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Abstract 
 
This project describes the work done on the development of an audio segmentation and 
classification system. Many existing works on audio classification deal with the problem of 
classifying known homogeneous audio segments. In this work, audio recordings are divided 
into acoustically similar regions and classified into basic audio types such as speech, music 
or silence. Audio features used in this project include Mel Frequency Cepstral Coefficients 
(MFCC), Zero Crossing Rate and Short Term Energy (STE). These features were extracted 
from audio files that were stored in a WAV format. Possible use of features, which are 
extracted directly from MPEG audio files, is also considered. Statistical based methods are 
used to segment and classify audio signals using these features. The classification methods 
used include the General Mixture Model (GMM) and the k- Nearest Neighbour (k-NN) 
algorithms. It is shown that the system implemented achieves an accuracy rate of more than 
95% for discrete audio classification.  
 
 
Keywords: audio content analysis, segmentation, classification, GMM, k-NN, MFCC, ZCR, 
STE and MPEG   
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Chapter 1  

Introduction 
 
Audio signals which include speech, music and environmental sounds are important 
types of media. The problem of distinguishing audio signals into these different audio 
types is thus becoming increasingly significant. A human listener can easily distinguish 
between different audio types by just listening to a short segment of an audio signal. 
However, solving this problem using computers has proven to be very difficult. 
Nevertheless, many systems with modest accuracy could still be implemented.  
 
Audio segmentation and classification have applications in wide areas. For instance, 
content based audio classification and retrieval is broadly used in the entertainment 
industry, audio archive management, commercial music usage, surveillance, etc. There 
are many digital audio databases on the World Wide Web nowadays; here audio 
segmentation and classification would be needed for audio searching and indexing.  
Recently, there has been a great deal of interest in monitoring broadcast news programs, 
in this case classification of speech data in terms of speaker could help in efficient 
navigation  through broadcast news archives.  
 
Like many other pattern classification tasks, audio classification is made up of two main 
sections: a signal processing section and a classification section. The signal processing 
part deals with the extraction of features from the audio signal. The various methods of 
time-frequency analysis developed for processing audio signals, in many cases 
originally developed for speech processing, are used. The classification part deals with 
classifying data based on the statistical information extracted from the signals.    
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Two different classifiers, k-Nearest Neighbour(k-NN) and General Mixture model (GMM),  
were trained and tested to classify audio signals into music, speech and silence. The audio 
features used for classification were the Mel Frequency Cepestral Coefficients(MFCC), 
Zero Crossing Rates(ZCR) and Short Time Energy(STE). And for segmentation purposes 
Root Mean Square(RMS) features were used. The figure (figure1.1) below shows 
segmentation and classification of audio into three classes. 
 
 

 
 
 

                            Figure 1. 1  Segmentation and classification of audio data. 

 

1.1 Project Objective 
 
The main goal of this project was, initially to design a system that would be able to classify 
audio signals into music or speech. The classification task was further to be extended to 
include audio signals other than speech and music. And finally the system was to be 
modified so that the audio signal is partitioned first into homogeneous segments and then 
classified. Audio characterisation based on MPEG subband level data was also to be 
explored.  
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1.2 Previous Work 
 
 
Research in the field of audio segmentation and classification has gained a lot of attention 
these past few years. Various methods for audio discrimination have been proposed for the 
needs of different applications. These approaches can be categorised into those that deal 
with problem of classifying discrete audio samples that contain only one type of sound, and 
those that deal with the problem of classifying audio samples that contain different sound 
types. In the following paragraphs some of these methods along with their performances are 
presented.   
 
E. Scheier and M.Slaney [6] used 13 features for audio classification and made experiments 
with different classification algorithms. In their work a correct classification rate of 98.6% 
is reported for a 2.4 sec window.  Khaled El-Maleh et al [2 ] also proposed a speech/music 
classification technique based on  the line spectral frequencies(LSFs). Two different 
classification methods ( a quadratic Gaussian and nearest neighbour) were used in their 
work. Based on LSF features and the quadratic Gaussian classifier , which was modified to 
make decisions over a one second window, a correct classification rate of 90.7% was 
obtained.  When LSF features were used in conjunction with ZCR, a performance of 94.8% 
is reported. Lie Lu et el in their work on audio classification and segmentation have used 
features such as high zero crossing rate, low short time energy ratio (LSTER) and  spectrum 
flux (SF).   
  
Hugo Meindo and J. Neto [3] in their work on audio segmentation, classification, and 
clustering have used symmetric Kullback-Liebler, KL2,  for audio segmentation. The KL2 
is calculated over  order PLP coefficients extracted from an audio signal. The same 
features were used for the purpose of Speech/non-speech classification. For  analysis 
window  of 0.5  seconds a correct classification rate of  around 92.6% is reported. In [5]  a 
speech/music  discriminator  based on RMS and Zero-crossings is presented. Here, a 
correct classification rate of about 95% is obtained.  Tong  Zhang and Kuo [12] proposed a 
system that classifies audio recordings into basic audio types using simple audio features 
such as the energy function, average zero crossing rate and spectral peak track. An accuracy 
rate of more than 90% for audio classification is reported. G. Tzanetakis and P. Cook [4] 
presented a general methodology for temporal segmentation based on multiple features.  

th12

  
 

1.2 Project overview 
 
The remainder of this report is organized into the following chapters: 
 

• Chapter 2  describes feature extraction: which features have been extracted from    
the audio and how they are extracted is explained.  
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• Chapter 3  describes the classifiers : the different classification methods used in this 

project  are outlined. 
 

• Chapter 4 presents the segmentation method, the procedure for detecting changes  
based on the audio characteristic is explained. 

 
• Chapter 5  describes  digital audio formats:  existing audio formats are discussed,   

one example of perceptually coded formats is explained and finally a tool for direct 
conversion of MP3 audio files into feature space is discussed.      

 
• Chapter 6 shows experimental results, the type of data used for training and test  and 

finally the results obtained and their implications are discussed. 
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Chapter 2 

Audio feature extraction 
 
Feature extraction is the process of converting an audio signal into a sequence of feature 
vectors carrying characteristic information about the signal. These vectors are used as basis 
for various types of audio analysis algorithms. It is typical for audio analysis algorithms to 
be based on features computed on a window basis. These window based features can be 
considered as short time description of the signal for that particular moment in time.   
 
The performance of a set of features depends on the application. The design of descriptive 
features for a specific application is hence the main challenge in building audio 
classification systems. A wide range of audio features exist for classification tasks. These 
features can be divided into two categories: time domain and frequency domain features. 
The Features considered in this chapter are: Mel Frequency Cepstral coefficient (MFCC), 
zero crossing rates and short time energy.  
 

2.1 Short term features 
 
Speech signals are considered to be slowly time varying signals. A speech signal over a 
period of say  between 10 to 100ms has a characteristic which is fairly stationary. Over a 
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longer period of time, however, the signal characteristics alter to reflect the changes in the 
speech sounds being spoken. Although music has a larger dynamic range than speech, like 
speech its characteristics over a short period of time remain stationary. This notion leads to 
a variety of short-time processing techniques in which short segments of audio signal are 
isolated and processed as though they were short segments from a sustained audio with 
fixed properties. This process of segmenting audio signals in to frames is repeated, usually 
periodically, as often as required. Normally these short segments, which are sometimes 
referred to as analysis frames, overlap one another. After processing is done on each frame, 
a single number or a set of numbers may be obtained. Hence, such processing results in a 
new time dependant sequence which can serve as representation of the audio signal.  
 
 
 
                    

 
            
             

            Figure 2. 1 Plot of an audio signal together with a plot that shows how the                                         

                                audio signal could be segmented into overlapping frames.  
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2.1.1 Short Time Energy 
 
The energy E of  a discrete  time signal x(n) is defined by the expression (2.1). For many 
audio signals such a measurement is of less importance, since it gives little information 
about time dependent characteristics of such signals. 
 
