let_def_from_explicit_let(let_def_to_explicit_let : explicit_let) |
let_def_from_implicit_let(let_def_to_implicit_let : implicit_let),

- - explicit_let ::= let_binding = value_expr
- - [p.335]
explicit_let :: let_binding value_expr,

- - implicit_let ::= single_typing restriction
- - [p.335]
implicit_let :: single_typing restriction,

- - let_binding ::= binding | record_pattern | list_pattern
- - [p.335]

let_binding == let_binding_from_binding(let_binding_to_binding :
binding) |
let_binding_from_record_pattern(let_binding_to_record_pattern :
record_pattern) | let_binding_from_list_pattern(let_binding_to_list_pattern : list_pattern),

/∗if_expr ::=
if logical_value_expr then

value_expr
opt3_elsif_branch_1string
opt3_else_branch
end∗/

- - [p.336]
if_expr :: {| ve:value_expr • logical(ve)|} value_expr elsif_branch∗ opt_else_branch,

B.1 rslsyntax.rsl 139

opt_else_branch == opt_else_none | opt_else_branch_from_else_branch(opt_else_branch_to_else_branch : else_branch),

- - elsif_branch ::= elsif .logical_.value_expr then value_expr
- - [p.336]
elsif_branch :: {|ve: value_expr • logical(ve)|} value_expr,

- - else_branch ::= else value_expr
- - [p.336]
else_branch :: value_expr,

- - case_expr ::= case value_expr of case_branch_2list end
- - [p.337]
case_expr :: value_expr {| cbl : case_branch∗

• len cbl > 0 |},

- - case_branch ::= pattern -> value_expr
- - [p.338]
case_branch :: pattern value_expr,

- - while_expr ::= while .logical_.value_expr do .unit_.value_expr end
- - [p.338]
while_expr :: {| ve:value_expr • logical(ve)|} {| ve:value_expr • unit(ve)|},

- - until_expr ::= do .unit_.value_expr until .logical_.value_expr end
- - [p.339]
until_expr :: {| ve:value_expr • unit(ve)|} {| ve:value_expr • logical(ve)|},

- - for_expr ::= for list_limitation do .unit_.value_expr end
- - [p.339]
for_expr :: list_limitation {| ve:value_expr • unit(ve)|},

- - binding ::= id_or_op | product_binding
- - [p. 340, 1]
binding == binding_from_id_or_op(binding_to_id_or_op : id_or_op) |
binding_from_product_binding(binding_to_product_binding : product_binding),

- - product_binding ::= (binding_2list2)
- - [p. 340, 1]
product_binding :: {| bl : binding∗

• len bl > 1 |},

- - typing ::= single_typing | multiple_typing
- - [p. 342, 1]

typing == typing_from_single_typing(typing_to_single_typing :
single_typing) | typing_from_multiple_typing(typing_to_multiple_typing : multiple_typing),

- - single_typing ::= binding : type_expr
- - [p. 342, 1]
single_typing :: binding type_expr,

- - multiple_typing ::= binding_2list2 : type_expr
- - [p. 342, 1]
multiple_typing :: {| bl : binding∗

• len bl > 1|} type_expr,

- - commented_typing ::= opt1_comment_4string typing
- - [p. 342, 1]
commented_typing :: typing,

140 Appendix B. Description of RSL types in RSL

- - pattern ::= value_literal | .pure_value_.name | wildcard_pattern | product_pattern | record_pattern | list_pattern
- - [p. 344, 1]

pattern == pattern_from_value_literal(pattern_to_value_literal :
value_literal) | pattern_from_pv_name(pattern_to_pv_name : pv_name) |
pa_wildcard_pattern | pattern_from_product_pattern(pattern_to_product_pattern : product_pattern) |
pattern_from_record_pattern(pattern_to_record_pattern :
record_pattern) | pattern_from_list_pattern(pattern_to_list_pattern : list_pattern),

pv_name = {| n:name • name_pure(n) ∧ name_value(n) |},

- - product_pattern ::= (inner_pattern_2list2)
- - [p. 346, 1]
product_pattern :: {| ipl : inner_pattern∗

• len ipl > 1|},

- - record_pattern ::= .pure_value_.name (inner_pattern_2list)
- - [p. 346, 1]
record_pattern :: {| n:name • name_pure(n) ∧ name_value(n) |} {| ipl : inner_pattern∗

• len ipl > 1 |},

- - list_pattern ::= enumerated_list_pattern | concatenated_list_pattern | right_list_pattern
- - [p. 347, 1]

list_pattern ==
list_pattern_from_enumerated_list_pattern(list_pattern_to_enumerated_list_pattern
: enumerated_list_pattern) |
list_pattern_from_concatenated_list_pattern(list_pattern_to_concatenated_list_pattern
: concatenated_list_pattern),
- -| right_list_pattern,

- - enumerated_list_pattern ::= <. opt4_inner_pattern_2list .>
- - [p. 347, 1]
enumerated_list_pattern :: inner_pattern∗,

- - concatenated_list_pattern ::= enumerated_list_pattern "hat" inner_pattern
- - [p. 348, 1]
concatenated_list_pattern :: enumerated_list_pattern inner_pattern,

- - inner_pattern ::= value_literal | id_or_op | wildcard_pattern | product_pattern | record_pattern | list_pattern | equality_pattern
- - [p. 348, 1]

inner_pattern ==
inner_pattern_from_value_literal(inner_pattern_to_value_literal :
value_literal) | inner_pattern_from_id_or_op(inner_pattern_to_id_or_op
: id_or_op) |
ip_wildcard_pattern | inner_pattern_from_product_pattern(inner_pattern_to_product_pattern
: product_pattern)|
inner_pattern_from_record_pattern(inner_pattern_to_record_pattern :
record_pattern) |
inner_pattern_from_list_pattern(inner_pattern_to_list_pattern :
list_pattern) | inner_pattern_from_equality_pattern(inner_pattern_to_equality_pattern : equality_pattern),

- - equality_pattern ::= = .pure_value_.name
- - [p. 349, 1]
equality_pattern :: {| n:name • name_pure(n) ∧ name_value(n) |},

- - name ::= qualified_id | qualified_op
- - [p. 351, 1]

B.1 rslsyntax.rsl 141

name == name_from_qualified_id(name_to_qualified_id : qualified_id) |
name_from_qualified_op(name_to_qualified_op : qualified_op),

- - qualified_id ::= opt7_qualification id
- - [p. 351, 1]
qualified_id :: opt_qualification id,

- - qualification ::= .element_.object_expr .
- - [p. 351, 1]
qualification :: {| oe:object_expr • element(oe) |},

- - qualified_op ::= opt7_qualification (op)
- - [p. 352, 1]
qualified_op :: opt_qualification op,

- - id_or_op ::= id | op
- - [p. 353, 1]
id_or_op == id_or_op_from_id(id) | id_or_op_from_op(op),

- - op ::= infix_op | prefix_op
- - [p. 353, 1]

op == op_from_infix_op(op_to_infix_op : infix_op) |
op_from_prefix_op(op_to_prefix_op : prefix_op),

- - adheres to book [p. 354, 1] plus infix "==".
infix_op ==
io_eq | io_ieq | io_eqeq | io_gt | io_lt | io_gteq | io_lteq |
io_proper_superset | io_proper_subset | io_superset | io_subset |
io_isin | io_nisin | io_plus | io_minus | io_remainder_diff_restr |
io_concat | io_union | io_override | io_mult | io_div |
io_composition | io_inter | io_exponentation,

/∗
prefix_op ::=

minus |
plus |
abs |
int |
real |
card |
len |
inds |
elems |
hd |
tl |
dom |
rng

∗/
- - [p. 359, 1]
prefix_op == po_minus | po_plus | po_abs | po_int |

po_real | po_card | po_len | po_inds |
po_elems | po_hd | po_tl | po_dom | po_rng,

- - [p. 362, 1]
infix_connective == ic_imply | ic_or | ic_and,

142 Appendix B. Description of RSL types in RSL

- - prefix_connective ::= ∼
- - [p. 363, 1]
- - not necessary, since it is only text ("∼")
prefix_connective == pc_not,

/∗
infix_combinator ::= infix_combinator_pr12 | infix_combinator_pr11
infix_combinator_pr12 ::= debc | |hat| | ‖ | –‖
infix_combinator_pr11 ::= ;
∗/

infix_combinator == icb_ext_choice | icb_int_choice | icb_concurrent |
icb_interlocked | icb_sequential,

id = Text

value
element : object_expr → Bool
element(oe) ≡ true,
element : object_expr∗ → Bool
element(oel) ≡ true,
array : object_expr → Bool
array(oe) ≡ true,
pure : set_limitation → Bool
pure(sl) ≡ true,
pure : restriction → Bool
pure(r) ≡ true,
name_pure : name → Bool
name_pure(n) ≡ true,
name_type : name → Bool
name_type(n) ≡ true,
name_value : name → Bool
name_value(n) ≡ true,
name_variable : name → Bool
name_variable(n) ≡ true,
name_channel : name → Bool
name_channel(n) ≡ true,
name_scheme : name → Bool
name_scheme(n) ≡ true,
name_object : name → Bool
name_object(n) ≡ true,
id_value : id → Bool
id_value(n) ≡ true,
associative : infix_combinator → Bool
associative(n) ≡ true,
commutative : infix_combinator → Bool
commutative(n) ≡ true,
unit : value_expr → Bool
unit(n) ≡ true,
logical : value_expr → Bool
logical(n) ≡ true,
integer : value_expr → Bool
integer(n) ≡ true,
list : value_expr → Bool
list(n) ≡ true,
map : value_expr → Bool
map(n) ≡ true,
function : value_expr → Bool

B.2 rslprint.rsl 143

function(n) ≡ true,
pure : value_expr → Bool
pure(n) ≡ true,
pure : value_expr∗ → Bool
pure(n) ≡ true,
readonly : value_expr → Bool
readonly(n) ≡ true

B.2 rslprint.rsl

/∗ Page numbers refer to relevant pages in [18].∗/
scheme rslprint =

extend rslsyntax with
class

value
print_context : Context × id → Text
print_context(c, n) ≡

if c(n) = {} then ′′′′

else
let n′ = hd c(n) in

n′ ̂
if card c(n) > 1
then ′′,′′ ̂ print_context([n 7→ c(n) \ {n′}], n)
else ′′′′

end
end

end

value
- - [p. 269]
print_specification : specification → Text
print_specification(x) ≡ print_module_decl_list(x),

print_module_decl_list : module_decl∗ → Text
print_module_decl_list(x) ≡

case x of
〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_module_decl(a),
〈a〉 ̂ b →

print_module_decl(a) ̂
′′,\n′′ ̂

print_module_decl_list(b)
end,

- - [p. 270]
print_module_decl : module_decl → Text
print_module_decl(x) ≡

case x of
module_decl_from_scheme_decl(a) →

print_scheme_decl(a),
module_decl_from_object_decl(a) →

print_object_decl(a)
end,

print_decl_list : decl∗ → Text
print_decl_list(x) ≡

144 Appendix B. Description of RSL types in RSL

case x of
〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_decl(a),
〈a〉 ̂ b →

print_decl(a) ̂
′′ \n′′ ̂ print_decl_list(b)

end,

- - [p. 270]
print_decl : decl → Text
print_decl(x) ≡

case x of
decl_from_scheme_decl(a) → print_scheme_decl(a),
decl_from_object_decl(a) → print_object_decl(a),
decl_from_type_decl(a) → print_type_decl(a),
decl_from_value_decl(a) → print_value_decl(a),
decl_from_variable_decl(a) → print_variable_decl(a),
decl_from_channel_decl(a) → print_channel_decl(a),
decl_from_axiom_decl(a) → print_axiom_decl(a)

end,

- - [p. 270]
print_scheme_decl : scheme_decl → Text
print_scheme_decl(x) ≡

case (x) of
mk_scheme_decl(a) →

′′scheme ′′
̂ print_scheme_def_list(a)

end,

print_scheme_def_list : scheme_def∗ → Text
print_scheme_def_list(x) ≡

case x of
〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_scheme_def(a),
〈a〉 ̂ b →

print_scheme_def(a) ̂
′′, \n′′ ̂

print_scheme_def_list(b)
end,

- - [p. 270]
print_scheme_def : scheme_def → Text
print_scheme_def(x) ≡

case (x) of
mk_scheme_def(a, b, c) →

print_id(a) ̂
′′ ′′

̂

print_opt_formal_scheme_parameter(b) ̂
′′= ′′

̂

print_class_expr(c)
end,

- - [p. 271]
print_opt_formal_scheme_parameter :

opt_formal_scheme_parameter → Text
print_opt_formal_scheme_parameter(x) ≡

case (x) of
〈〉 → ′′′′,
→ ′′(" ^ print_formal_scheme_argument_list(x) ^ ") ′′

end,

print_formal_scheme_argument_list :

B.2 rslprint.rsl 145

formal_scheme_argument∗ → Text
print_formal_scheme_argument_list(x) ≡

case x of
〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_formal_scheme_argument(a),
〈a〉 ̂ b →

print_formal_scheme_argument(a) ̂
′′, \n′′ ̂

print_formal_scheme_argument_list(b)
end,

- - [p. 271]
print_formal_scheme_argument :

formal_scheme_argument → Text
print_formal_scheme_argument(x) ≡

case (x) of
mk_formal_scheme_argument(a) → print_object_def(a)

end,

- - [p. 272]
print_object_decl : object_decl → Text
print_object_decl(x) ≡

case (x) of
mk_object_decl(a) →

′′object ′′
̂ print_object_def_list(a)

end,

print_object_def_list : object_def∗ → Text
print_object_def_list(x) ≡

case x of
〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_object_def(a),
〈a〉 ̂ b →

print_object_def(a) ̂
′′, \n′′ ̂

print_object_def_list(b)
end,

- - [p. 272]
print_object_def : object_def → Text
print_object_def(x) ≡

case (x) of
mk_object_def(a, b, c) →

print_id(a) ̂
′′ ′′

̂

print_opt_formal_array_parameter(b) ̂
′′: ′′

̂

print_class_expr(c)
end,

- - [p. 272]
print_opt_formal_array_parameter :

opt_formal_array_parameter → Text
print_opt_formal_array_parameter(x) ≡

case (x) of
〈〉 → ′′′′,
→ ′′[" ^ print_typing_list(x) ^ "] ′′

end,

- - [p. 273]
print_type_decl : type_decl → Text
print_type_decl(x) ≡

146 Appendix B. Description of RSL types in RSL

case (x) of
mk_type_decl(a) → ′′type ′′

̂ print_type_def_list(a)
end,

print_type_def_list : type_def∗ → Text
print_type_def_list(x) ≡

case x of
〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_type_def(a),
〈a〉 ̂ b →

print_type_def(a) ̂
′′, \n′′ ̂ print_type_def_list(b)

end,

- - [p. 273]
print_type_def : type_def → Text
print_type_def(x) ≡

case x of
type_def_from_sort_def(a) → print_sort_def(a),
type_def_from_variant_def(a) → print_variant_def(a),
type_def_from_union_def(a) → print_union_def(a),
type_def_from_short_record_def(a) →

print_short_record_def(a),
type_def_from_abbreviation_def(a) →

print_abbreviation_def(a)
end,

- - [p. 273]
print_sort_def : sort_def → Text
print_sort_def(x) ≡

case (x) of
mk_sort_def(a) → print_id(a)

end,

- - [p. 274]
print_variant_def : variant_def → Text
print_variant_def(x) ≡

case (x) of
mk_variant_def(a, b) →

print_id(a) ̂
′′ == ′′

̂ print_variant_list(b)
end,

print_variant_list : variant∗ → Text
print_variant_list(x) ≡

case x of
〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_variant(a),
〈a〉 ̂ b →

print_variant(a) ̂
′′ | ′′

̂ print_variant_list(b)
end,

- - [p. 274]
print_variant : variant → Text
print_variant(x) ≡

case x of
variant_from_constructor(a) → print_constructor(a),
variant_from_record_variant(a) →

print_record_variant(a)
end,

B.2 rslprint.rsl 147

- - [p. 274]
print_record_variant : record_variant → Text
print_record_variant(x) ≡

case (x) of
mk_record_variant(a, b) →

print_constructor(a) ̂
′′(′′ ̂

print_component_kind_list(b) ̂
′′) ′′

end,

print_component_kind_list : component_kind∗ → Text
print_component_kind_list(x) ≡

case x of
〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_component_kind(a),
〈a〉 ̂ b →

print_component_kind(a) ̂
′′ ′′

̂

print_component_kind_list(b)
end,

- - [p. 274]
print_component_kind : component_kind → Text
print_component_kind(x) ≡

case (x) of
mk_component_kind(a, b, c) →

print_opt_destructor(a) ̂ print_type_expr(b) ̂

print_opt_reconstructor(c)
end,

print_opt_destructor : opt_destructor → Text
print_opt_destructor(x) ≡

case x of
opt_dest_none → ′′′′,
opt_destructor_from_destructor(a) →

print_destructor(a) ̂
′′ ′′

end,

print_opt_reconstructor : opt_reconstructor → Text
print_opt_reconstructor(x) ≡

case x of
opt_reco_none → ′′′′,
opt_reconstructor_from_reconstructor(a) →

print_reconstructor(a)
end,

- - [p. 274]
print_constructor : constructor → Text
print_constructor(x) ≡

case x of
constructor_from_id_or_op(a) → print_id_or_op(a),
con_wildcard → ′′_′′

end,

- - [p. 274]
print_destructor : destructor → Text
print_destructor(x) ≡ print_id_or_op(x) ̂

′′: ′′,

- - [p. 274]

148 Appendix B. Description of RSL types in RSL

print_reconstructor : reconstructor → Text
print_reconstructor(x) ≡ ′′<->′′ ̂ print_id_or_op(x),

- - [p. 279]
print_union_def : union_def → Text
print_union_def(x) ≡

case (x) of
mk_union_def(a, b) →

print_id(a) ̂
′′= ′′

̂ print_name_or_wildcard_list(b)
end,

print_name_or_wildcard_list :
name_or_wildcard∗ → Text

print_name_or_wildcard_list(x) ≡
case x of

〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_name_or_wildcard(a),
〈a〉 ̂ b →

print_name_or_wildcard(a) ̂
′′ | ′′

̂

print_name_or_wildcard_list(b)
end,

- - [p. 279]
print_name_or_wildcard : name_or_wildcard → Text
print_name_or_wildcard(x) ≡

case x of
name_or_wildcard_from_type_name(a) →

print_type_name(a),
nw_wildcard → ′′_′′

end,

print_type_name : type_name → Text
print_type_name(x) ≡ print_name(x),

- - [p. 279]
print_short_record_def : short_record_def → Text
print_short_record_def(x) ≡

case (x) of
mk_short_record_def(a, b) →

print_id(a) ̂
′′ :: ′′

̂ print_component_kind_list(b)
end,

- - [p. 280]
print_abbreviation_def : abbreviation_def → Text
print_abbreviation_def(x) ≡

case (x) of
mk_abbreviation_def(a, b) →

print_id(a) ̂
′′ = ′′

̂ print_type_expr(b)
end,

- - [p. 280]
print_value_decl : value_decl → Text
print_value_decl(x) ≡

case (x) of
mk_value_decl(a) → ′′value ′′

̂ print_value_def_list(a)
end,

print_value_def_list : value_def∗ → Text

B.2 rslprint.rsl 149

print_value_def_list(x) ≡
case x of

〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_value_def(a),
〈a〉 ̂ b →

print_value_def(a) ̂
′′,\n′′ ̂ print_value_def_list(b)

end,

- - [p. 280]
print_value_def : value_def → Text
print_value_def(x) ≡

case x of
value_def_from_commented_typing(a) →

print_commented_typing(a),
value_def_from_explicit_value_def(a) →

print_explicit_value_def(a),
value_def_from_implicit_value_def(a) →

print_implicit_value_def(a),
value_def_from_explicit_function_def(a) →

print_explicit_function_def(a),
value_def_from_implicit_function_def(a) →

print_implicit_function_def(a)
end,

- - [p. 281]
print_explicit_value_def : explicit_value_def → Text
print_explicit_value_def(x) ≡

case (x) of
mk_explicit_value_def(a, b) →

print_single_typing(a) ̂
′′ = ′′

̂ print_value_expr(b)
end,

- - [p. 281]
print_implicit_value_def : implicit_value_def → Text
print_implicit_value_def(x) ≡

case (x) of
mk_implicit_value_def(a, b) →

print_single_typing(a) ̂
′′ ′′

̂ print_restriction(b)
end,

- - [p. 282]
print_explicit_function_def :

explicit_function_def → Text
print_explicit_function_def(x) ≡

case (x) of
mk_explicit_function_def(a, b, c, d) →

print_single_typing(a) ̂
′′ ′′

̂

print_formal_function_application(b) ̂
′′ is ′′

̂

print_value_expr(c) ̂ print_opt_pre_condition(d)
end,

print_opt_pre_condition : opt_pre_condition → Text
print_opt_pre_condition(x) ≡

case x of
opt_prec_none → ′′′′,
opt_pre_condition_from_pre_condition(a) →

′′ ′′
̂ print_pre_condition(a)

end,

150 Appendix B. Description of RSL types in RSL

- - [p. 282]
print_formal_function_application :

formal_function_application → Text
print_formal_function_application(x) ≡

case x of
formal_function_application_from_id_application(a) →

print_id_application(a),
formal_function_application_from_prefix_application(a) →

print_prefix_application(a),
formal_function_application_from_infix_application(a) →

print_infix_application(a)
end,

- - [p. 282]
print_id_application : id_application → Text
print_id_application(x) ≡

case (x) of
mk_id_application(a, b) →

print_id(a) ̂
′′ ′′

̂

print_formal_function_parameter_list(b)
end,

print_formal_function_parameter_list :
formal_function_parameter∗ → Text

print_formal_function_parameter_list(x) ≡
case x of

〈〉 → ′′′′,
〈a〉 ̂ 〈〉 →

′′(" ^ print_formal_function_parameter(a) ^ ")′′,
〈a〉 ̂ b →

′′(" ^ print_formal_function_parameter(a) ^ ")′′ ̂
print_formal_function_parameter_list(b)

end,

- - [p. 282]
print_formal_function_parameter :

formal_function_parameter → Text
print_formal_function_parameter(x) ≡

case (x) of
mk_formal_function_parameter(a) →

′′(" ^ print_binding_list(a) ^ ") ′′

end,

- - [p. 282]
print_prefix_application : prefix_application → Text
print_prefix_application(x) ≡

case (x) of
mk_prefix_application(a, b) →

print_prefix_op(a) ̂
′′ ′′

̂ print_id(b)
end,

- - [p. 282]
print_infix_application : infix_application → Text
print_infix_application(x) ≡

case (x) of
mk_infix_application(a, b, c) →

print_id(a) ̂ print_infix_op(b) ̂ print_id(c)

B.2 rslprint.rsl 151

end,

- - [p. 284]
print_implicit_function_def :

implicit_function_def → Text
print_implicit_function_def(x) ≡

case (x) of
mk_implicit_function_def(a, b, c, d) →

print_single_typing(a) ̂
′′ ′′

̂

print_formal_function_application(b) ̂
′′ ′′

̂

print_post_condition(c) ̂ print_opt_pre_condition(d)
end,

- - [p. 287]
print_variable_decl : variable_decl → Text
print_variable_decl(x) ≡

case (x) of
mk_variable_decl(a) →

′′variable ′′
̂ print_variable_def_list(a)

end,

print_variable_def_list : variable_def∗ → Text
print_variable_def_list(x) ≡

case x of
〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_variable_def(a),
〈a〉 ̂ b →

print_variable_def(a) ̂
′′,\n ′′

̂

print_variable_def_list(b)
end,

- - [p. 287]
print_variable_def : variable_def → Text
print_variable_def(x) ≡

case x of
variable_def_from_single_variable_def(a) →

print_single_variable_def(a),
variable_def_from_multiple_variable_def(a) →

print_multiple_variable_def(a)
end,

- - [p. 287]
print_single_variable_def : single_variable_def → Text
print_single_variable_def(x) ≡

case (x) of
mk_single_variable_def(a, b, c) →

print_id(a) ̂
′′ : ′′

̂ print_type_expr(b) ̂

print_opt_initialisation(c)
end,

print_opt_initialisation : opt_initialisation → Text
print_opt_initialisation(x) ≡

case x of
opt_init_none → ′′′′,
opt_initialisation_from_initialisation(a) →

′′ ′′
̂ print_initialisation(a)

end,

152 Appendix B. Description of RSL types in RSL

print_initialisation : initialisation → Text
print_initialisation(x) ≡ ′′:= ′′

̂ print_value_expr(x),

- - [P. 287]
print_multiple_variable_def :

multiple_variable_def → Text
print_multiple_variable_def(x) ≡

case (x) of
mk_multiple_variable_def(a, b) →

print_id_list(a) ̂
′′ : ′′

̂ print_type_expr(b)
end,

- - [p. 288]
print_channel_decl : channel_decl → Text
print_channel_decl(x) ≡

case (x) of
mk_channel_decl(a) →

′′channel ′′
̂ print_channel_def_list(a)

end,

print_channel_def_list : channel_def∗ → Text
print_channel_def_list(x) ≡

case x of
〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_channel_def(a),
〈a〉 ̂ b →

print_channel_def(a) ̂
′′,\n ′′

̂

print_channel_def_list(b)
end,

- - [p.288]
print_channel_def : channel_def → Text
print_channel_def(x) ≡

case x of
channel_def_from_single_channel_def(a) →

print_single_channel_def(a),
channel_def_from_multiple_channel_def(a) →

print_multiple_channel_def(a)
end,

- - [p.288]
print_single_channel_def : single_channel_def → Text
print_single_channel_def(x) ≡

case (x) of
mk_single_channel_def(a, b) →

print_id(a) ̂
′′ : ′′

̂ print_type_expr(b)
end,

- - [p.288]
print_multiple_channel_def : multiple_channel_def → Text
print_multiple_channel_def(x) ≡

case (x) of
mk_multiple_channel_def(a, b) →

print_id_list(a) ̂
′′ : ′′

̂ print_type_expr(b)
end,

- - [p. 289]
print_axiom_decl : axiom_decl → Text

B.2 rslprint.rsl 153

print_axiom_decl(x) ≡
case (x) of

mk_axiom_decl(a) → ′′axiom ′′
̂ print_axiom_def_list(a)

end,

print_axiom_def_list : axiom_def∗ → Text
print_axiom_def_list(x) ≡

case x of
〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_axiom_def(a),
〈a〉 ̂ b →

print_axiom_def(a) ̂
′′,\n ′′

̂

print_axiom_def_list(b)
end,

- - [p. 289]
print_axiom_def : axiom_def → Text
print_axiom_def(x) ≡

case (x) of
mk_axiom_def(a, b) →

print_opt_axiom_naming(a) ̂ print_value_expr(b)
end,

print_opt_axiom_naming : opt_axiom_naming → Text
print_opt_axiom_naming(x) ≡

case x of
opt_axio_none → ′′′′,
opt_axiom_naming_from_axiom_naming(a) →

print_axiom_naming(a) ̂
′′ ′′

end,

- - [p.289]
print_axiom_naming : axiom_naming → Text
print_axiom_naming(x) ≡

case (x) of
mk_axiom_naming(a) → ′′[" ^ print_id(a) ^ "]′′

end,

- - [p.291]
print_class_expr : class_expr → Text
print_class_expr(x) ≡

case x of
class_expr_from_basic_class_expr(a) →

print_basic_class_expr(a),
class_expr_from_extending_class_expr(a) →

print_extending_class_expr(a),
class_expr_from_hiding_class_expr(a) →

print_hiding_class_expr(a),
class_expr_from_renaming_class_expr(a) →

print_renaming_class_expr(a),
class_expr_from_with_class_expr(a) →

print_with_class_expr(a),
class_expr_from_scheme_instantiation(a) →

print_scheme_instantiation(a)
end,

- - [p.292]
print_basic_class_expr : basic_class_expr → Text

154 Appendix B. Description of RSL types in RSL

print_basic_class_expr(x) ≡
case (x) of

mk_basic_class_expr(a) →
′′class " ^ print_decl_list(a) ^ " end′′

end,

- - [p.292]
print_extending_class_expr : extending_class_expr → Text
print_extending_class_expr(x) ≡

case (x) of
mk_extending_class_expr(a, b) →

′′extend " ^ print_class_expr(a) ^ " with ′′
̂

print_class_expr(b)
end,

- - [p.293]
print_hiding_class_expr : hiding_class_expr → Text
print_hiding_class_expr(x) ≡

case (x) of
mk_hiding_class_expr(a, b) →

′′hide " ^ print_defined_item_list(a) ^ " in ′′
̂

print_class_expr(b)
end,

- - [p.293]
print_renaming_class_expr : renaming_class_expr → Text
print_renaming_class_expr(x) ≡

case (x) of
mk_renaming_class_expr(a, b) →

′′use " ^ print_rename_pair_list(a) ^ " in ′′
̂

print_class_expr(b)
end,

- - [p. NEW]
print_with_class_expr : with_class_expr → Text
print_with_class_expr(x) ≡

case (x) of
mk_with_class_expr(a, b) →

′′with " ^ print_object_expr_list(a) ^ " in ′′
̂

print_class_expr(b)
end,

- - [p.294]
print_scheme_instantiation : scheme_instantiation → Text
print_scheme_instantiation(x) ≡

case (x) of
mk_scheme_instantiation(a, b) →

print_name(a) ̂ print_opt_actual_scheme_parameter(b)
end,

print_opt_actual_scheme_parameter :
opt_actual_scheme_parameter → Text

print_opt_actual_scheme_parameter(x) ≡
case x of

opt_asp_none → ′′′′,
opt_actual_scheme_parameter_from_actual_scheme_parameter(

a) →
′′ ′′

̂ print_actual_scheme_parameter(a)

B.2 rslprint.rsl 155

end,

- - [p.294]
print_actual_scheme_parameter :

actual_scheme_parameter → Text
print_actual_scheme_parameter(x) ≡

case (x) of
mk_actual_scheme_parameter(a) →

′′(" ^ print_object_expr_list(a) ^ ")′′

end,

print_rename_pair_list : rename_pair∗ → Text
print_rename_pair_list(x) ≡

case x of
〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_rename_pair(a),
〈a〉 ̂ b →

print_rename_pair(a) ̂
′′, ′′

̂

print_rename_pair_list(b)
end,

- -[p.297]
print_rename_pair : rename_pair → Text
print_rename_pair(x) ≡

case (x) of
mk_rename_pair(a, b) →

print_defined_item(a) ̂
′′ for ′′

̂

print_defined_item(b)
end,

print_defined_item_list : defined_item∗ → Text
print_defined_item_list(x) ≡

case x of
〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_defined_item(a),
〈a〉 ̂ b →

print_defined_item(a) ̂
′′, ′′

̂

print_defined_item_list(b)
end,

- - [p.297]
print_defined_item : defined_item → Text
print_defined_item(x) ≡

case x of
defined_item_from_id_or_op(a) → print_id_or_op(a),
defined_item_from_disambiguated_item(a) →

print_disambiguated_item(a)
end,

- - [p.297]
print_disambiguated_item : disambiguated_item → Text
print_disambiguated_item(x) ≡

case (x) of
mk_disambiguated_item(a, b) →

print_id_or_op(a) ̂
′′ : ′′

̂ print_type_expr(b)
end,

print_object_expr_list : object_expr∗ → Text

156 Appendix B. Description of RSL types in RSL

print_object_expr_list(x) ≡
case x of

〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_object_expr(a),
〈a〉 ̂ b →

print_object_expr(a) ̂
′′, \n′′ ̂

print_object_expr_list(b)
end,

- -[p.299]
print_object_expr : object_expr → Text
print_object_expr(x) ≡

case x of
object_expr_from_object_name(a) →

print_object_name(a),
object_expr_from_element_object_expr(a) →

print_element_object_expr(a),
object_expr_from_array_object_expr(a) →

print_array_object_expr(a),
object_expr_from_fitting_object_expr(a) →

print_fitting_object_expr(a)
end,

print_object_name : object_name → Text
print_object_name(x) ≡ print_name(x),

- -[p.300]
print_element_object_expr : element_object_expr → Text
print_element_object_expr(x) ≡

case (x) of
mk_element_object_expr(a, b) →

print_object_expr(a) ̂
′′ ′′

̂

print_actual_array_parameter(b)
end,

- -[p.300]
print_actual_array_parameter :

actual_array_parameter → Text
print_actual_array_parameter(x) ≡

case (x) of
mk_actual_array_parameter(a) →

′′[" ^ print_value_expr_list(a) ^ "]′′

end,

- -[p.300]
print_array_object_expr : array_object_expr → Text
print_array_object_expr(x) ≡

case (x) of
mk_array_object_expr(a, b) →

′′[|" ^ print_typing_list(a) ^ " :- ′′
̂

print_object_expr(b) ̂
′′|]′′

end,

- - [p.301]
print_fitting_object_expr : fitting_object_expr → Text
print_fitting_object_expr(x) ≡

case (x) of
mk_fitting_object_expr(a, b) →

B.2 rslprint.rsl 157

print_object_expr(a) ̂
′′{′′ ̂

print_rename_pair_list(b) ̂
′′}′′

end,

print_type_expr_list : type_expr∗ → Text
print_type_expr_list(x) ≡

case x of
〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_type_expr(a),
〈a〉 ̂ b →

print_type_expr(a) ̂
′′ >< ′′

̂

print_type_expr_list(b)
end,

- - ?? [p.302]
print_type_expr : type_expr → Text
print_type_expr(x) ≡

case x of
type_expr_from_type_literal(a) →

print_type_literal(a),
type_expr_from_name(a) → print_name(a),
type_expr_from_product_type_expr(a) →

print_product_type_expr(a),
type_expr_from_set_type_expr(a) →

print_set_type_expr(a),
type_expr_from_list_type_expr(a) →

print_list_type_expr(a),
type_expr_from_map_type_expr(a) →

print_map_type_expr(a),
type_expr_from_function_type_expr(a) →

print_function_type_expr(a),
type_expr_from_subtype_expr(a) →

print_subtype_expr(a),
type_expr_from_bracketed_type_expr(a) →

print_bracketed_type_expr(a)
end,

- - [p.302]
print_type_literal : type_literal → Text
print_type_literal(x) ≡

case x of
tl_Unit → ′′Unit′′,
tl_Bool → ′′Bool′′,
tl_Int → ′′Int′′,
tl_Nat → ′′Nat′′,
tl_Real → ′′Real′′,
tl_Text → ′′Text′′,
tl_Char → ′′Char′′

end,

- - [p.305]
print_product_type_expr : product_type_expr → Text
print_product_type_expr(x) ≡

case (x) of
mk_product_type_expr(a) → print_type_expr_list(a)

end,

- - [p.305]

158 Appendix B. Description of RSL types in RSL

print_set_type_expr : set_type_expr → Text
print_set_type_expr(x) ≡

case x of
set_type_expr_from_finite_set_type_expr(a) →

print_finite_set_type_expr(a),
set_type_expr_from_infinite_set_type_expr(a) →

print_infinite_set_type_expr(a)
end,

- - [p.305]
print_finite_set_type_expr : finite_set_type_expr → Text
print_finite_set_type_expr(x) ≡

case (x) of
mk_finite_set_type_expr(a) →

print_type_expr(a) ̂
′′-set′′

end,

- - [p.305]
print_infinite_set_type_expr :

infinite_set_type_expr → Text
print_infinite_set_type_expr(x) ≡

case (x) of
mk_infinite_set_type_expr(a) →

print_type_expr(a) ̂
′′-infset′′

end,

- - [p.306]
print_list_type_expr : list_type_expr → Text
print_list_type_expr(x) ≡

case x of
list_type_expr_from_finite_list_type_expr(a) →

print_finite_list_type_expr(a),
list_type_expr_from_infinite_list_type_expr(a) →

print_infinite_list_type_expr(a)
end,

- - [p.306]
print_finite_list_type_expr :

finite_list_type_expr → Text
print_finite_list_type_expr(x) ≡

case (x) of
mk_finite_list_type_expr(a) →

print_type_expr(a) ̂
′′-list′′

end,

- - [p.306]
print_infinite_list_type_expr :

infinite_list_type_expr → Text
print_infinite_list_type_expr(x) ≡

case (x) of
mk_infinite_list_type_expr(a) →

print_type_expr(a) ̂
′′-inflist′′

end,

- - [p.306]
print_map_type_expr : map_type_expr → Text
print_map_type_expr(x) ≡

case x of

B.2 rslprint.rsl 159

map_type_expr_from_finite_map_type_expr(a) →
print_finite_map_type_expr(a),

map_type_expr_from_infinite_map_type_expr(a) →
print_infinite_map_type_expr(a)

end,

- - [p.306]
print_finite_map_type_expr : finite_map_type_expr → Text
print_finite_map_type_expr(x) ≡

case (x) of
mk_finite_map_type_expr(a, b) →

print_type_expr(a) ̂
′′ -m->′′ ̂ print_type_expr(b)

end,

- - [p.306]
print_infinite_map_type_expr :

infinite_map_type_expr → Text
print_infinite_map_type_expr(x) ≡

case (x) of
mk_infinite_map_type_expr(a, b) →

print_type_expr(a) ̂
′′ -~m-> ′′

̂ print_type_expr(b)
end,

- - [p.307]
print_function_type_expr : function_type_expr → Text
print_function_type_expr(x) ≡

case (x) of
mk_function_type_expr(a, b, c) →

print_type_expr(a) ̂
′′ ′′

̂ print_function_arrow(b) ̂
′′ ′′

̂ print_result_desc(c)
end,

print_function_arrow : function_arrow → Text
print_function_arrow(x) ≡

case x of
fa_total → ′′->′′,
fa_partial → ′′-~->′′

end,

- - [p.307]
print_result_desc : result_desc → Text
print_result_desc(x) ≡

case (x) of
mk_result_desc(a, b) →

print_accss_desc_list(a) ̂ print_type_expr(b)
end,

- - [p.308]
print_subtype_expr : subtype_expr → Text
print_subtype_expr(x) ≡

case (x) of
mk_subtype_expr(a, b) →

′′{|" ^ print_single_typing(a) ^ " ′′
̂

print_restriction(b) ̂
′′|}′′

end,

- - [p.309]
print_bracketed_type_expr : bracketed_type_expr → Text

160 Appendix B. Description of RSL types in RSL

print_bracketed_type_expr(x) ≡
case (x) of

mk_bracketed_type_expr(a) →
′′(" ^ print_type_expr(a) ^ ")′′

end,

print_accss_desc_list : accss_desc∗ → Text
print_accss_desc_list(x) ≡

case x of
〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_accss_desc(a) ̂

′′ ′′,
〈a〉 ̂ b →

print_accss_desc(a) ̂
′′ ′′

̂ print_accss_desc_list(b)
end,

- - [p.309]
print_accss_desc : accss_desc → Text
print_accss_desc(x) ≡

case (x) of
mk_accss_desc(a, b) →

print_accss_mode(a) ̂
′′ ′′

̂ print_accss_list(b)
end,

- - [p.309]
print_accss_mode : accss_mode → Text
print_accss_mode(x) ≡

case x of
am_read → ′′read ′′,
am_write → ′′write ′′,
am_in → ′′in′′,
am_out → ′′out′′

end,

print_accss_list : accss∗ → Text
print_accss_list(x) ≡

case x of
〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_accss(a),
〈a〉 ̂ b →

print_accss(a) ̂
′′ ′′

̂ print_accss_list(b)
end,

- - [p.309]
print_accss : accss → Text
print_accss(x) ≡

case x of
accss_from_acc_name(a) → print_acc_name(a),
accss_from_enumerated_accss(a) →

print_enumerated_accss(a),
accss_from_completed_accss(a) →

print_completed_accss(a),
accss_from_comprehended_accss(a) →

print_comprehended_accss(a)
end,

print_acc_name : acc_name → Text
print_acc_name(x) ≡ print_name(x),

B.2 rslprint.rsl 161

- - [p.309]
print_enumerated_accss : enumerated_accss → Text
print_enumerated_accss(x) ≡

case (x) of
mk_enumerated_accss(a) →

′′{" ^ print_accss_list(a) ^ "}′′

end,

- - [p.309]
print_completed_accss : completed_accss → Text
print_completed_accss(x) ≡

case (x) of
mk_completed_accss(a) →

print_opt_qualification(a) ̂
′′any′′

end,

print_opt_qualification : opt_qualification → Text
print_opt_qualification(x) ≡

case x of
opt_qual_none → ′′′′,
opt_qualification_from_qualification(a) →

print_qualification(a)
end,

- - [p.309]
print_comprehended_accss : comprehended_accss → Text
print_comprehended_accss(x) ≡

case (x) of
mk_comprehended_accss(a, b) →

′′{" ^ print_accss(a) ^ " | ′′
̂

print_set_limitation(b) ̂
′′}′′

end,

print_value_expr_list : value_expr∗ → Text
print_value_expr_list(x) ≡

case x of
〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_value_expr(a),
〈a〉 ̂ b →

print_value_expr(a) ̂
′′, ′′

̂

print_value_expr_list(b)
end,

- - [p.312]
print_value_expr : value_expr → Text
print_value_expr(x) ≡

case x of
ve_val_l(a) → print_value_literal(a),
ve_name(a) → print_name(a),
ve_pren(a) → print_pre_name(a),
ve_bas_e(a) → print_basic_expr(a),
ve_pro_e(a) → print_product_expr(a),
ve_set_e(a) → print_set_expr(a),
ve_lis_e(a) → print_list_expr(a),
ve_map_e(a) → print_map_expr(a),
ve_fun_e(a) → print_function_expr(a),
ve_app_e(a) → print_application_expr(a),
ve_qua_e(a) → print_quantified_expr(a),

162 Appendix B. Description of RSL types in RSL

ve_equ_e(a) → print_equivalence_expr(a),
ve_pos_e(a) → print_post_expr(a),
ve_dis_e(a) → print_disambiguation_expr(a),
ve_bra_e(a) → print_bracketed_expr(a),
ve_inf_e(a) → print_infix_expr(a),
ve_pre_e(a) → print_prefix_expr(a),
ve_com_e(a) → print_comprehended_expr(a),
ve_ini_e(a) → print_initialise_expr(a),
ve_ass_e(a) → print_assignment_expr(a),
ve_inp_e(a) → print_input_expr(a),
ve_out_e(a) → print_output_expr(a),
ve_str_e(a) → print_structured_expr(a)

end,

- - [p.315]
print_value_literal : value_literal → Text
print_value_literal(x) ≡

case x of
unit_literal → ′′()′′,
bool_literal(a) →

case a of
true → ′′true′′,
false → ′′false′′

end,
int_literal(a) → RSL_int_to_string(a),
real_literal(a) → RSL_double_to_string(a),
text_literal(a) → a,
char_literal(a) → 〈a〉

end,

- - [p.316]
print_pre_name : pre_name → Text
print_pre_name(x) ≡ print_name(x),

- - [p.316]
print_basic_expr : basic_expr → Text
print_basic_expr(x) ≡

case x of
be_chaos → ′′chaos′′,
be_skip → ′′skip′′,
be_stop → ′′stop′′,
be_swap → ′′swap′′

end,

- - [p.316]
print_product_expr : product_expr → Text
print_product_expr(x) ≡

case (x) of
mk_product_expr(a) →

′′(" ^ print_value_expr_list(a) ^ ")′′

end,

- - [p.317]
print_set_expr : set_expr → Text
print_set_expr(x) ≡

case x of
set_expr_from_ranged_set_expr(a) →

print_ranged_set_expr(a),

B.2 rslprint.rsl 163

set_expr_from_enumerated_set_expr(a) →
print_enumerated_set_expr(a),

set_expr_from_comprehended_set_expr(a) →
print_comprehended_set_expr(a)

end,

- - [p.317]
print_ranged_set_expr : ranged_set_expr → Text
print_ranged_set_expr(x) ≡

case (x) of
mk_ranged_set_expr(a, b) →

′′{" ^ print_value_expr(a) ^ " .. ′′
̂

print_value_expr(b) ̂
′′}′′

end,

- - [p.317]
print_enumerated_set_expr : enumerated_set_expr → Text
print_enumerated_set_expr(x) ≡

case (x) of
mk_enumerated_set_expr(a) →

′′{" ^ print_value_expr_list(a) ^ "}′′

end,

- - [p.318]
print_comprehended_set_expr :

comprehended_set_expr → Text
print_comprehended_set_expr(x) ≡

case (x) of
mk_comprehended_set_expr(a, b) →

′′{" ^ print_value_expr(a) ^ " | ′′
̂

print_set_limitation(b) ̂
′′}′′

end,

- - [p.318]
print_set_limitation : set_limitation → Text
print_set_limitation(x) ≡

case (x) of
mk_set_limitation(a, b) →

print_typing_list(a) ̂ print_opt_restriction(b)
end,

print_opt_restriction : opt_restriction → Text
print_opt_restriction(x) ≡

case x of
opt_rest_none → ′′′′,
opt_restriction_from_restriction(a) →

′′ ′′
̂ print_restriction(a)

end,

- - [p. 318]
print_restriction : restriction → Text
print_restriction(x) ≡

case (x) of
mk_restriction(a) → ′′:- ′′

̂ print_value_expr(a)
end,

- - [p.319]
print_list_expr : list_expr → Text

164 Appendix B. Description of RSL types in RSL

print_list_expr(x) ≡
case x of

list_expr_from_ranged_list_expr(a) →
print_ranged_list_expr(a),

list_expr_from_enumerated_list_expr(a) →
print_enumerated_list_expr(a),

list_expr_from_comprehended_list_expr(a) →
print_comprehended_list_expr(a)

end,

- - [p.319]
print_ranged_list_expr : ranged_list_expr → Text
print_ranged_list_expr(x) ≡

case (x) of
mk_ranged_list_expr(a, b) →

′′<." ^ print_value_expr(a) ^ " .. ′′
̂

print_value_expr(b) ̂
′′.>′′

end,

- - [p.319]
print_enumerated_list_expr : enumerated_list_expr → Text
print_enumerated_list_expr(x) ≡

case (x) of
mk_enumerated_list_expr(a) →

′′<." ^ print_value_expr_list(a) ^ ".>′′

end,

- - [p.320]
print_comprehended_list_expr :

comprehended_list_expr → Text
print_comprehended_list_expr(x) ≡

case (x) of
mk_comprehended_list_expr(a, b) →

′′<." ^ print_value_expr(a) ^ " | ′′
̂

print_list_limitation(b) ̂
′′.>′′

end,

- - [p.320]
print_list_limitation : list_limitation → Text
print_list_limitation(x) ≡

case (x) of
mk_list_limitation(a, b, c) →

print_binding(a) ̂
′′ in ′′

̂ print_value_expr(b) ̂

print_opt_restriction(c)
end,

- - [p.321]
print_map_expr : map_expr → Text
print_map_expr(x) ≡

case x of
map_expr_from_enumerated_map_expr(a) →

print_enumerated_map_expr(a),
map_expr_from_comprehended_map_expr(a) →

print_comprehended_map_expr(a)
end,

- - [p.321]
print_enumerated_map_expr : enumerated_map_expr → Text

B.2 rslprint.rsl 165

print_enumerated_map_expr(x) ≡
case (x) of

mk_enumerated_map_expr(a) →
′′[" ^ print_value_expr_pair_list(a) ^ "]′′

end,

print_value_expr_pair_list : value_expr_pair∗ → Text
print_value_expr_pair_list(x) ≡

case x of
〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_value_expr_pair(a),
〈a〉 ̂ b →

print_value_expr_pair(a) ̂
′′, ′′

̂

print_value_expr_pair_list(b)
end,

- - [p.321]
print_value_expr_pair : value_expr_pair → Text
print_value_expr_pair(x) ≡

case (x) of
mk_value_expr_pair(a, b) →

print_value_expr(a) ̂
′′ +> ′′

̂ print_value_expr(b)
end,

- - [p.322]
print_comprehended_map_expr :

comprehended_map_expr → Text
print_comprehended_map_expr(x) ≡

case (x) of
mk_comprehended_map_expr(a, b) →

′′[" ^ print_value_expr_pair(a) ^ " | ′′
̂

print_set_limitation(b) ̂
′′]′′

end,

- - [p.322]
print_function_expr : function_expr → Text
print_function_expr(x) ≡

case (x) of
mk_function_expr(a, b) →

′′-\\ " ^ print_lambda_parameter(a) ^ " :- ′′
̂

print_value_expr(b)
end,

- - [p.322]
print_lambda_parameter : lambda_parameter → Text
print_lambda_parameter(x) ≡

case x of
lambda_parameter_from_lambda_typing(a) →

print_lambda_typing(a),
lambda_parameter_from_single_typing(a) →

print_single_typing(a)
end,

- - [p.322]
print_lambda_typing : lambda_typing → Text
print_lambda_typing(x) ≡

case (x) of
mk_lambda_typing(a) →

166 Appendix B. Description of RSL types in RSL

′′(" ^ print_typing_list(a) ^ ")′′

end,

- - [p.323]
print_application_expr : application_expr → Text
print_application_expr(x) ≡

case (x) of
mk_application_expr(a, b) →

print_value_expr(a) ̂
′′ ′′

̂

print_actual_function_parameter(b)
end,

- - [p.324]
print_actual_function_parameter :

actual_function_parameter → Text
print_actual_function_parameter(x) ≡

case (x) of
mk_actual_function_parameter(a) →

′′(" ^ print_value_expr_list(a) ^ ")′′

end,

- - [p.325]
print_quantified_expr : quantified_expr → Text
print_quantified_expr(x) ≡

case (x) of
mk_quantified_expr(a, b, c) →

print_quantifier(a) ̂
′′ ′′

̂ print_typing_list(b) ̂
′′ ′′

̂ print_restriction(c)
end,

- - [p.322]
print_quantifier : quantifier → Text
print_quantifier(x) ≡

case x of
qu_all → ′′all ′′,
qu_exists → ′′exists ′′,
qu_existsem → ′′exists! ′′

end,

- - [p.326]
print_equivalence_expr : equivalence_expr → Text
print_equivalence_expr(x) ≡

case (x) of
mk_equivalence_expr(a, b, c) →

print_value_expr(a) ̂
′′ is ′′

̂ print_value_expr(b) ̂

print_opt_pre_condition(c)
end,

- - [p. 326]
print_pre_condition : pre_condition → Text
print_pre_condition(x) ≡

case (x) of
mk_pre_condition(a) → ′′pre ′′

̂ print_value_expr(a)
end,

- - [p. 327]
print_post_expr : post_expr → Text
print_post_expr(x) ≡

B.2 rslprint.rsl 167

case (x) of
mk_post_expr(a, b, c) →

print_value_expr(a) ̂
′′ ′′

̂

print_post_condition(b) ̂ print_opt_pre_condition(c)
end,

- - [p. 327]
print_post_condition : post_condition → Text
print_post_condition(x) ≡

case (x) of
mk_post_condition(a, b) →

print_opt_result_naming(a) ̂
′′post ′′

̂

print_value_expr(b)
end,

print_opt_result_naming : opt_result_naming → Text
print_opt_result_naming(x) ≡

case x of
opt_resn_none → ′′′′,
opt_result_naming_from_result_naming(a) →

print_result_naming(a) ̂
′′ ′′

end,

print_result_naming : result_naming → Text
print_result_naming(x) ≡

case (x) of
mk_result_naming(a) → ′′as ′′

̂ print_binding(a)
end,

- - [p.328]
print_disambiguation_expr : disambiguation_expr → Text
print_disambiguation_expr(x) ≡

case (x) of
mk_disambiguation_expr(a, b) →

print_value_expr(a) ̂
′′ : ′′

̂ print_type_expr(b)
end,

- - [p.328]
print_bracketed_expr : bracketed_expr → Text
print_bracketed_expr(x) ≡

case (x) of
mk_bracketed_expr(a) →

′′(" ^ print_value_expr(a) ^ ")′′

end,

- -[p.329]
print_infix_expr : infix_expr → Text
print_infix_expr(x) ≡

case x of
infix_expr_from_stmt_infix_expr(a) →

print_stmt_infix_expr(a),
infix_expr_from_axiom_infix_expr(a) →

print_axiom_infix_expr(a),
infix_expr_from_value_infix_expr(a) →

print_value_infix_expr(a)
end,

print_stmt_infix_expr : stmt_infix_expr → Text

168 Appendix B. Description of RSL types in RSL

print_stmt_infix_expr(x) ≡
case (x) of

mk_stmt_infix_expr(a, b, c) →
print_value_expr(a) ̂ print_infix_combinator(b) ̂

print_value_expr(c)
end,

print_axiom_infix_expr : axiom_infix_expr → Text
print_axiom_infix_expr(x) ≡

case (x) of
mk_axiom_infix_expr(a, b, c) →

print_value_expr(a) ̂
′′ ′′

̂

print_infix_connective(b) ̂
′′ ′′

̂

print_value_expr(c)
end,

print_value_infix_expr : value_infix_expr → Text
print_value_infix_expr(x) ≡

case (x) of
mk_value_infix_expr(a, b, c) →

print_value_expr(a) ̂ print_infix_op(b) ̂

print_value_expr(c)
end,

- -[p.330]
print_prefix_expr : prefix_expr → Text
print_prefix_expr(x) ≡

case x of
prefix_expr_from_axiom_prefix_expr(a) →

print_axiom_prefix_expr(a),
prefix_expr_from_universal_prefix_expr(a) →

print_universal_prefix_expr(a),
prefix_expr_from_value_prefix_expr(a) →

print_value_prefix_expr(a)
end,

print_axiom_prefix_expr : axiom_prefix_expr → Text
print_axiom_prefix_expr(x) ≡

case (x) of
mk_axiom_prefix_expr(a, b) →

print_prefix_connective(a) ̂ print_value_expr(b)
end,

print_universal_prefix_expr :
universal_prefix_expr → Text

print_universal_prefix_expr(x) ≡
case (x) of

mk_universal_prefix_expr(a) →
′′always ′′

̂ print_value_expr(a)
end,

print_value_prefix_expr : value_prefix_expr → Text
print_value_prefix_expr(x) ≡

case (x) of
mk_value_prefix_expr(a, b) →

print_prefix_op(a) ̂ print_value_expr(b)
end,

B.2 rslprint.rsl 169

- - [p.331]
print_comprehended_expr : comprehended_expr → Text
print_comprehended_expr(x) ≡

case (x) of
mk_comprehended_expr(a, b, c) →

print_infix_combinator(a) ̂
′′{′′ ̂

print_value_expr(b) ̂
′′| ′′

̂

print_set_limitation(c) ̂
′′} ′′

end,

- -[p.332]
print_initialise_expr : initialise_expr → Text
print_initialise_expr(x) ≡

case (x) of
mk_initialise_expr(a) →

print_opt_qualification(a) ̂
′′initialise′′

end,

- - [p.332]
print_assignment_expr : assignment_expr → Text
print_assignment_expr(x) ≡

case (x) of
mk_assignment_expr(a, b) →

print_name(a) ̂
′′ := ′′

̂ print_value_expr(b)
end,

- - [p.331]
print_input_expr : input_expr → Text
print_input_expr(x) ≡

case (x) of
mk_input_expr(a) → print_name(a) ̂

′′?′′

end,

- - [p.331]
print_output_expr : output_expr → Text
print_output_expr(x) ≡

case (x) of
mk_output_expr(a, b) →

print_name(a) ̂
′′!′′ ̂ print_value_expr(b)

end,

- - [p.334]
print_structured_expr : structured_expr → Text
print_structured_expr(x) ≡

case x of
structured_expr_from_local_expr(a) →

print_local_expr(a),
structured_expr_from_let_expr(a) → print_let_expr(a),
structured_expr_from_if_expr(a) → print_if_expr(a),
structured_expr_from_case_expr(a) →

print_case_expr(a),
structured_expr_from_while_expr(a) →

print_while_expr(a),
structured_expr_from_until_expr(a) →

print_until_expr(a),
structured_expr_from_for_expr(a) → print_for_expr(a)

end,

170 Appendix B. Description of RSL types in RSL

- - [p.334]
print_local_expr : local_expr → Text
print_local_expr(x) ≡

case (x) of
mk_local_expr(a, b) →

′′local " ^ print_decl_list(a) ^ " in ′′
̂

print_value_expr(b) ̂
′′ end′′

end,

- - [p.335]
print_let_expr : let_expr → Text
print_let_expr(x) ≡

case (x) of
mk_let_expr(a, b) →

′′let " ^ print_let_def(a) ^ " in ′′
̂

print_value_expr(b) ̂
′′ end′′

end,

- - [p.335]
print_let_def : let_def → Text
print_let_def(x) ≡

case x of
let_def_from_typing(a) → print_typing(a),
let_def_from_explicit_let(a) → print_explicit_let(a),
let_def_from_implicit_let(a) → print_implicit_let(a)

end,

- - [p.335]
print_explicit_let : explicit_let → Text
print_explicit_let(x) ≡

case (x) of
mk_explicit_let(a, b) →

print_let_binding(a) ̂
′′ = ′′

̂ print_value_expr(b)
end,

- - [p.335]
print_implicit_let : implicit_let → Text
print_implicit_let(x) ≡

case (x) of
mk_implicit_let(a, b) →

print_single_typing(a) ̂ print_restriction(b)
end,

- - [p.335]
print_let_binding : let_binding → Text
print_let_binding(x) ≡

case x of
let_binding_from_binding(a) → print_binding(a),
let_binding_from_list_pattern(a) →

print_list_pattern(a)
end,

- - [p.336]
print_if_expr : if_expr → Text
print_if_expr(x) ≡

case x of
mk_if_expr(a, b, c, d) →

′′if " ^ print_value_expr(a) ^ " then ′′
̂

B.2 rslprint.rsl 171

print_value_expr(b) ̂
′′ ′′

̂

print_elsif_branch_list(c) ̂

print_opt_else_branch(d) ̂
′′end′′

end,

- - [p.336]
print_opt_else_branch : opt_else_branch → Text
print_opt_else_branch(x) ≡

case x of
opt_else_none → ′′′′,
opt_else_branch_from_else_branch(a) →

print_else_branch(a) ̂
′′ ′′

end,

print_elsif_branch_list : elsif_branch∗ → Text
print_elsif_branch_list(x) ≡

case x of
〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_elsif_branch(a) ̂

