Cryptographic Access Control
In Remote Procedure Call

Henrik Christensen (s991571)

Jonas Hogh (5991249)

11th March 2005

Informatics and Mathematical Modelling

Technical University of Denmark

Preface

This thesis is the final requirement for obtaining the degree Master of Science in
Engineering. It was written at the section for Computer Science and Engineering
of the department of Informatics and Mathematical Modelling at the Technical
University of Denmark. The project was carried out from September 1, 2004 to
March 11, 2005, and was supervised by associate professor Christian D. Jensen.

We would like to thank Nete Kodahl and Torsten Lund Olesen for proof
reading and our supervisor for his constructive criticism.

DTU, March 11 2005

Henrik Christensen

Jonas Hggh

iii

iv

Abstract

Traditional access control models which rely on a centralized reference monitor
are not well suited for large-scale distributed systems. Cryptographic access
control is a decentralized model, where access control is enforced solely based
on possession of cryptographic keys. By including this access control scheme
directly at the inter-process communication level, a distributed system can be
created, where the confidentiality and integrity of all communication is built in
by default, and where only authorized nodes are granted access to the system’s
assets.

This thesis therefore investigates the possibilities of incorporating the cryp-
tographic access control model into the Remote Procedure Call (RPC) protocol.
RPC is an inter-process communication paradigm that seeks to allow a program
residing on one machine to call functions on another machine in a way similar
to making a local function call. We design and implement a prototype RPC
library based on the original Sun Microsystems RPC implementation. This in-
cludes extending the RPCgen code generation tool to be compatible with the
new RPC library. We also look at alternatives to the port mapping system used
by RPC to locate resources on a server.

Keywords

Cryptography, cryptographic access control, inter-process communication, re-
mote procedure call, security

Resumé

Traditionelle modeller for adgangskontrol, der athaenger af en centraliseret refe-
rence-monitor, er ikke velegnede til store distribuerede systemer. Kryptografisk
adgangskontrol er en decentraliseret model, hvor adgangskontrol handhaeves
udelukkende udfra besiddelse af kryptografiske nggler. Ved at inkludere denne
form for adgangskontrol direkte pa niveauet for inter-proces kommunikation,
kan et distribueret system skabes, hvor konfidentialitet og integritet er indbygget
som standard, og hvor adgang til systemets resurser kun gives til autoriserede
klienter.

Dette eksamensprojekt udforsker derfor mulighederne for at inkorporere kryp-
tografisk adgangskontrol i Remote Procedure Call (RPC) protokollen. RPC er
et paradigme for inter-proces kommunikation, der tillader et program pa én
maskine at kalde en funktion pa en anden maskine pa en made, der ligner et
almindeligt lokalt funktionskald. Vi designer og implementerer en prototype af
et RPC-bibliotek baseret pa den oprindelige implementation fra Sun Microsys-
tems. Herunder udvides RPCgen kodegenereringsveerktgjet, saledes at det er
kompatibelt med det nye bibliotek. Vi ser ogsad pa alternative metoder til at
lokalisere resurser pd en server, der kan erstatte den portmapper-mekanisme,
der bruges i RPC.

Nggleord

Kryptografi, kryptografisk adgangskontrol, inter-proces kommunikation, remote
procedure call, sikkerhed

Contents

1 Introduction
1.1 Overview
1.2 Prerequisites L e
2 Inter-process Communication (IPC)
2.1 Message Passing oL
2.2 Shared Memory
2.3 Remote Procedure Call (RPC)
2.4 Open Network Computing (ONC) RPC
2.4.1 The RPC Interface Definition Language (RPC IDL)
242 RPCgen e
24.3 Programming in RPC
244 Secure RPC oo
2.5 SUMMATY . . . o o e e e e
3 Secure Communications
3.1 Security
3.2 Cryptography
3.2.1 Symmetric Cryptography
3.2.2 Agymmetric Cryptography
3.2.3 Cryptographic Hash Functions
3.3 Naming Schemes
3.3.1 Cryptographically Generated Addresses
332 AddressBased Keys
3.33 Freenet Lo
3.4 Access Control
341 Access Control Models
3.4.2 Access Control Mechanisms
3.5 Summaryo e e e e
4 Secure RPC with Cryptographic Access Control
4.1 Background
42 Model e
4.21 Access Control L
4.2.2 Port Number Generation
4.2.3 Integrity and Confidentiality
4.2.4 Security Threats
425 RPCgen

2 CONTENTS
4.3 Requirement Specification 35

5 Design 37
51 Protocol 39
5.1.1 Port Number Generation 42

5.2 The RPCinterface 43
53 RPCgen e 45
54 Summary e e e e e e e 46

6 Implementation 49
6.1 Choice of Cryptographic Algorithms 49
6.2 Overall Program Structure. 50
6.3 Client Side 51
6.3.1 clnt createo 51

6.3.2 clnt callo 52

6.4 ServerSide 54
6.4.1 svc_createl 55

6.4.2 svc register. 56

6.4.3 sve run 56

6.44 svc_TeCV ... o7

6.45 svc_reply 58

6.5 RPCgen 59
6.6 Summary e e e 62

7 Evaluation 63
7.1 Test . . o o e 64
711 RPCgen 64

7.2 RPC Library 64
7.2.1 Server Side 64

7.2.2 Client Side L 65

7.3 Performance o 66
74 Further Work 67

8 Conclusion 69
A Extended IDL Syntax 71
B RPCgen Manual 73
C Test Input and Results 75
Cl testlx . . . o L o e 75
C.2 testl xdr.c (0]
C3 testlh 76
C4 testl clnte o oL 76
CB testl sve.c o 78
C.6 Program 0x40000001 Version 1 roles 80
C.7 testl Server.c o e 80
C.8 testl client.c 81

C.9 Makefile.testl e 83

Chapter 1

Introduction

The arrival of almost ubiquitous internet access has made network security one
of the most important disciplines in computer security. The ability to protect
network-connected assets against unauthorized use has become critical to both
corporations and individuals. Unfortunately, the access control mechanisms
currently available in popular operating systems were not designed with large-
scale networks in mind. Often, they rely on an access control matrix, i.e. a
table listing all users and all assets in the system and the permissions of each
user with regard to each asset. For this approach to be secure, all cooperating
machines must agree on a way to consistently identify and authenticate the
users. Synchronizing the information necessary to do this becomes impractical
as the number of nodes grows.

An alternative approach to access control, which does not require such a
global state, and does not rely on user identification, is cryptographic access
control. Instead of maintaining an access control matrix, access to an asset is
granted based on the user’s possession of a cryptographic key associated with
the asset. This is validated by requiring the user to encrypt his request for the
asset with the key. Upon receiving a request, the system will attempt to decrypt
it. The request will only be meaningful if it was encrypted with the correct key
to begin with.

Since cryptographic access control has these advantageous properties in dis-
tributed systems, it seems intuitive that the most appropriate way to incorporate
this access control scheme in a system, would be to add it to the inter-process
communication layer. This will mean that all network services can be designed
with access control taken into account, using a unified scheme across all appli-
cations. The use of encryption in the access control mechanism also has the
benefit of making all communications unreadable to eavesdroppers.

In this report, we will propose a design of a version of the remote procedure
call inter-process communication model using cryptographic access control. We
will implement a prototype of the design, and evaluate its viability.

1.1 Overview

The remainder of this report is organized as follows: Chapter 2 covers vari-
ous methods of inter-process communication, focusing on the remote procedure

3

4 Chapter 1. Introduction

call model. Chapter 3 introduces the concept of security in computing, and
describes techniques for securing communication. In chapter 4, we develop a
model for integrating remote procedure call and cryptographic access control,
which is elaborated into a system design presented in chapter 5. Our proto-
type implementation of this design is described in chapter 6, and is evaluated
in chapter 7. We conclude the report by summarizing our findings in chapter 8.

1.2 Prerequisites
The reader is assumed to have knowledge of network protocols, particularly the

internet protocol family. Familiarity with the UML notation is also expected.
A basic understanding of UNIX-like operating systems is also helpful.

Chapter 2

Inter-process Communication

(IPC)

As the name implies, inter-process communication covers any exchange of data
between two or more processes, either within an operating system, or in a dis-
tributed system where the processes reside on multiple machines. Many methods
exist for performing such communications in modern operating systems. In this
section we will review some of the approaches, as well as the differences be-
tween them. The most common IPC mechanisms are based on message passing,
shared memory, or remote procedure call (RPC). In particular we will focus on
the latter model.

2.1 Message Passing

Informally, by a message passing model is understood any IPC model that is
based on transferring a piece of data from a sender to a receiver. This definition
of course covers a broad scope of systems, that differ in numerous ways. The
communication may be either synchronous or asynchronous, i.e. the sender may
wait for the receiver to successfully receive the data, or the sender may continue
immediately without any such confirmation. Different access control schemes
are also used - some systems are completely unrestricted whereas others use
file-like permission bitmasks. Examples include named pipes, which are simple
uni-directional FIFO-buffers, and the BSD socket abstraction, which is the basis
of network communications using the TCP and UDP protocols, as well as UNIX
Domain Sockets used for internal communication between processes in the same
system. Higher level systems for communicating between nodes in a distributed
system also exist, one such is the Message Passing Interface, or MPI.

2.2 Shared Memory

Generally, the term shared memory covers any mechanism for allowing multiple
processes to share a virtual memory space. This approach has the advantage
of being very fast, and allows for non-sequential access to the shared data.
However, this comes at a price in programming complexity, since the lack of

6 Chapter 2. Inter-process Communication (IPC)

any built-in mediation of access to the data allows the programmer to create
code that is prone to race conditions.

The implementation of shared memory used in most modern UNIX variants
is based on AT&T’s System V. It defines a set of system calls for creating and
managing shared memory segments, and a semaphore mechanism for coordi-
nating access in order to avoid the problems just mentioned. An access control
scheme similar to standard UNIX file permissions is available for shared memory
segments, enabling the programmer to assign read and write access to individual
users and groups in the system.

Shared memory models also exist in distributed systems, but these are sig-
nificantly more complex. A coherency protocol is needed in order to ensure that
all nodes agree on the contents despite concurrent accesses. The performance
gained from working directly in the same memory segment is of course also im-
possible to maintain if the contents have to be transported over a slow network
link.

2.3 Remote Procedure Call (RPC)

Remote procedure call is a client/server infrastructure which enables a process
to invoke functions residing on a remote system in a way that closely resembles
a regular call to a local function. This is done by using client and server stubs,
where the client stub works as a representative of the remote procedure. When
an application wants to call a remote procedure, it will invoke the client stub,
which will then call the server stub. The procedure is then executed by the
server stub and the result is returned to the client stub, and further on from
the client stub to the application. This is illustrated in figure 2.1. For an

Client Server
Invoke Call Procedure
client stub procedure
Client Server
tub
stub Send stu et
Forward request result
reply
Forward
reply

Figure 2.1: The remote procedure call model

RPC system to work the underlying system must provide a suitable low level
transport protocol (such as TCP or UDP). The clients must be able to identify

2.4. Open Network Computing (ONC) RPC 7

on which port they can communicate with the different remote procedures. This
can either be hardcoded into the procedure or the system can use some form of
naming mechanism. If the system should be able to communicate over different
machine architecture, operating systems, and languages, there must exist some
way of passing data from the clients native data representation to the servers
and back again.

RPC systems differ from most other forms of IPC models by using func-
tion shipping instead of data shipping, that is, it operates with procedure calls
instead of data transfers. Examples of RPC systems includes: Distributed Com-
puting Environment (DCE) RPC and Open Network Computing (ONC) RPC.
The latter is the one on which we will base our system.

2.4 Open Network Computing (ONC) RPC

ONC RPC originates from the RPC system developed by SUN Microsystems in
the 1980’s!. It allows client and server processes to communicate across different
hardware and operating systems by using its own interface definition language,
which is an extension of the eXternal Data Representation, XDR, language [1].

An RPC service can either run on a predefined port or obtain a new port
on start up. RPC provides a service for RPC services to apply for a TCP/UDP
port. Two programs that can be used for this are PORTMAPPER and RPCBIND
[2]. Portmapper always runs on port 111, and when a new RPC service is
started, it contacts the portmapper to obtain a port. When an application
wants to execute an RPC service it contacts the portmapper, obtains the port
associated with the specified RPC service and initiates communication. Figure
2.2 illustrates the RPC model.

In the figure, only one process is active at any time, this is only an example,
since the RPC protocol makes no restriction on concurrency. RPC calls may be
asynchronous, for example, the client process could perform other tasks while
waiting for a reply from the server, or the server may create a new task for each
incoming call, leaving it free to service other requests.

2.4.1 The RPC Interface Definition Language (RPC IDL)

RPC IDL is used to define programs, and to marshal the argument and result
of a remote procedure call. RPC IDL uses XDR to do the marshalling of the
data before it is transmitted over the network, and to convert the data back
to the systems native data representation when a marshalled object is received.
To define programs, RPC IDL has added two keywords to the XDR standard:
Program and Version. These are used to define which procedures are available in
each version of each program. For example, the following code is the definition
of a program with one version, which contains one procedure:

program MESSAGEPROG {
version MESSAGEVERS {
int PRINTMESSAGE(string) = 1;
}=1;
} = 0x20000099;

1from here on when we mention RPC it will refer to ONC RPC unless otherwise stated

8 Chapter 2. Inter-process Communication (IPC)

Client running

on machine A Portmapper
I ! Lookup
' port number
1
! 1
1
1
Client Server RPC service running
stub stub on machine B
I Serialize ! 1
arguments ! 1
1 1
Invoke client ! ! 1
stub ! 1 1
1 1
I Deserialize)
arguments |
1
Invoke server | 1
stub 1
I service
executes

Call service

Return result

Forward result

Serialize
results

Forward result

Deserialize
results

Figure 2.2: The remote procedure call model

Here a remote program with a single procedure, PRINTMESSAGE, is declared in
version 1 of the program, MESSAGEPROG. The program, version, and procedure
are each assigned a number, this triple can be used to uniquely identify the pro-
cedure. The programmer can freely choose the version and procedure numbers.
The only restrictions are that they must be natural numbers, no two procedures
can have the same number in one version, and no program must have two ver-
sions with the same number. In order to ensure that each program has a unique
number these are administered by a central authority, which today is Sun Mi-
crosystems?. The program numbers are divided into groups of 0x20000000, as
shown in table 2.1.

2Recent internet standard drafts propose that the authority is to be transferred to the
TANA in the near future.

2.4. Open Network Computing (ONC) RPC 9

Program Numbers | Description
0x00000000 - Ox1fffffff | Defined by Sun
0x20000000 - Ox3ftftfff | Defined by user
0x40000000 - Ox5ffffff | Transient
0x60000000 - Oxfiffffff | Reserved

Table 2.1: Program number assignment

The first group is the numbers administered by Sun Microsystems

The second group can be used for programs, that are supposed to run on
a specific site, but is primarily intended for debugging new programs

The third group is reserved for programs that generate their numbers
dynamically

The rest of the groups are reserved for future use

To marshal the arguments and results from remote procedure calls the pro-
grammer needs to specify some XDR filters. For each procedure he must specify
one filter for the argument and one for the result. For most primitive data types
filter routines are supplied by the RPC library. If the procedure uses more com-
plex data structures, the programmer can use the primitive routines in the RPC
library to specify the filters, or he can use RPCgen to generate these filters for
him.

The RPC IDL only supports procedures with one input parameter and one
output parameter. However, this is only a minor restriction, since XDR, allows
for several parameters to be grouped into one data structure, which then can
be used as the input parameter and similar for the output parameter. The
transformation of the parameters from the systems native data structure into an
XDR data structure and back again is known as serialization and deserialization,
respectively.

2.4.2 RPCgen

RPCgen is a tool the RPC programmer can use to automatically generate the
RPC network interface code. RPCgen takes a program interface definition writ-
ten in RPC IDL (see sec. 2.4.1) and produces a client stub, a server stub, and
routines that convert arguments and results into XDR and vice versa.

RPCgen can save a lot of development time, since the programmer(s) can
focus on the main features of the application instead of using time writing and
debugging the low-level network routines. The interface generated by RPCgen
"hides" the network from the client and server applications. In order to make
a remote call, the programmer writes a main client application that makes a
local procedure call to the client stub created by RPCgen, which handles the
marshalling and forwards the call. On the server side the remote procedure
needs to be implemented and linked to the server stub.

RPCgen accepts an interface definition file written in RPC IDL and outputs
the generated code in the C language. An interface definition should contain
a program definition and possibly some definitions of data structures. If the
programmer chooses to define one or more data structures, RPCgen will generate

10 Chapter 2. Inter-process Communication (IPC)

XDR filters for these structures. It is possible to use data types not supported
by the XDR library and which are not defined in the interface definition file.
But in doing so you must provide the XDR filters to handle this data type.

The following code is an example interface definition file, which contains
data structures declared in XDR.

/* dir.x: Remote directory listing protocol */

const MAXNAMELEN = 255; /*maximum length of directory entry*/
typedef string nametype<MAXNAMELEN>; /# directory entry */
typedef struct namenode *namelist; /* a link in listing */

/* A node in the directory listing */

struct namenode {
nametype name; /* name of directory entry */
namelist next; /* next entry */

};

/* The result of a READDIR operation. */
union readdir_res switch (int errmno) {

case O:

namelist list; /* no error: return directory listing */
default:

void; /* error occurred: nothing else to return */
I

/* The directory program definition */
program DIRPROG {
version DIRVERS {
readdir_res READDIR(nametype) = 1;
P =1
} = 0x20000076;

Running RPCgen on dir.x generates four output files:

dir.h The header file which contains #define statements for the program. This
must be included in the server and client applications

dir _clnt.c The client stub. This contains the client routine readdir_1, which
is used in the client application

dir_svc.c The server stub. From here the procedure readdir_1_svc is called,
this procedure must be present in the server application

dir _xdr.c The XDR filters for marshalling the argument and return data
The programmer can use the code generated by RPCgen directly, or he can
choose to alter it as he sees fit.

2.4.3 Programming in RPC

The RPC interface offers RPC programmers different levels of complexity and
flexibility. One way of describing this is as a series of layers, e.g. as it is done
in the documentation for RPC in Digital UNIX [4].

2.4. Open Network Computing (ONC) RPC 11

The highest layer is basically the level at which end users will use RPC.
This contains no direct interaction with the functions in the RPC library. Here,
the programmer takes advantage of the work of other programmers and calls
local procedures that take care of calling the remote procedure and returns the
result, without the programmer needing to worry about the network and which
operating system the server is running.