 

∑
∞

−∞=

=
n

nxE )(2                                                                                               (2.1) 

 
 
As mentioned earlier, the amplitude of an audio signal varies with time. A convenient 
representation that reflects these amplitude variations is the short time energy of the signal. 
In general, the short time energy is defined as follows 
 

[
2
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n

m nmwnxE ]                                                                              (2.2)  

 
 
The above expression can be rewritten as  
 

∑ −=
n

m nmhnxE )()( 2                                                                                (2.3) 

 
where  )()( 2 mwmh =
 
 
 
In the above expression the term is interpreted as the impulse response of a linear 
filter. The nature of short time energy representation is determined by the choice of  the 
impulse response, . The bandwidth of the hamming window, as it can be seen in the 
two figures below, is twice the bandwidth of a rectangular window of the same length. 
Moreover the hamming window results in a much higher attenuation outside the bandwidth 
when compared to the rectangular window. However, in both cases, increasing the length of 
the window decreases the  bandwidth. For speech signals, the duration   of  a   pitch   period  

)(mh

)(mh

varies from 20 samples, at a sampling rate of around 10 KHz, for a high pitch female or a 
child, up to 250 samples for a very low pitch male. With this in mind, for a 10 KHz 
sampling rate a practical choice of the window length is on the order of 100 to 200 samples.       
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Short term energy is used in different audio classification problems. In speech signals, it 
provides a basis for distinguishing voiced1  speech segments from unvoiced  ones. In the 
case of a very high quality speech, the short term energy features are used to distinguish 
speech from silence. 
 
 

 
 

                                       Figure 2. 2  50- point Hamming window 

 
 
   
 
 
 
 
 
 
 
1  Based on their mode of excitation, speech sounds can be classified as: voiced, unvoiced 
and plosive sounds. Voiced sounds are produced by forcing air through the glottis with the 
tension of the vocal cords adjusted so that they vibrate in a relaxation oscillation. Unvoiced 
sounds are produced by forming constrictions at some point in the vocal tract, and forcing 
air through the constriction  at a high velocity enough to produce turbulence.   
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                                              Figure 2. 3  50-point  rectangular window 

 
 

2.1.2 Zero Crossing Rates 
 
In the case of discrete time signals, a zero crossing is said to occur if there is a sign 
difference between successive samples.  The rate at which zero crossings happen is a 
simple measure of the frequency content of a signal. For narrow band signals, the average 
zero crossing rate gives a reasonable way to estimate the frequency content of the signal. 
But for a broad band signal such as speech, it is much less accurate. However, by using a 
representation based on the short time average zero crossing rate, rough estimates of 
spectral properties can be obtained. The expression for the short time average zero crossing 
rate is shown below. In this expression, each pair of samples is checked to determine where 
zero crossings occur and then the average is computed over N consecutive samples. 
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Zero crossing rate has been proven to be useful in characterising different audio signals and 
has been popularly used in speech/music classification problems. Variations of the zero 
crossing rate have also been used in some audio classification systems. In[1], it is suggested 
that a variation of the ZCR- the high zero-crossing rate ratio(HZCRR), to be more 
discriminative than the exact value of ZCR.  
 
 

2.1.3 Mel Frequency Cepstral Coefficient 
 
 
MFCCs are short term spectral based features. MFCC features are frequently used by many 
researchers for speech recognition and it has also been shown in [13] that MFCC works 
well in music/ speech classification problem. A block diagram  showing the steps taken for 
the computing MFFCs can be seen in figure 2.4. Each step in this process of creating Mel 
Frequency Cepstral Coefficients is motivated by computational or perceptual 
considerations.  
 
 

 
 

                    Figure 2. 4  Block diagram showing the steps for computing MFCCs 
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The first step in this process is to block a continuous audio signal into frames. The purpose 
here is to model small sections of the audio signal that are statistically stationary. Each 
frame consists of n samples with adjacent frames separated by m samples. The following 
frame starts m samples after the first sample and overlaps it by ( n - m ) samples. In a 
similar way the third frame starts m samples after the second frame and overlaps it by ( n - 
m ) samples. Typical values for n and m are 256 and 100 respectively.  
 
The next step is to use a window function on each individual frame in order to minimise 
discontinuities at the beginning and end of each frame. Typically the window function used 
is the Hamming window and has the following  form: 
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Given the above window function and assuming that there are N samples in each frame, we 
will obtain the following signal after windowing.  
 
 )1(0,)()()( −≤≤= Nnnwnxny                                                        (2.6) 
 
The next step is the process of converting each frame of N samples from the time domain to 
the frequency domain. Here we will take the Discrete Fourier Transform of each frame.  
We use the FFT algorithm, which is computationally efficient, to implement the DFT. As 
the amplitude of the spectrum is much more important than the phase, we will retain only 
the amplitude spectrum. The Discrete Fourier Transform on the set of N samples is defined 
as follows [15].  
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The next step is the transformation of the real frequency scale to the mel frequency scale. A 
mel is a unit of measure of perceived pitch or frequency of a tone [14]. The mel- frequency 
is based on the nonlinear human perception of the frequencies of audio signals. It is a linear 
frequency spacing below 1KHz and logarithmic above this frequency. By taking the pitch 
of the 1 KHz tone as a reference and assigning it 1000 mels, and then making some test 
measurements based on human perception of audio signals, it is possible to drive a model  
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for an approximate mapping of a given real frequency to the mel frequency scale. The 
following is an approximation of the mel frequency based on such experiments. 
 
 
 

),
700

1(log2595)( 10
ffMel +=

                                                               (2.8) 

           
Where f is the physical frequency in Hz and Mel is the perceived frequency in mels. 
 

 
 

                                                  Figure 2. 5   Mel scale mapping  

 
 
 
 
The idea of a perceptual frequency scale has led to the investigation of the benefits of using 
a frequency axis that is warped to correspond to the mel scale. One of the techniques used 
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to obtain  the new frequency axis is to use a filter bank. Here, one filter for each desired 
mel frequency component is designed. Usually the filters have a triangular band pass 
frequency response and are evenly spaced on the mel scale. Since the filter bank is applied 
in the frequency domain,  the modified spectrum of the signal thus consists of the output 
power of these filters when the input is the signal obtained at the previous step. It has been 
found that the perceived loudness of audio signals to be approximately logarithmic and 
hence the logarithm of the power spectrum is taken. Figure (2.6)  shows a plot of mel 
spaced  filter bank. 
 
 
 

 
 

                      Figure 2. 6 Frequency response of a mel-spaced filterbank                            

 
 
 
 
The next step is the final stage of the Mel Frequency Cepstral feature construction. In this 
stage, the log mel spectrum is converted back to the time domain and the result is the Mel 
Frequency Cepstral Coefficients. The components of the mel spectral vectors calculated are 
highly correlated. In order to reduce the  number of the parameters, some transform, which 
decorrelates their components, is applied to these vectors. Theoretically, the Karhunen-
Loeve (KL) works well for this purpose. However, the KL is very complex and since the 
DCT can still end in good results, the DCT is frequently used. After the DCT, some 13 
cepstral features are obtained for each frame.  
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Lets now denote the mel spectral coefficients obtained in the previous step as 

, then we can calculate the MFCCs as follows KkS k ,....,2,1,
^

=
 
 

Kn
K

knSC
K

k
kn ,....,2,1,*

2
1*cos*

1

^^
=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −= ∑

=

π                                     (2.9) 

 
 

2.2 Summary 
 
In this chapter the main audio features used in speech/music classification systems have 
been considered. MFCC features are frequently used by many researchers for speech 
recognition and others have also used MFCC features in music genre classification 
problems. Short term energy is widely used in different audio classification schemes. Zero 
crossing rate, being a simple measure of the frequency content of a signal, is also used to 
distinguish between different audio types.    
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Chapter 3 

Audio Classification 
 
In this chapter, the problem of classifying the extracted audio features into one of a number 
of audio classes is considered. The basic classification task can be considered as a process 
where a previously unknown input data is assigned to a class { }nCCCC ,.....,, 21∈ . Such 
assignments are made by establishing and applying a decision rule; for example, a simple 
decision rule could be the assignment of a new data sample to a class whose mean it is 
closest to in feature space.   
 
Classification algorithms are divided into supervised and unsupervised algorithms.  In a 
supervised classification, a labelled set of training samples is used to “train” the algorithm 
whereas in the case of an unsupervised classification the data is grouped into some clusters 
without the use of labelled training set. Parametric and nonparametric classification is 
another way of categorizing classification algorithms.  The functional form of the probably 
density of the feature vectors of each class is known in parametric methods. In non 
parametric methods on the other hand, no specific functional form is assumed in advance, 
instead the probability density is rather approximated locally based on the training data. 

3.1 The Gaussian classifier 
The Gaussian classifier is an example of a parametric classifier. This classifier is based on 
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the assumption that feature vectors of each class obey a multidimensional Gaussian 
distribution. In the training stage, estimates of the parameters (mean and covariance)  of the 
Gaussian probability density functions of each class are computed using the training data. 
In the classification stage the input vector is mapped to the class with the largest likelihood. 
In d-dimensions, the probability density function is written as: 
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where Σ  is a covariance matrix and the mean dd × µ  is a d dimensional vector.   
 