′′ ′′,
〈a〉 ̂ b →

print_elsif_branch(a) ̂
′′ ′′

̂

print_elsif_branch_list(b)
end,

- - [p.336]
print_elsif_branch : elsif_branch → Text
print_elsif_branch(x) ≡

case x of
mk_elsif_branch(a, b) →

′′elsif " ^ print_value_expr(a) ^ " then ′′
̂

print_value_expr(b)
end,

- - [p.336]
print_else_branch : else_branch → Text
print_else_branch(x) ≡

case x of
mk_else_branch(a) → ′′else ′′

̂ print_value_expr(a)
end,

- - [p.337]
print_case_expr : case_expr → Text
print_case_expr(x) ≡

case x of
mk_case_expr(a, b) →

′′case " ^ print_value_expr(a) ^ " of ′′
̂

print_case_branch_list(b) ̂
′′ end′′

end,

print_case_branch_list : case_branch∗ → Text
print_case_branch_list(x) ≡

case x of
〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_case_branch(a),
〈a〉 ̂ b →

print_case_branch(a) ̂
′′, \n′′ ̂

print_case_branch_list(b)
end,

172 Appendix B. Description of RSL types in RSL

- - [p.338]
print_case_branch : case_branch → Text
print_case_branch(x) ≡

case x of
mk_case_branch(a, b) →

print_pattern(a) ̂
′′ -> ′′

̂ print_value_expr(b)
end,

- - [p.338]
print_while_expr : while_expr → Text
print_while_expr(x) ≡

case x of
mk_while_expr(a, b) →

′′while " ^ print_value_expr(a) ^ " do ′′
̂

print_value_expr(b)
end,

- - [p.339]
print_until_expr : until_expr → Text
print_until_expr(x) ≡

case x of
mk_until_expr(a, b) →

′′do " ^ print_value_expr(a) ^ " until ′′
̂

print_value_expr(b)
end,

- - [p.339]
print_for_expr : for_expr → Text
print_for_expr(x) ≡

case x of
mk_for_expr(a, b) →

′′for " ^ print_list_limitation(a) ^ " do ′′
̂

print_value_expr(b) ̂
′′ end′′

end,

print_binding_list : binding∗ → Text
print_binding_list(x) ≡

case x of
〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_binding(a),
〈a〉 ̂ b →

print_binding(a) ̂
′′, ′′

̂ print_binding_list(b)
end,

- - [p. 340]
print_binding : binding → Text
print_binding(x) ≡

case x of
binding_from_id_or_op(a) → print_id_or_op(a),
binding_from_product_binding(a) →

print_product_binding(a)
end,

- - [p. 340]
print_product_binding : product_binding → Text
print_product_binding(x) ≡

case x of

B.2 rslprint.rsl 173

mk_product_binding(a) → print_binding_list(a)
end,

print_typing_list : typing∗ → Text
print_typing_list(x) ≡

case x of
〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_typing(a),
〈a〉 ̂ b →

print_typing(a) ̂
′′, ′′

̂ print_typing_list(b)
end,

- - [p. 342]
print_typing : typing → Text
print_typing(x) ≡

case x of
typing_from_single_typing(a) → print_single_typing(a),
typing_from_multiple_typing(a) →

print_multiple_typing(a)
end,

- - [p. 342]
print_single_typing : single_typing → Text
print_single_typing(x) ≡

case x of
mk_single_typing(a, b) →

print_binding(a) ̂
′′ : ′′

̂ print_type_expr(b)
end,

- - [p. 342]
print_multiple_typing : multiple_typing → Text
print_multiple_typing(x) ≡

case x of
mk_multiple_typing(a, b) →

print_binding_list(a) ̂
′′ : ′′

̂ print_type_expr(b)
end,

- - [p. 342]
print_commented_typing : commented_typing → Text
print_commented_typing(x) ≡

case x of
mk_commented_typing(a) → print_typing(a)

end,

- - [p. 344]
print_pattern : pattern → Text
print_pattern(x) ≡

case x of
pattern_from_value_literal(a) →

print_value_literal(a),
pattern_from_pv_name(a) → print_pv_name(a),
pa_wildcard_pattern → ′′_′′,
pattern_from_product_pattern(a) →

print_product_pattern(a),
pattern_from_record_pattern(a) →

print_record_pattern(a),
pattern_from_list_pattern(a) → print_list_pattern(a)

end,

174 Appendix B. Description of RSL types in RSL

print_pv_name : pv_name → Text
print_pv_name(x) ≡ print_name(x),

- - [p. 346]
print_product_pattern : product_pattern → Text
print_product_pattern(x) ≡

case x of
mk_product_pattern(a) →

′′(" ^ print_inner_pattern_list(a) ^ ")′′

end,

- - [p. 346]
print_record_pattern : record_pattern → Text
print_record_pattern(x) ≡

case x of
mk_record_pattern(a, b) →

print_name(a) ̂
′′(′′ ̂ print_inner_pattern_list(b) ̂

′′)′′

end,

- - [p. 347]
print_list_pattern : list_pattern → Text
print_list_pattern(x) ≡

case x of
list_pattern_from_enumerated_list_pattern(a) →

print_enumerated_list_pattern(a),
list_pattern_from_concatenated_list_pattern(a) →

print_concatenated_list_pattern(a)
end,

- - [p. 347]
print_enumerated_list_pattern :

enumerated_list_pattern → Text
print_enumerated_list_pattern(x) ≡

case x of
mk_enumerated_list_pattern(x) →

′′<." ^ print_inner_pattern_list(x) ^ ".>′′

end,

print_inner_pattern_list : inner_pattern∗ → Text
print_inner_pattern_list(x) ≡

case x of
〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_inner_pattern(a),
〈a〉 ̂ b →

print_inner_pattern(a) ̂
′′, ′′

̂

print_inner_pattern_list(b)
end,

- - [p. 348]
print_concatenated_list_pattern :

concatenated_list_pattern → Text
print_concatenated_list_pattern(x) ≡

case x of
mk_concatenated_list_pattern(a, b) →

′′<." ^ print_enumerated_list_pattern(a) ^ ".>^′′ ̂
print_inner_pattern(b)

B.2 rslprint.rsl 175

end,

- - [p. 348]
print_inner_pattern : inner_pattern → Text
print_inner_pattern(x) ≡

case x of
inner_pattern_from_value_literal(a) →

print_value_literal(a),
inner_pattern_from_id_or_op(a) → print_id_or_op(a),
ip_wildcard_pattern → ′′_′′,
inner_pattern_from_product_pattern(a) →

print_product_pattern(a),
inner_pattern_from_record_pattern(a) →

print_record_pattern(a),
inner_pattern_from_list_pattern(a) →

print_list_pattern(a),
inner_pattern_from_equality_pattern(a) →

print_equality_pattern(a)
end,

- - [p. 349]
print_equality_pattern : equality_pattern → Text
print_equality_pattern(x) ≡

case x of
mk_equality_pattern(a) → print_name(a)

end,

- - [p. 351]
print_name : name → Text
print_name(x) ≡

case x of
name_from_qualified_id(a) → print_qualified_id(a),
name_from_qualified_op(a) → print_qualified_op(a)

end,

print_qualified_id : qualified_id → Text
print_qualified_id(x) ≡

case x of
mk_qualified_id(a, b) →

print_opt_qualification(a) ̂ print_id(b)
end,

- - [p. 351]
print_qualification : qualification → Text
print_qualification(x) ≡

case x of
mk_qualification(oe) → print_object_expr(oe) ̂

′′.′′

end,

- - [p. 352]
print_qualified_op : qualified_op → Text
print_qualified_op(x) ≡

case x of
mk_qualified_op(a, b) →

print_opt_qualification(a) ̂
′′(" ^ print_op(b) ^ ")′′

end,

- - [p. 353]

176 Appendix B. Description of RSL types in RSL

print_id_or_op : id_or_op → Text
print_id_or_op(x) ≡

case x of
id_or_op_from_id(a) → print_id(a),
id_or_op_from_op(a) → print_op(a)

end,

- - [p. 353]
print_op : op → Text
print_op(x) ≡

case x of
op_from_infix_op(a) → print_infix_op(a),
op_from_prefix_op(a) → print_prefix_op(a)

end,

- - adheres to book [p. 354] plus infix "==".
print_infix_op : infix_op → Text
print_infix_op(x) ≡

case x of
io_eq → ′′=′′,
io_ieq → ′′~=′′,
io_eqeq → ′′==′′,
io_gt → ′′>′′,
io_lt → ′′<′′,
io_gteq → ′′>=′′,
io_lteq → ′′<=′′,
io_proper_superset → ′′>>′′,
io_proper_subset → ′′<<′′,
io_superset → ′′>>=′′,
io_subset → ′′<<=′′,
io_isin → ′′ isin ′′,
io_nisin → ′′ ~isin ′′,
io_plus → ′′+′′,
io_minus → ′′-′′,
io_remainder_diff_restr → ′′\\ ′′,
io_concat → ′′^′′,
io_union → ′′ union ′′,
io_override → ′′!!′′,
io_mult → ′′ * ′′,
io_div → ′′ / ′′,
io_composition → ′′#′′,
io_inter → ′′ inter ′′,
io_exponentation → ′′**′′

end,

- - [p. 359]
print_prefix_op : prefix_op → Text
print_prefix_op(x) ≡

case x of
po_minus → ′′minus′′,
po_plus → ′′plus′′,
po_abs → ′′abs′′,
po_int → ′′int′′,
po_real → ′′real′′,
po_card → ′′card′′,
po_len → ′′len′′,
po_inds → ′′inds′′,
po_elems → ′′elems′′,

B.2 rslprint.rsl 177

po_hd → ′′hd′′,
po_tl → ′′tl′′,
po_dom → ′′dom′′,
po_rng → ′′rng′′

end,

- - [p. 362]
print_infix_connective : infix_connective → Text
print_infix_connective(x) ≡

case x of
ic_imply → ′′=>′′,
ic_or → ′′\\/′′,
ic_and → ′′/\\′′

end,

print_prefix_connective : prefix_connective → Text
print_prefix_connective(x) ≡ ′′~′′,

- - [p. 363]
print_infix_combinator : infix_combinator → Text
print_infix_combinator(x) ≡

case x of
icb_ext_choice → ′′|=|′′,
icb_int_choice → ′′|^|′′,
icb_concurrent → ′′||′′,
icb_interlocked → ′′++′′,
icb_sequential → ′′;′′

end,

print_id_list : id∗ → Text
print_id_list(x) ≡

case x of
〈〉 → ′′′′,
〈a〉 ̂ 〈〉 → print_id(a),
〈a〉 ̂ b → print_id(a) ̂

′′ ′′
̂ print_id_list(b)

end,

print_id : id → Text
print_id(x) ≡ x,

- - functions for converting int and double
- - they are defined in RSL ++ header files
- - included here in order to enable compilation
- -
RSL_int_to_string : Int → Text,
RSL_double_to_string : Real → Text,

- ——————-Test section———————–
t_id : id = ′′testint′′,
t_type_literal : type_literal = tl_Int,
t_te : type_expr =

type_expr_from_type_literal(t_type_literal),
t_vl : value_literal = int_literal(5),
t_ve : value_expr = ve_val_l(t_vl),
t_init : initialisation = ve_val_l(t_vl),
t_opt_init : opt_initialisation =

opt_initialisation_from_initialisation(t_ve),
t_svd : single_variable_def =

178 Appendix B. Description of RSL types in RSL

mk_single_variable_def(t_id, t_te, t_opt_init),
t_vd : variable_def =

variable_def_from_single_variable_def(t_svd),
t_vdecl : variable_decl = mk_variable_decl(〈t_vd〉),
t_bdecl : decl = decl_from_variable_decl(t_vdecl),
t_bce : basic_class_expr =

mk_basic_class_expr(〈t_bdecl, t_bdecl〉),
t_ce : class_expr =

class_expr_from_basic_class_expr(t_bce),
t_ofsp : opt_formal_scheme_parameter = 〈〉,
t_scheme_id : id = ′′testscheme′′,
t_scheme_def : scheme_def =

mk_scheme_def(t_scheme_id, t_ofsp, t_ce),
t_scheme_decl : scheme_decl =

mk_scheme_decl(〈t_scheme_def, t_scheme_def〉),
t_decl : decl = decl_from_scheme_decl(t_scheme_decl)

test_case
[test1]

print_id(t_id),
[test2]

print_decl(t_decl)
end

179

Appendix C

RSL specifications for the Scheme
Diagram

Contents

C.1 Scheme Diagram syntax . 179
C.1.1 types.rsl . 179
C.1.2 auxiliary.rsl . 182
C.1.3 wf_types.rsl . 185
C.1.4 wf_scheme.rsl . 190
C.1.5 wf_implement.rsl . 193
C.1.6 wf_object.rsl . 202
C.1.7 wf_extend.rsl . 204
C.1.8 wf_association.rsl . 207
C.1.9 wf_model.rsl . 208

C.2 Translation of Scheme Diagram to RSL. 209
C.3 Imperative Scheme Diagram . 225

C.3.1 RSL Part . 225
C.3.2 SchemeDiagramInterface.java . 235
C.3.3 rsl_esde_libsd_SchemeDiagramInterface.h 237
C.3.4 rsl_esde_libsd_SchemeDiagramInterface.cc 241
C.3.5 convert.cc . 244

C.4 Test . 245
C.4.1 Applicative . 245
C.4.2 Imperative: printed .rsl files . 249

C.1 Scheme Diagram syntax

C.1.1 types.rsl

class
- -FILE:model_prime.rsl
type

Model′ ::
schemes : Name →m ClassExpr ↔ replace_schemes

180 Appendix C. RSL specifications for the Scheme Diagram

objects : Name →m Object ↔ replace_objects
associations : RID →m Association ↔ replace_associations
extends : RID →m Extend ↔ replace_extends
implements : RID →m Implement ↔ replace_implements,

RID = Nat

- -FILE:class_expr.rsl
type

ClassExpr ::
types : TypeDecls ↔ replace_types
values : ValueDecls ↔ replace_values
variables : VariableDecls ↔ replace_variables
channels : ChannelDecls ↔ replace_channels
axioms : AxiomDecls ↔ replace_axioms

- -FILE:type_decls.rsl
type

TypeDecls = (TypeDecl × Visibility)∗,
TypeDecl ==

SortDef(Name) |
AbbreviationDef(Name, TypeExpr) |
VariantDef(Name, {| vdl : Variant∗ • len vdl ≥ 1 |}) |
UnionDef(Name, {| nwl : NameOrWildcard∗

• len nwl ≥ 2 |}) |
ShortRecordDef(Name, ComponentKind∗),

NameOrWildcard == udName(qname : QualifiedName) | udWildcard

- -FILE:variant.rsl
type

Variant ==
RecordVariant(

constructor : Variant, components : ComponentKind∗) |
Wildcard |
Constructor(Name),

ComponentKind ::
destructor : OptDestructor
expr : TypeExpr
reconstructor : OptReconstructor,

OptDestructor == deNone | Destructor(Name),
OptReconstructor == reNone | Reconstructor(Name)

- -FILE:type_expr.rsl
type

TypeExpr ==
tl_Unit |
tl_Bool |
tl_Int |
tl_Nat |
tl_Real |
tl_Text |
tl_Char |
TypeName(Name, Qualification) |
ProductTypeExpr({| tel : TypeExpr∗ • len tel ≥ 2 |}) |
BracketedTypeExpr(expr : TypeExpr) |
FiniteSetTypeExpr(TypeExpr) |
InfiniteSetTypeExpr(TypeExpr) |
FiniteListTypeExpr(TypeExpr) |
InfiniteListTypeExpr(TypeExpr) |
MapTypeExpr(domain : TypeExpr, range : TypeExpr) |

C.1 Scheme Diagram syntax 181

FunctionTypeExpr(
param : TypeExpr,
arrow : FunctionArrow,
result : ResultDescr) |

SubtypeExpr(TypeExpr, restriction : QualifiedName),
FunctionArrow == fa_total | fa_partial,
ResultDescr = AccessDescr∗ × TypeExpr

- -FILE:access_descr.rsl
type

AccessDescr = AccessMode × Access∗,
AccessMode == am_read | am_write | am_in | am_out,
Access ==

NameAccess(QualifiedName) |
EnumeratedAccess(Access∗) |
CompletedAccess(Qualification)

- -FILE:value_decls.rsl
type

ValueDecls = (ValueDecl × Visibility)∗,
ValueDecl ::

vdname : Name ↔ replace_vdname
vdte : TypeExpr ↔ replace_vdte

- -FILE:variable_decls.rsl
type

VariableDecls = (VariableDecl × Visibility)∗,
VariableDecl ::

vdname : Name ↔ replace_vdname
vdte : TypeExpr ↔ replace_vdte

- -FILE:channel_decls.rsl
type

ChannelDecls = (ChannelDecl × Visibility)∗,
ChannelDecl ::

cdname : Name ↔ replace_cdname
cdte : TypeExpr ↔ replace_cdte

- -FILE:axiom_decls.rsl
type

AxiomDecls = AxiomDecl∗,
AxiomDecl :: adname : Name ↔ replace_adname

- -FILE:object.rsl
type

Object ::
instance_of : Name
actual_parameters : ActualParameters
state : State,

State = QualifiedName →m Value,
Value = Text

- -FILE:actual_parameters.rsl
type

ActualParameters = Name →m Name × Fitting,
Fitting = Name →m Name

- -FILE:association.rsl

182 Appendix C. RSL specifications for the Scheme Diagram

type
Association ::

client : Name
kind : Kind
supplier : Name
rolename : Name
mul : Multiplicity,

Kind ==
Nested(Visibility, ActualParameters) |
Parameter(ActualParameters) |
Global,

Multiplicity == None | Index(binding : Name, mtype : TypeExpr)

- -FILE:extend.rsl
type

Extend ::
client : Name

supplier : Name

- -FILE:implement.rsl
type

Implement ::
client : Name
supplier : Name

type
Name = Text,
Qualification = Name∗,
QualifiedName = Name × Qualification,
Visibility == Private | Public

C.1.2 auxiliary.rsl

scheme auxiliary =
extend types with
class

Returns the union of scheme names and object names present in the model.

modules : Model′ → Name-set
modules(mdl) ≡ dom schemes(mdl) ∪ dom objects(mdl),

Returns the union of association, extend and implement id′s present in the model

relations : Model′ → RID-set
relations(mdl) ≡

dom associations(mdl) ∪ dom extends(mdl) ∪
dom implements(mdl)

For a given relation in the model the name of the client is returned.

client_of : Model′ × RID ∼

→ Name
client_of(mdl, r) ≡

if r ∈ associations(mdl) then client(associations(mdl)(r))
else

if r ∈ extends(mdl) then client(extends(mdl)(r))
else client(implements(mdl)(r))

C.1 Scheme Diagram syntax 183

end
end

pre r ∈ relations(mdl),

For a given relation in the model the name of the supplier is returned.

supplier_of : Model′ × RID ∼

→ Name
supplier_of(mdl, r) ≡

if r ∈ associations(mdl)
then supplier(associations(mdl)(r))
else

if r ∈ extends(mdl) then supplier(extends(mdl)(r))
else supplier(implements(mdl)(r))
end

end
pre r ∈ relations(mdl),

Returns the set of scheme names mapped to the relation for all relations which the specified name is a client.
CAUTION: Between client A and supplier B there are two associations relations with the same rolename. Thus
the map would have two keys with the name of B making the map non−deterministic.

suppliers : Model′ × Name ∼

→ Name →m RID
suppliers(mdl, s) ≡

[supplier_of(mdl, r) 7→ r |
r : RID • r ∈ relations(mdl) ∧ client_of(mdl, r) = s]

pre s ∈ modules(mdl),

Same as above but only include extend relations.

suppliers_ext : Model′ × Name ∼

→ Name →m RID
suppliers_ext(mdl, s) ≡

let ss = suppliers(mdl, s) in
[sn 7→ ss(sn) |
sn : Name • sn ∈ ss ∧ ss(sn) ∈ extends(mdl)]

end
pre s ∈ modules(mdl),

Same as above but only include extend relations.

suppliers_ass : Model′ × Name ∼

→ Name →m RID
suppliers_ass(mdl, s) ≡

let ss = suppliers(mdl, s) in
[sn 7→ ss(sn) |
sn : Name • sn ∈ ss ∧ ss(sn) ∈ associations(mdl)]

end
pre s ∈ modules(mdl)

Produces a list of names which is all the type names declared with a given class expression.

declared_type_names : ClassExpr → Name∗

declared_type_names(s) ≡ 〈td_name(td) | (td, v) in types(s)〉,

Returns the name of a type declaration

td_name : TypeDecl → Name
td_name(td) ≡

case td of
SortDef(n) → n,
VariantDef(n,) → n,
UnionDef(n,) → n,
ShortRecordDef(n,) → n,
AbbreviationDef(n,) → n

end,

184 Appendix C. RSL specifications for the Scheme Diagram

Produces a list of names which are names of the value declarations within the given class expression.

declared_value_names : ClassExpr → Name∗

declared_value_names(s) ≡ 〈vdname(vd) | (vd, v) in values(s)〉,

Produces a list of names which are names of the variable declarations within the given class expression.

declared_variable_names : ClassExpr → Name∗

declared_variable_names(s) ≡
〈vdname(vd) | (vd, v) in variables(s)〉,

Produces a list of names which are names of the channel declarations within the given class expression.

declared_channel_names : ClassExpr → Name∗

declared_channel_names(s) ≡
〈cdname(cd) | (cd, v) in channels(s)〉

If the given name is a scheme the function will produce a map from rolenames to associations where for all
the associations the scheme name is a client. Associations are inherited in the scheme diagram, hence if the
scheme is a client in the extend relation then all associations available from the supplier is included. This is
repeated recursively. Thus the domain represent all the objects which are reachable from the scheme. If the
given name is an object the associations for that object only is returned. This is used when instantiating a
global object and technically the objects available in that regard does not include does that become available
from the instantiated scheme. A name which does not represent a module in the model will result in an empty
map.

- -FILE:associations.rsl
associations : Model′ × Name → (Name →m Association)
associations(mdl, n) ≡

let am = associations(mdl) in
[case kind(am(rid)) of

Global → supplier(am(rid)),
→ rolename(am(rid))

end 7→ am(rid) |
rid : RID •

rid ∈ dom am ∧ n ∈ modules(mdl) ∧
n = client(am(rid))]

end †
let ss = suppliers_ext(mdl, n) in

if ss = [] then [] else associations(mdl, hd ss) end
end,

Returns a map of rolanames to associations of all the nested associations emanating from the specified scheme.
Parameter and global associations are omitted.

associations_nested : Model′ × Name → (Name →m Association)
associations_nested(mdl, n) ≡

let am = associations(mdl, n) in
[n 7→ am(n) | n : Name • n ∈ dom am ∧ is_nested(am(n))]

end,

Same as above but includes only associations of kind parameter

associations_param : Model′ × Name → (Name →m Association)
associations_param(mdl, n) ≡

let am = associations(mdl, n) in
[n 7→ am(n) |
n : Name • n ∈ dom am ∧ is_parameter(am(n))]

end,

Is the given association of kind Parameter?

C.1 Scheme Diagram syntax 185

is_parameter : Association → Bool
is_parameter(a) ≡

case kind(a) of
Parameter() → true,
→ false

end,

Is the given association of kind Nested?

is_nested : Association → Bool
is_nested(a) ≡

case kind(a) of
Nested() → true,
→ false

end,

Is the given association of kind Global?

is_global : Association → Bool
is_global(a) ≡

case kind(a) of
Global → true,
→ false

end

Given a name of a module the corresponding scheme name is given. If the module name is the name of a
scheme, then the same name is returned. If the module name is the name of an object then the name of the
scheme which the object is an instance of is returned.

scheme_name : Model′ × Name ∼

→ Name
scheme_name(mdl, n) ≡

if n ∈ schemes(mdl) then n
else instance_of(objects(mdl)(n))
end

pre n ∈ modules(mdl)

C.1.3 wf_types.rsl

The functions presented in this file fall into one of the following four categories. The first it a predicate
for checking the well−formedness of type expression; the primary function is wf_type_expr. The second is
function which determines the maximal type expression for a given type expression; the primary function
is maximal_type. The third is traversal of the associations of the model which is used by the two previous
categories; the two primary functions are valid_qualification and follow_qualification. The fourth and last
is a simple predicate for the Model’ type which has some simple well−formedness conditions which other
predicates can rely on.

wf_extend

scheme wf_types =
extend wf_extend with
class

The well−formedness of a type expressions is basically reduced to the type names, since the rest is captured
by the structure of the type expression.

wf_type_expr : Model′ × Name × TypeExpr → Bool
wf_type_expr(mdl, m, te) ≡

186 Appendix C. RSL specifications for the Scheme Diagram

m ∈ modules(mdl) ∧
case te of

tl_Unit → true,
tl_Bool → true,
tl_Int → true,
tl_Nat → true,
tl_Real → true,
tl_Text → true,
tl_Char → true,
TypeName(,) → wf_typename_expr(mdl, m, te),
FiniteSetTypeExpr(te′) →

wf_type_expr(mdl, m, te′),
InfiniteSetTypeExpr(te′) →

wf_type_expr(mdl, m, te′),
FiniteListTypeExpr(te′) →

wf_type_expr(mdl, m, te′),
InfiniteListTypeExpr(te′) →

wf_type_expr(mdl, m, te′),
MapTypeExpr(tdom, trng) →

wf_type_expr(mdl, m, tdom) ∧
wf_type_expr(mdl, m, trng),

FunctionTypeExpr(p, , (a, r)) →
wf_type_expr(mdl, m, p) ∧
wf_access_descr(mdl, m, a) ∧
wf_type_expr(mdl, m, r),

SubtypeExpr(te′, restriction) →
wf_subtype_expr(mdl, m, te),

BracketedTypeExpr(te′) →
wf_type_expr(mdl, m, te′),

ProductTypeExpr(tel) →
wf_product_type_expr(mdl, m, tel)

end,

The type name is a reference to a declared type which thus must exist relatively to the context in which the
type name is used.

- -FILE:wf_typename_expr.rsl
wf_typename_expr : Model′ × Name × TypeExpr → Bool
wf_typename_expr(mdl, m, tn) ≡

case tn of
TypeName(n, q) →

valid_qualification(mdl, m, q) ∧
let schn = follow_qualification(mdl, m, q) in

schn ∈ schemes(mdl) ∧
n ∈ declared_type_names(extend_history(mdl,schn))

end,
→ false

end,

A subtype expression is well−formed if the supertype expression is well−formed and the restriction predicate
exists. If the qualification for the restriction is empty then private predicates are also allowed. TODO: the type
expression of the functions must be a function with return type boolean and the parameter must be the same
maximal type as the supertype.

wf_subtype_expr : Model′ × Name × TypeExpr → Bool
wf_subtype_expr(mdl, m, ste) ≡

case ste of
SubtypeExpr(ste, (rn, rq)) →

wf_type_expr(mdl, m, expr(ste)) ∧
valid_qualification(mdl, m, rq) ∧

C.1 Scheme Diagram syntax 187

let
n = follow_qualification(mdl, m, rq),
s =

if n ∈ schemes(mdl) then schemes(mdl)(n)
else

schemes(mdl)(instance_of(objects(mdl)(n)))
end

in
(∃ (vd, visi) : ValueDecl × Visibility •

(vd, visi) ∈ values(s) ∧
vdname(vd) = rn ∧
(visi = Public ∨ rq = 〈〉))

end,
→ false

end,

Recurses through a list and checks if every type expression in the list is well−formed. An all quantification
would have been better, but recursion in quantification is not allowed in the RSL to C–‖ translator.

wf_product_type_expr :
Model′ × Name × TypeExpr∗ → Bool

wf_product_type_expr(mdl, m, tel) ≡
tel = 〈〉 ∨
(tel 6= 〈〉 ∧ wf_type_expr(mdl, m, hd tel) ∧
wf_product_type_expr(mdl, m, tl tel)),

Checks an access description list for well−formedness. This is basically a check for the presence of a variable
or channel for read or write and in or out respectively.

wf_access_descr :
Model′ × Name × AccessDescr∗ → Bool

wf_access_descr(mdl, m, adl) ≡
(∀ (am, al) : AccessMode × Access∗ •

(am, al) ∈ adl ⇒
(∀ a : Access •

a ∈ al ⇒ wf_access(mdl, m, am, a))),

wf_access :
Model′ × Name × AccessMode × Access → Bool

wf_access(mdl, m, am, a) ≡
case a of

NameAccess((n, q)) →
valid_qualification(mdl, m, q) ∧
let

qend = follow_qualification(mdl, m, q),
s =

if qend ∈ schemes(mdl)
then schemes(mdl)(qend)
else

schemes(mdl)(
instance_of(objects(mdl)(qend)))

end
in

((am = am_read ∨ am = am_write) ∧
(∃

(vd, visi) : VariableDecl × Visibility
•

(vd, visi) ∈ variables(s) ∧
vdname(vd) = n ∧ visi = Public)) ∨

((am = am_in ∨ am = am_out) ∧

188 Appendix C. RSL specifications for the Scheme Diagram

(∃
(cd, visi) : ChannelDecl × Visibility

•

(cd, visi) ∈ channels(s) ∧
cdname(cd) = n ∧ visi = Public))

end,
EnumeratedAccess(al′) →

al′ = 〈〉 ∨
(al′ 6= 〈〉 ∧ wf_access(mdl, m, am, hd al′) ∧
wf_access(mdl, m, am, EnumeratedAccess(tl al′))),

CompletedAccess(q) →
valid_qualification(mdl, m, q)

end

Determines the maximal type for a given type expression. Since the structure of a type expression is recursive,
the function is also recursive. It will terminate when a native type literal is encountered or a sort. The parameter
’q′ is the qualification used so far to reach the scheme ’s′. The only reason for giving the entire model,
qualification and scheme as parameter is because of type names. This is a kind of reference to other types also
allowing qualification, thus it is possible to reference types outside the current scheme.

maximal_type :
Model′ × Qualification × Name × TypeExpr ∼

→
TypeExpr

maximal_type(mdl, q, s, te) ≡
case te of

tl_Unit → tl_Unit,
tl_Bool → tl_Bool,
tl_Int → tl_Int,
tl_Nat → tl_Int,
tl_Real → tl_Real,
tl_Text → InfiniteListTypeExpr(tl_Char),
tl_Char → tl_Char,
FiniteSetTypeExpr(te′) →

InfiniteSetTypeExpr(maximal_type(mdl, q, s, te′)),
InfiniteSetTypeExpr(te′) →

InfiniteSetTypeExpr(maximal_type(mdl, q, s, te′)),
FiniteListTypeExpr(te′) →

InfiniteListTypeExpr(
maximal_type(mdl, q, s, te′)),

InfiniteListTypeExpr(te′) →
InfiniteListTypeExpr(

maximal_type(mdl, q, s, te′)),
MapTypeExpr(tdom, trng) →

MapTypeExpr(
maximal_type(mdl, q, s, tdom),
maximal_type(mdl, q, s, trng)),

FunctionTypeExpr(p, a, (adl, adl_te)) →
FunctionTypeExpr(

maximal_type(mdl, q, s, p), fa_partial,
(adl, maximal_type(mdl, q, s, adl_te))),

BracketedTypeExpr(te′) →
BracketedTypeExpr(maximal_type(mdl, q, s, te′)),

SubtypeExpr(te′,) →
maximal_type(mdl, q, s, te′),

TypeName(n′, q′) →
maximal_type_name(mdl, q, s, (n′, q′)),

ProductTypeExpr(tel) →
ProductTypeExpr(

C.1 Scheme Diagram syntax 189

maximal_product_type_expr(mdl, q, s, tel))
end,

Determines the maximal type of a type name expression. A type name expression is the name of a type decla-
ration thus it is maximal type of the associated type expression that is the result. There exist two possibilities.
First the type declaration can be an abbreviation which means the result is the maximal type of the abbreviation
expression. Second the type declaration is a sort thus the maximal type is the name of the sort prepended with
the qualification used to reach the sort.

maximal_type_name :
Model′ × Qualification × Name ×

(Name × Qualification) ∼

→
TypeExpr

maximal_type_name(mdl, q, s, (n′, q′)) ≡
let

next_s = follow_qualification(mdl, s, q′),
td =

find_type_decl(
q, types(schemes(mdl)(next_s)), n′)

in
case td of

AbbreviationDef(, te′) →
maximal_type(mdl, q ̂ q′, next_s, te′),
→ TypeName(n′, q ̂ q′)

end
end

pre valid_qualification(mdl, s, q′),

Finds the type declaration with the given name from a list of type declarations. It is assumed that the there
exists a type declaration with the given name in the list. If no qualification is used at all then it is also allowed
to see private type declarations.

find_type_decl :
Qualification × TypeDecls × Name ∼

→ TypeDecl
find_type_decl(q, tdl, n) ≡

let (td, visi) = hd tdl in
if td_name(td) = n ∧ (visi = Public ∨ q = 〈〉)
then td
else find_type_decl(q, tl tdl, n)
end

end
pre tdl 6= 〈〉,

Determines the maximal type expression for a product by recursing through the list and determine the maximal
type expression for each element. The list of maximal type expressions is returned. ’q′ is the qualification used
so far to reach the scheme ’s′. ’tel′ is the list of type expressions which the product type expression consists of.
It is obvious to used a comprehended list expression but it is not translatable into C–‖.

maximal_product_type_expr :
Model′ × Qualification × Name × TypeExpr∗ →

TypeExpr∗

maximal_product_type_expr(mdl, q, s, tel) ≡
if tel = 〈〉 then 〈〉
else

〈maximal_type(mdl, q, s, hd tel)〉 ̂

maximal_product_type_expr(mdl, q, s, tl tel)
end,

Determines whether a given qualification is valid from a specific scheme within the model. This is done
by traversing the associations in the model recursively. ’n′ denotes the module currently visited and ’q′ the
remainder of the qualification to reach the destination module. if ’q′ is empty and ’n′ is a module then it was a

190 Appendix C. RSL specifications for the Scheme Diagram

valid qualification. if ’q′ is not empty then the next module to be reached from ’n′ must be available from ’n′.
If ’n′ is an object then the association map ’am′ is taken from the scheme which ’n′ is an instance of.

valid_qualification :
Model′ × Name × Qualification ∼

→ Bool
valid_qualification(mdl, n, q) ≡

n ∈ modules(mdl) ∧
let am = associations(mdl, scheme_name(mdl, n)) in

q = 〈〉 ∨
(hd q ∈ dom am ∧
valid_qualification(mdl, supplier(am(hd q)), tl q)

)
end,

Given a valid qualification the name of the scheme at the end is returned. See the function valid_qualification.

follow_qualification :
Model′ × Name × Qualification ∼

→ Name
follow_qualification(mdl, n, q) ≡

let
sn = scheme_name(mdl, n),
am = associations(mdl, sn)

in
if q = 〈〉 then sn
else

follow_qualification(
mdl, supplier(am(hd q)), tl q)

end
end

pre valid_qualification(mdl, n, q)

C.1.4 wf_scheme.rsl

The wf_scheme.rsl file contains well−formed predicates for the scheme aspect of the diagram. There are
essentially two predicates which checks a scheme. The first, wf_class_expr, which checks the names used
for the declarations in the scheme, and the second, wf_scheme_decl_expr, checks the type expressions of the
declarations.

wf_implement

scheme wf_scheme =
extend wf_implement with
class

wf_schemes : Model′ → Bool
wf_schemes(mdl) ≡

(∀ n : Name •

n ∈ schemes(mdl) ⇒
wf_scheme_decl_expr(mdl, n) ∧
wf_class_expr(mdl, n, extend_history(mdl, n))),

Er denne overhovedet nødvendig eller skal den udvides i forbindelse med extend? Nope, This function is
used on an expanded schemel by wf_extend.

• Names within type declaratinos must be unique.

C.1 Scheme Diagram syntax 191

• Names within value declarations must be unique unless the maximal signature is diffrent (overloading).

• Value and variable names may not overlap.

• Names within channel declarations must be unique.

wf_class_expr : Model′ × Name × ClassExpr → Bool
wf_class_expr(mdl, n, s) ≡

let
typdl = declared_type_names(s),
valdl = 〈vd | (vd, visi) in values(s)〉,
valdl′ = 〈vdname(vd) | vd in valdl〉,
vardl = declared_variable_names(s),
chadl = declared_channel_names(s)

in
len typdl = card elems typdl ∧
wf_value_overloading(mdl, n, valdl) ∧
len vardl = card elems vardl ∧
elems vardl ∩ elems valdl′ = {} ∧
len chadl = card elems chadl

end
pre n ∈ schemes(mdl),

wf_value_overloading: Checks a list of value declarations for valid names. Names within value declarations
must be unique unless the maximal signature is diffrent (overloading). It is necessary to use indices since using
the name would at some time yield the same entry, meaning that the to selected declarations would be identical
and thus fail.

- -FILE:wf_value_overloading.rsl
wf_value_overloading :

Model′ × Name × ValueDecl∗ → Bool
wf_value_overloading(mdl, n, valdl) ≡

(∀ i : Nat •

i ∈ inds valdl ⇒
(∀ j : Nat •

j ∈ inds valdl ∧ i 6= j ⇒
vdname(valdl(i)) 6= vdname(valdl(j)) ∨
maximal_type(mdl, 〈〉, n, vdte(valdl(i))) 6=

maximal_type(
mdl, 〈〉, n, vdte(valdl(j)))))

In the Scheme Diagram only type expressions are included, thus also the only expression kind that can be
checked. This must be done for type declarations, value declarations, variable declarations, and channel dec-
larations, since the signature for these declarations are included. Axioms and object declarations are omitted.

wf_scheme_decl_expr : Model′ × Name → Bool
wf_scheme_decl_expr(mdl, n) ≡

n ∈ schemes(mdl) ∧
let s = schemes(mdl)(n) in

wf_type_decls(mdl, n, types(s)) ∧
wf_value_decls(mdl, n, values(s)) ∧
wf_variable_decls(mdl, n, variables(s)) ∧
wf_channel_decls(mdl, n, channels(s))

end,

The type expressions used in the list of type declaraitons are all checked for well−formedness.

wf_type_decls : Model′ × Name × TypeDecls → Bool
wf_type_decls(mdl, n, tdl) ≡

(∀ (td, visi) : TypeDecl × Visibility •

(td, visi) ∈ tdl ⇒ wf_type_decl(mdl, n, td)),

192 Appendix C. RSL specifications for the Scheme Diagram

Determines the well−formedness of type expressions used in a type declaration.

wf_type_decl : Model′ × Name × TypeDecl → Bool
wf_type_decl(mdl, n, td) ≡

case td of
SortDef() → true,
AbbreviationDef(, e) → wf_type_expr(mdl, n, e),
VariantDef(, vdl) →

(∀ v : Variant •

v ∈ vdl ⇒ wf_variant(mdl, n, v)),
ShortRecordDef(, ckl) →

(∀ ck : ComponentKind •

ck ∈ ckl ⇒
wf_type_expr(mdl, n, expr(ck)) ∧
(destructor(ck) = deNone ⇒

reconstructor(ck) = reNone)),
UnionDef(, nwl) → wf_union_def(mdl, n, nwl)

end,

- -FILE:wf_union_def.rsl
wf_union_def :

Model′ × Name × NameOrWildcard∗ → Bool
wf_union_def(mdl, n, nwl) ≡

(∀ i : Int •

i ∈ inds nwl ⇒
case nwl(i) of

udName((n′, q′)) →
valid_qualification(mdl, n, q′) ∧
n′ ∈

declared_type_names(
schemes(mdl)(

follow_qualification(mdl, n, q′))),
udWildcard → true

end),

Tests the well−formedness of the Variant type consisting of the following three requirements:

• If the Variant is a RecordVariant the Variant representing the constructor must actually be a Constructor.

• If a reconstructor is present the a destructor must also be present.

• All type expressions used in the component kinds must be well−formed.

wf_variant : Model′ × Name × Variant → Bool
wf_variant(mdl, n, v) ≡

case v of
RecordVariant(con, ckl) →

case con of
Constructor() → true,
→ false

end ∧
(∀ ck : ComponentKind •

ck ∈ ckl ⇒
wf_type_expr(mdl, n, expr(ck)) ∧
(destructor(ck) = deNone ⇒

reconstructor(ck) = reNone)),
→ true

end,

The following three functions check the type expressions used in the signatures of respectively value declara-
tions, variable declarations, and channel declarations.

C.1 Scheme Diagram syntax 193

wf_value_decls : Model′ × Name × ValueDecls → Bool
wf_value_decls(mdl, n, vdl) ≡

(∀ (vd, visi) : ValueDecl × Visibility •

(vd, visi) ∈ vdl ⇒
wf_type_expr(mdl, n, vdte(vd))),

wf_variable_decls :
Model′ × Name × VariableDecls → Bool

wf_variable_decls(mdl, n, vdl) ≡
(∀ (vd, visi) : VariableDecl × Visibility •

(vd, visi) ∈ vdl ⇒
wf_type_expr(mdl, n, vdte(vd))),

wf_channel_decls :
Model′ × Name × ChannelDecls → Bool

wf_channel_decls(mdl, n, cdl) ≡
(∀ (cd, visi) : ChannelDecl × Visibility •

(cd, visi) ∈ cdl ⇒
wf_type_expr(mdl, n, cdte(cd)))

C.1.5 wf_implement.rsl

wf_types

scheme wf_implement =
extend wf_types with
class

Checks if every implement relation in the model is well−formed.

wf_implements : Model′ → Bool
wf_implements(mdl) ≡

(∀ rid : RID •

rid ∈ dom implements(mdl) ⇒
wf_implement(mdl, rid)),

Determines if an implement relation is well−formed based on its relation id.

• The client and supplier must both be schemes.

• The client must statically implement the supplier.

- -FILE:wf_implement.rsl
wf_implement : Model′ × RID → Bool
wf_implement(mdl, rid) ≡

rid ∈ implements(mdl) ∧
let i = implements(mdl)(rid) in

{client(i), supplier(i)} ⊆ dom schemes(mdl) ∧
static_implement(mdl, client(i), supplier(i))

end

static_implement : Model′ × Name × Name ∼

→ Bool
static_implement(mdl, cn, sn) ≡

static_implement(mdl, (cn, []), sn)
pre {cn, sn} ⊆ dom schemes(mdl),

194 Appendix C. RSL specifications for the Scheme Diagram

static_implement :
Model′ × (Name × Fitting) × Name ∼

→ Bool
static_implement(mdl, (cn, fit), sn) ≡

static_implement_param(mdl, cn, sn) ∧
let

(csig_ce′, csig_obj′) = signature(mdl, cn),
csig_ce = rename(fit, csig_ce′),
csig_obj = rename(fit, csig_obj′),
(ssig_ce, ssig_obj) = signature(mdl, sn)

in
static_implement_body(

mdl, (cn, csig_ce), (sn, ssig_ce)) ∧
static_implement_obj(

mdl, (cn, csig_obj), (sn, ssig_obj))
end

pre cn ∈ modules(mdl) ∧ sn ∈ schemes(mdl)

type SchN_ObjM = Name × (Name →m Association)

All parameters are visible. Should the formal parameters match? What is the relationship? Notice that the
relation is reversed for parameters!

static_implement_param :
Model′ × Name × Name ∼

→ Bool
static_implement_param(mdl, cn, sn) ≡

let
cfpm = associations_param(mdl, cn),
sfpm = associations_param(mdl, sn)

in
dom sfpm = dom cfpm ∧
static_implement_assoc(

mdl, (sn, sfpm), (cn, cfpm), dom sfpm)
end

pre {cn, sn} ⊆ dom schemes(mdl),

static_implement_obj :
Model′ × SchN_ObjM × SchN_ObjM → Bool

static_implement_obj(mdl, (cn, cobj), (s, sobj)) ≡
dom sobj ⊆ dom cobj ∧
static_implement_assoc(

mdl, (cn, cobj), (s, sobj), dom sobj),

static_implement_assoc :
Model′ × SchN_ObjM × SchN_ObjM × Name-set → Bool

static_implement_assoc(mdl, (cn, cobj), (s, sobj), ons) ≡
ons = {} ∨
let on = hd ons in

static_implement(
mdl, supplier(cobj(on)), supplier(sobj(on))) ∧

static_implement_assoc(
mdl, (cn, cobj), (s, sobj), ons \ {on})

end,

Determines whether mc implements ms Notice that this function does not determine the maximal type. Perhaps
it should; yes it should. It does not work; yet. Fx. for value declarations must be identical, however this is not
necessarily the case the the supplier declares a sort and the client refines this to an abbreviation declaration. As
example look at S1 implements S in examples.rsl.

static_implement_body :

C.1 Scheme Diagram syntax 195

Model′ × (Name × ClassExpr) × (Name × ClassExpr) →
Bool

static_implement_body(mdl, (cn, c), (sn, s)) ≡
let

mc = maximal_class(mdl, cn, c),
ms = maximal_class(mdl, sn, s)

in
static_implement_types(mc, ms) ∧
static_implement_values(mc, ms) ∧
static_implement_variables(mc, ms) ∧
static_implement_channels(mc, ms)

end,

static_implement_types :
ClassExpr × ClassExpr → Bool

static_implement_types(c, s) ≡
(∀ (td, visi) : TypeDecl × Visibility •

(td, visi) ∈ types(s) ∧ visi = Public ⇒
case td of

SortDef(n) →
n ∈

〈td_name(td′) |
(td′, visi′) in types(c) •

visi′ = Public〉,
AbbreviationDef(,) →

(td, Public) ∈ types(c)
end),

This lookup mayby have to be done in types, and variables and channels.

static_implement_values :
ClassExpr × ClassExpr → Bool

static_implement_values(c, s) ≡
let σ = gen_sig_map(types(c)) in

(∀ (vd, visi) : ValueDecl × Visibility •

(vd, visi) ∈ values(s) ∧ visi = Public ⇒
(replace_vdte(sig_morph(σ, vdte(vd)), vd),

Public) ∈ values(c))
end,

static_implement_variables :
ClassExpr × ClassExpr → Bool

static_implement_variables(c, s) ≡
let σ = gen_sig_map(types(c)) in

(∀ (vd, visi) : VariableDecl × Visibility •

(vd, visi) ∈ variables(s) ∧ visi = Public ⇒
(replace_vdte(sig_morph(σ, vdte(vd)), vd),

Public) ∈ variables(c))
end,

static_implement_channels :
ClassExpr × ClassExpr → Bool

static_implement_channels(c, s) ≡
(∀ (cd, visi) : ChannelDecl × Visibility •

(cd, visi) ∈ channels(s) ∧ visi = Public ⇒
(cd, Public) ∈ channels(c))

TODO: Include qualification in the domain

196 Appendix C. RSL specifications for the Scheme Diagram

gen_sig_map : TypeDecls → (Text →m TypeExpr)
gen_sig_map(tdl) ≡

if tdl = 〈〉 then []
else

case hd tdl of
(td, Public) →

case td of
SortDef(n) → [n 7→ TypeName(n, 〈〉)],
AbbreviationDef(n, te) → [n 7→ te]

end,
(, Private) → []

end † gen_sig_map(tl tdl)
end,

If the type expression is a type name representing a sort with qualification then the qualification should be
preserved!? TODO:

sig_morph :
(Text →m TypeExpr) × TypeExpr → TypeExpr

sig_morph(σ, te) ≡
case te of

TypeName(n, q) → lookup(σ, n, te),
FiniteSetTypeExpr(te′) →

FiniteSetTypeExpr(sig_morph(σ, te′)),
InfiniteSetTypeExpr(te′) →

InfiniteSetTypeExpr(sig_morph(σ, te′)),
FiniteListTypeExpr(te′) →

FiniteListTypeExpr(sig_morph(σ, te′)),
InfiniteListTypeExpr(te′) →

InfiniteListTypeExpr(sig_morph(σ, te′)),
MapTypeExpr(tdom, trng) →

MapTypeExpr(
sig_morph(σ, tdom),
sig_morph(σ, tdom)),

FunctionTypeExpr(p, arrow, (a, r)) →
FunctionTypeExpr(

sig_morph(σ, p), arrow,
(a, sig_morph(σ, r))),

SubtypeExpr(te′, restriction) →
SubtypeExpr(sig_morph(σ, te′), restriction),

BracketedTypeExpr(te′) →
BracketedTypeExpr(sig_morph(σ, te′)),

ProductTypeExpr(tel) →
ProductTypeExpr(sig_morph_list(σ, tel)),
→ te

end,

Recursion is not allowed in compreheded list expression, thus this functions must be specified seperately.

sig_morph_list :
(Text →m TypeExpr) × TypeExpr∗ →

TypeExpr∗

sig_morph_list(σ, tel) ≡
if tel = 〈〉 then 〈〉
else

〈sig_morph(σ, hd tel)〉 ̂

sig_morph_list(σ, tl tel)
end,

lookup :

C.1 Scheme Diagram syntax 197

(Text →m TypeExpr) × Text × TypeExpr → TypeExpr
lookup(σ, n, te) ≡

if n ∈ σ then σ(n) else te end

value
signature :

Model′ × Name ∼

→
ClassExpr × (Name →m Association)

signature(mdl, scheme_name) ≡
(maximal_class(

mdl, scheme_name,
expand_class(extend_history(mdl, scheme_name))),

associations_nested(mdl, scheme_name)),

The maximal class expression for the scheme ’s′ is determined. The ’mdl′ and ’n′ is used only to define the con-
text in which the maximal class of ’s′ is to be found within. However it is recommended that schemes(mdl)(n)
= s, but is this too strong? It will probably not be the case after renaming, hence it will not be added as a
precondition.

maximal_class :
Model′ × Name × ClassExpr ∼

→ ClassExpr
maximal_class(mdl, n, s) ≡

let
types′ =

〈(max_type_decl(mdl, n, t), visi) |
(t, visi) in types(s)〉,

values′ =
〈(max_value_decl(mdl, n, v), visi) |

(v, visi) in values(s)〉,
variables′ =

〈(max_variable_decl(mdl, n, v), visi) |
(v, visi) in variables(s)〉,

channels′ =
〈(max_channel_decl(mdl, n, c), visi) |

(c, visi) in channels(s)〉
in

mk_ClassExpr(
types′, values′, variables′, channels′,
axioms(s))

end
pre n ∈ schemes(mdl),

max_type_decl :
Model′ × Name × TypeDecl ∼

→ TypeDecl
max_type_decl(mdl, n, td) ≡

case td of
SortDef() → td,
AbbreviationDef(n, te) →

AbbreviationDef(
n, maximal_type(mdl, 〈〉, n, te))

end
pre

case td of
SortDef() → true,
AbbreviationDef() → true,
→ false

end,

max_value_decl :

198 Appendix C. RSL specifications for the Scheme Diagram

Model′ × Name × ValueDecl ∼

→ ValueDecl
max_value_decl(mdl, n, vd) ≡

replace_vdte(
maximal_type(mdl, 〈〉, n, vdte(vd)), vd),

max_variable_decl :
Model′ × Name × VariableDecl ∼

→ VariableDecl
max_variable_decl(mdl, n, vd) ≡

replace_vdte(
maximal_type(mdl, 〈〉, n, vdte(vd)), vd),

max_channel_decl :
Model′ × Name × ChannelDecl ∼

→ ChannelDecl
max_channel_decl(mdl, n, cd) ≡

replace_cdte(
maximal_type(mdl, 〈〉, n, cdte(cd)), cd)

value
expand_class : ClassExpr → ClassExpr
expand_class(s) ≡

let
types′ =

〈(expand_type_decl(t), visi) |
(t, visi) in types(s)〉,

values′ =
values(s) ̂ value_from_type_decl(types(s))

in
replace_values(values′, replace_types(types′, s))

end,

expand_type_decl : TypeDecl → TypeDecl
expand_type_decl(td) ≡

case td of
VariantDef(name,) → SortDef(name),
UnionDef(name,) → SortDef(name),
ShortRecordDef(name,) → SortDef(name),
→ td

end

value
value_from_type_decl : TypeDecls → ValueDecls
value_from_type_decl(tdl) ≡

if tdl = 〈〉 then 〈〉
else

let
(td, visi) = hd tdl,
vdl =

case td of
VariantDef(, expr) →

value_from_variant(td, expr),
UnionDef() → value_from_union(td),
ShortRecordDef() →

value_from_short_record(td),
→ 〈〉

end
in

〈(v, visi) | v in vdl〉 ̂

value_from_type_decl(tl tdl)

C.1 Scheme Diagram syntax 199

end
end,

value_from_variant :
TypeDecl × Variant∗ ∼

→ ValueDecl∗

value_from_variant(td, vl) ≡
case td of

VariantDef(name, expr) →
let sort = TypeName(name, 〈〉) in

if vl = 〈〉 then 〈〉
else

value_from_variant_aux(sort, hd vl) ̂

value_from_variant(td, tl vl)
end

end
end

pre
case td of

VariantDef() → true,
→ false

end,

value_from_variant_aux :
TypeExpr × Variant → ValueDecl∗

value_from_variant_aux(sort, v) ≡
case v of

Wildcard → 〈〉,
Constructor(n) → 〈mk_ValueDecl(n, sort)〉,
RecordVariant(c, ckl) →

case c of
Wildcard → 〈〉,
Constructor(n) →

ckl2vdl(sort, ckl) ̂

〈mk_variant_fun(
n,
ProductTypeExpr(

〈expr(ck) | ck in ckl〉), sort)〉
end

end,

value_from_union : TypeDecl ∼

→ ValueDecl∗

value_from_union(td) ≡
case td of

UnionDef(udn, nwl) →
let

sort = TypeName(udn, 〈〉),
type_names =

〈let (n, q) = qname(now) in n end |
now in nwl • now 6= udWildcard〉

in
〈mk_variant_fun(

udn ̂
′′_from_′′ ̂ tn, sort,

TypeName(tn, 〈〉)) | tn in type_names〉 ̂

〈mk_variant_fun(
tn ̂

′′_to_′′ ̂ udn, TypeName(tn, 〈〉),
sort) | tn in type_names〉

end
end

200 Appendix C. RSL specifications for the Scheme Diagram

pre
case td of

UnionDef() → true,
→ false

end,

value_from_short_record : TypeDecl → ValueDecl∗

value_from_short_record(td) ≡
case td of

ShortRecordDef(srdn, ckl) →
let sort = TypeName(srdn, 〈〉) in

〈mk_variant_fun(
′′mk_′′ ̂ srdn,
ProductTypeExpr(〈expr(ck) | ck in ckl〉),
sort)〉 ̂ ckl2vdl(sort, ckl)

end
end

pre
case td of

ShortRecordDef() → true,
→ false

end,

- - Before te was called sort and was of type
- - TypeName
- -
- -
ckl2vdl :

TypeExpr × ComponentKind∗ → ValueDecl∗

ckl2vdl(te, ckl) ≡
if ckl = 〈〉 then 〈〉
else ck2vdl(te, hd ckl) ̂ ckl2vdl(te, tl ckl)
end,

- - Before te was called sort and was of type
- - TypeName
- -
- -
ck2vdl : TypeExpr × ComponentKind → ValueDecl∗

ck2vdl(te, ck) ≡
case destructor(ck) of

Destructor(dname) →
〈mk_variant_fun(dname, te, expr(ck))〉,

deNone → 〈〉
end ̂

case reconstructor(ck) of
Reconstructor(rname) →

〈mk_variant_fun(
rname, ProductTypeExpr(〈expr(ck), te〉), te

)〉,
reNone → 〈〉

end
pre

case te of
TypeName() → true,
→ false

end,

C.1 Scheme Diagram syntax 201

mk_variant_fun :
Name × TypeExpr × TypeExpr → ValueDecl

mk_variant_fun(fn, param, return) ≡
mk_ValueDecl(

fn,
FunctionTypeExpr(

param, fa_partial, (〈〉, return))),

qname2typename : QualifiedName → TypeExpr
qname2typename(n, q) ≡ TypeName(n, q)

returns the scheme from the model for a given name. If the name is an object the scheme which the object is
an instance of is returned

name2scheme : Model′ × Name ∼

→ ClassExpr
name2scheme(mdl, n) ≡ schemes(mdl)(n)
pre n ∈ schemes(mdl)

Returns the class expression after it has been renamed. See the RSL book p. 213. fit: fitting information s:
scheme that has to be fitted

rename : Fitting × ClassExpr → ClassExpr
rename(fit, s) ≡

mk_ClassExpr(
rename_types(fit, types(s)),
〈(replace_vdname(rename(fit, vdname(vd)), vd), v) |

(vd, v) in values(s)〉,
〈(replace_vdname(rename(fit, vdname(vd)), vd), v) |

(vd, v) in variables(s)〉,
〈(replace_cdname(rename(fit, cdname(cd)), cd), v) |

(cd, v) in channels(s)〉,
〈replace_adname(rename(fit, adname(ad)), ad) |

ad in axioms(s)〉),

It is not good if an old name is renamed to a new which is already part of the old. Thus it is a precondition.

rename :
Fitting × (Name →m Association) ∼

→
(Name →m Association)

rename(fit, am) ≡
[rename(fit, n) 7→ am(n) | n : Name • n ∈ dom am]

pre fit = [] ∨ ∼ (rng fit ⊆ dom am),

rename : Fitting × Name → Name
rename(fit, n) ≡ if n ∈ fit then fit(n) else n end,

rename_types : Fitting × TypeDecls → TypeDecls
rename_types(fit, tds) ≡

〈((case td of
SortDef(name) → SortDef(rename(fit, name)),
VariantDef(name, aux) →

VariantDef(rename(fit, name), aux),
UnionDef(name, aux) →

UnionDef(rename(fit, name), aux),
ShortRecordDef(name, aux) →

ShortRecordDef(rename(fit, name), aux),
AbbreviationDef(name, aux) →

AbbreviationDef(rename(fit, name), aux)
end), v) | (td, v) in tds〉

202 Appendix C. RSL specifications for the Scheme Diagram

C.1.6 wf_object.rsl

This file is about objects as the name might suggest. There are three categories of functions. The first is
well−formedness of objects in the model combines the following two categories. The second is about the
object state: determining the variables that participate in the state and well−formedness. The third and last
is well−formedness of scheme instantiation. It is used in conjunction with the wf_object function but is also
used in wf_association.

wf_scheme

scheme wf_object =
extend wf_scheme with
class

Check well−formedness for all objects present in the model.

wf_objects : Model′ → Bool
wf_objects(mdl) ≡

(∀ on : Name •

on ∈ dom objects(mdl) ⇒ wf_object(mdl, on)),

An object is well formed if it is an instance of a scheme present in the model and the scheme instantiation is
well−formed. Additionally the state of an object must represent the variables part of the scheme which it is an
instance of or reachable via nested associations.

wf_object : Model′ × Name → Bool
wf_object(mdl, on) ≡

on ∈ dom objects(mdl) ∧
let o = objects(mdl)(on) in

instance_of(o) ∈ dom schemes(mdl) ∧
wf_object_state(mdl, on) ∧
wf_scheme_instantiation(

mdl, associations(mdl, on) \ {on},
instance_of(o), actual_parameters(o))

end

The state of an object is well−formed if there for any variable available from the object is a corresponding
key in the state map. Nothing is said about the value of a given variable. It is represented by a text string and
the user is free to enter anything. If the value should be verified then it would be necessary to include value
expressions which is far to cumbersome.

wf_object_state : Model′ × Name → Bool
wf_object_state(mdl, on) ≡

on ∈ dom objects(mdl) ∧
dom state(objects(mdl)(on)) = state_domain(mdl, on),

Determines the set of variables that constitute the state of an object, based on the scheme which the object is
an instance of.

- -FILE:state_domain.rsl
state_domain : Model′ × Name ∼

→ QualifiedName-set
state_domain(mdl, n) ≡

let sn = scheme_name(mdl, n) in
state_domain_scheme(mdl, 〈〉, sn) ∪
{(vdname(vd), 〈〉) |
(vd, visi) : VariableDecl × Visibility •

(vd, visi) ∈
elems variables(schemes(mdl)(sn))}

C.1 Scheme Diagram syntax 203

end
pre n ∈ modules(mdl),

Determines the variables in the scheme sn and recursively through its nested associations. The qualification
used to get to the scheme ’sn′ is prepended. Notice that extend_history only includes public declarations from
suppliers of the extend relationship. This function is mutual recursive with the function state_domain_ass.

state_domain_scheme :
Model′ × Qualification × Name → QualifiedName-set

state_domain_scheme(mdl, q, sn) ≡
let vdl = variables(extend_history(mdl, sn)) in

{(vdname(vd), q) |
(vd, visi) : VariableDecl × Visibility •

(vd, visi) ∈ elems vdl}
end ∪
state_domain_ass(

mdl, q, associations_nested(mdl, sn))
pre sn ∈ dom schemes(mdl),

Given a map from rolenames to association, which should be all the available nested associations from a given
scheme, a mutual recursive call is made for each entry to the function state_domain_scheme. Again ’q′ is the
qualification used to reach the current scheme.

state_domain_ass :
Model′ × Qualification × (Name →m Association) →

QualifiedName-set
state_domain_ass(mdl, q, todos) ≡

if todos = [] then {}
else

let next = hd dom todos in
state_domain_scheme(

mdl, q ̂ 〈next〉, supplier(todos(next))) ∪
state_domain_ass(mdl, q, todos \ {next})

end
end

This functions is called for each object and association of kind Parameter or Nested in the model from the
functions wf_object and wf_association respectively. In order to check the well−formedness of an scheme
instantiation it is necessary to first check that there is an object for each formal parameter. This is delegated
to the function wf_actual_parameters. If this is fulfilled it is checked that the actual parameters statically
implements the formal parameters. The parameters for the function is a map of the available object names
mapped to their instantiating association, the name of the scheme which is being instantiated, and link between
the formal and actual parameters with fitting information for the actual.