The middle layer also enables the programmer to call remote procedures
without worrying about creating sockets and which operating system the server
is using. The programmer is able to call remote procedures by using the follow-
ing three procedures:

registerrpc is used to register a procedure on the server. It binds a unique
procedure number to the procedure given in the parameters. It takes 6
parameters, where the first three are the program number, the version
number, and the procedure number. The fourth parameter is a pointer to
the procedure which is to be registered. The last two parameters are XDR
filters to decode the parameters to the RPC procedure and encode the re-
sults. Procedures registered with this function always use the portmapper,
and cannot be defined to run on a specific port.

callrpe is used by the client to call a remote procedure. It takes 8 parameters,
the first parameter is the hostname of the server. The next three param-
eters are the program, version, and procedure numbers. The next two
parameters are an XDR filter and the argument for the remote procedure.
If the procedure takes more than one argument these are encoded in an
XDR structure, which is done by the filter. The final two parameters are
another XDR filter for decoding the result and a pointer to where the re-
sult should be stored. callrpc will serialize the arguments, send the request
to the server, wait for the reply, deserialize the result and return this.

svc_run is called by the server when all procedures have been registered.
It causes the server to enter an infinite loop, during which it listens for
incoming requests. Upon reception of a request, control is transferred to
the procedure body. sve_run also decodes the arguments and encodes the
result using the XDR filters specified when the procedure was registered.
svc_run has no parameters.

The simplicity of the middle layer greatly reduces the flexibility and therefore
renders this layer inappropriate for complex programming tasks. With the mid-
dle layer the programmer is unable to specify timeouts, use another transport
protocol instead of UDP, perform authentication on the client or server side, or
implement his own error handling.

The lowest layer contains functions the programmer can use to change the
default values for the options mentioned above. Here the above call to registerrpc
is replaced by three procedure calls:

svcudp _create creates a transport handle used by the server to keep informa-
tion needed in the communication, and also contains functions to receive
and reply to RPC messages. As parameter it takes a socket number. If
the socket is bound to a port number, the same port number must be
used, when the client calls clntudp create. Alternatively, the parameter
can be RPC_ANYSOCK, in which case the procedure creates a socket

12 Chapter 2. Inter-process Communication (IPC)

itself. If the programmer wishes to use TCP instead of UDP, he may use
suctep _create. On success, a pointer to the transport handle is returned,
otherwise NULL is returned.

pmap unset takes the program and version number as parameters. It de-
stroys all mappings of program and version to a port number from the
portmapper tables, so that the portmapper tables at all times has at most
one entry for each version of each program.

svc_ register takes a transport handle, a program and a version number, a
dispatch function, and a protocol as parameters. It is used to register the
program version with the portmapper, that is, it creates a mapping in the
portmapper tables from the triple (program number, version number, pro-
tocol) to a port number. It also creates an entry in a list, which associates
the triple (program number, version number, protocol) with the dispatch
function, where protocol is the last parameter given to svc_ register and
can be either IPPROTO_TCP or IPPROTO_UDP. If protocol is zero no
binding is performed.

Here the registration is on program level instead of procedure level, as it is in
the middle layer. Based on the result of these three calls the programmer can
specify his own error handling. The XDR filters are specified in the dispatch
procedure instead of in the registration. In the dispatch procedure the functions
svc_getargs and svc_sendreply are used to deserialize the arguments and se-
rialize the result, respectively. Besides serializing the argument svc_sendreply
also takes care of sending the result to the caller. When all the procedures have
been registered svc_run is called just as in the middle layer.

On the client side the call to callrpc is replaced with calls to the following
three functions:

clnt_create takes the hostname, program and version number, and transport
protocol as parameters. Actually it is a wrapper function which will cre-
ate a socket, set the port number in the socket data structure to 0, and
call clntudp_create or clnttcp_create depending on which transport
protocol is specified in the parameters.

cintudp create creates a pointer to a client data structure. It takes the server
address, the program and version number, a timeout value, and a pointer
to a socket as parameters. The time specified in the timeout value indicates
the timeout between tries. If the port number specified in the socket data
structure is 0, the portmapper on the server is queried to get the port
number used by the service. In clnttcp_create the timeout value is
omitted, instead the size of the receive and send buffer must be passed as
parameters.

clnt_call is a macro which will call either clntudp_call or clnttcp_call
depending on which transport protocol was specified as a parameter to
clnt_create.

clntudp call is used to call the remote procedure. It takes the client pointer
created by clntudp_create, the procedure number, an XDR filter func-
tion for serializing the argument, a pointer to the argument, an XDR

2.4. Open Network Computing (ONC) RPC 13

function for deserializing the result returned by the remote procedure, a
pointer to where the result will be stored, and a timeout as parameters.
The timeout is the time in seconds for how long the function should wait
for an answer. Should an answer not be received in this time period, an-
other request may be sent to the server. clntudp_call will serialize the
arguments, send the request, receive the reply, deserialize this, and return
it.

clnt destroy is a macro which works in the same way as clnt_call.

clntudp destroy deallocates the space pointed to by the client handle. It will
also close the socket associated with the client handle if this socket was
opened by the RPC library. If the socket was opened by the user, it will
remain open. This is done to make it possible to associate more than one
client to a socket, and then destroy one client handle without closing the
socket, which may still be used by other client handles.

Which layer of RPC to use depends on the amount of time one wishes to use,
and how many details one needs to control. If the programmer needs to call a
function on a remote server, and does not worry about how this is done, the
easiest way is to use an interface which will wrap the serializing and remote
procedure call into one single local call, thus the programmer only needs to
specify the arguments and hostname of the server, even these may be wrapped
into the interface. This is only possible if the RPC service is already configured
and running on the server. If no such interface exists or the programmer needs
to make his own interface the middle layer can be used. If the remote procedure
takes multiple arguments, the programmer needs to write his own XDR filters
to do the serializing, or he can use RPCgen to automatically generate these.
This is done by using the -¢ option of RPCgen, which is also possible if the
programmer uses the lowest layer of the RPC interface to control some of the
more sophisticated details. The programmer can also choose to use RPCgen to
implement the entire interface. RPCgen generates code which uses the lowest
layer of RPC, thus making the programmer able to change details in the code
if necessary. In practice the middle layer is seldom used, because programmers
often need to change one or two of the default settings.

2.4.4 Secure RPC

The RPC standard allows inclusion of authentication information along with the
transmitted calls and replies. It is possible to authenticate both the client and
the server in this manner. The standard is open-ended in that various flavors
of authentication are identified by unique integers, which are assigned by Sun
Microsystems in the same manner as program numbers. The RPC standard
itself defines two such flavors: AUTH_NONE, no authentication, and AUTH_SYS
which allows the client to authenticate himself to the server using a UNIX (user
ID, group ID) pair (this flavor is also known as AUTH_UNIX in some versions
of RPC). The client and server must share user and group databases for this
scheme to be useful. Furthermore, it is very easy for a malicious client to forge
the credentials, e.g. by crafting packets with a zero user ID, which is normally
used to identify the superuser.

14 Chapter 2. Inter-process Communication (IPC)

Another authentication scheme called AUTH_DES or AUTH_DH, since it is based
on the Data Encryption Standard algorithm?®, and the Diffie-Hellman key ex-
change protocol, was originally included in previous versions of the RPC stan-
dard in order to solve the problems inherent to UNIX authentication. It enabled
the server and client to mutually authenticate one another. However, due to a
bad choice of parameters in the implementation of Diffie-Hellman, and the fact
that the key size used by DES had been widely regarded as insufficient due to
the increased availability of faster and faster hardware, support for AUTH_DES
was later removed from the standard. It would have been possible to solve the
problems by changing the parameters and using another algorithm, but since a
more generic and secure authentication scheme had been developed instead, it
was decided to encourage users to move to this scheme instead of having two
co-existing incompatible versions of AUTH_DES. The new standard, which moved
beyond authentication by adding integrity and confidentiality*, was based on
the Generic Security Service Application Programming Interface (GSS-APIT),
and is known as RPCSEC_GSS. Through access to this flexible API, the RPC pro-
grammer may implement almost any combination of algorithms, services, and
mechanisms. Here, by services we understand the three main security proper-
ties provided by the flavor: Confidentiality, integrity, and authentication, or any
subset of these. Mechanisms cover any higher-level security infrastructure that
the system must integrate with, such as a Kerberos system or an X.509-based
public key infrastructure. The downside to the flexibility of RPCSEC_GSS is of
course that it leaves a lot of work to be done by the implementors of the under-
lying RPC programs. It is also a fairly complex system, a detailed description
of which is beyond the scope of this project.

2.5 Summary

In this section, we have compared the three main methods of inter-process com-
munication: Megsage passing, shared memory, and remote procedure call. The
former two are data-shipping mechanisms. In message passing, data is actively
transmitted from one process to another by some kind of channel, which may
be either synchronous or asynchronous. In shared memory, on the other hand,
the data is stored in a common area accessible to all the relevant processes. The
main advantage of this approach is speed and the possibility to access data non-
sequentially. RPC, in contrast, makes use of function shipping - it is designed
to mimic regular procedure calls as closely as possible, by hiding the network
communication specific code from the programmer.

To this end, RPC provides platform-independent serialization of data struc-
tures through use of the XDR standard. The RPCgen code generator facilitates
RPC programming by partially automating generation of client and server stub
code. Use of RPCgen is not mandatory, but RPC programming can be complex
without it. The main requirements placed on the underlying system by RPC are
the following: A suitable transport protocol must be available. In practice this
is almost always TCP or UDP. A naming mechanism must also exist, enabling
the clients to uniquely identify each program and its versions on each server.
This is achieved by querying the portmapper for port numbers associated with

3See section 3.2 for an introduction to cryptographic terminology
4See section 3.1

2.5. Summary 15

(program number, version number) pairs. And the system must have a method
to convert data, so it is able to communicate between different setups, e.g. dif-
ferent hardware or operating systems. RPC does this by serializing the data
into a XDR data structure. The steps involved in performing an RPC call are
illustrated in figure 2.2.

Chapter 3

Secure Communications

This section will first define security as the term is used in computing, and then
give an overview of some of the technologies which are most commonly used to
build secure communications. First, we will cover classical cryptography, then
various schemes for naming network resources in a secure way. Finally, we will
describe various models and mechanisms for access control.

3.1 Security

Traditionally, computer security is divided into three main aspects: Confiden-
tiality, integrity, and availability. Only a system in which all three aspects are
addressed is defined as a secure system. We will describe each aspect in more
detail below.

Confidentiality means that only authorized parties have access to assets. It
is also known as secrecy or privacy. It is a very simple and intuitive property
in theory, but it can be difficult to implement. When an asset is available in a
readable form, some kind of access control must be in place in order to deter-
mine which parties have access and which do not. Access control is described in
more detail in section 3.4. Often it is combined with an authentication model
in order to identify the user in a manner that cannot be forged by an unautho-
rized person. An alternative is to make the information unreadable altogether.
This is the main purpose of cryptography, which is described in section 3.2.
This method is widely employed when one wishes to communicate confiden-
tially across an insecure network.

Integrity means that assets cannot be modified by unauthorized parties,
or modified in unauthorized ways. It can be enforced through many of the
same mechanisms as confidentiality. However, increased care must be taken in
situations where an outside modification of an asset may go unnoticed. For
example, even when a packet transmitted across a network is unreadable to
an unauthorized person because of encryption, he may be able to compromise
the integrity of the data by changing it in transit. Cryptography also offers a
solution to this problem in the form of cryptographic hash functions, message
authentication codes, and digital signatures.

Availability ensures that the system is accessible to the authorized parties at
the desired times. This means that the system must be as responsive as possible

17

18 Chapter 3. Secure Communications

in the face of high utilization levels, as well as attempts to overload it through
large amounts of unauthorized requests. The system must also be robust with
respect to handling malformed requests and other erroneous conditions. It is
very difficult to strictly define guidelines for availability, since it is inherently
subjective how long a user should be allowed to wait, how much downtime is
acceptable, and so on. The concept of availability is unfortunately not nearly
as well understood by security researchers as the two other aspects of security,
even though many agree that it is becoming increasingly important.

3.2 Cryptography

Cryptography is the practice and study of encoding data so that it can only
be decoded by individuals in possession of secret knowledge. The process of
encoding is known as encryption, the reverse process as decryption. A message
in its normal, readable form, is plaintezt, in encrypted form ciphertext. A math-
ematical function specifying how to encrypt or decrypt is called a cryptographic
algorithm or cipher. In modern cryptography, the cipher is usually made pub-
licly available, but is dependent on a user-specific parameter, called the key,
in addition to the data. This makes it possible to standardize on well-known,
peer-reviewed ciphers, instead of relying on customized secret algorithms. A
cipher together with the sets of all possible keys, plaintexts, and ciphertexts is
known as a cryptosystem.

Cryptanalysis is the study of attacks against cryptosystems. Any system can
be successfully compromised by an attacker who has the resources to enumerate
all possible keys, a so-called brute force attack, but such attacks can be made
prohibitively expensive by choosing a sufficient key size. A good cryptosystem
ensures that more sophisticated attacks are not significantly more efficient than
brute force.

3.2.1 Symmetric Cryptography

In a symmetric cipher, the same key is used for both encryption and decryption.
When transmitting a message between two parties, it is therefore necessary to
agree on a common key, which is kept secret to anyone else. For this reason,
keys in symmetric systems are often called secret keys.

Symmetric ciphers are mainly classified into two groups: Stream ciphers and
block ciphers. The former treat the plaintext as a continuous stream of bits,
which are encrypted one by one, based on some internal state of the algorithm.
A very simple example of a stream cipher is initializing a pseudo-random number
generator with the key as the seed, and xor the output with the plaintext. Block
ciphers, on the other hand, treat the plaintext as a sequence of fixed-size blocks,
e.g. of 64 bits or more. In its simplest form, the cipher operates on each such
block independently and statelessly. A disadvantage of this approach is that
any given plaintext block will always encrypt to the same ciphertext block, no
matter what context it appears in. To prevent this problem more advanced
modes of operation have been devised for block ciphers. One such mode is
Cipher Block Chaining (CBC), in which each block of plaintext is xor’ed with
the previous block of ciphertext before it is encrypted. For the first block, a
randomly generated block of data, called the initialization vector is used. Other

3.2. Cryptography 19

examples of modes are Cipher-Feedback (CFB) and Output-Feedback (OFB),
which effectively transform a block cipher into a stream cipher by using a shift
register. The register initially contains an initialization vector, and is then
incrementally filled from one end with small (e.g. 1 byte) segments of ciphertext
(in CFB) or the key (in OFB). The key is generated by encrypting the contents of
the shift register, and taking e.g. the leftmost 1 byte. Again the main purpose
of introducing these modes is to conceal plaintext patterns. CFB and OFB
can also be a convenient way of yielding the benefits of stream ciphers, when
these are needed, e.g. the ability to encrypt a single character and transmit it
independently in a secure terminal application. When the naive approach of
block-by-block encryption is compared to one of these alternative modes, it is
known as electronic cookbook mode, or ECB.

3.2.2 Asymmetric Cryptography

Asymmetric cryptographic, or public-key cryptography, as it is also known,
was first described by Whitfield Diffie and Martin Hellman in 1976. In an
asymmetric system, two distinct keys are used for encrypting and decrypting
a message. The two keys are mathematically related, but it is not feasible to
obtain one from knowledge of the other. This makes it possible for a person to
publicly distribute his encryption key, while keeping his decryption key secret,
thus enabling anyone with access to the encryption key to create a message
which only he can read, without any need for an exchange of keys. For this
reason, the encryption and decryption keys are often called public and private
keys, respectively. However, it is important to note, that even though the owner
of a public key has no need to keep it secret, an imposter may distribute another
key in his name, enabling the imposter to read the encrypted messages rather
than the intended recipient. For this reason, public keys must still be obtained
from a trusted source over a secure channel. This is one of the major practical
limitations of asymmetric cryptosystems.

Mathematically, public-key systems rely on trapdoor one-way functions. A
one-way function is a function for which it is easy to calculate function values,
but no polynomial-time algorithm exists for calculating the inverse function. A
trapdoor one-way function has the additional property, that the inverse function
is easy to calculate given a piece of additional information. This information is
the private key. The existence of one-way functions is unproven, and proving it
would imply solving the classical P = NP problem. Actual public-key systems
are therefore based on functions conjectured to be trapdoor one-way functions.
Probably the most well-known example is the RSA! system, which is based
on the factorization problem. The trapdoor is constructed based on certain
number-theoretical properties of modular arithmetic, and is easily calculated
since the prime factors are known. Other examples of conjectured trapdoor
one-way functions which have been used in cryptosystems are elliptic curves
and discrete logarithms.

In general, asymmetric cryptosystems are significantly slower than symmet-
ric ones, and the key lengths required to achieve comparable levels of security
are much larger. For these reasons large amounts of data are rarely encrypted
with a pure asymmetric algorithm. Rather, the asymmetric algorithm is used

INamed after its inventors Ron Rivest, Adi Shamir, and Leonard Adleman

20 Chapter 3. Secure Communications

as a means of transporting the symmetric key, which is then used to encrypt the
data. This combination of the two classes of cryptosystems is called a mixed-
mode cryptosystem

3.2.3 Cryptographic Hash Functions

A hash function is a function that takes a variable-size input (called the pre-
image), and generates a fixed-size output (called the hash value). Generally,
hash functions are used in many areas of computer science where a fingerprint
of data is required. Obviously, the fact that hash functions map an infinite
domain to a finite range, will result in collisions, i.e. the functions are not one-
to-one. Often this property is undesirable, e.g. it will cause a degradation of
performance of data structures based on hash functions such as hash tables. In
spite of this, by simply using a good hash function that distributes the possi-
ble inputs evenly over the possible outputs, good average performance can be
achieved.

In cryptographic contexts, it is often desirable to fingerprint data. Applica-
tions include message checksums that protect the integrity of the message, and
performance improvements when an expensive operation can be performed on a
fingerprint rather than an entire message. However, more serious problems than
the ones mentioned above arise from hash collisions when we use hash functions
for these purposes: If an attacker is able to manipulate such a system by finding
collisions, he might be able to substitute one message for another with the same
fingerprint. For this reason, only hash functions that satisfy certain proper-
ties are classified as cryptographic hash functions. The following properties are
generally considered desirable:

Pre-image resistant: Given a hash value, it must be hard to find any corre-
sponding pre-image

Second pre-image resistant: Given a pre-image, it must be difficult to find
a different pre-image with the same hash value

Collision resistant: It must be difficult to find any two pre-images that share
the same hash value

This is not an exhaustive list, and none of the requirements are formal. As with
other cryptographic primitives, hash functions are not provable secure.