3.2 The K Nearest Neighbour classifier 
 
The K nearest neighbour classifier is an example of a non parametric classifier. The basic 
algorithm in such classifiers is simple. For each input feature vector to be classified, a 
search is made to find the location of the K nearest training examples, and then assign the 
input to the class having the largest members in this location. Euclidean distance is 
commonly used as the metric to measure neighbourhood. For the special case of K=1 we 
will obtain the nearest neighbour classifier, which simply assigns the input feature vector to 
the same class as that of the nearest training vector. The Euclidean distance between feature 
vectors  { }nxxxX ,......,2,1=   and { }nyyyY ,......,2,1=  is given by: 
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The KNN algorithm, as mentioned earlier, is very simple yet rather powerful, and used in 
many applications. However, there are things that need to be considered when KNN 
classifiers are used. The Euclidean distance measure is typically used in the KNN 
algorithm. In some cases, use of this metric might result in an undesirable outcome. For 
instance, in cases where several feature sets (where one feature set has relatively large 
values) are used as a combined input to a KNN classifier, the KNN will be biased by the 
larger values. This leads to a very poor performance. A possible method for avoiding this 
problem would be to normalise the feature sets.    
 
In Figure 3.1, an example of a three class classification task is shown. The aim is to use the 
KNN classifier for finding the class of an unknown feature X.  As it can be seen in the 
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figure, of the closest neighbours ( K=5 neighbours) four belong to class a and only one 
belongs to class b and hence X is assigned to class a. 
  

   
                     
        
                     

                       Figure 3. 1 The  K nearest neighbourhood rule  ( K=5) 

 
 
Some of the disadvantages of the K nearest neighbour classifiers are: 
 
 

• Need  the entire feature vectors of all training data when a new vector feature is to 
be classified,  and hence large storage requirements.  

 
• The classification time is longer when compared to some other classifiers. 

 
 
The K nearest neighbour classifiers have some qualities that are important such as 
 
 

• It requires no training and this is helpful especially when a new training data is 
added. 

 
• Uses local information and hence can learn complex functions without needing to 

represent them explicitly.  
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3.3 The GMM classifier 
 
The General Mixture Model (GMM) classifier is a type of classifier which combines the 
advantages of parametric and non parametric methods. As the name indicates, the density 
function is a form of density function known as mixture model. A brief description of the 
classifier is given in the following paragraphs.  
 
Given a d-dimensional vector X, a Gaussian mixture density is a weighted sum of M 
component densities and can be written as equation (3.3). The number M of components is 
treated as a parameter of the model and is typically much less than the number N of data 
points.  
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For the Gaussian mixture model given in equation (3.3), the mixture density is 
parameterised by the mean vectors, covariance matrices and mixture weights from all 
component densities. 
 

{ }jjjp Σ= ,,µθ ,                  Mj ,...2,1=
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             Figure 3. 2 Representation of an M component mixture model  

 
General Mixture Models can assume many different forms, depending on the type of 
covariance matrices. The two mostly used are the full and diagonal covariance matrices. 
When the type of the covariance matrix is diagonal, the number of parameters that need to 
be optimised are reduced. This constraint on the matrices reduces the modelling capability 
and it might be necessary to increase the number of components. However, in many 
applications this compromise has proven worthwhile. 
 
For audio classification, the distribution of the feature vectors extracted from a particular 
audio class is modelled by a mixture of M weighted multidimensional Gaussian 
distributions. Given a sequence of feature vectors from an audio class, maximum likelihood 
of the parameters are obtained using the iterative Expectation Maximization (EM) 
algorithm. The basic idea of the EM algorithm is, beginning with an initial model  θ  , to 
estimate a new model , such that  'θ )/()'/( θθ XpXp ≥ . The new model then becomes the 
initial model for the next iteration. The process is continued until some convergence 
threshold is reached. The class of an unknown audio sample can then be obtained with the 
log likelihood ratio. By assuming equal  prior for each class, points in feature space for 
which the likelihood is relatively high are classified as belonging to that class. The log-
likelihood ratio for speech/music classification can be expressed as follows: 
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3.4 Summary 
 
In this chapter different classification algorithms have been discussed. The classification 
algorithms were categorized into parametric and non-parametric methods. The k-nearest 
neighbour classifier is a simple yet powerful classification method. However, the 
classification time is longer when compared to some other classifiers, and requires storage 
of the entire training vectors. The general mixture model requires estimation of the 
parameters of a model and hence is computationally complex. Contrary to the k-NN, the 
GMM  does not require storage of training vectors and is much faster.   
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Chapter 4 

Audio segmentation 
 
 
Systems that are designed for classifying audio signals usually take segmented audios 
rather than raw audio data as input. In order to get segmented audios from a given audio 
stream that contains different types of sounds, boundaries between the different audio types 
have to be marked. The process of detecting, if there is any change in the characteristics, 
the boundaries in an audio signal is referred as segmentation. Changes in audio signal 
characteristics such as the entrance of a guitar solo or a change from spoken words to music 
are some examples of segmentation boundaries. 
 
Temporal segmentation, contrary to classification, does not interpret data and hence can be 
more easily modelled using mathematical techniques. Several approaches to segmentation, 
based on different features, have been proposed. In [4], a general methodology based on 
multiple features is explained. In their work, the basic features used include features such as 
RMS, Zero-crossings and Spectral Flux and the actual features used are the means and 
variances taken over  one second windows. In [5],  segmentation is implemented based on 
the mean signal amplitude distribution. In this project the method described in [5] is 
implemented. 
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4.1 Root Mean Square of audio signals   
 
For a short audio signal (frame) consisting of N samples, the amplitude of the signal 
measured by the Root Mean Square is described by equation (4.1). RMS is a measure of the 
loudness of an audio signal and since changes in loudness are important cues for new sound 
events it can be used in audio segmentation. In this project the distribution of the RMS 
features are used to detect boundaries between speech and music signals. The method for 
detecting boundaries  is based on the dissimilarity measure of these amplitude distributions.  
In figures (4.1) and (4.2) below plots of the RMS together with histograms  for music and 
speech signals are shown.  
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Given a discrete audio signal x ,  the signal is split into short non overlapping frames and 
the Root Mean Square is calculated for each frame. The window size is chosen to a certain 
value based on the application.  In our implementation the window size is set to 512 
samples, i.e. with a sampling frequency of  22050 Hz, these windows are approximately 
23ms long.   
 
               
   

 
                              

                                                   Figure 4. 1 The RMS of  a music signal  
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                    Figure 4. 2  Histogram of the RMS of  the  music signal together with the                                       

                                                                           distribution  

 
 
 
 

 
          

                                              Figure 4. 3 The RMS of  a speech  signal  
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              Figure 4. 4   Histogram of the amplitude of a speech signal together with the                                        

                                                   amplitude distribution  

                                                   
 

4.2 Transition detection 
 
As mentioned earlier, in segmentation the aim is to find if there is any important difference 
between the distributions of two consecutive windows and thereby a transition from one 
audio type to another. This is done by measuring the distance between the distributions of a 
pair of windows at a time. Various acoustic distance measures have been defined to 
evaluate similarities between two adjacent windows. The feature vectors in each of the two 
adjacent windows are assumed to follow some probability densities and the distance is 
defined by the dissimilarity of these two densities. Some of the  similarity measures 
frequently used in audio segmentations are: the  Kullback-Liebler (KL), Mahalanobis 
distance, and Bhattacharyya distance. In [3] the symmetric Kullback-Liebler  is used to 
evaluate acoustic similarity. The similarity measure discussed in this project is based on the 
Bhattacharyya distance given by  the following equation 
 

∫= dxxpxppp )()(),( 2121ρ                                                                       (4.2) 
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Since measuring distances between distributions is costly, models which are appropriate for 
the distributions are found and the task is reduced to the estimation of the parameters of the 
model. As seen in figures 4.2 and 4.4 the chi- squared distribution fits both music and 
speech amplitude distribution well and hence, it is used in our segmentation task. The 
generalised chi- squared  distribution is defined by the probability density function shown 
in Equation (4.3). 
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The parameters a , b  are related to the mean and the variance of the Root Mean Square as 
follows.   
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According to equation(4.2) the similarity measure has a value that lies between zero and 
one. For  completely identical distributions a value of one is obtained and on the other end a 
value of zero is obtained for two completely different distributions. The value ( )ρ−1  is 
chosen to interpret the characteristics of the two windows to be compared. For two Root 
Mean Square distributions that are described by chi–squared distribution the similarity 
measure can be written as a function of the parameters a and b as shown in equation(4.4) 
below.  
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Based on the above equation, a possible transition with in a given frame k can be found. 
Hence for each window k a value D(k) which gives a probable transition within that 
window is computed as follows. 
 