- -FILE:wf_scheme_instantiation.rsl
wf_scheme_instantiation :

Model′ × (Name →m Association) × Name ×

ActualParameters ∼

→
Bool

wf_scheme_instantiation(mdl, avail_objm, supplier, apm) ≡
let fpm = associations_param(mdl, supplier) in

wf_actual_parameters(mdl, dom avail_objm, fpm, apm) ∧
(∀ fp : Name •

fp ∈ dom fpm ⇒
let (apn, ap_fit) = apm(fp) in

static_implement(
mdl,
(scheme_name(

mdl, supplier(avail_objm(apn))),

204 Appendix C. RSL specifications for the Scheme Diagram

ap_fit), supplier(fpm(fp)))
end)

end,

wf_actual_parameters: The function checks the well−formedness of the ActualParameters type, which is
dependent on its contexts.

• For each formal parameter there must be an actual parameter.

• The actual parameters must all be available from within the client context. The name of the object that
is currently being instantiated must be excluded, this is however done by the caller.

• When instantiating parameters, nested objects are not available (this is actually not checked here but is
carried out in wf_association().

As parameters is given the set of names of the available objects, a set of formal parameter names (only the
domain of the map is used) and the actual parameters. Remember that the ActualParameters is a map from
formal parameter names to actual parameters and fitting.

wf_actual_parameters :
Model′ × Name-set × (Name →m Association) ×
ActualParameters →

Bool
wf_actual_parameters(mdl, avail_objs, fpm, apm) ≡

let
required_objs =

{apn |
(apn, fit) : Name × Fitting •

(apn, fit) ∈ rng apm}
in

dom fpm = dom apm ∧ required_objs ⊆ avail_objs
end

C.1.7 wf_extend.rsl

scheme wf_extend =
extend auxiliary with
class

wf_extends: All extend relations in the model must be well−formed, this is checked by wf_extend.

wf_extends : Model′ → Bool
wf_extends(mdl) ≡

(∀ rid : RID •

rid ∈ dom extends(mdl) ⇒ wf_extend(mdl, rid)),

wf_extend: An extend relation is well−formed is the ends of the relations are two distinct schemes present in
the model.

wf_extend : Model′ × RID → Bool
wf_extend(mdl, r) ≡

r ∈ dom extends(mdl) ∧
let e = extends(mdl)(r) in

client(e) 6= supplier(e) ∧
{client(e), supplier(e)} ⊆ dom schemes(mdl)

end

C.1 Scheme Diagram syntax 205

wf_no_of_extends: A given scheme must at most extend one other scheme. Or said differently, the number of
extend relations in the model with the same client name must be less than or equal to one.

- -FILE:wf_no_of_extends.rsl
wf_no_of_extends : Model′ → Bool
wf_no_of_extends(mdl) ≡

(∀ n : Name •

n ∈ schemes(mdl) ⇒
let

sup_ext =
{rid |

rid : RID •

rid ∈ extends(mdl) ∧
client_of(mdl, rid) = n}

in
card sup_ext ≤ 1

end)

wf_unique_rolenames: All objects available from a given scheme must have a unique rolename (identifier).

- -FILE:wf_unique_rolenames.rsl
wf_unique_rolenames : Model′ → Bool
wf_unique_rolenames(mdl) ≡

(∀ n : Name •

n ∈ schemes(mdl) ⇒
let

ridl = rid_set2list(extend_relations(mdl, n)),
rnl =

〈rolename(associations(mdl)(r)) |
r in ridl〉

in
len rnl = card elems rnl

end),

extend_relations: A set of unique relation id′s is computed, where each id represents a single association
relation with the scheme n as client. The associations() function is not applicable here since it maps rolenames
to associations and we are interested in duplicate rolenames. All relation id′s are unique even though the
rolenames are not.

extend_relations : Model′ × Name ∼

→ RID-set
extend_relations(mdl, n) ≡

let ss = suppliers_ext(mdl, n) in
{r |
r : RID •

r ∈ associations(mdl) ∧
client_of(mdl, r) = n} ∪

if dom ss = {} then {}
else extend_relations(mdl, hd dom ss)
end

end
pre n ∈ schemes(mdl)

Given a name of a scheme one basic class expression is created. It is the union of the class expression of the
given scheme, and all parents of the scheme.

extend_history : Model′ × Name ∼

→ ClassExpr
extend_history(mdl, n) ≡

let
ss = suppliers_ext(mdl, n), s = schemes(mdl)(n)

206 Appendix C. RSL specifications for the Scheme Diagram

in
if dom ss = {} then public_decl_only(s)
else

public_decl_only(s) ̂ extend_history(mdl, hd ss)
end

end
pre n ∈ schemes(mdl),

Removes any hidden declarations from a class expression.

public_decl_only : ClassExpr → ClassExpr
public_decl_only(s) ≡

mk_ClassExpr(
〈(td, visi) |

(td, visi) in types(s) • visi = Public〉,
〈(vd, visi) |

(vd, visi) in values(s) • visi = Public〉,
〈(vd, visi) |

(vd, visi) in variables(s) • visi = Public〉,
〈(cd, visi) |

(cd, visi) in channels(s) • visi = Public〉,
axioms(s)),

Creates the union of two class expressions. In the Scheme Diagram syntax the clauses are represented by
listed in order to maintain the correct display order for the user. Hence the class expressions are actually
concatenated.

̂ : ClassExpr × ClassExpr → ClassExpr
child ̂ parent ≡

mk_ClassExpr(
types(child) ̂ types(parent),
values(child) ̂ values(parent),
variables(child) ̂ variables(parent),
channels(child) ̂ channels(parent),
axioms(child) ̂ axioms(parent)),

Converts a set of relation ids to a list of ids. The order of the list is irrelevant.

rid_set2list : RID-set → RID∗

rid_set2list(rids) ≡
if rids = {} then 〈〉
else

let rid = hd rids in
〈rid〉 ̂ rid_set2list(rids \ {rid})

end
end,

Converts a set of names to a list of names. Actually the same as above. One could consider to make the
Scheme Diagram types global and make a general functions in a parameterised scheme

name_set2list : Name-set → Name∗

name_set2list(ns) ≡
if ns = {} then 〈〉
else

let n = hd ns in
〈n〉 ̂ name_set2list(ns \ {n})

end
end,

Transform a list of list of names to a list of names. The signature of the function explains it all.

name_dlist2list : (Name∗)∗ → Name∗

C.1 Scheme Diagram syntax 207

name_dlist2list(nll) ≡
if nll = 〈〉 then 〈〉
else hd nll ̂ name_dlist2list(tl nll)
end

C.1.8 wf_association.rsl

scheme wf_association =
extend wf_object with
class

Check if all associations in the model are well−formed

wf_associations : Model′ → Bool
wf_associations(mdl) ≡

(∀ rid : RID •

rid ∈ dom associations(mdl) ⇒
wf_association(mdl, rid)),

An association is well−formed if the association kind and multiplicity is well−formed. Additionally if the
kind is parameter or nested the scheme instantiation must be well−formed. It is not necessary to state
that the client is different from supplier since the model may not be circular. TODO: document use of
wf_scheme_instantiation.

wf_association : Model′ × RID → Bool
wf_association(mdl, rid) ≡

rid ∈ dom associations(mdl) ⇒
wf_kind(mdl, rid) ∧ wf_multiplicity(mdl, rid) ∧
let a = associations(mdl)(rid) in

(is_global(a) ∨
let

aom = associations(mdl, client(a)),
aom′ =

[n 7→ aom(n) |
n : Name •

n ∈ aom ∧
((is_parameter(a) ∧ ∼ is_nested(aom(n))) ∨
∼ is_parameter(a))]

in
wf_scheme_instantiation(

mdl, aom′ \ {rolename(a)}, supplier(a),
actual_parameters(a))

end)
end,

The association kind denotes if an association is nested, parameter or global. The supplier of a global associa-
tion must be an object, and since an object already has a name the rolename of the association must be empty.
A client is normally a scheme. It is, however, necessary to allow objects to be clients since global objects can
be used as actual parameters in a scheme instantiation. Parameter and nested associations are relations between
two schemes and the rolename must be non−empty. Unique rolenames is verified by wf_unique_rolenames().

wf_kind : Model′ × RID → Bool
wf_kind(mdl, rid) ≡

rid ∈ dom associations(mdl) ∧
let a = associations(mdl)(rid) in

case kind(a) of
Global →

supplier(a) ∈ dom objects(mdl) ∧

208 Appendix C. RSL specifications for the Scheme Diagram

client(a) ∈
dom schemes(mdl) ∪ dom objects(mdl) ∧

rolename(a) = ′′′′,
→
{client(a), supplier(a)} ⊆ dom schemes(mdl) ∧
rolename(a) 6= ′′′′

end
end,

The multiplicity (array index) is well−formed if the type expression is well−formed

wf_multiplicity : Model′ × RID → Bool
wf_multiplicity(mdl, rid) ≡

rid ∈ dom associations(mdl) ∧
let a = associations(mdl)(rid) in

a ∈ rng associations(mdl) ⇒
case mul(a) of

None → true,
Index(binding, expr) →

wf_type_expr(mdl, client(a), expr)
end

end,

Returns the actual parameters for a given association. Global association does not have actual parameters (they
are present in the Object type) and will always produce the empty map.

actual_parameters : Association → ActualParameters
actual_parameters(a) ≡

case kind(a) of
Nested(, ap) → ap,
Parameter(ap) → ap,
Global → []

end

C.1.9 wf_model.rsl

scheme wf_model =
extend wf_association with
class

The Model type represents a well−formed Scheme Diagram.

Model = {| mdl : Model′ • wf_model(mdl) |}

wf_model: Collects all the predicates defined for the model. If a Model′ fulfill this predicate then it is
well−formed.

wf_model : Model′ → Bool
wf_model(mdl) ≡

wf_module_names(mdl) ∧ wf_relation_ids(mdl) ∧
wf_non_cyclic(mdl) ∧ wf_associations(mdl) ∧
wf_extends(mdl) ∧ wf_no_of_extends(mdl) ∧
wf_unique_rolenames(mdl) ∧ wf_objects(mdl) ∧
wf_schemes(mdl) ∧ wf_implements(mdl),

wf_module_names : Model′ → Bool
wf_module_names(mdl) ≡

dom schemes(mdl) ∩ dom objects(mdl) = {},

C.2 Translation of Scheme Diagram to RSL. 209

wf_relation_ids : Model′ → Bool
wf_relation_ids(mdl) ≡

dom associations(mdl) ∩ dom extends(mdl) ∩
dom implements(mdl) = {},

The predicate cyclic returns true if there are any cyclic paths/relations in the model. That is a path from any
module to itself via any combination of relations.

- - FILE:wf_non_cyclic.rsl
wf_non_cyclic : Model′ → Bool
wf_non_cyclic(mdl) ≡

∼ (∃ s : Name •

s ∈ schemes(mdl) ∧ path(mdl, s, s)),

Determines if there is a path between two schemes in the model, where a path is a directed relation between
two schemes with any number of intermediate schemes.

- - FILE:path1.rsl
path : Model′ × Name × Name ∼

→ Bool
path(mdl, org, dst) ≡

path(mdl, org, dom suppliers(mdl, org), dst)
pre {org, dst} ⊆ modules(mdl),

- - FILE:path2.rsl
path : Model′ × Name × Name-set × Name ∼

→ Bool
path(mdl, org, intermediate, dst) ≡

intermediate 6= {} ∧
(dst ∈ intermediate ∨
let n = hd intermediate in

path(mdl, n, dom suppliers(mdl, n), dst) ∨
path(mdl, dst, intermediate \ {n}, dst)

end)
pre {org, dst} ⊆ modules(mdl)

- - ENDFILE

C.2 Translation of Scheme Diagram to RSL.

scheme transltr(RSL : rslprint, SD : wf_model) =
class

Translate an entire scheme diagram to rsl. ml : List of all module names in the model m : A single module
name Determine the leafs and translate them first. First all the schemes are translated. Thus the ordering of the
formal parameters are determined which is necessary to translate scheme instantiations.

transltr : SD.Model → RSL.specification
transltr(mdl) ≡

let
scheme_spec = leaf_scheme(mdl, 〈〉),
object_spec =

〈RSL.module_decl_from_object_decl(
transltr_Object(

scheme_spec, on, SD.objects(mdl)(on))) |
on in SD.name_set2list(dom SD.objects(mdl))〉

in
scheme_spec ̂ object_spec

end,

210 Appendix C. RSL specifications for the Scheme Diagram

Todo: Must include not only the class expression of an object but also the object itself. This is due to the added
global association between global objects.

transltr_context : SD.Model → RSL.Context
transltr_context(mdl) ≡

[n 7→
(dom SD.suppliers(mdl, n) ∪
if n ∈ SD.objects(mdl)
then {SD.instance_of(SD.objects(mdl)(n))}
else {}
end) | n : SD.Name • n ∈ SD.modules(mdl)],

Remove globals in ass. todos may not be empty! dones : the set of schemes which have already been translated.
If a scheme is to be translated then cannot have any associations or all the suppliers of the associations must
already have been translated. Remember that it is not allowed to make circular association relations. Put a
if−statement around todos if it is empty? It should however not be necessary!?? Besides returning the finished
specification after translating all the schemes, it is also necessary to pass the specification that has been done
so far since there may be schemes that are dependent on the already translated schemes. This could fx be
parameterised schemes. specification is not used as a parameter since we start out with the empty specification
(the specification type cannot be empty). It is a requirement that the returned specification has at least one
element thus the Model given as parameter must not be empty. Due to the well−formedness conditions for the
model there will always be at least one scheme if the model is not empty. This is because all objects must be
an instance of a scheme. dones: the set of scheme names which have been translated. todos: the set of scheme
names which have not been translated Argh: todos = {} ∧ spec = 〈〉 must not be true

leaf_scheme :
SD.Model × RSL.module_decl∗ ∼

→
RSL.module_decl∗

leaf_scheme(mdl, spec) ≡
let

dones = elems spec2namel(spec),
todos = dom SD.schemes(mdl) \ dones

in
if todos = {} then spec
else

let
next = next_scheme(mdl, todos, dones),
spec′ =

spec ̂

〈RSL.module_decl_from_scheme_decl(
transltr_Scheme(mdl, spec, next))〉

in
leaf_scheme(mdl, spec′)

end
end

end
pre dom SD.schemes(mdl) 6= {},

∗ Selects the next scheme to be translated from the model. The name of the scheme that is chosen may only
depend on other schemes which have already been translated. Thus the supplier schemes of all the associations
in which the selected scheme is client must already have been translated. The extend does not directly add
restrictions to the choice however if the supplier is a parameterised scheme then the client will ′′inherit′′

the formal parameters. The functions ’associations′ determines all the associations which the scheme is a client
in, including inherited associations.

next_scheme :
SD.Model × SD.Name-set × SD.Name-set ∼

→ SD.Name
next_scheme(mdl, todos, dones) ≡

let
next : SD.Name •

C.2 Translation of Scheme Diagram to RSL. 211

next ∈ todos ∧
dom SD.suppliers(mdl, next) ⊆ dones

in
next

end
pre

todos 6= {} ∧
todos ∪ dones = dom SD.schemes(mdl) ∧
todos ∩ dones = {},

Extracts the names of the modules in the specification.

spec2namel : RSL.module_decl∗ → SD.Name∗

spec2namel(spec) ≡
if spec = 〈〉 then 〈〉
else

case hd spec of
RSL.module_decl_from_scheme_decl(

RSL.mk_scheme_decl(sdl)) →
〈case sd of

RSL.mk_scheme_def(n, ofsp, ce) →
id2Name(n)

end | sd in sdl〉,
RSL.module_decl_from_object_decl(

RSL.mk_object_decl(odl)) →
〈case od of

RSL.mk_object_def(n, ofap, ce) →
id2Name(n)

end | od in odl〉
end ̂ spec2namel(tl spec)

end,

A scheme is translated into RSL by first determining all the declarations within the scheme including object
declarations from nested associations. If there are names that should be hidden a hidden class expression is
created.

transltr_Scheme :
SD.Model × RSL.module_decl∗ × SD.Name ∼

→
RSL.scheme_decl

transltr_Scheme(mdl, spec, n) ≡
let

s = SD.name2scheme(mdl, n),
(hide_me, decll) =

transltr_NestedAss(spec, mdl, n) ̂

transltr_TypeDecls(SD.types(s)) ̂

transltr_ValueDecls(SD.values(s)) ̂

transltr_VariableDecls(SD.variables(s)) ̂

transltr_ChannelDecls(SD.channels(s)) ̂

transltr_AxiomDecls(SD.axioms(s)),
ce =

RSL.class_expr_from_basic_class_expr(
RSL.mk_basic_class_expr(decll)),

ce′ =
if hide_me = 〈〉 then ce
else

RSL.class_expr_from_hiding_class_expr(
RSL.mk_hiding_class_expr(

〈RSL.defined_item_from_id_or_op(
RSL.id_or_op_from_id(hm)) |

hm in hide_me〉, ce))

212 Appendix C. RSL specifications for the Scheme Diagram

end,
ce′′ = transltr_Extend(mdl, spec, n, ce′)

in
RSL.mk_scheme_decl(

〈RSL.mk_scheme_def(
n, transltr_formal_param(spec, mdl, n),
ce′′)〉)

end
pre n ∈ dom SD.schemes(mdl),

For a given scheme all the nested associations are found and returned in rsl syntax as object declarations.
mdl : Entire model sn : The scheme in which the objects are instantiated. objm : Mapping of names to
nested associations of the objects - - that are to be instantiated. obj_name_list : The list of the names of to be
instantiated.

transltr_NestedAss :
RSL.module_decl∗ × SD.Model × SD.Name ∼

→
RSL.id∗ × RSL.decl∗

transltr_NestedAss(spec, mdl, sn) ≡
let

objm′ = SD.associations_nested(mdl, sn),
objm =

[n 7→ objm′(n) |
n : SD.Name •

n ∈ objm′ ∧ SD.client(objm′(n)) = sn],
obj_name_list = SD.name_set2list(dom objm),
obj_def_list =

〈RSL.mk_object_def(
objn,
transltr_Multiplicity(SD.mul(objm(objn))),
RSL.class_expr_from_scheme_instantiation(
RSL.mk_scheme_instantiation(

RSL.name_from_qualified_id(
RSL.mk_qualified_id(

RSL.opt_qual_none,
SD.supplier(objm(objn)))),

actual_param(
spec, SD.supplier(objm(objn)),
actual_parameters(objm(objn)))))) |

objn in obj_name_list〉,
idl =

〈aname |
aname in obj_name_list •

case SD.kind(objm(aname)) of
SD.Nested(visi,) → visi = SD.Private,
→ false

end〉
in

(idl,
if obj_def_list = 〈〉 then 〈〉
else

〈RSL.decl_from_object_decl(
RSL.mk_object_decl(obj_def_list))〉

end)
end,

transltr_Multiplicity :
SD.Multiplicity → RSL.opt_formal_array_parameter

C.2 Translation of Scheme Diagram to RSL. 213

transltr_Multiplicity(mul) ≡
case mul of

SD.None → 〈〉,
SD.Index(b, te) →

〈RSL.typing_from_single_typing(
RSL.mk_single_typing(

RSL.binding_from_id_or_op(
RSL.id_or_op_from_id(b)),

transltr_TypeExpr(te)))〉
end,

transltr_Extend: Returns an extended class expression if the scheme which the class expression is the body of
is an extension of another scheme. It is assumed that a scheme can only extend one other scheme (part of the
well−formedness for the scheme diagram).

transltr_Extend :
SD.Model × RSL.module_decl∗ × SD.Name ×

RSL.class_expr ∼

→
RSL.class_expr

transltr_Extend(mdl, spec, scheme_name, ce) ≡
let sem = SD.suppliers_ext(mdl, scheme_name) in

if dom sem = {} then ce
else
let

sup_name = hd dom sem,
sup_rsl_name =

RSL.name_from_qualified_id(
RSL.mk_qualified_id(

RSL.opt_qual_none,
transltr_Name(sup_name)))

in
RSL.class_expr_from_extending_class_expr(

RSL.mk_extending_class_expr(
RSL.class_expr_from_scheme_instantiation(

RSL.mk_scheme_instantiation(
sup_rsl_name,
actual_param(

spec, sup_name,
[fp 7→ (fp, []) |
fp : SD.Name •

fp ∈
dom SD.associations_param(

mdl, sup_name)]))),ce))
end

end
end

pre card dom SD.suppliers_ext(mdl, scheme_name) ≤ 1,

transltr_Object: Translation of globally declared objects must be done after tranlation of schemes. The spec-
ification which is a result of the translation of the schemes are given as parameter. This is necessary since it
contains the ordering of the formal parameters for parameterized schemes, which is needed to place the actual
parameters in a corresponding order when instantiating the scheme. The name of the scheme is without qual-
ification since all schemes are globally available, nested schemes are not allowed. Support for global object
arrays have been omitted (the empty list in the mk_object_decl)!?

transltr_Object :
RSL.specification × SD.Name × SD.Object →

RSL.object_decl
transltr_Object(spec, n, o) ≡

let

214 Appendix C. RSL specifications for the Scheme Diagram

scheme_name =
RSL.name_from_qualified_id(

RSL.mk_qualified_id(
RSL.opt_qual_none, SD.instance_of(o))),

ce =
RSL.class_expr_from_scheme_instantiation(

RSL.mk_scheme_instantiation(
scheme_name,
actual_param(

spec, SD.instance_of(o),
SD.actual_parameters(o))))

in
RSL.mk_object_decl(

〈RSL.mk_object_def(n, 〈〉, ce)〉)
end,

actual_param:

actual_param :
RSL.specification × SD.Name × SD.ActualParameters →

RSL.opt_actual_scheme_parameter
actual_param(spec, inst_of, ap) ≡

let fpol = formal_param_ordering(spec, inst_of) in
transltr_ActualParameters(fpol, ap)

end,

formal_param_ordering: The list of formal parameters for a given scheme is determined using the already
translated specification for the schemes, spec, and the name of the scheme. Some assumptions are made regard-
ing the provided information. The length of ’fpll′ should be either 0 or 1. If it is more than one it would mean
that there are several formal parameters with the same name, which is a violation of the well−formedness.
Only scheme names are searched since anything else would be irrelevant. This function only make sense for
schemes. If the scheme is parameterised then the list of formal parameter names will be returned otherwise the
empty list. A note: A ’specification′ is a list of scheme_decl and object_decl. A scheme_decl is again a list of
’scheme_def′. The first list is traversed using recursion, the second using a comprehended list expression.

formal_param_ordering :
RSL.module_decl∗ × SD.Name → SD.Name∗

formal_param_ordering(spec, n) ≡
if spec = 〈〉 then 〈〉
else

case hd spec of
RSL.module_decl_from_scheme_decl(

RSL.mk_scheme_decl(sdl)) →
let

(found, ofsp) =
find_first_scheme_def(sdl, n)

in
if found
then formal_param_to_name_list(ofsp)
else formal_param_ordering(tl spec, n)
end

end,
→ formal_param_ordering(tl spec, n)

end
end,

WRITE COMMENT

find_first_scheme_def :
RSL.scheme_def∗ × SD.Name →

C.2 Translation of Scheme Diagram to RSL. 215

Bool × RSL.opt_formal_scheme_parameter
find_first_scheme_def(sdl, n) ≡

if sdl = 〈〉 then (false, 〈〉)
else

case hd sdl of
RSL.mk_scheme_def(id, ofp,) →

if id = n then (true, ofp)
else find_first_scheme_def(tl sdl, n)
end,
→ find_first_scheme_def(tl sdl, n)

end
end,

WRITE COMMENT

formal_param_to_name_list :
RSL.opt_formal_scheme_parameter → SD.Name∗

formal_param_to_name_list(ofsp) ≡
if ofsp = 〈〉 then 〈〉
else

case hd ofsp of
RSL.mk_formal_scheme_argument(

RSL.mk_object_def(id, ,)) →
〈id2Name(id)〉,
→ 〈〉

end ̂ formal_param_to_name_list(tl ofsp)
end,

id2Name: Conversion of names from the rsl syntax to the scheme diagram names.

id2Name : RSL.id → SD.Name
id2Name(id) ≡ id,

transltr_ActualParameters: The schemes in the diagram are translated before the global objects so the ordering
of the formal parameters are settled. ’fpol′ is a list of formal parameter names in the same order as chosen by
the translation of the scheme. Again ap is a mapping from the formal parameter names to the actual parameter
names with fitting information. The names of fpol must match the domain of ap.

transltr_ActualParameters :
SD.Name∗ × SD.ActualParameters ∼

→
RSL.opt_actual_scheme_parameter

transltr_ActualParameters(fpol, ap) ≡
if fpol = 〈〉 then RSL.opt_asp_none
else

RSL.opt_actual_scheme_parameter_from_actual_scheme_parameter(
RSL.mk_actual_scheme_parameter(

〈let
(apn, fit) = ap(fpn),
objname =

RSL.object_expr_from_object_name(
RSL.name_from_qualified_id(
RSL.mk_qualified_id(

RSL.opt_qual_none, apn)))
in

if fit = [] then objname
else

RSL.object_expr_from_fitting_object_expr(
RSL.mk_fitting_object_expr(

objname, transltr_Fitting(fit)))
end

216 Appendix C. RSL specifications for the Scheme Diagram

end | fpn in fpol〉))
end

pre elems fpol = dom ap,

transltr_Fitting: Fitting is specifies the use of a new name instead of an old one. This functions just convert
the information into the form used by the rslsyntax.

transltr_Fitting : SD.Fitting → RSL.rename_pair∗

transltr_Fitting(fit) ≡
〈RSL.mk_rename_pair(

RSL.defined_item_from_id_or_op(
RSL.id_or_op_from_id(nn)),

RSL.defined_item_from_id_or_op(
RSL.id_or_op_from_id(fit(nn)))) |

nn in SD.name_set2list(dom fit)〉,

transltr_TypeDecls: Iterates through the list of type declarations from the sd and returns two lists. The first is
a list of id′s which must be hidden and the second

transltr_TypeDecls :
SD.TypeDecls → RSL.id∗ × RSL.decl∗

transltr_TypeDecls(tdl) ≡
let (idl, tdefl) = transltr_TypeDecls′(tdl) in

(idl,
if tdefl = 〈〉 then 〈〉
else

〈RSL.decl_from_type_decl(
RSL.mk_type_decl(tdefl))〉

end)
end,

transltr_TypeDecls′ :
SD.TypeDecls → RSL.id∗ × RSL.type_def∗

transltr_TypeDecls′(tdl) ≡
if tdl = 〈〉 then (〈〉, 〈〉)
else

let
(idl, tdefl) = transltr_TypeDecl(hd tdl),
(idl′, tdefl′) = transltr_TypeDecls′(tl tdl)

in
(idl ̂ idl′, tdefl ̂ tdefl′)

end
end,

transltr_TypeDecl: Translates a type declaration from the scheme diagram to rslsyntax.

transltr_TypeDecl :
SD.TypeDecl × SD.Visibility →

RSL.id∗ × RSL.type_def∗

transltr_TypeDecl(td, visi) ≡
(private_idl(visi, SD.td_name(td)),

〈case td of
SD.SortDef(name) →

RSL.type_def_from_sort_def(
RSL.mk_sort_def(transltr_Name(name))),

SD.VariantDef(name, expr) →
RSL.type_def_from_variant_def(

RSL.mk_variant_def(
transltr_Name(name),
〈transltr_Variant(v) | v in expr〉)),

C.2 Translation of Scheme Diagram to RSL. 217

SD.UnionDef(name, expr) →
RSL.type_def_from_union_def(

RSL.mk_union_def(
transltr_Name(name),
〈case e of

SD.udName((name, qualification)) →
RSL.name_or_wildcard_from_type_name(

transltr_QualifiedName(
name, qualification)),

SD.udWildcard → RSL.nw_wildcard
end | e in expr〉)),

SD.ShortRecordDef(name, components) →
RSL.type_def_from_short_record_def(

RSL.mk_short_record_def(
transltr_Name(name),
〈transltr_ComponentKind(ck) |

ck in components〉)),
SD.AbbreviationDef(name, expr) →

RSL.type_def_from_abbreviation_def(
RSL.mk_abbreviation_def(

transltr_Name(name),
transltr_TypeExpr(expr)))

end〉),

transltr_Variant : SD.Variant → RSL.variant
transltr_Variant(v) ≡

case v of
SD.Wildcard →

RSL.variant_from_constructor(RSL.con_wildcard),
SD.Constructor(name) →

RSL.variant_from_constructor(
RSL.constructor_from_id_or_op(

RSL.id_or_op_from_id(transltr_Name(name)))),
SD.RecordVariant(SD.Constructor(name), components) →

RSL.variant_from_record_variant(
RSL.mk_record_variant(

RSL.constructor_from_id_or_op(
RSL.id_or_op_from_id(

transltr_Name(name))),
〈transltr_ComponentKind(ck) |

ck in components〉))
end,

transltr_ComponentKind: transltr_Constructor : SD.Constructor → RSL.constructor transltr_Constructor(c) is
case c of SD.Wildcard → RSL.wildcard, SD.mk_Constructor(name) → RSL.id_or_op_from_id(transltr_Name(name))
end,

transltr_ComponentKind :
SD.ComponentKind → RSL.component_kind

transltr_ComponentKind(ck) ≡
RSL.mk_component_kind(

case SD.destructor(ck) of
SD.Destructor(name) →

RSL.opt_destructor_from_destructor(
RSL.id_or_op_from_id(transltr_Name(name))),

SD.deNone → RSL.opt_dest_none
end, transltr_TypeExpr(SD.expr(ck)),
case SD.reconstructor(ck) of

SD.Reconstructor(name) →

218 Appendix C. RSL specifications for the Scheme Diagram

RSL.opt_reconstructor_from_reconstructor(
RSL.id_or_op_from_id(transltr_Name(name))),

SD.reNone → RSL.opt_reco_none
end)

value
transltr_ValueDecls :

SD.ValueDecls → RSL.id∗ × RSL.decl∗

transltr_ValueDecls(vdl) ≡
let (idl, vdefl) = transltr_ValueDecls′(vdl) in

(idl,
if vdefl = 〈〉 then 〈〉
else

〈RSL.decl_from_value_decl(
RSL.mk_value_decl(vdefl))〉

end)
end,

transltr_ValueDecls’: Convert a list of value declarations from the scheme diagram to a corresponding list of
value definitions. The function simply recurses through the list and for each element call the transltr_ValueDecl
function.

transltr_ValueDecls′ :
SD.ValueDecls → RSL.id∗ × RSL.value_def∗

transltr_ValueDecls′(vdl) ≡
if vdl = 〈〉 then (〈〉, 〈〉)
else

let
(idl, vdefl) = transltr_ValueDecl(hd vdl),
(idl′, vdefl′) = transltr_ValueDecls′(tl vdl)

in
(idl ̂ idl′, vdefl ̂ vdefl′)

end
end,

transltr_ValueDecl: Translate a single value declaration from the scheme diagram to a value definition using
the RSL syntax. A value declaration is actually a list of value definitions. It is only possible to specify the
name and signature in the Scheme Diagram thus it will always be a commented typing in the RSL syntax. The
returned id list contains the name of the value declaration if it should be hidden, otherwise empty. The returned
value_def list will always have the length one.

transltr_ValueDecl :
SD.ValueDecl × SD.Visibility →

RSL.id∗ × RSL.value_def∗

transltr_ValueDecl(vd, visi) ≡
(private_idl(visi, SD.vdname(vd)),

〈RSL.value_def_from_commented_typing(
RSL.mk_commented_typing(

RSL.typing_from_single_typing(
RSL.mk_single_typing(
RSL.binding_from_id_or_op(

RSL.id_or_op_from_id(
transltr_Name(SD.vdname(vd)))),

transltr_TypeExpr(SD.vdte(vd))))))〉)

transltr_VariableDecls: Call the sister function to do the dirty work, and convert the result to an id list and in
particular a lidt of declaration.

transltr_VariableDecls :

C.2 Translation of Scheme Diagram to RSL. 219

SD.VariableDecls → RSL.id∗ × RSL.decl∗

transltr_VariableDecls(vdl) ≡
let (idl, vdefl) = transltr_VariableDecls′(vdl) in

(idl,
if vdefl = 〈〉 then 〈〉
else

〈RSL.decl_from_variable_decl(
RSL.mk_variable_decl(vdefl))〉

end)
end,

transltr_VariableDecls’: Recurse through the list of variable declarations and each entry to the RSL syntax.

transltr_VariableDecls′ :
SD.VariableDecls →

RSL.id∗ × RSL.variable_def∗

transltr_VariableDecls′(vdl) ≡
if vdl = 〈〉 then (〈〉, 〈〉)
else

let
(idl, vdefl) = transltr_VariableDecl(hd vdl),
(idl′, vdefl′) = transltr_VariableDecls′(tl vdl)

in
(idl ̂ idl′, vdefl ̂ vdefl′)

end
end,

transltr_VariableDecl: Convert a single Variable declaration from the Scheme Diagram to rsl. If the visibility
given as parameter is set to private then the name of the variable is added to the returned id list. The returned
variable list will always be one in length.

transltr_VariableDecl :
SD.VariableDecl × SD.Visibility →

RSL.id∗ × RSL.variable_def∗

transltr_VariableDecl(vd, visi) ≡
(private_idl(visi, SD.vdname(vd)),

〈RSL.variable_def_from_single_variable_def(
RSL.mk_single_variable_def(

transltr_Name(SD.vdname(vd)),
transltr_TypeExpr(SD.vdte(vd)),
RSL.opt_init_none))〉)

value
transltr_ChannelDecls :

SD.ChannelDecls → RSL.id∗ × RSL.decl∗

transltr_ChannelDecls(vdl) ≡
let (idl, cdefl) = transltr_ChannelDecls′(vdl) in

(idl,
if cdefl = 〈〉 then 〈〉
else

〈RSL.decl_from_channel_decl(
RSL.mk_channel_decl(cdefl))〉

end)
end,

transltr_ChannelDecls′ :
SD.ChannelDecls →

RSL.id∗ × RSL.channel_def∗

transltr_ChannelDecls′(cdl) ≡
if cdl = 〈〉 then (〈〉, 〈〉)

220 Appendix C. RSL specifications for the Scheme Diagram

else
let

(idl, cdefl) = transltr_ChannelDecl(hd cdl),
(idl′, cdefl′) = transltr_ChannelDecls′(tl cdl)

in
(idl ̂ idl′, cdefl ̂ cdefl′)

end
end,

transltr_ChannelDecl :
SD.ChannelDecl × SD.Visibility →

RSL.id∗ × RSL.channel_def∗

transltr_ChannelDecl(cd, visi) ≡
(private_idl(visi, SD.cdname(cd)),

〈RSL.channel_def_from_single_channel_def(
RSL.mk_single_channel_def(

transltr_Name(SD.cdname(cd)),
transltr_TypeExpr(SD.cdte(cd))))〉)

value
transltr_AxiomDecls :

SD.AxiomDecls → RSL.id∗ × RSL.decl∗

transltr_AxiomDecls(adl) ≡
if adl = 〈〉 then (〈〉, 〈〉)
else

(〈〉,
〈RSL.decl_from_axiom_decl(

RSL.mk_axiom_decl(
〈transltr_AxiomDecl(ad) | ad in adl〉))〉

)
end,

transltr_AxiomDecl : SD.AxiomDecl → RSL.axiom_def
transltr_AxiomDecl(ad) ≡

RSL.mk_axiom_def(
RSL.opt_axiom_naming_from_axiom_naming(

RSL.mk_axiom_naming(
transltr_Name(SD.adname(ad)))),

RSL.ve_val_l(RSL.bool_literal(true)))

(̂contatenation): Concatenates two tuples both containing a list of id′s and a list of declarations.

̂ :
(RSL.id∗ × RSL.decl∗) ×
(RSL.id∗ × RSL.decl∗) →

(RSL.id∗ × RSL.decl∗)
a ̂ b ≡

let (idl, d) = a, (idl′, d′) = b in
(idl ̂ idl′, d ̂ d′)

end,

private_idl: If the visibility is private the list returns a list containing only the name given as parameter;
otherwise the returned list is empty.

private_idl : SD.Visibility × SD.Name → RSL.id∗

private_idl(visi, n) ≡
if visi = SD.Private then 〈transltr_Name(n)〉
else 〈〉
end

C.2 Translation of Scheme Diagram to RSL. 221

value
transltr_TypeExpr : SD.TypeExpr → RSL.type_expr
transltr_TypeExpr(te) ≡

case te of
SD.tl_Unit →

RSL.type_expr_from_type_literal(RSL.tl_Unit),
SD.tl_Bool →

RSL.type_expr_from_type_literal(RSL.tl_Bool),
SD.tl_Int →

RSL.type_expr_from_type_literal(RSL.tl_Int),
SD.tl_Nat →

RSL.type_expr_from_type_literal(RSL.tl_Nat),
SD.tl_Real →

RSL.type_expr_from_type_literal(RSL.tl_Real),
SD.tl_Text →

RSL.type_expr_from_type_literal(RSL.tl_Text),
SD.tl_Char →

RSL.type_expr_from_type_literal(RSL.tl_Char),
SD.TypeName(n, q) →

RSL.type_expr_from_name(
transltr_QualifiedName(n, q)),

SD.ProductTypeExpr(tel) →
RSL.type_expr_from_product_type_expr(

RSL.mk_product_type_expr(
transltr_TypeExprList(tel))),

SD.FiniteSetTypeExpr(te) →
RSL.type_expr_from_set_type_expr(

RSL.set_type_expr_from_finite_set_type_expr(
RSL.mk_finite_set_type_expr(

transltr_TypeExpr(te)))),
SD.InfiniteSetTypeExpr(te) →

RSL.type_expr_from_set_type_expr(
RSL.set_type_expr_from_infinite_set_type_expr(

RSL.mk_infinite_set_type_expr(
transltr_TypeExpr(te)))),

SD.FiniteListTypeExpr(te) →
RSL.type_expr_from_list_type_expr(

RSL.list_type_expr_from_finite_list_type_expr(
RSL.mk_finite_list_type_expr(

transltr_TypeExpr(te)))),
SD.InfiniteListTypeExpr(te) →

RSL.type_expr_from_list_type_expr(
RSL.list_type_expr_from_infinite_list_type_expr(

RSL.mk_infinite_list_type_expr(
transltr_TypeExpr(te)))),

SD.MapTypeExpr(tdom, trng) →
RSL.type_expr_from_map_type_expr(

RSL.map_type_expr_from_finite_map_type_expr(
RSL.mk_finite_map_type_expr(

transltr_TypeExpr(tdom),
transltr_TypeExpr(trng)))),

SD.FunctionTypeExpr(param_te, fa, rd) →
RSL.type_expr_from_function_type_expr(

RSL.mk_function_type_expr(
transltr_TypeExpr(param_te),
transltr_Function_Arrow(fa),
transltr_ResultDescr(rd))),

222 Appendix C. RSL specifications for the Scheme Diagram

SD.BracketedTypeExpr(te) →
RSL.type_expr_from_bracketed_type_expr(

RSL.mk_bracketed_type_expr(
transltr_TypeExpr(te))),

SD.SubtypeExpr(t, qn) →
RSL.type_expr_from_subtype_expr(

transltr_Subtype(t, qn))
end,

transltr_TypeExprList :
SD.TypeExpr∗ → RSL.type_expr∗

transltr_TypeExprList(tel) ≡
if tel = 〈〉 then 〈〉
else

〈transltr_TypeExpr(hd tel)〉 ̂

transltr_TypeExprList(tl tel)
end,

transltr_Subtype: A subtype expression concsists of a type expression and a predicate. Since the Scheme
Diagram does not include value expressions, the predicate must be the name of a value function. It is possible
to specify the type and function but the binding that is given as parameter to the predicate is arbitrarily chosen.

transltr_Subtype :
SD.TypeExpr × SD.QualifiedName → RSL.subtype_expr

transltr_Subtype(te, r) ≡
let

b =
RSL.binding_from_id_or_op(

RSL.id_or_op_from_id(′′binding_name′′))
in

RSL.mk_subtype_expr(
RSL.mk_single_typing(b, transltr_TypeExpr(te)),
RSL.mk_restriction(

RSL.ve_name(transltr_QualifiedName(r))))
end,

transltr_Function_Arrow :
SD.FunctionArrow → RSL.function_arrow

transltr_Function_Arrow(fa) ≡
case (fa) of

SD.fa_total → RSL.fa_total,
SD.fa_partial → RSL.fa_partial

end,

transltr_ResultDescr :
SD.ResultDescr → RSL.result_desc

transltr_ResultDescr(al, te) ≡
RSL.mk_result_desc(

(transltr_AccessDescr(al), transltr_TypeExpr(te))),

transltr_AccessDescr :
SD.AccessDescr∗ → RSL.accss_desc∗

transltr_AccessDescr(adl) ≡
if adl = 〈〉 then 〈〉
else

let (am, al) = hd adl in
〈RSL.mk_accss_desc(

transltr_AccessMode(am),
(〈transltr_Access(a) | a in al〉))〉 ̂

C.2 Translation of Scheme Diagram to RSL. 223

transltr_AccessDescr(tl adl)
end

end,

transltr_AccessMode : SD.AccessMode → RSL.accss_mode
transltr_AccessMode(am) ≡

case (am) of
SD.am_read → RSL.am_read,
SD.am_write → RSL.am_write,
SD.am_in → RSL.am_in,
SD.am_out → RSL.am_out

end,

transltr_Access : SD.Access → RSL.accss
transltr_Access(ac) ≡

case (ac) of
SD.NameAccess((n, q)) →

RSL.accss_from_acc_name(
transltr_QualifiedName(n, q)),

SD.EnumeratedAccess(al) →
RSL.accss_from_enumerated_accss(

RSL.mk_enumerated_accss(
transltr_AccessList(al))),

SD.CompletedAccess(q) →
RSL.accss_from_completed_accss(

RSL.mk_completed_accss(
transltr_Qualification(q)))

end,

transltr_AccessList : SD.Access∗ → RSL.accss∗

transltr_AccessList(al) ≡
if al = 〈〉 then 〈〉
else

〈transltr_Access(hd al)〉 ̂

transltr_AccessList(tl al)
end

transltr_QualifiedName: The use of ’name′ in the scheme diagram can be somewhat misleading. It represents
a name of a scheme, object, declaration, etc. In RSL the corresponding type is called id. Translating a qualified
name is translated by translating the qualification and name seperately.

transltr_QualifiedName : SD.QualifiedName → RSL.name
transltr_QualifiedName(n, q) ≡

RSL.name_from_qualified_id(
RSL.mk_qualified_id(

transltr_Qualification(q), transltr_Name(n))),

transltr_Qualification: Translates the representation of qualification. In the Scheme Diagram qualification is
represented by a list of names. In the RSL syntax it is a recursive data structure.

transltr_Qualification :
SD.Qualification → RSL.opt_qualification

transltr_Qualification(nl) ≡
if nl = 〈〉 then RSL.opt_qual_none
else

RSL.opt_qualification_from_qualification(
RSL.mk_qualification(
RSL.object_expr_from_object_name(

RSL.name_from_qualified_id(

224 Appendix C. RSL specifications for the Scheme Diagram

RSL.mk_qualified_id(
transltr_Qualification(

〈nl(i) |
i in 〈1 .. len nl − 1〉〉),

transltr_Name(nl(len nl)))))))
end,

transltr_Name: Translates the Name type of the Scheme Diagram to is corresponding type in the RSL syntax.

transltr_Name : SD.Name → RSL.id
transltr_Name(n) ≡ n,

transltr_formal_param: Determine the formal parameters for a given scheme. In the Scheme Diagram formal
parameters are represented by associations of kind Parameter. It is however not only the assoications for the
specified scheme but also for all its suppliers. There is no ordering of the parameters in the Scheme Diagram
and the order in which they are written in RSL is not important. Hence an arbitrary ordering is chosen by the
list ’assl′. If a formal parameter is a parameterised scheme then the actual parameters must be specified.

transltr_formal_param :
RSL.module_decl∗ × SD.Model × SD.Name ∼

→
RSL.opt_formal_scheme_parameter

transltr_formal_param(spec, mdl, scheme_name) ≡
let

assm = SD.associations_param(mdl, scheme_name),
assl = SD.name_set2list(dom assm)

in
〈RSL.mk_formal_scheme_argument(

RSL.mk_object_def(
transltr_Name(fp),
transltr_Multiplicity(SD.mul(assm(fp))),
RSL.class_expr_from_scheme_instantiation(

RSL.mk_scheme_instantiation(
RSL.name_from_qualified_id(
RSL.mk_qualified_id(

RSL.opt_qual_none,
SD.supplier(assm(fp)))),

actual_param(
spec, SD.supplier(assm(fp)),
actual_parameters(assm(fp))))))) |

fp in assl〉
end

pre scheme_name ∈ SD.schemes(mdl),

actual_parameters: Extracts the map from formal parameters to actual parameters from an association. Global
associations do not have actual parameters since they are already instantiated, thus the returned map will always
be empty.

actual_parameters :
SD.Association → SD.ActualParameters

actual_parameters(a) ≡
case SD.kind(a) of

SD.Nested(, ap) → ap,
SD.Parameter(ap) → ap,
SD.Global → []

end

C.3 Imperative Scheme Diagram 225

C.3 Imperative Scheme Diagram

C.3.1 RSL Part

transltr, ../rslsyntax/exec/rslprint, wf_model, examples

After adding all elements of the diagram, run a post thing: − After adding an object the state of the object
should be updated. Otherwise it will not be wellformed. −

hide RSL, SD, TL, mdl, spec, context, max_or_zero, new_rid in

class
object

RSL : rslprint, SD : examples, TL : transltr(RSL, SD)

An empty model

empty_mdl : SD.Model′ =
SD.mk_Model′([], [], [], [], [])

variable
texp : SD.TypeExpr := SD.tl_Int,
texplist : SD.TypeExpr∗ := 〈〉,
mdl : SD.Model′ := empty_mdl,
spec : RSL.module_decl∗ := 〈〉,
context : RSL.Context := []

Resets the model to be empty

reset : Unit → write mdl, spec, context Unit
reset() ≡

mdl := empty_mdl ; spec := 〈〉 ; context := [],

wf_model : Unit → write mdl Bool
wf_model() ≡
let

newobjs = [n 7→ add_object_state(SD.objects(mdl)(n)) | n : SD.Name • n ∈ SD.objects(mdl)]
in

mdl := SD.replace_objects(newobjs, mdl) ;
SD.wf_model(mdl)

end,

Adds state to objects.

add_object_state : SD.Object → read mdl SD.Object
add_object_state(obj) ≡
let

instance_of = SD.instance_of(obj),
ap = SD.actual_parameters(obj),
state_dom = if instance_of ∈ SD.modules(mdl)

then
SD.state_domain(mdl, instance_of)

else {} end,
state = [qn 7→ ′′′′ | qn : SD.QualifiedName • qn ∈ state_dom]

in
SD.mk_Object(instance_of, ap, state)

226 Appendix C. RSL specifications for the Scheme Diagram

end

Adds a scheme

add_scheme : Text → write mdl Bool
add_scheme(sn) ≡

if sn ∈ SD.schemes(mdl) then false
else

mdl :=
SD.replace_schemes(

SD.schemes(mdl) † [sn 7→ SD.empty_scheme], mdl) ;
true

Adds an object

add_object : Text × Text → write mdl Bool
add_object(on, instance_of) ≡

if on ∈ SD.objects(mdl) then false
else

mdl :=
SD.replace_objects(

SD.objects(mdl) †
[on 7→ SD.mk_Object(instance_of, [], [])], mdl) ;

true
end,

Adds actual parameter information to an object oname: name of the object for_par : the name of the formal
parameter act_par : the name of the actual parameter

add_object_ap : Text × Text × Text → write mdl Bool
add_object_ap(oname, for_par, act_par) ≡

if oname ∈ SD.objects(mdl)
then

let
obj = SD.objects(mdl)(oname),

instance_of = SD.instance_of(obj),
par = SD.actual_parameters(obj),
state = SD.state(obj),
newpar = par † [for_par 7→ (act_par, [])]

in
mdl :=
SD.replace_objects(

SD.objects(mdl) †
[oname 7→ SD.mk_Object(instance_of, newpar, state)], mdl); true

end
else

false
end,

Adds fitting information to an actual parameter of an object (formal parameter is domain in map) oname :
name of the object for_par : the name of the formal parameter to be changed fitdom : the name of the fitted
element fitrng : the name of the new fitting of the above element

add_object_ap_fit : Text × Text × Text × Text → write mdl Bool
add_object_ap_fit(oname, for_par, fitdom, fitrng) ≡

if oname ∈ SD.objects(mdl)
then

let
obj = SD.objects(mdl)(oname),

instance_of = SD.instance_of(obj),

C.3 Imperative Scheme Diagram 227

par = SD.actual_parameters(obj),
state = SD.state(obj),

(act_par,fit) = par(for_par),
newfit = fit † [fitdom 7→ fitrng],
newpar = par † [for_par 7→ (act_par, newfit)]

in
mdl :=
SD.replace_objects(

SD.objects(mdl) †
[oname 7→ SD.mk_Object(instance_of, newpar, state)], mdl); true

end
else

false
end

Adds an extend relation between two schemes

add_extend : Text × Text → write mdl Nat
add_extend(c, s) ≡

let rid = new_rid(mdl) in
mdl :=
SD.replace_extends(

SD.extends(mdl) †
[rid 7→ SD.mk_Extend(c, s)], mdl) ;

rid
end,

Adds an implement relation between two schemes

add_implement : Text × Text → write mdl Nat
add_implement(c, s) ≡

let rid = new_rid(mdl) in
mdl :=
SD.replace_implements(

SD.implements(mdl) †
[rid 7→ SD.mk_Implement(c, s)], mdl) ;

rid
end,

Adds a global association between two schemes

add_global : Text × Text → write mdl Nat
add_global(c, s) ≡

let rid = new_rid(mdl) in
mdl :=
SD.replace_associations(

SD.associations(mdl) †
[rid 7→
SD.mk_Association(

c, SD.Global, s, ′′′′, SD.None)], mdl) ;
rid

end,

Adds a nested association between two schemes

add_nested : Text × Text × Text × Bool→ write mdl Nat
add_nested(c, s, rolename, vis) ≡

let
rid = new_rid(mdl),

228 Appendix C. RSL specifications for the Scheme Diagram

visib = if vis then SD.Public else SD.Private end
in

mdl :=
SD.replace_associations(

SD.associations(mdl) †
[rid 7→
SD.mk_Association(

c, SD.Nested(visib,[]), s, rolename, SD.None)], mdl) ;
rid

Adds actual parameters on a nested association rid : rid of the nested association for_par : the name of the
formal parameter act_par : the name of the actual parameter

add_nested_ap : Int × Text × Text → write mdl Nat
add_nested_ap(rid, for_par, act_par) ≡

if rid ∈ rids(mdl)
then

let
assoc = SD.associations(mdl)(rid),
c = SD.client(assoc),
s = SD.supplier(assoc),

rolename = SD.rolename(assoc),
nkind = SD.kind(assoc)

in
case nkind of
SD.Nested(vis,par) →

let
newpar = par † [for_par 7→ (act_par, [])]

in
mdl :=

SD.replace_associations(
SD.associations(mdl) †
[rid 7→

SD.mk_Association(
c, SD.Nested(vis,newpar), s, rolename, SD.None)], mdl) ;

rid
end
,
→ 0

end
end

else
0

Adds fitting information to an actual parameter (formal parameter is domain in map) rid : rid of the nested
association for_par : the name of the formal parameter to be changed fitdom : the name of the fitted element
fitrng : the name of the new fitting of the above element

add_nested_ap_fit : Int × Text × Text × Text → write mdl Nat
add_nested_ap_fit(rid, for_par, fitdom, fitrng) ≡

if rid ∈ rids(mdl)
then

let
assoc = SD.associations(mdl)(rid),
c = SD.client(assoc),
s = SD.supplier(assoc),

rolename = SD.rolename(assoc),
nkind = SD.kind(assoc)

in
case nkind of

C.3 Imperative Scheme Diagram 229

SD.Nested(vis,par) →
let
(act_par,fit) = par(for_par),

newfit = fit † [fitdom 7→ fitrng],
newpar = par † [for_par 7→ (act_par, newfit)]

in
mdl :=

SD.replace_associations(
SD.associations(mdl) †
[rid 7→

SD.mk_Association(
c, SD.Nested(vis,newpar), s, rolename, SD.None)], mdl) ;

rid
end,
→ 0

end
end

else
0

Adds a parameter association between two schemes

add_parameter : Text × Text × Text→ write mdl Nat
add_parameter(c, s, rolename) ≡

let rid = new_rid(mdl) in
mdl :=
SD.replace_associations(

SD.associations(mdl) †
[rid 7→
SD.mk_Association(

c, SD.Parameter([]), s, rolename, SD.None)], mdl) ;
rid

Adds actual parameter information for a parameter association

add_parameter_ap : Int × Text × Text → write mdl Nat
add_parameter_ap(rid, domain, range) ≡

if rid ∈ rids(mdl)
then

let
assoc = SD.associations(mdl)(rid),
c = SD.client(assoc),
s = SD.supplier(assoc),

rolename = SD.rolename(assoc),
nkind = SD.kind(assoc)

in
case nkind of
SD.Parameter(par) →

let
newpar = par † [domain 7→ (range, [])]

in
mdl :=

SD.replace_associations(
SD.associations(mdl) †
[rid 7→

SD.mk_Association(
c, SD.Parameter(newpar), s, rolename, SD.None)], mdl) ;

rid
end,
→ 0

230 Appendix C. RSL specifications for the Scheme Diagram

end
end

else
0

Adds fitting information for actual parameter for a parameter association rid : rid of the nested association
for_par : the name of the formal parameter to be changed fitdom : the name of the fitted element fitrng : the
name of the new fitting of the above element

add_parameter_ap_fit : Int × Text × Text × Text → write mdl Nat
add_parameter_ap_fit(rid, for_par, fitdom, fitrng) ≡

if rid ∈ rids(mdl)
then

let
assoc = SD.associations(mdl)(rid),
c = SD.client(assoc),
s = SD.supplier(assoc),

rolename = SD.rolename(assoc),
nkind = SD.kind(assoc)

in
case nkind of
SD.Parameter(par) →

let
(act_par,fit) = par(for_par),

newfit = fit † [fitdom 7→ fitrng],
newpar = par † [for_par 7→ (act_par, newfit)]

in
mdl :=

SD.replace_associations(
SD.associations(mdl) †
[rid 7→

SD.mk_Association(
c, SD.Parameter(newpar), s, rolename, SD.None)], mdl) ;

rid
end,
→ 0

end
end

else
0

Adds a sort to a scheme sname: name of scheme where sort is added vis: visibility, true = public, false =
private sort : the sort to be added

add_type_sort : Text × Bool × Text → write mdl Bool add_type_sort(sname, vis, sort) is if sname ∈
dom SD.schemes(mdl) then let ce = SD.schemes(mdl)(sname), typedecl = SD.types(ce), newtypedecl = if
vis then typedecl ̂〈(SD.SortDef(sort),SD.Public)〉 else typedecl ̂〈(SD.SortDef(sort),SD.Private)〉 end, ce′ =
SD.replace_types(newtypedecl, ce) in mdl := SD.replace_schemes(SD.schemes(mdl) † [sname 7→ ce′],
mdl); true end else false end,

Adds an type def to a scheme, texp must be set prior to this it is not a sort. sname : scheme where type is added
vis : visibility, true = public typename : name of new type

add_type : Text × Bool × Text × Bool → read texp write mdl Bool
add_type(sname, vis, typename, sort) ≡
if sname ∈ dom SD.schemes(mdl)
then

C.3 Imperative Scheme Diagram 231

let
ce = SD.schemes(mdl)(sname),
typedecl = SD.types(ce),
newtypedecl =

if vis then
if sort then

typedecl ̂〈(SD.SortDef(typename),SD.Public)〉
else

typedecl ̂〈(SD.AbbreviationDef(typename,texp),SD.Public)〉
end

else
if sort then

typedecl ̂〈(SD.SortDef(typename),SD.Private)〉
else

typedecl ̂〈(SD.AbbreviationDef(typename,
texp),SD.Private)〉

end
end,

ce′ = SD.replace_types(newtypedecl, ce)
in

mdl :=
SD.replace_schemes(

SD.schemes(mdl) †
[sname 7→ ce′], mdl);

true
end

else
false

end,

Adds a value to a scheme, texp must be set prior to this sname: name of scheme where value is added vis:
visibility, true = public, false = private vname : the value name to be added

add_value : Text × Bool × Text → write mdl read texp Bool
add_value(sname, vis, vname) ≡
if sname ∈ dom SD.schemes(mdl)
then

let
ce = SD.schemes(mdl)(sname),
valdecls = SD.values(ce),
newvaldecls =

if vis then
valdecls ̂〈(SD.mk_ValueDecl(vname, texp),SD.Public)〉

else
valdecls ̂〈(SD.mk_ValueDecl(vname, texp),SD.Private)〉

end,
ce′ = SD.replace_values(newvaldecls, ce)

in
mdl :=

SD.replace_schemes(
SD.schemes(mdl) †

[sname 7→ ce′], mdl);
true

end
else

false
end,

232 Appendix C. RSL specifications for the Scheme Diagram

Adds a variable to a scheme, texp must be set prior to this sname: name of scheme where variable is added
vis: visibility, true = public, false = private vname : the value name to be added

add_variable : Text × Bool × Text → write mdl read texp Bool
add_variable(sname, vis, vname) ≡
if sname ∈ dom SD.schemes(mdl)
then

let
ce = SD.schemes(mdl)(sname),
vardecls = SD.variables(ce),
newvardecls =

if vis then
vardecls ̂〈(SD.mk_VariableDecl(vname, texp),SD.Public)〉

else
vardecls ̂〈(SD.mk_VariableDecl(vname, texp),SD.Private)〉

end,
ce′ = SD.replace_variables(newvardecls, ce)

in
mdl :=

SD.replace_schemes(
SD.schemes(mdl) †

[sname 7→ ce′], mdl);
true

end
else

false
end,

Adds a channel to a scheme, texp must be set prior to this sname: name of scheme where channel is added
vis: visibility, true = public, false = private cname : the channel name to be added

add_channel : Text × Bool × Text → write mdl read texp Bool
add_channel(sname, vis, cname) ≡
if sname ∈ dom SD.schemes(mdl)
then

let
ce = SD.schemes(mdl)(sname),
chdecls = SD.channels(ce),
newchdecls =

if vis then
chdecls ̂〈(SD.mk_ChannelDecl(cname, texp),SD.Public)〉

else
chdecls ̂〈(SD.mk_ChannelDecl(cname, texp),SD.Private)〉

end,
ce′ = SD.replace_channels(newchdecls, ce)

in
mdl :=

SD.replace_schemes(
SD.schemes(mdl) †

[sname 7→ ce′], mdl);
true

end
else

false
end,

Adds an axiom to a scheme, texp must be set prior to this sname: name of scheme where axiom is added
aname : the axiom name to be added

add_axiom : Text × Text → write mdl read texp Bool

C.3 Imperative Scheme Diagram 233

add_axiom(sname, aname) ≡
if sname ∈ dom SD.schemes(mdl)
then

let
ce = SD.schemes(mdl)(sname),
axdecls = SD.axioms(ce),
newaxdecls = axdecls ̂〈SD.mk_AxiomDecl(aname)〉,
ce′ = SD.replace_axioms(newaxdecls, ce)

in
mdl :=

SD.replace_schemes(
SD.schemes(mdl) †

[sname 7→ ce′], mdl);
true

end
else

false
end,

Creates a native type expression

temp_texp_type : Text → write texp Unit
temp_texp_type(literal) ≡

case literal of
′′unit′′→ texp := SD.tl_Unit,
′′bool′′ → texp := SD.tl_Bool,
′′int′′ → texp := SD.tl_Int,
′′nat′′ → texp := SD.tl_Nat,
′′real′′ → texp := SD.tl_Real,
′′text′′ → texp := SD.tl_Text,
′′char′′ → texp := SD.tl_Char,
→ texp:= SD.TypeName(literal, 〈〉)

Creates a qualified typename

temp_texp_typename : Text → write texp Unit temp_texp_typename(tname) is texp := SD.TypeName(tname,
〈〉),

temp_texp_typename_qualification : Text → write texp Unit
temp_texp_typename_qualification(qual) ≡
case texp of