When it is desirable that a fingerprint can only be verified by the intended
recipient, one may add a key to a cryptographic hash function, e.g. by combining
it with a symmetric block cipher. Such a construction is known as a Message
Authentication Code or MAC.

3.3 Naming Schemes

As mentioned in section 2, a method of naming servers, programs and procedures
is a prerequisite for an RPC mechanism. We will therefore look at alternative
naming methods in this section. Various technologies exist for creating a binding
between e.g. a network address and a cryptographic key. These help prevent
address spoofing attacks, as long as the key is not compromised. We also look
at the method for keeping track of documents used in the Freenet peer-to-peer

3.3. Naming Schemes 21

network, which is a way of generating a fingerprint based on a descriptive string
and a cryptographic key.

3.3.1 Cryptographically Generated Addresses

Cryptographically Generated Addresses (CGA) originates from Greg O’Shea
and Michael Roe’s Child-proof Authentication for MIPv6 (CAM) protocol [5].
The basic idea is, that a public key is bound to the 64 bit interface identifier
of an IPv6 address. This is done by computing a one-way hash function from
the public key and using this as the interface identifier. The binding between
the IPv6 address and the public key can then be verified by recomputing the
hash function, and the host can claim ownership of the IPv6 address by signing
messages with the corresponding private key.
The host identifier is defined as:

HostID = Hashga(Public_key)
The interface identifier can also be created from a hash chain:

Hy = Hashigo(Public_keyl||random)

H; = Hashygo(Public_key||H;41)
HostID = Hashga(Hp)

This enables the host to claim ownership of the address without using a sig-
nature. If a collision of addresses occur both parts reveal their H;. Since this
is 160 bits long the chance of a new collision is very slim. If the two values of
H; collide the reason most probably is that one of the them learned the value
from the other. Then they both reveal Hs to verify the ownership of the IPv6
address. If it is nessecary to reveal hash values beyond H, the host can be
certain that an attack is occuring.

The Internet Engineering Task Force (IETF) has proposed algorithms for
CGA generation, verification, and signature [6]. To create a CGA the algorithm
needs the public key, a 64-bit subnet prefix, and a security parameter, Sec. Sec
is an unsigned integer and is encoded in the three leftmost bits of the CGA. Sec
determines the CGA’s strength against brute force attacks.

Secure Neighbor Discovery (SEND) Protocol

An IPv6 host uses Neighbor Discovery to discover routers and other hosts on
the link, and to maintain reachability info.

The Internet Engineering Task Force (IETF) has for some time tried to
secure neighbor discovery in IPv6 without using IPsec, since no methods for
using IPsec without manual keying exist today, and one of the goals of neighbor
discovery is to achieve security without manual configuration. As described
in [7] and [8] CGA can be used to secure neighbor discovery. If the neighbor
discovery messages are signed by the key corresponding to the CGA which the
message came from, the receiver can be certain that neighbor advertisements
and neighbor detection messages are authentic.

22 Chapter 3. Secure Communications

3.3.2 Address Based Keys

Address Based Keys (ABK) is a cryptographic technique where a node’s public
and private keys are generated from its IPv6 address. ABK is based on a
technique called identity-based cryptosystems, which was first introduced by
Shamir [10] in 1984. Shamir wanted to remove the need for key directories
and certificates from public key cryptosystems by using the receivers identity
as the public key. Schemes for identity-based signatures and key agreement
protocols quickly followed, but it was not until 2001 that a secure and efficient
identity-based encryption scheme was proposed by Boneh and Franklin [11].

Identity Based Cryptosystems

An Tdentity Based Encryption (IBE) scheme is a public key encryption scheme
where the public key can be any string, which uniquely identifies the user and is
readily available to the other part. This could be an email address, a telephone
number, a social security number, a net address, or any combination of these.

A user chooses a public key and sends this to a trusted third part, which
is called Identity-based Private Key Generator (IPKG) and then receives his
private key over a secure channel. The IPKG generates the private key from
the public key, some publicly known parameters and a master key, which is only
known to the IPKG. The publicly known parameters are generated from some
chosen constants and the secret master key. Besides being used in the genera-
tion of the private keys, these are used by the users to perform cryptographic
operations.

Since the public key can be any string, a user can choose a string which
identifies the person he wants to send an encrypted message to, i.e. Bob wants
to send an encrypted email to Alice, he then encrypts the message with Alice’s
email address and sends the mail to Alice. Alice will then send her email address
to the IPKG and receive the appropriate private key. Alice is then able to read
the message.

In a public key encryption scheme there is an expiration date included in
the certificates. This can be incorporated into IBE by including the date in the
public key, i.e. one system could use the email address concatenated with the
current month and year as public keys. This will ensure that the users change
their keys every month.

Key escrow is built into the system, since the IPKG can recreate a users
private key if it knows the master key and public parameters which was used to
create the private key. The master key may be distributed among several IPKGs
by using threshold cryptography, to ensure that one IPKG cannot impersonate
or snoop messages from a user, for which it generated a private key.

Using ABK to Secure IPv6 Neighbor Discovery

ABKs use part of an IPv6 address as the public key. A host would use its 64
bit interface identifier as public key, and a router would use its 64 bit subnet
prefix. It has been proposed that ABKs are used to secure IPv6 Neighbor and
Router Discovery[12], so that router advertisements are signed by the router
and neighbor advertisements are signed by the host. This would remove the key
management problems in IPSec.

3.3. Naming Schemes 23

Another proposal is to use ABK for router discovery and cryptographically
generated addresses (CGA) for neighbor discovery[7]. The advantage of using
CGA to do neighbor discovery is that it does not require any trusted third part.

3.3.3 Freenet

Freenet is a distributed data storage system, where the identity of the submitter
and the reader of data is protected. It has a peer-to-peer architecture, where
every user provides a node, where he provides some data storage for the system.

When a user commits or requests some data, the data is sent through a
chain of nodes. Each node can only see its immediate neighbors, and has no
way of knowing whether the node, from which it receives a request or insert
message, is the originator of this message or whether it is only forwarding the
message from another node. This is to ensure that a malicious node cannot
obtain information about the submitter of the request or the holder of data.
Each message has a hops-to-live value which indicates how long the request will
travel before it returns if the file is not located.

Each file is assigned a global unique identifier (GUID) key. These are cal-
culated using SHA-1. Each file is submitted together with its GUID key, and
these are used to locate files. Each node has a routing table which associates
GUID keys with nodes. Each request contains the GUID key for the wanted
file. When a node receives a request, it first checks its own datastore for the
file. If it is not found, it finds the key in its routing table which most resembles
the requested key, and forwards the request to the corresponding node. If the
node locates the file in its own datastore, it returns the file to the node, from
which it received the request, which then passes it on to the next node in the
chain and so on, until the file reaches the origin of the request. In this chain
each node inserts the GUID key and the holder of data into its routing table,
and may choose to alter the reply message to point to itself as the data holder.
A node may also choose to store the file in its own datastore. To insert a file
an insert message containing the GUID key is sent. When an insert message is
received the node checks if it already has the key. If this is the case, it returns
an error message together with the file already associated with the key, just like
it would do, if it received a request for the key. This means that malicious users,
who try to insert corrupted files under existing GUID keys, only help spreading
the original file. If the GUID key is not found before hops-to-live reaches zero
an all-clear message is sent back to the submitter, who then sends the file along
the chain, just as if it was a reply to a request.

There are two main types of GUID keys in Freenet; Content-Hash Keys,
CHK, and Signed-Subspace Keys, SSK. A CHK is generated by hashing the
content of the file, and is used to store files in Freenet, while SSKs are used to
store pointers to CHKSs and to ensure the authenticity of the file’s submitter. An
SSK allows a user to set up a personal namespace, that only the user can write
to but everybody can read from. An SSK is created by generating a random
public/private key pair. New files are then added to the namespace by choosing
a descriptive text string for the file, calculating the hash value of this string
and concatenating it with the hash value of the private key, and hashing the
outcome of this to produce the file key. These two kinds of keys are often used
in unison to provide versionable files. To update a file the owner first inserts
the file under its CHK and then updates the SSK to point to this new version.

24 Chapter 3. Secure Communications

This means that the newest version of the file will always be available by the
SSK, while a user can gain access to older versions by their CHKs.

Freenet supports a third kind of key called Keyword-Signed Key. The user
chooses a short descriptive text string which is used to deterministically generate
a public/private key pair. The public key is hashed to produce the file key. KSKs
are rarely used, since they form a flat global namespace, so nothing prevents
two users from choosing the same key.

3.4 Access Control

Access control is a method of restricting access to objects to authorized subjects.
Objects are defined as the resources or information in a system. For example,
an object could be a data file, a printer or a process. Subjects are the active
entities that can cause information to flow between objects. For example, this
could be a process or a user. In this section we will describe different kinds of
access control models and some implementations of access control.

3.4.1 Access Control Models

Access control has traditionally been divided into two models; discretionary
access control and mandatory access control, but in the last couple of decades
a new model has evolved: Role based access control. We will describe these
models here with emphasis on role based access control.

Discretionary Access Control (DAC)

In DAC, access is based on the identity of subjects and/or groups to which they
belong. It is discretionary in the sense that a subject may pass access rights on
to other subjects. In some systems it is only specific subjects who are able to
pass on access rights to an object (e.g. the owner of this object).

In DAC, access rights can either be assigned to an object (like access control
lists) or a subject (like capabilities). That is, an object can have a set of per-
missions associated, which grant access rights to subjects. These permissions
specify which subjects have access and what kind of operations the subject can
perform on the object (e.g. read, write, execute). Alternatively, each subject
can have a set of permissions, which gives access to different objects.

Mandatory Access Control (MAC)

MAC is based on security labels: Each object and subject is assigned a label.
When a user tries to access data the MAC policy compares the label of the user
with the label of the data. The user is denied access unless the MAC security
checks are passed. Users are unable to grant or remove access to data, hence the
name “mandatory”. Only a core of security administrators are able to set and
alter access security labels. Labels are often assigned descriptive names such as
top secret or confidential.

Labels are assigned to objects based on the sensitivity of the information
they possess. Each subject is assigned clearance that sets the upper and lower
bound of a set of security labels, which the subject can access, these are set
according to the job responsibility of the subject.

3.4. Access Control 25

MAC enforces write up/read down rules, that is, users are only able to read
data on their own or a lower security level, and it is not possibly to write data
into the files of a lower security level. This is to ensure that top secret data is
not written to a file with a label of secret. It is only possible to create files on
the security levels which are accessible to the user.

Role Based Access Control (RBAC)

The management of permission and restriction in multi user systems can become
quite extensive when the number of users increase. Role Based Access Control
(RBAC) is one way of reducing the cost of security management. In many
organizations it is natural that each employees security level is specified by that
persons job function. E.g. in a hospital system, the “doctor” role would be
granted access to write prescriptions, whereas the “nurse” role would not.
With roles the access control policy is more stable, since the activities and
functions of an organization change less frequently than those of a single user.
Therefore, the access control policy for a single role is seldom changed, while
every time an employee changes job function the security administrator only
needs to assign the employee to the new role and remove him from the old one.
RBAC has its roots in the concept of user groups as seen in UNIX and
other operating systems, where access to files and directories can be given to
a group of users. Here an owner of a sub-tree in the filesystem can give any
group permissions to this subtree. So permissions are associated with each file
and directory, and to determine all the permissions of a specific group one has
to traverse the entire filesystem tree. In RBAC each role is a set of users and a
set of permissions, and the role associates these two sets with each other. This
describes one characteristic of RBAC: Tt shall be approximately equally easy to
determine the members of a role and permissions assigned to a role.
Throughout the last decade many different variants of RBAC have been de-
scribed. In the proposed standard from NIST [13] Core RBAC is the fundamen-
tal aspects which are required to achieve a RBAC system. The fundamentals
in RBAC are the relationships between users, roles, and permissions: Users are
members of roles, permissions are assigned to roles, and users obtain permissions
by belonging to roles. The two relationships user-role and role-permission are
many-to-many, that is, each user can belong to several roles and each role can
have multiple users, and similar with permissions. Core RBAC also requires
that it is possible to determine the members of a specific role, and the roles
which a specific user is member of. Core RBAC can be extended to include
other aspects such as hierarchical roles or separation of duty, both are described
in [13].
Core RBAC can be implemented both as MAC and DAC, or it can coexist
with an implementation of either one.

3.4.2 Access Control Mechanisms

We will now continue by looking at some of the implementations that have been
used to realize the models described above. In particular, the Cryptographic
Access Control paradigm will be described.

26 Chapter 3. Secure Communications

Access Control Lists (ACLs)

A common way to control permissions is by using ACLs. They are used in many
of the most popular operating systems to control access to the filesystem, and
in firewalls to filter IP addresses.

In a file system or similar systems each object has an associated ACL. These
ACLs determine which access rights the users of the system have. Since the
management of a system with an extensive amount of objects is overwhelming,
ACLs are implemented according to the DAC model. In this way, the manage-
ment of the ACL associated to a specific object is the responsibility of the owner
of this object.

For each user or group which is permitted or denied access to an object,
an entry is made into the corresponding ACL. These are called Access Control
Entries, ACE. When a user or process tries to access an object, the system
runs through all the ACEs for this object until one of them states, that the
subject is either permitted or denied access. If no ACE regarding this subject
is found access is denied. Usual negative ACE’s, those that deny access, takes
precedence over positive ACEs, those that permit access. That is if a group A
needs access to a particular file but a subgroup of A called B does not, the first
ACE would state that members of B are denied access, and the second would
state that members of A is granted access.

Capabilities

With ACLs we have a list for each object stating which access rights each
subject has. For capabilities each subject has a set of access rights to objects.
Capabilities can be seen as tickets, since a subject “shows” that it has the correct
access rights, when it tries to access an object. Basically a capability is a pair
(x,r) where x is an object, and r is the access rights this capability grants to that
particular object. Since no info about the subject is given in the capability, these
must be unforgeable. Otherwise a user would be able to grant access to everyone.
If it is practical to allow users to pass on capabilities, a special capability which
allows users to grant access rights to other subject can be granted to these users.

The set of capabilities owned by a subject defines a domain. This domain
is the collection of objects for which the subject has access rights. When the
subject calls a procedure, this procedure also has its own domain and it may
have access to some objects not accessible by the calling subject, the subject
may also pass some of its own access rights along to the procedure.

Cryptographic Access Control (CAC)

The growing need to share and access data across large networks, where the user
has to rely on third part elements, over which they have no influence, increases
the need for effective security systems.

Cryptographic Access Control is one solution to this problem. The basic
idea is to encrypt all data, and only users who knows the right cryptographic
keys are able to read or write the data. This allows users to send data across
an untrusted network or store it on a public server, without worrying about
the confidentiality of the data. If a distinction between read and write access is
required, one can use an asymmetric cryptosystem, where the encryption key is
used to grant write access and the decryption key is used to grant read access.

3.4. Access Control 27

Since only the clients know the encryption and decryption keys, the confiden-
tiality of the data is preserved even though the data is sent across an untrusted
network or the server on which it is stored is compromised. So even though a
malicious person can easily gain access to the the data, he is not able to read or
write the data, because he does not have the right keys. Also, by using digital
signatures, the integrity of the data can be ensured.

CAC is suitable to be used in a large distributed network, where other forms
of access control are too centralized to keep an overview of the current access
control state in a distributed system. Most access control mechanics rely on
a reference monitor in order to grant access. Since the actual verification of
access needs to be done on the server that manages the desired object, this
is too centralized to work in a distributed system. For a distributed reference
monitor to work, it needs to have a synchronization system which at all times
can ensure, that it has a consistent overview of the access control state, this is
theoretically impossible, because one cannot ensure that failures will not occur
in the system. This is true for ACL and capabilities, where a reference monitor
is needed to check whether or not a client, who tries to obtain access to an object
is allowed so according to that objects ACL, and likewise a reference monitor is
needed to check a clients capabilities. In CAC a client is always allowed access,
but is only able to read or write the data if he has the right keys.

CAC in a Distributed File System

In [14], Anthony Harrington and Christian Jensen described and implemented
a distributed file system which uses cryptographic access control. They propose
to use a mixture of symmetric and asymmetric cryptography to ensure confi-
dentiality and integrity of the data, and a log system to preserve the availability
of the data. All data is encrypted with the symmetric key, which is distributed
to all users of the system. The introduction of symmetric cryptography speeds
up the process of encrypting and decrypting the files, since it is several orders
of magnitude faster than asymmetric cryptography. A public/private key pair
is used to cryptographically sign all files in order to preserve the integrity of
the files and distinguish between read and write access. A user who needs read
access is given the symmetric key and the decryption key, and he is then able to
ensure the integrity by verifying the digital signature. A user who needs write
access is given the symmetric key and the encryption key.

The server is also given the decryption key in order to verify that a user,
who wants to write some modification to a file, has the needed rights to do so.
If the digital signature cannot be verified with the decryption key, the server
dismisses the write request from the user.

CAC in Peer-to-Peer Networks

Another application of cryptographic access control was developed by Sgren
Hjarlvig and Jesper Kampfeldt in [15]. By associating key triples (a symmetric
key and a matching pair of asymmetric keys) to the files and users in a Peer-to-
Peer filesharing network, it is possible to store files in the network that are only
readable and writable to a selected group of users. The integrity of the files is
also protected, and a version history is created to keep track of changes to a
particular file. Group management is possible by distributing key rings between

28 Chapter 3. Secure Communications

the users.

3.5 Summary

In this section, we have looked at some of the technologies that will be needed
to build a secure version of RPC based on Cryptographic Access Control.

Cryptographic algorithms can be used to protect the confidentiality of mes-
sages. Symmetric algorithms require a pair of communicating users to share
a secret key, whereas asymmetric systems allow a user to distribute his public
key to anyone, enabling them to construct messages only readable by the owner
of the corresponding private key. Cryptographic hash functions are useful for
securely fingerprinting data, and protecting data integrity.

We have also looked at two schemes for binding a cryptographic key to a
network address. In the Freenet peer-to-peer network, hashing of descriptive
names is used to identify documents.

Access control can be used to restrict access to objects. Several models are
used to describe access control schemes: In DAC, permissions are assigned to
each object. These can be modified by the owner of the object, which can be
problematic. In MAC, only security administrators may modify access control
information, which is in the form of labels, a range of ordered security levels, e.g.
going from top secret to unclassified. A subject is only able to read objects with
a lower (or identical) label, and write objects with a higher (or identical) label.
In RBAC, subjects are assigned membership to a set of roles, which may be
hierarchical. Permissions are assigned to roles, rather than directly to subjects.