 
 ),(1)( 11 +−−= kk ppkD ρ                                                                              (4.5)  
 
The above function emphasises on the fact that, a single change within a frame k implies a 
difference in the characteristics of the two immediate neighbours, frames k-1 and k+1. But 
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for an instantaneous change within a frame, the neighbouring frames k-1 and k+1 will have 
similar characteristics and therefore the factor  ),( 21 ppρ  will have a value close to one 
whereas the value obtained for  will be small. Any change from speech to music or 
very large changes in volume, such as change from audible sound to silence, locally 
maximizes the . These changes can be detected by setting a suitable threshold.  Since 
large changes are expected in neighbouring frames of a change frame, some sort of filtering 
and normalisation is needed. Using the Equation(4.6), we can compute the normalised 
distance. 
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kVkDkDnorm =                                                                          (4.6) 

 
In the above equation, the variable denotes the positive difference of from the 
mean of the neighbouring frames and in the case of a negative difference it is set to zero. 
The maximal value of the distances in the same neighbourhood of the examined frame is 
given by . In this project two frames after and two frames before the current one are 
chosen as neighbourhood. By setting a threshold, it is possible to find the local maxima of 

 and at the end we can detect the change candidate frame. In some cases (for 
example when the threshold is small) false detection would be easily generated leading to 
over segmentation of the audio signal. However, in the case where segmentation is 
followed by classification, over segmentation does not lead to serious problems.   
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4.3 Summary 
 
In this chapter the method for finding the time of transition between one audio type to 
another in long audio recordings have been presented. The method is based on the 
probability distribution of the root mean square features of  music and speech audio signals. 
The Bhattacharyya distance is used as a similarity measure.    
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Chapter 5 

Perceptually coded audio  
 
These days, digital audio is available in many different formats. Some of the common audio 
formats are:  WMA, MP3, Pulse Code Modulation (PCM), etc. However due to bandwidth, 
the most interesting formats are the perceptually coded formats.  
 
The purpose of this chapter is to explore existing audio content analysis approaches in 
compressed form. Specifically, the kinds of information accessible in an MPEG-1 
compressed audio stream and how to determine features from these are examined. Before 
the MPEG-1 standard is examined, it is a good idea first to look at the way humans 
perceive sound. The following is a brief introduction on this topic. 

5.1 Perceptual Coding 
 
In audio, video and speech coding the original data are analog signals that have been 
transformed into the digital domain using sampling and quantization. The signals are 
intended to be stored or transmitted with a given fidelity, not necessarily without any 
distortions. Optimum results are typically obtained using a combination of removal of data 
which can be reconstructed and the removal of data that are not important.  
 
In the case of speech coding a model of vocal tract is used to define the possible signals that 
can be generated in the vocal tract. Very high compression ratios can be achieved by 
considering   parameters  that  describe  the actual  speech signal. For generic audio  coding 
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however, this method leads only to a limited success. This is due to the fact that other audio 
signals such as music signals have no predefined method of generation. Hence, source 
coding is not a practical approach to generic coding of audio signals. 
 
Perceptual coding is different from source coding in that the emphasis is on the removal of 
only the data that are irrelevant to the auditory system. The main question in perceptual 
coding is therefore: How can data be removed while keeping distortion from being audible. 
Answers to this question can be obtained from Psychoacoustics. Psychoacoustics describes 
the relationship between acoustic events and the resulting audio sensation. Some relevant 
concepts about Psychoacoustics are given in the following.   
 
Critical bands are important notions in Psychoacoustics. The concept of critical bands is 
related to the processing and propagation of audio signals in human auditory system. 
Several experimental results have revealed that the inner ear in humans behaves as a bank 
of  bandpass filters which analyse a broad spectral range in subbands, called critical bands, 
independently from others. A perceptual unit of frequency, Bark, has been introduced and 
is related to the width of a single bandwidth. A commonly used transformation to this scale 
of hearing is given by the following relation. 
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where b and f denote the frequency in Barks and Hertz respectively. 
 
 
Masking is another concept in Psychoacoustics used to describe the effect by which a 
fainter, but distinctly audible signal, the ‘maskee’, becomes inaudible when relatively 
louder signal, the ‘masker’, occurs simultaneously. This phenomenon is fundamental    for 
audio coding standards. Masking depends both on the frequency composition of both the 
masker and the maskee as well as their variation with time. Masking in frequency domain 
plays an important role and hence is applied very often.  In general, the masking effect is 
dependant on the intensities of the masker and the maskee tones as well as their 
frequencies. This relation is best described in the frequency domain by the masking curves 
defined for maskers of given intensity and frequency. All components that lay below these 
curves are masked and therefore become inaudible. Figure 5.1 shows an example of 
masking curves computed versus frequency in Barks.  
 
As already mentioned before, because of  the masking effects the human ear is able to 
perceive only a part of the audio spectrum. In perceptual audio coding therefore, a 
perceptual coder is used for computation of masking thresholds and bit allocation is 
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performed in a way that avoids bits to be wasted representing sounds that would not be 
perceived.  
 
                           
           

            
                    Figure 5. 1 Plot of masking curves as function of Bark frequency 

 
 
 

5.2 MPEG Audio Compression  
 
MPEG audio compression algorithm is the standard for digital compression of high fidelity 
audio. Unlike source model based coders, the MPEG audio compression technique makes 
use of the perceptual limitations of the human auditory system. Much of the compression 
results from the removal of perceptually irrelevant audio parts. As mentioned earlier, 
removal of perceptually irrelevant audio parts results in inaudible distortions. Based on this 
method, the MPEG audio can compress any signal meant to be heard  by humans. MPEG 
audio offers divers audio coding standards : 
 

• MPEG-1 denotes  the first  phase of  MPEG standard . It was designed to fit the 
demands of many applications including digital radio and live transmission  of 
audio via  ISDN. MPEG-1 audio consists of three operating modes called layers: 
Layer 1, Layer 2 and Layer 3. Layer 1 forms the basic algorithm whereas layer 2 
and Layer 3 are rather extensions that use the basic algorithm found in Layer 1. The 
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compression performance gets better for each successive layer but at a cost  of 
greater encoder complexity.   

 
 

• MPEG-2 denotes the second phase of  MPEG standard. The main application    area 
for MPEG-2 is digital television. It consists of two extensions to  MPEG-1 audio. 

 
- Coding of Multichannel audio signals. The multichannel  extension is done  

in a back ward compatible way allowing MPEG-1 decoders to reproduce a 
mixture of  all available channels.    

 
- Coding at lower sampling frequencies: sampling frequencies of 16 kHz, 

22.05 kHz and  24 kHz is added to the sampling frequencies supported by 
the MPEG-1. 

 
 
In the following, a short description of the coding methods for the three MPEG-1 layers is 
given.  
 
       

    
 

                                        Figure 5. 2  Block diagram of MPEG encoding 

 
 
In Layer 1 an Layer 2, the coding method consists of a segmentation part to format the data 
into blocks, a basic polyphase filter bank, a psychoacoustic model to determined the desired 
bit allocation and a quantization part.  
 
The polyphase filterbank is used to compute 32 frequency band magnitudes (subband 
values). The filter bank used in MPEG-1 uses a 511-tap prototype filter. Polyphase filter 
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structures are computationally very efficient and are of moderate complexity. However, the 
filters are equally spaced and hence the frequency bands do not correspond well to the 
critical band partition. The impulse response of each subband is obtained by multiplication 
of the impulse response of a single prototype lowpass filter, by a modulating function 
which shifts the lowpass response to the appropriate frequency range. 
 
In the quantisation process, blocks of decimated samples are formed and divided by a scale 
factor so that the sample of largest magnitude is unity. In Layer 1, blocks of 12 samples are 
formed in each subband and each block is assigned one bit allocation. There are 32 blocks, 
each with12 samples, representing 32 × 12 audio samples. In Layer 2 , in each subband a 36 
sample superblock is formed of three consecutive blocks of 12 samples.  There is one bit 
allocation for each 36-sample superblock. All the 32 blocks, each with 36 samples 
represent a total of 32 × 36 audio samples. As in Layer 1 a scale factor is calculated for 
each 12 sample block.   
 
Layer 2 provides additional coding of the scale factor. Depending on the importance of  the 
changes between the three scale factors, one, two or all three scale factors are transmitted 
along with a 2-bit scale factor select information.   
 
 For each subband, there are three main types of information to be transmitted.   
 