SD.TypeName(name, oldqual) → texp := SD.TypeName(name, oldqual
̂〈qual〉)

end,

Creates a list type expression

temp_texp_list : Bool → write texp Unit
temp_texp_list(finite) ≡
if finite then

texp := SD.FiniteListTypeExpr(texp)
else

texp := SD.InfiniteListTypeExpr(texp)
end,

Creates a set type expression

temp_texp_set : Bool → write texp Unit
temp_texp_set(finite) ≡

234 Appendix C. RSL specifications for the Scheme Diagram

if finite then
texp := SD.FiniteSetTypeExpr(texp)

else
texp := SD.InfiniteSetTypeExpr(texp)

end,

Creates a product type expression

temp_texp_product : Unit → write texp,texplist Unit
temp_texp_product() ≡
texp := SD.ProductTypeExpr(texplist);
texplist := 〈〉,

Creates a function type expression

temp_texp_function : Unit → write texp,texplist Unit
temp_texp_function() ≡

texp := SD.FunctionTypeExpr(hd texplist, SD.fa_total,
(〈〉, hd tl texplist));

texplist := 〈〉
pre len texplist = 2,

Adds the current type expression (texp) to a list of type expressions

add_texp2list : Unit → write texplist read texp Int
add_texp2list() ≡
texplist := texplist ̂〈texp〉; len texplist

new_rid returns a new unique identifier

new_rid : SD.Model′ → SD.RID
new_rid(mdl) ≡

1 +
max_or_zero(

dom SD.associations(mdl) ∪
dom SD.extends(mdl) ∪ dom SD.implements(mdl)),

max_or_zero : Nat-set → Nat
max_or_zero(ints) ≡

case card ints of
0 → 0,
1 → hd ints,
→
let i = hd ints, i′ = max_or_zero(ints \ {i}) in

if i > i′ then i else i′ end
end

returns the set of relation identifiers present in the model

rids : SD.Model′ → read mdl Int-set
rids(mdl) ≡
let

assos = SD.associations(mdl)
in

dom assos
end

value
seperator : Text = ′′;;′′,

print_mdl prints the current model stored in the variable mdl

C.3 Imperative Scheme Diagram 235

print_mdl : Unit → read mdl write spec, context Text
print_mdl() ≡

spec := TL.transltr(mdl) ;
context := TL.transltr_context(mdl) ;
pmdl(spec),

pmdl : RSL.module_decl∗ → read context Text
pmdl(x) ≡

case x of
〈〉 → ′′′′,
〈a〉 ̂ 〈〉 →

RSL.print_context(context, extract_module_id(a)) ̂
′′\n′′ ̂ RSL.print_module_decl(a),

〈a〉 ̂ b →
RSL.print_context(context, extract_module_id(a)) ̂
′′\n′′ ̂ RSL.print_module_decl(a) ̂ seperator ̂

pmdl(b)
end,

extract_module_id : RSL.module_decl → Text
extract_module_id(md) ≡

case md of
RSL.module_decl_from_scheme_decl(

RSL.mk_scheme_decl(sdl)) →
case hd sdl of

RSL.mk_scheme_def(n, ,) → n
end,
RSL.module_decl_from_object_decl(RSL.mk_object_decl(obl))
→
case hd obl of

RSL.mk_object_def(n, ,) → n
end

end

end

C.3.2 SchemeDiagramInterface.java

Listing C.1: SchemeDiagramInterface.java

/∗ OK ∗ /
package r s l . e sde . l i b s d ;

p u b l i c c l a s s S c h e m e D i a g r a m I n t e r f a c e {

/∗ ∗ R e s e t s t h e model t o be empty ∗ /
p u b l i c n a t i v e void r e s e t () ;

/∗ ∗ Checks i f t h e model i s w e l l f o r m e d ∗ /
p u b l i c n a t i v e boolean wfModel () ;

/∗ ∗ Adds a scheme t o t h e model ∗ /
p u b l i c n a t i v e boolean addScheme (S t r i n g name) ;
/∗ ∗ Adds an o b j e c t t o t h e model ∗ /
p u b l i c n a t i v e boolean a d d O b j e c t (S t r i n g name , S t r i n g i n s t a n c e O f) ;
/∗ ∗ Adds a c t u a l parame te r i n f o r m a t i o n f o r n e s t e d a s s o c i a t i o n ∗ /
p u b l i c n a t i v e boolean addObjectAp (S t r i n g oname , S t r i n g f o r _ p a r , S t r i n g a c t _ p a r) ;

236 Appendix C. RSL specifications for the Scheme Diagram

/∗ ∗ Adds f i t t i n g i n f o r m a t i o n f o r an a c t u a l parame te r o f a n e s t e d a s s o c i a t i o n ∗ /
p u b l i c n a t i v e boolean a d d O b j e c t A p F i t (S t r i n g oname , S t r i n g f o r _ p a r , S t r i n g f i t_dom ,

S t r i n g f i t _ r n g) ;

/∗ ∗ Adds an e x t e n d r e l a t i o n be tween t o schemes ∗ /
p u b l i c n a t i v e i n t addExtend (S t r i n g c l i e n t , S t r i n g s u p p l i e r) ;
/∗ ∗ Adds an imp lemen t r e l a t i o n be tween t o schemes ∗ /
p u b l i c n a t i v e i n t addImplement (S t r i n g c l i e n t , S t r i n g s u p p l i e r) ;
/∗ ∗ Adds a g l o b a l a s s o c i a t i o n be tween t o schemes ∗ /
p u b l i c n a t i v e i n t addGloba l (S t r i n g c l i e n t , S t r i n g s u p p l i e r) ;

/∗ ∗ Adds a n e s t e d a s s o c i a t i o n be tween t o schemes ∗ /
p u b l i c n a t i v e i n t addNes ted (S t r i n g c l i e n t , S t r i n g s u p p l i e r , S t r i n g rolename ,

boolean v i s i b i l i t y) ;
/∗ ∗ Adds a c t u a l parame te r i n f o r m a t i o n f o r n e s t e d a s s o c i a t i o n ∗ /
p u b l i c n a t i v e i n t addNestedAp (i n t r i d , S t r i n g f o r _ p a r , S t r i n g a c t _ p a r) ;
/∗ ∗ Adds f i t t i n g i n f o r m a t i o n f o r an a c t u a l parame te r o f a n e s t e d a s s o c i a t i o n ∗ /
p u b l i c n a t i v e i n t addNes t edApFi t (i n t r i d , S t r i n g f o r _ p a r , S t r i n g f i t_dom ,

S t r i n g f i t _ r n g) ;
/∗ ∗ Adds a parame te r a s s o c i a t i o n be tween t o schemes ∗ /
p u b l i c n a t i v e i n t a d d P a r a m e t e r (S t r i n g c l i e n t , S t r i n g s u p p l i e r , S t r i n g ro lename) ;
/∗ ∗ Adds a c t u a l parame te r i n f o r m a t i o n f o r parame te r a s s o c i a t i o n ∗ /
p u b l i c n a t i v e i n t addParameterAp (i n t r i d , S t r i n g f o r _ p a r , S t r i n g a c t _ p a r) ;
/∗ ∗ Adds f i t t i n g i n f o r m a t i o n f o r an a c t u a l parame te r o f a n e s t e d a s s o c i a t i o n ∗ /
p u b l i c n a t i v e i n t a d d P a r a m e t e r A p F i t (i n t r i d , S t r i n g f o r _ p a r , S t r i n g f i t_dom ,

S t r i n g f i t _ r n g) ;

/∗ ∗ Adds a t y p e t o a scheme ∗ /
p u b l i c n a t i v e boolean addType (S t r i n g scheme , boolean v i s i b i l i t y ,

S t r i n g typename , boolean s o r t) ;
/∗ ∗ Adds a va lue , t y p e e x p r e s s i o n must be c r e a t e d f i r s t ∗ /
p u b l i c n a t i v e boolean addValue (S t r i n g scheme , boolean v i s i b i l i t y ,

S t r i n g valuename) ;
/∗ ∗ Adds a v a r i a b l e , t y p e e x p r e s s i o n must be c r e a t e d f i r s t ∗ /
p u b l i c n a t i v e boolean a d d V a r i a b l e (S t r i n g scheme , boolean v i s i b i l i t y ,

S t r i n g v a r i a b l e n a m e) ;
/∗ ∗ Adds a channe l , t y p e e x p r e s s i o n must be c r e a t e d f i r s t ∗ /
p u b l i c n a t i v e boolean addChannel (S t r i n g scheme , boolean v i s i b i l i t y ,

S t r i n g channelname) ;
/∗ ∗ Adds a axiom ∗ /
p u b l i c n a t i v e boolean addAxiom (S t r i n g scheme , S t r i n g axiomname) ;

/∗ ∗ C r e a t e s a t y p e e x p r e s s i o n w i t h a t y p e i n RSL model ∗ /
p u b l i c n a t i v e void tempTexpType (S t r i n g l i t e r a l) ;
/∗ ∗ Adds a q u a l i f i c a t i o n t o a t y p e e x p r e s s i o n ∗ /
p u b l i c n a t i v e void t e m p T e x p T y p e n a m e Q u a l i f i c a t i o n (S t r i n g q u a l i f i c a t i o n) ;
/∗ ∗ C r e a t e s a l i s t (f i n i t e or i n f i n i t e) t y p e e x p r e s s i o n i n RSL model ∗ /
p u b l i c n a t i v e void t empTexpLi s t (boolean f i n i t e) ;
/∗ ∗ C r e a t e s a s e t (f i n i t e or i n f i n i t e) t y p e e x p r e s s i o n i n RSL model ∗ /
p u b l i c n a t i v e void tempTexpSet (boolean f i n i t e) ;

/∗ ∗ C r e a t e s a p r o d u c t t y p e e x p r e s s i o n i n RSL model ∗ /
p u b l i c n a t i v e void t empTexpProduc t () ;
/∗ ∗ C r e a t e s a f u n c t i o n t y p e e x p r e s s i o n i n RSL model ∗ /
p u b l i c n a t i v e void t empTexpFunc t ion () ;
/∗ ∗ Adds a t y p e e x p r e s s i o n t o a l i s t o f t y p e e x p r e s s i o n s i n RSL model ∗ /
p u b l i c n a t i v e i n t a d d T e x p 2 L i s t () ;

C.3 Imperative Scheme Diagram 237

/∗ ∗ P r i n t s t h e model and r e t u r n s t h e c o m p l e t e r e s u l t i n g RSL s p e c i f i c a t i o n
∗ as a s t r i n g ∗ /

p u b l i c n a t i v e S t r i n g p r i n t M d l () ;

/∗ ∗ Loads t h e c o m p i l e d RSL C++ l i b r a r y ∗ /
s t a t i c { System . l o a d L i b r a r y (" sd ") ; }

}

C.3.3 rsl_esde_libsd_SchemeDiagramInterface.h

Listing C.2: rsl_esde_libsd_SchemeDiagramInterface.h

/∗ DO NOT EDIT THIS FILE − i t i s machine g e n e r a t e d ∗ /
i n c l u d e < j n i . h>
/∗ Header f o r c l a s s r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e ∗ /

i f n d e f _ I n c l u d e d _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
d e f i n e _ I n c l u d e d _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
i f d e f _ _ c p l u s p l u s
e x t e r n "C" {
e n d i f
/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : r e s e t
∗ S i g n a t u r e : () V
∗ /

JNIEXPORT void JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ r e s e t
(JNIEnv ∗ , j o b j e c t) ;

/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : wfModel
∗ S i g n a t u r e : () Z
∗ /

JNIEXPORT j b o o l e a n JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ w f M o d e l
(JNIEnv ∗ , j o b j e c t) ;

/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : addScheme
∗ S i g n a t u r e : (L java / l ang / S t r i n g ;) Z
∗ /

JNIEXPORT j b o o l e a n JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d S c h e m e
(JNIEnv ∗ , j o b j e c t , j s t r i n g) ;

/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : addObjec t
∗ S i g n a t u r e : (L java / l ang / S t r i n g ; L java / l ang / S t r i n g ;) Z
∗ /

JNIEXPORT j b o o l e a n JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d O b j e c t
(JNIEnv ∗ , j o b j e c t , j s t r i n g , j s t r i n g) ;

/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : addObjec tAp

238 Appendix C. RSL specifications for the Scheme Diagram

∗ S i g n a t u r e : (L java / l ang / S t r i n g ; L java / l ang / S t r i n g ; L java / l ang / S t r i n g ;) Z
∗ /

JNIEXPORT j b o o l e a n JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d O b j e c t A p
(JNIEnv ∗ , j o b j e c t , j s t r i n g , j s t r i n g , j s t r i n g) ;

/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : a d d O b j e c t A p F i t
∗ S i g n a t u r e : (L java / l ang / S t r i n g ; L java / l ang / S t r i n g ; L java / l ang / S t r i n g ; L java / l ang / S t r i n g ;) Z
∗ /

JNIEXPORT j b o o l e a n JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d O b j e c t A p F i t
(JNIEnv ∗ , j o b j e c t , j s t r i n g , j s t r i n g , j s t r i n g , j s t r i n g) ;

/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : addExtend
∗ S i g n a t u r e : (L java / l ang / S t r i n g ; L java / l ang / S t r i n g ;) I
∗ /

JNIEXPORT j i n t JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d E x t e n d
(JNIEnv ∗ , j o b j e c t , j s t r i n g , j s t r i n g) ;

/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : addImplement
∗ S i g n a t u r e : (L java / l ang / S t r i n g ; L java / l ang / S t r i n g ;) I
∗ /

JNIEXPORT j i n t JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d I m p l e m e n t
(JNIEnv ∗ , j o b j e c t , j s t r i n g , j s t r i n g) ;

/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : addGlobal
∗ S i g n a t u r e : (L java / l ang / S t r i n g ; L java / l ang / S t r i n g ;) I
∗ /

JNIEXPORT j i n t JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d G l o b a l
(JNIEnv ∗ , j o b j e c t , j s t r i n g , j s t r i n g) ;

/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : addNes ted
∗ S i g n a t u r e : (L java / l ang / S t r i n g ; L java / l ang / S t r i n g ; L java / l ang / S t r i n g ; Z) I
∗ /

JNIEXPORT j i n t JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d N e s t e d
(JNIEnv ∗ , j o b j e c t , j s t r i n g , j s t r i n g , j s t r i n g , j b o o l e a n) ;

/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : addNestedAp
∗ S i g n a t u r e : (I L j a v a / l ang / S t r i n g ; L java / l ang / S t r i n g ;) I
∗ /

JNIEXPORT j i n t JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d N e s t e d A p
(JNIEnv ∗ , j o b j e c t , j i n t , j s t r i n g , j s t r i n g) ;

/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : a d d N e s t e d A p F i t
∗ S i g n a t u r e : (I L j a v a / l ang / S t r i n g ; L java / l ang / S t r i n g ; L java / l ang / S t r i n g ;) I
∗ /

C.3 Imperative Scheme Diagram 239

JNIEXPORT j i n t JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d N e s t e d A p F i t
(JNIEnv ∗ , j o b j e c t , j i n t , j s t r i n g , j s t r i n g , j s t r i n g) ;

/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : addParameter
∗ S i g n a t u r e : (L java / l ang / S t r i n g ; L java / l ang / S t r i n g ; L java / l ang / S t r i n g ;) I
∗ /

JNIEXPORT j i n t JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d P a r a m e t e r
(JNIEnv ∗ , j o b j e c t , j s t r i n g , j s t r i n g , j s t r i n g) ;

/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : addParameterAp
∗ S i g n a t u r e : (I L j a v a / l ang / S t r i n g ; L java / l ang / S t r i n g ;) I
∗ /

JNIEXPORT j i n t JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d P a r a m e t e r A p
(JNIEnv ∗ , j o b j e c t , j i n t , j s t r i n g , j s t r i n g) ;

/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : addParameterApFi t
∗ S i g n a t u r e : (I L j a v a / l ang / S t r i n g ; L java / l ang / S t r i n g ; L java / l ang / S t r i n g ;) I
∗ /

JNIEXPORT j i n t JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d P a r a m e t e r A p F i t
(JNIEnv ∗ , j o b j e c t , j i n t , j s t r i n g , j s t r i n g , j s t r i n g) ;

/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : addType
∗ S i g n a t u r e : (L java / l ang / S t r i n g ; ZLjava / l ang / S t r i n g ; Z) Z
∗ /

JNIEXPORT j b o o l e a n JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d T y p e
(JNIEnv ∗ , j o b j e c t , j s t r i n g , j b o o l e a n , j s t r i n g , j b o o l e a n) ;

/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : addValue
∗ S i g n a t u r e : (L java / l ang / S t r i n g ; ZLjava / l ang / S t r i n g ;) Z
∗ /

JNIEXPORT j b o o l e a n JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d V a l u e
(JNIEnv ∗ , j o b j e c t , j s t r i n g , j b o o l e a n , j s t r i n g) ;

/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : a d d V a r i a b l e
∗ S i g n a t u r e : (L java / l ang / S t r i n g ; ZLjava / l ang / S t r i n g ;) Z
∗ /

JNIEXPORT j b o o l e a n JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d V a r i a b l e
(JNIEnv ∗ , j o b j e c t , j s t r i n g , j b o o l e a n , j s t r i n g) ;

/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : addChannel
∗ S i g n a t u r e : (L java / l ang / S t r i n g ; ZLjava / l ang / S t r i n g ;) Z
∗ /

JNIEXPORT j b o o l e a n JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d C h a n n e l
(JNIEnv ∗ , j o b j e c t , j s t r i n g , j b o o l e a n , j s t r i n g) ;

240 Appendix C. RSL specifications for the Scheme Diagram

/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : addAxiom
∗ S i g n a t u r e : (L java / l ang / S t r i n g ; L java / l ang / S t r i n g ;) Z
∗ /

JNIEXPORT j b o o l e a n JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d A x i o m
(JNIEnv ∗ , j o b j e c t , j s t r i n g , j s t r i n g) ;

/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : tempTexpType
∗ S i g n a t u r e : (L java / l ang / S t r i n g ;) V
∗ /

JNIEXPORT void JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ t e m p T e x p T y p e
(JNIEnv ∗ , j o b j e c t , j s t r i n g) ;

/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : t e m p T e x p T y p e n a m e Q u a l i f i c a t i o n
∗ S i g n a t u r e : (L java / l ang / S t r i n g ;) V
∗ /

JNIEXPORT void JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ t e m p T e x p T y p e n a m e Q u a l i f i c a t i o n
(JNIEnv ∗ , j o b j e c t , j s t r i n g) ;

/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : t e m p T e x p L i s t
∗ S i g n a t u r e : (Z) V
∗ /

JNIEXPORT void JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ t e m p T e x p L i s t
(JNIEnv ∗ , j o b j e c t , j b o o l e a n) ;

/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : t empTexpSe t
∗ S i g n a t u r e : (Z) V
∗ /

JNIEXPORT void JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ t e m p T e x p S e t
(JNIEnv ∗ , j o b j e c t , j b o o l e a n) ;

/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : t empTexpProduc t
∗ S i g n a t u r e : () V
∗ /

JNIEXPORT void JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ t e m p T e x p P r o d u c t
(JNIEnv ∗ , j o b j e c t) ;

/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : t empTexpFunc t ion
∗ S i g n a t u r e : () V
∗ /

JNIEXPORT void JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ t e m p T e x p F u n c t i o n
(JNIEnv ∗ , j o b j e c t) ;

/∗

C.3 Imperative Scheme Diagram 241

∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : a d d T e x p 2 L i s t
∗ S i g n a t u r e : () I
∗ /

JNIEXPORT j i n t JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d T e x p 2 L i s t
(JNIEnv ∗ , j o b j e c t) ;

/∗
∗ C l a s s : r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e
∗ Method : p r i n t M d l
∗ S i g n a t u r e : () L java / l ang / S t r i n g ;
∗ /

JNIEXPORT j s t r i n g JNICALL J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ p r i n t M d l
(JNIEnv ∗ , j o b j e c t) ;

i f d e f _ _ c p l u s p l u s
}
e n d i f
e n d i f

C.3.4 rsl_esde_libsd_SchemeDiagramInterface.cc

Listing C.3: rsl_esde_libsd_SchemeDiagramInterface.cc

i n c l u d e < j n i . h>
i n c l u d e < s t d i o . h>
i n c l u d e " r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e . h "
i n c l u d e " i m p e r a t i v e . cc "
i n c l u d e " c o n v e r t . cc "

JNIEXPORT void JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ r e s e t (JNIEnv ∗env , j o b j e c t o b j)
{

r e s e t () ;
re turn ;

}

JNIEXPORT j b o o l e a n JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ w f M o d e l (JNIEnv ∗env , j o b j e c t o b j)
{

re turn wf_model () ;
}

JNIEXPORT j b o o l e a n JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d S c h e m e (JNIEnv ∗env , j o b j e c t obj ,
j s t r i n g name)
{

re turn add_scheme (j s t r 2 r s l (env , name)) ;
}

JNIEXPORT j b o o l e a n JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d O b j e c t (JNIEnv ∗env , j o b j e c t obj ,
j s t r i n g name , j s t r i n g i n s t a n c e _ o f) {

re turn a d d _ o b j e c t (j s t r 2 r s l (env , name) , j s t r 2 r s l (env , i n s t a n c e _ o f)) ;
}

242 Appendix C. RSL specifications for the Scheme Diagram

JNIEXPORT j b o o l e a n JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d O b j e c t A p (JNIEnv ∗env , j o b j e c t obj ,
j s t r i n g oname , j s t r i n g f o r _ p a r , j s t r i n g a c t _ p a r) {

re turn a d d _ o b j e c t _ a p (j s t r 2 r s l (env , oname) , j s t r 2 r s l (env , f o r _ p a r) , j s t r 2 r s l (env , a c t _ p a r)) ;
}

JNIEXPORT j b o o l e a n JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d O b j e c t A p F i t (JNIEnv ∗env ,
j o b j e c t obj , j s t r i n g oname , j s t r i n g f o r _ p a r , j s t r i n g f i t_dom , j s t r i n g f i t _ r n g)
{

re turn a d d _ o b j e c t _ a p _ f i t (j s t r 2 r s l (env , oname) , j s t r 2 r s l (env , f o r _ p a r) ,
j s t r 2 r s l (env , f i t _ d o m) , j s t r 2 r s l (env , f i t _ r n g)) ;

}

JNIEXPORT j i n t JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d E x t e n d (JNIEnv ∗env , j o b j e c t obj ,
j s t r i n g c l i e n t , j s t r i n g s u p p l i e r)
{

re turn a d d _ e x t e n d (j s t r 2 r s l (env , c l i e n t) , j s t r 2 r s l (env , s u p p l i e r)) ;
}

JNIEXPORT j i n t JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d I m p l e m e n t (JNIEnv ∗env , j o b j e c t obj ,
j s t r i n g c l i e n t , j s t r i n g s u p p l i e r)
{

re turn add_implement (j s t r 2 r s l (env , c l i e n t) , j s t r 2 r s l (env , s u p p l i e r)) ;
}

JNIEXPORT j i n t JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d G l o b a l (JNIEnv ∗env , j o b j e c t obj ,
j s t r i n g c l i e n t , j s t r i n g s u p p l i e r)
{

re turn a d d _ g l o b a l (j s t r 2 r s l (env , c l i e n t) , j s t r 2 r s l (env , s u p p l i e r)) ;
}

JNIEXPORT j i n t JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d N e s t e d (JNIEnv ∗env , j o b j e c t obj ,
j s t r i n g c l i e n t , j s t r i n g s u p p l i e r , j s t r i n g rolename , j b o o l e a n v i s i b i l i t y)
{

re turn a d d _ n e s t e d (j s t r 2 r s l (env , c l i e n t) , j s t r 2 r s l (env , s u p p l i e r) , j s t r 2 r s l (env , ro l ename) ,
v i s i b i l i t y) ;

}

JNIEXPORT j i n t JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d N e s t e d A p (JNIEnv ∗env , j o b j e c t obj ,
j i n t r i d , j s t r i n g f o r _ p a r , j s t r i n g a c t _ p a r)
{

re turn a d d _ n e s t e d _ a p (r i d , j s t r 2 r s l (env , f o r _ p a r) , j s t r 2 r s l (env , a c t _ p a r)) ;
}

JNIEXPORT j i n t JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d N e s t e d A p F i t (JNIEnv ∗env , j o b j e c t obj ,
j i n t r i d , j s t r i n g f o r _ p a r , j s t r i n g f i t_dom , j s t r i n g f i t _ r n g)
{

re turn a d d _ n e s t e d _ a p _ f i t (r i d , j s t r 2 r s l (env , f o r _ p a r) , j s t r 2 r s l (env , f i t _ d o m) ,
j s t r 2 r s l (env , f i t _ r n g)) ;

}

C.3 Imperative Scheme Diagram 243

JNIEXPORT j i n t JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d P a r a m e t e r (JNIEnv ∗env , j o b j e c t obj ,
j s t r i n g c l i e n t , j s t r i n g s u p p l i e r , j s t r i n g ro lename)
{

re turn a d d _ p a r a m e t e r (j s t r 2 r s l (env , c l i e n t) , j s t r 2 r s l (env , s u p p l i e r) , j s t r 2 r s l (env , ro l ename)) ;
}

JNIEXPORT j i n t JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d P a r a m e t e r A p (JNIEnv ∗env , j o b j e c t obj ,
j i n t r i d , j s t r i n g f o r _ p a r , j s t r i n g a c t _ p a r)
{

re turn a d d _ p a r a m e t e r _ a p (r i d , j s t r 2 r s l (env , f o r _ p a r) , j s t r 2 r s l (env , a c t _ p a r)) ;
}

JNIEXPORT j i n t JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d P a r a m e t e r A p F i t (JNIEnv ∗env , j o b j e c t obj ,
j i n t r i d , j s t r i n g f o r _ p a r , j s t r i n g f i t_dom , j s t r i n g f i t _ r n g)
{

re turn a d d _ p a r a m e t e r _ a p _ f i t (r i d , j s t r 2 r s l (env , f o r _ p a r) , j s t r 2 r s l (env , f i t _ d o m) ,
j s t r 2 r s l (env , f i t _ r n g)) ;

}

JNIEXPORT j b o o l e a n JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d T y p e (JNIEnv ∗env , j o b j e c t obj ,
j s t r i n g scheme , j b o o l e a n v i s i b i l i t y , j s t r i n g tname , j b o o l e a n s o r t)
{

re turn a d d _ t y p e (j s t r 2 r s l (env , scheme) , v i s i b i l i t y , j s t r 2 r s l (env , tname) , s o r t) ;
}

JNIEXPORT j b o o l e a n JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d V a l u e (JNIEnv ∗env , j o b j e c t obj ,
j s t r i n g scheme , j b o o l e a n v i s i b i l i t y , j s t r i n g vname)
{

re turn a d d _ v a l u e (j s t r 2 r s l (env , scheme) , v i s i b i l i t y , j s t r 2 r s l (env , vname)) ;
}

JNIEXPORT j b o o l e a n JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d V a r i a b l e (JNIEnv ∗env , j o b j e c t obj ,
j s t r i n g scheme , j b o o l e a n v i s i b i l i t y , j s t r i n g vname)
{

re turn a d d _ v a r i a b l e (j s t r 2 r s l (env , scheme) , v i s i b i l i t y , j s t r 2 r s l (env , vname)) ;
}

JNIEXPORT j b o o l e a n JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d C h a n n e l (JNIEnv ∗env , j o b j e c t obj ,
j s t r i n g scheme , j b o o l e a n v i s i b i l i t y , j s t r i n g cname)
{

re turn a d d _ c h a n n e l (j s t r 2 r s l (env , scheme) , v i s i b i l i t y , j s t r 2 r s l (env , cname)) ;
}

JNIEXPORT j b o o l e a n JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d A x i o m (JNIEnv ∗env , j o b j e c t obj ,
j s t r i n g scheme , j s t r i n g aname)
{

re turn add_axiom (j s t r 2 r s l (env , scheme) , j s t r 2 r s l (env , aname)) ;
}

244 Appendix C. RSL specifications for the Scheme Diagram

JNIEXPORT void JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ t e m p T e x p T y p e (JNIEnv ∗env , j o b j e c t obj ,

j s t r i n g l i t e r a l)
{

re turn t e m p _ t e x p _ t y p e (j s t r 2 r s l (env , l i t e r a l)) ;
}

JNIEXPORT void JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ t e m p T e x p T y p e n a m e Q u a l i f i c a t i o n (JNIEnv ∗env ,

j o b j e c t obj , j s t r i n g q u a l)
{

re turn t e m p _ t e x p _ t y p e n a m e _ q u a l i f i c a t i o n (j s t r 2 r s l (env , q u a l)) ;
}

JNIEXPORT void JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ t e m p T e x p L i s t (JNIEnv ∗env , j o b j e c t obj ,

j b o o l e a n f i n i t e)
{

re turn t e m p _ t e x p _ l i s t (f i n i t e) ;
}

JNIEXPORT void JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ t e m p T e x p S e t (JNIEnv ∗env , j o b j e c t obj ,

j b o o l e a n f i n i t e)
{

re turn t e m p _ t e x p _ s e t (f i n i t e) ;
}

JNIEXPORT void JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ t e m p T e x p P r o d u c t (JNIEnv ∗env , j o b j e c t o b j)
{

re turn t e m p _ t e x p _ p r o d u c t () ;
}

JNIEXPORT void JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ t e m p T e x p F u n c t i o n (JNIEnv ∗env , j o b j e c t o b j)
{

re turn t e m p _ t e x p _ f u n c t i o n () ;
}

JNIEXPORT i n t JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ a d d T e x p 2 L i s t (JNIEnv ∗env , j o b j e c t o b j)
{

re turn a d d _ t e x p 2 l i s t () ;
}

JNIEXPORT j s t r i n g JNICALL
J a v a _ r s l _ e s d e _ l i b s d _ S c h e m e D i a g r a m I n t e r f a c e _ p r i n t M d l (JNIEnv ∗env , j o b j e c t o b j)
{

re turn r s l 2 j s t r (env , p r i n t _ m d l ()) ;
}

C.3.5 convert.cc

Listing C.4: convert.cc

C.4 Test 245

/ / Conver t R S L _ s t r i n g t o j s t r i n g
j s t r i n g r s l 2 j s t r (JNIEnv ∗env , R S L _ s t r i n g r s t r) {

re turn env−>NewStringUTF (R S L _ t o _ s t r i n g (r s t r) . c _ s t r ()) ;
}

/ / Conver t j s t r i n g t o R S L _ s t r i n g
R S L _ s t r i n g j s t r 2 r s l (JNIEnv ∗env , j s t r i n g j s t r) {

re turn R S L _ s t r i n g (s t r i n g (env−>GetS t r ingUTFChars (j s t r , f a l s e))) ;
}

C.4 Test

C.4.1 Applicative

scheme sdtest =
extend examples with
class

test_case
[relations_____________]

relations(report_ex) = {0 .. 9},
[suppliers_____________]

dom suppliers(report_ex, ′′B") = {"C", "A", "G′′} ∧
dom suppliers(report_ex, ′′D′′) = {},

[associations__________]
dom associations(report_ex, ′′B′′) =

{′′ce", "cp", "ge", "gp", "f1", "e", "d1′′} ∧
dom associations(report_ex, ′′E′′) = {} ∧
dom associations(global_obj, ′′C") = {"OB′′} ∧
dom associations(global_obj, ′′OB") = {"OA′′}

value
B2G : Model′ × Name × Qualification =

(report_ex, ′′B", <."ge′′〉),
B2D : Model′ × Name × Qualification =

(report_ex, ′′B", <."ce", "d2′′〉)

test_case
[valid_qualification___]

valid_qualification(B2G) ∧
valid_qualification(B2D) ∧
valid_qualification(report_ex, ′′B", <."f1′′〉) ∧
∼ valid_qualification(report_ex, ′′C", <."f2′′〉),

[follow_qualification__]
let n = follow_qualification(B2G) in n = ′′G′′ end ∧
let n = follow_qualification(B2D) in n = ′′D′′ end

test_case
[path__________________]

path(report_ex, ′′B", "A′′) ∧
path(report_ex, ′′B", "C′′) ∧
path(report_ex, ′′B", "G′′) ∧
path(report_ex, ′′B", "D′′) ∧
path(report_ex, ′′B", "F′′) ∧
path(report_ex, ′′B", "E′′) ∧
path(report_ex, ′′C", "D′′) ∧
path(report_ex, ′′G", "F′′) ∧

246 Appendix C. RSL specifications for the Scheme Diagram

path(report_ex, ′′A", "E′′) ∧
path(report_ex, ′′A", "D′′) ∧
path(report_ex, ′′A", "F′′) ∧
∼ path(report_ex, ′′A", "B′′) ∧
∼ path(report_ex, ′′C", "B′′) ∧
∼ path(report_ex, ′′G", "B′′) ∧
∼ path(report_ex, ′′D", "B′′) ∧
∼ path(report_ex, ′′F", "B′′) ∧
∼ path(report_ex, ′′E", "B′′) ∧
∼ path(report_ex, ′′D", "C′′) ∧
∼ path(report_ex, ′′F", "G′′) ∧
∼ path(report_ex, ′′E", "A′′) ∧
∼ path(report_ex, ′′D", "A′′) ∧
∼ path(report_ex, ′′F", "A′′),

[cyclic________________]

In the cyclic example it is possible for any given state to go to all other states. Thus it is of course cyclic.

(∀ s : Name •

s ∈ modules(cyclic_mdl) ⇒
(∀ s′ : Name •

s′ ∈ modules(cyclic_mdl) ⇒
path(cyclic_mdl, s, s′))) ∧

∼ wf_non_cyclic(cyclic_mdl) ∧ wf_non_cyclic(empty_mdl)

test_case
[maximal_type__________]

maximal_type(empty_mdl, 〈〉, ′′′′, tl_Unit) = tl_Unit ∧
maximal_type(empty_mdl, 〈〉, ′′′′, tl_Bool) = tl_Bool ∧
maximal_type(empty_mdl, 〈〉, ′′′′, tl_Int) = tl_Int ∧
maximal_type(empty_mdl, 〈〉, ′′′′, tl_Nat) = tl_Int ∧
maximal_type(empty_mdl, 〈〉, ′′′′, tl_Real) = tl_Real ∧
maximal_type(empty_mdl, 〈〉, ′′′′, tl_Text) =

InfiniteListTypeExpr(tl_Char) ∧
maximal_type(empty_mdl, 〈〉, ′′′′, tl_Char) = tl_Char ∧
maximal_type(

empty_mdl, 〈〉, ′′′′, BracketedTypeExpr(tl_Int)) =
BracketedTypeExpr(tl_Int) ∧

maximal_type(
empty_mdl, 〈〉, ′′′′, BracketedTypeExpr(tl_Nat)) =

BracketedTypeExpr(tl_Int),
[wf_type_expr__________]

let
te =

FunctionTypeExpr(
ProductTypeExpr(〈tl_Int, tl_Nat〉),
fa_total,
(〈〉,

MapTypeExpr(
tl_Nat,
ProductTypeExpr(〈tl_Char, tl_Real〉))))

in
wf_type_expr(report_ex, ′′B′′, te)

end

test_case
[wf_scheme_decl_expr___]

wf_scheme_decl_expr(stack_mdl, ′′Stack′′),
[wf_class_expr_________]

C.4 Test 247

wf_class_expr(
stack_mdl, ′′Stack", schemes(stack_mdl)("Stack′′)),

[overloading___________]
wf_class_expr(

test_overload_mdl, ′′ok1′′,
schemes(test_overload_mdl)(′′ok1′′)) ∧

∼ wf_class_expr(
test_overload_mdl, ′′not1′′,
schemes(test_overload_mdl)(′′not1′′))

test_case
[maximal_class_1_______]

maximal_class(
report_ex, ′′A", schemes(report_ex)("A′′)) =

schemes(report_ex)(′′A′′),

[signature_____________]
signature(stack_mdl, ′′Stack")= (mk_ClassExpr(<.(SortDef("Elem′′),Public)〉,

〈(mk_ValueDecl(′′push",FunctionTypeExpr(TypeName("Elem′′,〈〉),fa_partial,
(〈(am_write,〈NameAccess((′′el′′,〈〉))〉)〉,tl_Unit))),Public)〉,
〈(mk_VariableDecl(′′el",InfiniteListTypeExpr(TypeName("Elem′′,〈〉))),Public)〉,
〈〉,〈〉),[])

test_case
[static_implement_1_cli]

maximal_class(static_impl_mdl, ′′S1′′, S1) =
mk_ClassExpr(〈(AbbreviationDef(′′T",tl_Int),Public).>,<.(mk_ValueDecl("x′′,tl_Int),Public),
(mk_ValueDecl(′′y′′,tl_Int),Public)〉,〈〉,〈〉,〈〉),

[static_implement_1_sup]
maximal_class(static_impl_mdl, ′′S", S)=mk_ClassExpr(<.(SortDef("T′′),Public)〉,
〈(mk_ValueDecl(′′x",TypeName("T",<..>)),Public),(mk_ValueDecl("y",TypeName("T′′,〈〉)),Public)〉,
〈〉,〈〉,〈〉),

[static_implement_types]
static_implement_types(

schemes(static_impl_mdl)(′′S1′′),
schemes(static_impl_mdl)(′′S′′)) ∧

∼ static_implement_types(
schemes(static_impl_mdl)(′′S2′′),
schemes(static_impl_mdl)(′′S′′)) ∧

static_implement_types(
schemes(static_impl_mdl)(′′S1′′),
schemes(static_impl_mdl)(′′S2′′)) ∧

static_implement_types(
schemes(static_impl_mdl)(′′S3′′),
schemes(static_impl_mdl)(′′S′′)) ∧

static_implement_types(
schemes(static_impl_mdl)(′′S4′′),
schemes(static_impl_mdl)(′′S′′)) ∧

static_implement_types(
schemes(static_impl_mdl)(′′S5′′),
schemes(static_impl_mdl)(′′S′′)) ∧

static_implement_types(
schemes(static_impl_mdl)(′′S5′′),
schemes(static_impl_mdl)(′′S1′′)) ∧

static_implement_types(
schemes(static_impl_mdl)(′′S5′′),

248 Appendix C. RSL specifications for the Scheme Diagram

schemes(static_impl_mdl)(′′S2′′)) ∧
static_implement_types(

schemes(static_impl_mdl)(′′S5′′),
schemes(static_impl_mdl)(′′S4′′))

test_case
[static_implement_param]

static_implement_param(static_impl_mdl, ′′S1", "S′′) ∧
static_implement_param(static_impl_mdl, ′′S2", "S′′) ∧
static_implement_param(static_impl_mdl, ′′S1", "S2′′) ∧
static_implement_param(static_impl_mdl, ′′S3", "S′′) ∧
static_implement_param(static_impl_mdl, ′′S4", "S′′) ∧
static_implement_param(static_impl_mdl, ′′S5", "S′′) ∧
static_implement_param(static_impl_mdl, ′′S5", "S1′′) ∧
static_implement_param(static_impl_mdl, ′′S5", "S2′′) ∧
static_implement_param(static_impl_mdl, ′′S5", "S4′′)

test_case
[static_implement______]

static_implement(static_impl_mdl, ′′S1", "S′′) ∧
∼ static_implement(static_impl_mdl, ′′S2", "S′′) ∧
static_implement(static_impl_mdl, ′′S1", "S2′′) ∧
static_implement(static_impl_mdl, ′′S3", "S′′) ∧
∼ static_implement(static_impl_mdl, ′′S4", "S′′) ∧
static_implement(static_impl_mdl, ′′S5", "S′′) ∧
static_implement(static_impl_mdl, ′′S5", "S1′′) ∧
static_implement(static_impl_mdl, ′′S5", "S2′′) ∧
static_implement(static_impl_mdl, ′′S5", "S4′′)

test_case
[state_domain__________]

state_domain(stack_mdl, ′′Stack") = {("el′′, 〈〉)} ∧
state_domain(test_var_mdl, ′′A′′) =

{(′′j", <."d".>), ("k", <."d", "c2′′〉),
(′′i", <."d", "c2".>), ("k", <."c′′〉),
(′′i", <."c".>), ("i", <..>), ("n′′, 〈〉)}

test_case
[wf_schemes____________]

wf_schemes(empty_mdl) ∧ wf_schemes(report_ex) ∧
wf_schemes(global_obj) ∧ wf_schemes(stack_mdl),

[wf_implements_________]
wf_implements(empty_mdl) ∧
wf_implements(report_ex) ∧
wf_implements(global_obj) ∧
wf_implements(stack_mdl),

[wf_extends____________]
wf_extends(empty_mdl) ∧ wf_extends(report_ex),

[wf_objects____________]
wf_objects(empty_mdl) ∧ wf_objects(report_ex) ∧
wf_objects(global_obj),

[wf_associations_______]
wf_associations(empty_mdl) ∧
wf_associations(report_ex) ∧
wf_associations(global_obj),

[wf_model______________]
wf_model(empty_mdl) ∧ wf_model(report_ex) ∧
wf_model(global_obj) ∧ ∼ wf_model(cyclic_mdl)

C.4 Test 249

C.4.2 Imperative: printed .rsl files

global_object.esde

Scheme2

scheme Scheme1(s2 : Scheme2) =
class type type1 variable var1 : type1 end

scheme Scheme2 = class end

Scheme1, Object4

object Object3 : Scheme1(Object4)

Scheme2

object Object4 : Scheme2

qualification.esde

Scheme2

scheme Scheme1(S2 : Scheme2) =
hide Type2 in class type Type2 = S2.S1.S0.Type1 end

Scheme3

scheme Scheme2 = extend Scheme3 with class end

Scheme4

scheme Scheme3 = class object S1 : Scheme4 end

Scheme5

scheme Scheme4 = class object S0 : Scheme5 end

scheme Scheme5 = class type Type1 end

types.esde

scheme Scheme1 =
hide Type5, val2, var2, channel2 in
class

250 Appendix C. RSL specifications for the Scheme Diagram

type
Type1,
Type2 = Int,
Type3 = Type2∗ → Type1-set,
Type4 = Type1ω × Type1-infset × Real,
Type5 = Bool → Nat,
type6 = Type3

value
val1 : Type1 → Bool,
val2 : Type2 → Char∗

variable var1 : Type1, var2 : Int → Char

channel channel1 : Unit, channel2 : Int × Nat

axiom
[axiomname]

true
end

251

Appendix D

RSL specifications for the RSC

Contents

D.1 RSC syntax . 251
D.1.1 RSC_types.rsl . 251
D.1.2 RSC_wf.rsl . 253

D.2 RSC semantics for one chart . 271
D.2.1 RSC_semantics.rsl . 271

D.3 RSC collections . 287
D.3.1 lsc/LSC_collection.rsl . 287

D.4 Test . 294
D.4.1 Test of wellformedness conditions . 294
D.4.2 Test of semantics . 316
D.4.3 Test of collections . 327

D.5 CSP and LSC . 329
D.5.1 Example 1 . 329
D.5.2 Example 2 . 343

D.6 Applicative RSC . 346
D.6.1 Types . 346
D.6.2 Type object . 347
D.6.3 Semantics . 347
D.6.4 Semantics formal parameter . 357
D.6.5 Account example . 357

D.1 RSC syntax

D.1.1 RSC_types.rsl

scheme RSC_types =
class

type

252 Appendix D. RSL specifications for the RSC

A RSC has a name, prechart, mainchart and a set of created instances. A RSC is modelled consisting of a pre−
and mainchart since their use is fundamentally different, even though their syntax is the same. Creations must
be the instance names of the instances that are created in the main chart.

RSC′ ::
name : RSC_Name
prechart : Chart
mainchart : Chart
creations : Inst_Name-set,

A chart is a map from instance names to a list of locations in order to ease look up of locations. We will also
use the index on the list in order to model the state in the semantics.

Chart = Inst_Name →m Location∗,
Location :: temp : HotCold event : Event,

An event may be one of the following: action, message input/output, condition, coregion or subchart begin/end.
Coregion and subcharts have been included as events in order to simplify the specifications.

Event ==

An action event has a name and an id. It is further unspecified as we want to specify it in RSL later on.

mk_ActionEvent(Action_Name, aid : ID) |

An input event has an id and an source. The message name is given in the corresponding, uniquely identifiable
message output event.

mk_InputEvent(inmsgid : ID, isender : Address) |

An output event has an id, a name and a destination. No parameters are included as this is later done via
variables in section 6.7. The temperature is not included since we only consider hot messages in the semantics.

mk_OutputEvent(
outmsgid : ID,
outpid : Msg_Name,
dest : Address) |

A condition event has a name, an id, a temperature and a list of instance names. The list denotes which
instances share the condition.

mk_ConditionEvent(
conname : Cond_Name,
cid : ID,
cetemp : HotCold,
ceshare : Inst_Name-set) |

A coregion event has a location list. It must be the sublist of events on the instance that contains the message
events that may happen in random order.

D.1 RSC syntax 253

mk_CoregionEvent(crlocl : Location∗) |

A subchart event has a name, an id, a list of instance names, a multiplicity and a location list. The instance
names denote the instances among which the subchart is shared. The multiplicity denotes the maximum
number of repetitions of the chart.The location∗ is the part of the instance′s locations that the subchart encloses.

mk_Subchart(
scname : Subchart_Name,
scid : ID,
scshare : Inst_Name-set,
mult : Multiplicity,
sclocl : Location∗) |

A endsubchart event has an id. It is used to denote the end of a subchart with the given id.

mk_EndSubchart(escid : ID) |

A stop event is included as the last event on an instance.

StopEvent,

Temperature may be hot or cold.

HotCold == Hot | Cold,

A multiplicity is a positive number.

Multiplicity = {| n : Nat • n>0 |},

An address is Environment or an instance name.

Address == Environment | mk_Address(name : Inst_Name),

Identifiers are texts or integers.

Action_Name = Text,
Cond_Name = Text,
Inst_Name = Text,
RSC_Name = Text,
ID = Int,
Msg_Name = Text,
Subchart_Name = Text

end

D.1.2 RSC_wf.rsl

RSC_types

254 Appendix D. RSL specifications for the RSC

scheme RSC_wf =
extend RSC_types with
class
type

A RSC is a subtype of RSC’ which is wellformed.

RSC = {| l : RSC′
• wf_RSC(l) |},

Auxilliary types for checking for acyclicness.

Order :: id1 : ID id2 : ID, IDp :: id : ID occ : Nat

value

Check if a RSC’ is wellformed. We must check prechart, mainchart and one wellformedness condition appli-
cable to a RSC as a whole. Remember, prechart and mainchart are two separate charts. The last conditions
apply to a RSC as a whole.

wf_RSC : RSC′ → Bool
wf_RSC(rsc) ≡
wf_chart(mainchart(rsc)) ∧
wf_chart(prechart(rsc)) ∧
wf_creation(rsc) ∧
wf_prechart_condition(prechart(rsc)) ,

Checks whether a chart is wellformed. A chart can be a prechart or a mainchart.

wf_chart : Chart → Bool
wf_chart(chart) ≡
wf_ids_unique(chart) ∧ wf_message_match(chart) ∧
wf_mess_cond_acyclic(chart) ∧ wf_condition_share(chart) ∧
wf_subchart_locations(chart) ∧ wf_subchart_ordered(chart) ∧
wf_subchart_coherent(chart) ∧ wf_subchart_end(chart) ∧
wf_subchart_conditions(chart) ∧ wf_subchart_messages(chart) ∧
wf_subchart_subchart(chart) ∧ wf_coregion_locations(chart) ∧
wf_coregion_messages(chart) ∧ wf_cold_subchart(chart) ∧
wf_cold_mainchart(chart) ∧ wf_last(chart),

1. Messages, conditions and subcharts have IDs that must be unique. Checked by extracting all the ids of the
chart and comparing the number of occurences of each id to what it is supposed to be. Fx. the occurence of a
message ID must be two. This is done since ID′s must uniquely identify events.

wf_ids_unique : Chart → Bool
wf_ids_unique(chart) ≡

let idplist = extract_idps_chart(chart) in
(∀ e : IDp • e ∈ elems idplist ⇒ occ(e) =

count_ids(idplist, id(e), 0))
end,

D.1 RSC syntax 255

2.Messages consist of an output and input. These pairs of events must have the same message ID and have
the correct origin−destination addresses. This says very much about messages, including that messages only
reference declared instances or environment. Their corresponding locations must have the same temperature.

wf_message_match : Chart → Bool
wf_message_match(chart) ≡
(∀ i : Inst_Name •

i ∈ dom chart ⇒
(∀ ie : Event •

ie ∈ inputEvents(chart(i)) ∧ isender(ie) 6= Environment ⇒
(∃! i2 : Inst_Name •

i2 ∈ dom chart ∧ isender(ie) = mk_Address(i2) ∧
(∃! oe : Event •

oe ∈ outputEvents(chart(i2)) ∧ dest(oe) = mk_Address(i) ∧
outmsgid(oe) = inmsgid(ie) ∧
event_loc_temp(chart(i), ie) = event_loc_temp(chart(i2), oe)))) ∧

(∀ oe : Event •

oe ∈ outputEvents(chart(i)) ∧ dest(oe) 6= Environment ⇒
(∃! i2 : Inst_Name •

i2 ∈ dom chart ∧ dest(oe) = mk_Address(i2) ∧
(∃! ie : Event •

ie ∈ inputEvents(chart(i2)) ∧ isender(ie) = mk_Address(i) ∧
inmsgid(ie) = outmsgid(oe) ∧
event_loc_temp(chart(i2), ie) = event_loc_temp(chart(i), oe))))),

3. The following wellformedness condition is to ensure that no deadlocks occur. We do this by checking that
the transitive closure of the bidirectional connection graph is acyclic. property includes for example that a
message output is not causally dependent on its corresponding message input, directly and indirectly trough
other messages (se figure 6.14. However this property is not enough since messages are synchronous and
thus will deadlock if the destination is not ready to accept the input. An example can be seen in figure 6.15,
where the directed connection graph is not cyclic and the bidirectional is. Messages are a synchronization
barrier, thus the order introduced is given by the synchronization points on the instances. As condition events
also represent synchronization points they must also be considered. The order is established by creating the
tuples of ID′s that happen in order, i.e. the tuples AB (Type Order) which denotes that the event with ID A
happens before the event with ID B (on an instance). Now by ensuring that this order is not cyclic, the desired
property is achieved. Even though subcharts are synchronization points as well, they must not be considered,
since messages, conditions etc. in subcharts are contained within the subchart and can thus not introduce a
cyclic order due to the other welformedness conditions. If the specification was not to be translated, the above
condition could easily be specified as follows:

wf_mess_cond_acyclic : Chart → Bool wf_mess_cond_acyclic(chart) is let orders = po_instances(chart) in ∼
(exists ol : Order∗ • (all j : Nat • j ∈ inds ol ⇒ ol(j) ∈ orders) ∧ (all i : Nat • i > 0 ∧ i < len ol ⇒ id2(ol(i)) =
id1(ol(i + 1))) ∧ id1(ol(1)) = id2(ol(len ol))) end,

For all given orders on a chart this functions checks weather the undirected connection graph is acyclic or not
by trying to traverse the IDs reachable from each order present. Sorting is actually not necessary, but done in
order to speed up the check in the resulting C−code.

wf_mess_cond_acyclic : Chart → Bool
wf_mess_cond_acyclic(chart) ≡

256 Appendix D. RSL specifications for the RSC

let
orders = po_instances(chart),
orderl = insertionSort(set_to_list(orders), 〈〉)

in
∀ o : Order • o ∈ elems orderl ⇒

acyclic({id1(o), id2(o)}, id2(o), orderl)
end,

4. A shared condition must appear in each instance among those it is shared. Including that the share must
only use instances that are present. The temperature of the corresponding locations of the condition events
must have the same temperature. This defines that conditions must be consistent across instances.

wf_condition_share : Chart → Bool
wf_condition_share(chart) ≡

(∀ i : Inst_Name •

i ∈ dom chart ⇒
(∀ ce : Event •

ce ∈ conditionEvents(chart(i)) ⇒
(∀ i′ : Inst_Name •

i′ ∈ ceshare(ce) ⇒
i′ ∈ dom chart ∧
ce ∈ elems conditionEvents(chart(i′)) ∧
event_loc_temp(chart(i), ce) =
event_loc_temp(chart(i′), ce)))),

5. Locations in subcharts are locations on the RSC chart and vice versa in the correct order. It checks recur-
sively on the location∗, since quantified recursion is not in the subset of RSL that is translatable. We do this
in order to ease the wellformedness conditions regarding messages. This also allows for easy definition of the
state, as it can be done using a pointer, identifying the exact position. The same applies for subcharts.

wf_subchart_locations : Chart → Bool
wf_subchart_locations(chart) ≡

(∀ i : Inst_Name •

i ∈ dom chart ⇒
wf_subchart_locations(chart(i))),

wf_subchart_locations : Location∗ → Bool
wf_subchart_locations(locl) ≡

if locl = 〈〉 then true
else

case event(hd locl) of
mk_Subchart(, , , , slocl) →

let scpos = eventposition(locl, event(hd locl), 1) in
loclmatch(locl, slocl, 1, scpos)

end,
→ true

end
∧ wf_subchart_locations(tl locl)

end,

6. All subcharts must appear in the same order on instances that share more than one subchart with each
other. Checked separately, since acyclic does not treat subchart beginnings/endings, due to before mentioned

D.1 RSC syntax 257

restrictions on them.

wf_subchart_ordered : Chart → Bool
wf_subchart_ordered(chart) ≡

(∀ i : Inst_Name •

i ∈ dom chart ⇒
wf_subchart_ordered(chart,i, chart(i))),

wf_subchart_ordered : Chart × Inst_Name × Location∗ → Bool
wf_subchart_ordered(chart, i, locl) ≡

if locl = 〈〉 then true
else

case event(hd locl) of
mk_Subchart(, , , , slocl) →

(∀ sc2 : Event •

sc2 ∈ elems subchartEvents(locl)
∧ event(hd locl) 6= sc2 ⇒
(∀ i′ : Inst_Name • i′ ∈

scshare(event(hd locl))∧ i′ 6= i
∧ i′ ∈ scshare(sc2) ⇒
(∃ sc′ : Event • sc′ ∈

subchartEvents(chart(i′))
∧ scid(event(hd locl)) = scid(sc′) ∧
(∃ sc2′ : Event • sc2′ ∈

subchartEvents(chart(i′)) ∧ scid(sc2′) =
scid(sc2) ∧
let

r = eventposition(chart(i′), sc′, 1),
s = eventposition(chart(i′), sc2′, 1)

in
r < s

end)))),
→ true

end
∧ wf_subchart_ordered(chart, i, tl locl)

end,

7. All instances defined in a subchart share must contain that named subchart and they must be present on RSC.
The temperature of the corresponding locations must be the same. This ensures that a subchart is consistent
across instances.

wf_subchart_coherent : Chart → Bool
wf_subchart_coherent(chart) ≡

(∀ i : Inst_Name •

i ∈ dom chart ⇒
(∀ sc : Event •

sc ∈ elems subchartEvents(chart(i)) ⇒
(∀ i′ : Inst_Name •

i′ ∈ scshare(sc) ⇒
(i′ ∈ dom chart ∧

(∃ sc′ : Event •

sc′ ∈ elems subchartEvents(chart(i′)) ∧
scname(sc) = scname(sc′) ∧
scid(sc) = scid(sc′) ∧
scshare(sc) = scshare(sc′) ∧
mult(sc) = mult(sc) ∧

258 Appendix D. RSL specifications for the RSC

event_loc_temp(chart(i), sc) =
event_loc_temp(chart(i′), sc′)))))),

8. A subchart has one endsubchart token after all the subchart locations. The temperature of the two corre-
sponding locations must be the same. This is included in order to be able to tell when a given subchart ends,
which is useful when it is executable.

wf_subchart_end : Chart → Bool
wf_subchart_end(chart) ≡

(∀ i : Inst_Name •

i ∈ dom chart ⇒
(∀ sc : Event •

sc ∈ elems subchartEvents(chart(i)) ⇒
(∃! esc : Event •

esc ∈ endsubchartEvents(chart(i))
∧ scid(sc) = escid(esc) ∧
(let

scstart = eventposition(chart(i), sc, 1),
scend = eventposition(chart(i), esc, 1),
diff = len sclocl(sc)

in
scstart + diff + 1 = scend

end) ∧ event_loc_temp(chart(i), sc)
= event_loc_temp(chart(i), esc)))),

9. Conditions in subcharts must be contained within the subchart. This means a condition may not ′′cross′′

the boundaries of a subchart.

wf_subchart_conditions : Chart → Bool
wf_subchart_conditions(chart) ≡

(∀ i : Inst_Name •

i ∈ dom chart ⇒
(∀ sc : Event •

sc ∈ subchartEvents(chart(i)) ⇒
(∀ ce : Event •

ce ∈ conditionEvents(sclocl(sc)) ⇒
(∀ i′ : Inst_Name •

i′ ∈ ceshare(ce) ⇒
(∃ sc′ : Event •

sc′ ∈ elems subchartEvents(chart(i′))
∧ scid(sc) = scid(sc′) ∧
(∃! ce′ : Event •

ce′ ∈ conditionEvents(sclocl(sc′))
∧ cid(ce) = cid(ce′))))))),

10. Messages emanating/ending in a subchart must have their corresponding message output/input in subchart.
Same argument as above.

wf_subchart_messages : Chart → Bool
wf_subchart_messages(chart) ≡

(∀ i : Inst_Name •

D.1 RSC syntax 259

i ∈ dom chart ⇒
(∀ sc : Event •

sc ∈ elems subchartEvents(chart(i)) ⇒
(∀ oe : Event •

oe ∈ outputEvents(sclocl(sc))
∧ dest(oe) 6= Environment ⇒
(∃ i′ : Inst_Name •

i′ ∈ dom chart ∧
(∃ sc′ : Event •

sc′ ∈ subchartEvents(chart(i′))
∧ scid(sc) = scid(sc′) ∧

mk_InputEvent(outmsgid(oe), mk_Address(i)) ∈
elems inputEvents(sclocl(sc′))))) ∧

(∀ ie : Event •

ie ∈ inputEvents(sclocl(sc))
∧ isender(ie) 6= Environment ⇒
(∃ i′ : Inst_Name •

i′ ∈ dom chart ∧
(∃ sc′ : Event •

sc′ ∈ subchartEvents(chart(i′))
∧ scid(sc) = scid(sc′) ∧
(∃ oe : Event •

oe ∈ outputEvents(sclocl(sc′))
∧ inmsgid(ie) = outmsgid(oe) ∧
dest(oe) = mk_Address(i))))))),

11. Subcharts starting in a subchart must also end in the same subchart. Sub−subcharts may also only use
instances covered by the main−subchart. Same argument as above.

wf_subchart_subchart : Chart → Bool
wf_subchart_subchart(chart) ≡

(∀ i : Inst_Name •

i ∈ dom chart ⇒
(∀ sc : Event •

sc ∈ elems subchartEvents(chart(i)) ⇒
(∀ sc′ : Event •

sc′ ∈ subchartEvents(sclocl(sc)) ⇒
(∃ esc′ : Event •

esc′ ∈ endsubchartEvents(sclocl(sc))
∧ scid(sc′) = escid(esc′))

∧
(∀ i′ : Inst_Name •

i′ ∈ scshare(sc′) ⇒ i′ ∈ scshare(sc))))),

12. All coregion locations are locations on RSC chart. Most of the syntax′es we encounter handles this
differently.See nr.5.

wf_coregion_locations : Chart → Bool
wf_coregion_locations(chart) ≡

(∀ i : Inst_Name •

i ∈ dom chart ⇒
(∀ cr : Event •

cr ∈ elems coregionEvents(chart(i)) ⇒
(∀ l : Location •

260 Appendix D. RSL specifications for the RSC

l ∈ crlocl(cr) ⇒
l ∈ chart(i) ∧

let crpos = eventposition(chart(i), cr, 1) in
loclmatch(chart(i), crlocl(cr), 1, crpos)

end))),

The last part of the above wellformedness condition could very easily be written as follows if it where not to
be translatable. (exists s : Location∗, t : Location∗

• (s ̂ crlocl(cr)̂ t = chart(i)))

13. All events in coregions are message events, as they are only defined with messages.

wf_coregion_messages : Chart → Bool
wf_coregion_messages(chart) ≡

(∀ i : Inst_Name •

i ∈ dom chart ⇒
(∀ cr : Event •

cr ∈ elems coregionEvents(chart(i)) ⇒
(∀ l : Location •

l ∈ elems crlocl(cr) ⇒
(event(l) ∈ inputEvents(chart(i))
∨ event(l) ∈ outputEvents(chart(i)))))),

14. All locations after a cold location in a subchart are cold. For sub−subcharts the end subchart token may
be an exception, which is same temperature as sub−subchart start event. This is to ensure that the ordering of
hot and cold locations in subcharts is correct.

wf_cold_subchart : Chart → Bool
wf_cold_subchart(chart) ≡

(∀ i : Inst_Name •

i ∈ dom chart ⇒
(∀ sc : Event •

sc ∈ elems subchartEvents(chart(i)) ⇒
(∀ j : Int •

j ∈ inds sclocl(sc) ∧ temp(sclocl(sc)(j)) = Cold ⇒
(∀ j′ : Int •

j′ ∈ inds sclocl(sc) ∧ j′ > j ⇒
(temp(sclocl(sc)(j′)) = Cold)

∨ (∃ sc′ : Event •

sc′ ∈ subchartEvents(sclocl(sc)) ∧
sclocl(sc)(j′) ∈ sclocl(sc′))

∨ (case event(sclocl(sc)(j′)) of
mk_EndSubchart() → true,
→ false

end))))),

15. All locations after a cold location in a RSC are cold. Except for cold locations in subcharts, which may be
followed by hot locations on surrounding (main− or sub−) chart. Subcharts are checked in wf nr. 14, same
argument as above. In three parts due to some bug in the C–‖ translator.

wf_cold_mainchart : Chart → Bool

D.1 RSC syntax 261

wf_cold_mainchart(chart) ≡
(∀ i : Inst_Name •

i ∈ dom chart ⇒
(∀ j : Int •

j ∈ inds chart(i) ∧ temp(chart(i)(j)) = Cold ⇒
(

(∀ k : Int • k ∈ inds chart(i) ∧
k > j ⇒ (temp(chart(i)(k)) = Cold))

∨
(case event(chart(i)(j)) of

mk_EndSubchart() → true,
→ false

end)
∨

(∃ sc : Event •

sc ∈ subchartEvents(chart(i)) ∧ chart(i)(j)
∈ elems sclocl(sc))

)))
,

16. The last event is a stop event. This is included exactly as in [26]. Initially in [7] a stop event as only used
on created messages. It is however convenient when creating an executable version to have a stop event.

wf_last : Chart → Bool
wf_last(chart) ≡

(∀ i : Inst_Name •

i ∈ dom chart ⇒
(event(chart(i)(len chart(i))) = StopEvent)),

17. A created instance may not be present in prechart as it is created in the main chart. In [7] a creation
had a special arrow denoting creation. This has been omitted since the semantics of this arrow matched the
semantics of a message. Therefore the first event must be a message. The list of creations in a RSC may be
used to graphically determine which instances are created.

wf_creation: RSC′ → Bool
wf_creation(rsc) ≡
(∀ iname : Inst_Name • iname ∈ creations(rsc) ⇒
iname 6∈ dom prechart(rsc)
∧ iname ∈ dom mainchart(rsc) ∧

case event(mainchart(rsc)(iname)(1)) of
mk_InputEvent(,) → true,
→ false

end),

18. All conditions on a prechart must be hot. This is due to the fact that a cold condition exit is normally an
accepted exit from a chart. This is not the case in precharts, where is form of acceptable exit is not wanted [7].