Access control is most often implemented in operating systems through ac-
cess control lists. Each list contains the permissions for a given object. Access
to modifying the list is often left to the users themselves, making ACL’s an
implementation of the DAC model. Capabilities are instead centered around
the set of rights that a given subject has. The individual capability object is
a form of secure ticket, which the user cannot manipulate. Possession of the
capability is therefore proof of the permissions listed in the capability. Crypto-
graphic access control is a method where a permission is proven by possession of
a cryptographic key. All messages in the system are encrypted, and requests are
only accepted if they decrypt meaningfully, proving that the subject possesses
the proper key.

Chapter 4

Secure RPC with
Cryptographic Access Control

In this section we will describe the problems which we will address in this report.
We will build a model of the system and discuss the different methods used in
this model. Based on the model we will formulate a requirement description.

4.1 Background

With RPC it is easy to program and set up a service that can be accessed
remotely, and if the programmer is not careful, this will give malicious persons
unwanted access to different resources. This may either compromise sensitive
data or in other ways be a nuisance for the users of the system.

A server which runs numerous services will almost certainly have one or
more security holes. Even if some kind of protection from malicious persons
is incorporated into these services, like encryption of data, access control or
similar, the implementation of these may contain security holes. Maybe the
code that handles the access control gives the possibility for a DoS attack or
lacks sufficient checks for buffer overflow, and thereby has the opposite effect of
what was intended. Also, if the security is handled separately by each service, it
potentially leaves different security risks for each service. We wish to incorporate
the security into the RPC library, so the amount of code that needs to be
maintained is minimal, and the number of potential security risks is reduced.
We will rely on two ways to ensure that the remote procedure is protected from
malicious persons: Access control and dynamic assignments of port numbers.

We wish to use dynamic assignment of port numbers in a way, so that only
the server and the authorized clients will know on which port a particular service
is running. This is done to make it harder for an attacker to know which services
a given server is running. As it is today, an RPC service can either run on a
predefined port assigned by Sun Microsystems or obtain a new port on startup,
as described in section 2.3. But the port number assigned by the portmapper is
not secret, since anybody can ask the portmapper on which port the service is
running, and therefore not a feasible solution to our requirement. We will design
a solution based on the naming schemes described in section 3.3. Combined with
access control this will ensure that even though a malicious person discovers that

29

30 Chapter 4. Secure RPC with Cryptographic Access Control

a server has a service running on a particular port, he is unable to determine
which service this is.

4.2 Model

Here we will specify a model of the solution we wish to implement. We will
discuss the different methods described in section 3, and how we will use these
in our solution. During the description and analysis of the model we will give
different requirements to the system. In the end we will gather these in a
requirement specification.

4.2.1 Access Control

An administrator may need to manage a service remotely, without allowing
regular users access to the procedures, with which this is done. Maybe a service
even differentiates between advanced and normal users, so that the advanced
user has access to some procedures that a normal users is not allowed to call. E.g.
on a print server an administrator needs to manage the setup and the printers
connected, an advanced user can add and delete jobs in a print queue, while
a normal user is only allowed to add new jobs. As described in the example,
the access rights of each user will be based on which user group they belong to.
Furthermore, we determined in section 3.4.2 that access control methods based
on a reference monitor are unsuitable in distributed systems, so we will base
our access control on encryption. This means that the client needs to encrypt
the messages before they are sent to the server, which will then decrypt them
in order to verify that the request is legitimate. If the message is not on a form
which is readable by the server after the decryption, the server will drop the
message. This means that if a client sends a message encrypted with a wrong
key, it will never receive an answer. This is done both to reduce the amount of
resources used on false requests in order to make a DoS attack less feasible, and
to increase the difficulty of determining the port number on which a service is
running.

As mentioned we wish to use dynamic assignment of port numbers !, so only
authorized users know on which port a particular service is running. This also
entails that a user cannot call procedures which are not accessible for the role
he is currently assigned to. This means that each service must listen on as many
port numbers, as it has roles, and upon reception of a remote procedure call
verify that it is allowed to call the particular procedure on the port the request
was received on.

The implementation of this access control must mainly reside in the RPC
library, so we can ensure that RPC programs, that use our version of RPC,
always use access control. Furthermore, it needs to be designed in a way, so
that it is easy for the RPC programmer to assign procedures to the different
roles.

Isee section 4.2.2 for more details

4.2. Model 31

4.2.2 Port Number Generation

We have determined that a service needs to listen on a port number for each
role, these port numbers must be calculated from a shared secret, which is only
known by the server and the members of a particular role. We also wants to give
the RPC programmer the possibility to set up the service, so the port numbers
change at a regular interval, to reduce the damage if a malicious person acquires
the port number which is used by a service.

Changing the port number associated with a service frequently, will lessen
the risk that a malicious person is able to compromise the service, but recal-
culating the port numbers will incur some cost. Choosing an interval for port
reassignment is therefore a trade off between the cost of changing port number
and the security level. The cost of changing port number should be as small
as possible, and it must not prevent a user from starting a new conversation
with a service or interrupt an ongoing conversation. Also, to increase the user-
friendliness it should be transparent to the user, when the service changes port
number.

In section 3.3 we mentioned cryptographically generated addresses and ad-
dress based keys, at first we focused on these methods to generate the port
numbers. This included extending the length of a port number to 128 bits,
since these two method is based on IPv6, where an IP address is 128 bit. This
much greater number of ports also greatly increases the cost of a port scan at-
tack.2 Thereby, we almost eliminate the vulnerability to port scans, one of the
most popular ways of discovering which services a particular server is running.
But using one of these methods would mean that the keys used in the crypto-
graphic access control would be associated with a specific port number, and it
would therefore be necessary to distribute new keys every time the port number
is changed. Even though it is a good idea to generate new keys from time to
time to ensure integrity, it is not necessary to do it as often as we would like to
change port number.

Instead we use a technique similar to the way keys are created in Freenet,
see section 3.3.3, to generate the port numbers. A descriptive string is created
for each role in each program version. This should be done in a way, so that
both the client and server are able to generate this string. The string is then
concatenated with the hash value of the servers public key for the particular role
and the result is hashed again to yield the port number. It is important that
only members of a particular role are able to generate the descriptive string
associated with this role, in order to make it infeasible to guess which port
number is used by a role, if the public key for this role is obtained. Since the
range of the hash function is limited, hash collision may occur, causing two
procedures to listen on the same port, which means that one of these services
is not allowed to start. Here we have another advantage of using 128 bit port
numbers, the possibility that two descriptive strings hashes to the same value is
less likely with 128 bit instead of 16. To ensure that two services do not try to
run on the same port number, we need to do a check for the availability of the
generated port number. If the port number is already taken, we need to have
some predefined mechanism the client and server can use to generate another
port.

2See section 4.2.4 for a more specific analysis of the security aspect of 128 bit ports.

32 Chapter 4. Secure RPC with Cryptographic Access Control

4.2.3 Integrity and Confidentiality

To further heighten the security of the system, we need to introduce integrity
and confidentiality to the conversations between client and server. Since we
use CAC to verify access rights, the packets from the client to the server is
already encrypted. All users in a role has access to the corresponding key, so
to prevent these from decrypting the message sent from another member, the
crypto system used in our CAC must be asymmetric. This way all the clients
get the public key and only the server knows the private key, so no one else but
the server can decrypt the requests encrypted with the public key. However,
the private key cannot be used to encrypt the replies, because all members of
a role knows the public key, and can therefore decrypt the reply. Besides this
it is resource consuming to encrypt all messages with an asymmetric cipher.
Instead we choose a mixture of asymmetric and symmetric cipher to increase
performance and confidentiality: To initiate a conversation a client sends a
message containing an RPC request to the server encrypted with the servers
public key, the server will then know, that the client is allowed to call the
particular procedure defined in the request. Along with the request, the client
also sends a symmetric session key to the server, which will be used to encrypt
the reply from the server. Each session key is only used once; they are discarded
at the end of each conversation.

To provide integrity we add a fingerprint to the messages. This is done using
hash functions as described in section 3.2.3. When a message is received either
by the server or by the client, it will be decrypted and a check will be made
to ensure that it has not been tampered with. This still leaves the issue of
replay-attacks, where an attacker resends a legitimate message he has snooped
from the network. To prevent this from happening we also attach a nonce to
the first message sent by the client. The server will record this nonce when it
receives the message, enabling it to detect if the same message is later replayed
by an attacker. The reply from the server does not need a nonce, since the client
will only listen for one message from the server and expects this message to be
encrypted with the session key, and since the session key is only used once, it is
not possible for the attacker to resend these replies.

To restrict access to current members of a role, it should be possible for the
system administrator to change the role keys and the way in which the port
numbers is calculated, so that it is not possible for an old member of a role to
gain access to the procedures assigned to this role, or have knowledge of which
ports members of this role has access to. This should be possible without having
access to the source code, since the source code may be kept secret for different
reasons, e.g. to avoid that other people copy the code.

4.2.4 Security Threats

A flawed authentication can be more dangerous than having no authentication,
since it gives the users a false sense of security. They may more readily let
the system handle sensitive information, when they believe that their data is
protected from malicious persons, not knowing that a flaw in the authentication
exposes the data to these persons. Therefore we will try to identify the different
attacks our system may be exposed to, analyze the threats they may pose to
the system and how this can be prevented.

4.2. Model 33

Reconnaissance

To initiate an attack the intruder needs to know where to direct it, and which
form of attack to use. He needs to know which services is running on the server
and on which ports these are listening. This information can be obtained by
doing a port scan, sniffing packets, or by social engineering.

A port scan can reveal which services a server provides and on which port
numbers they are listening. This is done by sending a message to each port.
From the response the attacker can determine which ports are used, and these
ports can then be probed for weaknesses. There exists an abundance of tools
that can be used to do a port scan on the net, e.g. nmap and Netcat. nmap will,
given an IP address, report which ports are open, which services they support,
and the owner of the daemon which runs the service. This is important since an
intruder would gain the same privileges as the owner, if he is able to compromise
the service. We use access control and 128 bit port numbers to prevent an
attacker from gaining information about the server by doing a port scan.

As mentioned in section 4.2.2, 128 bit port numbers will greatly increase the
time it takes to do a port scan. The time it takes to do a port scan depends on
the bandwidth, the number of threads used, and the type of port scan. TCP
connect() scanning is the fastest method supported by nmap.? If we assume
that it is possible to scan one port in one millisecond it is possible to scan a
server with 26 ports in approximately a minute. With 2128 ports this takes:

2128

1000 % 3600 * 24 * 365

= 1.0790283070806 x 10**years

Beside this the attacker also needs to scan the UDP ports to do a full portscan.
So even if an attacker has an extensive amount of resources he cannot gain any
information from a portscan in reasonable time.

If an intruder is able to setup a computer on the network between the server
and the client, he can monitor the traffic, and thereby discover which ports on
the server the clients are communicating with. This can give him a general idea
of which ports on the server provides services. This can either be done by using
a packet sniffer, which is a tool that can retrieve all packets on the network,
or by relaying the traffic sent to the server. This can be done by setting the
MAC address of one interface card to the same as the servers. However, the
intruder will then have to forward the packets he has intercepted to the server,
if he wishes the attack to be unnoticed. Our system is not able to prevent
a malicious person from discovering which ports the server is listening on if
this form of attack is used. But since all traffic between servers and clients
is encrypted it prevents the attacker from gaining any additional information
from the attack. But even if an attacker gains knowledge of an open port on
the server, he is unable to determine which service this port provides, since all
packets which are not encrypted with the right key are dropped.

Social engineering is based on human interaction, so it is very difficult to
set up a defence against it. An attacker will contact a user of the system
usually by phone or email, and try to persuade the victim to hand over sensitive
information (for example a password) or make the victim do something that will
make the system vulnerable to an attack. Since our access control is based on

3See http://wwu.insecure .org/nmap/nmap_doc.html for details about this and other forms
of port scanning

34 Chapter 4. Secure RPC with Cryptographic Access Control

cryptography all an attacker needs to compromise a service is to obtain the key
and the port number on which a service is running.

Denial Of Service (DoS)

A denial of service attack tries to deprive users of access to a service or resource,
thus compromising availability. This is usually done by consuming bandwidth
or CPU time, and thereby preventing other user requests from being serviced.
DoS can be split up into three basic forms of attacks:

e Consumption of resources like bandwidth or CPU time

e Falsification of configuration information, f.x. changing routing informa-
tion to redirect traffic

e Disruption of physical components, like a network cable

We will only look at the first kind of attack, since the latter two are attacks on
network components and should be dealt with elsewhere.

A malicious person might try to exhaust resources on the server by sending
an extensive amount of traffic to the server. Several methods exist that use
the Internet Control Message Protocols (ICMP) to flood a host with traffic?.
If a malicious person obtains knowledge of which port(s) a service is listening
on, he can start sending malformed messages to these. Since we use CAC the
service will decrypt all messages it receives and check if they are legitimate.
Depending on whether or not the service is concurrent, the attacker can leave
the particular service, or even the entire server, unable to respond. If the service
spawns a new process to handle the incoming request, it is still able to process
incoming requests while the first is being serviced. An attacker can then send
multiple requests, consuming more and more resources on the server, which will
be unable to handle incoming requests from other users, even if these are directed
at other services. One way to circumvent this is to restrict each service to a
certain amount of resources. If this is done, only the compromised service will be
unavailable to the users. If the service only is able to handle one request at the
time, the attacker can keep sending requests, so the service is unable to handle
requests from legitimate users, but it will not affect other services provided by
the server. This form of attack and attacks that use the TCP handshake (like
syn flooding) requires that the attacker knows which port numbers are used, so
128 bit port numbers give some protection against this, but this protection is
rather weak since an attacker, who can monitor the traffic, easily can obtain
this information.

4.2.5 RPCgen

RPCgen is a tool to help the RPC programmer write RPC services by generating
code, so the programmer only needs to focus on the implementation of the main
features in the application. This means that the interface should be kept simple,
and it should be well documented how to use the generated code. We need to
update RPCgen to use our version of the RPC library, and at the same time
make sure that the interface resembles the one used today. This is to ensure that

4For details of these attacks see [16]

4.3. Requirement Specification 35

existing RPC programs can be recompiled with our version of RPCgen with only
minimal changes, and programmers who use RPCgen today can easily make the
shift. Our version of RPCgen shall also be able to produce sample code for the
server and client in a way, so that it is easy for the programmer to link this
with the server and client stubs, in the same way as SUN RPC does today. This
sample code should clearly document where the application specific code should
be placed.

As mentioned, it should be easy for the administrator to generate new keys
for the different roles, RPCgen should provide a method for doing this. To
generate the keys, RPCgen needs information about which roles the service
have, this can be provided by giving a file containing the program definition
in RPC IDL, as it is described in the program definition file . This will not
disclose any secrets, since it only contains a definition of which versions exist for
the service, which procedures and roles these consist of, and which procedures
each role is allowed access to.

4.3 Requirement Specification

Below, we will summarize the requirements for our proposal for an extension of
RPC which uses Cryptographic Access Control:

1. A new version of the RPC library must be designed. It should implement
cryptographic access control on the individual procedure level in a manner
that is as transparent to the users and programmers as possible, without
changing the existing interface more than necessary

2. The access control must rely solely on possesion of keys, that is, it should
be done without authentication of the client, since this scales badly

3. All access control must be performed inside the RPC library, so the code
that handles the access control is the same for all RPC programs

4. As an additional security measure, the RPC portmapping mechanism must
be replaced by an algorithm for calculating port numbers by use of hash
functions and a shared secret

5. It should be possible for a running service to change the port number it
is listening on with regular intervals

6. RPCgen should be extended to generate code that is compatible with the
new RPC library

7. An extension to the RPC IDL syntax should be defined, making it easy
to define the access control properties for each procedure in a program

8. As a consequence of the use of Cryptographic Access Control, all commu-
nication in the system will be encrypted, and therefore confidential. This
must be implemented in a manner such that clients with access to the
same procedure cannot eavesdrop on each other’s calls

5See section 2.4.2

36 Chapter 4. Secure RPC with Cryptographic Access Control

9. In addition to providing confidentiality, the system must provide integrity
and availability where possible

10. RPCgen should contain routines to create the necessary keys, so a system
administrator is able to change these easily

Chapter 5
Design

Essentially, the goal of the system is to restrict access to calling a particular
procedure in an RPC program to the clients which are in possession of the cor-
rect cryptographic key. Besides the immediate effect of preventing unauthorized
access to RPC programs, this will yield the benefits of confidentiality and in-
tegrity of the transmitted messages. It is important to keep the simplicity of
the RPC protocol intact, and make the additions as transparent as possible to
both RPC programmers, system administrators, and end-users.

In this section we will shortly describe how the server side is designed. We
will explain what is done by the RPC library and what is done by the code
written by the RPC programmer. We will then describe how the access control
will be incorporated into the RPC library, so that is does not depend on the
code written by the RPC programmer.

The RPC library contains methods to receive messages and reply to mes-
sages. The server stub written by the RPC programmer contains the dispatch
functions, which are responsible for calling the right procedure after a request
message is received, and the XDR filters which are used to serialize and deseri-
alize the XDR data structures.

When the server receives a message, the RPC library creates a buffer to con-
tain the XDR data structures and calls the dispatch function with the procedure
number as argument. The dispatch function will then deserialize the arguments
in the buffer, call the procedure associated with the given procedure number,
and call the reply function in the RPC library, which will send the result back
to the client.

Since a service will listen for incoming requests on a separate port for each
role, we must verify that only members of a role are allowed to call procedures
on the port associated with this role, and that they are not able to call other
procedures than the ones accessible from the role. Each role will have a pub-
lic/private key pair associated, which will be used in the cryptographic access
control. Each client must encrypt a request with the public key and send the
encrypted request to the server, which will verify that the request is encrypted
with the right key by decrypting it with the private key. This means that only
members of a role are allowed to call procedures on the port associated with
that role, since each client that knows the public key is a member of the role. If
the server is able to decrypt the message, it will call the dispatch function. To
ensure that a client is only able to call procedure accessible for members of its

37

38 Chapter 5. Design

role, it will be natural to limit requests on each port to calls to the procedures
which the associated role has access to. This means that there must be one
dispatch function for each role instead of one for each version, as it is in the
original implementation of RPC. Unfortunately, this creates some restrictions to
how the RPC programmer writes his dispatch function, that we cannot verify.
E.g. a RPC programmer may write a dispatch function for each version, as he
would do with the original implementation of RPC. This is illustrated in figure

A Server B Server

CAC CAC

. Dispatch for rl
Dispatch for rl and r2

Client1 [7w 3’I:l Client 1 [o

Dispatch for r2

centz [ommp crene2 fermiiniipny]

Figure 5.1: A shows a RPC program with a dispatch function for each role, and
B shows a RPC program with only one dispatch function

5.1, where we have a RPC program with two roles, r1 and r2, where client 1 is
member of rl and client 2 is member of r2, but not vice versa. In A the pro-
gram has a dispatch function for each role, and in B the program only has one
dispatch function. As shown we will in both cases verify that client 1 is member
of role r1 and client 2 is member of r2. In B we have no way of knowing which
procedure is called after the dispatch function is called. We will therefore use
ACLs to verify, that a client has access to the procedure it tries to call, before
the dispatch function is called. Each role must have its own ACL, consisting of
the list of procedures which members of this role has access to. Since we already
know which role the client is a member of, and the fact that the server was able
to decrypt the request proves that the client actually is a member of this role,
we only need to verify that this role has access to the procedure the client tries
to call. Since the access rights of roles are constant in a given RPC program,
our reference monitor will have a consistent overview of the access control state,
which means that the addition of ACLs does not change the scalability of our
system in a distributed system. Therefore, we find that it is preferably to in-
troduce this additional layer of security to protect the RPC programmer, even
though it does conflict with the pure cryptographic access control model.