 

o Bit allocation : it tells the decoder the number of bits used to code each 
subband sample. In Layer 1 there are four bits used to transmit the bit 
allocation for each subband whereas in Layer 2 the number of bits used vary 
depending on the total bit rate and sampling rate.  

 
o Scale factor: it is a multiplier that sizes the samples to make full use of the 

range of the quantizer. The computation of scale factor  is performed every 
12 subband samples. Six bits are allocated for each scale factor. To recover 
the quantised subband value, a decoder multiplies the decoded quantiser 
output with the scale factor.   

 
o Subband samples: The subband samples are  transmitted using the word -

length defined by the bit allocation for each subband. 
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                                               Figure 5. 3  Subband blocks in MPEG encoding 

 
 
Layer 3 combines some of the features of Layer 1 and Layer 2 with additional coding 
features. In Layer 3 the output of the filter bank in Layer 1 and Layer 2 is further processed 
with a Modified Discrete Cosine Transform. This results in subdivision of each polypahse 
filter output into eighteen finer subbands. In contrast to the two other layers the subband 
values are encoded in groups of 18 subband samples. A block can  be regarded as either 
consisting of 18 values in each of 32 subbands or of one value in each of 576 subbands 
depending on whether one accesses the filterbank outputs or the MDCT outputs.       
 
 

5.3 MPEG audio processing 
 
In audio segmentation and classification tasks, dealing with compressed audios has a 
number of advantages. The following advantages can be mentioned. 
 
 

• Has smaller computational and storage requirements than the uncompressed 
audio processing.  

 
• Long audio streams can be dealt with. 

 
• Some of the audio signal analysis carried out during encoding can be 

utilized. 

 36



Because of these advantages, it is highly desirable to use audio data that is directly obtained 
from compressed audios.   
 
Features that can be used in many audio processing algorithms can be directly extracted 
from the MPEG audio streams. In MPEG encoded audio there are two types of information 
that can be used as a basis for further audio content analysis: the information embedded in 
the header-like fields ( fields such as  bit allocation, scale factors) and the encoded subband 
values. 
 
As we have already seen, the scale factors in the header-like fields carry information about 
the maximum level of the signal in each subband. This information could be, for instance 
used in silence detection tasks. The bit allocation field stores the dynamic range of subband 
values. Whereas the scale factor selection field stores how the loudness changes on three 
subsequent groups.   
 
Almost all compressed domain audio analysis techniques use subband values as starting 
point for feature calculations. In MPEG-1 audio, the subband values are not directly 
accessible and hence some degree of decoding is required. However, the reconstruction of 
PCM samples, which is the most time consuming step in decoding, is avoided since the 
subband values will still be in compressed domain.   
 
The subband values in Layer 1 and Layer 2  can be approximated directly using the 
quantised values in an encoded frame. However, since this values are normalised by the 
scale factor in each of the 32 subbands, to arrive at the subband values encoded in the file, 
denormalizing the quantised values is needed.  
 
As already stated, in Layer 3 there are 576 subband values. To extract the magnitudes of 
these bands from a given file, it is necessary to decode the quantised samples. Furthermore, 
the scalefactors need to be readjusted and quantisation has to be reversed. This results in the 
576 MDCT coefficients.  It is also possible to further decode the MDCT coefficients and 
thereby obtain the 32 Polyphase Filterbank coefficients.  
 
In the following some of the features that can be extracted from an MPEG-1audio are 
presented. In figure 5.4 below,  the structure of   MPEG-1 audio is shown. In this figure the 
subband values are denoted by  where j is the subband number and lies in the interval 
[0  I-1]. The value of I varies depending on the layer type.      

)(iS j

 
Features can be computed either on the subband resolution level, on the block resolution 
level or on the frame resolution level. In the following the method for  feature extraction is 
based on the work of Silvia Pfeiffer and Thomas Vincent [8] .  
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                              Figure 5. 4   Structure of MPEG-1(Layer 2) audio 

 
In figure 5.4 each frame is made up of three blocks. The window size is denoted by M and 
the time position with in a window by m, where  0 ≤ m  ≤ M-1.  The window number while 
going over a file is denoted by t  and is related to the time position within a file. Depending 
on the choice of resolution for analysis, a subband value at window position m can be 
accessed. If for example, a block is chosen as a window size (non-overlapping) and a 
subband value resolution level is chosen for feature calculation, the subband value (in a 
Layer 2 block),  will be in window number t=13 at position m=4. )160(9S
Different methods for feature extraction based on the subband values are proposed by 
different researchers. In [9], for an MPEG audio frame, a root mean squared subband vector 
is calculated for the frame as: 
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The resulting G is a 32-dimensional vector that describes the spectral content of the sound 
for that frame. Based on the above equation the following features are further calculated: 
 
Centriod:  The centriod is defined as the balancing point of the vector and can be 
calculated as follows 
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Rolloff : This is defined as the value of R  below which 85% of the magnitude distribution 
is concentrated. 
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RMS   : The root mean square is a measure of the loudness . 
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Energy Features: When calculating energy features in the compressed domain, the results 
are closer approximations of perceptual loudness. This can be attributed to the fact that the 
subband values have been filtered by the psychoacoustic model and thus the influence of 
inaudible frequencies is reduced. A generalized formula for signal energy is given by. 
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where  is the window function )(mh
 
In [8], the scalefactors in Layer-1 and Layer-2 are used for a block resolution subband 
energy measure. The scale factors are the maximum value of the sequence of the subband 
values within a block. 
 

( ) 10,10:)(max)( −≤≤−≤≤+= IiMmmMtStscf ii                          (5.7) 
 
signal magnitude : In[8], sum of the scalefactors are used for a fast approximation of the 
signal magnitude. 
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5.4 Summary 
 
This chapter has focused upon two main areas: perceptual audio coding and feature 
extraction from perceptually encoded audio files. In order to understand the MPEG audio 
coding algorithms a brief introduction on human perception of audio signals has been 
given. The kinds of information accessible in an MPEG-1 compressed audio recordings and 
how to determine features from  these information is examined. The advantages of using 
features extracted from MPEG-1 audio for classification purposes have been also 
highlighted.  
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Chapter 6  

Experimental results and Conclusions 
 
In this chapter, the methods used  to implement the  system for discriminating audio signals 
will be described in details. Moreover the experimental results obtained together with some 
comments will be presented. The chapter is split into the following sub sections:  data 
description, feature extraction, segmentation and classification. 
 

6.1 Description of the audio data   
 
The audio files used in the experiment were randomly collected from the internet and from 
the audio data base at IMM. The speech audio files were selected from both Danish and 
English language audios, and included both male and female speakers. The music audio 
samples were selected from  various categories and consist  of almost all musical genres. 
These files were in different formats (MP3, aif, wav, etc) and in order to have a common 
format for all the audio files and to be able to use them in matlab programs, it was 
necessary to convert these files to a wav format with a common sampling frequency.  For 
this purpose the windows audio recorder was used and the recorded audio files were finally 
stored as 22050 Hz,  8 bit, mono audio files. 
 
The recorded audio files were further partitioned into two parts: the training set and the test 
set. This was important since each audio file was intended to be used only once, 
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either for training or for testing a classifier. The training vectors correspond to 52566 
frames for speech and 73831frames for music files.  
 
    
  
                                      
                                                      
                                              

Audio type Number of files   Average length   Total length 
   Speech        45          15 sec.         675  sec. 
   Music        55          15 sec.          825  sec.  

      
 
                                                  Table 6.1   Training data  
 
 
 Audio type Number of files   Average length   Total length 

   Speech       30          15 sec.          450 sec. 
   Music       30          15 sec.           450 sec.  
    silence       30          15 sec.          450 sec. 
Music + speech       10          120 sec.        1200 sec. 

     
 
 
 
 
 
                                                        Table 6.2   Test data 

6.2 Feature extraction 
 
Feature extraction has already been mentioned in the previous chapters. Here, it is focused 
on how features are extracted from the row audio data and how they are used in 
classification and segmentation modules.  MFCC, Zero-crossing rate and Short time energy 
features are used in the classification part whereas RMS is the only feature used in the 
segmentation part.  
 
 

6.2.1 MFCC features 
 
In order to extract MFCC features from the row audio signal, the signal was first partitioned 
into  short overlapping frames each consisting of 512 samples. The overlap size was set to 
half the size of the frame. A Hamming window was then used to window each frame to 
avoid signal discontinuities at the beginning and end of each frame. A time series of  
MFCC  vectors  are then computed by iterating over the audio file resulting in thirteen 
coefficients per frame. The actual features used for classification task were the means of the 
MFCCs taken over a window containing 15 frames. Furthermore only six out of the thirteen 
coefficients were used. In this way a very compact data set was created. The following 
figures show plots of  the  speech  and music signals as a function of time together with 
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their respective MFCCs . Note that  there are significant changes in the upper part of the 
MFCC plots, whereas  the lower parts seem to remain relatively unchanged. Therefore, for 
speech and music signals one can neglect the lower part of the MFCCs without losing any 
important information. 
 