262 Appendix D. RSL specifications for the RSC

wf_prechart_condition: Chart → Bool
wf_prechart_condition(chart) ≡
(∀ iname : Inst_Name • iname ∈ dom chart ⇒

(∀ ce : Event • ce ∈ conditionEvents(chart(iname)) ⇒
(cetemp(ce) = Hot))),

- ———————————————————————-
- ————————- AUXILIARY FUNCTIONS ————————
- ———————————————————————-

po_instances finds the order of messages and conditions on instances of a chart.

po_instances : Chart → Order-set
po_instances(chart) ≡

if chart = [] then {}
else let i = hd chart in po_instance(chart(i), {}) ∪ po_instances(chart \ {i}) end
end,

po_instance finds the order of messages and conditions on an instance (i.e. Location∗). It creates all the orders
introduced by the instance by creating tuples of ID, e.g. AB which denotes that the message or condition
with ID A happens before the message or condition with ID B. It calls itself recursively in order to treat each
Location depending on its event. It maintains a set of ID′s (idset) which holds the IDs that happen before the
location at the beginning of the current Location∗.

po_instance : Location∗ × ID-set → Order-set
po_instance(locl, idset) ≡

if locl = 〈〉 then {}
else
case event(hd locl) of

Messages and condition events have their ID extracted and an Order-set is created by using the extracted ID
and the preceeding ids given by idset. It proceeds with the rest of the list and adds the extracted ids to idset,
which now holds the ID′s of messages and conditions that have happened.

mk_InputEvent(inmsgid,) →
append(idset, {inmsgid})
∪
po_instance(tl locl, idset ∪ {inmsgid}),

mk_OutputEvent(outmsgid, ,) →
append(idset, {outmsgid})
∪
po_instance(tl locl, idset ∪ {outmsgid}),

mk_ConditionEvent(, cid, ,) →
append(idset, {cid})
∪
po_instance(tl locl, idset ∪ {cid}),

Coregionevents do not introduce ordering among themselves, only in relation to events happening before and
after the coregion. All the ids of messages in coregion are extracted. Since a coregionevent spans more than
one location all the locations of the coregionevent are removed in order to proceed.

D.1 RSC syntax 263

mk_CoregionEvent(clocl) →
let cids = coregion_ids(clocl), newlocl = reduce_list((len clocl) + 1, locl) in

append(idset, cids) ∪ po_instance(newlocl, idset ∪ cids)
end,

All other events are not relevant for ordering. Not even subcharts, since there are well formedness conditions
that guarantee that messages and conditions contained in subcharts do solely occur inside them.

→ po_instance(tl locl, idset)
end

end,

Given a set of already traversed IDs, the current last traversed ID and a list of orders, acyclic checks whether
the connection graph is acyclic or not. This is done by finding the next possible orders given the current last
traversed ID.

acyclic : Int-set × Int × Order∗ → Bool
acyclic(seenIDs, lastid, orderl) ≡

let fitting = extractfitting(lastid, orderl) in acyclic_fit(seenIDs, fitting, orderl) end,

Given a set of already traversed ID′s, a list of possible next orders and a list of all orders, acyclic_fit checks
weather the connection graph is acyclic or not.

acyclic_fit : Int-set × Order∗ × Order∗ → Bool
acyclic_fit(seenIDs, fitting, orderl) ≡

case fitting of
〈〉 → true,
〈a〉 ̂ 〈〉 → id2(a) 6∈ seenIDs

∧ acyclic(seenIDs ∪ {id2(a)}, id2(a), orderl),
〈a〉 ̂ b →

id2(a) 6∈ seenIDs
∧ acyclic(seenIDs ∪ {id2(a)}, id2(a), orderl)
∧ acyclic_fit(seenIDs, b, orderl)
end,

extractfitting extracts the orders of a list (as a list) with a given id as id1.

extractfitting : Int × Order∗ → Order∗

extractfitting(id, orderl) ≡
case orderl of

〈〉 → 〈〉,
〈a〉 ̂ 〈〉 → if id1(a) = id then 〈a〉 else 〈〉 end,
〈a〉 ̂ b →

if id1(a) = id then 〈a〉 ̂ extractfitting(id, b)
else extractfitting(id, b) end

end,

reduce_list reduces a Location∗ with i first elements.

264 Appendix D. RSL specifications for the RSC

reduce_list : Int × Location∗
∼

→ Location∗

reduce_list(i, locl) ≡ 〈locl(j) | j in 〈(i + 1) .. len locl〉〉
pre i ≤ len locl,

append creates an order-set of AB, where A is in the first argument set and B in the second. Uses two functions
in order to recurse over the 2 sets. This could have been done very easily using a comprehended set, but that is
unfortunately not translatable.

append : ID-set × ID-set → Order-set
append(idset1, idset2) ≡

if idset1 = {} then {}
else let i = hd idset1

in append_ID(i, idset2)
∪
append(idset1 \ {i}, idset2)

end
end,

append_ID creates Orders by using the first argument together with each element in the second argument.

append_ID : ID × ID-set → Order-set
append_ID(id, ids) ≡

if ids = {} then {}
else

let i = hd ids
in

{mk_Order(id, i)}
∪
append_ID(id, ids \ {i})

end
end,

eventlist extracts the list of events on an Instance.

eventlist : Location∗ → Event∗

eventlist(ll) ≡ 〈event(l) | l in ll〉,

- -functions needed in order to make specification—–
- ———– translatable—————————–

onputEvents returns all the input events on a given Instance.

inputEvents : Location∗ → Event∗

inputEvents(ll) ≡
if ll = 〈〉 then 〈〉
else

case event(hd ll) of
mk_InputEvent(,) → 〈event(hd ll)〉,
→ 〈〉

end ̂ inputEvents(tl ll)

D.1 RSC syntax 265

end,

outputEvents returns all the output events on a given Instance.

outputEvents : Location∗ → Event∗

outputEvents(ll) ≡
if ll = 〈〉 then 〈〉
else

case event(hd ll) of
mk_OutputEvent(, ,) → 〈event(hd ll)〉,
→ 〈〉

end ̂ outputEvents(tl ll)
end,

subchartEvents returns all the subchart events on a given Instance.

subchartEvents : Location∗ → Event∗

subchartEvents(ll) ≡
if ll = 〈〉 then 〈〉
else

case event(hd ll) of
mk_Subchart(, , , ,) → 〈event(hd ll)〉,
→ 〈〉

end ̂ subchartEvents(tl ll)
end,

endsubchartEvents returns all the endsubchart events on a given Instance.

endsubchartEvents : Location∗ → Event∗

endsubchartEvents(ll) ≡
if ll = 〈〉 then 〈〉
else

case event(hd ll) of
mk_EndSubchart() → 〈event(hd ll)〉,
→ 〈〉

end ̂ endsubchartEvents(tl ll)
end,

conditionEvents returns all the condition events on a given Instance.

conditionEvents : Location∗ → Event∗

conditionEvents(ll) ≡
if ll = 〈〉 then 〈〉
else

case event(hd ll) of
mk_ConditionEvent(, , ,) → 〈event(hd ll)〉,
→ 〈〉

end ̂ conditionEvents(tl ll)
end,

266 Appendix D. RSL specifications for the RSC

coregionEvents returns all the coregion events on a given Instance.

coregionEvents : Location∗ → Event∗

coregionEvents(ll) ≡
if ll = 〈〉 then 〈〉
else

case event(hd ll) of
mk_CoregionEvent() → 〈event(hd ll)〉,
→ 〈〉

end ̂ coregionEvents(tl ll)
end,

coregion_locls extracts all the location∗s used for coregions.

coregion_locls : Location∗ → (Location∗)∗

coregion_locls(ll) ≡
if ll = 〈〉 then 〈〉
else

case event(hd ll) of
mk_CoregionEvent(locl) → 〈locl〉,
→ 〈〉

end ̂ coregion_locls(tl ll)
end,

coregion_ids extracts IDs used by messages in a given Location∗ which must only contain message−event.

coregion_ids : Location∗
∼

→ ID-set
coregion_ids(locl) ≡

if locl = 〈〉 then {}
else

case event(hd locl) of
mk_InputEvent(inmsgid,) →

{inmsgid} ∪ coregion_ids(tl locl),
mk_OutputEvent(outmsgid, ,) →

{outmsgid} ∪ coregion_ids(tl locl)
end

end
pre

(∀ e : Event •

e ∈ eventlist(locl) ⇒
e ∈ inputEvents(locl) ∨ e ∈ outputEvents(locl)),

all_ids returns all the ids used in the chart.

all_ids : Chart → ID-set
all_ids(chart) ≡

if chart = [] then {}
else

D.1 RSC syntax 267

let i = hd chart
in

all_ids_instance(chart(i))
∪
all_ids(chart \ {i})

end
end,

all_ids_instance returns all the ids from an instance.

all_ids_instance : Location∗ → ID-set
all_ids_instance(locl) ≡

if locl = 〈〉 then {}
else

case event(hd locl) of
mk_ActionEvent(, id) → {id},
mk_ConditionEvent(, id, ,) → {id},
mk_InputEvent(id, addr) → {id},
mk_OutputEvent(id, , addr) → {id},
mk_Subchart(, id, , ,) → {id},
→ {}

end ∪ all_ids_instance(tl locl)
end,

all_addresses returns a set of all adresses possible in the chart, which is given by the instance names.

all_addresses : Chart → Address-set
all_addresses(chart) ≡

if chart = [] then {Environment}
else

let i = hd chart
in

{mk_Address(i)}
∪
all_addresses(chart \ {i})

end
end,

all_temp returns a set with all the temperatures.

all_temp : HotCold-set = {Hot, Cold},

all_outpids returns a set with all the message names of a chart.

all_outpids : Chart → Msg_Name-set
all_outpids(chart) ≡

if chart = [] then {}
else

let i = hd chart

268 Appendix D. RSL specifications for the RSC

in
all_outpids_instance(chart(i))
∪
all_outpids(chart \ {i})

end
end,

all_outpids_instance returns a set with all the message names of an instance.

all_outpids_instance : Location∗ → Msg_Name-set
all_outpids_instance(locl) ≡

if locl = 〈〉 then {}
else

(case event(hd locl) of
mk_OutputEvent(, outpid,) → {outpid},
→ {}

end) ∪ all_outpids_instance(tl locl)
end,

all_sc_names returns a set with all the subchart names of an instance.

all_sc_names : Location∗ → Subchart_Name-set
all_sc_names(locl) ≡

if locl = 〈〉 then {}
else

case event(hd locl) of
mk_Subchart(scname, , , ,) → {scname},
→ {}

end ∪ all_sc_names(tl locl)
end,

loclmatch checks whether a Location∗ is a part of another Location∗. If−constructs, albeit not necessary, are
included for better understanding.

loclmatch : Location∗ × Location∗ × Nat × Nat → Bool
loclmatch(locl, crlocl, currpos, crpos) ≡

- - complete list matched
if currpos > len crlocl then true
else

- - end of locl reached
if currpos+ crpos > len locl then false
else

- - keep looking
(locl(crpos + currpos) = crlocl(currpos)) ∧
loclmatch(locl, crlocl, currpos + 1, crpos)
end

end ,

extract_idps_chart extracts ids from a chart. Recurses over the map domain.

D.1 RSC syntax 269

extract_idps_chart : Chart → IDp∗

extract_idps_chart(chart) ≡
if chart = [] then 〈〉
else

let i = hd chart in extract_idps_instance(chart(i)) ̂ extract_idps_chart(chart \ {i}) end
end,

extract_idps_instance extracts ids from a Location list and IDp′s for relevant events. Fx. the occurence of a
message ID which message does not originate or end in environment must be 2.

extract_idps_instance : Location∗ → IDp∗

extract_idps_instance(locl) ≡
if locl = 〈〉 then 〈〉
else

(case event(hd locl) of
mk_ConditionEvent(, id, , ceshare) →

〈mk_IDp(id, card ceshare)〉,
mk_InputEvent(id, addr) →

if addr 6= Environment then 〈mk_IDp(id, 2)〉
else 〈mk_IDp(id, 1)〉 end,

mk_OutputEvent(id, , addr) →
if addr 6= Environment then 〈mk_IDp(id, 2)〉

else 〈mk_IDp(id, 1)〉 end,
mk_Subchart(, id, scshare, ,) →

〈mk_IDp(id, card scshare)〉,
mk_ActionEvent(,id) → 〈mk_IDp(id, 1)〉,
→ 〈〉

end) ̂ extract_idps_instance(tl locl)
end,

count_ids counts the number of occurences of an ID in an given list with IDp′s.

count_ids : IDp∗ × ID × Nat → Nat
count_ids(idplist, id, count) ≡

if idplist = 〈〉 then count
else

if id(hd idplist) = id then count_ids(tl idplist, id, count + 1)
else count_ids(tl idplist, id, count)
end

end,

event_loc−temp determines the temperature of the location of a given event.

event_loc_temp : Location∗ × Event → HotCold
event_loc_temp(locl, event) ≡
let ind = eventposition(locl, event, 1)
in temp(locl(ind)) end,

eventposition determines which indice a given event′s location has on a Location∗.

270 Appendix D. RSL specifications for the RSC

eventposition : Location∗ × Event × Nat ∼

→ Nat
eventposition(locl, event, counter) ≡

if event(locl(counter)) = event then counter
else eventposition(locl, event, counter + 1) end

pre event ∈ elems eventlist(locl),

set_to_list transforms an Order-set to an Order∗.

set_to_list : Order-set → Order∗

set_to_list(os) ≡
if os = {} then 〈〉
else let e = hd os in 〈e〉 ̂ set_to_list(os \ {e}) end end,

insertionSort sorts a list of orders. Modified version of insertionsort. It sorts first on id1 of the orders, then
on id2. 2 Lists are used, one for the unsorted and one for the sorted elements in order to make an easier
algorithm. Insertion−sort chosen since it is the fastest of the o(n2) sorting algorithms (only small amounts are
to be ordered) and very easy to write.

insertionSort : Order∗ × Order∗ → Order∗

insertionSort(unsorted, sorted) ≡
case unsorted of

〈〉 → 〈〉,
〈a〉 ̂ 〈〉 → insert(sorted, 〈〉, a),
〈a〉 ̂ b → insertionSort(b, insert(sorted, 〈〉, a))

end,

insert : Order∗ × Order∗ × Order → Order∗

insert(unpassed, passed, number) ≡
if unpassed = 〈〉 then passed ̂ 〈number〉
else

if id1(hd unpassed) > id1(number)
then passed ̂ 〈number〉 ̂ unpassed

else
if id1(hd unpassed) = id1(number)
then

if id2(hd unpassed) ≥ id2(number)
then passed ̂ 〈number〉 ̂ unpassed

else insert(tl unpassed, passed ̂ 〈hd unpassed〉, number)
end

else insert(tl unpassed, passed ̂ 〈hd unpassed〉, number)
end

end
end

end - -class end

D.2 RSC semantics for one chart 271

D.2 RSC semantics for one chart

D.2.1 RSC_semantics.rsl

RSC_wf

scheme RSC_semantics =
extend RSC_wf with
class
type

New types introduced in order to capture information about state and enabled events.

Position info gives information about the current state of one instance.

PosInfo :: pointer : Nat ↔ incr aux : AuxInfo iteration :
Int∗ ↔ alter,

Holds information about an instances state if it is currently in a coregion.

AuxInfo == None | CoRegion(idset : ID-set),

The state of a chart maps from instance names to a position info.

State = Inst_Name →m PosInfo,

A trace is a list of states.

Trace = State∗,

Traces are sets of a trace.

Traces = Trace-set,

EnableEvents are used in order to describe which events are currently enabled. The type depends on which
kind of enabled event it is.

EnabledEvent ==

Enabled message. Instances as sets, as they may be empty due to messages from/to environment.

EnabledMessage(Inst_Name-set, Inst_Name-set, ID) |

Enabled (true) condition.

272 Appendix D. RSL specifications for the RSC

EnabledCondition(Inst_Name-set, Cond_Name, ID) |

Enabled action.

EnabledAction(Inst_Name, Action_Name, ID) |

Enabled message in coregion.

EnabledCoregion(Inst_Name-set, Inst_Name-set, ID, Int) |

Enabled subchart entry.

EnabledEnterSubchart(Inst_Name-set, ID, Int) |

Enabled subchart end.

EnabledEndSubchart(ID, Inst_Name-set) |

Enabled cold (false) condition exit from a subchart. First set are instances in subchart, next set are instances
sharing condition.

EnabledExitSubchart(Inst_Name-set, ID, Inst_Name-set, Cond_Name) |

Enabled cold (false) condition exit from a mainchart.

EnabledExitMainchart(Inst_Name-set, Cond_Name) |

Denotes that an instance has stopped.

EnabledStopped |

Used when an instance has no enabled event.

NotEnabled
value

semantics gives all the possible traces for a given chart.

semantics : Chart → Traces
semantics(chart) ≡ eval(chart, {〈initialize_chart(chart)〉}),

eval recursively evaluates traces until no new are found.

D.2 RSC semantics for one chart 273

eval : Chart × Traces → Traces
eval(chart, ts) ≡

let ts′ = eval_traces(chart, ts) in
if ts′ = ts then ts else eval(chart, ts′) end

end,

eval_traces evaluates traces. There is a need for an extra function as recursively defined quantified expressions
are not in the subset of RSL that is translatable to C+ +.

eval_traces : Chart × Traces → Traces
eval_traces(chart, ts) ≡

- -converting -set-set to -set
convert_tss2s({eval_trace(chart, t) | t : Trace • t ∈ ts}),

eval_trace evaluates a trace by finding the next possible states given the current state, and creating the resulting
new traces.

eval_trace : Chart × Trace ∼

→ Traces
eval_trace(chart, t) ≡

let evalss = eval_state(chart, hd t) in
if evalss = {} ∨ (∀ ns : State • ns ∈ evalss ⇒ ns =
hd t ∨ (if len t > 1 then hd t = (hd (tl t)) else false end))
then {t}
else

- - some of the instances may be stopped, they are not added
- - since check ns ∼= hd t
if (∃ ns : State • ns ∈ evalss ∧ ns = [])
then

{〈ns〉 ̂ t | ns : State • ns ∈ evalss ∧ ns 6= hd t ∧ ns 6= []} ∪
{〈hd t〉 ̂ t}

else {〈ns〉 ̂ t | ns : State • ns ∈ evalss ∧ ns 6= hd t}
end

end
end
pre t 6= 〈〉 ,

eval_state: given a chart and a stats the enabled events are found and the corresponding next states are found.

eval_state : Chart × State → State-set
eval_state(chart, curState) ≡

{step_event(chart, x, curState) | x : EnabledEvent • x ∈ get_enabled_events(chart, curState)},

step_event takes a step with an enabled event and returns the resulting state..

step_event : Chart × EnabledEvent × State → State
step_event(chart, eevent, curState) ≡

case (eevent) of
- - Not an enabled event.

274 Appendix D. RSL specifications for the RSC

NotEnabled → curState,
- - Instance has stopped
EnabledStopped → curState,
- - main chart is exited
EnabledExitMainchart(,) → end_state(chart),
- - exit from subchart: all instances in subchart are advanced
- - to next endsubchart token
EnabledExitSubchart(inames, , ,) →

curState †
[iname 7→ next_position_exitsc(chart, curState, iname) |

iname : Inst_Name • iname ∈ inames],
- - simple proceed for for example messages
EnabledAction(iname, ,) →

curState †
[iname 7→ next_position(chart, curState, iname)],

EnabledMessage(inames, inames2,) →
curState †
[iname 7→ next_position(chart, curState, iname) | iname :
Inst_Name • iname ∈ (inames ∪ inames2)],

EnabledCondition(inames, ,) →
curState †
[iname 7→ next_position(chart, curState, iname) | iname :
Inst_Name • iname ∈ inames],

EnabledEnterSubchart(inames, , iteration) →
curState †
[iname 7→ next_position_entersc(chart, curState, iname, iteration) | iname :
Inst_Name • iname ∈ inames],

- - a complete subchart has finished and may iterate depending on multiplicity
EnabledEndSubchart(scid, inames) →

(if (repeat_subchart(curState, inames))
then

curState †
[iname 7→ next_position_subback(chart, curState, iname, scid) |
iname : Inst_Name • iname ∈ inames]

else
curState †
[iname 7→ next_position_subend(chart, curState, iname) |
iname : Inst_Name • iname ∈ inames]

end),
- - event involving coregion messages, 12 types of
- - different situations:
- -Type Origin Destination last event in coregion
- - 1 Coregion Instance no
- - 2 Coregion Instance yes
- - 3 Instance Coregion no
- - 4 Instance Coregion yes
- - 5 Coregion Coregion no, no
- - 6 Coregion Coregion yes, no
- - 7 Coregion Coregion no, yes
- - 8 Coregion Coregion yes, yes
- - 9 Coregion Environment no
- -10 Coregion Environment yes
- -11 Environment Coregion no
- -12 Environment Coregion yes

EnabledCoregion(iname, iname2, msgid, typeevent) →
case typeevent of

1 →

D.2 RSC semantics for one chart 275

- - coregion origin (not last event), instance destination
curState †
[hd iname 7→ next_position_cor(chart, curState, hd iname, msgid, false),

hd iname2 7→ next_position(chart, curState, hd iname2)],
2 →
- - coregion origin (last event), instance destination

curState †
[hd iname 7→ next_position_cor(chart, curState, hd iname, msgid, true),

hd iname2 7→ next_position(chart, curState, hd iname2)],
3 →
- - instance origin, coregion destination (not last event)

curState †
[hd iname 7→ next_position(chart, curState, hd iname),

hd iname2 7→ next_position_cor(chart, curState, hd iname2, msgid, false)],
4 →
- - instance origin, coregion destination (last event)

curState †
[hd iname 7→ next_position(chart, curState, hd iname),

hd iname2 7→ next_position_cor(chart, curState, hd iname2, msgid, true)],
5 →
- - coregion origin (not last event), coregion destination
- - (not last event)

curState †
[hd iname 7→ next_position_cor(chart, curState, hd iname, msgid, false),

hd iname2 7→ next_position_cor(chart, curState, hd iname2, msgid, false)],
6 →
- - coregion origin (last event), coregion destination
- - (not last event)

curState †
[hd iname 7→ next_position_cor(chart, curState, hd iname, msgid, true),

hd iname2 7→ next_position_cor(chart, curState, hd iname2, msgid, false)],
7 →
- - coregion origin (not last event), coregion destination
- - (last event)

curState †
[hd iname 7→ next_position_cor(chart, curState, hd iname, msgid, false),

hd iname2 7→ next_position_cor(chart, curState, hd iname2, msgid, true)],
8 →
- - coregion origin (last event), coregion destination
- - (lastevent)

curState †
[hd iname 7→ next_position_cor(chart, curState, hd iname, msgid, true),

hd iname2 7→ next_position_cor(chart, curState, hd iname2, msgid, true)],
9 →
- - coregion origin (not last event), Environment destination

curState †
[hd iname 7→ next_position_cor(chart, curState, hd iname, msgid, false)],

10 →
- - coregion origin (last event), Environment destination

curState †
[hd iname 7→ next_position_cor(chart, curState, hd iname, msgid, true)],

11 →
- - Environment origin, Coregion destination (not last event)

curState †
[hd iname2 7→ next_position_cor(chart, curState, hd iname2, msgid, false)],

12 →
- - Environment origin, Coregion destination (last event)

curState †

276 Appendix D. RSL specifications for the RSC

[hd iname2 7→ next_position_cor(chart, curState, hd iname2, msgid, true)]
end

end,

next_position finds the next positioninfo for a state. Used for most enabled events.

next_position : Chart × State × Inst_Name → PosInfo
next_position(chart, curState, iname) ≡

let pi = curState(iname), nextEvent = eventlist(chart(iname))(pointer(pi) + 1) in
create_positioninfo(chart, nextEvent, pi, 1)

end,

next_position_entersc finds the next positioninfo for an instance entering a subchart.

next_position_entersc : Chart × State × Inst_Name × Int → PosInfo
next_position_entersc(chart, curState, iname, iteration) ≡

let pi = curState(iname), nextEvent = eventlist(chart(iname))(pointer(pi) + 1) in
create_positioninfo(chart, nextEvent, alter(〈iteration〉̂(iteration(pi)),pi), 1)

end,

next_position_subend finds the next positioninfo for an instance leaving a subchart.

next_position_subend : Chart × State × Inst_Name → PosInfo
next_position_subend(chart, curState, iname) ≡

let
pi = curState(iname),
nextEvent = eventlist(chart(iname))(pointer(pi) + 1)

in
create_positioninfo(chart, nextEvent, alter(tl iteration(pi),pi), 1)

end,

next_position_exitsc finds the next positioninfo when the current location denotes a subchart exit. This is
necessary since the next event position is not yet known.

next_position_exitsc : Chart × State × Inst_Name → PosInfo
next_position_exitsc(chart, curState, iname) ≡

let
oldpointer = pointer(curState(iname)),
newpointer = return_next_endsc(chart, curState, iname, pointer(curState(iname)))

in
- - creating positioninfo based on newpointer
- - StopEvent provided in order to fall trough in
- - create_positioninfo case construct, does not mean end of
- - instance. +1 one in order to avoid endsubchart token
create_positioninfo(chart, StopEvent, curState(iname), newpointer − oldpointer+1)

end,

D.2 RSC semantics for one chart 277

next_position_subback finds the next positioninfo when the current location denotes a repeating of a subchart.
This is necessary since the next event (on subchart beginning) is not yet known.

next_position_subback : Chart × State × Inst_Name × ID → PosInfo
next_position_subback(chart, curState, iname, scid) ≡

let
pi = curState(iname),
sc : Event • sc ∈ subchartEvents(chart(iname)) ∧ scid = scid(sc),
length = len sclocl(sc),
oldptr = pointer(pi),
nextEvent = eventlist(chart(iname))(oldptr−length)

in
- - creating new pi, event is subchart, -length since compensation
- -for all events in subchart, then subchart will directly be
- -enabled again
create_positioninfo(chart, nextEvent, alter(〈(hd iteration(pi))−1〉̂(tl iteration(pi)),pi), −(length))

end,

next_position_cor finds the next positioninfo when the current location denotes a coregion.

next_position_cor : Chart × State × Inst_Name × ID × Bool → PosInfo
next_position_cor(chart, curState, iname, msgid, lastevent) ≡

case lastevent of
true →

let
pi = curState(iname),
curEvent = eventlist(chart(iname))(pointer(pi)),
diff = len crlocl(curEvent),
nextEvent = eventlist(chart(iname))(pointer(pi) + diff +
1),
newpi = mk_PosInfo(pointer(pi), None, iteration(pi))

in
create_positioninfo(chart, nextEvent, newpi, diff + 1)

end,
false →

let
pi = curState(iname),
oldai = aux(pi),
oldmsgids = idset(oldai),
newmsgids = oldmsgids \ {msgid},
ai = CoRegion(newmsgids),
newpos = mk_PosInfo(pointer(pi), ai, iteration(pi))

in
newpos

end
end,

create_positioninfo creates the actual positioninfo.

create_positioninfo : Chart × Event × PosInfo × Int → PosInfo
create_positioninfo(chart, nextEvent, pi, diff) ≡

case nextEvent of
mk_CoregionEvent(crlocl) →

278 Appendix D. RSL specifications for the RSC

let
newmsgids = all_ids_instance(crlocl),
ai = CoRegion(newmsgids), newpos =
mk_PosInfo(pointer(pi) + diff, ai, iteration(pi))

in
newpos

end,

→ incr(pointer(pi) + diff, pi)
end,

get_enabled_events finds the enabled events in a given state.

get_enabled_events : Chart × State → EnabledEvent-set
get_enabled_events(chart, curState) ≡

let inames = dom curState in
convert_ees2es(

{get_enabled_event(chart, curState, iname) | iname : Inst_Name • iname ∈ inames})
end,

Same as above, splitted for convenience.

get_enabled_event : Chart × State × Inst_Name → EnabledEvent-set
get_enabled_event(chart, curState, iname) ≡

let pi = curState(iname), curEvent = eventlist(chart(iname))(pointer(pi)) in
get_enabled_event_cur(chart, curState, iname, curEvent)

end,

The following part deals with identifying enabled events.

get_enabled_event_cur gets the enabled events depending on the current event.

get_enabled_event_cur : Chart × State × Inst_Name × Event → EnabledEvent-set
get_enabled_event_cur(chart, curState, iname, curEvent) ≡

case curEvent of
mk_InputEvent(inmsgid, inaddr) → {get_ee_inputevent(chart,
curState, iname, inmsgid, inaddr)},
mk_OutputEvent(outmsgid, outpid, outaddr) →

{get_ee_outputevent(chart, curState, iname, outmsgid, outaddr)},
- - may branch on condition, therefore set
mk_ConditionEvent(conname, cid, cetemp, share) →

get_ee_con(chart, curState, iname, curEvent),
mk_CoregionEvent(locl) → get_ee_coregion(chart, curState, iname, locl),
mk_Subchart(scname, scid, inames, mult, sclocl) →

{get_ee_subchart(chart, curState, curEvent)},
mk_EndSubchart(scid) → {get_ee_endsc(chart, curState, scid)},
StopEvent → {EnabledStopped},
mk_ActionEvent(aname,id) → {EnabledAction(iname,aname, id)}

end,

D.2 RSC semantics for one chart 279

get_ee_inputevent finds enabled events on an input event if the message comes from Environment. Otherwise
outputevents will check if the corresponding input event is ready.

get_ee_inputevent : Chart × State × Inst_Name × ID × Address → EnabledEvent
get_ee_inputevent(chart, curState, iname, inmsgid, inaddr) ≡
if inaddr = Environment
then

EnabledMessage({}, {iname}, inmsgid)
else

NotEnabled
end,

get_ee_outputevent finds enabled event if current is an output event.

get_ee_outputevent : Chart × State × Inst_Name × ID × Address → EnabledEvent
get_ee_outputevent(chart, curState, iname, outmsgid, outaddr) ≡

- - destination is environment, instance may proceed
if (outaddr = Environment)
then

EnabledMessage({iname}, {}, outmsgid)
- - destination is other instance
else
(if

- - destination is a simple message reception on instance
(∃ iname2 : Inst_Name •

iname2 ∈ dom curState ∧
(∃ inaddr : Address •

inaddr ∈ all_addresses(chart)
∧ inaddr = mk_Address(iname) ∧

eventlist(chart(iname2))(pointer(curState(iname2))) =
mk_InputEvent(outmsgid, inaddr)))

then
let
inaddr = mk_Address(iname),
iname2 : Inst_Name •

iname2 ∈ dom curState ∧
eventlist(chart(iname2))(pointer(curState(iname2))) =
mk_InputEvent(outmsgid, inaddr) in
EnabledMessage({iname}, {iname2}, outmsgid) end

else
(if

- - destination is a message reception in coregion
(∃ iname2 : Inst_Name • iname2 ∈ dom curState ∧

(∃ locl : Location∗
• locl ∈

coregion_locls(chart(iname2)) ∧
eventlist(chart(iname2))(pointer(curState(iname2)))
= mk_CoregionEvent(locl)

∧ mk_InputEvent(outmsgid, mk_Address(iname))
∈ elems eventlist(locl)))

then
let

inaddr = mk_Address(iname),
iname2 : Inst_Name •

280 Appendix D. RSL specifications for the RSC

iname2 ∈ dom curState ∧
(∃ locl : Location∗

• locl ∈
coregion_locls(chart(iname2)) ∧

eventlist(chart(iname2))(pointer(curState(iname2))) =
mk_CoregionEvent(locl) ∧

mk_InputEvent(outmsgid, inaddr) ∈ elems eventlist(locl)),
pi = curState(iname2),
ai = aux(pi),
oldmsgids = idset(ai),
newmsgids = oldmsgids \ {outmsgid} in
if (newmsgids = {})
then - - coregion: last event, type 4 transfer

EnabledCoregion({iname}, {iname2}, outmsgid, 4)
else - - coregion: not last event, type 3 transfer

EnabledCoregion({iname}, {iname2}, outmsgid, 3)
end

end
- - message receiver not ready yet
else NotEnabled end)

end)
end,

get_ee_con finds enabled event if current is a condtion event.

get_ee_con : Chart × State × Inst_Name × Event → EnabledEvent-set
get_ee_con(chart, curState, iname, curEvent) ≡

if
cetemp(curEvent) = Hot

then
- - hot condition, must be satisfied, may proceed
{get_ee_con_satisfied(chart, curState, iname, curEvent)}

else - - cold condition, may evaluate to true or false
get_ee_con_cold(chart, curState, iname, curEvent)

end,

get_ee_con_cold finds enabled event if current is a cold condition event.

get_ee_con_cold :
Chart × State × Inst_Name × Event → EnabledEvent-set

get_ee_con_cold(chart, curState, iname, curEvent) ≡
if - - determines if condition is in a subchart

(∃ sc : Event •

sc ∈ subchartEvents(chart(iname)) ∧
curEvent ∈ elems eventlist(sclocl(sc)))

then
let

- - event = eventlist(chart(iname))(pointer(curState(iname))),
sc : Event • sc ∈ subchartEvents(chart(iname)) ∧
curEvent ∈ elems eventlist(sclocl(sc)) ∧
closest_subchart(chart(iname),sc, curEvent)

in
- - 2 possible next states: true and cold condition exit from
- - subchart
{get_ee_con_satisfied(chart, curState, iname, curEvent),

EnabledExitSubchart(scshare(sc), cid(curEvent),

D.2 RSC semantics for one chart 281

ceshare(curEvent), conname(curEvent))}
end

else - - condition is not in subchart
- - 2 possible next states: true and cold condition exit from
- - main chart

{get_ee_con_satisfied(chart, curState, iname, curEvent),
EnabledExitMainchart(ceshare(curEvent), conname(curEvent))}

end,

get_ee_con_satisfied finds enabled event if current is a true condition event.

get_ee_con_satisfied :
Chart × State × Inst_Name × Event→ EnabledEvent

get_ee_con_satisfied(chart, curState, iname, curEvent) ≡
if ceshare(curEvent) = {}
then - - condition not shared, instance may proceed

EnabledCondition({iname}, conname(curEvent), cid(curEvent))
else
- - Checking if all instances are at condition.

if
(∀ iname2 : Inst_Name •

iname2 ∈ dom curState ∧ iname2 ∈ ceshare(curEvent) ⇒
eventlist(chart(iname2))(pointer(curState(iname2))) =

curEvent)
then EnabledCondition(ceshare(curEvent), conname(curEvent), cid(curEvent))
else NotEnabled
end

end,

get_ee_subchart finds enabled event if current is a subchart event.

get_ee_subchart :
Chart × State × Event → EnabledEvent

get_ee_subchart(chart, curState, curEvent) ≡
if
(∀ iname2 : Inst_Name •

iname2 ∈ scshare(curEvent) ⇒
case eventlist(chart(iname2))(pointer(curState(iname2)))
of

mk_Subchart(scname2, scid2, scshare2, mult2,) →
scname2 = scname(curEvent) ∧ scid2 = scid(curEvent)
∧ scshare2 = scshare(curEvent) ∧ mult2 =
mult(curEvent),
→ false

end)
then EnabledEnterSubchart(scshare(curEvent), scid(curEvent), mult(curEvent))

else NotEnabled
end,

get_ee_endsc finds enabled event if current is a end subchart event.

282 Appendix D. RSL specifications for the RSC

get_ee_endsc : Chart × State × ID → EnabledEvent
get_ee_endsc(chart, curState, scid) ≡

let
inames =

{iname2 |
iname2 : Inst_Name •

iname2 ∈ dom curState
∧ mk_EndSubchart(scid) ∈ eventlist(chart(iname2))}

in
if - - checking if all instances are finished in subchart

(∀ iname2 : Inst_Name •

iname2 ∈ inames ⇒
eventlist(chart(iname2))(pointer(curState(iname2))) =

mk_EndSubchart(scid))
then

EnabledEndSubchart(scid, inames) - - subchart complete
else NotEnabled - - subchart not complete, may not proceed
end

end,

get_ee_coregion finds enabled event if current is a coregion event.

get_ee_coregion : Chart × State × Inst_Name × Location∗ → EnabledEvent-set
get_ee_coregion(chart, curState, iname, locl) ≡

let
pi = curState(iname),
ai = aux(pi),
msgids = idset(ai),
outmsgids = outmsgids(locl) ∩ msgids,
inmsgids = inmsgids(locl) ∩ msgids

in
{get_ee_coregion_output(chart, curState, iname, msgid) |

msgid : ID • msgid ∈ outmsgids}
∪

{get_ee_coregion_input(chart, curState, iname, msgid) |
msgid : ID • msgid ∈ inmsgids}

end,

get_ee_coregion_output finds enabled event if current event is a coregion output event.

get_ee_coregion_output : Chart × State × Inst_Name × ID → EnabledEvent
get_ee_coregion_output(chart, curState, iname, msgid) ≡

let
event = mk_InputEvent(msgid, mk_Address(iname)),
iname2 : Inst_Name • iname2 ∈ dom curState ∧ event ∈ eventlist(chart(iname2))

in
- - check destination
if

(∃ locl : Location∗
•

locl ∈ elems coregion_locls(chart(iname2)) ∧
event ∈ elems eventlist(locl))

then
- - destination is coregion
get_ee_coregion_coregion(chart, curState, iname, iname2, msgid)

D.2 RSC semantics for one chart 283

else
if

(∃ iname2 : Inst_Name • iname2 ∈ dom chart ∧ event
∈ elems eventlist(chart(iname2)))

then
- - destination is instance
get_ee_coregion_instance(chart, curState, iname, iname2, msgid)

else
- - destination is Environment
get_ee_coregion_environment(chart, curState, iname, msgid)

end
end

end,

get_ee_coregion_input finds enabled event if current event is a coregion output event.

get_ee_coregion_input : Chart × State × Inst_Name × ID → EnabledEvent
get_ee_coregion_input(chart, curState, iname, msgid) ≡
if

(∃ event : Event • event ∈ elems eventlist(chart(iname)) ∧ event =
mk_InputEvent(msgid, Environment))

then
- - input event from Environment
get_ee_environment_coregion(chart, curState, iname, msgid)

else
- - input from elsewhere, do nothing
NotEnabled

end,

get_ee_environment_coregion finds enabled event if current event is inputevent in coregion from environment

get_ee_environment_coregion : Chart × State × Inst_Name × ID → EnabledEvent
get_ee_environment_coregion(chart, curState, iname, msgid) ≡

if (get_rest_msgids(curState, iname, msgid) = {})
then - - coregion: last event, type 12 transfer

EnabledCoregion({}, {iname}, msgid, 12)
else - - coregion: not last event, type 11 transfer

EnabledCoregion({}, {iname}, msgid, 11)
end,

get_ee_coregion_environment finds enabled event if current event is outputevent in coregion to environment

get_ee_coregion_environment : Chart × State × Inst_Name × ID → EnabledEvent
get_ee_coregion_environment(chart, curState, iname, msgid) ≡

if (get_rest_msgids(curState, iname, msgid) = {})
then - - coregion: last event, type 10 transfer

EnabledCoregion({iname}, {}, msgid, 10)
else - - coregion: not last event, type 9 transfer

EnabledCoregion({iname}, {}, msgid, 9)
end,

284 Appendix D. RSL specifications for the RSC

get_ee_coregion_instance finds enabled event if current is a coregion and the destination of the message event
is an instance (not coregion).

get_ee_coregion_instance : Chart × State × Inst_Name × Inst_Name × ID → EnabledEvent
get_ee_coregion_instance(chart, curState, iname, iname2, msgid) ≡

if
(eventlist(chart(iname2))(pointer(curState(iname2))) =

mk_InputEvent(msgid, mk_Address(iname)))
then
if (get_rest_msgids(curState, iname, msgid) = {})
then - - coregion: last event, type 2 transfer

EnabledCoregion({iname}, {iname2}, msgid, 2)
else - - coregion: not last event, type 1 transfer

EnabledCoregion({iname}, {iname2}, msgid, 1)
end

else - - instance not ready to receive message
NotEnabled

end,

get_ee_coregion_coregion finds enabled event if current is a coregion and the destination of the message event
is a coregion (not instance).

get_ee_coregion_coregion :
Chart × State × Inst_Name × Inst_Name × ID → EnabledEvent
get_ee_coregion_coregion(chart, curState, iname, iname2, msgid) ≡

if
(∃ event : Event •

event ∈ eventlist(chart(iname2)) ∧
(case eventlist(chart(iname2))(pointer(curState(iname2))) of

mk_CoregionEvent(locl) →
event = mk_InputEvent(msgid, mk_Address(iname)) ∧
event ∈ elems eventlist(locl),
→ false

end))
then - - coregion ready to receive
- - origin has last event (type 6, 8)
if (get_rest_msgids(curState, iname, msgid) = {})
then

if (get_rest_msgids(curState, iname2, msgid) = {})
then - -destination has last event (type 8)

EnabledCoregion({iname}, {iname2}, msgid, 8)
else - -destination not last event (type 6)

EnabledCoregion({iname}, {iname2}, msgid, 6)
end

else - - origin not last event (type 5, 7)
if (get_rest_msgids(curState, iname2, msgid) = {})
then - - destination has last event (type 7)

EnabledCoregion({iname}, {iname2}, msgid, 7)
else - - destination not last event

EnabledCoregion({iname}, {iname2}, msgid, 5)
end

end
else - - coregion not reached yet

NotEnabled
end,

D.2 RSC semantics for one chart 285

repeat_subchart checks whether a subchart should be repeated or not.

repeat_subchart : State × Inst_Name-set → Bool
repeat_subchart(state, names) ≡
let

name = hd names,
posinfo = state(name),
iter = iteration(posinfo)

in
hd iter > 1

end,

initialize_chart returns the initial state a RSC is in.

initialize_chart : Chart → State
initialize_chart(chart) ≡

step_event(chart, EnabledCondition(dom chart,′′′′, 0), [i 7→
mk_PosInfo(0, None, 〈〉) | i : Inst_Name • i ∈ dom chart]),

end_state calculates the end state a RSC is in when it has performed all possible events.

end_state : Chart → State
end_state(chart) ≡

[i 7→ mk_PosInfo(len chart(i), None, 〈〉) |
i : Inst_Name • i ∈ dom chart],

The following part are auxiliary functions needed for translation to C–‖.

Converts a set of traces to traces with the same elements.

convert_tss2s : Traces-set → Traces
convert_tss2s(tss) ≡

if tss = {} then {}
else let element = hd tss in element ∪ convert_tss2s(tss \ {element}) end
end,

- - would be much simpler if it should not be translatable:
- - t | t : Trace, ts : Traces :- t isin ts / ts isin tss,

convert_ees2es converts a set-set of enabled events to a set of enabled events with the same elements.

convert_ees2es : (EnabledEvent-set)-set → EnabledEvent-set
convert_ees2es(adss) ≡

if adss = {} then {}

286 Appendix D. RSL specifications for the RSC

else let element = hd adss in element ∪ convert_ees2es(adss \ {element}) end
end,

get_rest_msgids removes an id from the set of ids that denote the messages not yet sent/received in a coregion.

get_rest_msgids : State × Inst_Name × ID → ID-set
get_rest_msgids(curState, iname, msgid) ≡

let
pi = curState(iname),
ai = aux(pi),
oldmsgids = idset(ai),
newmsgids = oldmsgids \ {msgid}

in
newmsgids

end,

closest_subchart determines if the given subchart is the ′′innermost′′ subchart of the event given.

closest_subchart : Location∗ × Event × Event → Bool
closest_subchart(inst, sc, event) ≡

∼(∃ sc2 : Event • sc2 ∈ elems subchartEvents(sclocl(sc)) ∧
event ∈ elems eventlist(sclocl(sc2))),

outmsgids returns the ids of all the outputevents of a location∗.

outmsgids : Location∗ → ID-set
outmsgids(locl) ≡
if locl = 〈〉 then {} else

case event(hd locl) of
mk_OutputEvent(outmsgid, ,) → {outmsgid},
→ {}

end ∪ outmsgids(tl locl)
end,

inmsgids returns the ids of all the inputevents of a location∗.

inmsgids : Location∗ → ID-set
inmsgids(locl) ≡
if locl = 〈〉 then {} else

case event(hd locl) of
mk_InputEvent(inmsgid,) → {inmsgid},
→ {}

end ∪ inmsgids(tl locl)
end,

return_next_endsc is an auxiliary function for finding the next endsubchart token given the current pointer.

D.3 RSC collections 287

return_next_endsc : Chart × State × Inst_Name × Int → Int
return_next_endsc(chart, curState, iname, pointer) ≡

let curEvent = eventlist(chart(iname))(pointer) in
if

(case curEvent of
mk_EndSubchart() → true,
→ false

end)
then pointer
else return_next_endsc(chart, curState, iname, pointer + 1)
end

end

end - - class end

D.3 RSC collections

D.3.1 lsc/LSC_collection.rsl

RSC_semantics

scheme RSC_collection =
extend RSC_semantics with
class

The current version does not support reactivation. It only shows how to step through and perform all events
once in a RSC collection.

- —————- NEW TYPES FOR COLLECTIONS——————

Types for collecting information about events and their corresponding instance.

type

Ties together an event to an instance.

EventInst :: eievent : Event einame : Inst_Name,

A RSC in a collectin. The first denotes a finished RSC. The second an activated with the current state. The last
denotes a not activated LSC along with the possible states of the prechart.

ColRSC ==
mk_done(doneRSC : RSC) |
mk_act(actRSC : RSC, actState : State) |
mk_not_act(notactRSC : RSC, posStates : State-set),

Collection = Inst_Name →m ColRSC

value

288 Appendix D. RSL specifications for the RSC

- —————– EXECUTION PART ————————–

Executes a given collection by performing one step. This is possible as the system is discrete.

execute_collection : Collection ∼

→ Collection
execute_collection(col) ≡
let

We must deterministically choose an active RSC that we will advance.

curIname = choose_active_RSC(col),
- - curRSC : RSC :- curRSC = actRSC(col(curIname)),
- - gets the possible advances of the current RSC

On the chosen RSC we find the enabled events and choose one to perform.

eevents = get_enabled_events(mainchart(actRSC(col(curIname))), actState(col(curIname))),
eevent = choose_event(eevents),

The event may also be enabled in other RSC’s. They must be advanced as well. It is checked which RSC’s are
affected

affected =
[iname 7→ col(iname) |

iname : Inst_Name •

iname ∈ dom col ∧
(case col(iname) of

mk_not_act(actRSC,) → is_visible(actRSC, eevent),
→ false

end)],

The event may be the event that finally fulfills a prechart. The corresponding mainchart must then activated.

activated =
[iname 7→ col(iname) |

iname : Inst_Name •

iname ∈ dom affected ∧
is_lsc_activated(notactRSC(col(iname)), posStates(col(iname)), eevent)]

in
col †

The currently executed RSC is updated by performing the chosen event.

[curIname 7→ execute_active(col(curIname), eevent)] †

The activated RSC′s are updated by performing the chosen event. They now have an active mainchart.

[iname 7→ mk_act(notactRSC(col(iname)), initialize_chart(mainchart(notactRSC(col(iname))))) |
iname : Inst_Name • iname ∈ dom activated] †

D.3 RSC collections 289

The affected, not active RSC’s are updated by performing the chosen event.

[iname 7→
mk_not_act(

notactRSC(col(iname)),
possible_states(notactRSC(col(iname)), posStates(col(iname)), eevent)) |

iname : Inst_Name • iname ∈ dom affected ∧ iname 6∈ dom activated]
end
pre active_present(col),

Executes the currently active RSC.

execute_active : ColRSC × EnabledEvent ∼

→ ColRSC
execute_active(colRSC, adv) ≡
let

newstate = step_event(mainchart(actRSC(colRSC)), adv, actState(colRSC)),
newadvs = get_enabled_events(mainchart(actRSC(colRSC)), newstate)

in
if newadvs = {EnabledStopped} then mk_done(actRSC(colRSC))
else mk_act(actRSC(colRSC), newstate)
end

end
pre is_active(colRSC),

choose_event chooses an enabled event from a set. This should be nondeterministic. As it is executable we
must explicitly do this as done with the play−engine in [26].

choose_event : EnabledEvent-set → EnabledEvent
choose_event(advs) ≡ test_get_event(advs),

test_get_event : EnabledEvent-set → EnabledEvent
test_get_event (ass) ≡
if ass = {} then NotEnabled else
let

el = hd ass
in

case el of
NotEnabled → test_get_event(ass \ {el}),
EnabledStopped → test_get_event(ass \ {el}),
→ el

end
end
end,

choose_active_RSC chooses an active RSC from the collection. Again, this must be chosen deterministically
if several active RSC’s are present.

choose_active_RSC : Collection ∼

→ Inst_Name
choose_active_RSC(col) ≡
let el = hd dom col in

case col(el) of

290 Appendix D. RSL specifications for the RSC

mk_act(,) → el,
→ choose_active_RSC(col \ {el})

end
end
pre active_present(col),

active_present checks if there is an active RSC in a collection.

active_present : Collection → Bool
active_present(col) ≡

if col = [] then false
else let el = hd dom col in is_active(col(el)) ∨ active_present(col \ {el}) end
end,

is_lsc_activated checks if an RSC is activated by a given advancement. The state-set denotes the states to
which the prechart may have proceeded.

is_lsc_activated : RSC × State-set × EnabledEvent → Bool
is_lsc_activated(lsc, pcstates, adv) ≡
- - checks whether there exists a state that completes the
- - prechart of lsc by adv given a set of states the prechart
- - may be in
(∃ st : State •

st ∈ pcstates ∧
let nextstate = step_event(prechart(lsc), adv, st) in

get_enabled_events(prechart(lsc), nextstate) = {EnabledStopped}
end) pre is_visible(lsc, adv),

is_visible checks whether the event described by adv is visible on a lsc or not.

is_visible : RSC × EnabledEvent → Bool
is_visible(lsc, adv) ≡ adv_id(adv) ∈ lsc_ids(lsc),

possible_states returns the set of possible states a prechart may be given possible previous states and an ad-
vancement. The state set must be updated for each advancement concerning visible events of the given \lsc.

possible_states : RSC × State-set × EnabledEvent ∼

→ State-set
possible_states(lsc, states, adv) ≡
if states = {} then {initialize_chart(prechart(lsc))}
else

let state = hd states
in

if adv ∈ get_enabled_events(prechart(lsc), state)
then {step_event(prechart(lsc), adv, state)}
else {}
end
∪ possible_states(lsc, states \ {state}, adv)

end
end

D.3 RSC collections 291

pre is_visible(lsc, adv),

- ———– WELLFORMEDNESS CONDITIONS————————————-

wf_collection checks whether an collection of LSC’s is wellformed or not.

wf_collection : Collection → Bool
wf_collection(col) ≡

wf_col_active(col) ∧
wf_col_domain(col) ∧
wf_col_consistent(col),

wf_col_active ensusures that at least one RSC is active or all are done.

wf_col_active : Collection → Bool
wf_col_active(col) ≡
(active_present(col) ∨
(∀ iname : Inst_Name •

iname ∈ dom col ⇒
case col(iname) of
mk_done() → true,
→ false

end)),

The instance names of the collection domain must match the names of the instances. This is redundant infor-
mation, but practical as we also work on individual LSC’s.

wf_col_domain : Collection → Bool
wf_col_domain(col) ≡
(∀ iname1 : Inst_Name •

iname1 ∈ dom col ⇒
(iname1 = name(return_lsc(col(iname1))))),

All the events in the collection must be consistent with regards to event ID′s. If an event ID occurs in two
LSC’s, it must denote the same event.

wf_col_consistent : Collection → Bool
wf_col_consistent(col) ≡
(∀ iname1 : Inst_Name •

iname1 ∈ dom col ⇒
(∀ iname2 : Inst_Name •

iname2 ∈ dom col ⇒
(col_lscs_consistent(return_lsc(col(iname1)), return_lsc(col(iname2)))))),

- —————-AUXILIARY FUNCTIONS FOR WF CONDITIONS———————-

col_lscs_consistent checks whether 2 LSC’s are consistent with regards to visible events and their ID′s, ie. that
events with the same ID match.

col_lscs_consistent : RSC × RSC → Bool
col_lscs_consistent(lsc1, lsc2) ≡

292 Appendix D. RSL specifications for the RSC

let inter_ids = lsc_ids(lsc1) ∩ lsc_ids(lsc2)
in

event_id_match(lsc1, lsc2, inter_ids) ∧
event_id_match(lsc2, lsc1, inter_ids)

end,

event_id_match checks whether the intersection of ID′s in two LSC’s represent the same events (this intersec-
tion also denotes the set of visible events to each other.

event_id_match : RSC × RSC × ID-set → Bool
event_id_match(lsc1, lsc2, ids) ≡
let eventsinst1 = eventsInst_lsc(lsc1), eventsinst2 = eventsInst_lsc(lsc2) in

(∀ ei : EventInst •

ei ∈ eventsinst1 ∧
case eievent(ei) of

mk_ActionEvent(, id) → id ∈ ids,
mk_InputEvent(id,) → id ∈ ids,
mk_OutputEvent(id, ,) → id ∈ ids,
mk_ConditionEvent(, id, ,) → id ∈ ids,
mk_Subchart(, id, , ,) → id ∈ ids,
→ false

end ⇒
case eievent(ei) of

Subchart events may differ between lsc1 and lsc2 since they may not contain the same elements.

mk_Subchart(scname, id, scshare, mult,) →
(∃ ei2 : EventInst •

ei2 ∈ eventsinst2 ∧ einame(ei) = einame(ei2) ∧
case eievent(ei2) of

mk_Subchart(scname2, id2, scshare2, mult2,) →
scname2 = scname ∧ id2 = id ∧ scshare2 = scshare ∧ mult2 = mult,
→ false

end),
- - rest of events must be in lsc2 as they are
→ ei ∈ eventsinst2

end)
end,

- —————– AUXILIARY FUNCTIONS ———————————————-

return_lsc returns the RSC of an collection RSC.

return_lsc : ColRSC → RSC
return_lsc(collsc) ≡
case collsc of

mk_done(doneRSC) → doneRSC,
mk_act(actRSC,) → actRSC,
mk_not_act(notactRSC,) → notactRSC

end,

lsc_ids finds all the ID′s present on a LSC.