5.1. Protocol 39

5.1 Protocol

In this section we will give a detailed description of the protocol we have devel-
oped. We will explain how the system will restrict access and how confidentiality
and integrity are ensured.

In our system access rights are assigned to roles. Each role has a set of
procedures which its members are allowed to call. To become member of a role
a user has to obtain the public key for this role and the shared secret which
is used to generate the port number. These can be obtained from another
member or from the system administrator. Because membership is determined
by knowledge of these two things, there exists no way to find all the members
of a particular role. Of course the system administrator will have a list of the
users he distributed the keys and secrets to, but he cannot know if these have
distributed them further. E.g. in a large company the system administrator
may choose to give access to one person in each department, this person can
then distribute access to the users in his department who need access.

The members of a role know the public key, while only the server knows the
private key. This means that only the server can decrypt messages encrypted
with the public key, but all the members of a role are able to decrypt messages
encrypted with the private key. As described in section 4.2.3 we have intro-
duced mixed mode cryptography to ensure the confidentiality of the reply from
the server, which will be encrypted with a session key. This will also improve
performance since it is less expensive to encrypt and decrypt with a symmetric
cipher than with an asymmetric one. The client will create a new session key
for each call to the server and send this to the server along with the request. It
will of course decrease the performance of the client to create a new key for each
call, but the server will only benefit of the use of a symmetric cipher since the
most of the encryption and decryption of the server is done with the symmetric
cipher. When the client wishes to call a remote procedure it will first create a
session key, use this to encrypt the request, encrypt the session key and a nonce
with the servers public key, and send these to the server. The server will use its
private key to decrypt the session key and nonce, remember the nonce to guard
against replay attacks, decrypt the request, service this, and send a reply back
to the client.

The part of the message which contains the actual request and is encrypted
with the session key, needs to hold the data needed by the server to identify
the procedure, the client wishes to call, together with the arguments to this
procedure marshalled in XDR. To ensure the integrity of this data we hash it,
and encrypt both the data and the hash value of the data, before the request
is sent to the server. The server will upon reception verify that the hash value
is correct. The same will be done with the reply to the client. Besides the two
encrypted parts the message from the client to the sever will also contain an id
in clear text. The server will include this id in the reply to the client, which will
identify the reply from this id. The structure of the messages is shown in figure
5.1.

Since the access control must be as transparent as possible to the user,
we will do all the client side encryption and decryption in the functions the
client stub uses to interface with the RPC library. The only thing which must
be done by the client is to calculate the current port number the service is
listening on, and pass this and the public key to the client stub. On the server

40 Chapter 5. Design

Request : Xip|{Ks|N}xk

Nproc|Args|H(Nproc|Args)} i s

public

Reply : Xip|{Res|H (Res)} k4

e X;p is the session ID used by RPC to match calls and replies
sent over a UDP transport

e K is a random symmetric session key generated by the
client

e N is a nonce
o K, ubiic is the roles public key
® Ny is the procedure number

e Args is the arguments for the remote procedure

H is a hash function

Figure 5.2: The request and reply messages

side it should still be possible to use dispatch functions written for the original
RPC implementation, therefore we will place the encryption and decryption
routines in the functions in the RPC library which are responsible for sending
and receiving messages. By placing all cryptography and access control inside
the RPC library we also ensure that all services that use our version of RPC
will use access control, and that the access control used is the same.

Figure 5.3 shows how we have incorporated the encryption and access control
into the RPC protocol. As shown in the figure the main differences between our
version and the original version are: The client will now generate the port
numbers instead of asking the portmapper, all messages sent between the client
and server stubs are encrypted, and the server stub will verify that the client
has access to the procedure before it is executed. In the figure it is not shown
that the server will verify the message being wellformed after it is decrypted.
When the server has verified that the client possesses the correct key to call the
procedure it will check that the role, which has access to the port it received
the request on, has access to the procedure which is being requested.

One could easily be led to believe that our access control is an implementa-
tion of the RBAC model, but this is not the case since the RBAC model clearly
states that it should be possible to determine all the members of one role, and
which roles any given user is member of. This is not possible in our model since
role membership is acquired by possessing the right key and the secret used to
generate the port number, and any member of a role can distribute these to
other users. This means that there is no simple centralized method to obtain
all the members of one role, or which roles a given user is a member of.

Our access control implements the DAC model, in the way that each role
has a list of procedures to which the members have access. Each member of a
role may pass membership, and thereby the access rights, of a role on to other

5.1. Protocol

41

users.

Client running
on machine A

Generate
port number

Client Server RPC service running
stub stub on machine B

1 1
Serialize 1
arguments |
Invoke client !
stub !
Encrypt
request

Decrypt
request

Send request |

Deserialize
arguments

Verify access
rights

Procedure
executes

Serialize
result

Forward reply Encrypt

reply

Decrypt
reply

1
Forward result .
Deserializ

result

I
I
I
I
1
1
1
d
1
1
1

Figure 5.3: The remote procedure call model with cryptography

42 Chapter 5. Design

5.1.1 Port Number Generation

To access a remote procedure the client need to know on which port the specific
RPC service is currently communicating. Since we do not want to use the
portmapper, we need some way to let the client calculate the port number.
There are three requirements to this. The port number must be able to change
at a regular interval without causing breaches in ongoing communication, and
people who are not a member of a particular role, should not be able to calculate
the port number the service uses to communicate with this role. Finally we need
some way to handle hash collisions.

To ensure that no ongoing session is destroyed when the service changes port
number, there must be an overlap where the service is listening on two ports for
each role that has changed port number. If the old port has not received any
incoming requests after a predefined amount of time, it will be closed.

We wish to give the RPC programmer the opportunity to change the way
in which the port number is generated, therefore we have placed the generation
of the descriptive string outside the RPC library. If the RPC programmer
wishes to use our method he can use RPCgen to generate sample code, that
will generate the string, or he can create his own code to generate a string. The
string must be passed to the function that creates the client or the server, which
then will hash the string and concatenate this with the hash of the public key
and hash this to get the port number. This provides high flexibility to the RPC
programumer, since he is able to decide how often a service needs to change port
number. It is even possible to let the roles of one service change port numbers
at different intervals, e.g. it may be desirable to have a role, which always runs
on the same port number, i.e. a role for guests, while the more privileged roles
need to change port number once a day.

If a service creates a port number which is already in use, a new port number
is created by using the port number which led to a collision instead of the
descriptive string. So first we create a port number by concatenating the hash
value of the descriptive string with the hash value of the key. This is then
hashed and we make a check to see if the port number is already taken. If this
is the case, we repeat the algorithm but this time it is the hash value of the
colliding port number which is concatenated with the hash value of the key.
This is illustrated in figure 5.4. The algorithm will be repeated until an unused
port number is generated or until the algorithm has run a predefined number
of times. Since we use 128 bit port numbers it is highly unlikely that a collision
will occur, and extremely unlikely that it will happen more than once. If a hash
collision occurs on the server it will mean that some clients will try to call a
service on the wrong port. This would cause the server to drop the request since
it is encrypted with the wrong key. The client will then wait for a reply until its
timeout is reached, whereafter it will generate a new port number in the same
way as the server does in case of a collision, and send the request to this port
number. The client has a predefined number of times it will try this before it
returns an error.

5.2. The RPC interface 43

— > Name_String Key

I \Apply hash /Apply hash
In case of collision repeatl
the algorithm with Digest 1 Digest 2
Name_string = Digest 3 I

I Apply hash

I Digest 3

I I I Else use Digest 3

as port number
| — — — 1V

Figure 5.4: Port number generation

5.2 The RPC interface

In section 2.4.3 we described the API to the RPC library. This section will
describe how it will be changed in our implementation. Since we are only de-
signing a prototype, only the functions used by RPCgen (the ones referred to
as the lowest layer in section2.4.3) is changed. We have tried to keep the in-
terface from the original RPC library, so the code the RPC programmer has to
create will resemble the code used in the original RPC. Our prototype will only
support UDP so we will concentrate on the interface functions associated with
UDP.

On the server side we have added one function and removed the function
which was used to remove previous mappings of the service from the portmapper
tables, pmap_unset.

svcudp _create Since our design will assign port numbers to each role, dy-
namically, it will no longer be possible to specify a socket, instead the
function will always create a socket, calculate the port number on which
the service is available for the given role, and bind the socket to this port
number. To calculate the port number the functions need to know the
descriptive string belonging to the users current role and the public key,
this means that the RPC programmer must generate the descriptive string
and pass it to svcudp_create as a parameter. Besides the port number
svcudp_create needs a role number and the private key for this role to
create the transport handle, these are also given as parameters. Because
each role must connect on its own port number, it will be necessary to
create a transport handle for each role, so svcudp_create must be called
for each role.

pmap wunset This function is no longer needed since we do not use the portmap-
per.

get _role name This function can be used to read a role name from a file.
It is only meant as a help to the RPC programmer if he wishes to use
the role name to create the descriptive string used to generate the port

44 Chapter 5. Design

number. It will take the role number and file name as parameters and
return the name associated with the given number.

svc_ register The primary purpose of this function was to register the service
with the portmapper, but this is no longer needed. Instead this function
will be used to specify which procedures each role has access to, so it must
be called for each role, and the RPC programmer must specify which
procedures the role has access to and pass these as a parameter. Since
we register each role instead of each program version, we need to pass the
role number instead of the program and version number.

The most significant changes to the original interface functions used by the
server, lie in the change that we need to create a transport handle for each role,
instead of only creating one for each service, and that the RPC programmer
needs to generate the descriptive strings and the keys, and specify the procedures
each role has access to.

The only change in the client side interface is introduced because the port
number must be generated instead of obtaining it by querying the portmapper.

clntudp create It will no longer be possible to specify the port number in
the socket data structure, since clntudp_create will always generate the
port number from the public key and descriptive string and set the port
number. It is no longer necessary to pass the program and version number
as parameters, because we will not use these to query the portmapper,
instead the descriptive string and the public key is sent along. The same
changes will be made to clnttcp_create.

clntudp call The parameters for this function will remain the same as in the
original rpc. clntudp_call will still be responsible for sending the request
and receiving the reply. Besides this it will also take care of the encryption
and decryption. Also it will be changed so the request messages will be
structured as described in section 5.1.

clnt_ destroy No alterations will be made to this function.

The client side interface is almost the same as in the original. The only difference
is that the RPC programmer needs to generate the descriptive string and pass
this to clntudp_create instead of the program and version number. Besides
creating the arguments for the functions mentioned above and calling them,
the RPC programmer must create the dispatch function, which is responsible
for decoding the arguments for the procedure, calling the right procedure, and
calling the function which will send a reply to the client. The dispatch function
uses the procedure number to call the right procedure. This means that each
dispatch function must not control more than one version, because this could
lead to one dispatch function which controls two procedures with the same
number.

The RPC programmer can also create a series of services, which have the
same roles and read the keys from the same files, thereby making the key dis-
tribution easier. However. he must be aware that two roles with the same key
must not have the same descriptive string, since this will lead to hash collision.
The system administrator is also able to associate different roles with the same
key, by storing the same key in the files used by the roles he wishes to associate.

5.3. RPCgen 45

5.3 RPCgen

Here we will describe the features we wish to add to RPCgen and the changes
that are necessary in order to make RPCgen able to parse the new keywords,
we will add to RPC IDL, and generate code which will use the new syntactic
constructs in the RPC library!. We need to change the existing calls into the
RPC library to call our extended versions of the interface functions instead, and
add some new features to RPCgen. Original implementations of RPCgen can
create a server and client stub, filters to serialize data, and a header file. Besides
this more recent implementations can generate sample code, which shows how
to interface with the client and server stubs. These can be used as a starting
point for the RPC programmer.

Our version of RPCgen should be able to generate keys to be used in our
access control. We will use a cryptographic library to generate a public/private
key pair, which is stored in two files; one for each key. This needs to be done for
each role defined in the RPC IDL program definition file. The public keys will
then be distributed to the users, so that each user receives the keys associated
with the roles of which he is a member. The private keys are given only to
the server. To give the system administrator the possibility to replace the keys
used by a role, we will add a flag to RPCgen, which will cause only the keyfiles
to be created, these can then be distributed to the clients who will replace the
original files.

As described in section 4.2.2 RPCgen will generate port numbers based on
the method used in Freenet to generate keys. To ensure that it is not possible
to calculate the port number from the public key alone, the descriptive string
must be calculated on a shared secret between the server and the members of a
role. Besides this the system administrator need some way to change this secret
if it is compromised, and to ensure that old members of a role does not know
the secret. We have chosen to use the role name as a shared secret, and this
should be read from a file or given as a parameter, so it is possible to change it.
The string will also include the program and version name and number. These
together with the role name and number ensures that the string is unique for
each role. To change port number at a regular basis we also include the current
date in the string, so it will change every 24th hour. Thus ending up with a
string on the form:

<hostname >/Program_<P'rog'ra.m number>_Version_<Version number>/
<Program Name>/<Version name>/<Role name>/<Role number>/<Date>

To allow the system administrator to change the shared secret used to create
the strings, our version of RPCgen will create a file, which will map role numbers
into role names. This means that whenever a new port number is generated the
role name associated with the role, which is about to be assigned a new port
number, is found in this file. Since this file will be written in clear text, the
administrator can either choose to change the file in an editor or use RPCgen to
create a new file, but then he needs to change the RPC IDL program definition
file instead. Whenever a role changes name the administrator must distribute
this to the members of the particular role, but as with key distribution the
system to distribute this is beyond the scope of this project.

The changes to the RPC library means that both the generated server and
client code needs to be changed. For the server we will need to create multiple

1 These are described in section 5.2

46 Chapter 5. Design

transport handles for each version instead of using the same for all procedures.
svcudp_create must be called for each role in each version. Before each call
to svcudp_create we must generate the descriptive string, according to the
algorithm described in section 5.1.1, and the name of the files in which the
roles public key is stored. For the call to svc_register we must specify the
procedures the role has access to.

In order to enable the RPC programmer to specify role access assignment, we
have chosen to extend the RPC IDL with a keyword specifying the relationship
between a key and the set of procedures to which it grants access. For each
version of each program defined, it is possible to define a list of roles, i.e. each
role defines a set of procedures in the program, which are accessible using the
key associated with the role. To illustrate this, we give an example of a simple
RPC IDL definition using the extended syntax:

program PRINT_PRG {
version PRINT_VER {
int print_job (...) =
int add_printer (...)
int delete_job (...) =
role USER_ROLE {1} = 1,
role OPERATOR_ROLE {1,3} =
role ADMIN_ROLE {1,2,3} =
=1
} = 0x20000001;

1;

In each role, the list in brackets indicates the set of procedures to which the role
is granted access. Each role is declared with a role name and number, which
are used internally in the same manner as program and version numbers in the
original RPC protocol. The full syntax of the extended IDL is given in appendix
A.

5.4 Summary

We have described how we will incorporate access control into RPC. Each service
will be divided into roles, where each role will have access to a subset of the
procedures provided by the service. Each role will have a port associated, where
requests from members of this role are accepted. To ensure that only requests
from the members are accepted, the roles each have a public/private key pair,
and all requests must be encrypted with the public key. The server can then
verify role membership by decrypting the request with the private key. Role
membership is obtained by possesion of the public key associated with the role,
and knowledge of the shared secret between the server and the role. The shared
secret is used in our naming scheme, where we generate port numbers from a
descriptive string and the roles public key. This is done to enable clients to
identify on which port they are able to communicate with a service.

Integrity and confidentiality is ensured by applying hash values to each mes-
sage and encrypting them. As mentioned the cryptographic access control is
done with an asymmetric cipher and the messages are encrypted with a sym-
metric key.

5.4. Summary 47

We have also described how we will change the RPC API, and how RPCgen
will be changed to make use of the changes and new features added to RPC.

Chapter 6

Implementation

We will now describe the implementation of our prototype of Remote Procedure
Call with Cryptographic Access Control (CACRPC). The implementation is
based on Sun Microsystems’ version 4.0, the source of which can be obtained
from ftp://playground.sun.com/pub/rpc/. This rather outdated version of
RPC was preferable to the one that ships with a modern Linux distribution,
since the latter is integrated with the GNU C library. This makes it difficult
to introduce changes without affecting some other part of this very complex
system.

The Sun implementation, which is from 1989, first had to be upgraded to
comply with modern C standards, and any references to old system calls had
to be removed. This process has not been entirely completed, so some warnings
due to uses of deprecated functions may occur at compile time. The age of
the code also means that some features are lacking, especially the Secure RPC
authentication flavor implementation has been left out due to the export restric-
tions on the DES algorithm enforced by the U.S. government at the time. This
is not a problem, however, as this part of the RPC standard is not important
for our purposes. We have also backported some improvements made to the
implementation of RPCgen in GLIBC to the old Sun version. These include the
sample code and makefile generator components.

6.1 Choice of Cryptographic Algorithms

There exist a great selection of different cryptographic libraries that implement
the most popular algorithms and finding the one best suited for a particular
application is not a trivial task. We have chosen to base our prototype on the
Nettle library by Niels Moller [17]. It has the advantages of being very low-level,
in that it does not do automatical algorithm selection, memory management,
and so on. This means we can apply encryption directly on the data in the XDR,
data buffers used by the existing RPC implementation. Nettle is also relatively
simple to use, and has support for the needed functionality.