 
 

 
 

                              Figure 6.1  Plot of a speech signal as function of time  

 
          

 
 

                               Figure 6. 2  Plot of the MFCCs for the speech signal 
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                              Figure 6. 3  Plot of a music signal as function of time  

 
 
                          

 
 
 

                                Figure 6. 4  Plot of the MFCCs for the music signal 

6.2.1 The STE  and ZCR  features 
 
Since these features were intended to be used   either in conjunction with the MFCCs or 
independently, it was necessary to split the audio signal so that the length of these features 
were the same as the length of  the MFCCs. Hence, the partition of the audio signal into 
overlapping windows was exactly the same as in the case of the MFCC features. The Short 
Time Energies and the Zero-crossing rates  were extracted from such windows, one from 
each window. The actual features used for the classification task  were the means taken 
over a window containing 15 frames. The following figures show plots of STE and ZCR for 
both music and speech signals.  
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                                               Figure 6. 5  STE for speech signal 

 

 
 

                                                 Figure 6. 6  STE  for music signal  
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                                                Figure 6. 7 ZCR for speech signal 

 

 
                                              Figure 6. 8  ZCR for music signal  

 

6.2.1 The RMS feature 
 
Although the RMS is somewhat related to the short time energy, it is often used as a 
measure of the loudness  of audio signals and therefore a unique feature to segmentation.  
Since this feature was used alone for another task, the audio signal was split in a rather 
different way.  The audio signal was first partitioned into short non overlapping frames 
each consisting of 512 samples. The Root Mean Square was computed  by iterating over the 
audio file based on the amplitude equation shown on page 25 and a single RMS value is 
obtained for each frame. The following figures show plots of RMS for both music and 
speech signals.  
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                                                   Figure 6. 9  RMS of a speech signal 

 
                                               Figure 6. 10  RMS of a music signal 

 

6.3 Classification  
 
The classification task was done with each of the classifiers: the Generalised Mixture 
Model and the  k-Nearest Neighbour classifier discussed in Chapter 3. Each classifier was 
trained on a set of labelled examples and then tested on other cases whose true 
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classification was known in advance but not given to the classifier. Experiments were done 
for two classification tasks: 2-class task, where the classifier classifies the audio into music 
or speech and 3-class task, where the audio signal is classified either into music, speech or 
silence. For experimentation, the features were either used alone or in conjunction with the 
others. In this way the effect of each feature set on the classification task can be observed.  
 
The classifiers were used to classify each frame into music, speech or others. The features 
were then blocked  into a one second long segments. A global decision was made for the 
entire block by choosing the class that appeared most frequently. The experiment was done 
in two different ways: to begin with discrete homogeneous audio signals  were used as  
input to the classifier and then audio recordings containing different audio types were 
presented to the classifier. 
 
It is always a good idea to use each data example only once in a single analysis. If the same 
data was used to train and test a classifier, the test would not give a good indication of how 
we might expect the classifier to perform on new data.  Considering the amount of time and 
effort invested in acquiring, labelling and processing data, it can be tempting to reuse data. 
But any such reuse is likely to cause overestimation of the accuracy of the classifier and 
spoil the usefulness of the experiment. In order to compare the two classifiers fairly, the 
same training set and the same test set were used for both the GMM and the k-NN 
classifier.  
 
Obtaining data in a form that is suitable for learning is often costly and learning from such 
data may also be costly.  The costs associated with creating a useful  data  include the cost 
of transforming the raw data into a suitable form , labelling the data and storing it.  The 
costs associated with learning from the data involve the time it takes to learn from the data. 
Given this costs, it is  always a good idea to limit the size of the training set. Hence, a 
common question asked at the beginning of many audio classification tasks is: what length 
of the audio data should I use for training ? In machine learning there are two  basic 
observations: 
 

•  The computational cost of learning a model increases as a function of the size    
    of  the training data and  
 
•  The performance of a model has  diminishing  improvements as  a function of 

          the size of the training data.  
 
The curve describing the performance as a function of the size of the training data is called 
the learning curve. In order to find an optimal size of a training set, the nearest neighbour 
classifier was chosen. By using different sizes of the total training data the error rate was 
calculated. For each size of the training set chosen, the experiment was repeated five times 
(randomly chosen sets) and the average results were taken. The following figure shows the 
learning curve obtained when the nearest neighbour classifier was used. 
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                                                     Figure 6. 11  The learning curve   

 

6.3.1 k-NN   
 
The k-Nearest neighbour classification method is a lazy learning, local classification 
algorithm. As mentioned earlier the basic algorithm is simple. For each new data point to 
be classified, the k nearest training samples are  located. The class label  which has the 
most members  in the set of k nearest points is assigned to the new data point. In this 
project the Euclidean distance measure is used as the similarity measure. Several 
simulations were done using different k (k=1,3,5 and 10) values and the smallest k value 
(k=5) that worked well was chosen for testing the results.  In order to see the effect of each 
feature on the performance, different combinations of the features were used as an input to 
the classifier.  
 
The tables below show the confusion matrices for the k-NN classifier. Each row in the 
matrices correspond to the true class of the data and each column correspond to the class 
predicted by the classifier. The value of K for all the simulations was set to five. 
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    Music 

 
  Speech 

 
Music 

   
         89.1    

 
      10.9 

 
Speech 

 
    8.4 

 
      91.6 

 
            
 
         Table 6.3   Confusion matrix when MFCC features were the only inputs. 
                                                   
 
 
 
 
 

  
    Music 

 
  Speech 

 
Music 

   
     93.01 

 
      6.99 

 
Speech 

 
      5.49 

 
      94.51 

 
 
                    

             Table 6.4  Confusion matrix when the inputs were MFCC and STE features.  
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    Music 

 
  Speech 

 
Music 

   
      90.61  

 
      9.39 

 
Speech 

 
       7.47 

 
      92.53 

               
              Table 6.5 Confusion matrix when the inputs were the MFCC and ZCR.  
 
 

  
    Music 

 
  Speech 

 
Music 

   
       93.67 

 
      6.33 

 
Speech 

 
        5.71 

 
     94.29 

 
                             
     

                   Table 6.6   Confusion matrix when the inputs were MFCC,  
                                                  ZCR and STE features.  
 
 
 
 
From the results obtained the following observations can be made. The MFCC features 
used as an input, alone, result in an overall correct classification rate of  90.3%. When 
the MFCC features were used in conjunction with the short time energy and the Zero 
Crossing rate the overall classification rate gets better and is around 93.98%. The same 
is true when MFCC feature are used together with short time energy features. However, 
when the input to the classifier was a combination of MFCC features and zero crossing 
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rate only  little improvement in the overall correct classification rate was seen. We 
conclude therefore that the MFCC features in conjunction with the short time energy 
alone can with a good classification rate be used for a speech/music discrimination.  
 
It is worth to mention that the features used in the simulations were pre-processed in 
order to avoid classifier bias. As mentioned in chapter 3, the use of Euclidean distance 
measure can affect the performance of the classifier when two or more feature sets were 
used at one time. In many cases each feature set can be normalised as follows. 
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Generally most of the (frame) misclassifications that occur happen to be in the case of 
music samples, and particularly music samples that contain classical music. This could 
be attributed to the fact that in many classical music samples there are a number of 
silence frames and that this frames might be classified as speech features. Also,  dividing 
the test features into segments and classifying each segment yields much better 
classification results than when frame classification was done. 
 
 

6.3.2 GMM  
 
Unlike the k-NN classification method the GMM method requires determining the 
parameters  of the model based on the training set. The GMM classifier was implemented 
by first estimating the probability density functions of the features under the two possible 
conditions, music or speech, based on the training set. A new test set is then classified 
according to the likelihood ratio, that is the ratio of the values of the pdfs of the two classes 
at that point.  The pdfs of the two data sets were estimated by fitting a General Mixture 
Model. The Gaussian means were first initialised by using the k-means clustering and then 
the model is refined using the Expectation Maximisation algorithm.  Equal prior likelihoods 
were assumed for each class and the decision rule was that points in the feature space for 
which one pdf was larger, were classified as belonging to that class. 
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The following tables show the simulation results obtained using the GMM classifier. The 
number of  clusters was fixed to 20 and the number of iterations was set to 5. The 
simulation was made five times and the average was taken.  
 
 

  
    Music 

 
  Speech 

 
Music 

 
 
             85.22  

 
 
  14.78 

 
Speech 

                
               
              0.44 

 
 
  99.56 

 
             
 
                         Table 6.7    The features used were the MFCCs. 
                                 