D.3 RSC collections 293

lsc_ids : RSC → ID-set
lsc_ids(lsc) ≡ all_ids(prechart(lsc)) ∪ all_ids(mainchart(lsc)),

eventsInst_lsc finds the pairs of events and corresponding ID′s on a LSC.

eventsInst_lsc : RSC → EventInst-set
eventsInst_lsc(lsc) ≡ eventsInst_chart(prechart(lsc)) ∪ eventsInst_chart(mainchart(lsc)),

eventsInst_chart finds the pairs of events and corresponding ID′s on a chart.

eventsInst_chart : Chart → EventInst-set
eventsInst_chart(chart) ≡

if chart = [] then {}
else

let el = hd chart in
eventsInst_instance(chart(el), el) ∪ eventsInst_chart(chart \ {el})

end
end,

eventsInst_instance finds the pairs of events and corresponding ID′s on an instance.

eventsInst_instance : Location∗ × Inst_Name → EventInst-set
eventsInst_instance(locl, iname) ≡

if locl = 〈〉 then {}
else {mk_EventInst(event(hd locl), iname)} ∪ eventsInst_instance(tl locl, iname)
end,

adv_id returns the ID of an EnabledEvent.

adv_id : EnabledEvent ∼

→ ID
adv_id(ee) ≡
case ee of

EnabledMessage(, , id) → id,
EnabledAction(, , id) → id,
EnabledCondition(, , id) → id,
EnabledEnterSubchart(, id,) → id,
EnabledCoregion(, , id,) → id,
EnabledEndSubchart(id,) → id,
EnabledExitSubchart(, id, ,) → id

end,

is_active checks if an collection RSC is active.

is_active : ColRSC → Bool
is_active(colRSC) ≡
case colRSC of

mk_act(,) → true,

294 Appendix D. RSL specifications for the RSC

→ false
end

end - -class end

D.4 Test

D.4.1 Test of wellformedness conditions

RSC_collection

scheme RSC_test1 =
extend RSC_collection with
class

value

Test of wellformedness condition wf_ids_unique (nr. 1).

test with messages

wf1_m1out : Event = mk_OutputEvent(11, ′′Msg1", mk_Address("B′′)),
wf1_m1in : Event = mk_InputEvent(11, mk_Address(′′A′′)),
wf1_m2out : Event = mk_OutputEvent(11, ′′Msg2", mk_Address("A′′)),
wf1_m2in : Event = mk_InputEvent(21, mk_Address(′′B′′)),
wf1_m3out : Event = mk_OutputEvent(21, ′′Msg2", mk_Address("A′′)),
wf1_m3in : Event = mk_InputEvent(11, mk_Address(′′B′′)),
wf1_m4out : Event = mk_OutputEvent(11, ′′Msg2", mk_Address("A′′)),
wf1_m4in : Event = mk_InputEvent(11, mk_Address(′′B′′)),
wf1_m5out : Event = mk_OutputEvent(21, ′′Msg2", mk_Address("A′′)),
wf1_m5in : Event = mk_InputEvent(21, mk_Address(′′B′′)),

wf1_ia1 : Location∗ =
〈mk_Location(Hot, wf1_m1out), mk_Location(Hot, wf1_m2in)〉,

wf1_ib1 : Location∗ =
〈mk_Location(Hot, wf1_m1in), mk_Location(Hot, wf1_m2out)〉,

wf1_ch1 : Chart = [′′A" +> wf1_ia1, "B′′ 7→ wf1_ib1],

wf1_ia2 : Location∗ =
〈mk_Location(Hot, wf1_m1out), mk_Location(Hot, wf1_m3in)〉,

wf1_ib2 : Location∗ =
〈mk_Location(Hot, wf1_m1in), mk_Location(Hot, wf1_m3out)〉,

wf1_ch2 : Chart = [′′A" +> wf1_ia2, "B′′ 7→ wf1_ib2],

wf1_ia3 : Location∗ =
〈mk_Location(Hot, wf1_m1out), mk_Location(Hot, wf1_m4in)〉,

wf1_ib3 : Location∗ =
〈mk_Location(Hot, wf1_m1in), mk_Location(Hot, wf1_m4out)〉,

wf1_ch3 : Chart = [′′A" +> wf1_ia3, "B′′ 7→ wf1_ib3],

D.4 Test 295

wf1_ia4 : Location∗ =
〈mk_Location(Hot, wf1_m1out), mk_Location(Hot, wf1_m5in)〉,

wf1_ib4 : Location∗ =
〈mk_Location(Hot, wf1_m1in), mk_Location(Hot, wf1_m5out)〉,

wf1_ch4 : Chart = [′′A" +> wf1_ia4, "B′′ 7→ wf1_ib4],

test with message and condition

wf1_c1 : Event = mk_ConditionEvent(′′Cond1", 11, Hot, {"B′′,
′′C′′}),
wf1_ia5 : Location∗ =

〈mk_Location(Hot, wf1_m1out), mk_Location(Hot, wf1_c1)〉,
wf1_ib5 : Location∗ =

〈mk_Location(Hot, wf1_m1in), mk_Location(Hot, wf1_c1)〉,
wf1_ch5 : Chart = [′′A" +> wf1_ia5, "B′′ 7→ wf1_ib5],

test with message and action event

wf1_tact : Event = mk_ActionEvent(′′Action′′, 11),
wf1_ia7 : Location∗ =

〈mk_Location(Hot, wf1_m1out), mk_Location(Hot, wf1_tact)〉,
wf1_ib7 : Location∗ =

〈mk_Location(Hot, wf1_m1in)〉,
wf1_ch7 : Chart = [′′A" +> wf1_ia7, "B′′ 7→ wf1_ib7],

test with message and subchart

wf1_tscla : Location∗ = 〈mk_Location(Cold, wf1_m1out)〉,
wf1_tsclb : Location∗ = 〈mk_Location(Cold, wf1_m1in)〉,
wf1_tsca : Event = mk_Subchart(′′Subchart", 11, {"A", "B′′},3, wf1_tscla),
wf1_tscb : Event = mk_Subchart(′′Subchart", 11, {"A′′,
′′B′′},3, wf1_tsclb),
wf1_scstop : Event = mk_EndSubchart(11),

wf1_ia8 : Location∗ =
〈mk_Location(Hot, wf1_tsca), mk_Location(Hot, wf1_m1out), mk_Location(Hot, wf1_scstop)〉,

wf1_ib8 : Location∗ =
〈mk_Location(Hot, wf1_tsca), mk_Location(Hot, wf1_m1in), mk_Location(Hot, wf1_scstop)〉,

wf1_ch8 : Chart = [′′A" +> wf1_ia8, "B′′ 7→ wf1_ib8]

test_case

except for test 4 all tests must return false, therefore negated output

[wf_cond_id_unique_1________]
∼wf_ids_unique(wf1_ch1),

[wf_cond_id_unique_2________]
∼wf_ids_unique(wf1_ch2),
[wf_cond_id_unique_3________]

296 Appendix D. RSL specifications for the RSC

∼wf_ids_unique(wf1_ch3),
[wf_cond_id_unique_4________]
wf_ids_unique(wf1_ch4),
[wf_cond_id_unique_5________]
∼wf_ids_unique(wf1_ch5),
[wf_cond_id_unique_6________]
∼wf_ids_unique(wf1_ch7),
[wf_cond_id_unique_7________]
∼wf_ids_unique(wf1_ch7)

test of wellformedness condition wf_message_match (nr. 2)

value
wf2_m1out : Event = mk_OutputEvent(11, ′′Msg1", mk_Address("B′′)),
wf2_m1in : Event = mk_InputEvent(11, mk_Address(′′A′′)),
wf2_m2out : Event = mk_OutputEvent(21, ′′Msg2", mk_Address("A′′)),
wf2_m2in : Event = mk_InputEvent(21, mk_Address(′′B′′)),
wf2_m3out : Event = mk_OutputEvent(21, ′′Msg2", mk_Address("A′′)),
wf2_m3in : Event = mk_InputEvent(11, mk_Address(′′B′′)),
wf2_m4out : Event = mk_OutputEvent(11, ′′Msg2", mk_Address("A′′)),
wf2_m4in : Event = mk_InputEvent(21, mk_Address(′′B′′)),

wf2_ia1 : Location∗ =
〈mk_Location(Hot, wf2_m1out), mk_Location(Hot, wf2_m2in)〉,

wf2_ib1 : Location∗ =
〈mk_Location(Hot, wf2_m1in)〉,

wf2_ch1 : Chart = [′′A" +> wf2_ia1, "B′′ 7→ wf2_ib1],

wf2_ia2 : Location∗ =
〈mk_Location(Hot, wf2_m1out)〉,

wf2_ib2 : Location∗ =
〈mk_Location(Hot, wf2_m1in), mk_Location(Hot, wf2_m2out)〉,

wf2_ch2 : Chart = [′′A" +> wf2_ia2, "B′′ 7→ wf2_ib2],

wf2_ia3 : Location∗ =
〈mk_Location(Hot, wf2_m1out), mk_Location(Hot, wf2_m3in)〉,

wf2_ib3 : Location∗ =
〈mk_Location(Hot, wf2_m1in), mk_Location(Hot, wf2_m3out)〉,

wf2_ch3 : Chart = [′′A" +> wf2_ia3, "B′′ 7→ wf2_ib3],

wf2_ia4 : Location∗ =
〈mk_Location(Hot, wf2_m1out), mk_Location(Hot, wf2_m4in)〉,

wf2_ib4 : Location∗ =
〈mk_Location(Hot, wf2_m1in), mk_Location(Hot, wf2_m4out)〉,

wf2_ch4 : Chart = [′′A" +> wf2_ia4, "B′′ 7→ wf2_ib4]

all must return false

test_case
[wf_message_match_1_________]
∼wf_ids_unique(wf2_ch1),
[wf_message_match_2_________]

D.4 Test 297

∼wf_ids_unique(wf2_ch2),
[wf_message_match_3_________]
∼wf_ids_unique(wf2_ch3),
[wf_message_match_4_________]
∼wf_ids_unique(wf2_ch4)

test of wellformedness condition wf_ (nr. 3)

value

testing cyclic via overtaking

wf3_m1out : Event = mk_OutputEvent(11, ′′Msg1", mk_Address("B′′)),
wf3_m1in : Event = mk_InputEvent(11, mk_Address(′′A′′)),
wf3_m2out : Event = mk_OutputEvent(21, ′′Msg2", mk_Address("A′′)),
wf3_m2in : Event = mk_InputEvent(21, mk_Address(′′B′′)),

wf3_ia1 : Location∗ =
〈mk_Location(Hot, wf3_m1out), mk_Location(Hot, wf3_m2out)〉,

wf3_ib1 : Location∗ =
〈mk_Location(Hot, wf2_m2in), mk_Location(Hot, wf2_m1in)〉,

wf3_ch1 : Chart = [′′A" +> wf3_ia1, "B′′ 7→ wf3_ib1],

testing cyclic via other messages

wf3_m3out : Event = mk_OutputEvent(11, ′′Msg1", mk_Address("A′′)),
wf3_m3in : Event = mk_InputEvent(11, mk_Address(′′B′′)),
wf3_m4out : Event = mk_OutputEvent(21, ′′Msg2", mk_Address("B′′)),
wf3_m4in : Event = mk_InputEvent(21, mk_Address(′′C′′)),
wf3_m5out : Event = mk_OutputEvent(31, ′′Msg3", mk_Address("C′′)),
wf3_m5in : Event = mk_InputEvent(31, mk_Address(′′A′′)),

wf3_ia2 : Location∗ =
〈mk_Location(Hot, wf3_m5in), mk_Location(Hot, wf3_m3out)〉,

wf3_ib2 : Location∗ =
〈mk_Location(Hot, wf3_m3in), mk_Location(Hot, wf3_m4out)〉,

wf3_ic2 : Location∗ =
〈mk_Location(Hot, wf3_m4in), mk_Location(Hot, wf3_m5out)〉,

wf3_ch2 : Chart = [′′A" +> wf3_ia2, "B" +> wf3_ib2, "C′′ 7→ wf3_ic2],

testing cyclic via condition and message

wf3_c1 : Event = mk_ConditionEvent(′′Cond1", 51, Hot, {"B′′,
′′C′′}),
wf3_ia3 : Location∗ =

〈mk_Location(Hot, wf3_m1out), mk_Location(Hot, wf3_c1)〉,
wf3_ib3 : Location∗ =

〈mk_Location(Hot, wf3_c1), mk_Location(Hot, wf3_m1in)〉,

298 Appendix D. RSL specifications for the RSC

wf3_ch3 : Chart = [′′A" +> wf3_ia3, "B′′ 7→ wf3_ib3],

testing cyclic with conditions via instances

wf3_c4 : Event = mk_ConditionEvent(′′Cond1", 51, Hot, {"B′′,
′′C′′}),
wf3_c2 : Event = mk_ConditionEvent(′′Cond1", 52, Hot, {"B′′,
′′A′′}),
wf3_c3 : Event = mk_ConditionEvent(′′Cond1", 53, Hot, {"A′′,
′′C′′}),
wf3_ia4 : Location∗ =

〈mk_Location(Hot, wf3_c3), mk_Location(Hot, wf3_c4)〉,
wf3_ib4 : Location∗ =

〈mk_Location(Hot, wf3_c4), mk_Location(Hot, wf3_c2)〉,
wf3_ic4 : Location∗ =

〈mk_Location(Hot, wf3_c2), mk_Location(Hot, wf3_c3)〉,
wf3_ch4 : Chart = [′′A" +> wf3_ia4, "B" +> wf3_ib4, "C′′ 7→ wf3_ic4]

test_case
[wf_mess_cond_acyclic_1_____]
∼wf_mess_cond_acyclic(wf3_ch1),
[wf_mess_cond_acyclic_2_____]
∼wf_mess_cond_acyclic(wf3_ch2),
[wf_mess_cond_acyclic_3_____]
∼wf_mess_cond_acyclic(wf3_ch3),
[wf_mess_cond_acyclic_4_____]
∼wf_mess_cond_acyclic(wf3_ch4)

test of wellformedness condition wf_condition_share (nr. 4)

value

testing with instance missing condition

wf4_c1 : Event = mk_ConditionEvent(′′Cond1", 51, Hot, {"A","B′′,
′′C′′}),
wf4_ia1 : Location∗ =

〈mk_Location(Hot, wf4_c1)〉,
wf4_ib1 : Location∗ =

〈mk_Location(Hot, wf4_c1), mk_Location(Hot, wf1_m1in)〉,
wf4_ic1 : Location∗ =

〈mk_Location(Hot, wf1_m1out)〉,
wf4_ch1 : Chart = [′′A" +> wf4_ia1, "B" +> wf4_ib1, "C′′ 7→ wf4_ic1],

testing with wrong temperature at one instance

wf4_c2 : Event = mk_ConditionEvent(′′Cond1", 51, Cold, {"A","B","C′′}),
wf4_ia2 : Location∗ =

D.4 Test 299

〈mk_Location(Hot, wf4_c1)〉,
wf4_ib2 : Location∗ =

〈mk_Location(Hot, wf4_c1)〉,
wf4_ic2 : Location∗ =

〈mk_Location(Hot, wf4_c2)〉,
wf4_ch2 : Chart = [′′A" +> wf4_ia2, "B" +> wf4_ib2, "C′′ 7→
wf4_ic2],

testing with wrong name at one instance

wf4_c3 : Event = mk_ConditionEvent(′′Cond3", 51, Hot, {"A","B′′}),
wf4_ia3 : Location∗ =

〈mk_Location(Hot, wf4_c1)〉,
wf4_ib3 : Location∗ =

〈mk_Location(Hot, wf4_c1)〉,
wf4_ic3 : Location∗ =

〈mk_Location(Hot, wf4_c3)〉,
wf4_ch3 : Chart = [′′A" +> wf4_ia3, "B" +> wf4_ib3, "C′′ 7→ wf4_ic3]

test_case
[wf_condition_share_1_______]
∼wf_condition_share(wf4_ch1),
[wf_condition_share_2_______]
∼wf_condition_share(wf4_ch2),
[wf_condition_share_3_______]
∼wf_condition_share(wf4_ch3)

test of wellformedness condition wf_subchart_locations (nr.5)

value

testing correct chart

wf5_scla : Location∗ = 〈mk_Location(Hot, wf1_m1out),
mk_Location(Hot, wf4_c1)〉,
wf5_sclb : Location∗ = 〈mk_Location(Hot, wf1_m1in),
mk_Location(Hot, wf4_c1)〉,
wf5_sca : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf5_scla),
wf5_scstop : Event = mk_EndSubchart(13),
wf5_scb : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf5_sclb),
wf5_ia1 : Location∗ =

〈mk_Location(Hot, wf5_sca),mk_Location(Hot, wf1_m1out),mk_Location(Hot, wf4_c1) 〉,
wf5_ib1 : Location∗ =

〈mk_Location(Hot, wf5_scb),mk_Location(Hot, wf1_m1in), mk_Location(Hot, wf4_c1)〉,
wf5_ch1 : Chart = [′′A" +> wf5_ia1, "B′′ 7→ wf5_ib1],

testing missing event on instance outside subchart

wf5_ia2 : Location∗ =
〈mk_Location(Hot, wf5_sca),mk_Location(Hot, wf1_m1out)〉,

300 Appendix D. RSL specifications for the RSC

wf5_ib2 : Location∗ =
〈mk_Location(Hot, wf5_scb),mk_Location(Hot, wf1_m1in)〉,

wf5_ch2 : Chart = [′′A" +> wf5_ia2, "B′′ 7→ wf5_ib2],

testing wrong ordering of events

wf5_ia3 : Location∗ =
〈mk_Location(Hot, wf5_sca), mk_Location(Hot, wf4_c1),mk_Location(Hot, wf1_m1out) 〉,
wf5_ib3 : Location∗ =
〈mk_Location(Hot, wf5_scb), mk_Location(Hot, wf4_c1),mk_Location(Hot, wf1_m1in)〉,
wf5_ch3 : Chart = [′′A" +> wf5_ia3, "B′′ 7→ wf5_ib3],

testing ′′missing′′ event in subchart

wf5_scla2 : Location∗ = 〈mk_Location(Hot, wf4_c1)〉,
wf5_sclb2 : Location∗ = 〈mk_Location(Hot, wf4_c1)〉,
wf5_sca2 : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf5_scla2),
wf5_scb2 : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf5_sclb2),
wf5_ia4 : Location∗ =

〈mk_Location(Hot, wf5_sca2),mk_Location(Hot, wf1_m1out),mk_Location(Hot, wf4_c1) 〉,
wf5_ib4 : Location∗ =

〈mk_Location(Hot, wf5_scb2),mk_Location(Hot, wf1_m1in), mk_Location(Hot, wf4_c1)〉,
wf5_ch4 : Chart = [′′A" +> wf5_ia4, "B′′ 7→ wf5_ib4],

test of subchart inside subchart

wf5_scla5 : Location∗ = 〈mk_Location(Hot, wf1_m1out)〉,
wf5_sclb5 : Location∗ = 〈mk_Location(Hot, wf1_m1in)〉,
wf5_sca5 : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf5_scla5),
wf5_scb5 : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf5_sclb5),
wf5_scstop5 : Event = mk_EndSubchart(13),

wf5_scla6 : Location∗ = 〈mk_Location(Hot, wf5_sca5)〉̂wf5_scla5̂〈mk_Location(Hot, wf5_scstop5)〉,
wf5_sclb6 : Location∗ = 〈mk_Location(Hot, wf5_scb5)〉̂wf5_sclb5̂〈mk_Location(Hot, wf5_scstop5)〉,
wf5_sca6 : Event = mk_Subchart(′′Subchart2", 14, {"A", "B′′}, 1, wf5_scla6),
wf5_scb6 : Event = mk_Subchart(′′Subchart2", 14, {"A", "B′′}, 1, wf5_sclb6),
wf5_scstop6 : Event = mk_EndSubchart(14),

wf5_ia5 : Location∗ =
〈mk_Location(Hot, wf5_sca6),mk_Location(Hot, wf5_sca5),mk_Location(Hot, wf1_m1out),

mk_Location(Hot, wf5_scstop5),mk_Location(Hot, wf5_scstop6)〉,
wf5_ib5 : Location∗ =

〈mk_Location(Hot,
wf5_scb6),mk_Location(Hot,wf5_scb5),mk_Location(Hot, wf1_m1in),
mk_Location(Hot, wf5_scstop5),mk_Location(Hot, wf5_scstop6)〉,

wf5_ch5 : Chart = [′′A" +> wf5_ia5, "B′′ 7→ wf5_ib5],

test of subchart inside subchart with subsubchart wrong ordering

D.4 Test 301

wf5_scla7 : Location∗ = 〈mk_Location(Hot, wf1_m1out),mk_Location(Hot, wf1_m5out)〉,
wf5_sclb7 : Location∗ = 〈mk_Location(Hot, wf1_m1in), mk_Location(Hot, wf1_m5in)〉,
wf5_sca7 : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf5_scla7),
wf5_scb7 : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf5_sclb7),
wf5_scstop7 : Event = mk_EndSubchart(13),

wf5_scla8 : Location∗ = 〈mk_Location(Hot, wf5_sca7)〉̂wf5_scla7̂〈mk_Location(Hot, wf5_scstop7)〉,
wf5_sclb8 : Location∗ = 〈mk_Location(Hot, wf5_scb7)〉̂wf5_sclb7̂〈mk_Location(Hot, wf5_scstop7)〉,
wf5_sca8 : Event = mk_Subchart(′′Subchart2", 14, {"A", "B′′}, 1, wf5_scla8),
wf5_scb8 : Event = mk_Subchart(′′Subchart2", 14, {"A", "B′′}, 1, wf5_sclb8),
wf5_scstop8 : Event = mk_EndSubchart(14),

wf5_ia6 : Location∗ =
〈mk_Location(Hot, wf5_sca8),mk_Location(Hot,wf5_sca7),mk_Location(Hot, wf1_m5out),

mk_Location(Hot, wf1_m1out), mk_Location(Hot, wf5_scstop7),mk_Location(Hot, wf5_scstop8)〉,
wf5_ib6 : Location∗ =

〈mk_Location(Hot, wf5_scb8),mk_Location(Hot,wf5_scb7),mk_Location(Hot, wf1_m5in),
mk_Location(Hot, wf1_m1in),mk_Location(Hot, wf5_scstop7),mk_Location(Hot, wf5_scstop8)〉,

wf5_ch6 : Chart = [′′A" +> wf5_ia6, "B′′ 7→ wf5_ib6]

test_case
[wf_subchart_locations_1____]

wf_subchart_locations(wf5_ch1),
[wf_subchart_locations_2____]
∼wf_subchart_locations(wf5_ch2),
[wf_subchart_locations_3____]
∼wf_subchart_locations(wf5_ch3),
[wf_subchart_locations_4____]
∼wf_subchart_locations(wf5_ch4),
[wf_subchart_locations_5____]
wf_subchart_locations(wf5_ch5),
[wf_subchart_locations_6____]
∼wf_subchart_locations(wf5_ch6)

test of wellformedness condition wf_subchart_ordered (nr. 6)

value

testing subcharts in correct order

wf6_scla1 : Location∗ = 〈mk_Location(Hot, wf1_m1out)〉,
wf6_sclb1 : Location∗ = 〈mk_Location(Hot, wf1_m1in)〉,
wf6_sca1 : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf6_scla1),
wf6_scb1 : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf6_sclb1),

wf6_scla2 : Location∗ = 〈mk_Location(Hot, wf1_m5out)〉,
wf6_sclb2 : Location∗ = 〈mk_Location(Hot, wf1_m5in)〉,
wf6_sca2 : Event = mk_Subchart(′′Subchart2", 14, {"A", "B′′}, 1, wf6_scla2),
wf6_scb2 : Event = mk_Subchart(′′Subchart2", 14, {"A", "B′′}, 1, wf6_sclb2),

wf6_ia1 : Location∗ =
〈mk_Location(Hot, wf6_sca1),mk_Location(Hot,wf1_m1out),mk_Location(Hot, wf6_sca2),

mk_Location(Hot, wf1_m5out) 〉,
wf6_ib1 : Location∗ =

〈mk_Location(Hot, wf6_scb1),mk_Location(Hot, wf1_m1in),mk_Location(Hot, wf6_scb2),
mk_Location(Hot, wf1_m5in) 〉,

302 Appendix D. RSL specifications for the RSC

wf6_ch1 : Chart = [′′A" +> wf6_ia1, "B′′ 7→ wf6_ib1],

testing wrong order

wf6_ia2 : Location∗ =
〈mk_Location(Hot, wf6_sca1),mk_Location(Hot, wf1_m1out),mk_Location(Hot, wf6_sca2),

mk_Location(Hot, wf1_m5out) 〉,
wf6_ib2 : Location∗ =

〈mk_Location(Hot, wf6_scb2),mk_Location(Hot, wf1_m1in),mk_Location(Hot, wf6_scb1),
mk_Location(Hot, wf1_m5in) 〉,

wf6_ch2 : Chart = [′′A" +> wf6_ia2, "B′′ 7→ wf6_ib2]

test_case
[wf_subchart_ordered_1______]
wf_subchart_ordered(wf6_ch1),
[wf_subchart_ordered_2______]
∼wf_subchart_ordered(wf6_ch2)

test of wellformedness condition wf_subchart_coherent (nr. 7)

value

testing missing subchart

wf7_ia1 : Location∗ =
〈mk_Location(Hot, wf6_sca1),mk_Location(Hot,wf1_m1out),mk_Location(Hot, wf6_sca2),

mk_Location(Hot, wf1_m5out) 〉,
wf7_ib1 : Location∗ =

〈mk_Location(Hot, wf6_scb1),mk_Location(Hot, wf1_m1in),mk_Location(Hot, wf1_m5in) 〉,
wf7_ch1 : Chart = [′′A" +> wf7_ia1, "B′′ 7→ wf7_ib1],

testing wrong temperature

wf7_ia2 : Location∗ =
〈mk_Location(Hot, wf6_sca1),mk_Location(Hot,wf1_m1out),mk_Location(Hot, wf6_sca2),

mk_Location(Hot, wf1_m5out) 〉,
wf7_ib2 : Location∗ =

〈mk_Location(Hot, wf6_scb1),mk_Location(Hot,wf1_m1in),mk_Location(Cold, wf6_scb2),
mk_Location(Cold, wf1_m5in) 〉,

wf7_ch2 : Chart = [′′A" +> wf7_ia2, "B′′ 7→ wf7_ib2]

test_case
[wf_subchart_coherent_1_____]
∼wf_subchart_coherent(wf7_ch1),
[wf_subchart_coherent_2_____]
∼wf_subchart_coherent(wf7_ch2)

test of wellformedness condition wf_subchart_end (nr. 8)

D.4 Test 303

value

testing with subchart end

wf8_ia1 : Location∗ =
〈mk_Location(Hot, wf6_sca1),mk_Location(Hot, wf1_m1out),mk_Location(Hot, mk_EndSubchart(13))〉,

wf8_ib1 : Location∗ =
〈mk_Location(Hot, wf6_scb1),mk_Location(Hot, wf1_m1in),mk_Location(Hot, mk_EndSubchart(13))〉,

wf8_ch1 : Chart = [′′A" +> wf8_ia1, "B′′ 7→ wf8_ib1],

testing without subchart end

wf8_ia2 : Location∗ =
〈mk_Location(Hot, wf6_sca1),mk_Location(Hot, wf1_m1out) 〉,

wf8_ib2 : Location∗ =
〈mk_Location(Hot, wf6_scb1),mk_Location(Hot, wf1_m1in),mk_Location(Hot, mk_EndSubchart(13))〉,

wf8_ch2 : Chart = [′′A" +> wf8_ia2, "B′′ 7→ wf8_ib2],

testing with wrong subchart end

wf8_ia3 : Location∗ =
〈mk_Location(Hot, wf6_sca1),mk_Location(Hot, wf1_m1out),mk_Location(Hot, mk_EndSubchart(14))〉,

wf8_ib3 : Location∗ =
〈mk_Location(Hot, wf6_scb1),mk_Location(Hot, wf1_m1in),mk_Location(Hot, mk_EndSubchart(14))〉,

wf8_ch3 : Chart = [′′A" +> wf8_ia3, "B′′ 7→ wf8_ib3],

testing with wrong temperature subchart end

wf8_ia4 : Location∗ =
〈mk_Location(Hot, wf6_sca1),mk_Location(Hot, wf1_m1out),mk_Location(Cold, mk_EndSubchart(13))〉,

wf8_ib4 : Location∗ =
〈mk_Location(Hot, wf6_scb1),mk_Location(Hot, wf1_m1in),mk_Location(Cold, mk_EndSubchart(13))〉,

wf8_ch4 : Chart = [′′A" +> wf8_ia4, "B′′ 7→ wf8_ib4]

test_case

[wf_subchart_end_1__________]
wf_subchart_end(wf8_ch1),
[wf_subchart_end_2__________]
∼wf_subchart_end(wf8_ch2),
[wf_subchart_end_3__________]
∼wf_subchart_end(wf8_ch3),
[wf_subchart_end_4__________]
∼wf_subchart_end(wf8_ch4)

test of wellformedness condition wf_subchart_conditions (nr. 9)

value

testing with condition correct inside

304 Appendix D. RSL specifications for the RSC

wf9_c1 : Event = mk_ConditionEvent(′′Cond1", 51, Cold, {"A","B′′}),
wf9_scla1 : Location∗ = 〈mk_Location(Hot, wf9_c1)〉,
wf9_sclb1 : Location∗ = 〈mk_Location(Hot, wf9_c1)〉,
wf9_sca1 : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf9_scla1),
wf9_scb1 : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf9_sclb1),

wf9_ia1 : Location∗ =
〈mk_Location(Hot, wf9_sca1),mk_Location(Hot, wf9_c1) 〉,

wf9_ib1 : Location∗ =
〈mk_Location(Hot, wf9_scb1),mk_Location(Hot, wf9_c1) 〉,

wf9_ch1 : Chart = [′′A" +> wf9_ia1, "B′′ 7→ wf9_ib1],

testing with condition outside of subchart, horizontally (another instance). if condition outside vertically it will
be caught via wf_subchart_coherent

wf9_c2 : Event = mk_ConditionEvent(′′Cond1", 51, Cold, {"A","B","C′′}),
wf9_scla2 : Location∗ = 〈mk_Location(Hot, wf9_c2)〉,
wf9_sclb2 : Location∗ = 〈mk_Location(Hot, wf9_c2)〉,
wf9_sca2 : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf9_scla2),
wf9_scb2 : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf9_sclb2),

wf9_ia2 : Location∗ =
〈mk_Location(Hot, wf9_sca2),mk_Location(Hot, wf9_c2) 〉,

wf9_ib2 : Location∗ =
〈mk_Location(Hot, wf9_scb2),mk_Location(Hot, wf9_c2) 〉,

wf9_ic2 : Location∗ =
〈mk_Location(Hot, wf9_c2)〉,

wf9_ch2 : Chart = [′′A" +> wf9_ia2, "B" +> wf9_ib2, "C′′ 7→ wf9_ic2]

test_case
[wf_subchart_conditions_1___]
wf_subchart_conditions(wf9_ch1),
[wf_subchart_conditions_2___]
∼wf_subchart_conditions(wf9_ch2)

test of wellformedness condition wf_subchart_messages (nr. 10)

value

testing output outside subchart

wf10_scla1 : Location∗ = 〈mk_Location(Hot, wf1_m1out), mk_Location(Hot, wf4_c1)〉,
wf10_sclb1 : Location∗ = 〈mk_Location(Hot, wf4_c1)〉,
wf10_sca1 : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf10_scla1),
wf10_scb1 : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf10_sclb1),
wf10_ia1 : Location∗ =

〈mk_Location(Hot, wf10_sca1),mk_Location(Hot, wf1_m1out),mk_Location(Hot, wf4_c1) 〉,
wf10_ib1 : Location∗ =

〈mk_Location(Hot, wf10_scb1),mk_Location(Hot, wf4_c1)〉,
wf10_ic1 : Location∗ = 〈mk_Location(Hot,wf1_m1in)〉,
wf10_ch1 : Chart = [′′A" +> wf10_ia1, "B′′ 7→ wf10_ib1],

D.4 Test 305

testing input outside subchart

wf10_scla2 : Location∗ = 〈mk_Location(Hot, wf4_c1)〉,
wf10_sclb2 : Location∗ = 〈mk_Location(Hot, wf1_m1in),
mk_Location(Hot, wf4_c1)〉,
wf10_sca2 : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf10_scla2),
wf10_scb2 : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf10_sclb2),
wf10_ia2 : Location∗ =

〈mk_Location(Hot, wf10_sca2),mk_Location(Hot, wf4_c1) 〉,
wf10_ib2 : Location∗ =

〈mk_Location(Hot, wf10_scb2),mk_Location(Hot,
wf1_m1in),mk_Location(Hot, wf4_c1)〉,

wf10_ic2 : Location∗ = 〈mk_Location(Hot,wf1_m1in)〉,
wf10_ch2 : Chart = [′′A" +> wf10_ia2, "B′′ 7→ wf10_ib2]

test_case
[wf_subchart_messages_1_____]
∼wf_subchart_messages(wf10_ch1),
[wf_subchart_messages_2_____]
∼wf_subchart_messages(wf10_ch2)

test of wellformedness condition wf_subchart_subchart (nr. 11)

value

test of subchart inside subchart

wf11_scla1 : Location∗ = 〈mk_Location(Hot, wf1_m1out)〉,
wf11_sclb1 : Location∗ = 〈mk_Location(Hot, wf1_m1in)〉,
wf11_sca1 : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf11_scla1),
wf11_scb1 : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf11_sclb1),
wf11_scstop1 : Event = mk_EndSubchart(13),

wf11_scla2 : Location∗ = 〈mk_Location(Hot,wf11_sca1)〉̂wf11_scla1̂

〈mk_Location(Hot, wf11_scstop1)〉,
wf11_sclb2 : Location∗ = 〈mk_Location(Hot,wf11_scb1)〉̂wf11_sclb1̂

〈mk_Location(Hot, wf11_scstop1)〉,
wf11_sca2 : Event = mk_Subchart(′′Subchart2", 14, {"A", "B′′}, 1, wf11_scla2),
wf11_scb2 : Event = mk_Subchart(′′Subchart2", 14, {"A", "B′′}, 1, wf11_sclb2),
wf11_scstop2 : Event = mk_EndSubchart(14),

wf11_ia1 : Location∗ =
〈mk_Location(Hot, wf11_sca2),mk_Location(Hot,wf11_sca1),mk_Location(Hot, wf1_m1out),

mk_Location(Hot, wf11_scstop1),mk_Location(Hot, wf11_scstop2)〉,
wf11_ib1 : Location∗ =

〈mk_Location(Hot, wf11_scb2),mk_Location(Hot,wf11_scb1),mk_Location(Hot, wf1_m1in),
mk_Location(Hot, wf11_scstop1),mk_Location(Hot, wf11_scstop2)〉,

wf11_ch1 : Chart = [′′A" +> wf11_ia1, "B′′ 7→ wf11_ib1],

test of sub−subchart that extends beyond main−subchart (instance−wise)

306 Appendix D. RSL specifications for the RSC

wf11_scla3 : Location∗ = 〈mk_Location(Hot, wf1_m1out)〉,
wf11_sclb3 : Location∗ = 〈mk_Location(Hot, wf1_m1in)〉,
wf11_sca3 : Event = mk_Subchart(′′Subchart", 13, {"A", "B", "C′′}, 3, wf11_scla3),
wf11_scb3 : Event = mk_Subchart(′′Subchart", 13, {"A", "B", "C′′}, 3, wf11_sclb3),
wf11_scstop3 : Event = mk_EndSubchart(13),

wf11_scla4 : Location∗ = 〈mk_Location(Hot,wf11_sca3)〉̂wf11_scla3̂

〈mk_Location(Hot, wf11_scstop3)〉,
wf11_sclb4 : Location∗ = 〈mk_Location(Hot,wf11_scb3)〉̂wf11_sclb3̂

〈mk_Location(Hot, wf11_scstop3)〉,
wf11_sca4 : Event = mk_Subchart(′′Subchart2", 14, {"A", "B′′}, 1, wf11_scla4),
wf11_scb4 : Event = mk_Subchart(′′Subchart2", 14, {"A", "B′′}, 1, wf11_sclb4),
wf11_scstop4 : Event = mk_EndSubchart(14),

wf11_ia2 : Location∗ =
〈mk_Location(Hot, wf11_sca4),mk_Location(Hot,wf11_sca3),mk_Location(Hot, wf1_m1out),

mk_Location(Hot, wf11_scstop3),mk_Location(Hot, wf11_scstop4)〉,
wf11_ib2 : Location∗ =

〈mk_Location(Hot, wf11_scb4),mk_Location(Hot,wf11_scb3),mk_Location(Hot, wf1_m1in),
mk_Location(Hot, wf11_scstop3),mk_Location(Hot, wf11_scstop4)〉,

wf11_ch2 : Chart = [′′A" +> wf11_ia2, "B′′ 7→ wf11_ib2],

test of sub−subchart that ends outside main− subchart

wf11_ia3 : Location∗ =
〈mk_Location(Hot, wf11_sca2),mk_Location(Hot,wf11_sca1),mk_Location(Hot, wf1_m1out),

mk_Location(Hot, wf11_scstop2),mk_Location(Hot, wf11_scstop1)〉,
wf11_ib3 : Location∗ =

〈mk_Location(Hot, wf11_scb2),mk_Location(Hot,wf11_scb1),mk_Location(Hot, wf1_m1in),
mk_Location(Hot, wf11_scstop2),mk_Location(Hot, wf11_scstop1)〉,

wf11_ch3 : Chart = [′′A" +> wf11_ia3, "B′′ 7→ wf11_ib3]

test_case
[wf_subchart_subchart_1_____]
wf_subchart_subchart(wf11_ch1) ∧ wf_subchart_end(wf11_ch1) ∧ wf_subchart_locations(wf11_ch1),
[wf_subchart_subchart_2_____]
∼wf_subchart_subchart(wf11_ch2),
[wf_subchart_subchart_3_____]
wf_subchart_subchart(wf11_ch3)

test of wellformedness condition wf_coregion_locations (nr. 12)

value

test coregion with same ordering on instance

wf12_cr1 : Event = mk_CoregionEvent(〈mk_Location(Hot, wf1_m1in), mk_Location(Hot, wf1_m5out)〉),
wf12_cr2 : Event = mk_CoregionEvent(〈mk_Location(Hot, wf1_m1out),mk_Location(Hot,wf1_m5in)〉),
wf12_ia1 : Location∗ =

〈mk_Location(Hot, wf12_cr1),mk_Location(Hot, wf1_m1in),mk_Location(Hot, wf1_m5out)〉,

D.4 Test 307

wf12_ib1 : Location∗ =
〈mk_Location(Hot, wf12_cr2),mk_Location(Hot, wf1_m1out),mk_Location(Hot, wf1_m5in)〉,

wf12_ch1 : Chart = [′′A" +> wf12_ia1, "B′′ 7→ wf12_ib1],

test coregion with different ordering on instance

wf12_ia2 : Location∗ =
〈mk_Location(Hot, wf12_cr1),mk_Location(Hot, wf1_m5out),mk_Location(Hot, wf1_m1in)〉,

wf12_ib2 : Location∗ =
〈mk_Location(Hot, wf12_cr2),mk_Location(Hot, wf1_m1in),mk_Location(Hot, wf1_m1out)〉,

wf12_ch2 : Chart = [′′A" +> wf12_ia2, "B′′ 7→ wf12_ib2],

test coregion with missing event on instance

wf12_ia3 : Location∗ =
〈mk_Location(Hot, wf12_cr1),mk_Location(Hot, wf1_m5out),mk_Location(Hot, wf1_m1in)〉,

wf12_ib3 : Location∗ =
〈mk_Location(Hot, wf12_cr2),mk_Location(Hot, wf1_m1in)〉,

wf12_ch3 : Chart = [′′A" +> wf12_ia3, "B′′ 7→ wf12_ib3],

test coregion with event placed wrongly on instance

wf12_ia4 : Location∗ =
〈mk_Location(Hot, wf12_cr1),mk_Location(Hot, wf1_m1in),mk_Location(Hot, wf1_m5out)〉,

wf12_ib4 : Location∗ =
〈mk_Location(Hot, wf12_cr2),mk_Location(Hot,

wf1_m1out),mk_Location(Hot, wf1_m5out), mk_Location(Hot, wf1_m5in)〉,
wf12_ch4 : Chart = [′′A" +> wf12_ia4, "B′′ 7→ wf12_ib4]

test_case
[wf_coregion_locations_1____]
wf_coregion_locations(wf12_ch1),
[wf_coregion_locations_2____]
∼wf_coregion_locations(wf12_ch2),
[wf_coregion_locations_3____]
∼wf_coregion_locations(wf12_ch3),
[wf_coregion_locations_4____]
∼wf_coregion_locations(wf12_ch4)

test of wellformedness condition wf_coregion_message (nr. 13)

value

test with only messages in coregion (using chart from previous example)

308 Appendix D. RSL specifications for the RSC

test coregion with other event

wf13_cr1 : Event = mk_CoregionEvent(〈mk_Location(Hot, wf11_scstop1), mk_Location(Hot, wf1_m5out)〉),
wf13_cr2 : Event = mk_CoregionEvent(〈mk_Location(Hot,wf1_m5in)〉),
wf13_ia2 : Location∗ =

〈mk_Location(Hot, wf13_cr1),mk_Location(Hot, wf11_scstop1),mk_Location(Hot, wf1_m5out)〉,
wf13_ib2 : Location∗ =

〈mk_Location(Hot, wf13_cr2),mk_Location(Hot, wf1_m5in)〉,
wf13_ch2 : Chart = [′′A" +> wf13_ia2, "B′′ 7→ wf13_ib2]

test_case
[wf_coregion_messages_1_____]
wf_coregion_messages(wf12_ch1),
[wf_coregion_messages_2_____]
∼wf_coregion_messages(wf13_ch2)

test of wellformedness condition wf_cold_subchart (nr. 14)

value

test of hot locations in subchart using values from wf nr. 5

test of cold locations in subchart

wf14_scla1 : Location∗ = 〈mk_Location(Cold, wf1_m1out),
mk_Location(Cold, wf4_c1)〉,
wf14_sclb1 : Location∗ = 〈mk_Location(Cold, wf1_m1in),
mk_Location(Cold, wf4_c1)〉,
wf14_sca1 : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf14_scla1),
wf14_scb1 : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf14_sclb1),
wf14_ia1 : Location∗ =

〈mk_Location(Hot, wf14_sca1),mk_Location(Cold, wf1_m1out),mk_Location(Cold, wf4_c1) 〉,
wf14_ib1 : Location∗ =

〈mk_Location(Hot, wf14_scb1),mk_Location(Cold, wf1_m1in),mk_Location(Cold, wf4_c1)〉,
wf14_ch1 : Chart = [′′A" +> wf14_ia1, "B′′ 7→ wf14_ib1],

test of cold followed by hot location in subchart

wf14_scla2 : Location∗ = 〈mk_Location(Cold, wf1_m1out),
mk_Location(Hot, wf4_c1)〉,
wf14_sclb2 : Location∗ = 〈mk_Location(Cold, wf1_m1in),
mk_Location(Hot, wf4_c1)〉,
wf14_sca2 : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf14_scla2),
wf14_scb2 : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf14_sclb2),
wf14_ia2 : Location∗ =

〈mk_Location(Hot, wf14_sca2),mk_Location(Cold, wf1_m1out),mk_Location(Hot, wf4_c1) 〉,
wf14_ib2 : Location∗ =

〈mk_Location(Hot, wf14_scb2),mk_Location(Cold, wf1_m1in),mk_Location(Hot, wf4_c1)〉,
wf14_ch2 : Chart = [′′A" +> wf14_ia2, "B′′ 7→ wf14_ib2],

D.4 Test 309

test of subchart with cold event inside sub−subchart

wf14_scla3 : Location∗ = 〈mk_Location(Cold, wf1_m1out)〉,
wf14_sclb3 : Location∗ = 〈mk_Location(Cold, wf1_m1in)〉,
wf14_sca3 : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf14_scla3),
wf14_scb3 : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf14_sclb3),
wf14_scstop3 : Event = mk_EndSubchart(13),

wf14_scla4 : Location∗ = 〈mk_Location(Hot, wf14_sca3)〉̂wf14_scla3̂〈mk_Location(Hot, wf14_scstop3)〉,
wf14_sclb4 : Location∗ = 〈mk_Location(Hot, wf14_scb3)〉̂wf14_sclb3̂〈mk_Location(Hot, wf14_scstop3)〉,
wf14_sca4 : Event = mk_Subchart(′′Subchart2", 14, {"A", "B′′}, 1, wf14_scla4),
wf14_scb4 : Event = mk_Subchart(′′Subchart2", 14, {"A", "B′′}, 1, wf14_sclb4),
wf14_scstop4 : Event = mk_EndSubchart(14),

wf14_ia3 : Location∗ =
〈mk_Location(Hot, wf14_sca4),mk_Location(Hot,wf14_sca3),mk_Location(Cold, wf1_m1out),

mk_Location(Hot, wf14_scstop3),mk_Location(Hot, wf14_scstop4)〉,
wf14_ib3 : Location∗ =

〈mk_Location(Hot, wf14_scb4),mk_Location(Hot,wf14_scb3),mk_Location(Cold, wf1_m1in),
mk_Location(Hot, wf14_scstop3),mk_Location(Hot, wf14_scstop4)〉,

wf14_ch3 : Chart = [′′A" +> wf14_ia3, "B′′ 7→ wf14_ib3],

test of subchart with cold event followed by hot event inside subchart

wf14_scla5 : Location∗ = 〈mk_Location(Cold, wf1_m1out),mk_Location(Hot, wf1_m5out)〉,
wf14_sclb5 : Location∗ = 〈mk_Location(Cold, wf1_m1in), mk_Location(Hot, wf1_m5in)〉,
wf14_sca5 : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf14_scla5),
wf14_scb5 : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 3, wf14_sclb5),
wf14_scstop5 : Event = mk_EndSubchart(13),

wf14_scla6 : Location∗ = 〈mk_Location(Hot, wf14_sca5)〉̂wf14_scla5̂〈mk_Location(Hot, wf14_scstop5)〉,
wf14_sclb6 : Location∗ = 〈mk_Location(Hot, wf14_scb5)〉̂wf14_sclb5̂〈mk_Location(Hot, wf14_scstop5)〉,
wf14_sca6 : Event = mk_Subchart(′′Subchart2", 14, {"A", "B′′}, 1, wf14_scla6),
wf14_scb6 : Event = mk_Subchart(′′Subchart2", 14, {"A", "B′′}, 1, wf14_sclb6),
wf14_scstop6 : Event = mk_EndSubchart(14),

wf14_ia4 : Location∗ =
〈mk_Location(Hot,wf14_sca6)〉̂wf14_scla6̂〈mk_Location(Hot, wf14_scstop6)〉,

wf14_ib4 : Location∗ =
〈mk_Location(Hot,wf14_scb6)〉̂wf14_sclb6̂〈mk_Location(Hot, wf14_scstop6)〉,

wf14_ch4 : Chart = [′′A" +> wf14_ia4, "B′′ 7→ wf14_ib4]

test_case
[wf_cold_subchart_1_________]
wf_cold_subchart(wf5_ch1),
[wf_cold_subchart_2_________]
wf_cold_subchart(wf14_ch1),
[wf_cold_subchart_3_________]
∼wf_cold_subchart(wf14_ch2),
[wf_cold_subchart_4_________]
wf_cold_subchart(wf14_ch3),
[wf_cold_subchart_5_________]
∼wf_cold_subchart(wf14_ch4)

310 Appendix D. RSL specifications for the RSC

test of wellformedness condition wf_cold_mainchart (nr. 15)

value

testing hot events followed by cold events

wf15_scstop : Event = mk_EndSubchart(13),
wf15_ia0 : Location∗ =

〈mk_Location(Hot, wf1_m1out),
mk_Location(Hot, wf14_sca1),
mk_Location(Cold,wf1_m1out),
mk_Location(Cold,wf4_c1),
mk_Location(Cold, wf15_scstop),
mk_Location(Cold, wf1_m5out) 〉,

wf15_ib0 : Location∗ =
〈mk_Location(Hot, wf1_m1in),

mk_Location(Cold, wf14_scb1),
mk_Location(Cold,wf1_m1in),
mk_Location(Cold,wf4_c1),
mk_Location(Cold, wf15_scstop),
mk_Location(Cold, wf1_m5in)〉,

wf15_ch0 : Chart = [′′A" +> wf15_ia0, "B′′ 7→ wf15_ib0],

testing hot mainchart with cold subchart events

wf15_ia1 : Location∗ =
〈mk_Location(Hot, wf1_m1out),

mk_Location(Hot, wf14_sca1),
mk_Location(Cold,wf1_m1out),
mk_Location(Cold,wf4_c1),
mk_Location(Hot, wf15_scstop),
mk_Location(Hot, wf1_m5out) 〉,

wf15_ib1 : Location∗ =
〈mk_Location(Hot, wf1_m1in),

mk_Location(Hot, wf14_scb1),
mk_Location(Cold,wf1_m1in),
mk_Location(Cold,wf4_c1),
mk_Location(Hot, wf15_scstop),
mk_Location(Hot, wf1_m5in)〉,

wf15_ch1 : Chart = [′′A" +> wf15_ia1, "B′′ 7→ wf15_ib1],

testing hot mainchart with cold subchart

wf15_ia2 : Location∗ =
〈mk_Location(Hot, wf1_m1out),

mk_Location(Cold, wf14_sca1),
mk_Location(Cold,wf1_m1out),
mk_Location(Cold,wf4_c1),
mk_Location(Cold, wf15_scstop),
mk_Location(Hot, wf1_m5out) 〉,

wf15_ib2 : Location∗ =
〈mk_Location(Hot, wf1_m1in),

D.4 Test 311

mk_Location(Cold, wf14_scb1),
mk_Location(Cold,wf1_m1in),
mk_Location(Cold,wf4_c1),
mk_Location(Cold, wf15_scstop),
mk_Location(Hot, wf1_m5in)〉,

wf15_ch2 : Chart = [′′A" +> wf15_ia2, "B′′ 7→ wf15_ib2],

testing cold mainchart with hot subchart

wf15_ia3 : Location∗ =
〈mk_Location(Cold, wf1_m1out),

mk_Location(Cold, wf14_sca1),
mk_Location(Hot,wf1_m1out),
mk_Location(Hot,wf4_c1),
mk_Location(Hot, wf15_scstop),
mk_Location(Cold, wf1_m5out) 〉,

wf15_ib3 : Location∗ =
〈mk_Location(Cold, wf1_m1in),

mk_Location(Cold, wf14_scb1),
mk_Location(Hot, wf1_m1in),
mk_Location(Hot,wf4_c1),
mk_Location(Hot, wf15_scstop),
mk_Location(Cold, wf1_m5in)〉,

wf15_ch3 : Chart = [′′A" +> wf15_ia3, "B′′ 7→ wf15_ib3],

testing cold events followed by hot event

wf15_ia4 : Location∗ =
〈mk_Location(Cold, wf1_m1out),

mk_Location(Cold, wf14_sca1),
mk_Location(Cold,wf1_m1out),
mk_Location(Cold,wf4_c1),
mk_Location(Cold, wf15_scstop),
mk_Location(Hot, wf1_m5out) 〉,

wf15_ib4 : Location∗ =
〈mk_Location(Cold, wf1_m1in),

mk_Location(Cold, wf14_scb1),
mk_Location(Cold,wf1_m1in),
mk_Location(Cold,wf4_c1),
mk_Location(Cold, wf15_scstop),
mk_Location(Hot, wf1_m5in)〉,

wf15_ch4 : Chart = [′′A" +> wf15_ia4, "B′′ 7→ wf15_ib4]

test_case
[wf_cold_mainchart_0________]
wf_cold_mainchart(wf15_ch0),
[wf_cold_mainchart_1________]
wf_cold_mainchart(wf15_ch1),
[wf_cold_mainchart_2________]
∼wf_cold_mainchart(wf15_ch2),
[wf_cold_mainchart_3________]
∼wf_cold_mainchart(wf15_ch3),
[wf_cold_mainchart_4________]
∼wf_cold_mainchart(wf15_ch4)

312 Appendix D. RSL specifications for the RSC

test of wellformedness condition wf_last (nr. 16)

value

test with correct stop event

wf16_ia1 : Location∗ =
〈mk_Location(Hot, wf1_m1out), mk_Location(Hot, StopEvent)〉,

wf16_ib1 : Location∗ =
〈mk_Location(Hot, wf1_m1in), mk_Location(Hot, StopEvent)〉,

wf16_ch1 : Chart = [′′A" +> wf16_ia1, "B′′ 7→ wf16_ib1],

test with missing stop event

wf16_ia2 : Location∗ =
〈mk_Location(Hot, wf1_m1out)〉,

wf16_ib2 : Location∗ =
〈mk_Location(Hot, wf1_m1in), mk_Location(Hot, StopEvent)〉,

wf16_ch2 : Chart = [′′A" +> wf16_ia2, "B′′ 7→ wf16_ib2],

test with wrong position stop event

wf16_ia3 : Location∗ =
〈mk_Location(Hot, StopEvent), mk_Location(Hot, wf1_m1out)〉,

wf16_ib3 : Location∗ =
〈mk_Location(Hot, wf1_m1in), mk_Location(Hot, StopEvent)〉,

wf16_ch3 : Chart = [′′A" +> wf16_ia3, "B′′ 7→ wf16_ib3]

test_case
[wf_last_1__________________]
wf_last(wf16_ch1),
[wf_last_2__________________]
∼wf_last(wf16_ch2),
[wf_last_3__________________]
∼wf_last(wf16_ch3)

test of one rather large example TODO: henvis til FIGUR fra RAPPORT!

value

defining all the events

wfl_m3out : Event = mk_OutputEvent(31, ′′Msg3", mk_Address("B′′)),
wfl_m3in : Event = mk_InputEvent(31, mk_Address(′′A′′)),

D.4 Test 313

wfl_m4out : Event = mk_OutputEvent(41, ′′Msg4", mk_Address("B′′)),
wfl_m4in : Event = mk_InputEvent(41, mk_Address(′′C′′)),
wfl_m5out : Event = mk_OutputEvent(51, ′′Msg5′′, Environment),
wfl_m6out : Event = mk_OutputEvent(61, ′′Msg6", mk_Address("B′′)),
wfl_m6in : Event = mk_InputEvent(61, mk_Address(′′A′′)),
wfl_m7out : Event = mk_OutputEvent(71, ′′Msg7", mk_Address("C′′)),
wfl_m7in : Event = mk_InputEvent(71, mk_Address(′′B′′)),

wfl_m8out : Event = mk_OutputEvent(81, ′′Create", mk_Address("D′′)),
wfl_m8in : Event = mk_InputEvent(81, mk_Address(′′C′′)),
wfl_m9out : Event = mk_OutputEvent(91, ′′Msg9", mk_Address("B′′)),
wfl_m9in : Event = mk_InputEvent(91, mk_Address(′′C′′)),

wfl_m8out2 : Event = mk_OutputEvent(81, ′′Create′′, Environment),

wfl_m10out : Event = mk_OutputEvent(101, ′′Msg10", mk_Address("C′′)),
wfl_m10in : Event = mk_InputEvent(101, mk_Address(′′B′′)),
wfl_act : Event = mk_ActionEvent(′′Action′′, 15),
wfl_cr1 : Event = mk_CoregionEvent(〈mk_Location(Hot, wfl_m3in), mk_Location(Hot, wfl_m4in)〉),
wfl_cr2 : Event = mk_CoregionEvent(〈mk_Location(Hot, wfl_m7out), mk_Location(Hot, wfl_m9in)〉),
wfl_cr3 : Event = mk_CoregionEvent(〈mk_Location(Hot, wfl_m9out), mk_Location(Hot, wfl_m7in)〉),
wfl_cond1 : Event = mk_ConditionEvent(′′Cond1", 12, Hot, {"B′′,
′′C′′}),
wfl_cond11 : Event = mk_ConditionEvent(′′Cond1", 12, Cold, {"B", "C′′}),
wfl_cond2 : Event = mk_ConditionEvent(′′Cond2", 22, Hot, {"A", "B′′}),
wfl_scla : Location∗ = 〈mk_Location(Hot, wfl_cond2), mk_Location(Cold, wfl_m6out)〉,
wfl_sclb : Location∗ = 〈mk_Location(Hot, wfl_cond2), mk_Location(Cold, wfl_m6in)〉,
wfl_sca : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′}, 2, wfl_scla),
wfl_scstop : Event = mk_EndSubchart(13),
wfl_scb : Event = mk_Subchart(′′Subchart", 13, {"A", "B′′},
2, wfl_sclb),

defining main chart instances (location lists)

wfl_insta : Location∗ =
〈mk_Location(Hot, wfl_m3out),

mk_Location(Hot, wfl_act),
mk_Location(Hot, wfl_sca)〉

̂ wfl_scla ̂

〈mk_Location(Hot, wfl_scstop),
mk_Location(Hot, StopEvent)〉,

wfl_instb : Location∗ =
〈mk_Location(Hot, wfl_cr1),

mk_Location(Hot, wfl_m3in),
mk_Location(Hot, wfl_m4in),

mk_Location(Hot, wfl_cond1),
mk_Location(Hot, wfl_scb)〉
̂ wfl_sclb ̂

〈mk_Location(Hot, wfl_scstop),
mk_Location(Hot, wfl_cr2),
mk_Location(Hot, wfl_m7out),
mk_Location(Hot, wfl_m9in),

mk_Location(Hot, StopEvent)〉,
wfl_instc : Location∗ =

〈mk_Location(Hot, wfl_m4out),
mk_Location(Hot, wfl_cond1),

314 Appendix D. RSL specifications for the RSC

mk_Location(Hot, wfl_m8out),
mk_Location(Hot, wfl_cr3),
mk_Location(Hot, wfl_m9out),
mk_Location(Hot, wfl_m7in),

mk_Location(Hot, StopEvent)〉,
wfl_instd : Location∗ =

〈mk_Location(Hot, wfl_m8in),
mk_Location(Hot, wfl_m5out),

mk_Location(Hot, StopEvent)〉,

defining prechart instances

wfl_insta2 : Location∗ =
〈mk_Location(Hot, wfl_m3out),

mk_Location(Hot, wfl_act),
mk_Location(Hot, wfl_sca)〉

̂ wfl_scla ̂

〈mk_Location(Hot, wfl_scstop),
mk_Location(Hot, StopEvent)〉,

wfl_instb2 : Location∗ =
〈mk_Location(Hot, wfl_cr1),

mk_Location(Hot, wfl_m3in),
mk_Location(Hot, wfl_m4in),

mk_Location(Hot, wfl_cond1),
mk_Location(Hot, wfl_scb)〉
̂ wfl_sclb ̂

〈mk_Location(Hot, wfl_scstop),
mk_Location(Hot, wfl_m10out),
mk_Location(Hot, StopEvent)〉,

wfl_instb21 : Location∗ =
〈mk_Location(Hot, wfl_cr1),

mk_Location(Hot, wfl_m3in),
mk_Location(Hot, wfl_m4in),

mk_Location(Hot, wfl_cond11),
mk_Location(Hot, wfl_scb)〉
̂ wfl_sclb ̂

〈mk_Location(Hot, wfl_scstop),
mk_Location(Hot, wfl_m10out),
mk_Location(Hot, StopEvent)〉,

wfl_instc2 : Location∗ =
〈mk_Location(Hot, wfl_m4out),

mk_Location(Hot, wfl_cond1),
mk_Location(Hot, wfl_m8out2),

mk_Location(Hot, wfl_m10in),
mk_Location(Hot, StopEvent)〉,

defining charts

wfl_mainch : Chart = [′′A′′ 7→ wfl_insta,
′′B′′ 7→ wfl_instb,
′′C′′ 7→ wfl_instc,
′′D′′ 7→ wfl_instd],

wfl_prech : Chart = [′′A′′ 7→ wfl_insta2,
′′B′′ 7→ wfl_instb2,

D.4 Test 315

′′C′′ 7→ wfl_instc2],

For testing wf 18, cold location in prechart

wfl_prech2 : Chart = [′′A′′ 7→ wfl_insta2,
′′B′′ 7→ wfl_instb21,
′′C′′ 7→ wfl_instc2],

defining RSC subtype

wfl_testlsc : RSC′ = mk_RSC′(′′Test-RSC", wfl_prech, wfl_mainch, {"D′′}),

test of wellformedness condition wf_creation(nr. 19), done now since test is done on whole LSC rather than
an individual chart

testing with created instance with first event that is not a message

wf19_testlsc1 : RSC′ = mk_RSC′(′′Test-RSC2", [], wfl_mainch, {"B′′}),

testing with created instance in prechart

wf19_testlsc2 : RSC′ = mk_RSC′(′′Test-RSC2", wfl_mainch, wfl_mainch, {"D′′}),

testing with created instance not in mainchart

wf19_testlsc3 : RSC′ = mk_RSC′(′′Test-RSC2", wfl_mainch, wfl_prech, {"D′′})

test_case
[wfl_01wf_ids_unique________]

wf_ids_unique(wfl_mainch),
[wfl_02wf_message_match_____]

wf_message_match(wfl_mainch),
[wfl_03wf_mess_cond_acyclic_]

wf_mess_cond_acyclic(wfl_mainch),
[wfl_04wf_condition_share___]

wf_condition_share(wfl_mainch),
[wfl_05wf_subchart_locations]

wf_subchart_locations(wfl_mainch),
[wfl_06wf_subchart_ordered__]

wf_subchart_ordered(wfl_mainch),
[wfl_07wf_subchart_coherent_]

wf_subchart_coherent(wfl_mainch),
[wfl_08wf_subchart_end______]

wf_subchart_end(wfl_mainch),
[wfl_09wf_subchart_condition]

wf_subchart_conditions(wfl_mainch),
[wfl_10wf_subchart_messages_]

316 Appendix D. RSL specifications for the RSC

wf_subchart_messages(wfl_mainch),
[wfl_11wf_subchart_subchart_]

wf_subchart_subchart(wfl_mainch),
[wfl_12wf_coregion_locations]

wf_coregion_locations(wfl_mainch),
[wfl_13wf_coregion_messages_]

wf_coregion_messages(wfl_mainch),
[wfl_14wf_cold_subchart_____]

wf_cold_subchart(wfl_mainch),
[wfl_15wf_cold_mainchart____]

wf_cold_mainchart(wfl_mainch),
[wfl_16wf_last______________]

wf_last(wfl_mainch),
[wfl_17wf_creation_1________]

wf_creation(wfl_testlsc),
[wfl_17wf_creation_2________]

∼wf_creation(wf19_testlsc1),
[wfl_17wf_creation_3________]

∼wf_creation(wf19_testlsc2),
[wfl_17wf_creation_4________]

∼wf_creation(wf19_testlsc3),
[wfl_18wf_prechart_condtion1]

wf_prechart_condition(wfl_prech),
[wfl_18wf_prechart_condtion2]

∼wf_prechart_condition(wfl_prech2),
[wfl_mainchart_wellformed___]

wf_chart(wfl_mainch),
[wfl_prechart_wellformed____]

wf_chart(wfl_prech),
[wfl_RSC_is_wellformed______]

wf_RSC(wfl_testlsc)
end

D.4.2 Test of semantics

RSC_test1

scheme RSC_test2 =
extend RSC_test1 with
class

The tests of the semantics of a single chart have been automated using test functions. They are explained and
defined below.

value

The advancement chosen among the set of possibles is nondeterministical. However that is not implementable
as is. Therefore this explicit function for chosing one of those advancements is given. Due to the translation
in C–‖, the same advancement will be returned every time with a specific argument, thus eliminating nondeter-
minism. This is practical when testing, as the expected result can be calculated at each step. In order to test
different runs, we have provided two ways of chosing an advancement.