We have chosen the AES algorithm for symmetric encryption, since it is a
well-proven algorithm with support for the key sizes required in modern systems.
All encryption is carried out in CBC mode, in order to prevent block manipula-
tion. Asymmetric encryption is done using the RSA algorithm. This is in fact

49

50 Chapter 6. Implementation

the only asymmetric algorithm supported by Nettle at present, but this is not
really a problem, as it is an old algorithm that has withstood cryptanalysis for
almost thirty years. One downside is that it requires fairly large keys in order
to be considered secure. Since no security system is stronger than its weakest
part, the most efficient use of resources is obtained if all the used components
are approximately equally difficult to attack through brute force. RSA security
claims that 2048 bit RSA keys are equivalent to 112 bit symmetric keys, and
considers data encrypted with such a key to be secure until the year 2030. Since
the minimum key size of AES is 128 bits, we cannot obtain perfect equivalence.
This could be achieved by increasing the RSA key size to 3072 bits, if desired.

The hash function SHA-256 is used both for port number generation and for
ensuring integrity. As the name suggests, it generates 256 bit hash values (since
the port numbers used are 128 bits long, the hash value is truncated when used
for this purpose). Due to the attack known as the birthday attack, hash values
must generally be twice as long as what one immediately expects. This is due to
the fact that an adversary only need to find two random messages that hash to
the same value in order to potentially be able to break a system reliant on a hash
function. This is much easier than finding another message that hashes to the
same value as a given message. For this reason, the hash value size of 256 bits
is comparable in strength to the 128 bit keys used in AES. Being extra cautious
when choosing a hash function is also very important, since a recent paper by
Chinese cryptographers Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu, reveals
a weakness in one of the most popular hash functions, SHA-1, making it 2000
times faster than brute force to find a collision. SHA-256 might be vulnerable to
similar attacks, but with its much larger hash value length, it should be secure
for the foreseeable future even if such problems do exist. An attacker finding a
collision is primarily a problem if he can use it to compromise message integrity.
Finding colliding port numbers is not really a security risk.

6.2 Overall Program Structure

The central parts of the source code are organized into two directories; one
for the RPC library and one for RPCgen. In addition to these, there are also
some demonstration programs, source code for various standard RPC services,
an incomplete version of secure RPC (due to the above mentioned export re-
strictions). These will not be described in this section and are left unchanged
from the Sun distribution of the source.

There is no real distinction between the client side and server side parts of
the RPC library. When writing an RPC program, the programmer must include
the header file rpc.h, and link against the static library 1ibrpclib.a. However,
the source code is organized into separate files for client and server specific code,
S0 some separation is possible. We will therefore describe these two parts of the
RPC library separately in the following two sections. The implementation of
the most important library functions will be illustrated using UML sequence
diagrams. It should be noted that the diagrams do not adhere strictly to the
code; some details have been omitted for clarity, and the diagrams are kept in
the object-oriented style for which UML is most suited, even when the C code
deviates from it. To save space, system calls are represented by messages to
self in the diagrams, rather than introducing communication with a “system”

6.3. Client Side 51

object.

We have added some common wrapper functions for interfacing with the
Nettle library. These are used both by the client and the server, and are found in
the files common_cac.h and common_cac.c. They will not be described in detail
here, as they are fairly simple. In the diagrams below, they are represented by
the static class Crypto.

6.3 Client Side

The main data structure of the client is declared in clnt.h. This is the CLIENT
structure, which is initialized by calling the clnt_create function described
below. It mainly consists of an array of function pointers, which are initial-
ized to point to various operations that can be performed on the client. The
most important is clnt_call which is used to call an RPC procedure. Others
include a destruction routine, an error printing routine, etc. The reason that
function pointers are used, is that the functions are transport protocol specific.
Our implementation only supports the UDP protocol, therefore the diagrams
below actually describe the UDP versions of these functions. The UDP-specific
functions are found in clnt_udp.c, whereas the generic clnt_create wrapper
function is found in clnt_generic.c.

6.3.1 clnt create

This function, which is illustrated in figure 6.1, creates a client structure. It
first looks up the IP address of the provided server hostname using the system
call gethostbyname. The Nettle random number generator is then initialized.
We then read an RSA public key from the file specified by the caller. This
key is used to encrypt all message headers when calls are later made using this
client structure. We now generate a port number by hashing the argument
name_string concatenated with the public key. The present implementation
does not support collision detection on the client side. Finally, a UDP socket is
created and stored in the client structure. The client structure is returned.

cInt_create(hostname,

keyfile,namestring)
cint: client Crypto
——
}addr := gethostbyname(hostname)

init_random()

role_key := read_rsa_pub_key(keyfile)

port_no := hash_port_no(name_string,pub_key)
>

create(IPPROTO_UDP)

| sock : socket

dnt]

Figure 6.1: The clnt_create function

52 Chapter 6. Implementation

6.3.2 clnt_call

This function is described in figure 6.2. It is called by a client stub when the
user wishes to call an RPC procedure. It is responsible for marshalling all
arguments and settings for the procedure, sending these across the appropriate
network socket, waiting for the proper reply, and finally unmarshalling the reply.
We introduce the additional steps of adding encryption to the call message, and
decrypting the server’s reply. The arguments of the function are the following;:
The number of the procedure to be called, the arguments in their unencoded
form, and pointers to two XDR filter functions that are able to encode the
arguments, and result of the function, respectively.

The function first sets up some cryptographic parameters by generating a
random symmetric session key and an initialization vector. An XDR buffer
object for encoding data is also created, and the xid is placed into this buffer.
After which a timestamp is generated, and the asymmetric role key is used to
encrypt it and the session key, placing the resulting ciphertext into the buffer.
The initialization vector, procedure number, and arguments are now encoded
into the buffer. We have chosen to use timestamps instead of nonces as indicated
in the design specification, since this eliminates the need to maintain a table of
used nonce values. Then, we pad with zeroes until the buffer length is an integral
multiple of the symmetric algorithm’s block size, and a digest of the buffer is
added to the end of the buffer, at last the session key is used to symmetrically
encrypt the part of the buffer that is not already encrypted (using the key and
initialization vector chosen at the beginning). The entire buffer contents are
then sent to the server. A call is placed to the select system call, waiting for
a reply from the server.

Once a reply arrives on the socket, a check is made to verify that it starts
with the same xid as the original message. An XDR buffer is created and the
reply is copied to this. The initialization vector, used by the server to encrypt
the reply, is read from the buffer. The rest of the buffer is decrypted with this
initialization vector and the session key. The xdr_replymsg filter for decoding
the reply is invoked, taking into account the possibility that the reply is an
error message. clnt_call is also responsible for calling the result-decoding
XDR filter supplied by the client stub. Finally, we calculate a digest of the
reply buffer, comparing it with the one that is stored in the buffer itself. If they
do not match, we return an error, otherwise we return the result.

6.3. Client Side

cInt_call(proc_no,args,
xdr_args,xdr_res) !
> L

sess_key := generate_session_key()

iv := generate_iv() |

set_sym_key(sess_key)

xdrs := create(out_buffer,XDR_ENCODE) o
> r

xdr_putlong(xid)

ts := get_timestamp()

asym_ciphertext := rsa_encrypt(sess_key,timestamp,role_key)

»
>

!
l:J
|
!
|
|

xdr_bytes(asym_ciphertext) |
gs
xdr_bytes(iv) o
gs
xdr_putlong(proc_no) |
gs
xdr_args(args) |
"
[until aligned to blocksize] *xdr_putlong(0) o

digest := hash_data(xdrs) |

xdr_bytes(digest)

contents of
XDR buffer (except
for asym. encrypted
part) are
encrypted in situ

© sym_encrypt(xdrs,iv)

sendto(raddr,out_buffer)

associated with our socket

|

. . . !

select(fd)O--- wait for reply on the file descripto |
|

|

in_buffer := recvfrom(raddr)

|

ixdrs := create(in_buffer, XDR_DECODE) - d ar buff :
> rs: xdr_buffer

!

!

|

xid2 := xdr_getlong()

here we check that
xid == xid2, and

discard the reply
if not

iv := xdr_bytes()

sym_decrypt(ixdrs,iv)

replymsg := xdr_replymsg(xdr_res)

reply_digest := xdr_bytes()

[reply_digest != our_digest := hash_data(ixdrs)
our_reply_digest]

reply_msg.result

Figure 6.2: The clnt_call function

54 Chapter 6. Implementation

6.4 Server Side

The server uses a transport handle to contain data needed in the communication
with the clients and to pass this data between functions. This includes which
socket the service is receiving on, the port number to which this socket is bound,
the address of the client which is currently communicating with the service, and
a struct of function pointers. The server uses these functions to do the actual
communication, like receiving messages, replying to these, extracting data from
the messages and to handle memory deallocation. These functions are defined
in the RPC library and are transport protocol dependent. The server stub is
responsible for creating this transport handle, which is done by calling a function
in the RPC library, e.g. svcudp_create if the UDP protocol is used. Besides
the transport handle the original server implementation uses a list for keeping
track of which dispatch function is used by each program version. The server
stub should call sve_register for each version of each program, which builds
this list and registers the program with the portmapper. The dispatch function
is a callback function, which should extract the arguments to the procedure
call from the request, call the procedure requested by the client with these
arguments, and return the result to the client. The function pointers contained
in the transport handle should be used to extract the parameters and return
the result. But since the dispatch function is declared by the RPC programmer,
he may choose to do it in another way. When the transport handles are created
and the different program versions are registered, a call to sve_run will start the
service. svc_run is an infinite loop which makes a select system call, which
returns when one or more sockets change status. After which a sve_getreqset
is called, which first receives the message, by calling the receive function pointed
to by the transport handle. It will then find the dispatch function associated
with the program version specified in the received message, and call this. If the
program version is not found in the list, it will return an error with the highest
and lowest version of the program the server supports.

Since we want each role to connect on its own port, our implementation will
need one transport handle for each role instead of one for each version. This
means that we can use the transport handle to contain information needed for
the access control. We will also move the pointer to the dispatch function inside
the transport handle instead of using a list. This is done in order to prevent
clients from calling a different dispatch function, which in the old design could
be done, by changing the program and version number in a request.

The extension of port numbers from 16 bits to 128 bits is only simulated in
the current implementation - the actual port numbers passed to the system calls
handling the sockets are the first 16 bits of the port number. However, the full
128-bit port number is stored internally in the RPC library data structures, in
order to verify that the connecting client has actually generated the port number
using our hashing algorithm. A full implementation of longer port numbers will
of course require a redesign of the transport protocols, which is beyond the scope
of the project.

The transport structure, which is named SVCXPRT, is declared in svc.h. The
UDP-specific functions, which we have reimplemented, are found in svc_udp. c.

6.4. Server Side 55

6.4.1 svc_create

This function is illustrated in figure 6.3. The purpose of the function is to create
a transport structure with the appropriate parameters. First a UDP socket is
created, then the transport object itself. An RSA key pair is read from the
file specified in the argument keyfile. The public key is used to create a port
number as described in section 5.1.1. The socket is now bound to the generated
port number using the bind system call. If this is unsuccessful, due to the port
being in use already, the hashing process is repeated until an available port
number has been found, or the maximum number of iterations have been run.
This number is defined by the macro MAX_COLLS and is set to 3 in the current
implementation.

Once the port number has been chosen, and the socket successfully bound,
we initialize the Nettle random number generator and save the private key of the
keypair in the transport structure (this is the key that will be used to decrypt
the headers of all incoming calls on the port of the transport.) Finally, we
register the transport, i.e. create an entry in the server’s global table, thus
associating the file descriptor number with the transport handle. The function
returns the created transport structure.

svc

Crypto
svc_create(name_string, keyfile, role_no) |
>
create(IPPROTO_UDP) |
| sock : socket I
|
| |
create(sock,role_no) | |
T »| xprt : transport |
| |
| I I
(pub_key,priv_key) := read_rsa_keys(keyfile) - |
| I o
| ‘ ™
| | !
retry port number | | l
generation until | | |
no collision occurs port_no := hash_port_no(name_string,pub_key) > |
. ‘ 0
RN T T
fo |
set_port(port_no) > | | |
L | |
error := bind() | I
> | |
O | |
[error = EADDRINUSE] port_no := hash_port_no(name_ktring,port_no) |
T g LT']
*qerror != OK] |
| !
init_random() | _ 1
>
set_rolekey(priv_key) o ! D
- !
register() o ;] |
|
I I
- xprt_ _ L | I
!

Figure 6.3: The svc_create function

56 Chapter 6. Implementation

6.4.2 svc_register

This function associates a dispatch callback function and a list of procedure
numbers with an existing transport. The dispatch function is provided by the
RPC programmer and handles the execution of the body of the appropriate pro-
cedure code when an RPC call is invoked. The procedure number list contains
all the procedures which are to be accessible on this transport, and is used to
build the ACL-like construct mentioned in section 5.

6.4.3 svc_run

This function is illustrated in figure 6.4. The svc_run function is the infinite
loop that the server enters once all transports and programs have been properly
registered and configured. It will listen for incoming data on all relevant file
descriptors using the select system call. Whenever data is received, this call
will return the set of file descriptors that have new data. The svc_getreqset

svc fds : fd_set
: —I xprt : transport |
sve_run() .]]
|
Ifds := select(timeout) :

Lo
-

1
|
|
|
|
svc_getregset() T
|
|
|
|

I xprt := lookup_xprt(fd)

msg := svc_recv()

—
>

see figure 6.5
for specification of
| sve recv()

acc := check_access(msg)
—

[acc = false] svcerr_noaccess()‘

»
-

[acc = true] xp_dispatch(msg)

* [fd := 1..fds.size]

— * [loop forever]

Figure 6.4: The svc_run function

auxiliary function will now iterate over each of these descriptors, first looking up
the corresponding transport structure in a table, then calls the svc_recv func-
tion on the transport handle. This function, which is described below, returns
the RPC call message received. The contents of the message are examined, ver-
ifying that the procedure number called is in the list of allowed procedures for
the role of the current transport. If this is not the case, an error reply message is

6.4. Server Side 57

generated and sent by a call to the function svcerr_noaccess. Otherwise, the
dispatch function registered for the active transport by the RPC programmer
is invoked with the message itself as the parameter. The dispatch function is
responsible for generating the reply at this point. Once the file descriptor loop
terminates, the main loop runs again, and we call select again, waiting for the
next call to arrive. In the prototype implementation the server is not able to
change port numbers dynamically. It generates a port number on start up and
will not change this, before it is restarted. This is unfortunate since it means
that the server must be restarted every time the method to generate the port
numbers dictates, that the port numbers is changed. In a full implementation,
this should of course be implemented.

6.4.4 svc_recv

This function is illustrated in figure 6.5. As mentioned above, this function
is called by svc_run whenever incoming data is detected, in order to obtain
the RPC message sent. First, the recvfrom system call is called on the socket

transport socket Crypto
T T
| |

| |
svc_recv() | rpcbuffer := recvfrom(rack:ir)I

' il

|
xdrs := create(rpcbuffer, XDR_DECODE)

xdrs: xdr_buffer

T
xid := xdr_getlong() |

g

»
|

asym_ciphertext := xdr_bytes()

(sess_key,ts) := rsa_decrypt(asym_ciphertext, rc;le_key)

s_ok := check_timestamp(ts)
false_ _]
iv 1= xdr_bytes()

[ts_ok = false|

\

|
|
|
O !
|
! |
set_sym_key(sess_key) | o
| o |_T_|
client's digest . |
ic stored in the sym_decrypt(xdrs,iv)) >l
last 32 bytes of I O\LTJ remainder of
XDR buffer digest := hash_data(xdrs) _ "t<] XOR buffer
v . | 'LT_' contents are
alse . .
-“ - e _ msg := xdr_callmsg() | | decrypted in situ
oldigest != :l:] |
xdrs[N-31..N]] | |
- - = =L | |
msg 1 | 1

Figure 6.5: The svc_recv function

stored in the transport structure. The resulting raw data buffer is wrapped in
an XDR structure, enabling the data to be read from it in a structured way.
The first thing read is the xid, which is stored for later. Then, an array of bytes

58 Chapter 6. Implementation

from the XDR buffer is read into another buffer. This is the asymmetrically
encrypted session key and timestamp. These are decrypted using the role key.
It is now verified that the timestamp is recent, returning if it is not. The
initialization vector is now read from the XDR buffer and the rest of the buffer
is decrypted using the vector and the session key. The symmetrically encrypted
part of the buffer contains a hash value at the end, which is 32 bytes long. To
check the integrity of the message the hash value of the whole buffer except
for these 32 bytes is created, and the two digests are compared. If they do
not match, sve_recv returns. If they do, the function xdr_callmsg is called.
This function copies the contents of the XDR buffer into a message structure
(here we read the actual call information, i.e. the arguments and procedure
number). The resulting message structure is returned on successful completion.

6.4.5 svc_reply

This function is illustrated in figure 6.6. It is normally called by the dispatch
routine callback function (written by the RPC programmer). The function is
responsible for encoding, encrypting and sending a reply to an RPC call. The
input parameter is a message structure, which contains the result of the call,
as generated by the dispatch function. First a random initialization vector is
generated, then an XDR buffer, which is ready for encoding data. The first
data to be encoded is the xid, which was stored in the message structure by
the svc_recv function previously. This enables the client to match the reply
to the correct call. After this, the initialization vector is placed into the buffer,
followed by the contents of the call message. Now, a hash of the buffer contents
is calculated (not including the xid and initialization vector) and put into the
buffer. Then the data as well as the hash value are encrypted directly in the
buffer, using the same session key sent to the server by the client at the time
of the call. At last the sendto system call is invoked in order to transmit the
contents of the buffer back to the client.

6.5. RPCgen 59
transport Crypto socket
T T
| : |
svc_reply(msg) | ! |
> |

iv 1= generate_iv() | :
Vl;' |
|
xdrs := create(rpc_buffer, XDR_ENCODE) |
| | xdrs: xdr_buffer |
! |
xdr_putlong(msg.xid) _ |
xdr_bytes(iv) ‘L|_'I :
xdr_replymsg(msg) o I;I !
> |.|_.| |
[until aligned to block size] *xdr_putlong(0) o |
I o !
digest := hash_data(xdrs) L|_-| |
> | |

|
xdr_bytes(digest) L !
> |
set_sym_key(sess_key) | I;I |

> |
Ll |

i |
sym_encrypt(xdrs,iv) -l | 1
Ll | :
] |
sendto(raddr,rpc_buffer) : o !