  
 
 
 

  
    Music 

 
  Speech 

 
Music 

 
         
            89.78 

  
 
      10.22 

 
Speech 

 
 
             0.22 

 
 
     99.78 

 
                       

               Table 6.8  The features used were the MFCC and STE features. 
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    Music 

 
  Speech 

 
Music 

 
         
             85.65 

  
 
       14.35 

 
Speech 

 
 
             0.00 

 
 
       100.00 

 
                                 
     

        
              Table 6.8   The features used were the MFCC and ZCR features. 
                                             

 
 

 

 

  
    Music 

 
  Speech 

 
Music 

 
         
             91.30 

  
 
     8.70 

 
Speech 

 
 
             0.00 

 
 
     100.00 

                             
            

                  Table 6.9 The features used were the MFCC, STE and ZCR features. 
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Although the results obtained in this case showed similar tendencies as in the case of the 
K-nearest neighbour classifier, the correct classification rate was even better. When the 
MFCC features were used in conjunction with the short time energy and zero crossing 
rate, a correct classification rate of around 95.65% was obtained. This result was the best 
result among the classification results obtained from both the GMM classifier and the 
KNN classifiers.  A correct classification rate of about 94.78% was obtained for the case 
when MFCC in conjunction with the Short Time Energy features were used. However, 
for the case where the input was a combination of MFCC and ZCR features, the 
classification rate was 92.83% , which is almost the same as when pure MFCC features 
were used.  
 
 

6.3.3 Comparison of the classification results 
 
 
Now that we have used both the k-nearest neighbour classifier and the general mixture 
model classifier, it would be interesting to make some kind of comparison between these 
classifiers and also see the effect the features have on the outcome. The Table below 
shows the classification results obtained for the two classifiers with different feature 
combinations.  
 
 
 
 
   
        Features  

       
        k-NN (k=5) 
       Accuracy (%) 
 

      
        GMM 
      Accuracy (%) 
 

        
          MFCC                   

           
           90.35 

          
          92.39     

        
      MFCC + ZCR 

           
           91.57 

          
          92.83 

     
      MFCC + STE 

            
           93.76 

          
          94.78 

   
  MFCC + ZCR+ STE    

           
           93.98 

          
          95.65 

 
           
                Table 6.9 Accuracy testing results for the speech/music classifier 
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The classification results obtained from using a general mixture model classifier and a k-
nearest neighbour classifier demonstrate the effect of the classification algorithms. The 
general mixture model classifier seemed to have a far better correct classification rate 
than k-nearest neighbour classifier (around 2%). In both cases, adding more features to 
the MFFC features showed  a positive effect on the outcome, although  using the MFCC 
in conjunction with STE  resulted in a relatively  higher classification rate than when 
MFCC features were used in conjunction with the zero crossing rates.    
    

6.3.4 Classification into three classes  
 
In the following experiment, the GMM classifier was used to classify audio signals into 
music, speech and silence. The same training set (as in the case of the two class task) 
was used to train the GMM, and a new set of 30 silence audio files was added to the 
existing 60 audio files used in the speech/music classification task. In the training stage, 
only two classes were used to “train” the classifier. In the classification stage, any data 
that did not belong to any of the two classes was to be classified as silence. The test was 
repeated 5 times and the average is shown in the table below. Note that the results 
obtained in this case cannot be compared with the results obtained in music/speech 
classification task, since in this classification task, audio signals other than music and 
speech were taken into consideration.  
 
 
 
 
 
 
          

         Music 
 

          
      Speech 

         
         Silence 

     
        Music 
 

 
         80.0 

 
           11.74 

   
           8.26 

      
       Speech 
 

 
          0.66 

   
           99.34 

   
           0.00 

       
        Silence 
 

 
           1.31 

 
           0.00 

 
          98.69 

 
                    Table 6.10  3-class task, the features used were the MFCCs only. 
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Correct classification rate of around 92.65% was obtained for this task. The number of 
music frames that had been classified as silence seemed to be a bit higher relative to the 
number of speech frames that had been classified as silence. A reasonable explanation to 
this observation could be that in speech, silences between two spoken sentences are less 
than 0.5 seconds, whereas silences in music are usually greater than 0.5 seconds.   
 

6.3.5 Classification of audios that contain different audio types  
 
Lets look at the case where the input to the classifiers was an audio stream that contained  
speech and  music. The same procedure as that of a discrete input case was followed 
here. To start with, each audio frame (~23ms) was classified into one of the two/three 
audio classes. Decisions over a one second (~43 frames ) window was then made, by 
choosing the class that appeared most frequently. In applications where the interest lies 
in extracting one audio type from an audio stream, this would not be a good solution for 
many reasons. One good reason could be that the beginning and end of one audio type 
cannot be determined with some accuracy.  
 
 
 

 
 
 

           Figure 6. 12  Classification of an audio stream into two classes, 2 stands for                                            

                                           speech while one is for music  
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In the above example, no frame misclassification was observed, hence the smooth regions 
on the figure. But in most cases (as in figure  6.13)  there will be some frames that are 
misclassified and this could be another reason to why this method is not optimal. The 
following figure shows classification of the same audio signal using the k-nearest 
neighbour classifier. As it can be seen in the figure one or two music windows had been 
classified as speech.  
 

 
          Figure 6. 13  Classification of an audio stream into two classes using a k-NN                                           

                                                                Classifier 

6.4 Audio Segmentation 
 
As mentioned in chapter 2 the main aim for segmentation is to partition the input audio 
signal into acoustically similar audio segments. In order to divide an input  audio signal 
into similar regions, the method explained in chapter 4 was followed. The expression for 
the Root Mean Square was used for computing the RMS feature for non-overlapping 
frames each containing 512 samples. About 43 consecutive frames were then joined to 
form windows that have an approximate length of one second. For each window the 
probability density function was then found from the computed feature vectors.  These 
pdfs were then used as a basis for similarity measure, i.e. how similar two consecutive 
windows were.  If there was a strong similarity between these two windows, then no 
boundary was assumed to exist and on the other hand if the two windows were more 
dissimilar then a transition was considered. In the following, a summary of the steps 
followed is shown. 
 
 

• Split the audio stream into frames each containing 512 samples. 
 

• For each frame compute the root mean square value. 
 

• Group consecutive frames to form windows each of length one second. 
 

• Calculate the mean and variance on each window. 
 

• Find the similarity measure. 
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• For each window j calculate a value D(j), that gives a possibility of a transition 

within that window.  
 

• Calculate locally normalised distances, . )( jDnorm

 
 
Some experimental results for finding transition windows for audio recordings that had 
been obtained from a local radio station are shown below. As it can be seen in the figure 
the value of  D(j)  will be relatively small if the windows  ( j-1) and  ( j+1) are similar  
and on the other hand the value D(j) will approach one, if the two windows are not 
similar. Since the method implemented is not only sensitive to any changes from music 
to speech and vice versa but also large changes in volume, there can be some false 
transitions in cases such as, changes from silence to audible sound. These changes can 
be filtered out with a suitable threshold. Large values of D can also be expected around a 
change window and hence some normalisation is required.  
 

 
                                        Figure 6. 14 Plot of D(j) as a function of time  

 
                                      Figure 6. 15 Plot of as a function of time  )( jDnorm
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                              Figure 6. 16  Detected audio transitions together with the RMS 

 

 
                      Figure 6. 17 Another segmentation example, where one or more false                                           

                                                     transition detections are shown    

 
In section (6.3.5), audio signals have been classified either into music or speech using 
one of the two classifiers. It has been pointed out that the aforementioned method was 
not that optimal. Furthermore, partition of audio into several homogeneous regions was 
demonstrated in the previous section. In this section, the aim is to combine the 
classification method with the segmentation procedure. This would in fact reduce the 
number of misclassified windows, and hence an improvement in the performance. This 
method was implemented and tested on several audio signals that contained music and 
speech. Using this method, it was possible to extract only one type of audio and save it 
in a file. However, since the time of transition was not precisely detected a small part of 
a neighbouring window was included. These could be minimised if the window size was 
decreased by half. The following figures demonstrate the classification of audio signal 
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into the two classes. Speech audio is marked by the red colour while music audio is 
marked by the blue colour. 
       
  

 
                   

                                     Figure 6. 18  classification into speech and music       

 
 
 
 
 

6.5 Summary 
 
In this chapter the actual implementation of the system discussed in chapters one to five has 
been presented. How the different classification algorithms, discussed in chapter 3, were 
trained and tested using the different features extracted from audio signals, that have been 
stored in a WAV format, is explained. Comparison of the two classification methods and 
the effect of each feature set on the classification results is presented. Segmentation of 
audio recording based on the method explained in chapter four has been also presented. 
And finally implementation of a system that combines the segmentation algorithm with the 
classification algorithm is presented.  
 