D.4 Test 317

sem_test_get_adv : EnabledEvent-set × Bool → EnabledEvent
sem_test_get_adv (ass, run1) ≡
if run1 then
if ass = {} then NotEnabled else
let

el = hd ass
in

case el of
NotEnabled → sem_test_get_adv(ass \ {el}, run1),
EnabledStopped → sem_test_get_adv(ass \ {el}, run1),
→ el

end
end
end
else
if ass = {} then NotEnabled else

if card ass = 1 then
hd ass

else
let

el = hd ass,
el2 = hd (ass \ {el})

in
case el2 of
NotEnabled → sem_test_get_adv(ass \ {el2}, run1),
EnabledStopped → sem_test_get_adv(ass \ {el2}, run1),
→ el2

end
end

end
end
end,

The following 3 functions have been provided in order to display traces, a single trace and a state, respectively,
in a more human readable form. This enables the reader more easily to read the expected output from the tests.

Recurses over traces in order to conver them one at a time.

sem_test_convert_traces : Traces → ((Int∗)∗)-set
sem_test_convert_traces(traces) ≡
if traces = {} then {} else

let
el = hd traces

in
{sem_test_convert_trace(el)} ∪ sem_test_convert_traces(traces \{el})

end
end,

Recurses over a trace in order to convert the individual states.

318 Appendix D. RSL specifications for the RSC

sem_test_convert_trace : Trace → (Int∗)∗

sem_test_convert_trace(trace) ≡
if trace = 〈〉 then 〈〉 else

sem_test_convert_trace(tl trace)̂ 〈sem_test_convert_state(hd trace)〉
end,

It converts a state to an int∗, so that f.x. 〈1,1,2,2〉 means that instance A and B are at Location 1 and C and D
are at Location 2.

sem_test_convert_state : State → Int∗
sem_test_convert_state(state) ≡
〈pointer(state(′′A")), pointer(state("B")), pointer(state("C")), pointer(state("D′′))〉

type

Type needed for automatically running the tests. It records how many more steps to perform (i), the current
state and the currently possible advancesteps.

gStep :: i: Int gstate: State ads : EnabledEvent-set

value

Function for automatically ′′running′′ a chart. As long as the chart is not finished (all instances reached the
last location) it progresses X steps, determined by a gStep value. It choses an enabled event to perform (using
sem_test_get_adv) and uses the semantics function advance_state to return the new state. Based on this
is uses the get_enabled_events semantics function in order to get the possible advancements in the new state.
Thereafter it simply recurses.

test_machine : Chart × gStep × Bool → gStep
test_machine(chart, gstep, run1) ≡
if i(gstep) = 0 then gstep else
let

newads = sem_test_get_adv(ads(gstep), run1)
in

if newads = NotEnabled then
gstep

else
let

newstate = step_event(wfl_mainch, newads, gstate(gstep))
in

if newstate 6= [] then
let
newadss = get_enabled_events(wfl_mainch, newstate)

in
test_machine(chart,mk_gStep(i(gstep)−1, newstate,

newadss), run1)
end

else
gstep

end
end

D.4 Test 319

end
end
end,

Start state and initial possible advancements. Provided in order to shorten the paramter∗.

s0 : State = initialize_chart(wfl_mainch),
a0 : EnabledEvent-set = get_enabled_events(wfl_mainch, s0)

test_case
[sem_start_state____________]

initialize_chart(wfl_mainch)=
[′′D"+>mk_PosInfo(1,None,<..>),"C′′ 7→mk_PosInfo(1,None,〈〉),

′′B"+>mk_PosInfo(1,CoRegion({41,31}),<..>),"A′′ 7→mk_PosInfo(1,None,〈〉)],
[sem_chart_wf_______________]
wf_chart(wfl_mainch),
[sem_state_________________0]

sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(0, s0, a0),true))) =
〈1,1,1,1〉,

[sem_advance_steps_________0]
ads(test_machine(wfl_mainch, mk_gStep(0,s0,a0),true)) =

{NotEnabled,EnabledCoregion({′′A"},{"B"},31,3),EnabledCoregion({"C"},{"B′′},41,3)},
[sem_advance_step_chosen___0]

sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(0,s0,a0),true)),true) =
EnabledCoregion({′′A"},{"B′′},31,3),

[sem_state_________________1]
sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(1,s0,a0),true))) =

〈2,1,1,1〉,
[sem_advance_steps_________1]

ads(test_machine(wfl_mainch, mk_gStep(1,s0,a0), true)) =
{NotEnabled,EnabledAction(′′A","Action",15),EnabledCoregion({"C"},{"B′′},41,4)},

[sem_advance_step_chosen___1]
sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(1,s0,a0), true)),true) =

EnabledAction(′′A","Action′′,15),
[sem_state_________________2]

sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(2,s0,a0),true))) =
〈3,1,1,1〉,

[sem_advance_steps_________2]
ads(test_machine(wfl_mainch, mk_gStep(2,s0,a0),true)) =

{NotEnabled,EnabledCoregion({′′C"},{"B′′},41,4)},
[sem_advance_step_chosen___2]

sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(2,s0,a0),true)),true) =
EnabledCoregion({′′C"},{"B′′},41,4),

[sem_state_________________3]
sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(3,s0,a0),true))) =

〈3,4,2,1〉,
[sem_advance_steps_________3]

ads(test_machine(wfl_mainch, mk_gStep(3,s0,a0),true)) =
{NotEnabled,EnabledCondition({′′B","C"},"Cond1′′,12)},

[sem_advance_step_chosen___3]
sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(3,s0,a0),true)),true) =

EnabledCondition({′′B","C"},"Cond1′′,12),
[sem_state_________________4]

sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(4,s0,a0),true))) =
〈3,5,3,1〉,

320 Appendix D. RSL specifications for the RSC

[sem_advance_steps_________4]
ads(test_machine(wfl_mainch, mk_gStep(4,s0,a0),true)) =

{EnabledMessage({′′C"},{"D"},81),EnabledEnterSubchart({"A","B′′},13,2),NotEnabled},
[sem_advance_step_chosen___4]

sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(4,s0,a0),true)),true) =
EnabledMessage({′′C"},{"D′′},81),

[sem_state_________________5]
sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(5,s0,a0),true))) =

〈3,5,4,2〉,
[sem_advance_steps_________5]

ads(test_machine(wfl_mainch, mk_gStep(5,s0,a0),true)) =
{NotEnabled,EnabledEnterSubchart({′′A","B"},13,2),EnabledMessage({"D′′},{},51)},

[sem_advance_step_chosen___5]
sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(5,s0,a0),true)),true) =

EnabledEnterSubchart({′′A","B′′},13,2),
[sem_state_________________6]

sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(6,s0,a0),true))) =
〈4,6,4,2〉,

[sem_advance_steps_________6]
ads(test_machine(wfl_mainch, mk_gStep(6,s0,a0),true)) =

{NotEnabled,EnabledCondition({′′A","B"},"Cond2",22),EnabledMessage({"D′′},{},51)},
[sem_advance_step_chosen___6]

sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(6,s0,a0),true)),true) =
EnabledCondition({′′A","B"},"Cond2′′,22),

[sem_state_________________7]
sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(7,s0,a0),true))) =

〈5,7,4,2〉,
[sem_advance_steps_________7]

ads(test_machine(wfl_mainch, mk_gStep(7,s0,a0),true)) =
{NotEnabled,EnabledMessage({′′A"},{"B"},61),EnabledMessage({"D′′},{},51)},

[sem_advance_step_chosen___7]
sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(7,s0,a0),true)),true) =

EnabledMessage({′′A"},{"B′′},61),
[sem_state_________________8]

sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(8,s0,a0),true))) =
〈6,8,4,2〉,

[sem_advance_steps_________8]
ads(test_machine(wfl_mainch, mk_gStep(8,s0,a0),true)) =

{NotEnabled,EnabledEndSubchart(13,{′′A","B"}),EnabledMessage({"D′′},{},51)},
[sem_advance_step_chosen___8]

sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(8,s0,a0),true)),true) =
EnabledEndSubchart(13,{′′A","B′′}),

[sem_state_________________9]
sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(9,s0,a0),true))) =

〈4,6,4,2〉,
[sem_advance_steps_________9]

ads(test_machine(wfl_mainch, mk_gStep(9,s0,a0),true)) =
{NotEnabled,EnabledCondition({′′A","B"},"Cond2",22),EnabledMessage({"D′′},{},51)},

[sem_advance_step_chosen___9]
sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(9,s0,a0),true)),true) =

EnabledCondition({′′A","B"},"Cond2′′,22),
[sem_state________________10]

sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(10,s0,a0),true))) =
〈5,7,4,2〉,

[sem_advance_steps________10]
ads(test_machine(wfl_mainch, mk_gStep(10,s0,a0),true)) =

{NotEnabled,EnabledMessage({′′A"},{"B"},61),EnabledMessage({"D′′},{},51)},
[sem_advance_step_chosen__10]

D.4 Test 321

sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(10,s0,a0),true)),true) =
EnabledMessage({′′A"},{"B′′},61),

[sem_state________________11]
sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(11,s0,a0),true))) =

〈6,8,4,2〉,
[sem_advance_steps________11]

ads(test_machine(wfl_mainch, mk_gStep(11,s0,a0),true)) =
{NotEnabled,EnabledEndSubchart(13,{′′A","B"}),EnabledMessage({"D′′},{},51)},

[sem_advance_step_chosen__11]
sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(11,s0,a0),true)),true) =

EnabledEndSubchart(13,{′′A","B′′}),
[sem_state________________12]

sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(12,s0,a0),true))) =
〈7,9,4,2〉,

[sem_advance_steps________12]
ads(test_machine(wfl_mainch, mk_gStep(12,s0,a0),true)) =

{EnabledCoregion({′′C"},{"B′′},91,5),NotEnabled,EnabledStopped,
EnabledCoregion({′′B"},{"C"},71,5),EnabledMessage({"D′′},{},51)},

[sem_advance_step_chosen__12]
sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(12,s0,a0),true)),true) =

EnabledCoregion({′′C"},{"B′′},91,5),
[sem_state________________13]

sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(13,s0,a0),true))) =
〈7,9,4,2〉,

[sem_advance_steps________13]
ads(test_machine(wfl_mainch, mk_gStep(13,s0,a0),true)) =

{NotEnabled,EnabledStopped,EnabledCoregion({′′B"},{"C′′},71,8),
EnabledMessage({′′D′′},{},51)},

[sem_advance_step_chosen__13]
sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(13,s0,a0),true)),true) =

EnabledCoregion({′′B"},{"C′′},71,8),
[sem_state________________14]

sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(14,s0,a0),true))) =
〈7,12,7,2〉,

[sem_advance_steps________14]
ads(test_machine(wfl_mainch, mk_gStep(14,s0,a0),true)) =

{EnabledStopped,EnabledMessage({′′D′′},{},51)},
[sem_advance_step_chosen__14]

sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(14,s0,a0),true)),true) =
EnabledMessage({′′D′′},{},51),

[sem_state________________15]
sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(15,s0,a0),true))) =

〈7,12,7,3〉,
[sem_advance_steps________15]

ads(test_machine(wfl_mainch, mk_gStep(15,s0,a0),true)) =
{EnabledStopped},

[sem_advance_step_chosen__15]
sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(15,s0,a0),true)),true) =

NotEnabled,
[sem_state________________16]

sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(16, s0, a0),true))) =
〈7,12,7,3〉,

[sem_advance_steps________16]
ads(test_machine(wfl_mainch, mk_gStep(16,s0,a0),true)) =

{EnabledStopped},
[sem_advance_step_chosen__16]

sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(16,s0,a0),true)),true) =
NotEnabled,

322 Appendix D. RSL specifications for the RSC

[sem_state________________17]
sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(17, s0, a0),true))) =

〈7,12,7,3〉,
[sem_advance_steps________17]

ads(test_machine(wfl_mainch, mk_gStep(17,s0,a0),true)) =
{EnabledStopped},

[sem_advance_step_chosen__17]
sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(17,s0,a0),true)),true) =

NotEnabled,
[sem_state________________18]

sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(18, s0, a0),true))) =
〈7,12,7,3〉,

[sem_advance_steps________18]
ads(test_machine(wfl_mainch, mk_gStep(18,s0,a0),true)) =

{EnabledStopped},
[sem_advance_step_chosen__18]

sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(18,s0,a0),true)),true) =
NotEnabled,

[sem2_state________________0]
sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(0, s0, a0),false))) =

〈1,1,1,1〉,
[sem2_advance_steps________0]

ads(test_machine(wfl_mainch, mk_gStep(0,s0,a0),false)) =
{NotEnabled,EnabledCoregion({′′A"},{"B"},31,3),EnabledCoregion({"C"},{"B′′},41,3)},

[sem2_advance_step_chosen__0]
sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(0,s0,a0),false)),false) =

EnabledCoregion({′′A"},{"B′′},31,3),
[sem2_state________________1]

sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(1,s0,a0),false))) =
〈2,1,1,1〉,

[sem2_advance_steps________1]
ads(test_machine(wfl_mainch, mk_gStep(1,s0,a0),false)) =

{NotEnabled,EnabledAction(′′A","Action",15),EnabledCoregion({"C"},{"B′′},41,4)},
[sem2_advance_step_chosen__1]

sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(1,s0,a0),false)),false) =
EnabledAction(′′A","Action′′,15),

[sem2_state________________2]
sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(2, s0, a0),false))) =

〈3,1,1,1〉,
[sem2_advance_steps________2]

ads(test_machine(wfl_mainch, mk_gStep(2,s0,a0),false)) =
{NotEnabled,EnabledCoregion({′′C"},{"B′′},41,4)},

[sem2_advance_step_chosen__2]
sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(2,s0,a0),false)),false) =

EnabledCoregion({′′C"},{"B′′},41,4),
[sem2_state________________3]

sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(3,s0,a0),false))) =
〈3,4,2,1〉,

[sem2_advance_steps________3]
ads(test_machine(wfl_mainch, mk_gStep(3,s0,a0),false)) =

{NotEnabled,EnabledCondition({′′B","C"},"Cond1′′,12)},
[sem2_advance_step_chosen__3]

sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(3,s0,a0),false)),false) =
EnabledCondition({′′B","C"},"Cond1′′,12),

[sem2_state________________4]
sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(4, s0, a0),false))) =

〈3,5,3,1〉,
[sem2_advance_steps________4]

D.4 Test 323

ads(test_machine(wfl_mainch, mk_gStep(4,s0,a0),false)) =
{EnabledMessage({′′C"},{"D"},81),EnabledEnterSubchart({"A","B′′},13,2),NotEnabled},

[sem2_advance_step_chosen__4]
sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(4,s0,a0),false)),false) =

EnabledEnterSubchart({′′A","B′′},13,2),
[sem2_state________________5]

sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(5,s0,a0),false))) =
〈4,6,3,1〉,

[sem2_advance_steps________5]
ads(test_machine(wfl_mainch, mk_gStep(5,s0,a0),false)) =

{EnabledMessage({′′C"},{"D"},81),EnabledCondition({"A","B"},"Cond2′′,22),NotEnabled},
[sem2_advance_step_chosen__5]

sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(5,s0,a0),false)),false) =
EnabledCondition({′′A","B"},"Cond2′′,22),

[sem2_state________________6]
sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(6, s0, a0),false))) =

〈5,7,3,1〉,
[sem2_advance_steps________6]

ads(test_machine(wfl_mainch, mk_gStep(6,s0,a0),false)) =
{NotEnabled,EnabledMessage({′′A"},{"B"},61),EnabledMessage({"C"},{"D′′},81)},

[sem2_advance_step_chosen__6]
sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(6,s0,a0),false)),false) =

EnabledMessage({′′A"},{"B′′},61),
[sem2_state________________7]

sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(7,s0,a0),false))) =
〈6,8,3,1〉,

[sem2_advance_steps________7]
ads(test_machine(wfl_mainch, mk_gStep(7,s0,a0),false)) =

{EnabledMessage({′′C"},{"D"},81),EnabledEndSubchart(13,{"A","B′′}),NotEnabled},
[sem2_advance_step_chosen__7]

sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(7,s0,a0),false)),false) =
EnabledEndSubchart(13,{′′A","B′′}),

[sem2_state________________8]
sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(8, s0, a0),false))) =

〈4,6,3,1〉,
[sem2_advance_steps________8]

ads(test_machine(wfl_mainch, mk_gStep(8,s0,a0),false)) =
{EnabledMessage({′′C"},{"D"},81),EnabledCondition({"A","B"},"Cond2′′,22),NotEnabled},

[sem2_advance_step_chosen__8]
sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(8,s0,a0),false)),false) =

EnabledCondition({′′A","B"},"Cond2′′,22),
[sem2_state________________9]

sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(9,s0,a0),false))) =
〈5,7,3,1〉,

[sem2_advance_steps________9]
ads(test_machine(wfl_mainch, mk_gStep(9,s0,a0),false)) =

{NotEnabled,EnabledMessage({′′A"},{"B"},61),EnabledMessage({"C"},{"D′′},81)},
[sem2_advance_step_chosen__9]

sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(9,s0,a0),false)),false) =
EnabledMessage({′′A"},{"B′′},61),

[sem2_state_______________10]
sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(10, s0, a0),false))) =

〈6,8,3,1〉,
[sem2_advance_steps_______10]

ads(test_machine(wfl_mainch, mk_gStep(10,s0,a0),false)) =
{EnabledMessage({′′C"},{"D"},81),EnabledEndSubchart(13,{"A","B′′}),NotEnabled},

[sem2_advance_step_chosen_10]
sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(10,s0,a0),false)),false) =

324 Appendix D. RSL specifications for the RSC

EnabledEndSubchart(13,{′′A","B′′}),
[sem2_state_______________11]

sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(11, s0, a0),false))) =
〈7,9,3,1〉,

[sem2_advance_steps_______11]
ads(test_machine(wfl_mainch, mk_gStep(11,s0,a0),false)) =

{NotEnabled,EnabledStopped,EnabledMessage({′′C"},{"D′′},81)},
[sem2_advance_step_chosen_11]

sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(11,s0,a0),false)),false) =
EnabledMessage({′′C"},{"D′′},81),

[sem2_state_______________12]
sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(12, s0, a0),false))) =

〈7,9,4,2〉,
[sem2_advance_steps_______12]

ads(test_machine(wfl_mainch, mk_gStep(12,s0,a0),false)) =
{EnabledCoregion({′′C"},{"B"},91,5),NotEnabled,EnabledStopped,EnabledCoregion({"B′′},
{′′C"},71,5),EnabledMessage({"D′′},{},51)},

[sem2_advance_step_chosen_12]
sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(12,s0,a0),false)),false) =

EnabledCoregion({′′B"},{"C′′},71,5),
[sem2_state_______________13]

sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(13, s0, a0),false))) =
〈7,9,4,2〉,

[sem2_advance_steps_______13]
ads(test_machine(wfl_mainch, mk_gStep(13,s0,a0),false)) =

{EnabledCoregion({′′C"},{"B"},91,8),EnabledStopped,NotEnabled,EnabledMessage({"D′′},{},51)},
[sem2_advance_step_chosen_13]

sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(13,s0,a0),false)),false) =
EnabledMessage({′′D′′},{},51),

[sem2_state_______________14]
sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(14, s0, a0),false))) =

〈7,9,4,3〉,
[sem2_advance_steps_______14]

ads(test_machine(wfl_mainch, mk_gStep(14,s0,a0),false)) =
{NotEnabled,EnabledStopped,EnabledCoregion({′′C"},{"B′′},91,8)},

[sem2_advance_step_chosen_14]
sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(14,s0,a0),false)),false) =

EnabledCoregion({′′C"},{"B′′},91,8),
[sem2_state_______________15]

sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(15, s0, a0),false))) =
〈7,12,7,3〉,

[sem2_advance_steps_______15]
ads(test_machine(wfl_mainch, mk_gStep(15,s0,a0),false)) =

{EnabledStopped},
[sem2_advance_step_chosen_15]

sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(15,s0,a0),false)),false) =
EnabledStopped,

[sem2_state_______________16]
sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(16, s0, a0),false))) =

〈7,12,7,3〉,
[sem2_advance_steps_______16]

ads(test_machine(wfl_mainch, mk_gStep(16,s0,a0),false)) =
{EnabledStopped},

[sem2_advance_step_chosen_16]
sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(16,s0,a0),false)),false) =

EnabledStopped,
[sem2_state_______________17]

sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(17, s0, a0),false))) =

D.4 Test 325

〈7,12,7,3〉,
[sem2_advance_steps_______17]

ads(test_machine(wfl_mainch, mk_gStep(17,s0,a0),false)) =
{EnabledStopped},

[sem2_advance_step_chosen_17]
sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(17,s0,a0),false)),false) =

EnabledStopped,
[sem2_state_______________18]

sem_test_convert_state(gstate(test_machine(wfl_mainch,mk_gStep(18, s0, a0),false))) =
〈7,12,7,3〉,

[sem2_advance_steps_______18]
ads(test_machine(wfl_mainch, mk_gStep(18,s0,a0),false)) =

{EnabledStopped},
[sem2_advance_step_chosen_18]

sem_test_get_adv(ads(test_machine(wfl_mainch,mk_gStep(18,s0,a0),false)),false) =
EnabledStopped

value

This function is used to test the main semantics function indirectly. It performs the same steps as the semantics
function by calling eval_traces. This is done since it is not feasible to compute all the traces since the number
of traces increases exponentially. Therefore only the traces up to a length of 6 are computed (se test_case
section).

There is

testtracemachine : Chart × Traces × Int → Traces
testtracemachine(chart, traces, counter) ≡
if counter = 0 then traces else

if (card traces) > 1 then
let
el1 = hd traces,
el2 = hd (traces \ {el1}),
newt = {el1, el2}

in
- -XX change traces/newt to newt/traces for smaller/bigger
- - thingy (el1 exchanged for traces
testtracemachine(wfl_mainch, eval_traces(chart,traces), counter−1)

end
else

let
el1 = hd traces,
newt = {el1}

in
testtracemachine(wfl_mainch, eval_traces(chart, traces), counter−1)

end
end

end,

The initial trace only consisting of the start state.

326 Appendix D. RSL specifications for the RSC

starttrace: Trace-set = {〈initialize_chart(wfl_mainch)〉}

test_case
[sem_traces________________0]

starttrace
={〈[′′D"+>mk_PosInfo(1,None,<..>),"C′′ 7→mk_PosInfo(1,None,〈〉),
′′B"+>mk_PosInfo(1,CoRegion({41,31}),<..>),"A′′ 7→mk_PosInfo(1,None,〈〉)]〉},

[sem_traces________________1]
sem_test_convert_traces(testtracemachine(wfl_mainch,starttrace,1))=

{〈〈1,1,1,1〉,〈1,1,2,1〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉〉},

[sem_traces________________2]
sem_test_convert_traces(testtracemachine(wfl_mainch,starttrace,2))=

{〈〈1,1,1,1〉,〈2,1,1,1〉,〈3,1,1,1〉〉,
〈〈1,1,1,1〉,〈1,1,2,1〉,〈2,4,2,1〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈2,4,2,1〉〉},

[sem_traces________________3]
sem_test_convert_traces(testtracemachine(wfl_mainch,starttrace,3))=

{〈〈1,1,1,1〉,〈2,1,1,1〉,〈2,4,2,1〉,〈2,5,3,1〉〉,
〈〈1,1,1,1〉,〈1,1,2,1〉,〈2,4,2,1〉,〈2,5,3,1〉〉,
〈〈1,1,1,1〉,〈1,1,2,1〉,〈2,4,2,1〉,〈3,4,2,1〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈2,4,2,1〉,〈3,4,2,1〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈3,1,1,1〉,〈3,4,2,1〉〉},

[sem_traces________________4]
sem_test_convert_traces(testtracemachine(wfl_mainch,starttrace,4))=

{〈〈1,1,1,1〉,〈1,1,2,1〉,〈2,4,2,1〉,〈2,5,3,1〉,〈2,5,4,2〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈2,4,2,1〉,〈2,5,3,1〉,〈2,5,4,2〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈2,4,2,1〉,〈3,4,2,1〉,〈3,5,3,1〉〉,
〈〈1,1,1,1〉,〈1,1,2,1〉,〈2,4,2,1〉,〈3,4,2,1〉,〈3,5,3,1〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈3,1,1,1〉,〈3,4,2,1〉,〈3,5,3,1〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈2,4,2,1〉,〈2,5,3,1〉,〈3,5,3,1〉〉,
〈〈1,1,1,1〉,〈1,1,2,1〉,〈2,4,2,1〉,〈2,5,3,1〉,〈3,5,3,1〉〉},

[sem_traces________________5]
sem_test_convert_traces(testtracemachine(wfl_mainch,starttrace,5))=

{〈〈1,1,1,1〉,〈2,1,1,1〉,〈2,4,2,1〉,〈3,4,2,1〉,〈3,5,3,1〉,〈3,5,4,2〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈2,4,2,1〉,〈2,5,3,1〉,〈2,5,4,2〉,〈3,5,4,2〉〉,
〈〈1,1,1,1〉,〈1,1,2,1〉,〈2,4,2,1〉,〈2,5,3,1〉,〈2,5,4,2〉,〈3,5,4,2〉〉,
〈〈1,1,1,1〉,〈1,1,2,1〉,〈2,4,2,1〉,〈2,5,3,1〉,〈3,5,3,1〉,〈4,6,3,1〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈2,4,2,1〉,〈2,5,3,1〉,〈3,5,3,1〉,〈4,6,3,1〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈3,1,1,1〉,〈3,4,2,1〉,〈3,5,3,1〉,〈4,6,3,1〉〉,
〈〈1,1,1,1〉,〈1,1,2,1〉,〈2,4,2,1〉,〈3,4,2,1〉,〈3,5,3,1〉,〈4,6,3,1〉〉,
〈〈1,1,1,1〉,〈1,1,2,1〉,〈2,4,2,1〉,〈3,4,2,1〉,〈3,5,3,1〉,〈3,5,4,2〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈3,1,1,1〉,〈3,4,2,1〉,〈3,5,3,1〉,〈3,5,4,2〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈2,4,2,1〉,〈2,5,3,1〉,〈3,5,3,1〉,〈3,5,4,2〉〉,
〈〈1,1,1,1〉,〈1,1,2,1〉,〈2,4,2,1〉,〈2,5,3,1〉,〈3,5,3,1〉,〈3,5,4,2〉〉,
〈〈1,1,1,1〉,〈1,1,2,1〉,〈2,4,2,1〉,〈2,5,3,1〉,〈2,5,4,2〉,〈2,5,4,3〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈2,4,2,1〉,〈2,5,3,1〉,〈2,5,4,2〉,〈2,5,4,3〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈2,4,2,1〉,〈3,4,2,1〉,〈3,5,3,1〉,〈4,6,3,1〉〉},

[sem_traces________________6]
sem_test_convert_traces(testtracemachine(wfl_mainch,starttrace,6)) =

{〈〈1,1,1,1〉,〈1,1,2,1〉,〈2,4,2,1〉,〈3,4,2,1〉,〈3,5,3,1〉,〈3,5,4,2〉,〈4,6,4,2〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈3,1,1,1〉,〈3,4,2,1〉,〈3,5,3,1〉,〈3,5,4,2〉,〈4,6,4,2〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈2,4,2,1〉,〈2,5,3,1〉,〈2,5,4,2〉,〈3,5,4,2〉,〈4,6,4,2〉〉,
〈〈1,1,1,1〉,〈1,1,2,1〉,〈2,4,2,1〉,〈2,5,3,1〉,〈2,5,4,2〉,〈3,5,4,2〉,〈4,6,4,2〉〉,
〈〈1,1,1,1〉,〈1,1,2,1〉,〈2,4,2,1〉,〈2,5,3,1〉,〈3,5,3,1〉,〈4,6,3,1〉,〈4,6,4,2〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈2,4,2,1〉,〈2,5,3,1〉,〈3,5,3,1〉,〈4,6,3,1〉,〈4,6,4,2〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈2,4,2,1〉,〈3,4,2,1〉,〈3,5,3,1〉,〈4,6,3,1〉,〈4,6,4,2〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈2,4,2,1〉,〈3,4,2,1〉,〈3,5,3,1〉,〈3,5,4,2〉,〈3,5,4,3〉〉,

D.4 Test 327

〈〈1,1,1,1〉,〈2,1,1,1〉,〈2,4,2,1〉,〈2,5,3,1〉,〈3,5,3,1〉,〈3,5,4,2〉,〈3,5,4,3〉〉,
〈〈1,1,1,1〉,〈1,1,2,1〉,〈2,4,2,1〉,〈2,5,3,1〉,〈3,5,3,1〉,〈3,5,4,2〉,〈3,5,4,3〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈2,4,2,1〉,〈2,5,3,1〉,〈2,5,4,2〉,〈2,5,4,3〉,〈3,5,4,3〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈3,1,1,1〉,〈3,4,2,1〉,〈3,5,3,1〉,〈4,6,3,1〉,〈5,7,3,1〉〉,
〈〈1,1,1,1〉,〈1,1,2,1〉,〈2,4,2,1〉,〈3,4,2,1〉,〈3,5,3,1〉,〈4,6,3,1〉,〈5,7,3,1〉〉,
〈〈1,1,1,1〉,〈1,1,2,1〉,〈2,4,2,1〉,〈3,4,2,1〉,〈3,5,3,1〉,〈4,6,3,1〉,〈4,6,4,2〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈3,1,1,1〉,〈3,4,2,1〉,〈3,5,3,1〉,〈4,6,3,1〉,〈4,6,4,2〉〉,
〈〈1,1,1,1〉,〈1,1,2,1〉,〈2,4,2,1〉,〈2,5,3,1〉,〈2,5,4,2〉,〈2,5,4,3〉,〈3,5,4,3〉〉,
〈〈1,1,1,1〉,〈1,1,2,1〉,〈2,4,2,1〉,〈2,5,3,1〉,〈3,5,3,1〉,〈3,5,4,2〉,〈4,6,4,2〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈2,4,2,1〉,〈2,5,3,1〉,〈3,5,3,1〉,〈3,5,4,2〉,〈4,6,4,2〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈2,4,2,1〉,〈3,4,2,1〉,〈3,5,3,1〉,〈3,5,4,2〉,〈4,6,4,2〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈2,4,2,1〉,〈3,4,2,1〉,〈3,5,3,1〉,〈4,6,3,1〉,〈5,7,3,1〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈2,4,2,1〉,〈2,5,3,1〉,〈3,5,3,1〉,〈4,6,3,1〉,〈5,7,3,1〉〉,
〈〈1,1,1,1〉,〈1,1,2,1〉,〈2,4,2,1〉,〈2,5,3,1〉,〈3,5,3,1〉,〈4,6,3,1〉,〈5,7,3,1〉〉,
〈〈1,1,1,1〉,〈1,1,2,1〉,〈2,4,2,1〉,〈2,5,3,1〉,〈2,5,4,2〉,〈3,5,4,2〉,〈3,5,4,3〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈2,4,2,1〉,〈2,5,3,1〉,〈2,5,4,2〉,〈3,5,4,2〉,〈3,5,4,3〉〉,
〈〈1,1,1,1〉,〈2,1,1,1〉,〈3,1,1,1〉,〈3,4,2,1〉,〈3,5,3,1〉,〈3,5,4,2〉,〈3,5,4,3〉〉,
〈〈1,1,1,1〉,〈1,1,2,1〉,〈2,4,2,1〉,〈3,4,2,1〉,〈3,5,3,1〉,〈3,5,4,2〉,〈3,5,4,3〉〉}

end - - class end

D.4.3 Test of collections

RSC_test2

scheme RSC_test3 =
extend RSC_test2 with
class

Test of a collection.

value
col_m1out : Event = mk_OutputEvent(11, ′′Msg1", mk_Address("B′′)),
col_m1in : Event = mk_InputEvent(11, mk_Address(′′A′′)),
col_m2out : Event = mk_OutputEvent(21, ′′Msg2", mk_Address("C′′)),
col_m2in : Event = mk_InputEvent(21, mk_Address(′′B′′)),

col_m22out : Event = mk_OutputEvent(21, ′′Msg2", mk_Address("B′′)),
col_m22in : Event = mk_InputEvent(21, mk_Address(′′C′′)),

col_m3out : Event = mk_OutputEvent(31, ′′Msg3", mk_Address("A′′)),
col_m3in : Event = mk_InputEvent(31, mk_Address(′′B′′)),
col_m4out : Event = mk_OutputEvent(41, ′′Msg4", mk_Address("D′′)),
col_m4in : Event = mk_InputEvent(41, mk_Address(′′C′′)),
col_m5out : Event = mk_OutputEvent(51, ′′Msg5", mk_Address("C′′)),
col_m5in : Event = mk_InputEvent(51, mk_Address(′′D′′)),

col_c1 : Event = mk_ConditionEvent(′′Cond1", 12, Hot, {"B","C′′}),

col_mch1_a : Location∗ =
〈mk_Location(Hot, col_m1out), mk_Location(Hot, col_m3in),mk_Location(Hot,StopEvent)〉,

col_mch1_b : Location∗ =
〈mk_Location(Hot, col_m1in),

328 Appendix D. RSL specifications for the RSC

mk_Location(Hot,col_c1),mk_Location(Hot,
col_m2out),mk_Location(Hot,col_m3out),mk_Location(Hot,StopEvent)〉,

col_mch1_c : Location∗ =
〈mk_Location(Hot, col_c1), mk_Location(Hot, col_m2in),mk_Location(Hot,StopEvent)〉,

col_mch1 : Chart = [′′A" +> col_mch1_a,"B" +> col_mch1_b, "C′′ 7→
col_mch1_c],

col_pch2_b : Location∗ =
〈mk_Location(Hot, col_c1), mk_Location(Hot, col_m2out),mk_Location(Hot,StopEvent)〉,

col_pch2_c : Location∗ =
〈mk_Location(Hot, col_c1), mk_Location(Hot,col_m2in),mk_Location(Hot,StopEvent)〉,

col_pch2 : Chart = [′′B" +> col_pch2_b,"C′′ 7→ col_pch2_c],

col_mch2_c : Location∗ =
〈mk_Location(Hot, col_m4out), mk_Location(Hot, col_m5in),mk_Location(Hot,StopEvent)〉,

col_mch2_d : Location∗ =
〈mk_Location(Hot, col_m4in),

mk_Location(Hot,col_m5out),mk_Location(Hot,StopEvent)〉,
col_mch2 : Chart = [′′C" +> col_mch2_c,"D′′ 7→ col_mch2_d],

col_lsc1 : RSC = mk_RSC′(′′RSC1′′, [], col_mch1, {}),
col_lsc2 : RSC = mk_RSC′(′′RSC2′′, col_pch2, col_mch2, {}),

col_collsc1 : ColRSC = mk_act(col_lsc1,initialize_chart(mainchart(col_lsc1))),
col_collsc2 : ColRSC = mk_not_act(col_lsc2,{}),

col_collection : Collection = [′′RSC1" +> col_collsc1, "RSC2′′ 7→ col_collsc2],

print_states : Collection → (Inst_Name × Int∗)-set print_states(col) is if col = [] then {} else let el = hd
col in {case col(el) of - - mk_act(_, state) -> (el, convert_state(state)), mk_not_act(lsc64, state2) → (el, 〈〉),
mk_done() → (el, 〈〉) end} union print_states(col \ {el}) end end,

tm_collection : Collection × Int → Collection
tm_collection(col, counter) ≡

if counter = 0 then col else tm_collection(execute_collection(col), counter − 1) end ,

test_func : Int → (Int × Int)
test_func(i) ≡
(i+1, i+2)

test_case
[col_wf_mch1________________]

wf_chart(col_mch1),
[col_wf_pch2________________]

wf_chart(col_pch2),
[col_wf_mch2________________]

wf_chart(col_mch2),
[col_wf_lsc1________________]

wf_RSC(col_lsc1),
[col_wf_lsc2________________]

wf_RSC(col_lsc2),
[col_col_wf_1_______________]

wf_col_active(col_collection),
[col_col_wf_2_______________]

wf_col_domain(col_collection),
[col_col_wf_3_______________]

D.5 CSP and LSC 329

wf_col_consistent(col_collection)

[wf_lsc] wf_chart(tmc2), [wf_collection] wf_collection(testcol), [execute_collection28] print_states(tm_collection(testcol,
25))

[events_lsc] events_lsc(testlsc), [lsc_ids] lsc_ids(testlsc)

end - -class end

D.5 CSP and LSC

D.5.1 Example 1

object types :
class

Initial LSC types.

type

LSC_Type == Existential | Universal,

Location :: temp : HotCold event : Event,
Event =

ActionEvent | MessageEvent | ConditionEvent | CoregionEvent |
Subchart | EndSubchart, - - | SendStartMessage |

- - receiveStartMessage, – |
- - TimerEvent,

ActionEvent,
MessageEvent ==

- - input message giving id of message to be received
mk_InputEvent(inchannelid : Nat) |

- - output message giving id of message to be sent and message
- - to be sent

mk_OutputEvent(outchannelid : Nat,
outpar : Message),

- - for each condition create a separate process which handles
- - condition evaluation and uses channel "cid"
ConditionEvent ::

- - name of condition
- - conname : Text

- - Condition ID
cid : Nat

- - current instance′s unique number (from 1 to total number of
- - instances sharing the condition)
no : Nat
- - temperature of condition

temp : HotCold,
- - set of instance names sharing the condition

330 Appendix D. RSL specifications for the RSC

- -share : Text-set,

CoregionEvent :: locl : Location∗,
Subchart ::

- - subchart id
scid : Nat

- - number of locations (excluding mk_subchart, including mk_endsubchart
length : Nat
- - list of instance IDs that indicate which instances are
- - participating in the subchart
share : Nat∗,

EndSubchart :: scid : Nat,
- - scid not really necessary, but convenient when reading RSL specification

- - temperature, general
HotCold == Hot | Cold,

- - abstract data sort
Data,

- - message consisting of name and data
Message :: outpid: Text outpar : Data,

State ::
- - current position on instance

pos : Int ↔ incr
- - list of positions of subchart beginnings

subbeg : Int∗
- - list of positions of subchart endings

subend : Int∗
- - list of subchart ids

scid : Int∗
- - list of subcharts sharings

sharel : (Nat∗)∗

- - indicator for showing whether instance is in cold
- - (location-wise) region

opt : Bool ↔ change

end

A boolean channel.

scheme bool_chnl = class channel ch : Bool end

An int channel.

scheme int_chnl = class channel ch : Int end

types

D.5 CSP and LSC 331

An interrupt channel.

scheme irq_chnl = class channel ch : types.HotCold × Nat∗ × Nat end

A unit channel.

scheme unit_chnl = class channel ch : Unit end

types

Abstraction of underlying statechart.

scheme StateChart = class channel evt : types.Message end

types

Example instance A.

scheme S_A =
class

value
name : Text = ′′A′′,
id : Nat = 1,
length : Nat = 4,
tempData1 : types.Data,
tempData2 : types.Data,

Loc1 : types.Location = types.mk_Location(types.Hot,
types.mk_OutputEvent(1,

types.mk_Message(′′Msg1′′, tempData1))),

Loc2 : types.Location = types.mk_Location(types.Hot,
types.mk_Subchart(1,2,〈1,2〉)),

- - next to locations
Loc3 : types.Location = types.mk_Location(types.Hot,

types.mk_OutputEvent(
3,

types.mk_Message(′′Msg3′′,tempData2))),
Loc4 : types.Location = types.mk_Location(types.Hot,

types.mk_EndSubchart(1)),

lsclocl : types.Location∗ = 〈Loc1, Loc2, Loc3, Loc4〉

end

types

332 Appendix D. RSL specifications for the RSC

Example instance B.

scheme S_B =
class

value
name : Text = ′′B′′,
id : Nat = 2,
length : Nat = 7,

Loc1 : types.Location = types.mk_Location(types.Hot,
types.mk_CoregionEvent(〈Loc2, Loc3〉)),

Loc2 : types.Location = types.mk_Location(types.Hot,
types.mk_InputEvent(1)),

Loc3 : types.Location = types.mk_Location(types.Hot,
types.mk_InputEvent(2)),

Loc4 : types.Location = types.mk_Location(types.Hot,
types.mk_ConditionEvent(1,1,types.Hot)),

Loc5 : types.Location = types.mk_Location(types.Hot,
types.mk_Subchart(1,2,〈1,2〉)),

Loc6 : types.Location = types.mk_Location(types.Hot,
types.mk_InputEvent(3)),

Loc7 : types.Location = types.mk_Location(types.Hot,
types.mk_EndSubchart(1)),

lsclocl : types.Location∗ = 〈Loc1, Loc2, Loc3, Loc4, Loc5,
Loc6, Loc7〉

end

types

Example instance C.

scheme S_C =
class

value
name : Text = ′′C′′,
id : Nat = 3,
length : Nat = 2,
tempdata : types.Data,

Loc1 : types.Location = types.mk_Location(types.Hot,
types.mk_OutputEvent(2,

types.mk_Message(′′Msg2′′, tempdata))),

Loc2 : types.Location = types.mk_Location(types.Hot,
types.mk_ConditionEvent(1,2,types.Hot)),

D.5 CSP and LSC 333

lsclocl : types.Location∗ = 〈Loc1, Loc2〉

end

A generic channel.

scheme chscheme(Data : class type Elem end) = class channel ch : Data.Elem end

bool_chnl, unit_chnl

A condition process scheme. Mst be instantiated for each condition.

scheme condition_p(

- - receive channels
sc_ch[n:Nat, m:Nat] : unit_chnl,

- - result channels
rc_ch[n:Nat, m:Nat] : bool_chnl,

c_no : class
value

- - condition id (unique for each condition)
condID : Nat,
- - number of instances sharing the condition
inst_no : Nat,
- - predicate used to check if condition is met
test_condition : Unit → Bool

end
) =

class
value

start : Unit → in {sc_ch[n,m].ch | n : Nat, m: Nat} out {rc_ch[n,m].ch | n : Nat, m: Nat} Unit
start() ≡

sync_cond(c_no.condID, 1);
send_result(c_no.condID,1, c_no.test_condition());
- - called recursively since condition may be inside a
- - iterating subchart
start(),

- - synchronizes current condition in order to prepare evaluation
sync_cond : Nat × Nat →
in {sc_ch[n,m].ch | n : Nat, m: Nat}
Unit

sync_cond(condID, no) ≡
if no>c_no.inst_no
then
skip

else
sc_ch[condID, no].ch?;

334 Appendix D. RSL specifications for the RSC

sync_cond(condID, no+1)
end,

- - sends the result of the condition to the instances,
- - thereby allowing them to proceed again

send_result : Nat × Nat × Bool→
out {rc_ch[n,m].ch | n : Nat, m: Nat}
Unit

send_result(condID, no, result) ≡
if no>c_no.inst_no
then

skip
else

rc_ch[condID, no].ch!result;
send_result(condID, no+1, result)

end

end

irq_chnl, bool_chnl, types

An interrupt process that should handle exits from charts.

scheme interrupt_p(
- - receive channels

irqs : irq_chnl,
- - result channels

irqr[n:Nat] : bool_chnl,
irq_no : class

value
- - number of instances (each instance is numbered from 1..)

inst_no : Nat
end

) =
class

value
- - waits for interrupts to arrive on the irq channel from instances
start : Unit → in irqs.ch out {irqr[n].ch | n:Nat} Unit
start() ≡

let
(hot, share, notifier) = irqs.ch?

in
if hot = types.Hot
then - - hot condition evaluated to false, main chart

- - abort, unsuccesful run
interrupt_all(1, notifier, true)

else - - cold condition
if share = 〈〉 - - no subchart notify all instances
then

interrupt_all(1, notifier, false)
else - - a subchart, notify only relevant instances

interrupt_cold_sc(share, notifier)
end

end
end,

D.5 CSP and LSC 335

- - interrupts all instances and stops,
interrupt_all : Nat × Nat × Bool→ out {irqr[n].ch |n:Nat } Unit
interrupt_all(no, notifier, hot) ≡

if no > irq_no.inst_no
then - - all instances interrupted

stop
else

if no = notifier
then - - instance where interrupt message originated must

- - not be notified
interrupt_all(no+1, notifier, hot)

else
irqr[no].ch!hot;
interrupt_all(no+1, notifier, hot)

end
end,

- - interrupts all the instances that are in the same subchart as the
- - instance where the interrupt originated

interrupt_cold_sc : Nat∗ × Nat → in irqs.ch out {irqr[n].ch |n:Nat} Unit
interrupt_cold_sc(shre, notifier) ≡

if shre = 〈〉 - - all stopped, start over
then

start()
else

if hd shre = notifier
then

interrupt_cold_sc(tl shre, notifier)
else

irqr[hd shre].ch!false;
interrupt_cold_sc(tl shre, notifier)

end
end

end - - class

unit_chnl, bool_chnl

Generic subchart process.

scheme subchart_p(

- - receive channels
ss_ch[n:Nat, m:Nat] : bool_chnl,

- - feedback channels
sr_ch[n:Nat, m:Nat] : bool_chnl,

sc_no : class
value

- - subchart id (unique for each subchart)
scID : Nat,
- - number of instances sharing the subchart

336 Appendix D. RSL specifications for the RSC

inst_no : Nat
variable

- - number of times the subchart must be repeated
iterations : Int

end
) =

class
value

start : Unit → write sc_no.iterations
in {ss_ch[n,m].ch | n : Nat, m: Nat}
out {sr_ch[n,m].ch | n : Nat, m: Nat}
Unit
start() ≡

if sync_sc(sc_no.scID, 1, true)
then

notify(sc_no.scID, 1, true);
start()

else
notify(sc_no.scID, 1, repeat());

- - called recursively
start()

end,

- - determines whether a subchart must be repeated (-1
- - denotes asterisk)

repeat : Unit → write sc_no.iterations Bool
repeat() ≡
if sc_no.iterations > 0 ∨ sc_no.iterations = −1
then

if sc_no.iterations = −1
then

true
else

sc_no.iterations := sc_no.iterations−1;
true

end
else

false
end,

- - synchronizes current condition in order to prepare
- - evaluation
- - returns whether it is an entrance or not

sync_sc : Nat × Nat × Bool →
in {ss_ch[n,m].ch | n : Nat, m: Nat}
Bool

sync_sc(scID, no, entering) ≡
if no>sc_no.inst_no
then

entering
else
- - synching next instance, ss_ch returns bool which
- - denotes whether the instances are entering a subchart
- - or leaving

let
entering = ss_ch[scID, no].ch?

in
sync_sc(scID, no+1, entering)

D.5 CSP and LSC 337

end
end,

- - sends the result of the condition to the instances,
- - thereby allowing them to proceed

notify : Nat × Nat × Bool →
out {sr_ch[n,m].ch | n : Nat, m: Nat}
Unit

notify(scID, no, repeat) ≡
if no>sc_no.inst_no
then
skip

else
sr_ch[scID, no].ch!repeat;
notify(scID, no+1, repeat)

end
end

types, chscheme, StateChart, unit_chnl, bool_chnl, irq_chnl

A generic lsc specification.

scheme lsc(
inst :

class
value

lsclocl : types.Location∗,
name : Text,
id : Nat,
length : Nat

- - sc_spec : types.SC_Event-list

end,
channels[id : Nat] : chscheme(types{Message for Elem}),
cs_ch[n : Nat, m : Nat] : unit_chnl,
cr_ch[n : Nat, m : Nat] : bool_chnl,
ss_ch[n : Nat, m : Nat] : bool_chnl,
sr_ch[n : Nat, m : Nat] : bool_chnl,
irqs_ch : irq_chnl,
irqr_ch[n: Nat] : bool_chnl

) = with types in
class

value

test : Unit → Unit,

execute :
State →

in sc.evt,
{channels[id].ch| id : Nat},
{cr_ch[n,m].ch | n : Nat, m: Nat},
{sr_ch[n,m].ch | n : Nat, m: Nat},
{irqr_ch[n].ch | n : Nat}

338 Appendix D. RSL specifications for the RSC

out sc.evt,
{channels[id].ch | id : Nat},
{cs_ch[n,m].ch | n : Nat, m: Nat},
{ss_ch[n,m].ch | n : Nat, m: Nat},
irqs_ch.ch

Unit
execute(state) ≡
if (pos(state) = inst.length)
then

- - after finishing behaviour of LSC all
- - behaviour may be exhibited
skip - - or chaos??

else
- - process may be interrupted or proceeds

- - interrupted(state)
- - |=|

let
interrupt = irqr_ch[inst.id].ch?,
curevent = event(inst.lsclocl(pos(state))),

- - determines temperature of location
curtemp = temp(inst.lsclocl(pos(state)))

in
if interrupt = false then

if curtemp = Cold ∧ opt(state) = false
then - - instance has reached optional behaviour part, may

- - stop or continue
process(change(opt(state) ∧ false, state), curevent) debc

skip - - or chaos??
else - - process is in hot or cold location part and proceeds

process(state, curevent)
end

else
- - process interrupted

if interrupt = true then
- - cold condition interrupt

if subbeg(state) = 〈〉
then - - there is no subchart when subbeg (and subend,

- - scid) is empty, therefore exit main chart
- - (succesful run, however)

skip - - chaos
else - - there is a subchart, exit current one

execute(mk_State((hd subend(state))+1, tl subbeg(state), tl subend(state), tl
scid(state), tl sharel(state), opt(state)))

end
else
- - hot condition interrupt
stop

end
end
end
end,

process :
State × Event→
in sc.evt,

{channels[id].ch| id : Nat},
{cr_ch[n,m].ch | n : Nat, m: Nat},
{sr_ch[n,m].ch | n : Nat, m: Nat},

D.5 CSP and LSC 339

{irqr_ch[n].ch | n : Nat}
out sc.evt,

{channels[id].ch | id : Nat},
{cs_ch[n,m].ch | n : Nat, m: Nat},
{ss_ch[n,m].ch | n : Nat, m: Nat},
irqs_ch.ch

Unit
process(state, curevent) ≡
case curevent of

- - needs some relation to Statechart here,
- - do some computation or whatever
Event_to_ActionEvent(curevent) →

define

compute();
execute(incr(pos(state)+1, state)),

- - sending of a message
mk_InputEvent(inmsgid) →

let v = channels[inmsgid].ch? in
sc.evt!v

end;
execute(incr(pos(state)+1, state)),

- - reception of a message
mk_OutputEvent(outmsgid, outpar) →
let v = sc.evt? in

channels[outmsgid].ch!v
end;

execute(incr(pos(state)+1, state)),

- - condition has several possible behaviours : hot/cold
- - conditions, is or is not in subchart.
- - hot condition not permitted, think about semantics in
- - Come lets play (continuously evaluated) DEFINE
mk_ConditionEvent(cid, no, temp) →
- - sync with other instances and get result of condition
if

cs_ch[cid, no].ch!();
cr_ch[cid, no].ch?

then - - synchronized and evaluated to true
execute(incr(pos(state)+1, state))

else - - synchronized and evaluated to false
if temp = Hot then - - stop all instances

irqs_ch.ch!(Hot,〈〉, inst.id); - - false hot condition, may not happen
stop - - chaos is not right, because LSC is not fulfilled

else - - false cold condition
if subbeg(state) = 〈〉
then - - there is no subchart when subbeg (and subend,

- - scid) is empty, therefore exit main chart
irqs_ch.ch!(Cold, 〈〉, inst.id);
skip - -chaos

else - - there is a subchart, interrupt all relevant
- - instances

irqs_ch.ch!(Cold, hd sharel(state), inst.id);
execute(mk_State((hd subend(state))+1, tl

340 Appendix D. RSL specifications for the RSC

subbeg(state), tl subend(state), tl scid(state),
tl sharel(state), opt(state)))

end
end

end,

mk_CoregionEvent(locl) →
execute_coregion(locl, locl);
execute(incr(pos(state)+(len locl)+1,state)),

- - synchronizes the entry into subchart
mk_Subchart(newscid, sublen, shr) →

let
index : Nat • shr(index) = inst.id

in
- - newsid: subchart id, given above
- - index: share is list of instance id′s, the channel to
- - be used matches the corresponding index
- - true means this is an entry

ss_ch[newscid, index].ch!true;
- - receive sync signal back, dummy is irrelevant, since no
- - iteration can take place upon entry of subchart

let
dummy = sr_ch[newscid, index].ch?

in
- - continuing and storing information about entered subchart

execute(mk_State(pos(state)+1, 〈pos(state)〉̂subbeg(state),
〈(pos(state)+sublen)〉̂subend(state), 〈newscid〉̂scid(state) , 〈shr〉
̂sharel(state), opt(state)))

end
end,

- - exit from subchart, must synchronize and check whether
- - subchart must be repeated
mk_EndSubchart(curscid) →

let
index : Nat • (hd sharel(state))(index) = inst.id

in
- - false means this is an exit, might iterate, depending
- - on feedback

ss_ch[hd scid(state), index].ch!false;
- - received bool determines whether subchart is to be repeated

if sr_ch[hd scid(state), index].ch?
then - - repeat subchart(does not synchronize again at

- - start of subchart
execute(mk_State(hd subbeg(state)+1, subbeg(state), subend(state), scid(state), sharel(state),

opt(state)))
else - - go on and exit subchart

execute(mk_State((pos(state))+1, tl subbeg(state), tl subend(state), tl scid(state), tl
sharel(state), opt(state)))

end
end

- - introduce some kind of TRSL for timers?
- - need to know how to define timers

D.5 CSP and LSC 341

mk_SetTimer(tname, tid, dur) → chaos, mk_StopTimer(stname, stid) → chaos, mk_TimeoutTimer(ttname,
ttid) → chaos,

- - _ -> skip

end, - - case

- - the message-events in the Location-list must be specified
- - with external nondeterministic choice
- - pointer may not be increased
execute_coregion : types.Location∗ × types.Location∗

∼

→
in sc.evt, {channels[id].ch| id : Nat}
out sc.evt, {channels[id].ch | id : Nat}
Unit

execute_coregion(ll1, ll2) ≡
if len ll1 = 1

then
execute_cor_event(hd ll1, ll2)

else
execute_cor_event(hd ll1, ll2) debc execute_coregion(tl ll1, ll2)

end
pre ll1 6= 〈〉,

- - work on this one, it is not correct, only one event is
- - happening
- - above still valid??
execute_cor_event : Location × Location∗ →

in sc.evt, {channels[id].ch| id : Nat}
out sc.evt, {channels[id].ch | id : Nat}
Unit

execute_cor_event(loc, locl) ≡
let

curevent = event(loc)
in

case curevent of
- - sending of a message

mk_InputEvent(inmsgid) →
let v = channels[inmsgid].ch? in

sc.evt!v
end,

- - reception of a message
mk_OutputEvent(outmsgid, outpar) →

let v = sc.evt? in
channels[outmsgid].ch!v

end
end;
let

first : types.Location∗, last : types.Location∗
• first̂〈loc〉̂last = locl

in
if first̂last = 〈〉
then

skip
else

execute_coregion(first̂last, first̂last)
end

342 Appendix D. RSL specifications for the RSC

end
end,

compute : Unit → Unit

object sc : StateChart

end

types, lsc, S_B, S_A, S_C, int_chnl, unit_chnl, bool_chnl, irq_chnl,
condition_p, subchart_p, interrupt_p

Complete example specification consisting of a LSC with the instances A, B and C.

scheme system =
class

- ———— GENERAL PART ———————
object

- - channels for communicating between instances
com_chnls[id : Nat] : chscheme(types{Message for Elem}),

- - channel for synchronizaton of conditions
cs_ch[n : Nat, m : Nat] : unit_chnl,

- - channels for returning result from condition
cr_ch[n : Nat, m : Nat] : bool_chnl,

- - channels for synchronizaton of subcharts
ss_ch[n : Nat, m : Nat] : bool_chnl,

- - channels for synchronizaton of subcharts
sr_ch[n : Nat, m : Nat] : bool_chnl,

- - channel for sending interrupt
irqs_ch : irq_chnl,

- - channel for receving interrupts
irqr_ch[n: Nat] : bool_chnl,

- ———— SPECIALIZED PART ———————-

- - condition 1 values
con_no1 : class

value
- - name of condition (only given for convenience)

condname : Text = ′′Condition1′′,
- - unique id of condition

condID : Nat = 1,
- - number of instances sharing the condition
inst_no : Nat = 2,
- - predicate for testing whether the condition is true or not
test_condition : Unit → Bool

end,

D.5 CSP and LSC 343

- - object for synchronizing and evaluating condition 1
cp1 : condition_p(cs_ch, cr_ch, con_no1),

- - subchart 1 values
sc_no1 : class

value
- - unique id of subchart
scID : Nat = 1,

- - number of instances in subchart
inst_no : Nat = 2

variable
- - used for counting how often the subchart must be

- - repeated, 0 denotes infinitely (termination can
- - only happen by condition exit)

iterations : Int := 1
end,

- - object for synchronizing subchart 1 entry and exit
scp1 : subchart_p(ss_ch, sr_ch, sc_no1),

- - value with number of instances, used by interrupt process
irq_no : class

value
inst_no : Nat = 3

end,

- - object for handling interrupts
irqp : interrupt_p(irqs_ch, irqr_ch, irq_no),

- - instances are instantiated
a : S_A,
a_lsc : lsc(a, com_chnls, cs_ch, cr_ch, ss_ch, sr_ch, irqs_ch, irqr_ch),
b : S_B,
b_lsc : lsc(b, com_chnls, cs_ch, cr_ch, ss_ch, sr_ch, irqs_ch, irqr_ch),
c : S_C,
c_lsc : lsc(c, com_chnls, cs_ch, cr_ch, ss_ch, sr_ch, irqs_ch, irqr_ch)

value
- - all processes are started in parallel

system : Unit → write any in any out any Unit
system() ≡ a_lsc.execute(types.mk_State(0,〈〉,〈〉,〈〉,〈〉, false))

‖ b_lsc.execute(types.mk_State(0,〈〉,〈〉,〈〉,〈〉, false))
‖ c_lsc.execute(types.mk_State(0,〈〉,〈〉,〈〉,〈〉, false))
‖ cp1.start()
‖ scp1.start()
‖ irqp.start()

end

D.5.2 Example 2

scheme lsc =
class

344 Appendix D. RSL specifications for the RSC

Example LSC where a LSC consists of the parallel composition on instances. Each instance is a series of
functions that branch depending on the execution.

type
Com = Msg_com | Sync_com,
Msg_com = Msg3 | Msg4 | Msg5 | Msg6 | Msg7 | Msg8 | Msg9,
Msg3,
Msg4,
Msg5,
Msg6,
Msg7,
Msg8,
Msg9,
Sync_com = Bool

channel
a_b : Com,
b_a : Com,
b_c : Com,
c_b : Com,
c_d : Com,
d_c : Com,
d_env : Com,
a_cond2 : Bool,
b_cond2 : Bool,
b_cond1 : Bool,
c_cond1 : Bool,
a_sub1 : Bool,
b_sub1 : Bool

value
msg3 : Msg3,
msg4 : Msg4,
msg5 : Msg5,
msg6 : Msg6,
msg7 : Msg7,
msg8 : Msg8,
msg9 : Msg9,

system : Unit → in any out any Unit
system() ≡ lsc1(),

lsc1 : Unit → in any out any Unit
lsc1() ≡ inst_a1() ‖ inst_b() ‖ inst_c() ‖ inst_d(),

inst_a1 : Unit → in any out any Unit
inst_a1() ≡

a_b!msg3 ;
action1() ;
a_sub1!true ;
while let continue = a_sub1? in continue end do

if a_cond2!true ; let continue = a_cond2? in continue end then a_b!msg6 ; a_sub1!true
else inst_a2()
end

end ;
inst_a2(),

D.5 CSP and LSC 345

inst_a2 : Unit → in any out any Unit
inst_a2() ≡ chaos,

inst_b : Unit → in any out any Unit
inst_b() ≡

(let rmsg3 = a_b? in skip end de let rmsg4 = c_b? in skip end) ;
if b_cond1!true ; let continue = b_cond1? in continue end
then

b_sub1!true ;
while let continue = b_cond1? in continue end do

let rmsg6 = a_b? in skip end ; b_sub1!true
end ;
b_c!msg7
de
let rmsg9 = c_b? in skip end

else stop
end ;
chaos,

inst_c : Unit → in any out any Unit
inst_c() ≡

c_b!msg4 ;
if c_cond1!true ; let continue = c_cond1? in continue end
then let rmsg7 = b_c? in skip end de c_b!msg9 ; let rmsg7 = b_c? in skip end de c_b!msg9
else stop
end ;
chaos,

inst_d : Unit → in any out any Unit
inst_d() ≡ let rmsg8 = c_d? in skip end ; d_env!msg5 ; stop,

cond1 : Unit → in b_cond1, c_cond1 out b_cond1, c_cond1 Unit
cond1() ≡

let dummy = b_cond1? in skip end
de
let dummy = b_cond1? in skip end ; let dummy = b_cond1? in skip end
de
let dummy = b_cond1? in skip end ;
let continue = condition1() in (b_cond1!continue ‖ c_cond1!continue) end,

sub1 : Unit → in a_sub1, b_sub1 out a_sub1, b_sub1 Unit
sub1() ≡

while let repeat = repeat_sub1() in repeat end do
let dummy = a_sub1? in skip end
de
let dummy = b_sub1? in skip end ; let dummy = a_sub1? in skip end
de
let dummy = b_sub1? in skip end ; (a_sub1!true ‖ b_sub1!true)

end ;
(a_sub1!false ‖ b_sub1!false),

- ———- functions ———————–

condition 1 MUST be true

condition1 : Unit → Bool

346 Appendix D. RSL specifications for the RSC

condition1() ≡ true,

condition2 : Unit → Bool,
action1 : Unit → Unit,
repeat_sub1 : Unit → Bool

end

D.6 Applicative RSC

D.6.1 Types

../RSC_semantics

scheme rsc_types =
extend RSC_semantics with
class

type
Collection = RSC-set

type
SysTrace = SysEventω ,
SysEvent′ ==

mk_SysAction(instance : Inst_Name, action : Text) |
mk_SysMsg(src : Inst_Name-set, dst : Inst_Name-set, method : Text) |
mk_SysCondition(shared_by : Inst_Name-set, cond : Text),

SysEvent =
{| se : SysEvent′ •

case se of
mk_SysMsg(src, dst,) →

let n = card src + card dst in
n = 1 ∨ n = 2

end,
→ true

end |}

type
Variables = VariableName →m Value,
VariableName = Text,
Value == Boolean(boolean: Bool) | Integer(integer: Int) | String(string: Text)

type
Condition = Inst_Name-set × Variables → Bool,
Action = Inst_Name × Variables → Variables,

Src and dst included in signature. Src because a function that assignes a variable from src in dst needs this
information. If the set is empty it denotes the environment.