<L | | L
| 1 ! |
Figure 6.6: The svc_reply function
6.5 RPCgen

This section will explain how our version of RPCgen is implemented. We will
first describe the basic organization of the code. RPCgen is divided into files
according to the different output files it can generate. Each file contains methods
to create one of the output files. We will describe the function of each file, the
files we have not changed or only made minor changes to will be described on a
superficial level, like it will not be described how include statements and other
simple code is written to the output files. The output files we have created and
the changes we have introduced to the existing output files will be described on
a more technical level.

rpc main.c contains the main function, the parseargs function, some func-

tions to open the input and output files, and the functions which creates
the output files, by calling the functions defined in the different other
files. The main method of RPCgen first reads the parameters given to
the RPCgen call. This is done with the function parseargs, which checks
that all the parameters are legal and that they are used in a legitimate
way, Otherwise, it returns zero and the main method prints the usage
message. parseargs is also responsible for setting the appropriate flags
according to the parameters and passing the input and output files if these
are specified. The correct use of the flags and which operations are per-
formed when the different flags are used is explained in B. According to
the flags passed to RPCgen the main method will call the functions which

60

Chapter 6. Implementation

will create the output files.

rpc_ parse.h contains the data structures used to build the parse tree from

the RPC IDL definition file. For each data type or program declara-
tion a definition data structure is built. There exist 6 kinds of def-
initions: Struct, union, type definition, enum, program, and constant.
The definition data structure contains a name, a definition type, and a
struct, which contains the relevant data for the definition.

rpc_scan.c contains functions to scan the RPC IDL definition file.

rpc_ parse.c contains functions to build the parse tree.

rpc_util.c contains various auxiliary functions.

rpc_hout.c contains functions to write the header file, see appendix C.3.

rpc cout.c contains functions to write the XDR filter routines, see appendix

T C2

rpc clntout.c contains functions to write the client stub, see appendix C.4,

it will for each procedure in each version print a function that calls the

remote procedure with clnt_call. Each function will have the same
name as the remote procedure it calls appended with the program version
number.

rpc_svcout.c contains functions to write the server stub, see appendix C.5.

If RPCgen is called with -m as parameter only the dispatch functions is
generated, else there will be generated a main method for the serverstub,
which registers the roles and starts the service, with a call to sve_run.

First the main method of the server stub is generated. We have inserted
code which will initialize an array of transport handles and for each role
create an array of the procedures each role has access to. These will be
read from the RPC IDL definition file and hardcoded into the server stub.
Afterwards the code to generate the descriptive string is inserted. Most
of the string is hard coded into the server stub, that is, the program and
version name and number, and the role number is hardcoded into the
string, so that the server stub only needs to insert the host name, the
role name, and the current date. To obtain these parameters a call to
gethostname, get_role_name, and localtime is inserted. gethostname
and localtime is system calls, while get_role_name is a function we
have added to the RPC library, which takes a role number, and reads the
corresponding role name from the file generated by rpc_rout The name
of the file which contains the public key is also hardcoded into the server
stubs, since we know all the parameters to generate this from the RPC
IDL definition file. After the code to generate the descriptive string and
key file name is inserted, code which calls svcudp_create with these two
and the role number as parameters is inserted. These three things are
done for each role. When the code to create all the transport handles
is generated, we iterate over the roles and insert a call to svc_register
for each role, and at last the call to svc_run is inserted. After the main
method is generated we iterate over all the program definitions given in

6.5. RPCgen 61

the RPC IDL definition file, and generate a dispatch function for each
program version.

rpc_kout.c contains the generate_keys function which takes a string and
the length of the string as parameters and writes two files containing
the data for the public and private keys. The string is used to gener-
ate the name of the files containing the keys. This is done by appending
.priv and .pub to the string for the private and public key, respectively.
generate_keys will first initialize the randomness generator and the key
data structures by calling the Nettle functions: yarrow256_init and
simple_random for the randomness generator and rsa_public_key_init
and rsa_private_key_init for the keys. Now the keypair is created with
acall to rsa_generate_keypair. The key data structures are transformed
to s-expressions (arbitrarily nested lists, like the ones used in Lisp) with
two calls to rsa_keypair_to_sexp. The first call transforms the param-
eters for the public key, and the second does it for both the keys. This is
done because the server needs both the public and private key, since the
public key is used to generate port number. Finally the two s-expressions
are written to the files.

rpc_rout.c contains the write_roles function, which takes the input file and
a string as input and writes for each version a file, that contains the role
names and numbers for this version. The string is the path to where
the file will be stored. write_roles is called from r_output declared
in rpc_main, which calls it for each program definition, and passes the
program definition and a path as parameters. The path is either the path
where the input file is located, or an empty string if no path was given
to the input file. write_roles first creates the name of the output file,
which is on the form:

Program <program number> Version <version number> roles
For each role it will print one line in this file on the form:
role <role name> = <role number>

rpc_saout.c contains functions to write sample code for the server and the
client. For the server sample code, it iterates over each procedure in each
program version and writes and writes a method without any body. For
the client sample code, it iterates over each program version and writes a
function which will call all the procedure in the version. This is done by
first inserting code to generate the descriptive string and name to the file
in which the key is stored. Everything except the hostname, role name,
role number, and the current date is hardcoded into the string, these are
instead given as parameter to the function. After this code to generate the
key file name is inserted, everything but the role number is hardcoded into
the key file name. At last a call to clnt_create is inserted together with a
call to the function in the client stub which will call the remote procedure.
After these functions have been inserted a main method is inserted which
will call each function for each role there is in the corresponding program
version. Calls to gethostname and localtime is inserted to create the

62 Chapter 6. Implementation

parameters to the functions, while the role numbers and role names are
hardcoded into the calls.

6.6 Summary

In this chapter we have described the implementation of our prototype. The
prototype is based on the design of a secure RPC system which uses crypto-
graphic access control, as described in chapter 5. We have chosen to use the
Nettle library in our implementation, we have given a description of this, and of
the security concerns regarding cipher systems, key length, and hash algorithms.

The general structure of RPC and how we have incorporated access control
into it is described together with how RPCgen generates code, and the changes
we have made to RPCgen.

Our prototype lacks certain things which would be essential in a full im-
plementation; The server should be able to change port numbers dynamically,
the clients should be able to connect to a service even though a hash collision
has occured on the server, and the systems should be able to communicate over
other transport protocols than UDP, especially TCP. These things have not
been implemented in our prototype due to time constraints, but they are not
essential to the access control.

Chapter 7

Evaluation

For a full scale implementation of an RPC system, a test must be carried out
on different levels, we will give a short description of three different test levels;
Unit testing, integration testing, and functional testing. These only covers part
of the in-house testing, which should be done before the release of a new version
of an application. Besides this there exist many other test methods, e.g. end-
user tests, performance test and stress test, just to mention a few. But these
would normally be done by a test department, and should not be done by
the developers of the system, who have too great a knowledge of the internal
workings of the system to include the sequences the system is not prepared for
into the test.

Unit test This is a test of each piece of code in the system, it requires that
the tester has a knowledge of the internal program structure, since each
function must be called in every possible setup and with all possibly com-
bination of arguments, to ensure that all code statements, branches, paths,
and conditions in the code are tested. It is very time consuming, and is
usually done by the programmers

Integration test This test operates on a higher level, and is done by testing
combined parts of an application to determine that they interface correctly

Functional test This is a test of a full setup of the system, and is most suc-
cessful if it is done as black-box testing, that means, that the tester has
no knowledge of the internal program structure

Since we have only implemented a prototype of CACRPC, and due time to
time constraints and lack of resources, we will not do a full test. We assume
that the original RPC implementation and the Nettle library works as specified,
and we will not test them further. This means that we will only test that the
client and server are able to communicate, and that our access control works.
During which the encryption/decryption of messages and the naming scheme
used to generate port numbers also will be tested.

We have done some unit testing during development, but this has not been
done systematically, and we cannot be sure that every branch of the code has
been tested. Since we have not documented the tests done during development,
they will not be described further. Our test is divided into a test of the RPCgen

63

64 Chapter 7. Evaluation

library and a test of the RPC library, where the latter again is split up into a
test of the server and a test of the client. For the server we test that it can start
under different circumstances, and for the client we test the communication
with the server in different setups to cover all the different aspects of the access
control. Since it is very difficult to test the client without doing any actual
communication with the server, the client side test is also a functional test of
the entire system. At last we will do a performance test, and compare our results
with results from the implementation or RPC which is included in GLIBC. Since
we have done all the testing our self, it is of course insufficient.

7.1 Test

This section will document the tests carried out on our prototype implementa-
tion. The RPCgen code generator has been functionally tested by providing a
series of different input programs and combinations of command line parame-
ters. The RPC library has been tested by linking it against the generated stubs
and programs (or slightly modified versions in some cases). The resulting client
and server programs have been run, and it has been verified that their commu-
nications are carried out as expected. This includes inspection of the contents
of transmitted network packets.

7.1.1 RPCgen

The test cases in table 7.1 cover each of the command line parameters for RPC-
gen. The input file is in all cases the simple RPC IDL program listed in appendix
C.1. The results demonstrate that RPCgen correctly generates the various files
containing stubs, sample code, keys, role numbers, etc.

7.2 RPC Library

We now test the functionality of the RPC library by linking programs generated
by RPCgen against it, and testing that they behave correctly when run. In
order to do this, minor modifications to the sample client and server code are
introduced, e.g. filling in the procedure bodies on the server, and making the
client output the call results.

7.2.1 Server Side

We have performed the tests listed below. The tests verify that a service can
register and start under different circumstances.

1. Start server with simple service. This test will start the server with a
program with one version, one procedure, and one role. We will verify
that the server starts properly

2. Start server with complicated service. This test is the same as 1, but we
have added an extra version to the program, which has two procedures
and two roles, where the first role is the same, as in version 1, and the
second role is allowed to call both procedures

7.2. RPC Library

65

3.

Hash collision. This test will start two services, which will yield a hash
collision. This is done by using the same descriptive string and key in
a role in both services. We will verify that both services start properly,
with one of them starting as normal, and the other performing the hashing
algorithm twice due to the first port number being unavailable

All the tests were carried out with the expected results.

No | Input | Params. | Output file(s) | Comment OK
1 testl.x | -c testl xdr.c XDR filter generation, see | 1/
appendix C.2
2 testl.x | -h testl.h Header generation, see ap- | +/
pendix C.3
3 testl.x | -1 testl clnt.c Client stub generation, see | /
appendix C.4
4 testl.x | -s udp testl svc.c Server stub generation, | /
see appendix C.5
5 testl.x | -k Key files 4 files are generated: A |/
public and private key for
each of the two roles in the
input program
6 testl.x | -r Role file See appendix C.6 vV
7 testl.x | none All of the above | Generates all of the above | /
files
8 testl.x | -a testl_server.c Generates all of the above | /
testl client.c files, as well as client and
Makefile.test1 server sample code and a
and all of the | sample make file - the lat-
above ter three are listed in ap-
pendices C.7, C.8, and C.9

Table 7.1: RPCgen test cases

7.2.2 Client Side

To all of the test it is a precondition that the service corresponding to the client
is running on the server.

1.

Call remote procedure. This test will call a remote procedure. We ver-
ify that the add procedure in the program used for testing RPCgen can
correctly add two integer on the server and return the sum to the client

. Call remote procedure with wrong key. This test will call a remote pro-

cedure on a port where the procedure is listening, but will encrypt the
request with a key, which is not allowed access. We will verify that the
client will not receive any reply, and that the server will generate a de-
cryption error and discard the message

Call remote procedure on wrong port. This test will try to call a remote
procedure on a port, where no service is listening. This is done by modi-
fying the descriptive string in the client. We will verify that the client will
not receive any reply, and will generate a timeout error

66 Chapter 7. Evaluation

4. Connect with two client. This test will try to call a procedure from two
clients, which both are members of the same role. We will verify that both
clients receive a reply

5. Call procedure which is not accessible. This test will try to call a proce-
dure, which the role does not have access to. This will be done by sending
a request with a procedure number, which is not accessible for the role
which the client is a member of. We verify that the client receives no reply,
while the server prints an access control error and discards the message

All the tests were carried out with the expected results.

7.3 Performance

In order to evaluate how our implementation performs when compared to a
standard RPC library, we have carried out a simple performance test. The
added cryptographic operations obviously introduce some amount of overhead,
but it is important that the difference in performance is not so great that our
library becomes impractical to use. In order to time the execution of an RPC
call, we create a simple program containing a procedure which has an array of
integers as its argument. We compile several versions of the program, using
arrays of differing sizes, and the execution time from when the client invokes
the RPC call until it returns, are measured using the gettimeofday system
call. Due to a limitation on UDP packet size imposed by RPC, we are unable
to send a very large amount of traffic. In fact, no measurable difference is found
between an array of a few elements, and one of 2000 elements, which is near the
maximum that can be contained in a packet. The test shows our implementation
to be about 80 times slower than the GLIBC implementation when running over
a local virtual loopback network interface. Our implementation takes about 10
ms to send a message and receive a reply, whereas GLIBC does it in about 120
ws. In practice, communication over e.g. a 100Mbps network link would reduce
the difference greatly. For instance, the theoretical time to transfer 8K B over
such a link is 640 ps (disregarding all communication overhead). Taking this
into account, the difference between the two implementations is reduced to a
factor of about 15. If network latency and even slower links, which are often all
that is available when communicating over the internet, the difference becomes
almost negligible.

In a full implementation supporting the TCP protocol the packet size restric-
tion would not apply. For larger packet sizes, the execution time will not be as
dominated by the initial setup time due to key generation and asymmetric en-
cryption and decryption of the message header. The only operations introduced
that have execution times proportional to the packet size are the symmetric
algorithm and the hash function, which should be significantly faster than the
asymmetric algorithm and randomness generator. In an improved implementa-
tion one may also choose to eliminate the need for repeated key generation. The
test clearly indicates that this improvement will be worthwhile, since the startup
time is so important, however, it remains to be tested whether the public key
cryptography or the key generation dominates the startup time.

Another performance consideration is of course the CPU load incurred on the
server due to serving many simultaneous requests that all require cryptographic

7.4. Further Work 67

operations. This has not been looked into, but may become a problem for the
scalability of the system, so it should be investigated in the future.

7.4 Further Work

During the implementation of the prototype we have chosen to omit some of
the functionality described in chapter 5, this section will describe the things we
have omitted, and a solution to how they could be implemented.

e Our prototype does not support communication over the TCP transport
protocol. The changes we have made to the UDP part of RPC should
easily be ported to the TCP part

e If a hash collision occurs during the generation of port numbers on the
server, the clients will not be able to communicate with the colliding ser-
vice. This could be fixed by letting the client recalculate the port number
in the same way as the server, if they do not receive an answer from the
server

e The server is not able to dynamically change port numbers for services.
To fix this the select call in sve_run, should be set to time out when a
service needs to change port number. This could be done by letting the
RPC programmer pass a list of timeouts and time intervals to svec_ run.
So the first list for each role specifies the time to the next port number
change, and the second list specifies the time interval between port number
changes for each role. svec_run will then for each loop be able to calculate
the time to the next port number change, and pass this to the select call.
svc_run should also generate a new port number for the service which
caused the timeout, and register it with this port number

e The use of timestamps to verify that the message is not a replay attack
is not scalable for a large distributed system, since it is expensive to syn-
chronize the clock of all the clients. Instead a nonce should be used. The
first time a client sends a request to a particular server is should generate
a random number, and include this in the message, for all subsequent re-
quests it must increment this number (this is a slight simplification since
we have to take into account, that UDP packets may arrive out of order).
The server will need to keep the last nonces seen for each client, and upon
reception of request it will check that the nonce is higher than the one
sent in the previous request, or add a new entry to the list, if it is the first
request from this client

e Performance could be increased by letting the clients reuse their session
key. As it is now, the session key is used to verify the integrity of the
second part of a request. This could be fixed by including the nonce in
the digest of the second part of the request. An attacker would then need
to know the nonce to change the second part

Chapter 8

Conclusion

In this project, we have investigated the possibility of incorporating crypto-
graphic access control into remote procedure call. The main purpose was to
develop a version of this protocol, where confidentiality and integrity of all data
are ensured, and access to services can be administered at the procedure level
by distributing keys to the authorized parties.

The result is a prototype implementation based on the original Sun Mi-
crosystems RPC 4.0 library. In our implementation, the RPC programmer is
able to manage access to procedures by declaring roles. Each role has access
to one or more procedures, and has an asymmetric key pair associated with it.
By distributing this key to a user, he becomes a member of the role, and thus
has access to the relevant procedures. The name role has been chosen because
the developed model is reminiscent of the RBAC model. It should be noted
that some requirements of RBAC are not fulfilled by our system, however. Our
system does support traditional DAC schemes.

The changes from the original RPC library were designed to be as trans-
parent to the programmer as possible. The transition was facilitated by the
inclusion of an updated version of the RPCgen code generator, which partially
automates the task of writing programs that use our library.

Additional security considerations were proposed, but not fully implemented.
Instead of relying on a portmapper, our RPC protocol generates port numbers
based on descriptive strings, naming the procedure to be accessed, and the
cryptographic key. The port number is calculated using a cryptographic hash
function. This approach serves to make reconnaissance attacks against the sys-
tem much harder to perform.

The performance of the system was shown to be significantly worse than
the original library. This was to be expected when introducing cryptographic
operations, particularly asymmetric ones. We give several suggestions for im-
proving the performance through changes to the protocol. However, the current
implementation should be sufficiently fast for most usage scenarios. Our testing
indicates that the implementation works as intended, but more thorough testing
should be performed in order to validate it further.

69

Appendix A

Extended IDL Syntax

The following is a EBNF specification of part of our extended RPC IDL. Specif-
ically, we describe the syntax related to the program keyword. The remainder of
the specification is standard XDR, as defined by [1]. Note that the non-terminal
<type-specifier> is defined by XDR. <text> and <nat> denote string and
natural number literals, respectively.