 
 
 
 
 
 
 
 
 
 

 61



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 7 

Conclusion and future work   
 
 
The aim of this project was to design a system that could be used to segment an audio 
signal into similar regions and then classify these regions into music, speech and silence 
audio classes. The project could be considered as a combination of two tasks; a 
segmentation task and a classification task.  Classification algorithms were used either 
independently with a given audio segment or in combination with the segmentation 
algorithm.  
 
Features extracted from music and speech signals ( in WAV format) were used in the two 
tasks. Three feature sets were used to train and test two different classifiers, the General 
Mixture Model classifier and the k-Nearest Neighbour classifiers, to classify audio signals, 
and only one feature set was used to partition audio into similar regions. Nearly all the 
audio files used in this project had been obtained from the internet. The majority of these 
audio files were in MP3 format and it was necessary to convert them to WAV format. Thus, 
the process for extracting audio feature showed to be very time consuming. It would have 
been very advantageous if the system was designed to take in audio in MP3 format. This 
could have had two effects on the system; the need for converting one audio format to 
another would have been avoided, and features would have been extracted directly from the 
encoded data. The two classifiers were trained and tested with the same training and test 
sets. With each classifier, four experiments were run with different combinations of the 
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feature sets. The General Mixture Model classifier showed a better classification 
performance in all cases. The best correct classification result, which was  more than 95%, 
was obtained when all the feature sets were combined and used as an input to a GMM 
classifier.  In addition, the GMM was able to classify a long audio file in relatively shorter 
time when compared to the k-Nearest Neighbour classifier. However, in GMM classifiers 
there was a higher degree of variation in the classification results of the same audio 
segment.  
 
The segmentation algorithm was based on the root mean square features. This feature is 
usually used in audio segmentation since changes in loudness are important cues for new 
audio events. The segmentation algorithm was implemented and tested on different audio 
files and was able to detect the transition frame in most cases. However, the  method is 
incomplete since the segment limits could not be specified within some degree of accuracy. 
In most of the simulations considered, where a long audio file was segmented and 
classified, there has been cases where auditory verification of the boundaries indicated that 
part of the preceding segment was included within boundaries of the current segment. 
 
 
The system implemented worked well on classifying any type of music and speech 
segments with a correct classification rate of 95.65% for one second windows. The system 
also worked reasonably well for segmenting audio signals into similar classes. Some 
improvement in the segmentation method used is however required.      
 
There are many things that could be done in the future. The segmentation algorithm could 
be modified to detect the transition point with an accuracy of 30ms, and also to 
automatically set the threshold for finding the local maxima of the normalised distance 
measure. More training data could be used in the classification part. The system could be 
trained to include other classes other than music, speech and silence. Further classifications 
into different music genre or identifying a speaker are also other possibilities.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 63



A Maaate  
 
Maaate1  is a C++ toolkit that enables audio content analysis on compressed audio files. It is 
designed to support MPEG1/2 Layer 1,2 and 3 audio files. It makes the subband samples, 
and other preprocessed features as well as the file format specific fields accessible. It also 
allows content analysis functions such as silence detection to work on the extracted 
features.  
 
Maaate is implemented in C++ using standard template library. In order to separate 
different functionalities and provide simple Application Program Interfaces (APIs), Maaate 
is designed in tiers.  
 
Tier 1 deals with parsing of MPEG audio streams and offers access to the encoded fields. 
The most important class in this tier is the MPEGfile class. Tier 2 offers two generic data 
containers that can be used by the analysis modules.  The SegmentData and the 
SegmentTable classes provide the data containers. Tier 2 also provides a module interface 
to plugin analysis routines that are stored in dynamically loaded libraries.   
 
Tier 1 consists of  the following classes 
 
MPEGfile         :   contains The API to open an MPEG audio file and process the audio            
                             frames. 
 
Header               :   contains the code to parse and access MPEG audio frame headers.  
 
AllLayers          :   contains code that all three layers need for parsing one MPEG audio     
                              frame. The AllLayers class is an abstract class and as such only    
                              instances of its subclasses (Layer 1,2 and 3) can be created. 
 
Layer1-Layer3  :   are subclasses of AllLayers and contain layer specific code.  
 
MDecoder         :   provides a simple API to use for playback applications where    
                              decoding to PCM into a buffer is required. 
 
 
As we have already seen in chapter 3, an MPEG audio file is made up of a sequence of 
audio frames. Each frame has a header which contains information about the type of data 
that is encoded in the frame. Based on this information, the length of the data encoded in 
the frame can be calculated and the data can be parsed.  At the API, one frame at a time 
may be parsed and encoded data requested. The encoded data in Layer 1 and Layer 2 are 
similar whereas the encoded data in Layer 3 is different from both Layers.  
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A module is a collection of related functions that provide a broader functionality. Modules 
that analyze the content of an MPEG audio file collect information from several frames and 
compute a more abstract information. Some example of modules are described  below. 
 
-Feature extraction modules are modules that make use of the tier 1 field access functions  
and store their results in one of the containers provided by tier 2. Feature extraction 
modules include modules such as spectral flux , spectral centroid and Energy modules. 
 
-Feature analysis modules are modules that use the extracted features for further  analysis. 
These modules make use of filled (features extracted) containers and store their results in 
another container.   
 
-Content analysis modules calculate higher level information using feature extraction and 
analysis modules. Such modules usually call for other modules to manipulate  their results, 
which again may be stored in the relevant containers.  
 
A module is an instance of the Module class, which also provides functions to get 
information on the instantiated module, handle input and output parameters, check 
constrains on parameters and call the module functions. The apply function of a module 
takes a list of parameters as an input and produces, as a result of its processing, a list of 
parameters. To setup the environment under which the apply function will work, other 
functions are required. The following is a description  of the functions found within a 
module and callable at the module interface: 
 
 
 

• init (required)     :  sets up the basic information of the module such as its name, 
description, and the input and output parameter specification. 

 
• default(required) :  sets default values for input parameters and returns the input 

parameter list. 
 

• suggest (optional): takes an input parameter list, suggests parameter values based 
on information provided by other parameters, and changes constrains of input 
parameters as required. 

 
• reset  (optional)  :  provides the possibility to reset a module 

 
• apply (required) : takes a list of parameters as an input, performs analysis  and 

returns  a list of output  parameters.  
 

• destroy (optional) clears memory allocated within the module and deletes 
parameter specification.  
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A parameter is an instance of the ModuleParam class. In an application, the parameters are 
handled in the following way: the list of parameter specifications for input and output is set 
up by the init function. Thereafter, the application  sets up an input parameter list by calling 
the default function. The application may then change the input parameter values as it 
requires. It is then possible to call the suggest function which will fill in necessary 
parameter values and constraints and perform sanity checks. And finally the application 
may call the apply-function to check whether the parameter are within a specific range of 
allowed values.    
 
The allowed data types for parameters are either basic types or complex types and are all 
listed in the type MaaateType. The basic type for parameters include boolean, integer, real 
and string types.  The Complex types for parameters are: a pointer to an opened audio file, 
a pointer to a segment data structure and a pointer to a segment table.   
 
The following is a list of audio features that can be extracted using the Maaate audio 
toolkit.  Plots of some  features extracted from music and speech files (mp2) are also shown 
in the figures below.     
 
 
Pre-processed features: 
 

• Normalise Subband Energies 
• NormalisedSubband Value Energies 
• Subband Scalefactors(Channel 0) 
• Subband Mean 
• Subband RMS 
• Subband Values (Channel 0) 
• Subband Values (Mean over channels) 
• Subband Values (RMS over channels) 

 
Energy features: 
 

• Band Energy 
• Signal Energy 
• Signal Magnitude 
• Sum of Scalefactors 

 
 
Bandwidth features: 
 

• Bandwidth 
• Signal Bandwidth 
• Significant Subbands 
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Spectral energy statistics: 
 

• Band Energy Ratio  
• Central Moment  
• Spectral Centroid  
• Spectral Flux  
• Spectral Rolloff 

 
 
 
 

     
      Figure 1a Signal Energy for  speech                Figure 1b Signal Energy for music            
 

       
     Figure 2 Sum scalefactors for speech            Figure 2b Sum scalefactors for music   
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    Figure 3a Spectral centroid for  speech           Figure 3b  Spectral centroid for Music  
 

 
      Figure 4a Roll off for speech                              Figure 4b Roll off for music  

 
         Figure5a Signal magnitude for                      Figure5b Signal magnitude for  
                              speech                                                            audio 
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