Message =
Inst_Name-set × Inst_Name-set × Variables →

Variables
end

D.6 Applicative RSC 347

D.6.2 Type object

rsc_types

An object for all the types needed.

object T : rsc_types

D.6.3 Semantics

T, specification

scheme semantics(SPEC : specification) =
class

value

The system trace that defines the events that happen in the system.

st : T.SysTrace,

The initial variables at the beginning of the system run.

v : T.Variables,

The list of variables in the system. The first element are the initial variables. The next element are the variables
after performing the first system event of the system trace. And so on. The variables are the state of the system.
This also implies that there is one more element in the variables list than in the system trace.

vl : T.Variables∗ = make_var_trace(st, v)

The following axioms say that the system trace and variables list must conform to the constraints imposed by
all the \rsc′s that are specified. One is for \rsc′s without a prechart one for \rsc′s with a prechart.

axiom
[valid_trace_no_prechart]

∀ rsc : T.RSC, vv : T.VariableName-set •

rsc ∈ SPEC.rscs ∧ vv = SPEC.visible_variables(rsc) ∧ T.prechart(rsc) = [] ⇒
valid_trace_nopre(rsc, st, vl),

[valid_trace_with_prechart]
∀ rsc : T.RSC, vv : T.VariableName-set •

rsc ∈ SPEC.rscs ∧ vv = SPEC.visible_variables(rsc) ∧T.prechart(rsc) 6= [] ⇒
valid_trace(rsc, st, vl, vv)

348 Appendix D. RSL specifications for the RSC

valid_trace checks if a system trace and list of variables is valid with a single RSC as constraint.

value
valid_trace :

T.RSC × T.SysTrace × T.Variables∗ × T.VariableName-set ∼

→ Bool
valid_trace(rsc, t, vl, vv) ≡

(∀ i,j, k : Int •

{i, j, k} ⊆ inds t ∧ i ≤ j ∧ j < k ∧
let

The prechart trace is not concerned with visible events, thus the lambda function. A prechart trace is simply
a trace that conforms to the prechart specification.

pre_trace =
sub_trace(t, vl)(

i, j − 1, λ e : T.SysEvent • true),

The mainchart trace is only concerned with constraining events that are visible in the mainchart, i.e.
in our case events that occur somewhere in the mainchart. These events are filtered using the predicate
visible_event.

main_trace =
sub_trace(t, vl)(

j, k, visible_event(T.mainchart(rsc)))
in

The essential part: if a trace that satisfies the prechart is observed, we MUST also observe a trace that
satisfies the mainchart.

valid_chart(rsc, T.prechart(rsc))(pre_trace) ⇒
valid_chart(rsc, T.mainchart(rsc))(main_trace)

end)
pre len t + 1 = len vl ∧ T.prechart(rsc) 6= [],

valid_trace for \rsc′s with no prechart. No prechart means that the ordering imposed by the mainchart must
always be fulfilled.

- - Er der et problem med visible events og index
- - på et trace med
- - visible events?
valid_trace_nopre :

T.RSC × T.SysTrace × T.Variables∗ ∼

→ Bool
valid_trace_nopre(rsc, t, vl) ≡

(∃ ilist : Nat∗ •

len ilist ≥ 2 ∧
ilist(1) = 1 ∧

ilist(len ilist) = len t ∧
(∀ i : Int • i ∈ inds ilist \ {len ilist} ⇒

If the systemtrace (t) is empty the following will not hold and false will be returned.

D.6 Applicative RSC 349

ilist(i) ≤ ilist(i+1) ∧

It is checked that a list of indexes exist, where the mainchart is satisfied, thus implying that the mainchart
always will hold due to the constraints on the indexes given above.

valid_chart(rsc, T.mainchart(rsc))(
sub_trace(t,vl)(ilist(i), ilist(i + 1),

visible_event(T.mainchart(rsc))))))
pre T.prechart(rsc) = [],

sub_trace finds a subtrace of a systrace and variables list in an interval using a predicate on each element.

sub_trace :
T.SysTrace × T.Variablesω →

Int × Int × (T.SysEvent → Bool) →
T.SysTrace × T.Variablesω

sub_trace(t, vl)(i, j, p) ≡
let

Indices for events that are visible.

idxl1 = 〈n | n in 〈i .. j〉 • p(t(n))〉,

Indices for variables. For each state the variables before and after are included.

idxl2 = variable_indices(idxl1)
in

(〈t(n) | n in idxl1〉, 〈vl(n) | n in idxl2〉)
end,

variable_indices returns a list AB as AaBa where a = A+1, b = B+1 etc. Is used for determining indices of
variables that are needed.

variable_indices : Int∗ → Int∗
variable_indices(idxl) ≡
if idxl = 〈〉 then 〈〉
else

〈hd idxl, hd idxl+1〉̂variable_indices(tl idxl)
end,

valid_chart checks if a system trace and variables list is valid with regards to the constraints imposed by the
given chart.

valid_chart :
T.RSC × T.Chart →

T.SysTrace × T.Variablesω ∼

→ Bool
valid_chart(rsc, chart)(t, vl) ≡

350 Appendix D. RSL specifications for the RSC

valid_chart(rsc, chart)(t, vl)(T.initialize_chart(chart))(hd vl),

Same as above, used for recursion.

valid_chart :
T.RSC × T.Chart →

T.SysTrace × T.Variablesω →

T.State ∼

→
T.Variables → Bool

valid_chart(rsc, chart)(t, vl)(state)(old_var) ≡
if state = T.end_state(chart) then t = 〈〉
else

let
(ok, state′) =

expected_event(chart)(state, hd t, hd vl)
in

It is checked that the current system event (hd t) is actually an expected event in the chart with the given
state. Repeated for the tail of the system trace t. If hd t at any point is not expected, the system does not
conform to the constraints imposed by the chart.

ok ∧ valid_chart(rsc, chart)(tl t, tl tl vl)(state′)(hd tl vl) ∧

Checking if the visible events before this event are the same as they where after the last visible event. This
is to ensure that no invisible events have changed visible variables.

vis_var_ok(SPEC.visible_variables(rsc), old_var, hd vl)
end

end

type

A set of EnabledEvents.

EES = T.EnabledEvent-set,

A subtype of EES. Used for returning a result, where a maximum of 1 element is returned.

EE = {| ees : EES • card ees ≤ 1 |}

value

Checks if two sets contain the same variables with the same value for a given variable name set.

vis_var_ok : Text-set × T.Variables × T.Variables → Bool
vis_var_ok(vnames, old_var, cur_var) ≡
(∀ n : Text • n ∈ vnames ⇒

n ∈ dom old_var ∧

D.6 Applicative RSC 351

n ∈ dom cur_var ∧
old_var(n) = cur_var(n)),

expected_event checks wether the given SysEvent is possible with the given chart, state and variable set. It also
returns the new state in the RSC after performing the EnabledEvent that matches the SysEvent (or the current
state if false).

expected_event :
T.Chart →

T.State × T.SysEvent × T.Variables →
Bool × T.State

expected_event(chart)(state, event, var_before) ≡
let

state′ = perform_subchart_events(chart)(state),
ees = T.get_enabled_events(chart, state′),
exp_es =

case event of
T.mk_SysAction() →

expected_action(event, ees),
T.mk_SysCondition() →

expected_condition(event, ees, var_before),
T.mk_SysMsg(, ,) →

expected_message(event, ees)
end

in

No matching EnabledEvent found.

if exp_es = {} then (false, state)

Matching EnabledEvent found. The charts state is advanced using the matching EnabledEvent.

else (true, step_event(chart, state, hd exp_es))
end

end,

expected_action checks if an equivalent EnabledEvent of a action system event is present in the given EnabledEvent-
set. If found, the EnabledEvent is returned.

expected_action : T.SysEvent × EES ∼

→ EE
expected_action(event, ees) ≡

ee_subset(ees, action_match(event))
pre is_action(event),

action_match checks wether an EnabledEvent is an equivalent of the given system event.

action_match : T.SysEvent → T.EnabledEvent ∼

→ Bool
action_match(event)(ee) ≡

352 Appendix D. RSL specifications for the RSC

(∃ id : T.ID •

T.EnabledAction(
T.instance(event), T.action(event), id) = ee)

pre is_action(event),

expected_condition checks if an equivalent EnabledEvent of a condition system event is present in the given
EnabledEvent-set. If found, the EnabledEvent is returned.

expected_condition :
T.SysEvent × EES × T.Variables ∼

→ EE
expected_condition(event, ees, vars) ≡

ee_subset(ees, condition_match(event, vars))
pre is_condition(event),

condtion_match checks wether an EnabledEvent is an equivalent of the given system event. It must also
consider the variables in order to check if the EnabledEvent matches with the result of the condition predicate.

condition_match :
T.SysEvent × T.Variables →

T.EnabledEvent ∼

→ Bool
condition_match(event, vars)(ee) ≡

The following is a match if the condition predicate returns true.

(∃ id : T.ID •

(T.EnabledCondition(
T.shared_by(event), T.cond(event), id) = ee ∧

SPEC.conditions(T.cond(event))(
T.shared_by(event), vars))) ∨

If the condition predicate return false, there are two options wrt. EnabledEvents: an EnabledExitSubchart,
which denotes a false cold condition within a subchart, and an EnabledExitMainchart which denotes a false
cold condtion in a mainchart.

(∃

action_match checks if a action SysEvent matches the given EnabledEvent.

id : T.ID, instns : T.Inst_Name-set •

(T.EnabledExitSubchart(
instns, id, T.shared_by(event), T.cond(event)) =

ee ∧
∼ SPEC.conditions(T.cond(event))(

T.shared_by(event), vars))) ∨
(T.EnabledExitMainchart(

T.shared_by(event), T.cond(event)) = ee ∧
∼ SPEC.conditions(T.cond(event))(

T.shared_by(event), vars))
pre is_condition(event),

D.6 Applicative RSC 353

expected_message checks if an equivalent EnabledEvent of a message system event is present in the given
EnabledEvent-set. If found, the EnabledEvent is returned.

expected_message : T.SysEvent × EES ∼

→ EE
expected_message(event, ees) ≡

ee_subset(ees, message_match(event))
pre is_message(event),

message_match checks wether an EnabledEvent is an equivalent of the given system event. There are two
possibilites: an EnabledMessage which denotes a regular message and an EnabledCoregion which denotes an
enabled message within a coregion.

message_match :
T.SysEvent
→ T.EnabledEvent ∼

→ Bool
message_match(event)(ee) ≡

(∃ id : T.ID •

T.EnabledMessage(T.src(event), T.dst(event), id) =
ee) ∨

(∃ id : T.ID, i : Int •

T.EnabledCoregion(
T.src(event), T.dst(event), id, i) = ee)

pre is_message(event),

ee_subset returns a subset of the given EnabledEvent set with elements where the given predicate holds.

ee_subset : EES × (T.EnabledEvent → Bool) → EE
ee_subset(ees, p) ≡

{ee | ee : T.EnabledEvent • ee ∈ ees ∧ p(ee)}

value

make_var_trace generates a list of variables given a system trace and the initial variables.

make_var_trace :
T.SysTrace × T.Variables → T.Variablesω

make_var_trace(t, v) ≡
if t = 〈〉 then 〈v〉
else

let v′ = variable_step(hd t, v) in
〈v〉 ̂ make_var_trace(tl t, v′)

end
end,

variable_step calculates the resulting variables given some initial variables and an system event that occurs.
Only actions and messages modify the variables as conditions only read them.

variable_step :
T.SysEvent × T.Variables → T.Variables

variable_step(e, v) ≡

354 Appendix D. RSL specifications for the RSC

case e of
T.mk_SysAction(iname, a) →

SPEC.actions(
a)(iname, v),

T.mk_SysMsg(src, dst, m) →
SPEC.messages(m)(src, dst, v)

end,

perform_subchart_events performs all the possible subchart events of a RSC in a given state.

perform_subchart_events :
T.Chart → T.State → T.State

perform_subchart_events(chart)(state) ≡
let

ees = T.get_enabled_events(chart, state),
subchart_ees = find_subchart_events(ees)

in
if subchart_ees = {} then state
else

let
newstate =

T.step_event(chart, hd subchart_ees, state)
in

perform_subchart_events(chart)(newstate)
end

end
end,

find_subchart_events finds the subchart events in the given EnabledEvent-set.

find_subchart_events :
T.EnabledEvent-set → T.EnabledEvent-set

find_subchart_events(ees) ≡
if ees = {} then {}
else

let ee = hd ees in
case ee of

T.EnabledEnterSubchart(, ,) → {ee},
T.EnabledEndSubchart(,) → {ee},
→ find_subchart_events(ees \ {ee})

end
end

end

value

is_action checks if a system event is an action.

is_action : T.SysEvent → Bool
is_action(event) ≡

(∃ param : T.Inst_Name × Text •

event = T.mk_SysAction(param)),

D.6 Applicative RSC 355

is_condition checks if a system event is a condtion.

is_condition : T.SysEvent → Bool
is_condition(event) ≡

(∃ param : T.Inst_Name-set × Text •

event = T.mk_SysCondition(param)),

is_message checks if a system event is a message.

is_message : T.SysEvent → Bool
is_message(event) ≡

(∃
param :

T.Inst_Name-set × T.Inst_Name-set × Text
•

event = T.mk_SysMsg(param)),

this is from RSC_semantics, must be removed later.

step_event :
T.Chart × T.State × T.EnabledEvent → T.State,

visible_event checks wether a given system event is a visible event in the given chart. If forbidden events
where to be taken into account, whis function had to be changed.

visible_event :
T.Chart →

T.
SysEvent → Bool

visible_event(chart)(event) ≡
case event of

Checking if a action event corresponding to the system action event is present on the chart.

T.mk_SysAction(iname, action) →
(∃ e_id : T.ID •

T.mk_ActionEvent(action, e_id) ∈
chart(iname)),

Checking if a message event corresponding to the system message event is present on the chart.

T.mk_SysMsg(src, dst, method) →

The Environment is the source.

356 Appendix D. RSL specifications for the RSC

if src = {}
then

(∃ e_id : T.ID •

T.mk_InputEvent(e_id, T.Environment) ∈
chart(hd src))

else

The Environment is the destination.

if dst = {}
then

(∃
e_id : T.ID, e_t : T.HotCold

•

T.mk_OutputEvent(
e_id, method,
T.Environment) ∈ chart(hd src))

else

The source and destination are instances on the chart.

(∃ e_id : T.ID •

T.mk_InputEvent(
e_id, T.mk_Address(hd src)) ∈

chart(hd src)) ∧
(∃

e_id : T.ID, e_t : T.HotCold
•

T.mk_OutputEvent(
e_id, method,
T.mk_Address(hd dst)) ∈

chart(hd src))
end

end,

Checking if a condition event corresponding to the system condtion event is present on the chart.

T.mk_SysCondition(shared_by, cond) →
(∃

iname : T.Inst_Name, e_id : T.ID,
e_t : T.HotCold

•

T.mk_ConditionEvent(
cond, e_id, e_t, shared_by) ∈

chart(iname))
end,

overload of ∈: it checks if an Event one of the events specified on a location in the given Location∗.

∈ : T.Event × T.Location∗ → Bool

D.6 Applicative RSC 357

e ∈ ll ≡ e ∈ 〈T.event(l) | l in ll〉
end

D.6.4 Semantics formal parameter

T

The formal parameter for a system

scheme specification =
class

value
rscs : T.Collection,
actions : Text →m T.Action,
conditions : Text →m T.Condition,
messages : Text →m T.Message,
visible_variables : T.RSC →m T.VariableName-set

end

D.6.5 Account example

The following example is a RSL model using two \rsc s to constrain the behaviour. The various parts are
explained in detail in the following.

T

scheme account =
class
value

The two \rsc s are specified according to figure 6.19.

pre1_m1out : T.Event = T.mk_OutputEvent(01, ′′InsertCard", T.mk_Address("ATM′′)),
pre1_m1in : T.Event = T.mk_InputEvent(01, T.mk_Address(′′Customer′′)),
pre1_m2out : T.Event = T.mk_OutputEvent(02, ′′SelectWithdrawal", T.mk_Address("ATM′′)),
pre1_m2in : T.Event = T.mk_InputEvent(02, T.mk_Address(′′Customer′′)),
main1_m1out : T.Event = T.mk_OutputEvent(1, ′′EnterAmount", T.mk_Address("ATM′′)),
main1_m1in : T.Event = T.mk_InputEvent(1, T.mk_Address(′′Customer′′)),
main1_cond : T.Event = T.mk_ConditionEvent(′′BalanceOK", 11, T.Cold, {"ATM","Customer′′}),
main1_m2out : T.Event = T.mk_OutputEvent(2, ′′Dispense", T.mk_Address("Customer′′)),
main1_m2in : T.Event = T.mk_InputEvent(2, T.mk_Address(′′ATM′′)),
main_actA : T.Event = T.mk_ActionEvent(′′NewBalance′′, 21),
main1_m3out : T.Event = T.mk_OutputEvent(3, ′′EjectCard", T.mk_Address("Customer′′)),
main1_m3in : T.Event = T.mk_InputEvent(3, T.mk_Address(′′ATM′′)),

358 Appendix D. RSL specifications for the RSC

pre2_m1out : T.Event = T.mk_OutputEvent(01, ′′EnterAmount", T.mk_Address("ATM′′)),
pre2_m1in : T.Event = T.mk_InputEvent(01, T.mk_Address(′′Customer′′)),
pre2_cond : T.Event = T.mk_ConditionEvent(′′NotBalanceOK", 11, T.Hot, {"ATM","Customer′′}),
main2_m1out : T.Event = T.mk_OutputEvent(1, ′′EjectCard", T.mk_Address("Customer′′)),
main2_m1in : T.Event = T.mk_InputEvent(1, T.mk_Address(′′ATM′′)),

pre1_insta : T.Location∗ =
〈T.mk_Location(T.Hot, pre1_m1out),

T.mk_Location(T.Hot, pre1_m2out),
T.mk_Location(T.Hot, T.StopEvent)〉,

pre1_instb : T.Location∗ =
〈T.mk_Location(T.Hot, pre1_m1in),

T.mk_Location(T.Hot, pre1_m2in),
T.mk_Location(T.Hot, T.StopEvent)〉,

main1_insta : T.Location∗ =
〈T.mk_Location(T.Hot, main1_m1out),

T.mk_Location(T.Hot, main1_cond),
T.mk_Location(T.Hot, main1_m2in),
T.mk_Location(T.Hot, main1_m3in),
T.mk_Location(T.Hot, T.StopEvent)〉,

main1_instb : T.Location∗ =
〈T.mk_Location(T.Hot, main1_m1in),

T.mk_Location(T.Hot, main1_cond),
T.mk_Location(T.Hot, main1_m2out),
T.mk_Location(T.Hot, main1_m3out),
T.mk_Location(T.Hot, T.StopEvent)〉,

mainch1 : T.Chart = [′′Customer′′ 7→ main1_insta,
′′ATM′′ 7→ main1_instb],

prech1 : T.Chart = [′′Customer′′ 7→ pre1_insta,
′′ATM′′ 7→ pre1_instb],

The first RSC which describes succesful withdrawal.

rsc1 : T.RSC = T.mk_RSC′(′′withdrawal′′, prech1, mainch1, {}) ,

pre2_insta : T.Location∗ =
〈T.mk_Location(T.Hot, pre2_m1out),

T.mk_Location(T.Hot, pre2_cond),
T.mk_Location(T.Hot, T.StopEvent)〉,

pre2_instb : T.Location∗ =
〈T.mk_Location(T.Hot, pre2_m1in),

T.mk_Location(T.Hot, pre2_cond),
T.mk_Location(T.Hot, T.StopEvent)〉,

main2_insta : T.Location∗ =
〈T.mk_Location(T.Hot, main2_m1in),

T.mk_Location(T.Hot, T.StopEvent)〉,
main2_instb : T.Location∗ =

〈T.mk_Location(T.Hot, main2_m1out),
T.mk_Location(T.Hot, T.StopEvent)〉,

mainch2 : T.Chart = [′′Customer′′ 7→ main2_insta,
′′ATM′′ 7→ main2_instb],

prech2 : T.Chart = [′′Customer′′ 7→ pre2_insta,
′′ATM′′ 7→ pre2_instb],

D.6 Applicative RSC 359

The second RSC which describes unsuccesful withdrawal.

rsc2 : T.RSC = T.mk_RSC′(′′unsuccesful′′, prech2, mainch2, {})

value

The constraints are given by the above two RSC’s.

rscs : T.Collection = {rsc1, rsc2},

The actions, conditions and messages that are present on the RSC’s are specified.

actions : Text →m T.Action =
[′′NewBalance′′ 7→ new_balance],

conditions : Text →m T.Condition =
[′′BalanceOK′′ 7→ balance_ok,

′′NotBalanceOK′′ 7→ not_balance_ok],
messages : Text →m T.Message =

[′′InsertCard′′ 7→ insert_card,
′′SelectWithdrawal′′ 7→ select_withdrawal,
′′EnterAmount′′ 7→ enter_amount,
′′Dispense′′ 7→ dispense,
′′EjectCard′′ 7→ eject_card],

The following variables have been specified to be used in the system. We only have three accounts in this local
ATM.

variables : T.Variables =
[′′ATM.amount′′ 7→ T.Integer(0),

′′ATM.balance′′ 7→ T.Integer(0),
′′ATM.cashsupply′′ 7→ T.Integer(10000),
′′ATM.account1′′ 7→ T.Integer(100),
′′ATM.account2′′ 7→ T.Integer(64),
′′ATM.account3′′ 7→ T.Integer(500)],

The variables that are visible for each chart are specified. Visible variables for a RSC may not be altered by
other RSC’s as long as its mainchart is active.

visible_variables : T.RSC →m Text-set =
[rsc1 7→ {′′ATM.amount", "ATM.balance", "ATM.cashsupply′′,
′′ATM.account1", "ATM.account2", "ATM.account3′′},

rsc2 7→ {′′ATM.amount", "ATM.balance′′}]

In the following the signatures of the functions include the instance−names as specified in the types. They
might be used in larger examples where the same message may happen on several instances. In this example
this is not necessary and the given parameters are not always used.

360 Appendix D. RSL specifications for the RSC

balance_ok checks if the current balance stored in the ATM is higher than the requested withdrawal amount.

value
balance_ok :

T.Inst_Name-set × T.Variables → Bool
balance_ok(ins, v) ≡

if ′′ATM" isin ins /\ "Customer′′ ∈ ins
then

T.integer(v(′′ATM.balance")) >= T.integer(v("ATM.amount′′))
else

false
end,

The negation of balance_ok.

not_balance_ok :
T.Inst_Name-set × T.Variables → Bool

not_balance_ok(ins, v) ≡ ∼balance_ok(ins,v),

If the cash is dispensed the variables are updated using the action new_balance.

new_balance :
T.Inst_Name × T.Variables → T.Variables

new_balance(iname, v) ≡
let
newbalance = T.integer(v(′′ATM.balance")) - T.integer(v("ATM.amount′′)),
newcash = T.integer(v(′′ATM.cashsupply")) - T.integer(v("ATM.amount′′))

in
v † [′′ATM.balance" +> T.Integer(newbalance), "ATM.cashsupply′′ 7→ T.Integer(newcash)]

end ,

insert_card retrieves the balance of the account bound to the card that is inserted.

insert_card :
T.Inst_Name-set × T.Inst_Name-set × T.Variables → T.Variables

insert_card(iname1, iname2, v) ≡
v † [′′ATM.balance′′ 7→ v(read_account_number())],

Underspecified function of the hardware reading the account number. Note that this function is not part of the
RSC’s.

read_account_number : Unit → Text,

D.6 Applicative RSC 361

Underspecified function for the ATM hardware that a withdrawal has been requested.

select_withdrawal :
T.Inst_Name-set × T.Inst_Name-set × T.Variables → T.Variables

select_withdrawal(iname1,iname2, v) ≡ v,

Function for abstracting the entering of the requested amount via the ATM′s keypad.

enter_amount :
T.Inst_Name-set × T.Inst_Name-set × T.Variables → T.Variables

enter_amount(iname1, iname2, v) ≡
v † [′′ATM.amount′′ 7→ T.Integer(read_key_pad())],

Underspecfied function for retriving the entered amount on the keypad. Again, this is not part of the RSC’s.

read_key_pad : Unit → Int,

Dispense should tell the ATM hardware to dispense the requested amount. It should read the ′′ATM.amount′′

variable and let the hardware dispense the cash.

dispense :
T.Inst_Name-set × T.Inst_Name-set × T.Variables → T.Variables

dispense(iname1, iname2, v) ≡ v,

Underspecified function for abstracting the ATM hardware that ejects the card.

eject_card :
T.Inst_Name-set × T.Inst_Name-set × T.Variables → T.Variables

eject_card(iname1,iname2, v) ≡ v

end

The complete system of the account example is created using the semantics.

semantics, account

scheme system =
class

object ACC : account, system : semantics(ACC)
end

362 Appendix D. RSL specifications for the RSC

363

Appendix E

Contents of companion CD

The CD that accompanies this thesis has the following contents with the names of the directories on the CD
emphasised:

root md5sums of the complete CD. Script starteclipse that starts Eclipse with all necessary dependencies.

eclipse The Eclipse Tool Platform 3.0.1 which includes GEF and Draw2D runtime 3.0.1 and ESDE. Ready to
run.

esdeexamples Example .esde files that can be opened in ESDE. They were used as test cases.

esdejavadoc JavaDoc documentation for ESDE.

esdeplugin Our ESDE plugin ready for deployment in existing Eclipse installations. A version with and
without source code is available.

esdeproject The source code of ESDE as a Eclipse project. It can be copied to an Eclipse workspace in order
to browse, run and debug the source code using Eclipse.

libsd The compiled C++ library of the Scheme Diagram RSL specifications. Is used in ESDE for creating,
checking and printing a Scheme Diagram in RSL. This version is compiled for Linux.

literature Most of the articles and reports we have used and referenced. Some were not available electroni-
cally.

java142 Java Runtime Environment version 1.4.2_07 which is necessary for running Eclipse.

rsl All the RSL specifications that are presented in the thesis.

rsl2latex Rsl2latex tool: used for converting .rsl files to .tex files for inclusion in LATEX document.

rslbin RSL binaries of the specifications that are translatable. These include the test binaries.

rsltc The RSL type checker (version 2.5) used in ESDE for typechecking .rsl files.

thesis The thesis in dvi, ps and pdf. Included are the figures from the thesis.

thesistex The Latex files and figures the thesis is based on.

364 Appendix E. Contents of companion CD

365

Appendix F

Use of ESDE CASE Tool

Contents

F.1 Installation . 365
F.1.1 Live-CD . 365
F.1.2 Installation of plugin . 365

F.2 User manual . 366
F.2.1 Overview . 366
F.2.2 Description of elements . 366
F.2.3 Palette . 367
F.2.4 Action buttons . 368
F.2.5 Canvas . 368
F.2.6 Labels . 368

F.1 Installation

F.1.1 Live-CD

Eclipse with GEF/Draw2D and the ESDE plugin can be run directly from the companion CD on a Linux-based
PC with GTK windowing system and a BASH shell. Execute the script starteclipse. It must be started in the
root directory of the CD. It starts Eclipse with all the necessary dependencies from the CD.

When Eclipse opens, choose where to place the workspace Eclipse uses. Thereafter choose workbench and
Eclipse is ready.

F.1.2 Installation of plugin

The ESDE plugin is supplied ready for distribution to already existing installations. ESDE has been developed
and testet with the mentioned versions. Later versions probably work as well. Requirements:

• Linux-based PC (testet on Debian with kernel 2.6.10)

• Eclipse 3.0.1 with GEF/Draw2D 3.0.1 plugins installed.

• Java 1.4.2 SDK.

• rsltc tool version 2.5 available via system path

• the libsd.so library

366 Appendix F. Use of ESDE CASE Tool

Copy the directory "CDROOT"/esdeplugin/source-build/rsl.esde.schemeeditor_0.6.4 or "CDROOT"/esdeplugin/binary-
build/rsl.esde.schemeeditor_0.6.4, where CDROOT is the CD mount point, to the plugins folder in the Eclipse
installation directory.

Eclipse must be started with the following command:

eclipse -vmargs -Djava.library.path="path/libsd/"

where path/libsd is the directory where the libsd.so file is stored.

F.2 User manual

For general Eclipse help see the built in help in Eclipse [8] or the online help [46].

Open the Eclipe workbench. Create a new project if you do not have one: File - New - Project - Simple -
Project - Next - Enter Name - Finish.

Right click on the project and choose New - Other. Choose Scheme Diagram - Next and give the file a name
with the extension .esde. Eclipse should automatically open the editor with the empty canvas.

Examples of .esde diagrams are included on the companion CD. They can be imported for viewing: File -
Import - File System Choose the directory "CDROOT"/esdeexamples, select the wanted files and click Finish.

F.2.1 Overview

See figure F.1 for a screenshot of ESDE. The following ESDE features are present:

1. The Actionbar with buttons.

2. The Canvas for drawing the Scheme Diagram.

3. The Outline view that shows a thumbnail of the complete canvas.

4. The Palette with Select and Marquee tool, and selections for adding elements.

F.2.2 Description of elements

The following describes the elements and how to use them.

Schemes Schemes consist of a name and 5 compartments, one for each type of RSL declaration: Types,
Values, Variables, Channels and Axioms.

Objects Objects consist of a name and the name of the scheme it is an instance of, separated by a ":". It has
one compartment for parameter information. For each parameter in the scheme the object is an instance
of, parameter information must be supplied.

Extend An extend relation must be drawn from scheme A to scheme B if scheme A extends scheme B.

Implement An implement relation can be drawn from scheme A to scheme B if scheme A statically imple-
ments scheme B.

Global A global association can be drawn from scheme/object A to object B if scheme/object A uses the
global object B.

Nested A nested association must be drawn from scheme A to scheme B if scheme A has a nested object
which is an instance of scheme B. The association has two labels. Near scheme B a label which gives
the rolename of the object in scheme A. On the middle of the relation parameter information can be
given if scheme B has formal parameters.

Parameter A parameter association must be drawn from scheme A to scheme B if scheme A has scheme B
as a formal parameter. The association has two labels. Near scheme B a label which gives the rolename
of the formal parameter in scheme A. On the middle of the relation parameter information can be given
if scheme B has formal parameters.

Entries Entries can be added to the 5 RSL declaration compartments according to the syntax given in F.2.6.

F.2 User manual 367

Figure F.1: A screenshot of ESDE with a Scheme Diagram.

F.2.3 Palette

The palette is used for manipulating the Scheme Diagram on the canvas.

Select Used for selecting elements that are to be deleted, renamed or moved.

Marquee Used for selecting several elements at once for deleting or moving.

Extend Used for adding an extend relation between two modules.

Global Used for adding an extend association between two modules.

Implement Used for adding an implement relation between two modules.

Nested Used for adding a nested association between two modules.

Parameter Used for adding a parameter association between two modules.

Scheme Used for adding a scheme to the canvas.

Object Used for adding an object to the canvas.

Entries Used for adding entries in the various compartments, e.g. Types.

All elements are given autogenerated names in order to show the syntax of the various names.

The editor does not enforce well formedness conditions. E.g. it allows to draw circular relations between
modules. However there is a restriction: it is not allowed to draw a relation from A to B and from B to A at the
same time, as this makes no sense.

368 Appendix F. Use of ESDE CASE Tool

F.2.4 Action buttons

The following ESDE specific action buttons are available:

Redo/undo . For redo/undo of commands. Are only available if a command has been undone/done.

Delete For deleting modules, relations and entries. Only available if an element is selected.

"Layout" For toggling automatic layout on/off. When on, all the elements are automatically moved in an
ordered fashion. Does usually not create the most optimal layout but creates a basis for manual adjust-
ments.

All For hiding all compartments in the schemes in order to get a easy to inspect diagram.

Type, Val, Var, Ch, Ax For hiding a specific compartment in schems: Type, Value, Variable, Channel and
Axiom Compartments.

Check Saves the model as a RSL model and checks if it is well formed.

Print The same as above. If the model is well formed it is possible to select a directory. In the directory the
text equivalent of the RSL specification is saved. Each module is saved in a file with the modules name
and a .rsl extension. Thereafter the files are syntax checked using the RSLTC tool. If (not expected)
syntax errors occur, they are displayed.

F.2.5 Canvas

It is possible to right click on the canvas and select the undo/redo/delete actions. If a scheme is selected another
option is available: Create Object. It creates a new object with the selected scheme name automatically set as
the scheme the object is an instance of.

F.2.6 Labels

In the following the syntax for user editable fields are given. The syntax is given using regular expressions.

General formats for inputs in labels

Name : [a-zA-Z][\w]*
Must start with letter. Rest must be alphanummeric literals or underscore.

Simple Type expression (STE) : (Unit | Bool | Int | Nat | Real | Text | Char | [[Name.]*[Name]])[(-set | -infset
| -list | -inflist)]?
Consists of a native type literal or a type possibly with a qualification. May be a set or list.

Type Expression (TE) : (STE [>< STE]* | STE (-> STE)+)
Is either a simple type expression, a product type expression or a function type expression.

Simple Map (SM) :(\[\]| \[Name +> Name[,Name +>Name]?\])
A map from names to names.

Actual Parameter Information (API) : (noinfo| Name +>\(Name,SM\)[,Name +>\(Name,SM\)]?
An actual parameter. noinfo denotes no actual parameter information. Otherwise it is a map from the
formal parameter name to the actual parameter including a map for fitting information.

The following labels can be edited with input in the given syntax:

Scheme name : Name
The name of the scheme.

Object name : Name:Name
Must be a name followed by semicolon followed by name. The first name denotes the object name, the
last denoted which scheme the object is an instance of.

F.2 User manual 369

Object parameter information : Name +> Name, SM Each parameter information gives the formal param-
eter (first Name) and the actual parameter (second Name) with possible fitting information.

Nested rolename : [+-]Name
Must start with a + or -. + Denotes visibility public, - denotes private. Must be follwed by a name that
denotes the rolename of the supplier in the client.

Nested fitting : API
Must supplu actual parameter information.

Parameter rolename : Name
Name denotes the rolename of the supplier in the client.

Parameter fitting :API
Must supplu actual parameter information.

Types : [+-]Name[=TE]?
Must be a name preceeded by + or - for visibility as above. Possibly followed by an equation sign and
a type expression.

Values, Variables, Channels : [+-]Name[:TE]? Same as above but with ":" instead of "=".

Axioms : Name
Must be a name that denotes the axiom.

370 Appendix F. Use of ESDE CASE Tool

371

Appendix G

Conferences

Contents

G.1 ICTAC 2004, Guiyang . 371
G.1.1 Tutorials . 371
G.1.2 Key note speakers . 372
G.1.3 Talks . 372

G.2 SEFM 2004, Beijing . 373
G.2.1 Tutorials . 373
G.2.2 Key note talks . 373
G.2.3 Talks . 373

During our stay at UNU-IIST we were invited to two conferences. Both conferences we attended where co-
sponsored by UNU-IIST. For each conference the attended tutorials and talks will be presented.

G.1 ICTAC 2004, Guiyang

International Colloquium on Theoretical Aspects of Computing (ICTAC) 2004, Guiyang.
Duration: 20-24. September 2004
Homepage: http://www.iist.unu.edu/ICTAC2004/index.html
Organized by: Guizhou Academy of Sciences and UNU-IIST
The aim of the colloquium is to bring together practitioners and researchers from academia, industry and
government to present research results, and exchange experience, ideas, and solutions for their problems in
theoretical aspects of computing. It is planned to publish the proceedings in the Springer Lecture Notes Series.

G.1.1 Tutorials

• Formal Theories of Software Testing
Hong Zhu, Oxford Brookes University, UK

• Formal Aspects of Software Architecture
J L Fiadeiro, University of Leicester

• Formal Engineering Methods for Industrial Software Development - An Introduction to the SOFL Spec-
ification Language and Method
Shaoying Liu

• Functional Predicate Calculus and Generic Functionals in Software Engineering
Raymond Boute, University of Ghent, Belgium

372 Appendix G. Conferences

G.1.2 Key note speakers

• Jifeng He, UNU-IIST, Macao

• Jose Luiz Fiadeiro, University of Leicester, UK

• Huimin Lin, Institute of Software, Chinese Academy of Sciences, China

• K. Rustan M. Leino, Microsoft Research, USA

G.1.3 Talks

• Reasoning about co-Büchi Tree Automata
Salvatore La Torre and Aniello Murano (Università degli Studi di Salerno, Italy)

• Switched Probabilistic I/O Automata
Ling Cheung, Frits Vaandrager (University of Nijmegen, The Netherlands), Nancy Lynch (MIT Com-
puter Science and Artifical Intelligence Laboratory, USA) and Roberto Segala (Università di Verona,
Italy)

• Foundations for the Run-time Monitoring of Reactive Systems - Fundamentals of the MaC language
Mahesh Viswanathan (University of Illinois at Urbana Champaign, USA) and Moonzoo Kim (Pohang
University of Science and Technology, Korea)

• Duration Calculus: A Real-time Semantic for B
Samuel Colin, Georges Mariano (INRETS, France) and Vincent Poirriez (LAMIH, France)

• Atomic Components
Steve Reeves and David Streader (University of Waikato, New Zealand)

• A Proof of Weak Termination Providing the Right Way to Terminate
Olivier Fissore, Isabelle Gnaedig and Hélène Kirchner (LORIA-INRIA & LORIA-CNRS, France)

• A Logical Characterization of Efficiency Preorders
Neelesh Korade (Persistent Systems Private Limited, India) and S. Arun-Kumar (Indian Institute of
Technology, India)

• Specifying Software Connectors
Marco Antonio Barbosa and Luís Soares Barbosa (Universidade do Minho, Portugal)

• A Formal Framework for Ontology Integration Based on a Default Extension to DDL
Yinglong Ma, Jun Wei and Shaohua Liu (Institute of Software, Chinese Academy of Sciences, China)

• A Predicative Semantic Model for Integrating UML Models
Jing Yang, Quan Long (UNU-IIST, Macao) and Xiaoshan Li (University of Macau, Macao)

• Automatic Mapping from Statecharts to Verilog
Viet-Anh Vu Tran (Vietsoftware Company, Vietnam), Shengchao Qin and Wei Ngan Chin (National
University of Singapore, Singapore)

• Reverse Observation Equivalence Between Labelled State Transition Systems
Yanjun Wen, Ji Wang and Zhichang Qi (National Laboratory for Parallel and Distributed Processing,
China)

• An Approach to Integration Testing Based on Data Flow Specifications
Yuting Chen, Shaoying Liu, and Fumiko Nagoya (Hosei University, Japan)

• Combining Algebraic and Model-based Test Case Generation
Li Dan and Bernhard K. Aichernig (UNU-IIST, Macao)

• Minimal Spanning Set for Coverage Testing of Interactive Systems
Fevzi Belli and Christof J. Budnik (University of Paderborn, Germany)

• Reasoning about OWL & ORL Ontologies in PVS
Jin Song Dong, Yu Zhang Feng and Yuan Fang Li (National University of Singapore, Singapore)

G.2 SEFM 2004, Beijing 373

G.2 SEFM 2004, Beijing

Software Engineering and Formal Methods (SEFM) 2004, Beijing.
Duration: 26-30. September 2004
Homepage: http://www.iist.unu.edu/SEFM2004/
Organized by: Peking University and UNU-IIST
The objective of the conference is to bring together practitioners and researchers from academia, industry and
government to exchange views on the theoretical foundation of formal methods, their application to software
engineering and the socio-economic impact of their use. The proceedings have been published by the IEEE
Computer Society Press.

G.2.1 Tutorials

• Software Architectures: Evolution and Mobility
J. L. Fiadeiro, University of Leicester

• Model-Based Development: Mastering the Complexity of Reactive Systems
Bernhard Schaetz, Fakultaet fuer Informatik, TU Muenchen

G.2.2 Key note talks

• Computation Orchestration: A Basis for Wide-Area Computing
Jayadev Misra, University of Texas at Austin, USA

• Property-Driven Development
Martin Wirsing, Ludwig Maximilian University, Munich, Germany

• Care, Feeding and Growth of Software Systems
Mathai Joseph, Tata Research Development and Design Centre, India

• Random Testing in Isabelle/HOL
Tobias Nipkow, Technische Universität München, Germany

• An Introduction to ABC Approach
Hong Mei, Peking University, Beijing, China

G.2.3 Talks

• Symbolic Verification of Infinite Systems using a Finite Union of DFA’s
Suman Roy (Honeywell Technology Solutions Lab., India)

• Global vs. Local Model Checking: A Comparison of Verification Techniques for Infinite State Systems
Tobias Schuele and Klaus Schneider (University of Kaiserslautern, Germany)

• Proof Reuse for Deductive Program Verification
Bernhard Beckert and Vladimir Klebanov (University of Koblenz-Landau, Germany)

• Checking Extended CTL Properties using Guarded Quotient Structures
A. Prasad Sistla, Xiaodong Wang and Min Zhou (University of Illinois at Chicago, USA)

• Modeling Peer-to-Peer Service Goals in UML
Richard Torbjørn Sanders (SINTEF ICT/NTNU, Norway) and Rolv Bræk (NTNU, Norway)

• Past- and Future-Oriented Time-Bounded Temporal Properties with OCL
Stephan Flake (Orga Systems GmbH) and Wolfgang Mueller(Paderborn University/C-LAB)

• On semantics and Refinement of UML Statecharts: A Coalgebraic View
Sun Meng, Zhang Naixiao (LMAM, Peking Universit, China) and Luis S. Barbosa (Minho University,
Portugal)

374 Appendix G. Conferences

• The Rhapsody UML Verification Environment
Ingo Schinz, Christian Mrugalla (OFFIS, Germany), Tobe Toben and Bernd Westphal (Carl von Ossiet-
zky Universität, Germany)

• An Asynchronous Communication Model for Distributed Concurrent Objects
Einar Broch Johnsen and Olaf Owe (University of Oslo, Norway)

• Modeling and Temporal Logics for Timed Component Connectors
Farhad Arbab, Frank de Boer, Jan Rutten (CWI, The Netherlands) and Christel Baier (Universität Bonn,
Germany)

• Glass-Box and Black-Box Views on Object-Oriented Specifications
Michel Bidoit (CNRS & ENS de Cachan, France), Rolf Hennicker, Alexander Knapp and Hubert
Baumeister (Ludwig-Maximilians-Universität, München, Germany)

• Exception Safety for C#
K. Rustan M. Leino and Wolfram Schulte (Microsoft Research, WA, USA)

• Heuristics for Refinement Relations
Florian Kammueller (Technische Universität Berlin, Germany) and J.W.Sanders (Programming Re-
search Group, OUCL, United Kingdom)

• Towards Action Refinement for Concurrent Systems with Causal Ambiguity
Jonzhao Wu (Universität Mannheim, Germany) and Hougang Yue (Chinese Academy of Sciences,
China)

• Refine and Gabriel: Support for Refinement and Tactics
Marcel Oliviera (University of Kent, England), Manuela Xavier (Universidade Federal de Pernambuco,
Brazil) and Ana Cavalcanti (University of Kent, England)

• Automated Element-Wise Resoning with Sets
Georg Struth (Universität Augsburg, Germany)

• A Formalism for Conformance Analysis and Its Applications
Tien N. Nguyen and Ethan V. Munson (University of Wisconsin-Milwaukee, USA)

• The Formal, Tool Supported Development of Real Time Systems
Dr. Richard O. Sinnott (University of Glasgow, Scotland)

• Using relation algebra for the analysis of Petri nets in a CASE tool based approach
Alexander Fronk (University of Dortmund, Germany)

• Formal Verification of Requirements using SPIN: A Case Study on Web Services
Raman Kahamiakin, Marco Pistore (University of Trento, Italy) and Marco Roveri (ITC-irst, Italy)

• How to Verify Dynamic Properties of Information Systems
Neil Evans, Helen Treharne (Royal Holloway, England), Regine Laleau (IUT de Fontainebleau, France)
and Marc Frappier (Universite de Sherbrooke, Canada)

375

Appendix H

Seminars

Contents

H.1 Seminars at UNU-IIST . 375
H.1.1 “In-house talk” . 375
H.1.2 Formal software specification and development using RAISE 375
H.1.3 Travelling Processes . 376
H.1.4 Test Purpose Generation by Specification Mutation in Distributed Systems 376
H.1.5 A formal model for JavaBeans . 376
H.1.6 Testing and Diagnosis of Software Design Specifications 377
H.1.7 UML: Promises, Problems and Solutions 377

H.1 Seminars at UNU-IIST

This section will list chronologically the seminars which we have attended during our stay at UNU-IIST. For
each seminar the speaker, abstract, relevance to our project, date, and duration will be given.

H.1.1 “In-house talk”

He Jifeng, UNU-IIST research fellow

Friday, 6. August, 2004, Duration: 2 hour
Abstract:
The talk is about how to integrate various tools based on different semantic frameworks. Specifically the inte-
gration with bisimulation was discussed.

Relevance to our project:
How to integrate tools in another way than in this thesis.

H.1.2 Formal software specification and development using RAISE

Chris George, UNU-IIST Director a.i.

Everyday during 6-10 September 2004., Duration: 3 hours each day
Abstract:
RAISE - Rigorous Approach to Industrial Software Engineering - was first developed in European collaborative

376 Appendix H. Seminars

projects during 1985-94. The RAISE Specification Language (RSL) is wide spectrum, supporting descriptions
ranging in style between abstract and concrete, applicative and imperative, sequential and concurrent. RSL is
also modular, supporting the writing of large descriptions.
RAISE includes a method for software development, and also a set of free, open-source, portable tools. Tool
supported activities include generation of specifications from UML class diagrams, validation and verification
of specifications, refinement, prototyping, execution of test cases, mutation testing, test coverage analysis, gen-
eration of documents, and generation of program code in C++ by translation.
The course will introduce the language and method, and also include practical work with the tools.

Relevance to our project:
Modules where covered which was very relevant to our specification of the Scheme Diagram. Furthermore
channels and concurrency in RSL was covered which was relevant with regards to our attempt to use the CSP
part of RSL for modelling LSC’s

H.1.3 Travelling Processes

Xinbei Tang, University of Kent, UK

Monday, 13. September, 2004, Duration: 2 hours
Abstract:
This talk describes a refinement-based development method for mobile processes. Process mobility is inter-
preted as the assignment or communication of higher-order variables, whose values are process constants or
parameterised processes, in which target variables update their values and source variables lose their values.
The mathematical basis for the work is Hoare and He’s Unifying Theories of Programming (UTP). In this talk,
we present a set of algebraic laws to be used for the development of mobile systems. The correctness of these
laws is ensured by the UTP semantics of mobile processes. We illustrate our theory through a simple example
that can be implemented in both a centralised and a distributed way, and we show how the centralised system
may be step-wisely developed into the distributed one using our proposed laws.

Relevance to our project:
N/A

H.1.4 Test Purpose Generation by Specification Mutation in Distributed Systems

Carlo Corrales Delgado, UNU-IIST fellow

Friday, 17. September, 2004, Duration: 2 hour
Abstract:
Mutation Testing is a fault-injection technique which can assess how thoroughly a set of test cases exercises
an implementation. We modify the approach in two ways: First, it is applied on the specification level, second,
test cases are generated rather than assessed. More precisely, we generate a test purpose which is an abstract
description of a test goal. Then, using the TGV test case generator, the actual test cases can be generated from
a test purpose. In this talk, we describe our fault-based testing approach as well as the use of the CADP tools
to automate it. In addition, we briefly present a short case study applying the method to test a HTTP web server.

Relevance to our project:
N/A

H.1.5 A formal model for JavaBeans

Bhim P. Upadhyaya, UNU-IIST fellow

H.1 Seminars at UNU-IIST 377

Friday, 17. September 2004, Duration: 2 hour
Abstract:
Component based software development focuses on building software systems by assembling existing software
components. This makes the systems more maintainable, reduces devlopment time and minimizes develop-
ment as well as maintenance costs. The Java programming language supports component based software
development through JavaBeans. Specifying JavaBeans in a natural language is ambigious to the software sys-
tems developers. The use of a formal technique helps to express JavaBeans and consequently JavaBeans-based
software systems precisely. In this seminar, we present a formal model of JavaBeans, whereby a system can
be divided into a number of interconnected JavaBeans. We adopt the notion of refinement to formalize the
replaceability of JavaBeans.

Relevance to our project:
Use of formal techniques, especially formalising existing informal techniques.

H.1.6 Testing and Diagnosis of Software Design Specifications

W. Eric Wong
Department of Computer Science

University of Texas at Dallas
ewong@utdallas.edu

http://www.utdallas.edu/ẽwong

Monday, 4. October, 2004, Duration: 2 hour
Abstract:
Statistical data show that early fault detection in the software development process can cut cost significantly.
Additionally, with improved technology for automatic code generation from architectural design specifica-
tions, it becomes even more important to have a highly reliable system design from the beginning. To ensure
this, the quality of the system must be predicted and improved as early as possible. This talk will focus on
how to extend source code-based techniques to the software design specification level to allow more efficient
specification validation and maintenance. Also discussed will be a novel approach for constructing a small set
of effective test sequences from a design model to satisfy certain structural coverage criteria. These tests can
be used not only for conformance testing with a focus on the consistency between the specification and the
implementation but also for the validation of the design specifications themselves.

Relevance to our project:
A few elements of the presented work are related to ours. They have introduced a diagram for SDL with
equivalent semantics as the textual representation. Another interesting relation is the use of MSC in their case
tool. It is however only used to display the progress of a test run for a user.

H.1.7 UML: Promises, Problems and Solutions

Zhiming Liu, UNU-IIST research fellow

Friday, 8. October, 2004, Duration: 2 hours
Abstract:
This talk discusses the promises and the problems in the use of UML in software development. We will also
look at the research directions in formal support of UML. We will then discuss the the idea of using a for-
mal component-based and object-oriented specification language (CBOOL) to formalize and combine UML
models. With the formalization, we develop a set of refinement laws of UML models to capture the essential
nature, principles and patterns of object-oriented design. With the the incremental and iterative features of
object-orientation and the Rational Unified Process (RUP), our method supports precise and consistent UML
model transformation.

Relevance to our project:
The talk was somwehat related to our work of formailising LSC’s.

378 Appendix H. Seminars

379

Appendix I

A tale of two cities

Contents

I.1 Macau . 379
I.2 Singapore . 380

As most of our thesis was carried out in Macau and Singapore we include a short commentary about the two
very different cities. "A tale of two cities" is a book by Charles Dickens. It is situated in 18th century in the
years up to the french revolution in 1789. It has descriptions of London and Paris, hence the name, that fits
well for this section.

I.1 Macau

Macau is located only 50 km south west of Hong Kong. Almost everybody has heard of Hong Kong, not
so with Macau. Macau is a former Portuguese colony, which initially was a trading post. It was transferred
back to China in 1999, two years after Hong Kong. Still today there are many remnants of the Portuguese
colonists. There are picturesque old colonial style houses which have been beautifully restored. Today, much
of the economy is based on gambling. It is a Las Vegas in China, with of course many Chinese tourists. They
visit the large casinos, like the internationally known Sands.

Macau consists of the Macau peninsula (see figure I.2) and two islands, Taipa and Coloane. The peninsula is
one of the most densely populated cities in the world, with about 500.000 inhabitants living on a few square
kilometres. Nonetheless there are plenty of parks and green areas that invite for a leisurely stroll in the warm
climate. The southern part also has a modern district with distinctly modern high risers. To the north it is more
compact housing, displaying the hustle and bustle of the mainly Chinese population.

Taipa is becoming increasingly built up, with many new housing complexes which are rather uninteresting.
Coloane is surprisingly untouched and gives the opportunity for walks and beach days.

Macau has also a yearly Grand Prix, with the Formula 3 race as the highlight. Public roads are used as track,
just as in Macau. An exiting event where we had front row seats, as the track was just in front of the UNU-IIST
property. What an excitement!

All in all Macau was a great experience and very different from the more high-paced culture of downtown
Hong Kong. If you are in Hong Kong and have a day to spare, stop by and enjoy some of the offerings of
Macau.

380 Appendix I. A tale of two cities

Figure I.1: Map of the Macau peninsula. We studied at UNU-IIST, which is located just south of the location
marked with 3, which is the old Guia light tower. It provides a scenic view over most of Macau.

I.2 Singapore

Singapore is a former British colony and became self-governing in 1959. Singapore was a member in the
Malayan Union (since 1963 Malaysia) until it was kicked out and it became the Republic of Singapore in
1965. Since, its economic growth has made it a financial and commercial hub in Asia, well aided by its big oil
refining industry.

About 70% of the population are of Chinese heritage, and various Chinese dialects are widely spoken. English
is however the official language and is spoken by most. Quite a contrast to Macau, where very few speak
English. The rest of the population is mainly Malayan and Indian. Up till today there are still tensions between
Malaysia and Singapore, despite the fact that their bonds are tight. Malaysia is a heavy supplier of labour to
the economic growing Singapore.

An interesting fact for us "democratic" westerners is, that Singapore is in effect a one-party state, governed by
the Peoples Action Partly (PAP) since its independence. It is lead by the "grand old man", Lee Kuan Yew as
Prime Minister since the independence of Singapore 1959. But it definitely seems like he does his work well.

Singapore is surprisingly western in its appearance, especially in the old Colonial and Central Business District.
But Singapore offers a vast array of multi ethnic and cultural neighbourhoods. Especially in Little India it was
fun to stroll around and have a look at all the shops. In general Singapore is a shoppers paradise. Spearheaded
by the famous Orchard Road, where you will find an abundance of department stores, malls and shops.

Everywhere the city is surprisingly clean and well kept. This is probably helped by the harsh punishments for
people who litter or otherwise behave "badly". Singapore feels very safe and is a wonderful city. It is definitely
worth a visit.

I.2 Singapore 381

Figure I.2: Map of Singapore. We studied at National University of Singapore. It is located at the "U" in NUS.
Central Singapore is to the east of it.

	I Prelude
	Appetisers
	Scheme Diagram: Railway nets
	Live Sequence Chart: Light

	Introduction
	Motivation
	Contents
	Previous work
	Thesis structure
	The big picture
	Conventions
	Assumptions

	II Abstract models
	Introduction
	RSL syntax
	Types: RSL
	Print: RSL RSL

	Scheme diagrams
	Introduction
	Previous work
	Summary of preliminary thesis
	Final Scheme Diagram
	Narrative of the Scheme Diagram syntax
	Examples
	Translation: SD RSL
	Future work
	Conclusion

	Live Sequence Charts
	Before we start
	Structured narrative of LSC
	Previous work
	The LSC subset chosen: RSC
	Formal description of RSC
	Example: RSC RSL specification
	Translation: RSC RSL
	Example: Applicative RSC
	Future work
	Conclusion

	III Concrete implementation
	Introduction
	Language and library
	Requirements
	Candidates
	Selection and rationale

	System description
	Overview
	Eclipse plug-in
	Eclipse Scheme Diagram Editor
	Imperative RSL model specification of Scheme Diagram
	Gluing the Eclipse plug-in and the RSL model together
	Test

	IV Postlude
	Conclusion

	Bibliography
	V Appendix
	Glossary
	Scheme Diagram
	LSC

	Description of RSL types in RSL
	rslsyntax.rsl
	rslprint.rsl

	RSL specifications for the Scheme Diagram
	Scheme Diagram syntax
	Translation of Scheme Diagram to RSL.
	Imperative Scheme Diagram
	Test

	RSL specifications for the RSC
	RSC syntax
	RSC semantics for one chart
	RSC collections
	Test
	CSP and LSC
	Applicative RSC

	Contents of companion CD
	Use of ESDE CASE Tool
	Installation
	User manual

	Conferences
	ICTAC 2004, Guiyang
	SEFM 2004, Beijing

	Seminars
	Seminars at UNU-IIST

	A tale of two cities
	Macau
	Singapore