<program> ::=
"program" <program-name> "{"
<version-list>

"} =" <program-no> ";"
<program-name> ::= <text>
<program-no> ::= <nat>
<version-list> ::= <version>+
<version> ::=

"version" <version-name> "{"
<proc-list>
<role-list>

"} = <version-no> ";"

<version-name> ::= <text>
<program-no> ::= <nat>
<proc-list> ::= <proc>+
<proc> ::=
<type-specifier> <proc-name> "(" <argument> ") =" <proc-no> ";"
<proc-name> ::= <text>
<proc-no> ::= <nat>

71

72 Chapter A. Extended IDL Syntax

<argument> ::= <type-specifier> <argument-name>
<argument-name> ::= <nat>
<role-list> ::= <role>+
<role> ::=

"role" <role-name> "{" <proc-no-list> "} =" <role-no> ";"
<role-name> ::= <text>
<role-no> ::= <nat>

<proc-no-list> ::= <proc-no> ("," <proc-no>)*

Appendix B

RPCgen Manual

Our version of RPCgen is invoked from the command line, using the syntax
described below. It is assumed that the user has previously created a file con-
taining a definition of the program to be generated in RPC IDL. This file is
usually named with a .x suffix, and the default names of most of the output
files generated by RPCgen will be based on the name of the input file. The
examples below assume that the input file is called name.x, such that e.g. the
default filename for sample client code will be name_client.c. If input and
output filenames are omitted, standard input and output will be used instead.

usage: /usr/bin/cacrpc/rpcgen [-c | -h | -1 | -m | -s udp]
[-o outfile] [infile]
/usr/bin/cacrpc/rpcgen [-k | -r] [infile]
/usr/bin/cacrpc/rpcgen [-al infile

The individual options are explained below. They are divided into three groups.
For the first group, only one operation is performed, so both input and output
files are optional:

-c Generate XDR filter routines for converting to and from any XDR types
defined in the input file

-h Generate header file containing definitions of constants such as program
numbers

-1 Generate client stub
-m Generate server stub without main function
-s udp Generate server stub with main function, using the UDP protocol.

The second group of options have several output files. The names of these
cannot be specified.

-k Generate public and private keys for each role in the program. These are
placed in files named after the program, with the suffix .key

-r Generate a file containing a list of role numbers and their names, as found in
the program. This file is used at runtime by the client and server to map
numbers into names. The file is named similarly to key files, but with
suffix .roles

73

74 Chapter B. RPCgen Manual

Finally, the last two options allow us to perform a lot of tasks at once - for
this reason the input filename must be specified, and the output filenames are
automatically generated based on the input file name:

no options Generate the following files:

name.h Header file as generated using -h
name_clnt.c Client stub as generated using -1
name_svc.c Server stub as generated using -s udp
name_xdr.c XDR filters as generated using -c
- Key files as generated using -k
- Role file as generated using -r
-a This option generates all the files above, and in addition creates the following
sample files:
name_client.c Sample client code
name_server.c Sample server code

Makefile.name Sample make file for compiling the RPC program

Appendix C

Test Input and Results

The files below are input and output from testing RPCgen. See section 7.1.

C.1 testl.x

struct INT PAIR {
int A;
int B;

}s

program TEST1 PRG {
version TEST1 VER {
int add (INT PAIR) = 1;
INT PAIR divide (INT_PAIR) = 2;
role ROLE1 {1} = 1;
role ROLE2 {1,2} =
}=1;
} = 0x40000001;

2;

C.2 testl xdr.c

#include <cacrpc/rpc.h>
#include "testl.h"

bool t
xdr_INT_PAIR(xdrs, objp)
XDR *xdrs;
INT_PAIR xobjp;
{
if (!xdr_int(xdrs, &objp->A)) {
return (FALSE);
}
if (!xdr_int(xdrs, &objp->B)) {
return (FALSE);

5

76 Chapter C. Test Input and Results

}
return (TRUE);
}

C.3 testl.h

#include <cacrpc/rpc.h>

struct INT PAIR {
int A;
int B;
};
typedef struct INT PAIR INT PAIR;
bool t xdr INT PAIR();

#define TEST1 PRG ((u_long)0x40000001)
#define TEST1_VER ((u_long)1)

#define add ((u_long)1)

extern int xadd _1(Q);

#define divide ((u_long)2)

extern INT PAIR xdivide 1Q);

#define NO_OF_ROLES 2

C.4 testl clnt.c

/%
* This is sample code generated by rpcgen.
* These are only templates and you can use them
* as a guideline for developing your own functions.

*/

#include "testl.h"
#include<time.h>

void
testl_prg 1(host, role num, role_name, date_now)
char xhost;
char *role num;
char *role name;
char *date now;

CLIENT *clnt;
size t size;

char *xhash string;
char *keyfile;

int *result 1;

C.4. testl clnt.c 77

INT_PAIR add_1_arg;
INT PAIR s*result 2;
INT_PAIR divide_1_arg;

size = strlen(host) + 8 + 10+ 9+ 1 +1 +9 + 1+ 9+ 1+
strlen(role name) + 1 + strlen(role num) + 7 + 1;
hash_string = (char *) calloc(size, sizeof(char));
snprintf (hash_string, size,
"%s/Program_0x40000001_Version_1/TEST1_PRG/TEST1_VER/%s/%s/%s", host,
role name, role num, date now);
size = 8+ 10 + 9 + 1 + 6 + strlen(role num) + 7 + 1;
keyfile = (char %) calloc(size, sizeof(char));
snprintf (keyfile, size, "Program 0x40000001 Version_ 1 Role_Yspub.key",
role num);
clnt = clnt_create(host, hash_string, keyfile,"udp");
if (clnt == NULL) {
clnt_pcreateerror (host);
exit (1);
}

result_1 = add_1(&add_1_arg, clnt);

if (result_1 == (int %) NULL) {
clnt_perror (clnt, "call failed");

}

result_2 = divide_1(÷ 1 _arg, clnt);

if (result_2 == (INT_PAIR %) NULL) {
clnt_perror (clnt, "call failed");

}

free(hash_string);

free(keyfile);

clnt_destroy (clmnt);

int

main(argc, argv)
int argc;
char *argv[];

char xhost;

struct tm *time_now;
time t secs now;
char date nowl[8];

if (arge !'= 2) {
fprintf(stderr, "usage: %s <hostname>\n",argv[0])
exit(1);

}

host = argv[i];

time (&secs_now) ;

time now = localtime(&secs now);
strftime(date_now,7,"/m/%y",time_now) ;
testl _prg 1 (host, "1", "ROLE1", date_now);

78

Chapter C. Test Input and Results

testl_prg 1 (host, "2", "ROLE2", date_now);

exit (0)
}

C.5 testl svc.c

#include
#include
#include
#include
#include

static vo

main ()

{
SVCXPRT
u_long

u_long roleTEST1_PRG12[2] ={1,2};

int rol
char *h
char *r
size t
char *n
char *k
struct
time t
char da

<stdio.h>
<unistd.h>
<cacrpc/rpc.h>
<time.h>
"testl.h"

id testl_prg 10);

xtransp [NO_OF_ROLES] ;
roleTEST1 PRG11[1] ={1};

e idx;
ost_name;

ole name;
size;
ame_string;
eyfile;

tm *time now;
secs_now;

te now[8];

host name = (char %) calloc(30, sizeof(char));

gethost
time (&s
time no

name (host_name, 30);
ecs now) ;

w = localtime(&secs_now) ;

strftime(date_now,7,"%m/%y" ,time_now) ;

if (!get_role_name(&role_ name, "Program 0x40000001 Version 1 roles",

1) o

(void) fprintf (stderr, "cannot get identifier for role 1 program

0x4000000
exit(
}

size =

snprint

1 version 1.\n");
15

strlen(host name) + 1 + 28 + 1 + 9 + 1 + 9 + 1 +
strlen(role name) + 1 + 1 + 1 + strlen(date now) + 1;
name_string = (char %) calloc(size, sizeof (char));

f (name_string, size,

"%s/Program_ 0x40000001 Version_ 1/TEST1_PRG/TEST1_VER/%s/1/%s", host_name,

role name

, date now);

size =8+ 10+ 9 +1+6+ 1+ 8+ 1;

keyfile

= (char *) calloc(size, sizeof(char));
snprintf (keyfile, size, "Program 0x40000001_Version_1_Role_1lpriv.key");
transp[0] = svcudp_create(name_string, keyfile, 1);

C.5. testl svc.c 79

if (transpl[0] == NULL) {
(void) fprintf (stderr, "cannot create udp service.\n");
exit(1);
}
if (!get_role name(&role_name, "Program 0x40000001 Version 1 roles",
2)) {
(void) fprintf (stderr, "cannot get identifier for role 2 program
0x40000001 version 1.\n");
exit(1);
}
size = strlen(host name) + 1 + 28 + 1 + 9 + 1 + 9 + 1 +
strlen(role name) + 1 + 1 + 1 + strlen(date now) + 1;
name_string = (char *) calloc(size, sizeof(char));
snprintf (name_string, size,
"%s/Program_0x40000001_Version_1/TEST1_PRG/TEST1_VER/%s/2/%s", host_name,
role name, date now);
size =8+ 10+9 +1+6+1+ 8+ 1;
keyfile = (char %) calloc(size, sizeof(char));
snprintf (keyfile, size, "Program 0x40000001 Version 1 Role 2priv.key");
transp[1] = svcudp_create(name_string, keyfile, 2);
if (transpl[1] == NULL) {
(void) fprintf (stderr, "cannot create udp service.\n");
exit(1);
}

if (!svc_register(transp[0], &roleTEST1 PRG11, 1, testl prg 1,
IPPROTO_UDP)) {
(void) fprintf (stderr, "unable to register (TEST1_PRG, TEST1_VER,
udp) .\n") ;
exit(1);
}
if (!svc_register(transp[1], &roleTEST1 PRG12, 2, testl prg 1,
IPPROTO_UDP)) {
(void) fprintf (stderr, "unable to register (TEST1_PRG, TEST1_VER,
udp) .\n") ;
exit(1);
}
svc_run();
(void) fprintf (stderr, "svc_run returned\n");
exit(1);
free(host_name) ;
free(keyfile);

static void
testl prg 1(rgstp, transp)
struct svc_req *rqstp;
SVCXPRT *transp;
{
union {
INT_PAIR add_1_arg;
INT _PAIR divide 1 arg;
} argument;
char xresult;

80 Chapter C. Test Input and Results

bool_t (#xdr_argument) (), (*xdr_result) ();
char *(xlocal)();

switch (rgstp->rq proc) {

case NULLPROC:
(void)svc_sendreply(transp, xdr_void, (char *)NULL);
return;

case add:

{
xdr_argument = xdr INT PAIR;
xdr result = xdr int;
local = (char *(x)()) add 1;
}
break;

case divide:

{
xdr_argument = xdr_INT_PAIR;
xdr _result = xdr INT PAIR;
local = (char *(x)()) divide_1;
}
break;

default:
svcerr_noproc (transp) ;
return;

}

bzero((char *)&argument, sizeof (argument));

if (!svc_getargs(transp, xdr_argument, &argument)) {
svcerr_decode (transp) ;
return;

}

result = (xlocal) (%argument, rqgstp);

if (result != NULL && !svc_sendreply(transp, xdr_result, result)) {
svcerr_systemerr (transp) ;

}

if (!svc_freeargs(transp, xdr_argument, &argument)) {
(void) fprintf (stderr, "unable to free arguments\n");
exit(1);

}

}

C.6 Program 0x40000001 Version 1 roles

role ROLE1l
role ROLE2

non
N =

C.7T testl server.c

/%

C.8. testl client.c 81

* This is sample code generated by rpcgen.
* These are only templates and you can use them
* as a guideline for developing your own functions.

*/

#include "testl.h"

int *
add_1(INT_PAIR xargp, struct svc_req *rqstp)
{
static int result;
/%
* insert server code here
*/
return &result;
}
INT_PAIR x*
divide_ 1(INT_PAIR xargp, struct svc_req *rqgstp)
{
static INT PAIR result;
/%
* insert server code here
*/

return &result;

}

C.8 testl client.c

/%

* This is sample code generated by rpcgen.

* These are only templates and you can use them

* as a guideline for developing your own functions.

*/

#include "testl.h"
#include<time.h>

void
testl _prg 1(host, role num, role name, date_now)
char xhost;
char *role num;
char *role name;
char *date now;

CLIENT *clnt;
size t size;
char xhash string;

82 Chapter C. Test Input and Results

char xkeyfile;

int *result 1;
INT_PAIR add_1_arg;
INT PAIR x*result 2;
INT PAIR divide 1 arg;

size = strlen(host) + 8 + 10 + 9 + 1 + 1 + 9 + 1 + 9 + 1 +
strlen(role name) + 1 + strlen(role num) + 7 + 1;
hash_string = (char %) calloc(size, sizeof (char));
snprintf (hash_string, size,
"%s/Program_0x40000001 Version 1/TEST1 PRG/TEST1_VER/%s/%s/%s", host,
role name, role num, date now);
size = 8 + 10 + 9 + 1 + 6 + strlen(role num) + 7 + 1;
keyfile = (char *) calloc(size, sizeof(char));
snprintf (keyfile, size, "Program 0x40000001_Version_1_Role_%spub.key",
role num) ;
clnt = clnt_create(host, hash string, keyfile,"udp");
if (clnt == NULL) {
clnt_pcreateerror (host);
exit (1);
}

result_1 = add_1(&add_1_arg, clnt);

if (result 1 == (int %) NULL) {
clnt_perror (clnt, "call failed");

}

result_2 = divide_1(÷_1_arg, clnt);

if (result_2 == (INT_PAIR %) NULL) {
clnt_perror (clnt, "call failed");

}

free(hash_string);

free(keyfile);

clnt_destroy (clnt);

int

main(argc, argv)
int argc;
char xargv([];

{
char xhost;
struct tm *time now;
time t secs_now;
char date nowl[8];

if (argec !'= 2) {
fprintf (stderr, "usage: %s <hostname>\n",argv[0])
exit(1);

}

host = argv[i];

time (&secs_now) ;
time now = localtime(&secs now);

C.9. Makefile.test1

83

strftime(date_now,7,"/m/%y",time_now) ;
testl prg 1 (host, "1", "ROLE1", date_now);
testl_prg 1 (host, "2", "ROLE2", date_now);
exit(0);

C.9 Makefile.test1l

This is a template Makefile generated by rpcgen
Parameters

CLIENT
SERVER

testl client
testl server

SOURCES_CLNT.c
SOURCES_CLNT.h
SOURCES_SVC.c =
SOURCES_SVC.h =
SOURCES.x = testl.x

TARGETS_SVC.c = testl_svc.c testl _server.c testl _xdr.c

TARGETS CLNT.c = testl clnt.c testl client.c testl xdr.c

TARGETS = testl.h testl _xdr.c testl_clnt.c testl svc.c testl_client.c
testl server.c

OBJECTS_CLNT = $(SOURCES_CLNT.c:%.c=k.o) $(TARGETS_CLNT.c:%.c=%.o)
OBJECTS_SVC = $(SOURCES_SVC.c:%.c=%.0) $(TARGETS_SVC.c:%.c=%.0)

Compiler flags

CFLAGS += -g -L/usr/lib/cacrpc

LDLIBS += -lrpclib -lnettle -lgmp

RPCGENFLAGS =

Targets

all : $(CLIENT) $(SERVER)

$ (TARGETS) : $(SOURCES.x)
rpcgen $(RPCGENFLAGS) $(SOURCES.x)

$ (OBJECTS_CLNT) : $(SOURCES_CLNT.c) $(SOURCES_CLNT.h) $(TARGETS_CLNT.c)
$(OBJECTS_SVC) : $(SOURCES_SVC.c) $(SOURCES_SVC.h) $(TARGETS_SVC.c)

$(CLIENT) : $(0OBJECTS_CLNT)
$(LINK.c) -o $(CLIENT) $(OBJECTS_CLNT) $(LDLIBS)

$(SERVER) : $(OBJECTS_SVC)
$(LINK.c) -o $(SERVER) $(OBJECTS_SVC) $(LDLIBS)

clean:

84 Chapter C. Test Input and Results

$(RM) core $(TARGETS) $(OBJECTS CLNT) $(OBJECTS_SVC) $(CLIENT)
$ (SERVER)

Bibliography

1]

2]

[3]

[4]

[5]

[6]

[7]

18]

[9]

[10]

[11]

R. Srinivasan. XDR: External data representation standard, August 1995.
RFC 1832.

R. Srinivasan. Binding protocols for ONC RPC version 2, August 1995.
RFC 1833.

John Shapley Gray. Interprocess Communications in LINUX: The Nooks
and Crannies. Prentice-Hall PTR, Upper Saddle River, NJ 07458, USA,
2003.

Digital UNIX. Programming with ONC RPC. http://www.cs.arizona.
edu/computer.help/policy/DIGITAL unix/AA-QORSB-TEY,T1_html/
TITLE.html, March 1996.

Greg O’Shea and Michael Roe. Child-proof authentication for MIPv6
(CAM). CCR, Apr(31), 2001.

T. Aura. Cryptographically generated addresses (CGA), April 2004. draft-
ietf-send-cga-06.

Jari Arkko, Tuomas Aura, James Kempf, Vesa-Matti Mintyld, Pekka
Nikander, and Michael Roe. Securing IPv6 neighbor and router discov-
ery. In Proceedings of the ACM Workshop on Wireless Security (WiSe-02),
pages 77-86, New York, September 28 2002. ACM Press.

J. Arkko, J. Kempf, B.Sommerfeld, B. Zill, and P. Nikander. Secure
neighbor discovery (SEND), July 2004. draft-ieft-send-ndopt-06, work in
progress.

Claude Castelluccia. Statistically unique and cryptographically verifiable
(SUCV) identifiers and addresses. November 23 2001.

Adi Shamir. Identity-based cryptosystem and signature scheme. In G. R.
Blakley and D. Chaum, editors, Advances in Cryptology — CRYPTO ’ 84,
volume 196 of Lecture Notes in Computer Science, pages 120-126. Interna-
tional Association for Cryptologic Research, Springer-Verlag, Berlin Ger-
many, 1984.

Dan Boneh and Matthew Franklin. Identity-based encryption from the weil
pairing. Lecture Notes in Computer Science, pages 213-229, February 12
2001.

85

86

BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[17]

J. Kempf, C. Gentry, and A. Silverberg. Securing IPv6 neighbor discovery
using address based keys (ABKs), May 2003. draft-kempf-abk-nd-00.txt,
work in progress.

David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and
Ramaswamy Chandramoli. Proposed NIST standard for role-based access
control. ACM Transactions on Information and System Security, 4(3):224—
274, 2001.

Anthony Harrington and Christian Jensen. Cryptographic access control
in a distributed file system. In Proceedings of the Fighth ACM Symposium
on Access Control Models and Technologies (SACMAT-03), pages 158-168,
New York, June 2-3 2003. ACM Press.

S. Hjarlvig and J. Kampfeldt. Kryptografisk adgangskontrol i peer-to-peer
netvaerk. Master’s thesis, Informatics and Mathematical Modelling, Tech-
nical University of Denmark, DTU, Richard Petersens Plads, Building 321,
DK-2800 Kgs. Lyngby, 2003. Vejleder: Christian D. Jensen.

Charles Pfleeger and Shari Lawrence Pfleeger. Security in computing. Pren-
tice Hall International, 3rd edition edition, 2003.

Niels Moller. Nettle - a low-level cryptographic library. http://www.
lysator.liu.se/"nisse/nettle/.

